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Abstract

Graph theory offers a powerful framework for using the relational dependencies in Electronic

Health Records (EHRs) to enhance machine learning (ML) predictions of health outcomes and

diagnoses. This thesis explores and advances graph-based ML approaches, with applications for

the prediction of future hip and knee replacement risk.

A systematic literature review identified 832 studies, with 18 using patient-level graph represen-

tations of EHRs for predicting health outcomes. This review showed that current graph-based

EHR models have limited clinical applicability due to high risk of bias.

A novel Temporal Graph-Based Convolutional Neural Network (TG-CNN) model was devel-

oped. Initially applied to student dropout prediction in online courses, this approach demon-

strated state-of-the-art performance. Extending this method to medical data, TG-CNNs were

applied to predict hip and knee replacement risks, one and five years in advance. Temporal

graphs, constructed from primary care event codes from EHRs, captured temporal relation-

ships between symptoms, diagnoses, and prescriptions. Models achieved AUROC values up to

0.967 for hip replacement and 0.955 for knee replacement.

To improve model interpretability, four explainable methods were explored, including gradient-

based and feature-mapping approaches. These methods provided visual insights into TG-CNN

predictions, highlighting the influence of key EHR features such as prescriptions. While clin-

icians found these visualisations informative, further simplification is needed to support real-

world clinical decision-making.

This thesis demonstrates that graph-based representations improve the predictive performance

and interpretability of ML models in healthcare. The TG-CNN model offers the potential to

enhance patient care and management through earlier and more accurate predictions. Future

work should focus on improving model explainability and translation into clinical practice.
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Chapter 1

Introduction

1.1 Background

The evolving landscape of healthcare faces unprecedented challenges as advances in medicine,

increasingly complex patient treatment pathways, and ageing populations place growing strains

on health systems. The integration of predictive algorithms into healthcare offers techniques to

reduce clinicians’ cognitive burdens, streamline decision-making, and enhance patient outcomes

by reducing waiting times for care [1]. The government are encouraging the growth of Artificial

Intelligence (AI) within the United Kingdom (UK) to help speed up assessment and diagnosis in

healthcare, particularly with patient scans which are becoming increasingly in demand leading

to longer waiting times [2].

Many clinical prediction models rely on summary data derived from EHR codes. These codes

contain both temporal information (e.g., the timing and sequence of medical events) and struc-

tural information (e.g., patient demographics, diagnoses, and procedure codes). However, due

to model architecture and preprocessing, temporal features are often discarded or lost during

training [3]. Many models simplify or aggregate data to reduce complexity, stripping away

valuable contextual information that could be critical for accurate predictions.

Graph-based representations of EHRs offer a way to preserve these complexities, capturing

temporal and relational dependencies to improve Machine Learning (ML) predictions. Such

advancements hold particular promise for chronic, progressive conditions where early interven-

tion can significantly alter disease trajectories. One such condition is Osteoarthritis (OA), a
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leading cause of disability worldwide. With OA cases rising and joint replacement surgeries

placing increasing strain on healthcare systems, predictive insights could play a crucial role in

enabling earlier interventions, such as physiotherapy or medication, to slow disease progression.

By improving care efficiency, optimising resource allocation, and enhancing patient quality of

life, these predictive models address clinical and systemic challenges in managing OA [4, 5].

1.2 Motivation

Conditions like hip OA, which affects physical activity and quality of life, are increasingly

common and resource-intensive to manage, which regularly result in hip replacement surgery

being required [6]. In 2023, 108,558 primary total hip replacements were were recorded by the

National Joint Registry in the UK, of which 92% were due to OA [7].

The burden of Musculoskeletal (MSK) conditions, particularly OA, highlights the critical need

for predictive tools. Predicting the need for such procedures in advance could significantly

enhance healthcare planning and delivery. For example, identifying at-risk patients early would

enable timely interventions, such as physiotherapy or lifestyle adjustments, reducing the need for

surgery and alleviating patient suffering [8]. This is particularly crucial as ageing demographics

and increasing obesity rates exacerbate the prevalence of joint degeneration and the associated

strain on healthcare systems.

Furthermore, the adoption of explainable ML models addresses a critical barrier to clinical

trust [9]. Predictive algorithms often function as “black-box” systems, offering little trans-

parency about their decision-making processes. In healthcare, this lack of explainability not

only undermines trust but also raises ethical concerns, particularly regarding patient safety and

fair decision-making. Transparent and interpretable models empower clinicians to understand

and validate predictions [10], enabling better communication with patients and compliance with

regulations such as the General Data Protection Regulation (GDPR) [11]. As such, explain-

ability is not just a technical requirement but a vital feature to ensure equitable, safe, and

patient-centred care.

By integrating predictive algorithms into healthcare systems, resource allocation can be op-

timised, enabling more strategic planning at local and national levels. This includes reducing

unnecessary procedures, mitigating costs, and improving patient outcomes, aligning with public

2



Chapter 1. Introduction 1.3. Problem Statement

health goals to enhance the efficiency and equity of care delivery.

1.3 Problem Statement

Predicting long-term health outcomes is essential for effective healthcare planning, early inter-

vention, and personalised treatment strategies. However, accurately forecasting health outcomes

in advance remains a significant challenge due to the complex, dynamic, and interconnected na-

ture of health data. Traditional predictive models in healthcare usually work with either static

data (such as a patient’s age, gender, or diagnosis at a single point in time) or basic time-series

data (like repeated measurements of blood pressure or heart rate over time). However, these

approaches often fall short because they do not account for the complex and dynamic relation-

ships between different health indicators [12]. For example, how one indicator, such as blood

sugar level, might influence another, like blood pressure, over time, or how these relationships

change in parallel as a patient’s condition evolves. This inability to capture such interdepen-

dencies and evolving patterns can limit the model’s ability to make accurate and contextually

rich predictions, especially in patients with complex EHRs.

Existing methods also struggle with integrating the relational structure of health data, such as

the way different health metrics and demographic factors interact over time, which is critical

for understanding and predicting health outcomes.

This research addresses the critical need for a predictive model that can use temporal and

relational data to more accurately forecast hip and knee replacement risk over extended periods.

To do this the Temporal Graph-Based Convolutional Neural Network (TG-CNN) model is

introduced which uses EHR data, including the elapsed time between General Practitioner (GP)

visits, to predict individual patient outcomes in advance. By developing a TG-CNN model, this

thesis aims to fill the gap in predictive healthcare analytics, enabling a more comprehensive and

interpretable approach to long-term health outcome prediction.

1.4 Objectives and Research Questions

The objective of this thesis is to determine how TG-CNN models can be used for healthcare

predictions using EHR data represented as graphs, where Clinical Codes are the nodes and

these are linked by edges using time in between patient visits. The overall research question
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can be encapsulated as:

Can incorporating elapsed time between EHR events/clinical codes be used, with the TG-CNN

model, to improve predictive power and enable clinicians to make informed decisions more ef-

fectively, compared to the current state-of-the-art AI approaches?

With the following sub-questions that aim to be achieved in subsequent chapters:

1. In what ways can graph-based representations and AI improve clinical insights and diag-

nostic capabilities in MSK research?

2. How are graphs being used on EHRs to predict diagnosis and health outcomes?

(a) What graph approaches are researchers taking to predict these health outcomes?

(b) How do these graph approaches compare to each other?

(c) How are nodes and edges being utilised to perform these tasks?

(d) How do these approaches compare to other machine learning, artificial intelligence

and statistical models?

3. What is an effective architecture for TG-CNN models? Can the TG-CNN be used effec-

tively on simple temporal data to predict binary outcomes?

4. Can the TG-CNN model be used to predict hip and knee replacement risk at one and five-

year intervals, and how does its performance compare to existing models in the literature?

5. What methods are useful to apply to TG-CNNs to provide explainability for model pre-

dictions to clinicians in a visually understandable way?

1.5 Overview of Datasets

Two datasets are used in this thesis. The first dataset used in this thesis was the Accessible

Culture & Training Massive Open Online Course (ACT MOOC) dataset1 , this is composed

of a temporal sequence of timestamped student clickstream actions and subsequent dropout

information. The Massive Open Online Course (MOOC) dataset consists of 7,047 users. There

are 97 potential clickstream actions a student can take. Further details of this dataset can be

found in Chapter 4.

1Stanford Network Analysis Project - https://snap.stanford.edu/data/act-mooc.html
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The second dataset is a health dataset constructed from primary care National Health Service

(NHS) EHRs. Specifically, the data is from ResearchOne, which is managed by The Phoenix

Partnership (TPP). It comprises of clinical and administrative data from 151,565 patients (aged

40-75) who attended practices in England using SystmOne and who did not use the national

opt out option for data sharing. This dataset contains around 2,000 different Clinical Terms

Version 3 (CTV3) codes covering clinical details. Patients were eligible for this dataset if their

first record of joint pain was clinically coded between April 1st, 1999, and March 31st, 2014 [13].

The ResearchOne data is not distributable under license and is not publicly available. Further

details of this dataset are covered in Chapters 5-6.

1.6 Contributions of the Thesis

This thesis aims to provide readers with the knowledge to understand the methodology and

motivation behind the TG-CNN model. The TG-CNN model developed during this project is

openly available on GitHub2.

Algorithms were developed to enable the sparse implementation of the 3D Convolutional Neural

Network (CNN) layer used within the TG-CNN model for healthcare applications.

This thesis introduces the application of graph-based primary care EHRs for hip and knee re-

placement prediction. No other studies have used graphs for hip or knee replacement prediction,

which enable the use of high dimensional data to improve predictive performance compared to

current methods such as Logistic regression and Random Forest Survival models [14, 15].

Not only does this model provide state-of-the-art performance, it also provides an intuitive ap-

proach that enables model interpretability and predictive reasoning via interactive graphs. This

work includes a small portion of user evaluation, which can be used for future implementation

into something with clinical utility.

1.7 Methodology Overview

Research methods involve the development of a codebase constructing the TG-CNN model

for experimental analysis. First, the datasets are explored and pre-processed to format them

appropriately for feeding into the model. Then the models are trained and tuned based on

2Sparse TGCNN Repository on GitHub: https://github.com/ZoeHancox/Sparse TGCNN
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various hyperparameters and model layers to optimise the architecture and improve prediction

performance. Specifically, this is first performed on the ACT MOOC dataset to predict student

dropout and compared against current state-of-the-art models in this area. Then the model

is further developed and is trained on EHR data for prediction of hip replacement risk one

year in advance, again with further hyperparameter optimisations, ablation studies, existing

model comparisons, and performance evaluations. Following that, four models are trained

to separately predict hip and knee replacement risk one and five years in advance, observing

any changes to model performance. And lastly the model is adjusted to enable explainability,

constructing various forms of interactive individual patient graphs using different explainability

methods to provide users understanding of model decision reasoning. The interactive graphs

are then evaluated asking clinicians to complete a short questionnaire on their experiences with

the interactive graphs.

This methodology allows the construction and internal validation of the TG-CNN model to

assess the performance in the healthcare domain, predicting hip and knee replacement risk and

comparing the model to models in the literature. Whilst considering how the model could be

further utilised for clinical decision making and interpretability for transparent modelling.

1.8 Thesis Outline

The first chapter (Chapter 2) of this thesis forms the narrative review in which a brief back-

ground about MSK conditions, prediction models, and models used for healthcare prediction

are covered. This chapter outlines the current research undertaken to predict MSK related

outcomes, whilst also uncovering current use of EHRs and how they could be used further for

health outcome predictions.

Chapter 3 covers a systematic review of networks for prognostic prediction of health outcomes

and diagnostic prediction of health conditions within EHRs. It looks at the existing literature

using graph-based techniques for individual health outcome prediction. It uncovers the key

gaps in the literature in this area alongside the current biases present, which help inform the

subsequent chapters of this thesis.

Chapter 4 introduces the TG-CNN development and methodology using a simple MOOC click-

stream dataset to establish the foundations of the model before application to medical data. It
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introduces the sparse 3D CNN layer technique with examples. The chapter then compares 3D

CNN sparse and dense implementation of the models.

The TG-CNN model is applied to primary care health data in Chapter 5. Specifically the model

is used to predict hip replacement risk one year in advance, in patients who had experienced

joint pain.

In Chapter 6 the work is extended to produce models for hip and knee replacement risk one

and five years in advance. This chapter looks at comparing the performance of the four models.

Chapter 7, explores various methodologies to make the TG-CNN model explainable. Interactive

graphs are developed showing which parts of a patients EHR history contribute to the models

prediction decision. Clinical feedback on these interactive graphs is given.

1.9 Expected Impact and Applications

The TG-CNN method is highly versatile and could be used for a variety of scenarios. The

method could not only be expanded to other health domains or at different health tiers (sec-

ondary or tertiary care), this work has shown that the TG-CNN model is effective for predicting

student dropout which could translate to many areas of research.

Project outputs are being used in the DynAIRx3 project which looks at de-prescribing in patients

with polypharmacy, to reduce adverse reactions caused by taking multiple medicines at the

same time. The TG-CNN method is being explored to use for better patient prescription

of medications calculating risks of hospital admissions and other adverse outcomes for three

multimorbidity groups.

Alongside this thesis, an open access GitHub repository was created which not only allows

others to train the model to their needs, it also provides the code to perform sparse 3D CNNs,

with one degree of freedom, to improve computation speed. Reducing computation costs are

vital as the use of AI continues to grow, as the impact of AI changes lives it is important to

consider the implications of training and using models on our carbon footprints.

3https://www.liverpool.ac.uk/dynairx/
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1.10 Summary

This thesis explores the application of TG-CNNs to predict health outcomes, with a focus on

forecasting one-year and five-year hip and knee replacement risk. Health outcome prediction is

critical for enabling proactive healthcare interventions, especially in managing chronic conditions

and anticipating patient needs. Traditional machine learning approaches often overlook the

complex temporal dependencies and relational structures inherent in health data, limiting their

predictive power over extended periods.

To address this, this research combines the strengths of temporal graph structures and CNNs, to

model the evolving relationships and dependencies within longitudinal health data. Temporal

graphs allow for a flexible representation of patient EHR data alongside the AI model allowing

other health indicators, such as demographic factors to be included besides GP visit data. By

embedding this temporal graph information into CNNs, the model can more accurately recognise

patterns and correlations across different time frames, improving its predictive accuracy.

The project aims to:

1. Develop and implement the TG-CNN architecture capable of handling high-dimensional,

temporally structured health data.

2. Evaluate the model’s predictive accuracy in forecasting one-year and five-year hip and

knee replacement risk using real-world patient datasets.

3. Assess the interpretability of the model’s predictions, providing insights into which factors

and pathways most commonly appear in the predictive models.

Through this work, the thesis contributes to advancing predictive analytics in healthcare, pro-

viding a novel approach that uses both temporal and relational information within patient data

to support early intervention and personalised care planning.
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Chapter 2

Narrative Literature Review

2.1 Introduction

Hip and knee replacements are among the most common and successful orthopaedic procedures

performed worldwide, alleviating pain and improving mobility in individuals suffering from

degenerative joint diseases such as OA. As global populations age, the incidence of these pro-

cedures continues to rise, placing increasing demands on healthcare systems. The epidemiology

of hip and knee replacements reveals not only the growing burden of MSK conditions but also

the critical need for improved outcomes, efficient healthcare delivery, and cost-effective care.

Advances in modelling techniques using AI and ML methods have emerged as powerful tools to

transform healthcare practices, offering the potential to improve patient care, surgical planning,

and predict outcomes. By analysing vast datasets, AI and ML techniques can identify patterns

in patient history which contribute to more personalised and timely interventions.

The integration of EHRs has further enhanced the ability to collect and manage patient data

in real time, providing clinicians with comprehensive, up-to-date information to make informed

decisions. EHRs, when paired with AI methods, enable predictive models that can improve both

the decision-making process and long-term patient outcomes. Furthermore, the application of

graph-based AI models to EHRs opens new avenues for understanding complex relationships

within patient data, helping to identify trends and predict patient outcomes.

This chapter aims to explore the intersection of prediction models, EHRs, and graph-based AI

methods, within the context of hip and knee replacements.
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2.2 Healthcare Background

2.2.1 MSK Conditions

The MSK system supports, stabilises, and enables movement within the human body, consisting

of bones, muscles, cartilage, tendons, ligaments, and other connective tissues. MSK conditions

affect these structures, leading to temporary or long-term functional impairments that can

hinder daily activities. Characterised by pain, reduced mobility, and limited dexterity, these

conditions significantly impact quality of life [16].

There are over 200 recognised MSK conditions [17], broadly categorised as mechanical or

autoimmune-related. Mechanical conditions, such as OA, tendonitis, and joint pain, typically

result from wear and tear or injury, while autoimmune disorders, including Rheumatoid Arthri-

tis (RA), and reactive arthritis, arise from immune system dysfunction. MSK disorders pose a

significant healthcare challenge, accounting for 20% of GP consultations [16, 18]. Globally, 1.71

billion people were affected by MSK conditions in 2019 [19], and by 2022, 20 million individuals

in the UK were living with at least one MSK condition [16].

MSK conditions can cause severe pain, significantly reducing quality of life and independence.

Many individuals struggle with feelings of being a burden on their families, and depression is

common among those with severe MSK conditions [16]. As the prevalence of these conditions

rises, organisations worldwide are working to address both the personal and economic burdens

they impose [20].

Osteoarthritis

OA is a prevalent joint condition characterised by the gradual breakdown of cartilage, which

fails to regenerate over time [21]. This deterioration is typically driven by ageing or joint injury

[16]. OA is a severe joint disease that can significantly impact mobility and often leads to

disability [22]. It affects various joint tissues, including bone marrow, ligaments, cartilage, and

the meniscus [23].

The knee is the most commonly affected joint, with 5.4 million of the 10 million UK patients

over 45 years old diagnosed with knee OA [16]. Among individuals aged 60 or older, the

condition affects approximately 10% of men and 13% of women [24]. Knee OA is characterised

by structural changes in osteochondral tissues, resulting in pain, stiffness, and reduced mobility.
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The hip and hands are also frequently affected, with 3.2 million people in the UK diagnosed with

hip OA [25]. The condition is associated with joint swelling, decreased physical activity, and

increased morbidity [23, 26]. Like most MSK conditions, risk factors include sex, age, obesity,

injury or joint overuse, metabolic disorders, and genetics [24, 27, 28, 29].

Symptoms can be used to define OA or alternatively radiography findings such as joint space

narrowing, osteophytes or subchondral sclerosis. Dell’Isola et al. [23] have described six phe-

notypes of OA including: chronic pain with central mechanisms, high levels of inflammatory

biomarkers, metabolic syndrome, local tissue metabolism alteration, mechanical malalignment,

and minimal joint disease phenotype. The clinical classification criteria of the American College

of Rheumatology provide guidelines that are commonly used for OA diagnosis [30]. The criteria

requires a patient to have pain on most days in the last month, no crepitus (sounds when moving

a joint such as grinding or popping) and bony enlargement, crepitus and morning stiffness for

less than 30 minutes, crepitus and morning stiffness and bony enlargement. OA is likely to be

diagnosed using non-radiographic information, such as joint pain severity, stiffness, restricted

movement, and disability. Findings from X-rays have been shown to be ineffective towards

making decisions towards joint pain management [31, 32]. However, in some cases clinicians

prefer to only confirm hip OA if there is radiographic evidence of OA as clinical presentation

can vary, including osteophytes or joint space narrowing [32], therefore primary care diagnosis

can be more difficult. Sometimes pain location and severity do not correlate with radiographic

findings [33].

OA is commonly graded using the Kellgren-Lawrence (K-L) grading system [34]. However,

systems such as K-L grading can be misinterpreted due to its reliance on subjective radiographic

interpretation, overlapping grading criteria, lack of consideration for clinical symptoms, limited

sensitivity to early changes in OA, different X-ray angles and positioning, and variability in

application across different joints or patient populations [35].

Peat et al. investigated the agreement between the GP diagnosis of OA, the patient’s own

diagnostic attribution, and with the American College of Rheumatology criteria. Neither GP

diagnosis (actual agreement = 64%, kappa = 0.28) nor a patient’s own diagnostic attribution

(actual agreement = 30%, kappa = -0.39) related strongly to the clinical classification criteria,

nor did they relate well to each other (actual agreement = 49%, kappa = -0.03) [31]. This could

be due to the impact on a patient’s life being the key determinant of the clinical importance
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of the condition. There is a large gap between the first presentation and symptoms of OA to

the diagnosis of OA [21]. These diagnostic inconsistencies suggest that there may be a need to

improve clinical decision making procedures.

In 2019, 344 million people were living with a diagnosed case of OA, marking a 114% increase

since 1990 [19]. The condition is not only physically debilitating but also has a significant mental

health impact, with around 20% of individuals experiencing depression or anxiety [36]. OA is

a leading cause of hospitalisation, ranking as the fourth most common reason for admission in

2009 [37]. Additionally, 25% of adults are expected to develop symptomatic OA during their

lifetime [37]. As the prevalence of OA continues to rise due to aging populations, the strain on

healthcare systems is expected to increase [38, 39]. Managing OA poses a major challenge for

healthcare services. In 2015 alone, the UK spent £10 billion on OA treatment and care [40].

Key Outcomes from MSK Conditions

OA has a significant impact on daily life, leading to pain, fatigue, low mood, reduced inde-

pendence, and mobility issues [16]. These challenges are often interconnected, for example,

joint stiffness after sleep can make it difficult for individuals to get out of bed, while mobility

limitations can contribute to social isolation. Pain and restricted movement are the primary

factors driving disability, loss of independence, and a reduced quality of life in those with MSK

conditions. MSK conditions can accumulate and lead to other health issues, resulting in long-

term conditions that will eventually result in frailty [41]. Better treatment options need to be

available to slow joint deterioration, and to do this not only does awareness of risk factors need

considering, but better prediction tools are required to target patients before it is too late to

treat them.

Between 2013 and 2014, MSK conditions cost the NHS £4.7 billion [42]. The impact extends

beyond healthcare costs, significantly affecting the workforce. In 2021, 23.3 million working

days were lost due to MSK conditions [43], and in 2022, 13% of Employment Support Allowance

claimants in the UK had an MSK condition [16]. Individuals with arthritis are also 20% less

likely to be employed compared to those without the condition [44]. Collectively, these factors

create a substantial economic burden on individuals, healthcare providers such as the NHS,

and, ultimately, taxpayers.
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Current Management and Treatment of MSK Conditions

The progression of OA is rarely preventable at present, however, its outcomes can be substan-

tially improved with earlier treatment and supportive interventions, including for co-morbidities.

Joint pain is normally managed within primary care, where first patients are encouraged to ex-

ercise, undergo physical therapy and, where appropriate, weight loss is suggested [21]. After

lifestyle changes are suggested oral Non-Steroid Anti-Inflammatory Drugs (NSAIDs) or opi-

oids (such as codeine and co-codamol) may be prescribed and pharmacological management

undertaken to reduce symptoms and relieve pain [21].

Muscle strength around the affected joints and endurance testing on patients can be carried out

to determine OA severity. Disease progression is usually monitored via radiographic changes,

such as joint space narrowing and osteophyte formation. Clinical trials and research stud-

ies measure OA severity using tools such as the Western Ontario and McMaster Universities

Osteoarthritis Index (WOMAC), however this is not currently used in clinical practice.

Patients with the highest risk of poor quality of life are referred to specialist care services. Treat-

ment for severe and end-stage OA primarily involves total joint replacement which sometimes

requires future revision surgeries [45]. Hip and knee replacement procedures are performed

when conservative treatments like medications, physical therapy, or lifestyle changes no longer

provide relief from pain or disability caused by joint damage. Hip and knee replacement surg-

eries are a common procedure, which are often elective as patients wish to reduce pain and

restore mobility.

Most patients regain mobility within weeks after hip replacement surgery, though full recovery

may take several months. Similarly, knee replacement recovery involves physical therapy and

rehabilitation to restore joint function, with most patients resuming normal activities within a

few months [46]. Both procedures have high success rates, significantly improving quality of life

by reducing pain and enhancing joint functionality. Prosthetic joints are generally durable, with

fewer than 12% of patients requiring revision surgery 20 years after a primary cemented hip

replacement, while up to 25% of patients need revisions following uncemented hip replacements

over the same period [7].

Intervention measures could be recommended earlier to at-risk patients to enable lifestyle al-

terations. The risk of knee replacement at time of knee OA diagnosis increases up until age 62
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then decreases, whilst hip replacement at time of hip OA diagnosis decreases linearly the older

the patient is [47]. Due to growing OA cases, unlicensed prescriptions are increasingly issued

as clinicians seek alternative painkillers to alleviate patient suffering [48].

2.2.2 Hip and Knee Replacements

Hip and knee replacements are surgical procedures in which damaged or arthritic joints are

replaced with artificial prosthetic components to relieve pain, improve function and mobility,

and enhance quality of life. In both procedures, the damaged joint surfaces are removed and re-

placed with prostheses made of metal, plastic, or ceramic. A hip replacement (hip arthroplasty)

typically involves replacing the femoral head (the ball of the thigh bone) and the acetabulum

(the socket in the pelvis), while a knee replacement (knee arthroplasty) involves resurfacing

or replacing parts of the femur, tibia, and sometimes the patella. These surgeries are com-

monly performed for severe arthritis, fractures, avascular necrosis, or joint degeneration that

cannot be managed with non-surgical treatments [33, 49]. Joint replacement may involve total

replacement of the joint, where the entire joint is replaced with artificial components, or partial

replacement may be sufficient where only part of the joint is replaced. Surgical techniques are

improving to become less invasive with better prosthetic materials, which leads to more people

opting for joint replacements to improve their quality of life.

2.2.3 Epidemiology of Hip and Knee Replacement

Hip and knee replacements are most commonly performed to reduce pain and mobility problems

caused by OA and other joint-related issues such as RA and trauma-related damage.

Each hip replacement procedure costs the UK NHS an average of £5,280, resulting in an annual

expenditure of £438.9 million for primary hip replacements alone [38, 50]. In 2007, the average

cost of major hip procedures was £7,800, while major knee procedures averaged £4,471 [17].

The incidence of hip and knee replacements has been increasing worldwide, especially in older

populations, with demand for hip and knee joint replacement in the UK expected to rise by

nearly 40% by 2060 [51]. In 2014, 83,125 primary hip replacements where recorded by the

National Joint Registry [38], whilst in 2023 108,558 hip replacements were recorded. Similarly

in 2013 82,267 primary knee replacements were recorded by the National Joint Registry [52],

with 116,845 knee replacements recorded in 2023 [53]. This showed an increase of 130.6% and
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142.0% for primary hip and knee replacement procedures in nine and ten years respectively.

Socioeconomic status also has an effect on the risk of hip and knee replacement. Individuals with

higher IMD scores (less deprivation) are less likely to have hip replacements [6]. High-income

countries are seeing the most significant increases in hip and knee replacement surgeries due to

increased life expectancies and improved access to healthcare [54]. There is also an observed

inequity in access to hip replacements: individuals from less deprived backgrounds are generally

less likely to develop OA and, consequently, have lower overall rates of hip replacement. Yet, for

those who do develop OA, they are more likely to receive hip replacement surgery compared to

individuals from more deprived backgrounds, highlighting disparities in treatment accessibility.

Countries with healthcare systems such as the UK’s NHS are seeing higher replacement surgeries

due to standards of care based on need, whereas other countries which require insurance and

healthcare access have more procedure variation [54].

Knee replacement risk peaks at 60-70 years of age, and hip replacements peak at 55 [38, 47].

Women are more likely to have joint replacements, comprising 60% of hip replacement surgeries

and 57% of knee replacements [38]. This could be due to factors such as higher prevalence of

OA in women and differences in biomechanics [38, 55]. Whilst women are more likely to be

recommended to have a hip replacement, when indications are present, women are less willing

to undergo the surgery [56].

Inflammatory diseases, such as RA can lead to joint degeneration, increasing the risk of re-

quiring a hip or knee replacement. However, patients who have RA are more likely to have

complications, poorer recovery, and further pain after replacement surgery [57].

Obesity is a major risk factor for knee and hip OA, increasing the likelihood of joint degradation

due to increased weight on the joints [27]. Lifestyle may also impact joint replacement risk,

for example, those who participate in extreme sports or those with poor muscle strength due

to insufficient exercise [58]. Trauma or fractures can result in the need for a hip or knee

replacement. Older adults are at higher risk for having falls, which increases the risk of hip

fractures [59].

OA is the primary indication for hip and knee replacement, accounting for 92% of hip replace-

ments and 98% of knee replacements in 2023 [7]. The increase of hip and knee replacements

is largely due to the ageing of global populations, the increasing prevalence of joint conditions
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like OA, and advances in surgical techniques and prosthetic technology.

2.2.4 Clinical Pathways for Joint Replacement

There are several steps involved before hip or knee joint replacement is recommended. First,

a patient’s history, age, diagnoses, and current symptoms must be evaluated by a clinician,

alongside imaging being required to determine joint damage extent. Patient-Reported Outcome

Measure (PROMs) can be used to gauge patient pain and disability caused by the affected joint,

enabling clinicians to understand their current quality of life.

If a patient has significant pain or mobility issues then conservative treatment will be rec-

ommended, including options for physical therapy, anti-inflammatory prescriptions, steroid in-

jections, pain relief, and lifestyle modifications. If a patient responds poorly to conservative

treatment and does not receive significant improvements to their quality of life, hip or knee sur-

geons will consult with the patient to determine suitability. Surgery decision making involves

informing patients about the procedure, risks, lifestyle changes required and likely outcomes.

The surgeon will decide on what approach to take to replace the joint (partial or full), alongside

which type of prothesis to use.

Determining the optimal timing for joint replacement intervention is challenging because it

requires balancing the patient’s pain and functional limitations with the risks and benefits

of surgery, considering factors like age, health, and overall quality of life. Additionally, the

progression of joint degeneration can vary among individuals, making it difficult to predict

when non-surgical treatments will no longer provide sufficient relief and when surgery will yield

the best long-term outcomes.

Immediately after surgery the patient will be monitored and pain killers administered. The

patient may be required to stay in hospital for up to a week and start physiotherapy a few

days after surgery to enhance recovery. It can take months to restore joint strength, flexibility

and mobility after surgery. Follow-ups with surgeons may be required to ensure the joint is

functioning as expected. After hip and knee replacement recovery patients can resume normal

activities, with surgeon advice on any activities that may cause joint deterioration [21, 33].

Hip replacements have been shown to last for 25 years in 58% of patients [60], whilst knee

replacements last 25 years in over 70% of patients [61]. Patients may need revisions where

excessive wear or dislocation has occurred.
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2.2.5 Electronic Healthcare Records

When a patient visits a GP or a hospital, EHRs are used; clinicians add notes to these records

depending on what issue the patient has. A clinician may write notes in the form of free-text,

or they might use a particular code to denote a symptom, diagnosis or prescription.

The Format of EHRs

EHRs were initially designed for the sole purpose of assisting with medical administrative tasks,

collecting huge amounts of patient data within specific medical visits [62].

EHRs are a large electronic collection of patient health data, including health events and in-

formation along with their relevant timestamps. Each patient will have an individual record

in their name with temporal sequences of their clinical variables based on health visits. Pro-

cedures, test results and diagnosis of the patient are just a few of the things included within

an EHR, alongside where and when the patient had their appointment and who performed

the service [63]. EHRs are used commonly by clinicians to track patient medical history and

enable patient risk prediction, diagnosis and prognosis. The NHS and other medical bodies

continue to rapidly accrue large quantities of health data, that is yet to be fully utilised in

patient care. EHRs contain information that informs disease trajectories that could be used to

improve healthcare outcomes for early detection or faster diagnosis.

Applications and Limitations of using EHRs

Due to the adoption of health information technology, frontline clinicians now rely on EHR data

as a critical tool for decision-making. However, data entry can be challenging, especially in fast-

paced environments. For example, in the UK, NHS GPs often have less than 10 minutes per

patient. This limited time leads to rushed discussions, incomplete notes, and restricted coding.

GPs must speak with patients, determine their concerns, decide on actions, and record notes in

the EHR system, all within a short window. This pressure is exacerbated as consultation rates

rise [39, 64].

Structured EHR data, such as clinical codes, are often easier to analyse statistically compared to

unstructured textual data which requires more complex processing via Natural Language Pro-

cessing (NLP) techniques [65]. However, reliance on structured data poses challenges: clinical

codes may be assigned incorrectly, omitted entirely, or fail to fully capture a patient’s symptoms.
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For example, rare diseases and health events are often under-represented in EHRs, complicating

their use for machine learning models [62]. Free-text clinical notes offer richer information but

require sophisticated processing for integration into predictive models.

Multiple studies highlight the limitations of EHR coding accuracy. Research on computerised

coding of hip osteoarthritis (OA) diagnoses in Clinical Practice Research Datalink (CPRD), a

longitudinal UK database with records from approximately 14 million primary care patients,

found that while diagnostic accuracy was generally sufficient, the date of diagnosis varied sig-

nificantly between GP records and CPRD records. Discrepancies ranged from 18 to 1,448 days,

with errors mostly being the CPRD record being later than the actual recorded date. This

finding emphasises the importance of caution when using such data for research [32].

The temporality of EHR data is another underutilised feature that could enhance predictive

algorithms. Events closer in time are often more relevant to a patient’s current health than

those from years earlier. For instance, frequent visits in short intervals may indicate a worsening

condition compared to more sporadic visits [63, 66]. Predictive models need to prioritise recent

events while balancing the inclusion of historical data that might reveal patterns missed by

clinicians.

ML models using EHR data show promise for improving healthcare outcomes. For instance,

predicting Intensive Care Unit (ICU) admissions after surgery using preoperative data can

optimise resource allocation and patient care [67]. However, the performance of these models

depends on how far in advance predictions are made. A study predicting eight types of cancers

found that accuracy decreased by 8.15% when extending predictions from immediate to 24

months in advance [68].

As of October 2023, 5.4% of the UKs population opted-out of their EHRs being shared beyond

their own healthcare use [69]. Opt-out rates for NHS data sharing fluctuate due to public

awareness, government policies, trust in data security, demographic differences, and perceptions

of the benefits of data-driven healthcare research. When opt-outs increase, AI models that rely

on EHRs for training and analysis may face challenges. Reduced data availability can lead

to biases in predictive healthcare algorithms, affecting their accuracy and representativeness

across different patient demographics [70]. This can limit the ability to generate robust insights,

impacting medical research, treatment recommendations, and public health strategies.
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Overall, EHRs are full of information with the potential to revolutionise healthcare. To fully

realise their potential, challenges like coding inaccuracies, temporal irregularities, and privacy

concerns must be addressed. Advances in synthetic data, NLP, and graph-based methods such

as HORDE, which identifies missing or erroneous coding, are promising steps forward [71]. By

addressing these challenges, EHRs can better support predictive modelling, enhance clinical

decision-making, and improve patient outcomes.

Missing Data

As the data is not collected specifically for research, EHR records often are known for their

missingness or incompleteness [65]. Missingness in EHRs refers to the absence of information

within a patient’s health record, potentially due to not being recorded, the patient not being

asked about a symptom or condition, being recorded incorrectly, being left blank, privacy

concerns, patients opting out, multiple care systems per patient, or information loss caused by

technical issues (e.g. electronic system or data transfer issues). To name a few examples of

data that may be missing: demographic information, vital signs (such as blood pressure, heart

rate), laboratory results, or reason for visiting may be missing. That being said, now that EHRs

are electronically recorded, deciphering poor handwriting or sifting through hundreds of pieces

of paper to find necessary documentation is no longer necessary, most things needed can now

be found at the click of a few buttons. Additionally, EHR data is a more affordable option

compared to specifically collecting data [65].

When analysing healthcare data it is important to address missingness carefully and appropri-

ately to prevent biasing or inaccuracy of the results. Missing data can be dealt with by using

statistical methods such as imputation, which involves estimating the missing values. Missing-

ness may be represented in a model by including an extra variable that indicates the presence of

missing values. It is also vital to consider that a condition might not be recorded simply because

someone does not have that condition, or they might not have the condition documented [65].

There are four mechanisms of missingness (missing completely at random, missing at random,

missing not at random, missing by design). Missing completely at random means that data is

independent from other information and the missing data would not bias the analysis. Missing

at random means that the missingness only depends on observed data and not the missing data,

this assumes that the missing data does not influence the analysis after considering the observed
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variables. Missing not at random means that the missing values are different to the observed

data, as such the missing data could contain useful information that could affect the analysis.

The final type of missingness mechanism, missing by design, is where data is purposefully missed

during data processing, this informs what data were intentionally collected. Many imputation

methods idealise that the data is missing at random or missing completely at random to make

computation simpler [72].

Missingness can be simply dealt with by removing the variables which have missing data, or

removing patients (complete case analysis) with missing data (whichever results with the least

amount of information lost). However, if excluding patients is necessary there should only be

a small number of patients that have the variable missing and it must be considered carefully

whether the missing data is random, if it is not at random care needs to be taken to ensure

that this does not introduce bias into the model. A variable should be considered for rejection

if it has many missing values or the variable is missing not at random; otherwise, the reason for

missingness should be thoroughly investigated, calculating uncertainty and analysing sensitivity

to see the effect on the final imputation and to reduce bias [72].

Missingness in EHRs can be be informative, particularly when incorporating into prediction

models. The lack of a variable may be informative of a patients health status, for example

a patient with severe diabetes may miss more routine check ups due to being hospitalised,

whereas someone with better managed diabetes may have more regular visits and therefore

more complete records. As such, frequency of recording may also be an informative form of

missingness. Cholesterol is not normally recorded by a GP, therefore if a patient has multiple

recordings for cholesterol it is likely due to the GP suspecting an underlying issue which may

inform that the patient might have poorer cardiovascular outcomes [73]. The likelihood of

missing data may correspond to disease severity, such that patients with poorer health likely

have more conditions, whilst a healthy patient will utilise health services less [65].

Imputing missing clinical codes in EHR data presents a challenge due to the irregular time

intervals between recorded entries. Unlike structured numerical data, the absence of a clinical

code does not necessarily indicate missingness but rather a lack of documentation or clinical

relevance at the time of recording. To accurately infer missing codes, NLP techniques would

be required to extract relevant clinical information from unstructured EHR text, alternatively

a model could be trained to learn clinical code trajectories and impute codes where commonly
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there would exist a code, however this could lead to bias in the model due to trajectory ma-

nipulation. Without such an approach, it is impossible to determine which clinical events or

conditions might be absent from the structured record, as with clinical codes alone it is impos-

sible for someone to know what has not been documented.

2.3 Technical Background

2.3.1 Knowledge-based Risk Prediction Models

Risk prediction models can enable outcomes to be detected or predicted earlier than a human

may detect a pattern. Early prediction is especially important in healthcare applications to

allow timely action to be taken. Additionally, risk prediction modelling tools may enhance

resource allocation, improve surgical outcomes, improve patient satisfaction by improving life

quality, free up clinical time to focus on being empathetic and helping patients.

Associative rules can be used for predictive models. For example, Folino et al., 2010 built a

comorbidity network and defined the risk of specific diseases occurring in patients using their

patient record [74]. Confidence rules are simply used to determine the probability of someone

getting a specific disease once their historical health data using population prevalence has been

provided [74].

Other knowledge-based risk prediction models may use rule-based systems following ‘if’ and

‘then’ type statements in a chain to arrive at a risk score, logical flows including data may be

used, alternatively probabilistic reasoning can be carried out by representing data as networks

or graphically [75]. Whilst these methods can be useful for flexibility and simplicity, with the

rising amounts of healthcare data being generated, manually creating knowledge-based risk

prediction models can be highly challenging to develop.

2.3.2 Machine Learning and Artificial Intelligence

Compared to traditional risk calculators used in the health setting, ML techniques offer the

ability to utilise significantly larger numbers of variables for predicting clinical outcomes [67].

These variables are typically already present in EHRs, potentially enabling automatic clinical

decision support to be generated for clinicians.

ML is a subset of AI. AI broadly aims to simulate intelligence and has deeper and more human-
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mimicking applications than ML [76]. For example, AI is the foundation of Chatbots, virtual

assistants, and self-driving cars, whilst ML is typically used for things such as social media

recommendations or filtering fraudulent transactions.

ML can be defined as models that can learn from data automatically. ML involves using

computer algorithms which find patterns from inputted data, to provide probabilities and pre-

dictions of an outcome. Training of ML models is done by optimising parameters to minimise

the error between the predicted and actual or expected output.

A systematic review of 145 low risk of bias comparisons of logistic regression versus ML in

healthcare applications, demonstrated that the Area Under the Curve (AUC) difference was on

average 0.00 [77]. Notably, papers with high risk of bias reporting in 145 comparisons had a AUC

difference of 0.34 in favour of ML. Nonetheless, some studies claim that ML algorithms have

better performance over tradition statistical modelling (such as logistic regression) when a huge

number of predictors are utilised or if the ML model is more complex [78]. ML models can be

more data hungry and require larger quantities of data than regression models to obtain similar

performances. But there is little evidence supporting the claim that ML models have better

discriminative performance over regression models. Additionally, linear and logistic regression

models are less likely to overfit than neural networks due to regression models having limited

hyperparameters [79].

ML and AI models typically have two types of parameters, learnable parameters and hyperpa-

rameters. Learnable parameters adapted internally within models iteratively, using the training

(and validation if applicable) set(s). For example, with neural networks the learnable parameter

would be the weight of each neuron [80]. Hyperparameters, for example the number of layers in

a network, learning rate, or batch size, are adjusted externally from the model and can changed

by the coder manually or iterated through using grid search techniques. Once both the learn-

able parameters and hyperparameters have been optimised to achieve a model with the desired

performance, the test set can be evaluated with these parameters to assess the model.

Traditional Machine Learning Models

Regression models, such as as linear and logistic regression models are used to predict values,

probabilities, or binary outcomes. Linear regression is a supervised learning algorithm that

predicts a continuous output by modelling the relationship between independent variables and

22



Chapter 2. Narrative Literature Review 2.3. Technical Background

a dependent variable as a straight line. Logistic regression is used for binary classification tasks,

modelling the probability of an outcome as a sigmoid-shaped curve to distinguish between two

classes [81].

Risk prediction models may be formed from statistical methods to produce risk scores based

on a range of predictor variables. For example, Chan et al., 2018 developed the Combined

Assessment of Risk Encountered in Surgery (CARES) which is a surgical risk calculator that

uses 9 variables to predict whether a patient will need to stay in the ICU for more than 24 hours

and their 30-day postoperative mortality risk [82]. This uses multivariate logistic regression to

obtain odd ratios which are then provided as rank scores.

Logistic regression approaches enable calculation of the odds ratios and standardised coefficients

for independent variables [79]. Which, after adjustment, enables a degree of interpretability of

which variables have more effect on the prediction.

Decision trees are a supervised learning method that splits data into branches based on deci-

sion rules derived from features, creating a tree-like structure to classify or predict outcomes.

Random Forests (RFs) improve on decision trees by combining the predictions of multiple trees,

reducing overfitting and increasing accuracy through ensemble learning [83].

Support Vector Machines (SVMs) are supervised learning algorithms used for classification and

regression tasks, where they find the hyperplane that best separates data points into distinct

classes by maximising the margin between them. SVMs are particularly effective in high-

dimensional spaces and can handle both linear and non-linear boundaries [84].

K-means and other clustering methods are used as unsupervised learning to group similar

patterns and features into groups [85]. For example, to cluster for multimorbidity to see which

morbidities commonly occur together [86]. Clustering tasks have the the potential to reduce

the number of parameters required for the model by combining commonly occurring conditions.

