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Abstract

Exciton-polaritons (EP) are half-light, half-matter quasiparticles arising from
the strong coupling of photons with excitons, the elementary excitations of
semi-conductors. In this thesis, we give a literature review on the state-of-the-
art of research using exciton-polaritons and give examples of original research.
We start by defining exciton-polaritons in a bulk material and show why they
cannot be observed directly in such a system. We give examples of systems to
confine light in a cavity to overcome this limitation. This allows us to define
the weak and strong coupling regimes of light and matter. Some example of
research in exciton-polaritons is given, in particular in the materials which we
will use later in this thesis.
An overview of the experimental techniques commonly used to study EPs is
given. Our original research consists of three chapters covering a wide range of
research topics. In the first chapter describing our results, we show the fabri-
cation process of ring resonator structures, which demonstrate polariton lasing
in the UV range up to room temperature. In a second chapter, we study, for
the first time, exciton-polariton non-linearities in a Cu2O microcavity, in the
visible range of wavelength. We demonstrate Kerr-like nonlinearity arising from
the phenomenon of polariton Rydberg blockade. These two chapters have been
published in the literature. Supplementary material related to these publica-
tions can be found at the end of the thesis in the appendices.
The final chapter describes experimental work still in progress, to realise an ana-
logue black hole using exciton-polaritons in GaAs high quality sample, pumped
in the near infrared. We provide motivation and show polariton superfluid-like
behaviour appearing after a threshold. We create polariton vortices with very
high orbital angular momentum, with the ultimate goal of realising an acoustic
analogue black hole system. We conclude with a summary showing the high-
lights of the different chapters as well as the perspectives for further work offered
by our results.
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I slowly intoned the famous line. “L’hydre-univers tordant son corps écaillé
d’astres.”

I could sense his almost fear-stricken bafflement. He repeated the line softly,
savoring each glowing word.

“It’s true,” he stammered, “I could never write a line like that.”

— Jorge Luis Borges, “The Other”
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Chapter 1

Introduction

Lying at the intersection of optics and solid-state physics, exciton-polaritons are
an active topic of research in light-matter interactions with countless practical
applications and as a springboard for investigation of other physical phenomena.
Exciton-polaritons have a rich history, which begins with a paper by Solomon
Pekar [1] that theorised that the interaction between light and excitons (the
elementary excitations of semiconductors) would result in “additional waves”,
travelling through the crystal. This concept was further developed in a pa-
per by John J. Hopefield in 1958 which introduced “exciton-polaritons” [2] to
describe such additional waves. In essence, the photons incident to the crys-
tal are absorbed to create excitons, which recombine into photons, creating
new excitons... this complex dance within the crystal results in a mixed state,
which Hopefield called the exciton-polariton. They are poetically described as
“half-light, half-matter” quasiparticules, at the boundaries between two worlds,
exhibiting properties of both. In his pioneering paper, Hopefield showed how
exciton-polaritons affect the dielectric constant of the crystal, and as such are
necessary to understand light-matter interactions in bulk semiconductors.

The motivation to investigate exciton-polaritons is strong. However, in bulk
materials, it is difficult to observe them directly. Indeed, in the decades following
Hopefield’s paper, research about exciton-polaritons dealt mostly with indirect
ways of observing them: Raman scattering [3], luminescence [4] or at the surface
of crystal [5].

A significant shift took place after 1992, due to the progress of fabrication
techniques of cavities to confine light [6] . With this technological breakthrough,
C. Weisbuch observed, for the first time, evidence of exciton-polariton with both
the light and the exciton confiend in two or fewer dimensions [7]. Confinement of
light in a small microcavity, as well as confinement of the exciton using Quantum
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Wells, radically changes the interaction mechanisms between light and matter.
In particular, microcavities offer a one-to-one mapping between emitted photons
and exciton-polaritons, as well as enabling new effects from the increased density
of the quasiparticles.

A property of the exicton-polaritons gas that can only be observed when
they are confined in a microcavity is their coherence. Exciton-polaritons belong
to a category of particles called bosons. Their quantum statistics allow them to
occupy the same state in energy and momentum; when the occupation number of
that state passes a critical threshold, the particles coalesce together in a so-called
Bose-Einstein condensate (BEC), a macroscopic quantum state, exhibiting long-
range order and quantum coherence.

The study of BECs is a fascinating topic in itself. They bring forward
important questions about symmetries and symmetry breaking in nature. The
phase transition from a thermal state to a coherent one is already highly non-
trivial. A BEC is a purely quantum phenomenon, with coherence properties
existing at scales much larger than atoms or electrons [8, 9]. Bose-Einstein
condensates have been predicted theoretically as early as 1924 [10, 11]; they
were realised in clouds of atoms cooled down to the billionth of a degree in 1996
[12, 13]. Today, they remain a topic of research ranging from atomic physics
[14] to cosmology [15].

The case of condensates of exciton-polaritons in microcavities is unique in
many aspects [16]. First, in that it is an inherently out-of-equilibrium phe-
nomenon. Polaritons have finite lifetimes, and they need to be constantly cre-
ated by the incoming light - called a “pump”, and they leak out of cavity. This
creates interesting dynamics to study. Exciton-polaritons in microcavities are
also not a three dimensional system. This raises interesting questions as to the
exact nature of their phase transition [17, 18], and how exactly they match the
model of ideal Bose-Einstein condensate in three dimensions. Finally, exciton-
polaritons are intrinsically non-linear particles, due to their excitonic nature.
As a result of their non-linearity and bosonic nature, many seemingly unre-
lated physical phenomena are realised in similar polaritonic systems. Exciton-
polaritons can display the superfluidity of liquid Helium in one system [19], and
they can have the superconducitivty of Cooper pairs in another [20].

The active and persisting interest of the scientific community for exciton-
polaritons bears testimony to the richness of their physics. In journals published
by the American Physics Society, more than 4000 articles are related to exciton-
polaritons, of which more than 3200 were published in the last 12 years.

This thesis aims will focus on the phenomena arising from the coherence
properties of exciton-polaritons in microcavities. We will explore different ge-
ometries, different materials, and look at different ways in which those coherent
properties express themselves.
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Chapter 1. Introduction

The first chapter of this thesis will provide the precise background material
on exciton-polaritons, introducing the formalism and deriving the fundamental
equations of the theory, starting from the fundamental bulk case. The principle
of light confinement in microcavities, with an overview of the different micro-
cavities realisations used in this thesis will then be presented. The theory of
light-matter coupling in such system will be presented and compared to the
bulk case, giving the formalism of cavity polaritons. In the next sections, we
will present the semiconductor materials in which we have realised such cavity
polaritons, with specific insight and challenged related to the specific materials.
With these theoretical tools, we can start to describe the phenomena arising
from the non-linear properties of exciton-polaritons. We will also formally dis-
cuss Bose-Einstein condensation, we will define coherence, and how polaritons
relate to superfluidity and superconductivity.

The second chapter will describe our experimental methods and techniques,
showing the flexibility of cavity exciton-polariton optical setups.

The third chapter will describe a particular realisation of mircocavity exciton-
polariton: gallium nitrite (GaN) microring resonators with AlGaN quantum
wells. We show how the condensation of exciton-polaritons can result in coher-
ent light emission: this is called “polariton lasing”. A comparison with “regular
lasing” is also provided: several criteria can be used as signatures of polariton
lasing as opposed to polariton lasing. In this chapter, we demonstrate polariton
lasing in the GaN microring resonators. It is based on a previous publication
[21].

In the fourth chapter, we consider a different material. Cuprous oxide
(Cu2O) is known for its excitons with very large radius between the electron and
the hole, also known as Rydberg excitons. Such excitons can couple to photons
and form polaritons. The properties of such Rydberg exciton-polaritons are
studied. A phenomenon known as Rydberg blockade arises: a Rydberg exciton-
polariton with high radius may prevent the formation of another in its vicinity.
We demonstrate Rydberg blockade in a Cu2O microcavity. The lifetime of the
non-linear response of polaritons is studied with a pump-probe experiment. We
show how different time scales and different mechanisms are involved in the
Rydberg blockade. It is also based on a previous publication [22].

In the fifth chapter, we will discuss analogue Physics. The idea of ana-
logue Physics, suggested by Unruh in 1981 [23], is to simulate one physical
phenomenon by another. In this case, the dynamics of Black Holes are simu-
lated by a vortex of polariton fluids. We will give a brief overview of analogue
physics, describe our experimental setup, objectives and preliminary results.

Finally, we will in conclusion give a summary of our results, and explore some
possibilities for further work for the experimental systems we have investigated.
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Chapter 2

Background:
Exciton-polaritons in
microcavities

2.1 Overview

The object of our study are exciton-polaritons. In this chapter, we shall give
a formal theory to describe them mathematically, in particular with respect to
their coherence and their interactions leading to optical Kerr-like nonlinearity.
We shall also give the experimental background needed for the remainder of this
thesis.

Exciton-polaritons stand at the border between two worlds: the world of
light, described by Maxwell’s equations, and the world of matter, described by
the physics of electrons and excitons in semiconductors. They are a complex
phenomenon, which requires some definitions and groundwork to understand
the basic ingredients which together make up an exciton-polariton. We will
first treat the case of an exciton-polariton in a bulk material, showing that
it is a fundamental concept necessary to understand the interaction between
light and matter. The most interesting properties of exciton-polaritons manifest
themselves when the dimensionality is reduced and when the light is confined in
a microcavity, and when the excitons are confined as well in a structure called
a Quantum Well. We will first provide a description of what a microcavity is
and how such systems are fabricated.
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2.2. Exciton-polaritons in bulk materials

These elements allow us to provide a description of light-matter coupling
in microcavities, starting with the case of so-called weak coupling regime, and
then moving on to the strong coupling regime, where the formalism of exciton-
polaritons takes a more significant role.

Experimental realisation of cavity exciton-polaritons requires a careful choice
of the materials used to fabricate the cavity. The main families of materials used
in the course of this thesis will be described in a section outlining their specific
properties related to our experiments. We will then list and briefly explain some
of the most interesting properties and phenomena that have been observed with
exciton-polaritons in such systems in two sections.

The first section will describe the properties of exciton-polaritons as non-
linear particles, with effects such as the free motion of solitons [24]. We shall
then turn to the main topic of this thesis, which are the non-linear collective
properties of excitons-polaritons, including superfluidity [19], superconductiv-
ity [25], polariton lasers [26], including at room temperature [27]. In order to
accurately describe these fascinating phenomena, we shall also give a descrip-
tion of coherence and in particular of the phenomenon known as Bose-Einstein
condensation. With this background, we will then describe how Bose-Einstein
condensation is realised in microcavity exciton-polaritons, and conclude with an
overview of the physics related to the condensation of polaritons.

2.2 Exciton-polaritons in bulk materials

2.2.1 Excitons

Excitons are the elementary excitation of semiconductors. The exposition here
shall follow standard textbooks [28, 29], focusing only on the elements needed to
draw the polariton picture. Due to the periodic structure, electrons in a crystal
are distributed according to their energy E and their wavevector k according
to the band structure. The basic band structure of semiconductors shows a
valence band, filled with electrons, and an empty conduction band, separated
by a small but finite energy gap.

In some materials, the energy minimum of the conduction band and the
energy maximum of the valence band do not occur at the same wavevectors.
Because the wave vector must be conserved, the interaction process between
these two bands needs to be mediated by the creation or absorption of a phonon.
Such materials are called indirect gap semiconductors (such as Silicon or Ger-
manium); by contrast, when the bands’ extrema coincide, we speak of direct
gap semiconductors. For the remainder of this thesis we shall only consider
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Figure 2.1: Simplified band structure of indirect (a) and direct (b) bandgap
semiconductors using an effective mass approximation for the electron and the
hole. c) First two energy levels for the excitons, showing bandgap energy Eg,
as well as the exciton binding energy EB and optical gap EOpt for n = 1 and
n = 2.

direct bandgap semiconductors. Figure 2.1 shows a simplified band structure of
a semiconductor.

When a direct bandgap semiconductor absorbs energy above its bandgap,
the electron in the valence band may be promoted to the conduction band,
and leave an empty “hole” behind. We shall be interested in this thesis in the
promotion of electrons through optical means.

The electron, being negatively charged, and the hole, positively charged,
can be bound together by Coulomb interaction, and this forms an exciton. Al-
ternatively, it is possible to pump the semiconductor at an optical gap EOpt

to directly create an exciton of a given energy level n. The Coloumb-bound
electron-hole pair can be compared to an hydrogen-like system, such as positro-
nium (a positron-electron pair). In some cases, such as in Alkali Halides, or near
defects, the excitons have a very small radius (compared to the unit cell of the
crystal) and are tightly bound. These bound excitons (called Frenkel excitons)
do not move freely in the crystal: they hop between neighbouring defect sites
where the energy potential shows local minima.
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2.2. Exciton-polaritons in bulk materials

By contrast, excitons with a large radius (larger than several unit cells) can
freely move around in the crystal, and are called Wannier-Mott excitons. In
this case, the hydrogen atom model can be applied. The orbits are quantified,
and in particular, the energy is quantified by the principal quantum number n,
with the equation:

En =
µ

m0ε2r

Ry

n2
=
RX

n2
(2.1)

Where Eg is the bandgap, µ is the reduced effective mass of the exciton (given
by µ−1 = 1/m∗

e + 1/m∗
h, me,mh being the effective masses electron and the

hole respectively), εr being the relatively permittivity of the material, and Ry
being the Rydberg unit. The “effective mass” of a particle is an approximation
of the “mass” the particle modified by the interactions with the crystal periodic
potential. In figure 2.1, we see that the exciton may be created with a heavy or
a light hole, with different effective mass. In real materials, excitons can have
a more complex band structure with different “sub-bands” for the holes. RX

becomes a constant related to the exciton in the crystal.

Excitons have strong non-linear properties, as they are charged particles with
Coulomb interactions. They can notably exhibit an electric dipole moment. As
they are made of an electron and a hole, their spin is usually a half-integer
(typically ±1/2, but with higher spin in some cases) the components of the
excitons are subject to the Pauli exclusion principle. However, the exciton itself
has an integer total spin, and is therefore an approximate boson, subject to a
different statistic, the Bose-Einstein distribution. The significance of the exciton
statistical properties shall be described later in this section.

Excitons are not stable particles and they quickly recombine, with the elec-
tron falling back into the valence band. The lifetime of the exciton depends on
many factors, such as crystal geometry, purity, temperature, and recombination
process.

The recombination process can either be non-radiative, not resulting in the
emission of a photon, or radiative, with the emission of a photon. The two main
pathways for non-radiative recombination are Auger recombination (named after
Pierre Victor Auger), in which the recombination results in the promotion of
another electron, or defect recombination, where the electron scatters over a
defect. As an order of magnitude, the radiative lifetime of an exciton in bulk
GaAs at t = 5K is on the order of 1ps [30], whereas in bulk GaN it was measured
to be 30ps at the same temperature [31]. Auger recombination lifetimes scale
with density and become predominant at higher densities [32]. Additionally, the
exciton can dissociate in a free electron and a free hole if the thermal energy
in the crystal (given by kBT , with kB as Boltzmann’s constant) is higher than
the exciton binding energy. This means that there are temperature cut-offs to
observe excitonic effects in given materials; for example, in GaAs the maximum
temperature is in the tens of K, whereas in GaN excitons can be observed up
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to room temperature, albeit redshifted and broadened in energy.

In this thesis, we are interested in excitons in so far as they are an ingredient
to form an exciton-polariton. More specifically, we will study optically pumped
excitons, in which the promotion to the conduction band happens by the ab-
sorption of a photon. We will also work with direct bandgap semiconductors,
without phonon mediation, and with a large enough radius to be considered
Wannier-Mott excitons. Research into such cases does exist, with Frenkel po-
laritons [33], but lies outside the scope of this research work.

2.2.2 Polaritons

A “polariton” is a general term to describe a quasi-particle born of the strong
coupling of light (a photon) and any elementary excitation in a material. For
example, there are phonon-polaritons [34], or plasmon-polaritons for noble met-
als [35]. In our case, the elementary excitations are excitons in semiconductors,
and we speak of “exciton-polaritons”. Polaritons are often called “half-light,
half-matter” or “hybrid” quasiparticles.

There are a couple of questions raised by this definition. How does the
coupling occurs? What is meant by “hybridisation”? How do we quantify the
“strength” of the coupling?

The intuitive picture is as follows. A semiconductor is illuminated by pho-
tons, creating excitons, which then they recombine radiatively and emit a pho-
ton of energy equal to the former exciton energy; this photon is then absorbed,
creates an exciton again, and so on and so forth, on a time scale inferior to a
picosecond [36]. The process continues as long as more photons are pumped into
the system than are lost due to different scattering processes in the crystal. The
result is a quantum superposition of a photon and an exciton: this quasiparticle
is the exciton-polariton.

Exciton-polaritons can be described either using a semi-classical formalism
or with full quantum treatment. The semi-classical theory derives most of the
important features of the hybrid particle and answers how the hybridisation
occurs, but a full quantum treatment proves to be necessary for the most im-
portant applications involving exciton-polaritons, such as quantum information
theory [37], quantum computing [37], or their use as “single photon” sources
[38], due to photon blockade. In all these cases we must treat light and photons
as fully quantum objects.
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Semi-classical theory

In the semi-classical formalism, the light component of the exciton-polariton is
treated classically, using Maxwell’s equations, whereas the matter component
(the exciton) is treated quantum mechanically. There cannot be a fully classical
picture of the exciton-polariton, as the exciton is fundamentally a quantified
excitation of the semiconductor.

The semi-classical theory was first derived by K. Huang [39] in the 1951 in
the context of phonon-polaritons, and then transposed to semiconductors by
Hopfield in his famous paper [2]. The outlined derivation follows that of the
textbook references [40] and [41]. We

In the semi-classical model, exciton-polaritons arise from a constitutive re-
lation between the electric field E and an excitonic polarisation vector arising
as a “response” to the incoming electric field. The polarisation density vector
is noted P. This equation follows from classical Maxwell equations, but with
terms including quantum mechanical calculations. The constitutive relations
are:

1

ω2
0

P̈− h̄

Mω0
∇2P+P = βE (2.2)

(2.3)

...where h̄ is the reduced Planck constant, M = m∗
e +m∗

h is the total effective
mass, ω0 is the frequency associated with the bandgap energy of the excitonic
transition (h̄ω0 = Eg) and it is associated to a wavevector k0 by k0 = nω0/c
(with n being the refractive index of the material, c being the speed of light. β
is the polarisability of the material, which relates the microscopic polarisation
vector to the crystal to the incident electric field. We find the properties of the
exciton in the expression of β, which is given by:

β =
e2

m0ω2
0

f

V
(2.4)

The first fraction contains constants related to the material (ω0, the mass of
the electron m0, the elementary charge e), whereas the second fraction is the
oscillator strength f per unit volume of the crystal lattice V . The oscillator
strength of a given transition is a dimensionless quantity which characterises
the likelihood of such a transition to happen amongst all possible transitions.
In the semi-classical approach, it is calculated using “Fermi’s Golden Rule”,
and it shows the quantum character of the excitation. As it scales with the
crystal volume, the physically relevant quantity is the oscillator strength per
unit volume.

In the equation 2.2, the vectors E and P can be expressed by monochromatic
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waves, for example, the electric field E is written as:

E = E0 exp{i(ωt− kr)} (2.5)

With a similar expression for P. E and P are related to one another according
to Maxwell’s equations in matter [39]. To solve the equation, we must find out
what the relationship between ω and k in the E field (and consequently, in the
P field) must be for equation 2.2 to be true. Physically, this means that the
constitutive equation, arising from the interaction between light and matter,
only allows waves with a certain energy and wavevector to propagate in the
crystal.

This dependency between ω and k is called a dispersion relation. There
are two kinds of dispersion relations corresponding to two different modes of
propagation inside the crystal. The first are called transverse modes, in which
the electric field and the polarisation field are perpendicular to the direction of
propagation inside the crystal. For transverse modes, the form of a dispersion
relation reads as follows:

ε(ω,k) =
c2k2

ω2
(2.6)

In this equation, ε(ω,k) is the dielectric constant of the material. This quantity
is a property of the crystal. It relates the fields E and P to one another by the
well-known equation:

ε(ω,k)E = ε0E+P (2.7)

... in which ε0 stands for the vacuum permittivity. The final ingredient needed
to solve the equation 2.2 is a model for ε(ω,k). In the case of a semi-conductor
crystal, ε(ω,k) can be derived from different energy band models [42]. In our
case, the appropriate model is:

ε(ω,k) = ε∞ +
1

ε0

βω2
0

ω2
k − ω2

(2.8)

where ε∞ is the frequency-independent contribution (arising from all the other
electronic resonances in the crystal). The fraction contains the exciton frequency
ωk, which is related to its binding energy. In the effective mass approximation,
it is given by:

h̄ωk = h̄ω0 +
h̄2k2

2M
(2.9)

To summarise, we shine on the crystal an electric field E. This induces a
polarisation density P. The electric field and the polarisation density are related
by the constitutive equation 2.2. For this equation to be verified, there must
be a dispersion relation relating the frequency and the wavevector of the fields.
In the case of transverse modes, this relation is given by equation 2.6. The last
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thing to do to solve the equation is now to put the expression of ε(ω,k) given by
2.8 into 2.6. In the end, this gives a relationship between the frequency ω and
the wavevector k for the polarisation density vector P and the electric field E.
With this knowledge, we will be able to model how the light propagates within
the semi-conductor crystal after it interacts with the excitons.

We find that, for a given wave vector k, the transverse modes admit two
solutions: one for higher frequencies (the upper polariton branch, UP), and one
for lower frequencies (the lower polariton branch, LP). They are given by the
equation:

ω1,2(k) =
ωexciton(k) + ωphoton(k)

2
±
√(

ωexciton(k)− ωphoton(k)

2

)2

+Ω2

(2.10)

In which ωphoton(k) represents the energy of the photonic mode for a wavevector
k, ωexciton(k) is the same thing for the exciton, and ω1,2 are the two polariton
branches resulting from the strong coupling regime. Ω is the so-called “Rabi
splitting” between the UP and LP branches where ωphoton(k) and ωexciton(k)
cross. ω1,2(k) for a bulk semiconductor are plotted in figure 2.2. The study
of the transverse dispersion relations in the bulk material reveals some general
properties of polaritons. At low k, the LP branch approaches a photonic disper-
sion with ω ∼ ck/n, whereas the UP branch almost becomes degenerate with
the exciton, as seen in figure 2.2. At high k, the reverse happens, with the
UP branch becoming photonic and the LP branch approaching the transverse
exciton mode.

The two branches show anticrossing at the resonance point (ω0, k0), where
they show behavior that is the furthest away from a photon or an exciton. The
splitting in frequency between these two branches is called the Rabi splitting.
k0 It characterises the strength of the polariton coupling, and it is given by:

Ω =

√
e2

4ε0ε∞

f

V
(2.11)

The other kind of dispersion relation corresponds to longitudinal modes. In
this case, the polarisation “response” to the electric field is not perpendicular
to the direct of propagation, but parallel. For these modes, equation 2.8 must
be made equal to zero:

ε(ω,k) = 0 (2.12)

This gives a different relationship between k and ω. “Longitudinal polaritons”
in bulk crystals are more difficult to study than transverse polaritons, as they
do not result from a direct coupling between light and matter [43]. For the
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UP

LP

Figure 2.2: Sketch of polariton anticrossing. The regular photonic dispersion is
plotted. The “excitonic energy” represents the excitonic dispersion, which are
the allowed energy states for an exciton of a wavevector k, which would not
couple to light to form a polariton. Due to the free motion of the exciton, the
higher momentum states have a higher energy. Due to light-matter coupling,
we also have LP and UP branches. Arbitrary units.
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rest of this thesis, we will only consider “transverse polaritons” as the study of
longitudinal polaritons modes is outside the scope of this thesis.

In a bulk crystal, the transverse exciton direction shows a slight tilt upwards
at large wavevectors due to the motion of the exciton itself. A similar tilt is
observed in the LP branch, but at a slightly lower frequency. The difference
in frequency between the LP branch and the excitonic dispersion varies with k,
and by changing the angle of incidence on a bulk semiconductor crystal we can
measure this difference. In a 1970 paper [4], experimentalists‘ were able to model
this change of frequency with the angle of incidence with Hopfield’s polariton
theory, showing that exciton-polaritons were a real physical phenomenon and
not a simple mathematical construction.

The anticrossing, and the existence of two branches for a given polarisation,
are the most striking features of exciton-polaritons. This “anomalous disper-
sion” was referenced by Pekar as an ‘additional wave’: an experimentalist would
detect two distinct dispersions in the crystals, an exciton-like wave for the LP
branch, and a photon-like wave for the UP branch, as opposed to a single line
in a dielectric material. Detection of this additional wave in thin II-IV crystals
such as CdSe was used as experimental confirmation of Pekar and Hopfield’s
theory of exciton-polaritons [44]. However, this effect is much more difficult to
observe in thicker or bulk materials.

Thus we have described how exciton-polaritons arise as a result of the cou-
pling between the excitonic field and the electromagnetic wave. The question
of characterising the “strength” of such coupling is more complicated. In bulk
materials, polaritonic effects are difficult to observe directly. The experimental
methods to observe such effects are listed in reference [45], with the main tech-
niques being measurements in reflection [46], by spectroscopy techniques such
as Raman scattering [3], Brillouin Scattering [47] or by luminescence when the
polariton escapes of the crystal [48, 4], but none of these techniques are able to
make an easy one-to-one connection with the detected signal and the exciton-
polariton inside the crystal. Only by using thin samples were scientists able to
do such a mapping.

A bulk polariton is, essentially, a contribution to the dielectric constant of the
semiconductor. In a bulk material, it is always present, but for this contribution
to be observable, the coupling needs to remain coherent without a scattering of
the polariton by other excitations, including by other polaritons [49] or phonons
[50]. Much of the dynamics of the quasi-particle is therefore “lost”, inaccessible
experimentally and spread out over the bulk of the material. Additionally, it
may be difficult to relate the emitted photons to the polaritons in the material.
To access the exciton-polaritons directly, it is therefore necessary to confine
them in a specifically engineered structure, which is a microcavity. We will now
describe such structures.
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2.3 Exciton-polaritons in microcavities

2.3.1 Microcavities overview

A cavity is a device designed to confine light of a particular wavelength within
a media. The exposition in this section draws from [41]. Optical cavities have
also been called “optical resonators”, for they are to electromagnetic waves what
sound boxes are to acoustic waves.

The dimensions of the cavity restrict what wavelengths are confined, with
only wavelengths which are an integer fraction of the cavity length subsiding in
the cavity. In the case of optical waves, the cavity dimensions are in the order
of a few µm, and such systems are called microcavities. Optimal microcavities
have dimensions of exactly half the wavelength of the light they confine, allowing
a single mode of light with a very narrow bandwidth.

There are two main ways to confine the light in a microcavity. The first
method is to use mirrors, which can be made of high-reflectivity materials, or
of stacked pairs of materials with a refractive index difference, forming a Bragg
Reflector. An alternative method is to rely on the geometry of the system, using
the principles of total internal reflection (TIR).

The particular wavelength of light confined in the cavity, and its associated
frequency ωc and wavevector k0 forms a cavity “mode”. Physically, plane waves
with a singular, perfectly defined frequency do not exist, and in a similar way,
the linewidth δωc of the cavity mode is finite. A cavity is characterised by
its reflection spectra: the perfect cavity has a flat reflection of 100 % at all
wavelengths expect sharp dips at the cavity modes.

The ratio

Q =
ωc

δωc
(2.13)

... is called the quality factor of the cavity. It is related to the lifetime of
the photon within the cavity, with a high quality factor resulting in a longer
confinement. The cavity may have several modes, and the mode separation is
written ∆ωc. The ratio

F =
∆ωc

δωc
(2.14)

... is called the finesse of the cavity. The finesse describes how well the modes are
separated in the reflection spectra. High finesse means sharp and well-defined
modes. Physically, it represents the average number of round-trip a resonant
photon does before leaking out of the cavity. In the context of this thesis, the
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media inside microcavities shall be an absorbing or emitting semiconductor.
The regime we are interested in is thus one in which the confined light interacts
with a thin layer, on the order of magnitude of the wavelength of light, of
semiconductor. While the quality factor can be improved by making the cavity
larger, high finesse microcavities requires small microcavities with a very high
mirror reflectivity.

There is a large panel of different geometries, materials and system to confine
light, which opens up for a variety of experiments [51]. This section provides a
brief overview of the different realisation of such systems, with an emphasis on
two types of microcavities which will be important for the following chapters of
this thesis: planar microcavities, and ring resonators.

Planar microcavities

The simplest microcavity geometry consists of two plane mirrors separated by
a distance L which is on the order of magnitude of the wavelength of light. The
light is thus confined in the direction that is perpendicular to the mirrors. The
condition of constructive interference in the cavity means the wave vector is
quantified as follows:

k⊥ ∗ 2L = 2mπ (2.15)

With m being an integer, and k⊥ is the component of the wavevector that is
perpendicular to the cavity. The modes supported by such wave vectors are
called Fabry–Pérot modes. which give their name to planar microcavities. The
wavevector component k⊥ is quantified, but the other components of the vector
(put in a two-dimensional vector k∥) are not. Thus there is free in-plane motion
of the lightwave.

The free component of the wavevector k∥ is related to the angle of illumina-
tion θ by the equation:

k∥ = k0 sin θ (2.16)

The dispersion relation as a function of k∥ for the mode j of the cavity, for small
angles, is given by :

ω(k∥) =
cπj

ncL
+

ck2∥L

2ncπj
(2.17)

With the nc being the optical index of the cavity.
Thus the dispersion relation for the photon is parabolic and has a minimum ωc

at k = k0. This is sharp contrast to the linear dispersion relation of a photon in
a bulk material, given by ω = c ∗k. As we shall see, this changes fundamentally
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the dispersion relation of exciton-polaritons in a microcavity. We note that
according to equation 2.17, if the cavity is designed so that its length L varies
smoothly across the plane, then ωc also varies smoothly. This can be realised
by varying the thickness of the cavity media during fabrication. A wedge in the
cavity also results in additional losses compared to flat mirrors, but in practice
the ability to tune ωc is highly sought after in experimental realisations.

The plane mirrors which make up the microcavity can be divided in two
broad categories. The first one uses metallic mirrors, such as Gold, Aluminium
or Silver. The second category uses mirrors made of several alternating pairs of
materials with varying reflective indices and thickness, called Distributed Bragg
Reflectors.

Metal microcavities are relatively easy to fabricate [52], as one can simply
use sputtering machines or evaporators to deposit a metallic surface on the sides
of the absorbing media [53]. The quality factor of such cavities is usually on the
order of Q ∼ 1000 as for example in [22]. This is lower than the quality factors
which can be achieved with DBRs, with very good field confinement inside the
mirrors, as can be seen in figure 2.3. The finesse of microcavities is also an
important parameter for efficient mode coupling. In the case of metal mirrors,
it is limited by the finite reflectivity.

The basic theory of Bragg mirrors stems from the well-known condition for
constructive interference, which was first derived for X-ray difraction in crystal
lattices [54]. In the case of visible light, the characteristic lengths are bigger
and we can also play with the contrast of optical indices. For layers of optical
indices na, nb and of thickness a, b, the constructive interference condition for a
wavelength λ is as follows:

naa = nbb = λ (2.18)

The exact theory uses transfer matrices [55] to calculate the effect of the pe-
riodic structure on the light wave. It allows for very accurate simulations of
the reflectivity spectras of DBR structures [56]. We shall only give the basic
equations and final results of such a theory here.

In the case of multiple layer, we model the action of a layer i on the elec-
tromagnetic field by a 2x2 transmission matrix Ti, with one collum for the
transverse wave and one for the longitudinal wave. Thus the total impact of a
periodic structure on the light is modelled by the total transmission matrix:

T =
∏

i

Ti (2.19)

This formalism allows a relatively easy calculation of the optical band structure
of DBRs. Indeed, it can be shown that the allowed optical bands (in which op-
tical transmission is maximum and reflection, as well as absorption, is minimal)
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are given by the equation:

∣∣∣∣
T11 + T22

2

∣∣∣∣ ≤ 1 (2.20)

And by contrast, the stop-band, in which the transmission is minimal and the
optical reflectivity is maximal is given by:

∣∣∣∣
T11 + T22

2

∣∣∣∣ > 1 (2.21)

Thus the reflectivity as a function of wavelength of a DBR structure can easily
be calculated, as in figure 2.3b. In the case of a planar microcavity with DBR,
the absorbing media acts a defect in the periodic structure, resulting in dips
in the reflection spectrum, which form the cavity modes we are interested in.
These modes can also be factored in the calculation.

Typically, for a DBR which confines light at a wavelength λ̄ (with by con-
vention nb > na), we call the “effective length” of a DBR the following ratio:

LDBR =
nanb

2(nb − na)
λ̄ (2.22)

The effective length of the DBR is a good figure of merit of its ability to confine
light and intervenes explicitly in the theory of light-matter coupling. It is easy
to calculate from the properties of the materials used in the cavity. It is approx-
imately equal to the penetration depth of a light field, with a frequency equal to
the cavity resonance, inside the mirror. As a result, it should be as close to zero
as possible. We can see that for a Bragg mirror with low optical index contrast,
the denominator in 2.22 will be small, and conversely the effective length of
the DBR will be high. This shows that a good DBR should have a significant
optical index contrast.

DBR microcavities can be precisely engineered with extremely high quality
factors, as high as 250 000 [57] in materials commonly used in research on light-
matter coupling, such as GaAs [58] but also as complex as GaN [59], [60] or
ZnO [61]. An infinite quality factor would mean that once the light is trapped
in the cavity, it never leaves, which is not possible. An infinite quality factor,
according to equation 2.13, would also imply either an infinitely small δωc, in
other words, a perfectly monochromatic field, which is not possible physically, or
an infinite frequency, which is also not possible. In reality, there is a compromise
between getting aQ sufficiently high to have good light-matter interaction, while
accounting for the challenges of fabrication, and also engineering a cavity which
works at the frequencies of interest.

The very high reflectivity of the dielectric mirrors also ensure very high fi-
nesse 2.14. This ensures that the modes are well-separated in energy and we
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(b) (c)

Figure 2.3: (a) A schematic representation of a two DBRs with a cavity of width
d between them. (b) Reflectivity spectra of the cavity, with a “stop-band” from
600 nm to 820 nm, and a sharp dip at 640 nm which is the cavity mode. (c)
Field structure in the cavity at the resonant frequency. The field is maximum
in the cavity and decays inside the mirrors. Taken from [63] CC-BY.

are able to couple to a single mode if necessary. One constraint of using mi-
crocavities, as said previously, is that the lattice constant of the DBR materials
need to match the cavity media to minimise strain. The increase in quality
and the ease of fabrication of such planar microcavities plays a major role in
driving applied and fundamental research in all form of light-matter interaction.
A recent review on DBR fabrication [62] lists the two main fabrication methods
as either chemical vapour deposition or coating of thin films, with each of these
methods having its own limits and paths for further improvements. Fabry-Pérot
microcavities are among the simplest to realise and work with, and they offer
a good basis for experiments with a straightforward geometry. However, some
experiments, as well as a number of practical applications, require a different
geometry for the best results.
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Whispering gallery modes cavities and ring resonators

Whispering Gallery Modes (WGM) were first observed in the St Paul cathedral
by Reyleigh in 1910 [64, 65], in which the sound wave propagates without losses
along the wall, and forms a standing wave with well-defined nodes and antinodes.
The wave can only “survive” if it makes a whole number of bounces along the
walls, similarly to the constructive interference condition in 2.15. However in
this case, the geometry of the system plays a role. At the interface between the
inside of the cavity and the outside of the cavity, the famous Snell-Descartes
law nin sin θin = nout sin θout gives a condition for the so-called critical angle of
Total Internal Reflection (TIR):

θc = arcsin

(
nin
nout

)
(2.23)

By varying the geometry of the interface, the wave can loop back to its starting
point after a finite number of TIR bounces, creating a persistent standing wave
pattern. In practice, for optical WGM microcavities, the light can be confined in
one direction by a Fabry-Pérot planar microcavity, and then a suitable geometry
is etched in the cavity so that the in-plane motion of the wave is no longer free,
but restricted to particular stationary whispering gallary modes.

WGM microcavities in optics have long been the focus of active research
[66], including for their potential as laser sources [67], and as sensors [68].

The basic equation for the wavelength of light λ confined in a WGM micro-
cavity is as follows:

mλ = Lneff (2.24)

Where m is the mode number, L is the cavity circumference, and neff is the
effective refractive index of the cavity, which has a similar form to equation
2.15. However, consideration on the TE-TM splitting as well as solving the
equations of motions for the electromagnetic wave results in a different picture.
In particular, the added degrees of freedom in the geometry of the cavity allows
for so-called “dispersion engineering” [69]. Much like DBR microcavities, the
properties of such systems can readily be simulated and optimised for different
experiments [70] [71].

There are several geometries in which WGMs can be realised. Among these,
the most used are spheres [72], microdisks [73], [74], micropillars [75], and most
relevant for our experiments, in ring resonators [76], with one example of such
geometry being given in figure 2.4.

Microring resonators present a particular interest as they can be coupled to
other geometries such as gratings [77], waveguides [78], or even coupled together
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Figure 2.4: SEM Image of a ring resonator with AlGaN quantum wells on a
GaN substraste. Courtesy of Tommi Isoniemi
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[79] by simply etching a more complicated pattern on the Fabry-Pérot planar
microcavity.

A typical microring resonator consists of a planar DBR microcavity, which
can be grown by various means such as Molecular Beam Epitaxy. The desired
pattern is then written via e-beam lithography or photon lithography [80, 81],
before being chemically etched away.

Other cavities geometries

In state of the art photonics, we find sometimes more advanced cavity design.
For example, it is possible to very precisely engineer the optical absorption
bands of the cavity by creating a photonic crystal. While photonic crystals have
been proposed as early as 1997 [82], they are still an active field of research as
they benefit strongly from progress in realisation techniques [83]. Much like a
crystal is a periodic lattice of atoms, a photonic crystal is a periodic lattice of
structures with a different dielectric constant. The crystal can be in arbitrary
dimensions. In the case of a cavity, the crystal is in two or one dimensions.

The cavity in which the light is confined is a defect in the crystal. A DBR
is an example of a basic photonic crystal in one dimension, but more elaborate
structures can be engineered.

One such example is the L3 Cavity, which consists of an hexagonal pattern
with three missing holes in the structure. Such a cavity can be fine tuned by
controlling the size of the holes, their spacing, and another parameters. An
example of an L3 cavity is shown in figure 2.5.

Microcavities gratings are an example of a one-dimensional photonic crystal,
whcih can be used to study topological physics. In this geometry, the cavity is
the interface between two gratings with a different periods.

