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Abstract

This thesis investigates the use of Machine Learning (ML) and Bayesian
inference to improve the prediction and understanding of Coronal Mass
Ejection (CME), a critical aspect of space weather forecasting.

Several ML techniques, including supervised learning methods such as
support vector machines, decision trees, and ensemble methods, are used
to develop predictive models based on CME data, aiming to enhance the
accuracy of CME arrival time forecasts. A key focus is placed on model
interpretability, achieved through Shapley Additive exPlanation (SHAP)
values, which provide insights into the feature space and allow for a better
understanding of how different variables influence model outputs.

Additionally, the thesis applies Bayesian inference and Monte Carlo
Markov Chain (MCMC) techniques to refine probabilistic models of CME
propagation using drag-based models, further improving the robustness and
reliability of the predictions.

The work also extends ML applications to the study of other solar phenom-
ena, specifically coronal jets, by augmenting the dataset for jet identification.
This leads to increased dataset diversity, improved detection of rare events,
and a better understanding of solar dynamics.

Overall, this thesis presents advancements in the application of ML and
Bayesian techniques to space weather forecasting and the study of solar phe-
nomena. The tools and methods developed in this research hold considerable
potential for future applications, with the capacity to improve prediction
accuracy and mitigate the impacts of space weather on technological systems.





3

Chapter 1

Introduction

The Sun, our closest stellar neighbour, is a sphere of hot plasma situated at
the centre of the Solar System. Its gravitational force governs the orbits of
all celestial bodies within the Solar System, including planets, asteroids, and
comets [Schrijver and Siscoe, 2010]. Predominantly composed of hydrogen
(approximately 74%) and helium (about 24%), with trace amounts of heavier
elements, the Sun is classified as a G-type main-sequence star (G2V) and has
been emitting energy for about 4.6 billion years [Bahcall et al., 2000]. The
Sun’s internal structure comprises several distinct layers, each contributing
uniquely to its overall function:

The core, the innermost region, is the site of nuclear fusion. At temper-
atures reaching approximately 15 million K, hydrogen nuclei fuse to form
helium, releasing vast amounts of energy [Clayton, 1984, Kravvaris et al.,
2023]. Surrounding the core, the radiative zone extends to about 70% of
the Sun’s radius. Here, energy is transported outward through radiative
diffusion, with photons scattering off particles and gradually moving towards
the outer layers. Beyond the radiative zone lies the convective zone, where
the temperature is sufficiently low for convection currents to develop. Hot
plasma rises towards the surface, cools, and then sinks back down to be
reheated, creating convective motion that efficiently transfers energy to the
Sun’s surface [Nordlund et al., 2009].

The photosphere, the Sun’s visible surface, emits the light what we see. It is
relatively cooler compared to the inner layers, with temperatures around 5,500
K [Stix, 1989]. Situated above the photosphere, the chromosphere appears as a
reddish rim during solar eclipses. Temperatures in this layer range from 4,000
to 25,000 K, and it is the site of dynamic phenomena such as solar flares and
prominences [Murawski et al., 2020]. Beyond the chromosphere lies the Sun’s
outermost atmospheric layer, the corona.

It is the outermost layer of the Sun’s atmosphere, extending millions of
kilometres into space. Despite its greater distance from the core, the corona is
much hotter than the underlying layers, with temperatures reaching several
million of K. It can be best observed during a total solar eclipse or with
specialised instruments and is the source of the interplanetary medium, the
solar wind [Aschwanden, 2005].

The Sun’s dynamic processes, collectively known as solar activity, have
a profound impact on the Earth and the entire Solar System. The Sun’s
activity has significant implications for space weather, which can impact
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Earth’s technological systems and space environment [Thaduri et al., 2020,
Buzulukova and Tsurutani, 2022].

1.1 Solar activity

Observations of the Sun’s activity reveal a near-periodic cycle, typically close
to a period of 11 years, commonly referred to as the solar cycle [Withbroe, 1989,
Hathaway, 2010]. One of the primary indicators used to monitor solar activity
is the number of sunspots on the photosphere. Sunspots are dark areas on the
solar surface characterized by strong, constantly shifting magnetic fields. By
convention, a solar activity cycle begins with a minimum number of sunspots
and ends with the onset of the next minimum. During a minimum period, the
number of sunspots is relatively low, while a maximum period is associated
with a significantly higher number of sunspots. Moreover, the position of
sunspots changes throughout the cycle; they are typically distributed near
the equator during minimum periods and migrate towards intermediate
latitudes as the maximum approaches [Solanki et al., 2006]. The sunspot
record provides a direct means of characterizing solar activity over nearly
400 years [Hathaway and Wilson, 2004], showing that sunspot cycles have
periods of 131 ± 14 months with a normal distribution, are asymmetric with a
fast rise and slow decline, and that the rise time from minimum to maximum
decreases with cycle amplitude [Hathaway and Wilson, 2004]). The longest
recorded period was 17.1 years (from 1788 to 1805), while the shortest lasted
7.3 years (from 1829 to 1837). The solar cycle is closely linked to variations
in the Sun’s magnetic field, which reverses its polarity approximately every
11 years, causing the North and South Poles to switch places [Charbonneau,
2010].

This cyclic behaviour indicates the existence of an internal timing mech-
anism within the Sun that appears to control or influence all aspects of
solar phenomena and extends its effects throughout the Solar System. It is
widely accepted that this timing mechanism results from the nearly periodic
generation and evolution of magnetic fields within the solar interior and on
the solar surface, specifically through a dynamo mechanism that generates
the Sun’s magnetic field [Charbonneau, 2010, Balogh et al., 2014]. The cyclic
nature of solar activity is evident in most parameters used to describe solar
phenomena, even during extended intervals when sunspots were scarce.
Indeed, even in the absence of sunspots, other indicators of solar activity
persist, including emissions of ultraviolet and X-ray radiation, the modulation
of the interplanetary medium, the solar wind, and the occurrence of energetic
events such as solar flares and coronal mass ejections. These manifestations of
solar activity can have a significant impact on the Earth’s upper atmosphere,
ionosphere, and magnetosphere, collectively known as "space weather," and
may also influence certain aspects of the lower atmosphere and climate [Baker,
2000].

In the past few decades, the understanding of the solar activity cycle has
shifted from being a scientific interest to a matter of practical importance. This
change is driven by the realisation that solar phenomena can have potentially
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harmful effects on Earth’s space environment. Solar activity associated with
space weather can be divided into three main components: solar flares, CMEs,
and high-speed solar wind [Schrijver and Siscoe, 2010, Gopalswamy, 2018].

Solar flares are large, sudden eruptions of intense electromagnetic radiation
from the Sun, lasting from minutes to hours. These powerful bursts of energy
occur due to the rapid reconfiguration and reconnection of the Sun’s magnetic
field lines, releasing vast amounts of stored magnetic energy [Hudson, 1991].
The electromagnetic radiation, traveling at the speed of light, interacts with
Earth’s upper atmosphere as soon as the flare is observed, causing immediate
ionospheric disturbances on the sunlit side. These disturbances can disrupt
satellite operations and degrade radio communications, highlighting the
significant impact of solar flares on space weather and technological systems
[Baker et al., 2013].

High-speed solar wind streams originate from areas on the Sun known
as coronal holes. These magnetically open regions of the Sun’s atmosphere
allow the accelerated outflow of high-speed solar wind particles, which can
reach velocities of up to 800 kilometres per second. These coronal holes can
form at any latitude on the Sun, but their resulting solar wind streams usually
only impact the Earth when they are located nearer to the solar equator. This
is because equatorial coronal holes are more favourably oriented to interact
with and influence the Earth’s magnetosphere and upper atmosphere, leading
to more pronounced space weather effects [McPherron and Weygand, 2006,
Cranmer, 2009, Al-Feadh and Al-Ramdhan, 2019].

CMEs are immense expulsions of plasma and magnetic fields from the
Sun’s outer atmosphere, or corona [Gopalswamy et al., 2006]. These massive
eruptions can propel billions of tonnes of solar material into interplanetary
space at millions of kilometres per hour. CMEs can be ejected in any direction
relative to the Earth, but only those aimed towards our planet will have
significant impacts. When a CME reaches and interacts with the Earth’s
magnetosphere, the compressed and distorted magnetic fields and influx
of charged solar particles can disrupt satellite operations, communication
systems, and power grids, demonstrating the substantial effects of these solar
phenomena on space weather and terrestrial technology [Gopalswamy et al.,
2006].

1.2 Space weather

Recent decades have seen a growing acknowledgement of the significant
influence that space-based phenomena can have on human activities and
endeavours on Earth [Camporeale et al., 2018c]. This enhanced awareness
highlights the crucial importance of comprehending and forecasting space
weather in order to mitigate its impacts on contemporary technology and
human welfare [Lanzerotti, 2001, Schwenn, 2006, Pulkkinen, 2007, Temmer,
2021, Cliver et al., 2022].

Space weather phenomena originate primarily from the Sun, where
complex magnetic fields are generated in the outer "convective" layer. In
this region, hot plasma rises towards the solar surface, transporting energy
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and distorting the magnetic fields. As the Sun’s differential rotation further
twists and contorts these fields, they emerge into the Sun’s outer atmosphere -
the corona - forming intricate magnetic structures visible in extreme ultraviolet
imaging. The energy stored within these magnetic fields is the driving
force behind space weather, particularly through the process of magnetic
reconnection. This process reconfigures the magnetic field topology in the
solar corona, releasing vast amounts of energy and accelerating electrons
and ions in the plasma to extremely high velocities [Singh et al., 2010]. This
reconfiguration can cause portions of the corona to become magnetically
disconnected from the Sun, allowing them to be ejected into interplanetary
space as powerful bursts of charged particles and electromagnetic radiation
(known as CMEs) [Camporeale et al., 2018b]. Space weather events primarily
impact three key environments, which can significantly disrupt the operation
of many critical technologies that are essential for modern societies and
economies:

• The electromagnetic fields within the solid body of the Earth can induce
disruptive currents in power grids, pipelines, and other ground-based
infrastructure.

• The radiation environments in Earth’s atmosphere and near-Earth
space can degrade the performance and lifetime of satellites, endanger
astronauts, and disturb radio communications and navigation signals.

• The density, composition, and dynamics of the upper atmosphere can
affect the orbital trajectories of satellites, compromise the integrity of
Global Positioning System (GPS) signals, and disrupt high-frequency
radio communications.

Disturbances caused by space weather can profoundly impact a wide range of
essential systems and infrastructure. These effects extend beyond the imme-
diate disruption of space-based telecommunications, broadcasting, weather
services, and navigation. They also significantly disrupt power distribution
networks and terrestrial communications, particularly at higher latitudes
where the impacts are more pronounced. A notable consequence of solar
activity is the severe disruption of satellite navigation services, which is caused
by dynamic changes in the ionosphere. This poses significant challenges
for aviation, road transport, shipping, and any other activities that rely on
precise positioning and timing information provided by satellite navigation.
The far-reaching implications of these space weather-induced disruptions
are substantial, compromising the safety and efficiency of numerous critical
operations that modern societies and economies depend upon [Fry, 2012, Rao
et al., 2009].

CMEs are considered the most significant phenomena through which solar
activity drives space weather effects on Earth. CMEs are vast eruptions
of magnetised plasma from the Sun’s outer atmosphere that propagate
through interplanetary space. When a fast-moving CME reaches Earth, it
can profoundly interact with and compress the planet’s magnetosphere,
causing a sudden and substantial increase in the magnetic field observed
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at the Earth’s surface. This dynamic interaction between the CME and the
magnetosphere is a key driver of intense geomagnetic storms, which are
the primary manifestations of severe space weather. Geomagnetic storms
can induce powerful electrical currents in the upper atmosphere and on the
ground, posing significant risks to power grids, communication networks,
satellite operations, and other critical technological systems that modern
societies rely upon. Understanding the initiation and evolution of CMEs,
as well as their complex interactions with the Earth’s magnetic field, is,
therefore, a crucial aspect of space weather research and forecasting efforts.
The interaction between fast-moving CMEs and Earth’s magnetosphere often
involves a complex process of magnetic reconnection. This allows the CME’s
magnetic field to directly connect with and effectively "plug into" Earth’s
own magnetic field, enabling a substantial transfer of energy from the CME
into the magnetosphere. This sudden influx of energy can drive a dynamic
cycle of energy storage and explosive release within the magnetosphere’s tail
region. The stored energy is eventually unleashed in the form of powerful
electrical currents, which surge back towards Earth, producing vibrant
auroras, heating the upper atmosphere, and generating strong electric currents
that flow through the ionosphere. This "substorm cycle" is a fundamental
yet intricate dynamic process inherent to the interaction between planetary
magnetospheres and space weather events with impact. For Earth, this
substorm cycle typically unfolds over the course of 1–3 hours [Durgonics
et al., 2017, Chakraborty et al., 2020].

The passage of a large, fast-moving CME through Earth’s interplanetary
space is not an instantaneous event. Observations indicate that CME durations
can vary widely, ranging from as short as 2 hours to as long as 90 hours, with
an average duration of about 20–23 hours [Gopalswamy, 2006, Richardson and
Cane, 2010]. In the case of particularly fast CMEs, the full extent of the event
may sweep past our planet within 12–24 hours, depending on the velocity and
structural characteristics of the CME [Gopalswamy, 2006]. During this time,
the CME’s interaction with the magnetosphere drives a series of recurring
substorms, resulting in a prolonged period of heightened space weather effects
known as a geomagnetic storm [Badruddin et al., 2018]. These geomagnetic
storms can have significant and wide-ranging impacts on both ground-based
and space-borne technological systems. From power grids and pipelines
to satellite operations and communication networks, the disruptive effects
of geomagnetic storms pose serious challenges to the critical infrastructure
that modern societies and economies rely upon. Given the potential severity
of space weather effects, there has been substantial effort over the past few
decades directed towards forecasting if and when CMEs will arrive at Earth.
Accurate prediction of these events can provide critical lead time to mitigate
their impacts. These space weather events primarily originate from the Sun,
particularly from the evolution of its magnetic field. However, solar activity
is not constant; it follows a cyclic process during which the configuration of
magnetic field lines undergoes modifications. Understanding these cycles
and their implications for space weather is crucial for developing effective
forecasting models. Efforts to forecast CME arrival and their subsequent
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impacts involve a combination of observational data, theoretical models,
and, increasingly, machine learning techniques. By integrating data from
solar observations with advanced modelling approaches, researchers aim to
improve the accuracy and reliability of space weather predictions, thereby
enhancing our ability to protect technological infrastructure and human
activities from the adverse effects of space weather.

1.3 Coronal mass ejections

CMEs are massive, high-energy structures composed of plasma and magnetic
fields, ejected from the Sun’s corona into interplanetary space. These erup-
tions typically have an average mass of approximately 1013 kg and plasma
temperatures ranging from 80,000 K to 2 million K. The frequency of CMEs
is closely tied to the solar cycle, with the Sun producing up to 2–3 CMEs per
day during solar maximum due to enhanced magnetic activity and instability
in the corona.

The first recorded observation of a solar eruption dates back to the
1859 Carrington Event, when Richard Carrington observed a solar flare
accompanied by a CME [Carrington, 1860]. Magnetic disturbances caused by
the CME were later confirmed through ground-based magnetometer readings.
Early observations of transient solar events were limited to rare total solar
eclipses due to the Sun’s intense glare. However, advancements in space-
based solar observatories have revolutionized the study of CMEs, providing
continuous and detailed monitoring of these dynamic phenomena.

CMEs are the most massive eruptive events in the solar system, ejecting
magnetized plasma clouds at velocities of millions of kilometers per hour.
These structures, often spanning millions of kilometers, originate in closed
magnetic field regions of the corona and are frequently associated with
filament or prominence eruptions, which accompany around 70% of CMEs.
Solar flares often occur alongside CMEs, with simultaneous events observed
in 55–90% of cases, depending on the energy released [Green et al., 2002,
Youssef, 2012].

The discovery of CMEs was made in the early 1970s through space-
borne coronagraphs aboard missions like Skylab. Subsequent advancements
with observatories such as the Solar Maximum Mission, Yohkoh, Solar and
Heliospheric Observatory (SOHO), and Transition Region and Coronal Ex-
plorer (TRACE) have provided extensive data, improving our understanding
of their morphology and behavior.

The energy driving CMEs primarily comes from free magnetic energy
stored in the solar atmosphere’s non-potential magnetic fields, with pressure
and gravitational forces also contributing. However, measuring the coro-
nal magnetic field remains challenging, requiring reliance on extrapolated
photospheric measurements [Mikić and Lee, 2006, Kusano et al., 2012].

A comprehensive CME structure typically includes the following compo-
nents [Green et al., 2018b]:
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FIGURE 1.1: An illustrative drawing of the CSHKP Model
[Carmichael, 1964, Sturrock, 1966, Hirayama, 1974, Kopp and

Pneuman, 1976].

• A fast-moving shock wave ahead of the CME, compressing and heating
the ambient solar wind plasma.

• A leading edge with elevated plasma density (ne ≈ 1014 m−3) and
magnetic field intensity (10−4 T).

• A cavity with reduced plasma density (ne ≈ 1013 m−3) and coronal
temperatures of 1–2 MK.

• A prominence core with high plasma density (ne ≈ 1017 m−3) and lower
temperatures (∼ 80, 000 K).

• A post-eruption arcade with plasma temperatures of 10 MK.

The widely accepted CSHKP model [Carmichael, 1964, Sturrock, 1966,
Hirayama, 1974, Kopp and Pneuman, 1976] explains CME initiation through
magnetic reconnection. An unstable pre-eruptive structure rises, stretching
magnetic field lines until reconnection occurs. This process ejects plasma
into interplanetary space while forming post-eruption loops, as illustrated in
Fig. 1.1 [Priest and Forbes, 2001].

The evolution of a CME/flare event typically occurs in three phases [Green
et al., 2018a]: initiation, characterized by the gradual rise of pre-eruptive
structures [Forbes, 2000, Mittal and Narain, 2010]; acceleration, marked by the
violent ejection of plasma; and propagation, during which the ejected material
travels at nearly constant velocity unless influenced by solar wind interactions
[Vršnak, 2008].
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FIGURE 1.2: Pre-eruptive magnetic field configurations. Flux
rope structure (left)[Amari et al., 2003]. Sheared arcade (right)

[Karpen et al., 2005].

Two main pre-eruptive configurations, flux ropes and sheared arcades,
underpin CMEs. Recent studies suggest that these may form a hybrid state,
evolving from magnetic loop emergence to flux rope structures, depending
on the dynamics of the solar region [Wang et al., 2015, Zheng et al., 2020,
Patsourakos et al., 2020], as shown in Fig. 1.2.