Unsupervised methods are also highly sought after as manual labelling of data can be time

consuming and resource heavy [85].

Deep Learning Models

Neural networks are typically made up of layers of neurons interconnected to each other, which

takes an input and passes it through the layers to make a prediction. Artificial Neural Networks
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(ANNs) were one of the first deep learning methods. ANNs are made up of at least three

interconnected layers of neurons, the input, hidden layers (1+ layer(s)) and the output layers.

ANNs are an extension from linear regression and can be used to model input and output

relationships which are non-linear [87]. Deep learning typically involves automatically extracting

features and learning patterns in data using multiple layers of neurons (neural networks) which

transform the data non-linearly.

Recurrent Neural Networks (RNNs) are used to for time series data and for natural language

processing. RNNs have inbuilt repeated connections which have time distributed within its

hidden states, so that previous information can be retained and passed forward whilst temporal

dependence can be learnt [88], similarly to how words in a sentence are used together rather

than individual words to give meaning. As RNN models train using back propagation, vanishing

or exploding gradients can occur when the contextual information inputted into the RNN is

lengthy [89]. Additionally, the time that elapses between events is ignored with RNNs.

Long Short-Term Memorys (LSTMs) are an extension of RNNs, with LSTMs able to pick up on

longer-term patterns. LSTMs can learn long-term dependencies from sequenced data and take

more previous data into account when making a prediction, due to retaining information from

lengthy periods of time. This is done using the same control-flow as RNNs, with the exception of

the LSTMs having memory blocks/LSTM cells which chooses random time intervals to retain

information [88]. Three gate units are used within the cell to either update (via the Input

gate), keep/remove (via the Forget gate) information, or output information via the Output

gate. These cells contain a sigmoid activation function σ, which outputs a value (between zero

and one) to determine how much is passed through the cell, where one means all information

can be passed through and zero would mean no information should be let through.

CNNs are commonly used for data with spatial structures such as images, for object detection

and image classification. One-dimensional CNNs can be used for processing time-series data,

for example language. Two-dimensional CNNs are the most common and are typically applied

to images. Three-dimensional CNNs can also be used for movement analysis and videos. CNNs

contain hidden layers which perform convolution operations which uses filters (also known as

kernels) to detect patterns. The filters can be used during the convolutions to extract important

and common characteristics amongst the sequential input data [87]. Deeper CNNs are able to

detect more complex features than shallow CNNs. More details on CNNs will be provided in
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Chapter 4.

Transformers are commonly used for NLP tasks, BERT and GPT are just two of the popular

language generation models that are being used widely. Transformers enable processing of im-

ages with very little effort, the input image is simply split into patches and fed in sequentially

based on the pixel patches. Transformers utilise global self-attention networks to give specific

weightings to different parts of the input data. However, the global attention design of Trans-

formers means that larger inputs can have performance problems. CNNs have been shown to

perform superiorly to Transformers in image prediction tasks [90], suggesting that self-attention

is not the factor that leads to significant performance increase compared to other models.

Other Models

Bayesian networks are graphical models that represent probabilistic relationships among a set

of variables using Directed Acyclic Graphs (DAGs), where nodes are variables and edges indi-

cate dependencies. They are commonly used for reasoning under uncertainty, enabling tasks

prediction and decision-making in complex scenarios [91].

Reinforcement learning uses agents to teach programmes optimal actions by reward and penalty

giving mechanisms, for example to learn best decisions to win a video game or to optimise robot

movements and automations [92].

Models such as Graph Neural Networks (GNNs) are useful for processing data which is repre-

sented as graphs. More information on graphs and their uses is presented in Section 2.3.7.

2.3.3 Predicting MSK Conditions and Outcomes

Predicting hip or knee replacement in advance could potentially reduce the time patients spends

in pain whilst on a surgical waiting list. Early detection of MSK conditions provides many

advantages to patient care along care pathways, motivating the need for models to predict

MSK conditions and outcomes as early as possible to improve treatment plans [1].

The development of an individualised risk prediction model for long-term OA progression, may

be used to develop bespoke intervention plans for individual patients, with the potential to

delay OA if exact aetiologies and similar clinical presentations are discovered. Prediction models

incorporating predictors such as risk factors, symptoms and image features to discover patients

with higher chances of developing late stage OA, could be beneficial to reduce population pain
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by OA prognosis. Treatment plans could be put in place for at-risk patients in cases where OA

progression can be delayed [80].

Clinical radiology can be enhanced using predictive modelling to improve radiologist efficiency

and precision by optimising imaging protocols to give faster and automatic reporting [80].

OA classification has been performed using deep learning models on clinical images, such as

radiographs and Magnetic Resonance Imaging (MRI) [22, 80]. Kellgren-Lawrence (KL) knee

radiographic scores can be calculated from radiograph images to indicate severity. MRI can be

used to find menisci tears, cartilage damage, and show changes to cartilage biochemistry [22].

Approaches using radiographic images and clinically recorded factors such as family history,

prescriptions, general health and joint pain have also been performed to assess OA severity

[93, 94]. Tools for OA severity prediction which include MRI have been shown to obtain higher

accuracy (AUROC=0.72) compared to tools which only contain clinical notes and demographics

(AUROC=0.6) [22]. Using deep learning models on clinical images has the advantage of acting

as a clinical decision assistance tool, alongside finding abnormal findings faster, leading to

increased throughput of images analysed in a given day. These deep learning models may

perform classification of an image to give a severity grade, or may even have the ability to

segment an image to find an area of interest, for example regions where the cartilage has

severely degraded [80].

Risk prediction of occurrence of knee OA one year in advance using EHR non-image data alone,

has been done achieving AUC scores of 97%, from three years worth of sequential diagnoses,

prescriptions, sex and age [87]. This clinical data was inputted into models containing CNNs

and ANNs, achieving AUC scores of 0.97 when using this method. Ningrum et al., 2021 showed

discriminative features from their study, suggesting that age and sex were not ranked as highly

important features compared to prescriptions (such as cough suppressant, expectorants and

antacids) and diseases (eye disorders, connective and MSK diseases, metabolic and immunity

disorders).

AI models can be utilised to build patient-specific tools to detect MSK conditions earlier to

enable preventive treatment which can reduce the number of people with disabilities and pain.

A variety of reviews of prediction models for MSK clinical applications have been undertaken,

covering prediction of outcomes such as of knee OA [80, 95], hip OA [95], physiotherapy recom-

mendations [96], and other MSK joint related pains [95]. Current models have limited success in
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matching predictions to outcomes, with model validation performance requiring improvement

before patients see treatment and quality of life enhancements [96]. Other models predicting

hip and knee replacement are covered in more detail within Chapter 6.

2.3.4 Process Mining

Process mining techniques analyse sequences of events over time to create process models, which

reveal relationships and patterns in workflows. Event logs, typically used for these models,

contain descriptions of activities, timestamps, and case identifiers, with optional metadata such

as event types or resources [97]. Process mining is valuable in healthcare, where it can uncover

disease trajectories, optimise care pathways, and improve decision-making [98]. For example,

process mining has been used to understand frailty progression [99], optimise multidisciplinary

collaboration for diabetes care [100], and analyse oncology treatment pathways [101].

However, process mining techniques like heuristic and fuzzy mining often generalise patient

data into single models, making them less suitable for individualised outcome predictions [100].

While these methods provide insights into group trends, this research focuses on individualised

predictions using graphs derived directly from EHRs.

DAGs offer a complementary approach, sharing structural similarities with process models but

focusing on patient-specific temporal relationships. Unlike process mining, which often uses

unsupervised learning for discovering trends, this project employs supervised learning to predict

clinical outcomes at the individual level. By converting EHRs into graph representations of

clinical codes and inter-event times, the method described in this thesis captures detailed patient

histories without requiring generalised process models.

2.3.5 Explainability

Explainability in the context of AI is how the decision making processes of a model can be

provided to the user of a model. Such that the user understands what model predictors or

combination of predictors led to the model prediction outcome. For example, predictors might

be assigned scalar values showing their influence on prediction or heatmaps of medical images

may be used to show regions or features the model finds most impactful for prediction. Deep

learning models often have many hidden layers and complex processes so are ‘black-boxes’

usually with little to no explainability, whilst ML or traditional statistical methods often offer

27



2.3. Technical Background Chapter 2. Narrative Literature Review

more interpretable results.

Dissimilar to other uses of AI, the interpretability of AI for healthcare comes in precedence to

the model’s predictive accuracy. This is because AI in the healthcare setting serves as clinician

decision making assistance tools, rather than tools free of human input.

There are methods that can be applied to AI models, either during training or post-training to

provide explainability. Two simple and commonly used techniques include Local Interpretable

Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). LIME is a

method which shows the features to that contribute positively or negatively to a prediction

outcome [102]. LIME has been used alongside RNNs and attention mechanisms on EHR data

to predict heart failure, looking at the patient visits most likely to be influential to the model

prediction [102]. SHAP is commonly used with tabular data to show global clinical features

which correspond to a positive or negative outcome [103]. Models such as RFs, SVMs and

logistic regression models can be used with SHAP to get increased interpretability, for example

to predict COVID-19 [104].

Zhang et al. 2019 designed an attention-based time-aware LSTM Network (ATTAIN) model

for disease progression modelling. Zhang et al. adjust the memory of the LSTM depending on

the number of prior events, decaying the weights as they become further from the present as

they are likely to be less important than more recent events. The weights are used to show

prior event importance relative to the current event to determine the worsening condition [66].

The ATTAIN model was used on EHR data to predict septic shock, alongside demonstrating

the interpretability of their model via flagging critical event time abnormalities [66].

Chapter 7 delves into explainability methods further, including those that have been used with

EHRs and graphs for health outcome predictions.

2.3.6 Artificial Intelligence for EHRs

In this thesis, EHR data is focused on as the data for health outcome prediction as EHRs

offer several advantages over other types of data. EHRs provide a rich and comprehensive

source of clinical information, including diagnoses, lab results, medications, vital signs, and

treatment histories, offering a holistic view of a patient’s health. This is further enhanced

by the longitudinal nature of EHRs, which track patient data over time, allowing AI models

to identify patterns and predict disease progression or the need for early intervention. EHRs
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are already integrated into clinical workflows, making it easier to deploy AI-driven predictions

directly in real-time decision support systems.

Artificial Intelligence for EHRs in the NHS

The NHS has been exploring and implementing AI technologies for EHRs, particularly through

initiatives like the NHS AI Lab and the AI in Health and Care Award. However, despite using

AI in radiology, diabetes management, long-term hospital prediction, amongst other outcomes,

the use of AI in EHRs within the NHS is still limited, with a strong emphasis on ethical

considerations, explainability, and alignment with regulatory standards like the NHS Digital

Technology Assessment Criteria (DTAC). Projects are also focused on interoperability and

improving patient access to their own health data through tools like the NHS App, which could

eventually integrate more AI-powered functionalities to aid self-care and disease management.

One of the primary challenges in applying AI to healthcare is the lack of robust validation

and limited model reliability. Many models exhibit high Risk of Bias (RoB), resulting in poor

performance when applied in real-world contexts and demonstrating minimal generalisability.

For instance, a systematic review and appraisal of 66 predictive models for COVID-19 revealed

significant concerns. The analysis concluded that implementing these models in practice would

likely lead to patient harm due to their insufficient reliability and validation [105].

Models using EHRs

AI enables us to build patient-specific models, aiming to prescribe treatment or recommenda-

tions early on in someone’s disease trajectory, leading to reductions in patient pain, disability,

and preventable diseases. AI techniques do this by locating patterns and associations within

historical healthcare data, to enable future disease diagnosis or health outcome prognosis.

EHRs have been utilised for various predictive tasks, popularly used as predictors within models

with CNNs, RNNs, GNNs, transformers, logistic regression, and Cox regression components

[106, 107, 108, 109]. RFs, adaptive boosting, gradient boosting and SVMs have been compared

to two risk stratification models (CARE and ASA-PS) to predict 30-day mortality and ICU stay

using routinely collected data from preoperative anaesthesia assessment visits [67]. Gradient

boosting performed the best for both mortality and ICU prediction with an AUPRC of 0.23

and 0.38 and an F1 score of 0.28 and 0.36 respectively, improving sensitivity by over 50%.
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RNNs have been used with lists of EHR clinical codes, as RNNs are designed to learn from

sequences of events. Using basic RNNs models for EHR prediction means that the time elapsed

between events is ignored as these models assume uniform a distribution of time, despite po-

tentially being clinically significant. Additionally, RNNs are less interpretable than logistic

regression and other traditional models despite having higher accuracy, therefore require the

addition of explainability methods such as attention mechanisms [66, 110].

The REverse Time AttentIoN (RETAIN) model has two levels of neural attention to locate

clinical variables that have high contribution to the predictive outcome [110]. This model has

been used to predict heart failure, and uses the assumption that more recent clinical visits are

more relevant for health prediction and would therefore have higher attention influence. The

variables and visits were given higher attention values if they were more influential, which is

calculated based on how the input changes the probability of a specific label being predicted.

The authors also showed that using timestamps (time between visits or time since their first

visit) within their model resulted in a minor improvement to predictive performance [110].

Wu et al. [111] demonstrated the efficiency of their model (Order-Aware Medical SeQuence

Learning (OA-MedSQL)) for predicting treatment initiation using EHR data. The model uses

customised LSTM with built-in temporal sequence learning. The medical events in this model

are ranked into 32 importance levels. Higher ranked neurons (more important events) are up-

dated less frequently and stored for longer duration than lower ranked neurons which represent

the importance of medical events [111]. Wu et al. [111] demonstrated that OA-MedSQL (and

other sequential models such as baseline LSTMs and RETAIN [110]) significantly outperformed

non-sequential models for treatment initiation prediction in this domain by over 7% (AUPRC).

The Electronic Frailty Index (eFI) model is used in UK healthcare practices to measure frailty

using routinely collected EHR data [112]. The accumulation of 36 health conditions are used

to calculate these frailty measures, which are then used to guide patient care. The original

eFI model uses primary care EHR data. This model is used for risk stratification of patients,

alongside helping clinicians create individualised care plans. This model has been adapted to

disease-specific applications to assess tolerance to treatments or surgeries [113] and in commu-

nity care settings for community service resource requirements [114].

The STRATIFY-Falls tool, is another tool used for to improve care and management of elderly

patients [115]. It uses EHR data on things such as falls, diagnoses, and prescriptions to get
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patient fall risk factors which are used to create a risk score, with a high or low risk criteria of

the patient falling in the next 1-10 years. High-risk patients are flagged to clinicians as needing

intervention, and then risk is reassessed using updated EHR data to help refine care plans.

Sequential data mining has been used to determine temporal patterns as clusters of medical

events [116, 117], however this is an inefficient method for EHRs with long event histories [111].

A common problem with using EHRs as predictive variables in AI models is that a patients med-

ical history may be extremely lengthy, containing thousands of medical events. If the amount

of medical event combinations increases exponentially, then a problem known as phenotype ex-

plosion may occur, which means excessive dimensions on the data may prevent the model from

fitting [118]. If these sequences of medical events are shortened to account for phenotype ex-

plosion, considering sections of a patients medical record may lead to issues such as inadequate

representation of the EHR as a whole.

Integration of EHR models into clinical practice is difficult, but necessary to avoid wasting tech-

nology. Interoperability is a particular challenge on healthcare due to heterogeneity in clinical

systems and patient data models. More evidence from research needs to be generated to show

sufficient model performance to improve clinical decision making. Additionally, deployment of

individual models are complex to manage especially when they have a narrow and specific task.

Lots of AI models would be needed to cover different needs. These AI models would possibly

integrate and have high technological cost. Ainsworth and Buchan highlight the potential of

models using EHR data to improve health systems by enabling learning health systems that

adapt to new data for better predictions and treatment management [119]. They propose real-

time, personalised care models that support clinical decision-making by considering individual

patient differences. EHR-based models can enhance population health management through

risk stratification, preventative care, disease management, and addressing health disparities.

To be effective, these models must be robust, generalisable, and capable of providing timely,

clinically relevant insights.

2.3.7 Graphs

Definition 2.1. (Graph) A graph, also referred to as a network, is defined as G = (V,E)

[120], where:

• V is the set of nodes (or vertices) in the graph, represented as V = {v1, v2, . . . , vn},
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Figure 2.1: Visualisation of graphs (nodes and edges) with definitions.

where each vi is a node.

• E is the set of edges that connect pairs of nodes, represented as E ⊆ {{u, v} | u, v ∈

V, u ̸= v}.

For directed graphs, the edge set is represented as E ⊆ {(u, v) | u, v ∈ V, u ̸= v}, where (u, v)

denotes a directed edge from node u to node v.

Formally, a graph can be visualised (such as in Figure 2.1) as a structure where:

G = (V,E), V = {v1, v2, . . . , vn}, E ⊆ {{u, v} | u, v ∈ V }.

Graphs are useful ways to demonstrate networks and interactions between entities. Social media

companies use graphs to represent connections between users, which they use to make friend

suggestions or advertise products [121]. Online marketplaces use the interactions between cus-

tomer purchases to make suggestions to other customers purchasing similar items. Veselkov et

al. [122] use AI (Support Vector Machine and Maximum Margin Criterion) alongside drug-gene

connections and compound-gene interactions with gene-gene connection networks to predict

which drugs/foods can be used for treatment or prevention of cancer. The nodes represent the

gene-encoded proteins and the edges show biological interactions. This model was also used to

show the likeness between food molecules and anti-cancer drugs using hierarchical classification.

A DAG is a graph which does not contain a closed loop, each edge will originate from one node

to another and the connection of these edges between nodes makes up the network structure
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and flow of events. Graphs are usually visualised with a series of circles (the nodes) representing

the events which are connected to each other with lines or arcs (the edges) (see Figure 2.1, to

show flow of information or progression through events. This makes representing activities that

happen temporally easy to conceptualise and model. If a node or edge has labels these are

called attributes, which are usually provided as vectors or additional matrices. Regular graphs

contain edges that connect only two nodes.

Typically, adjacency matrices are used for mathematical calculations involving the graph struc-

tures. These are usually 2D and give information about node pairs, such that rows are the

start nodes and the columns are the nodes the start nodes are linked to. The share of a typical

adjacency matrix is n× n where n is the number of unique nodes. For example if an adjacency

matrix is:

A =



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


The corresponding directed graph would be:

1 2 3 4

Classification can be in the form of node, edge or graph classification, alternatively clustering

of graphs can be carried out for unsupervised learning.

Graph Neural Networks

GNNs learn graph, node and edge representations via information propagation which shares

weighted node attributes between neighbouring nodes via connected edges [123]. This is used

for node classification, link prediction or graph-level predictive tasks. GNNs are able to model

irregular and complex graph data [62]. Graph classification predicts an outcome based on the

entirety of a graph, considering the structure and attributes of the graph as a whole. Whereas

edge-level prediction may predict missing or future links between nodes, likewise node-level

prediction can be used for nodes.

Applying CNNs to graph-structured data may also be referred to as GNNs or Graph Convo-
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lutional Networks (GCNs). GNNs iteratively aggregate information about neighbouring nodes

(usually 1-hop of neighbouring nodes) to update each node representation. A GNN typically

has K hidden layers, a feature vector is formed at each k-th layer, every node is aggregated and

updates based on 1-hop worth of neighbouring nodes information. Within the k-th layer there

are two trainable functions (aggregate and update) which could simply be summation, average

or maximum. After iterating across all of the hidden (k) layers, pooling of the node represen-

tation can be achieved (which may involve averaging or more complex pooling functions) to

capture structures within the graph more effectively [123]. Whilst this is a useful to aggregate

information between nearby nodes, this does not fully take into account the underlying structure

of the graph.

Knowledge Graphs

Knowledge graphs are powerful tools for illustrating relationships between entities, highlighting

how objects interact or share similarities. Knowledge-guided methods use these graphs to

address challenges arising from data insufficiency, particularly in domains like healthcare, where

high-quality labelled data may be limited [124].

The GRaph-based Attention Model (GRAM) integrates medical ontologies into a knowledge

graph, using RNNs and graph-based attention mechanisms to predict clinical outcomes. By

embedding medical knowledge, GRAM reduces dependence on the frequency of clinical codes,

ensuring robust predictions even for rare medical events [125].

Knowledge Attention Model for medical Event prediction (KAME) extends the use of knowledge

graphs, employing RNN-based attention mechanisms for diagnosis prediction. Proposed by Ma

et al. [126], this model efficiently combines EHR data and domain-specific medical ontologies

to enhance predictive accuracy.

Building upon GRAM and KAME, the Graph Neural Network with Dynamic Propagation

(GNDP) framework was introduced by [62]. GNDP enriches raw EHR data by integrating

sequential medical events with medical ontology knowledge. The graph structure captures both

spatial and temporal patterns, significantly improving the prediction of the next medical code

during a clinical visit.

GNDP represents EHRs as hierarchical graphs where the child nodes represent sequential med-

ical events, with vectors denoting when and in what order these events occurred. And parent
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notes are derived from the medical ontology, feeding domain knowledge into the event nodes

via undirected edges that denote relationships. This structure allows merging of ontological

knowledge with event sequences. However, while GNDP models the sequence of events, it

does not explicitly account for temporal gaps or precise numerical timestamps between events,

potentially limiting its capacity to reflect detailed temporal dynamics.

Temporal Graphs

A temporal graph is a graph that incorporates time properties, for example it could evolve

over time or the edges and/or nodes may have timestamps or time intervals. Many systems

have time-dependent aspects, and to represent them dynamically temporal graphs are required

[127]. Including temporality in graphs is beneficial as it captures node associations and when

these relationships occur, increasing the detail on the domain information included to give

fuller pictures [128, 129]. However, this data richness comes with issues such as scalability

due to increased dimensionalities, complexity and data sparsity issues as often graphs are not

fully-connected and may be incomplete [127, 129].

Temporal graphs are being used in many different applications such as on social networks to

gather crime information [130], performing skeleton-based action recognition tasks to predict

human actions [131], and modelling the spread of population diseases such as COVID [132].

Temporal graphs may be Static, Discrete or Temporal [133]. A Static Graph represents a set of

nodes and edges with optional features, where edges are directed and features remain constant.

A Discrete Time Temporal Graph restricts a temporal graph to predefined, equally spaced

timestamps, ensuring all events align with fixed time steps. A Temporal Graph extends a static

graph by associating nodes and edges with time intervals and time-dependent features, allowing

for dynamic changes over time.

Alongside node, edge and graph classification, temporal graphs can be used for event time and

temporal link prediction [133].

Using Graphs with EHRs

Graphs or network-based models can be used to show associations between different types of

EHR data, with the graph edges showing the connections or relationships between these data

types. EHRs may be represented as individual graphs for each patient, for each visit, or they
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may be used to represent a variety of patient pathways in one graph (like a knowledge graph).

In 2019, Schrodt et al., performed a literature review of graph-representations of patient data

finding eleven relevant papers, ten papers included EHR data. Five papers allocated nodes as

medications and diagnoses, whilst the other six used laboratory result nodes. Edge representa-

tions most frequently included temporal relations, followed by causal relations, spatial relations,

anatomic-functional relations, taxonomical relation, status, and date. Only two of these papers

processed the EHR representations, for example using ML applications [134].

In the next chapter (Chapter 3), a systematic literature review is carried out on uses of graph

representations for individual patient EHRs for prediction of health outcomes and diagnosis.

Researchers, developers, and implementers of complex clinical prediction models must carefully

consider missingness, measurement error, and informative observation patterns in their training

and test data. Causal graphs provide a structured way to reason about these issues by mapping

relationships between variables based on existing domain knowledge. Causal graphs can help

determine missing data mechanisms. By incorporating causal diagrams, we can visualise how

errors propagate through the model and identify strategies to mitigate their impact. Informative

observation patterns, that may only be present in the training or testing datasets, can intro-

duce biases that affect generalisability. Causal graphs can be used to assess whether observed

associations reflect true causal relationships or are artifacts of data collection processes.

Causal inference aims to uncover cause-and-effect relationships, whereas prediction modelling

focuses on optimising accuracy. Domain experts provide crucial insights into clinical workflows,

patient behaviours, and systemic biases that may not be explicitly captured in datasets. By

integrating expert knowledge into causal graph construction, researchers can refine assumptions

about missingness mechanisms, measurement reliability, and selection biases. This collaborative

approach ensures that models are not only statistically sound but also clinically meaningful,

improving their applicability in real-world decision-making. Recent studies have explored the

use of directed acyclic graphs (DAGs) to represent measurement error and information bias in

epidemiological research, highlighting their potential to enhance transparency and robustness

in clinical prediction models [135].
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2.4 Conclusion

MSK conditions, including OA, are a growing burden on healthcare systems, with hip and knee

replacements being essential interventions to alleviate pain and restore mobility. The increasing

demand for these procedures underscores the need for improved clinical decision-making, more

efficient healthcare delivery, and cost-effective resource allocation. EHRs contain vast amounts

of structured and unstructured clinical data, providing an opportunity for AI models to enhance

prediction and triage for joint replacement surgery.

Graph-based AI models offer a promising approach to representing the complex, longitudinal

relationships within EHR data, yet their application in predicting hip and knee replacements

remains under explored. Existing predictive models often rely on structured variables such as

OA diagnosis, despite a well-documented gap between symptom onset and formal diagnosis [21].

This delay highlights the need for models capable of identifying at-risk patients earlier, without

requiring a confirmed OA diagnosis. Furthermore, many models neglect the irregular timing of

healthcare visits, limiting their ability to capture the progression of MSK conditions over time.

While deep learning models can incorporate a broader range of predictors than traditional meth-

ods like logistic regression, their clinical utility remains limited due to issues of interpretability

and explainability. Additionally, most AI models for hip and knee replacement prediction rely

on imaging data, which is unavailable in primary care settings, making them unsuitable for

early-stage risk stratification. Given that GPs have limited time per patient, AI-driven decision

support tools could help streamline risk assessment, allowing clinicians to focus on patient care

rather than data processing.

Despite the potential of AI to optimise triage, there is currently a lack of research integrating

graph-based methods with EHR data for this purpose. Moreover, systematic reviews evaluating

the use of EHR data with graph-based AI techniques are needed to better understand their

effectiveness. To advance clinical decision-making and reduce the economic burden of MSK

conditions, future research should address these gaps by developing interpretable, temporally-

aware AI models that augment traditional OA diagnosis and severity (including image-derived)

information with earlier-recorded and more wide-ranging information predictive of OA and its

outcomes. Addressing these challenges could enable earlier and more accurate identification of

patients in need of joint replacement, improving patient outcomes and healthcare efficiency.
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Systematic Literature Review

3.1 Introduction

Improvements in medical advances with increasing complexities of patient treatment pathways

and ageing demographics have increased pressure on healthcare services. Implementing pre-

dictive algorithms into healthcare settings can reduce cognitive burdens for clinicians whilst

reducing patient wait time for care [1].

EHRs are used within clinical practice to document and store patient data during clinical

encounters. EHRs contain data such as health events, symptoms, laboratory investigations,

and diagnoses [136]. Most clinical prediction models use summary data, such as EHR codes,

which alone loses the inherent structure and temporality of the data.

Graph theory utilises network structures and uses mathematics to observe patterns and struc-

tures within data. In discrete mathematics, a graph G = (V,E) is defined as a series of nodes

V connected via edges E to represent relationships between nodes [137, 138].

Graphs can be used to model EHR data to maintain structural and technical features such as

temporality and comorbidities, which can then be used to predict patient outcomes with ML.

Earlier predictions of health outcomes may allow preventive interventions to be carried out

(e.g., physiotherapy, medication), which can reduce the impact of healthcare utilisation, lessen

patient suffering, or prevent conditions from worsening.

Graph representations for EHRs are becoming increasingly popular. Using graph theory, EHRs

can be represented graphically to exploit the relational dependencies of the multiple informa-
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tion formats to improve ML prediction models. Social network analysis methods can be used to

find disease progression by finding similarities between patients and their outcome trajectories

[139, 140]. Patients can be clustered based on graphical EHR representations to make diagnoses

[118]. Increasingly deep learning methods, such as CNNs and GNNs, are being used to find

important features and patterns in an individual patient EHR to predict patient prognoses [141,

142]. These methods could be visualised for model explainability to help clinicians understand

why predictions are being made and optimise treatment plans. Understanding the factors that

shape key decisions is essential for improving predictive models and ensuring their relevance

to real-world clinical practice. By examining past choices, we can enhance transparency, refine

the selection of predictive features, and identify potential biases or errors that may influence

outcomes. This process allows for greater alignment between data-driven insights and medical

judgment, making predictions more interpretable and reliable. Additionally, analysing deci-

sion patterns helps improve consistency, optimise feature selection, and strengthen the overall

fairness and effectiveness of risk assessment frameworks in healthcare.

This systematic literature review follows the PRISMA guidelines for comprehensive literature

search and selection. It also uses the PROBAST criteria to assess the RoB and quality of papers

to investigate the utilisation of graphs in healthcare for patient-level EHR representations and

health predictions. The research question guiding this review is:

How are graphs being used on EHRs to predict diagnosis and health outcomes?

To address this broader question, the following sub-questions are asked:

a) What graph approaches are researchers taking to predict these health outcomes?

b) How do these approaches compare to other ML, AI, and statistical models?

c) How are nodes and edges being utilised to perform these tasks?

d) How do these graph approaches compare to each other?

Outcomes from these studies are highly heterogeneous making a meta-analysis inappropriate.

Instead, results are presented as a narrative synthesis, comparison, and discussion of studies.

This chapter seeks to explore the current literature using networks for prognostic prediction

of health outcomes and diagnostic prediction of health conditions within EHRs, to determine

what gaps in the literature exist and how efforts can be extended to improve clinical utility.
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3.2 Related Work

At the time of this review, the review by Schrodt et al. on graph representations of patient data

is the only systematic literature review paper identified that focuses on graph representations

of patient data [134]. Their review of 11 articles examines how graphs were used to represent

EHRs of individual patients.

There were five systematic reviews focusing on ML based prediction tasks using EHRs as input

data. These did not focus solely on graphical representations. Two papers explored deep

learning models using EHR, but neither retrieved any graph-based models [10, 143].

Si et al. review on deep representation learning of EHR identified 49 papers [144]. They

discussed graph-based patient representation, models such as GNNs, and highlighted various

works (n = 8). Three references in their paper also match the references included in this chapter

[118, 144, 145]. Si et al. suggested that future work will involve harnessing the complex features

found in EHRs, improving reproducibility and transparency.

Liu et al. review concentrated on representation learning of EHRs and suggested categorising

these methods into statistical, knowledge-based, and graph learning methods [136]. There are

four papers in Liu’s review that appeared in the literature search for this chapter [145, 146,

147, 148]. Liu suggested that graphs are a practical way to represent EHRs that maintains the

structural, temporal, and semantic relationships, which is not possible with other methods.

Hossain et al. review of 36 papers explored the use of EHR data for disease prediction [106].

One of their papers was included in this literature review search [147]. Hossain et al. re-

view found that different MLs methods worked best for various clinical settings. Graph-based

methods appeared to work best for Diabetes Mellitus (DM), and Hossain suggested that graph

representations enable the relationships between healthcare data to be structured, enabling an

understanding of connections that otherwise might be difficult to observe.

3.3 Systematic Review Methods

This systematic review follows the 2015 PRISMA protocols [149]. The completed checklist

can be found in Appendix A.1. This review is registered on PROSPERO with the protocol

registration number CRD42022315782.
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3.3.1 Search Strategy

Synonyms for “Graphs” and “Electronic Health Records” were combined for the search strategy.

Asterisk wildcards were applied to “Prognostic,” “Diagnostic,” and “Prediction” to expand the

search. Queries targeted abstracts, titles, and keywords. Studies within this graph/ network do-

main were evaluated to determine if other terms cover the same concept. The search, conducted

on February 27, 2023, covered MEDLINE, Scopus, and Web of Science databases. A forward

citation search of review articles identified at the abstract title screening stage was conducted.

Table 3.1 shows the concepts and search terms we used to run this search. The complete search

strings used in each database are given in Appendix A.2.

Table 3.1: Concepts and search terms.

Concepts Search Terms

Graphs graph OR graphs OR graph-based OR node* AND edge* OR
“knowledge graph” OR “network analysis”

Electronic health
records

“electronic health record” OR “medical records systems” OR
“record-linkage” OR (routine adj5 data) OR ((electronic OR link*
OR compute* OR anonymi?ed) adj5 record) OR ((health OR pa-
tient OR clinic* OR medic* OR case) adj5 (record* OR data OR
plan* OR chart*) adj5 (compute* OR system OR electronic OR
link* OR dataset OR network)) OR EMR OR EPR OR EHR

Prognostic/ Diag-
nostic Prediction

predict* OR diagnos* OR prognos*

3.3.2 Inclusion Criteria

In this review, “graph” is specifically referred to as representing information in a network of

nodes and edges within graph theory. The common meaning of charts/ visualisations were ex-

cluded. Included studies constructed graphs directly from individual patient-level EHR data,

excluding those using aggregated population data. To assess the effectiveness of graph repre-

sentation in ML-based predictions, only primary research studies that described at least one

ML prediction task using EHR graph representation were considered.

Outcomes were defined as diagnostic prediction of a health condition (e.g. Heart Failure (HF)

or cancer) or prognostic prediction of a health-related outcome (e.g. mortality, readmission risk,

or treatment success). Studies that predicted multi-class outcomes with over ten possible labels

were excluded, as statistical reporting of these models is insufficient.

Graph-based learning in healthcare has gained recent attention [1]. Considering the impact of
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hardware availability on deep learning progression, papers published between 2002 and 2023

were focused to align with the release of Torch, a popular ML library framework in 2002.

Grey literature (theses, dissertations, non-peer reviewed pre-prints, and online repositories) were

excluded, only full-text papers written in English or with an English translation were included.

3.3.3 Article Selection

Zoe Hancox (ZH) and Allan Pang (AP) independently conducted title/abstract and full-text

screening stages, reaching a consensus on selection at each stage. Disagreements were resolved

by Samuel Relton (SR), the third reviewer, and Rayyan’s online software tool was employed

in this process [150].

3.4 Data Extraction Methods

To perform a reproducible assessment of the included studies, two assessment frameworks were

used to evaluate the RoB and identify characteristics. Both assessments were conducted inde-

pendently by ZH and AP for each study.

3.4.1 Risk of Bias (RoB)

RoB was evaluated using the PROBAST tool, a framework for assessing the quality of method-

ologies, including RoB and applicability, in primary studies developing prediction models for

diagnosis and prognosis [151].

PROBAST, developed through a consensus process with 20 signalling questions across four

domains (participants, predictors, outcome, and analysis), assigns a RoB score of High, Low,

or Unknown to each domain based on signalling questions. The overall RoB is determined by

the worst domain score (i.e., an overall low RoB requires every domain to score low) [151].

Reviewers reached a consensus on RoB at the domain level, and a qualitative analysis was

conducted for overall and domain-specific RoB across all studies. Papers with high RoB were

included to highlight ongoing work in the field. The primary health outcome was focused on

when multiple models are developed in a study.
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3.4.2 Study Characteristics

CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Mod-

elling Studies (CHARMS) was adapted for extracting study characteristics, originally designed

for primary studies on diagnostic or prognostic prediction models [152]. Qualitative analysis of

the data extracted using the modified CHARMS framework revealed patterns in the identified

studies. Appendix A.3 provides a detailed description of all extracted variables.

3.5 Results and Discussion

3.5.1 Article Selection

The database search yielded 1,346 papers (Web of Science (n = 410; 30.5%), Scopus (n = 633;

47.0%), and MEDLINE (n = 303; 22.5%)), with 832 unique papers. Exclusions during the title/

abstract screening were mainly due to non-predictive studies (n = 250), lack of EHR use (n =

205), and techniques not relevant to the review research questions (n = 162). Table 3.2 shows

the reasons for exclusion at the title/ abstract screening stage. Note there were papers that had

multiple reasons for exclusion so the total sums up to more than the count of papers screened.

Title and abstract screening identified 37 reviews or background articles, where six papers were

identified from forward citation screening for full-text screening [74, 139, 153, 154, 155, 156].

Table 3.2: Reasons for exclusion at the title/abstract screening stage. EHR=electronic health
record.

Reason for Exclusion # Excluded

Not a predictive study 250
Wrong technique 162
EHR not included 305
Wrong domain 99
Wrong type of network/graph 107
Does not explore health outcomes 104
Non-human participants 49
Pre-2002 26
Wrong publication type 26
Background article 35
Wrong study design 20
Wrong population 4
No use of graphs 8
Tutorial 1

Full-text screening identified 27 papers for data extraction. The PRISMA flowchart in Figure
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Figure 3.1: PRISMA flow diagram of search strategy. Figure produced using [157].

3.1 provides a summary of article selection. Figure A.1 in Appendix A.4 shows details of the

addition screening carried out.

Within the 4 years since Schrodt et al. performed their review, the number of papers published

using individual graph representation of EHR data with health predictions increased from 3

(Schrodt et al. papers) to 18 (the applicable papers from this review chapter). Figure 3.2 shows

the number of papers that were included and excluded from each year between 1990 to Feb

2023 at each stage of the screening.
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Figure 3.2: Number of papers meeting the search term criteria over the years.

3.5.2 Risk of Bias Analysis

How do biases manifest within this literature, and what impact do they have on the reliability

of study results?

Table 3.3 displays the RoB and applicability assessment at the domain and overall levels, with

each row representing one study. Figure 3.3 presents the breakdown of RoB levels.

Figure 3.3: Risk of bias of the papers included for data extraction.
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Table 3.3: Risk of bias and applicability table formed from following the PROBAST guidelines. H - High risk, L - Low Risk, U - Unclear risk.

Risk of Bias (RoB) Applicability Overall

Study Participants Predictors Outcome Analysis Participants Predictors Outcome RoB Applicability

[139] H H H H L H L H H
[140] H L L L L L L H L
[158] H L H H L U L H U
[142] L L L H L L L H L
[141] H L L L L L L H L
[159] L L L L L L L L L
[146] L L H H L L L H L
[147] H H U H L L L H L
[160] H H H L L L L H L
[161] H L H L L L L H L
[145] H L L H L U L H U
[68] L H H H L L L H L
[162] L L L L L H L L H
[163] H H H H L U L H U
[148] U H H H L L L H L
[164] L H H L L L L H L
[165] H H L H L L L H L
[166] L L L L L U L L U
[167] U H H H L L L H L
[168] H U U H L U L H U
[169] L L L U L L L U L
[118] U L H H L L L H L
[170] L L H L L L L H L
[171] L L L H L H L H H
[172] L L H L L U L H U
[173] L U H H L L L H L
[174] U L U H L L L U L
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Participant RoB

High RoB in the participant domain was categorised into three groups. The first group had

limited information about the target population, likely introducing bias based on available data

[139, 140, 141, 145, 147, 160, 161, 163, 168]. This differs from papers with unclear RoB, where

no information was given about data sources or the population [148, 167], or where the control

group was unclear [174]. The second group comprised papers with inclusion/ exclusion criteria

leading to inclusion bias [145, 147, 158, 160, 165]. These papers selected or excluded patients

based on specific characteristics relevant to the predictive context. The final group lacked

control/ comparison groups to determine prediction effectiveness [118, 139].

Predictor RoB

Diagnostic codes in EHRs signify the presence of diseases and can serve as features for predic-

tion or target labels. However, these codes do not always indicate a confirmed diagnosis. For

instance, a GP may modify the rubric of a recorded code to reflect clinical uncertainty, such as

“DM r/o,” meaning diabetes mellitus ruled out. This highlights the importance of interpreting

diagnostic codes within their clinical context. Incorrectly applying non-reproducible transfor-

mations or grouping medical events, International Classification of Diseases (ICD) codes, and

medication codes poses the risk of misclassifying predictive features [68, 147, 148, 160]. Utilising

tools like OpenSAFELY helps find approved code lists for appropriate patient grouping [175].

Understanding the nuances of diagnostic coding can mitigate potential biases and enhance the

accuracy of predictive models.

False assumptions about the data context in EHRs can introduce inconsistencies and RoB. In

acute settings, diagnoses are presumed, not confirmed, and should not be used as predictors

[164]. Inappropriate imputation of missing data for ML algorithms can create unrealistic data

given the clinical context and should not be used for prediction [165]. Additionally, self-reported

lifestyle factors pose a potential risk of recall bias and should be interpreted with caution in

predictive models [163]. However, certain lifestyle indicators, such as smoking status, are recog-

nised as critical predictors for multiple health outcomes and are mandated to be recorded across

multiple visits. While recall bias remains a concern, these factors can provide valuable insights

when used in conjunction with other reliable data sources and validated coding practices.

The clinical utility of a predictive model depends on considering the timing of the prediction.
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Validity requires taking into account the availability of variables at the time of the predic-

tion. Variables only available after the event time horizon should be avoided, as they render

retrospective predictions clinically irrelevant [68, 139, 167].

Two papers lacked sufficient information for RoB assessment in this domain. One lacked infor-

mation about defined and assessed predictors [168], and the other lacks information about the

timing of the index diagnosis [173].

These oversights indicate a lack of consideration for the clinical context in the design phase of

model construction.

Outcome RoB

Approximately half of the papers showed high RoB in the outcome domain, falling into four

groups: predictors shaping outcome definitions, flawed outcome assumptions, subjective out-

come definitions, and poor methodology.

Consideration of the relationship between outcomes and predictors is essential. Specific predic-

tors can unintentionally detect an outcome, such as using investigations or symptoms that are

part of the diagnostic criteria (e.g., exacerbation of Chronic Obstructive Pulmonary Disease

(COPD) predicting COPD onset [148]), the presence of a treatment regimen predicting subse-

quent diagnosis [158], or tests specific to the cancer outcome in question [68]. Acknowledging

the potential masking of certain investigations when predicting disease onset should be explicit

in the paper [147].

Constructing a composite outcome, like treatment failure, requires careful consideration. Some

studies defined treatment failure as a patient having the same diagnostic code within two weeks

[146, 164, 170]. However, this assumes patients will return to the clinician within two weeks and

that the initial diagnosis is correct. Such an approach is not a formal assessment of prescription

effectiveness and should not be used as an outcome.

Despite ICD coding standardisation, choosing ICD codes or diagnoses as target variables can be

ambiguous, risking observer bias [161]. Some ICD codes encompass a broad range of diagnoses

(e.g., N39 – Other disorders of the urinary system) or lack agreed-upon standards (e.g., E86

– Volume depletion). Subjectivity also arises in applying specific diagnostic criteria, such as

Alzheimer’s disease and HF [118, 172], or determining the cause of death [163].
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Some papers had methodologically poor outcomes lacking predictive value in the clinical setting.

Examples included papers with no prediction time horizon, rendering predictions irrelevant

[118, 139, 160], or those with multi-outcome models predicting the following diagnosis or top k

diagnoses [148, 160].

Analysis RoB

Around half of the papers had high RoB in the analysis domain (n = 15; 56%); this domain

had the highest number of high-risk scores. Reasons for high RoB were divided into papers at

risk of being over-optimistic and those with inappropriate analysis of results.

Many methodologies lacked a specified number of participants in the outcome group(s) [68, 118,

146, 147, 148, 158, 165, 171]. Without sample size calculations, it’s unclear whether ML models

have sufficient power to predict accurately, risking over-fitting and over-optimistic performance.