From simple DBRs to more intricate photonic crystals, there is no shortage
of design to confine light. The choice of a cavity design is made according to
experimental considerations and technical constraints, such as the maximum
tolerance for defects, the wanted Q factor, and the physics we want to investi-
gate. In the next section, we shall give an overview of the light-matter coupling
physics available in microcavities.
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Figure 2.5: (a) Mode structure of the electromagnetic field confined in a L3
Cavity. (b) SEM image of an L3 cavity with the missing holes at the centre. (c)
SEM image of the Edge of the L3 microcavity. Taken from [84]

2.3.2 Weak and strong coupling regime

A lot of interesting physics take place when the material embedded in the cav-
ity is an absorbing or emitting semiconductor. All the physics of light-matter
interaction that we have described in part I of this chapter, namely, the opti-
cal pumping of excitons and the formation of eigenstates of light and matter,
exciton-polaritons, also happens within a semiconductor cavity.

In a planar microcavity, the motion of the electrons, holes and excitons
in the absorbing semiconductor is typically restricted to the cavity plane by
a Quantum Well (QW). A quantum well is an heterostructure in which the
difference in bandgap of the semiconductors results in a strong potential energy
difference seen by the created exciton, which acts a barrier to its movement
[85]. An example of a quantum well is given in figure 2.6 The cavity can also
be engineered to create potential walls along waveguides, tubes, rings [21] or
other geometries where the motion of the carriers is confined not only in the
cavity plane, but also in a particular direction or axis, making a quantum wires.
Further restriction on the motion of excitons on both axes of the cavity plane
results in a Quantum Dot (QD). QuantumWells, QuantumWires and Quantum
Dots can also be embedded in non-planar microcavities.

Aside from changing the relation of dispersion of the cavity photons, the
confinement of light also changes the exciton-polariton lifetimes. In a bulk
conductor, the photon can only be scattered on a defect, or leak out of the
material on the surface. By contrast, the lifetime of a photon in the cavity is
limited by the number of trips between the cavity mirrors before the light gets
absorbed in the mirrors or transmitted. In any real cavity, that number is finite,
and the photon will always leak out.

This leads us to rethink the intuitive picture of the exciton-polariton as an
particle “hoping” between states of light and matter. What happens if the
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EC 1

EC 2

EV 1

Valance band

Conduc�on band

Figure 2.6: An example of an AlGaAa/GaAs heterostructure. a) Quantum Well
structure. b) Band structure with the subbands resulting from the QW growth.
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photon leaks out of the cavity before such an interaction has occurred? This
intuitively distinguishes between two different regimes of light-matter coupling
in microcavities: the weak coupling regime, in which the lifetime is too short for
this “dance” between light and matter to occur, and the strong coupling regime,
which is the opposite.

In the following sections, we shall briefly outline the theoretical, experimental
and practical interest of these two regimes of light-matter coupling, with a strong
emphasis on the strong coupling regime, as it is the main object of this thesis.

Weak coupling regime

In the weak coupling regime, the light trapped in the cavity leaks out before it
can be reabsorbed. Formally, this means that after the material embedded in
the cavity has absorbed the photon, promoting an electron, and then releases
it by spontaneous emission, the probability of the emitted photon to leave the
cavity is higher than the probability of being re-absorbed [86]. The dynamics
of the system are dominated by dissipation [87].

As a result, exciton-polaritons cannot be formed in the weak coupling regime.
Nevertheless, it remains a key area for research in light-matter coupling. Indeed,
the weak coupling regime was the first example of a scheme to control the spon-
taneous emission of materials by the means of an external electromagnetic field,
with many applications in NMR spectroscopy [88], lasers, and other experimen-
tal realisation of Quantum Electrodynamics. It is also a limiting case of the
strong coupling regime, which may break down under certain conditions. As
such we will briefly describe the basic physics of this system.

The mathematical theory of the weak coupling regime treats the electromag-
netic field as a perturbation to the dynamics of the “matter system”. This cou-
pling is both irreversible and “inevitable”. Let’s consider very simple example
of a single excited atom in a vacuum. Without coupling to the electromagnetic
field, the atom would never relax to the ground state. However, in quantum
electrodynamics, the electromagnetic field is always present: even without any
quanta of excitation, ie without any photons, the vacuum field interacts with
the atomic system, and the resulting perturbation to the dynamics results in
spontaneous emission. This is where the “inevitability” of the weak coupling
regime comes from. This vacuum field coupling is described by so-called Fermi’s
golden rule, which gives the probability of emission at frequency ω per unit time
Γvac:

Γvac = 2πΩ2
vac

ρ(ω)

3
(2.25)

Where Ω2
vac is the vacuum field coupling, and ρ(ω) is the density of available
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modes to relax to. This coupling is also irreversible, as the probability of the
spontaneously emitted photon being reabsorbed by the atom is very low. The
probability of finding the atom in the excited state as a function of time shows
exponential decay.

In a microcavity, the atom is replaced by the absorbing media, and the nature
of the coupling can be enhanced or suppressed depending on the dimension
of the cavity: if the cavity dimensions are resonant with the wavelength of
the transition, the density of available modes increases, and the emission is
enhanced, whereas if the cavity length is below the wavelength, it is suppressed.

In this aspect of the weak coupling regime, the electromagnetic field also
brings the system into an excited state, and then the cavity enhances sponta-
neous emission to a selected mode via vacuum field coupling. This enhancement
is called the Purcell effect, and its figure of merit is the Purcell factor, which
gives the maximum possible enhancement for an ideal emitter coupled in an
ideal way to the cavity:

FP =
3Q(λc/n)

3

4π2Veff
(2.26)

With Q being the quality factor of the cavity, λc being the wavelength, n being
the refractive index and Veff the effective volume of confinement.

Beyond the regime of spontaneous emission, microcavities can also reach the
lasing regime, emitting coherent, monochromatic light. The first example of a
laser dates from 1960, using Ruby as an active material [89]. Lasers have since
then become an ubiquitous part of daily life, in industry, research, and consumer
goods.

The basic physics of a laser can be approximated in a three-levels system,
with a ground state 0 of population n0, a lower energy state 1 of population n1,
and conversely a higher energy state 2 of population n2. These energy levels
1 and 2 may relax to the ground state with lifetimes τ1 and τ2. The lifetime
of spontaneous emission for the transition from the state 2 to 1 is written τ21.
In addition, the system can undergo stimulated emission from level 2 to level
1, and the associated stimulated absorption (from level 1 to level 2), which are
proportional to the radiation fieldW . Finally, the system is considered pumped
out of equilibrium with pump rates Ri for each energy level. The rate equations
for this laser read:

dn2
dt

= R2 −
n2
τ2

− n2W + n1W (2.27)

dn1
dt

= −R1 −
n1
τ1

+
n2
τ21

+ n2W − n1W (2.28)

The lasing regime appears when the stimulated emission rates niW overtake the
spontaneous emission rates related to τi. This can be achieved by increasing the
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Figure 2.7: Three-levels system which can be used to approximate a laser.
The system is lasing when the stimulated emission from the radiation field W
overtakes the spontaneous emission given by times τi.

“radiation field” W . A schematic for such a three-level system is given in figure
2.7 The basic ingredients for a laser are therefore as follows: a gain medium,
a way to drive the gain medium out of equilibrium, and a way to confine the
radiation field to avoid losses before the lasing threshold.

Microcavities thus present an ideal environment to realise lasers. In typi-
cal applications, the gain medium is not driven out of equilibrium by optical
pumping, but by an electrical current at a heterojunction between a p-doped
semiconductor and an n-doped semiconductor. With the progress in the growth
of microcavities, in particular with the reflectivity of the mirrors, the confine-
ment of the radiation field increased and the current threshold needed to drive
the system out of equilibrium decreased tremendously over the years. A smaller
microcavity results in better radiation field confinement, but also in lower gain
per round-trip between the cavity mirrors, which must be compensated by very
high reflectivity and low absorption. The more mature form of weak-coupling
cavity lasers are called Vertical-Cavity surface-emitting lasers (VCSELs), with
a very narrow angle of emission perpendicular to the cavity, low threshold cur-
rents which can operate up to very high temperatures [90]. VCSELs are a very
mature and advanced technology, with optically pumped VCSELs reaching the
UV range [91, 92]. A schematic of an electrically pumped VCSEL is given in
figure 2.8.

Although the radiation field plays a very important role in microcavity lasers,
it still only acts as an intermediate between the population levels ni. The pho-
tons in a weak coupling microcavity are never considered beyond the mecha-
nisms of absorption, spontanous emission, or stimulated emission. In particular,
there is no consideration of the coupling between an individual photon and an
individual excitation of the semiconductor. Their dynamics are coupled, but
considered individually.

Beyond the weak coupling regime, in which the light-matter interaction is
treated only as a perturbation, we find the strong coupling regime, in which
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Light emission

+

-

Figure 2.8: Schematic of VCSEL with electrical contact. From Wikimedia

exciton-polaritons appear again.
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Strong coupling regime

Unlike in a bulk semiconductor, in which the lifetime of the photon in the mi-
crocavity can be considered infinite and the relevance of exciton-polariton is
limited by coherence or by the difficulty of detecting them, there is a qualitative
difference in microcavities between a perturbative weak coupling regime, which
we have described in the previous section, and the strong coupling regime in
which the dynamics between light and the excitations of the material predom-
inate over dissipation out of the cavity. This coupling, with absorption and
re-emission, is also reversible in time, without exponential decay. This means
that the discussion in section 2.2.2 can be used to describe light-matter in-
teraction, and the intuitive picture of an exciton-polariton “hoping” between
photonic and excitonic state is valid again.

However, there are some changes which must be made to equation 2.10 to
account for a microcavity. We account for the exciton dissipation γ and the
photon dissipation γc. In a Fabry-Pérot microcavity, the photonic dispersion,
written ωc(k∥) (‘c’ for cavity) is no longer linear, but parabolic with a well-
defined minimal frequency ωc(k0), which corresponds to the cavity frequency
at zero incidence. In terms of k∥, the minimal frequency is found at ωc(k∥ = 0).
The exciton frequency ωexciton(k∥) remains parabolic, but since its effective mass
is usually much larger than that of the confined photon, it is often approximated
as a constant ω0.

In a good microcavity, the problem reduces itself to finding the eigenvalues
of two coupled oscillators with frequency ω0 and ωc with coupling strength V .
Solving for the eigenfrequencies, we find an anticrossing, similar to the bulk
case:

ω1,2(k∥) =
ω0 + ωc(k∥)

2
+
i

2
(γ + γc) (2.29)

±
√(

ω0(k∥)− ωc(k∥)

2

)2

+ V 2 −
(
γ + γc

2

)2

+
i

2
[ω0 − ωc(k∥)](γc − γ) (2.30)

In this expression, the imaginary terms are related to lifetimes and dissipation.
The difference lies in the form of the cavity photon ωc. Rather than being linear
with respect to the wavevector k, it takes a parabolic form with a well defined
minimum for k = k0, which corresponds to incidence normal to the cavity.

Examination of the real part of the square root in equation 2.30 allows us
to devise a criterion for the strong coupling regime. For simplification, we will
assume that ωc(k0) = ω0, in other words, that the cavity resonant is resonant
with the excitonic frequency. Then, at k0, the real part of the squart root reads
V 2 − (γ+γc

2 )2. If the difference is positive, then the two branches are separated
in frequency, and we have two branches. However, if it is negative, then the two
branches are never separated in frequency, and there is no anti-crossing. It is no
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longer valid to use a strong light-matter coupling description if V 2 < (γ+γc

2 )2.
Rather, we are in the weak coupling regime, which has been described briefly
in the previous section.

It is not always the case that ωc(k0) = ω0. The difference in frequency
∆k = [ω0 − ωc(k0)] between the cavity resonant frequency at normal incidence
and the exciton energy is called the detuning of the cavity. At zero detuning,
we found that the strong coupling criterion is given by:

V > |γ − γc
2

| (2.31)

In physical terms, the coupling strength must be greater than the dissipative
lifetimes. The separation in energy between the two branches at normal inci-
dence is called the Vaccum Rabi splitting, written Ω [93]. For a microcavity
with quantum wells to confine the exciton, the Rabi splitting is given by [94]:

Ω ≈ 2

√
2Γ0cNqw

ncLDBR
(2.32)

In which Nqw is the number of quantum wells in the cavity, nc is the optical
index, and important Γ0 is the “radiative width of the free exciton”, which is
proportional to its oscillator strength per unit area [95]. This is an approximate
expression which is true in the limits of a few Quantum Wells for a small cavity.

Some microcavity designs, for an example a planar Fabry–Pérot microcavity
with a wedge, allow for a continuous variation of the detuning. This has in turn
some very practical physical applications. The exciton-polariton is a mix of an
exciton and a photon, but the mixing of the ‘ingredients‘ is not always a perfect
50/50. Formally, the excitonic and photonic contents of the exciton-polariton
at a given wavevector are given by the Hopefield coefficients [41], written |CX |2
for the excitonic content, and |C2

C | for the cavity photon. These coefficients are
given by the equations:

|CX(k∥)|2 =
1

2


1 +

∆k√
∆2

k + 4h̄2Ω2


 (2.33)

|CC(k∥)|2 =
1

2


1 +

∆k√
∆2

k + 4h̄2Ω2


 (2.34)

And of course, we have:

|CX(k∥)|2 + |CC(k∥)|2 = 1 (2.35)

Intuitively, the closer the polariton dispersion is to the photonic branch (for
example), the more photonic it is. The same is true for the excitonic fraction.
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Some examples of Hopfield coefficients are plotted in figure 2.9. The figure
shows that at high k∥, the polariton dispersions lean closer to the uncoupled
photonic dispersion (for the UP branch), or to the excitonic dispersion (for the
LP branch). The hybrid nature of the polariton is stronger at low k∥, in other
words, closer to the cavity resonance. For a cavity with zero detuning, at k∥ = 0,
the exciton-polariton is exactly half-photonic, and half-excitonic.

Alternatively, pumping the microcavity at an oblique incidence (in other
words, a k∥ ̸= 0) results in a different cavity frequency ωc according to equation
2.17. In contrast, ω0 is a property of the material and remains constant. As a
result, we can change the detuning and the Hopefield coefficients. Controlling
the photonic and excitonic content of a polariton is very useful in an experi-
mental setting. Typically, a polariton that is more excitonic will have stronger
non-linear properties, and a polariton that is more photonic will have a lighter
effective mass.

Although the light in the cavity is strongly confined with very high mirror
reflectivity, there is no such thing as perfect confinement, and the polaritons will
eventually leak out of the cavity. Unlike in the bulk case, however, this process is
fast enough for the polaritons to retain their properties without being scattered.
As such, there is a one-to-one correspondence between the light emitted by the
cavity in the strong coupling regime and the cavity polaritons themselves, which
allows to probe the dispersion relation of the polariton very precisely [96]. In
particular, it is possible to explicitly resolve their dispersion and anticrossing
with angle-resolved spectroscopy [97].

The ease of experimental access to cavity polaritons, in particular the possi-
bility to tune cavities in-situ according to experimental needs, make them much
easier to study than bulk polaritons. The confinement of light also results in
very strong non-linear properties, which we will describe in a following section.

Beyond the strong coupling regime

Beyond the strong coupling regime, in which the coupling strength V is larger
than decay rates, we find the so-called ultra-strong coupling regime, in which V
becomes comparable to the natural energies of the uncoupled system [98]. Mi-
crocavity polaritons present an promising system to study this extreme regime
of coupling [99] however for such systems the rotating wave approximation which
we have relied on so far is not appropriate.

Even further, when the coupling strength becomes higher than the natural
frequency, we reach the deep coupling regime [100]. Those new regimes of light-
matter couplings are an active field of research, with recent results able to reach
it up to room temperature [101]. For the remainder of this thesis, we shall only
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Figure 2.9: Left: polariton branches dispersions at zero (a), negative (b) and
positive (c) detuning. The dashed curve represents the purely photonic mode.
The dotted curve represents the excitonic energy in the QW. Right: associated
Hopfield coefficients as a function of wavector k∥.
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study cases where V is much lower than the bare frequencies of the system,
while still dominating over decay rates.

2.4 Materials for microcavity polaritons

The choice of a material to create the cavity and the absorbing media plays a
very important role in the physics of the strong coupling. Some material families
bring their own unique challenges in the fabrication process as well as unique
opportunities for rich and interesting physics. In this section we will briefly
describe three families of materials that have been used in the course of this
research: Gallium Nitride-based cavities, Cuprous Oxide cavities, and finally
Gallium Arsenide-based cavities. Other materials commonly used in research
will be briefly described as well.

2.4.1 Gallium Nitride (GaN)

Cavities using GaN as a gain media attract considerable interest due to its
large direct bandgap [102]. This bandgap results in a very large exciton binding
energy, which allows the exciton to remain bounded even at room temperatures
[103]. More generally, the III-N family of materials, including GaN, InN and
AlN shows a remarkable flexibility, with AlN having a bandgap in the high UV
range with 6 eV, whereas InN is in the infrared range. It is therefore possible
to grow QWs with an alloy of InxGa1−xN , and a smooth variation of the alloy
parameter x gives a tuning range from infrared to the ultraviolet, which is shown
in figure 2.10.

With a large bandgap, the cavities can also be coupled to light with a much
higher energy than other materials. In particular, GaN was used to create blue-
light emitting diodes [104] and coherent sources of UV light [91] in the weak
coupling regime, and have also been used in the strong coupling regime [105].

However, there are considerable challenges to address when working with
this family of materials [107]. In particular, its natural crystal structure is
hexagonal wurtzite, which is shown in figure 2.11 as opposed to zinc blende
crystal structure commonly found in other materials. The symmetry of this
structure results in an intrinsic polarisation vector which depends on the lattice
parameters. As a result, mismatches in the lattice parameters during the growth
process results in strain and defects in the cavity [108], and high-quality cavities
must have matching lattice parameters [109]. This limits the options of suitable
substrates usable to grow III-N cavities, with the main options being either
Sapphire or silicon with a suitable crystal lattice orientation [110].
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Figure 2.10: Bandgap of III-N semiconducors as a function of lattice constant,
with comparison with Zinc Blende structure. Taken from [106]. Copyright ©
2007, IEEE (see end of thesis for copyright licence)

Figure 2.11: Hexagonal wurtzite crystal structure of GaN. Taken from Wiki-
media Commons.
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Figure 2.12: Band structure of bulk GaN with A, B, C exciton sub-bands. Taken
with licence from [111].

The hexagonal wurtzite structure also results in three subbands for excitons,
named the A, B, and C excitons, which are shown in figure 2.12. Excitons
from these sub-bands can all couple to light and be visible in PL spectra when
investigating light-matter coupling in III−N cavities.

Despite these challenges, GaN based microcavities remain a topic of active
and fruitful research in the strong light-matter coupling regime, with so-called
“polariton lasing” achieved up to room temperature [112], and at very low
threshold [113]. This property make them particularly suited for application as
integrated photonic devices [114].

In this thesis, we shall present in chapter 4 an example of polariton lasing
in the UV range up to room temperature using a AlGaN ring cavity with a
whispering gallery mode geometry.

Chapter 2 Anthonin Delphan 49



2.4. Materials for microcavity polaritons

2.4.2 Cuprous Oxide (Cu2O)

Cuprous Oxide holds a particular place in the history of condensed matter
Physics for being the first material in which excitons were observed [115]. In
recent years, there has been renewed research interest in this material as it was
reported in a 2014 letter [116] that the excitons with the lowest optical bandgap
(the “yellow” series, at 2.1 eV) can be observed with very high principal quantum
number n, up to n = 25 as shown in figure 2.13.

Figure 2.13: a) Spectra in CW single-frequency laser for a simple of thickness 34
µm, cooled down to 1.2 K, showing the full yellow series of excitons. b) Photo-
graph of a natural Cu2O crystal. c) Experimental setup with the small crystal
mounted in a brass holder to minimise strain. d) 2-D slice of the wavefunction
of the n = 25 exciton. The horizontal bar corresponds to 1000 lattice constants.
Taken from [116].

There are other series of excitons in Cu2O, such as the violet series with a
bandgap of 3 eV [117]. However, optically probing such series also results in
photoluminescence from the lower energy excitons, which are easier to access
experimentally. In particular, the full yellow series is accessible optically, aside
from the n = 1 state. This comes from the equal parity of the conduction and
valence bands in Cu2O, which forbids excitons with a S-envelope to be observed
in one-photon spectroscopy. This includes the n = 1 state, which has a 1s
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envelope.

As the radius of the exciton scales with n, very large excitons can be observed
in Cuprous Oxide. The n = 25 exciton has for example a radius of 1.04 µm.
This is comparable to the n = 202 state of rubibium, which has a radius of 2
µm – which is only one order less than the width of human hair.

The large number of n states accessible allows to study their scaling laws,
with interesting behaviour observed at larger n numbers [118, 119], with studies
done including the temperature dependency [120].

Rydberg excitons allows physicists to explore phenomena which, in the con-
text of cold atoms physics, would require laser cooling [121]. Rydberg states
in cold atom physics have numerous practical and fundamental applications,
including in particular for quantum computing [122, 123]. They are also still a
topic of active research for their own properties, including for example studies
on their coherence time [124].

A challenge unique to Cu2O is that a particularly high crystal quality is
required to observe the higher n states [125]. Artificial growth of Cu2O crystals
is a topic of active research [126, 127], but so far only excitons up to n = 10
have been reported in such crystals [128]. Natural Cu2O crystals are typically
harvested in mines, such as the Tsumeb mine in Namibia, Africa, and then
cleaved and polished to get thin flakes with lengths of tens of µm. A Cu2O
crystal with smaller thickness would be useful for more scalable applications,
single-mode cavities and for example for the study of Rydberg excitons in two-
dimensional materials, which has so far only been done in monolayer WSe2 up
to n = 2.

One particular phenomenon we expect to see at higher n number is the so-
called Rydberg blockade, in which the large spatial extent of the Rydberg state
prevents a similar state from being formed in its vicinity [129, 130]. Such a
phenomenon has been observed in Rydberg excitons [131], using a thin Cu2O
slap without mirrors. By embedding the Cu2O in a microcavity, it would be
possible to observe Rybderg blockade of the resulting exciton-polaritons [38].
As there is a one-to-one correspondence between the cavity polaritons and the
emitted photons, this proposal would create a “blockade of photons”. The
mechanism is illustrated in figure 2.14.
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Figure 2.14: a) Illustration of Rydberg blockade: the larger Rydberg excitons
block the formation of a higher n exciton in their vicinity. b) Change in absorp-
tion ∆α as a function of energy (normalised to the n = 11 excitonic resonance)
for different pump powers (red being the lowest power, blue being the highest).
Only the Rydberg blockade model explains the features of the experiment, such
as a universal maximum at ∆max and minimum at ∆0. c) The Rydberg block-
ade model shows spatial correlations as a function of the interexcitonic distance.
Taken from [131]

.

Recently, exciton-polaritons in a Cu2O microcavity were demonstrated [132]
up to n = 6, paving the way for the realisation of the polariton Rydberg block-
ade, with these results reproduced in figure 2.15.
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Figure 2.15: k-space imaging of Rydberg exciton-polaritons, in theory and ex-
periments, showing a clear anti-crossing around the excitonic resonances. Taken
from [132].

In this thesis, we shall present in chapter 5 our work on Rydberg polaritons in
Cu2O, investigating their non-linear properties and showing scaling laws which
are consistent with the Rydberg blockade phenomenon.

2.4.3 Gallium Arsenide (GaAs)

Gallium Arsenide (GaAs) is perhaps the most common material used for inves-
tigations in the strong coupling regime of light-matter interactions. It was in
a GaAs microcavity that the microcavity polaritons were first observed in the
seminal paper of reference [7].

GaAs presents a direct bandgap in the near infrared (at 1.426 eV) with a
zinc blende crystal structure as shown in figure 2.16.

The Zinc Blende crystal structure provides from an exact, analytical de-
scription of semiconductor excitations, with the so-called Luttinger Hamilto-
nian [133]. The valence band is split in light holes and heavy holes with varying
effective masses. Below the valence band holes, we find a split-off band (SO)
which is seperated in energy. At k = 0, in the weak coupling regime, there is a
degeneracy in energy between the light holes and heavy holes, with the transi-
tion from an heavy holes to an electron being approximately three times higher,
and as a consequence it is possible to control the spin projection of electrons in
GaAs [134].
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Figure 2.16: GaAs zinc blende crystal structure. From Wikimedia Commons.

Beyond their application for spin and polarisation, GaAs microcavities re-
main a very safe option for polariton devices, including for superfludity [19],
Bose-Einstein condensation [135], and solitons [136], topological physics [137],
phase transition in the Bardeen-Cooper-Schrieffer regime [138]. Essentially, if
something was done using exciton-polaritons, it was (most likely) done first in
a GaAs/AlGaAs cavity – with the notable exception of the first Bose-Einstein
condensate being achieved in CdTe [139]. Many of the examples of non-linear
polariton physics we shall mention later in this thesis, for examples, were realised
using a GaAs system.

This is because the growth and fabrication of GaAs cavities using AlGaAs or
InGaAs Bragg Reflectors and Quantum Wells is a well-known and well-studied
process [140], and the optical properties of such systems have been reported
extensively [141], in part due to the analytical expression of the Hamiltonian
of their band structure. When investigating exciton polaritons, GaAs is the
default and as such is a useful experimental basis for new experiments or as a
baseline for comparison when investigating new materials.

Nevertheless, as with any system or family or materials, there are experi-
mental challenges using GaAs cavities. The main one is that exciton binding
energy is very low, on the order of a few meV [142], which requires most ex-
periments to be done at cryogenics temperatures (typically, 10 Kelvins). It is
possible to engineer devices so that a GaAs system may work at room tem-
perature [143], but some physics, such as Bose-Einstein condensation, are not
accessible. This is not the case for GaN or ZnO systems, where experiments up
to room temperature can be performed.

In this thesis, we shall present in chapter 6 an investigation of non-linear
properties in a GaAs microcavity, with the goal of studying analogue gravity
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effect in polariton fluids of light.

2.5 Non-linear polariton physics

Having described the physics of exciton-polaritons, and having shown some of
the experimental realisations in which they are observed, we now turn to some of
the most interesting experimental features which arise from exciton-polaritons
non-linear properties. This section is by no means an exhaustive list of all the
non-linear experiments which can be performed in exciton-polaritons. Rather,
it serves as an introduction to the vast realm of Physics accessible with such
systems.

In the first subsection, we shall introduce one of most interesting and useful
effects arising from polariton non-linearties, which is the blueshift of polariton
branches with increasing polariton density. We will then describe one of the
first major realisation of non-linearities in the strong coupling regime, which
is the stimulated scattering of polaritons. In the last section, we will show
how exciton-polaritons are used to realise long-travelling wavepackets, called
“solitons”.

2.5.1 Polariton blueshift

In an optical experiment involving power dependency, a linear response to power
increase simply means that the total collected signal is proportional to the
pumping power. Any deviation from this proportional relationship - a non-
proportional signal, a change in the emission energy, or phase, or any collective
behaviour in the signal - can be called non-linear. The behaviour of photons
is derived from Maxwell’s equations, which are linear. Photons can only show
non-linear behaviour when their interactions are mediated by an another par-
ticle. In the case of exciton-polaritons, the interactions are mediated through
the matter component of the particle, which is the exciton. As a result, polari-
tons exhibit polariton-polariton interactions [144], but also interactions with the
“exciton reservoir” [145]. These polariton-polariton interactions manifest them-
selves through a renormalisation of the polariton branches, which are shifted
to higher energy. The value of the shift corresponds to the interaction strength
[146]. Theoretical models sometimes use a “mean field” approach, where the
shift in energy is linearly dependant on the density:

∆E = gn (2.36)

... where ∆E is the energy shift, g is a linear slope, and n is the polariton density.
This results in a linear shift in energy with increased power, as can be seen in
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Figure 2.17: Example of a blueshift resulting from increasing pumping power.
The exciton-polaritons are pumped non-resonantly, and after a certain power
threshold Pth, form a condensate. (see section 2.6.4). From [148].

figure 2.17. Models beyond the mean-field approximation can sometimes show
surprising results (such as a difference of factor 3 in the interaction strengths
[147]), but can be useful to better understand the complex physical phenomena
happening inside the cavity.

While this model is useful to understand the basic principle of non-linear
blueshift, there are a few challenges when applying it to practical case. The
parameter g can be difficult to properly model, but a good approximation is the
exciton-exciton interaction strength, given by [146]:

g ≈ 6Eba
2
B , (2.37)

... where Eb is the exciton binding energy, and aB is the excitonic Bohr radius.
Another difficult challenge in applying 2.36 lies in the estimation of the polariton
density n, which can be hard to properly estimate. A common method, as shown
for example in the methods section of [149], consists of calculating the total
injected number of photons by the pump, and to multiply it by the photonic
Hopefield coefficient. However, this approach neglects some effects, such as
Auger recombination.

At the microscopic level, blueshift occurs because polaritons, due to repul-
sive interactions arising from their excitonic fraction, cannot occupy the same
physical space in the sample. This, in turn, means they do not occupy the same
spot in “phase space”, and shift to different energy. As the density is increased,
more and more of phase space is filled, resulting in a stronger blueshift. How-
ever, unlike electrons (which are Fermionic particles), polartions can, under the
right experimental parameters, occcupy the same energy state. This in turn
results in other non-linear behaviour. We will show one such behaviour in the
following section.
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Figure 2.18: OPO process with pumping at the “magic angle”, near the bottom
of the LPB, in a AlAs cavity with GaAs quantum wells. Taken from [152]

2.5.2 OPO regime: stimulated scattering

The optical parametric oscillator (OPO) regime of exciton-polaritons, also called
parametric or simulated scattering, was first discovered in 2000 by Savvidis &
al [150] and developed in a later paper [151].

When pumped near-resonantly, at a particular wavevector k0 (the “pump”),
the exciton-polaritons undergo a parametric scattering with preferential occu-
pation of two states, k = 0 (signal) and k = 2 ∗ k0 (and idler). The scattering
process can be schematically represented by the equation 2.38 and is represented
in figure 2.18.

(k, k) → (0, 2 ∗ k), subject to the conservation of total energy (2.38)

At a so-called “magic angle” [153] of incidence, k, the scattering process
is resonantly amplified, and after a certain pumping threshold, the occupation
of the final states scales non-linearly with pumping power, with gains over 10
000%. The dynamics of such scattering process can be observed with time-
resolved, pulsed pump-probe experiments as in [150], or more recently [154].
Such a process is called parametric as it conserves both energy and momentum
(it can also be called “elastic”).
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The polariton OPO regime is a signature of their bosonic nature, as fermions
would not be able to show macroscopic occupancy of the same state. As a re-
sult of scattering processes between the signal and the idler, these states become
macroscopically occupied. The scattering becomes stimulated by the final oc-
cupancy number, resulting in very large gains. It is also a feature unique to
polaritons [155]: photons would not able to scatter off one another, and while
such a feature has been observed in excitons [156], it requires much lower tem-
peratures (down to 50mK) and the strength of scattering is lower.

The very high non-linearity of the OPO regime comes from the excitonic
nature of the exciton-polaritons. The signal from k = 0 and 2k can be sepa-
rated in angle-resolved spectroscopy. The signal from k = 0 also turns out to
be coherent, with both first and second order correlation functions being equal
to one [157]. A discussion on those correlation function is given in section 2.6.
Some experiments have demonstrated pulsed coherent control of the OPO sig-
nals [155], which is why these modes are sometimes called “OPO condensates”,
by analogy with Bose-Einstein condensates which will be described in a fur-
ther section. However, it is important to note that, unlike in a Bose-Einstein
Condensate, there are two states with macroscopic occupation of population.
Additionally, a Bose-Einstein Condensate requires thermalisation of the macro-
scopically occupied state. This is not the case for the OP regime.

In CW excitation, a microcavity polariton system presents a smaller alter-
native to bulkier equivalent systems for lasers, in which the scattering process
is different and takes the form of a down-conversion [158], with a given pump
frequency 2ω and a small parameter ε showing scattering of the pump photon
in two different photons:

(2ω,∅) → (ω + ε, ω − ε) (2.39)

The OPO regime of stimulated scattering was a first major realisation for
the study of exciton-polaritons. Today, it is still the basis for the analysis of
most resonant pumping experiments, and some analysis of the bistability effects
when varying pump power are still being performed [159]. It was a major step
in investigating the non-linear properties of exciton-polaritons, in particular the
ones owning to its bosonic nature.

2.5.3 Solitons

The non-linear properties of polaritons make them particularly suitable to re-
produce in an easily controllable manner other physical phenomena, such as
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Figure 2.19: Bright (left) and dark (right) soliton in one dimension with time
dependency. Taken from [164].

“solitons” or solitary waves. Waves typically spread out in space while travel-
ling, eventually decaying, or when they collide. This is not the case for solitons
[160]. Qualitatively speaking, a soliton is a stable, travelling wave, which keeps
its form over long distances.

Historically, solitons were first discovered in 1834 when Scottish engineer
John Scott Russell observed that, in a still water canal, the waves in the wake
of a boat which had suddenly stopped would continue travelling without losing
their form for miles on end [161]. The modern approach to solitons mainly deals
with non-spreading electromagnetic waves in fiber optics. For electromagnetic
waves, the non-spreading nature of the soliton is explained by a competition
between the non-linear properties of the wavepacket and the dispersive effects
of the media.

Research on fibre optics solitons has been a topic of active interest for decades
[162], and is still a topic of research due to its applications in communication
technologies [163]. The current research distinguishes between two types of
solitons. The first are called temporal solitons, which are generated using pulsed
lasers. The pulse dispersion enters in competition with the non-linearity of
the propagating media. On the other hand, spatial solitons are caused by a
competition between beam diffraction and the non-linearity of the propagating
media.

The soliton can further be called “dark” or “bright”. A bright soliton is a
regular propagating wave, whereas a dark soliton would be a propagating dip
or hole in a continuous background. An example is given in figure 2.19.

The mathematical formalism of solitons lends itself to a wide variety of fields,
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Figure 2.20: Polariton soliton propagation for a beam of diameter of 5 µm (a,
b, c) or 15 µm (d, e, f).
The observed lifetimes (tens of picoseconds) are one order of magnitude higher
than the polariton lifetime in the GaAs cavity (5 ps). Taken from [24].

including oceanography [165] or more surprisingly, the De Brooglie matter wave
of a cold atom Bose-Einstein condensate [166].

As a highly non-linear system, exciton-polaritons are a promising ground for
the generation of solitons without the constraints of optical fibres or cold atom
physics. Such solitons are very large, up to the µm scale [24] (see fig 2.20) (on
the picosecond scale), and with higher non-linearities. The exciton-polaritons
also create a soliton faster (on the picosecond scale) than equivalent systems in
cold atom physics. Both dark and bright solitons have been realised using cavity
polaritons, and in particular exciton-polaritons offer possibilities not accessible
to optical fibres experiments [167] [168], including at very low pumping power
[136].

The non-linear properties of the polaritons necessary to get a soliton can be
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tuned easily by changing the experimental parameters, for example by pumping
at an angle to modify the effective mass, including a negative effective mass.
However, unlike cold atoms matter waves, the polaritonic solitons are an intrin-
sically out of equilibrium system, which requires the cavity losses to be com-
pensated with additional pumping. An example of a model for such a system
must treat the exciton ψ and the photonic mode amplitude A independently, is
given in [136], is as follows:

2iβe
vg

(
vg

∂

∂z
+
∂

∂t
+ γp

)
A+

∂2A

∂x2
= −k2eψ (2.40)

−2i

(
∂

∂t
+ γe

)
ψ = gA− χ|ψ|2ψ (2.41)

In this coordinate system, the soliton propagates along the direction z, and
across the direction x. βe is a propagation constant for the photonic mode
at the exciton resonance, γp and γe are the losses for the photonic and the
excitonic mode, respectively, ke is the wavevector for the exciton and finally, g
is the rate of light-matter coupling and χ is the exciton non-linear parameter.
We see, importantly, that the group velocity vg plays an important role in the
equation, showing a competition between a group velocity dispersion and the
non-linearities of the system. Such an equation can be approximately resolved
if the losses are neglected. It results in dark or bright solitons depending on the
signs of the non-linearity and the sign of the effective mass.

The experimental richness of polariton solitons has taken them to very exotic
experiments, including in topological physics [169]. A striking result from such
research is that a soliton which scatters on a topological defect can be described
as a magnetic monopole [170], an elusive physical concept which, while not
strictly forbidden by the laws of nature [171], has nevertheless not been observed
in any of the fundamental particles.

2.6 Coherence and Bose-Einstein condensation

Among all the non-linear properties of exciton-polaritons, some of which we
have outlined in the previous section, we shall be particularly interested in this
thesis in their statistical and coherence properties. The notion of coherence is
very important for modern physics, and in fact we have been alluding to it,
for example in the description of light emission in the OPO regime of section
2.5.2. Now comes the time to give a brief overview of the Physics involved for
a description of coherence applicable to exciton-polaritons.

A classical thermal light source, such as the Sun, or a light appliance, does
not have a perfectly defined wavelength, amplitude or phase, as a monochro-
matic plane wave would have, but is closer to a statistical average of many
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waves, with a finite spread in wavelength, amplitude and phase. We call such
an average a wavepacket. The accessible data is therefore a statistical average
of the properties of the wavepacket. A statistical treatment for the light is also
necessary when taking into account the temperature, as it is itself the result of
treating the media in which the light evolves in a statistical manner.

The coherence of a light wave measures how well these statistical properties
evolve over time and space. The theory of coherence is, similarly to statistical
physics, closely related to information theory. In this analogy, the statistical
properties of light, which is called a “signal”, are thought of as information.
The coherence of the signal measures how this information evolves.

Coherence properties of exciton-polaritons are at the heart of this research
work. They underpin the three experimental chapters which constitute the
remainder of the thesis.

In this section, we shall first describe how the coherence properties of light
can be treated classically, which gives a good overview of the physics involved.
As we shall see, the purely classical formalism is not suited to fully describe
exciton-polaritons, and a quantum description of coherence shall be needed.
We will then describe a particularly important feature of quantum statistics
of exciton-polaritons, which is their ability to undergo a Bose-Einstein con-
densation. We will describe in details the physics involved, with in particular
the specifics of exciton-polaritons. Finally, we will give an overview of the rich
physics made accessible by polariton condensates. The exposition in this section
draws from references [41, 172] and [173].
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2.6.1 A classical description of coherence

In practice, the coherence of a light source can be measured by how well it
is possible to interfere it at remote locations. If the information of the signal
changes too much over time, then interference shall not be possible. The loss of
coherence is called decoherence.

The main decoherence mechanism is that the phase and amplitude of the
wavepacket change over time. For example, if the wave in the wavepacket follow
a Gaussian distribution, the width of that distribution will grow larger over time.
The coherence time of a wavefront with central wavelength λ and spectral width
∆λ is given by the relation [41]:

τc =
λ2

c∆λ
(2.42)

... from which we can reduce the coherence length by the equation lc = cτc.
One way to measure the statistical properties of a given signal over time is to
look at its Fourier transform, which will give its frequency spread. For example,
a perfect monochromatic wavefront would have a single well-defined frequency,
but implies an infinite lifetime (see figure 2.21). A more realistic wavefront with
a lifetime given by 1/γ, where γ is the linewidth of the source, would have a
finite spread in the frequency domain. Typical coherence lengths can vary from
a few centimeters for thermal sources, to several kilometers for lasers. Quantum
emitters, such as Quantum Dots, are characterised by a very narrow linewidth
γ and as such have very long lifetimes and a well-defined amplitude, in contrast
to classical light sources.