1.3.1 CME propagation and effects

As mentioned in the previous section, a CME typically follows three distinct
evolutionary phases:

• The initiation phase: The frontal loop rises slowly (at ∼ 80 km/s) as the
CME is triggered.

• The acceleration phase: The frontal loop undergoes rapid acceleration,
lasting from several to tens of minutes, often coinciding with the
impulsive phase of an associated flare.

• The propagation phase: The frontal loop moves at an approximately
constant velocity.

The velocity of a CME is generally measured as the radial propagation
speed of its frontal loop, projected in the plane of the sky1.

Sheeley Jr et al. [1999] classified CMEs into two types based on height-
time maps observed by SOHO/Large Angle and Spectrometric Coronagraph
(LASCO) coronagraph:

• Gradual CMEs: Formed as prominences and their cavities rise beneath
coronal streamers, with speeds ranging between 400–600 km/s.

• Impulsive CMEs: Typically associated with flares, with speeds exceed-
ing 750 km/s.

Statistical studies (e.g., Zhang and Dere [2006]) show that the main
acceleration during the impulsive phase varies widely, from 2.8 × 10−3 to
4.464 km/s, with an average value of 0.331 km/s. The duration of this phase
ranges from 6 to 1200 minutes, averaging around 180 minutes.

1This velocity is often referred to as projected velocity.
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Although the propagation phase is characterised by a near-constant speed,
smaller accelerations or decelerations can occur. Fast CMEs tend to decelerate,
while slow CMEs accelerate, such that their velocities approach the ambient
solar wind speed.

It is common to classify CMEs as “fast” or “slow” based on their initial
speed relative to the ambient solar wind and their resulting acceleration or
deceleration. Fast CMEs (initial speed well above solar wind speed) tend
to decelerate, and slow CMEs (below solar wind speed) tend to accelerate,
as the drag force drives them toward the ambient flow speed [MacQueen
and Fisher, 1983, Sheeley Jr et al., 1999, Gopalswamy et al., 2000, Vršnak
et al., 2001]. However, this binary classification is not universally accepted.
Observational studies suggest a continuum of CME kinematics rather than a
clear bimodal separation [Pant et al., 2021]. In other words, CME speeds and
accelerations span a broad range without a distinct gap between “slow” and
“fast” populations, and intermediate-speed CMEs show mixed kinematic
behavior. The apparent categories likely overlap, and the drag-driven
kinematic profile of each CME depends on a continuum of parameters (e.g.
launch speed, mass, and ambient conditions) rather than falling neatly into
two discrete groups [Pant et al., 2021]. It is therefore more accurate to treat
CME propagation speeds as a spectrum, which has important implications
for modelling—each event may need individualised treatment instead of
assuming one of two standard kinematic profiles.

The propagation is influenced by the highly variable solar wind, the pres-
ence of preceding CMEs (common during solar maximum), and interactions
with other CMEs or nearby coronal holes. Intrinsic driving properties within
the CME itself may also play a role [Chen, 2011, Webb and Howard, 2012].

CMEs often deflect and rotate as they travel outward, due to interactions
with structured background magnetic fields and solar wind flows. Near the
Sun, influences such as active region fields, coronal hole open flux, and helmet
streamers can push a CME away from a purely radial trajectory and even
alter its orientation (rotation) [Isavnin et al., 2013, Kay et al., 2015, Cécere
et al., 2023]. Further out, interactions with high-speed solar wind streams
can continue to deflect a CME’s path or rotate its flux-rope axis, as observed
in cases where a CME’s encounter with a fast stream caused it to change
direction and tilt in interplanetary space [Palmerio et al., 2022]. CMEs also
undergo magnetic erosion during propagation: magnetic reconnection with
the surrounding interplanetary field strips away outer layers of the CME’s
magnetic flux and mass [Dasso et al., 2006, Ruffenach et al., 2015]. This erosion
effectively slows the CME’s forward motion (by reducing its momentum and
cross-sectional area), and can delay its arrival at Earth by several hours in the
case of fast CMEs [Stamkos et al., 2023]. Each of these processes – deflection,
rotation, and erosion – is crucial for space-weather forecasting, as they alter
the CME’s expected arrival time and impact. A CME that deflects or rotates
might miss an intended target or deliver a different magnetic orientation than
expected, and erosion can diminish a CME’s magnetic intensity while also
affecting its transit time [Palmerio et al., 2022, Stamkos et al., 2023].
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The dynamics of CME evolution in interplanetary space remain incom-
pletely understood, but several forecasting methods have been developed to
predict their arrival times at Earth [Napoletano et al., 2018b, Brueckner et al.,
1998, Owens et al., 2005, Vršnak et al., 2014]. These methods include:

• Experimental models: Empirical models relying on observational
statistical relationships between coronal measurements and heliospheric
propagation parameters.

• Magnetohydrodynamic (MHD)-based models: Numerical simulations
of Interplanetary Coronal Mass Ejection (ICME) propagation, which
are computationally intensive and require detailed knowledge of the
heliospheric state.

• Hybrid models: Simplified analytical or empirical approaches based on
MHD or Hydrodinamc (HD) frameworks, requiring modest computa-
tional power to describe interactions during CME propagation.

1.4 Solar wind

Once launched into interplanetary space, CMEs propagates through the solar
wind, a continuous outward flow of plasma from the Sun’s corona. The
hypothesis of the solar wind was first proposed in the mid-20th century to
explain the behaviour of comet tails, which often deviated from the expected
Sun-comet vector. These deviations suggested the existence of a radial flow of
charged particles from the Sun. This theory, which postulated the continuous
expulsion of plasma primarily composed of electrons and protons at velocities
of 500–1000 km/s, was first proposed by Biermann [1952].

The solar corona, a dynamic magnetic environment, consists of loops and
structures anchored in the Sun’s photosphere. Most of these loops are closed
and trap plasma, but in regions with weaker or open magnetic fields, plasma
can flow outward along field lines, forming the solar wind [Gosling, 2006,
undefined, 2020].

In 1958, Eugene Parker introduced the concept of the solar wind through a
theoretical model that explained this continuous plasma outflow, even before
it was directly observed [Parker, 1958]. Parker’s groundbreaking model
provided a unified explanation for various phenomena, including comet tail
behaviour. The Soviet Luna 1 spacecraft in 1959 and National Aeronautics
and Space Administration (NASA)’s Mariner 2 mission in 1962 provided the
first direct observational evidence, validating Parker’s predictions [Sonett,
1963].

Parker’s model assumes a steady plasma flow from a spherically sym-
metric Sun with an isothermal corona. He demonstrated that the corona’s
temperature and pressure are sufficiently high to overcome the Sun’s gravi-
tational pull, resulting in a continuous outward plasma flow. The governing
equations for momentum and mass conservation in the model are:



1.4. Solar wind 13

FIGURE 1.3: Solar wind velocity v as a function of radial distance,
illustrating the five solution classes of Parker’s motion equations

[Parker, 1958].

ρ(u · ∇)u = −∇P + j × B + ρFg, (1.1)
∇ · (ρu) = 0, (1.2)

where u is the radial expansion speed, ρ is the density, and the forces
on the right-hand side represent pressure gradients, the Lorenz force, and
gravitational force, respectively. Combining these equations and the model’s
assumptions yields the equation of motion:(

u2 − 2kBT
m

) 1
u

du
dr

=
4kBT
mr

− GM⊙
r2 , (1.3)

where u is the solar wind’s radial velocity as a function of distance r, kB is
the Boltzmann constant, T is the corona’s temperature, m is the particle mass
(typically a proton), G is the gravitational constant, and M⊙ is the Sun’s mass.

This equation balances the forces acting on solar wind particles: the
outward thermal pressure and the inward gravitational pull. Parker showed
that as coronal temperatures rise, the thermal energy surpasses gravitational
constraints, driving the solar wind’s expansion. Of the five possible solutions
to this equation (Fig. 1.3), only the solar wind solution (Class V) aligns with
observations, exhibiting subsonic velocities near the Sun and supersonic
speeds beyond the critical point.

The solar wind is generally categorized into two types based on speed: the
fast solar wind and the slow solar wind. Fast solar wind originates in coronal
holes and propagates at speeds exceeding 650 km/s, while slow solar wind,
associated with streamer belts, has velocities below 400 km/s.

1.4.1 Fast and slow solar wind

Observations have shown that solar wind properties differ markedly depend-
ing on velocity, often categorized into “fast” and “slow” regimes. Here,
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high-speed wind is conventionally considered to have velocities around
≥ 650 km/s, featuring elevated temperatures, reduced densities, and lower
mass fluxes indicative of a more tenuous plasma outflow. Conversely, low-
speed wind is often described at velocities of ≤ 400 km/s, characterized by
cooler temperatures, higher densities, and higher mass fluxes, suggesting a
denser and somewhat less energetic flow [Bravo and Stewart, 1997]. Speeds
falling between these thresholds are typically viewed as transitional or
intermediate regimes, exhibiting properties that blend aspects of both slow
and fast wind [Zhao et al., 2024, Alterman et al., 2024].

Fast solar wind streams typically originate from active regions such as
polar and equatorial coronal holes, which are areas of open magnetic field
lines that allow the rapid outflow of plasma at velocities around 700-800 km/s.
These high-speed streams are often referred to as Parker’s "classical" solar
wind.

In contrast, the slow solar wind has a more controversial origin, as it can
arise from a variety of complex and dynamic solar structures. The slow wind
can emanate from the edges of polar coronal holes, where the magnetic field
is less tightly concentrated, as well as from small low-latitude coronal hole
streamer belts. Additionally, the slow solar wind may even originate from the
fringes of active regions [Ohmi et al., 2004], where the magnetic field topology
is more open and conducive to a more gradual plasma outflow at velocities
around 300-400 km/s.

The structure of the solar wind gives rise to a phenomenon known as the
"Parker spiral", named after Eugene Parker. This is due to the "frozen-in"
condition, where the magnetic field is "frozen" into the solar wind flow, as
described by Alfvén’s pioneering work [Alfvén, 1942]. As the solar wind
emanates radially outward from the Sun’s surface, the rotation of the Sun
causes the footpoints of the magnetic field lines to move faster than the outer
portions of the magnetic field, which are carried along by the outflowing
plasma. This differential rotation between the Sun’s surface and the outer
solar wind results in the magnetic field lines being stretched into a spiral
pattern, forming the characteristic Parker spiral structure. In essence, it is
the plasma that "pulls" the magnetic field along as it propagates through the
interplanetary medium, imparting this distinctive spiral configuration to the
overall solar wind structure. The differing speeds of the fast and slow solar
wind can lead to complex interactions between the two wind types. This is
due to the distinct velocity regimes that characterise each component of the
solar wind. When a region producing slow solar wind is followed by a region
generating fast solar wind, the faster wind can catch up to and interact with
the slower wind. This interaction generates a rarefaction region, where the
plasma density is lower, and a compression region, where the density is higher.
The boundary between the fast and slow wind regions is known as the stream
interface, which acts as a separator between the two wind types. This interface
can also generate reflection waves in the solar wind, creating a distinctive
structure composed of the interface itself, bracketed by the reflection waves.
This structure is known as a corotating interaction region, reflecting the role of
the Sun’s rotation in shaping the solar wind dynamics [Rouillard et al., 2008].
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1.5 Drag-based model

The Drag Based Model (DBM) offers a simplified representation of CME
propagation dynamics in the solar wind, drawing an analogy to aerodynamic
drag exerted by the interplanetary medium [Owens and Grandé, 2004].

This model assumes that beyond a certain distance from the Sun, inter-
planetary CMEs tend to adjust their velocity to match the ambient solar
wind, with faster ICMEs decelerating and slower ones accelerating. While
this is consistent with the idea that at larger distances, the solar wind’s
drag force becomes the dominant factor in ICME kinematics, the process
is not straightforward, as the magnetic field intensity and upstream solar
wind conditions also influence the deceleration and acceleration of ICMEs.
[Gopalswamy et al., 2000].

In this framework, the radial acceleration of a CME is determined by the
solar wind speed w(r) and the drag parameter γ(r), following the equation:

a = −γ(r)[(v − w(r))]|v − w(r)|, (1.4)

where v represents the CME velocity, and r is the distance from the Sun. The
drag parameter γ encapsulates information about the interaction between
ICMEs and the solar wind and can be expressed as a function of the ICME
cross-sectional area (A), the solar wind density (ρw), the ICME mass (M), and
the virtual mass (Mv ≈ ρw

V
2 , where V is the ICME volume) [Cargill, 2004]. It

is typically expressed as:

γ =
cd Aρw

Mv + M
, (1.5)

where cd is the drag coefficient. In general, the drag parameter γ may vary
with time, but it is reasonable to assume that γ(r) and w(r) remain constant
beyond approximately 20 solar radii [Cargill, 2004, Vršnak et al., 2013]. Under
this assumption, one can obtain the CME velocity v(t) and the heliospheric
distance r(t) as functions of time:

v(t) =
v0 − w

1 ± γ(v0 − w)t
+ w, (1.6)

r(t) = ± 1
γ

ln [1 ± γ(v0 − w)t] + wt + r0, (1.7)

where v0 represents the initial CME velocity, and r0 is the initial heliospheric
distance.

The DBM framework allows us to make predictions for the time of arrival
(ToA) and the impact velocity (velocity of arrival (VoA)) of a CME by fixing
the travelled distance (r1 − r0 ≈ 1 AU) and using the DBM parameters as
inputs. In Napoletano et al. [2018a], a probabilistic version of the DBM was
introduced, referred to as Probabilistic Drag Based Model (P-DBM), which
employs a-priori distributions of γ and w to obtain estimates of ToA and VoA
along with their associated errors.

Classical DBM assume a steady aerodynamic drag force that slows
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fast CMEs and speeds up slow ones, using a drag coefficient and a drag
force proportional to the relative speed between the CME and solar wind.
Recent refinements introduce turbulent drag-force models, which account for
high–Reynolds number conditions in the solar wind by making the drag force
scale non-linearly (quadratically) with the CME–solar wind speed difference
[Cranmer et al., 2021]. This approach, inspired by turbulence, effectively
increases drag on fast CMEs and has been shown in simulations to better
reproduce CME deceleration profiles than the linear drag law of the classical
DBM [Subramanian et al., 2012, Lin and Chen, 2022]. By incorporating
turbulent flow effects, these refined models improve the physical realism
of CME propagation forecasts without sacrificing the simplicity that makes
DBM useful.

1.6 Coronal jets

Solar activity encompasses a diverse range of dynamic and energetic phe-
nomena that originate from the Sun’s magnetic field. Among these, coronal
jets stand out as distinct, collimated bursts of plasma that erupt from the
solar corona, often associated with magnetic reconnection events [Shibata
et al., 1992, Raouafi et al., 2016, Liu et al., 2023]. These jets are highly
dynamic and variable, showcasing the Sun’s remarkable ability to channel
its magnetic energy into powerful and structured flows [Török et al., 2015,
Raouafi et al., 2016]. Their eruptive nature situates them as key components
within the broader framework of solar activity, serving as vital linkages to
other prominent phenomena such as solar flares and CMEs.

Coronal jets occupy a unique place in solar physics as small-scale but
profoundly revealing phenomena. First observed in the 1970s, their discovery
was tied to advancements in solar observations, which began unveiling
transient eruptions in the corona. Early studies speculated that these jets could
contribute to heating the corona and accelerating the solar wind, making them
relevant to key questions in heliophysics. Over time, space missions like
Yohkoh, SOHO, Hinode and Interface Region Imaging Spectrograph (IRIS)
have provided a wealth of data, showing that coronal jets are far more than
isolated events. Instead, they bridge the gap between small-scale transients
like spicules and large-scale eruptions such as CMEs. These jets reveal the
importance of magnetic energy and dynamics of the Sun, acting as a lens to
understand its broader activity.

Coronal jets are observed across multiple wavelengths, notably in Extreme
Ultraviolet (EUV) and X-ray spectra, allowing for detailed analysis of their
thermal and dynamic properties [Nisticò et al., 2009]. They typically last from
a few minutes to tens of minutes and can reach lengths of several tens of
thousands of kilometers. The velocities of these jets vary, with some reaching
speeds up to several hundred kilometers per second [Raouafi et al., 2016].
High-resolution observations from instruments such as the Hinode, Solar
Dynamics Observatory (SDO) and IRIS satellites have provided valuable
data on the fine-scale structure and evolution of coronal jets [Young and
Muglach, 2014, Raouafi et al., 2016, Schmieder et al., 2022]. These studies
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have revealed the presence of helical structures and rotational motions within
jets, suggesting the involvement of twisted magnetic fields and the release of
magnetic helicity during the reconnection process [Liu et al., 2017, Chen et al.,
2020].

Observations have identified various types of coronal jets, which differ
in their underlying physical mechanisms and characteristics. "Standard" jets
exhibit a well-defined, narrow spire, reflecting a more localised magnetic
reconnection process. In contrast, "blowout" jets are more expansive and
involve broader eruptions, indicative of a more complex and dynamic
magnetic field configuration [Moore et al., 2010b, Morton et al., 2012, Li et al.,
2018]. This distinction is linked to the nature of the magnetic reconnection
occurring in these regions, with blowout jets suggesting a more dramatic
release of energy and rapid reconfiguration of the magnetic field [Raouafi
et al., 2016]. The specific characteristics of these jet types provide valuable
insights into the diverse range of magnetic field topologies and energy release
processes operating in the solar corona.

1.6.1 Role in solar activity

Coronal jets are not isolated phenomena, but rather interconnected with
broader solar dynamics and activities. They play a crucial role in the mass
and energy balance of the solar corona, and are considered potential drivers
of the solar wind, particularly the fast solar wind emanating from coronal
holes. The frequent occurrence of these jets in these specific regions supports
the hypothesis that they actively contribute to the acceleration of solar wind
particles, providing a crucial link between solar surface phenomena and the
heliosphere beyond Török et al. [2015], Raouafi et al. [2016], Lionello et al.
[2016], Chitta et al. [2023].