Data complexities like censoring and competing risks are not appropriately addressed or men-

tioned in the analysis [68, 139, 142, 145, 147, 165, 167, 168, 171, 173, 174]. Three papers

lacked performance metrics or applied them inappropriately, such as using AUROC for highly

unbalanced data [139, 147, 171]. One study treated alive patients differently from those who

died at the end of the period [163].

Overall RoB

Only one paper, Golmaei et al. [159], had both an overall low RoB rating and low-risk appli-

cability. Seven papers exhibited high or unclear RoB in a single domain, indicating that most

literature in this area faced methodological issues across multiple domains leading to high RoB

(n = 17; 63%).

The RoB findings from this systematic review align with those of related works in clinical pre-

diction modelling. Yang et al. conducted a systematic review of clinical prediction papers from

2009 to 2019, identifying 579 predictive models [176]. Table 3.4 shows their results demon-

strating that candidate predictors were the most infrequently reported (10.1%). Navarro et al.

performed a systematic review of 152 clinical prediction papers (models = 522) between 2018

and 2020, focusing on trends in methodological conduct reporting [177]. Navarro found that

only a minority of papers performed external validation (12.5%), hyperparameter optimisation

(28.9%), or provided calibration curves (5.4%).
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Table 3.4: Results from review of 579 clinical prediction models from 422 papers [176]. AU-
ROC=area under the receiver operator curve.

Description Frequency (n = 579)

Described inclusion/exclusion criteria for target population 513 (88.6%)
Reported how they handled missing data 285 (49.2%)
Target population – provided through code list 100 (17.3%)
Candidate predictors – provided through code list 59 (10.1%)
Outcome – provided through code list 103 (17.8%)
Time-at-risk – reported 489 (84.5%)
Listed candidate predictors 392 (67.7%)
Observation window for predictors provided 286 (49.4%)
AUROC reported 499 (86.2%)
Calibration plot presented 149 (25.7%)
Presented the final model completely 241 (41.6%)

This highlights a deficiency in the adherence of clinical prediction models to PROBAST guide-

lines. This could stem from a lack of awareness of PROBAST guidance or authors prioritising

predictive model performance over clinical applicability. Addressing this gap is crucial for the

effective use of these models in clinical practice.

Overall Applicability

Three papers (11%) from this search were not applicable due to using population graphs in-

stead of patient-level EHR representations [139, 162, 171]. Nineteen papers (70%) used graphs

to represent patient-level EHR data. The remaining six papers had unclear definitions of graph

representations. Among them, four papers (15%) appeared to use population-based represen-

tation [163, 166, 168, 172], one paper represented graphs as single visits [145], and with one

paper it was unclear about the graph representation [158].

3.5.3 Characteristics of Included Studies

Tables A.1-A.9 in Appendix A.5 provide a summary of the data extraction of the 27 papers.

Datasets and Data Sources

There were 18 different datasets included within the papers, which were broadly divided into

three groups: open source, dedicated research databases, and non-public/ proprietary data. The

only open source data used were the Medical Information Mart for Intensive Care (MIMIC)

datasets and the eICU Collaborative Research Database (eICU) collaboration, which in this
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review, were the most prevalent out of the 15 datasets (n = 10/33; 30%, n=7/33 21% respec-

tively) [141, 145, 159, 160, 165, 166, 167, 169, 172, 174]. MIMIC is a dataset that contains

patients who have attended critical care and consists of ICU short-term records, inpatient data

(diagnoses and laboratory test results), and discharge summaries [178]. 14 studies used datasets

from the USA, 5 from Taiwan, 4 from China, 2 from Australia, 2 from South Korea, and only 1

study employed data from the UK, with 5 additional datasets from unspecified locations. De-

spite the increasing application of graph-based methods in healthcare for outcome prediction,

there remains a notable gap in the literature regarding the use of such techniques for predicting

individual patient outcomes with graphs using UK-specific data. While existing research has

explored similar approaches in other regions or on aggregated datasets, the unique characteris-

tics of UK healthcare data, including its structure, population diversity, and healthcare delivery,

remain under-explored in this context. Table 3.5 provides a summary of the datasets used.

Examples of research databases include; The Taiwanese National Health Insurance Research

Database (NHIRD), Taiwan’s National Death registry, the Mayo Clinic EHR, NYU Langone

EHR, and the UK National Cancer Registry [68, 142, 146, 161, 163, 164, 170, 172]. These EHRs

provide ICD codes with timestamps and relations to laboratory tests, treatments and clinical

notes, with the addition of genetic reports in the Foundation Medicine and Mayo clinic [68].

The Geriatric Health Examination would fall into the research database category, although

strictly, it is not an EHR [163]. This is due to its mandatory scheduled collection, more akin

to longitudinal cohort studies. While this additional data could provide valuable insights into

health prediction, its structured nature may be challenging to reproduce in routine clinical

practice. However, many GP visits incorporate templates for recording specific checklists. These

structured records ensure consistency in data collection across visits, demonstrating that not

all primary care consultations are entirely free-form.

The majority of papers use data from non-public datasets [118, 139, 140, 147, 148, 158, 162,

167, 168, 171]. These datasets contain diagnoses with timestamped information for laboratory

tests and treatments. Many of these EHRs use standardised coding systems such as ICD for

diagnosis and Current Procedural Terminology (CPT) for procedures/ treatments; however,

one used an undefined transformation of clinical events [148].

Three papers (11%) used simulated/ synthetic data alongside a pre-existing dataset [118, 145,

163]. Synthetic data inadequately captures complexities and relationships in EHRs, leading to
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Table 3.5: Summary of datasets used in the selected papers. ICU=intensive care
unit, ICD=international classification of diseases, CPT=Current Procedural Terminology,
EHR=electronic health record.

Papers Dataset Description Source
Country

Open Sources

[165] MIMIC-II Clinical data related to patient admission
to ICU, diagnoses ICD-9, and lab test
results. Lab tests extracted every hour
from admission.

USA

[141, 159,
160, 166,
169, 172]

MIMIC-III ICU short-term records, inpatient, dis-
charge summaries

USA

[174] MIMIC-IV ICU short-term records, inpatient, dis-
charge summaries

USA

[145, 167,
172, 174]

eICU ICD-9 and CPT procedure codes USA

Research Databases

[142, 146,
164, 170]

Taiwanese National
Health Insurance
Research Database
(NHIRD)

ICD9-CM Taiwan

[68] Foundation Medicine Inc
and Mayo Clinic EHR

Oncology genetic reports, phenotypical
data. Lab tests, diagnoses, medical and
family history

USA

[161] National registry data - UK
[163] Taiwan National Death

Registry
ICD-9 and ICD-10 Taiwan

[172] New York University Lan-
gone Health

Long-term inpatient and outpatient
EHRs

USA

Non-public/Proprietary Datasets

[147, 148,
158]

Medical system from a
city in North China

ICD-10 codes China

[139, 168] Australian healthcare
system

Admission information, diagnoses, pro-
cedures (ICD-10, DRG, AN-SNAP)

Australia

[167] Paediatric EHR data
from a tertiary care
hospital in China

Symptoms, medical examination infor-
mation, medication codes and diagnosis
codes

China

[171] In-vitro fertilisation clinic
from General Hospital in
Seoul

Treatment records (age, stimulation
type, use of Wallace, number of embryos
transferred, symptoms)

South
Korea

[140] Private healthcare hospi-
tal admission data

ICD-10 codes and administrative data -

[118, 158,
162, 172]

Not provided EHR Clinical Codes -

[173] CardioNet EHR Data from Seoul Asan Medical
Center

South
Korea
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poor representation of cohorts [179]. Consequently, these results were excluded from this review

as these papers appeared to demonstrate techniques rather than create predictive models for

clinical settings.

Healthcare delivery can broadly be divided into inpatient and outpatient/ community care,

each with distinct record structures and content reflecting the delivered care type. Outpatient

records, likely sparse, offer better time coverage compared to sporadic but detailed inpatient

records. When designing predictive models, these differences are crucial, as the clinical utility

of predictions relies on potential levers for change in these settings. Additionally, accessing

different parts of the EHR (inpatient vs outpatient) must be considered, given that typical

clinical end-users lack universal access.

The distinction between primary and secondary care systems is not always evident, with many

hospitals providing community services. While all papers in this study seemingly used EHRs

from secondary care, details and prediction targets suggest community care records’ use [68, 118,

140, 142, 146, 147, 148, 163, 164, 167, 170, 172]. This raises concern as access to healthcare

records varies, necessitating clarity on data requirements for model reproducibility. Models

trained on primary care data are particularly valuable because primary care is typically the first

point of contact for patients in the healthcare system, allowing for earlier detection of risk factors

and potential health issues. Since primary care practitioners manage a wide range of conditions

and see patients over time, these models are uniquely positioned to identify patterns that could

signal the onset of disease, making them crucial for preventive care and early intervention. By

capturing a more complete picture of a patient’s health trajectory, primary care models can

support more personalised, proactive care, which is essential for reducing the burden of chronic

diseases and improving long-term health outcomes.

Table 3.6 summaries the sample sizes and collection period statistics from the data used in the

27 papers. Given that EHRs have only been in widespread use for the last couple of decades, the

median collection period was fairly short (5 years), reflecting the limited duration of available

longitudinal data in many cases. The mean sample size, however, was notably large (148,902),

suggesting that even over shorter periods, EHRs can accumulate extensive datasets. The large

IQR for the sample size (ranging from 4,694 to 120,913) indicates that the scope of EHR-based

studies can vary significantly. Overall, the relatively short collection periods for most studies

underline the challenge of long-term data availability and accessibility in EHR-based research.
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Table 3.6: Statistics of electronic health record (EHR) sample sizes and collection period from
the 27 studies. IQR=interquartile range.

EHR Year of
Collection Be-
gan

EHR Collection
End

Collection
Period
(years)

Sample Size

Mean 2008 2014 8 148902
Median 2010 2015 5 40517
Lower
Quartile

2003 2012 3.5 4694.25

IQR 8 3.5 10 116219
Upper
Quartile

2011 2015.5 13.5 120913.25

Minimum 2000.00 2001.00 1.00 132.00
Maximum 2016 2019 20 1613088

However, the ability to gather large sample sizes within short periods demonstrates the potential

of EHRs to provide rich data sources for clinical prediction models.

Medical data, despite anonymisation, carries a risk of re-identifying subjects [180], countering

the need for accessible datasets to verify and reproduce predictive models. The popularity of

MIMIC, being freely accessible, reflects its status as a benchmark dataset for verifying predictive

model performance, despite its limitations of being critical care-focused.

The recent Goldacre Review supports the scale implementation of Trusted Research Environ-

ment (TRE), offering researchers a secure environment to access medical data for model devel-

opment or verification [181]. This approach provides a secure yet accessible avenue for working

with anonymised EHRs.

Model Types

Sub-question a): What graph approaches are researchers taking to predict these health outcomes?

Table 3.7 shows and describes the different ML and deep learning models used with graph

representations of EHRs to make healthcare outcome and diagnosis predictions. Figure 3.4

shows the model categories within the extracted studies.

RNN-based models (LSTM and GRU), excel with EHR data for handling sequential/temporal

information. CNNs are employed for capturing spatial correlations. Combining RNNs and

CNNs can aid in learning both temporal and spatial patterns.

Deep learning is recommended for superior performance compared to other ML methods, given

54



Chapter 3. Systematic Literature Review 3.5. Results and Discussion

Figure 3.4: The count of models and the percentage of papers within the selected 27 pa-
pers. GNN=graph neural network, GCN=graph convolutional network, RNN=recurrent neu-
ral network, LSTM=long short-term memory, GRU=gated recurrent unit, MLP=multi-layered
perceptron, CNN=convolutional neural network, SVM=support vector machine, ML=machine
learning.

its capacity to capture intricate relationships. However, this complexity may not always identify

uncertainties in data or model them, posing risks in healthcare settings where future predictions

might suffer if the data distribution changes [10].

Figure 3.5 compares graph and non-graph models to benchmark models used for comparison.

The RoB scoring means results and performance metrics were likely biased, statistical analysis

could not therefore be performed or the difference between primary and baseline models could

not be assessed. Additionally, the predictive outcome would need to be identical between models

for a fair comparison.

Debate surrounds the trade-off between accuracy and computational cost in ML models. Gómez-

Carmona et al. demonstrated an 80% reduction in computational effort with only a 3% decrease

in accuracy [182]. None of the included papers supplied information on the time taken to train

their models. The exploration of resource intensity, model fitting, and prediction time for graph

ML models represents a current gap in the literature. This information could be valuable in

determining the feasibility of clinical implementation and optimising Pareto efficiency.
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Figure 3.5: Comparison/baseline model occurrence and their associated references.
RNN=recurrent neural network, LSTM=long short-term memory, GRU=gated recurrent unit,
CNN=convolutional neural network, SVM=support vector machine, LR=logistic regression.

Graph Representations

Sub-question c): How are nodes and edges being utilised to perform these tasks?

Table 3.8 and Table 3.9 display node and edge types in the graphs, respectively. EHR Clinical

Codes commonly served as node representations. Nodes were either homogeneous (41%) or

heterogeneous (59%). Tables A.10 and A.11 in Appendix A.6 detail node and edge assignments

for each model.

Graph representations allow data organisation in a non-linear path, providing explainable visu-

alisation in a way that would otherwise be complicated to infer. Whilst minimising ‘black-box’

models is beneficial to provide explainability, especially in clinical settings, it is vital to con-

sider that interpretability approaches may lead to artefacts from the learnt model rather than

clinically explainable findings that should be attributed to the data [143].

Features within graphs can have various connection types to show relationships. Typical DAGs

have one-to-one links (one edge can only connect to two nodes), but more complex graphs,

such as hypergraphs, enable the connection of one-to-many and many-to-many links. Networks

can be analysed to find relationships between node and edge components. Methods such as

centrality or similarity measures can be used to look at neighbouring node contributions, con-

nections, and structures. Data irregularity, sparsity, heterogeneity, and model opacity make

modelling temporal EHR data difficult [143]; however, graphs enable us to overcome some of

these challenges.
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Patient data were represented using graphs to show individual patient records temporally (event

data mining) or the progression between events. This was done either by including the elapsed

time as the edge features or by sequentially ordering events using directed graphs without specific

time intervals. Temporality is useful to include in deep learning models using EHR data, as

time intervals between encounters could contain patterns not commonly known to clinicians

[143]; for example, shorter time intervals may suggest poorer health.

Whilst graph representations have many advantages, they also have significant memory com-

plexity and can take a long time to process, especially in deep learning applications.

Model Performances

Sub-question d): How do these graph approaches compare to each other? Sub-question b): How

do these approaches compare to other ML, Artificial Intelligence (AI), and statistical models?

Primary ML research methodology should offer sufficient performance metrics for independent

evaluation. In predictive modelling, calibration ensures that predicted probabilities accurately

reflect actual outcomes, helping assess the reliability of a model’s risk estimates. Discrimination

measures how well a model differentiates between individuals with and without the outcome,

often quantified using the C-statistic or AUROC. Decision curve analysis evaluates the clini-

cal utility of a model by weighing the trade-offs between true and false positives at different

risk thresholds to determine its practical benefit. As outlined by Steyerberg and Vergouwe,

these components are essential for developing robust clinical prediction models, ensuring both

statistical validity and real-world applicability in healthcare decision-making [183].

Across the papers, fourteen different metrics were provided. The most frequent metric was

AUROC (70%), assessing model discrimination by comparing true positives to false positives.

AUPRC followed as the second most used metric (56%), offering discriminative evaluation,

particularly valuable in the presence of data imbalance. Accuracy (33%) provides a simple

measure of correct predictions relative to all predictions. F1 score (26%) calculates the harmonic

mean of precision and recall, preferred over accuracy in imbalanced data scenarios. Recall (26%)

measures a model’s ability to predict a positive outcome when present. Precision (22%) gives

the positive predictive value. Specificity (7%) gauges a model’s ability to predict a negative

outcome when not present. Table 3.10 gives a full breakdown of all of the metrics used in these

studies.
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None of the papers included calibration curves or reported calibration, which helps detect

overfitting by comparing predicted versus observed risk. Additionally, these papers lacked

confidence intervals, a requirement for Transparent Reporting of a multivariable prediction

model for Individual Prognosis Or Diagnosis (TRIPOD) [186].

Of the surveyed articles, some provided binary classification alone (n = 17; 63%), some multi-

class (n = 2; 7%) and others gave risk/ probability scores (n = 5; 19%). A few papers had

multiple predictive tasks with both binary and multi-class classification (n = 3; 11%). Hospital

readmission was the most popular prediction outcome (n = 9/44; 20.5%), followed by mortality

(n = 9/44; 20.5%), and then treatment success (n = 4/44; 9.1%). Table 3.11 shows all of the

predicted outcomes from the 44 models and the number of times they occurred.

Table 3.12 displays models predicting mortality with AUROC or AUPRC scores. The highest

AUROC score, 91.59%, was reported by Liu et al. [167]. Sun et al. [160] reported the best

AUPRC score for mortality prediction at 81.34%. Figure 3.6 shows the AUROC and AUROC

for the models which predict mortality. AUROC is a suitable metric to use if the dataset is

balanced, however if it is not balanced AUPRC gives a better performance metric. The baseline

score for AUPRC is typically determined by the prevalence of positive outcomes in the dataset.

[160] had an unbalanced dataset, whilst [169] did not report dataset balance, which might

explain the discrepancies between the AUROC and AUPRC scores.

Table 3.13 presents models predicting readmission with AUROC or AUPRC scores. The top-

performing model for readmission prediction was reported by Golmaei et al. [159], achieving

85.8% ± 1.2 for AUROC and 84.7 ± 1.5 for AUPRC.

Table 3.14 and 3.15 display models that predicted health outcomes, excluding mortality or

readmission, with AUROC or AUPRC scores. Treatment success was a frequently predicted

clinical outcome.

Due to dataset and validation method variations, quantified or statistical comparisons between

the papers could not be performed. However, among the three papers with low RoB predicting

hospital readmission using the MIMIC-III dataset [159, 166], GNN with Bi-directional Encoder

Representation from Transformers (BERT) outperformed the GCN model with attention (AU-

ROC +3.3%, AUPRC +21.5%). The higher-performing model underwent a more rigorous 5-fold

cross-fold validation validation, enhancing confidence in these results.
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Figure 3.6: Area under the receiver operator curve (AUROC) and area under the precision recall
curve (AUPRC) scores for the models predicting mortality. HF=heart failure, SVM=support
vector machine, CNN=convolutional neural network, GNN=graph neural network, GCT=graph
convolutional transformer.

All included papers had main models outperforming or showing equivalent results to base-

line predictive performance. However, despite this being relevant to sub-question b) this im-

provement regularly seen might be due to publication bias favouring papers with positive im-

provements. The high RoB suggests likely biased results and performance metrics, preventing

statistical analysis or assessment of differences between primary and baseline models. A fair

comparison would require identical predictive outcomes between models. As mortality was the

most common outcome to be predicted the average AUROC difference between the comparison

models and the main model from each of the 8 papers and 10 models within these is shown in

Figure A.2 of Appendix A.7. In most scenarios SVM and LSTM models alone had the largest

difference in performance to the primary graph models.

Validation is sub-optimal with a single data split; cross-fold validation or bootstrapping is

preferred for calculating standard deviations, confidence intervals, and accommodating data

variations during train/ test splitting. External validation was lacking, slowing the implemen-

tation of predictive models into clinical practice. Only four papers (15%) offered links to their

GitHub repositories for model availability and reproducibility [160, 162, 172, 174].

Table 3.13 shows all the models that predict readmission and provide AUROC or AUPRC

scores. The model with the best performance for readmission prediction was [159], with 85.8%
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± 1.2 for AUROC and 84.7 ± 1.5 for AUPRC.

Table 3.14 and 3.15 shows the performance of the models that predicted health outcomes that

are neither mortality or readmission. Treatment success was the next most common clinical

outcome predicted.
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Table 3.7: Descriptions of the different models used within the selected papers to make health-
care predictions. RNN=recurrent neural network, LSTM=long short-term memory.

Papers Model Type Description

Traditional machine learning Methods

[139] Clustering Grouping similar data within a dataset using 2+ vari-
ables.

[140] Decision Trees
(DTs)

A single tree that makes predictions using previous an-
swers. This forms a series of questions in a branched
shape leading to the outcome.

[68, 140,
173, 174]

Logistic regres-
sion

Linear classifier, which analyses the relationship between
variables, using statistical analysis to predict binary out-
comes. Note: the papers that use this method change the
graph embeddings into vectorial representations.

[68, 173] Random Forest Multiple decision trees (DTs) trained via bagging tech-
niques to optimise the predictive performance.

[139, 140,
158, 161,
162, 165,
168]

Similarity Comparing 2+ samples to each other using distance or
differences.

[68, 118,
142, 146,
148, 168,
170, 174]

Support vector
machine (SVM)

Used for both classification and regression, SVMs find the
best hyperplane to divide the data into their groups.

Neural Networks

[145, 159,
160, 166,
167, 172]

Attention Enabling attention to be paid to more valuable variables
and reducing inefficiencies. It can also be used to show
variables of importance and provide decision explainabil-
ity.

[68, 141,
147]

Convolutional
neural network
(CNN)

Finds patterns in matrices (e.g., images, signal data) by
applying filters and obtaining higher representations of
the input data.

[68] Multi-layered
perceptron

Neural network which is fully connected, the connections
have varying weights which enforce or weakens connec-
tions to learn the patterns from input data.

[160, 161,
162, 166,
169, 174]

RNNs, LSTM,
Gated Recurrent
Unit (GRU)

Takes in sequential data and keeps it in memory by taking
outputs from one step to the next. This means it has
connections between time.

Graph Specific Methods

[68, 142,
145, 166,
169]

Graph convolu-
tional network
(GCNs)

Like CNNs, GCNs learn using filters over data; however,
GCNs can learn directly from nodes and their neighbour-
ing nodes.

[159, 163,
172]

GNN Neural networks can be used on graphs to analyse nodes,
edges, relationships, and layouts to make predictions.

[142, 146,
164, 170]

Graph Kernel Convolution kernels on pairs of graphs, where the result
from the convolution results in a new graph kernel.

[68, 171] Bayesian Net-
work

Representation of conditional dependencies between vari-
ables using directed-acyclic graphs.
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Table 3.8: Node allocation types in the graphs used in the selected papers. EHR=electronic
health record.

Papers Node Allocation/Use #

[68, 118, 139, 141, 145, 147,
148, 158, 162, 164, 167, 173]

Diagnosis 12

[142, 146, 147, 158, 160, 161,
170, 172]

EHR codes (e.g. ICD-10), but which type(s) are
unclear e.g. diagnoses, demographic

8

[68, 142, 162, 163, 164, 169,
170]

Demographics (e.g. age, BMI, gender) 7

[68, 118, 148, 158, 164, 173,
174]

Medication 7

[68, 141, 145, 148, 173, 174] Laboratory investigations 6
[145, 167, 171, 174] Treatment 4
[68, 141, 173, 174] Patients 4
[163, 167, 173] Physical examinations 3
[167, 171] Symptoms 2
[159, 162] Clinical note representation 2
[162, 173] Visits 2
[163] Mental tests 1
[163] Habits 1
[68] Genetic data 1
[140] Comorbidity occurrence count 1
[68] Family history 1
[166] Average values of word embeddings from:

unique words from clinical free text or the linked
Unified Medical Language System (UMLS)

1

[165] Discretized measurements of variables at a point
in time

1

[168] EHR Features 1
[169] Heart rate, blood pressure and oxygen satura-

tion
1

[169] Eye-opening and verbal response 1
[173] Smoking 1
[173] Echocardiography 1
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Table 3.9: Edge allocation types in the graphs used in the selected papers. EHR=electronic
health record.

Papers Edge Allocation #

[142, 146, 148, 162, 164, 170] Time difference/elapsed between each node 6
[118, 147, 148, 163] Temporal proximity weighting 4
[139, 140] Number of times two diseases occurred simulta-

neously
2

[159, 168] The similarity between 2 nodes 2
[146, 170] Link to demographics (as the first node) 2
[139, 165] Sequential directionality/ ordering 2
[139, 140] Number of times two diseases occurred sequen-

tially (one directly after another)
2

[169, 172] Fully connected initially and updated by atten-
tion

2

[68, 145] Association weighting between nodes 2
[173] Relationship between patient and medical node

e.g. edge exists between patient and smoke if
the patient smokes

1

[158] Weights higher if two medical events are more
often and closer

1

[161] Risk of disease 1
[162] Different interactions, e.g. code to timestep 1
[166] 1) Intradocument interaction level. 2) Path

lengths between entity nodes. 3) String simi-
larities based on word overlap. 4) Cosine simi-
larities

1

[171] The conditional probability of a connection be-
tween 2 nodes

1

[167] Medical relationship between nodes 1
[165] Labelling of change of quantifiable variable (up,

down or no change)
1

[160] Linking of nodes/EHR codes happening on the
same visit

1

[141] Testing or diagnosis of a patient undertaken 1
[174] Events happening on the same time step are

linked via edge and weighting is value from lab-
oratory test, or infusion drug. If patient took a
prescription the edge weight is 1 otherwise it is
0 to the prescription node

1
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Table 3.10: Performance metrics used within studies.

Metrics used N papers References

Area under the receiver operator curve
(AUROC)

19 [68, 118, 141, 142, 145, 146,
148, 159, 161, 164, 165, 166,
167, 170, 173, 174, 184, 185]

Area under the precision recall curve
(AUPRC)

15 [68, 118, 141, 145, 148, 159,
161, 162, 166, 170, 172, 173,
174, 184, 185]

Accuracy 9 [142, 146, 158, 163, 164, 168,
170]

F1 7 [148, 158, 159, 163, 165, 166,
168]

Recall 7 [148, 158, 159, 163, 165, 166,
168]

Precision 6 [158, 162, 163, 165, 168, 172]
Specificity 2 [165, 168]
Negative predictive value 1 [165]
Coverage (num predicted target diseases/
num total target diseases)

1 [158]

True positive, true negative, false positive,
false negative

1 [140]

Minimum of precision and sensitivity 1 [184]
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Table 3.11: Outcomes predicted within the 27 studies from 43 models. CHF=chronic health
failure, CKD=chronic kidney disease, COPD=chronic obstructive pulmonary disease.

References Outcome Predicted N Papers

[145, 159, 162, 165,
166, 167, 168, 172,
185]

Hospital readmission (30-day after discharge, or
during hospital stay (n=1))

9

[141, 145, 162, 167,
168, 169, 172, 174,
185]

Mortality 9

[142, 146, 164, 170] Success or failure of a treatment or drug pre-
scription

4

[158, 185] Top k diseases 3
[118, 173, 185] Heart failure 3
[139, 140] Risk of diabetes 2
[174, 185] Sepsis 2
[158] Risk prediction of pairs of: CHF, Diabetes,

CKD and COPD
1

[148] COPD 1
[148] Chronic heart disease 1
[68] Type of cancer 1
[163] Cause of death 1
[163] High-risk patient classification 1
[167] Acute upper respiratory tract infection 1
[118] Prediction of heart failure related hospitaliza-

tion
1

[171] Pregnancy 1
[172] Alzheimer’s disease prediction 1
[161] Probability of an event happening at a specific

time (incl. heart failure, urinary system issues,
sepsis, benign neoplasm, dehydration, heart dis-
ease, intestine disease, biliary disorders)

1

[145] Masked diagnosis code (unspecified disease) 1
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Table 3.12: Mortality prediction (binary) model performance. AUROC=area under the re-
ceiver operator curve, AUPRC=area under the precision recall curve, CNN=convolutional neu-
ral network, GRU=gated-recurrent unit, RNN=recurrent neural network, SVM=support vector
machine, GCN=gated convolutional network, GNN=graph neural network, HF=heart failure,
CV=Cross-fold Validation.

PaperModels used Dataset Classes/ Out-
comes

AUROC
(%)

AUPRC
(%)

Validation Type

[141] CNN MIMIC-III In-hospital
Mortality

80.00 ± 1 60.01 ± 1 10-fold CV

[160] Co-occurrence-
aware self-
attention mecha-
nism, Time-aware
GRU (T-GRU)

MIMIC-III Mortality 82.24 81.34 Train/ val/ test
0.75:0.1:0.15 5-
fold CV

[145] Graph Convolu-
tional Transformer
(GCT)

eICU Mortality 91.20 ±
0.48

59.92 ±
2.23

Train/val/test
8:1:1 split five
times

[162] Gaussian embed-
ding, RNN

- Mortality for:
Heart failure
Chronic liver
disease

HF 72.05
Chronic
liver dis-
ease 74.15

- Train/val/test
80:15:5

[167] Transformer eICU Mortality 91.59 - Train/val/test
8:1:1

[168] L1-SVMs, Octag-
onal Shrinkage
and Clustering
Algorithm for
Regression

Australian
hospital

1-year Mortal-
ity of cancer
patients

72.90 - Randomly di-
vided into train
and test sets
100 times

[169] GRUs, attention,
GCNs

MIMIC-III Mortality in
the next 24
hours

90.06 34.84 Train/val/test
70:15:15

[172] GNN, attention MIMIC-III Mortality 24
hours after
admission

- 71.02 Train/val/test
8:1:1

[174] Gated GNN MIMIC-IV Mortality
caused by HF

75.22 ±
1.52

47.00 ±
2.13

5-fold CV

[174] Gated GNN eICU Mortality
caused by HF

89.30 ±
0.20

60.81 ±
0.76

5-fold CV
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Table 3.13: Readmission prediction (binary) models with performance metrics. CV = Cross-fold
validation.

PaperModels used Dataset Classes/ Out-
comes

AUROC
(%)

AUPRC
(%)

Validation Type

[159] GNN, BERT MIMIC-III 30-day hospi-
tal readmis-
sion

85.8 ± 1.20 84.7 ± 1.50 5-fold CV

[160] Co-occurrence-
aware self-
attention mecha-
nism, T-GRU

MIMIC-III Readmission 74.03 72.78 Train/val/test
0.75:0.1:0.15

[145] GCT eICU Readmission
during the
same hospital
stay

75.02 ±
1.14

52.44 ±
1.42

Train/val/test
8:1:1 split five
times

[165] Non-negative Ma-
trix Factorization

MIMIC-II 30-day ICU
readmission
risk

66.10 - 5-fold CV

[166] GCN, attention,
Bi-Directional
Long Short-Term
Memory (BI-
LSTM)

MIMIC-III 30-day ICU
readmission
risk

82.50 63.20 Train/val/test
8:1:1

[167] Transformer eICU Readmission
during a
hospital stay

76.14 - Train/val/test
8:1:1

[168] L1-SVMs, Octog-
onal Shrinkage
and Clustering
Algorithm for
Regression

Australian
hospital

30-day hospi-
tal readmis-
sion Acute
Myocardial
Infarction

63.70 - Randomly di-
vided into train
and test sets
100 times

[118] SVM - Risk of HF-
related hos-
pitalization/
readmission

73.00 67.00 Random train-
ing and testing
sets

[172] GNN, attention eICU Readmission
prediction at
discharge

- 39.86 Train/val/test
8:1:1
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Table 3.14: Prediction performance of models that predict health outcomes other than mortality or readmission (1/2). CV=Cross-fold validation.

Ref Models used Dataset Binary/
Multi-
class

Classes/ Outcomes AUROC (%) AUPRC (%) Validation
Type

[68] Random Forest,
Bag of Features and
Node2Vec

Mayo Clinic
and Founda-
tion Medicine
Inc

Multi-
class

Cancer: Colon, Pancreas,
Ovary, Prostate, Connective
and other soft tissue, Thyroid
gland, Breast, Liver, Lung

96.56 - 10-fold CV

[142] GCN, SVM Taiwanese
NHIRD

Binary Treatment success for: Hy-
pertension (HTN), Hyperlip-
idaemia, DM

HTN 73.71, Hy-
perlipidaemia
74.28, DM 66.02

- Train/ val/
test 80:10:10

[146] K-SVM (kernel func-
tion)

NHIRD Binary Treatment success for: Pneu-
monia, Acute Otitis Media
(AoM), Acute cystitis, Uri-
nary Tract Infection (UTI)

Pneumonia
69.69, AoM
68.60, Acute
cystitis 72.00,
UTI 74.02

- Train/ val/
test 80:10:10.
Fine-tuned via
10-fold CV

[160] Co-occurrence-aware
self-attention mecha-
nism, T-GRU

MIMIC-III Binary Disease prediction: Sepsis,
HF

Sepsis 84.33, HF
76.98

Sepsis 82.33,
HF 73.13

5-fold CV

[161] Deep diffusion pro-
cess, LSTM

National reg-
istry data

Multi-
class

Colorectal cancer ICD-10
codes

I50 74±1.14, N39
64±0.85, A41
72±0.91, D12
69±0.53, E86
72±2.25, I25
79±0.81, K63
68±0.61, K83
69±2.17

- -

[161] Deep diffusion pro-
cess, LSTM

National reg-
istry data

Multi-
class

Stomach cancer ICD-10 codes I50 73±0.89, N39
65±0.63, A41
69±0.65, D12
68±0.65, E86
65±1.27, I25
78±0.49, K63
65±0.77, K83
69±1.26

- -
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Table 3.15: Prediction performance of models that predict health outcomes other than mortality or readmission (2/2).

Ref Models used Dataset Binary/
Multi-
class

Classes/ Outcomes AUROC (%) AUPRC (%) Validation
Type

[148] SVM Not specified Binary Prediction of disease within
180 days: COPD, CHD

COPD 76 ± 5,
CHD 71 ± 3

- Train/test
90:10 10-fold
CV

[164] Graph kernels NHIRD Binary Treatment success for: Pneu-
monia, AoM, Acute cystitis,
UTI

Pneumonia 70.56
AoM 69.12 Acute
cystitis 72.01 UTI
72.49

- Train/ val/
test 80:10:10
10-fold CV

[167] Transformer eICU Binary Prediction of acute Upper
Respiratory Tract Infection
(URTI) in paediatric patients

93.34 - Train/ val/
test 8:1:1

[118] SVM Not specified Binary HF prediction (180-day win-
dow)

72 65 Random train
and test sets

[170] Graph-kernel, SVM,
attention, similarity
(Euclidean distance)

NHIRD Binary Treatment success of: UTI,
AoM, Pneumonia, Acute cys-
titis, HTN, Hyperlipidaemia,
Diabetes

UTI 62.43±2.84,
AoM 62.45±2.00,
Pneumonia
60.13±2.79,
Acute cystitis
61.43±1.89, HTN
73.15±1.26, Hy-
perlipidaemia
74.78±1.93, Dia-
betes 70.85±1.51

- Train/ test
split with an
80:20 ratio

[172] GNN, attention Inpatient
and outpa-
tient EHR
data from
NYU Langone
Health

Binary Alzheimer’s disease predic-
tion 12 to 24 months

- 45.80 Train/ val/
test 8:1:1

[174] Gated GNN MIMIC-IV Binary Sepsis 75.22± 1.52 47±2.13 5-fold CV
[173] Hetereogenenous

graph link prediction
CardioNet Binary Cardiovascular disease 72 15 Train/ val

split not
specified
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Publication Demographics

Figure 3.7 shows the locations of the first author from each paper that used graphs for individual

patient outcome prediction. The USA and China appear to be doing the most work in this area.

Out of the 27 papers, 17 were accepted in conferences (5 computer science conferences, 12 com-

puter science + medicine conferences) and 10 were accepted by journals (6 computer science

journals, 4 computer science + medicine journals). This highlights the growing intersection of

computer science and medicine. This trend underscores the increasing use of computational

methods, such as AI and ML, in healthcare for diagnostics, predictive modelling, and data

analysis. It also reflects the recognition of medical applications in technology forums, suggest-

ing that interdisciplinary research is advancing both fields. Overall, this integration is driving

innovation in medical research and improving healthcare solutions through collaborative efforts

between technologists and medical professionals. Whilst these models are primary methodologi-

cal studies and have strong technical details, further encouraging groundbreaking AI technology

papers into medical journals may help transition models into clinical practice by introducing

models to clinicians at earlier stages to gain user feedback.

3.6 Limitations

Specific search terms were required to capture the relevant literature. Due to the limited

functionality of Google Scholar, this literature database was unusable and therefore may not

have fully captured potential relevant literature.

While the initial aim was to examine how graph representations of EHRs have been used,

only one applicable paper with low RoB was identified, and as such this chapter turned to

focus on methodological bias. Current methods leading to high RoB were highlighted with an

aim to promote bias reduction in future research in this area by more careful consideration of

assumptions; a must if any of these methods are to be clinically implemented.

The PROBAST tool, published in 2019, is the currently accepted guideline for assessing RoB

within prediction model studies [151]. Different approaches and terminology within the field of

ML mean that current PROBAST reporting may not fully critically appraise ML techniques,

particularly throughout the analysis domain. There is ongoing work to address this potential

pitfall, with new TRIPOD-AI and PROBAST-AI reporting guidelines anticipated, with a focus
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on ML methods [187]. Given that the RoB findings in this chapter show that almost all papers

were deemed high RoB within the analysis domain, it would be expected that these papers

would still have high RoB under new reporting guidelines.

Data pre-processing and parameter tuning heterogeneity meant quantified comparison of graph-

ical prediction models was not effective to recommend best approaches. Instead a qualitative

summary of the papers is provided to enable researchers to make their own decisions and use

these suggestions to encourage improved reporting.

3.7 Future Directions

The papers in this review focus on demonstrating the utility of graph representation in improving

predictive performance rather than clinical application. This is reflected by the RoB assessment

which demonstrates that the literature in this area is making assumptions that would preclude

its use in the clinical environment. Many of these papers failed to consider the clinical context

of their prediction. These include using predictive variables that form part of the diagnostic

criteria, the poor definition of clinical outcomes or using variables that occur only in the presence

of the predicted outcome. Reporting conduct will only improve if authors and the bodies

accepting these papers follow TRIPOD and PRISMA reporting guidelines [149, 186].

It was expected that such false assumptions would be addressed by having input from medical

experts who understand the clinical context. Only 9 (33.3%) papers had clinical input in the

paper, despite the papers having clinical predictive tasks. All the papers with a clinical author

had a high RoB, suggesting they did not have the expertise to understand the RoB or did

not have sufficient influence during the study design process. At this intersectional space of the

Figure 3.7: Heatmap showing institution location of first author. Created using Plotly.js v2.12.1
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application of computer science techniques within the domain of healthcare, better integration of

medical expertise into predominately computer science teams may go some way in incorporating

the clinical context and improving RoB.

None of these papers have formally explored how interpretable their analysis would be from

the clinical end-user perspective and how this might change/ affect clinical decision-making.

Further research into formally defining the interpretability of predictive models and their effect

on actionable change would be useful for graph representation and wider adoption of ML/AI

within healthcare.

The ultimate goal of developing AI solutions within healthcare is to improve clinical outcomes.

As with any ML modelling technique, prediction models must demonstrate robustness in other

settings through external validation but must also be understood in the clinical context. The

papers included in this review focus on the predictive aspect, which allows for earlier intervention

and potentially better outcomes in some contexts. A larger question needs to be answered

regarding the effect of improved predictions on clinical pathways and outcomes.

From this review there are three key takeaways. 1) Researchers should consider the clinical

context carefully to ensure appropriate timing, code groupings, and a reasonable relationship

between the outcome and predictors for clinical utility. 2) A lot of clinical research is not

currently fit for clinical use due to researchers not following TRIPOD and PROBAST guidelines.

The focus needs to shift from solely enhancing predictive modelling performance to improving

the clinical utility of these models. 3) Graph representations have only been used for a limited

number of purposes, there is further scope to expand graph models to other tasks. Graphs

infrequently depict individual-level patient representation, and when employed, predictions are

confined to just six outcomes (mortality, readmission, treatment success, sepsis, Cardiovascular

Disease (CVD), Alzheimer’s), but graph usage could be extended to a wider range of health

outcome prediction tasks such as utility or cancer recurrence.

The findings from reviewing these studies determine that methodological quality is poor, and

a well-crafted health prediction paper should have the following characteristics: It should be

guided by the TRIPOD guidelines, ensuring transparency and reliability, minimising bias as-

sessed through PROBAST. It begins by defining the research question and specifying the health

outcome. The methodology should outline the predictors utilised within the model and the in-

clusion criteria, emphasising a representative sample. Rigorous internal validation by employing
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techniques like cross-fold validation and bootstrapping, is essential. The use of external valida-

tion gauges generalisability, and it is acknowledged that this may extend beyond a single paper,

necessitating follow-up studies by external teams. Model development relies on robust statisti-

cal methods, accounting for predictors and their interactions, and addresses missing data and

biases. Transparent reporting, including calibration curves and confidence intervals, enhances

result interpretability. Recent papers discuss and demonstrate some of the methods that should

be used when creating models for healthcare applications [188, 189, 190].

3.8 Conclusion

This review found 27 papers which used graph representation of EHRs for health outcome

or prognosis prediction. A PROBAST analysis determined that only three papers had a low

RoB. Only one paper had a low RoB that was applicable to this chapter’s research question

(4%). This chapter presents a narrative review of how EHR data can be represented as graphs

by discussing characteristics of the methodologies, including model types, outcome prediction

types, and model performances.

Models ranged from traditional ML to neural network-based models. Researchers are mainly

using 4 methods (GCNs, GNNs, Graph Kernels, and Bayesian Networks) to incorporate graphs

into their healthcare prediction models.

The most predicted health outcomes were mortality, hospital readmission, and treatment suc-

cess. Model performances ranged across outcomes, mortality prediction (AUROC: 72.1 - 91.6;

AUPRC: 34.8 - 81.3) and readmission prediction (AUROC: 63.7 - 85.8; AUPRC 39.86 - 84.7).

These graph approaches outperform baseline models that use non-graph ML, AI, and statistical

methods. However this may potentially be due to publication bias. Diagnosis and EHR codes

are most frequently being used for graph nodes, whilst edges are being used to represent time

and simultaneous disease occurrence. Out of the 3 low RoB models, the GNN with BERT model

had the best performance for hospital readmission prediction [159]. In the high RoB papers,

the TCoN model (GNN with attention) had the best AUPRC performance.

Graph-based representations using EHRs, for individual health outcomes and diagnoses is an

area ripe for exploration but require further knowledge building before results are applied clin-

ically. Graph representations appear to be useful in dealing with the sparsity of EHRs, by
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retaining structure and temporality. The simplicity of these graphs is also well suited for

ML models for predicting health outcomes. Whilst mindful of publication bias, the technique

of graph representation appears to improve predictive performance compared to baseline ML

methods in multiple fields of medicine, suggesting the potential for universal application.

The high RoB suggests that authors do not use or are unaware of TRIPOD and PRISMA

reporting guidelines. This may change with the publication of TRIPOD-AI and PROBAST-AI

[187], which are specific to AI/ ML methods and may become a requirement for publication to

conferences/ journals in this field. These efforts are not insurmountable with a proper study

design that incorporates clinical context, which will lead to suitable models within the clinical

setting.