In the language of information theory, the coherence between two signals is
also called a correlation, which measures how much the information carried in
one relates to the information carried in the other. In the case of a single light
source, we may speak of self- or autocorrelation.

If we consider a fully coherent field E, then the information in the signal does
not change between two measurements E(t) and E(t′). By contrast, if the signal
is fully incoherent, then there is no relationship between the two measurements.
As a result, the coherence of the signal can be characterised by looking at the
product E(t)E(t′). To account for the amplitude and any arbitrary property of
the signal, it is compared to the product E(t)2.

In a real signal, a single measurement will be subject to uncertainty due
to the statistical properties of the field. These statistical properties can be
taken into account by averaging over many measurements. Finally, we take the
complex conjugate E∗(t′) for mathematical properties. We find the coherence
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c) d)

a) b)

Figure 2.21: Simple plot of the signals (a, b) and spectral shapes (c, d) for
a perfect monochromatic source (top), and a source with a finite lifetime γ
(bottom) which shows a Lorentzian broadening.
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to be:

g(1)(τ, t) =
⟨E∗(t)E(t+ τ)⟩

⟨|E(t)2|⟩ (2.43)

In this expression, we have subtracted the t, t′ notation for one explicitly in-
cluding the delay τ . The superscript (1) comes from the fact that the function
g(1) is called the first-order coherence, as opposed to higher orders, which shall
be described later. This expression can also be generalised to include spatial
coherence by making the field E dependent on the position.

In the case of a steady-state system, only the delay τ is taken into account,
and the expression then reads:

g(1)(τ) = lim
t→∞

⟨E∗(t)E(t+ τ)⟩
⟨|E(t)2|⟩ (2.44)

g(1)(τ) is a complex number in general, which is symmetrical with g(1)(τ) =
g(1)(−τ)∗ and |g(1)|(0) = 1.

The function g(1)(τ) can be related to the emission process of the source
of light by the Wiener-Khinchin theorem [174]. For a coherent source, like a
laser, we would have |g(1)|(τ) = 1 for all τ . By contrast, incoherent sources
show exponential decay (for Doppler-broadened light) or a Lorentzian shape
(for emitters with a finite lifetime). A plot of such g(1)(τ) is given in figure 2.22.

We have measured so far the correlation in the amplitude of the signal. It
is possible to extend this analysis to other quantities. In particular, we can
measure the correlation in intensities of the signal, with I(t) = E(t)E∗(t). The
field intensity I is directly related to the detection of photons, and as such the
second order coherence, which is given by:

g(2)(τ, t) =
⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩

⟨E∗(t)E(t)⟩2
(2.45)

... can be interpreted as the probability that, after having detected a photon
at time t, a photon from the same source is detected at time t + τ , which will
be noted as g2(τ) in the steady state. The experimental method to measure
g(2)(τ) necessarily involves two synchronised detectors with a variable detection
delay, and in particular with simultaneous detection to measure g(2)(0). This
illustrates the difference between g(1)(τ), which splits a signal and then imposes
a delay, and g(2)(τ), which takes two different signals from the same source.

A particularly interesting result regarding g(2)(τ) was obtained by Robert
Hanbury Brown and Richard Twiss in their 1956 paper [175], where they in-
vestigated the light emitted from distant stars and found that it had a |g(2)(0)|
greater than 1 and decreasing with τ . This meant that stars emitted photons
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Figure 2.22: First-order correlation function for coherent light (red), Doppler-
broadened Gaussian light (green), and collision-broadened light with a Lorentz
distribution (blue). τC is a characteristic time of emission. Figure inspired by
Wikimedia Commons.
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in a bunched manner, with bursts of photons followed by lower probability of
emission. This property was found to be common to all incoherent and thermal
light sources, such as incandescent lamps and LEDs. While it can be described
classically in terms of intensity coherence, it requires a full quantum treatment
to be properly explained.

By contrast, coherent sources have a |g(2)(0)| = 1 and then |g(2)(τ)| = 1 for
all τ . In particular, the classical interpretation of |g(2)|(τ) as being related to a
probability of two-time coincidence imposes |g(2)|(τ) ≥ 1 for all τ .

2.6.2 A quantum description of coherence

In a full quantum treatment, light is no longer described as a vector field E but
rather via creation and annihilation operators a† and a as we have described in
section ??. With this formalism, the first and second order coherence functions
can be written as:

g(1)(τ, t) =
⟨a†(t)a(t+ τ)⟩
⟨a†(t)a(t)⟩ (2.46)

g(2)(τ, t) =
⟨a†(t)a†(t+ τ)a(t+ τ)a(t)⟩

⟨a†(t)a(t)⟩2
(2.47)

It is possible to define higher order coherence functions, but they find little
experimental applications. A state is said to be perfectly coherent when it is
coherent in all order in the quantum mechanical formalism.

We shall introduce more precisely how the statistical properties of coherence
can be expressed in quantum states |ψ⟩. The basic “building block” of those
quantum states is the pure state with a fixed number of photons n, written |n⟩.
Such states are called Fock states. Fock states have no statistical uncertainty,
and are the states for which a† and a act as ladder operators.

Fock states can be used as a basis to write coherent states, written |α⟩, with
α being a complex number. They are given by the equation:

|α⟩ = exp(−|α|2/2)
∞∑

n=0

αn

√
n!

|n⟩ (2.48)

Coherent states have statistical uncertainty, being a superposition of an infinite
sum of Fock states. However, it can be shown that they minimise the quantum
uncertainty, in other words that they satisfy the relation:

∆X∆P =
h̄

2
(2.49)
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With X being the position operator and P being the momentum operator.
Coherent states are “quasi-classical”, they are the most classical states it is
possible to construct while respecting the postulates of quantum mechanics. The
complex number α has the physical meaning of being the well-defined (complex)
“phase” of the state, with the real part being the X variable and the imaginary
part being the P variable. By contrast, the phase of a Fock state is not defined.
It can also be shown that the coherent states are eigenstates of the annihilation
operator a, with the relationship:

a |α⟩ = α |α⟩ (2.50)

Coherent states are used to describe the light emitted by a coherent source such
as a laser.

Finally, to describe the light emitted by incoherent sources, such as by light
bulbs or stars, we use a general incoherent or “thermal” state. The formalism
to describe such a state is called the density matrix. A full definition of the
density matrix can be read in [172], but in this work we shall describe it as a
matrix on a “continuous basis” of coherent states. In other words, incoherent
light is the sum of many uncorrelated coherent light sources with a well-defined
“phase” α. The formal definition is as follows:

ρ(t) =

∫
P (α, α∗, t) |α⟩ ⟨α|d2α (2.51)

In this integral, P (α, α∗, t) is the “density distribution” of the coherent states
which make up the density matrix. This description is due to physicists Glauber
and Sudershan. Glauber can be considered the “father” of the theory of quan-
tum coherence, a theory for which he recieved a Nobel Prize in 2005. In
Glauber’s formalism, a coherent state |α0⟩ for example would have a density
distribution of δ(α−α0). An incoherent state is simply defined as a state whose
density distribution is Gaussian with a well-defined average number of particles
. Its probability distribution is independent of time, and reads:

P (α, α∗) =
1

πñ
exp(−|α|2/ñ) (2.52)

The density distribution for a Fock state on the basis of coherent states is more
complex. The formalism of the density matrix can also be adapted to use the
Fock states as a basis, in which case the integral becomes a sum and the density
matrix can be represented with integer indexes row and columns.

In this case, the diagonal elements of the density matrix represents the sta-
tistical uncertainty, whereas the off-diagonal elements represent quantum cor-
relations.

In the basis of coherent states, it is also possible to describe a “mixed state”
which is the superposition of a coherent source and an incoherent source by
taking the convolution product of the density distributions P of the two sources.
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The density matrix representation is a powerful tool to represent both the
quantum and statistical properties of a state in a single mathematical object,
with freedom in the choice of basis. It can also be mathematically related to the
Hamiltonian of a system and ultimately, to the dynamics of the ladder operators
a† and a. The main result is that the quantity:

g(2)(0) =
⟨(a†)2a2⟩
⟨a†a⟩2

(2.53)

... can be evaluated explicitly for all states. We find it to be g(2)(0) = 2
for a thermal state, and and decreasing as τ becomes higher, confirming that
incoherent light is bunched. The shape of the decay is exponential for Doppler-
broadened light, and Lorentzian for a collision broadened light.

For a coherent state, we find, as the classical case, g(2)(0) = 1 and more
generally g(2)(τ) = 1 for all τ . This means, interestingly, that the probability
of observing a second photon after the first one remains constant over time. In
other words, photons are emitted independently, but with a fixed mean rate,
according to a Poisson distribution. This is a standard result for lasers.

Finally, for a Fock state |n⟩, we find that g(2)(0) = 1 − 1/n. In particular
the single-photon state has g(2)(0) = 0, which can intuitively be understood
as having a zero probability of emitting a second photon after the first one.
This contradicts the classical rule g(2)(0) > 1, which shows that Fock states
are a purely quantum phmenon, unlike thermal and coherent states which have
classical analogues. This comes from the fact that a single photon source needs
to be a single isolated emitter, whereas classical light sources are made of a very
high number of uncorrelated emitters, resulting in decoherence. An illustration
of the emission dynamics is given in figure 2.23, and a plot of g(2)(τ) functions
for all the main cases is given in figure 2.24.

The emission of photons “one at a time” is known as photon antibunch-
ing. [176] On-demand single photon sources are used extensively in quantum
information processing and quantum computing applications [177] as well as
quantum metrology and biology, or even to test the foundations of quantum
physics [178]. The possibility of investigating the dynamics arising from the
interaction of a defined number of photons allows to reduce, for example, the
biological processes of vision down to the most fundamental level [179], by test-
ing whether or not the human eye can detect a single photon.

Experimental realisation of single photon sources is a very rich and active
research fields, with microcavities playing a key role in recent developments [180,
181] with in particular quantum dots or quantum well embedded in microcavites
as “artificial atoms” [182], sometimes up to room temperature [183], see fig 2.25.
In the strong coupling regime, antibunched light can be generated from so-called
Rydberg blockade of exciton-polaritons [38]. In Chapter 5 of this thesis, we show
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 τ

 τc

Coherent light emission

Incoherent light emission (bunched)

Single-photon emission (an�-bunched)

Figure 2.23: Illustration of the photon emission dynamics as a function of time
for the coherent, bunched light, and anti-bunched light cases. Figure inspired
by Wikimedia Commons.

Figure 2.24: Second-order correlation function for coherent light sources (red),
bunched light with Gaussian (green) and Lorentzian (blue) broadening, as well
as anti-bunched light with g(2)(0) = 0.
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an experimental realisation of such Rydberg blockade.

The definition of coherence in terms of a coherent quantum state applies not
only to light, but also more generally to any system of bosons. The emergence
of a coherent state can happen from stimulated emission after an inversion of
population, which is the case in weak-coupling microcavities after their lasing
thereshold. However, in such a case, the emitted photons do not interact with
one another. Exciton-polaritons on the other hand have non-linear properties
and do interact with one another, leading to the emergence of another type of
coherent state, known as a Bose-Einstein condensate. The properties of such a
state, notably its long-range order and spatial coherence, will be described in
the following sections.
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Figure 2.25: g(2)(τ) measurements in GaN/AlGaN Quantum Dots, optically
excited at wavelength λexc and power Pexc, at different temperatures, from two
optical transitions (X1 and X2). It shows anti-bunching up to T = 300K. Taken
from [183].
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2.6.3 Bose-Einstein condensation

General theory

Before we consider the physics of Bose-Einstein condensation and the particular
role played by polaritons, we shall describe more precisely how the bosonic
nature of a particle relate to their statistical properties.

In classical physics, a particle can be well-identified by its position and mo-
mentum, including when it is considered statistically in a gas of many particles.
In quantum mechanics, the position and momentum of a particle are no longer
well-defined as a consequence of the uncertainty principle. As a result, when
the particles are considered statistically, quantum mechanical particles are in-
distinguishable. We can write the quantum state Ψ of a system of N particles
as:

Ψ = Ψ(r1, ..., rN , ...) (2.54)

Where the ri identify the dynamical variables of each particle in the system.
From the indistinguishably of particles, there are specific symmetry conditions
on this quantum state Ψ. For particles known as fermions, the state Ψ is anti-
symmetric with respect to the dynamical variables, and changes sign when two
particles are swapped, whereas for bosons, the sign remains the same.

From these symmetry considerations, it is impossible for fermions to oc-
cupy the same state, as the wavefunction Ψ would be zero, whereas for bosons,
occupancy of the same state is not forbidden.

This observation lead Albert Einstein to predict [11] a quantum state in
which a macroscopic number of particles would all occupy the same ground state
energy level. In an open system with temperature T and chemical potential µ,
and with ground state energy E0 = 0 the total number of particles is given by:

N(T, µ) =
1

exp
(

−µ
kBT

)
− 1

+
∑

k,k ̸=0

fB(k, T, µ) (2.55)

In this expression, the first term on the right-hand side is the number of the
particles in the ground state (k = 0), whereas the second term is the number
of particles in higher energy states. The index k represents the wavevector,
which can be mapped to the energy. kB is Boltzmann’s constant, and fB is
Bose-Einstein’s distribution. At µ = 0, there is a divergence, with an “infinite”
number of particles in the ground state.

In a real system, we take the so-called “thermodynamic limit” in which
the size R of the system and the number of particle N are taken to go to

Chapter 2 Anthonin Delphan 73



2.6. Coherence and Bose-Einstein condensation

infinity, but the density n, which is the relevant physical value, remains finite.
Mathematically, this means that we replace N(T, µ) in equation 2.55 with the
density n, bearing in mind the change of units.

Einstein calculated that there is a critical density nc(T, µ) of particles which
can be accommodated by the Bose-Einstein distribution. If the density n is
higher than nc, then the chemical potential of the system decreases to accom-
modate the new density. However, the value of µ is bounded by the energy of
the ground state E0, which in our case is set to 0. Once the chemical potential
in the system reaches 0, nc(T ) becomes a hard limit. The total density reads:

n(T ) = n0(T ) + nc(T ) (2.56)

At this threshold, any further changes in the system, for example by increasing
the total density n(T ) or by changing the temperature so that nc(T ) becomes
smaller means that the particles “fall” into the ground state. The density of
the ground state n0 becomes macroscopic and comparable to the total density
n, forming a Bose-Einstein condensate (BEC). In essence, there is a maximum
number of excited states in the system: everything past that numbers falls into
the ground state, which shows macroscopic occupancy. This is in sharp contrast
to the state before the threshold, where the Bose-Einstein distribution accom-
modates particles over a large range of energies and no state is macroscopically
populated.

This phase transition is the phenomenon of Bose-Einstein condensation. It
is particularly interesting as it is a purely statistical property: no consideration
other than the bosonic nature of the particles is necessary to derive it. A
perfect gas of non-interacting bosons can undergo a Bose-Einstein condensation.
At the same time, the system needs to be thermalised, with a well-defined
temperature. Therefore photons, for example, cannot undergo a Bose-Einstein
condensation on their own, as they lack a way to thermalise. We also note that
this transition is unlike a classical phase transition from liquid to gas, which
is a sharp discontinuous change in the properties of the system involving a
latent heat. The BEC transition consists of a continuous change of the chemical
potential µ until it reaches the critical value 0 with a drastic change in the
properties of the system, and does not involve latent heat. The BEC transition
belongs to the class of second-order phase transitions, with µ being its order
parameter.

The critical density for BEC, nc(T ), is given by the integral:

nc(T ) = lim
µ→0

1

(2π)d

∫ ∞

0

fB(k, T )dk (2.57)

Where d is the dimension of the system, and the discrete sum of k is approx-
imated by an integral. This integral can be evaluated explicitly if the energy
dispersion E(k) of the bosons is parabolic, which is approximately the case of
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exciton-polaritons in microcavities. At the same time, it diverges for a system
with d < 3, meaning that a two-dimensional system can theoretically accom-
modate an infinite number of bosons. This is related to the the absence of
long-range order in two-dimensional systems [17]. However, this theoretical
limitation can be discussed and overcome, as discussion in the next sections will
show.

The theoretical prediction of Bose-Einstein condensation was initially met
with some criticism, however the discovery of superfluid 4He helped to convince
the scientific community of its validity. 4He becomes superfluid at Tc = 2.17K,
as opposed to a superfluid temperature for 3He of only 0.0025K. A direct
application of Einstein’s ideal Bose gas theory predicts a critical temperature
very close to the Tc observed, showing that the bosonic nature of 4He plays a
major role in the superfluid transition. At the same time, superfluid Helium is
in a dense liquid phase, with particle interactions playing a major role, and is
not an ideal Bose Gas.

An experimental realisation of a BEC requires to either increase the den-
sity of particles n to go over nC , or alternatively to cool down the system to
decrease nC . There are a number of experimental challenges involving such a
process. In particular, the particles need to be weakly interacting so that they
can thermalise, but at the same time, they cannot coalesce to form a liquid
or solid phase. The first experimental attempts involved gases of atomic Hy-
drogen, separated in polarisation to prevent them from becoming H2 molecules
[184]. These early attempts were not immediately successful, due to extremely
low temperatures required, but paved the way for a better understanding of the
dynamics of cold atomic gases. The discovery of laser cooling processes such as
Doppler cooling allowed to reach ultra-low temperature of sub K to observe in
1996 the Bose-Einstein condensation first of heavy atoms [13, 185] and then of
atomic Hydrogen [186].

The experimental observation of atomic BECs gives a microscopic meaning
to the abstract statistical derivation of the condensate. It is a well-known pos-
tulate of Quantum Mechanics that any particle, and not only light, exhibits a
wave-particle duality with a “thermal wavelength” characterising the scale at
which a wave-like behaviour can be observed. The thermal wavelength, also
known as the De Broglie wavelength, of a gas with particles of mass m at tem-
perature T is given by:

λth =

√
h̄22π

mkBT
(2.58)

In the condensate phase of cold atoms, the temperature T is so low that this
thermal wavelength λth becomes comparable to the inter-particle spacing of the
gas. As the wavefunctions of individual atoms overlap, they can no longer be
distinguished, resulting in a single wavefunction whose length λc is much larger
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than the thermal wavelength λth. The realisation of BEC is therefore intimely
linked with the wave-like nature of atoms, and can be considered an exprimental
proof of their wave-particle duality.

The research in atomic Physics which ultimately resulted in the condensation
of heavy atoms took the path of reducing the temperature to decrease the critical
density in order to increase the thermal wavelength. Such an approach gives a
very dilute, almost perfect Bose gas that is very close to the original thought
experiment of Albert Einstein. But the temperature required to achieve such
a condensate are extremely low. By contrast, photons already display a wave
particle duality, but cannot condensate due to the lack of interactions.

This observation lead to research in an another path to BEC, which started
from photons and looked into ways to get them to thermalise and interact.
Such an approach must go further than the ideal Bose gas case by having the
interactions between particles at the heart of the theory.

Condensation of a weakly interacting Bose gas

The only way for photons to interact with one another is when coupled to matter.
We note that the linear dispersion of photons in a bulk material does not admit a
minimum and as such cannot show BEC. By contrast, the dispersion of photons
in a microcavities is parabolic and has a well-defined minimum. Microcavities
are therefore a natural tool to study light-based BEC.

The case of a pure “BEC of photons” can be realised in an organic microcav-
ity with dye as the absorbing media [187, 188]. The photons are absorbed and
remitted by the dye molecules until they thermalise, while the process needs
to be fast enough to not have the photons absorbed the cavity walls. This re-
sults in a coherent light source which can operate in the UV range, at room
temperature, and that, importantly, is not a laser.

The BEC of photons in a microcavity is an example of a BEC with a weakly
interacting Bose gas, in which the photons gain a small effective mass thanks
to the cavity.

Another type of light-induced BEC in a microcavity can be realised with
excitons. While their effective mass is higher than confined photons, it is small
enough to be a good BEC candidate. A specific issue with excitons is that
they are not “pure” bosons, but are composed of two fermionic particles. Their
canonical commutation relation read:

[a, a†] = 1−O(na2B) (2.59)

Where a, a† are the ladder operators for an exciton in a given band at a given
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energy, n is the density of excitons and aB is their Bohr radius. We find that
excitons behave as “approximate bosons” in the low density, low temperature
limit. At higher densities, Coloumb interactions between the particles and the
Fermi exclusion principle become prevalent. In particular, when the density
becomes too high, the scattering potential created by other charge carriers be-
comes stronger than the interaction between the electron and the hole. The gas
of excitons becomes a plasma of free electrons and holes and the semiconductor
becomes a metal. This effect is known as the Mott transition, and it signals
a transition from the strong coupling regime to the weak coupling. At high
temperature, the excitons may also lose their bosonic feature as the thermal
interactions become stronger than the binding energy.

In the quest to observe BEC, “dark excitons”, which are not directly coupled
to light, have been an important research area [189, 190]. Dark excitons can
be created optically (for example, by non-resonant pumping), and their band
structure forbid radiative recombination. As a result, such excitons have there-
fore a very long lifetime, which can go as high as a microsecond in monolayer
structures [191]. Recent advances have allowed very accurate probing of such
states [192, 193] and as such they remain an active topic of research. Yet there
has not been, to this day, a conclusive signature of a dark exciton condensation.
Despite the advances in probing techniques, measuring optical properties of a
dark exciton remains very difficult [194]. Imperfections inherent to semiconduc-
tor structures can also lead to the excitons being trapped in local minimas of
the disorder potential, even in monoloyers structures [195], which limits their
ability to interact with one another, thermalise and form a coherent condensate.

As a result, it may be suitable to study instead “bright” excitons, directly
coupled to light. As we have shown in previous sections, the coupling between
light and excitons in such cases result in exciton-polaritons. The effective mass
of exciton-polaritons make them very good candidates for BEC. From their pho-
tonic component, it is up four order of magnitudes lower than that of an exciton
[196], and much lower than a cold atom. According to equation 2.58, this re-
duces the critical density needed and raises the critical temperature, making an
experimental realisation of a BEC of exciton-polaritons easier. In some mate-
rials, the polariton BEC can even happen at room temperature. Additionally,
microcavities present a favourable environment to tune experimental parame-
ters according to the effects we wish to observe. In practice however, there are
several additional challenges and unique properties of a polariton BEC, which
we will describe in the following section.
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Figure 2.26: Top: Pseudo-3D imaging of the polariton condensate emission,
below, at, and above condensation threshold, showing the strong increase in
emission intensity. Bottom: LPB dispersion below, at and above threshold,
showing the macroscopic occupation of the k = 0 state at the bottom of the
branch. Taken from [139].

2.6.4 Condensation of exciton-polaritons

Experimental realisation

The first unambiguous claim of BEC using exciton-polaritons was given in 2006
by Kasprzak & al. [139] in a CdTe microcavity cooled down to 5K, non-
resonantly pumped, shown in figure 2.26.

The non-resonant pumping scheme is necessary to populate all the states
of the LPB, which then scatter to k = 0 as the critical density for BEC is
reached. More details about resonant and non-resonant pumping are given in
chapter 3. This is the main difference from the OPO regime of section 2.5.2,
which is pumped near resonantly, and in which not one, but three states show
macroscopic occupation of population (pump, signal, and idler).

As there is a one-to-one correspondence between the emitted photons and
the microcavity polaritons, a clear signature of a BEC of polaritons can be
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found in the emission of coherent light after a threshold, a so-called “polariton
laser” [26] resulting not only from inversion of population of the excited free
carriers in the semiconductors (also known as stimulated emission), but rather
from stimulated scattering of the pumped exciton-polaritons, relaxing to the
ground state, which becomes macroscopically populated. The finite lifetimes
of the microcavity polaritons result in light emission, and the coherence of the
condensate results in coherence of the emitted light. Kasprzak’s experiment
sparked a lot of interest in the topic of polariton BECs, and in the following
years, several major reviews were publish to show the interest of the scientific
community in the subject [197, 16].

Unlike in the OPO case of the previous section, the condensate is charac-
terised by the macroscopic occupency of a single state at k = 0. Polariton con-
densates are also typically realised with off-resonant pumping, and with coher-
ence building up from the condensation process, rather than the near-resonant
pumping of OPOs.

Yet coherent emission alone is not a sufficient proof to claim condensation.
Indeed, a cavity in the weak coupling regime does emit coherent light with a
regular laser mechanism. Unlike a laser in the weak coupling regime, a polariton
laser can have a very low operating threshold, which makes it highly suitable for
practical applications. For example, room temperature lasing can be observed
at a power density of 4.5 W/cm

2
in a GaN substrate [198], which is to 2.5

times less than the predicted density for collapse of the strong coupling regime.
Thanks to continous advances in microcavity design technologies, there has been
multiple realisation of ultra-low threshold polariton condensation and lasing in
a multitude of different geometries and materials [199], including monolayers
[200].

One way to ensure the coherent light emission from the cavity results in-
deed from a polariton condensate is to run a power dependency that exhibits
both behaviour, starting at powers low enough to observe both the BEC con-
densation, the crossover from weak to strong coupling regime, and finally the
inversion of population. Such a power dependency would have two characteristic
thresholds [201]. Experimental realisations of this proposal have been published
[202, 203], showing unambiguously a transition from strong to weak coupling
regime with two different lasing thresholds for the two mechanisms. However,
in practice, there can be experimental constraints to this approach, such as a
low damage threshold to the sample preventing higher powers to be reached,
or a photonic lasing threshold too high to be reached in the same experimental
pumping scheme as polariton lasing.

The non-linear properties of polariton condensates may be an indicator to
claim BEC. However, some of them are very similar to that of photonic laser.
Both BECs and photonic lasers exhibit linewidth narrowing after their thresh-
old, described in the ideal case by the Schalow-Tones equation [204], with ad-
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ditional linewidth broadening arising from temperature or cavity imperfections.
In a similar fashion, both polariton and photonic lasers are expected to blueshift
as a function of power, but with very different underlying physical mechanisms.
A photonic laser exists in a semiconductor with a plasma of electrons and holes,
which may screen the electromagnetic field, ie the light emitted by the cavity.
This feature cannot happen in the strong coupling regime, as it is only observed
above the Mott transition [103]. By contrast, blueshift of the polariton laser
is driven by polariton-polariton interactions [205], and renormalisation of the
LPB [206] which are stronger for polaritons with a stronger excitonic content. As
those mechanisms are different, it is possible in principle to distinguish between
polariton blueshift and other kinds of blueshift. In practice, it is preferable to
look for other signature of polariton lasing.

One such signature can be the emergence of a strong polarisation after
threshold, from an unpolarised pump. This feature was used as a signature
of lasing in [139], and described as “spontanous polarisation” in reference [207].
This can be interpreted as a form of spontaneous symmetry breaking arising as
a consequence from condensation. Below threshold, the light emitted is unpo-
larised. Formally, we say there is a symmetry with respect to the polarisation
in the sense that a mathematical operation changing the polarisation leaves the
system unchanged. The interaction of mathematical group theory with symme-
tries of physical systems is a key element to the modern understanding of the
quantum theory of phase transitions and quantum systems. A review of the
mathematical formalism can be found in [208]. Above threshold, the symmetry
is broken, and the system “selects” an arbitrary polarisation among all other
possibilities. In a similar way, at the condensate level, there’s a spontaneous
symmetry breaking with respect to the phase. Below threshold, the phase of
the system can be arbitrarily changed, but after threshold, a specific phase is
selected across the entire condensate. However, such a phenomenon is also ob-
served in weak coupling lasers [209], and can be described in the same formalism
of spontaneous symmetry breaking.

Thus there are common elements to the two kinds of lasers. In order to
distinguish between a polariton laser and a photonic one, we must look at the
specific unique properties of a BEC [210]. A direct measurement of the spa-
tial and temporal coherence of the condensate stands among the best tests to
demonstrate its existence and probe its properties [211, 212], see also chapter
3. Such tests have been performed for exciton-polaritons [213], but they require
very precise interference measurements, and, as we shall see, the fact that cav-
ity polaritons are a two-dimensional and inherently out of equilibrium system
presents additional challenges.

Besides the spontaneous polarisation, Kasprzak [139] used the dispersion
properties of the polaritons to claim condensation. The parabolic dispersion is
expected to blueshift, and after threshold the emission is main near the k =
0 point of the dispersion rather than coming from all k values. This is an
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experimental manifestation of a macroscopic occupency of the k = 0 state.

However, in the case of a cavity supporting several modes close to one an-
other in energy, it may be difficult to resolve the polariton dispersion accurately.
In this case, it is the free spectral range (FSR), the separation between the
modes, which can be used to distinguish between polariton lasing and photonic
lasing. In the weak coupling regime, the FSR can be easily calculated from
the properties of the cavity, and is linked to the cavity finesse. In the strong
coupling regime, the FSR curves as a function of the excitonic fraction of the
polariton mode. The weak and strong coupling regime have thus very different
Free Spectral Ranges. In the case of a multimode cavity, the FSR can be used
to distinguish between polariton lasing and regular “photonic” lasing. However,
this test can only be applied for very large cavities in which the FSR is small
enough to be resolved. This is usually the case of WGM cavities with very long
propagating lengths, but it is not the case for DBR cavities, which are too small
and in which the FSR is too large.

After Kasprzak milestone paper, many other examples polariton conden-
sation were claimed in different materials, such as ZnO [214], GaN [112, 21],
Cu2O [132], which showed other interesting aspects of BEC physics in exciton-
polaritons systems. In order to better describe those phenomena, a more modern
description of the BEC theory is necessary.

Modern BEC theory and long-range order

The initial Einstein proposal of BEC showed a lot of insight in the hidden prop-
erties of an ideal quantum Bose gas and describes well the statistical process of
BEC. Nevertheless, it was formulated in the (glorious) early days of Quantum
Mechanics and several theoretical developments were made to make the for-
malism adaptable to non-ideal cases. In particular, the theory of Spontaneous
Symmetry Breaking and how it is realised in various systems gives insights on
their nature, linking together long-range order phenomena (such as ferromag-
netism) with BEC [215]. Einstein’s theory also only considered an ideal gas,
with the phase transition happening only due to statistical properties. In prac-
tice, the role of interactions is fundamental to understand the formation of the
condensate and emergence of coherence [216, 217]. Finally, Einstein’s theory is
not written in the modern formalism of density matrices, which has been our
basis so far to describe coherent states.

These considerations lead to the definition of a new criterion for Bose-
Einstein condensation. Rather than simply considering the number of particles
in the ground state, we consider an “average wavefunction” ⟨ψ(r)⟩, together
with its phase θ. It is defined by taking the average wavefunction of all particles
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in the ground state at a point r [218]:

⟨ψ(r)⟩ =
√
n(r)eiθ(r) (2.60)

In this expression, n(r) can be interpreted as the density of the condensate wave-
function. Below threshold, the Hamiltonian system must be invariant under an
arbitrary change of θ(r), which is a symmetry known as a gauge invariance.
This means that all particles in the ground state have a random phase. The
mathematical group of operations under which the Hamiltonian is invariant is
the gauge group of the system. When the transition happens, that symme-
try is broken, and a specific phase is randomly selected throughout the entire
condensate, and we have:

θ(r) = θ0 (2.61)

... for all position vectors r. All particles in the condensate now share the same
phase. The phase θ0 is arbitrary, but constant across the entire condensate,
which in theory may extent infinitely in space. This theoretical peculiarity
explains why the idea of BEC was initially met with skepticism. Penrose and
Onsager solved this problem by taking the following limit as a criterion for
long-range order:

⟨ψ†(r)ψ(r′)⟩ |r−r′|→∞−−−−−−→ ⟨ψ(r′)⟩∗ ⟨ψ(r)⟩ (2.62)

Where the average is taken over many different position of r and r′. This
definition can be related to the density matrix of of the state, and in the coor-
dinate basis, the off-diagonal elements, which measure the coherence of a state
at different points, are non-zero. This is known as off-diagonal long range order
(ODLRO) [219]. Such a formalism was originally developed to describe the su-
perfluid phase of liquid Helium, but is well-suited for any interacting Bose gas,
such as a gas of exciton-polaritons with a low density.

The nature of the BEC transition in exciton-polaritons

The two “extremes” of a polariton gas in a microcavity are, on the low density
side, a weakly interacting Bose-gas below condensation and, on the high density
side, a weak coupling microcavity above the Mott transition. In the intermediate
regime, the polaritons may overlap strongly and thermalise without breaking
down into an electron-hole plasma. This intermediate regime is given by the
condition:

m∗

µ

ΩR

Ry
≪ na2B ≪ 1 (2.63)

... where µ is the reduced mass and Ry is the Rydberg binding energy of an
exciton. By contrast, the other terms in the equation relate to polaritons: m∗ is
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the reduced mass and ΩR is the binding energy (the Rabi splitting) of polaritons.
As in equation 2.59, n is the two-dimensional density and aB the Bohr radius of
the exciton. In the intermediate regime, the exciton-polaritons are a coherent
condensed state. Such a condensate must be thermalised. At the same time,
the polariton BEC is an out of equilibrium phenomenon with constant pumping
and escape through the cavity mirror. As a result, there are two relevant time
scales for the thermalisation mechanisms: an ultrafast (on the picosecond sale)
polariton-polariton scattering which thermalises the polariton gas “with itself”
[220, 146], and a slower polariton-phonon scattering [221] which thermalises the
polariton gas with the crystal. The crystal thermilisation time scale is usually
longer than the lifetime of polaritons, which makes them an out-of-equilibirum
phenomenon.

In the condensed phase, as a gas of identical bosons, with the pump and
dissipation taken into account, the dynamic of the ground state ψ is given
by the Gross-Pitaevskii equation, also known as the “non-linear Schrödinger
equation”. It reads:

i∂tψ =

(
− ∇2

2m∗ + V (r) + U |ψ|2 + i[γ − κ− Γ|ψ|2]
)

(2.64)

On the right-hand side of the equation, the real parts are related to the “steady-
state” dynamics, whereas the imaginary parts are related to the losses and gains
from the pump and dissipation. The first real term is merely the kinetic energy,
with ∇ being the gradient operator and m∗ being the reduced mass of the
polariton. The second term is the potential energy V (r). The third term is
characteristic of the Gross-Pitaevskii equation and describes the non-linearities
of the state ψ with the non-linear coefficient U . On the imaginary part, γ is the
pumping rate of the system, κ is the photon decay, and finally Γ describes the
non-linear losses.

We have mentioned that “true” long-range order cannot happen in a two-
dimensional system [17], as an infinite number of bosons can theoretically be
accommodated by an infinite two-dimensional system. This is known as the
Mermin-Wagner theorem. With this result, a BEC of polaritons in a microcav-
ity should not be possible, as the microcavity is a two-dimensional system. This
problem can be solved by considering a system of finite size, which would only
accommodate a finite number of bosons. However, in such a system, the defini-
tion 2.62 no longer makes sense. As a result, for systems of interacting bosons
confined in two dimensions, the BEC transition is replaced by the so-called
Berezinskii–Kosterlitz–Thouless transition (BKT). The BKT transition traces
its origin to the study of 2D phases of condensed matter described by so called
XY model, [18, 222], which has been used to describe ferromagnetism [223], su-
perfluid Helium [224] and superconductivity [225], among others. Qualitatively
speaking, the BKT transition involves the creation of bound vortex-antivortex
pairs (see fig. 2.27) as opposed to featureless bosons.
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Figure 2.27: An illustration of the BKT transition with ordered bound vortex-
antivortex pairs. Taken from [226].

The BKT transition does not exhibit strict “infinite” long-range order, but
has correlation decreasing as a power function, as opposed to an exponential
decay in a thermal phase. Comparison between the BEC and the BKT tran-
sitions has shown that the BEC case coincides with the BKT case in the limit
of vanishing interactions [227]. Exciton-polaritons in microcavities have highly
tunable interaction strengths depending on the density, materials used, cavity
design, and detuning between the exciton and photonic energies. As a result
they form a useful system to study the BKT transition [228, 229].

In practice, however, the Marmin-Wagner theorem which forbids the ex-
istence of two-dimensional long-range order predicts that fluctuations in the
coherence diverge logarithmically [230], which is slow enough to still consider
the system in a coherent state from an experimental point of view. In the limit
of finite-size two dimensional system, with low interactions, it is therefore per-
missible to speak of a Bose-Einstein condensate. As of the writing of this thesis,
there is no convention against claiming BEC in two dimensional microcavities
[187] or even in one dimensional [231]. Theoretical studies on BEC in arbitrary
dimensions [232] have discussed the subtleties of the apparently simple defini-
tion of “long-range order”. For the reminder of this thesis, we will take the view
that the condensation of exciton-polaritons can be classified as BEC.

With this more generous definition, the phenomenon of BEC, and its in-
teracting case of BKT, can be linked to a plethora of well-known and impres-
sive physical phenomena. With their high condensation temperature and their
experimental tunability, exciton-polaritons offer a particularly rich ground to
study such phenomena.
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2.6.5 Polariton BEC effects

The most common signature of polariton condensation is the coherent light
emission, named “polariton lasing”, which we have described in the previous
section. It is only one among the many physical phenomenons made accessible
by polariton condensation. We shall see that the polariton condensate may
crossover to different regimes, depending on the density of polaritons.

The BCS transition, superconductivity, and high density phases

In the middle of the spectrum of polariton density, whose extremes are the
dilute non-condensed polariton phase on the low density end, and a plasma of
electrons and holes on the high density end, we find the BEC condensation.
Beyond the density required for condensation, but before the plasma phase, at
density below but comparable to Mott density, however, there is another phase.
This is called the “Bardeen–Cooper–Schrieffer” phase transition, also called the
BCS phase [233]. It shares its name with the theory used for the correlated
Cooper pairs of superconductivity.

Superconductivity was first observed in 1911, when it was found that suffi-
ciently cooled down Mercury showed a sharp drop in resistivity, close to zero, at
cryogenic temperatures [234]. In 1957, Brardeen, Cooper and Schrieffer provided
a microscopic theory of superconductivity for metals at cryogenic temperatures
[235], which also provided an explanation for related phenomenons such as the
magnetic levitation of superconducting materials, known as the Meissner effect.
In the BCS theory, electrons in the metal couple to lattice vibrations to form
correlated pairs of fermions (known as Cooper pairs) which, as bosons, are able
to occupy the same quantum state, which changes the mechanism of charge
transport. Cooper pairs are typically pairs of electrons, but an electron-hole
pair can also form a Cooper pair – which is the case for cavity semiconductors
when they undergo the BCS transition.