Similarly to major dynamic solar events such as solar flares and CMEs,
theoretical and observational studies suggest that coronal jets are primarily
driven by magnetic reconnection [Shibata et al., 1992, Canfield et al., 1996,
Moore et al., 2010a, Pariat et al., 2015, Sterling et al., 2015]. By analyzing
these dynamic features, researchers can gain valuable insights into the specific
conditions that trigger reconnection, the intricate mechanisms governing the
rate at which it occurs, and the broader implications for energy transfer within
the solar atmosphere. However, alternative MHD models propose a distinct
mechanism for jet formation, one driven not by magnetic flux emergence, but
by the injection of helicity through photospheric motions [Pariat et al., 2015,
2016, Raouafi et al., 2016]. Specifically, shear or twisting motions at the base
of a closed non-potential region beneath a preexisting null point can induce
magnetic reconnection with surrounding quasi-potential flux, resulting in
untwisting or helical jets [see, e.g. Pariat et al., 2015]. Furthermore, previous
studies have shown that the evolution of coronal jets is often preceded by
wave-like or oscillatory disturbances [Pucci et al., 2012, Scullion et al., 2012,
Bagashvili et al., 2018].

Observations have revealed that many jets are associated with oscillations
in coronal emissions near the jet bases, likely driven by changes in the area
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or temperature of the pre-jet region [Pucci et al., 2012]. Statistically, pre-jet
intensity oscillations have been observed approximately 12-15 minutes before
the onset of jets [Bagashvili et al., 2018], which may be linked to the generation
of MHD waves arising from rapid temperature variations and shear flows
during local reconnection events [Shergelashvili et al., 2006].

Furthermore, their chromospheric counterparts, spicules (with a length
of approximately 10 Mm), play a key role in coronal heating and solar wind
acceleration [De Pontieu et al., 2004, Shibata et al., 2007, Tian et al., 2014, Dey
et al., 2022, Liu et al., 2023, Kesri et al., 2024], although the exact mechanisms
remain unclear.

Recent research is revealing connections between small-scale solar erup-
tions and the magnetic switchbacks detected by Parker Solar Probe (PSP) in
the young solar wind [Bale et al., 2019]. Switchbacks are sudden reversals
in the magnetic field direction, and one emerging idea is that they originate
from interchange magnetic reconnection in the low corona – the same process
that drives coronal jets [Sterling and Moore, 2020, Drake et al., 2021]. Coronal
jets are produced when closed loop magnetic fields reconnect with adjacent
open flux, releasing plasma and untwisting field into the heliosphere. It
has been proposed that the kinked or S-shaped field structures generated
by these jet-producing reconnection events travel outward and evolve into
switchbacks in the solar wind [Sterling and Moore, 2020]. Evidence for this
link is growing: recent studies have mapped switchback-rich solar wind
streams back to their solar sources and found correlations with jet activity
at coronal hole boundaries, where interchange reconnection is active. In
particular, a statistical analysis by Hou et al. [2024] found a direct relationship
between the magnetic flux changes from reconnection-driven polar jets and
the magnetic deflections observed as switchbacks, suggesting a physically
intrinsic connection between coronal jets and switchback formation. These
findings support the view that interchange reconnection events on the Sun
(jet eruptions, jetlets, etc.) inject perturbations that manifest as Alfvénic
switchback structures in the solar wind [Sterling and Moore, 2020, Hou et al.,
2024]. This emerging link is important because it connects phenomena across
scales — from transient jets at the Sun to in-situ switchback measurements —
improving our understanding of solar wind magnetic structure and the role
of small-scale solar activity in shaping heliospheric conditions.

Coronal jets play a crucial role in the complex interplay between the Sun’s
magnetic field and its outer atmosphere, providing important insights into the
fundamental processes that drive space weather Török et al. [2015], Lionello
et al. [2016]. By studying these dynamic features, researchers can better
understand the intricate mechanisms that govern the Sun’s activity and its
far-reaching impacts on the Earth and the broader heliosphere.

1.7 Problem statement and objectives

The accurate forecasting of CMEs is a critical challenge in space weather
research due to their significant impact on Earth’s technological systems.
These massive plasma and magnetic field eruptions from the Sun’s corona



1.7. Problem statement and objectives 19

interact with the solar wind and Earth’s magnetosphere, often resulting in
geomagnetic storms that can disrupt satellites, power grids, and communi-
cation networks. While forecasting methods have advanced significantly,
limitations in data, model interpretability, and computational efficiency
persist, necessitating further exploration.

Researchers have developed various approaches to predict the arrival
and impact of CMEs. Among these, three primary approaches have gained
prominence, each leveraging distinct methodologies and offering unique
advantages and limitations.

MHD models are one of the foundational approaches to simulating
CMEs propagation through the heliosphere. These models solve complex
plasma equations, capturing detailed interactions between CMEs and the
surrounding solar wind. Well-established models such as Wang-Sheeley-Arge
(WSA)-ENLIL and EUropean Heliospheric FORecasting Information Asset
(EUHFORIA) [Odstrcil, 2003, Pomoell and Poedts, 2018] have significantly
contributed to our understanding of CME dynamics and their potential
impacts on Earth’s space environment.

Significant advances in 3D CME modelling have improved our ability
to predict CME arrival times and impact [Isavnin, 2016, Maharana et al.,
2022, Scolini and Palmerio, 2024]. Modern heliospheric models now simulate
CMEs with fully three-dimensional structures (e.g. as flux-rope volumes or
deformable spheroids) within ambient solar wind flows, in contrast to earlier
1D or 2D formulations that often treated the CME as a point or circle. These 3D
models capture the CME’s expansion, distortion, and interaction with solar
wind structures more realistically, leading to better forecasts. For example,
the introduction of a 3D flux-rope CME model (FRi3D) into the EUHFORIA
simulation framework has enabled more accurate modeling of CME flank
interactions and magnetic field profiles at Earth, substantially improving
arrival predictions over simpler cone or spheromak models [Isavnin, 2016,
Maharana et al., 2022]. The ability to include the CME’s true geometry and
orientation in simulations means that effects like non-radial propagation,
pancaking (front flattening), and shear interactions with high-speed streams
are now accounted for, reducing errors in transit time estimates. Overall, these
3D and physics-rich models (including full MHD simulations and ensemble
modeling in three dimensions) are narrowing the gap between predicted and
observed CME arrival times and enhancing the reliability of space weather
forecasts.

Despite their effectiveness, MHD models are computationally demanding,
requiring significant time and advanced computational resources. This high
computational cost often limits their feasibility for real-time forecasting, where
rapid predictions are critical during space weather events.

While these approaches demonstrated reasonably effective prediction of
CME arrival times, they often require significant computational resources.
Furthermore, a class of HD-based models has emerged, which rely on the
hypothesis that the dynamics of CMEs in interplanetary space are solely
governed by their interaction with the surrounding solar wind [Cargill,
2004, Owens and Cargill, 2004, Shi et al., 2015]. One popular model in this
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category is the DBM [Vršnak et al., 2013, Cargill, 2004, Napoletano et al., 2018a,
Dumbović et al., 2018, Mugatwala et al., 2024, Chierichini et al., 2024a].

Despite substantial efforts, the accuracy of prediction times of arrival
remains constrained by limitations in available data. These limitations
stem from the challenges of characterizing CME properties at launch using
remote sensing observations and the inability to accurately model the inner
heliosphere.

In a prior study, Napoletano et al. [2018a] introduced a probabilistic version
of the DBM, termed the P-DBM, to address the dearth of information and
provide estimates of the inherent uncertainty in CME forecasts. The P-DBM
approach replaces the constant DBM parameters with a-priori probability
distributions, leveraging an ensemble modelling framework to generate
probability density functions of ToA and VoA at a target location. This frame-
work enables the production of the most probable ToA and VoA estimates
along with their associated prediction uncertainty [e.g. Del Moro et al., 2019,
Piersanti et al., 2020]. In a subsequent study, Napoletano et al. [2022] proposed
a modified version of these probability density functions (PDFs) employing an
inversion procedure of DBM equations based on a Monte Carlo-like approach.
Napoletano et al. [2018a] and Napoletano et al. [2022] explore the possibility
that the probability distribution functions of the DBM parameters may vary
depending on the type of solar wind accompanying the propagation of CMEs.
The dynamics of CMEs are modelled as that of a solid body moving in a
fluid stream, suggesting that an appropriate description of the propagation
dynamics is required for accelerated or decelerated CMEs. On average, they
improved the understanding of the parameter PDFs, leading to enhanced
prediction of the arrival time.

Additionally, ML represents a growing alternative to traditional physical
and semi-empirical methods, leveraging data-driven techniques to uncover
patterns and relationships in historical observations. Unlike the predefined
physical frameworks of MHD or semi-empirical models, ML approaches
adaptively learn from the data, making them well-suited to handle non-
linear and high-dimensional dependencies [Camporeale et al., 2018a]. For
instance, the CME Arrival Time Prediction Using Machine learning Algo-
rithms (CAT-PUMA) model [Liu et al., 2018] uses CME and solar wind
parameters at launch to predict CME transit times with a mean absolute error
(Mean Absolute Error (MAE)) of 5.9 hours. Deep Learning (DL) methods,
such as Convolutional Neural Networks (CNNs), extend this capability by
processing raw observational data, including white-light images, to forecast
CME arrival times [Wang et al., 2019, Fu et al., 2021]. These techniques
offer computational efficiency and the potential for real-time application.
However, their success depends on the availability and quality of training
datasets, which remains a challenge given the relatively small sample of Earth-
impacting CMEs. Moreover, the interpretability of some ML models can be
limited, which may pose challenges for stakeholders requiring insights into
the underlying physics. Despite these obstacles, the rapid advancement of
ML techniques and their ability to integrate diverse datasets make them a
promising tool for the future of CME forecasting.
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Turning to the broader question of coronal jets, one may ask whether there
is a solar cycle effect on these localized dynamic features. While solar cyclic
activity is characterized by global phenomena such as the long-term evolution
of sunspot numbers, solar irradiance variations, and the frequency of solar
flares and CMEs [Solanki and Krivova, 2011, Song et al., 2016, Bhowmik and
Nandy, 2018], the extent to which the solar cycle influences smaller-scale solar
features like coronal jets remains poorly understood, underscoring the need
for comprehensive statistical studies. Shimojo et al. [1996] conducted an early
study of 100 jets, primarily originating from active regions, over the period
from November 1991 to April 1992, using a manual examination of X-ray
observations from the Yohkoh Soft X-Ray Telescope [Ogawara, 1995].

Bennett and Erdélyi [2015] investigate macrospicules using high-resolution
observations from the SDO, focusing on their spatial and temporal proper-
ties. By examining their statistical characteristics, the research establishes
relationships between velocity, length, and lifetime, providing a foundation
for theoretical modeling. Additionally, a correlation between macrospicule
properties and the solar activity cycle is identified, suggesting an influence of
solar minimum-to-maximum transitions.

A comprehensive statistical analysis of 301 macrospicules cunducted
by Kiss et al. [2017] over 5.5 years is conducted using SDO/Atmospheric
Imaging Assembly (AIA) data at 30.4 nm. The study examines variations
in macrospicule properties across different solar regions and hemispheres,
revealing periodic oscillations with a cycle just under two years. Further-
more, a pronounced hemispheric asymmetry in macrospicule distribution
suggests a link between global solar dynamo processes and local atmospheric
phenomena.

Gyenge et al. [2017] explore the connection between active longitudes and
CME occurrences, using morphological parameters such as sunspot tilt angle
and separateness. Findings indicate that the most complex active regions,
associated with increased magnetic helicity and fast CMEs, cluster around
active longitudes. The study highlights the potential of active longitude-
based forecasting for CME sources and provides insights for solar dynamo
modeling.

Moreover, [Kiss and Erdélyi, 2018] examine the influence of the global solar
magnetic field on macrospicules through a seven-year observational dataset.
A wavelet analysis of macrospicule properties reveals periodicities around two
years (quasi-biennial oscillations). A comparison with solar activity proxies
exhibiting similar oscillations shows an out-of-phase relationship, suggesting
that global solar activity may modulate local chromospheric dynamics.

More recently, Liu et al. [2023] introduced the Semi-Automated Jet Iden-
tification Algorithm (SAJIA), which was applied to data from the SDO/AIA
[Lemen et al., 2012] during solar cycle 24, from 2010 to 2020. This study identi-
fied 1215 jets and revealed power-law distributions between intensity/energy
and frequency, along with quasi-annual oscillations, offering new insights
into the temporal behavior of these solar phenomena.

Recent advancements in machine learning have further uncovered cyclic
patterns in solar activity. For instance, Diercke et al. [2024] applied DL to detect
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a filament cycle based on H-alpha observations during Solar Cycle 24, while
Zhang et al. [2024] revealed a prominence cycle using a similar approach with
SDO/AIA 304 Å images. These findings underscore the increasing application
of machine learning techniques in identifying cyclical solar phenomena. Such
advancements are crucial for understanding the connection between large-
scale solar cycles and localized phenomena such as coronal jets, which is
vital for improving space weather forecasting and its implications for Earth’s
technological systems.

In another recent study, Bourgeois et al. [2025] utilized SDO/AIA images
to investigate long-term properties of coronal off-limb structures throughout
Solar Cycle 24, employing Mathematical Morphology (MM), a technique
that focuses on the analysis of geometric structures. This method enabled
a detailed examination of both eruptive and atmospheric solar phenomena,
yielding comprehensive statistics and critical insights into active longitudes,
thus enhancing our understanding of solar dynamics during the cycle.

MM, a powerful tool for image enhancement, shape analysis, and feature
detection, has gained prominence in solar physics for identifying and tracking
solar events like filaments [Shih and Kowalski, 2003, Koch and Rosolowsky,
2015, Barata et al., 2018, Carvalho et al., 2020, Bourgeois et al., 2024]. Although
MM originated in the 1960s [Matheron, 1967, Haas et al., 1967, Serra, 1969],
its widespread application in solar research is relatively recent. Combining
SAJIA and MM allows us to create a more comprehensive dataset, leveraging
the strengths of both methods to offer a richer foundation for studying and
predicting solar jet phenomena.

This thesis focuses on advancing semi-empirical and ML-based methods
for CME forecasting, addressing limitations in data availability, interpretabil-
ity, and uncertainty quantification. Additionally, it applies ML techniques to
enhance datasets of coronal jets, smaller-scale solar eruptions that contribute
to our understanding of solar activity and space weather dynamics.

The research is structured into three interconnected projects:

1.7.1 CME arrival modelling with machine learning

Building on Liu et al. [2018], this project investigates the CAT-PUMA model,
which predicts CME transit times using CME launch characteristics and
solar wind features. While the model demonstrates promising accuracy, its
performance has only been evaluated on limited datasets. This project expands
the dataset to include CME events up to 2022, enabling a more comprehensive
evaluation and refinement of CAT-PUMA. A variant of the model is also
developed to classify Earth-impacting CMEs, providing actionable insights for
mitigating geomagnetic storm risks. Additionally, interpretability techniques
are applied to uncover the physical relationships captured by the model.

1.7.2 Improving the P-DBM with bayesian inference

Semi-empirical models like the DBM benefit from computational efficiency but
lack robust mechanisms for quantifying uncertainty. The P-DBM [Napoletano
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et al., 2018a] addresses this by introducing probabilistic parameter distribu-
tions. Building on this foundation, this project employs Markov Chain Monte
Carlo (MCMC) methods to refine these distributions and improve the accuracy
and reliability of CME arrival time forecasts. By incorporating solar wind
conditions into the parameter estimation process, the P-DBM provides a more
nuanced understanding of CME propagation dynamics, particularly under
fast and slow solar wind regimes [Napoletano et al., 2022].

1.7.3 Augmenting coronal jet datasets with machine learning
and mathematical morphology

Coronal jets, narrow and transient eruptions within the solar corona, share
characteristics with CMEs and play a role in space weather dynamics. While
prior studies, such as Liu et al. [2023], have identified coronal jets using the
SAJIA algorithm, this thesis integrates SAJIA with MM techniques [Bourgeois
et al., 2025] to enhance the dataset. MM, a powerful image processing tool,
allows for the identification and characterization of coronal structures. By
combining these methods, the work presented in this thesis produces a
richer dataset of jets, enabling detailed statistical analyses of their spatial
and temporal distributions and potential connections to the solar cycle.
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This thesis seeks to address critical challenges in CME forecasting and
coronal jet analysis by employing advanced statistical and machine learning
techniques. Through improvements in model accuracy, uncertainty quantifi-
cation, and dataset enrichment, the research makes significant strides toward
enhancing our ability to predict and mitigate the impacts of space weather,
safeguarding technological systems in an increasingly interconnected world.

This thesis is structured as follows:
Chapter 2 details the methodological framework employed throughout

the thesis. It describes the application of machine learning techniques,
including supervised learning methods like Random Forests and Support
Vector Machines, and Bayesian inference approaches, particularly the use
of MCMC techniques for parameter estimation. Additionally, the chapter
discusses MM methods used to enhance datasets related to coronal jets. A
particular emphasis is placed on model interpretability, with tools like SHAP
values used to provide insights into the significance of various features in the
models.

In Chapter 3, the sources and preprocessing of the datasets used in
the study are discussed. This includes observational data of CMEs from
instruments such as SOHO LASCO and in-situ solar wind measurements from
Advanced Composition Explorer (ACE), as well as data related to coronal jets.
The chapter describes steps taken to clean, augment, and engineer features
from these datasets to improve their utility for modeling. The challenges of
working with sparse and noisy solar data are also addressed, with a focus on
how these limitations were mitigated in the research.

Chapter 4 presents the key findings of the thesis. For CMEs, the integration
of machine learning and Bayesian inference methods resulted in improved
transit time predictions, with the inclusion of probabilistic techniques enhanc-
ing uncertainty quantification. In the case of coronal jets, the application of
random forest algorithms and dataset augmentation techniques expanded
the available catalog of events, providing a more diverse and robust dataset
for studying solar dynamics. The chapter compares the models’ performance
against prior studies and provides a detailed analysis of key metrics, as well
as an interpretation of feature importance rankings.

Finally, Chapter 5 is devoted to interpreting the results in the broader
context of space weather research. The discussion emphasizes the implications
of the improved forecasting models for operational space weather prediction
and highlights the strengths and limitations of the employed methods. The
potential for future advancements is also explored. The thesis closes by
reflecting on its contribution to the field, particularly in advancing the
understanding and forecasting of solar phenomena.

The Appendix A provides supplementary materials that support the main
content of the thesis. This include extended background on Bayesian theory.
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Chapter 2

Methods

This chapter provides a comprehensive overview of the theoretical founda-
tions underpinning the methodologies employed throughout this thesis. It
begins with an introduction to machine learning, highlighting key algorithms
and techniques used for predictive modeling and classification tasks. Bayesian
inference is then discussed, focusing on its application for probabilistic
modeling and parameter estimation, with a particular emphasis on MCMC
methods, which play a crucial role in quantifying uncertainties and exploring
complex parameter spaces. Finally, the chapter delves into mathematical
morphology, a powerful tool for analyzing and processing geometrical
structures in solar observations. Together, these methods form the backbone
of the analytical approaches used to investigate and model solar phenomena
in this thesis.