In conclusion, the systematic literature review highlights several significant gaps in the current

research landscape, which this thesis aims to address. First, few studies employ UK-based

datasets, with the NHS presenting unique structural and procedural differences from health-

care systems in other countries, suggesting that findings from international datasets may lack

applicability within the UK context. Second, limited research utilises graph-based methods or

patient-specific graph representations derived from EHRs to predict health outcomes, despite

the potential of these methods for capturing complex relationships in patient data. Third, pri-

mary care data, a crucial component given its role as the first point of contact in patient care, is

absent in the datasets used in the reviewed studies, raising concerns about the comprehensive-

ness of existing models. Additionally, no studies provide insights into resource demands, such

as the time required for model training and inference, leaving questions about the scalability of

these approaches in real-world clinical settings. Lastly, none of the reviewed papers incorporate

a clinical or end-user perspective on model interpretability, which is essential for ensuring that

predictive models are useful, understandable, and trusted by healthcare providers. Addressing

these gaps, the following chapters of this thesis will explore these under-researched areas, aim-

ing to advance the development and application of predictive healthcare models that are both

practically implementable and clinically relevant.
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Chapter 4

TG-CNN Methodology

4.1 Introduction

As previous chapters have demonstrated, temporal medical data is currently underutilised for

patient prediction despite patient record data continuing to accrue rapidly and pressures on

health services requiring relief. In this chapter, the design and methodology of the TG-CNN

model, which is able to take events with irregular time intervals, is introduced and discussed.

Due to not yet having access to a medical dataset at the time of writing this chapter, an open

access MOOC dropout dataset was used. Whilst this dataset was not health-related it served as

a useful dataset to initially construct the model around and enabled the exploration of student

dropout prediction using MOOC temporal clickstream data.

MOOCs allow people to study and learn a wide range of material wherever and whenever they

choose [191]. The COVID-19 pandemic caused a significant rise in the number of online courses

available; yet MOOC retention is lower and student dropout is higher than in-person courses

[185, 192]. The MOOC dataset used comprises of a temporal sequence of student clickstream ac-

tions and subsequent dropout information. Predicting dropout based on clickstream data could

enable identification of behaviour patterns prior to dropout, to target interventions designed to

encourage course completion [193, 194].

Graphs are useful for capturing object interactions, for example where nodes may represent

people and edges depict messages from one person to another. Convolutions applied over graph

structures have been shown to learn effectively in various tasks [195, 196]. The model presented
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in this chapter uses temporal graphs, a three-dimensional CNN, and LSTM units to analyse

clickstream data (user actions) by integrating the elapsed time between events to enhance the

predictive accuracy for student dropout. Convolutions within CNNs slide a filter over input

data, such as an image, to extract features like edges, textures, or patterns. The filter multiplies

its weights with the input values it overlaps, producing a feature map that highlights specific

characteristics. This process helps the network detect spatial hierarchies and patterns while

reducing the input’s size and complexity. The methodology automatically extracts informative

features from patterns within the ACT MOOC data, utilising time between clicks to gain

insights. The model’s effectiveness is assessed against baseline models and recent methods in

the literature.

In later chapters of this thesis the application to medical data and the addition of explainability

of these models for clinical interpretation is discussed. With the long-term aim of producing a

clinical decision tool that can promote trust in the model, aid discussion between patient and

clinician, provide personalised medicine and protect patient safety.

4.2 Methodology Outline

The model described in this chapter is able to handle data that is irregularly sampled in time,

which RNNss and LSTMs alone are unable to achieve. This model automatically generates

informative data features, evaluating events within their context to alleviate reporting bias,

whilst incorporating the elapsed time between events to improve predictive power.

4.2.1 Dataset

The MOOC dataset1 is composed of a temporal sequence of timestamped student actions and

subsequent dropout information. The MOOC dataset consists of 7,047 users, with a dropout

rate of 57.7%. There are 97 potential clickstream actions a student can take.

Time was given in seconds from the first interaction a user makes with the online course. In

total over 411,749 interactions were captured, with the most actions taken by one user totalling

505.

The most commonly reported clickstream action was action 8, occurring 19,474 times, whilst

the action 93 was the least common action appearing 87 times.

1Stanford Network Analysis Project - https://snap.stanford.edu/data/act-mooc.html
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The average elapsed time between clicks was 816,744 seconds (9.46 days), with a minimum of 0

seconds, a median of 644,820 (7.46 days) seconds and a maximum of 2,517,315 seconds (29.14

days). 0 seconds was the most common elapsed time between clicks.

4.2.2 Data Preparation and Modelling Approach

The approach taken for this prediction task was to turn a sequence of clickstream events into

a temporal multigraph and formulate dropout prediction as a binary graph classification task,

where each student has an individual temporal graph to be classified.

In particular, the n = 97 possible actions formed the nodes of this graph and the temporal edges

captured the elapsed time between actions. This can be stored in a 3D tensor G(i, j, k) = tk

where i, j ∈ {1, . . . , n} are nodes in the graph, and tk is the elapsed time for the kth edge in

the temporal graph. The elapsed time is the time between the previous click to the next click

action, given in seconds.

If a student had less than two clicks their data was excluded from modelling, as this method

requires at least two events at two separate times to form an edge of a graph.

In clickstream data, no single action is crucial for effective modelling, so missing data is typically

treated as irrelevant rather than as a problem to address. The data is inherently redundant,

as users often perform similar actions. This redundancy makes it impossible to determine ex-

actly where a missing click occurred in a sequence, making accurate inference of missing data

impractical. Attempting to impute missing actions could introduce inaccuracies, as it would re-

quire assumptions about the sequence that may not align with real user behaviour. Attempting

imputation, either through random insertion or pattern-based inference, may degrade model

performance by introducing noise. The TG-CNN model, effectively handles sequence patterns

as they are, implicitly adjusting to the data’s natural gaps without requiring explicit imputa-

tion. This approach avoids the potential pitfalls of adding artificial data points, allowing the

model to capture authentic user behaviour patterns more reliably.

For this particular task the most recent 100 actions of each user were used to reduce compu-

tational burden. Tensors were front-padded where sequences contained less than 100 clicks to

ensure the most recent actions were always at the end of the 3-tensor. With 97 potential click

actions this means that each sample 3-tensor is size 97×97×100. An example of how a sequence

of 5 events with 4 possible actions would be converted to a 3-tensor is shown in Figure 4.1.
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Figure 4.1: Graph network visualisation showing connections between actions completed by
a user in both graph and tensor form. This example has only 4 possible actions, so is much
smaller than the 97× 97× 100 tensor that was used in this project.

It is assumed that events that happen with less time elapsed between them are more likely to

be related to each other, for this reason a modified version of the elapsed time is stored which

measures the proximity of two events occurring. The graph is stored with the transformation

G(i, j, k) = exp(−γtk) where γ is a trainable model parameter and tk is the elapsed time. If two

events happened simultaneously then G(i, j, k) = 1, whereas if there was a large gap in time

between two events then G(i, j, k) would score closer to 0 (Figure 4.2). Unmodified elements

which show no interaction between vertex pairs at a set time were set to 0 in the 3-tensor.

Figure 4.2: Scaling of the time (exp(−γt)) when γ = 1 versus when γ = 4.819.

Incorporating γ in the model has two main benefits: 1) Actions taken in quick succession or

simultaneously have a value close to 1 and actions with a greater temporal gap are closer to 0.

Events that are not directly adjacent in sequence are set to 0. This allows the temporal graph

to be stored as a sparse 3-tensor, saving significant memory in the representation of the data.

2) Elapsed time can be rescaled to avoid extreme values in the neural network and potential
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under/overflow when using half-precision arithmetic.

In particular, suppose that γ = 0.01 and event 12 is connected to event 34 via a temporal edge

at time point 21 with an elapsed time of 14 days. The value at (12, 34, 21) of the 3-tensor

(referred to as G) would be set to exp(−0.01×14) ≈ 0.87. See Figure 4.3 for an example graph.

Figure 4.3: Graph network visualisation showing connections between actions completed by a
user in both graph and tensor form with exponential scaling and γ = 0.01 function included.

A neural network architecture was created which applies convolutions over the time axis of the

tensor, to discover subsets of the data which are similar to the patterns learnt.

In this project’s preliminary work, a standard layer from the PyTorch package (Conv3d) was

used to perform 3D convolutions across the temporal (i) axis of the dense 3-tensor using 3D

filters (see Code 4.1 for details on the code). This is similar to standard convolutions used in

CNNs for image processing.

Code Listing 4.1: TG-CNN Model created using PyTorch package.

class Dense3DConv(nn.Module):

def __init__(self):

super(Dense3DConv , self).__init__ ()

self.gamma = nn.Parameter(torch.rand(1, device=device))

self.conv3d = nn.Conv3d(in_chans , out_chans , kernel_size=(

num_time_steps ,97 ,97), stride=1

, bias=False)

self.batchnorm = nn.BatchNorm3d(out_chans)

self.lstm = nn.LSTM(input_size = out_chans , hidden_size= lstm_h ,

batch_first = True)

self.flat = nn.Flatten ()
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self.fc1 = nn.Linear(conv_D_out * lstm_h , linear_size)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(linear_size , 1)

self.sig = nn.Sigmoid ()

self.dropout = nn.Dropout(p=drop_val)

def forward(self , x):

x = x.to(device)

gamma = (( gamma_max-gamma_min)*self.sig(self.gamma) + gamma_min)

scaled_matrix = torch.where(x==0, x, torch.exp(-gamma*x))

out = self.conv3d(scaled_matrix)

out = self.batchnorm(out)

out = torch.squeeze(out , 4)

out = torch.squeeze(out , 3)

out = self.relu(out)

out , cell_state = self.lstm(torch.transpose(out , 1, 2))

out = self.flat(out)

out = self.dropout(out)

out = self.fc1(out)

out = self.relu(out)

out = self.dropout(out)

out = self.fc2(out)

return out

As an example, consider that a maximum of nt = 100 time steps were used with 1,000 potential

events, making the 3-tensor input size equal to 1000 × 1000 × 100. A filter F (with a learnt

pattern) with shape of 1000×1000×3, means that it convolves over 3 time points simultaneously

with one degree of freedom (only moves in one axis). This filter would slide over the time points

as shown in Algorithm 1. The output provided after these convolutions depends on the similarity

between the section (subgraph) of events and the pattern represented by the filter F .

Algorithm 1: Temporal convolution F being applied to the sparse 3-tensor G representing
the temporal graph of a patient EHR.

Data: G of size 1000× 1000× 100 and F of size 1000× 1000× 3.
Result: Vector v of length 98.
for t = 1, . . . , 98 do

v(t) =
∑

s=0,...,2

∑
i,j G(i, j, t+ s)× F (i, j, 1 + s);

end
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In converting graphs to tensors and then converting these to sparse tensors, typical CNNs

from PyTorch do not work. As the standard Conv3d layer from the PyTorch package could

only perform 3D convolutions on dense 3D matrices, the graphs were loaded into the model

as sparse tensors and then each batch was converted into dense tensors before feeding into the

Conv3d layer to reduce memory usage. This reduces the RAM required; however, this could

be improved upon further to improve training speed. This approach helps to reduce memory

usage by only making the data dense when needed. However, optimising this workflow further

could potentially improve training speed by reducing the frequency of dense conversions or by

exploring alternative sparse-compatible operations.

To speed up modelling training and allow larger sample sizes to be used, the model was converted

using the Tensorflow package instead. Tensorflow (version 2.8.0) was used to create a custom

CNN Keras layer which utilises sparse linear algebra. The temporal graph representations

can be efficiently stored as sparse 3-tensors, where the elapsed time are the values and the

clickstream actions are the indices. During model training these sparse 3-tensors are batched

together forming 4-tensors.

Here the steps used to perform the sparse 3D convolutional function over a 4-tensor are described

with dummy examples:

In this example, graph 1 (G1) (3 × 3 × 3) and graph 2 (G2) (3 × 3 × 3) are given as tensors:

G1

0

0

00

5

00

0

0

0

0

0

0

8

0

0

0

7

0
0

0

0
0

0

0
0

0

G2

0

9

00

0

00

0

0

0

0

0

0

6

0

0

0

1

0
9

0

0
0

0

0
0

0

Which can also be represented as sparse tensors:
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G1 G2

Values: [5, 8, 7] Values: [9, 6, 1]

Indices: [[1, 1, 0], [1, 2, 1], [2, 2, 2]] Indices: [[0, 1, 0], [1, 2, 1], [2, 2, 2]]

Together these two matrices can be ‘batched’ together by adding an extra dimension on axis

0 to produce a 4-tensor of shape [batch size, num nodes, num nodes, timesteps] which in this

case would be [2, 3, 3, 3].

Two filters are used in the example depicted below (filter 1 (F1) and filter 2 (F2)).

F1

0

1

01

0

10

1

0

0

1

1

0

0

1

0
1

0

1
0

1

F2

1

0

00

1

00

0

1

0

1

0

0

1

0

1
0

0

0
0

1

F1 and F2 are filters of size 2 as they cover two timesteps. The num nodes for the filters

will always be the same as the num nodes of the input graphs as slices are only taken in the

temporal direction.

First, slices of the graphs are taken, slicing to the same size as the filters. For example, slice 1 of

graph 1 (referred to asG1s1 from now on) would be as follows with shape [batch size, num nodes,

num nodes, filter size] = [2, 3, 3, 2]:
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G1s1

0

0

00

5

00

0

0

0

0

0

8

0

0

0
0

0

0
0

0

Note that in this example, the filter would only slide over the graph twice as the number of

slices corresponds to timesteps− filter size+ stride = 3− 2 + 1 = 2.

Next, the graph slices are each flattened into a row vector. Multiple flattened graphs can

be batched together by stacking them to create 2D matrices. Let Gi,j be slice j of graph i,

then the flattened graph matrix is G = [G1,1, G1,2, G2,1, G2,2] and the flattened filter matrix is

F = [F1, F2].

Flattening the slices enable matrix multiplication to be performed more efficiently. The function

tf.sparse.spare dense matmul(graph, filter) requires the graph to be sparse and the filter

to be dense. Without tf.sparse.spare dense matmul(graph, filter) element-wise multi-

plication and then summation would need to be carried out on the tensors.

Continuing with the example, the flattened dense graph slices and filters would be vectors:

G1s1 = ⟨0 0 0 0 0 0 0 0 5 0 0 8 0 0 0 0 0 0⟩

G1s2 = ⟨0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 7⟩

G2s1 = ⟨0 0 9 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0⟩

G2s2 = ⟨0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 1⟩

F1 = ⟨0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1⟩T

F2 = ⟨1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0⟩T

Performing tf.sparse.sparse dense matmul(graph, filter) iteratively with these graph

slices and filters (as shown in Figure 4.4) would result in the following output tensor with

83



4.2. Methodology Outline Chapter 4. TG-CNN Methodology

shape [batch size, num filters, 1, timesteps− filter size+ 1] = [2, 2, 1, 2]:

Graph 1 Output

0
15

s=1
s=2

15
0

f=
1

f=
2

0

15

5
0

Graph 2 Output

9

1
s=1

s=2

1

0

f=
1

f=
2

9
1

0
0

The Tensorflow code for the custom 3D CNN layer, with one degree of freedom, can be seen in

Code Listing 4.2 alongside the summary Algorithm 2.
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Figure 4.4: Example of how the output from the 3D CNN layer is calculated using element wise
multiplication and summation.
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Algorithm 2: 3D convolution applied to sparse graphs across multiple time steps.

Data: input graphs of size [batch size, num nodes, num nodes, time steps], filter w, and
filter size.

Result: Tensor g of size [batch size, num filters, 1, 1, output time steps].
Initialize g with the first slice of input graphs;
Reshape initial slice to a column vector and perform sparse-dense multiplication with w;
Expand dimensions of g to make it 4D;
for k = 1, . . . , time steps− filter size+ 1 do

Extract slice of input graphs from k to k + filter size;
Reshape slice and perform sparse-dense multiplication with w;
Expand dimensions and concatenate result to g;

end
return g;

Code Listing 4.2: Extract of Tensorflow (Python) code to perform 3D convolutions over multiple

graphs in parallel.

k = tf.constant(1, dtype=tf.int64)

# Get initial slice from all graphs

# ‘input_graphs ‘ is a 4D tensor of sparse graphs

# input shape = [batch_size , num_nodes , num_nodes , timesteps]

# Reshaping so the tensor becomes a column vector

g = tf.sparse.reshape(

tf.sparse.slice(input_graphs ,

[0, 0, 0, 0], # start

[input_graphs.dense_shape[0], # size

self.num_nodes , self.num_nodes , self.filter_size]),

[-1,1]) # to column vector

# Reshaping to have shape = [batch_size , num_nodes*num_nodes*filter_size]

g = tf.sparse.reshape(g, [input_graphs.dense_shape[0], self.num_nodes*self.

num_nodes*self.filter_size])

# Matrix multiplication of the first slice of the graph (sparse) and

# the weights (dense) giving shape [batch_size , num_filters]

g = tf.sparse.sparse_dense_matmul(g, self.w)

# Change g from 2D tensor to 4D tensor by adding 2 empty dimensions to the end

g = tf.expand_dims(tf.expand_dims(g, 2), 2)

# Loop slides a ’window ’ of the filter_size in the temporal axis to get slices
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# Concatenate builds the output onto the initial slice in the ’3rd’ dim

def in_loop(k, g):

g = tf.concat([g, tf.expand_dims(

tf.expand_dims(

tf.sparse.sparse_dense_matmul(

tf.sparse.reshape(

tf.sparse.reshape(

tf.sparse.slice(input_graphs , [0, 0, 0, k],

[input_graphs.dense_shape[0],

self.num_nodes , self.num_nodes , self.filter_size]),

[-1,1]),

[input_graphs.dense_shape[0],

self.num_nodes*self.num_nodes*self.filter_size]),

self.w),2),2)], 3)

return k + 1, g # k = counter

# while_loop allows in_loop to be performed in parallel

_, g = tf.while_loop(lambda k, g: k < self.time_steps-self.filter_size+1,

in_loop , [k, g], shape_invariants=[k.get_shape (),

tf.TensorShape([None , None , None , None])],

parallel_iterations = self.parallel_iter)

return g

A filter should ideally approximate a subgraph, so that a students clickstream is close to a

given filter if it is expected that their actions will follow a common path. This is enforced with

regularisation. ℓ1 (LASSO) regularisation is a shrinkage method using Manhattan distance to

reduce all the weights, this enables feature selection by sending the less important weights closer

or to zero. During network training ℓ1 regularisation is applied to the filter to prevent overfitting

and encourage sparsity. As ℓ1 regularisation is calculated by taking the sum of absolute value

of weights, this method is robust to outliers. This regularisation was applied by summing the

loss and the ℓ1 norm: loss = loss+ λ
∑n

i=0 |wi| where n is the number of filters in the dataset,

wi represents each element for the ith filter and λ is the ℓ1 regularisation strength.

4.2.3 Model Architecture

LSTMs assume a constant elapsed time between sequence elements, an issue which has received

some attention in the literature [192, 197]. The TG-CNN approach offers an alternative for-
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mulation of this problem (including variable time dilation), which can model more complex

temporal links.

The initial TG-CNN model is shown in Figure 4.5. The 3-tensor input of size 97× 97× 100 is

fed into the 3D CNN layer, which extracts information on the sequence of actions and scaled

elapsed times between actions. The outcome from the 3D CNN layer is flattened and is then

passed through a batch normalisation function which speeds up convergence, followed by a

ReLU activation function, before proceeding through the LSTM. The output of the LSTM has

dropout applied, passing the hidden features into a Fully Connected Layer (FCL). Dropout and

a ReLU are then used again before a final FCL and final output layer. A sigmoid function is

then used to map the outcome between 0 and 1 for binary classification: σ(x) = 1
1+e−x . Binary

cross entropy logits loss is used to measure the difference between the predicted probability and

the true probability. Adam optimisation with L2 regularization was used to smooth oscillations

during training. This implementation also utilises a learning rate scheduler, multiplying the

learning rate by 0.9 with an exponential decay each 10,000 steps. Early stopping was used with

a patience of 50, which checkpoints the model when the validation loss decreases, interrupting

execution when the model gets stuck in a local minima.

The 3D CNN component has the ability to capture short-term temporal patterns of user actions,

whilst the LSTM can cover longer-term associations.

RNNs may be used to improve predictive performance, as the convolution function provides

a sequence of similarity scores, the RNN layer can find temporal features of these scores in

sequence.

Figure 4.5: TGCNN model architecture.

A secondary (“multi-stream”) architecture was experimented with to search over different gran-

ularities in time, for example one stream may look at patterns evolving over weeks whilst another

stream could look at months or years. This comprised of a second branch consisting of a 3D

88



Chapter 4. TG-CNN Methodology 4.2. Methodology Outline

CNN and LSTM using filters with a stride of 2, whereas the original 1-stream had a stride of

1. The output of the two independent streams were concatenated after two FCLs, which were

then followed by two further FCLs.

To assess the effectiveness of model components, an ablation study was performed to experiment

with the following architectures:

• TG-CNN w/o elapsed time. TG-CNN is trained with elapsed time removed, leaving

only the sequence of events, with all connected nodes receiving a 1 instead of elapsed time.

• TG-CNN w/o exp. TG-CNN is trained without the additional of an exponential func-

tion applied to the input data to scale time.

• TG-CNN-multi-stream. TG-CNN is trained with an additional branch to integrate a

coarse and fine stream of convolutions over the graphs in parallel.

• TG-CNN-w/o γ. TG-CNN is trained without a trainable γ value, instead γ is set to 1.

• TG-CNN-w/o LSTM. TG-CNN without an LSTM layer.

• TG-CNN-with elastic net. TG-CNN with both ℓ1 and ℓ2 regularisation.

To train these models the N8 Bede machine based at Durham University: an IBM Power 9

system with NVIDIA V100 GPUs, was used initially. And then Torch version 1.7.0, Tensorflow

2.8.0, NumPy 1.19.2, Pandas 1.2.4, Scikit-Learn 0.23.1, and CUDA 10.2.89 were used on a

desktop with a NVIDIA RTX 3090.

4.2.4 Model Evaluation

The following metrics were used in this thesis to evaluate the TG-CNN models:

1. True Positive (TP)

2. True Negative (TN)

3. False Positive (FP)

4. False Negative (FN)

5. Confusion matrix: A grid which shows the number of all positive and negative outcomes.
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Actual Values

Positive Negative

Predicted Values
Positive TP FP

Negative FN TN

6. Classification accuracy: The number of correct predictions given correctly in the sample.

Accuracy =
TP + TN

TP + TN + FP + FN

7. False Positive Rate (FPR):

FPR =
False Positives (FP)

False Positives (FP) + True Negatives (TN)

8. Recall (Sensitivity or True Positive Rate (TPR)): How well the model predicts a positive

outcome when that positive outcome is truly present.

Sensitivity/Recall =
TP

TP + FN

9. Specificity: How well the model predicts a negative outcome when that negative outcome

is not present.

Specificity =
TN

TN + FP

10. Precision (positive predictive value): The proportion of correctly predicted positive out-

comes out of all outcomes predicted as positive.

Precision =
TP

TP + FP

11. F1 Score: The harmonic mean of precision and recall.

F1 = 2× Precision×Recall

Precision+Recall

12. AUROC: The area under the curve of the TPR vs the FPR plot, showing how the model

performs. It is computed by integrating the TPR as a function of the FPR across all
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threshold values:

AUROC =

∫ 1

0
TPR(FPR) d(FPR)

This integral represents the cumulative AUROC, typically calculated using the trapezoidal

rule. The AUROC usually gives a value between 0.5 and 1, where 0.5 means the model

has no discriminating ability (as good as random chance) and 1 indicates it has the ability

to perfectly discriminate between different outcome groups.

13. AUPRC: Used to evaluate binary classification models, especially when the dataset is

imbalanced. The AUPRC is computed by plotting Precision against Recall at different

thresholds and calculating the area under this curve:

AUPRC =

∫ 1

0
Precision(Recall) d(Recall)

where the integral represents the cumulative area under the precision-recall curve. A

higher AUPRC indicates better model performance in distinguishing and separating indi-

viduals with a positive versus negative outcome.

14. Calibration: the agreement between observed and predicted outcomes. Predicted risks and

observed outcomes can be plotted against one another, a diagonal 45 degree line through

zero indicates perfect calibration, whilst deviations from this line suggest miscalibration.

The calibration plot slope can show if the estimated risks are too homogeneous or too

extreme. For example, if 25% of the population drops out and the model predicts that

around 25% of students dropped out, then the model is well calibrated on average. The

ratio of observed and expected outcomes can be calculated, where a ratio of 1 suggests

the calibration is perfect, a ratio above 1 indicates the model predictions are too low and

below 1 are too high on average [198].

For simplicity, this chapter uses a 80/10/10 train/validation/test split for the data used to train

the TG-CNN models. Previous models using similar data have primarily focused on AUROC,

therefore hyperparameters were optimised for best AUROC score on the validation set and test

set results are reported.

To optimise the model based on the validation set AUROC value, a random search across
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hyperparameters was conducted by sampling the number of epochs [25, 50, 75, 100], learning

rate [0.1, 0.01, 0.05, 0.001, 0.005, 0.0001], number of filters [32, 64, 128], filter size [4, 16, 32, 64],

number of LSTM hidden cells [16, 32, 64, 128, 256], ℓ1/ℓ2 regularisation (Reg) parameter [1e-1,

1e-2, 1e-3, 1e-4, 1e-5, 5e-2, 5e-3, 5e-4], FCL size [128, 256, 512, 1028, 2056], and dropout rate

[0.2, 0.3, 0.4, 0.5]. For the 2-stream models, the two streams each had filters of the same size

but with different strides. This resulted in 230,400 possible combinations of hyperparameter

values, necessitating the use of random search instead of a grid search.

Two baseline (BL) models were also fitted to the dataset for comparison, an BL-LSTM and

BL-RNN architecture - a single RNN layer (LSTM or RNN respectively) followed by two FCLs.

Five-fold cross-validation was used to optimise the AUROC over the hyperparameter combina-

tions for these baseline models. The BL-LSTM and BL-RNN models were tuned by optimising

the learning rate, the number of epochs, the hidden units in the RNNs, and the number of

hidden neurons in the FCLs.

4.2.5 Dense Versus Sparse Tensors

Due to the nature of processing these graphs into 3-tensors, most of the indices within the tensors

are filled with zeroes. Processing of large tensors, even when the majority is made up of zeroes

can be computationally expensive. If more than 90% of the tensor is filled with zeroes, then

efficiency is likely to improve with sparse convolutions, otherwise dense matrix multiplication

may be more efficient [199]. For this reason, typical dense tensors can be converted to sparse

tensors which are more efficient. Figure 4.6 shows how a dense and sparse tensor may be

represented as a tensor and using code. Figure 4.6 shows a 2-tensor whereas this project utilises

3-tensors with significantly larger dimensions due to the vast number of clickstream features

represented as nodes. Each individual clickstream corresponds to an increase in the size of the

tensor in both the x and y axes.
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Figure 4.6: Dense and sparse 2-tensors coded.

Performing convolutions on sparse 3-tensors has been shown to improve efficiency, as the convo-

lutional filters do not have to visit spatial locations which have a value of zero [199]. Additionally,

smaller filters improve efficiency with sparse CNNs, as hidden layers are often sparse [199].

4.2.6 Speed Comparison

A speed comparison was performed on a dense implementation (which used a standard 3D CNN

layer from Keras) and a sparse implementation of the model. Here the model was tested in its

most basic form (without regularisation) on a MOOC dataset with the model architecture as

shown on Figure 4.5.

The train, validation and test split was 80/10/10 with 5,632 graphs in the training dataset and

704 graphs in each of the validation and test dataset. A Dell Precision 3650 machine, with

an 11th generation intel 8 core i7-11700, DDR4 main memory with 64GB of RAM, a NVIDIA

GeForce RTX 3090 24GB GPU was used for this speed comparison. Python version 3.9.12 was

used with Tensorflow version 2.8.0 and cudnn 8.1.0.77.

To initialise the GPU a TensorFlow constant was loaded as a variable into the memory prior

to running the model. The Jupyter Notebook integrated development environment (IDE) was

used for speed testing with the kernel restarted prior to each test. A random seed was set so

that all the batches were the same across the tests to ensure there were no variations in the
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data that could effect the speed. Each test was performed over 50 epochs to obtain an average

speed in milliseconds for each sample.

To compare the speed of the dense and sparse 3D CNN layer alone, the start time was initialised

when the data is inputted into the model and the end time was allocated as the time when the

training data had finishing passing through the 3D CNN layer. The training time was calculated

by calculating how long forward and back-propagation took on the training dataset. Inference

time was calculated after the model was trained for 1 epoch and this was how long forward

propagation took for each sample in the test dataset.

4.3 Results

The TG-CNN models were tested with 1,430 random hyperparameter samples. The best per-

forming hyperparameters and performance metrics for these models are shown in Table 4.1,

metrics were averaged over ten runs to show robustness.

BL-LSTM and BL-RNN were each fitted using 5-fold cross-validation with 576 different hyper-

parameter combinations. The best performing BL-LSTM achieved an AUROC of 0.783, 79.26%

accuracy, 0.800 precision, 0.852 recall and an F1-score of 0.824 within 20 epochs, using a learn-

ing rate of 0.01, 128 hidden LSTM neurons and FCL sizes of 32 and 16. The best performing

BL-RNN achieved an AUROC of 0.778, 78.86% accuracy, 0.801 precision, 0.844 recall, and an

F1-score of 0.819 within 20 epochs, with a learning rate of 0.001, 32 hidden RNN neurons, and

FCL sizes of 64 and 32.

Table 4.2 shows the best score achieved for each model in the ablation study, compared to

existing models in the literature. For MOOC data the best performing variant overall was

the TG-CNN with fixed time dilation γ = 1 (AUROC 0.797), closely followed by the 2-stream

version (AUROC 0.796). The average results after 10 re-runs led to the 2-stream model achieving

the best performance (Table 4.1). Eliminating the LSTM component led to significantly poorer

results (AUROC 0.705).

The results of the speed comparison test can be seen in Table 4.3. The standard deviation was

particularly high when using the dense 3D CNN layer as the first epoch took significantly longer

than the rest of the epochs due to latency caused by transference of data between the CPU and

GPU.
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Table 4.1: Hyperparameter values and test set metrics for the best performing variants of the
architecture (mean ± standard deviation from 10 runs).

Parameter Variable γ 1-stream 2-stream No LSTM No exp Elastic Net

Epochs 50 75 52 25 100 100
LR 0.05 0.05 0.0005 0.0001 0.001 0.001
# Filters 64 64 128 64 32 32
Filter Size 16 32 4 4 64 32
RNN 128 64 32 N/A 16 16
L2 Reg 1e-3 1e-2 5e-4 1e-4 5e-2 5e-4
FCL Size 1028 512 2056 512 1024 1024
Dropout 0.5 0.5 0.3 0.5 0.3 0.5

AUROC 0.662±0.08 0.748±0.02 0.763±0.01 0.705±0.02 0.710±0.02 0.711±0.02
Accuracy 0.703±0.06 0.771±0.02 0.775±0.01 0.583±0.01 0.690±0.02 0.702±0.02
Precision 0.687±0.06 0.764±0.02 0.773±0.02 0.581±0.01 0.677±0.02 0.688±0.02
Recall 0.923±0.05 0.883±0.02 0.859±0.04 1.00±0.00 0.871±0.02 0.886±0.02
F1-Score 0.782±0.03 0.817±0.01 0.811±0.02 0.735±0.01 0.761±0.01 0.774±0.02

Table 4.2: Best area under the receiver operator curve (AUROC) results of user dropout pre-
diction using the ACT MOOC dataset, from our results (left columns) and from the results in
the literature (right columns). TG-CNN=temporal graph-based convolutional neural network,
BL-LSTM=baseline long short-term memory, BL-RNN=baseline recurrent neural network.

TG-CNN and Baseline Models AUROC Literature Models AUROC

TG-CNN γ = 1 0.797 TGN + MeTA [200] 0.794
TG-CNN 2-stream 0.796 TGN + TNS [201] 0.791
BL-LSTM 0.783 TGN [195] 0.777
BL-RNN 0.779 CoPE [202] 0.762
TG-CNN γ = 4.819 0.760 JODIE [193] 0.756
TG-CNN with Elastic Net 0.758 TGAT + TNS [201] 0.755
TG-CNN without LSTM 0.750 NPPCTNE [203] 0.745
TG-CNN without the Exponential 0.744 TGAT [200] 0.743
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Table 4.3: Speed comparison per sample (in milliseconds) of the dense 3D convolutional neural
network (CNN) versus the sparse 3D CNN layered the models (mean ± standard deviation over
50 epochs).

Comparator Batch Size Epochs Dense 3D CNN Sparse 3D CNN

3D CNN Layer Alone 64 50 0.0256±0.1427 3.8708±0.1096
Training Time 64 50 0.6150±2.6786 5.1469±0.1157
Inference Time 64 50 0.0566±0.0169 3.9671±0.2711
3D CNN Layer Alone 512 50 0.0207±0.1391 0.6067±0.0458
Training Time 512 50 3.1201±21.4529 0.7264±0.0115
Inference Time 512 50 0.0033±0.0074 0.4245±0.0232

Further comparison of the effects of batch size and the layer type on training time speed was

carried out with batches of size 32, 64, 128, 512 and 1,024 as seen in Figure 4.7. Smaller batch

sizes with the dense 3D CNN layer in the model resulted in faster throughput than the sparse

3D CNN layer, whereas larger batch sizes led to faster performance with a sparse 3D CNN layer.

The dense layer speed increases training time almost linearly as batch size increases. Whereas

the sparse layer leads to an exponential decay in training speed as the batch sizes increase.

Figure 4.7: Training time per sample for sparse and dense implementation of 3D CNN with
varying batch sizes.

4.4 Discussion

Table 4.2 shows the predictive performance of models with the best AUROC score using the

ACT MOOC dataset. The TG-CNN model had state-of-the-art performance on this task, whilst

being more intuitive and conceptually simpler than some of the other approaches in previous

literature.
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The ablation study demonstrated that the LSTM layer and the exponential function enabled

the model to learn more effectively, this is potentially due to the LSTM layer enabling long-

term memory alongside the filters learnt from the CNN. The γ variable converged to an average

value of 4.819 in the best performing model, which suggests that actions taken closer together

are more important for dropout prediction than actions further apart. When γ = 4.819 and

the elapsed time t is more than 47 seconds t̂ will change to being 0. Having a multi-stream

model enables different coarseness of time to be included as features. The second stream with

a stride of 2 is a coarser stream which skips more time steps when the CNN filters move across

the input data. This means the coarser stream can help find more broader aggregate patterns

over time, which might capture long-term trends better. However, this coarse stream might

mean the model ignores clickstream actions taken closer together. Having both coarse and

fine streams in the model could prevent loss of short-term and long-term patterns, leading to

improved performance. The clickstream features may not be highly correlated which led to the

elastic net model having poorer performance due to the ℓ2 regularisation. ℓ2 alone may also

be beneficial as it helps prioritise sparsity and feature selection, which are key to aid in graph

interpretability and to reduce computation time. Due to the simplicity of this data, excluding

the exponential scaling factor did not lead to memory overflow. However, in larger and more

complex datasets this scaling factor may become essential.

Other advantages of the TG-CNN approach include the constant tensor size, allowing for opti-

misation of the underlying linear algebra operations, and the ability to extract temporal features

in parallel using 3D convolutions, as opposed to RNN-based architectures that require sequential

processing through time.

The TG-CNN model has interpretability potential, as the 3-tensor structure enables the filters

to be extracted back into a intuitive graph structure. This could serve as a visual tool to show

which sequences of events and temporal patterns lead to dropout.

4.4.1 Related Work in MOOC Dropout

The IEEE database was searched using the string “MOOC AND predict*”. This found 95

papers, 24 of these were full-text analysed based on their title and abstract. Only four used

CNNs [204, 205, 206, 207]. Only one paper utilised graphs for node/edge prediction [192]. This

differs from our formulation of this problem as a graph-level classification task.
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Learner behaviour feature matrices, weighted by importance, have been used alongside CNNs

to predict dropout from clickstream data and improved predictive accuracy compared to basic

models [191, 204, 205, 206]. Zhang et al 2020. used CNNs alongside Squeeze-and-Excitation

Networks (SE-Nets) and a GRU [207]. The GRU enabled maintenance of the time series rela-

tionship between the clickstream data and the SE-Net helped with automatic feature extraction.

Edmond Meku Fotso et al. found simple RNNs provided better accuracy compared to LSTMs

and GRUs [197]. Standard ML algorithms and ensemble methods including SVMs, Logistic

Regression (LR), Multi-layered Perceptrons, and DTs have also been applied to this task [191,

194, 208].

The JODIE model (see results in Table 4.2) utilises RNNs to learn and update embeddings that

represent individual interactions between users and actions [193]. The actions and users each

have their own RNNs to generate separate static and dynamic embeddings. The embeddings

dynamically change over time, capturing the temporal aspect in a statically sized graph. These

two RNNs are used together for the user embeddings to update the item embedding and vice

versa. The JODIE model alters the embeddings significantly after longer periods of time,

implicitly assuming that actions taken closer together have smaller impact.

4.4.2 Related Work in Graph Learning

Searching the Web of Science and IEEE databases using the string “Convolution AND (3d

OR three$dimension*) AND (time OR temporal) AND graph AND predict* AND network$”

returned 18 papers. Of these, there were 5 relevant papers using temporal graph networks [196,

209, 210, 211, 212], though they were all focused on node and edge detection.

At the time of writing (12th May 2022), Kumar et al. had 200 citations of their paper [193].

To observe if any other researchers had used the ACT MOOC dataset processed by Kumar et

al. (7,047 users), these 200 papers were screened and 11 papers were found which performed

dropout/node prediction tasks.

Four of these utilised RNN components in their model architectures to process time. The

others used graph models, all based on a node/ edge classification formulation of the task.

Wang et al. used Temporal Graph Networks (TGNs) with dual message passing mechanisms

(TGN + MeTA), to augment data and retain semantics for edge-level prediction and node

classification [200]. These messaging passing techniques involve memory translation and cross-

98



Chapter 4. TG-CNN Methodology 4.4. Discussion

level propagation, to adapt the model with temporal and topological features to ignore noise

more effectively. This increased the previously obtained AUROC scores by 1.7% [195], with

no cost to efficiency and reducing the overfitting that occurs due to noisy data. Other models

tweak neighbourhood propagation techniques using temporal information [201, 203]. Zhang et

al. use ordinary differential equations and graph networks to observe model changes over time

and information propagation [202]. In contrast, the TG-CNN approach makes use of a novel

3-tensor structure, storing the temporal graphs in a sparse and intuitive format, which is easily

amenable to feature extraction using convolutions for graph classification.

4.4.3 Limitations

The ACT MOOC dataset used provided clickstream events as numerical labels. Clickstream

action descriptions were not provided. Therefore, reasoning for dropout could not be interpreted.

The variant of the model including the time dilation factor γ as a trainable parameter performed

the poorest (Table 4.1). The reason behind this is unclear, though the additional complexity

modelled by the time dilation will increase the difficulty of the underlying optimisation prob-

lem. Due to the random effect of hyperparameter tuning it is possible that a more optimal

configuration could be found with further hyperparameter tuning. However, it was not feasible

to perform a full grid-search of hyperparameters. Besides the primary objective of this chapter

was to produce the methodology rather than produce robust results for this dataset.

Bootstrapping is more robust than splitting data into training and testing groups or cross

validation. In future work, bootstrapping should be used to improve result reporting with

confidence intervals. Confidence intervals represent a range within which the true result is

likely to fall, commonly with 95% confidence if repeated. In frequentist statistics, this interval

is constructed under the assumption that if the study were conducted multiple times, 95%

of such intervals would contain the true parameter. In contrast, Bayesian credible intervals

reflect the probability distribution of the parameter given prior information and observed data

[213]. A pragmatic interpretation lies between these perspectives, acknowledging that confidence

intervals provide a useful measure of uncertainty even if they do not express a direct probability

statement about a single true value. Understanding the assumptions behind each approach

ensures appropriate application in statistical inference. Validation of the model on MOOC

data could be improved by testing the model on another independent dataset to determine
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generalisability.

4.5 Conclusion

This chapter introduced a novel model for the classification of temporal graphs, using student

MOOC dropout data to develop and test the method. This approach provides a unique for-

mulation of this problem, compared to previous strategies involving node and edge prediction.

This method had AUROC performance improvement in this field compared against the current

state-of-the-art models. Methods described in this chapter also benefit from reduced memory

utilisation and parallel processing. Proceeding chapters will apply this model to medical data

to observe the performance in different scenarios.
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Chapter 5

TG-CNNs for Hip Replacement Risk

Prediction

5.1 Introduction

The ageing population, coupled with increasing obesity rates, contribute to a rising prevalence

of OA and hip replacements, causing pain and diminished quality of life [4, 5, 6, 214, 215]. OA

presents a significant challenge for UK healthcare, with MSK issues accounting for up to 1 in

5 of GP consultations [16, 216]. A quarter of all MSK related consultations have been shown

to lead to GP advice or no action was taken, 25% provided prescriptions and 16% resulted in a

steroid injection [216]. The burden is exacerbated by a growing number of joint replacements,

particularly associated to knee and hip OA [38], placing strain on both the NHS and affected

individuals [39]. For patients with advanced OA, total joint replacement may be recommended

if conservative treatments fail.

MSK conditions impose not only financial burdens but more importantly lead to significant

well-being impacts, potentially leading to conditions like depression or obesity [216]. Previous

analysis of CPRD data revealed that 32.5% of individuals with hip OA underwent total joint

replacement [6]. Between 2003 to 2014, there were 708,311 primary total hip replacements car-

ried out in the UK [38]. Recognising alternative and earlier symptoms and diagnoses associated

with hip replacement surgeries may help delay or reduce the need for these invasive procedures.

Predicting hip replacement in advance using primary care data supports efficient resource alloca-
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tion and improves patient outcomes. EHR data provides structured and temporal information.

However, the irregular time intervals within EHRs present challenges for designing predictive

algorithms in healthcare. Using temporal EHR data could assist in accurately forecasting

health-related outcomes [66, 111], thereby aiding clinical decision-making and patient care. Ad-

ditionally, machine learning models can extract valuable insights, such as disease progression,

from EHRs [67].

This chapter presents the use of TG-CNNs for individual hip replacement risk prediction one

year in advance, using clinical codes and time between primary care visits from patient’s EHRs

as model inputs. It introduces multiple events per visit/ timestep as parallel nodes, where

multiple clinical codes are recorded in a single primary care visit. Within this chapter the

TG-CNN model is trained and optimised, investigating which layers, regularisation or other

components could be useful to improve predictive performance and minimise overfitting.

5.2 Methodology

5.2.1 Dataset Description and Cohort Analysis

NHS data from ResearchOne was used in this chapter [13]. This data is managed by The Phoenix

Partnership (TPP), comprising of clinical and administrative data from 151,565 patients aged

40-75 at the start of the period of analysis, attending healthcare practices in England that

use the SystmOne primary care EHR system. This age range was chosen as these patients

are likely to present with MSK symptoms. Focusing on those over 40 years old enhances the

accuracy and clinical utility of prediction models by targeting the population most at risk for

joint replacements (younger patients have less joint wear and usually only need replacements due

to rare conditions) and who are most likely to benefit from early identification and intervention.

This approach reduces variability and improves generalisability. The data is provided in a de-

identified format for patients who: are registered at primary care practices that are opted-in

to ResearchOne at practice-level, and who have not opted-out of ResearchOne at patient-level.

Patients had their first record of joint pain clinically coded between April 1st, 1999, and March

31st, 2014 [13]. CTV3 clinical codes for around 2,000 different symptoms and conditions were

included in this data. Descriptive cohort characteristics are detailed in Table 5.1, prior to

removing ineligible records.
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Table 5.1: Statistical summary of the electronic health record (EHR) dataset across the analysis
period. sd=standard deviation, #=number.