Research in the superconductivity is one of the most widely reported and
discussed by the general public in Physics. After the initial experiments in Mer-
cury at cryogenic temperatures, there was a renewed interest in the topic after
the discovery of higher-temperature superconductors (up to 30K) by Betram
Batlogg in 1988 [236]. It would, however, prove difficult to cross the line up to
room temperature superconductivity. The highest unambiguous temperature
recorded for superconductivity, without extreme pressures, at the time of writ-
ing this thesis, is only 133K [236]. However, for such materials, the BCS theory
may no longer be sufficient.

Claims, counter-claims, accusations (and proofs) of fraud are sadly common
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Figure 2.28: a) Schematic of the experimental setup, with a subwavelength
grating to allow access to the electronic properties of the systems. b, c) Com-
parative table of the three states existing in the cavity, with differences between
BEC and BCS highlighted in green, whereas the differences between BCS and
photonic lasing are highlighted in blue. Taken from [138].

in the superconductivity community. The latest claim of room-temperature,
ambient pressure superconductivity, in a novel material called LK99 [237], made
world headlines without convincing the wider scientific community, showing the
very difficult challenges faced by researchers in this topic. In this context, as
microcavity exciton-polaritons are predicted to undergo a BCS transition [233],
there is a strong motivation to investigate the properties of this high density
phase in detail.

Experimental access to the BCS phase of polaritons proves to be very chal-
lenging [138], as there is little difference in the light emission spectra between
the two regimes as shown in figure 2.28. The BCS case can be excluded by
ensuring the system is below the Mott transition, as was done in the analysis of
[21].

The ability of excitons and exciton-polaritons to undergo a BCS transition
can cause some challenges in precisely identifying the dynamics of the polariton
gas inside the microcavity, with only measurements of excitonic density needed
to rule it out, and an elaborate setup to access the BCS phase. However, it has
also sprung several proposals to engineer a device that would use polaritons to
create a superconducting phase, which we will detail in the next section.
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Superconducting polaritons

There has been several attempts and theoretical proposals to realise supercon-
ductivity in polaritons, with an early proposal dating from 1979 [238].

In a more recent project paper [25], the authors show that an “exciton-
polariton mediated superconductivity” could be possible. In this paper, the
authors want to replace the phonon and lattice vibrations which play a major
role in the theory of superconductivity by BEC of exciton-polaritons. In such a
proposal, the ability of exciton-polaritons to condense at a higher temperature
- up to room temperature in GaN systems - would be very useful, and could
lead to much higher superconductivity temperature. This hybrid approach of a
“Bose gas” of exciton-polaritons on one hand, and a “Fermi gas” of electrons
which becomes superconducting on the other, in a multi-layered structure, such
as the one in figure 2.29. Theoretical reviews on the possibility to realise these
two coexisting phases [239] puts a strong emphasis on the technical challenges to
realise such a structure, but at the same time, also note how exciton-polaritons
offer a lot of experimental freedom.

An experimental realisation of this proposal was done in a two-dimensional
structure coupling a two-dimensional electron gas with a polariton BEC [240],
but still at cryogenic temperatures.

Research still continue on these hybrid Bose-Fermi systems [241], such as for
example the one in figure 2.29. Many other exotic physical phenomena are made
accessible in these systems, such as the study of exotic quasiparticles known as
“rotons” [242].

Superconducting phases are a very promising aspect of research in exciton-
polaritons, with many exotic proposals that rely on their condensation proper-
ties. Research focuses on two-dimensional materials, such as, for example, h-BN
[243].

“Quantum fluids of light”: superfluid polaritons

Superfluidity is another fascinating condensed matter phenomena which has
been observed in microcavity exciton-polaritons.

The original observation of superfluidity dates back from 1937, where it was
discovered independantly by Pyotr Kapitsa [244] and by Allen and Messmer
[245]. The original superfluid behaviour was observed in the isotope 4He of
Helium, cooled down below the so-called λ point of 2.17K.
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Figure 2.29: Fabry–Pérot microcavity with an heterostructure supporting a
BEC of exciton-polaritons (on the bottom) and a Fermi gas which can transition
into a superconducting phase. Taken from [240]

.
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Experimentally, superfluidity manifests itself most strikingly by the ability
of the liquid to creep up horizontally over containers, or to flow without friction
in tubes.

The superfluid transition of liquid Helium was closely linked with the the-
ory of BEC as the λ point proved to be very close to the theoretical critical
temperature for a BEC with the 4He particles considered as bosons.

A proper microscopic theory of superfluid Helium was given by Lev Landau
in 1941 [246] and earned him the Nobel Prize in 1962. The Landau theory of
superfludity splits the Helium in two phases, the so-called Helium-II phase, in
the superfluid state, which is able to flow without friction, and a normal fluid
phase (Helium-I). The ratio between the two phases changes with temperature,
with a total superfluid phase at the limit of zero Kelvins. This can be directly
compared to a Bose-Einstein condensate, which consists of a condensed phase in
the ground state with density n0, and an uncondensed phase at higher energies
with density nk = n − n0. The total density n remains constant during the
transition, while the condensed phase density n0 increased.

The main difference, as we have said, is the role of interactions in a superfluid
phase. Liquid Helium cannot be directly compared to a Bose gas, even weakly
interacting, as it is in a liquid phase with strong Van Der Walls interactions.

Landau devised an experimentally verifiable criterion for superfluid behaviour
[247]. A liquid is said to be in the superfluid state inside a capillary when the
relative velocity between the fluid and capillary in which it travels is below a
certain critical value. The criterion reads as:

vfluid < vc, where vc = min
p

E(p)

p
(2.65)

... where p is the momentum of the particles in the fluid, and E(p) is the energy
of the particles according to Bose-Einstein statistics. It can be shown that when
this criterion is verified, any perturbation (hence, losses of energy) in the system
is less energetically favourable than frictionless flow. The velocity vc can also
be called a “speed of sound” in the liquid Helium fluid. In other words, if the
fluid travels below the speed of sound, it is a superfluid. This theory allows
to consider superfluidity as a property of any system of interacting bosons.
Indeed, a form of superfluid flow was observed in a BEC of cold atoms [248]. If
polaritons are able to condensate as well [139], then a path to superfluid effects
in polaritons is possible, and was predicted [249].

A first realisation of superfluidity in polaritons [250] showed frictionless flow,
but was not able to verify the Landau criterion. Soon after [19], this was also
achieved in a AlGaAs microcavity with InGaAs QWs.

The superfluidity of polaritons has earned them the rather poetic name of
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“quantum fluids of light” [197]. While the superfluid polaritons are closely
related to BEC of polaritons, the experimental scheme is different. Rather
than being pumped off-resonantly at a higher energy, populating the entirety
of the polariton dispersions, the cavity is pumped near-resonantly in superfluid
experiments, at a small detuning and angle of incidence kp, and only states
with −kp < k < kp, including k = 0, are populated. As the pumping power
increases, non-linear processes such as the ones described in section 2.5.1 cause
the LPB dispersion to blueshift, until the bottom of the polariton branch meets
the pumping energy. Then, the polaritons injected to the cavity are in the
minimal energy state, without a Bose-Einstein condensation taking place. When
enough polaritons are in the minimal energy state, a transition to the superfluid
state takes place.

Pumping at a non-zero angle of incidence kp gives the polariton fluid a
non-zero momentum. If the excitation spot is placed on top of a defect in the
structure, the transition to the superfluid regime then manifests itself when the
polariton fluid flows around the defect without scattering, as shown in figure
2.30. The superfluid regime also manifests itself in strong changes to the shape
of the polariton dispersion, which is expected to become linear as a result of the
collective behaviour of polaritons in the ground state.

To check if the Landau criterion is satisfied, we must first find an explicit
equation for the speed of sound in the polariton fluid, which can be related to
experimental parameters as opposed to the formal definition of equation 2.65.
In ref. [19], it is derived as:

vc =

√
h̄g|ψ|2
m

(2.66)

... where g is the polariton-polariton interaction strength, |ψ|2 is the density
of polaritons, and m is the effective mass of the LPB. This speed of sound is
compared to the speed of the polariton fluid itself, which is:

vp =
h̄kp
m

(2.67)

... wherem is effective mass of the polariton, and kp is the polariton momentum.

If the parameters of the experiments are chosen so that vc < vp, then the
Landau criterion is satisfied and the polariton is superfluid. Superfluid polari-
tons have a key advantage compared to liquid Helium experiments, as many
of the parameters can be tuned experimentally. For example, the density |ψ|2
depends on the pumping power of the incident laser, and the polariton velocity
is directly dependent on the momentum kp, which is itself given by the angle of
incidence. The polariton coupling strength g can also be tuned by changing the
excitonic content of the polaritons.
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Figure 2.30: Top: experimental data, in near-field imaging, of a polariton fluid
around a photonic defect, below (I), near (II) and above (III) superfluid thresh-
old. Above the threshold, in the superfluid regime, the polariton fluid flows
around the defect without scattering.
Bottom: experimental data, in far-field imaging (k space), of a polariton fluid
around a photonic defect, below (IV), near (V) and above (VI) threshold. The
elastic scattering ring in (IV) disappears after threshold in (VI). Taken from
[19].
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Figure 2.31: Top: experimental data, in near-field imaging, of a polariton fluid
around a photonic defect, below (I), near (II) and above (III) threshold in the
supersonic fluid of light regime. Above the threshold, the parabolic wavefront
take a characteristic linear shape.
Bottom: experimental data, in far-field imaging (k space), of a polariton fluid
around a photonic defect, below (IV), near (V) and above (VI) threshold. The
far-field image is much complicated than for the pure superfluid case. Taken
from [19].

In particular, it is possible to excite the polariton fluid at a higher angle
kp, increasing the fluid velocity so that the Landau criterion is no longer ful-
filled, while remaining close to a BEC phase. The polariton fluid now scatters
around the defect producing so-called “Bogoliubov excitations” [251, 252]. As
the polariton fluid velocity vp is higher than the speed of sound in that fluid vc,
the polariton enters a supersonic or so called “Čerenkov” regime [253], which is
shown in figure 2.31.

After the original breakthrough of superfluid polaritons at cryogenic tem-
peratures, recent research has been able to observe signatures of superfluid be-
haviour up to room temperature [254, 255]. Superfluid polaritons remain an ac-
tive area of research, with potential applications in Quantum computing [256],
or, as we shall see in chapter 6 of this thesis, in analogue physics.
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2.7 Conclusion

Exciton-polaritons are a fundamental excitation of light in semiconductors. The
theory shows how a normal mode splitting with two distinct branches arises
from the interaction of the photon and the exciton in the crystal. A quantum
description gives the picture of a truly mixed state, half-light and half-matter,
showing properties from both worlds.

Yet the most interesting properties of this curious state of matter need spe-
cific structures to be observed. There has been considerable interest in the
study and fabrication of such microcavities needed to confine light, and we have
described the most relevant geometries for our research. The science of mi-
crocavities is a vast topic with considerable applications, many of them lying
beyond the scope of just exciton-polaritons. They are, however, a key ingredient
in the conception of experiments related to exciton-polaritons.

Such experiments show the wealth and breadth of the physics accessible with
polaritons. We have listed the most striking ones, but we could not be fully
exhaustive. The question of the actual nature of the BKT transition, the out-
of-equilibrium nature of polariton condensates, are topic of fundamental interest
which are still not fully resolved. Their nature as a fundamental component of
light-matter interaction in semiconductors, as well as the importance of light
confinement for such interaction, explains such versatility and richness of the
physics. Exciton-polaritons also show how some deep concepts of Physics such
as Bose-Einstein condensation and coherence have a “universal” nature: they
are at the root of phenomena as diverse as superfluidity, superconductivity, or
lasing.

We have given in this an introduction to all the concepts needed to under-
stand exciton-polaritons in their context. In the following chapters, we will look
at experiments involving exciton-polaritons in microcavities and showing how
the general theoretical framework applies to specific experiments.
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Experimental methods

3.1 Overview

We have stressed in the previous chapter how cavity exciton-polaritons map
easily with the emission from the cavity itself. Our experiments are based
mostly on this property. The incident light on the cavity is the key experimental
parameter. The first question is the wavelength of light used to pump the
system, which can either be near-resonant with the bottom of the LP branch,
or non-resonant, at higher energies.

The non-resonant case involves complex relaxation phenomena to populate
the LP branch. At higher pumping powers, the UP branch of higher energy
may also be populated, although with less density, as the higher energy states
have a lower probability of relaxation. These complex relaxation dynamics
are not studied in this thesis, but are a topic of active research [257]. One
advantage of populating the full polariton dispersion is that the non-linear effects
affecting it are easier to observe when varying pumping power, temperature, or
applying external fields. In the case of a planar microcavity, if the sample has a
wedge, it is also possible to measure the detunning by moving across the sample.
Pumping at higher energy than the cavity modes can also excite several modes
at once. By contrast, resonant or near-resonant pumping only populates part
of the dispersion, and often a single cavity mode. The case of quasi-resonant
pumping has its own special physics, as populating the so-called “bottleneck”
region of the dispersion results at the exact wavevector, so called “magic angle”
which we have described in section 2.5.2. Finally, pumping directly at the
resonant energy creates polaritons at the bottom of the dispersion, without
any relaxation dynamics. When using a pump with energy levels close to the
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polariton dispersion, the pumping bandwidth in energy is also a key parameter,
with a broadband pumping able to also populate several cavity modes. By
convention, we only speak of resonant pumping when a single mode is populated.

Aside from pumping frequency, pumping power is a key parameter in light-
matter interactions. Pumping power directly controls the density of excitons,
which can then couple to light to form exciton-polaritons. Even in the simple
case of resonant pumping, it can be difficult to relate the exciton-polariton
density to pumping power. The non-resonant case add additional relaxation
processes which further complicate the estimation. The density of polaritons is
usually measured on the emission power spectrum rather then calculated from
the pump.

In the case of non-resonant pumping, the coherence and time dynamics of
the pump are usually lost during the relaxation processes, which is why such
pumping is also called incoherent. In particular, ultrafast pulsed lasers, with
pulse duration lower than the polariton lifetime, combined with a time-resolved
streak camera, can be used to study the dynamics of the polariton system.

Data in our experiments comes from transmission, reflection, or photo-
luminescence. The signal from the sample can either be imaged directly on
a camera (in our experiments, a Thorlabs CMOS Camera), or sent through a
slit and then resolved in energy with a spectrometer. The size of the slit gives
the spectrometer’s resolution in energy, with a smaller slit able to resolve smaller
energies. For these experiments, we have used a Spectrometer from Princeton
instruments, with the model number “Action Spectra PRO SP-2500”. The spec-
trometer uses a grating to spectrally resolve the wavelength of the signal, with
some gratings offering a better resolution for a given wavelength.

The spectrometer CCD uses a Peltier system to cool itself down to −60◦C
in order to minimise any thermal noise in the system. However, there are two
main limitations when measuring data from a spectrometer. The first limitation
is the maximum available signal power that the CCD is able to resolve without
saturation effects. When the CCD is saturated, the signal bleeds over nearby
pixels and the data is less useful. This can be mitigated by the use of neutral
density filters optics to reduce the signal, but the optics themselves may provide
additional challenges, such as extra reflections, inhomogeneous attenuation or
defects. The second limitation comes from random spikes in the signal with a far
greater intensity than the collected data. Such spikes may come from cosmic ray
radiation. There are several ways to deal with this unwanted signal, including
their removal in post-processing as outliers, the reduction of the acquisition time
to minimise the chance of picking up such a spike, or alternatively, taking many
times the same data to select the ones without parasitic spikes.

Given a particular sample, the basic experimental scheme consists therefore
of selecting an input light suitable for the physics we wish to create, shine it onto
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a sample, and then collecting the signal to send it on a CCD or a spectrometer.
To control the conditions of pressure and temperature, the sample is typically
placed in continuous flow Liquid Helium cryostat, which cools it down to 4K.
The cryostat has a heater built into it so that the temperature may be raised
to reach intermediate temperatures. An example of an experimental scheme, in
the reflection geometry, is given in figure 3.1.

This experimental scheme also involves the selection of the right optics in
the illumination and the collection path to minimize losses, and the important
task of correctly aligning and focusing the illumination path. For example,
when working with UV light sources, we select mirrors made of Aluminum as
they have better reflection at these wavelengths. Alignment and focus control
key experimental parameters such as power density, angle of incidence, and
the precise spot of illumination, which control the exciton-photon detuning in
wedged samples.

3.2 Pulse shaping

There are also more involved ways to shape the illumination beam. In the
case of pulsed lasers, it may be necessary to “shape” the pulse by narrowing
it spectrally to achieve a more resonant excitation. This can be done using a
pulse-shaper system.

Pulse-shapers work in a similar way to a spectrometer, using a slit and a lens
to get a divergent beam, which illuminates a grating, spectrally separating the
wavelengths that make up the incoming beam. The spot is then spectrally cut
using a slop. As the incoming light is diffracted, the original pulse gets chopped
into several smaller pulses. To recombine those chopped pulses, a second grating
is necessary. In some geometries, it is possible to reflect the pulse back on the
same grating.

An example of a pulse-shaper using these principles is given in figure 3.2.

The quality of the pulse-shaper is characterised by how narrowly it can
compressed the incoming pulse of light. This is referred to as the resolution
of the pulse-shaper. This resolution depends on how efficiently the grating is
illuminated, with a fully illuminated grating separating the wavelengths more
effectively. Additionally, the focal lengths of the lenses used to create a divergent
beam which is then cut help improve the resolution. Specifically, a longer focal
length results in a greater spectral separation of wavelengths.

In practice, pulse-shapers are also limited by the power losses. The signal
suffers some losses when the pulse hits the grating and some orders of diffrac-
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Figure 3.1: Experimental scheme in the reflection geometry, showing the ability
to select between three different light soruces (CW laser, pulsed laser, white
light) and two different collection processes. This scheme was used for the data
collection in chapter 4.
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Figure 3.2: An example of a single-grating, two-lenses pulse shaper. The incom-
ing light is diffracted by a grating. The first order of diffraction is collimated by
a lens of focal length f . A mask cuts to the desired wavelength. The cut wave-
length is reflected on the grating to recombine it into a single pulse. Finally, a
second length of length f ′ collimates the output light.

tion are lost. Similar losses occur when the pulse is truncated to the desired
wavelength. The losses result in lower average power. The pulse will also be
longer, owning to the well-known inequality ∆ω∆τ ≥ 1/2. In practice, it is
sometimes necessary to compromise between optimal resolution and optimal
power. Pre-assembled spectrometers can make particularly efficient and stable
pulse-shapers. However, another option is to build a spectrometer from scratch,
selecting the most efficient grating and focal lengths for the desired pulse reso-
lution.

3.3 Polarisation

In the following discussion, the electric and magnetic field can be used inter-
changeably. We will consider the electric field as a convention.

3.3.1 Linear polarisers and half-wave plates

The polarisation of the incident light is another degree of freedom for optical
experiments. Most sources of light, such as natural sunlight, or light emitted
by LEDs, are said to be unpolarised.
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The direction of the electric field component of the electromagnetic wave has
an arbitrary direction on the plane perpendicular to the direction of propagation,
changing arbitrarily in time. By contrast, if the direction of the electric field
is well-defined, we speak of a linearly polarised light. In a linearly polarised
light, the direction of the electric field is constant, but its magnitude changes
over time, in accordance with the magnetic field, with the total magnitude
|E|2 + |B|2 remaining constant.

Unpolarised light can be thought of a superposition of several polarised wave-
fronts, averaged to create a wavefront without any defined polarisation.

An arbitrary polarisation can be imposed to any incident beam in a straight-
forward manner by the use of polarisers and λ/2-wave plate (or half-wave plate).

First, we must transform unpolarised or mixed-polarised light into light with
a well-defined polarisation, we use a polariser. A polariser has a well-defined
axis of transmission, given by an angle θ from the horizontal. Only wavefronts
with a polarisation matching θ are transmitted through the polariser. Other
polarisations are either absorbed (an effect called dichroism), or reflected at an
angle (for example, in polariser beam-splitters). Several materials for absorbing
polarisers exists, with the most modern ones using gold or silver nanoparticles
embedded in glass plates [258]. In practice, we often use reflective polarisers
in experiments. Thin-films or wire-grid polarisers are inexpensive optics suit-
able for low-power applications, but get damaged at high powers. By contrast,
designs such as Glan-Taylor prisms or polariser beam-splitters are needed for
high-power applications.

Once the light is linearly polarised, the direction of polarisation can be
changed with a half-wave plate. A wave plate is composed of a birefringent
material, with an optical index varying with the polarisation of light. Such
materials are usually specific dielectrics such as quartz, glass or plastics. The
optical index changes the phase velocity of the wavefront travelling through the
glass. One polarisation axis experiences minimum delay (the fast axis), whereas
the other experiences maximum delay (the slow axis). After going through
the sample, the incident light see its polarisation changed. By changing which
axis the incident light goes through, we are able to control how the incident
polarisation changes.

In experimental practice, commercially sold half-wave plates have their fast
axis indicated on a mount, which can be rotated easily. The range of wave-
lengths affected by birefringence depends on the material used to make the
wave-plate, its thickness, its polish quality, and other aspects of the fabrication
process. Experimentally, we select a suitable half-wave plate design depending
on the experiment. Unlike polarisers, half-wave plates have very high damage
thresholds.
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3.3.2 Jones Calculus

In this section, we will give a more mathematical and abstract treatment of
polarisation. The polarisation state of the incident beamn will be modelled
by a vector, and the different components acting on it can be represented as
matrices.

Typically, we speak of horizontal polarisation when the electric field is fixed
on the x axis of the plane perpendicular to the direction of propagation, and of
vertical polarisation for the y axis.

The more general polarisation state is a vector on the unit circle of the
plane perpendicular to the direction of polarisation, called the Jones vector(
eiφx(t), eiφy(t)

)
. For example, horizontal polarisation has a Jones Vector (1, 0)

and vertical polarisation has a Jones vector (0, 1). Unpolarised light is made of
several arbitrary Jones vectors.

Optical components acting on the polarisation state are represented by ma-
trices acting on the vector, called Jones matrices. For example, in the case of a
half-wave plate with a fast axis having an angle θ to the vertical axis, the Jones
matrix reads:

e−
iπ
2

(
cos2 θ − sin2 θ 2 cos θ sin θ
2 cos θ sin θ sin2 θ − cos2 θ

)
(3.1)

The half-wave plate thus changes the polarisation by a controllable angle θ. In
the case of unpolarised light, it acts on all the components of the unpolarised
states, which means it leaves it unpolarised.

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
(3.2)

By contrast, an horizontal polariser with an axis of transmission along the x
axis would read:

(
1 0
0 0

)
(3.3)

Such a matrix would cut off all non-horizontally polarised components from
the incident light. Jones calculus using matrices and vectors is useful to model
complex optical setups, as subsequent optical components can all be represented
by matrices and the total effect of the components is represented by multiplying
the matrices together.

Polarised light is useful experimentally when the studied sample presents
polarisation-dependant effects, such as birefringence, or so-called TE-TM split-
ting, in which case the optical response of the sample changes depending on
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Figure 3.3: Automated polarisation setup for power dependency.

whether or Electric or the Magnetic field is transverse to the sample. In such
experiments, it is very useful to precisely control how the electric and magnetic
fields are positioned in the plane perpendicular to the direction of propagation.

3.3.3 Power attenuation

There are also more practical uses to polarisation-controlling optical compo-
nents. For example, they can be used as a way to precisely control the incident
power of an excitation laser on the sample. The process is described in figure
3.3. It consists of taking a vertically polarised light, making it pass through
a wave-plate with an arbitrary angle, and then pass through a polarised with
a fixed angle, which by convention we will considered to be horizontally po-
larised. If the half-wave plate is also horizontally polarised, then the polariser
is at maximum transmission and lets all the light through. By contrast, if
the half-wave plate is vertically polarised (at a ϕ = π/2 angle with the po-
larised), then the polariser would not let any light in transmission at all. In
practice, the polariser has finite minimum transmission, and also incurs small
losses at maximum transmission. The ration between the maximum and mini-
mum transmission is called the extinction ratio of the polariser, and commercial
Glan-Taylor polarisers claim ratios as high as 105.

The attenuation scheme with polarisers has several advantages compared to
the use of neutral density filters. In particular, it is homogeneous across the
full beam waist, which is not the case for the commercially sold neutral density
filter wheels with continuously varying attenuation across the glass, making
them unsuitable for larger beam waist. The main advantage, however, is that
the attenuation process can be automated by placing the half-wave plate on a
motorised mount, which can be remotely controlled by a software. A digital
power meter can be added to the system, and the software can rotate the half-
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wave plate, record the resulting power. A power dependence experiment can
be fully automated in that fashion, and by going from 0 to π, a continuous
ramp-up and ramp-down of the incident power is achieved, which can be useful
to investigate hysteresis effects. A more elaborate software program can use
the power meter readings as feedback to find out the precise fast-axis angle for
a selected power. However, typical laser fluctuations are on a very fast time
scale, whereas the response time of a motorised mount is on the order of a few
seconds. As a result, such a setup cannot correct fluctuations in the laser power.
Electro-optic modulators [259] can be used in such cases, but have their own
limitations, such as not being suitable for pulsed lasers.

Automation can also easily measured the polarisation of a given wave, by
measuring transmitted power against the fast axis orientation of a polariser,
which results in an angular plot. Unpolarised light will have the same transmit-
ted power regardless of polariser orientation, and the pattern will be circular,
whereas strongly polariser light will stronger transmission for a particular ori-
entation of the fast axis.

3.3.4 Elliptical polarisation

In addition to the linear polarisation of light, in which the direction of the
electric field is constant, and the unpolarised case, in which it varies randomly
over time, the light be elliptically polarised, and the electric field vector varies
continuously in direction and magnitude (with the magnetic field vector varying
according to keep a constant magnitude), tracing an ellipse in the (E,B) plane.
In the limiting case, when the magnitude of E remains constant, we speak of
circularly polarised light.

To change the ellipticity of a given wave, we use a quarter wave-plate. Circu-
lar polarisers, which select only a given degree of ellipticity, can be constructed
by using a quarter wave-plates and a linear polariser as shown in figure 3.4.
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Figure 3.4: A circular polariser consisting of two quarter wave-plates and a
linear polariser. The input is light with arbitrary polarisation. The first quarter
wave-plate (QWP) rotates the light so that the desired circular polarisation
becomes a vertical linear polarisation. The linear polariser filters all but the
vertical linear polarisation, which is then rotated back to the desired circular
polarisation.

3.4 Time-resolved spectroscopy and pump-probe
experiments

Exciton-polaritons are an out-of-equilibrium phenomenon with continuous dis-
sipation as the particles leak through the cavity mirrors and are replenished
with a pumping laser. When the pumping laser is pulsed, the dynamics of the
system become accessible.

The most direct way to obtain time-resolved data involves using a Streak
camera apparatus. This device can be mounted on some spectrometers to access
the time evolution of a signal in a very precise manner, with time resolution as
fine as 0.2fs.

However, the high cost of Streak cameras can be a barrier to their use in
routine experiments. They also require relatively weak signals to resolve the
time-data effectively, as they can saturate at higher power levels. In this section,
we present an alternative method to access time-resolved data on longer time
scales, with higher output power, but at the cost of less accurate time resolution.

The experimental setup consists of using a pump-probe setup with a variable
delay between the high power pump and the low power probe. In practice,
the high-power pump populates the exciton-polaritons in the microcavity, and
the low-power probe measures their non-linear properties in the transmission
spectrum. By measuring the transmission spectra as a function of the delay
between pump and probe, we can access the non-linear dynamics of the exciton-
polaritons, and in particular the time scales associated with such dynamics. As
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the non-linearity scales with the exciton-polariton density, this method also
allows for the determination of exciton-polariton lifetimes.

This scheme requires the use of a synchronised pulsed laser for the pump
and the probe so that the delay can be precisely determined and adjusted. In
practice, we can use a single laser source that is divided in two optical paths: one
for the probe and one for the pump. The probe path can then be attenuated
and delayed using a precise motorised stage with a retroreflector. The delay
stage varies the position of the retroreflector, thereby changing the beam path
length, and as a result the delay between the two optical paths. In practice,
the motorised stage is controlled using a software so that the measurement can
be automated with measurements taken at multiple delays in a single run. The
delay stage however needs to be calibrated for the τ = 0 delay which corresponds
to to two beam paths of identical lengths.

Without a Streak camera, the measured signal is averaged at time scales
usually much greater than the relevant time scales for the experiments, typically
on a millisecond time scale. This much greater than the experimental time scales
of nanoseconds.

As a result, the signal for the pump is also collected. To solve this problem,
the pump signal is filtered in polarisation. An arbitrary linear polarisation (for
example, vertical) is imposed to the pump signal, and an orthogonal polarisation
(in this case, horizontal) is imposed to the probe signal. The collected signal
after the sample is filtered by the use of a polariser which only lets through
horizontally polarised light, rejecting the signal resulting from the pump while
transmitting the signal from the probe.

For this technique to work, the extinction ratio of the polariser must be
greater than the ratio between the pump and the probe. For example, if the
extinction ratio is 106, and the ratio between the pump and the probe is 103,
then after the polariser the probe signal will be 106/103 = 103 times stronger
than the pump signal. Such an experimental scheme is shown in figure 3.5.

In addition to measuring the transmitted signal as a function of time delay
with fixed pump power, the experiment can also be conducted with fixed time
delay and variable pump power. Combining the two techniques, we get a two-
dimensional map of the probe signal in transmission, as a function of pump
power and time delay.

The pump-probe experimental setup is relatively straightforward to setup,
can be automated, and allows for investigation of longer-scale dynamics. How-
ever, it requires the non-linear response to be polarisation-independent, as the
pump and probe always have orthogonal polarisations, and that it assumes the
sample does not alter the polarisation of transmitted light. In the case of po-
lariton lasing, for example [139], this assumption does not hold, as spontaneous
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λ/2 WP + H. pol
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Objectives/lens

Polarisers

Figure 3.5: Experimental pump-probe scheme filtered in polarisation. The
pump and probe are separated by a beam splitter, a controllable delay is added
to the probe path, and they are given orthogonal polarisations with a half-wave
plate (λ/2 WP) and a polariser (H. pol and V.pol). After they illuminate the
sample, the pump signal is filtered by a polariser. This scheme was used for the
data collection in chapter 5.

polarisation occurs.
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3.5 Interferometry

The transmitted signal from the sample provides information about the ampli-
tude of exciton-polariton signal. However, in many experiments, we are inter-
ested in how the phase of the exciton-polaritons varies across the sample. A
phase measurement is only meaningful as a relative phase compared to a cho-
sen reference. The best way to access to the phase difference is to build an
interferometer between a signal beam and a reference beam.

Interferometry is typically used to measure the coherence of a beam by the
use of Mach–Zehnder or Michelson interferometer, in which a beam is separated
using a beam splitter, and an arbitrary delay τ is imposed on one arm of the
interferometer. When the two beams met, they produce an interference pattern
with a visibility V, defined by:

V =
Imax − Imin

Imax + Imin
(3.4)

Where Imin and Imin are the maximum and minimum intensity of the interfered
signal. The visibility of an interfered signal with delay τ can then be related to
the first order coherence g(1)(τ) by the formula:

V = |g(1)(τ)| (3.5)

In the specific case of measuring the phase, we fix τ = 0. As g(1)(0) = 1 for all
signals, the visibility is maximised, yielding V = 1. The measured data is no
longer the contrast of the interference pattern, but rather the pattern itself. We
have the two beams undergo different optical optical paths, one of them being
a signal beam, and another acting as a reference beam.

In practice, we can choose between two types of reference beams. The first
method is to split the input beam before it illuminates the sample, and then have
one arm illuminate the sample, while the other does not. The two arms of the
interferometer then meet at a beam splitter resulting in an interference pattern
which is imaged on a CCD Camera. For the interference pattern to be optimal,
the reference and signal beam need to be of equal intensity and synchronised,
with an equal travel time on both arms. This requirement translates to having
equal travel distances. The delay stage can be used on the reference arm of
the interferometer to precisely control its length, in a similar way to pump-
probe experiments, but in this case calibrated to ensure zero delay. In optimal
conditions, if the phase difference is equal to π, the interference is destructive
and the interference pattern will show no signal, and if the phase difference is
equal to 0, then the interference is constructive and the interference pattern will
show a maximum signal.

This experimental scheme allows to measure any change on the phase im-
parted by interaction with the sample. Another technique consists of using the

Chapter 3 Anthonin Delphan 107



3.5. Interferometry

Signal beam

Reference beam

Delay stage

with automa�on

A)

B)

Filter

Filter

Spectro

meter

Spectro

meter

f' f
f f

Beam 

expander
Mask

Sample

E. obj

E. obj

C. obj

C. obj

Sample

Figure 3.6: Comparison of the two interferometry setups. In A), the reference
beam is split off before hitting the sample and the excitation (E. obj) and col-
lection (C. obj) objectives. It needs to be attenuated to get equivalent powers
on both arms of the interferometer. This is the common Mach–Zehnder geom-
etry. In B), the reference beam is split off after the sample. It is expanded and
imaged into a mask. The cut-off image is then interfered with the signal beam.
The signal beam needs to be attenuated with a filter to get equivalent powers.

signal from a small region of the sample as a reference. Experimentally, the
signal from the sample is split, and in the reference beam arm of the resulting
interferometer, it is imaged on a slit and then cut to a narrow region, and then
expanded using a telescope made of lenses. The phase across this small region of
the emitted beam is assumed to be constant, but this is not the case in practice.
The process of slicing the reference image and then expanding it results in a
loss of power, and the process is also limited by the physical size of the optical
slit. An alternative technique consists of using an expanding telescope on the
reference image without cutting it, so that the beam size of the region of interest
matches the beam size of the full signal beam. This experimental scheme gives
access to the phase difference across the sample, in particular whether or not
the phase is homogeneous. A comparison of these two experimental setups is
given in figure 3.6.

A limit inherent to interference measurements is the coherence of the signal
and the reference beam being interfered. A meaningful interference can only oc-
cur if the length of the interferometer’s arms is smaller than the coherence length
of the sources. In practice, for laboratory-grade lasers, the coherence length is
in the order of tens of meters and as such is long enough. However, a long
interferometer may suffer from instabilities inherent to the system (vibrations,
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Start

Stop

Figure 3.7: Simplified setup of the experiment used in [175]. The beam is
split in two paths, with two detectors ‘START’ and ‘STOP’. When a photon
is detected on the ‘START’ path, a clock is triggered. The clock stops when a
photon is detected on the ‘STOP’ path. The coincidence counts are recorded
by measuring the value of the ‘STOP’ detector with fixed time delays. Figure
inspired by [260].

laser variations) and it is preferable to keep it as short as possible.

The measurement of second-order correlation functions is more complex as
it requires two synchronised high-precision single-photon detectors, as was de-
scribed in [175]. A simplified version of the setup is given in figure 3.7.

3.6 k-space measurements

The experimental setups we have described thus far, for example, in figure 3.1,
all measure the “real space” or the direct space of the sample, probed by the
transmitted or reflected beams. In white light, for example, it is possible to
observe the surface of the sample, with its defects and features. This direct
observation of the sample can also be done in the CCD of the spectrometer in
the so-called zero order.

In many cases, the real space data is the main data of interest, for shifts in
energy emission, intensity, or for scattering of the polariton superfluid. However,
there are also key information contained in the so-called reciprocal space, also
called k-space. Most importantly, the full polariton dispersion can be resolved
in k-space, including its anti-crossing, if both the lower polariton branch and

Chapter 3 Anthonin Delphan 109



3.6. k-space measurements

BFP
f f f'

Fourier Lens Spectrometer

lens

dsensor

Sensor

size

Sample

θin

θmaxE. lens

Figure 3.8: Example of a basic Fourier imaging setup, with a non-zero angle
of incidence θin. The Fourier lens images the back focal plane (BFP) of the
collection objective. The Fourier image path is in red, and the real space image
path is in black. With the Fourier lens, only the k-space image (red) is collected,
with a maximum angle θmax. The real space image (black) is defocused. The
Fourier lens can be mounted on a flip mount to switch between real space and
k-space.

the upper polariton branch are populated.

The blueshift in energy of the polariton branch and the strong emission
from its bottom point at k∥ = 0 in the case of polariton lasing are among the
experimental features only visible in k-space. And conversely, many experimen-
tal parameters of polariton experiments can be controlled by measurements in
k-space. The most significant one is the so-called “magic angle” of incidence
that is required to pump a microcavity in the OPO regime, as was discussed
in section 2.5.2. Another example is how a large dispersion in momentum is
required to create a polariton soliton, as was discussed in section 2.5.3. And
finally, the superfluid regime depends on the polariton group velocity, which is
controlled by pumping the sample at a given momentum. This momentum is
directly related to the pumping angle and the pumping wavevector.

Measurements in k-space can be done in a relatively straightforward manner,
with a spectrometer and a lens. The Fourier lens is placed to collect light on the
back focal plane of the collection objective. Such lenses are usually mounted on
flip mount which can be raised or lowered if a real space or k-space measurements
needs to be done.

Control over the pumping wavevector can also be readily achieved. A beam
that passes through the centre of the excitation lens will pump the sample with
a k∥ = 0 wavevector. The wavevector can be controlled by shifting the beam to
the left or to the right of the excitation lens. This can be done with a micrometer
stage. An example of a setup with k-space measurement and control over the
incident wavevector is given in figure 3.8.
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The raw data measured by the spectrometer is an image on the CCD of x by
y pixels. In must be calibrated in energy and wavevectors. The pixels on the x
axis represent the energy, and the calibration can be done by the spectrometer
software, accounting for the grating, and its resolution is limited by the entry
slit.

The pixels on the y axis represent the wavevectors. The calibration of this
axis involves the following calculations.

The Fourier space lens is characterised by its numerical aperture NA. It
will focus a collimated beam with an opening angle θmax given by the equation
NA = n sin θmax, where n is the refractive index in which the lens is working.
On the detection side, we will get an image of ∆y pixels. We can first find out
the total angular dispersion is able to resolve by inverting the equation for NA:

θmax = arcsin
NA

n
(3.6)

Thus the calibration of the angular dispersion is given by ∆y = 2 ∗ θmax. The
angular resolution is then given by:

1px = δθ =
2 ∗ θmax

∆y
(3.7)

The calibration in wavevectors is then a simple conversion process using equation
2.16, assuming a sinusoidal dispersion, which is valid for small angles. k0 is
calculated by measuring the bare cavity mode energy h̄ω0 and then using the
dispersion relation 2.17. Alternatively, it can be read directly on the energy axis
of the spectrometer, with the relation:

k0 =
2π

λ0
(3.8)

Where λ0 is the wavelength at the bottom of the lower polariton branch.

Experimentally, there is a compromise between access to the full polariton
dispersion (which requires a high θmax), and angular resolution, which is limited
by the number of pixels.

The total opening angle is related to the numerical aperture, which itself is
related to the lens focal length f by:

NA = n
D

2f
(3.9)

Where D is the lens entrance pupil, effectively, its diameter. With a fixed pixel
count ∆y, lens with a large focal length will have a lower NA, thus a lower
maximal range θmax, but a lower δθ and a better resolution. Conversely, a lens
with a smaller focal length will see more angles, but with less precision.
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The size of the image ∆y is another parameter. Physically, it is given by the
spot size of the CCD sensor dsensor, and depends on the spot size in Fourier space
dFourier. dFourier depends on the optics of the systems, such as the excitation
objective, and the back focal length of the collection objection. On the collection
path, the image in Fourier space can be changed, for example with telescopes
or masks.