2.1 Machine learning

ML has emerged as a transformative technology, revolutionizing diverse
domains such as finance, healthcare, transportation, and entertainment [Sen
et al., 2021, Sarker, 2021, Roy et al., 2023]. Unlike traditional programming,
where developers must explicitly define every step of a process, ML enables
computers to autonomously learn from data, uncover complex patterns, and
make accurate predictions or informed decisions. This paradigm shift has
allowed computers to address problems previously thought to require human
intelligence and cognition [LeCun et al., 2015, Sejnowski, 2020].

The rapid progress in ML has been fueled by the increasing availability of
digital data, advancements in computational power, and the development of
sophisticated algorithms. The vast influx of data from sources such as social
media and sensors provides a rich resource for training ML models. Simul-
taneously, specialized hardware like graphic processing units (GPUs) and
tensor processing units (TPUs) has enabled efficient training and deployment
of complex models [Thompson et al., 2020].

Rooted in the interdisciplinary fields of statistics and artificial intelligence,
ML has evolved significantly over the past decades [Naqa and Murphy, 2015].
Advances in computational power, access to diverse datasets, and algorithmic
innovations have led to a versatile range of ML techniques tailored to address
various types of problems and data structures.
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Key ML approaches include supervised learning, where models are
trained on labeled data to map inputs to outputs; unsupervised learning,
which discovers patterns and structures within unlabeled data [Bishop and
Nasrabadi, 2006, Srinivasa et al., 2018]; semi-supervised learning, which
combines labeled and unlabeled data to improve performance [van Engelen
and Hoos, 2019]; and reinforcement learning, where agents learn optimal
decision-making through trial and error, guided by rewards and penalties
[Li, 2017, François-Lavet et al., 2018]. These methodologies have enabled the
creation of intelligent systems capable of tasks such as speech recognition,
image processing, predictive analytics, and autonomous decision-making.

2.1.1 Supervised learning

Supervised learning is a widely employed machine learning approach that
trains a model on labeled data, where input features X = {x1, x2, . . . , xn} are
paired with corresponding target outputs Y = {y1, y2, . . . , yn}. The model
learns to map X to Y by minimizing the error between its predictions Ŷ and
the actual outcomes Y. This optimization process is represented as:

min
θ

L(Y, f (X; θ)),

where L is the loss function, f represents the model with parameters
θ, and Ŷ = f (X; θ) are the predictions. Supervised learning is particularly
effective for classification tasks, where models predict discrete class labels
by maximizing probabilities, and regression tasks, where models predict
continuous outputs by minimizing errors such as the mean squared error
(Mean Squared Error (MSE)):

min
θ

1
n

n

∑
i=1

(yi − ŷi)
2.

2.1.2 Linear regression

Linear regression, a fundamental supervised learning method, models the
relationship between X and Y as a linear function:

ŷ = θ0 + θ1x1 + θ2x2 + · · ·+ θmxm,

or, in vectorized form:

ŷ = Xθ,

where X is the feature matrix and θ the parameter vector, including the
intercept θ0. The goal is to find θ that minimizes the sum of squared errors
between Ŷ and Y:

min
θ

(Y − Xθ)T(Y − Xθ).

The optimal θ can be determined analytically using the normal equation:
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θ = (XTX)−1XTY.

Alternatively, iterative methods such as gradient descent are commonly
used. Gradient descent updates the parameters iteratively to minimize the
loss function:

θ(t+1) = θ(t) − α∇θL(θ),
where α is the learning rate and ∇θL(θ) = −2XT(Y − Xθ) is the gradient

of the loss function. Repeatedly applying this rule ensures convergence to the
optimal parameters.

While linear regression is effective for modeling linear relationships, many
real-world problems involve complex, non-linear patterns. To capture these,
advanced machine learning models, such as neural networks and ensemble
methods, extend the capabilities of supervised learning to tackle a broader
range of applications.

Support vector machines

Support Vector Machine (SVM) are versatile supervised learning methods
widely used for classification, regression, and outlier detection [Cortes and
Vapnik, 1995]. They are grounded in statistical learning theory and excel
in tasks requiring robust generalization, particularly in high-dimensional
spaces. The key idea behind SVMs is to construct an optimal hyperplane that
separates data into distinct classes while maximizing the margin, defined as
the distance between the hyperplane and the closest data points, known as
support vectors.

Given a training dataset (xi, yi), where xi ∈ Rd are feature vectors and
yi ∈ {−1, 1} are class labels, a linear SVM aims to find a hyperplane defined
by the weight vector w and bias b that satisfies:

min
w,b

1
2
∥w∥2,

subject to:

yi(wTxi + b) ≥ 1, ∀i.

This optimization problem is solved using quadratic programming tech-
niques to identify the hyperplane with maximum margin, ensuring better
generalization performance. For non-linear decision boundaries, SVMs lever-
age kernel functions K(xi, xj), enabling implicit transformations into higher-
dimensional feature spaces without explicitly computing the coordinates
[Schölkopf et al., 1999]. Common kernels include:

- Polynomial kernel: K(xi, xj) = (xi · xj + 1)p, - Radial Basis Function
(Radial basis function (RBF)) kernel: K(xi, xj) = exp(−γ∥xi − xj∥2), - Sigmoid
kernel: K(xi, xj) = tanh(αxi · xj + c).

The dual formulation introduces Lagrange multipliers αi, transforming
the optimization problem into:
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max
α

n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjK(xi, xj),

subject to:

n

∑
i=1

αiyi = 0, 0 ≤ αi ≤ C,

where C controls the trade-off between maximizing margin and minimiz-
ing classification error.

SVMs are also adaptable to datasets with overlapping classes through soft
margin SVMs, which introduce slack variables ξi to allow some misclassifica-
tions:

min
w,b,ξ

1
2
∥w∥2 + C

n

∑
i=1

ξi,

subject to:

yi(wTxi + b) ≥ 1 − ξi, ξi ≥ 0.

Here, C balances margin maximization and misclassification penalties,
making SVMs robust to noise and overlapping data. For regression tasks,
Support Vector Regressor (SVR) employs a similar approach, aiming to fit a
hyperplane within a tolerance margin ϵ while minimizing prediction errors
[Smola and Schölkopf, 2004]:

min
w,b

1
2
∥w∥2 + C

n

∑
i=1

max(0, |yi − f (Xi)| − ϵ).

SVMs have been successfully applied across domains such as image
recognition, bioinformatics, and text categorization due to their robustness
against overfitting and flexibility in handling non-linear relationships through
appropriate kernels [Ben-Hur et al., 2008, Awad and Khanna, 2015].

Decision trees

Decision trees are a fundamental and extensively utilised technique in the field
of machine learning and data analysis, renowned for their intuitive structure
and interpretability [Myles et al., 2004, Navada et al., 2011, Rokach, 2016].

This hierarchical model recursively partitions the feature space into
subsets, dividing the data based on the most informative features at each
internal node. By repeatedly splitting the data according to the values of
specific features, the model generates a tree-like structure that culminates
in a prediction for the target variable. The tree’s composition consists of
nodes, where each internal node represents a decision based on the value
of a particular feature, guiding the data down a specific branch of the tree.
The leaf nodes at the end of these branches then denote the final output or
class label, providing a transparent and easily interpretable prediction. This
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structure allows decision trees to capture complex relationships in the data,
making them a versatile and widely adopted tool for both classification and
regression tasks in machine learning.

The construction of a decision tree involves a sophisticated process of
selecting the most informative feature Xj and corresponding threshold t at
each node to split the data. For a classification task, the criterion for selecting
a feature can be based on information gain IG, which measures the reduction
in entropy H after the split. For a set of data S, the information gain when
splitting on feature Xj with threshold t can be defined as:

IG(S, Xj, t) = H(S)−
(
|SL|
|S| H(SL) +

|SR|
|S| H(SR)

)
,

where SL and SR are the subsets of S resulting from the split. Entropy H(S) is
defined as:

H(S) = − ∑
c∈Classes

pc log2(pc),

where pc is the proportion of instances in S that belong to class c.
For regression tasks, the criterion for selecting the best split often involves

minimizing the variance within the subsets. The variance reduction is given
by:

VarReduction(S, Xj, t) = Var(S)−
(
|SL|
|S| Var(SL) +

|SR|
|S| Var(SR)

)
,

where Var(S) is the variance of the target values in the set S. These carefully
chosen criteria aim to create the most homogeneous possible subsets of the
data, thereby enhancing the overall accuracy and predictive power of the
decision tree model.

The recursive splitting of the decision tree continues until a stopping
criterion is met, which serves to limit the model’s complexity and prevent
overfitting. This stopping criterion can take several forms, such as reaching a
predefined maximum permissible tree depth, ensuring a minimum number
of samples in each node, or achieving pure leaf nodes that contain only
instances belonging to a single class. By imposing these constraints, the
decision tree algorithm balances the trade-off between model complexity and
generalization performance, ensuring that the final tree structure captures the
underlying patterns in the data without becoming excessively intricate and
prone to overfitting.

A key advantage of decision trees is their unparalleled interpretability.
Unlike many other opaque machine learning models, decision trees offer re-
markable transparency and ease of understanding. The hierarchical structure
of a decision tree, with its internal nodes representing decisions based on
feature values and the leaf nodes denoting the final output, allows for a clear,
step-by-step explanation of how the model arrives at its predictions. Each
path from the root to a leaf can be readily interpreted as a sequence of logical
rules, making the decision-making process highly intuitive and accessible,
even to those without extensive expertise in complex mathematical modelling
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techniques. This remarkable interpretability is a crucial asset in applications
where transparency and accountability are of paramount importance, such
as in medical diagnosis, credit risk assessment, or regulatory compliance,
where stakeholders require a clear understanding of the model’s reasoning.
The interpretability of decision trees enables users to gain valuable insights
into the underlying patterns and relationships within the data, empowering
them to make informed decisions with confidence. Despite their advantages,
decision trees also have limitations that must be carefully considered. They are
particularly prone to overfitting, a common issue that arises when the decision
tree grows excessively deep. In such cases, the model may start to capture
noise and idiosyncratic patterns in the training data, rather than learning the
underlying relationships that are generalizable to new, unseen data. This
can lead to poor performance on independent test sets, as the model fails
to generalize effectively. However, there are several techniques that can be
employed to mitigate the overfitting problem and enhance the decision tree’s
generalization capabilities. Pruning, which involves selectively removing
branches of the tree to simplify the model, can be an effective strategy to
prevent the tree from becoming overly complex and fitting to noise. Setting
a maximum depth, or the maximum number of levels in the decision tree,
is another approach that can help control the model’s complexity and avoid
overfitting.

Furthermore, ensemble methods, such as random forests and gradient
boosting, have proven to be powerful tools for improving the performance of
decision trees. These techniques combine multiple decision trees, each trained
on a different subset of the data or with a different set of parameters, to create
a more robust and accurate predictive model. By leveraging the collective
strength of multiple decision trees, ensemble methods can overcome the limi-
tations of individual trees and provide superior generalization performance
[Dietterich, 2000, Natekin and Knoll, 2013, Rokach, 2016].

Ensemble methods

Ensemble methods represent a powerful class of machine learning techniques
that aggregate the predictions of multiple models to generate a single, often
more accurate, prediction. The fundamental advantage behind ensemble
methods is that by aggregating the predictions of several models, the ensemble
can diminish the variance, bias, or enhance the generalisation capability of the
final model, compared to individual models. This is achieved by harnessing
the diversity of the individual models, where their unique strengths and
weaknesses are leveraged to produce a more robust and reliable prediction.
Ensemble techniques, particularly those based on decision trees such as
bagging and boosting, have emerged as some of the most powerful and
versatile tools in the machine learning toolbox González et al. [2020].

One of the most ubiquitous ensemble techniques is Bagging, short for
Bootstrap Aggregating. Bagging aims to reduce the variance of a model by
training multiple instances of a model on different subsets of the data and
then averaging their predictions. Each model in the ensemble is trained
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on a bootstrap sample, which is a random sample of the original dataset
drawn with replacement. This implies that some data points may appear
multiple times in a bootstrap sample while others may not appear at all. This
process introduces diversity among the individual models, as they are trained
on slightly different subsets of the data. Once each model is trained, their
predictions are aggregated, typically by averaging in the case of regression or
by majority voting in the case of classification.

A prominent example of bagging is the random forest algorithm, which
extends the concept of bagging to decision trees. Considering a dataset
D = {(Xi, yi)}n

i=1, a random forest constructs a number B of decision trees,
each trained on a bootstrap sample Db of the original dataset. For a given
input X, the prediction ŷ of the random forest is obtained by averaging the
predictions ŷb of the individual trees (in regression) or by majority voting (in
classification):

ŷ =
1
B

B

∑
b=1

ŷb.

During the training of each tree, at each node, a random subset of m
features is selected from the total p features, and the best feature from this
subset is used to split the node. This random selection of features further
reduces the correlation between trees, leading to a more robust model. random
forests are highly effective as they mitigate two key issues associated with
decision trees: overfitting and instability. By aggregating the predictions of
multiple decision trees, the random forest approach diminishes the likelihood
of overfitting, as any individual trees that may excessively fit the training data
are counterbalanced by others. Additionally, the randomisation introduced
through both bootstrap sampling and random feature selection at each split
decreases the model’s variance, rendering random forests less susceptible to
noise within the data. However, aggregation is not the sole approach to model
ensembling.

Boosting is a powerful ensemble technique that focuses on converting a
set of weak learners into a strong learner. Unlike bagging, where models are
trained independently, and their predictions are averaged, boosting trains
models sequentially. Each model in the sequence attempts to correct the errors
of its predecessor, focusing on the misclassified or poorly predicted cases from
the previous model. This iterative process results in a model that gradually
improves its performance as it learns to better handle the more challenging
data instances that earlier models struggled with. By concentrating on the
difficult cases, the boosting algorithm is able to incrementally enhance the
overall predictive capability of the ensemble.

Mathematically, boosting can be described as a process that minimizes a
specific loss function by adding models to the ensemble in a greedy fashion.
At each iteration t, a new model ht(X) is added to the ensemble, and the
model’s contribution is weighted by a factor αt, which is determined based on
the model’s performance. The overall prediction of the boosted model after T
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iterations is given by:

ŷ =
T

∑
t=1

αtht(X).

One of the most widely used boosting algorithms is adaptive boosting
(AdaBoost) [Anghel et al., 2018]. AdaBoost iteratively assigns higher weights
to training examples that were misclassified by the previous weak learner,
forcing the next model to focus more on those problematic instances. Gradient
boosting is another popular boosting technique, proposed by Friedman. This
method generalizes the AdaBoost approach by allowing the use of arbitrary
loss functions rather than being limited to the exponential loss used by
AdaBoost.

Extreme gradient boosting (XGBoost) [Mitchell and Frank, 2017] is a highly
efficient and scalable implementation of the gradient boosting algorithm.
Due to its impressive performance across a wide range of problems, it has
become a go-to choice for many machine learning practitioners. XGBoost is
an advanced implementation of the gradient boosting algorithm that employs
various optimisations to enhance its performance. It utilises a technique
called shrinkage, or learning rate, which scales down the contribution of
each individual tree, allowing for the addition of more trees to the ensemble,
ultimately improving the model’s accuracy.

Additionally, XGBoost incorporates column subsampling, similar to the
random forests algorithm, where a random subset of features is considered
at each split. This reduces overfitting and enhances the model’s ability to
generalise to unseen data. Furthermore, XGBoost is equipped to handle
missing data by automatically learning the optimal approach to address such
gaps during the training process. This is a significant advantage, as many
real-world datasets often contain missing values that can pose challenges for
other algorithms. Moreover, the XGBoost algorithm is designed to maximise
computational efficiency through parallel and distributed computing, ren-
dering it scalable and capable of handling large datasets. These combined
techniques make XGBoost both rapid and robust, enabling it to frequently
outperform other algorithms in practical applications across a wide range of
tasks, such as classification, regression, and ranking.

In XGBoost, the objective function to be minimized is designed to balance
the accuracy of the model with its complexity, thereby preventing overfitting.
The objective function Obj(θ) at iteration t consists of two primary compo-
nents: the loss function L, which measures how well the model’s predictions
fit the observed data, and a regularization term Ω, which penalizes model
complexity. This objective function can be expressed as:

Obj(θ) =
n

∑
i=1

L(yi, ŷi) +
T

∑
t=1

Ω( ft).

Here, yi denotes the true label for instance i, ŷi = ∑T
t=1 ft(Xi) represents

the predicted value, where the prediction is the sum of the outputs from all
trees, and ft(Xi) is the output of the new model ft being added at iteration t.
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The regularization term Ω( ft) is designed to control the complexity of
the model by penalizing the complexity of the trees in the ensemble. For
tree-based models in XGBoost, the regularization term is defined as:

Ω( ft) = γTt +
1
2

λ
Tt

∑
j=1

w2
j

where Tt is the number of leaves in the t-th tree, γ is a regularization
parameter that penalizes the number of leaves (and thus the complexity of
the tree), and λ is a regularization parameter that penalizes the L2 norm of
the leaf weights wj.

At each iteration t, XGBoost adds a new tree ft(X) to minimize the
objective function. The prediction after the t-th iteration is updated as follows:

ŷ(t)i = ŷ(t−1)
i + ft(Xi)

The function ft(X) is chosen to minimize the following approximation of
the objective function:

Obj(t) ≈
n

∑
i=1

[
L(yi, ŷ(t−1)

i ) + gi ft(Xi) +
1
2

hi ft(Xi)
2
]
+ Ω( ft)

where gi =
∂L(yi,ŷi)

∂ŷi
is the first-order derivative of the loss function with

respect to the prediction, and hi =
∂2L(yi,ŷi)

∂ŷ2
i

is the second-order derivative of

the loss function with respect to the prediction.
Each tree ft(X) in XGBoost is constructed by splitting the data based on

feature values. The structure of a tree can be defined as:

ft(X) = wq(X)

where q is a function that maps each input X to a specific leaf in the
tree, and wq(X) is the weight associated with the leaf to which X is assigned.
The goal during training is to find the structure of q (i.e., the splits) and the
corresponding weights wj that minimize the objective function.