Data collection time period 01/04/1999 - 31/03/2014
Patient age as of 01/04/1999 (mean (sd)) 56.67 (9.37)
Total # of patients 151,565
Total # of visits 243,700
Average # of visits per patient 1.827

Total # of unique medical codes 2,353
Average # of medical codes per visit 1.36
Max # of medical codes per visit 10
Max # of medical codes recorded for one patient 534
Average # of visits across the patients 19.99
Max # of visits for one patient 423
Total # deaths 1,039
# of patients who have a hip replacement 12,978

An EHR, in this thesis, is defined as an individual patients pi record Ri = {rj |j = 0, ..., N − 1},

whereN is the number of records. For each patient demographic information di is kept, including

date of birth, sex, and IMD score (a measure of location-based deprivation based on postcodes

[217]). Each record rj contains the reported CTV3 clinical codes cj alongside the time stamp t.

CTV3 clinical codes are clinical codes previously used in the UK. They consist of 5 alphanumeric

(upper and lower case) values representing clinical symptoms, diagnoses, procedures and other

health related events. CTV3 codes were widely used in primary care before recently being

replaced by Systematized Nomenclature of Medicine – Clinical Terms (SNOMED-CT) codes.

Patient age at prediction time is used as the age demographic input into our models. IMD score

is categorised into quintiles. Including IMD in the model is crucial, as research indicates that

individuals with higher IMD scores (indicating lower deprivation) are less likely to undergo hip

replacements [6].

5.2.2 Data Extraction

Time windowing: To forecast hip replacements occurring one year in advance, the specific

time of the replacement is identified and all available patient records from 1999 up to one year

prior to the replacement date are gathered (see Figure 5.1).

Patient inclusion criteria: Patients needed a minimum of two primary care visits within

one year prior to a hip replacement (partial or full). Patients were removed if they had no

visits in the first 14 years or only had visits in the final year of the analysis period. Clinician-

103



5.2. Methodology Chapter 5. TG-CNNs for Hip Replacement Risk Prediction

Figure 5.1: Four patient examples (A-D) and their eligibility for the study cohort. Historical
records for these patients were included where available. Patient data were included from the
start of the analysis period or from their entry into the database if records where present after
April 1, 1999 (B and C). Patients were followed until the end of the analysis period or until they
changed to a practice not using SystmOne. A primary hip replacement event was considered
incident if the first hip replacement was recorded within the analysis period (C).

selected CTV3 clinical codes (n=45) for primary hip replacement were utilised for the outcome,

with the incident date defined as the first occurrence of one of these codes. The codes can

be found in Appendix B Tables B.1 and B.2. The initial recorded hip replacement instance

served as the label in the case patients. To mitigate the influence of age, sex, and IMD on joint

replacement, 1:1 exact matching was performed for these variables in the training dataset of each

hip replacement patient. This ensured prediction performance was unaffected by differences in

these variables. A small fraction (0.007%, n=1,039) of patients in this dataset died, with seven

of them having undergone hip replacement. Consequently, complete case analysis was utilised

to estimate the marginal effect of hip replacement, assuming no mortality.

5.2.3 Feature Choices

Demographic characteristics, including sex, age, and IMD, were collected alongside all events

and medical history within specified time periods. Time between medical events were converted

to months, in place of timestamps of data entries. The most frequently used 512 clinical
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codes, covering 99.71% of the data, were selected to construct temporal graph-based EHR

representations for each patient, ensuring detailed representation while avoiding overfitting and

computational memory exhaustion. The first recorded IMD value for each patient was used for

consistency, given its stability over time. However, it is important to acknowledge that relying

on the first recorded IMD may overlook significant changes in financial and social resources

later in life. Older individuals may experience income reduction, loss of family support, or

relocation from a more affluent to a less privileged area, which, while not the most common

scenario, is particularly relevant for decision-making around OA and hip replacement compared

to their earlier IMD score from a previous address. Hospital referral data were not used in this

model. In the most frequently used 512 codes there were no predictors synonymous with hip

replacement. For the ablation study, medications were appended as six predictors using British

National Formulary (BNF) Codes, grouping drugs into opioids (04.07.02), non-opioid analgesics

(04.07.01), and NSAIDs (10.01.01), further sub-grouped into acute and repeat prescription

types. This addition brought the total number of predictors in the model to 518. Including

these predictors in the study nearly tripled the number of recorded events for the included

patients in both the training and testing sets. The training dataset without prescriptions had

202,807 rows (clinical codes across all the patients) versus 789,393 rows when prescriptions were

included. Similarly, the test dataset had 386,536 rows without prescription data, and 986,326

with.

5.2.4 Temporal Graph Representation of EHRs

In discrete mathematics, a graph G = (V,E) comprises nodes V linked by edges E [137, 138].

This method involves transforming sequences of clinical codes from EHRs into temporal multi-

graphs, framing hip replacement risk prognosis as a graph classification problem. Each temporal

graph represents an individual and is classified to provide risk probabilities.

Clinical codes were represented by graph nodes (vertex) V , while temporal edges E capture time

intervals between code occurrences, measured in months. This is represented in a 3D tensor

G(i, j, k) = tk, where i, j ∈ {1, . . . , n} indicate graph nodes, and tk is the time elapsed for the

kth edge. Each of the 512 most frequently used CTV3 codes maps to one node v1, v2, . . . , v512.

If a clinical code appears multiple times across visits a new node will be generated for each visit

where that code repeats, effectively retaining the sequence of events. Figure 5.2 demonstrates

how a snippet of an EHR is converted into a 3-tensor. The maximum number of time steps is
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set as k = 100, resulting in a 3-tensor input size of 512 × 512 × 100. By representing clinical

codes as graphs rather than linear sequences, multiple clinical code recordings per healthcare

practice visit can be represented, forming temporal graphs. These graphs can then be fed

into the TG-CNN model, enabling pattern detection within clinical code graph structures and

temporal features. An overview of using EHR data for hip replacement prediction is provided

in Figure 5.3, and the model architecture is discussed in Section 5.2.5.

Figure 5.2: Example sequence of five clinical codes being recorded across four time steps (visits).
Here there are only 5 clinical codes (nodes), however in reality the unique nodes span to 512
codes which would be difficult to visualise.

5.2.5 Model Architecture

After each patient’s EHR is converted to a 3-tensor a neural network architecture is created

which applies convolutions over the time axis of the tensor. TensorFlow was employed to craft

a custom 3D CNN Keras layer using sparse linear algebra. The temporal graph representation,

sized at 512×512×100, undergoes processing through this layer to extract clinical code sequence

and elapsed time patterns (see Figure 5.3). The 3D CNN is similar to standard convolutions

used in CNNs for image/video processing, however the filters in this project are much larger in

size. A graph of size n×n×k (n nodes and k timesteps) is convolved with filters of size n×n×f ,

outputting a vector of length k−f , assuming a stride length of 1. The CNN output is flattened,

followed by batch normalisation for faster convergence, and subsequent layers include a Leaky

ReLU, LSTM (captures longer temporal patterns), dropout, dense layers, and concatenation

with demographic features (optional). Finally, the model employs binary cross-entropy loss
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Figure 5.3: Conversion of raw data to model prediction of hip replacement.

with sigmoid for the binary target. Tensorflow 2.8.0, NumPy 1.19.2, Pandas 1.2.4, Scikit-Learn

0.23.1, and CUDA 10.2.89 were used on a desktop with a NVIDIA RTX 3090.

This implementation utilised a learning rate scheduler, multiplying the learning rate by 0.9

with an exponential decay after 1,000 steps. Early stopping was also used with a patience of 5,

check-pointing the model when the validation loss decreased and interrupting execution when

the model got stuck in a local minima.

Events occurring further in the past may have a diminishing impact on recent events. Therefore,

clinicians typically focus on recent health records rather than searching through years’ worth

of data. Similarly, models predicting patient outcomes prioritise recent events. In this task,

the 100 most recent primary care visits per patient were used to manage computational load.
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Patient 3-tensors with fewer than 100 visits were front padded, ensuring the most recent visits

were always at the end of the 3-tensor. Multi-stream networks were also explored to search over

different granularities in time, in the two stream model a stride of one was used as a fine stream

and two for a coarse stream. For the two stream models, the two streams each had filters of the

same size with only the stride changing.

Events happening in quick succession may indicate a worse health condition compared to those

with wider time intervals between them. To capture this, a modified version of elapsed time

is stored, measuring the proximity of two events occurring. The graph is transformed using

G(i, j, k) = exp(−γt), where γ is a trainable model parameter. This transformation assigns a

score of 1 to simultaneous events and close to 0 for events with a large time gap. Elements

indicating no interaction between node pairs at a set time are set to 0.

Filters ideally approximate subgraph pathways, implying that if an individual’s EHR is close

to a given filter, their disease trajectory should follow a specific path.

ℓ1 (LASSO) regularisation penalty is employed on the entire filter to prevent overfitting and

promote sparsity. This regularisation is applied by adding the ℓ1 norm to the loss.

ℓ2 regularisation is a technique used to prevent overfitting by adding a penalty term to the loss

function. This penalty is proportional to the sum of the squares of the model’s weights. ℓ2

regularisation discourages large weight values by penalising their square, leading to a smoother

and simpler model. By controlling the complexity of the model, ℓ2 regularisation reduces over-

fitting to the training data. Unlike ℓ1 regularisation, which can drive some weights to exactly

zero, ℓ2 regularisation shrinks all weights proportionally but typically keeps them non-zero.

A graph regularisation function is also incorporated, denoted as ℓG, which penalises the model

with a graph regularisation strength λG = 10 if the filter deviates from a typical graph structure,

such as when a node lacks incoming or outgoing connections to other nodes. The penalization

factor in this model is the sum of the absolute values of filter weights |w| that are below a

predefined threshold (0.1) at specific time steps where no significant connections (weights above

the threshold) exist. This factor is computed across all filters and time steps to measure the total

deviance from the desired graph structure. The penalty increases as more weights fall below

the threshold, especially in cases where no meaningful prior connections are present. This

encourages the model to learn graph structures with stronger and more significant connections.
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5.2.6 Comparison Models

An ablation study is carried out using 10 variations of the models to assess component benefit

as shown in Table 5.2, the full model with the addition of prescriptions was also evaluated.

Table 5.2: Exp = including exponential scaling on the input data. Two streams = trained with
an additional stream to integrate a coarse and fine stream of convolutions over the graphs in
parallel. w/o=without.

TGCNN Model Included

Components γ Exp Demo 2nd stream ℓG ℓ2 ℓ1 LSTM Time CNN

Full ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w/o gamma ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w/o exp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w/o elapsed time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w/o demographics ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w/o two streams ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w/o ℓG ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w/o ℓ2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w/o ℓ1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w/o LSTM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

When evaluating TG-CNN performance in modelling temporal dependencies within sequential

graph data, robust baseline references are crucial. Random Forest and logistic regression were

compared with with RNN and LSTM networks. RNNs specialise in processing sequential data

by maintaining internal states over time, effectively capturing long-term dependencies within

EHR data. However, their performance must be compared against simpler models like Random

Forest and logistic regression, which lack explicit mechanisms for modelling such dependencies

but offer simplicity and interpretability.

5.2.7 Evaluation Approach

The TRIPOD statement was followed for both the reporting of model development and the

prediction models.

A random sample of the 10% of the population was taken which met the inclusion criteria to

test the trained model on. This group represented the same proportion of the population that

has a hip replacement as the full dataset. From the other 90% every hip replacement patient

was matched to a control patient based on sex, IMD, and age at replacement. Oversampling

was not performed, each match was a new addition. Within the balanced training dataset 5-

fold cross validation was performed when choosing hyperparameters. Training on a balanced
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dataset, where each class is equally represented, ensures that the model learns to give equal

importance to all classes, preventing it from being biased toward the majority class. To optimise

the model based the on the mean of the validation accuracy from cross-validation, a random

hyperparameter search was conducted on the Full TG-CNN model 20 times. Hyperparameter

values were selected from each of the following lists: learning rate [0.001, 0.005, 0.0001], number

of filters [8, 16, 32], filter size [3, 4, 6], number of LSTM hidden cells [16, 32, 64, 128, 256], ℓ2

regularisation (ℓ2 reg) parameter [1e-2, 1e-3, 1e-4, 1e-5, 5e-2, 5e-3, 5e-4], FCL size [128, 256,

512, 1028, 2056], and dropout rate [0.5, 0.6, 0.7, 0.8, 0.9]. The model with the best AUROC

score from the cross-validation was taken and the same hyperparameters were used across the

ablation study models, running each model for a maximum of 12 hours. For the 10% test

dataset, half of the dataset was used to recalibrate the model (denoted as Test 1) and the

other half (denoted as Test 2) was used to test the recalibrated model (more details to follow

in Section 5.2.7). See Figure 5.4 for a visualisation of this data splitting.

Figure 5.4: How the data was split into training and testing groups.

Calibration was undertaken to assess how close the predicted probabilities reflected the true hip

replacement need. Where a well-calibrated model has an average predicted probability in each

decile that is close to the average of the actual probability. Calibration is vital to to ensure that

the predicted probabilities are accurate for different subgroups based on their risk levels [218].

Discrimination (AUROC and AUPRC) of the models was also assessed.

Clinical data is, more often than not, imbalanced, with more controls than cases. If class

imbalance is present prediction errors can occur to favour/ bias the bigger class. Imbalance

110



Chapter 5. TG-CNNs for Hip Replacement Risk Prediction 5.3. Results

can be resolved using techniques such as undersampling or oversampling, weighting approaches,

and synthetic minority oversampling (SMOTE) techniques. After training on the balanced data,

the model is then recalibrated. Since the model was trained on a balanced dataset, the model

predictions were adjusted to enhance alignment with the true incidence rates of the outcomes

in the test set. For recalibration, a logistic regression model was created that takes the linear

predictors of the original model. The logistic regression model improves calibration by rescaling

the linear predictor. The calibration slope can be assessed before and after recalibration to

determine efficiency. Once the model is recalibrated on the Test 1 data, the recalibrated model’s

performance can be validated on a second unseen test set (Test 2). Test 2 data is used to assess

model stability, bias, and variability using bootstrapping.

Sub-group analysis (patient stratification) was performed on the best recalibrated TG-CNN

model, assessing the models calibration on different demographic sub-groups separately. Sub-

groups were created based on sex (female and male), age at prediction (40-60, 60-70 and 70+

year olds) and IMD (quintile).

5.3 Results

Table 5.4 displays the characteristics of the cohort included in model training and testing.

The Body Mass Index (BMI) statistics in this table were derived from the last recorded BMI

measurement of each patient. The last-recorded BMI was used simply for a cohort characteristic

summary in Table 5.4, the TG-CNN model takes account of BMI changes over time as nodes.

The last-recorded BMI provided in this Table may not accurately represent the historical BMI

that contributed to the development of OA and the need for hip replacement. As disease or

disability progresses, loss of skeletal muscle mass can lower BMI, potentially masking earlier

periods of high adiposity. Earlier, higher BMI measurements may provide a more accurate

reflection of the excess fat that influenced OA progression over time.

A Chi-squared analysis was conducted to compare the population of Test 2 to the National Joint

Registry 12th Annual Report 2015, to ensure similar demographic distributions [38]. Results in

Table 5.3 show no significant difference in age, sex, and IMD between our Test 2 set and the

National Joint Registry. However, there was a significant difference observed in weight category

distribution between the datasets.
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Table 5.3: Chi-squared analysis comparing Test Set 2 dataset to National joint registry (NJR)

2015 population. k = 2, df = 1, alpha = 0.05, and Chi-square value = 3.841. If (O−E)2

E > 3.841,
the values are significantly different. Where O = Observed, E = Expected. IMD=index of
multiple deprivation.

Test Set 2 (N (%)) NJR (N (%)) O − E (O−E)2 (O−E)2

E

Female 3512 (60.6) 21304 (60.0) 0.60 0.36 0.01
Age (median) 66 69 -3.00 9.00 0.13
IMD 1 1565 (21.3) 5406 (15.2) 6.10 37.22 2.45
IMD 2 1554 (21.1) 6532 (18.4) 2.79 7.78 0.42
IMD 3 1373 (18.7) 8064 (22.7) -3.98 15.80 0.70
IMD 4 1324 (18.0) 8084 (22.7) -4.70 22.07 0.97
IMD 5 1537 (20.9) 7520 (21.1) -0.22 0.05 0.00
Obese 2108 (31.7) 15270 (55.8) -24.09 580.45 10.41
Overweight 2674 (40.2) 9407 (34.4) 5.82 33.86 0.99
Normal 1773 (26.6) 2634 (9.6) 17.02 289.53 30.10
Underweight 102 (1.5) 75 (0.3) 1.26 1.58 5.78

Table 5.5 displays the distribution of hip replacements per deprivation quintile, indicating

slightly higher rates in more deprived areas (IMD 1-3) compared to less deprived regions.

Upon running the trained model on the test data, an inverted calibration curve was observed

(Figure 5.5). This suggests that the model was underpredicting the likelihood of patients need-

ing a hip replacement and that the model’s predicted probabilities were too low and not aligned

with actual observed outcomes. However, recalibrating the model resulted in a closer fit to the

optimal line and a more accurate probability distribution. To understand this phenomenon, sev-

eral evaluations were conducted. The model was trained on an imbalanced dataset, where each

case patient was matched with two control patients, yet the probability distribution remained

skewed towards case patients. Further testing involved reserving 20% of unmatched control

patients for testing, resulting in similar probability skewing. This phenomenon persisted during

training of baseline models, indicating it was data-based rather than model-based. Holding back

a portion of matched training data as test data yielded good results even prior to calibration.

These tests suggest that the occurrence is due to the model being well-trained on matched pa-

tients. The patient trajectories will be explored further in Chapter 7 the explainability chapter.

The full TG-CNN model with the best validation score from 5-fold cross-validation had the

following hyperparameters: learning rate = 0.0001, filters = 32, filter size = 6, LSTM neurons

= 128, FCL size = 128, dropout value = 0.6, regularisation strength = 0.0005, and graph

regularisation strength = 0.1.
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Table 5.4: Hip replacement prediction model cohort characteristics. BMI=body mass index,
IMD=index of multiple deprivation, std=standard deviation.

Overall Train Test 1 Test 2
Characteristic (N=33,080) (N=18,374) (N=7,353) (N=7,353)

Sex: female 20,501 (62.0) 11,626(63.3) 4,422(60.2) 4,453(60.6)
Hip replacements 10,214 (30.9) 9,187 (50) 515 (7.0) 515 (7.0)
Age, y

mean(std) 70.4 (9.2) 72.5(8.5) 67.9(9.3) 67.6(9.3)
median(min,max) 70 (53,89) 73(53,89) 67(53,89) 66(53,89)
mode 66 76 66 66

Age at replace, y
mean(std) 69.2 (8.5) 69.2(8.53) 69.6(8.6) 69.4(8.8)
median(min,max) 70 (43,90) 70(43,90) 70(48,89) 70(48,88)
mode 77 77 78 77

BMI
Severely obese 1,204 (3.6) 652(3.5) 267(3.6) 285(3.9)
Obese 9,946 (30.1) 5,803(31.6) 2,035(27.7) 2,108(28.7)
Overweight 12,089 (36.5) 6,721(36.6) 2,694(36.6) 2,674(36.4)
Healthy weight 7,793 (23.6) 4,304(23.4) 1,716(23.3) 1,773(24.1)
Underweight 491 (1.5) 287(1.6) 102(1.4) 102(1.4)
Missing 1,557(4.7) 607(3.3) 539(7.3) 411(5.6)

IMD, quintile
1 (most deprived) 8,370 (25.3) 4,996(27.2) 1,809(24.6) 1,565(21.3)
2 7,859 (23.8) 4,640(25.3) 1,665(22.6) 1,554(21.1)
3 6,990 (21.1) 3,982(21.7) 1,635(22.2) 1,373(18.7)
4 5,195 (15.7) 2,648(14.4) 1,223(16.6) 1,324(18.0)
5 (least deprived) 4,666 (14.1) 2,108(11.5) 1,021(13.9) 1,537(20.9)

Events Recorded
mean(std) 17.3 (20.0) 10.6 (13.5) 24.7(22.8) 26.7(23.5)
median(min,max) 10.0 (2,224) 6.0 (2,161) 18.0 (2,224) 20.0(2,182)
mode 3 3 8 7

Table 5.6 displays AUROC and calibration slope results from 5-fold cross-validation on the

TG-CNN model. The w/o ℓ1 model was selected to illustrate before and after recalibration

calibration plots (Figures 5.5 and 5.6), as this model demonstrates the best calibration (with the

validation C-slope value closest to 1). The TG-CNN w/o exponential model outperformed the

others in terms of AUROC on the balanced dataset but showed poor recalibration, suggesting

overfitting. Table 5.7 and Table 5.8 present AUROC and AUPRC results using the Test 2

(unseen) data on the TG-CNN and baseline models, respectively.

The most important features, according to the best Random Forest model are provided in

Figure 5.7. Additionally, Figure 5.8 displays the top 10 largest odds ratios from the logistic

regression model, indicating variables that act as risk multipliers. As anticipated, both models

seem to recognise that clinical codes associated to hip pain and OA are crucial for predicting
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Table 5.5: Hip replacement occurrence in each index of multiple deprivation (IMD) group N(%).

Overall Train Test 1 Test 2
(Pre-recalibration) (Post-recalibration)

IMD 1 2,750(32.9) 2,498(50.0) 142(7.9) 110(7.0)
IMD 2 2,549(32.4) 2,320(50.0) 102(6.1) 127(8.2)
IMD 3 2,248(32.2) 1,991(50.0) 133(8.1) 124(9.0)
IMD 4 1,498(28.8) 1,324(50.0) 90(7.4) 84(6.3)
IMD 5 1,172(25.1) 1,054(50.0) 48(4.7) 70(4.6)

Table 5.6: Area under the receiver operator curve (AUROC) and C-slope (mean (sd)) results
for the models on the training set.

TGCNN Model Train
AUROC

Validation
AUROC

Train
C-slope

Validation
C-slope

w/o exp 0.969 (0.003) 0.936 (0.009) 0.999 (0.011) 0.816 (0.059)
w/o ℓ1 0.937 (0.007) 0.882 (0.014) 1.044 (0.016) 1.003 (0.086)
w/o LSTM 0.920 (0.004) 0.859 (0.017) 0.840 (0.146) 0.891 (0.067)
w/o ℓG 0.973 (0.010) 0.858 (0.009) 1.043 (0.051) 0.613 (0.061)
w/o demographics 0.959 (0.038) 0.852 (0.009) 1.058 (0.021) 0.677 (0.113)
Full 0.966 (0.016) 0.850 (0.002) 1.021 (0.029) 0.685 (0.132)
w/o elapsed time 0.966 (0.016) 0.844 (0.009) 0.100 (0.054) 0.585 (0.082)
w/o ℓ2 0.971 (0.007) 0.840 (0.020) 1.018 (0.028) 0.603 (0.123)
w/o two streams 0.521 (0.003) 0.519 (0.009) 0.867 (0.254) 0.863 (0.595)
w/o γ 0.518 (0.002) 0.516 (0.005) 1.074 (0.153) 0.963 (0.563)
with prescriptions 0.516 (0.003) 0.517 (0.008) 0.820 (0.191) 0.675 (0.446)

Table 5.7: AUROC and AUPRC results for the recalibrated TG-CNN models on Test 2 data.

TGCNN Model AUROC
mean (sd)

AUROC
(95% CI)

AUPRC
mean (sd)

AUPRC
(95% CI)

w/o ℓ2 0.724 (0.014) (0.715,0.733) 0.185 (0.013) (0.160, 0.209)
w/o LSTM 0.717 (0.007) (0.713,0.721) 0.160 (0.011) (0.139, 0.182)
w/o ℓ1 0.716 (0.018) (0.705,0.728) 0.220 (0.029) (0.163, 0.277)
w/o ℓG 0.699 (0.015) (0.689, 0.708) 0.165 (0.008) (0.149, 0.182)
w/o demographics 0.696 (0.021) (0.683, 0.709) 0.151 (0.018) (0.116, 0.187)
Full 0.693 (0.015) (0.684, 0.702) 0.165 (0.011) (0.143, 0.188)
with prescriptions 0.684 (0.008) (0.680, 0.689) 0.116 (0.004) (0.108, 0.125)
w/o elapsed time 0.680 (0.013) (0.672, 0.688) 0.150 (0.013) (0.124, 0.176)
w/o exp 0.634 (0.019) (0.622, 0.646) 0.169 (0.011) (0.148, 0.190)
w/o γ 0.589 (0.009) (0.584, 0.595) 0.083 (0.005) (0.073, 0.092)
w/o two streams 0.570 (0.009) (0.564, 0.575) 0.080 (0.006) (0.069, 0.091)
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Figure 5.5: Pre-recalibration calibration curve
on Test 1 data. Each green bar represents 1%
of the patients.

Figure 5.6: Post-recalibration calibration on
the Test 2 data. Each green bar represents
1% of the patients.

Table 5.8: Results for the recalibrated baseline models on the unseen Test 2 set. RNN=recurrent
neural network, LSTM=long short-term memory, LR=Logistic regression model, RF=Random
Forest.

Model AUROC
mean(std)

AUROC
(95% CI)

AUPRC
mean(std)

AUPRC
(95% CI)

RNN 0.698 (0.014) (0.689, 0.706) 0.135 (0.010) (0.116, 0.155)
LSTM 0.651 (0.011) (0.644, 0.658) 0.120 (0.008) (0.105, 0.136)
LR demo only 0.580 (0.015) (0.571, 0.590) 0.080 (0.004) (0.073, 0.087)
RF demo only 0.575 (0.009) (0.570, 0.581) 0.080 (0.004) (0.072, 0.088)
LR CTV3 only 0.529 (0.018) (0.519, 0.540) 0.090 (0.010) (0.070, 0.110)
LR demo and CTV3 0.529 (0.014) (0.520, 0.537) 0.088 (0.006) (0.076, 0.100)
RF CTV3 only 0.528 (0.011) (0.521, 0.535) 0.086 (0.003) (0.080, 0.091)
RF demo and CTV3 0.518 (0.014) (0.510, 0.527) 0.083 (0.006) (0.071, 0.096)

hip replacement.

Subgroup analysis (patient stratification) was conducted on the recalibrated TG-CNN w/o ℓ1

model. See the Appendix for calibration curves (Figures B.1 - B.10) which demonstrate equi-

table performance across demographic subgroups. There seemed to be slight underprediction

in the female population compared to males, but overall, predicted risks were reasonable in a

large proportion of the population. Younger populations tended to experience more overpre-

diction, while individuals aged 60-70 exhibited the best calibration; however, those over 70 are

notably underpredicted. Regarding deprivation levels, IMD 1, 2, and 4 demonstrated the best

calibration, while IMD 5 overpredicted hip replacement and IMD 3 underpredicted, indicating
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Figure 5.7: The 10 most important features from the best Random Forest model. NOS=Not
otherwise specified.

no bias towards more or less deprived areas.

Figure 5.9 shows the converged upon γ values for each of the trained models. These values

demonstrate how proximity of visits effects each of the model differently.

5.4 Discussion

Finding patterns in MSK outcomes in the case of total joint replacement follow-ups, could be

vital to improve post-operative outcomes. A recent study showed that joint replacement routine

follow-up appointments are unnecessary 1-10 years after hip or knee replacement [219]. However,

the association between joint pain and health trajectories leading up to joint replacement is

currently not well known.

Yu et al. investigated predicting the risk of hip replacement among patients with OA or hip

pain in the UK using CPRD data. They developed cumulative incidence equations to forecast

the 10-year probability of hip replacement, narrowing down the model to 20 predictors for hip

replacement. They achieved an AUROC of 0.72 and a C-slope of 1.00. This study marked

the first clinical risk prediction model for hip replacement in patients newly presenting with

hip pain/OA in primary care. Hip injury strongly indicated future hip replacement risk [14].

Other models, such as those by [220] and [221], employ radiographic images for prediction.

Utilising TG-CNNs and EHR data from primary care services to predict hip replacement risk
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Figure 5.8: Top 10 most influential predictors from the best Logistic Regression model.

could reveal novel patterns associated with the procedure, thus enhancing predictive accuracy.

This approach could facilitate early intervention or triage for individuals showing potential hip

replacement indicators.

In a study on deep learning methods for handling irregularly sampled medical time series data

[222], linear regression, Random Forest, and SVMs showed predictive capabilities for health

outcomes but struggled with integrating irregular time data effectively. Conversely, T-LSTM

and DATA-GRUmodels were suitable for accommodating irregularly sampled data, with DATA-

GRU featuring implicit attention mechanisms that enhance interpretability. The TG-CNN

model generates informative features, evaluates events within their clinical context to reduce

reporting bias, and incorporates elapsed time between events to enhance predictive accuracy.

As Chapter 4 demonstrated the capability of predicting student dropout using MOOC data,

there is a key distinction in the medical domain when using EHRs. Click actions can only

occur sequentially, whilst multiple clinical codes can be recorded in a single visit, leading to

parallelism within graph networks.

The Random Forest and logistic regression models, though interpretable with top predictors

like hip pain, hip OA, OA, and tobacco smoking, showed poor AUROC and AUPRC. The Ran-

dom Forest model emphasised OA, smoking, and weight. Using demographics alone improved

performance slightly compared to using clinical codes in the recalibrated Random Forest and

logistic regression models. While these models performed competitively on the balanced train-
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ing set, their recalibrated application to Test 2 data led to poorer AUPRC results. Excluding

demographics in the TG-CNN model resulted in overfitting, indicating that including predictors

beyond basic demographic information may be beneficial. There is a known association between

sex, IMD, and age regarding the likelihood of needing a hip replacement if someone has OA,

justifying their inclusion.

The LSTM and RNN baseline models might have performed poorly due to time decay on events

occurring further in the past, weakening relationships with longer time intervals. Reversing the

input vector (such that more recent events were at the front instead of back of the tensor)

prevented convergence, indicating that the model may learn best from a mix of recent and

historical events. With simple RNNs, elapsed time cannot be included, so the events were fed

into the model as a sequence, leading to the loss of some temporal features. Including an LSTM

in the TG-CNN model could be beneficial for retaining distant clinical codes in memory rather

than focusing solely on recent ones.

Using an exponential function for elapsed time allows rescaling to avoid extreme values in

neural networks and mitigate potential under/ overflow issues with half-precision arithmetic.

The negative exponential ensures that actions taken quickly in succession have values close to

1, while those with greater temporal gaps are closer to 0. The model without the exponential

component achieved the highest validation AUROC with minimal difference from the training

set, suggesting no overfitting occurred. However, despite its success on balanced data during

training, it performed poorly during recalibration, leading to significant underprediction for

some patients. This suggests that excluding the exponential component reduces generalisability

to unbalanced datasets. It also implies that the time step (axis j of the 3D tensor representing

the temporal graph) requires the exponential component to recognise whether events are more

distant or recent.

Including the trainable γ parameter allows the model to shift the exponentially scaled value

of the elapsed time to optimise the model further. The γ value was expected to increase the

difference between the more recent and historical codes, such that older codes are scaled to be

smaller than more recent events which are inflated. However, the TG-CNN model without the

variable γ would not converge which suggested that the inflation/ shrinkage to the elapsed time is

too strong on the model and that past events may be more influential to the outcome prediction

than anticipated. Figure 5.9 shows that γ ranges between -0.1 and 0.15, this suggests very minor
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Figure 5.9: Average (and standard deviation) trained gamma (γ) value from cross-validation
from each of the TG-CNN models that incorporate γ.

scaling of the elapsed time is beneficial to the model, and that the more regularly positive γ’s

suggest that perhaps events happening closer in time are more important to prediction than

events further in the past. The LSTM helps preserve the memory of events happening further

in the past, so by not having the LSTM component in the model the γ value decreased to

compensate and give less importance to recent events as the prior events. This could be because

events far in the past are not well stored by the 3D CNN layer alone. Similarly, the prescriptions

model had an average negative γ, perhaps as larger gaps between codes are more important due

to the more recent codes being prescription related making it difficult to distinguish between

classes.

Incorporating prescriptions drastically increased the number of eligible records for the TG-CNN

model. Including prescriptions in the model may result in poor validation AUROC outcomes

because the graphs become inundated with prescriptions rather than diagnostic clinical codes.

Moreover, additional features could increase model complexity by expanding dimensionality,

potentially prolonging convergence time and yielding poorer results.

Elastic Net might not perform as effectively as ℓ2 regularisation alone, especially when handling

highly correlated features, as indicated by the good performance of the TG-CNN model without

ℓ1 regularisation. ℓ1 regularisation tends to select only one feature from a group of correlated

features, effectively disregarding the rest which is good for sparsity, as it can shrink values to

0. In contrast, ℓ2 regularisation penalises all feature coefficients, distributing the weight more
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evenly among correlated features without shrinkage to 0. Our custom graph regularisation

function ℓG seems to effectively prevent overfitting.

The model without a second stream would not converge, this shows that having a long and

a short stream is useful for seeing both large and small features. Having two different stride

lengths capture features at different scales. A fine branch with smaller strides might capture

finer details over each visit, while a coarse branch with larger strides captures broader patterns

and structures. Combining these branches allows the model to learn features at multiple scales

simultaneously, enhancing its ability to understand complex patterns in the data.

The TG-CNN model without elapsed time overfitted and exhibited a poor C-slope value, high-

lighting the significance of incorporating irregular elapsed time between clinical code recordings

as a crucial feature to enhance predictive performance.

The TG-CNN model utilises EHR data from primary care, allowing for the identification of

individuals at higher risk of future hip replacement. With this model, targeted preventative

care could be applied to slow progression, severity, or pain. Future research should investigate

clinical outcomes and potential interventions in primary care based on this model.

The TG-CNN model serves as an alternative to the current EHR-based hip prediction model

[14], enabling the infusion of temporality and trajectory. In future chapters explainability

is incorporated into this approach using the filters from the CNN layer, to enable further

trust in the model and explain why certain predictions may have occurred [223]. The next

chapter explores the reconfiguration of the TG-CNN model to determine the risk of hip or

knee replacement 5 years in advance, allowing healthcare professionals more time to apply

interventions and planning.

5.4.1 Limitations

When models predict health data outcomes it is important that they are validated appropriately.

Whilst metrics such as sensitivity, accuracy and AUROC are valuable they do not fully describe

the net impact for patients if the model predicts incorrectly. They also do not allow comparison

of how the model compares to real-world prediction, for example comparing against the accuracy

of a clinician’s predictions.

Decision curve analysis can also be informative to calculate the benefit of the model depend-
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ing on risk thresholds for clinical practice utilisation. What would the result be of a model

incorrectly predicting an outcome for a patient, could it worsen a patient’s health significantly?

What is the result of giving no intervention versus an unnecessary intervention? These can be

weighted to show which has a higher impact (benefit or harm) on patient health. Additionally

as some clinicians and patients have different perceptions of life impact, the thresholds can be

tailored to suit a wider range of audiences.

Ideally external validation should be carried out, this should involve a completely unseen dataset,

unrelated to the dataset that model training was performed on. Alternatively, chronological

splitting (testing the model at different stages of history) or splitting by health centre should

be carried out to ensure generalisability across different time, locations, and settings. External

validation was not feasible in this thesis as only one healthcare dataset with time stamps between

visits was available during this project, significantly more time would be required to apply and

get access to a secondary appropriate dataset.

Studies have indicated that knee OA may be diagnosed narratively (i.e., via free-text notes

written by clinicians) an average of three years before being codified in EHRs. Approximately

one-third of patients receive a narrative diagnosis of knee OA before a codified diagnosis appears

in their records [215]. The prevalence of knee OA nearly doubles when free-text notes are

included alongside clinical codes. From 2008 to 2019, the prevalence of narratively diagnosed

knee OA without a corresponding clinical code record increased from 2.92% to 5.60% [215].

Furthermore, GPs may lack the time to code diagnoses or symptoms during consultations, or

they may select incorrect codes, potentially leading to misclassification. Also events recorded on

a specific day in EHRs may not have actually occurred on that day, leading to inaccuracies in the

time between EHRs. To identify patients with OA earlier and more accurately, incorporating

narrative data into predictive models might be worth considering, rather than relying solely on

clinical codes.

Although multi-modal models that include imaging could be explored, healthcare constraints on

cost and time often make it more practical to work with faster-to-train models, which are easier

to recalibrate to prevent temporal drift. By utilising data readily available from EHRs, it is be-

lieved that implementation into routine primary care would become more feasible. Additionally,

while full imaging data could provide rich model predictors, metrics derived from images (which

are often reported in radiology assessments), may already capture highly predictive features.
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Using structured radiology data, rather than raw image inputs, could streamline model training

processes by reducing computational burden whilst maintaining predictive power [224].

Left censoring issues, whereby clinical codes are only available from a specific date onward,

may result in joint replacements that occurred prior to the analysis period going unrecognised.

Conversely, right censoring issues indicate that a hip replacement could take place shortly after

the analysis period, meaning that such patients may not be accurately classified as controls.

It should also be recognised that, even when a hip replacement is offered, some patients may

choose not to proceed. Consequently, health events could indicate the need for a replacement,

yet some patients may not undergo the procedure, introducing potential errors into the model.

The CTV3 clinical coding system is no longer being used, however, the TG-CNN methodology

described in this thesis could easily be transferred to other coding systems.

This dataset does not contain information on ethnicity, which is an important feature relevant

to healthcare outcomes in patients. Additionally, due to patient re-identification risks IMD

score is the only feature provided in this dataset to score socioeconomic status of patients,

however this is based on postcodes rather than individual-level deprivation so may not be an

accurate representation. The dataset does not include limb sidedness/ laterality so it cannot

be specified which leg has had the replacement. This means that a ‘primary replacement’ may

be someone’s second primary replacement (but on a different leg), the first record of primary

replacement is used to try and mitigate for this. The medical reasons for replacements or

whether the replacement was elective or not was not available, but this could give insights if a

replacement was due to trauma or other health conditions. A hip replacement may also be the

only way to reduce pain and improve mobility, but the existence of other co-morbidities may

be so severe as to potentially have higher surgical risk, such that the patient may not wish to

proceed. Additionally, if the patient has caring responsibilities, they might not wish to have

the surgery as they do not believe they will be able to have recovery time whilst caring.

5.5 Conclusion

The TG-CNN model can aid in clinical decision-making by targeting individuals at high risk

of future hip replacement for intensive non-surgical management or active monitoring, enabling

the application of preventive treatments and care. Implementing this model clinically may po-
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tentially reduce patients’ time in pain, enhance quality of life, and improve healthcare efficiency

and resource allocation.
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Chapter 6

Hip and Knee Replacement Risk

Prediction

6.1 Introduction

OA is associated with decreased physical activity, severe pain, and increased morbidity [26].

32.5% of those with hip OA and 16.7% with knee OA eventually require joint replacement [6].

In 2014, the UK National Joint Registry recorded 83,125 hip replacements, with each procedure

costing the UK NHS an average of £5,280, resulting in an annual expenditure of £438.9 million

for primary hip replacements alone [38, 50]. This cost is significant but essential to improve

patient quality of life [225]. In 2009, OA was the fourth most common reason for hospitalisation

[37]. 25% of adults are expected to develop symptomatic OA [37]. Pressures on hospitals will

rise and with more people in pain as OA prevalence increases with ageing populations [38, 39].

From 2003 to 2014, 708,311 primary total hip replacements and 772,818 primary knee replace-

ments were performed in the UK, with OA accounting for 93% and 96% of these procedures,

respectively [38]. The risk of knee replacement at time of knee OA diagnosis increases up until

age 62 then decreases, whilst hip replacement at time of hip OA diagnosis decreases linearly

the older the patient is [47]. Due to growing OA cases, unlicensed prescriptions are increasingly

issued as clinicians seek alternative painkillers to alleviate patient suffering [48].

Clinical prediction models can estimate an individual’s risk of future medical events, such as

diseases or drug success, prior to any physical tests. ML enables detection of health patterns
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utilising machine memory and processing power. Predicting the need for future hip or knee

replacements is valuable for resource planning, triaging, clinician decision-making, and early

intervention. For example, exercise therapy has been shown to reduce hip replacements by

44% [8], and early interventions like physiotherapy can improve patient quality of life and lower

surgery rates.

In the previous chapter, the TG-CNN methodology was introduced for the prediction of hip

replacement risk one-year in advance using EHR CTV3 codes and demographics from Re-

searchOne data. In this chapter, four separate models are created for hip and knee prediction,

with replacement risk predicted one and five years in advance, with more distant prediction

potentially allowing for better resource planning.

Predicting hip and knee replacements at different time horizons provides significant benefits

for both patients and healthcare systems. A five-year prediction window allows for early inter-

ventions that may delay or even prevent the need for surgery. Patients identified as high-risk

can be offered conservative treatments such as physiotherapy, weight management, and lifestyle

modifications, potentially improving joint health and slowing disease progression. Addition-

ally, long-term predictions enable healthcare systems to better allocate resources and plan for

future surgical demand. In contrast, a one-year prediction timeframe is particularly valuable

for short-term surgical planning, allowing hospitals to manage waiting lists, allocate resources

efficiently, and ensure patients receive timely care. Patients can also be better prepared for

surgery through prehabilitation, which can optimise surgical outcomes and recovery.

Extending the model to knee replacements is particularly important, as knee OA is more preva-

lent than hip OA and accounts for a significant proportion of joint replacement surgeries. Knee

replacements also have different recovery trajectories and rehabilitation needs, making tailored

prediction models essential. Identifying knee replacement candidates early can help mitigate

mobility loss, pain progression, and reduced quality of life, particularly given the functional

demands of the knee joint in daily activities. By incorporating both hip and knee replace-

ments across short- and long-term timeframes, this approach enhances patient care, improves

healthcare efficiency, and optimises overall outcomes.

The IMD score was included in these models as an indicator of sociodemographic status, based

on research showing that individuals with higher IMD scores (indicating less deprivation) were

less likely to have hip replacements [6]. This suggests a lower incidence among the more afflu-
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ent populations. However, this does not necessarily imply equity, as multiple factors influence

surgical access, including health-seeking behaviours, clinical decision-making, and availability

of healthcare resources. Individuals in higher deprivation groups tend to have greater muscu-

loskeletal disease burden and higher need for joint replacements [226], yet they may experience

barriers to accessing surgery, such as longer wait times, lower referral rates, and financial con-

straints affecting post-surgical recovery [227]. Consequently, while the incidence of hip replace-

ments may be higher in certain lower socioeconomic groups, this does not inherently indicate

equitable access.

Additionally, age is a critical predictor, with knee replacement risk peaking in 60-70 year olds,

and hip replacements peaking at 55 [38, 47]. Sex is also significant, as women were found to be

more likely to have joint replacements, comprising 60% of hip replacement surgeries and 57%

of knee replacements [38].

The aim of this chapter is to predict hip or knee replacement risk one and five-years in advance,

using CTV3 codes constructed as temporal graphs for prediction using the TG-CNN model.

The results from this model are compared to the current state-of-the-art in the literature, and

subgroup analysis is carried out to see the effect on model performance in different patient

groups.

6.2 Methodology

The methodology builds upon the approaches outlined in Chapters 4 and 5, applying the hip

replacement risk model to knee replacements and extending the prediction time frames to both

one year and five years in advance.