In the simplest case of figure 3.8, we have Fourier lens of focal length f and
a lens focusing on the slit of the spectrometer of focal length f ′. The size of the
image dsensor is given by:

dsensor = dFourier
f

f ′
(3.10)

Thus the size of the image can be controlled by selecting the right f ′. In
particular, an image size larger than the CCD sensor must be avoided, as it is
not possible to calibrate. In practice, f ′ is typically selected so that the image
is equal to three-fourths of the CCD sensor, leaving the number of pixels ∆y
unambiguous and thus resulting in easy calibration.

3.7 Conclusion

There are many experimental techniques to create exciton-polaritons with very
precisely defined parameters such as energy, wavevector, and in the case of
pulsed lasers, pulse duration and pulse width, using optical components on
a tabletop. This freedom of experiment design enables a lot of flexibility in
pumping schemes and collection schemes, including pump-probe experiments or
interferometry.

This experimental freedom, however, usually involves making several com-
promises between desired experimental parameters. A common example is the
compromise between peak pulse power and the narrowness of pulse widths when
using a pulse-shaper.

Overall, the experimental techniques involving exciton-polaritons are varied
and allow for many different experimental schemes with control over many dif-
ferent parameters at the same time, while using straightforward transmission
or reflection geometries. This wealth of experimental techniques plays a ma-
jor role in polariton research, as it enables scientists to probe many different
phenomena.
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Polariton lasing in III-N
microring geometry

In this article, we have realised a polariton laser in a AlGaN cavity with a
microring geometry, confining the light using total internal reflection. The ex-
citons are confined using GaN/AlGaN quantum wells. The laser is operating
up to room temperature, which is an expected an important properties of III-N
systems as we have described in section 2.4.1.

An important challenge is when claiming polariton lasing is to rule out the
possibility of “regular” weak coupling lasing, which we have described in section
2.3.2. As we are using ring resonators rather than a Fabry-Perot cavity, we
do not have access to the full polariton dispersion to resolve this ambiguity.
Instead, we use several of the techniques outlined in section 2.6.4, for example,
the reduction of the Free Spectral Range and a sharp threshold when lasing
occurs. The non-linearities of the polariton system are described and analysed,
showing blueshift as power increases, until a saturation and a thermal redshift
at very high laser powers. Interestingly, when studying the non-linearities (such
as in figure 4), we can see that the higher energy polariton modes – which are
more excitonic – blueshift more than the lower energy ones.

One challenge of this experiment is that many cavity modes hybridise with
the excitons to create multiple polariton modes in the cavity. This is the regime
of “coexisting condensates”. The resulting mode competition reduces the non-
linearity. In the ring resonator geometry, the polariton condensate propagates
across the ring, and it is possible to collect it from the opposite of the excitation
side. At higher temperature, the lasing signal is much stronger, which is an
interesting feature clearly visible in figure 3.f.
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We have also noted that the emission intensity is very highly dependant
on the precise illumination spot and collection window. Further work on these
samples could involve a study of their threshold power and threshold intensity
as a function of temperature. Given the similarity between 4 K and 200 K, and
the sharp difference between 200 K and 300 K, we expect a non-linear trend.
A more thorough study of the threshold dependence to temperature was not
possible for the lack of time.

My contribution, as an author to this paper, was experimental. I have run
the experiment, collected and processed the data for all the figures of the main
paper, as well as several in the supplementary material. I wrote much of the
main text, in particular, the section which analyse the figures and use them
to justify our claim at polariton lasing. Over exchanges with co-authors, we
have also performed additional measurements of the width of the non-polariton
exciton modes to rule out a system above the Mott transition. I have also wrote
the main draft of the article and was involved in the response to referees over
the peer review process.

This article plays into the topic of non-linear effects in exciton-polaritons
by displaying spontaneous coherence build-up, in the form of Bose-Einstein
condensate, at room temperature, and several key features of this phenomenon
are identified.

After publication, this paper was cited as a reference and as comparison by
other realisations of polariton lasing in different materials and geometries.
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ABSTRACT

Microcavity polaritons are strongly interacting hybrid light–matter quasiparticles, which are promising for the development of novel light
sources and active photonic devices. Here, we report polariton lasing in the UV spectral range in microring resonators based on GaN/AlGaN
slab waveguides, with experiments carried out from 4 K up to room temperature. Stimulated polariton relaxation into multiple ring resonator
modes is observed, which exhibit threshold-like dependence of the emission intensity with pulse energy. The strong exciton-photon coupling
regime is confirmed by the significant reduction of the free spectral range with energy and the blueshift of the exciton–like modes with
increasing pulse energy. Importantly, the exciton emission shows no broadening with power, further confirming that lasing is observed at
electron–hole densities well below the Mott transition. Overall, our work paves the way toward the development of novel UV devices based
on the high-speed slab waveguide polariton geometry operating up to room temperature with the potential to be integrated into complex
photonic circuits.
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Microcavity polaritons are hybrid light–matter quasiparticles,
arising from strong exciton–photon coupling in semiconductor
photonic structures. They have attracted significant attention in the
last 15 years with a number of fundamental effects observed such
as polariton condensation1 and lasing,2 superfluidity,3 solitons,4
polariton blockade,5 and single polariton nonlinearity,6 to name just
a few, which are enabled by giant polariton interactions. Interacting
polaritons are highly promising for the development of novel quan-
tum light sources, photonic nonlinear simulators,7 logic gates, and
quantum optical signal processing.8

Polariton lasing, the coherent light emission from polariton
condensates, provides several advantages over standard photonic
lasing, including operation without population inversion with a
threshold lower than that in conventional semiconductor lasers.9
It has been demonstrated via optical2,10 and electrical pumping.11

Room temperature (RT) operation has been reported in structures
based on wide bandgap semiconductors10,12,13 enabled by their large

exciton binding energy. Polariton lasing has been mainly stud-
ied in planar semiconductor microcavities (MCs) made of two
Bragg mirrors, which are challenging to fabricate. On the other
hand, polaritons have also been investigated in the slab wave-
guide (WG) geometry,14,15 where photonic confinement in the
vertical direction arises from total internal reflection (TIR). The
main advantages of the WG geometry over MCs are low disor-
der due to thinner and simpler structures and the high polariton
speed, enabling long propagation distances up to several hundreds
of μm, which makes this system favorable for the development of
integrated polariton circuits. A number of nonlinear effects aris-
ing from giant optical Kerr-like polariton nonlinearity, such as
dark and bright solitons,16,17 continuum generation,18 and ultra-
fast pulse modulation,19 have been reported in the WG polariton
platform.

III-nitride based polaritons are of particular interest since they
enable coherent emission and low threshold ultrafast nonlinear
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optical modulation in the UV spectral range and can operate at
RT19 with many potential applications including studies of chem-
ical reactions, coherent Raman spectroscopy, and manipulation of
trapped ions. UV polariton lasing in III-nitride WG devices has
been reported only recently in GaN ridge resonators up to 150 K,
likely limited by the smaller exciton binding energy in bulk GaN20

compared to that in quantum heterostructures.
In this paper, we report polariton lasing in microring res-

onators fabricated from GaN/AlGaN quantum well (QW) slab WGs
with operation in a wide temperature range from 4 to 300 K enabled
by the large exciton binding energy in the GaN QWs (∼48 meV)
and a lower surface state recombination velocity than their
III-arsenide counterparts.21 Polariton lasing from the multiple ring
resonator modes is revealed by the threshold-like dependence of the
emission intensity with increasing pump pulse energy. The free spec-
tral range (FSR) between the modes reduces as the polariton energy
approaches that of the exciton due to the strong dependence of the
polariton group velocity on the photonic fraction of the polaritons,
a clear signature of strong exciton–photon coupling. Furthermore,
a strong blueshift of the lower polariton exciton-like states with
increasing pulse energy is observed due to polariton interactions.

Apart from the development of coherent UV polariton sources,
our demonstration of microring polariton resonators also paves
the way toward further applications in integrated polariton circuits
(e.g., filtering and directional coupling) and studies of low threshold
generation of frequency combs and Kerr solitons.

Our microring resonators are formed by etching an AlGaN pla-
nar slab WG containing multiple GaN QWs,15 which was grown by
metal–organic vapor phase epitaxy on c-plane free-standing GaN
substrate. Propagating polaritons have been demonstrated in simi-
lar unetched planar WGs with a Rabi-splitting of ∼60 meV.15 The
confinement induced by the ring geometry is expected to lead to
discrete clockwise and counterclockwise ring polariton modes. The
samples are fabricated by means of e-beam lithography and reactive
ion etching.

After etching, the total height of the structures amounts to∼315 nm [Fig. 1(a)]. Rings of different radii (R) and widths (t) have
been etched on the sample. The radius is measured from the center
to the mid-point of the ring. Here we studied microrings with R = 3,
4, 6, and 8 μm and t = 2 μm. A scanning electron microscopy (SEM)
image of a typical microring (R = 3 μm and t = 1 μm) is shown in
Fig. 1(b) (see also Fig. S1 in the supplementary material).

We study polariton lasing over a wide range of temperatures
(T = 4–300 K) by using a continuous flow liquid helium cryostat. A
standard microphotoluminescence (μ-PL) setup allows us to excite
and collect light emission at different spots on the sample in a
backscattering configuration [see Fig. 1(b)]. Pulsed laser excitation
is performed with a frequency-quadrupled optical parametric ampli-
fier (TOPAS) pumped by a Ti:sapphire regenerative amplifier. The
excitation pulses were centered around 320 nm and had a duration
of 100 fs and a repetition rate of 1 kHz. The PL signal collected
by a microscope objective (NA = 0.39) is sent to a spectrometer
with a resolution of 0.16 nm while being integrated over the entire
rectangular entrance slit of the monochromator.

The optical resonances in the ring structures occur when the
circumference of the ring is an integer multiple (m) of the polari-
ton wavelength. This condition can be written as k(E)2πreff = 2πm,
where k(E) is the polariton wavenumber at energy E and reff is

FIG. 1. (a) Cross-section scanning electron microscopy (SEM) image of the wave-
guide structure with relevant geometric parameters. (b) SEM image of a ring
resonator at a tilted angle of 30○ from the surface normal, R = 3 μm and t = 1
μm, with overlaid excitation and collection areas. (c) PL spectra (linear scale) of
an AlGaN resonator with t = 2 μm and R = 4 μm collected at T = 4 K for pulse
energies ranging from 0.04 to 4 nJ. The PL intensity is normalized to the intensity
of the QW A exciton: the signal obtained from the exciton is divided by a different
factor for each power so that it is equal to unity for all powers. The spectra are then
shifted for clarity by half-unity. See also supplementary material Sec. 2. Inset: Inte-
grated intensities (log–log scale) for the region with modes on which background
contribution is negligible (red), the region corresponding to the QW exciton (blue),
and the region corresponding to the bulk GaN exciton (black). The black dashed
line represents a quadratic increase.

the effective radius at which the mode propagates. In addition, the
finite thickness of the ring may give rise to quantization of polariton
waves along the radial direction and formation of transverse modes
characterized by the integer quantum number n. We calculated
the optical modes of the circular waveguides using the Lumerical
MODE finite difference eigenmode (FDE) solver (see supplementary
material discussion 4).

To demonstrate polariton lasing, we carried out a PL pulse
energy dependence study on the R = 4 μm and t = 2 μm resonator
with pulse energies varying from 0.04 to 4 nJ. The emission spectra
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for this entire excitation range at T = 4 K are shown in Fig. 1(c). At
low pulse energies, the spectra consist of excitonic peaks at ∼3.587
and ∼3.598 eV associated with QW A and B excitons, as previously
reported in studies led on similar wafer samples.15 Even though
the detection and excitation regions are spatially separated, exciton
emission in the detection region may arise from the propagation of
high velocity upper polaritons away from the excitation spot with
their subsequent relaxation into the lower energy low momenta exci-
ton states. Upon increasing pulse energy, narrow full width at half
maximum (FWHM) ∼3 meV modes start to appear abruptly at ener-
gies below the QW exciton peaks, first closer to the QW exciton
emission, and then at lower energies down to 3.501 eV between the
QW excitonic peaks and the bulk GaN exciton emission (centered at∼3.46 eV) originating from the substrate.

As we argue below, the appearance of these modes with increas-
ing pulse energy is associated with stimulated polariton scattering
into the optical ring resonator states, which are in the strong
coupling regime with the QW excitons. The bulk GaN excitons
are isolated from the ring structure by the cladding layers and
thus are only weakly coupled to the resonator modes. Impor-
tantly, our polariton system is nonequilibrium: the multiple modes
(co-existing condensates) become macroscopically occupied due
to the dynamical equilibrium between gain and dissipation
channels.22,23 At 4 K, relaxation to the polariton states occurs mainly
through exciton–exciton and exciton–polariton scattering, since at
low temperature phonon-assisted scattering is inefficient.24 Initially,
at pulse energies just above the threshold, scattering to the exciton-
like polariton states whose energy is close to the QW exciton level
is more efficient. With further increase in pulse energy scattering
to more photon-like states increases25 leading to polariton lasing
from the lower energy ring states [see Fig. 1(c)]. The macroscopical
occupation of the polariton modes is confirmed by the superlin-
ear (threshold-like) increase of the mode emission intensity (inte-
grated in the energy interval where the background from GaN and
QW excitons is negligible) with pulse energy, whose dependence
is much faster than quadratic, as shown in the inset of Fig. 1(c).
If the filling factor of the polariton modes was less than unity, it
is expected that enhanced relaxation due to interparticle scatter-
ing would lead only to a quadratic dependence. For comparison,
we also show in the inset of Fig. 1(c) that the integrated emission
intensity exhibits a linear or slightly superlinear power dependence
in the energy range where QW and GaN backgrounds dominate,
respectively.

We note that in our case the modes are confined in the ver-
tical direction due to TIR and the emission is likely observed
due to Rayleigh scattering on fabrication imperfections of the ring
resonators.

Below the threshold, the polariton emission from the ring res-
onator modes is too weak to be detected because the latter is guided
in the microring resonator plane. It is only above the threshold that
the scattered light from the lasing modes becomes sufficiently strong
and comparable to the excitonic background to be coupled to our
microscope objective.

The FSR of the ring resonator modes is given by the following
equation:

FSR = h̵vG(E)
reff

, (1)

where h̵ is the reduced Planck’s constant and vG(E) is the (energy
dependent) group velocity of planar slab WG polariton modes at
energy E, and reff is the radius around which the lasing modes
propagate. In the strong coupling regime vG(E) and hence the FSR
is expected to decrease strongly with increasing E as the lower
polariton dispersion curves strongly toward the exciton level (see
supplementary material discussion 5). We investigated the stimu-
lated emission from ring resonators of different radii at 4 K over
the wavelength range 346–354 nm, with the raw data shown in
Fig. 2(a). The FSR vs energy is summarized in Fig. 2(b). The FSR
increases with decreasing ring radius R, as expected from Eq. (1).
The FSR also decreases with increasing energy. For R = 3 and 4 μm,
the FSR decreases drastically by a factor of 2–3 as the energy
approaches the exciton level, which is a strong confirmation that
the observed modes are in the strong coupling regime. Some trend
of decreasing FSR with energy is also visible for R = 6 and 8 μm,
although the dependence is more noisy for R = 8 μm since the FSR
becomes comparable to the spectral resolution. The theoretical FSR
for purely photonic modes was calculated using FDE as described
above and the FSR for polaritons was calculated using the photonic
values and a standard coupled oscillator model (see supplementary
material Sec. 5). The solid lines in Fig. 2(b) show the theoretical
polariton FSR and their curvature is in good agreement with the
experiment. The purely photonic FSR theory curves (dashed lines)
also show decreasing FSR with energy, which occurs mainly due to
the energy dependence of the material refractive indices. However,
this curvature is much shallower than that seen in the experiment.
In summary, the strong curvature of the FSR vs energy cannot be
explained without invoking a strong coupling picture, thus con-
firming that the system remains strongly coupled while in the
lasing regime. Further detail is given in the supplementary material
Sec. 5.

Furthermore, we perform measurements on an R = 8 μm
microring over a wider temperature range up to 300 K. The PL spec-
tra for different pulse energies are displayed in Figs. 3(a)–3(c) for
T = 4, 200 and 300 K, respectively. At all temperatures, the bunch of
narrow ring resonator modes associated with polariton lasing appear
below the QW A exciton energy level with increasing pulse energy.
As in the case of R = 4 μm, the emission intensities integrated in the
energy range where modes are the most visible demonstrate a clear
threshold-like behavior with a faster than quadratic dependence in
Figs. 3(d)–3(f) at all temperatures, indicating macroscopic occupa-
tion and lasing of several modes. By contrast, the bulk GaN and QW
excitonic peaks behave linearly (see supplementary material Sec. 7).
As the data taken at 200 and 300 K sits on a strong incoherent PL
background originating from the bulk GaN and the QW exciton
emission peaks, this background has been subtracted. The resulting
PL spectra are available in the supplementary material (Sec. 6). In the
supplementary material (Sec. 5), we plot FSR measurements at 300 K
and compare them with the theoretical simulations, which support
the strong exciton−photon coupling at room temperature.

While with increasing temperature both the exciton and the
polariton emission shift to lower energy due to bandgap reduction,
it is also observed that the onset of lasing occurs in more photon-like
polariton states at higher T. This occurs because (a) the losses of the
exciton-like states with energies closer to the exciton level increase
due to phonon scattering, and (b) at elevated temperature, the
polaritons can relax to more photon-like states by exciton–phonon
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FIG. 2. (a) PL spectra in a linear scale
of microring resonators measured for dif-
ferent radii (3, 4, 6, and 8 μm), with
a 2 μm width, at pulse energy above
threshold (0.4 nJ) taken at 4 K. (b) Free
spectral range of the same rings. The
solid lines are a fit according to Eq. (1)
accounting for the excitonic content of
the guided modes. The dashed lines
show the results of a purely photonic
model. Simulation details and FSR data
recorded at 300 K are shown in the
supplementary material (Secs. 4 and 5).

as well as exciton–exciton and exciton–polariton scattering.24–26

The non-radiative processes and polariton losses increasing with
temperature also lead to the increase of the lasing threshold from
0.25 nJ at 4 K to 0.35 nJ and ∼1.8 nJ at 200 and 300 K, respectively.
Interestingly, however, this overall increase in the polariton lasing
threshold with temperature remains within a factor of about seven.
Such a variation is far smaller than that reported recently for ridge
waveguide polariton lasers made from bulk GaN, where the drastic
increase in the lasing threshold by more than two orders of magni-
tude from 70 to 220 K was incompatible with a polaritonic picture
that could hold from cryogenic to room temperature.20 This reduced

sensitivity for our sample is again most likely stemming from the
quantum heterostructure nature of our polariton gain medium,
which leads to stabler excitons. We are also able to explore a signif-
icant range of pumping conditions above the threshold with pulse
energy values nearly up to an order of magnitude larger than those
at the threshold at 4 K for the 8 μm ring resonator [Figs. 3(d)–3(f)]
and even beyond one order of magnitude for the 4 μm ring resonator
[Fig. 1(c) and corresponding inset].

The excitonic component of the polariton wavefunction
leads to strong polariton–polariton interactions responsible for
the blueshift of polariton resonances with increasing density. In

FIG. 3. (a)–(c) PL spectra for the 8 μm
radius, 2 μm wide ring at different pulse
energies (in nJ) labeled in the figures
for T = 4, 200, and 300 K, respectively.
Each spectrum is normalized to the QW
A exciton (3.566 eV at 4 K, 3.547 eV
at 200 K, and 3.511 eV at 300 K) and
then shifted for clarity. Non-shifted val-
ues and an alternative presentation are
given in supplementary material Sec. 2.
(d)–(f) Integrated intensity of the modes
within given energy boundaries plotted
in log–log scale for T = 4, 200, and
300 K, respectively. The black dashed
line represents a quadratic increase.
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Figs. 4(a)–4(c), we plot expanded spectra for different pulse ener-
gies, tracing the peak position of each of the lasing modes. The
extracted peak positions of the polariton modes are plotted in
Figs. 4(d)–4(f), respectively. As expected, the higher energy exciton-
like states exhibit a stronger blueshift with pulse energy than the
lower energy photon-like polaritons. At 4 and 200 K, an energy
blueshift up to 6–7 meV is observed for exciton-like modes, with
the excitonic fraction ranging from 0.91 to 0.24 for 4 K and from
0.57 to 0.21 at 200 K, whereas at 300 K the observed shifts are
much less, ∼1 − 2 meV, due to the decreased excitonic content of
the lasing modes, ranging this time from 0.20 to 0.08, and increased

thermal effects, which may lead to a polariton redshift counter-
balancing the effect of interactions. Note that only inter- and
intra-mode polariton–polariton interactions are responsible for the
polariton blueshifts, whereas the interaction with the higher energy
exciton reservoir does not play a role since its density is expected to
be pinned above the polariton lasing threshold.27 The evolution of
the peak intensity of the modes with pulse energy is finally given in
Figs. 4(g)–4(i). The peak intensity is given by the maximum inten-
sity of the mode minus the intensity at the base of the peak. We can
see that the modes examined here have a different threshold-like
increase at a given pulse energy, and then stagnate or decrease as

FIG. 4. (a)–(c) PL spectra of the 8 μm ring resonator taken at T = 4, 200, and 300 K, respectively. The solid lines act as guides for the eye to indicate the shift of selected
modes with pulse energy. The dashed lines represent points where the shift is less visible. Data are obtained from Fig. 3. (d)–(f) Mode energy vs pulse energy of selected
modes, identified by the line color, at 4, 200, and 300 K, respectively. (g)–(i) The peak mode intensity vs pulse energy of selected polariton modes, identified by their line
color, at 4, 200, and 300 K, respectively.
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more modes, and hence mode competition, come into play. Similar
strong blueshifts are seen in the 4 μm ring at 4 K (see supple-
mentary material Sec. 8). Finally, we note that interparticle interac-
tions and mode competition may determine the linewidth (FWHM∼ 2–3 meV) of the lasing modes above threshold (see supplementary
material Sec. 3).

Importantly, the fact that the exciton emission line, detected
either in the area of the pump spot or on the opposite side of the
ring (Figs. 1 and 3), does not broaden with pulse energy and shows
no or small energy blueshift (∼10 meV) confirms that there is a
limited screening of the built-in electric field and that the created
electron–hole density in each QW is well below the Mott density
(∼1012 cm−2).28 Indeed, above the Mott density, the emission is
expected to originate from an electron–hole plasma with a high
energy emission tail extending by 50–60 meV from the exciton
peak maxima.28 This observation is another confirmation that the
nonlinear emission is associated with polariton lasing.

In conclusion, we report UV polariton lasing from multi-
ple modes in microring resonators fabricated from AlGaN planar
waveguides with embedded GaN quantum wells at temperatures
up to 300 K. The micro-structured polariton system we present
has the potential to be used to study modelocking of polaritons
into a sequence of short pulses, generation of UV soliton trains,
and frequency combs supported by giant polariton Kerr nonlin-
earity. Polariton modelocking was demonstrated numerically for
resonantly pumped microring resonators.29 Beyond this, a non-
resonant pump like the one used in this work and a combination
of both resonant and non-resonant pumping offer several avenues
for further research into the complex interplay between turbulence
and modelocking.30 Additional opportunities should arise from the
coupling between two and more rings, which includes combining
space topology and modelocking,31 an aspect not easily within reach
with the linear WG geometry. Overall, our work has the potential to
be a significant step forward for the development of compact active
nonlinear polariton devices operating at RT.

See supplemental document for supplementary material con-
cerning experimental methods and simulation models for polariton
dispersion.
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Chapter 5

Rydberg blockade:
exciton-polaritons in Cu2O
microcavities

In this paper, we have investigated the nonlinearities in a Cu2O microcavity.
The properties of Cu2O have been described in section 2.4.2. Unlike the previous
article, we use here a “bulk microcavity”, without any quantum wells. Without
Quantum Wells, the excitons are not constrained in a particular region of the
microcavity. We start the experiment with a broadband excitation using a
Supercontinuum source to probe the polariton modes in the sample, before
exciting the modes individually using a different, narrow-band excitation laser
with higher peak power.

The main result of this paper can be seen is that we find, for the exciton-
polaritons with principal quantum number n between 4 and 7, an intermediate
regime, between Rydberg blockade and Pauli blockade. The higher the quantum
number associated with an exciton polariton, the faster a blockade effect These
two regimes are described and compared. The corresponding non-linear indices
are plotted and discussed. The non-linear indices β are also used to characterise
the Kerr-like nonlinearity of materials, in accordance with previous works on
that subject [261].

Finally, lifetime measurements show that the non-linear response has two
characteristic time scales, including one that is too short to resolve in a pump-
probe setup. We assimilate this short time scale to the p-series exciton-polaritons.
By contrast, we find a longer time scale, on the order of a few hundreds ps. This
longer time scale is assimilated to the plasma and 1s states, called in the paper
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“para-exciton”, which means that the electron and holes making up the exciton
have opposite spins.

These lifetimes are currently a subject of investigation [125]. Another in-
teresting question raised by this paper is the large discrepancy between the
non-linear indices that we report and the ones under CW excitation for a bare
Cu2O flake [262], suggesting that a major influence of the long-lived 1s exciton
reservoir in the non-linear dynamics of the system. Further investigations are
ongoing at the time of writing to explain these differences.

In this paper, I ran the experiment, collected the data necessary to make the
figures, and participated in the data analysis. In particular, it was after several
iterations that a two-oscillator model with only the coupling strength as a free
parameter was chosen. With the addition of the pulse-shaper envelope, it fits
the data remarkably well and was used as a baseline for the theoretical analysis.

I have helped to design the experimental scheme that allowed for the au-
tomation of the pump-probe experimental, giving time-resolved data which was
then used for figure 5, in particular by writing the code necessary for the au-
tomation, and participated in the discussion for the analysis. I have also wrote a
large part of the main text and elements in the supplementary material referring
to the experimental details.

This article is related to the main topic of this thesis, non-linear effects in
exciton-polaritons, as it displays a very strong repulsive interaction between
polaritons in the form of Rydberg blockade. The ultimate goal of Rydberg
blockade is the emission of anti-bunched light, using spatial anti-correlation
which results from the Rydberg blockade phenomenon. This paper is a step
forward in that direction, helping to characterise the non-linearities of the Cu2O
system.
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Nonlinear Rydberg exciton-polaritons in Cu2O
microcavities
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Abstract
Rydberg excitons (analogues of Rydberg atoms in condensed matter systems) are highly excited bound electron-hole
states with large Bohr radii. The interaction between them as well as exciton coupling to light may lead to strong
optical nonlinearity, with applications in sensing and quantum information processing. Here, we achieve strong
effective photon–photon interactions (Kerr-like optical nonlinearity) via the Rydberg blockade phenomenon and the
hybridisation of excitons and photons forming polaritons in a Cu2O-filled microresonator. Under pulsed resonant
excitation polariton resonance frequencies are renormalised due to the reduction of the photon-exciton coupling with
increasing exciton density. Theoretical analysis shows that the Rydberg blockade plays a major role in the
experimentally observed scaling of the polariton nonlinearity coefficient as ∝ n4.4±1.8 for principal quantum numbers
up to n= 7. Such high principal quantum numbers studied in a polariton system for the first time are essential for
realisation of high Rydberg optical nonlinearities, which paves the way towards quantum optical applications and
fundamental studies of strongly correlated photonic (polaritonic) states in a solid state system.

Introduction
Prior to the study of Rydberg excitons in solids, sig-

nificant efforts have been devoted to the research of
Rydberg atoms—giant atomic states with valence elec-
trons occupying orbits of high energy excited states (with
sizes up to tens of micrometres). Rydberg states have been
at the focus of fundamental and applied science in areas of
metrology1, sensing2,3, quantum information and simu-
lation4–6. Their strong long-range dipole–dipole interac-
tions lead to the Rydberg blockade phenomenon7–9,
where the presence of one excited atom prevents the
excitation of another in its vicinity, at the same frequency.
This effect forms the basis for quantum information

processing (QIP) with Rydberg atoms10–13. Furthermore,
coupling light to Rydberg atoms14,15 enables strong
effective photon–photon interactions down to the single
particle level paving the way towards the development of
various quantum optical devices (single-photon switches,
phase shifters, transistors etc.16).
Recently, Rydberg excitons (the analogue of Rydberg

atoms in condensed matter systems) were observed in a
number of materials including transition metal dichalco-
genides (TMDCs)17, perovskites18, and Cu2O

19–22, where
the Rydberg exciton radius reaches a few microns in states
with principal quantum numbers as high as n= 3023 and
ultra-high nonlinearities have been reported in CW
regime21,24. Rydberg exciton blockade was demonstrated
experimentally25. On the other hand, there is a strong
interest in the study of hybridised excitons and photons in
microcavities and waveguides, which lead to the realisa-
tion of giant Kerr-like optical (polaritonic) non-
linearities26,27. These nonlinearities can be exploited for
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the development of highly nonlinear and scalable optical
devices on a chip with possible applications in QIP28.
Polariton nonlinear phenomena, such as superfluidity,
solitons, photon blockade29,30 and single-photon phase
shifts28, to name a few, were investigated mostly for 1 s
Wannier-Mott excitons. Nonlinear energy shifts have
been reported for Rydberg exciton-polaritons in
TMDCs17,31,32 and perovskites18, but these studies are
limited to the first two excited exciton states. By contrast,
large principal numbers n are available in Cu2O and very
recently strong exciton-photon coupling was observed in
a microcavity with embedded Cu2O

33, where only the
linear optical response of Rydberg exciton-polaritons was
addressed.
Here, we study yellow series Rydberg exciton-polaritons in

a planar FabryPerot microcavity with embedded Cu2O thin
crystal. We report a strong and ultra-fast nonlinear optical
response for these states and demonstrate the highly
superlinear scaling of the nonlinearity with the principal
quantum number up to n= 7. This scaling opens up the
potential for ultra-high nonlinearity at the highest numbers
(n= 30) observed so far in bare Cu2O crystals. The non-
linearities are found to be comparable or even exceeding (for
n ≥ 5) the giant optical Kerr-like nonlinearities observed in
other polariton platforms, such as GaAs or hybrid per-
ovskites34. Nonlinear indices n2 are found to be in the range
from 10−17m2/W to 4 × 10−15m2/W, for n= 3 to n= 7. In
a single pulse experiment, the response time of nonlinearity
must be given by the polariton lifetime comparable to the
duration of the pulse ∼1 ps. Additional pump-probe mea-
surements reveal that the nonlinearities at n= 4 are found to
respond within a picosecond rise time and fall within the
~40 ps range. This ultra-fast response is followed by addi-
tional nonlinear dynamics rising and falling on density-
dependent timescales of order 100 ps to 2 ns. This demon-
strates that multiple processes contribute to the nonlinear
response. Crucially, our pulsed resonant excitation method
significantly reduces the interactions with long-lived ground
state excitations and electron-hole plasma and enables us to
access the pure, ultra-fast, Rydberg nonlinearity. To com-
plete our study we provide a theoretical model that takes
into account contributions from Rydberg and Pauli blockade
and semi-quantitatively explains the observed experimental
behaviour at high excitation densities.

Single pulse experiment
Experiment
We study a microcavity system formed by two silver

mirrors with an embedded thin flake of Cu2O material
deposited on top of SiO2 substrate with an intermediate
PMMA layer (see Fig. 1a, b). Multiple cavity modes with a
free spectral range of 9 meV form (see SI, Fig. S1) due to
the thickness of Cu2O slab of approximately 26 µm. We
reveal the strong coupling between the cavity modes and

Rydberg excitons in the angular-resolved transmission
spectra of a super-continuum laser source (see Fig. 1c),
similar to recently published results33. The transmission
spectra recorded for different in-plane k-vectors show
anti-crossings between the cavity modes and Rydberg
exciton resonances in Fig. 1c with clear doublets corre-
sponding to the upper (UP) and lower (LP) exciton-
polariton states. To highlight the strong coupling in
Fig. 1d we also plot the dispersion of Rydberg exciton-
polaritons for n= 3, 4 and 5. The formation of polaritons
for n= 6 and 7 excitons is not resolved for this position
on the sample, since the cavity mode is in resonance at
higher wavevectors and the high-frequency spectral noise
leads to weak signal-to-noise ratio and in k-space prevents
observation of the anticrossing. The signal-to-noise ratio
is higher for detection in real space (i.e Fourier transform
of k-space) and the polariton doublets for n= 6 and 7 are
clearly observed in transmission for a different spot on the
sample with a slightly different Cu2O thickness, when the
energy of the cavity mode at k= 0 is tuned into resonance
with these excitons by changing position on the sample
(SI, Sec. 4).
To probe Rydberg exciton-polariton nonlinearities we

record the transmission spectra in real space at different
energies of the laser pulse (with full width at half maxima
FWHM 1.75 meV), directed at normal incidence to the
sample and tuned in resonance with the polariton states
arising from excitons with different n. In Fig. 2 we show
the power dependencies of the transmission spectra of
these states. At small powers, the doublet of LP and UP
states is clearly visible for quantum states from n= 3 to
n= 7. There is a minor asymmetry between the intensities
of the lower and upper polariton branches observed for
n= 4 and 6 states, which is attributed to a small detuning
between the laser peak energy and the centre between
polariton resonances (this detuning is set manually by the
diffraction grating in the pulse shaper and cannot be very
precise) so that one resonance is pumped slightly more
efficiently than the other.
As power increases the separation between the polar-

iton resonances becomes smaller, which we attribute to
the decrease in coupling strength, and eventually a col-
lapse of strong coupling. The resulting transmission
spectra profiles become a singlet (here, limited by the
pulse spectral width). We note the sharp contrast in
power threshold needed to reach a singlet between the
n= 3 case (of the order 100 nW or 500 µJ/cm2) and the
n= 7 case (of the order of 1 nW or 5 µJ/cm2). We exclude
excitation-induced thermal effects as no redshifts of the
exciton resonances were detected in the experiments (for
details see SI, Sec. 3).
The fitting of the spectra at each power is performed

using a coupled oscillators model previously used for
Rydberg exciton-polaritons33, taking into account the
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spectral profile of the pulse and with the coupling
strength being the main fitting parameter (see Methods
and SI, Sec. 1). The model fits the experimental data well,
in particular at low powers. From these fits we can extract
the Rabi splitting Ω as a function of exciton density ρ,
which is plotted in Fig. 3 (see Methods for the equation to
deduce ρ and SI, Sec. 5 for its derivation). We stress that ρ
being the excitonic fraction of resonantly pumped polar-
itons is an important parameter that defines the absolute
value of nonlinear energy shifts. At low pump power, the
overall Rabi splitting drops with quantum number n, since
larger exciton size leads to smaller oscillator strength35.
The Rabi splitting is also observed to decrease strongly
with ρ or pumping power, showing a fast initial drop and
overall nonlinear scaling with density at larger occupa-
tions. We also note that deducing this drop becomes
difficult at larger n as the absolute value of the linear light-
matter coupling decreases, while the cavity decay rate
remains the same.

The exciton-polariton Kerr-like nonlinearity due to the
reduction of Rabi splitting Ω with density ρ is usually
characterised by the coefficient β= dΩ/dρ36–38. Classi-
cally, the Rabi splitting arises because the excitonic
oscillators in the Cu2O active region add a frequency-
dependent contribution to the refractive index which
modifies the cavity resonance condition39. The magnitude
of this refractive index component, as well as the Rabi
splitting, decreases as ρ grows. Thus we can directly relate
the nonlinear refractive index of Cu2O to β (see refs. 36,40

and references therein, and SI).
Here we focus on the nonlinear response at lower

densities when the polariton doublets are still resolved
and Ω behaves nearly linearly with ρ. The deduced β
factors are plotted in Fig. 3b as a function of the principal
quantum number n of polaritonic states (black dots,
labelled as βexp). We observe rapid increase of non-
linearity as a function of n (note the log-linear scale), and
the fitting provides scaling βexp ∼n4.4±1.8 (red solid curve
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in Fig. 3b) (see SI, Sec. 7.1). The β-values are found to be
between 0.01 µeV µm3 for n= 3, to 0.4 µeV µm3 for n= 7
(note, here we use volume units as natural for bulk crystal
in a cavity). Already for n= 5 this nonlinearity exceeds
that in other highly interacting polariton platforms, such
as microcavities with GaAs-based quantum wells, if one
takes into account excitonic spatial confinement (see SI,
Sec. 6). Below we use the experimentally obtained β values
and scaling to analyse main potential contributions and
compare with our theoretical model.

Theoretical analysis
To explain the experimental results we develop a theory

for describing the effective decrease of light-matter cou-
pling. Specifically, we take into account dipole–dipole
interactions between Rydberg states of p-wave excitons,
which are known to reduce Cu2O absorption with
increasing exciton density in the cavity-free case20. This
phenomenon may be explained as the formation of a
blockade region in the vicinity of spatially extended
exciton. In this region, light can no longer create new
excitons due to the strong dipole–dipole interaction
shifting the exciton energy out-of-resonance. Conse-
quently, the optically active region in a sample decreases
with the increase of exciton density.
We model this blockade effect and plot the βRydberg

dependence using the theoretically predicted values of
dipole–dipole interactions41 (solid purple curve in Fig. 3b).
We observe that βRydberg scales as ∼ n5.5 (SI, Sec. 7.2).

In this theoretical plot, a full blockade is assumed where
the blockade region is defined sharply by a step-like
boundary at the Rydberg blockade radius (rC). In reality,
the blockade effect is coming from the exciton’s density-
density correlations such that the transition between
blockaded and non-blockaded regions is smooth25,
meaning that the creation of additional exciton within rC
is not strictly forbidden. Therefore, the full blockade
result gives approximately the upper bound which is likely
to overestimate the nonlinearity. Furthermore, since the
dipole–dipole interaction constants are generally difficult
to calculate exactly and may be also overestimated20,41. To
compare, we plot a scaled line (by a factor of 1/5) for the
strength of dipole–dipole interaction, which matches the
overall trend for experimental nonlinearity and provides a
good fit (dashed purple curve in Fig. 3b).
Another possible origin of the reduction of Rabi split-

ting with increasing density is a nonlinear phase-space
filling (NPSF) in polaritonic systems, as commonly
observed with ground state s-excitons36,38. Nonlinear
phase-space filling, also known as nonlinear saturation, is
the statistical effect that emerges from the non-bosonic
behaviour of excitons at large occupations. As excitons
are composite quasiparticles, the Pauli blockade prevents
the excitation of certain excitonic configurations if they
are already occupied. This nonlinear decrease in the
density of states leads to the effective reduction of light-
matter coupling. Similarly to the Rydberg-induced case,
the nonlinearity also grows with the exciton size, as a
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smaller number of excitons can be created (per volume or
area) until the medium becomes effectively transparent.
The blue curve in Fig. 3b shows the scaling of Pauli-
induced nonlinearity for the experimentally deduced Bohr
radius a0= 0.83 nm (for n= 1, see SI, Sec. 7.2). The β
factor associated with the Pauli blockade (βPauli) has an
asymptotic ∼n2.5 scaling, while at low n it is described by a
∼n3.5 dependence (SI, Sec. 7.2). The Pauli blockade curve,
which has no fitting parameters, is well below the
experimental values. To at least partially fit the experi-
mental values using only the Pauli blockade, the Bohr
radius must be set to a0 ≈ 2 nm. This greatly exceeds the
exciton radius estimates from the measured low-density

absorption (SI, Sec. 7). Therefore, we conclude that the
Pauli blockade alone cannot explain the observed non-
linearity and that the Rydberg-induced blockade plays a
dominant role. The contribution of the Rydberg blockade
to exciton-polariton nonlinearity is an order of magnitude
stronger (see Fig. 3b).