To determine the best split at each node during tree construction, XGBoost
uses a measure called the "gain," which is the improvement in the objective
function from making a split:

Gain =
1
2

[
(GL + GR)

2

HL + HR + λ
−

G2
L

HL + λ
−

G2
R

HR + λ

]
− γ

where GL and GR are the sums of the first-order gradients for the left and
right child nodes, respectively, HL and HR are the sums of the second-order
gradients for the left and right child nodes, respectively, λ is the regularization
parameter for the leaf weights, and γ is the regularization parameter for the
number of leaves.

After training, the final prediction for a new instance Xi is obtained by
summing the predictions of all the trees:
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ŷi =
T

∑
t=1

ft(Xi)

This ensemble of trees, each contributing to the final prediction, allows
XGBoost to achieve high accuracy while maintaining control over model
complexity. In summary, XGBoost builds an ensemble of decision trees by
iteratively adding trees that correct the errors of the combined ensemble.
It uses a combination of first- and second-order gradient information to
guide the construction of each tree and incorporates regularization to prevent
overfitting. The result is a powerful and scalable model capable of handling a
wide range of machine-learning tasks.

2.1.3 Unsupervised learning

Unsupervised learning is a core discipline within machine learning that
concentrates on unveiling concealed patterns, structures, or connections in
data without relying on explicit labels or pre-determined outcomes. In contrast
to supervised learning, where models are trained on labelled data to forecast
a specific target variable, unsupervised learning exclusively operates on the
input data, endeavouring to infer the inherent structure or distribution. The
central aim of unsupervised learning is to uncover the inherent characteristics
of the data and to identify pertinent clusters, connections, or dimensionality
reductions that can provide insights into the data’s underlying structure.
This approach is especially valuable when working with large and complex
datasets where the relationships between variables are not readily apparent
[Steinbach et al., 2004].

One of the most prevalent tasks in unsupervised learning is clustering,
where the goal is to group comparable data points together based on specific
attributes. This technique aims to partition the data into meaningful sub-
groups, allowing researchers to uncover inherent structures and relationships
that may not be immediately apparent.

K-means clustering

K-means clustering is a popular unsupervised machine learning algorithm
designed to partition a dataset into K distinct clusters. The algorithm
iteratively assigns data points to the nearest centroid and updates the centroids
to the mean of the points assigned to each cluster. This process continues
until the centroids converge, effectively grouping similar data points into
well-defined clusters. Its simplicity and computational efficiency make K-
means a widely applied method for uncovering inherent structures within
large, unlabelled datasets.

Given a dataset X = {x1, x2, . . . , xn}, where each xi ∈ Rd is a d-
dimensional vector, the objective of K-means is to identify K centroids
µ1, µ2, . . . , µK that minimize the sum of squared distances between each data
point and its nearest centroid. This can be expressed as:
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J({µk}K
k=1) =

n

∑
i=1

min
k∈{1,...,K}

∥xi − µk∥2,

where ∥xi − µk∥2 is the squared Euclidean distance between xi and µk.
The algorithm begins by randomly initializing K centroids from the dataset.

Each data point is then assigned to the cluster corresponding to the nearest
centroid. Afterward, the centroids are recalculated as the mean of the data
points in each cluster. These two steps—cluster assignment and centroid
update—are repeated until the centroids stabilize, indicating convergence.

K-means’ combination of simplicity and efficiency has led to its
widespread use across various domains, making it a fundamental tool for
exploratory data analysis and pattern recognition.

K-nearest neighbors

k-nearest neighbors (KNN) algorithm is a simple yet powerful method used
in both classification and regression tasks. It is a non-parametric, instance-
based learning algorithm that relies on the distance between data points to
make predictions. The central idea of KNN is to classify a given data point
based on the majority class among its K nearest neighbours or, in the case of
regression, to predict the output value as the average of the outputs of the K
nearest neighbours. Given a dataset X = {x1, x2, . . . , xn}, where each xi ∈ Rd

is a d-dimensional feature vector, the KNN algorithm makes a prediction for
a new instance x by first identifying the K nearest neighbours of x in the
feature space. The proximity between data points is typically measured using
a distance metric (e.g. Euclidean distance), defined as:

d(xi, xj) =

√√√√ d

∑
k=1

(xik − xjk)2.

For classification, the predicted class ŷ for a new instance x is determined by
the majority vote among the classes of its K nearest neighbours. Mathemati-
cally, this can be expressed as:

ŷ = argmaxc ∑
i∈NK(x)

I(yi = c),

where NK(x) denotes the set of indices corresponding to the K nearest
neighbours of x, yi is the class label of the i-th neighbour, and I(·) is the
indicator function that equals 1 if the argument is true and 0 otherwise. For
regression, the predicted output ŷ is computed as the mean of the outputs of
the K nearest neighbors:

ŷ =
1
K ∑

i∈NK(x)
yi.

The choice of K plays a crucial role in the performance of the KNN
algorithm. A smaller value of K makes the model more sensitive to noise,
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while a larger value may smooth out the decision boundary too much, leading
to underfitting. KNN can also be adapted to handle missing values in the
data, making it a versatile tool in situations where incomplete datasets are
common. One approach to handling missing values in KNN is to modify the
distance calculation to ignore the dimensions with missing values. In other
words, the distance between two instances xi and xj is computed only over
the dimensions where both instances have valid (non-missing) values. The
modified distance metric can be expressed as:

d(xi, xj) =

√
1
|S| ∑

k∈S
(xik − xjk)2,

where S ⊆ {1, . . . , d} is the set of dimensions where both xi and xj have
non-missing values, and |S| is the number of such dimensions. This approach
ensures that the distance metric is still valid even when some data points have
missing values, allowing the KNN algorithm to function effectively. Another
approach is to use KNN to input missing values. In this method, for each
instance with a missing value in a particular dimension, the missing value is
imputed by taking the mean (for regression) or the mode (for classification)
of that feature among the K nearest neighbours where the feature value is
available. This iterative imputation method leverages the underlying structure
of the data to provide more accurate estimates of missing values, thereby
improving the overall quality of the dataset before performing further analysis
or training. The ability to adapt the distance metric or impute missing values
makes KNN a flexible and robust algorithm for real-world applications where
data completeness cannot always be guaranteed.

Clustering is a key task in unsupervised learning, with several algorithms
available to group data points based on their similarities. While K-means
and KNN are widely used clustering algorithms due to their simplicity and
efficiency, there are other algorithms that offer different advantages depending
on the nature of the data.

Hierarchical clustering [Ward, 1963, Murtagh and Contreras, 2011], for
example, builds a hierarchy of clusters, enabling the identification of nested
groupings at different levels. This method is particularly useful when the
data’s structure is inherently hierarchical, allowing for a more nuanced
exploration of relationships between clusters. DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) [Ester et al., 1996, Schubert et al.,
2017], meanwhile, identifies clusters based on density, effectively handling
datasets with varying densities and the presence of outliers. Unlike K-
means, which requires specifying the number of clusters in advance, DBSCAN
automatically determines the number of clusters and is robust to noise, making
it well-suited for complex datasets where clusters are irregularly shaped or
of differing densities. Another important aspect of unsupervised learning
is dimensionality reduction [Ayesha et al., 2020], which is concerned with
transforming high-dimensional data into a lower-dimensional representation
while preserving the essential characteristics of the original data.

Techniques like Principal Component Analysis [Jolliffe, 2005, Jolliffe and



2.1. Machine learning 37

Cadima, 2016] and t-Distributed Stochastic Neighbor Embedding [van der Maaten
and Hinton, 2008] are popular methods for accomplishing this goal. The
challenges of unsupervised learning are significant, primarily because the
absence of labelled data makes it difficult to evaluate the performance of
models and to determine the correctness of the patterns discovered. However,
unsupervised learning remains a powerful tool in exploratory data analysis
and is increasingly used in conjunction with supervised learning to enhance
the accuracy and interpretability of models.

Evaluation Metrics

Specific metrics are used to quantify the reliability of a machine learning
model and establish its predictive abilities. Since regression and classification
tasks are different, we will discuss the metrics related to each separately.

Regression Metrics: As previously mentioned, the output of a regression
model is an estimate of the target quantity (in our case, the Transit Time
of CMEs), starting from a vector representation of the event encoding its
characteristics. The most natural way to measure how well a model maps
inputs to outputs is to quantify the distance between the model’s prediction
and the actual value. It is possible to define more than one metric to
characterise this information. A first example is the MAE defined as:

MAE =
1
N

N

∑
i=1

|yi − ŷi|, (2.1)

where N is the number of test samples, yi are the actual values and ŷi are the
models predictions. In simpler words, the MAE score is the average of the
absolute error values. Another widely used metric is the MSE, which is the
squared difference between actual and predicted value:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2, (2.2)

MSE penalises predictions far away from the actual value and is, therefore,
more sensitive to outliers than MAE. In addition, the MSE returns a value that
is a squared unit of output, which makes interpretation less straightforward.
Typically, to obtain such a measure in the same units as the model output, the
square root of the MSE is used:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2, (2.3)

One of the most widely used metrics, because it is independent of the context
in which the model is applied, is the R squared (R2). R2 is a statistical
quantity which measures to what extent the variance of one variable (model
predictions) explains the variance of a second variable (actual values).
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Formally:

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳi)2

, (2.4)

where ȳ is the average value of y.
It is generally better to look at more than one metric to evaluate a regression
model because each one returns a slightly different piece of information.
What has just been said is even more true regarding classification problems.

Classification Metrics: There are several ways to determine how well a
classification model does its job. By comparing the labels predicted by the
model with the assigned labels (also known as ’true labels’), the outputs are
defined as True Positive (TP) when the model correctly predicts an instance
as positive, while they are defined as True Negative (TN) when the model
correctly predicts an instance as negative.

Similarly, outputs are defined as FP when the model incorrectly predicts an
instance as positive, while they are defined as False Negative (FN) when the
model incorrectly predicts instance as non negative. Obviously, the objective
of a classifier is to maximise the number of true positives and true negatives
so as to have few cases of misclassification. The most common metric used to
evaluate performance in a classification task is the accuracy, which represents
the percentage of instances that the model correctly predicts out of the total
number. It is formally expressed as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.5)

However, when the classes are characterised by a strong imbalance, as in
the case studied in this work, the accuracy value may not fully represent the
model’s ability to distinguish the two classes because of the disproportion
in size. Basically, the classifier can achieve high accuracy values even if it
correctly predicts all or most instances of the majority class but fails to predict
the minority class. This is one reason why combining more than one metric to
assess classification performance is often better for getting a complete view.

Another typical evaluation metric for binary classification problems is the
Receiver Operating Characteristic (ROC) curve. The ROC curve is obtained by
plotting the True Positive Rate (TPR) against the False Positive Rate (FPR) for
different Threshold values and is typically used to visualise the discriminative
ability of a binary classifier. TPR and FPR are also known as Sensitivity and
Specificity, defined as:

TPR =
TP

TP + FN
, TNR =

TN
TN + FP

. (2.6)

The Area Under the Curve (AUC) is the area of the TPR × FPR space below the
curve which is a summary of the ROC curve. The higher the AUC value, the
better is the classifier. Although ROC is also influenced by the imbalance of the
problem, it is more reliable than accuracy in assessing the actual capabilities
of the classifier. In addition, it is possible to define class-specific evaluation
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metrics, Precision and Recall:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

. (2.7)

In other words, Precision returns information about the number of instances
predicted as positive, which are actually labelled as positive. Recall, on
the other hand, returns information about the number of instances that are
labelled as positive and are actually predicted as positive.

Typically, the information from Precision and Recall is condensed into the
F1 score, which is a harmonic mean of the two.

F1 − score = 2 × Precision × Recall
Precision + Recall

. (2.8)

Some metrics directly take class imbalance into account, one of which is
Balanced accuracy, which is an average of Specificity and Sensitivity:

Balanced accuracy =
Speci f icity + Sensitivity

2
. (2.9)

Balanced accuracy returns a score more representative of a classifier’s capabil-
ities when class imbalance is significant.

It is important to emphasise once again that the list of relevant metrics
to evaluate a classifier is very long because the goodness of the classifier is
highly dependent on the context of the problem.

Validation

Evaluating the capability of a machine learning model to accomplish a given
task requires robust validation methods. The simplest and most commonly
used technique involves splitting the available dataset into two distinct
subsets: the training set and the test set. The training set is used to train
the model, while the test set evaluates its performance. This approach ensures
that the test set contains data points that the model has not encountered
during training, making it an effective test-bed for assessing the model’s
generalisation ability. Typically, the train/test split is performed randomly to
minimise the risk of introducing bias.

In the context of CAT-PUMA, a similar validation method is employed
with a significant enhancement. After optimising the SVM model, it identifies
the train/test split that yields the best performance score from 106 random
splits. This method, referred to as Best Split Validation (BSV) (Best Split
Validation), is designed to select the split that ensures the highest representa-
tiveness of the training data within the test set. By maximising the test set’s
representativeness, this method provides a promising way to evaluate the
model’s learning ability.

However, BSV has limitations, particularly in scenarios where data avail-
ability is constrained. The selected best split might introduce bias, leading
to an overly optimistic evaluation of the model’s performance. To address



40 Chapter 2. Methods

this concern and provide a more robust evaluation, we complement BSV with
k-fold Cross Validation (CV) (cross-validation), a widely used technique in
machine learning [Refaeilzadeh et al., 2009, Yadav and Shukla, 2016].

The k-fold cross-validation method is a more conservative approach that
mitigates the risks associated with single train/test splits. It involves the
following steps:

1. A set of hyper-parameters is selected for the model.

2. The dataset is divided into k equal subsets (folds). The model is trained
on k − 1 folds, and the remaining fold serves as the validation set to
evaluate performance. The performance score for this validation fold is
recorded.

3. This process is repeated k times, with each fold being used once as the
validation set and the remaining k − 1 folds used for training. This
ensures that the model is trained and evaluated on all subsets of the
dataset.

4. Once all k iterations are completed, the average performance score across
all validation sets is calculated and stored.

5. A new set of hyper-parameters is selected, and the process is repeated
from step 1.

The k-fold cross-validation approach offers several advantages. By training
the model on multiple combinations of the data and evaluating its perfor-
mance on different validation sets, it reduces the variance associated with a
single train/test split. This results in a more reliable and robust estimation of
the model’s performance. Moreover, it allows for a comprehensive evaluation
of how the model generalises to unseen data, providing confidence in its
applicability to real-world scenarios. In this thesis, the combination of BSV
and k-fold CV ensures a balanced evaluation framework that accounts for
both representativeness and robustness, addressing potential biases while
leveraging the strengths of each method.

In addition to BSV and k-fold CV, it is worth noting that many other
validation techniques exist, each tailored to specific needs and scenarios.
For instance, holdout validation is often used when datasets are large and
computational efficiency is a priority, as it involves splitting the data into
distinct training, validation, and test sets [Hastie et al., 2005]. This method
ensures that the test set remains untouched during the training and hyper-
parameter tuning phases, providing a reliable estimate of the model’s final
performance on unseen data.

Nested cross-validation is another robust technique, particularly useful for
scenarios involving hyper-parameter optimisation. It employs an inner loop
for hyper-parameter tuning and an outer loop for performance evaluation
[Cawley and Talbot, 2010]. This approach prevents data leakage and ensures
that the performance metrics reflect the model’s ability to generalise, even
when extensive parameter tuning is required.
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Furthermore, stratified k-fold cross-validation is particularly effective for
imbalanced datasets, as it maintains the same class distribution in each fold
as in the original dataset [Kohavi, 1995]. This ensures that the validation
performance is not skewed due to class imbalance, making it an essential
technique for classification problems involving rare events.

These additional methods highlight the importance of selecting a valida-
tion strategy that aligns with the specific requirements of the dataset and
the problem at hand. By leveraging multiple validation approaches, this
thesis ensures a comprehensive and rigorous evaluation of the proposed
models, striking a balance between computational efficiency, reliability, and
generalisation performance.

Hyperparameter Tuning

Hyperparameter tuning is a crucial step in optimising machine learning
models to achieve the best performance for a given task. Hyperparameters are
parameters that are not learned during the training process but are set prior
to training and control aspects of the model’s behaviour, such as learning rate,
regularisation strength, or the number of layers in a neural network.

The tuning process involves exploring the space of hyperparameters to
identify the combination that yields the best performance. Several methods
exist for performing hyperparameter optimisation:

Grid Search: This method involves exhaustively searching through a
predefined set of hyperparameter values. A grid is constructed where each
dimension corresponds to a hyperparameter, and all possible combinations
of hyperparameter values are evaluated. While this approach guarantees
that the optimal combination within the predefined grid is identified, it can
be computationally expensive, especially for high-dimensional parameter
spaces.

Random Search: Unlike grid search, random search samples hyperpa-
rameter values randomly from specified distributions [Bergstra and Bengio,
2012]. This approach is more efficient for high-dimensional spaces, as it tends
to explore a broader range of hyperparameter values and often finds good
combinations faster than grid search.

Bayesian Optimisation: This advanced method uses a probabilistic model
to approximate the objective function and guides the search process based
on prior evaluations. One commonly used technique is the Tree-structured
Parzen Estimator (Tree-structured Parzen Estimator (TPE)) [Bergstra et al.,
2011]. TPE models the hyperparameter space and focuses the search in regions
where high performance is more likely. This significantly reduces the number
of evaluations required and is particularly effective for complex optimisation
problems.

In this thesis, hyperparameter tuning is performed using TPE implemented
with the Optuna1 optimisation library [Akiba et al., 2019]. Optuna is an open-
source framework that allows efficient exploration of the hyperparameter
space by leveraging the history of previous trials to direct future searches. By

1Optuna documentation: https://optuna.readthedocs.io/en/stable/index.html

https://optuna.readthedocs.io/en/stable/index.html
https://optuna.readthedocs.io/en/stable/index.html
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concentrating the search in regions with higher performance, this method
accelerates the optimisation process and reduces computational overhead.

Hyperparameter tuning is essential for achieving robust and high-
performing models. By systematically exploring and optimising hyperpa-
rameter values, we ensure that the models developed in this thesis are both
efficient and effective, capable of addressing the specific challenges of the task
at hand.

2.2 Bayesian inference of the parameters

In this section, we describe the theoretical background behind MCMC
methods, which are widely used for sampling from complex probability
distributions. MCMC methods rely on the principles of Markov chains,
which are stochastic processes characterised by the property that the next
state depends only on the current state. By carefully constructing a Markov
chain that has the target distribution as its stationary distribution, MCMC
enables efficient sampling even in high-dimensional or analytically intractable
scenarios.