Sequences of CTV3 codes from EHRs were transformed into temporal multigraphs, framing hip

and knee replacement risk prognosis as a graph classification problem. Each temporal graph,

representing an individual, was classified to provide risk probabilities.

CTV3 codes were used as graph nodes V , while temporal edges E captured time intervals

between code occurrences, measured in months, and represented in a 3D tensor G(i, j, k) = tk,

where i, j ∈ {1, . . . , n} indicate graph nodes, and tk is the time elapsed for the kth edge. This

temporal multigraph was then inputted into the TG-CNN model, which included a 3D CNN and

an LSTM unit to process CTV3 codes and time intervals from EHRs. The 3D CNN captured
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short-term temporal patterns, while the LSTM processed longer-term associations. For full

technical details of the TG-CNN model and methodology, refer to Chapter 5.

6.2.1 Literature Review

When reviewing the current literature in the area the following research question was asked:

What predictive methods and models are used to assess an individual’s future risk of primary

hip or knee replacement before secondary care referral?

Ovid MEDLINE, Scopus, Web of Science and IEEE Xplore were searched on 25/10/2024 for

articles predicting hip and knee replacement risk using the following search string:

(“individual risk” OR “personali$ed risk” OR “future risk” OR “replace* risk”) AND (“machine

learning” OR “statistical models” OR algorithms OR “predict*” OR “model” OR “risk model”

OR “risk prediction” OR “AI” or “artificial intelligen*”) AND (“THR” OR “THA” OR “hip

arthroplast*” OR “TKR” OR “TKA” OR “knee arthroplast*” OR “hip replace*” OR “knee

replace*”)

Titles and abstracts were screened first, then full-texts were screened looking for papers that

met the research question criteria. Papers were included if they were written in English and

gave a future risk score for hip or knee replacement. Papers were excluded if risk prediction was

for other outcomes rather than primary hip replacement, e.g., revision, mortality. Papers were

also excluded if they explored associations or thresholding rather than developing or validating

predictive models at an individual level.

Grey literature and literature reviews were included in the search to get a wide overview of

current methodologies being explored. Relevant papers were extracted from reviews, using the

snowballing technique.

6.2.2 Dataset

Similarly to Chapter 5, this chapter also uses NHS primary care data from ResearchOne [13].

For each of the four models produced in this chapter, the data is randomly shuffled to obtain

the training (90%) and testing (10%) data sets. The data used in the hip one year in advance

model of this chapter is different to the split used in Chapter 5, due to using longer patient

EHRs in this chapter.
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6.2.3 Patient Inclusion Criteria

Patients were required to have had at least two primary care visits within either one or five

years (depending on the model) prior to undergoing a hip or knee replacement (partial or full),

to ensure that graphs with at least one relationship between two visits can be established.

Without two visits a EHR graph-representation cannot be established which is required for

this model. Clinician-selected CTV3 codes for primary hip replacement and knee replacement

were used to identify the outcome, with the incident date defined as the first occurrence of one

of these codes. These codes for hip replacement are provided in Appendix B Tables B.1-B.2

and the knee replacement codes are provided in Appendix C Table C.1. The initial recorded

instance of a hip or knee replacement was used as the outcome. The dataset exhibited an

imbalanced case-control split, reflecting a common challenge in clinical research where, despite

the high prevalence of the underlying condition, the proportion of patients undergoing hip or

knee replacement is relatively small.

Patients were removed if they had a CTV3 code referring to a revision/ modification of a hip

or knee replacement before a code suggesting primary replacement. If a patient had a revision

for a joint but no primary joint replacement they were removed from the control group. See

Figure 6.1 for the inclusion flowchart for patients included the hip one year in advance dataset.

6.2.4 Training and Test Set Formation

Two test datasets were generated for the two knee replacement models from the ResearchOne

data, with a random 10% selected for the test data. 6.3% knee replacement patients were in

the one-year in advance test dataset and 4.3% in the five-year in advance. For hip replacement

patients, the test datasets included 7.4% replacements in the one-year in advance group and

4.5% in the five-year in advance group. The remaining data was assigned to the training set,

where each joint replacement patient was matched to a control. One-to-one exact matching was

performed for age, sex, and IMD to mitigate their influence on joint replacement and ensure

that prediction performance was not affected by differences in these variables. The model was

then trained on this balanced dataset, using 5-fold cross-validation, with one fifth of the data

iteratively used as holdout/validation data to evaluate model performance. After training and

optimisation, each model was recalibrated using a LR generalised linear model to adjust risk

probabilities for the shift from balanced to unbalanced case-control data [228]. Complete case
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Figure 6.1: Hip one year in advance patient inclusion flowchart.
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analysis was employed to estimate the marginal effect of hip or knee replacement, under the

assumption of no mortality to reduce competing risks as the mortality rate was only 0.007%.

If a patient dies before undergoing joint replacement, including them could introduce noise or

bias as the true replacement outcome is unknown. Similarly, risk estimates could be skewed if

mortality is included, particularly if death is associated with factors linked to joint replacement

risk, such as serve comorbidities.

6.2.5 Model Predictors

To forecast replacements occurring one year in advance, the specific time of the replacement

was identified and all available patient records from 1999 up to one year prior to the primary

replacement date were gathered. Similarly, when predicting replacements five years in advance,

records from 1999 to five years before the replacement event were retrieved.

The most used 512 CTV3 codes (out of 2,353 possible CTV3 codes), covering 99.46% of the

recorded data, were selected to construct temporal graph-based EHR representations for each

patient. Medications were appended as 6 predictors (potential graph nodes) using BNF codes,

grouping drugs into opioids (04.07.02), Non-opioid Analgesics (NOAs) (04.07.01), and NSAIDs

(10.01.01), these were further sub-grouped into acute and repeat prescription types. Each of the

512 CTV3 codes and 6 prescription types were mapped to a unique node v1, v2, . . . , v518, with

the tensor size limited to an input of 518× 518× 200. For demographic predictors all available

demographics were used from the dataset including age, sex, and IMD. With the inclusion of 6

prescription types and 3 demographics, the total number of predictors was 521.

CTV3 hospital referral codes associated to hip or knee replacement, were excluded to prevent

target leakage (where labels are included as predictors).

In Chapter 5, an ablation study was carried out to test the effect of various components on

the model’s performance. The best model from that study (TG-CNN w/o ℓ2) was used and

prescription records included. Previously including prescriptions prevented the model from

converging. However, including repeat and non-repeat drug prescriptions of NSAIDs, opioids

and NOAs is useful, because although they could be prescribed for numerous reasons, they are

a good indication of pain levels in patients.

Events occurring further in the past may have a diminishing impact on recent events, because of

this models predicting patient outcomes prioritise recent events [110]. The previous chapter was
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limited to using the 100 most recent primary care visits per patient to manage computational

load. This chapter explores the number of time steps/visits inputted into the model, it was

hypothesised that increasing the number of visits would enable the model to converge and learn

more since the prescription data would not outweigh the other EHR data in the graphs. To

determine the optimum number of time steps/visits the distribution of time covered by the full

patient history within the analysis period was investigated, observing the difference between

the number of years covered in the full history versus the last 100, 150 and 200 primary care

visits. This was shown as the percentage and amount of time the EHR covered for each option.

The effect on calibration from length of a patients history periods was explored to determine if

temporally longer EHR histories improve model accuracy. The batch size was lowered from 128

to 64 to enable the model to run without memory errors due to the increased number of time

steps included.

6.2.6 Model Evaluation

The hip and knee prediction models were tested, both one and five-years prediction in advance,

with and without prescriptions, totalling 8 models. 3 baseline models: RFs (demographics,

prescriptions and CTV3 codes), LR (demographics, prescriptions and CTV3 codes), and RNN

models (prescriptions and CTV3 codes using cross-sectional data without elapsed time) were

used as comparison models due to their limitations.

A systematic search was carried out looking for research to compare the results of the TG-CNN

model to as outlined in section 6.2.1.

Calibration was used to assess risk estimate reliability, by comparing the agreement of the true

number of hip/knee replacements to the predicted number of replacements. For discriminative

performance the AUROC was used, which tests how well the model gives higher risks for case

patients and lower risks for control patients, alongside AUPRC which quantifies the model’s

ability to balance precision and recall across different thresholds. The out-of-sample predictive

performance (data not used in model training) was used to compare recalibrated model results.

No information regarding primary care location was provided therefore cluster analysis was

not performed. However, AUPRC, AUROC and calibration curves for sex and IMD quintile

subgroups for the TG-CNN models were provided.
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6.3 Results

6.3.1 Literature Review Results

Inputting the search string into databases resulted in 1,613 papers being returned (Scopus

(N=612), Ovid (N=369), Web of Science (N=608), IEEE Xplore (N=24)). 783 papers were

removed during deduplication, leaving 830 papers for title and abstract screening. After title

screening 91 papers were left. After abstract screening six papers remained. One of these papers

were literature reviews [229], from which snowballing of references was performed but no extra

research question relevant papers were found, totalling five full papers to screen. See Figure

C.1 in Appendix C for our PRISMA flowchart [157]. In total, five papers discussed methods to

give personalised future hip or knee replacement risk.

Many of the non-eligible papers were predicting risks of complications, revisions, readmissions,

mortality, implant size, and other outcomes following total joint replacement, rather than pre-

dicting total joint replacement risk.

6.3.2 Study Population

More than half of the patients across all models were female, with 62.2% in the hip one year

model, 61.7% in the hip five years model, 60.6% in the knee one year model, and 60.9% in the

knee five years model. The mean age of patients was similar across groups, ranging from 71 to

72.5 years. The age at replacement was slightly lower, with a means between 69.2 to 70.6 years.

The median age ranged from 71 to 73 years, with an age range of 43 to 90 years. The mode age

was consistently between 75 and 88 years across the models.

Patients living in more deprived regions (IMD 1) visited primary care on average less frequently

(54.6 ± 56.5) than people living in less deprived regions (IMD 5) (82.9±73.9). Pearson correla-

tion analysis gave a 0.992 correlation between number of visits and IMD score, similarly there

was a 0.987 correlation between number of records and IMD score. These results suggest that

there is a strong correlation between IMD score and primary care utilisation. See Table 6.1 for

details on average visits and records based on IMD score.

Table 6.2 displays characteristics of the cohort data included in model training and testing.

Table 6.3 provides further details of characteristics grouped by training and testing dataset,

with and without prescriptions.
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Table 6.1: Average and median number of visits and records for each index of multiple depri-
vation (IMD) quintile.

IMD Quintile Number of
Records
(Mean ±

SD)

Number of
Records
(Median

[min, max])

Number of
Visits (Mean

± SD)

Number of
Visits

(Median
[min, max])

1 (Most Deprived) 84.3 ± 104.1 47 [1, 1627] 54.6 ± 56.5 34 [1, 642]
2 95.0 ± 115.5 53 [1, 1710] 60.1 ± 61.6 37 [1, 880]
3 106.3 ± 125.6 60 [1, 2302] 65.6 ± 64.8 42 [1, 1005]
4 122.0 ± 135.1 73 [1, 1989] 73.4 ± 69.5 50 [1, 926]

5 (Least Deprived) 144.4 ± 150.4 92 [1, 2361] 82.8 ± 73.9 59 [1, 2217]

6.3.3 EHR Coverage

Figure 6.2 suggests that kmax=200 enabled the best coverage of patient EHRs with everyone

having at least 25% of their record covered and less than 1% of patients having incomplete EHR

coverage between 1999 and 2014. Figure 6.3 shows that on average patients had more than 6

years’ worth of EHRs between 1999 and 2014.

Figure 6.2: Percentage of EHR covered by
including different numbers of visits (100,150
and 200) one year in advance for hip replace-
ment prediction.

Figure 6.3: Observation period for one-year in
advance hip replacement prediction, exploring
coverage based on different numbers of visits.
The distribution of the length of time observed
within 15-year EHR data is shown when using
the last 100, 150, and 200 GP visits, compared
to full coverage.

In terms of full temporal coverage, when using the last 200 visits the hip one year in advance

model had 98.71% coverage, the hip five year model had 98.38%, the knee one year model had

98.55%, and the knee five year model had 98.50% coverage.

The effect on calibration based on the number of years covered in the last 200 primary care
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visits (one or five years prior to replacement) was explored. Figures 6.4-6.8 show the calibration

curves for the four hip and knee prediction risk models. When the model is calibrated on

patients with between 0-2 years worth of EHR coverage in their 200 visits the models appear to

over-predict replacement risk. This effect is seen again in those with 8-15 years worth of records.

The other three periods show under-prediction of the outcome risk. Patients with between 2 to

4 years worth of EHRs have the best calibration compared to the other periods. Though it is

worth noting that the cohort with 8-15 years covered by their EHR mostly contains individuals

with a negative outcome (no hip or knee replacement), as the last one or five years are removed

from EHRs input data due to the prediction period. This makes it more likely that a patient’s

outcome will be over-predicted if they belong to the negative class.

Figure 6.4: Calibration curves for individuals
with 0 to 2 years of EHRs coverage.

Figure 6.5: Calibration curves for individuals
with 2 to 4 years of EHRs coverage.

6.3.4 Model Performances

Table 6.4 shows the AUPRC, C-slope, and AUROC values and Table 6.5 shows the PPV,

sensitivity and specificity for each of the TG-CNN and baseline models. In some cases, the

baseline models had better AUPRC than the TG-CNN models (LR hip one year in advance,

LR knee one year in advance, Random Forest knee five years in advance, and LR knee five years

in advance models). Figures 6.9-6.12 show the calibration curves from all the TG-CNN and

baseline models in Table 6.4. It is vital to plot calibration curves [230], as it can be observed that

the TG-CNN models fitted the population well, whilst the baseline models had poor calibration.

All TG-CNN models without prescriptions, except the hip five-year advance model, predicted
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Figure 6.6: Calibration curves for individuals
with 4 to 6 years of EHRs coverage.

Figure 6.7: Calibration curves for individuals
with 6 to 8 years of EHRs coverage.

no patients would need a replacement (PPV = 0). The hip five-year advance model had the

highest sensitivity among all models. Logistic regression outperformed all models except the

hip five-year advance model. The LR and Random Forest models underestimated the actual

risk of needing hip or knee replacement, whilst the RNN model overestimated the actual risk.

The hip five-year in advance prediction LR model had good calibration, however the other

baseline models with C-slope values close to 1 were largely due to non-linear calibration. Figure

6.14 show sensitivity and specificity scores for each probability threshold for the TG-CNN and

Figure 6.15 for the Logistic regression models.

All models within each prediction time and joint replacement type had non-overlapping confi-

dence intervals when comparing AUPRC confidence intervals with and without prescriptions,

suggesting there was a significant difference when including prescriptions in the model. The

C-slope confidence intervals overlapped slightly in the five years in advance models for both hip

and knee risk prediction.

Subgroup analysis showed that females had higher AUPRC scores than males in both the hip

and knee models. For the hip one-year model, females had higher AUPRC (0.447), compared

to males (0.352). The hip five-year model showed females had slightly better predicted AUPRC

(0.894) versus males (0.864). In the knee one year model females had an AUPRC of 0.400,

whilst males scored 0.303. The knee five-year model gave females an AUPRC of 0.481 and

males 0.403. The models for the IMD 4 group often performed the best, while IMD 1 and IMD

135



6.3. Results Chapter 6. Hip and Knee Replacement Risk Prediction

Figure 6.8: Calibration curves for individuals with 8 to 15 years of EHRs coverage.

2 frequently showed lower AUPRC scores. See Figure 6.13 for the forest plots of the subgroup

AUPRCs. For subgroup calibration curves see Figures C.2-C.8 in the Appendix. In the hip

one-year model, patients within the IMD 4 subgroup had the highest AUPRC (0.495), whilst

IMD had the lowest (0.373). The hip five year and knee one year had the highest AUPRC in the

IMD 3 subgroups (0.909 and 0.423, respectively), and lowest AUPRC in the IMD 2 subgroups

(0.864 and 0.288, respectively). The knee five-year model had the highest AUPRC in the IMD

4 subgroup (0.530), and the lowest AUPRC scores in the IMD 2 subgroup (0.346). The hip five-

year model had the best generalisability across subgroups, with all subgroups having AUPRC

scores over 0.864. The knee one year model had the next smallest AUPRC subgroup range

between 0.288 and 0.430, followed closely by the hip one-year model (0.352-0.495), and then

finally the knee five-year model (0.346-0.530).

Five papers were identified as relevant to our systematic search research question [15, 231, 232,

233, 234]. The model with the best performance for hip and knee replacement risk was the

Oxford Knee and Hip Score (OKHS) model [231], with AUROCs of 0.87 and 0.83 for hip and

knee prediction. The TG-CNN model outperformed the current state of the art risk prediction

tools for hip and knee replacement by up to 0.1 and 0.13 (AUROCs), respectively.
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Figure 6.9: Calibration curves for the TG-
CNN models for hip replacement risk.

Figure 6.10: Calibration curves for the base-
line models for hip replacement risk.

Figure 6.11: Calibration curves for the TG-
CNN models for knee replacement risk.

Figure 6.12: Calibration curves for the base-
line models for knee replacement risk.
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Table 6.2: Replacement prediction model cohort characteristics. The BMI statistics are derived
from the last recorded BMI measurement of each patient. The first recorded IMD value for each
patient was used, given its stability over time. BMI=body mass index, IMD=index of multiple
deprivation, std=standard deviation.

Hip 1 Year Hip 5 Years Knee 1 Year Knee 5 Years
Characteristic (N=33,074) (N=24,732) (N=30,492) (N=24,370)

Sex: female (N (%)) 20,562 (62.2) 15,252 (61.7) 18,482 (60.6) 14,837 (60.9)

Hip/Knee
replacements (N (%))

10,206 (30.9) 5,857 (23.7) 8,723 (28.6) 5,543 (22.7)

Age, y
mean (std) 72.5 (9.9) 71.4 (10.2) 72 (9.8) 71 (9.9)
median (min,max) 73 (53,89) 71 (53,89) 72 (53,89) 71 (53,89)
mode 88 88 88 66

Age at replace, y
mean(std) 69.2 (8.5) 70.6 (8.5) 68.9 (8.1) 69.6 (8.2)
median (min,max) 70 (43,90) 71 (48,90) 69 (46,89) 70 (47,89)
mode 77 77 75 75

BMI (N (%))
Severely obese 1,017 (3.1) 792 (3.2) 1,205 (4.0) 943 (3.9)
Obese 9,480 (28.7) 7062 (28.6) 9,538 (31.3) 7,474 (30.7)
Overweight 12,208 (36.9) 9101 (36.8) 10,948 (35.9) 8,775 (36.0)
Healthy weight 8,193 (24.8) 6052 (24.5) 6,855 (22.5) 5,578 (22.9)
Underweight 544 (1.6) 416 (1.7) 437 (1.4) 367 (1.5)
Missing 1,632 (4.9) 1309 (5.3) 1,509 (4.9) 1,233 (5.1)

IMD, quintile (replacements / total (%))
1 (most deprived) 2749/8301

(33.1)
1588/6104
(26.0)

2021/7007
(28.8)

1280/5611 (22.8)

2 2546/7836
(32.5)

1452/5753
(25.2)

2035/6966
(29.2)

1282/5515 (23.2)

3 2246/7125
(31.5)

1267/5128
(24.7)

1937/6544
(29.6)

1234/5172 (23.9)

4 1493/5116
(29.2)

852/3876
(22.0)

1435/5002
(28.7)

919/4057 (22.7)

5 (least deprived) 1172/4696
(25.0)

698/3871
(18.0)

1295/4973
(26.0)

828/4015 (20.6)

Events Recorded
mean(std) 58.0 (91.8) 61.9 (97.5) 66.5 (99.8) 63.9 (95.4)
median (min,max) 23.0 (2,1890) 24.0 (2,1255) 29.0 (2,1494) 29.0 (2,1890)
mode 2 2 2 2
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Table 6.3: Extra dataset information. Where ‘max # records’ is the maximum number of records
a single patient has. CV=cross-validation data set, SD=standard deviation, w drugs=with
drugs, w/o=without, IMD=index of multiple deprivation score.

Knee 1 year Knee 5 years Hip 1 year Hip 5 years

# with a revision but no
replacement

71 71 161 161

# with a revision before
a primary replacement
code

31 31 36 36

# patients with mortal-
ity

1,036 1,036 1,038 1,038

# patients with no IMD
score

19 19 19 19

# patients excluded due
to code coverage

5 / 150,404 5 / 150,404 5 / 150,305 5 / 150,305

# replacement patients
before windowing

10,243 10,243 12,706 12,706

# replacement patients
after windowing

9,323 6,806 11,220 7,551

# patients in CV set
(case | control)

7,851 | 7,851 4,949 | 4,949 9,196 | 9,196 5,243 | 5,243

# patients in test set
(before halving) (case |
control)

872 | 6,959 594 | 6,939 1,010 | 13,673 615 | 13,633

Full time coverage 98.55% 98.50% 98.71% 98.38%

CV set max # records
(w/o drugs)

210 154 218 154

CV set mean (SD) #
records (w/o drugs)

7 (10) 5 (7) 6 (9) 5 (6)

CV set median records
(w/o drugs)

3 2 3 2

CV set max # records
(w drugs)

524 303 471 246

CV set mean (SD) #
records (w drugs)

23 (36) 14 (23) 17 (31) 11 (20)

CV set median records
(w drugs)

5 3 4 3

Test set max # records
(w/o drugs)

191 399 233 399

Test set mean (SD) #
records (w/o drugs)

18 (15) 18 (16) 18 (15) 18 (16)

Test set median records
(w/o drugs)

14 14 13 14

Test set max # records
(w drugs)

622 741 889 620

Test set mean (SD) #
records (w drugs)

47 (54) 47 (54) 47 (56) 49 (55)

Test set median records
(w drugs)

26 27 26 27
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Table 6.4: AUPRC, C-slope and AUROC results for the models on the unseen test data set.
AUPRC thresholds based on prevalence for each dataset are as follows: hip one year = 0.069,
hip five years = 0.227, knee one year = 0.059, knee five years = 0.041 (AUPRC scores lower
than their respective threshold can be deemed as uninformative models). The best scores for
each replacement and year in advance type for each performance metric (columns) are given in
bold. Prescriptions (prescript). RF=Random Forest.

Model AUPRC [95% CI] C-slope [95% CI] AUROC [95% CI]

Hip 1 year in advance

TGCNN with prescript 0.409 [0.366, 0.451] 0.976 [0.970, 0.983] 0.919 [0.918, 0.920]
TGCNN w/o prescript 0.192 [0.164, 0.219] 1.075 [1.065, 1.084] 0.734 [0.732, 0.736]
RNN with prescript 0.293 [0.260, 0.325] 1.050 [1.040, 1.061] 0.895 [0.894, 0.896]
RF with prescript 0.431 [0.389, 0.472] 0.996 [0.990, 1.001] 0.933 [0.932, 0.933]
LR with prescript 0.477 [0.428, 0.525] 0.995 [0.989, 1.001] 0.938 [0.937, 0.938]

Hip 5 years in advance

TGCNN with prescript 0.879 [0.833, 0.924] 1.047 [1.034, 1.061] 0.967 [0.966, 0.968]
TGCNN w/o prescript 0.762 [0.704, 0.820] 1.059 [1.046, 1.072] 0.913 [0.911, 0.915]
RNN with prescript 0.184 [0.158, 0.209] 1.073 [1.059, 1.088] 0.894 [0.893, 0.895]
RF with prescript 0.567 [0.507, 0.627] 0.969 [0.961, 0.978] 0.969 [0.968, 0.969]
LR with prescript 0.620 [0.564, 0.676] 1.021 [1.010, 1.032] 0.973 [0.973, 0.973]

Knee 1 year in advance

TGCNN with prescript 0.353 [0.302, 0.403] 0.997 [0.989, 1.005] 0.915 [0.914, 0.916]
TGCNN w/o prescript 0.140 [0.115, 0.165] 1.094 [1.077, 1.110] 0.661 [0.658, 0.664]
RNN with prescript 0.193 [0.171, 0.216] 0.901 [0.892, 0.910] 0.864 [0.863, 0.866]
RF with prescript 0.335 [0.294, 0.376] 0.953 [0.948, 0.958] 0.925 [0.924, 0.926]
LR with prescript 0.374 [0.326, 0.423] 0.965 [0.959, 0.972] 0.928 [0.927, 0.929]

Knee 5 years in advance

TGCNN with prescript 0.442 [0.382, 0.503] 0.980 [0.970, 0.991] 0.955 [0.954, 0.956]
TGCNN w/o prescript 0.238 [0.199, 0.277] 0.990 [0.981, 0.999] 0.856 [0.853, 0.858]
RNN with prescript 0.146 [0.126, 0.166] 0.951 [0.938, 0.965] 0.860 [0.859, 0.862]
RF with prescript 0.467 [0.410, 0.524] 0.997 [0.989, 1.004] 0.963 [0.963, 0.964]
LR with prescript 0.500 [0.438, 0.561] 0.975 [0.966, 0.984] 0.965 [0.965, 0.966]
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Table 6.5: PPV, sensitivity and specificity results for the models on the unseen test data set.
RF=Random Forest, LR=logistic regression.

Model PPV Sensitivity Specificity

Hip 1 year in advance

TGCNN with prescript 0.474 0.232 0.981
TGCNN w/o prescript 0.000 0.000 1.000
RNN with prescript 0.100 0.002 0.999
RF with prescript 0.497 0.194 0.986
LR with prescript 0.586 0.255 0.987

Hip 5 years in advance

TGCNN with prescript 0.822 0.836 0.947
TGCNN w/o prescript 0.752 0.655 0.937
RNN with prescript 0.000 0.000 0.999
RF with prescript 0.726 0.319 0.995
LR with prescript 0.725 0.336 0.994

Knee 1 year in advance

TGCNN with prescript 0.528 0.108 0.994
TGCNN w/o prescript 0.000 0.000 1.000
RNN with prescript 0.000 0.000 0.996
RF with prescript 0.392 0.128 0.987
LR with prescript 0.550 0.126 0.994

Knee 5 years in advance

TGCNN with prescript 0.525 0.209 0.992
TGCNN w/o prescript 0.000 0.000 1.000
RNN with prescript 0.000 0.000 1.000
RF with prescript 0.649 0.205 0.995
LR with prescript 0.680 0.236 0.995
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Figure 6.13: Forest plot showing area under the precision recall curve (AUPRC) scores and
95% confidence intervals for each of the TG-CNN models (with prescription data included) and
subgroups.
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Figure 6.14: Sensitivity and specificity plots for the TG-CNN models at each probability thresh-
old. The hip five years in advance models have the best sensitivity and specificity across the
thresholds.
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Figure 6.15: Sensitivity and specificity plots for the Logistic regression models at each proba-
bility threshold.
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6.4 Discussion

This study demonstrates that hip and knee replacement risk can be predicted one or five years in

advance using CTV3 codes, demographic, and prescription data from individual patient history

using up to 200 of their historical primary care visits. Predicting replacement risk five years in

advance gave better predictive performance than one-year in advance in all models except the

RNN model. Prediction five years in advance in the hip model may have improved performance

due to higher hip replacement prevalence in this group (0.069) compared to the one-year group

(0.227). The TG-CNN produced the best calibration curves for hip and knee replacement risk

prediction.

The performance of the models predicting joint replacement five years in advance was expected

to perform worse than the one year in advance model, due to having less data and patterns to

pick up relevant to replacement risk prediction. This could be due to the five years in advance

models having less noise, more long-term predictors, reduced overfitting, or it being able to

focus on long-term health deterioration which may be a clearer target for joint replacement

prediction.

Subgroup analysis revealed that the model performed slightly worse on males than females, this

could be in part due to there being a higher population of women who have joint replacements.

Females could also have clearer trajectories aligning to future joint replacement requirement

due to hormonal and bone mass density changes [235], leading to higher rates of osteoporosis

[236]. Previous association studies have also found that being female and being over 60 increases

risk of knee replacement [50]. Subgroup analysis also showed that patients in the IMD 4 group

often had the better performing model, whilst the patients living in the more deprived regions

(IMD 1 and 2) had worse performance. Hip and knee replacement prevalence was mostly

higher in the IMD 1 and 2 groups, suggesting that it was harder to identify individuals at risk

of requiring a joint replacement in these groups. The data used in this study showed more

frequent visits and larger numbers of records in less deprived population groups. This could

be because people living in more deprived areas may have less access to primary care facilities,

leading to less EHR data for these patients [237, 238]. Future work of outcome pathways relative

to subgroups could be carried out using causal inference alongside predictive models. Correcting

for class imbalance by resampling has been shown to over-estimate risk and may not improve

estimations during re-calibration on some models [239], however the TG-CNN model showed
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promising performance improvement after re-calibration on the out-of-sample imbalanced data

despite training on balanced data. Additionally, though re-calibration can improve calibration,

discrimination is not effected [239].

6.4.1 Related Work

Over 20 models have been developed to predict hip (N=4), knee (N=22), or generic joint (N=1)

replacement using secondary care data. Predictors in these models include: radiographic details

of structural tissue damage (e.g., cartilage, bone marrow and meniscus) [27, 63, 220, 234, 240,

241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256], ultrasonography

[27], demographic data [27, 63, 234, 240, 241, 244, 251, 253, 257], NSAID use [63], occupation

[63], physical activity [63, 244], knee alignment [63], knee extensor and flexor strength [63],

Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score [63, 234,

252, 257, 258, 259], OA (Kellgren-Lawrence grade ≥ 3) [63, 220, 234, 241, 244, 246, 247, 258],

Comorbidities [63], anterior cruciate ligament rupture [63], clinical symptom data [27, 234,

241, 244, 247, 248, 251, 254, 257, 258, 260], hip shape [261], and stability [254]. Models used

to predict hip and knee replacement using secondary care data included: Cox Proportional

Hazards [27, 234, 240, 243, 244, 255, 256], LASSO [253, 262], RFs [262], CNNs [252, 262],

RNNs [262], LR [63, 220, 241, 242, 246, 248, 250, 254, 261], deep CNNs [249, 260], clustering

[257], unsupervised data augmentation [245], gradient boosting machine [251], DeepSurv [247],

and artificial neural network [258] models. These models had predictive AUROC performances

between 0.79-0.94, with the hip replacement risk 9-years in advance deep CNN model [260]

having the best performance.

The Oxford Knee and Hip Score (OKHS) was used to screen patients for surgical or non-surgical

hip and knee referrals through brief patient surveys regarding pain and mobility, achieving

AUROC scores of 0.83 and 0.87 for knee and hip referral types, respectively [231].

A Fine and Gray competing risk prediction model was developed using factors such as age,

previous knee replacement, non-replacement knee surgery, OA prescriptions, comorbidity index,

and mental health to estimate the five-year risk of total knee replacement, yielding an AUROC

of 0.67 [232].

Cumulative incidence equations were applied to estimate the 10-year risk of requiring a hip or

knee replacement in individuals with OA and/or hip or knee pain. The model was refined to 20
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predictors for hip replacement and 24 for knee replacement, resulting in an AUROC of 0.72 for

hip replacement and 0.78 for knee replacement. Strong predictors of increased knee replacement

risk included oral NSAIDs, opioid analgesic prescriptions, intra-articular injections, and prior

arthroscopic knee surgery within three years before the index consultation, while a history of

hip injury strongly indicated future hip replacement risk [233].

For patients with OA, a knee replacement risk model using Random Survival Forests achieved

an AUROC of 0.807 by incorporating predictors such as sex, age, education level, BMI, occupa-

tional activity, smoking, history of stroke, diabetes, heart attack, pain medication, knee injury

and surgery, knee pain and stiffness, and walking aid use. SHAP identified pain medication,

age, surgery, diabetes, and BMI as the highest risk factors for knee replacement [263].

Total knee replacement risk was also modelled using separate primary care and secondary

care predictors in patients with knee pain in the previous three months. Cox proportional

hazard models, based on demographic data (age, sex, race), knee arthroscopy history, knee pain,

analgesics use, glucosamine use, BMI, and WOMAC pain score for the primary care model, and

on demographics, knee pain, analgesics use, WOMAC pain score, and Kellgren-Lawrence grade

for the secondary care model, showed that the secondary care model significantly outperformed

the primary care model, with an AUROC of 0.87 compared to 0.79 [234].

The TG-CNN models improved upon the existing hip and knee replacement risk prediction

models in this area by considering additional predictors such as IMD score, prescriptions, and

512 CTV3 codes. Also, the focus was extended beyond only OA patients or patients with recent

joint pain. Whilst OA and joint pain hugely contribute to joint replacement, they are not the

only valuable predictors. Increasing the number of predictors (in our cases CTV3 codes) helps

cover a wider range of patient trajectories and making it less likely to miss patients that may

have more unusual pathways to replacement. Primary hip and knee replacement for both partial

and full replacement was covered in this work, rather than just total replacement. Using graphs

enables incorporation of temporality in pathways, such that CTV3 codes can be repeated at

different time steps rather than a binary indicator each predictor. For example, by having a

painkiller prescription recorded across multiple visits pain severity can be estimated, as pain

is associated to hip replacement procedures [264]. The TG-CNN model provides individual

trajectory importance, i.e. what parts of a patient’s pathway has led to the predicted risk

outcome, rather than a global predictor importance, to provide clearer explainability and help
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inform clinical decision making. Predictors covering mental health conditions such as anxiety

and depression were also included.

6.4.2 Limitations

One of the largest limitations of this work is the lack of external validation, this model has

not been tested on an external dataset, however using out-of-sample data on the re-calibrated

model gives suggests good performance on new data.

The dataset used did not contain ethnicity information which is a beneficial predictor of hip

replacement as some ethnic groups are more prone to specific conditions. This could be infor-

mative to give clinicians and patients explainability of the model’s risk decision. Only CTV3

codes and limited demographic information were used, however including images and/or imag-

ing reports may be more informative to replacement prediction [234, 261], though the benefit

of using CTV3 codes is minimisation of invasive or costly screening methods by predicting re-

placement at primary care level earlier and before severe degradation occurs. The regions or

practices the ResearchOne dataset cover were not provided, and this dataset is smaller than

datasets such as CPRD. These models were also trained on true replacement dates, rather than

optimum surgery times, this meant that waiting times were not considered.

CTV3 codes are no longer used, however this model could be retrained or revalidated in future

research with alternative clinical codes using the same methodology as provided in this thesis.

While the 512 CTV3 codes covered 99.46% of recorded clinical events, we did not assess the

impact of using fewer codes. However, given the high coverage, rerunning the analysis was

unlikely to provide additional insights.

Obesity significantly impacts OA progression, co-morbidities, and surgical decisions due to

interconnected physiological and behavioural factors. Excess weight increases mechanical stress

on weight-bearing joints, particularly the knees and hips, accelerating cartilage degradation and

contributing to OA development [265]. Obesity also affects blood sugar regulation, with insulin

resistance and chronic inflammation impairing cartilage repair mechanisms, further exacerbating

joint deterioration [266]. Obesity is also linked to cardiovascular fitness, which influences surgical

eligibility and recovery outcomes. Patients with obesity often experience reduced mobility,

limiting their ability to engage in joint-preserving physical activity. However, certain high-

impact exercises may also accelerate joint damage, therefore patients should partake in activities
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suitable for their bodies to prevent harm [265]. Obesity contributes to a circular relationship

between mood, pain, sleep, and physical activity. Chronic pain can lead to poor sleep and

depression, which in turn reduces motivation for physical activity, worsening OA symptoms

[267]. These complex, often rhythmic exposures are largely unseen in traditional training data,

making models for hip and knee replacement prediction challenging.

6.4.3 Future Work

In future work, this model could be externally validated to assess generalisability. Next, con-

ducting a meta-analysis of various interventions could help assess their costs and associated

risks, potentially identifying more cost-effective approaches. Additionally, involving a Patient

and Public Involvement (PPI) group for risk grouping, alongside performing decision curve

analysis, could further demonstrate whether these strategies are viable for reducing healthcare

costs. The TG-CNN model could then be utilised for triaging patients for follow-up care. The

model could be integrated into primary care to return a risk score for the patient of hip or knee

replacement if a joint pain CTV3 code is inputted. The next chapter delves into explainable

methods to visually show clinicians which parts of the EHR are associated to the risk score

produced by the TG-CNN model.

Early prediction increases clinical utility for treatment and care planning. However, the one year

in advance model may also be useful for short term risk, for example in patients experiencing

severe pain or reduced mobility, their clinician may wish to observe the likelihood of them

needing a replacement sooner vs later.

While subgroup analyses were conducted across age, sex and IMD, other biases may be present

in the training data that could affect the fairness of the model across populations. These biases

can arise from data collection methods, representation of different groups, and model character-

istics. The distribution of age in the training data may not reflect the true population. If age

groups are over or underrepresented the model may perform differently across age subgroups,

leading to biased predictions. If sex imbalance exists, the model may be biased and favour the

overrepresented sex. If certain deprivation levels are underrepresented, or the diversity of socio-

economic status is not captured sufficiently, the model may struggle to predict fairly across IMD

groups. Further work is required to monitor and address model prediction biases, particularly

in new out-of-sample data.
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Causal inference could enhance the subgroup analysis carried out in this chapter. Applying

causal inference methods allows us to consider whether factors influence the likelihood of joint

replacement, rather than just looking at the subgraphs that the model associates to the predic-

tion. These methods help find modifiable risk factors, enabling healthcare professionals to assess

whether interventions, like weight loss programs, could meaningfully reduce the probability of

surgery. By mitigating confounding biases through techniques like propensity score matching

or instrumental variable analysis, causal inference ensures that subgroup analysis yields more

reliable and actionable insights. Causal inference can also guide personalised treatment strate-

gies and inform healthcare policies. By analysing subgroups, we can determine how different

patient populations respond to specific interventions. This enables clinicians to tailor treatment

approaches to maximize effectiveness for each demographic.

6.5 Conclusion

In conclusion, this work demonstrates that hip and knee replacement risks can be effectively

predicted up to five years in advance using patient-specific data, including CTV3 codes, demo-

graphic information, and prescription history. The use of the TG-CNN model proved impactful,

outperforming existing risk prediction tools by 5% and 9% for hip and knee replacement predic-

tions, respectively, while also producing the best calibration curves. Notably, predictions made

five years in advance generally exhibited superior performance compared to one-year predictions,

except when using the RNN model.

Advancements of this work include the incorporation of a broader range of predictors, such as the

IMD score and mental health conditions, extending the scope beyond traditional predictors like

osteoarthritis and joint pain. This ensures a more inclusive assessment of patient trajectories,

reducing the likelihood of overlooking less conventional pathways to joint replacement. The

inclusion of temporal data through graph-based modelling further enhanced predictive accuracy

by capturing the progression of conditions such as pain over time. By covering both partial

and total joint replacements, this study broadens its clinical relevance and demonstrates the

utility of advanced predictive models in enhancing hip and knee replacement risk assessment

and patient management.
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Chapter 7

Explainable Methods for the

TG-CNN Model

7.1 Introduction

Previous chapters sought to predict hip and knee replacement risk in advance using clinical

codes from EHRs in TG-CNN, with good performance. However, these methods currently

lack explainability and do not provide clinicians with insights into why the model generated a

particular risk score, which makes models less trustworthy for clinical decision-making.

Explainability in the context of ML can be defined as the inner working of a model being

explained in understandable terms to highlight the factors which led to the models decision.

Many AI models are “black-box” meaning that often engineers and users do not know what

is going on internally, making them untrustworthy due to non-transparency. An algorithm

may be used to assist a healthcare decision, but AI will never be allowed to run completely

autonomously for decision making in healthcare, explainability should be provided to allow

the clinician and (where appropriate) the patient to understand model conclusions [268]. This

is vital to ensure patient safety and fair decision making, whilst empowering patients to give

them an understanding of their health and the decisions they face. The GDPR states that

individuals can demand explanations about the logic, and consequences of automated decisions

under certain circumstances (e.g., profiling, Article 22). Articles 13, 14, and 15 indirectly

support transparency and an individual’s ability to understand and challenge decisions made

by automated tools [11]. The main goal of explainable AI models in healthcare should be to
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explain prediction decisions and behaviours to non-experts in ML, to be trusted in clinical

settings.

Making the TG-CNNmodel explainable provides a solution to the four major challenges outlined

by Xie et al., 2022 [269]: The TG-CNN model accounts for variable time intervals between

primary care visits, it uses sparse linear algebra and graph representations to mitigate for EHR

data sparsity, individual patient graphs are created to deal with data heterogeneity, and the

methods described in this chapter enable model opacity.

The contribution of this chapter are as follows:

1. Four post-hoc explainability methods are used to visually show TG-CNN prediction de-

cision influence for individual patients.

2. Interactive graph visualisations are created which allow clinical users to interact with

historical patient EHRs.

3. These interactive graphs are evaluated using human/clinician evalulation feedback along-

side Edge Detection Bias (EDB), sensitivity, and sparsity.

4. Subgraph analysis is performed to find frequent subgraphs which impact model decision.

7.2 Related Work

Zhao et al., 2023 provided an overview of multiple explainability methods used for deep time-

series models [270]. Post-hoc explainability methods include backpropagation-based (e.g. Grad-

CAM) or importance based to see things such as layer impact on classification accuracy [9],

approximation-based, (e.g. LIME and SHAP), and perturbation-based methods (e.g. erasure,

ablation and permutation) [270, 271, 272]. Ante-hoc methods include attention-based, causality-

based, and physics rule-based models. Kakkad et al., 2023 summarises the explainability for

GNNs, splitting methods into factual (explanations using input feature influence on prediction)

and counterfactual (providing explanation by finding how much change is needed in the input

graph to change the prediction) methods [273]. Liu et al., 2022 categorise methods for ex-

plaining GNNs: Model-agnostic methods including subgraph-based approaches, which identify

influential subgraphs [274], feature attribution methods that assess node/ edge importance and

their interactions [272], using techniques like LIME and SHAP, and counterfactual explanations

152



Chapter 7. Explainable Methods for the TG-CNN Model 7.2. Related Work

that explore minimal changes leading to different predictions. Model-specific methods include

attention-based models, graph masking approaches, and self-explaining GNNs that integrate

explanation generation into their predictions. Attention mechanisms are popular to improve

neural network interpretability. They compute a weighted context vector to represent the input

sequence, with weights indicating the importance of different segments. Attention mechanisms

are often integrated into a model’s structure. Post-hoc explanation methods involve gradient-

based approaches for interpreting feature importance, decomposition methods like Layer-wise

Relevance Propagation for attributing output scores, and surrogate models that approximate

GNN behaviour using simpler, interpretable models. Instance-level explanations focus on node,

edge, or graph-level explanations.

In terms of work similar to this chapter, Lauritsen et al., 2020 used temporal convolution net-

works using sequences of EHR information to find features relevant to sepsis, acute kidney

injury or acute lung injury [9]. For their explainable AI method they used layer-wise relevance

backpropagation to highlight relevance. Visually they describe this using circles for each EHR

finding over time, with value intensity such as Kidney eGFR being indicated by a colormap,

and parameter relevance being shown using circle size. Ying et al., 2019 created the GNNEx-

plainer method to provide explainability of GNNs [274]. GNNExplainer works to find the most

important subgraph and node features that contribute to the model prediction, it works by

finding the smallest subgraph possible whilst keeping the same prediction decision. Node and

edge contribution are quantified and shown using heatmaps.