Nonlinear n2 parameter
From the nonlinear optics perspective, the polariton

nonlinearity can be also characterised by the nonlinear
refractive index n2 of the active medium in a microcavity
(Cu2O in our case)36. This nonlinear parameter appears in
the total refractive index as a frequency- and intensity-
dependent term, nT(ω)= n0(ω)+ n2(ω)I. The n2 para-
meter from blockade effects may be estimated by using
Eq. (1) (see SI, Sec 7.3):

n2 ωð Þ � � hnβn
2cn20ω

Gð0Þ
n ω� ωnð Þ

ω� ωnð Þ2 þ 1
4 γ

2
n

ð1Þ

where G 0ð Þ
n is the light-matter coupling constant, ωn is the

Rydberg resonance frequency, γn is the excitonic line-
width, n0 is the background refractive index of Cu2O, c is
the speed of light in vacuum and hn is a constant of
proportionality (determined from the measured Rabi
splitting using Eq. (S25), see SI, Sec. 7.3). Using the β-
factors in Fig. 3b, we derive the energy dependencies of n2
for each individual excitonic mode in Fig. 4. Black dots
show the upper bounds of n2 obtained using the
theoretical estimates of β, with values ranging from
10−17 to 10−15 m2/W, for n= 3 to n= 7. Using the
experimentally measured β-factors we deduce peak n2
values ranging from 10−17 m2/W to 4 × 10−15 m2/W, for
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n= 3 to n= 7. The peak values measured for n= 7
exciton resonance are comparable to n2 in GaAs polariton
waveguides40.
These values of n2 are 8 orders of magnitudes lower

than those measured on bulk Cu2O in ref. 21, where CW
excitation was used in resonance with Rydberg excitons.
However, we note that studies of polariton nonlinearity in
GaAs-based photonic systems showed that CW excitation
usually results in observed effective n2 values one to two
orders of magnitude bigger than in the case of picosecond
pulsed pumping. Such a discrepancy was explained by a
population of long-lived (up to 100 ps) excitons by the
CW beam, the interaction with which leads to enhanced
nonlinear energy shift42. In the case of Cu2O, the CW
excitation in the vicinity of Rydberg exciton resonances
and the subsequent relaxation of the photoexcited carriers
to the ground 1 s level is expected to lead to high popu-
lation of long-lived (with a lifetime of 13 µs43) dark 1 s
paraexcitons. Lifetimes up to several hundred micro-
seconds were also reported, which was attributed to long-
lived excitons trapped at defects or unknown metallic
impurities44. At sufficiently high density long-lived 1 s
excitons or excitons trapped to defects may further
recombine through Auger recombination creating
plasma. The exact density of 1 s excitons and plasma in
this case may depend on the particular sample and the
number of defects at which 1 s excitons may accumulate.
A possible explanation for the very high values of n2

observed in ref. 21 is therefore an interplay between
resonantly pumped Rydberg excitons and plasma. Free
carriers may increase the strength of the Rydberg block-
ade through screening, which increases the size of the
Rydberg excitons leading to enhancement of the
dipole–dipole interactions24. At the same time, the
screening may reduce the oscillator strength of the exci-
tons resulting in a density-dependent change in their
contribution to the refractive index. In support of this
suggestion, we note that Heckötter et al.45 characterised
the influence of free carriers, showing that absorption for
n= 10 Rydberg excitons reduces by a factor of ∼3 at free
carrier density as low as ∼0.5 µm−3. In the following
section, we use time-resolved measurements to shed some
light on the regimes where the polariton nonlinearity is
dominated by ultra-fast processes, such as Rydberg
blockade, and where it may be complicated by slower
processes such as Auger-mediated generation of plasma.

Pump-probe experiment
Importantly, in the single pulse experiment presented

above the polariton nonlinearity that we measured must
be ultra-fast since it develops within the picosecond
timescales of the probe pulse (which is also the pump
pulse in that case) and the polariton lifetime. However,
some of the resonantly excited exciton-polaritons can be

absorbed, with the resultant formation of lower energy
excitons, and then plasma through the Auger exciton
recombination. Therefore the Rabi splitting may remain
quenched for some time after the pump pulse is gone due
to interaction with this long-lived plasma. To reveal this
effect we further perform pump-probe measurement of
Rabi splitting for the n= 4 resonance. The n= 4 polar-
itons were excited with a strong pump and the trans-
mission of the sample was measured using a much weaker
probe pulse delayed by some time from the pump. The
linear polarisation of the probe is chosen to be perpen-
dicular to the pump and the transmitted pump beam was
rejected by a linear polariser. The n= 4 state was chosen
because it provides a good signal-to-noise ratio for small
probe powers.
We plot the results of the pump-probe experiment in

Fig. 5. In Fig. 5a, b we show the transmission spectra for
selected delays between pump and probe pulses for pump
fluences of 100 µJ cm−2 and 450 µJ cm−2, respectively.
The probe fluence was 50 µJ cm−2. The transmission
spectra are then fitted to extract the Rabi splittings as a
function of the time delay. In this fitting procedure, we
omit those time delays between −29 and 37 ps (apart
from zero delay), for which the interference between the
residual pump and probe prevents reliable fitting (the
residual pump intensity in the polarisation of the probe is
about 30 times less than that of the probe for pump flu-
ence 450 µJ cm−2 and can not be suppressed completely
by the linear polariser, see SI, Sec. 9).
At pump fluence of 100 µJ cm−2 the Rabi splitting is

reduced at t= 0 as expected for the instantaneous Ryd-
berg exciton-polariton blockade mechanism and by
t ≈ 40 ps has recovered almost back to its value prior to
the pump arrival (Fig. 5c, bottom panel). At longer delay
times t > 40 ps the Rabi splitting reduces and then
increases again on a timescale of 200–300 ps. We attribute
this behaviour to the 1 s exciton and plasma dynamics
created by the pump pulse, which is expected to occur on
a nanosecond timescale at exciton densities 103–104 µm−3

given the Auger recombination rate of 1 s excitons of the
order of 10−4 µm3/ns46. At higher pump fluences of
450 µJ cm−2 and 1000 µJ cm−2, shown in the middle and
upper panels of Fig. 5c, the creation of plasma after the
pump pulse is expected to occur on a shorter timescale
and indeed we observe the Rabi splitting is rapidly
quenched and then recovers monotonically on timescales
of 1.2 and 1.8 ns, respectively. The exact explanation of
the observed temporal dynamics requires complex mod-
elling of the exciton-plasma conversion and decay using
the corresponding rate equations46 and is beyond the
scope of this manuscript.
Finally, we also study Rydberg exciton-polariton trans-

mission spectra under non-resonant CW excitation well
above the band gap of the Cu2O. In this case, we find that
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the collapse of the Rabi-splitting is observed at photon
densities about 6 orders of magnitude less than in the
pulsed excitation regime (see SI, Sec. 8). This experiment
further confirms the important role of long-lived 1 s states
and plasma, the density of which can be significantly
higher in CW than pulsed excitation.

Conclusion
In conclusion, for the first time, we investigated the

nonlinear behaviour of a polaritonic system based on
Cu2O in the ultra-fast pulsed regime. The polariton system
allows us to probe the collapse of the Rabi splitting for
Rydberg exciton-polaritons and we observed that the
associated polariton nonlinearity increases as ∼n4.4±1.8

with principal quantum number n due to stronger dipolar
exciton–exciton interactions. The experimental values of
polariton nonlinearity coefficient β are in good agreement
(within a factor of 5) with our microscopical model, which
takes into account both the Rydberg dipole–dipole inter-
actions and Pauli blockade without fitting parameters.
Furthermore, our pump-probe data suggests that there are
several contributions to the nonlinearity in Cu2O-based
systems, which act on several different timescales. As well
as the ultra-fast response there are contributions which
can persist significantly longer than pulse duration and
polariton lifetime. The timescales for these are consistent
with the population of long-lived states and the creation of
plasma. In the CW excitation regime, these can be even

more pronounced resulting in greatly enhanced non-
linearity. In order to investigate the effect of plasma on
Rydberg exciton or exciton-polariton blockade in more
detail, and to fully explain the drastic differences observed
in nonlinearities for pulsed and CW excitation, we suggest
further studies using for example pulsed excitation with
varying pulse duration and repetition rate.
We note that higher exciton-polariton nonlinearities are

possible to achieve by modification of several factors: (i) use
higher quality crystals and observe higher n states, (ii) use
higher quality microcavities to increase strong coupling
with high n states, (iii) reduce the thickness of Cu2O to the
quantum well level to decrease absorption losses in the
cavity and enhance exciton–exciton interactions, and (iv)
exploit electromagnetically induced transparency for the
reduction of losses due to phonons47. Our work demon-
strates that Rydberg polaritons in Cu2O are a suitable
platform for quantum polaritonics with nonlinearities that
scale sufficiently strongly with Rydberg exciton quantum
number to reach the single polariton nonlinearity.

Methods
Sample and setup
Our cavity containing a natural Cu2O sample is cooled

down to 4 K in a continuous flow liquid Helium cryostat.
Natural Cu2O crystals are employed here since these are
of higher quality than artificially grown samples19,48. To
prepare the microcavity sample, the Cu2O flake was first
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cleaned in xylene with 1 min of delicate sonication and
rinsed in isopropanol. Producing the mirror layers was
done by initially securing the Cu2O flakes onto a substrate
with a 45mg/ml solution of PMMA and toluene. The
sample with the Cu2O flake was then loaded into an
˚Angstrom Engineering thermal evaporator. Silver was
then evaporated onto the Cu2O using a resistive source at
a rate of 0.2 nm s−1. The final thickness of the silver
mirror was 50 nm. The sample was then unloaded and the
Cu2O flake was removed and carefully rotated to expose
the opposite side that has no silver deposited. The PMMA
solution was then used to secure this to a new substrate
and the deposition was repeated with the same thickness.
To attach the resulting structure on the final substrate,
PMMA 495 resist in 8% anisole was spun at 4000 rpm on
a glass slide resulting in a 600 nm thick layer. The flake
was transferred onto the resist and then baked for 5 min
at 180 °C.
The Fourier space imaging spectra in Fig. 1 have been

obtained with a 1 ns super-continuum laser with a repe-
tition rate of 23 kHz and a spectral width after filtering of
50 nm. In order to achieve narrowband resonant excita-
tion in Fig. 2, we used 100 fs pulses at 1 kHz repetition
rate obtained from the frequency-doubled output of a
TOPAS optical parametric amplifier and then filtered by a
4f configuration pulse shaper with a 1200 g/mm grating
and a slit slightly displaced from the focal plane to obtain
a Gaussian shape spectrum with FWHM 1.75 meV.

Fitting procedure and extraction of β factors
The transmission spectra resulting from resonant exci-

tation consist of a doublet centred around the excitonic
resonance. In order to extract the coupling strength of the
Rydberg polariton from the transmission spectra, we fit
the data according to the model used in33 taking also into
account the small spectral width (FWHM= 1.75 meV) of
the excitation pulse [see SI, Sec. 1, Eq. (S1)]. Cavity and
excitons linewidths in the fit were fixed for all powers and
obtained in separate measurements for each n (see SI, Sec.
2). Two fitting parameters were allowed to vary with
power: the amplitude and the coupling strength. Thus we
extract the coupling strength dependence on average
power. To extract β we plot the Rabi splitting as a func-
tion of resonantly excited exciton density estimated from
the transmitted power through the cavity in resonant
conditions and fit it with the linear function. The slope
provides an average estimate for β.
The density of excitons ρ per volume is calculated from

the incident average excitation power Pavg by using the
following equation:

ρ ¼ TPavgτ0 Xj j2
f τpLA_ω Cj j2 ð2Þ

where T= 1/180 is the fraction of incident power that is
transmitted, τ′= 14 ps is the inverse of the tunnelling rate
of photons out of the cavity, through the silver mirror and
towards the detector, f= 1 kHz is the laser repetition rate,
τp ≈ 1.57 ps is the effective laser pulse width, A ≈ 20 µm2 is
the effective area for the interaction28, L= 26 µm is the
cavity length, ℏω is the single-photon energy and
|C|2= 0.5 and |X|2= 0.5 are photonic and excitonic
fractions of the polaritons respectively (see SI, Sec. 5 for
more details).
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Chapter 6

Optical vortices in polariton
fluids: towards analogue
black holes

6.1 Overview

“Un affreux Soleil noir d’où rayonne la nuit.”
(A terrible black Sun from which night radiates.)
— Victor Hugo, Les Comtemplations

In this section, we shall present how exciton-polaritons in microcavities can
be used to study a seemingly entirely unrelated phenomenon: black holes. This
new and promising area of research, known as “Analogue Physics”, offers a novel
approach to exploring phenomena which cannot be observed directly. In the first
section, we shall give a short introduction to black holes, to give motivations
for our study. The second section will present a brief overview of the existing
analogue physics techniques. Using exciton-polaritons to study black holes is
one such technique, and in the third section we shall present our experimental
objectives and results. Finally, the fourth section discusses further possible work
in this intriguing area of study.

This chapter serves as illustration of the possible application of superfluid-
like non-linear exciton-polaritons for fundamental research. It also explores the
properties of the superfluid phase of polaritons, which is another expression of
their bosonic nature.
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6.2 Black holes

Few things in Physics have inspired the imagination so much as black holes,
strange singularities in space time whose mass is so strong, not even light can
escape from their gravitational pull. Formally speaking, black holes are stable
solutions of Einstein’s field equations in general relativity, and have been con-
ceptually predicted as early as the eighteenth century [263], but it was only after
Einstein’s theory had been established that Karl Schwarzchild found the first
solution for the field equation around a massive, immobile spherical object of
radius R [264]. In general relativity, the geometry of space-time is governed by
a mathematical object known as a metric. The Schwarzschild metric describes
how space-time is deformed by a spherically symmetric immobile massive object.

Schwarzchild found that his solution had “singularities” at two points, r = 0
(where r is the radius from the object’s centre) and at a certain radius r =
rS , called the Schwarzchild radius. According to general relativity, the escape
velocity, which is the velocity required for an object to escape the gravitational
pull, becomes greater than the speed of light at this singularity. For bodies in
which R > rS (such as planets and stars) for example, this is of no consequence.
However, for bodies which R < rS , known as Schwarzschild black holes, no
light can be seen from within said radius. Conventional assumptions about
time and space fall apart inside the radius, known as the event horizon of the
black hole. The events in the black hole cannot affect an observer outside its
event horizon. An external observer, for example, would perceive an object
falling toward the event horizon as approaching it asymptotically — never quite
reaching it, falling forever. From the perspective of the falling object, however,
the horizon has already been crossed, as David Finkelstein explained in 1958
[265].

By the 50’s, several predictions of General Relativity had been confirmed
with a remarkable degree of accuracy, and black holes were becoming a subject
of active theoretical and experimental research. Roy Kerr discovered solution
to the Einstein equations for rotating objects [266], now known as “Kerr black
holes”. It also emerged, mathematically, that within the framework of general
relativity, a black hole can fully be described by only three parameters: its mass,
angular momentum, and electric charge [267].

Nevertheless, the idea that black holes could be a physical reality caused
controversy, and their space-time altering properties were sometimes thought to
be mathematical artifacts. However, observational evidence began to support
their existence, and in 1975, the first evidence for a black hole was reported
[268], in a stellar object known as Cygnus X-1.

Since then, black holes have continued to fascinate physicists and laymen
alike, and more and more of their properties have emerged, including their role
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in the detection of gravitational waves [269], or the phenomenon of black hole
evaporation [270], also known as Hawking radiation. Hawking’s theory predicts
that black holes eventually disappear. This opened up one of the most funda-
mental questions in Physics, known as the “black hole information paradox”:
the information that comes out of black hole should be thermal, with seemingly
no relation to the bodies that enter them [271].

The fascination that black holes create, however, is only matched by the very
difficult challenges involved in their study. The theory of black hole evaporation
involves a semi-classical approach, combining elements of quantum theory and
general relativity. A full treatment of quantum gravity could help to better
understand the phenomenon. However, a unified theory of general relativity
and quantum mechanics, a long-standing goal in the foundations of physics, has
not been developed yet, as the axioms in general relativity are not compatible
with that of quantum mechanics.

On the experimental side, black holes are situated thousands of light years
away from us [272]. Direct experimental data from black holes is difficult to ac-
quire, and these observations require very elaborate and expensive equipment.
Finally, for the phenomenon of Hawking radiation, the time scales associated
with black hole evaporation are so immeasurably large that it would be practi-
cally impossible to observe it in a meaningful way except for very small black
holes. To meaningfully observe black hole evaporation, a more “down-to-earth”
approach proves to be necessary.

6.3 A review of Analogue Physics techniques

William George Unruh published in 1981 a paper with a title ending in a ques-
tion mark, “Experimental Black Hole Evaporation?” [23], in which he offered
to study black hole phenomena directly in the laboratory, using nothing more
than a tabletop setup. In Unruh’s proposal, the black hole is replaced by a
irrotational fluid optical vortex. Unruh showed that the equation of motion for
the fluid in this system are equivalent to a Schwarschild’s black hole metric. In
particular, if the fluid velocity at a radius rS exceeds the speed of sound waves
within the fluid, the singularity of the Schwarzschild’s metric is recreated.

Such systems are called “accoustic black holes”, or “dumb holes” – here,
“dumb” has the meaning of “deaf”. In a real black holes, photons are unable
to escape the event horizon as the required escape velocity is greater than the
speed of light. In an acoustic black hole, phonons are unable to escape the sonic
event horizon. The speed of the phonons is the speed of sound in the fluid, and
the required escape velocity is equal to the fluid velocity. This means that an
event horizon is created if the fluid velocity is greater than the speed of sound.
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Unruh also demonstrated, mathematically, that if the phonons were treated
quantum mechanically, then they would also display “thermal evaporation” –
sound waves would be emitted beyond the sonic event horizon, with a thermal
distribution, unrelated to the sound waves within the event horizon.

Unruh’s model can be realised experimentally and uses well-established theo-
retical concepts. However, he also acknowledged several limitations of his model.
Namely, the assumptions of fluid mechanics break down near the optical vortex.
This is also true for General Relativity, which cannot describe the singularity
at the very centre of the black hole. More importantly, the evaporation temper-
atures predicted by Unruh were extremely small, on the order of a µK, which
were thought to be undetectable in any real fluid, where turbulence and other
phenomena would drown out such low signal.

Nevertheless, the quest to create “Artificial Black Holes” [273] was started,
and analogue physics was born. Many reviews have listed and discussed the ex-
perimental projects to realise Unruh’s proposal [274, 275]. The simplest example
of an “artificial black hole” is a purely classical phenomenon. It consists of a
surface water waves in a shallow basin with a controlled depth h. An obstacle
is placed at the bottom of the channel, which reduces the velocity of the surface
waves while increasing the velocity of the flow [276], which creates the desired
sonic event horizon. As research progressed, more evidence and properties of
the “sonic event horizon” were probed, for example so-called “backreaction”, in
which the flow of water waves changes the properties of the event horizon [277].

It is certain that such a setup has many limitations. As water is a classi-
cal fluid, none of the assumptions of quantum mechanics necessary to predict
Hawkings radiation hold, and the turbulence effects cannot be neglected. Addi-
tionally, the scale of temperature for Hawking radiation is vastly different from
the room temperature at which the water flows. Nevertheless, a classical limit
of the phenomenon was reported, with results still under discussion [278].

To counteract this limitation, researchers have used Bose-Einstein conden-
sates as analogue physics models, which exist at temperatures comparable with
the black hole evaporation temperatures. This was made possible with the ad-
vent of laser cooling and the realisation of the first Bose-Einstein condensate
of cold atoms [13], 15 years after Unruh’s proposal. A sonic event horizon was
achieved in a cloud of 87Rb atoms [279] in 2010, and a few years later Hawk-
ing radiation was reported [280], although the exact interpretation of the result
remains controversial (see e.g [281] arguing against the Hawkings radiation in-
terpretation, and the author response [282]).

Other experimental setups to create “artificial black holes” or study analogue
gravity include superfluid Helium [283, 284, 285], and exciton-polaritons: the
so-called “quantum fluids of light” [286, 287].
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6.4 Analogue Exciton-Polaritons

Exciton-polaritons offer several advantages compared to other models of ana-
logue gravity. Unlike water waves, they are a quantum phenomena in which
turbulence, decoherence, and other classical effects masking relevant properties
of the system can be minimised. In comparison to cold atoms, such a system
is much easier to create and has more freedom in the experimental parameters.
Exciton-polaritons analogue black holes have been realised in one [288] or two di-
mensions [287]. Unlike cold atoms, analogue exciton-polaritons black holes are
directly coherently injected, rather than forming spontaneous coherence after
Bose-Einstein condensation.

Beyond black hole evaporation, another phenomenon available for study in
analogue physics is the so-called Penrose process, which is a form of energy
emission by rotating black holes [289]. It is believed to be responsible for the
“relativistic jets” commonly seen around black holes. A “jet” is a flow of ionised
matter emitted on the axis of rotation.

A proposal to observe the Penrose effect in exciton-polariton analogue black
holes was given in ref. [290]. It involves the creation of a bound vortex/anti-
vortex pair, which is predicted to split at the event horizon of the black hole.
The optical vortex is expected to scatter outside of the event horizon, and the
anti-vortex to be absorbed by the acoustic black hole. This theoretical process
is described in figure 6.1.

While it is possible to observe semi-classical analogues of the Hawking ra-
diation in classical fluids, the Penrose process cannot be simulated in water
tank experiments, as the angular momentum of the vortex/anti-vortex needs to
be quantised. In a classical fluid, the turbulent effect would dominate over the
scattering. The experimental flexibility afforded by exciton-polaritons also gives
them an advantage over an experiment involving cold atoms or liquid Helium.
Finally, the dynamics of polariton vortices have been studied [291], which gives
a strong theoretical basis.

The Starobinskii-Unruh effect is related to black hole evaporation and is
sometimes called the “spontaneous Penrose effect” [292], which arises from vac-
uum instability. The prevalence of the Starobinskii-Unruh effect is related to
the size of the “ergosphere” of the black hole, which lies outside of its event
horizon.

In analogue physics systems, the size of the ergosphere can be easily con-
trolled by the velocity of the fluid in which the acoustic black hole is created.
This makes exciton-polaritons a system particularly suited for the study of this
effect, once again owing to their experimental flexibility.
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Figure 6.1: Simulation images of an analogue black made of an exciton-polariton
BEC. The bright part of the images correspond to high polariton density, and
the dark parts to low polariton density. The green arrow corresponds to the
rotation direction.
In (a), a defect is introduced to the black hole. That density “dip” then under-
goes a Penrose process. In (b) the defect scatters into a vortex/anti-vortex pair.
In (c), one of the vortices gets annihalted by the black hole, and in (d) another
escapes outside of the event horizon. Taken from [290].
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6.4.1 Experimental realisations

To create an analogue gravity system using micro-cavity exciton-polaritons, two
things are necessary: the exciton-polaritons must be in a fluid-like phase, and
this phase must display a sonic event horizon [293].

To meet this condition, the polaritons can be brought into the superfluid
regime, which was described in section 2.6.5. According to the Landau criterion,
the speed of the polariton quantum fluid of light would be below the speed of
sound in the superfluid regime.

If the velocity follows a gradient, the event horizon is created at the point
where the Landau criterion is no longer fulfilled.

More precisely, the region of space where the polariton is in the superfluid
regime – hence subsonic – would be outside the event horizon, and the region
of space where the polariton is no longer in the superfluid regime – hence at
supersonic speeds – would lie inside of it.

There have been many realisations of polariton superfluids [19, 197]. This
has been used for the realisation of one-dimensional analogue black holes, with
a single oblique excitation spot resulting in a flowing polariton superfluid [288].
As the fluid propagates, losses result in a lower polariton density. When the
density reaches a threshold, the polariton is no longer in a condensed phase,
loses its superfluid properties, and as a result becomes necessarily supersonic.
An horizon is created. This scheme is presented in figure 6.2.

This scheme results in a one-dimensional, non-rotating black hole with an
“open” event horizon. This is a relatively simple approximation which cannot
reproduce all phenomena associated with black holes. In particular it cannot
reproduce the Penrose process, which is predicted to occur in rotating black
holes.

To create a rotating black hole, we create a ring-shaped two-dimensional
polariton superfluid with a well-defined angular momentum. There are several
ways to generate such a polariton superfluid. If the cavity is pumped near-
resonance, as is often the case for a polariton superfluid, any angular momentum
and pattern in the optical pump will be carried to the exciton-polariton. The
goal is then to impart a well-defined momentum to the excitation beam; this is
easily done for a single Gaussian spot, as shining the beam at a given angle will
give it the desired linear momentum.

The process is more complicated for a ring-shaped beam. The desired pat-
tern, with well-defined angular momentum number l, is the Fourier transform of
a Laguerre-Gaussian beam [294]. Having a ring-shaped beam in Fourier space
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Figure 6.2: “Polariton wire” device used in [288]. The cavity exciton-polariton
are pumped with a non-zero angular momentum and flow in the wire, and
eventually an event horizon.

allows us to shine a ring-shaped beam in real space on the sample.

The phase along the edge of the optical vortex varies continuously, with a
total variation equal to 2∗πl, and in the ideal case the intensity on the edge of the
ring remains constant. Those doughnut-shaped rings are called “perfect vortex
beams”, and there are many techniques to generate such beams. In recent years,
a remarkable degree of control over the beam profile, diameter, beam width [295]
and the topological charge l was achieved [296], as can be seen in figure 6.3

For our experiment, we used a programmable phase plate, known as a spatial
light modulator (SLM) from the company HoloEye. This phase plate consists
of a programmable screen of 1920 x 1080 pixels on a 15.36 x 8.64 mm screen.
Any arbitrary image can be projected on the screen. When the light hits the
screen, a delay on reflection is imposed depending on the colour of the pixel, with
maximum delay for a black pixel – corresponding to a phase shift of 2π – and no
delay for a white pixel. This gives very good flexibility to impart a deterministic
phase map to an incoming Gaussian beam, which can be changed on the fly
depending on the need of the experiment. To create a vortex with angular
momentum number l, a spiral with l segments going linearly from black to white
is projected on the SLM. However, with only a spiral, all orders of diffraction
are reflected by the SLM at the same angle. To separate between them, the
image of a fork-like grating is superimposed on the spiral. An interferometer
is then built to image the phase pattern on the ring. This system is shown in
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Figure 6.3: Example of a perfect optical vortex, with a very small vortex thick-
ness, constant intensity in the ring, and a sharp Gaussian profile. Generated
via Fourier transform of a Laguerre-Gaussian beam. Taken from [296].

figure 6.4.

The SLM offers a very large degree of flexibility and allows switching between
different l numbers on the fly with very little re-alignment required. However,
one limit is that the Laguerre-Gaussian beams it generates are very difficult to
collimate and diverge over large distances. The size of the ring, which is depen-
dent on the l number, as well as its energy of the laser, are critical experimental
parameters. We must find a point in the parameter space where, at a given
laser energy, the size of the ring in k-space is equal to the spacing of the LPB
dispersion at the same energy, so that there is an overlap between the polariton
dispersion and the ring. This can be quite challenging to achieve in practice.
We call this procedure “matching” the ring to the edges of the dispersion.

To ensure that the optical vortex has the correct experimental parameters,
the LPB is populated by the use of an off-resonant red laser at 633 nm, illumi-
nating the sample in the reflection geometry, while the vortex shines through
the sample in the transmission geometry. A Fourier lens is used to image the
LPB and the optical vortex in k-space. The idea is then to use experimental
parameters to make the vortex match the dispersion. This geometry is given in
figure 6.5.

The size of the ring reflected by the SLM is related to its size in k-space. As a
result, it is possible to use a telescope to increase or decrease the size of the ring
to meet the edges of the LPB. However, a bigger ring results in a lower power
density, and as a result, an increased threshold for BEC, which can be harder
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Figure 6.4: Optical vortex generation using a spatial light modulator. a) Image
of the phase pattern used to generate a n = 20 vortex. b) Image of the n = 20
vortex-generating phase pattern multiplied by a grating to separate the different
diffraction orders. c) Interference pattern arising from the interference n = 20
vortex beam transmitted through the sample with a reference beam.

to provide experimentally, as the maximum available power density is limited
by the damage threshold of the SLM. An optimum must be found between the
desired topological charge l, the ring size in k-space, and the maximum power
density. The size of the optical vortex and the topological charge l also give the
polariton vortex angular velocity, which is a key parameter for the superfluid
regime and the event horizon. Finally, as it gets focused from a large ring in free
space into a µm-sized ring on the sample, the ring acquires some radial velocity,
since it is not focused through the centre of the lens. This radial velocity can
be an unwanted parameter in the experiment.

Once the ring has been shaped to the desired size, it must be resonant in
energy with the LPB. This can be done either by tuning the incident laser (a
Ti-Sapphire oscillator which can be tuned simply using a dial) in energy, or by
leveraging the exciton-cavity detuning in a wedged sample to tune the LPB in
resonance with the ring.

Tuning the laser is simple in theory. In practice, we excite the sample with a
pulsed Tsunami laser, whose wavelength can be tuned very precisely, and with a
laser linewidth of ∼ 10 µeV, which is small enough to excite the LPB resonantly.
The laser has a pulse duration of 100-200 ps at a repetition rate of 80 MHz.

The experiment consists of a three way compromise between pulse duration,
laser stability, and wavelength. Some parameters can result in a short enough
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Figure 6.5: Experimental setup to create an exciton-polariton optical vortex
with controllable parameters. On the excitation side, the main pump laser is
controlled in power by a polariser and a half wave-plate. The laser is redirected
onto the SLM, where the first order of diffraction is collected. A beam expander
is used to control the size of the optical vortex in k-space, and the ring is pro-
jected onto the sample in the transmission geometry.
On the collection side, a non-resonant HeNe laser is used to measure the LPB
dispersion in photoluminsence in the reflection geometry. The two measure-
ments can be done at the same time as they use different geometry. The beam
paths of on the collection side are shifted for clarity, but hit the sample at k = 0
incidence.
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pulse duration to get high peak power, and a pulse with a stable enough config-
uration that the system remains at the set wavelength and doesn’t need to be
tuned in the middle of a measurement. However, optimising these parameters
change the emitted wavelength of the laser.

Achieving a good compromise between these tree parameters is particularly
challenging at wavelengths in the 832-833 nm region, where contaminants in the
laser system such as water or oxygen may be absorbed and make the laser less
stable. Unfortunately, this is also the region of interest for our experiment.

By contrast, if the laser is set in a stable configuration with a fixed wave-
length, tuning the cavity to the desired wavelength is easier experimentally.
In a wedged cavity, it consists of simple moving the sample using micrometer
screw to the desired region. However, it may be more difficult to get the desired
excitonic and photonic fractions for the polaritons.

6.4.2 Polariton optical vortexes in the superfluid regime

Non-linear behaviour of the ring

The sample we use for this experiment consists of a cavity with GaAs/AlGaAs
DBRs, with GaAs/In0.04Ga0.96As QWs in the cavity. It is selected for its good
sample quality at a wavelength that can easily be reached with the Ti-Saphirre
laser. The exciton resonance is approximately 1.4968 eV at 4 K. The sample
is described in figure 6.6. The cavity is wedged, which allows for a controlled
exciton-photon detuning and control of the Hopfield coefficients.

We can demonstrate the strong coupling in this system by showing an anti-
crossing of the lower and upper polariton branch, as was done in figure 6.7.

In figure 6.7, it is necessary to completely saturate the LPB to see the UPB.
For the remainder of this experiment, we were unable to systematically probe
both branches. As a result, it is only possible to give an approximate value
of the coupling strength over the sample, and as such the precise values of the
excitonic and photonic fractions cannot be given all the time. In the case of
figure 6.7, we estimate the Rabi splitting to be 4.45 meV. As a result, we can say,
depending on the position of the bottom of the LPB, if the polaritons created at
a particular point in the sample are more excitonic (if the LPB is closer to the
exciton resonance, ie, at a lower wavelength) or more photonic (if the LPB is at
a higher wavelength), and estimate the photonic fraction using this approximate
Rabi splitting.

Our first objective is to show a non-linear behaviour of the ring-shaped
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Figure 6.6: a) SEM imaging of the sample, showing the growth substrate on
the top, the DBR pairs, then the cavity in the middle, and the second layer of
DBR at the bottom. b) Growth specifications of the sample with the materials.
Courtesy of Tommi Isoniemi.

Figure 6.7: Polariton emission in a k-space as a function of wavelength and angle
of emission, resulting from a non-resonant pumping of the sample. It shows anti-
crossing of the upper polariton branch and the lower polariton branch. Courtesy
of Tommi Isoniemi. For this run, the k axis was not calibrated.
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-1-2-3

a) b)

Figure 6.8: a) LPB dispersion for testing the non-linear behaviour of the ring.
b) Power dependency of rings with different l numbers.

pattern, in this case a non-linear shift of the polariton dispersion. If we pump
the sample slightly above the bottom of the LPB, the transmission through the
sample is initially low, but will get much stronger after the LPB shifts enough
in energy to be in resonance with the pump. We must demonstrate that the
sample does indeed show non-linear shift of the LPB. Showing that the sample
exhibits non-linear behaviour is a first step on the road for the realisation of
superfluidity and an event horizon. We stress that this behaviour is different
from the non-linear threshold of polariton condensation, as the polaritons are
coherently injected directly in the system, as opposed to the “spontaneous”
coherence which builds up from non-resonant pumping for polariton BECs.

To demonstrate this non-linearity, we measure the total transmitted power
as a function of the incident power, for different ring sizes, for the polariton
dispersion plotted in figure 6.8.a, with a ring laser resonant with the bottom of
the LPB.

In figure 6.8.b, we show the transmitted power, measured after the sample,
as a function of the incident power carried by the ring, measured before the
sample. The larger optical vortex (l = 16) shows a purely linear dependency,
with no threshold, whereas the l = 10 vortex shows a sharp threshold. The
l = 13 case is intermediate, showing a less pronounced “kink” but at lower
powers. This can be attributed to the polariton density, with scales with the
size of the optical vortex. The size of the optical vortex is in turn given by the l
numbers. In other words, the bigger the l number, the larger the optical vortex;
the larger the l vortex, the lower the polariton density; and for low polariton
densities, no non-linear behaviour is expected to occur.

In conclusion, for a given optical vortex size, a non-linear behaviour consis-
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tent with polariton superfluid transition can occur for ring-shaped beams with
a relatively high l number. At even higher l numbers, only a linear behaviour in
power is observed, and no polariton superfluidity occurs. This rules out these
very high l numbers for the experiment.

In theory, this limitation could be overcome with a telescope to expand or
shrink the beam, however an angular momentum close to l = 10 is considered
suitable for analogue physics experiment.

Influence of the Hopfield coefficients and ring filtering

The previous section has demonstrated evidence of exciton-polariton non-linear
behaviour for vortices of a large l quantum number when pumped near-resonance.
However, to realise a superfluid polariton, it is necessary to pump the cavity
with a certain detuning in energy from the bottom of the lower polariton branch.
Indeed, the transition to the superfluid regime depends on the Landau criterion,
which is dependant on the polariton fluid velocity. This velocity is directly de-
pendant on the initial momentum of the injected polariton, as given by equation
2.67, and in particular, if we inject polaritons resonant with the bottom of the
LPB, then their velocity will be zero.

At the same time, the beam must be shaped so that its size in k-space is
equal to the spacing of the LPB at the same energy, “meeting the edges” of
the polariton dispersion. For example, if the injected polaritons are resonant
in energy with the bottom of the LPB, but with a high wavevector, then no
non-linear behaviour will occur.

One challenge of this experiment is that there is a very large parameter
space to cover. We will analyse the non-linear behaviour of the ring at three
points in the wedge cavity: one with a more excitonic fraction (fig 6.9.a, b, c),
with a LPB wavelength of 831.17 nm, one with a more photonic fraction, with
a LPB wavelength of 832.80 nm (fig 6.9.d, e, f), and finally one with a more
“balanced” fraction (fig 6.9.g, h, i), with a LPB wavelength of 832.24 nm. This
gives excitonic fractions |CX |2 of approximately 0.33 for the more excitonic case,
0.25 for the “balanced” case, and finally 0.20 for the photonic case.

The results show that a more excitonic polariton makes a poor realisation of
the ring-shaped vortex beam, which does not display a sizeable change in the ring
shape as power is increased. This can be attributed to the large effective mass
of exciton-like polaritons in the cavity, as opposed to photon-like polaritons.
Indeed, in [19] the author explicitly attributes the fluid-like behaviour of exciton-
polaritons to their photonic fraction.

A very photonic ring does display a sizeable change in the ring after thresh-
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Figure 6.9: Non-linear behaviour of the optical vortex for excitonic polaritons
(a, b, c), photonic polaritons (d, e, f), and balanced polaritons (g, h, i). The
colour scale for (a, d, g) is logarithmic, with warmer colours indicating a greater
signal. The colour scale is greyscale for the ring images, with brighter pixels
indicating a stronger signal.
On the first column, the dispersion and the vortex are plotted in k-space imag-
ing, with a slight vortex-LPB detuning in energy. On the second column, the
real-space image of the vortex is plotted at low powers, and on the third column,
the ring is plotted at high powers.
Axis: for the dispersion, the x-axis is the dispersion angle in degree, and the
y-axis is the wavelength in nm. For the optical vortexes, the x and y axis are
distances from the centre of the ring in µm. The axis titles are not repeated to
save space.
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Figure 6.10: Transmitted power of the ring as a function of incident power for
the pumping detuning of figure 6.9. The balanced case is for |CX |2 = 0.25, the
photonic case for |CX |2 = 0.20, and the excitonic case for |CX |2 = 0.33.

old, which can be seen in the second line of figure 6.9. However, the change of
the ring is less pronounced than the balanced case. and we note that the ring
shows a distortion at low power.

The balanced exciton-polariton, on the third line, results in a very sharp
non-linear threshold and a sizeable change in the ring shape. This procedure
helps to rule out very excitonic and very photonic polaritons and reduces the
parameter space.