The MCMC approach is built upon the concept of Markov chains, which
involve constructing a sequence of samples in the parameter space that
progressively converges to a stationary distribution, corresponding to the
target posterior probability distribution. To understand the foundation of
MCMC methods, it is essential to first introduce the general properties and
principles of Markov chains, which form the backbone of this sampling
technique [Ivezić et al., 2019, Anzai, 2012].

2.2.1 Markov chains

The first step is to formalize the intuitive idea of these objects. A Markov chain
is a sequence of random variables X1, X2, ..., XN such that the distribution of
Xi+1 depends only on the value of Xi, and not on the full history of prior
values X1, ..., Xi−1, i.e.,

P(Xi+1 = xi+1|Xj = xj, {Xj, j = 0, ..., i − 1}) = P(xi+1|xi). (2.10)

In other words, the transition to a subsequent state depends only on the
current state and not on the entire sequence of states leading to it. A stochastic
process fulfilling this Markov property is termed a Markov process. The initial
distribution, denoted by λ, describes the probability distribution of the initial
state X0:

P(x0) = λ(x0), (2.11)

which provides the marginal probability for the initial states of the process.
The transition from one state x at step i to another state x′ at step i + 1 is
characterized by a kernel function Ti(x, x′), known as the transition kernel,
which is the conditional probability P(X′|X) for transitioning from X to X′.
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In a discrete Markov process, these transitions can be represented as a matrix
T .

The transition from state Xt to state Xt+1 can be described by a transition
matrix T , where each element is defined as:

tij = P(Xt+1 = xj|Xt = xi), (2.12)

with tij ≥ 0 and ∑j tij = 1 for all i. The probabilities for the initial states are
given by λi = P(X1 = xi), with ∑i λi = 1.

The Markov chain’s transitions can also be visualized as a directed graph,
where nodes represent states and edges between nodes represent transitions,
labelled by the transition probabilities P(Xt+1 = xj|Xt = xi). For a given
Markov chain {Xn} with a transition matrix T , the n-step transition matrix,
denoted by T (n) = (t(n)ij ), describes the probability of transitioning from state
xi to state xj after n steps. This n-step transition probability is defined as:

P(Xm+n = xj|Xm = xi) = t(n)ij . (2.13)

For a homogeneous (or stationary) Markov chain, where the transition
probabilities are independent of time (i.e., T ≡ T (x, x′)), the Markov chain is
completely specified by the initial probabilities λ and the transition matrix T .
The evolution of the marginal probability distribution pi(x) for a given state x
at step i can be expressed as:

pi(x) = ∑
x′

pi−1(x′)T (x′, x). (2.14)

A probability distribution π(x) is said to be invariant with respect to a Markov
chain if it remains unchanged by the transition process:

π(x) = ∑
x′

π(x′)T (x′, x). (2.15)

Once a Markov chain reaches this invariant distribution, it remains stationary.
An important condition that ensures a distribution π(x) is invariant is the
detailed balance condition:

π(x)T (x′, x) = π(x′)T (x, x′). (2.16)

If this condition is satisfied, the transition probabilities leave the distribution
invariant, and the Markov chain is said to be reversible with respect to π(x).
In practice, MCMC methods leverage these properties to sample from a target
distribution π(x). The goal is to construct a Markov chain whose unique
invariant distribution corresponds to the desired target distribution, often
referred to as the equilibrium distribution.

For many applications, it is essential that as i → ∞, the distribution
pi(x) converges to the invariant distribution π(x), regardless of the initial
distribution λ(x). In such cases, the Markov chain is called ergodic, meaning
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that it eventually "forgets" its starting point and samples from the equilibrium
distribution 2.

MCMC methods are particularly powerful due to this ergodic property. A
well-constructed Markov chain, regardless of its initialization, will converge to
a stationary distribution π(x), allowing for efficient sampling from complex
probability distributions. The following section is dedicated to a more in-
depth understanding of the MCMC approach.

2.2.2 Monte carlo markov chains

The growing popularity of Bayesian inference in various scientific and
economic fields has been driven by the increased feasibility of numerical
simulations in recent years. Markov chain Monte Carlo methods, which origi-
nate from the field of statistical physics, have gained significant importance in
statistics since the late 1980s, largely due to technological advancements that
have enabled their widespread application [Brooks, 1998, Cappé and Robert,
2000, van Ravenzwaaij et al., 2016].

MCMC algorithms are a well-established class of Monte Carlo methods
that generate a Markov chain with the desired invariant distribution. Deriving
the stationary distribution of a Markov chain analytically can be challenging or,
in many cases, infeasible. The result is that it is often necessary to investigate
the stationary distribution numerically through simulation techniques. These
powerful techniques have enabled the numerical mapping of posterior
distributions, even in complex scenarios with high-dimensional parameter
spaces and intricate structures featuring multiple peaks. MCMC methods aim
to efficiently sample the posterior distribution, concentrating on regions with
higher probability and excluding areas with low likelihood, thus providing a
robust and flexible framework for probabilistic inference.

MCMC algorithms are designed with carefully constructed transition
kernels, ensuring that the detailed balance condition is satisfied, allowing
the chain to converge to the desired stationary distribution. To ensure that
a Markov chain reaches a stationary distribution proportional to π(X), the
probability of arriving at a point Xt+1 ≡ θt+1 must be proportional to π(θt+1),
which can be expressed as:

π(θt+1) =
∫

T (θt, θt+1)π(θt)dθt,

where T (θt, θt+1) is the transition kernel that governs the transition between
states. This requirement is satisfied when the transition probability adheres to
the detailed balance condition (Eq. 2.16), making the choice of the transition
kernel T crucial. Each MCMC algorithm employs a different transition kernel
suited to the specific problem at hand. The most widely known and utilized
MCMC algorithm is the Metropolis-Hastings algorithm [Metropolis et al.,
1953, Hastings, 1970]. This algorithm is a cornerstone of MCMC methods and

2This property is crucial in MCMC methods because it guarantees that the chain will
converge to the target posterior distribution, P(θ|D), in Bayesian inference.
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plays a fundamental role in numerous applications where complex posterior
distributions need to be sampled efficiently.

2.2.3 The Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm, initially developed by Metropolis
et al. [1953] and later generalized by Hastings [1970], is one of the most
common MCMC algorithms. Its primary purpose is to generate a sequence
of states that follow a target posterior distribution, thus facilitating efficient
sampling in complex parameter spaces.

Let Xt = θt ≡ (θ
(t)
1 , . . . , θ

(t)
m ) represent the state of the Markov chain at

time t in an m-dimensional parameter space. The transition from the state Xt
to Xt+1 is governed by a transition probability, denoted by T (Xt, Xt+1). This
transition kernel is chosen in such a way that the Markov chain converges
asymptotically to the desired stationary distribution π(θ).

The evolution of the Markov chain proceeds iteratively. At each step, a
new state Xt+1 is proposed based on a Proposal Density, Q(Xt+1|Xt), which
depends only on the current state Xt. The proposed state is then either
accepted or rejected based on a probability given by the acceptance ratio:

α(Xt, Xt+1) = min
(

1,
Q(Xt|Xt+1)π(Xt+1)

Q(Xt+1|Xt)π(Xt)

)
. (2.17)

In this framework, the transition probability is expressed as:

T (Xt, Xt+1) = α(Xt, Xt+1)Q(Xt+1|Xt),

where the acceptance probability α acts as a correction factor to account for any
discrepancy between the proposal density and the target distribution. This
acceptance rule depends only on the ratio of posterior probabilities, allowing
the algorithm to function even when the normalization constant of the target
distribution is unknown.

The original version of the Metropolis algorithm employs a symmetric pro-
posal distribution, i.e., Q(Xt+1|Xt) = Q(Xt|Xt+1), simplifying the acceptance
ratio to the posterior ratio:

α(Xt, Xt+1) = min
(

1,
π(Xt+1)

π(Xt)

)
.

In this case, the proposed state Xt+1 is always accepted if π(Xt+1) > π(Xt).
If not, the proposed state is accepted with probability π(Xt+1)/π(Xt). This
version of the algorithm satisfies the detailed balance condition, which ensures
that the stationary distribution of the chain is indeed the target distribution
π(X). Mathematically, this is expressed as:

π(Xt+1)T (Xt+1, Xt) = π(Xt)T (Xt, Xt+1),

guaranteeing that the equilibrium distribution of the chain is π(X) ≡ π(θ).
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The performance of the Metropolis-Hastings algorithm heavily depends
on the choice of the proposal density Q(Xt+1|Xt). While any distribution
that moves through the parameter space can be used, the computational
efficiency of the algorithm varies significantly depending on this choice. A
common choice is to use a Gaussian distribution centred at the current state
Xt, though more sophisticated proposals may be employed in practice to
improve convergence rates.

2.2.4 Revised Metropolis-Hastings approach

The basic idea behind MCMC is an iterative procedure that creates a chain of
values in the parameter space. Each iteration updates the parameter value
according to a specific rule of acceptance, ensuring that the final distribution
of the chain follows the target probability distribution. This allows for the
exploration of complex, high-dimensional probability distributions that are
often intractable to analyze using traditional analytical methods.

Probabilistic inference through Markov chains involves constructing
sequences of points in the parameter space, where the density of these points
is proportional to the target a-posteriori probability distribution. Notably,
there exist Markov chains that converge to a single, stationary probability
distribution, which can then be used to estimate the relevant statistical
quantities, such as means, variances, and credible intervals, providing a
powerful tool for a wide range of applications in science, engineering, and
economics.

The strength of these Bayesian methods lies in their ability to explore the
parameter space in search of the zone that best represents the observations
in terms of likelihood. The algorithm employed in this work is a revisited
version of the M-H algorithm, which can be summarised in the following
steps:

• A parameter set θt = (γt, wt) is sampled from the parameter space,
using a proposal distribution centred around the values sampled at the
previous step, θt−1 = (γt−1, wt−1). The initial parameter set is sampled
from the prior.

• The proposed set of parameters θt is used to solve the DBM equations
(1.6, 1.7) and obtain estimates of the arrival time and velocity ( ˆToA, ˆVoA)
of the CME events in the dataset.

• The acceptance probability α is calculated using the Metropolis-Hastings
ratio:

α = min
(

1,
π(D|θt)

π(D|θt−1)

)
, (2.18)

where
π(D|θ) = L(θ|D)× prior(θ). (2.19)

Here, π(D|θ) depends on the likelihood function (L(θ|D)) and the prior dis-
tribution of the parameters. The substantial difference between the employed
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MCMC algorithm and the standard M-H lies in the Likelihood function used
to determine how well the proposed parameters are in accordance with the
collected data. In particular, the probability of acceptance, and thus essentially
the Likelihood function, represents the heart of this technique and is worth
explaining in more detail. The likelihood function assesses the agreement
between the result obtained with the proposed parameters and the observed
data, which is the key component of the technique.

The a-priori distribution incorporates the previous knowledge about the
parameters. By exploring the parameter space guided by the likelihood
function, the MCMC algorithm efficiently explores the parameter space
and constructs a so-called posterior distribution. The main idea here is to
find a distribution for the DBM parameters that are valid to represent the
observations of all CMEs contained in the dataset (or belonging to an ensemble
with specific characteristics, such as accelerated or decelerated CMEs). To
take this into account, the likelihood function for a set of parameters θ given
an ensemble G of CMEs is defined as the product of the individual likelihoods
associated with each CME event. Each individual likelihood is proportional
to a bivariate normal distribution centred on the observed (ToA, VoA) values.
Hence, for a sampled set (γ, w) and an Ensemble G of CMEs (e.g. slow solar
wind speed CMEs or fast solar wind speed CMEs), we write the likelihood
function as:

L(θ|D) = LG(γ, w) = ∏
cme∈G

N
([

ToAcme
VoAcme

]
, Σcme

)([ ˆToAcme
ˆVoAcme

])
, (2.20)

Σcme =

[
Var[ToAcme], Cov[ToAcme, VoAcme]
Cov[ToAcme, VoAcme], Var[VoAcme]

]
, (2.21)

where N represents a bivariate normal distribution with mean values
(ToAcme, VoAcme) and covariance matrix Σcme, evaluated in the estimates
( ˆToAcme, ˆVoAcme) obtained solving the DBM equations with the proposed
parameter set θt.

The covariance matrix Σcme in equation 2.21 captures the uncertainties
in the observed values, allowing for deviations up to 10% of the observed
values (Var[ToAcme] = 0.10 × (ToAcme)2, Var[VoAcme] = 0.10 × (VoAcme)2).
They should ideally be equal to the estimated error measure, but to allow an
easier MCMC method convergence, we allow errors up to 10% of the observed
values. We tested the 10% threshold and found it to be a robust compromise
between convergence and acceptance rate.

The anti-diagonal coefficient of Σcme accounts for the covariance be-
tween ToA and VoA that, in this case, is taken as the empirical correla-
tion obtained from our data set and then scaled by the square root of
the diagonal coefficient (Cov[ToAcme, VoAcme] = Corr[ToAcme, VoAcme] ×√

Var[ToAcme]
√

Var[VoAcme]). To simplify computations, we utilize the log-
likelihood to convert products of exponentials into sums of their respective
arguments. The MCMC method allows for the incorporation of prior in-
formation on the parameters through the prior distribution term π(θ) in
the acceptance probability calculation. In this study, we utilized uniform
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(hence non-informative) prior distributions with boundaries extending well
beyond physically plausible values for w and γ (w ∈ [0, 1000][km/s] and
γ ∈ [0, 10−7][km−1]). Using non-informative priors ensures that the posterior
distributions are not influenced by specific prior assumptions, enabling an
objective comparison with previous results.

The MCMC algorithm in this work includes the uncertainty in the travelled
distance by incorporating it as a free parameter with a uniform prior distri-
bution (R ∈ [0.97, 1.20][AU]). The algorithm is designed to accept candidate
parameters only if they can solve the DBM equations for all CMEs in the
ensemble.

This approach, referred to as the ensemble approach, provides parameter
distributions representative of an ensemble of CMEs, allowing for modelling
the interplanetary propagation of all CMEs belonging to that Ensemble.

Additionally, we developed an alternative version of the algorithm,
referred to as the individual approach, that returns parameter distributions
for each CME in the dataset independently. Before describing the results, it
is important to highlight the methods used to assess the convergence of the
algorithm and ensure the reliability of the obtained posterior distributions.

2.2.5 Convergence diagnostic

Valid inferences from MCMC samples rely on the assumption that the samples
accurately represent the true posterior distribution. While theoretical guar-
antees ensure convergence to the target distribution as iterations approach
infinity, determining the minimum number of iterations required for a suffi-
ciently accurate approximation remains a practical challenge. This threshold
varies depending on the problem, necessitating independent convergence
assessments for each MCMC application.

Convergence diagnostics are essential tools for evaluating whether MCMC
chains have reached the target distribution. A widely used diagnostic is
the Gelman-Rubin method [Gelman and Rubin, 1992], which compares the
variance between chains (between-chain variance) to the variance within each
chain (within-chain variance). The diagnostic outputs the R statistic, also known
as the Gelman-Rubin diagnostic, which assesses the convergence of chains by
examining whether their variances are consistent. For K independent chains
of length N, denoted as:

XK =
{(

θ
(i)
1,k, . . . , θ

(i)
m,k

)}N

i=1
, k = 1, . . . , K,

the chain-specific mean θ̂k, overall mean θ̂, and variance σ̂2
k are calculated as:

θ̂k =
1
N

N

∑
i=1

θ
(i)
k , θ̂ =

1
K

K

∑
k=1

θ̂k, σ̂2
k =

1
N − 1

N

∑
i=1

(
θ
(i)
k − θ̂k

)2
.
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The between-chain variance B and within-chain variance W are:

B =
N

K − 1

K

∑
k=1

(θ̂k − θ̂)2, W =
1
K

K

∑
k=1

σ̂2
k .

The pooled variance V̂ is then computed as:

V̂ =
N − 1

N
W +

K + 1
KN

B,

and the potential scale reduction factor (Potential Scale Reduction Factor
(PSRF)) is defined as:

PSRF =

√
V̂
W

.

A PSRF close to 1 indicates convergence, while significantly larger values
suggest additional iterations are required.

2.2.6 Autocorrelation time

MCMC algorithms, including the Metropolis-Hastings method, generate
chains of samples that converge to the stationary posterior distribution.
However, due to the random walk nature of these methods, even after
reaching the target region of parameter space, successive samples may exhibit
autocorrelation, which reduces their independence.

The auto-correlation function (ACF) quantifies the dependence between
samples in a Markov chain. It is defined as:

ACF(τ) = ρX,Xτ =
cov(X, Xτ)

σστ
=

E[(X − µ)(Xτ − µτ)]

σστ
,

where Xτ represents the delayed chain, and µ, σ are the mean and standard
deviation of X and Xτ. The autocorrelation time, τac, is the lag after which the
autocorrelation function effectively approaches zero. Practically, τac is the lag
beyond which:

ACF(τ) < ϵ, for τ > τac,

where ϵ is a predefined threshold.
Once τac is determined, a post-processing step called thinning can be

applied to reduce sample correlation. Thinning involves retaining only one
sample every τac steps, ensuring the retained samples are approximately
independent. Although thinning reduces the effective sample size, it improves
the quality of the samples, making them more suitable for statistical inference
and posterior summarization.
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2.3 Mathematical morphology

MM is a non-linear image processing technique grounded in set theory,
topology, and lattice algebra, designed for analyzing geometrical structures
in images. MM was developed initially by Georges Matheron and Jean Serra
in the 1960s to address challenges in binary image processing related to
mining and materials sciences [Matheron, 1967, Serra, 1969], and has since
been extended to grayscale and multivariate images. This method probes
and transforms images by interacting them with a small predefined shape
called a structuring element (SE). Through this probing, MM extracts critical
information about spatial and geometrical properties such as size, shape, and
topology.

In recent years, MM has been successfully applied to various fields,
including medical imaging [Soille, 1999], materials science [Serra, 1983],
and more recently astrophysics, particularly solar physics. In this domain,
MM plays a key role in detecting, segmenting, and analyzing dynamic solar
features such as filaments, sunspots, and facular regions [Shih and Kowalski,
2003, Barata et al., 2018, Bourgeois et al., 2025]. At the heart of MM are
several key operations: erosion, dilation, opening, and closing, which are
mathematically defined for binary and grayscale images. Let A ⊆ E be a
binary image, where A is the set of foreground pixels and E is the image
domain. Let B ⊆ E be the SE, a small, typically simple shape (e.g., a disk or
line segment).