Contrastive gradient-based saliency maps generate heatmaps by differentiating the output of the

model with respect to the model input, where the positive values in the heatmap represent the

input feature importance [275]. Class Activation Mapping (CAM) provides a slight modification

for CNNs by taking the gradients of the output of the model with respect to the output of the

final CNN layer; this is thought to return more meaningful features in the input data. However,

CAM requires the final CNN layer to be just before the final output layer of the model, with

only a global average pooling layer in-between. Grad-CAM improves on this further by allowing

layers between the final CNN layer and the output by weighting feature maps, whilst also

considering feature map activations rather than just gradients [275, 276].

Pope et al. 2019 adapted explainability methods for CNNs to graph CNNs, including contrastive

gradient-based saliency maps, CAM, Grad-CAM, and Excitation Backpropagation (EB) [275].
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Graphs are used within CNNs to convolve over node and edge structures to find non-Euclidean

patterns. EB starts from the class output layer and traces back to the input, to show fea-

ture influence, this is different to backpropagation which looks at error propagation backwards

through the layers. In their work, Grad-CAM gave the highest comparative distinctness be-

tween classes, whilst EB gave higher sparsity, and contrastive gradient-based saliency did not

provide any distinction [275]. Sparsity in large graphs were deemed as more important than

contrastivity for easier interpretation.

Grad-CAM is one of the most common explainability techniques used for knee OA diagno-

sis, used in 34 of 70 explainable AI studies [103]. However, there are only a few methods

to provide explainability of healthcare diagnosis using deep learning methods [277], and even

fewer for graph explainability methods, despite its importance for building trust and providing

transparency to clinicians.

There are two main approaches that could be taken when thinking about explaining graph-

based CNN model risk prediction, the global feature influence on prediction not related to a

specific patient could be obtained, forming a kind of knowledge graph. For example, by taking

the filters from a CNN layer and finding sub-graphs that represent common patterns in patient

pathways which lead to hip replacement risk, a more global approach as it does not provide

individual-based risk influence. Alternatively, patterns specific to a patient’s pathway and their

outcome that lead to a prediction risk score could be found, by extracting feature maps from

models during inference on patient’s EHRs, such as using CAM methods.

7.3 Methodology

7.3.1 Literature Review

A literature review was performed to find research that answered the question: How is explain-

able AI being used, with graph models on EHRs, to help clinicians understand what features

models use to predict health outcome risk?

Google Scholar was used to search for articles using explainable graphs for health outcome

prediction using the following search string:

(“graph neural networks” OR GNN OR “graph models”) AND (“explainability” OR “inter-

pretability” OR “explainable AI” OR “XAI”) AND (“Grad-CAM ” OR “class activation map”
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OR “activation mapping” OR “saliency map” OR “visuali$ation”) AND (“EHR” OR “elec-

tronic health record*” OR “medical record”).

The titles and abstracts were screened first, then full-texts looking for papers that met the

research question criteria. Papers were included if they were written in English, published after

2010 and used graph-based models to predict health outcomes using EHRs. Grey literature and

literature reviews are included in this search to get a wide overview of current methodologies

being explored. Relevant papers from reviews were extracted, using the snowballing technique.

A summary of the current existing literature in this area is provided in the Results (Section

7.4) of this chapter.

7.3.2 Data

The same ReseachOne dataset is used in this chapter as was used in the two previous chapters,

comprising clinical data from 151,565 patients aged 40-75, with their first record of joint pain

clinically coded between April 1st, 1999, and March 31st, 2014 [13].

Patients had at least two primary care visits to construct a temporal graph of their EHR. To

mitigate the influence of age, sex, and socioeconomic status (IMD) on joint replacement, one-to-

one matching was performed for these variables in the training dataset of each hip replacement

patient. EHRs from five years prior to the hip replacement were used as the model input.

Females comprised 63.6% (n = 6,664) of the cohort. The average age at the study’s end (31

March 2013) was 76.8 ± 8.8 years, and the average age at hip replacement was 70.5 ± 8.5 years.

Each patient had an average of 20.8 ± 42.1 (range = 707) clinical codes recorded in their EHR

history.

7.3.3 Model

This chapter focuses on assessing the explainability methods on only one of the TG-CNNmodels.

The TG-CNN model, as shown in Chapter 6, predicted hip replacement risk five years in advance

with an AUROC 96.7% and a mean AUPRC of 0.879 (95% CI: 0.833-0.924) on unseen data.

Unlike typical GNNs which have a node attribution matrix, a degree matrix and an adjacency

matrix, the TG-CNN model uses a single 3D tensor per patient G(i, j, k) = exp(−γtk). Where

i, j ∈ (1, .., n) are the graph nodes and tk is the elapsed time between healthcare visits for

the kth edge. This intuitive shape enables simple execution of CNN explainability methods,
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assuming that the filters convolve over an entire space of i, j for each k. The trained TG-CNN

hip replacement risk five years in advance model from the previous chapter (Chapter 6) was

used with the data characteristics as described in Section 7.3.2 and Table 6.2.

The TG-CNN model architecture is as follows. The 3D CNN layer processes the 518×518×200

EHR graph representation input, extracting EHR clinical code sequences and elapsed time

features. The output is flattened, batch-normalised, and passed through a ReLU activation

before entering an LSTM. Dropout is applied to the LSTM output, which then goes through

two FCLs, followed by a ReLU before a final FCL, ReLU, and output layer. A sigmoid function

outputs a binary classification result and probability. The multi-stream architecture was used

(as described in Chapter 4), with one stream analysing short-term patterns and the other

long-term patterns, using different filter strides (one for the original and two for the secondary

stream). Outputs from both streams are concatenated after the FCL. An overview of the data

to prediction to explanation process is shown in Figure 7.1.
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Figure 7.1: Process from a fictitious patient EHR example to graph representation, basic model
architecture (just one stream is shown) and prediction outcome with explainability. A patient
with five clinical codes recorded in their EHR over four primary care visits, predicted to need
a hip replacement in five years time with a 0.89 probability.
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7.3.4 Maximum Activation Difference

The TG-CNN model creates 1D timeseries feature maps out from its 3D CNN layer. Let Am be

one of the m feature maps from the 3D CNN layer, where the difference in maximum activation

z between the two classes is calculated as follows:

z̄m,c =
1

|S|
∑
i∈S

max(zi) (7.1)

where i is a patient, z are the activation values from each feature map, m is the feature map

number, and S = (Am,i where yi = c) is the set of feature maps Am for the patients in class c.

The absolute difference in mean activations between the classes for each feature map is:

∆Am = |z̄m,c1 − z̄m,c2 | (7.2)

where c1 is class 1 (hip replacement received) and c2 is class 2 (no hip replacement received).

A visual representation of these equations with an example is provided in Figure 7.2.
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Figure 7.2: How to find the filter with the largest activation difference between the two classes
for three example filters and three example patients.
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7.3.5 Explainability Methods

Grad-CAM

The Grad-CAM methodology [278] is adapted for 3D graph representations. Typically, Grad-

CAM highlights local features in images via heatmaps. Instead in this work activations along

the axis k are given, showing which time steps were activated. Given activated time steps,

primary care visit contribution towards the prediction can be observed.

The optimised weights from the trained TG-CNN model are saved and then loaded into a Grad-

CAM model. A patient’s graph, Gp ∈ RN×N×T2 , where N is the number of clinical codes and

T2 is the number of visits, is passed into the Grad-CAM model and the gradients are retrieved

to calculate the localisation map:

The size T1 of each 1D CNN feature map is:

T1 =
T2 − filtersize

stride
+ 1 (7.3)

Grad-CAM computes the gradient of the output Y with respect to the feature map Am: ∂Y
∂Am

i

where Y is the score before the sigmoid layer and Am
i denotes the i-th element of the 1D feature

map for the m-th filter.

It then averages the gradients over the 1D feature map to get the weight αm:

αm =
1

msize

∑
i

∂Y

∂Am
i

(7.4)

where αm is the weight for the m-th filter.

Finally, the weighted sum of the feature maps using the weights αm are calculated and passed

through a ReLU:

LGrad-cam = ReLU

(∑
m

αmAm

)
(7.5)

The resulting 1D localisation map LGrad-CAM can be used to understand which parts of the

input sequence are most important for the classification decision.

An average weight for each time step is calculated using the time steps that correspond to the
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filter window. To assign the LGrad-CAM values to the original patient graph Gp, the value is

spread equally across the d time steps in Gp which form each element of V . Where V ∈ RT2 is

the vector of LGrad-CAM values at each time step k.

Let w ∈ RT2 be the weight at each time step in Gp.

Let Xm be the indicator function and vm is each value within V .

Xm(i) =


1 if ki in Gp contributes to vm,

0 otherwise

Then

wi =
1

d

T1∑
m=1

Xm(i)vm (7.6)

See Figure 7.3 for a visualisation of this calculation applied to an example patient’s graph.

Due to using a ReLU function, Grad-CAM only pays attention to areas of the graph which

increase patient risk. To also consider events which lower risk, a modified version called Grad-

CAM (abs) is used by editing Equation 7.5 to:

LGrad-CAM = abs

(∑
m

αmAm

)
(7.7)
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Figure 7.3: Grad-CAM (ReLU) methodology visualised: computing the gradient of the outcome
class with respect to the feature/activation map by gradient tracking and then applying the
localisation map back onto the patient graph.
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fm-act Graphs

The feature maps from the CNN layer can indicate the concepts learned by the TG-CNN model.

The fm-act methodology is proposed as below:

Extract the feature maps: A = {A1, A2, . . . , An} from the 3D CNN layer of the TG-CNN

model.

Let A∗ denote one of the following summaries: the feature map with the strongest class differ-

entiation maxm ∆Am, mean(A), or median(A).

Map the feature map weights to the time steps and get an average of the weights for each sliding

window recurrence on each time step:

Wk =
1

|Wk|
∑

(i)∈Wk

A∗
i (7.8)

where Wk is the set of all sliding windows that include time step k.

Normalise the weights to get the percentage influence of each time step: W k
% = Wk∑

k′ Wk′
×100.

A visualisation of these steps for a small example patient graph can be seen in Figure 7.4.
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Figure 7.4: How to create feature map graphs showing timestep/visit influence on prediction
decision.
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edge-act Graphs

As another way of obtaining feature importance is using the filters from the CNN layer. The

filters can be observed and used alongside the original input graph to find edge importance.

Extract the filters: F = f1, f2, . . . , fn from the 3D CNN layer of the TG-CNN model.

Let f∗ denote one of the following: the filter fm with the feature map with the strongest class

differentiation maxm ∆Am, mean(F ), or median(F ).

Compute the edge-act via a 3D sliding window:

Ei,j =
1

|Wi, j, k|
∑

(a,b,c)∈Wi,j,k

(
Ga,b,c ⊙ f∗

a,b,c

)
(7.9)

where Wi,j,k is the 3D sliding window over the input graph G for each filter position (i, j, k)

and ⊙ is element-wise multiplication.

Normalise the weights to get percentage influence of each edge: W% =
Wij∑
i,j Wij

× 100.

See Figure 7.5 for a visual walkthrough of these steps to an example patient graph.

7.3.6 Interactive Visualisations

Plotly (5.23.0) and NetworkX (3.2.1) were used to plot interactive graphs. A patient’s individual

graph is shown where the nodes are the clinical codes, stacked clinical codes occurred during

the same visit, the edges show the days between visits. A patient’s risk of requiring a hip

replacement in five years is also provided.

In the Grad-CAM and fm-act explainability graphs, nodes with higher influence on the model

prediction (larger wi values) are coloured darker blue/purple, while those with lower influence

are lighter yellow. The Viridis heatmap was used for visual accessibility. Users can hover over

nodes to view clinical code descriptions and percentage influence. In the edge-act explainabil-

ity graphs, edges with greater influence (larger W% values) are darker blue/purple, and less

influential edges are lighter yellow. Hovering over edges reveals the percentage influence.
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Figure 7.5: How to create edge graphs showing clinical code pair influence on prediction decision.
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7.3.7 Evaluating Graph Visualisations

Saliency maps may not always be reliable for understanding model decision making as they rely

on intuition, have poor falsifiability [276], and tend to represent noise rather than signals [279].

For this reason the methods are scored using the evaluation techniques below.

Sensitivity: For the Grad-CAM and fm-act methods a node with a random clinical code

assignment is added to a random existing visit 10 times, then the mean L1 distance between

the original and edited visit is obtained. For the edge-act model, a node’s clinical code is

randomly changed and the influence of the connected edge going into the node to the original

edge influence is compared. Higher values determine higher methodology sensitivity.

Edge Detection Bias: The model weights were changed by randomly adding noise (with

the same mean and standard deviation as observed from the trained model weights) to observe

changes in the heatmaps, which are used to suggest the observed influence of edges and visits.

If EDB (false saliency) is present then the heatmaps will not change or will be very similar.

Ideally, the percentage influence will be dependent on the weights of the model. The mean

absolute error (MAE) is calculated for the difference between the heatmap from the trained

model and the heatmap from the random weighted model for each of the methods, then the

mean and standard deviation of the differences across the patients is retrieved. A higher EDB

value indicates false saliency is less likely.

Sparsity: Node and edge weight sparsity were calculated by binarising the heatmaps, setting

values over 0 to 1 and others to 0. The sparsity for each graph was taken to be the percentage

of non-zero entries. A larger sparsity value indicates more nodes or edges with no influence

on model prediction [275], which may be better for larger graphs, to make visual focus more

obvious.

Human Evaluations: Qualitative human evaluation studies were also carried to assess the

interpretability versus truth trade-off of the four explainability methods, whilst gauging user

interaction experience [234]. Seven clinicians were asked to complete a survey which showed

the four graph methods visualised (a = Grad-CAM original, b = Grad-CAM-abs, c = fm-act,

and d = edge-act) for 5 different patient cases. A clinical vignette is provided in the Appendix

to explain the visualisation (Appendix D.1). The survey questions the clinicians were asked are
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in Appendix D.1, this included free text questions and Likert scales (no statistical significance

testing was carried out).

Subgraph Frequency Analysis: Once the sensitivity, EDB, and sparsity of each method

were collected, the optimum method was selected and subgraph analysis was performed on

it. To analyse the frequency of subgraphs across the patients, first all of the edges with a

percentage influence of more than 0 (denoted as ‘activated’ nodes) were found. Then the

collections of connected activated nodes and their connection edges were collected, repeating

this for all patient graphs. The subgraph frequency was counted by prevalence per class N s
+,

N s
− for subgraph s, then the ratio was obtained to give subgraph prevalence by class: Rs

+ =

Ns
+

Ns
++Ns

−
, Rs

− =
Ns

−
Ns

++Ns
−
[275]. It is important to note that the subgraphs obtained have not been

established as definite patient trajectories that influence hip replacement risk, instead these

subgraphs illustrate how the model infers prediction globally.

Further to this three questions were considered: 1) Are there differences in the most com-

mon subgraphs between the train and test datasets? 2) Which subgraphs are most commonly

accurately and inaccurately classified? 3) Which subgraphs most commonly influence model

prediction?

The correctness/ accuracy of a subgraph was calculated by comparing the patient’s actual

outcome to the model’s predicted outcome. A predicted probability above 0.5 was interpreted

as indicating the need for a replacement, while probabilities of 0.5 or below were interpreted as

no replacement needed. However, the model is designed as a risk assessment tool rather than

a strict binary classification system. Assigning a definitive decision based on a 51% predicted

risk does not align with the intended use of the model, which evaluates likelihood rather than

providing categorical outcomes.

7.4 Results

7.4.1 Literature Review

Inputting the search string into Google Scholar resulted in 111 papers being returned. After

title screening 56 papers were left. After abstract screening 18 papers remained. Fifteen of

these 18 papers were literature reviews, from which snowballing of references was performed

finding another 23 papers, totalling 26 full-papers to screen. See Figure 7.6 for the PRISMA
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flowchart [157]. In total three papers used graphs and AI with explainability methods using

EHRs for healthcare prediction [280, 281, 282], all of these papers used attention mechanisms

and incorporated temporality into their explainable models.

Figure 7.6: PRISMA flowchart of search for explainable graph methods using EHRs.

Su et al. 2020 presented the GATE model, a Graph-Attention Augmented Temporal Neu-

ral Network for medication recommendation, which captures relationships between symptoms,

medications, and temporal changes in medical history at each admission. The graph attention

mechanism enables the model to prioritise important aspects of the medical history, particularly

the temporality. Sun et al. 2021a integrated medical event temporality, frequency, and atten-

tion mechanisms on to graph structures to predict outcomes such as mortality and readmission,

with graph nodes representing diagnoses, symptoms, and treatments [281]. Sun et al. 2021b

utilised GNNs, RNNs, and attention mechanisms to predict patient survival times [282].
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7.4.2 Methodology Comparison

Figure 7.7 shows the distribution of maximum activation values from each CNN feature map

for all patients. Here it can be seen that the distributions are non-Gaussian with skew. Figure

7.8 demonstrates the difference in maximum activation between the classes, this can be used

to find which filter has the largest distinction in activations when predicting whether a hip

replacement will be needed in five years time. Feature map 30 had the largest difference in

activation between the classes, whilst feature map 1 had the smallest difference.

Figure 7.7: Boxplot showing maximum activation for each filters feature map, for both classes
and all patients.

Figure 7.8: Bar chart showing the difference in maximum activation between the two classes.

Table 7.1 shows the results from evaluating the different methodologies.

The Grad-CAM models resulted in higher normalised mean gradient weight values from the

more recent visits and close to 0 gradient values elsewhere, forming exponential curves, see
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Table 7.1: Evaluation results mean (standard deviation). Edge detection bias (EDB), mean
absolute error (MAE).

Sensitivity EDB MAE Sparsity

grad-cam
ReLU 4.59(5.94) 4.40(10.92) 0.30(0.43)
Abs 5.80(5.90) 2.16(4.53) 0.00(0.00)

fm-act
Mean 6.05(6.19) 2.25(1.85) 0.00(0.00)
Median 5.96(5.75) 1.65(1.32) 0.00(0.00)
Max 6.18(5.95) 0.03(0.03) 0.00(0.00)

edge-act
Mean 25.00(23.97) 9.82(21.07) 0.53(0.32)
Median 23.64(23.26) 4.40(4.56) 0.55(0.31)
Max 23.78(23.20) 15.89(26.77) 0.51(0.33)

Figure 7.9. More varied normalised mean activation values appeared throughout the feature

map, whereas Grad-CAM gradient weights produced smoother curves.

Figure 7.9: Normalised mean gradient and feature map activation values from one patient.

Figures 7.10 - 7.13 show the heatmaps for one patient with the four explainable methodologies,

this indicates how the influence of each visit or edge fluctuates depending on the filter and the

method.

7.4.3 Interactive Visualisations

Figure 7.14 shows the graphs used to show an example patient pathway and influence healthcare

records have on model prediction. When these models are interacted with as HTML files users
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Figure 7.10: Heatmap of percentage influence
using Grad-CAM (ReLU).

Figure 7.11: Heatmap of percentage influence
using Grad-CAM (abs).

Figure 7.12: Heatmap of percentage influence
using fm-act.

Figure 7.13: Heatmap of percentage influence
using edge-act.

can hover over nodes (Grad-CAM and fm-act graphs) and edges (edge-act graphs) to show the

percentage influence to the model decision and the clinical code descriptions1. The examples

provided have short patient history for simplicity when presenting as a static PNG file, however

the HTML plotly plots enable the users to navigate the graphs.

Figure 7.14: Percentage influence on features using 4 methods: (a) Grad-CAM (ReLU), (b)
Grad-CAM (abs), (c) max fm-act, and (d) median edge-act. Here the patient’s predicted risk
was 3.61% and they did not receive a hip replacement. Clinical code descriptions: XE0Uc =
Essential Hypertension and N05zL = Osteoarthritis of knee.

7.4.4 Clinical Feedback

Some patients had long EHR histories which led to complex graph visuals, whilst others were

simpler and easier to visualise without zooming or panning to specific areas of the graph.

1The reader can interact with example graphs themselves here: https://zoehancox.github.io/graph-
survey/index.html
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Overall, the max fm-act method (c) was voted as the easiest graph to interpret (n = 15/35),

and Grad-CAM (abs) (b) the hardest (n = 1/35), see Figure 7.15. There were varying opin-

ions on the effectiveness of methods in highlighting key factors influencing model predictions

across different patient graphs, with the two longest patient graphs having the worst feedback

(Figure 7.16). Overall, satisfaction with the methods decreased as the length of the patient

history increased (Figures 7.16 and 7.17). Patient graphs 2 and 3 had the most agreement

from clinicians for expected trajectory alignment, there was 57% agreement in all the patient

graphs that trajectories met expectations, however some methods were selected as not aligning

with expectations (Figure 7.17). When clinicians were asked as to what extent did the graphs

support understanding the model’s decision-making process, one said it ‘Greatly Supported’,

two said it ‘Moderately Supported’, three said it ‘Slightly Supported’, and one scored it as

‘Neutral’. Three clinicians felt that these graph visualisations had ‘Neutral’ input for aiding

decision-making in a clinical-setting, one thought they were ‘Very Useful’, one thought they

were ‘Somewhat Useful’, and two clinicians felt they were ‘Somewhat Useless’. These graphs

appeared useful to demonstrate model decision-making, but were less helpful for aiding clinical

decision-making.

Figure 7.15: Which method was determined the easiest to visually interpret.

The survey feedback highlighted that method c stands out for its subtle differences and ease

of engagement, with better colour discrimination between nodes. Methods a-c more effectively

addressed model complexity. However, there was a general consensus that the colour scale

should be given more emphasis across all methods. Method d received mixed reviews: while one

clinician found it visually unappealing, another preferred it over methods a and b for its visual

clarity. Additionally, there was some confusion from a clinician regarding the model’s decision

process, specifically questioning the connection between hypertension and hip replacement.

The survey results suggest that the current graph layout is too crowded and detailed for GPs
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Figure 7.16: Clinical opinion on whether key factor influence is highlighted.

to effectively use within the time constraints of a primary care appointment. A visual summary

of the most influential factors is recommended to facilitate quicker decision-making and patient

communication. While detailed graphs are valuable for understanding model decision-making,

a focus on summary risk prediction scores is deemed more practical. Simplifying the colour

coding could improve clarity and distinction where percentages are similar, though this may

limit the ability to compare multiple patients visually.

7.4.5 Subgraph Frequency Analysis

Subgraphs were collected using the median edge-act method as outlined in Section 7.3.7 as this

method had the highest sparsity. A total of 13,383 subgraphs were identified. 10,594 subgraphs

only appeared once (79.2%). The most frequent subgraph for patients with high hip replacement

risk was NOA → NSAIDs prescription, with many of the most frequent subgraphs containing

prescriptions. See Figure 7.18 for the 10 most frequent subgraphs influencing model prediction

for each class.

Table 7.2 shows the number of subgraphs present from the models from each subset of data. Note

that this is not the total number of possible subgraphs, but instead the number of subgraphs

that occur from this methodology. The one year in advance knee replacement prediction model

had the most subgraphs, whilst the five years in advance hip replacement model had the least

subgraphs. The hip one year in advance model had the most overlap in subgraphs between the
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Figure 7.17: Clinical opinion on trajectory alignment.

training and testing datasets (10.77%), whilst the knee five years in advance model had the

least crossover (8.08%). The hip one and five years in advance models have 4.13% similarity in

unique subgraphs, whilst the knee one and five years in advance models have 3.30% overlap in

subgraphs. The hip and knee models have 5.35% identical subgraphs.

Table 7.2: Number of subgraphs produced in each dataset alongside longest subgraph length
and overlap (%) of subgraphs present in both groups.

Data Training
Data

Testing
Data

Total
Sub-

graphs

Overlap
(%)

Max
Number
of Visits

Max
Number
of Nodes

Hip (1 year) 33,181 59,532 92,713 10.77 87 360
Hip (5 years) 13,383 52,728 66,111 7.97 38 76
Knee (1 year) 42,918 79,750 122,668 9.67 107 202
Knee (5 years) 14,108 53,349 67,457 8.08 34 76

Figure 7.19 shows the 10 most frequently presented subgraphs in the hip five years in advance

cohort with predictions in the positive and negative classes. Both training and testing subgraphs

show the high frequency of prescription records, weight, and smoking status in patients with

higher hip replacement risks. For the most frequent subgraphs for low-risk of hip replacement,

prescriptions were less prevalent, whilst HTN appeared more, and BMI records occurred more

frequently.

Figure 7.20 shows the 10 most frequent subgraphs that were found in models which were cor-
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Figure 7.18: The 10 most frequent subgraphs that influence model prediction for each class.

rectly classified. It should be noted that other subgraphs may be present in individual EHRs

that are more informative to prediction than these subgraphs. For example, Angina pectoris →

HTN does not mean that someone will have a higher hip replacement risk, the full EHR may

contain other key indicators such as hip pain or OA. It is also worth emphasising again that

these subgraphs do not show what causes replacement risk, these subgraphs show pathways

that the model used for prediction which decisions may not align with clinical expertise.

Figure 7.21 shows the 10 most frequent subgraphs that were found in models which were incor-

rectly classified.

The subgraph with the highest influence from each patient was selected see Figure 7.22, to

determine which subgraphs are most commonly influential for model classification decision, for

each outcome type.

When selecting only the most influential subgraphs from each patient in the hip five years

in advance dataset, there were only 3,438 different subgraphs in those predicted to require a
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future hip replacement, with the largest subgraph having 76 nodes. There were a maximum of

36 visits in this cohort. For those predicted to not need a hip replacement in five years time,

there were 9,762 subgraphs (corresponding to the negative class), with the most influence on

outcome decision. There were 60 nodes in the subgraph with the largest number of nodes, and

29 visits in the subgraph with the largest number of visits. Figure 7.23 shows the subgraphs

most frequently given the highest influence for each patient, per class outcome.
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Figure 7.19: Hip five year in advance model training data vs testing data subgraphs. 10 most
frequent subgraphs for positive and negative classes. Hypertension (HTN), Non-steroid anti-
inflammatory drugs (NSAIDs), repeat prescription of NSAIDs (rNSAIDs).
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Figure 7.20: Most frequent subgraphs accurately classified for the hip five year in advance model.
Ischaemic heart disease (IHD), Chronic obstructive airways disease (COAD), Osteoarthritis
(OA), Diabetes mellitus (DM), Non opioid analgesic (NOA).
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Figure 7.21: Most frequent subgraphs incorrectly classified for the hip five year in advance
model.

Figure 7.22: How the most influential subgraph was selected from each patient. Taking the
subgroup (section of nodes with >0 weight) with the highest weighting.
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Figure 7.23: Most influential subgraphs for each class outcome for the hip replacement five years
in advance median edge-act method.
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7.5 Discussion

The four explainablility methods described in this paper aim to produce a clinician-interpretable

justification for each output. These methods may increase decision confidence if the results

match clinical expectations. However, the absence of a plausible explanation does not imply

an inaccurate model. As these methods are post-hoc, important features may be spuriously

correlated with replacement risk [273] or non-causal.

Explainable TG-CNN models are valuable for offering intuitive insights into how clinical code

pairs or primary care visits affect predictions, using simple percentages. This accessibility helps

medical professionals understand and trust the model. Often ‘explainable’ methods require

advanced technical knowledge, making them inaccessible to users without a ML or data science

background [270].

Grad-CAM gave higher weightings to time steps that occurred most recently - this makes sense

as more recent things are likely to be more relevant, however this is not hugely valuable to show

the influence of clinical codes towards model decision.

The fm-act and Grad-CAM (abs) methods led to graphs with zero sparsity (Table 7.1). This

means that these graphs could be difficult to interpret if the patient has a long EHR history.

The edge-act median method had the highest sparsity, closely followed by the mean and the

maximum version. Therefore, the median edge-act method might be the easiest to interpret for

long EHR histories.

The max edge-act method gives the highest MAE between the trained/ original model and the

random weighted model, whereas max fm-act gives the lowest MAE. The fm-act method is more

prone to EDB than the other methods as shown by its smaller MAE values, and max edge-act

is the less likely to have EDB. The Grad-CAM (ReLU) method is less prone to EDB than the

Grad-CAM (abs) method.

Figure 7.7 shows a non-Gaussian distribution when comparing maximum activation differences,

therefore mean edge-act method was deemed inappropriate. The median edge-act method gives

the best sparsity results, whilst the max edge-act method gives the best EDB and slightly higher

sensitivity results. The edge-act methods are more sparse than the Grad-CAM (ReLU) model,

but this is because it looks at individual edges (clinical code connections) rather than whole

visits.
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From the results in Table 7.1 it was determined that the median edge-act and Grad-CAM

(ReLU) methods provide the best visual explainability for the TG-CNN model. The Grad-CAM

(ReLU) model is useful for showing the influence of visits, whilst the edge-act model shows in-

fluence of edges. Subgraph frequency analysis was performed on the median edge-act method,

as its high sparsity suggests the subgraphs should be smaller and more common amongst in-

dividuals. The fm-act method had the most votes for clinical interpretability, however due to

lack of sparsity it was believed this method would not be scalable for long EHRs. Clinicians

favoured the graphs where the nodes were colour-coded rather than the edges, therefore there

might be future scope to adapt the edge influence onto the node colouring.

Looking at the subgraphs produced from the model using the median-edge-act method enabled

explainability of the inner workings of the TG-CNN model. Subgraph analysis alongside group

classification and accuracy further enables understanding of how subgraphs contribute to proba-

bility scores. Some subgraphs appear to always be present in individuals with joint replacement

outcomes, whilst others only appear in those without joint replacement outcomes, and similarly

some do not appear to be specific.

Interestingly, the hip five years in advance TG-CNN model performed the best and had the

lowest number of subgraphs, whilst the knee one year in advance model had the highest number

of subgraphs and performed the worst out of the four models. The Pearson correlation coefficient

between the total number of subgraphs and the AUROC was -0.90 which indicates a strong

negative correlation, meaning that as the number of subgraphs increases, the AUROC tends to

decrease.

Given that all models improved with the addition of prescriptions when 200 visits were in-

cluded and that the majority of the most frequent subgraphs contain prescriptions, it can be

inferred that including prescriptions helped the model learn better and find patterns associated

to prediction outcomes.

Prescription records, weight, and smoking status were very common in subgraphs in patients

with higher hip replacement risks, this could be due to these being the most frequent nodes/

codes occurring in patient EHRs in this dataset. Alternatively, alongside the natural progression

of OA and associated co-morbidities other factors may influence surgical decisions. For example

smoking status is often recorded for pre-surgical assessments. This is because smoking has been

linked to poorer surgical outcomes, including higher risk of wound complications, infection,
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aseptic joint loosening, and higher mortality rates [283]. Additionally, other lifestyle factors,

such as obesity, can impact patient trajectories and this may be seen in these sub-graphs as

these factors can impact surgical eligibility, joint function, and recovery time.

In all datasets there were nearly double the number of subgraphs in the testing sets compared

to the training sets, which could explain phenomenon occurring in Chapter 5 where prior to

recalibration the curves where inverted. If subgraphs are unseen to a model it may have to

infer from subgraphs it has learnt. However, the model with the least numbers of subgraphs

performed the best, which could suggest overfitting in the other models.

7.5.1 Limitations

These four methodologies have the following limitations: 1. Due to the nature of these meth-

ods, they are not falsifiable without human interpretation. It is unknown whether the model is

predicting based on patterns that are reasonable/ align with a clinicians thought process, with-

out clinical assessment. 2. These methods do not consider causality; however the model may

help us identify features that influence hip replacement risk that may be currently unknown to

clinicians.

To fully determine the association between long patient EHRs and clinician feedback, a correla-

tion analysis would be required to analyse the strength between negative feedback and number

of visits in a graph. Due to having only seven clinicians fill out the explainable graph survey,

N=7 was too small to perform a correlation analysis. However, future work with larger survey

participation would enable correlation analysis.

Long patient histories were too complex for quick visualisation. Clinicians need to see patient

trajectories affecting model predictions swiftly. Instead of plotting entire histories, visualising

only relevant graphs or subgraphs based on a percentage influence threshold may be more

effective.

7.5.2 Future work

There is the potential to add attention layers to give global dependencies across the entire input

sequence in combination to the CNN layers which focus on local patterns. Attention may be

more suitable for sequential data compared to CNNs which are known for being more useful for

hierachial features using spatial data. Similarly to the subgraphs mentioned in this chapter, the
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attention maps could be the same shape as filters and subgraphs could be built from these maps.

Future work could involve attention mechanisms, allowing the model to focus on specific inputs

during the training process. However, these methods may be significantly more computationally

expensive.

The TG-CNN model has two 3D CNN branches to deal with time dilation. In this work the first

branch which has a stride of 1 was considered, next steps could include analysis and comparison

of the second branch.

The feedback on these four suggested methods direct focus to scalability and dimensionality

reduction in future iterations of these methodologies, specifically the graph visualisations should

be presented more clearly to clinicians, prioritising the most informative regions of the EHR

history visually first.

Layer-wise attribution could also be performed to see how much the LSTM layer contributes to

the model prediction compared to the CNN layer.

Clinicians can use this tool to assess the five-year risk of a patient needing a hip replacement

based on their existing EHR data. For deeper insights into specific model decisions, clinicians

can interact with visualisation tools described in this chapter to explore a patient’s clinical code

history and identify key factors influencing predictions. This can aid in patient care decisions,

such as painkiller prescribing, physiotherapy, and exercise recommendations. Additionally, these

methods can assist in resource planning by generating lists of patients anticipated to require

surgery in five years. Clinicians can show these graphs to their patients, demonstrating model

decision making whilst providing motivation for patients to adhere to treatment plans.

7.6 Conclusion

Four methodologies on a temporal graph-based CNN model were developed to improve the

explainability of hip replacement risk prediction. The edge-act method provided the best results

in terms of graph sparsity, sensitivity, and reduced edge detection bias. Based on subgraph

frequency analysis, prescriptions are highly influential to model prediction. Clinicians found

these visualisation techniques useful to explain model outputs.
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Chapter 8

Conclusions

8.1 Summary of Findings

The main research question for this work was:

Can incorporating elapsed time between EHR events/clinical codes be used, with

the TG-CNN model, to improve predictive power and enable clinicians to make

informed decisions more effectively, compared to the current state-of-the-art AI

approaches?

This question was explored through the following sub-questions, each of which contributed to

the outcomes discussed below:

In what ways can graph-based representations and AI improve clinical insights and

diagnostic capabilities in MSK research?

Outcome: Graph-based representations were shown to effectively capture the complexities of

EHRs, such as irregular time intervals, clinical visits, and diverse codes. This enabled better

prediction of hip and knee replacement risks, particularly when combined with CNN architec-

tures.

How are graphs being used on EHRs to predict diagnosis and health outcomes?

Outcome: A systematic exploration of graph representations of EHR within AI models provides

competitive performance compared to traditional ML and other existing AI methods.

What is the methodology behind TG-CNN models? Can the TG-CNN model be
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used effectively on simple temporal data to predict binary outcomes?

Outcome: The TG-CNN was successfully implemented on temporal MOOC data, achieving

state-of-the-art performance metrics for predicting student dropout of online courses.

Can the TG-CNN model be used to predict hip and knee replacement risk at one

and five-year intervals, and how does its performance compare to existing models

in the literature?

Outcome: The TG-CNN achieved an AUPRC of 0.409 and 0.879 for hip replacement risks at

one and five years, respectively, and 0.353 and 0.442 for knee replacement risks. These results

compared favourably to existing models, highlighting the utility of graph-based CNN methods

for such predictions. Furthermore, addressing imbalanced datasets proved critical for model

calibration and reliability. The evaluation on imbalanced unseen test data demonstrated the

generalisability of the models across diverse patient populations, reinforcing the applicability

of graph-based methods in real-world healthcare settings. While multimodal models incorpo-

rating imaging data could potentially enhance prediction, their practicality in primary care is

limited by higher costs and complexity. The results emphasize the value of simpler models using

routinely collected EHR data for earlier and more cost-effective predictions.

What methods are useful to apply to TG-CNNs to provide explainability for

machine-learned predictions to clinicians in a visually understandable way?

Outcome: Interactive graphs and sparse explainability methods were used to extract subgraphs

and find areas of EHRs which influenced model decision making, enabling clinicians to visualise

global patterns and understand predictions at an individual level. This approach enhanced

transparency and practical utility in clinical decision-making.

8.2 Contribution to Knowledge and Gaps Identified

8.2.1 Hip and Knee Replacement Risk in Primary Care

Chapter 6 outlined the current models used in predicting hip and knee replacement risk in

advance in primary care. Primary care prediction has much better clinical utility than secondary

care prediction as the speed of prognosis is accelerated, such that early detection allows for

more conservative and preventative treatments and therapies can be recommended potentially

187



8.2. Contribution to Knowledge and Gaps Identified Chapter 8. Conclusions

without secondary care referral. By predicting hip and knee replacement in advance at primary

care level, secondary care referral can be triaged to reduce patient travel and time expenditure

alongside reducing hospital resource utilisation.

Despite over 20 models being developed for hip and knee replacement risk prediction using

secondary care data, only five papers have developed models for this task in primary care data

[231, 232, 233, 234, 263]. Two papers covered hip and knee replacement, the other three papers

covered knee replacement alone.

Currently the Oxford Knee and Hip Score (OKHS) method is used in clinical practice to screen

patients for surgical or non-surgical hip and knee referral [231]. The OKHS method achieved

an AUROC of 0.83 and 0.87 for knee and hip referral, respectively. The OKHS method was

the best performing model for both hip and knee replacement referrals, that could be found via

a systematic search. However, it must be considered that this OKHS model does not give an

advance indication of future joint replacement requirement, instead it is used as a clinical tool

when a clinician suspects that a joint replacement may be required. The TG-CNN finds early

patterns in EHR histories which the model assigns influence to return probabilities up to five

years in advance, giving significant time for triaging and intervention treatment plans to begin.

There is very little evidence that any of these models have been fully validated using external

datasets and the performance metrics provided, for example AUROC without calibration curves,

are poor indicators of robust model performance. To see implementation of these models in

clinical practice, researchers must be more transparent with reporting methodology and results,

and external validation should be performed on unseen datasets (either in other practices or

populations) to ensure generalisability. Clinical trials may then be required to ensure benefit in

practice. Regardless, the TG-CNN model outperforms the existing OKHS model by 11.8% and

16.3% in the hip and knee models, respectively. The TRIPOD-AI [186] checklist was followed

throughout Chapters 5 and 6 providing transparent methodology.

8.2.2 Modelling using EHRs

Health services face growing challenges due to obesity, diabetes, and ageing populations, cre-

ating an urgent need to deliver more with fewer resources. To address this, health systems

must be adaptable to the dynamic needs of individuals and populations while optimising re-

source allocation to maximise health benefits for the greatest number of people [119]. With
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the expansion of EHR data and the advancements in modelling techniques, EHR data is being

used increasingly for health prediction and modelling tasks to improve clinical decision mak-

ing, patient outcomes, and planning resource utilisation. Despite these advancements there are

still some areas that require improvement and gaps of knowledge to be filled. EHRs enhance

clinical research by providing real-world, longitudinal patient data at scale. EHRs are useful

for identifying eligible participants, facilitating observational studies, and generating insights

into disease progression and treatment outcomes [284]. By integrating research capabilities into

clinical workflows, EHRs can bridge the gap between clinical care and research.

Chapter 3 of this thesis presents a systematic review of prediction models using EHRs for

forecasting individual patient health outcomes. The review identified only three studies with

low RoB, highlighting the importance of researchers adhering to guidelines such as TRIPOD

to ensure methodological rigour. Many of these studies inappropriately used clinical codes

(for example, including ground truth labels within the model predictors) or predicted outcomes

within time frames that were not clinically relevant. Furthermore, none of the models accounted

for the irregular time intervals within EHRs, which could provide valuable predictors to enhance

model performance. The predicted health outcomes in these studies were limited to mortality,

hospital readmission, treatment success, cancer, sepsis, heart failure, heart disease, COPD,

URTI, and Alzheimer’s disease. This thesis expands on these outcomes by incorporating joint

replacement into the list of health outcomes predicted using graph-based representations of

individual EHRs.

EHRs have been utilised for various predictive tasks using non-graphical approaches. Among

these, ML and deep learning methods are the most commonly employed for disease prediction.

Popular techniques include CNNs, RNNs, GNNs, and transformers for analysing EHR data

[106, 107, 108]. For risk prediction, generalised models such as LR and Cox regression models

remain the most frequently used algorithms [109].

Deep learning and advanced ML techniques are often recommended for their superior perfor-

mance compared to simpler ML methods, as they can capture more complex relationships [10,

109]. However, the added complexity may hinder their ability to identify and model uncertain-

ties in the data, which poses significant risks in healthcare settings. This issue is particularly

critical when the underlying data distribution changes, potentially affecting future predictions

[10].
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Existing literature reviews examining the use of EHRs in predictive models for health-related

outcomes consistently highlight a prevalence of high RoB research. These findings align with

the systematic review conducted in this thesis. For instance, one systematic review of AI models

using EHR data identified 81 studies [107]. Approximately one-third of these studies exhibited

high RoB, with none reporting calibration and most relying on AUROC as a performance

metric. Similar patterns were noted in other reviews [106, 109]. Additionally, the scarcity of

code availability further undermines trust in these models, compounded by the limited range

of performance metrics reported [107].

Another systematic review revealed that out of 81 models predicting risks using EHRs, 34

forecast outcomes within a 90-day timeframe, 32 projected outcomes over a period exceeding

one year, and 15 lacked defined endpoints [109].

A gap in the literature appears to exist regarding the incorporation of time-stamp information

in AI models using EHR data [107, 108]. Graph-based approaches offer a promising alternative,

as they can represent EHRs while preserving structural and temporal relationships through

node and edge attributes [144].

Many methods employing EHR data lack transparency and explainability, reducing clinical trust

in their predictions [10, 106]. However, attention mechanisms are increasingly being used to

address this issue [107, 108]. The graph-based methods described in this thesis enable intuitive

transformation of graphs and subgraphs generated by model filters into visualisations, enhancing

model explainability and fostering greater trust in their clinical applications.

Ainsworth and Buchan explore the challenges faced by current health systems and propose

potential improvements through the use of EHR data [119]. They advocate for reusing ex-

isting data to enhance learning health systems. Learning health systems are dynamic models

that continuously learn and evolve from updated data to predict health outcomes and manage

treatment pathways. Their work introduces conceptualisation of a system aimed at providing

real-time, personalised care recommendations to support clinical decision-making by accounting

for individual patient differences, thereby optimising outcomes. However, one major obstacle is

the fragmentation of data, often siloed regionally, by domain (e.g., education, healthcare, em-

ployment), or by institution/hospital. The lack of interoperability across healthcare systems,

hampers the integration between datasets. Initiatives like Connected Bradford, the Combined

Intelligence for Population Health Action (CIPHA) system, and the Greater Manchester (GM)
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Care Record are gaining traction by integrating data sources to provide a comprehensive view

of an individual’s lifestyle and health [285]. Despite such advancements, significant challenges

remain, including addressing privacy concerns surrounding the use of sensitive data and the

need for technological advancements to facilitate widespread implementation. Using EHRs in

population health management can help address challenges that continue to rise. For example,

risk stratification, preventative care, disease management, and determining health and social

disparities. For this to happen, models using EHRs need to be robust and generalisable which

provide decision making and planning far enough in advance to be clinically relevant.