A similar conclusion can be drawn from the study of the transmitted power
of the rings through the sample, as a function of incident power, as seen in figure
6.10. The very excitonic rings do not display any threshold-like behaviour, and
the more photonic rings have a high threshold. By contrast, the “balanced”
case shows a sharp threshold at lower power.

An interesting result of this preliminary experiment relates to the shaping
of the optical vortex beam. We find that, if the ring size in k-space does not
match the LPB dispersion, then the ring shrinks or expands in k-space to match
the edges of the dispersion. This is because polariton states at a given energy
resides on a ring in k-space which is given by the polariton dispersion. This is
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Figure 6.11: k-space imaging of an l = 10 ring, before (left) and after (right)
non-linear threshold. For this ring, the LPB was at 832.305 nm, and the ring
was at 832.210 nm, giving a detuning in energy δLaser−LPB = 170 µeV. The data
is plotted in logarithmic greyscale, with brighter pixels meaning higher signal.

known as cavity filtering : the optical vortex shrinks or expands to match the
allowed polariton momenta space. The shrinking of the ring in k-space results
in a distortion of the transmitted optical vortex in real space, which can be seen
for example on the photonic case of figure 6.9 at low powers. Interesting, the
transmitted optical vortex becomes less distorted after threshold. We attribute
this to a shift of the LPB which results in less cavity filtering and less distortion
of the ring.

A direct measurement of the LPB dispersion under highly resonant pump
power is difficult, as the injected polaritons are close to the resonance, and do
not populate the full dispersion. However, it is possible to image the ring in
k-space, as seen in figure 6.11. As we increase the power, the cavity filtering can
be seen as the ring in k-space changes size and becomes thicker. This can be
tentatively interpreted as the injected polaritons populating lower energy states
of the dispersion, and shrinking their size in k-space to accommodate for the
lower k-space “size” of the polariton dispersion at these energies. This implies
a shift of the polariton dispersion, which would be consistent with a superfluid
transition as described in [19].

Evidence of superfluid behaviour

We can now perform a direct test of the superfluid behaviour of the exciton-
polaritons. To demonstrate superfluid behaviour, we create the ring-shaped
beam on a region of the sample with a prominent surface defect.

152 Chapter 6 Anthonin Delphan



Chapter 6. Optical vortices in polariton fluids: towards analogue black holes

� � � � � � � � � 0 1 5 3 0 4 5

4 5
3 0
1 5

0
� � �

� � �

� � �

�
���

�
�

� � � � � �

d e f e c t

0 . 0 3  m W

2 0 0 , 0

1 , 0 1 5 E + 4

� � � � � � � � � 0 1 5 3 0 4 5

4 5
3 0
1 5

0
� � �

� � �

� � �

�
���

�
�

� � � � � �

7 3  m W

d e f e c t
2 0 0 , 0

1 , 8 0 0 E + 4

Figure 6.12: Real-space images in transmission of an l = 8 before (left) and
after (right) non-linear threshold, showing superfluid behaviour. The ring ro-
tates clockwise, and below threshold some ripples due to the interference of the
scattered light with the incoming light are observed. Those ripples dissapear in
the superfluid regime, and the light flows freely around the defect.
This plot uses a linear greyscale colour scheme, with brighter pixels having more
signal.

We find that the fluid of exciton-polaritons shows ripples around the defect
below threshold, but such ripples vanish above threshold, as seen in figure 6.12.
The best results are obtained for a ring with a higher polariton density, and as
such with a lower l number. The LPB is at 832.509 nm, and the ring is pumped
at 832.4331 nm, resulting in detuning in energy δLaser−LPB = 135 µeV.

These ripples come from the back-scattering of the polariton fluid across
the defect. As the polariton moves in a circular fashion, it hits the defects and
some gets scattered in the opposite direction. On the detection side, this creates
a phase interference pattern, resulting in the formation of fringes and ripples.
However, after the threshold and once the polariton is in the superfluid regime,
this back-scattering no longer occurs, and the fringes dissapear.

It is easy to reverse the direction of the angular momentum by flipping the
image (fig 6.4.b) used to create the polariton vortex. Once the flow is reversed,
the ripples flow in the other direction. After the threshold is reached, the
light flows around the defect without scattering. This confirms that the optical
vortex acts as a fluid of light with a clockwise or anti-clockwise flow which can
be easily controlled with the SLM, and that above a certain threshold, it acts
as a superfluid. This is shown in figure 6.13.

Chapter 6 Anthonin Delphan 153



6.4. Analogue Exciton-Polaritons

� � � � � � � � � 0 1 5 3 0 4 5

4 5
3 0
1 5

0
� � �

� � �

� � �

�
���

�
�

� � � � � � �

d e f e c t

0 . 0 3  m W

2 3 0 , 0

2 4 1 0

� � � � � � � � � 0 1 5 3 0 4 5

4 5
3 0
1 5

0
� � �

� � �

� � �

�
���

�
�

� � � � � �

d e f e c t

7 3 . 7  m W

2 0 0 , 0

2 , 2 0 0 E + 4

Figure 6.13: Real-space images in transmission of an l = 8 before (left) and after
(right) non-linear threshold, showing superfluid behaviour. The ring is illumi-
nated on the same defect as in figure 6.12, but with the direction of propagation
reversed.
This plot uses a linear greyscale colour scheme, with brighter pixels having more
signal.

Discussion

Our sample shows behaviour consistent with polariton superfluidity. However,
a challenge remains as we need to display a clear, unambiguous event horizon
for analogue physics experiments. The event horizon for an exciton-polariton
analogue black hole is characterised by a transition from the superfluid to the
Cerenkov regime. This can be characterised by sliding the optical vortex left
and right across the defect. Where the optical vortex has a high density of
polaritons, we should see a superfluid-like frictionless flow, whereas where the
vortex has a lower density of polaritons, we should see a Cerenkov-like scattering,
as in figure 2.31, with small straight ripples very close to the defect, as opposed
to curved ones.

It is difficult to unambiguously claim this in our experiments. Indeed, our
vortex-shaped beam shows a very sharp decrease in intensity on the edges, as
seen in figure 6.14. Therefore, it is difficult to project the ring in such a way that
the polariton density is high enough to observe the Cerenkov-like behaviour, but
low enough that it does not reach the superfluid regime.

Additionally, our rudimentary study has shown behaviour consistent with
the superfluid regime but failed to clearly identify a superfluid critical velocity.
A more systematic study would have allowed us to identify the key experimental
parameters needed to reach the Cerenkov regime.

Unfortunately, this study proved to be difficult as getting the pump laser to
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Figure 6.14: Intensity profile along the x axis for a l = 10 ring, above threshold.

consistently emit at the same wavelength with the same pulse duration was
not possible, as our pump laser was quite unstable. This was a persistent
experimental challenge during our investigation of exciton-polariton analogue
black holes. Other challenges include the very large parameter space of different
l numbers, and the size of the ring in k-space which needs to match the dispersion
to avoid too much distortion due to cavity filtering.

6.5 Further work

Our experiment has shown some evidence of superfluid behaviour for different l
numbers and a very large experimental flexibility to tune the parameters of the
experiment. However, this also comes with experimental difficulties due to the
very large parameter space. Further work on this experiment will focus on ways
to claim the creation of an event horizon and the study of the angular velocity
and phase properties of the exciton-polariton analogue black hole.

6.5.1 Aharonov-Bohm effect

An interesting signature of analogue physics is the so-called Aharonov-Bohm
effect. In quantum electrodynamics, the Aharonov-Bohm effect is observed
when a charge is affected by an electromagnetic field even in a region where
the intensity of the field should be zero [297]. This effect is purely quantum,
and comes from the coupling of the charge’s complex phase to the potential
from which the electro-magnetic field derives.
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A gravitational analogue of the effect is expected to happen for gravitational
fields [298]. Analogue physics experiments were proposed to investigate this
phenomenon [299], with ultimately some results in a cold atoms condensate
[300].

The electromagnetic Aharonov-Bohm effect is typically measured using in-
terference patterns, as the phase of the particles affected by the potential are
phase-shifted according to the potential’s angular momentum. Observing a
phase-shift due to the Aharonov-Bohm effect would be a proof that we have
realised an analogue black hole without the need to check for an event horizon.

6.5.2 Phase measurements

To observe the Aharonov-Bohm effect, we build an interferometer to measure
the phase across the ring to quantify the angular momentum l and verify that
the imprinted optical vortex retains the angular momentum. The geometry of
the interferometer is given by figure 3.6.B. In this case, the pump beam is sent
an angle compared to the reference beam. This allows us to recreate the phase-
pattern of the 6.4, and an algorithm [301] used a Fourier transform to extract
the phase data from such measurements.

While this approach is suitable for l = 1, as shown in figure 6.15.b, it proves
to be more challenging for higher l numbers, as seen in figure 6.15.d. As the time
of writing this thesis, experimental efforts focus on finding the best available
ways to find a phase map for the extraction.

6.5.3 Filtering in intensity

The geometry to realise the Aharonov-Bohm effect is quite complex. One possi-
ble geometry requires a two-beam experiment. One beam is used to realise the
analogue black hole using the geometry we have described in figure 6.5. The
other beam would be used to probe the phase shift resulting from the analogue
gravity, and would be sent at a small angle, on the edges of the optical vortex.
The two beams need to be separated in energy.

On the collection side, it is necessary to filter the pump beam which creates
the vortex and the probe beam. As the two beams are separated in energy, a
pulse-shaper which only selects the wavelengths of the probe beam would be an
adequate solution.
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Figure 6.15: a) Interferometric measurement of the l = 1 ring, without being
transmitted through the sample. b) Phase map as extracted using [301]. The
red highlight corresponds to the dislocation identifying a l = 1 vortex.
a) Interferometric measurement of the l = 10 ring, without being transmitted
through the sample. b) Phase map as extracted using [301]. The data is too
noisy to identify any discernable features.

Chapter 6 Anthonin Delphan 157



6.5. Further work

6.5.4 Conclusion

We have demonstrated a number of necessary conditions (non-linear thresh-
old and superfluidity) to realise analogue physics on our sample using exciton-
polaritons. The very large parameter space and the instability of the lasers used
in this experiment are challenges. However, confirming that we have an event
horizon proves to be difficult. The experimental work continues at the time of
writing this thesis.
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Chapter 7

Conclusion and perspectives

Exciton-polaritons are an extremely rich topic of study. In this thesis, we have
tried to show the breadth of the subject with an extensive literature review and
the presentation of original research.

The introduction provides a definition of the phenomenon, explaining where
the idea of “hybrid light-matter particles” comes from. We define the strong
coupling regime while paying attention to the limiting case of the weak coupling
regime, and noting that extreme regimes such as the deep coupling regime can
be studied. We give an introduction to the three families of materials used in
the remaining chapter of this thesis. The remainder of the introduction serves as
an illustration of the potential application of exciton-polaritons. We provide an
introduction to the notion of “coherence” in quantum physics and Bose-Einstein
condensation. Building on that, we describe exciton-polariton condensation,
importantly describing how it can be distinguished form weak coupling lasing.
Some applications of polariton condensates such as superfluidity are further
described.

The second chapter dealt with our experimental methods. It showed how
versatile exciton-polaritons are experimentally, with many techniques of quan-
tum optics available for their study. These techniques are used in the other
chapters of this thesis.

The third chapter consists of a published paper [21] which is original re-
search. This paper demonstrated how a polariton laser can be realised in a ring
resonator geometry up to room temperature. Some questions are left open with
this paper, such as the reason why there is such a drastic shift in threshold
at 300 K compared to 200 K. The geometry realised could also be used as a
building block for more complex circuits, for example by coupling the ring to a
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waveguide. This paper shows one of the greatest strengths of the III-N families
of materials, which is their ability to maintain an exciton up to room tempera-
ture, and as such polaritonic effects are visible without an expensive cryogenic
setup. This could be a first step towards practical, transportable on-chip polari-
tonic devices. Since exciton-polaritons show very strong non-linearities, there
are some potentially useful applications such as frequency combs [302], or as
logic gates [303] for use in a light-based computer (which can be classical [304]
or quantum [305]). There are nevertheless some challenges which need to be
addressed to fully realise the potential of exciton-polariton in III-N materials.
Firstly, the fabrication processes in such materials is still relatively novel when
compared to more established structures, such as Gallium Arsenide. In the case
of our experiment, this had an impact, because we were only able to realise
high quality rings with a large radial thickness. Such thick rings can support
many ring resonator modes, who then couple to the excitons in the quantum
wells. Having multiple modes in the ring is not desirable, since the signal is
spread out with emission at different energies. A strong signal at a well-defined
energy would be preferable. Improvements in the fabrication process could lead
to sample fabrication that lends itself better to future applications.

Another challenge we faced when working with the Gallium Nitride ring
resonators is that, while we were able to identify their photoluminescence spectra
as polariton lasing both at room temperature and cryogenic temperatures, there
were noticeable differences in their emission features, with high temperatures
having a higher threshold of emission. A more thorough analysis of the lasing
threshold with respect to temperature would provide some interesting insight
in the polariton lasing process, with the aim of achieving a lower threshold at
room temperature, something desirable in the case of practical applications.
Finally, we should stress that the photoluminscence spectra collected are only
a small fraction of the light emitted by the ring resonator during the pumping
process. Indeed, due to the geometry of the ring resonators, most of the light
resulting from the polariton lasing is emitted in the plane perpendicular to the
ring resonator, and very little can be collected. This feature can be useful
for coupling this emitted light to other structures in the sample, such as a
waveguide; however in our case it just means we get a lower signal than optimal.
Patterning defects around the ring, which could act as scattering centres, would
be a way to increase the signal from the sample, resulting in better data.

In the fourth chapter, we presented another published paper in a very ac-
tive field of study, Rydberg exciton-polaritons. We demonstrate for the first
time non-linear behaviour of polaritons in this system, scaling with the princi-
pal quantum number of the exciton n. We give a tentative theoretical model
showing that the exciton-polaritons display an intermediate regime, between the
highly sought-after Rydberg blockade, and Pauli blockade from the fermionic
nature of the electrons and holes which make up the excitons. Rydberg exciton-
polaritons show how exciton-polaritons can still open up new avenues of original
research, more than 60 years after their original theoretical discovery by Hop-
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field and Pekar, and almost 30 years after their first realisation in microcavities.
Rydberg exciton-polaritons allow experimentalists to bridge two worlds: the
well-established field of Rydberg atomic physics, and the world of light-matter
interaction solid-state Physics. Rydberg atoms are studied in many different ar-
eas of research: they can be used as sensors [306], in quantum computing [307],
or for quantum simulation [308], in which they are used to reproduce other phys-
ical phenomena. However, Rydberg Atoms have many limitations that must be
taken into account for practical experiments, such as the need to use laser cool-
ing. Rydberg excitons are an analogue of Rydberg Atoms in the solid-state,
and can be manipulated experimentally more easily, and sample fabrication is
easier. Rydberg excitons also only need to be cooled down to a few Kelvins,
which can be done using a liquid Helium cryostat, as opposed to a more involved
setup using laser cooling. The interaction of Rydberg excitons with light can
be further enhanced by placing them in a microcavity. We stress that this is
a very new topic, with the first realisation of Rydberg exciton-polaritons being
realised only in 2022 [132]. Our work is a stepping stone for further research
and applications involving Rydberg exciton-polaritons, since knowing how the
non-linearities scale with quantum number is the first step towards leveraging
these non-linearities for potential applications. Our results are encouraging,
since they show that the scaling does follow results expected by Rydberg block-
ade theory, but we would need to achieve higher quantum numbers to reach this
regime. We also note that our work has motivated some new research in the
study of Rydberg exciton lifetimes, since our results were in contradiction with
some experiments done on bare flake, non-cavity samples. Overall, the topic of
Rydberg exciton-polaritons is quite novel, and further fundamental research on
their properties would be needed to develop applications. Our work contributes
to that fundamental research.

Finally, in the fifth chapter, we described how exciton-polaritons can be used
for studying astrophysics. We began with a layman’s approach on black holes
to give motivation, and showed how exciton-polaritons can make a realisation
of an analogue black hole. This experiment is still ongoing, with the ultimate
goal of displaying the Aharonov-Bohm effect.

This last experiment is slightly different from our previous work, as it uses
a material that is quite commonly when studying polaritons, since our sample
is a GaAs microcavity. The novelty here is in the application we seek from this
experiment, as we are using it in a context that is far removed from traditional
solid state physics, and instead as an experimental tool to study questions of
cosmology and general relativity. This shows the experimental versatility of
exciton-polaritons and how they can be used in a variety of different contexts,
with very precise control over the experimental parameters, which are critical
for this particular experiment. The “artificial black hole” created using exciton-
polaritons can be used to get experimental data on phenomena which are pre-
dicted by theory, such as black hole evaporation, but have not been observed
due to the nature of black holes. A more long-term goal of analogue physics ex-
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periments is to use the data resulting from the experiment to critically evaluate
the underlying theory. While the theory of general relativity remains one of the
most successful and precise theories formulated, it is inconsistent with quantum
mechanics, and cannot accurately describe some predictions such as the “Black
Hole Information paradox”, which predicts that the information going “into”
the black hole is irreversibly destroyed during the evaporation process [309]. Be-
ing able to get experimental data showing analogue black hole evaporation could
be useful to see how the paradox arises. This, however, is a task that is beyond
the scope of this thesis, and perhaps beyond what a simple experimentalist in
solid-state physics can achieve.

We end this thesis with a remark on how broad this research topic proved
to be, going from ultra-violet all the way to infrared, from condensates to su-
perfluidity, and with an emphasis on how all the original research presented in
this thesis fuels further work.

Marco Polo describes a bridge, stone by stone. ‘But which is the stone that
supports the bridge?’ Kublai Khan asks.
‘The bridge is not supported by one stone or another,’ Marco answers, ‘but by
the line of the arch that they form.’
Kublai Khan remains silent, reflecting. Then he adds: ‘Why do you speak to
me of the stones? It is only the arch that matters to me.’
Polo answers: ‘Without stones there is no arch.’
— Italo Calvino, “Invisible Cities”
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[284] M. Človečko et al. “Magnonic Analog of Black- and White-Hole Horizons
in Superfluid 3He−B”. In: Physical Review Letters 123.16 (Oct. 2019).
issn: 1079-7114. doi: 10.1103/physrevlett.123.161302. url: http:
//dx.doi.org/10.1103/PhysRevLett.123.161302.
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[295] Jonathan Pinnell, Valeria Rodŕıguez-Fajardo, and Andrew Forbes. “How
perfect are perfect vortex beams?” In: Optics Letters 44.22 (Nov. 2019),
p. 5614. issn: 1539-4794. doi: 10.1364/ol.44.005614. url: http:
//dx.doi.org/10.1364/OL.44.005614.

[296] Prabin Pradhan, Manish Sharma, and Bora Ung. “Generation of Perfect
Cylindrical Vector Beams With Complete Control Over the Ring Width
and Ring Diameter”. In: IEEE Photonics Journal 10.1 (Feb. 2018), pp. 1–
10. issn: 1943-0647. doi: 10.1109/jphot.2018.2790175. url: http:
//dx.doi.org/10.1109/JPHOT.2018.2790175.

[297] Y. Aharonov and D. Bohm. “Significance of Electromagnetic Poten-
tials in the Quantum Theory”. In: Physical Review 115.3 (Aug. 1959),
pp. 485–491. issn: 0031-899X. doi: 10.1103/physrev.115.485. url:
http://dx.doi.org/10.1103/PhysRev.115.485.

[298] J Audretsch and C Lammerzahl. “Neutron interference: general theory
of the influence of gravity, inertia and space-time torsion”. In: Journal
of Physics A: Mathematical and General 16.11 (Aug. 1983), pp. 2457–
2477. issn: 1361-6447. doi: 10.1088/0305- 4470/16/11/017. url:
http://dx.doi.org/10.1088/0305-4470/16/11/017.

[299] Michael A. Hohensee et al. “Force-Free Gravitational Redshift: Proposed
Gravitational Aharonov-Bohm Experiment”. In: Physical Review Letters
108.23 (June 2012). issn: 1079-7114. doi: 10.1103/physrevlett.108.
230404. url: http://dx.doi.org/10.1103/PhysRevLett.108.230404.

[300] Chris Overstreet et al. “Observation of a gravitational Aharonov-Bohm
effect”. In: Science 375.6577 (Jan. 2022), pp. 226–229. issn: 1095-9203.
doi: 10.1126/science.abl7152. url: http://dx.doi.org/10.1126/
science.abl7152.

194 Chapter 7 Anthonin Delphan

https://doi.org/10.1126/science.1191224
https://doi.org/10.1126/science.1191224
http://dx.doi.org/10.1126/science.1191224
https://doi.org/10.1103/physrevd.10.3194
http://dx.doi.org/10.1103/PhysRevD.10.3194
http://dx.doi.org/10.1103/PhysRevD.10.3194
https://doi.org/10.1103/physrevb.84.233405
http://dx.doi.org/10.1103/PhysRevB.84.233405
http://dx.doi.org/10.1103/PhysRevB.84.233405
https://doi.org/10.1007/s12596-022-00857-5
http://dx.doi.org/10.1007/s12596-022-00857-5
https://doi.org/10.1364/ol.44.005614
http://dx.doi.org/10.1364/OL.44.005614
http://dx.doi.org/10.1364/OL.44.005614
https://doi.org/10.1109/jphot.2018.2790175
http://dx.doi.org/10.1109/JPHOT.2018.2790175
http://dx.doi.org/10.1109/JPHOT.2018.2790175
https://doi.org/10.1103/physrev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1088/0305-4470/16/11/017
http://dx.doi.org/10.1088/0305-4470/16/11/017
https://doi.org/10.1103/physrevlett.108.230404
https://doi.org/10.1103/physrevlett.108.230404
http://dx.doi.org/10.1103/PhysRevLett.108.230404
https://doi.org/10.1126/science.abl7152
http://dx.doi.org/10.1126/science.abl7152
http://dx.doi.org/10.1126/science.abl7152


References

[301] Harmeet Singh and James S. Sirkis. “Direct extraction of phase gradi-
ents from Fourier-transform and phase-step fringe patterns”. In: Applied
Optics 33.22 (Aug. 1994), p. 5016. issn: 1539-4522. doi: 10.1364/ao.
33.005016. url: http://dx.doi.org/10.1364/AO.33.005016.

[302] K. Rayanov et al. “Frequency Combs withWeakly Lasing Exciton-Polariton
Condensates”. In: Physical Review Letters 114.19 (May 2015). issn: 1079-
7114. doi: 10.1103/physrevlett.114.193901. url: http://dx.doi.
org/10.1103/PhysRevLett.114.193901.

[303] Hui Li et al. “All-optical temporal logic gates in localized exciton polari-
tons”. In: Nature Photonics 18.8 (Aug. 2024), pp. 864–869. issn: 1749-
4893. doi: 10.1038/s41566-024-01483-2. url: http://dx.doi.org/
10.1038/s41566-024-01483-2.

[304] Peter L. McMahon. “The physics of optical computing”. In: Nature Re-
views Physics 5.12 (Oct. 2023), pp. 717–734. issn: 2522-5820. doi: 10.
1038/s42254- 023- 00645- 5. url: http://dx.doi.org/10.1038/
s42254-023-00645-5.

[305] Sanjib Ghosh and Timothy C. H. Liew. “Quantum computing with exciton-
polariton condensates”. In: npj Quantum Information 6.1 (Feb. 2020),
p. 16. doi: 10.1038/s41534-020-0244-x. url: https://doi.org/10.
1038/s41534-020-0244-x.

[306] Matthias Schmidt et al. “Rydberg-atom-based radio-frequency sensors:
amplitude-regime sensing”. In:Optics Express 32.16 (July 2024), p. 27768.
issn: 1094-4087. doi: 10.1364/oe.530148. url: http://dx.doi.org/
10.1364/OE.530148.

[307] Xiaoling Wu et al. “A concise review of Rydberg atom based quantum
computation and quantum simulation”. In: Chinese Physics B 30.2 (Feb.
2021), p. 020305. doi: 10.1088/1674-1056/abd76f. url: https://doi.
org/10.1088/1674-1056/abd76f.

[308] Hendrik Weimer et al. “A Rydberg quantum simulator”. In: Nature
Physics 6.5 (Mar. 2010), pp. 382–388. doi: 10.1038/nphys1614. url:
https://doi.org/10.1038/nphys1614.

[309] S. W. Hawking. The Information Paradox for Black Holes. 2015. doi:
10.48550/ARXIV.1509.01147. url: https://arxiv.org/abs/1509.
01147.

Supplementary material from articles

Chapter 7 Anthonin Delphan 195

https://doi.org/10.1364/ao.33.005016
https://doi.org/10.1364/ao.33.005016
http://dx.doi.org/10.1364/AO.33.005016
https://doi.org/10.1103/physrevlett.114.193901
http://dx.doi.org/10.1103/PhysRevLett.114.193901
http://dx.doi.org/10.1103/PhysRevLett.114.193901
https://doi.org/10.1038/s41566-024-01483-2
http://dx.doi.org/10.1038/s41566-024-01483-2
http://dx.doi.org/10.1038/s41566-024-01483-2
https://doi.org/10.1038/s42254-023-00645-5
https://doi.org/10.1038/s42254-023-00645-5
http://dx.doi.org/10.1038/s42254-023-00645-5
http://dx.doi.org/10.1038/s42254-023-00645-5
https://doi.org/10.1038/s41534-020-0244-x
https://doi.org/10.1038/s41534-020-0244-x
https://doi.org/10.1038/s41534-020-0244-x
https://doi.org/10.1364/oe.530148
http://dx.doi.org/10.1364/OE.530148
http://dx.doi.org/10.1364/OE.530148
https://doi.org/10.1088/1674-1056/abd76f
https://doi.org/10.1088/1674-1056/abd76f
https://doi.org/10.1088/1674-1056/abd76f
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nphys1614
https://doi.org/10.48550/ARXIV.1509.01147
https://arxiv.org/abs/1509.01147
https://arxiv.org/abs/1509.01147


Polariton lasing in AlGaN microring with GaN/AlGaN

quantum wells - Supplemental Material

Anthonin Delphan1, Maxim N. Makhonin1, Tommi Isoniemi1, Paul M.
Walker1, Maurice S. Skolnick 1, Dmitry N. Krizhanovskii1, Dmitry V.
Skryabin2, Jean-François Carlin3, Nicolas Grandjean3, and Raphaël
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3Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland

December 20, 2022

Corresponding email: raphael.butte@epfl.ch

1 Growth details and fabrication process

The sample was grown using metal organic vapour phase epitaxy on high-quality low threading
dislocation density (∼106 cm−2) c-plane free-standing GaN substrate. The sample structure
consists of a 130-nm-thick active region with 22 embedded GaN/Al0.1Ga0.9N (1.5 nm/3.5 nm)
quantum wells (QWs) grown on top of a 400-nm-thick Al0.83In0.17N cladding lattice-matched
to GaN. It is essentially a replica of the samples in which waveguided polaritons were reported
for the first time in III-nitride slab waveguides [1] and for which we subsequently demonstrated
ultrafast-nonlinear ultraviolet pulse modulation in the strong coupling regime up to room tem-
perature [2]. For electron beam lithography (EBL) a layer of the photoresist CSAR-62 [3] with
the adhesion enhancer hexamethyldisilazane was spinned on the sample. The soft mask has
a thickness of 1130 nm. The resist was exposed with a 50 keV electron beam using a Raith
Voyager EBL system, using a base dose of 94 µC/cm2 together with a proximity dose correc-
tion. The mask was developed in xylene for 60 s at 23 ◦C and rinsed in isopropanol. After
development, inductively-coupled plasma reactive ion etching (ICP-RIE) was used to etch the
patterns through the core and partly into the cladding. The dry etch process uses a RF power
of 80 W, ICP power of 450 W and 4 mTorr pressure. The gas flows were 1.5 sccm for SiCl4,
15 sccm for Cl2 and 4 sccm for Ar. The etching time was 10.75 min with the etching rates of
67 nm/min for the resist and 30 nm/min for GaN. After etching the resist was removed with 4
min O2 plasma ashing with 100 W power, submerging the sample in heated Microposit resist
remover 1165 for 4 min and rinsing it in isopropanol for 2 min.
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A scanning electron microscopy (SEM) image of a ring resonator is shown in Fig. 1 that
illustrates the very good flatness of the top ring. The small droplets on the outer side of the
ring are from unetched photoresist and are not believed to have any impact on the optical
measurements.

Figure 1: Close-up view of a ring resonator obtained with SEM imaging.

2 Normalisation of Photoluminescence Spectra

In the main text, we present in Fig. 1 the photoluminescence (PL) spectra of the 4 µm ring
at different pulse energies. We also give PL spectra of the 8 µm ring in Fig. 3 for different
pulse energies and temperatures. These spectra are normalised to the PL intensity of the QW
A exciton, according to equation 1:

PLN (E) = PL(E)
PL(EX)

, (1)

where E is the energy, PL is the raw photoluminescence data, EX is the energy of the QW A
exciton resonance, and PLN is the resulting normalised spectrum. We observe that the function
PLN is almost constant for the QW peaks and the bulk GaN peaks across all pulse energies,
which shows that both follow a similar pulse energy dependency (shown in section 6 to be
quasi-linear), but varies significantly in the region where the modes appear. This shows that
the polariton modes follow a non-linear pulse energy dependency.

The PL spectra are all shifted vertically for clarity. The value of the shifts is as follows:

• for the 4 µm ring at 4 K, the shift is equal to 0.5 for all powers;

• for the 8 µm ring at 4 K, the shift is equal to 0.7 for 0.25 nJ, then 1.5 for 0.5 nJ, 2 for
0.7 nJ, and finally 1 for 1.4 nJ;

• for the 8 µm ring at 200 K, the shift is equal to 1 for 0.3 nJ, then 2.5 for 0.7 nJ, and
finally 1.5 for 1 nJ;

2



• for the 8 µm ring at 300 K, the shift is equal to 3 for all pulse energies.

The interest of this representation is to emphasize the evolution in relative contrast between
the polariton modes and the neighbouring excitons. In Fig. 2, we show the non-shifted, non-
normalised spectra, which show the evolution in absolute contrast.
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Figure 2: (a), (b), (c) PL spectra for the 8 µm radius, 2 µm wide ring at different pulse
energies (in nJ) labeled in the figures for T = 4, 200, and 300 K, respectively. Non-
normalised data.

3 Polariton mode linewidth

One of the distinctive signatures of lasing is a reduction of the linewidth of the cavity modes
supporting lasing when crossing the threshold. For a single mode laser the linewidth of the
lasing mode is predicted to decrease inversely proportional to the mode filling factor according
to the celebrated Schawlow-Townes linewidth formula [4]. In our experiment, the scattered
photoluminescence signal from the cavity modes is not observed below threshold, since it is too
weak to efficiently contribute to the collected signal with our backscattering configuration as
discussed in the main text. Above the polariton lasing threshold the peak intensities of the
modes quickly saturate with power (see Fig. 4 of the main text) and no measurable reduction
of the polariton mode linewidths is observed. The linewidth of the polariton modes is observed
to be around 2-3 meV and is very likely limited by the polariton-polariton interactions, cross
scattering and gain competition between the modes. Given that our system is pumped with
a 1 kHz laser of very short (100 fs) pulses there is most likely a strong variation in the total
exciton and polariton density (and hence in the modes peak positions) from pulse to pulse,
which further leads to polariton mode broadening in the time-averaged spectra we measure.

4 Polariton dispersion and photonic loss of ring res-
onators

The strong reduction in free spectral range (FSR) as the energy approaches that of the exciton
resonance arises due to the strong dispersion of polaritons. This is illustrated in Fig. 3 which
shows the experimentally measured energy vs. wavenumber dispersion relation for the planar
waveguide. The points give the experimental data while the solid curve gives the best fit of the
polariton model. Panels a) and b) show the cases for two representative temperatures: 4 K and
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300 K, respectively. The data and analysis are taken from Ref. [2] and are fully described in
that work.
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Figure 3: Dispersion of the unstructured planar waveguide. Experimental energy vs.
wavenumber dispersion relation (points) and best fit of the coupled oscillator model
(solid curve) for a) T = 4 K and b) T = 300 K.

Exciton-polaritons (hereafter polaritons) are formed by hybridisation of photons and ex-
citons. The polariton dispersion is obtained by first calculating the dispersion of the purely
photonic modes of the planar waveguide structure using electromagnetic simulation, and then
employing a coupled oscillator model to calculate the dispersion of the polaritons. The photons
and excitons hybridise to form two polariton branches, the upper polaritons (UP) and lower
polaritons (LP). The UP are not observed because of strong absorption at energies above the
exciton resonance [1]. The dispersion of the LP given by the conventional coupled oscillator
model is

ELP =

[
Eph + Eex −

√
(Eph − Eex)

2 +Ω2

]
/2. (2)

Here ELP is the lower polariton energy, Eph and Eex are the photon and exciton energies,
respectively, and Ω is the coupling strength between photon and exciton, known as the vacuum
Rabi splitting. The hybridisation leads to an avoided crossing, where the LP does not cross the
exciton energy but strongly curves over as it approaches it. This leads to very strong dispersion
and ultimately underlies the strongly reducing FSR for resonator modes at energies close to the
exciton energy.

We now consider the dispersive properties of the ring resonators which we study in this work.
Following a similar general method we first calculated the dispersion of purely photonic modes
using electromagnetic simulation, and then calculated the dispersion of resonator polaritons
using a coupled oscillator model. The photon dispersion was calculated using the finite difference
eigenmode (FDE) solver of the commercial Lumerical MODE solutions package. This was used
to simulate curved waveguides with transverse profile corresponding to the 2 µm wide ridge
waveguides in the experiment. For a wide range of optical wavelengths the solver calculates the
corresponding angular wavenumber β̂ (rate of phase accumulation with angle travelled around
the curved waveguide). The dashed orange curve in Fig. 4a) shows the photon energy vs.
angular wavenumber. The polariton energy at each angular wavenumber is then obtained using
the coupled oscillator model, as above, and is shown as the solid blue curve in Fig. 4a). The
small kink in the curves around 3.64 eV for the photons and around 3.58 eV for polaritons is
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due to the rapid variation of the background refractive index of the quantum wells near the
band edge. It is well above the energies of the experimentally investigated polariton modes and
does not affect the results.

170 180 190

Angular wavenumber (rad−1)

3.50

3.55

3.60

3.65

E
ne

rg
y

(e
V

)

a)

Polariton
Photon
Exciton

150 160 170 180 190

Angular wavenumber (rad−1)

3.50

3.52

3.54

3.56

3.58

3.60

E
ne

rg
y

(e
V

)

b) r = 3µm

TE0
TE1
TE2
Exciton

375 400 425 450

Angular wavenumber (rad−1)

3.50

3.52

3.54

3.56

3.58

3.60

E
ne

rg
y

(e
V

)

c) r = 8µm

TE0
TE1
TE2
Exciton

4 6 8
Ring radius (µm)

10−4

10−3

10−2

R
ou

nd
tr

ip
lo

ss

d) TE0
TE1
TE2

Figure 4: Dispersive properties of ring resonators computed for a system at 4 K. a)
Dispersion of purely photonic (dashed orange) and polaritonic (solid blue) curved ridge
waveguide with 3 µm radius of curvature. b) Modes of a 3 µm polariton ring resonator.
The first three transverse modes are shown. c) Modes of an 8 µm ring resonator. d)
Round trip photonic loss of ring resonators vs. ring radius for the first three transverse
modes. Losses are calculated for photons at the same energy as the exciton.

Once the dispersion of curved waveguides is known the energies of ring resonator modes
can be calculated. The phase accumulated in one round trip of a circular resonator is 2πβ̂ and
the condition for resonance is that the round trip phase should be a multiple of 2π. Thus we
obtain β̂ = m where m is an integer. Interpolating into the curved waveguide dispersion gives
the polariton energies of the resonances. These are shown in Figs. 4b) and c) for 3 µm and
8 µm rings, respectively. A feature of relatively wide resonators such at the 2 µm devices we
use is that they support several transverse modes in addition to the longitudinal modes. This
leads to a set of longitudinal modes for each transverse modal index. Figs. 4b) and c) show
the first three transverse-electric polarised transverse mode families, TE0, TE1 and TE2. The
transverse-magnetic polarised modes have a weak coupling to the quantum wells [1] and do not
play a role in these experiments. The energy difference between any given longitudinal mode
and the closest mode in the next transverse family is less than the distance between longitudinal
modes.

5



Figure 5: Computed angular wavenumber of the ring resonator modes vs. wavenumber
of the planar waveguide from which the rings are etched. a) Values for the three lowest
order TE modes of the 3 micron ring. b) Values for the lowest order TE mode of
different rings. Coloured curves are the computed values. Dashed black lines are the
best fit straight lines to each curve.

As discussed above we calculated the angular wavenumber of the pure photonic modes of
the rings for a range of frequencies. At the same frequencies we also calculated the wavenumber
of pure photons in the planar waveguide from which the rings were etched (also using Lumerical
MODE). In Fig. 5 we plot the angular wavenumbers β̂ vs. the planar waveguide wavenumber
β. Fig. 5(a) shows this for the three lowest order TE modes of the 3 micron ring. The coloured
curves are the simulated data. The black dashed lines are best fit straight lines. It is seen
that β̂ is a linear function of β to a high precision over a large range of wavenumbers, which
correspond to photon wavelengths of 335 nm to 400 nm. This is true for all the different
modes. Fig. 5(b) shows the same data for the lowest order TE mode of several different rings
of different radii, showing the same linear relationship. Mathematically we have β̂n(E) =
β̂n,0 + rnβ(E) where β̂n,0 is an offset analagous to the quantisation energy coming from the
transverse confinement, and rn is an effective radius of propagation for the mode labelled by
index n. The radius comes in because we are comparing angular wavenumber (in units of rad−1)
and actual wavenumber (in units of m−1). The offset β̂n,0 will disappear when taking derivatives
to find, for example, the group velocity. The dispersive properties of all these modes (which
have different orders and propagate in different rings) can therefore be explained entirely by the
dispersion of the underlying planar waveguide. We conclude that the transverse confinement
and circular propagation have negligible effect on the modal dispersive properties and that all
transverse modes are equivalent to within a linear scaling factor related to the radius.

We finally consider the radiation losses in the resonators. Fig. 4d) shows the calculated
round trip loss for photons in the resonator due to radiation loss and tunnelling through the
cladding into the substrate. The round trip losses are obtained from the imaginary part of β̂ as
calculated by the FDE solver using perfectly-matched-layer boundary conditions. As expected,
the losses are higher for the rings with smaller radius. The losses are also higher for higher
order transverse modes TE1 and TE2 compared to the fundamental transverse mode family
TE0. This suggests that either higher order transverse modes experience higher radiation losses
or that their lower effective refractive index increases tunnelling loss through the substrate, or
both.
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5 Frequency dependence of free spectral range as ev-
idence of strong coupling

A key signature of strong coupling is the anti-crossing of photon and exciton states which leads
to a strong curvature of the lower polariton dispersion as it asymptotically approaches the
exciton energy with increasing wavenumber (see section 4). A good measure of this curvature
is the group velocity vg = (∂E/∂k) /h̄. For uncurved (linear) dispersion relations it is just a
constant whereas in the strong coupling regime it is expected to vary strongly, starting from
the pure-photon group velocity and tending to zero as the polariton energy approaches the
exciton energy from below. In a simplified picture of a linear dispersion relation for the pure
photons the polariton group velocity is proportional to the photonic fraction. In reality the
pure photon dispersion relation also exhibits some curvature due to the wavelength dependence
of the material refractive indexes, especially near the material band edges. As discussed in
supplementary section 4, the dispersive properties (e.g. vg(E)) of our ring resonator modes are
determined entirely by those of the planar waveguide from which the rings are etched.