The erosion of set A by structuring element B, denoted by A⊖ B, is defined
as:

A ⊖ B = {z ∈ E : Bz ⊆ A},

where Bz is the translation of B by z, i.e., Bz = {b + z : b ∈ B}. Erosion
shrinks the object by removing boundary pixels, effectively reducing the size
of foreground regions. For grayscale images, erosion is extended as:

(A ⊖ B)(x) = min
b∈B

{A(x + b)},

where A(x) represents the intensity value at pixel x [Soille, 1999]. Erosion is
useful for eliminating small or narrow structures in solar images, such as fine
strands or weakly illuminated regions.

The dilation of set A by structuring element B, denoted A ⊕ B, is defined
as:

A ⊕ B = {z ∈ E : (Bs)z ∩ A ̸= ∅},

where Bs is the symmetric reflection of B, i.e., Bs = {−b : b ∈ B}. Dilation
expands the object by adding pixels to the boundary. In grayscale, dilation is
defined as:

(A ⊕ B)(x) = max
b∈B

{A(x − b)}.

Dilation fills small gaps and connects nearby structures, making it valuable
for consolidating fragmented solar features like active regions or sunspot
boundaries [Soille, 1999].
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The opening operation, denoted A ◦ B, is defined as erosion followed by
dilation:

A ◦ B = (A ⊖ B)⊕ B.

Opening smooths object boundaries, removes small noise elements, and
separates objects that are close together. For grayscale images, opening
removes bright small-scale structures [Soille, 1999]. The closing operation,
denoted A • B, is dilation followed by erosion:

A • B = (A ⊕ B)⊖ B.

Closing fills small holes within an object while preserving its general shape.
In grayscale, the closing can remove small dark regions or local depressions,
making it useful for enhancing solar features like coronal holes and sunspots
[Serra, 1983].

For grayscale images where pixel intensities are real numbers I(x) ∈
R, MM operations generalize by replacing set operations with point-wise
infimum (min) and supremum (max). The dilation and erosion for grayscale
images are defined by:

(I ⊕ B)(x) = sup
b∈B

{I(x − b) + B(b)},

and
(I ⊖ B)(x) = inf

b∈B
{I(x + b)− B(b)}.

This allows MM to process continuous-valued images, such as those obtained
from solar observations, making it highly applicable for analyzing images
with complex intensity variations, such as those from the SDO[Lemen et al.,
2012].

Beyond basic operations, MM offers a variety of advanced operators for
more specialized image analysis, such as morphological gradient, top-hat
transform and skeletonization: The morphological gradient of a set A is
defined as the difference between the dilation and erosion of the set:

Grad(A) = (A ⊕ B)− (A ⊖ B).

This operation highlights edges, which is particularly useful in detecting the
boundaries of solar structures like filaments, sunspots, and coronal loops
[Gonzalez, 2009].

The top-hat transform enhances small objects by subtracting the result of
an opening or closing from the original image:

Top-hat(A) = A − (A ◦ B).

This transform is effective in detecting small bright features such as coronal
bright points or spicules [Soille, 1999].

Skeletonization reduces an object to its minimal representation while
retaining topological features. The skeleton Skel(A) of an object A can be
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computed iteratively by applying erosion followed by subtraction:

Skel(A) =
∞⋃

k=0

(A ⊖ Bk)− ((A ⊖ Bk)⊕ B).

Skeletonization is crucial for analyzing complex solar structures like coronal
loops or prominence threads [Vincent and Soille, 1991]. MM is extensively
used in solar physics to detect, segment, and track solar features in noisy
datasets. For example:

• Filament detection and tracking: MM is used to detect solar filaments by
combining region-growing algorithms with morphological opening and
closing operations to segment filamentary structures from surrounding
corona [Shih and Kowalski, 2003, Bourgeois et al., 2025].

• Sunspot segmentation: MM aids in distinguishing between the umbra
and penumbra regions of sunspots, enabling precise measurement of
sunspot areas and the tracking of their evolution [Shih and Kowalski,
2003].

• Coronal jet identification: MM, in combination with semi-automated
algorithms, helps detect small-scale coronal jets by enhancing weak
features in solar images, which can be obscured by noise [Liu et al.,
2023].

Recently, MM has been integrated with machine learning techniques to
enhance feature detection and classification in solar data. By combining
MM’s ability to extract geometric information with machine learning’s pattern
recognition capabilities, researchers can automate the identification and
analysis of solar phenomena at unprecedented scales. For example, DL
algorithms that incorporate MM for preprocessing have been used to track
filaments and detect jets with improved accuracy [Davidson and Ritter, 1990,
Derivaux et al., 2007, Nogueira et al., 2019, Franchi et al., 2020, Mondal et al.,
2020, Roy et al., 2021].

This chapter has outlined the core methodologies applied throughout
the thesis, ranging from probabilistic physics-based modelling to machine
learning techniques and image processing tools. Table 2.1 summarises the
objectives, advantages, and limitations of the methods employed.
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TABLE 2.1: Summary of methods used in this thesis: their
purpose, key advantages, and limitations.

Method Purpose Advantages Limitations

Machine Learn-
ing (SVM, RF,
XGBoost)

Supervised
learning for
CME transit
prediction,
Earth-impact
classification,
and jet
identification

Adaptable to
mixed feature
types; captures
nonlinear
relationships;
supports
automation
across tasks

Requires careful
tuning and pre-
processing; may
be sensitive to
class imbalance
or feature spar-
sity

SHAP Post-hoc
interpretation
of machine
learning models

Provides model-
agnostic feature
importance;
increases
transparency
in complex ML
systems

Adds
computational
overhead;
explanations
depend on
reliable input-
output mapping

P-DBM CME
transit time
forecasting with
uncertainty

Simplified
Physics
model; com-
putationally
efficient; allows
probabilistic
forecasting from
minimal input
parameters

Relies on steady
solar wind as-
sumptions; lim-
ited capacity to
capture complex
propagation dy-
namics

MCMC Bayesian estima-
tion of P-DBM
parameters

Enables
principled
uncertainty
quantification;
incorporates
prior
knowledge and
observational
constraints

Sensitive
to prior
assumptions
and sampling
configuration;
computation-
ally demanding

Mathematical
Morphology

Segmentation
and shape-
based feature
extraction from
solar limb
images

Well-suited for
structural
filtering;
enhances
detection of
geometrically
coherent
features

Sensitive to
structuring
parameters;
limited
robustness
under high
image noise or
ambiguity
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Chapter 3

Data

This chapter presents the datasets employed in this thesis, which underpin the
analyses and models developed across its three main projects. Each dataset is
meticulously curated to ensure reliability and relevance for the corresponding
research objectives.

3.1 Earth-impacting CMEs dataset

The dataset of Earth-impacting CMEs was compiled following the approach
outlined in Liu et al. [2018], leveraging multiple established CME catalogues:

• The Richardson and Cane List [Richardson and Cane, 2010],

• The full halo CMEs list from the University of Science and Technology
of China [Shen et al., 2013],

• The George Mason University CME/ICME List [Hess and Zhang, 2017],

• The CME Scoreboard (NASA).

Essentially, the data mining process comprises two stages. First, we
identify all the observed geoeffective CME events from 1996 to 2022, and then
we associate each event with the features that will form the input space for
the ML models. Ambiguous events and duplicates were excluded, resulting
in a clean dataset of 324 CME events.

Features

The dataset comprises 17 features describing CMEs and solar wind states.
CMEs features include velocity, mass, angular width, and the Measurement
Position Angle (MPA), derived from the SOHO LASCO catalogue1. Solar
wind features, such as plasma density, temperature, and magnetic field
components in Geocentric Solar Ecliptic System (GSE) coordinates, were
extracted from OMNIWeb Plus2, averaged over a 6-hour window post-take-
off. Additionally, sunspot numbers at take-off were included to capture solar
cycle states.

1LASCO catalogue: https://cdaw.gsfc.nasa.gov/CME_list/
2OMNIWeb Plus: https://omniweb.gsfc.nasa.gov/

https://cdaw.gsfc.nasa.gov/CME_list/
https://omniweb.gsfc.nasa.gov/
https://cdaw.gsfc.nasa.gov/CME_list/
https://omniweb.gsfc.nasa.gov/
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FIGURE 3.1: Barplots of F-score (left) and mutual information
score (right) for the regression target (CME transit time).

The relevance of features is assessed using the SelectKBest3 function
from the scikit-learn Python package. This tool supports several feature
selection techniques, including the calculation of the Analysis of Variance
(ANOVA) F-score and the mutual information (MI) score for both regression
(f_regression4, mutual_info_regression5) and classification tasks (f_classif6,
mutual_info_classif)7. The F-score evaluates the degree of linear separability
between class distributions by analyzing the variance between classes, provid-
ing a measure of how well features linearly distinguish targets. In contrast, the
MI score captures non-linear dependencies, offering a more comprehensive
perspective on feature relevance.

Figures 3.1 and 3.2 illustrate the F-score and MI rankings for features in
regression and classification scenarios.

Figure 3.1 reveals that the features most strongly correlated with CME
transit time are those related to CME velocity: CME average and final velocity,
followed by CME width and mass. Solar wind features also exhibit some
relevance, albeit to a lesser degree. The relatively low mutual information
values indicate weak non-linear relationships between the data and the target.

3SelectKBest documentation: https://scikit-learn.org/stable/modules/generated/
sklearn.feature_selection.SelectKBest.html

4f_regression documentation: https://scikit-learn.org/stable/modules/
generated/sklearn.feature_selection.f_regression.html#sklearn.feature_
selection.f_regression

5mutual_info_regression documentation: https://scikit-learn.org/stable/modules/
generated/sklearn.feature_selection.mutual_info_regression.html#sklearn.
feature_selection.mutual_info_regression

6f_classif documentation: https://scikit-learn.org/stable/modules/generated/
sklearn.feature_selection.f_classif.html#sklearn.feature_selection.f_classif

7mutual_info_classif documentation: https://scikit-learn.org/stable/modules/
generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_
selection.mutual_info_classif

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html#sklearn.feature_selection.f_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html##sklearn.feature_selection.f_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html##sklearn.feature_selection.f_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html##sklearn.feature_selection.f_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html##sklearn.feature_selection.mutual_info_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html##sklearn.feature_selection.mutual_info_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html##sklearn.feature_selection.mutual_info_regression
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html##sklearn.feature_selection.f_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_classif.html##sklearn.feature_selection.f_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html##sklearn.feature_selection.mutual_info_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html##sklearn.feature_selection.mutual_info_classif
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html##sklearn.feature_selection.mutual_info_classif
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FIGURE 3.2: Barplots of F-score (left) and mutual information
core (right) for the classification target.

A similar situation arises with the classification dataset, but in this case,
there are only four pertinent features, all concerning the state of the CME
at launch. Consequently, we have decided to adopt a consistent approach
for feature selection across both cases, in line with the methodology used
for CAT-PUMA, which involves eliminating features with a normalised F-
Score value below 0.01. Feature selection allows the input space to be resized.
For the regression task, the input space now comprises 8 features: the two
CME speed features, CME width and mass, solar wind Bz, solar wind plasma
temperature, solar wind plasma speed, solar wind pressure, and sunspot
number R.

Conversely, the feature space for the classification task only consists of
CME average speed, CME final speed, CME width, and CME mass. The
ranking of the features for the augmented dataset version is very similar, with
the sole difference being that the solar wind Alpha/Proton ratio replaces Bz
in the input space.

The set of features selected for regression and classification tasks was
designed to capture physically relevant descriptors of CME kinematics and
the heliospheric environment. From a physical perspective, parameters such
as CME average speed, final speed, and angular width are naturally expected
to play a central role in both transit time estimation and hit/miss classification.
Faster CMEs propagate more rapidly through interplanetary space, while
wider CMEs subtend a larger angular extent, increasing the probability of
intersection with Earth’s position. CME mass, though observationally more
uncertain, reflects the inertia of the ejecta and may influence its susceptibility
to drag-induced deceleration. These expectations are broadly supported by
the statistical feature relevance scores shown in Figures 3.1 and 3.2. Both the
F-score and mutual information rankings assign high importance to CME
speed and width, indicating strong discriminative power for both regression
and classification targets. CME mass and sunspot number also emerge as
moderately informative, suggesting a secondary but non-negligible role in
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characterising propagation dynamics and broader heliospheric context. Con-
versely, features derived from solar wind measurements (e.g., Bz, temperature,
dynamic pressure) receive lower relevance scores. This may reflect both
physical and methodological factors: solar wind parameters measured at
Earth may not accurately represent the conditions encountered by the CME
during transit, especially for events with complex trajectories. Furthermore,
temporal offsets and averaging may dilute their predictive value in early-stage
modelling. Nonetheless, their inclusion provides contextual information that
may become more valuable in time-aware or ensemble modelling frameworks.
Taken together, the feature rankings align reasonably well with physical
intuition, and help validate the chosen input space prior to model training.

Targets and class balance

Two supervised learning tasks were addressed:

1. Transit Time Prediction: A regression task predicting the time between
CME onset and arrival at Earth.

2. Earth-Impact Classification: A binary classification task distinguishing
Earth-impacting from non-Earth-impacting CMEs.

To mitigate class imbalance, filters were applied to non-Earth-impacting
events. These included removing events with angular widths below 90
degrees or those flagged as ’poor events’. The final dataset comprises two
versions:

• Dataset V.1: 209 Earth-impacting and 2968 non-Earth-impacting CMEs.

• Dataset V.2: 295 Earth-impacting and 3453 non-Earth-impacting CMEs,
with missing values imputed using KNN.

3.2 Drag-Based model dataset

Napoletano et al. [2022] compiled a dataset of CMEs by integrating data from
the Richardson and Cane CME/ICME list [Richardson and Cane, 2010] and
the SOHO-LASCO catalogue [Yashiro et al., 2004]8. This dataset includes
critical information required to solve the DBM equations (1.6, 1.7), which
serve as input for the subsequent MCMC algorithm. Some quantities were
directly extrapolated from the source lists, while others were derived as part
of the analysis in Napoletano et al. [2022]. The dataset encompasses several
key parameters, including the of the ICMEs and its associated uncertainty, the
VoA of the ICMEs, and the initial velocity (v0) of the CMEs, along with their
corresponding error estimates.

A revised version of this dataset was produced by Mugatwala et al. [2024],
and it is publicly available on Zenodo9. In this revision, a Monte Carlo

8The catalogue is available at https://cdaw.gsfc.nasa.gov/CME_list/
9Mugatwala et al. [2024] dataset: https://zenodo.org/record/8063404

https://zenodo.org/record/8063404
https://cdaw.gsfc.nasa.gov/CME_list/
https://zenodo.org/record/8063404
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approach was employed to invert the DBM equations (1.6, 1.7) analytically,
generating a range of possible values for the DBM parameters for each CME.
This work introduced two essential advancements: first, the CMEs were
clustered based on their affinity to the DBM model, using the acceptance rate
from the Monte Carlo inversion to identify the most suitable events for a
DBM-based description. Second, the CMEs were categorized as propagating
through either fast solar wind conditions (with solar wind speed w > 500
km/s) or slow solar wind conditions (with w < 500 km/s).

The resulting dataset comprises 213 CME events spanning the period from
1996 to 2018, of which 178 are classified as "slow solar wind events" (slow
Solar Wind (SW)), and 32 are categorized as "fast solar wind events" (fast SW).

The dataset includes the ICME velocity of arrival (VoA), initial CME
velocity, and associated uncertainties. Events were categorized based on
solar wind conditions:

• Slow solar wind: w < 500 km/s,

• Fast solar wind: w > 500 km/s.

3.3 Coronal jet dataset

In this study we employ the dataset proposed by Liu et al. [2023] as a baseline;
they employed the SAJIA algorithm to full-disk SDO/AIA 304 Åimages from
June 1, 2010, to May 31, 2020, with a temporal resolution of six hours. SAJIA
yielded 3800 coronal jet candidates. Of these, 1215 were confirmed as true jets
by visual inspection. Subsequently, Soós et al. [2024] expanded the analysis
by enhancing the temporal resolution to three hours. This refinement led to
the detection of an additional 4227 coronal jet candidates within the same
timeframe. From these, 1489 were validated as true jets. Overall, the combined
efforts resulted in a comprehensive examination of 8027 coronal jet candidates
from June 1, 2010, to May 31, 2020. Ultimately, 2704 of these detections were
confirmed as true jets.

In their study, Bourgeois et al. [2025] also analyzed full-disk SDO/AIA
304 Å images ranging from 2010 to 2020 but leveraged an MM approach to
identify solar structures. Such an approach allows for segmentation of the
coronal off-limb structures observable in the full-disk images. The images, pre-
processed to remove unwanted chromospheric features, were analyzed using
MM to isolate and enhance coronal structures. MM operations such as erosion
and dilation were used in combination to apply a white top-hat transform,
which helped in isolating bright coronal features. A fixed threshold was then
applied to filter out noise and irrelevant objects, refining the dataset. Such a
filtering step is implemented to reduce noise and exclude possible eruptions
located too far from the solar disk, which are less likely to be coronal jets. This
ensures that our analysis focuses on the most relevant coronal jet candidates.
Once the structures were extracted from the images, Bourgeois et al. [2025]
computed key properties like area, perimeter, and positional characteristics,
such as latitude and longitude, for each structure. The dataset ultimately
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comprised 877843 structures. MM proved to be an effective tool for isolating
and characterising the complex, dynamic coronal structures observed in the
solar corona. More information about the implementation and applications of
the MM algorithm can be found in Bourgeois et al. [2025].

In our analysis, we map the structures identified using the MM approach
with those detected by the SAJIA algorithm based on their positions on the
solar disk. Specifically, we associate each SAJIA jet candidate with the radially
closest MM structure. By combining SAJIA and MM datasets, we obtain an
MM description of the 8027 structures from Liu et al. [2023]. After the filtering,
we obtain a dataset composed of 2667 validated jets (positive events), and
5028 validated as non-jets (negative events).

Figure 3.3 shows the comparison of an exemplary coronal jet detected by
SAJIA and the MM approach.

FIGURE 3.3: Comparison of the contouring results from the
SAJIA algorithm (red contours) and the MM algorithm (green
contours) on the SDO/AIA 304 Å image recorded on 06/06/2010

at 15:00:00 UT.

Figure 3.4 shows the training data obtained from the SAJIA algorithm.
A key observation is that the retrieved true coronal jets tend to cluster at
high absolute values of latitudes. This suggests that jets are more frequently
detected at both high northern and high southern latitudes. Additionally, the
number of jet detections is noticeably higher during the early stages of Solar
Cycle 24.