8.3 Implications of the Research

This work introduces a completely new type of model for predicting outcomes from temporal

sequences, enabling the incorporation of irregular time intervals and non-linear event sequences

for greater representation and learning. The models developed in this work demonstrate the

potential for forecasting the likelihood of hip or knee replacement in one or five years. By

identifying individuals at risk, these tools could support proactive clinical interventions aimed

at preventing or delaying joint replacement through targeted management strategies. Their

implementation could enhance operational planning by anticipating future surgical demands and

allocating resources more effectively. Integrating such predictive models into clinical workflows

represents an opportunity to improve patient outcomes and optimise healthcare delivery.

The integration of predictive models, such as those developed in this thesis, into learning health

systems could significantly enhance service planning at the council and Integrated Care Board

(ICB) levels. By using real-time data and iterative model updates, these systems can iden-

tify patients at risk of hip or knee replacements well in advance, allowing for more strategic

allocation of healthcare resources. For example, areas with high predicted replacement rates

could proactively plan for increased surgical capacity, rehabilitation services, and physiotherapy

programs. These integrated models will need to be updated to ensure things such as temporal

drift, when treatment or healthcare practices change altering model predictive performance, do

not occur. Reduction in model performance, significant changes to incidence rates or elapsed

time could trigger the need to re-train the model. Ideally this model should be less computa-

tionally expensive to ensure more frequent model updates (retraining or recalibration) so that

prediction accuracy does not decline.
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Predictive insights could inform care home utilisation, helping councils and ICBs anticipate

and accommodate patients who may require short-term residential care following surgery. By

embedding risk prediction models into learning health systems, stakeholders can move from

reactive to proactive care planning, helping cost efficiency, improving patient outcomes and

reducing strain on healthcare systems [119]. Such integration exemplifies the transformative

potential of predictive analytics in addressing the broader challenges of ageing populations and

rising demand for orthopaedic care.

The methodology described in this thesis is adaptable to new clinical domains using temporal

data. The intuitive 3-tensor construction and representation is versatile for explainable methods

which could be further experimented with and explored for user experience.

8.4 Limitations of the Research

In this section the main limitations are covered, further research limitations are provided in the

previous chapters.

8.4.1 Literature Bias

This research systematically investigated graph-based and ML methods applied to EHRs for

health outcome prediction. However, only one relevant low-RoB paper was identified, which

shifted the chapter’s focus to methodological bias. Although these highlighted areas require

bias reduction, it promotes the need for careful consideration of assumptions to ensure clinical

applicability of such methods.

The use of the PROBAST tool, while a gold standard for assessing RoB in traditional predictive

modelling, may inadequately address the unique challenges of ML, particularly deep learning

methods. New PROBAST-AI guidelines, aim to better appraise ML methods, but it is antici-

pated that the findings of this study, where most papers had high RoB in the analysis domain,

will remain consistent under these forthcoming frameworks.

8.4.2 Evolving Research Landscape

One of the key limitations of this thesis is the rapidly evolving nature of the field, where new

studies and models using graph-based approaches in EHRs are frequently emerging. Figure

3.2 from Chapter 3 show the growth of graphs in healthcare prediction research since the
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2000’s. As researchers continue to explore novel methodologies, the techniques and findings

presented here may quickly become outdated or require adaptation in response to more advanced

frameworks. This constant influx of new research presents both a challenge and an opportunity,

it underscores the need for continuous refinement and highlights the dynamic progress in EHR-

based graph modelling. Future studies may build upon, refine, or even challenge the assumptions

and methodologies used in this thesis.

For example, a paper introducing temporal graph transformers has been introduced which

enables the inclusion of temporal EHR data [286]. This paper captures both visit-level and

event-level interactions, enabling more complex healthcare system interactions to be captured.

This work also focuses on node/edge-level prediction, which is not highly useful for pre-planning

or preventative care. The authors also do not include the outcomes to be predicted which makes

it difficult to statistically evaluate. Whilst this paper differs greatly to the work carried out in

this thesis, it demonstrates that research in this field will continue to grow and that continuous

revisiting of the literature is required if the work in this thesis is to be furthered.

8.4.3 Challenges of Using Clinical Codes

The EHR dataset used may introduce inaccuracies due to inconsistencies in coding and event

recording dates, potentially affecting the reliability of predictive features. Similarly, left- and

right-censoring issues may misclassify hip replacement statuses.

Knee OA diagnoses are often delayed in EHRs, with narrative diagnoses preceding codified

records by years. This highlights the need to investigate the incorporation of narrative data

into predictive models to enhance accuracy and timeliness.

Joint replacement dates may not have been coded to date, which means that waiting times and

insights into optimal surgery times may be skewed.

CTV3 codes are used in model training, however the transition from the CTV3 to SNOMED-

CT coding system does not affect the methodology described in this thesis, which is adaptable

to different coding systems.

8.4.4 Dataset Challenges

The dataset lacked critical features, such as ethnicity and laterality (e.g., left or right limb),

which could improve model granularity and explainability. Socioeconomic status was repre-
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sented by IMD quintiles derived from postcodes, potentially misrepresenting individual depri-

vation levels. Additionally, medical reasons for replacements (including emergency procedure

records, such as after fractures) or their elective nature were not available, limiting insights into

underlying health conditions. Furthermore, the dataset used was smaller and less comprehensive

than other datasets, such as CPRD.

This dataset was not provided with information when patients were lost to follow-up or changed

practice therefore right-censoring could mean that a patient would have had a hip replacement,

but the label is inaccurately given as not needing a replacement.

Using ResearchOne data leads to further limitations. ResearchOne data relies on anonymised

EHRs, which may not include all relevant patient histories due to patient’s opting out of sharing

their data leading to data incompleteness [70]. As patient’s opt out the sample size decreases,

potentially leading to biases in the model [287]. Opt-outs can disproportionately affect certain

demographics, which may cause the trained model to lack representative patterns, reducing

model generalisability [70]. The temporal graph-based models used in this project rely on

tracking patient primary care visits over time, but the combination of missing records or opt-

outs occurring could lead make it more difficult to the model to converge with more gaps in

patient trajectories [288].

ResearchOne is a primary care database in the UK that collects data from general practices us-

ing the SystmOne clinical system. While SystmOne is widely used across England, its coverage

is geographically uneven, meaning ResearchOne may not provide a fully representative sample

of the UK population. Certain regions where SystmOne is more prevalent may be overrepre-

sented, while others where alternative systems are dominant may be underrepresented. This

potential skew in representation could introduce biases in research findings, this may reduce

generalisability due to regional variations in healthcare outcomes and demographics [289].

CPRD collects data from a broader set of practices using various clinical systems, making it

a more representative source of primary care data in the UK [290]. The Health Improvement

Network (THIN), based on the Vision system, has a more limited geographical spread, while

QResearch, which relies on EMIS practices, has strong representation in London, the South, and

the West of England [291]. The choice of database can significantly affect the representativeness

of research findings, so we must consider these differences when selecting data sources.
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Despite out-of-sample testing of the recalibrated model showing good performance, external

validation using unseen datasets was not performed, limiting the generalisability of the models.

Best practices would involve using separate datasets or splitting by time or health centres, for

multi-centre studies.

8.4.5 Explainability Limitations

Explainability methods used in this study are not falsifiable without human interpretation and

do not consider causality, posing challenges in aligning model predictions with clinical reasoning.

Careful wording to clinicians is required to ensure that they understand visit or clinical code

influence are based on prediction from the model than meaningful or causal pathways.

The small sample size (N=7) of clinicians in the graph visualisation survey prevented correlation

analysis of explainability feedback, requiring larger participation in future studies.

Long patient histories were too complex for effective visualisation. Simplified visualisations,

such as subgraphs filtered by influence thresholds or initial focus on more influential areas, may

offer more practical insights for clinicians.

Whilst the research undertaken for this thesis showed improvements to predicting hip and knee

replacement risk with tools which could be clinical beneficial for assisting with decision making,

it must be acknowledged that this work has a long way to go. Clinicians in the UK working

for the NHS currently have limited equipment and resources. Before healthcare joins the AI

revolution, serious thought is needed into resourcing and updating existing basic equipment

(ECG machines, sphygmomanometers).

8.5 Recommendations for Future Research

To demonstrate the real-world impact of this model, future work should evaluate its clinical

utility through metrics such as patient quality of life, clinician workflow improvements, and

healthcare resource utilisation. Decision curve analysis could provide insights into the balance

between benefit and harm based on clinical risk thresholds, addressing questions like: “What are

the consequences of a model incorrectly predicting an outcome? Would such errors significantly

impact patient health, either by unnecessary interventions or missed opportunities for necessary

care?” By weighting these factors, decision curve analysis can identify thresholds that minimise
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harm and maximise benefit, accounting for variations in clinician and patient perceptions of life

impact. Decision curve analysis combined with a meta-analysis of interventions may also reveal

cost-effective strategies for reducing healthcare expenditures.

Integrating a Patient and Public Involvement and Engagement (PPIE) group could help refine

risk grouping criteria, ensuring alignment with patient needs. The TG-CNN model could be

adapted for triaging patients, integrating into primary care to provide real-time risk scores for

hip or knee replacements based on joint pain codes in the EHR. These scores could inform

follow-up care strategies and resource planning.

Currently, graph-based methods in healthcare are underutilised, limited to seven prediction

outcomes (mortality, readmission, treatment success, sepsis, cardiovascular disease, Alzheimer’s,

and now joint replacement). Future work should explore broader health applications, such as

predicting resource utility or cancer recurrence.

External validation of the model is critical to assess its generalisability. This involves testing

the model on datasets from different regions or health systems to ensure robust performance.

Future work should enhance the explainability of the TG-CNN model to assist clinically in-

formed decision making about patient care. Visualisations should be simplified for clinical use,

presenting only the most relevant aspects of patient histories to improve clarity and usabil-

ity. Visual tools could enhance transparency by illustrating the reasoning behind risk scores,

empowering patients to understand their health risks and motivating adherence to treatment

plans. It may be worth exploring attention mechanisms to improve interpretability. Attention

layers could complement the existing CNN architecture by capturing global dependencies in

sequential data, making predictions more understandable. Subgraphs derived from attention

maps could prioritise the most impactful regions of a patient’s EHR for visualisation. However,

it must be considered that attention mechanisms may increase computational costs. Addition-

ally, layer-wise attribution could help determine the contributions of the CNN and LSTM layers

to model predictions. For these models to be used in practice impact assessments would need

to be carried out which involve randomised controlled trials between regions. Some regions will

have the models in place to trial and others will not use a model and be the control group.

Edge-case analysis may also be beneficial, looking at the graphs from individuals who have been

incorrectly predicted due to rare health trajectories. These edge-case may be useful for case
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study analysis by clinically trained professionals, to determine if the trajectory is rare both

to the predictive model and a clinician. These cases can help refine models, as they reveal

weaknesses in generalisation or biases in training data. Continuous improvement could involve

logging edge cases, analysing their impact, and retraining models with adjusted parameters or

additional data to enhance robustness.

Future iterations of graph-based visualizations should focus on scalability and dimensionality

reduction to address the complexity of long patient histories. Graphs should emphasize the

most informative regions of the EHR, presenting concise and actionable insights to clinicians.

Further investigation into the dual-branch TG-CNN architecture could explore whether the

second branch, designed to handle time dilation with a different stride, improves visualization

and interpretability. This could provide deeper insights into how the model captures temporal

patterns in the data.

By addressing these areas, future research can enhance the model’s generalisability, clinical

relevance, and usability, bridging the gap between predictive analytics and real-world healthcare

applications.

8.6 Final Remarks

This thesis shows the potential of integrating advanced ML and graph-based methods with EHRs

to predict health outcomes. By critically analysing current methodologies and highlighting

key challenges, it sets a foundation for addressing biases and enhancing the reliability and

interpretability of predictive models. These contributions not only push the boundaries of

data-driven healthcare but also emphasise the ethical and clinical responsibility of ensuring

these models are both equitable and actionable.

While the limitations and challenges identified highlight the complexity of translating predictive

analytics into clinical practice, they also present opportunities for innovation. The importance

of external validation, patient-centric model development, and explainable AI methods cannot

be overstated. By focusing on these areas, future research can deliver solutions that are not

just technically sound but also tailored to real-world healthcare needs.

This work envisions a healthcare ecosystem where predictive models empower clinicians and

patients alike, enabling earlier interventions, personalised care plans, and improved outcomes.

197



8.6. Final Remarks Chapter 8. Conclusions

The pathway from research to implementation is not without hurdles, but with continued fo-

cus on methodological rigour, clinical relevance, and stakeholder collaboration, the promise of

predictive analytics in reshaping healthcare can become a reality. This thesis is a step for-

ward in that journey, laying the groundwork for models that are not only innovative but also

trustworthy, transparent, and transformative.
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A.2 Search Strings

Below we provide details of the search terms for each database including how many papers were

retrieved from each.

The search terms were combined using Boolean operators (OR, AND) and adjacency keys to

create database queries. The search term query generated was as follows: ((graph OR graphs

OR graph-based OR (node* AND edge*) OR “knowledge graph” OR “network analysis”) AND

(”electronic health record” OR “medical records systems” OR “record-linkage” OR (routine

adj5 data) OR ((electronic OR link* OR compute* OR anonymi?ed) adj5 record) OR ((health

OR patient OR clinic* OR medic* OR case) adj5 (record* OR data OR plan* OR chart*) adj5

(compute* OR system OR electronic OR link* OR dataset OR network)) OR EMR OR EPR

OR EHR) AND (predict* OR diagnos* OR prognos*))

Search conducted on: 27/02/2023

MEDLINE. Papers retrieved: 303 ((graph or graphs or graph-based or (node* and edge*) or

“knowledge graph” or “network analysis”) and (”electronic health record” or “medical records

systems” or “record-linkage” or (routine adj5 data) or ((electronic or link* or compute* or

anonymi?ed) adj5 record) or ((health or patient or clinic* or medic* or case) adj5 (record* or

data or plan* or chart*) adj5 (compute* or system or electronic or link* or dataset or network))

or EMR or EPR or EHR) and (predict* or diagnos* or prognos*))

Web of Science. Papers retrieved: 410 AB=(( (graph OR graphs OR graph-based OR (node*

AND edge*) OR “knowledge graph” OR “network analysis”) AND (”electronic health record”

OR “medical records systems” OR “record-linkage” OR (routine near/5 data) OR ((electronic

OR link* OR compute* OR anonymi?ed) near/5 record) OR ((health OR patient OR clinic*

OR medic* OR case) near/5 (record* OR data OR plan* OR chart*) near/5 (compute* OR

system OR electronic OR link* OR dataset OR network))OR EMR OR EPR OR EHR) AND

(predict* OR diagnos* OR prognos*)))

Scopus. Papers retrieved: 633 TITLE-ABS-KEY ( ( ( graph OR graphs OR graph-based OR (

node* AND edge* ) OR “knowledge graph” OR “network analysis” ) AND ( “electronic health

record” OR “medical records systems” OR “record-linkage” OR ( routin* W/5 data ) OR ( (

electronic OR link* OR compute* OR anonymi?ed ) W/5 record ) OR ( ( health OR patient OR

clinic* OR medic* OR case ) W/5 ( record* OR data OR plan* OR chart* ) W/5 ( compute*
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OR system OR electronic OR link* OR dataset OR network ) ) OR emr OR epr OR ehr ) AND

( predict* OR diagnos* OR prognos* ) ) )

Total papers (including potential duplicates) = 1,346

A.3 Data Extraction Items

The bullet list below shows all of the items we extracted from the papers during the data

extraction process of our systematic literature review.

1. First author: Surname of first author.

2. Publication date: Year the study was published.

3. DOI number: DOI number of the study (this could also be arVix number if no DOI

available).

4. Title: Title of paper.

5. Journal/ conference title: Journal or conference the paper was submitted to.

6. Model description/method: What method or ML model was used e.g. CNN, LSTM with

a description.

7. Method for selection of predictors for inclusion in modelling: e.g. PCA, regression.

8. Patient inclusion criteria: What inclusion/exclusion criteria did the authors use.

9. Missing data: Type of data missing, handling of missing data.

10. Disease/ condition/ health setting: Health domain e.g. Cancer, MSK. Start point.

11. Dataset/ participant description: e.g. Snomed codes from over 40 year olds from West

Yorkshire UK. Patient population. Where data is from geographically.

12. Sample size: Total number of peoples data used in the model and number of outcomes/

events.

13. Label type/ health outcome(s) to be predicted: Health outcome such as frailty. Endpoint.

14. Prognostic or diagnostic outcome?: State whether outcome is a prognostic prediction or

a diagnostic prediction.
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15. Predictors in final model: e.g. age, sex, codes.

16. Node allocation: What were the nodes used for in the graph.

17. Edge allocation: What where the edges used for in the graph.

18. Timing of predictor measurement: e.g. at patient presentation, at diagnosis, at treatment

initiation.

19. Node, edge or graph-level prediction?: What type of graph prediction did the authors use.

20. Predictive performance (AUROC)

21. Predictive performance (AUPRC)

22. Predictive performance (Accuracy)

23. Predictive performance (Precision)

24. Predictive performance (Recall)

25. Predictive performance (Specificity)

26. Predictive performance (F1)

27. True Positive (TP)

28. True Negative (TN)

29. False Positive (FP)

30. False Negative (FN)

31. Predictive performance (. . . ): Other predictive performance metrics not included.

32. External validation(s): Have the authors externally validated their model (using a different

dataset with external researchers).

33. Internal validation(s) : Has the model been internally validated?

34. Comparison studies on the same dataset: Techniques and predictive performance of these

comparison studies. Ablation, comparison models from the literature and baselines.

35. Interpretation of presented models: Are the models ready for real-world use or more

research required?

249



A.4. Screening Chapter A. Systematic Literature Review Appendix

36. Are clinicians involved in the study?: Clinical author or involvement via contribution.

37. Miscellaneous: Any other information from the paper that seems interesting.

A.4 Screening
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Figure A.1: Full screening process flowchart.
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A.5 Study Characteristics
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Table A.1: Overview of included studies (1/9)

Ref Dataset
(Location)

Sample
Size

Description of Data Ex-
tracted

Prediction
Time
Horizon

Outcome(s) ML Technique Validation
Method

Metrics
Presented

[139] Hospital
EHR
system
(Australia)

1,800 Admission information,
diagnoses, procedures
(ICD-10, diagnosis re-
lated group, Australian
National Subacute and
Non-Acute Patient Classi-
fication (AN-SNAP))

- Risk of DM 1. Social Network analy-
sis of graph 2. Longitu-
dinal Distance Matching

None -

[140] Private
healthcare
hospi-
tal data
(Australia)

38,500 ICD-10 codes and admin-
istrative data

- Risk of DM 1. LR 2. Decision tree Internal Val
6:3:1

Accuracy

[158] Medical
system
(City in
North
China)

7,372 ICD-10 codes - Top K Diseases Collaborative as-
sessment prediction
model (CAPM) 1.
Temporal graph rep-
resentation of events
2. Vector similarity of
temporal graph repre-
sentation

Leave one
out

Precision

[142] NHIRD
(Taiwan)

1,000,000 ICD9-CM Anatomical
Therapeutic Chemical
Classification (ATC)
codes

10 Years Success of phar-
macological pre-
vention of com-
plications of: a.
HTN b. Hyper-
lipidaemia c. DM

Cross-Global Atten-
tion Graph Kernel
Network 1. EHR
Graph embedding from
GCN 2. Global node at-
tention/cluster learning
3. SVM classifier based
on cosine distance of
pairs

Internal Val
8:1:1

AUROC,
Accuracy,
F1 Score
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Table A.2: Overview of included studies (2/9). CV = Cross-fold validation.

Ref Dataset
(Location)

Sample
Size

Description of Data Ex-
tracted

Prediction
Time
Horizon

Outcome(s) ML Technique Validation
Method

Metrics
Presented

[141] MIMIC-III
(USA)

5,956 ICD9-CM, Laboratory In-
vestigations

6, 12, 24,
48 hours

Mortality Heterogenous graph
embedding 1. CNN
to build an embedding
representation of ICD9
and Laboratory investi-
gations 2. SoftMax clas-
sifier

10-fold CV AUROC,
AUPRC

[159] MIMIC-III
(USA)

34,560 a. Clinical Discharge Note
b. Clinical notes from the
first three days of admis-
sion

30 days 30-day hospital
readmission

DeepNote-GNN 1.
Clinical-BERT develop
embedding vector of
clinical discharge 2.
Admission feature vector
from admission 3. GCN
construct a node feature
vector 4. Classiify on
cosine similarity

5-fold CV AUROC,
AUPRC,
Recall
@ 80%
Precision

[146] NHIRD
(Taiwan)

1,000,000 ICD9-CM ATC codes One
month

Antibiotic Failure
/ Success

Graph Kernel 1. Tem-
poral graph construction
of EHR 2. SVM classifier

10-fold CV AUROC,
Accuracy,
F1 Score

[147] Unknown 34,427 ICD9-CM, medication,
laboratory investigations

90 days Risk prediction of
pairs of: a. HF b.
DM c. Chronic
Kidney Disease
(CKD) d. COPD

Heterogeneous CNN
1. CNN on a graph rep-
resentation of temporal
events of EHRs to learn
vector representation 2.
MLP/SoftMax classifier

- Precision,
Recall, F1
Score
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Table A.3: Overview of included studies (3/9). CV = Cross-fold validation.

Ref Dataset
(Location)

Sample
Size

Description of Data Ex-
tracted

Prediction
Time
Horizon

Outcome(s) ML Technique Validation
Method

Metrics
Presented

[160] MIMIC-III
(USA)

7,537 ICD9-CM - a. Mortality
b. Readmission
c. Sepsis / HF
Prediction d.
Next Diagnosis

Time-aware & Co-
Occurrence aware
Network (TCoN)
1. Time-GRU to de-
velop a representation
of admission/visit. 2.
Two-headed attention
to GRU embeddings 3.
SoftMax classifier

5-fold CV AUROC,
AUPRC,
Accuracy
@ k-value
values
(5,15,25,35)

[161] National
Cancer
Registry
(Colorectal
Cancer)
(UK)

54,000 ICD10-CM - Next Diagnosis Deep Diffusion Pro-
cess 1. LSTM on
the temporal sequence
of EHRs to model the
next event 2. Hidden
state provides transmis-
sion function of a point
process model

- AUROC

[145] eICU
(USA)

41,026 ICD9-CM, CPT codes,
Laboratory Investigations

- a. Readmission
b. Mortality in
episode c. Next
Diagnosis

Graph Convolutional
Transformer (GCT) 1.
GCT to learn embedding
from the graph represen-
tation of visits and co-
occurrence 2. Classifica-
tion on embedding

5-fold CV AUPRC
Accuracy
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Table A.4: Overview of included studies (4/9). CV = Cross-fold validation.

Ref Dataset
(Location)

Sample
Size

Description of Data Ex-
tracted

Prediction
Time
Horizon

Outcome(s) ML Technique Validation
Method

Metrics
Presented

[68] Foundation
Medicine
Inc & Mayo
Clinic EHR
(USA)

1,011 Oncology genetic reports,
Medication, Laboratory
Investigations, ICD9-CM,
family history.

0 - 24
Months

Cancer type clas-
sification

FHIR2RDF 1. Graph
representation us-
ing FHIR2RDF and
Node2vec to extract
features 2. ML methods
for downstream (RF,
Näıve Bayes, LR, SVM,
CNN, MLP, GCN)

10-fold CV AUROC

[162] Proprietary
EHR
Dataset
(Unknown)

Unknown 10,713 for HF cohort 3,830
for chronic liver disease
cohort & Patient Demo-
graphics, Hospital utilisa-
tion information, ICD10-
CM, Procedural Codes

30 days a. Readmission
b. Mortality dur-
ing admission

MedGraph 1. Bipar-
tite graph construction
of code occurrence and
visit. 2. Structural
learning using Wasser-
stein distance 3. Tempo-
ral learning using LSTM
4. SoftMax Classifica-
tion

75:25
Train/Test
Split

AUROC,
AUPRC

[163] 1. Geri-
atric health
examina-
tion cohort
study 2.
National
Death
Registry
(Taiwan)

102,258 Demographics, habits,
laboratory investigations,
physical examinations,
mental health assess-
ments, cognitive function

Three
years

a. Mortality Risk
b. Diagnosis of
death

Semi-supervised het-
erogeneous graph
(SHG)-Health 1.
Graph construction of
heterogeneous data 2.
Semi-supervised learning
on unlabelled data 3.
Classification

5-fold CV Precision,
Recall,
F1-Score
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Table A.5: Overview of included studies (5/9). CV = Cross-fold validation.

Ref Dataset
(Location)

Sample
Size

Description of Data Ex-
tracted

Prediction
Time
Horizon

Outcome(s) ML Technique Validation
Method

Metrics
Presented

[148] Proprietary
EHR
dataset
(North
China)

92,652 ICD10-CM, Time stamps,
Demographics, Clinical
event

180 days Diagnosis of: a.
COPD b. IHD

MTPGraph 1. Pa-
tient temporal profiling
2. Temporal feature
extraction/feature map
construction 3. SVM
classification on the fea-
ture vector

10-fold CV AUROC,
Recall,
Accuracy

[164] NHIRD
(Taiwan)

1,000,000 Demographics, ICD9-CM
ATC for drug prescrip-
tions, Time stamps

14 days Success of Antibi-
otic: a. Pneumo-
nia b. AoM c.
Acute cystitis d.
UTI

Multiple Graph Ker-
nel Fusion (MGKF) 1.
Temporal signature us-
ing graph kernel 2. Fu-
sion of pairwise tempo-
ral proximity and kernel
embedding using MLP 3.
Classification using MLP
+ Sigmoid output

10-fold CV AUROC,
Accuracy,
F1-Score

[165] MIMIC-II
(USA)

1,170 ICD9-CM, Laboratory In-
vestigations, Hospital ad-
mission information, de-
mographics

30 Days Readmission
within 30 days

Subgraph Augmented
Non-negative Ma-
trix Factorization
(SANMF) 1. SANMF
convert time-series data
into graphs 2. Unsuper-
vised learning clustering
of sub-graph trends
to extract features 3.
LR classification us-
ing demographics and
subgraph features

5-fold CV AUROC,
Accuracy,
Precision,
Recall,
Negative
Predictive
Value
(NPV)
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Table A.6: Overview of included studies (6/9)

Ref Dataset
(Location)

Sample
Size

Description of Data Ex-
tracted

Prediction
Time
Horizon

Outcome(s) ML Technique Validation
Method

Metrics
Presented

[166] MIMIC-III
(USA)

48,393 Discharge summary Entity
from UMLS

30 Days Unplanned read-
mission within 30
days

1. Graph construction
of UMLS Entity Dis-
charge summary 2. GCN
and attention layer en-
coding of entity relation-
ship 3. Bi-LSTM en-
coding of a document
4. MLP Classifier with
GCN/Bi-LSTM embed-
ding

Internal Val
8:1:1

AUROC,
AUPRC,
Recall
@ 80%
Precision

[167] 1. eICU 2.
Paediatric
EHRs in
‘Tertiary
centre’
(USA,
China)

1.
41,026 2.
144,170

1. ICD9-CM, Medication,
Procedure codes, Medical
Examination 2. Symp-
toms, medical examina-
tion, disease, drugs

- a. Readmission
to ICU b. Mor-
tality during
ICU admission c.
URTI

Statistics and
Knowledge-based
Graph Transformer
(S K GT) 1. Graph
representation of the
clinical episode 2.
Transformer to form
conditional probability
matrix & Attention
matrix 3. Fine-tune for
the prediction task

Internal Val
8:1:1

AUROC

[168] Proprietary
EHREHR
dataset
from seven
hospitals
(Australia)

Cancer:
4,293
Acute
My-
ocardial
Infarc-
tion
(AMI):
2,941

ICD10-CM, Procedure
codes, demographic

One year
30 days

a. One-year Mor-
tality b. 30 days
Readmission

Graph SVM 1. Graph
generation frherEHR
using Jaccard Index 2.
Alternating direction
method of multipliers
(ADMM) to train SVM
Classifier

100 Itera-
tions Mean
values
presented

AUROC,
PPV,
Sensi-
tivity,
Speci-
ficity,
F1-score
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Table A.7: Overview of included studies (7/9)

. CV = Cross-fold validation.

Ref Dataset
(Location)

Sample
Size

Description of Data Ex-
tracted

Prediction
Time
Horizon

Outcome(s) ML Technique Validation
Method

Metrics
Presented

[169] MIMIC-III
(USA)

3,431,622 Demographics, Vital signs 24 hours Death/ Decom-
pensation

Temporal Aware
Graph Convolution
Network (TAGNet) 1.
Graph generation on of
EHR 2. GRU encoding
at each timestep 3. GCN
learns representation
from attention from
GRU hidden states 4.
MLP Classifier

Internal Val
70:15:15

AUROC,
AUPRC,
Minimum
precision,
Minimum
Sensitiv-
ity

[118] Real-world
EHR data
warehouse
(Unknown)

319,650 ICD9-CM One year a. One-year
hospitalisation b.
Onset of HF

Temporal Phenotyp-
ing 1. Temporal graph
construction on the se-
qsequence of EHR events
2. Temporal pheno-
typing using four stated
methods in vector repre-
sentation 3. SVM classi-
fier

10-fold CV AUROC,
AUPRC,
Accuracy
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Table A.8: Overview of included studies (8/9). CV = Cross-fold validation.

Ref Dataset
(Location)

Sample
Size

Description of Data Ex-
tracted

Prediction
Time
Horizon

Outcome(s) ML Technique Validation
Method

Metrics
Presented

[170] NHIRD
(Taiwan)

UTI:
1,501,310
AoM:
151,522
Com-
munity
Ac-
quired
Pneu-
monia
(CAP):
95,796
Cystitis:
733,119
HTN:
235,695
Hyperli-
paemia:
123,380
DM:
131,997

Demographics, ICD9-CM
ATC Code

UTI /
AoM,
CAP,
Cys: 14
Days
HTN, DM
Hyperli-
paemia: 5
years

Failure of treat-
ment 1. Patient
Graph Construc-
tion 2. Graph
Kernel pairwise
matching 3.
MGKF [164]
/ Cross-global
[142] frameworks
used to classify
outcome

10-fold CV AUROC,
Accuracy,
F1-Score

[171] EHR from
In Vitro
Fertil-
isation
(IVF) clinic
(South
Korea)

269 Demographics, IVF Treat-
ment variables

- Positive Preg-
nancy Test

Bayesian Networks 1.
Joint probability of con-
ditional dependencies of
selected features 2. Clas-
sification using condi-
tional probabilities

10-fold CV Accuracy
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Table A.9: Overview of included studies (9/9). CV = Cross-fold validation.

Ref Dataset
(Location)

Sample
Size

Description of Data Ex-
tracted

Prediction
Time
Horizon

Outcome(s) ML Technique Validation
Method

Metrics
Presented

[172] a. NYU
YU Lan-
gone
Health
EHR b.
MIMIC-III
c. eICU
(USA)

a.1,600,000
b.
50,000 c.
41,000

a. ICD10-CM, Logical
Observation Identi-
fiers Names and Codes
(LOINC), medication b-c.
ICD9-CM, Laboratory
Investigations (bucketed),
CPT

a. 12-24
months b-
c. -

a. Alzheimer’s
Disease Onset b.
Mortality during
admission c. Re-
admission

Variationally Regu-
larized Graph Repre-
seesentation (VRFR)
1. EHR features en-
coded into embeddings
2. Multi-head atten-
tion to learn encoded
graph 3. Decoder clas-
sifier with latent space
regularisation

Internal Val
8:1:1

AUPRC,
PPV
@ 40%
Recall

[173] CardioNet
(South
Korea)

53,841 EHR Data from Seoul
Asan Medical Center,
diagnosis, laboratory in-
vestigations, echocardiol-
ogy, physical, medication,
surgery, smoking

Observed
for 5
years af-
ter being
admit-
ted with
angina

Cardiovascular
disease: whether
mortality, MI,
stroke or HF
occurred in the
5-year period

Heterogeneous bipar-
tite graphs Node em-
beddings aggregated and
the target node repre-
sented. Neighbouring
nodes encoded into em-
beddings and updated.

Train and
validation
split not
specified

AUROC,
AUPRC

[174] a. MIMIC-
IV b. eICU
(USA)

a.HF
mor-
tality:
15,528
Sepsis:
58,230 b.
150,644

a. ICD ICU population,
admission, diagnosis and
treatment b. ICD-9 and
CPT procedure codes

a-b. First
48 hours
in the
ICU

a. HF mortality
and sepsis b. HF
mortality

Gated Graph Atten-
tion Network 1.Time
series features and clini-
cal events extracted from
EHR. 2. Self-attention.
3. GNN model

5-fold CV AUROC,
AUPRC,
Accuracy
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A.6 Node and Edge Allocation
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Table A.10: Node and edge allocation types in the graphs used in the selected papers (1/2).

Papers Node Allocation/ Use Edge Allocation

[139] Diagnosis 1) Number of times two diseases occurred
simultaneously 2) Sequential directionali-
ty/ ordering 3) Number of times two dis-
eases occurred sequentially (one after an-
other)

[118] Diagnosis, medication Temporal proximity weighting
[167] Diagnosis, treatment, physical examina-

tions, symptoms
Medical relation between nodes

[141] Diagnosis, laboratory investigations, pa-
tients

Testing or diagnosis of a patient under-
taken

[145] Diagnosis, laboratory investigations, treat-
ment

Association weighting between nodes

[147] Diagnosis, EHR codes (e.g. ICD-10), but
which type(s) are unclear (e.g. diagnoses,
demographic)

Temporal proximity weighting

[148] Diagnosis, medication, laboratory investi-
gations

Time difference/elapsed between each
node, temporal proximity weighting

[158] Diagnosis, EHR codes (e.g. ICD-10), but
which type(s) are unclear (e.g. diagnoses,
demographic), medication

Weights higher if two medical events are
more often and closer

[68] Diagnosis, demographics, laboratory inves-
tigations, patients, genetic data, family his-
tory

Association weighting between nodes

[162] Diagnosis, demographics, clinical note rep-
resentation, visits

Time difference/elapsed between each
node, different interactions (e.g. code to
timestep)

[164] Diagnosis, demographics, medication Time difference/elapsed between each node
[173] Diagnosis, medication, laboratory investi-

gations, patients, physical examinations,
visits, smoking, echocardiography

Relationship between patient and medical
node (e.g. edge exists between patient and
smoke if the patient smokes)

[142] EHR codes (e.g. ICD-10), but which
type(s) are unclear (e.g. diagnoses, de-
mographic), demographics (e.g. age, BMI,
gender)

Time difference/elapsed between each node

[146] EHR codes (e.g. ICD-10), but which
type(s) are unclear (e.g. diagnoses, demo-
graphic)

Time difference/elapsed between each
node, link to demographics (as the first
node)

[160] EHR codes (e.g. ICD-10), but which
type(s) are unclear (e.g. diagnoses, demo-
graphic)

Linking of nodes/EHR codes happening on
the same visit

[161] EHR codes (e.g. ICD-10), but which
type(s) are unclear (e.g. diagnoses, demo-
graphic)

Risk of disease

[170] EHR codes (e.g. ICD-10), but which
type(s) are unclear (e.g. diagnoses, de-
mographic), demographics (e.g. age, BMI,
gender)

Time difference/elapsed between each
node, link to demographics (as the first
node)
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Table A.11: Node and edge allocation types in the graphs used in the selected papers (2/2).

Papers Node Allocation/ Use Edge Allocation

[163] Demographics (e.g. age, BMI, gender),
physical examinations, mental tests, habits

Temporal proximity weighting

[169] Demographics (e.g. age, BMI, gender),
heart rate, blood pressure and oxygen sat-
uration, eye-opening and verbal response

Fully connected initially and updated by
attention

[174] Medication, treatment, patients Events happening on the same time step
are linked via edge and weighting is value
from laboratory test, or infusion drug. If
patient took a prescription the edge weight
is 1 otherwise it is 0 to the prescription
node

[171] Treatment, symptoms The conditional probability of a connection
between 2 nodes

[159] Clinical note representation The similarity between 2 nodes
[140] Comorbidity occurrence count Number of times two diseases occurred si-

multaneously, number of times two dis-
eases occurred sequentially (one directly af-
ter another)

[166] Average values of word embeddings from:
unique words from clinical free text or the
linked umls

1) Intradocument interaction level. 2) Path
lengths between entity nodes. 3) String
similarities based on word overlap. 4) Co-
ine similarities

[165] Discretized measurements of variables at a
point in time

Sequential directionality/ ordering, la-
belling of change of quantifiable variable
(up, down or no change)

[168] EHR features The similarity between two nodes
[172] EHR codes (e.g. ICD-10), but which

type(s) are unclear (e.g. diagnoses, demo-
graphic)

Fully connected initially and updated by
attention
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A.7 AUROC Baseline Model Comparison

Figure A.2: Comparison of AUROC scores for mortality prediction between the primary model
and alternative/baseline models presented in various studies. CL = Chronic liver disease, HF
= Heart Failure.
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Appendix B

Hip Replacement Prediction

Appendix

Figure B.1: Males only. Figure B.2: Females only.

Figure B.3: 40-60 year olds. Figure B.4: 60-70 year olds. Figure B.5: 70+ year olds.
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Figure B.6: IMD 1. Figure B.7: IMD 2. Figure B.8: IMD 3.

Figure B.9: IMD 4. Figure B.10: IMD 5.
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Table B.1: CTV3 Codes (n=45) used for labelling hip replacement (1).

CTV3 Code Description

7K200 Primary cemented total hip replacement
7K20y Total prosthetic replacement of hip joint using cement
7K20z Total prosthetic replacement of hip joint using cement
7K210 Primary uncemented total hip replacement
7K21y Total prosthetic replacement of hip joint not using cement
7K21z Total prosthetic replacement of hip joint not using cement
7K220 Primary total replacement of hip joint
7K22y Total replacement of hip
7K22z Total replacement of hip
7K23. Thompson hemiarthroplasty of hip joint using cement
7K230 Primary cemented hemiarthroplasty of hip
7K23y Arthroplasty of hip joint using cement
7K23z Arthroplasty of hip joint using cement
7K24. Prosthetic uncemented hemiarthroplasty of hip
7K240 Primary uncemented hemiarthroplasty of hip
7K24y Prosthetic uncemented hemiarthroplasty of hip
7K25. Partial hip replacement by prosthesis
7K250 Partial hip replacement by prosthesis
7K25y Partial hip replacement by prosthesis
7K25z Partial hip replacement by prosthesis
X606J Total replacement of hip
X606K Partial hip replacement by prosthesis
XE08j Total prosthetic replacement of hip joint using cement
XE08k Primary cemented total hip replacement
XE08m Total prosthetic replacement of hip joint not using cement
XE08o Total replacement of hip
XE08r Thompson hemiarthroplasty of hip joint using cement
XE08u Partial hip replacement by prosthesis
XE2n7 Total replacement of hip
XS2Dh Prosthetic uncemented hemiarthroplasty of hip
XaBFE Prosthetic arthroplasty of the hip
XaBFG Arthroplasty of hip joint using cement
XaBFH Arthroplasty of hip without cement
XaBrw Thompson hemiarthroplasty of hip joint using cement
XaF7j Primary hybrid total replacement of hip joint
XaF7k Primary hybrid total replacement of hip joint
XaF7l Prosthetic hybrid total replacement of hip joint
XaMBd Prosthetic hybrid total replacement of hip joint using cemented

acetabular component
XaMBe Primary hybrid total prosthetic replacement of hip joint using

cemented acetabular component
XaMBj Prosthetic hybrid total replacement of hip joint using cemented

acetabular component
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Table B.2: CTV3 Codes (n=45) used for labelling hip replacement (2).

CTV3 Code Description

XaMBo Primary hybrid total prosthetic replacement of hip joint using
cemented femoral component

XaMBu Prosthetic hybrid total replacement of hip joint using cemented
femoral component

XaMC4 Prosthetic hybrid total replacement of hip joint using cement
XaMC5 Prosthetic hybrid total replacement of hip joint using cement
XaMCB Prosthetic hybrid total replacement of hip joint using cement
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Hip and Knee Replacement

Prediction Appendix
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Figure C.1: PRISMA flowchart for systematic search of papers predicting hip and knee replace-
ment risk using primary care data.
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Figure C.2: Calibration curves for Females in
each TG-CNN model.

Figure C.3: Calibration curves for Males in
each TG-CNN model.

Figure C.4: Calibration curves for patients in
the IMD 1 (most deprived) group in each TG-
CNN model.

Figure C.5: Calibration curves for patients in
the IMD 2 group in each TG-CNN model.
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Table C.1: CTV3 Codes (n=33) used for labelling knee replacement.

CTV3 Code Description

7K30. Cemented knee arthroplasty (& total (& named variants))
7K300 Primary cemented total knee replacement
7K30y Total prosthetic replacement of knee joint using cement OS
7K30z Total prosthetic replacement of knee joint using cement NOS
7K31. Arthroplasty knee joint without cement (& total)
7K310 Primary uncemented total knee replacement
7K31y Total prosthetic replacement knee joint not using cement OS
7K31z Total prosthetic replacement knee joint not using cement NOS
7K32. Other arthroplasty knee joint (& total)
7K320 Primary total knee replacement NEC (& hybrid)
7K32y Other total prosthetic replacement of knee joint OS
7K32z Other total prosthetic replacement of knee joint NOS
7K37. Cemented unicompartmental knee replacement
7K370 Primary cemented unicompartmental knee replacement
7K38. Uncemented unicompartmental knee replacement
7K380 Primary uncemented unicompartmental knee replacement
7K39. Hybrid unicompartmental knee replacement
7K390 Primary hybrid unicompartmental knee replacement
X606N Arthroplasty of the knee
X606O Prosthetic total arthroplasty of the knee
X606P Prosthetic unicompartmental arthroplasty of the knee
X606Q Prosthetic medial unicompartmental arthroplasty of the knee
XE07f Knee arthroplasty (& replacement)
XE08w Total prosthetic replacement of knee joint using cement
XE08y Total prosthetic replacement of knee joint not using cement
XE090 Other total prosthetic replacement of knee joint
XE091 Primary hybrid total knee replacement NEC
XaBFJ Prosthetic arthroplasty of knee
XaBFK Arthroplasty of knee using cement
XaBFM Arthroplasty of knee without cement
XaOPm Unicompartmental knee replacement NOS
XaPtO Hybrid prosthetic replacement of knee joint using cement
XaPtP Primary hybrid prosthetic replacement knee joint using cement
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Figure C.6: Calibration curves for patients in
the IMD 3 group in each TG-CNN model.

Figure C.7: Calibration curves for patients in
the IMD 4 group in each TG-CNN model.

Figure C.8: Calibration curves for patients in the IMD 5 (least deprived) group in each TG-
CNN model.
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Appendix D

Explainability Appendix

D.1 Clinical Vignette

We gave clinicians the clinical example as given in Figures D.1 and D.2.

For each patient’s graph set the following was asked: 1) Which of these visualisations is the

easiest to interpret? 2) Do any of these visualisations not align with a trajectory you’d expect?

3) Does each graphing method effectively highlight the key factors influencing the model’s

prediction? 4) Any additional comments about the graph?

Then questions about the graphs overall were asked: 1) How useful are these graphing methods

for aiding decision-making in a clinical-setting? 2) To what extent do the graphs support your

understanding of the AI model’s decision-making process? 3) Which of the four graphs do you

prefer for visualising AI model predictions, and why? 4) Are there any additional features or

information you would like to see included in these graphs?
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Figure D.1: Clinical vignette page 1.
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Chapter D. Explainability Appendix D.1. Clinical Vignette

Figure D.2: Clinical vignette page 2.
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