Experimentally we have direct access to the group velocity since it is directly proportional
to the FSR. We have vg = (EFSR · reff) /h̄ where reff is the radius around which the lasing
mode propagates and EFSR is the energy spacing between ring resonator modes (free spectral
range). Because of this direct proportionality the variation of the FSR with energy is also a
good measure of the polaritonic character of the modes. Theoretically, we can also calculate
the expected free spectral range for both polaritons and also pure photons, as discussed in
supplementary section 4. We note that reff can in principle be different from the geometrical
ring radius R since it is the effective radius at which the lasing mode propagates. We do not
have experimental access to the transverse profile of the lasing modes but they are likely to
propagate near the center of the ring where the intensity of the pump spot is the largest and
the losses due to scattering on the rough sidewalls (see Fig. 1 of the supplemental material
(SM)) are the lowest. We therefore calculate the FSR for a radius corresponding to the center
of the 2 micron wide ridge, reff = R, for comparison with the experiment. We note that the
mode propagating at this radius has the same dispersive properties as the modes propagating
at any other radius up to a constant scaling factor (see SM section 4). The exciton energy, used
in Eqn. 2 to calculate the polariton energies, is taken from the spectra. The Rabi splitting is
treated as a fitting parameter and we obtain values between 55 and 65 meV, in good agreement
with the value reported in Ref. [1].
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Figure 6: FSR of microring resonators measured for radii of 6 and 8 µm), with a 2 µm
width, at pulse energy above the polariton lasing threshold (1.7 nJ) taken at 300 K. The
solid line represents a theoretical model accounting for polariton non-linearities, whereas
the dashed line represents a purely photonic model.

Figure 2b in the main text shows the experimentally measured FSR for several rings at 4
K. In the case of the 3 µm radius ring the experimental FSR (and hence the group velocity)
decreases by 65% of the maximum measured value over an energy range of 41 meV. As discussed
in the main text this large variation in FSR cannot be accounted for by a purely photonic model.
The rings with other radii at 4 K show similar behaviour, with changes in FSR (group velocity)
too large for the purely photonic model to explain. They evidence the strong coupling and its
strong effect on the curvature of the dispersion relation.

In Fig. 6 we show the experimental FSR for two rings at 300 K as points. For the 8 µm
radius ring the FSR varies by 25% between lowest and highest energy points over a 54 meV
range of energies. This is less than the case at 4 K since the data points at 300 K are for
energies further from the exciton where the polaritons are more photonic and the curvature
due to strong coupling is therefore expected to be lower. The solid (dashed) curves show the
theoretical FSR for polaritons (pure photons). For 8 µm radius rings the theory predicts a
variation of 24% for polaritons over the same energy range as the experimental points. The
purely photonic model can account for a change of only 14%. Overall at 300 K there is better
agreement with the strongly coupled model than the purely photonic one, which confirms that
the strong coupling is retained in the lasing regime up to room temperature. This is further
supported by our observation that above threshold the luminescence peak from the exciton does
not exhibit broadening or energy blueshift, which would be expected if we were beyond the Mott
density where strong coupling collapses (see main text).
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6 PL spectra without GaN background

At 4 K the polariton emission intensity was integrated in the region where the contribution
from the QW and GaN exciton emissions is negligible.

By contrast, the polariton modes at 200 and 300 K sit on a strong, smooth, and broad
incoherent PL background coming mainly from the bulk GaN excitons. This background was
removed by fitting it with a Gaussian peak. In the main text, our analysis to extract the
threshold-like behaviour of the modes relies on the removal of this background for enhanced
contrast. In Figs. 7.a and b, we present the PL spectra measured at 200 and 300 K of the 8
µm ring with the PL background removed. These spectra show how the modes quickly grow in
intensity, much faster than the linear evolution of the GaN exciton peaks themselves (cf. next
SM section).
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Figure 7: PL spectra of the 8 µm ring resonator recorded at T = 200, and 300 K, with
the PL background resulting from the GaN exciton peaks removed. The bottom line of
the graph is zero intensity.

7 Power dependency of the bulk GaN excitonic lu-
minescence peaks and QW exciton luminescence
peaks at different temperatures

One argument used to prove polariton lasing operation is the presence of a sharp threshold at
which the PL intensity of the lasing modes rapidly increases. In this section, we give the pulse
energy dependency of the integrated PL intensity of the bulk GaN exciton peaks at 4, 200, and
300 K for the 8 µm microring resonator (Fig. 8).
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Figure 8: Integrated PL intensity of the bulk GaN exciton peaks recorded at 4, 200,
and 300 K for the 8 µm ring. The red solid lines represent quasi-linear fits with the
corresponding slope indicated in each figure. Log-log scale at 4 and 200 K. Linear scale
at 300 K.

Note that from the log-log scale used to display the data recorded at 4 and 200 K, a slope
slightly higher than unity is obtained for the power dependency of the integrated PL intensity
of the bulk GaN exciton peaks, which implies a weak nonlinearity. For example, at 4 K, we have
a fit leading to y ∼ x1.36. All the exponents remain reasonably close to 1 and hence the power
dependence of the bulk GaN exciton peak PL intensity is found to be close to linear. We use
a linear scale at 300 K due to the smaller accessible range of powers. This is in sharp contrast
with the polariton modes, whose intensity follows a superlinear increase well-above a quadratic
function (see the main text). The same analysis applies for the QW excitonic peaks as seen in
Fig. 9. Similar results were obtained for the 4 µm microring and are shown in Fig. 1 of the
main text.
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Figure 9: Integrated PL intensity of the QW excitonic peaks at 4, 200, and 300 K for
the 8 µm ring. The red solid lines represent fits with the corresponding slope indicated
in each figure. Doubly logarithmic scale for 4 and 200 K. Linear scale for 300 K.
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8 Blueshift of the 4 µm ring

Blueshift is a defining feature of polaritons. It is a signature of their non-linearity owing to
their excitonic part. In the main text, we have described strong blueshift in the 8 µm ring at
all temperatures. Such blueshift is also seen in the smaller 4 µm ring, as shown in Fig. 10.
The difference in the range of pulse energies is due to a slightly different excitation scheme
compared to the main text, exciting a smaller part of the ring with each pulse. Under this
excitation scheme, the blueshift is much clearer than in Figure 1 of the main text, but happens
at higher pulse powers.
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Figure 10: a) PL spectra of the 4 µm ring recorded at 4 K at different pulse energies,
above threshold, showing the blueshift of the modes. The lines are guides for the eyes.
b) Evolution of the peak positions as a function of pulse energy. The solid line is a linear
fit.
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1 Transmission spectra fitting procedure

To fit the transmission spectra we used the model of cavity transmission from
Ref. [1], multiplied by a Gaussian function which accounts for the spectrum of
the pulse incident on the cavity. This reads

Tn ≈
A exp

(
−2

(
∆n

σ

)2 )

(κ2 +G2
n
γn/2+2Qn∆n

γ2
n/4+∆2

n
)2 + (∆n −G2

n
∆n−Qnγn

γ2
n/4+∆2

n
)2
, (S1)

where A is the peak amplitude, ∆n is the laser frequency detuning from the
excitonic resonance with principal quantum number n, γn is the excitonic
linewidth for corresponding n, κ is the cavity linewidth, Gn is the coupling
strength, Qn is the Fano asymmetry parameter, and σ is the pulse spectral
width. In all cases the subscript n refers to the exciton with index n. We use
Eq. (S1) to fit the transmission spectra at each n by fixing the parameters
γn, κ and Qn corresponding to each excitonic resonance taken from separate
measurements (see Section 2 below). For each excitonic resonance we perform
a global fit over all excitation powers, with only the coupling strength Gn

and the amplitude A varying as a function of power. Thus we obtain power
dependence of Gn.

2 Measurement of excitonic and cavity
linewidths

In Fig. S1, we extract the photonic cavity linewidth κ of several modes at
different energies. The data are taken from angle-resolved transmission (also
called Fourier imaging or k-space imaging) of a broadband super-continuum
laser. A section of the angle-resolved data at zero incidence angle to the sample
normal (k = 0) is presented in the figure. As we want to extract an uncoupled
and unperturbed “purely photonic” cavity mode, the spectra are taken from a
spatial region of the sample where the cavity modes are detuned far away from
the excitonic resonances. This occurs due to a small wedge in the thickness of
the sample.
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Fig. S1: Normal incidence transmission spectrum of a Cu2O microcavity
under broadband excitation, showing uncoupled Fabry–Pérot cavity modes.
Points are experimental data. Solid curves show Lorentzian lineshape fits to
the modes.

From the Lorentzian fits in Fig. S1, we can extract the cavity linewidth
as a function of energy, which we plot in Fig. S2. The trend can then be
extrapolated to find appropriate κ values for energy levels matching exciton
resonances.
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Fig. S2: Cavity linewidth extracted from Fig. S1 as a function of energy.
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From white light transmission spectra of a bare Cu2O flake with exci-
tonic resonances fitted as an asymmetrical Fano resonances we extract exciton
linewidth γn and Fano asymmetry parameter Qn (see Fig. S3).
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Fig. S3: Transmission spectra of a bare Cu2O flake. Points are experimental
data. Solid curves are Fano lineshape fits for each resonance.

3 The effect of temperature on the exciton
resonances

We believe the laser induced heating effects are negligible in our exper-
iment. To verify this we performed an additional measurement where the
exciton resonances were monitored in transmission in a bare Cu2O crystal
using white light for different temperatures. With the increase of temperature
of the sample from 4 to 20 K we observed a significant red shift of the exciton
resonances by about 0.6 meV as shown in the Fig. S4, whereas the exciton
linewidth and the dip of the exciton resonance stay almost the same, indi-
cating no reduction of the exciton oscillator strength with temperature. By
contrast, our measurements of the polariton resonances for different powers in
Fig. 2 of the main text do not show any red shift of the bare exciton reso-
nances within the spectrometer resolution ∼ 0.1 meV: the energy positions of
the dip between the polariton resonances corresponding to the exciton levels
do not change. This indicates that the sample temperature does not change
with increase of pump power and the reduction of the exciton-photon coupling
can not be explained by heating.
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Fig. S4: White light transmission spectra of a bare Cu2O flake at different
temperatures.

4 Strong coupling in broadband excitation
regime up to n = 7

In Fig. 1 of the main text we demonstrated strong coupling in the broadband
excitation regime using angle-resolved transmission spectra, by showing the
anti-crossing of the cavity modes around the excitonic lines for n = 3, n = 4,
and n = 5. In this section, we show that such anti-crossing can be observed for
up to n = 7 in the broadband excitation regime, similarly to the narrowband
excitation scheme demonstrated in the main text of the article.

While Fig. 1 of the main text was obtained using k-space imaging, it was
not possible to use this technique for higher n. Indeed, the cavity modes become
noisy and harder to resolve at higher energy, which makes the identification of
such modes challenging. Instead, the anti-crossing is obtained by scanning the
excitation position on the sample, which results in the cavity modes shifting
due to the slight wedge in sample thickness and thus changing their detuning
with respect to the excitons. This is similar to the technique used in Ref. [1].
When the modes cross the exciton resonance, a doublet and splitting charac-
teristic of strong coupling are observed. This scan across different positions on
the sample is shown in Fig. S5.
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Fig. S5: Broadband excitation and position scan across the sample showing
anticrossing for excitonic resonances from n = 3 to n = 7. Brown dash-dot
lines are a guide to the eye showing positions of upper and lower polariton
modes. Grey lines are showing positions of exciton resonances.

5 Calculation of the density

The density of photons inside a cavity can be calculated from the power emitted
by the cavity together with the rate of escape through the mirrors, which have
a finite transmission coefficient. A detailed explanation of the principle can
be found in the supplementary information of Ref. [2]. In the present work,
the power emitted by the cavity was measured directly, while the transmission
of the mirrors was calculated using a transfer matrix model of the sample
with calibrated parameters. Transfer matrix modelling is a standard technique
which exactly solves Maxwell’s equations for planar layer structures of the
type we use in this work. In our work we deduce the size of the nonlinearity at
the lowest powers, in the limit where the interaction energy compared to the
the other energy scales in the system, such as losses, are tending towards zero.
We therefore use the reasonable approximation that in this limit the density
of particles in the cavity can be deduced using a linear model of the cavity
electromagnetic response.

The first step in the model was to calibrate the reflection, transmission
and absorption of the silver mirrors. In the same deposition runs in which
the mirrors were deposited onto the Cu2O to form the cavity the same sil-
ver films were also deposited onto a glass substrate. We then measured the
transmission and reflection of these silver films using the same laser as in
the main experiments, and a commercial laser power meter. We measured
reflection of R = 92 ± 3% and transmission of T = 2.0 ± 0.3%. The silver
thickness of 51.5 nm was known from the deposition rate and time. We then
used the transfer matrix method to model the reflection and transmission of
the structure and found the silver refractive index that gave the measured
transmission and reflection. We find real and imaginary parts of the refractive
index n = 0.24 ± 0.11 and k = 3.78 ± 0.10 respectively. Here the errors were
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obtained by propagating the errors in R and T using the numerically calcu-
lated gradients ∂n/∂T , ∂n/∂R, ∂k/∂T , and ∂k/∂R. For the error ∆n in n we
used the formula ∆n = |∂n/∂T |∆T + |∂n/∂R|∆R, and similar for the error
∆k in k. We note that our refractive index is also consistent with values from
the literature [3]. We checked that our deduced values of density do not vary
by more than a few percent with the real part of the refractive index of the
silver mirrors.

Next we calibrated the Cu2O layer properties. The background refractive
index 2.7386 was taken from the literature [4]. We then modelled transmission
through the cavity using the transfer matrix method and varied the thickness
of the Cu2O until the free spectral range between adjacent photonic modes
matched that in the experiment. In this manner we found a cuprous oxide
thickness of 26.0 micrometers. The imaginary part of the cuprous oxide refrac-
tive index, 0.000483, was then found so that the quality factor of the calculated
modes was 2000 away from the excitonic resonances, in agreement with the
experimental results. We checked that our deduced values of density do not
depend (by more than a few percent) on the refractive index of the cuprous
oxide provided that the free spectral range matched the experimental value.

Having calibrated both mirror and cavity properties we then used the trans-
fer matrix model to calculate both the energy density inside the cavity and the
Poynting flux (power per unit area) outside the cavity for a monochromatic
incident laser, as in Ref. [2]. Integrating the energy density over the cavity
length and dividing by the flux gives τ ′, the inverse of the rate of tunnelling
of photons through the mirror. We then have Pout = Ecav/τ

′ where Pout is
the measured power coming out of the cavity and Ecav is the energy stored as
photons inside the cavity.

We calculated τ ′ as a function of photon wavelength and found variation
of only 0.4% over the 1.75 meV (0.467 nm) energy range corresponding to the
bandwidth of the spectra shown in the experiments. Since in the linear regime
the time-varying fields inside the cavity may be viewed as a superposition of
different frequency waves (by the Fourier transform) we can therefore assume
that the ratio of stored energy to output power is the same for the pulsed
case as for the monochromatic case. We arrive at τ ′ = 14 ± 2 ps. Here the
uncertainty ∆τ ′ in τ ′ was obtained by propagating the errors ∆n and ∆k in
the silver mirror real and imaginary refractive indices respectively using ∆τ ′ =
|∂τ ′/∂n|∆n+|∂τ ′/∂k|∆k. The gradients ∂τ ′/∂n = 3.27 ps and ∂τ

′
/∂k = 19.48

ps were obtained numerically by running the transfer matrix simulation over
a range of different refractive indices.

The number of particles in the cavity is related to the energy by N =
Ecav/ (ℏω) where ω is the central angular frequency of the pulses. The areal
density of photons ρphotons = N/A can then be obtained using the effective area
A for the nonlinear interaction. This is given by [5] 1/A =

∫ ∫∞
−∞ I2(x, y)dxdy

where I(x, y) is the normalised spatial intensity distribution inside the cavity,
which in our case has a Gaussian shape. This takes account of the fact that the
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density varies over the Gaussian spot and so we measure a weighted average
of more and less strongly interacting regions.

In a similar way our time-averaged measurement of the ∼ 1 ps pulses
coming from the cavity is an average over the time-varying interaction energy
in the cavity weighted by the occupancy of the cavity. Both the interaction
energy and occupancy are proportional to the temporal shape of the cavity
occupancy I(t). Taking this weighted average gives the effective pulse length τp
using 1/τp =

∫∞
−∞ I2(t)dt. Transform limited Gaussian pulses with 1.75 meV

spectral width have a temporal width of 1.0 ps. This is then a lower bound
for the possible temporal width of the density in the cavity, which provides
an upper bound for the density and hence a lower bound for the nonlinearity.
However, the real temporal width is likely to be longer due to partial cavity
filtering of the incident spectrum and/or chirp in the incident pulses. Using
the lower bound of a 1 ps Gaussian we obtain τp = 1.57 ps.

We then use Ecav = Poutτ
′ from above and insert the effective output pulse

power Pout = Pavg,T/ (fτp). Here Pavg,T is the average power of the transmitted
beam, f = 1 kHz is the laser repetition rate and τp is the effective pulse length
defined above. We finally make the substitution Pavg,T = TPavg where Pavg is
the average incident beam power and T = 1/180 is the measured transmission
through the cavity. This accounts for the reflection of spectral components of
the incident pulse which are not resonant with the cavity modes. Recalling that
ρphotons = N/A = Ecav/ (Aℏω) finally leads to an expression for the photon
density in cavity:

ρphotons =
TPavgτ

′

fτpAℏω
. (S2)

So far our discussion has concerned a purely photonic cavity with no strong
exciton-photon coupling. When strong coupling is included the fundamental
eigenstates of the system, the polaritons, are part photon and part exciton.
The fractions of photon and exciton content are |C|2 and |X|2 respectively
with |C|2 + |X|2 = 1. Since our measurements of nonlinearity are made at
zero exciton-photon detuning we have |C|2 = |X|2 = 0.5. Only the photonic
component of the polaritons leads to tunnelling through the mirror into free
space modes outside the cavity. Thus Eqn. S2 still holds and the output power
from the cavity gives the density of photons inside the cavity, where we are
careful to remember that this is really the density of the photonic component of
the polaritons. The density of the photonic component is related to the density
of polaritons by ρphotons = ρpolaritons|C|2. We can then write the density of
polaritons as

ρpolariton =
TPavgτ

′

fτpAℏω|C|2
. (S3)

Finally, to obtain the density of excitons (the excitonic component of the
polaritons) we multiply the polariton density by the excitonic fraction,

ρ =
TPavgτ

′|X|2
fτpAℏω|C|2

. (S4)



10 SUPPLEMENTARY INFORMATION

6 Comparison of nonlinearities

We find that in our system the nonlinearity coefficient β, relevant for appli-
cations, ranges between 0.01 µeV µm3 for n = 3, to 0.4 µeV µm3 for n = 7
Rydberg exciton-polaritons (see Fig. 3 in the main text). It is important to
note that in a Cu2O cavity the excitons are delocalised within the cavity thick-
ness of 26 µm, and so the exciton density is expressed per unit volume of the
cavity region and the appropriate units for the nonlinear parameter are energy
shift divided by number of particles per unit volume, that is µeV µm3.

In other highly nonlinear polariton systems, such as for example micro-
cavities with embedded (In)GaAs quantum wells, the excitons are confined
within the thickness of the quantum wells (typically ∼ 10 nm per quantum
well in the device). A single quantum well thickness is comparable to the exci-
ton Bohr radius and hence the density is usually expressed per unit area of a
single quantum well. For GaAs polaritonic systems the reported strengths of
exciton-polariton nonlinearity (either β-values or g-values characterising the
collapse of strong exciton-photon coupling or the exciton energy shifts, respec-
tively) are in the range from 2 to 10 µeV µm2 [2, 6–9]. In order to compare
these to β-values of the bulk excitons we study, one has to transform the 2D
density to effective 3D density by dividing it by the thickness of the quantum
wells. This enables a unified characterisation of the strength of interactions
between two excitons separated by a certain distance irrespective of how they
are positioned within the cavity region, whether they are bulk or confined to
a single or multiple 2D layers.

Following this procedure the 2D values of 2–10 µeV µm2 in GaAs-based
systems are equivalent to 0.02–0.1 µeV µm3. These values are exceeded by
the β values in Cu2O microcavity already for n = 5 exciton-polaritons. Qual-
itatively, this is expected since the exciton Bohr radius for n = 5 is already
of the order of 30 nm, being three times larger than that in GaAs, leading
to stronger dipole-dipole interactions or Pauli blockade mechanism. Similarly,
nonlinearities in hybrid perovskites containing order 3000 layers have been
studied [10]. Each layer is of order 1.7 nm thick. The per-layer nonlinearity of
3 µeV µm2 is equivalent to a bulk-like nonlinearity of 0.005 µeV µm3. This 3D
value is then convenient to deduce the effective 2D nonlinearity of perovskite
structures with different numbers of layers.

7 Theoretical analysis

In this section we present the theoretical analysis of Rydberg excitons coupled
to photons in a microcavity. In the first part, we focus on the relation of the
Rabi splitting (Ωn) and the light-matter coupling constant (Gn). In particular,

we derive Ωn ≈ Ω
(0)
n −βnρ, where ρ is the exciton density, and Ω

(0)
n is the Rabi

splitting at vanishing density, ρ = 0. This gives the theoretical beta factor βn
used to characterise the strength of nonlinearity. In general, βn ∼ VB/V is
mostly determined by the ratio between blockade (VB) and the total volume
(V ). In the next part, we discuss the blockade VB due to Rydberg and Pauli
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blockade. These two different mechanisms lead to distinct scaling behavior.
Also, we discuss the estimates for βn in Cu2O (Fig. 3b in the main text). In
the final part, we deduce the nonlinear refractive index n2 for Cu2O using the
nonlinear polaritonic response.

7.1 Rabi splitting and light-matter coupling

Transmission of the Cu2O microcavity system around n-th excitonic state can
be modeled as [1]

Tn ≈ 1

(κ2 +G2
n
γn/2+2Qn∆n

γ2
n/4+∆2

n
)2 + (∆n −G2

n
∆n−Qnγn

γ2
n/4+∆2

n
)2
, (S5)

where κ is the cavity line-width, Gn is the exciton-photon coupling con-
stant, ∆n is the detuning, γn is the excitonic linewidth, and Qn is the Fano
asymmetry parameter. In the weak light-matter coupling regime (Gn ≪ γn),
the system only responds to light with frequency near the exciton resonance
(∆n = 0). One can see from Eq. (S5) that in the strong coupling regime
(Gn ≫ γn) the optical response changes qualitatively [11]. Namely, in this
regime the resonance changes from ∆n = 0 to two resonances at ∆n = ± 1

2Ωn.
This comes from the hybridisation of photonic and excitonic modes. The result-
ing states – polaritons – are quasiparticles which energies are characterised by
the Rabi splitting Ωn.

The Rabi splitting can be analytically calculated from Eq. (S5) by identi-
fying the separation between points of maximum response in the transmission
spectrum. For instance, in the absence of asymmetry (Qn = 0), Rabi splitting
can be obtained from Eq. (S5) as [12]

Ωn = 2

√
Gn

√
1
2γn(κ+ γn) +G2

n − 1
4γ

2
n. (S6)

We can see that the Rabi splitting explicitly depends on the coupling constants
Gn and the linewidth γn. These quantities can be exciton density-dependent.
For instance, the exciton blockade can lead to the reduction of Gn, and the
scattering between excitons broadens the linewidth γn. These effects will even-
tually renormalise the Rabi splitting or the shift of polariton energy which
directly translates into optical nonlinearity. To see these effects, we expand
Eq. (S6) at low exciton density ρ as

Ωn = Ω(0)
n − βnρ+O(ρ2), (S7)

where the Rabi splitting in low density is

Ω(0)
n = 2

√
G

(0)
n Λn − 1

4 (γ
(0)
n )2, (S8)
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with G
(0)
n := Gn|ρ=0, γ

(0)
n := γn|ρ=0, and Λn :=

√
1
2γ

(0)
n (κ+ γ

(0)
n ) + (G

(0)
n )2.

Here, the β-factor then reads

βn = − 2

Ω
(0)
n Λn

[
(Λ2

n + (G(0)
n )2)

dGn

dρ
+G(0)

n ( 12κ+ γ(0)n )
dγn
dρ

]
. (S9)

This factor quantifies the rate of the Rabi splitting reduction. In the above, the
exciton blockade and the linewidth broadening effects are present in the first
and second terms. However, no strong inhomogeneous broadening has been
resolved in the measurement within the low-density regime. Therefore, in our
analysis, we focus on the blockade effect in the first term.

7.2 Rydberg and Pauli blockade

In this subsection, we discuss the possible blockade mechanism that leads to
reduction of Gn, and present the details for derivations. First, let us comment
on the case of Rydberg excitons outside of optical cavities. In the presence of
N Rydberg excitons, the absorption (α) of Cu2O follows the scaling relation
α ∝ V/VB−N , where V is the total volume of the system and VB is the Rydberg
blockade volume [13]. The N -dependent behavior in α can be well explained
by Rydberg blockade physics [14]. When placed inside an optical cavity, the
absorption is related to the light-matter coupling constant as α ∝ G2

n [1]. In
the low-density limit, the coupling constant may be written as

Gn ≈ G(0)
n (1− 1

2BnN), (S10)

where Bn = VB/V is the blockade coefficient for a single Rydberg exciton. In
the case of Rydberg blockade it is given by

Bn =
4π

3

r3C
V
. (Rydberg) (S11)

The Rydberg exciton blockade radius is modeled by rC = (Ck/γn)
1/k with Ck

being the dipole-dipole interacting constant [14, 15]. Here, k = 3 is the Förster-
type interaction and k = 6 is the van der Waals interaction. This parameter
plays a crucial role in determining blockade physics which has been estimated
theoretically in Ref. [15]. To calculate the β-factor, we substitute Eq. (S10)
into Eq. (S9), and get

βn =
Λ2
n + (G

(0)
n )2

Ω
(0)
n Λn

G(0)
n BnV. (S12)

We then extract the light-matter coupling constant G
(0)
n from the measurement

in Fig. 3a of the main text by using Eq. (S8). This gives the best fit G
(0)
n =

2.29(n
2−1
n5 )1/2meV in the main text, see Fig. S6a. We obtain the β-factor
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Fig. S6: Scaling of Rydberg exciton. (a) Rabi splitting in low density. Closed
black circles are the point taking from Fig. 3a of the main text at ρ = 0. Dashed

curved is the fitted result by using G
(0)
n ∝

√
(n2 − 1)/n5 and Eq. (S6). (b)

Comparison between Rydberg (rC magenta) and Pauli (rn, light blue) blockade
radius. (c) Scaling of Pauli blockade coefficient. The factor fn in Eq. (S18)
gives the asymptotic scaling behavior for the blockade coefficient Bn ∼ n4

[Eq. (S17)]. Dashed curves are the fits by using fn = n4(b0 + b1n
−1 + b2n

−2).

plotted as the purple solid curve in Fig. 3b. In the large n-limit, the blockade
coefficient shows a power-law scaling with Bn ∼ n7[14]. Hence, Eq. (S12) gives
the asymptotic scaling for βn ∼ n5.5.

However, this scaling property which is very often used for identifying the
Rydberg blockade has only been established in the large quantum number
regimes (n ≥ 12) [14]. In our case, the exciton quantum number are in the
range from n = 3 to n = 7, where the scaling behavior may not be evident.
Therefore, the power-law scaling may not be a single argument supporting
the observation of the Rydberg blockade in our low-n measurement. Next, we
consider another potential contribution to the reduction of Rabi frequency.

As the exciton radius rn = 1
2a0(3n

2−2) [14] is comparable to the Rydberg
blockade radius rC (see Fig. S6b), we consider the effects of Pauli blockade.
This comes from the composite nature of excitons and fermionic statistics of
the electrons and holes. In order to identify the Rydberg physics in this low-n
regime, we analyse the Pauli blockade and investigate its contribution.

For the Pauli blockade, the coefficient in Eq. (S10) can be evaluated exactly
as

Bn =
∑

k

|ψn(k)|4, (Pauli), (S13)

where ψn(k) is the exciton wavefunction with quantum number n and wavevec-
tor k [16]. The p-wave hydrogen-like wavefunction [17] (l = 1,m = 0)
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is

ψn(k) =

√
(na0)3

V

n(n− l − 1)!

(n+ l)!

[
C

(l+1)
n−l−1(

ξ2−1
ξ2+1 )

22l+32πl!ξl

(ξ2 + 1)l+2

]
Υlm(θ, ϕ), (S14)

where ξ = nka0. Here, C
(α)
n (x) is the Gegenbauer functions and Υlm(θ, ϕ) is

the spherical harmonic function. We note that the momentum k is discrete,
defined by a finite sample size with volume V . The normalisation condition is∑

k |ψn(k)|2 = 1. In contrast to the Rydberg blockade, the shape of the exciton
wavefunction ψn(k) completely determines Bn or the Bohr radius a0. The
Bohr radius can be determined by the experiment’s Rydberg exciton energies,
ωn = Eg + Eb

n in Fig. S3 with bandgap energy Eg and the exciton binding
energy

Eb
n = −Ry∗

n2
. (S15)

The Rydberg constant Ry∗ = e2

4πϵ0ϵr
1

2a0
, which allows us to estimate a0. Using

the Cu2O dielectric constant ϵr = 7.5 [18], and

Ry∗ = − ωn−1 − ωn

(n− 1)−2 − n−2
, (S16)

we can deduce the Bohr radius a0 ≈ 0.83 nm. Therefore, in the Pauli blockade,
the experiment leaves no free adjustable parameter for the β-factor. We plot
βn from the contribution due to the Pauli blockade in Fig. 3 of the main text
(blue dashed curve). It is an order of magnitude smaller than the measured
values.

In terms of power-law scaling, we let

Bn = fn
a30
V
. (Pauli) (S17)

The prefactor is

fn =
9× 220n3

10(n2 − 1)2

∫ ∞

0

dξ
ξ6[C

(2)
n−2(

ξ2−1
ξ2+1 )]

4

(1 + ξ2)12
, (S18)

where we used
∑

k
(2π)3

V →
∫
d3k for wavevector k in large V . This fn prefactor

determines the scaling behavior of Bn and we plot in Fig. S6c. As we can see,
the Pauli blockade coefficient (Bn) scales with a power law weaker than n4

for low n, and approaches an ∼ n3.5 scaling in the high-n range. Overall, it is
lower than the Rydberg blockade scaling with n7. Using Eq. (S12), this yields
a a scaling trend of βn ∼ n2.5 for small n, significantly different as compared
to experiment.
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7.3 n2 parameter from Rabi frequency measurement

To estimate the n2 nonlinear parameter, we begin with the definition of the
total refractive index and the optical susceptibility as follows [4]

nT
2 = ϵb + χ(ω). (S19)

The optical susceptibility in a cavity for each excitonic mode near the resonance
can be modeled by [1, 11]

χ(ω) ≈ hnG
2
n

ω − ωn + 1
2 iγn

, (ω ≃ ωn), (S20)

where ωn is the Rydberg exciton energy. We note that the constant of
proportionality hn can be determined from the Rabi splitting measurement.

The coupling constant Gn changes due to the Rydberg blockade as the
laser power increases [Eq. (S10)]. This leads to the nonlinear response in the
susceptibility

χ(ω) = χ(1)(ω) + χ(3)(ω)E2. (S21)

In the vicinity of ω ≃ ωn, the linear response of the above is χ(1)(ω) ≈
hn(G

(0)
n )2(ω − ωn + 1

2 iγn)
−1, and the Kerr nonlinear response is

χ(3)(ω) ≈ hn(G
(0)
n )2(−Bn)(

1
2ϵ0V/ω)

ω − ωn + 1
2 iγn

, (S22)

where we have converted the exciton number N into the electric field E by
using ωN/V ≈ 1

2ϵ0E
2 with V being the volume of the nonlinear medium. Also,

the blockade coefficient is given by Eq. (S11). The nonlinear refractive index
n2 is defined as

n2(ω) =
Re[χ(3)(ω)]

ϵ0cn20
, (S23)

where n20 = ϵb +Re[χ(1)(ω)]. Therefore, the n2-parameter (near ω ≃ ωn) from
the quench of Rabi frequency is

n2(ω) ≈ − hnβn
2cn20ω

G
(0)
n (ω − ωn)

(ω − ωn)2 +
1
4γ

2
n

, (S24)

where we have used Eq. (S12) by taking the strong-coupling limit (G
(0)
n ≫

γ
(0)
n ).

At the polaritonic peaks (ω = ωn ± 1
2Ω

(0)
n ), the total refractive index

satisfies [11]

nT(ωn ± 1
2Ω

(0)
n ) = nb

ωn

ωn ± 1
2Ω

(0)
n

(S25)
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where nb = nT(ωn) =
√
ϵb is the background refractive index (nb = 1 for

the device is vacuum). The condition in Eq. (S25) determines the constant of
proportionality hn. Therefore, we can deduce the nonlinear refractive index n2
from our Rabi splitting measurements.

Alternatively, we can also deduce the constant of proportionality hn from
the absorption data by following the method in Ref. [11]. First, the Rabi
splitting of a nonlinear medium with susceptibility in Eq. (S20) can also be
estimated as

Ω(0)
n =

√
2ωnhn(G

(0)
n )2/nb2 − (γ

(0)
n )2 (S26)

Substituting the experimental measurements into the above, we get hn which
has the same orders of magnitude as the hn obtained from Eq. (S25). Fur-

thermore, in Ref.[11], we have hn(G
(0)
n )2 ≈ (nbcα0γn)/(ωn/ℏ) where α0 is the

absorption. Using the absorption data in Ref. [13], we again obtain the hn with
the same order of magnitude.

8 Non-resonant pumping and quenching of
Rabi Splitting
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Fig. S7: Normalized Rabi splitting as a function of resonant peak laser power
(bottom axis) and/or photon density in the cavity (top axis). Normalization
is based on the case where smallest value of laser power is used.
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Fig. S8: Normalized Rabi splitting as a function of non-resonant CW laser
power (bottom axis) and/or photon density inside the cavity (top axis). Rabi
splitting values are normalized based on the case where no non-resonant laser
is used.

In this section we compare two regimes of quenching of Rabi splitting. One
case is the resonant pulsed excitation presented in the main paper in Fig. 3.
Here we show these data as normalised Rabi splitting plotted as a function of
incident peak power and/or photon density created by the pulse in the active
cavity region (Fig. S7). The second case is non-resonant continuous wave (CW)
excitation with above band gap green laser at wavelength 520 nm (Fig. S8).
Varying the power of non-resonant laser and probing with weak broadband
super-continuum laser filtered from 568 to 582 nm in transmission geometry
the transmission spectra are recorded and then fitted to extract Rabi splitting.
Normalised Rabi splitting for this experiment is plotted as a function of CW
power of green laser or photon density in the cavity for excitons from n = 2 to
6 (see Fig. S8).The photon density in pulsed case is calculated using Eq. S2
whereas photon density in CW case is calculated using the following equation:

ρCW = TPinc

3Aℏω(c0/n0)
, (S27)

where T is the transmission through the mirror(2%), Pinc is the incident power,
A is the illuminated area (95 µm2), ℏω is the photon energy, c0 is the speed
of light in vacuum, n0 is Cu2O background refractive index, 1/3 is from the
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fact that propagation length of the excitation laser ≈ 10 µm in Cu2O with
thickness of ≈ 30 µm. The data for CW case are obtained on microcavity
Cu2O sample with distributed Bragg reflector mirrors reported in Ref. [1],
which is very similar in optical characteristics to the sample presented in the
main paper — cavity with silver mirrors. Note that the incident powers used
in CW excitation case are in tens of mW range for quenching of Rabi split-
ting whereas in resonant experiment with pulsed excitation quenching of Rabi
splitting is achieved at peak powers of tens of Watts. Even higher difference
can be noted in the photon density required for quenching the Rabi between
CW and pulsed regime (6 orders of magnitude). Such big difference of 6 orders
of magnitude in photon densities can be explained by population of free elec-
trons and holes and long lived states in the case of CW excitation contributing
to nonlinear behaviour and quenching of Rabi splitting. We also note that
in our experiments the photon densities in case of non-resonant CW pump-
ing are only 6 orders of magnitude less than in the case of pulsed excitation.
So our experiment with CW nonresonant pumping alone cannot explain why
there is 8 orders of magnitude difference in the n2 parameters measured in
the case of resonant pulsed and CW pumping in Ref. [4]. It is possible that
such a difference is sample dependent (for example, the density of long-lived
localised states, which could be associated with metallic impurities may vary
from sample to sample).

9 Pump-probe zero delay point

The interference between residual pump and probe pulses results in mod-
ulation of the spectra at small delays between pulses (see Fig. S9a). The
modulation frequency depends on separation of the pulses whereas its visibility
depends on the relative intensities of the two pulses. The analysis of modu-
lation at small delay times allow us to define the zero delay between pulses
with accuracy of ±0.25 ps (see Fig. S9). Fig. S9a shows pump-probe trans-
mission spectra on glass substrate without the Cu2O at different delay times
where pump signal after rejection with a polariser was ≈ 3 times bigger than
the probe signal. We extract free spectral range (FSR) of the modulated sig-
nal and plot it as a function delay stage position in Fig. S9b. Fitting the FSR
data allow us to define the zero delay position for the probe delay stage.

Although we have used much smaller pump powers in the experiment with
Cu2O in Fig. 5 and rejected the unwanted pump signal with polarisers on
detection small amount of pump still provides enough modulation for the probe
signal to interfere with polariton resonance. So we not plot data points in
Fig. 5 of the main text for the range of -30 to 37 ps apart from exact time 0
where the frequency of modulation is bigger than the polariton resonance and
it doesn’t influence the transmitted probe polariton spectrum.
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Fig. S9: Pump-probe signal on substrate without the sample. a trans-
mitted probe spectra for different delays displays interference with residual
pump beam not fully rejected by polarisers. Intensity of probe (pump) beam
is 20 µJ cm−2 (20 mJ cm−2). Period of modulation in energy or free spectral
range (FSR) increases closer to zero delay. b FSR plot (extracted from spectra
in a ) as a function of probe delay stage position (bottom axis) and/or time
delay (top axis). Time zero between arrival of two pulses is defined from the
fit of FSR with exponential function with accuracy of ±0.25 ps.
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