This pattern illustrates the spatial and temporal distribution of coronal jets
in the training data, highlighting that certain latitudinal regions and phases of
the solar cycle are more prone to jet activity. However, this is not representative
of the natural behaviour of coronal jets well. Because of the potential bias,
we decided not to include latitude and time features in the input space of
the model. We employed MM features to encode the descriptions of coronal
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jet candidates. Such features were obtained leveraging the DIPlib10 Python
package, which provides access to various morphological metrics such as
Feret diameters, radius statistics, convex area, and perimeter. Next, following
a feature selection process, we eliminated collinear features to enhance model
performance. This process ensures that the remaining features contribute
uniquely to the classification task.

At the end of the selection process, the feature space is composed of 17
features, encoding each jet instance. The candidate jets descriptors are the
total intensity, the structure area and perimeter, the length-width ratio, the
skewness and excess kurtosis of the grey-value image intensities across the
object, the Podczeck shape descriptors (square, circle and elongation), the
measure of similarity to a circle (circularity), the roundness, the deviation from
an elliptic shape (ellipse variance), the bending energy of the structure and
finally the position of the closest pixel to the centre of the solar disk defined
by the angle and the distance (for detailed information, please refer to the
DIPlib documentation).

FIGURE 3.4: Scatter-plot of the training data obtained from the
SAJIA algorithm. Coronal jets are represented by orange dots,

while non-jets are depicted in blue.

The datasets outlined in this chapter form the foundation for the analyses
conducted in this thesis. By carefully curating and pre-processing these
datasets, as well as implementing feature selection techniques, we ensured
that the input data was both representative and optimized for the models
employed. The following chapter presents the results derived from applying
machine learning and statistical techniques to these datasets, offering insights
into the dynamics of coronal mass ejections, their propagation through the
heliosphere, and related solar phenomena. In the following chapter, we
present the results obtained from these models, showcasing their performance

10DIPlib documentation: https://diplib.org/diplib-docs/features.html#size_
features_Feret

https://diplib.org/diplib-docs/features.html#size_features_Feret
https://diplib.org/diplib-docs/features.html#size_features_Feret
https://diplib.org/diplib-docs/features.html##size_features_Feret
https://diplib.org/diplib-docs/features.html##size_features_Feret
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in addressing the research objectives and providing valuable insights into the
phenomena under investigation.
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Chapter 4

Results

This chapter presents the main results obtained in this thesis, which are
organised into three sections. Each section addresses the findings from
different aspects of the research. Section 4.1 focuses on the application
and interpretation of the CAT-PUMA model for predicting Earth-impacting
CMEs [Chierichini et al., 2024b, published in The Astrophysical Journal (ApJ),
)]. Section 4.2 discusses the results related to the revisited P-DBM model
and its enhancement using MCMC methods [published in the Journal of Space
Weather and Space Climate (JSWSC), Chierichini et al., 2024a]. Finally, section
4.3 presents the outcomes of the dataset expansion and analysis of coronal jets
using random forests (submitted to Astronomy & Astrophysics (A&A), which
is undergoing revision as of writing).

Together, these sections summarise the core contributions of this thesis to
the field of space weather prediction.

4.1 Supervised learning approach to CME arrival
modelling

In this section, we describe the results obtained in this work. We set out to
train three different ML models and use them for two distinct tasks: regression
and classification.

• The regression models provide an answer to the question: How long do
CMEs take to reach Earth?

• The classification models generate predictions as to whether a CME will
reach Earth or not.

4.1.1 Performance evaluation

We studied various models systematically for both problems under analysis.
Each model is optimised to address the relevant ML problem at hand, and
then we analyse the performance by comparing different evaluation metrics.
For clarity, we will first describe the regression problem and, later, the
classification problem.
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Regression

The training follows the same steps for all three models:

1. After the feature selection procedure (described in section 3.1) we extract
eight relevant features for predicting the transit time; four CME Features
and four SW state features.

2. Each model, SVM, random forest and XGBoost is optimised by means
of K-fold CV, with k = 5 (Sec. 2.1.3).

3. Once the optimised models have been obtained, we evaluate their
performance through Cross Validation and Best Split Validation (Section
2.1.3), using the R2 score as a reference metric.

This procedure is applied to both versions of the dataset; the first consists
of 209 Earth-impacting CMEs, while the second version contains 295 CMEs,
86 properly imputed as described in Sec. 3.1. Figure 4.1 summarizes the
results obtained using different validation methods. We report the average
value (blue) and the maximum value (orange) obtained by a 5-Fold CV, as
well as the BSV score (green).

Cross-validation is a more conservative method than Best split validation,
as mentioned in section 2.1.3, which puts the spotlight on the best Train/Test
split. This is evident in the figure; the Best-Split score is the highest for any
model-dataset combination. Furthermore, it is essential to point out that best-
split validation is less effective for ensemble techniques, returning a lower
value than SVM. The reason is probably to be found in the architecture of
the models. Ensemble models can better generalise predictions and not fit
too closely to the specific Training set used for training. This makes it more
difficult to find a Training and Test pair that performs dramatically better than
a random split. Nevertheless, the ensemble models also achieve fairly high
performance, with a BSV score ranging from 0.73 to 0.76.

The results show a significant difference between the performance ac-
cording to the BSV and CV scores. The CV Mean scores are similar for all
models but are still considerably low compared to the CV Max values. To
understand it better, this means that of the five different random Train/Test
splits for CV, the most optimistic one returns a considerably higher R2 score
than the average. This is true for both versions of the dataset, underlining
the difficulty in characterising a model capable of generalising the regression
problem well. We get the best performance from the SVM; the BS validation
technique achieves an R2 score of 0.80, and the related MAE is 7.6 ± 5.2 hours.
Although the MAE is higher than in the original version of CAT-PUMA, this
result is still reasonably good, considering that the test set includes more
events. However, for CV, the MAE is above 10 hours.

It is important to stress this concept; although one can obtain a very high-
performing model through BSV , it does not necessarily maintain such high
performance on new samples.
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(A) (B)

FIGURE 4.1: Performance scores for regression models. Perfor-
mance comparison by means of CV Mean, CV Max score and

Best Split score for dataset V.1 (a) and dataset V.2 (b).

Classification

The second part of this work is devoted to the study of machine learning
models capable of predicting whether or not a CME will reach the Earth. The
feature selection process (Sec. 3.1) shows that in a classification framework,
the features most correlated with the target are only four: LASCO width, final
speed, average velocity and mass, all descriptors of the CME at launch.

Again, we opted to test different models on two versions of the dataset.
The dataset V.1 includes 2968 CME events, of which 209 are positive (i.e.,
Earth-impacting CMEs). The augmented version, on the other hand, consists
of 3543 CME events, of which 295 are Earth-impacting. For the classification
problem, we adopted a more standard validation method. Before training, we
divided the dataset into Training (80% of the total) and Test (20% of the total);
we optimised and trained the models on the Training set and then evaluated
the performance on the Test.

Given the highly unbalanced nature of the problem, it is even more
challenging to determine whether and how well a classifier succeeds in
solving the problem under analysis. For this reason, we decided to compare
several performance evaluation metrics to extrapolate a wider spectrum of
information about models’ capabilities.

Table 4.1 summarises the results, comparing the values of some relevant
metrics to assess the goodness of the classification. There is much information
to extrapolate from the results obtained.

First, it is important to emphasise that the performance of the different
models is comparable and the score values are generally better for the
augmented dataset version (Dataset V.2). Accuracy is higher than 70% in
all scenarios. As mentioned earlier (Sec. 2.1.3), however, the accuracy value
is not an optimal indicator of the model’s goodness because it is affected
by the unbalance of the classes. The balanced accuracy value gives a more
realistic interpretation of the classifiers’ ability to assign the correct class to
each instance, never exceeding a value of 65%. In general, the models show
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an excellent ability to recognise events in the majority class while lacking
Precision for the minority class, resulting in a high False Alarm Ratio (FAR).

Precision is generally very low, reaching a maximum value of 30% for
random forest. Nevertheless, the Recall is generally fairly high, indicating
the ability of the models to obtain reliable forecasts for non-Earth-Impacting
CMEs. It is essential to go into detail on this topic because there is usually a
tendency to confuse model performance, which inevitably depends heavily
on the type of validation chosen with the actual capabilities of the model.

For the sake of clarity, we provide the confusion matrix for the random
forest in figure 4.2. The precision score encodes the following information:

FIGURE 4.2: Confusion matrix for the Test set for the random
forest model, trained on the augmented dataset version (Dataset
V.2). Matrix entries are TP (bottom right), TN (top left), FP( top

left) and FN (bottom left).

among 155 events predicted as Earth-Impacting, only 46 are correctly classi-
fied. Low precision directly implies a high false alarm ratio. Despite this, the
model still shows potential for operational application because of the high
Recall. In fact, of 686 events labelled as Earth-Impacting, only 13 are predicted
incorrectly.

4.1.2 Interpretation of results

One of the main criticisms levelled at prediction tools based on machine
learning algorithms is that it is difficult to judge their actual capabilities and
limitations because there is often no way of getting a sense of the process
that drives the models to produce a specific prediction. In addition, hard-
to-interpret models such as deep neural networks and gradient-boosting
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TABLE 4.1: Comparison of evaluation metrics for SVM, random
forest, and XGBoost models across two dataset versions (V.1
and V.2). Metrics include Accuracy, Precision, Recall, Balanced
Accuracy, and False Alarm Ratio. The bold values highlight the
best performance within each metric across the dataset versions.

Metric SVM random forest XGBoost

Accuracy 0.76|0.77 0.82|0.84 0.73|0.78
Precision 0.19|0.24 0.24|0.30 0.18|0.24

Recall 0.71|0.85 0.67|0.78 0.79|0.81
Balanced Accuracy 0.58|0.61 0.60|0.64 0.58|0.61
False Alarm Ratio 0.81|0.76 0.76|0.70 0.81|0.76

Dataset V.1| Dataset V.2

machines are increasingly efficient and now outperform, in most cases, linear
models that are typically easier to interpret. The main consequence of the lack
of interpretation is distrust in the model. Can I actually trust a model that I
do not fully understand?

The subject of interpretation has been widely discussed in recent years, and
various methods have emerged to better understand the results obtained by
artificial intelligence. Local explanation methods aim to assess the influence
of input variables/features on a specific prediction/output. In this paper, we
want to exploit one of these tools, called Shapley values [Lundberg and Lee,
2017], to gain more insights into model decisions.

SHAP is a model-agnostic local explanation method originated in the
field of game theory to determine the payouts of players depending on their
contribution to the total payout [Aas et al., 2021]. In an Artificial Intelligence
(AI) explanation setting, this method is used to calculate the contribution of
each feature to the final output. In particular, this technique allows us to
decompose the output of a model f (x̄), where x̄ is a specific feature vector,
into the sum of the contributions ϕ of each feature:

f (x̄) = ϕ0 +
F

∑
i=1

ϕi. (4.1)

Considering a set of F features and a subset S ⊆ F = {1, ..., F} consisting of
|S| features, the Shapley value related to feature j can be expressed as:

ϕj(v) = ϕj = ∑
S⊆F

|S|!(F − |S| − 1)!
F!

(c(S ∪ {j})− c(S)), j = 1, ..., F, (4.2)

where c(S) is the contribution function that maps subsets of features to the
contribution they have on the prediction. Such function is typically the
expected output of the model, conditional on the feature vector xs:

c(S) = E[ f (x)|xS = x̄]. (4.3)
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In essence, the Shapley Values determine the difference in the contribution
that feature j brings to the prediction if included in a specific subset S
and average this over every possible combination of possible subsets S of
features. (in terms of the contribution function: c(subset S including feature
j)− c(subset S without feature j)

In this work, we used the python package SHAP1 to apply the theory of
Shapley values to the predictions made for CMEs and try to obtain some more
information on the feature space of the CAT-PUMA framework.

The SHAP visual tools help to quantify the contribution of each input
feature to the model’s output for a given prediction. The summary plot
aggregates the impact of features across all data points, highlighting which
features most significantly influenced predictions across the dataset. The
decision plot, in contrast, provides a cumulative view of how individual
features push predictions higher or lower for each specific instance. The
waterfall plot is particularly useful for understanding the model’s reasoning
for a single prediction. It visualises how the base value (i.e., the average model
output over the training dataset) is adjusted by each feature’s contribution to
reach the final predicted value. Features that increase the prediction are shown
in red, while those that decrease it are in blue. This allows a transparent and
interpretable breakdown of model decisions, especially for complex ensembles
like random forests or gradient-boosted trees.

Since we tested different machine learning models, we decided to deal in
more detail with the cases where performance is highest to see if there are
patterns that characterise the best-performing models. As with the description
of the results, we will start by treating the regression case and then discuss
the classification task.

Regression

For the regression case, we considered the SVM model trained on the dataset
V.1. One of the main tools offered by the SHAP algorithm is the summary plot
shown in Figure 4.3 (A), which shows for each feature the SHAP values of all
instances in the training set. This plot contains a lot of information about the
predictions made by the model, so we try to break down the main ones; first
of all, the features on the y-axis are ordered in ascending order (from bottom
to top) according to the average contribution they have on the predictions.
This means that, according to SHAP, the feature with the greatest influence
on the predictor output is the average speed of CMEs, followed by Angular
width, final speed and sunspot number R, while the least influential features
are the SW Speed Temperature and pressure.

In addition, SHAP values are typically higher for low feature values
and lower (negative range) high feature values; this is true for all features,
especially speed features, except for SW Bz. In practice, very high feature
values tend to push the model predictions towards lower transit time. Trivially,
if the speed of the CME is very high, the model will tend to opt for low transit
time estimates. Another convenient way of obtaining information on the

1SHAP documentation: https://shap.readthedocs.io/en/latest/

https://shap.readthedocs.io/en/latest/
https://shap.readthedocs.io/en/latest/
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(A)

(B)

FIGURE 4.3: (A) SHAP Summary plot for the training set. The
y-axis ranks the features sorted from the most (top) to least
(bottom) important. The x-axis depicts the SHAP value. Each
point refers to a specific instance of the training set, pointing
out the related SHAP value associated with a value of a certain
feature. The colour bar displays whether the feature value is
high (pink) or low (blue). (B) SHAP Decision lot for the training
set. This plot shows the decision path for each instance in the
training set. Each line shows each feature’s contribution (x-axis)
to the final output of the model. The colour depends on the
magnitude of the output and ranges from blue for lower output

values to red for higher ones.
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model’s decision-making process is the decision plot (Figure 4.3 (B)).
This tool helps visualise the decision path that the model takes for each

instance. For each instance in the training set, the graph shows the contribu-
tion each feature has on the final output. The paths are clustered by similarity,
which allows similar decision patterns to be identified. Two different macro-
patterns can be distinguished; the first relates to most instances and mainly
involves output values of more than 50 hours, while the second refers to
low transit time predictions. For all instances, the LASCO Speed- and Width-
related features direct the prediction the most. All other features have a lower
impact, and at the top of the cascade, the sunspot number R produces the push
towards the final output of the model. The instances associated with lower
predictions (transit time < 50) appear to be largely conditioned by the velocity
value of the CMEs at launch time; this suggests that if the initial velocity
of the CMEs is very high, the model is likely to generate lower transit time
predictions. Furthermore, the decision pattern for low transit time predictions
appears less stable, there are a couple of cases where Bz and LASCO Mass
values push the predictions considerably towards higher or lower output,
respectively.

This is interesting because, in fact, there are relatively few examples of
CMEs associated with a very low transit time (<40 hrs); this might suggest
that due to the few examples available, the model appears to rely more on
speed features to make decisions about lower outputs. This is because the
correlation between the transit time and the speed of the CMEs is higher, and it
is, therefore, easier to establish a relationship with the few examples available.
Moreover, SHAP, being a local technique, is valuable for inspecting decisions
on individual instances. Waterfall plots of the instances with the highest
and lowest prediction error are shown in the figure. Such plots can clearly
and compactly display the relative contributions of the different features in
order of importance. Waterfall plots of the instances with the highest and
lowest prediction error are shown in Fig. 4.4. Such plots can clearly and
compactly display the relative contributions of the different features in order
of importance. The least performing instance has a recorded arrival time of
108 hours. In Figure 4.4 (A), we see how almost all the features push the
output towards very high transit time values but fail to reach the actual value,
which is still very high compared to the average value. This effect is probably
still due to our poor representation of rare events in the training set, as we do
not have many examples of such slow CMEs in our dataset.

In contrast, the best-performing CME is associated with a transit time that
is much closer to the mean value. Figure 4.4 (B) shows that almost all features
hold the prediction value close to the base value. The sunspot number R has
the most significant contribution by pushing the prediction very close to the
actual value, resulting in an error of only 0.5 hours.

Let us now move on to the analysis of the classification task.
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(A)

(B)

FIGURE 4.4: Waterfall plot related to the best (A) and worst
(B) performing CME.The plot shows the relative contribution
of each feature to the model’s prediction f (x), starting from
the base value E[ f (x)]. The x-axis shows the features and their
value (scaled for training), while the x-axis represents the transit
time. The arrows display the SHAP value associated with each

feature, coloured red if positive and blue if negative.
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Classification

In this section, we delve into the decision-making process leading to the
predictions in the classification task; in particular, it is interesting to exploit
the SHAP values to find insights as to why the FAR remains so high. For
this purpose, we analyse the predictions made on the test set by the best-
performing model, the random forest trained on the V.2 dataset. The model
outputs are values between 0 and 1, and instances are associated with the
positive or negative class by identifying a threshold value, usually 0.5; thus,
samples with an output greater than the threshold value are associated with
the positive class. Otherwise, the prediction is negative. The output score
also indicates how confident the model is in making decisions. The closer the
output value is to the threshold value, the more uncertain the decision possibly
is. Figure 4.5 (A) shows the classification confidence for the CMEs in the test
set; the histogram suggests that for most of the misclassified CMEs, the model
decision was made with confidence of less than 0.7; in contrast, correctly
classified CMEs typically have very high confidence, in most cases greater
than 0.8. This suggests that despite its high FAR , the model is relatively
confident when making a correct decision, while it is generally less secure
when it makes incorrect predictions. This result is reassuring because it
suggests that the model learns the difference between Earth-impacting and
non-Earth-impacting CMEs.

The SHAP method allows the model’s decision-making process to be
analysed instance by instance. Figure 4.5 (B) shows the decision plot for the
misclassified test set events. The decision plot highlights some interesting
aspects. First of all, we notice two main decision patterns; in blue are the
CMEs assigned to the negative class and in red those assigned to the positive
class. There are also some instances in which the model associates an output
value very close to the base value, i.e. close to the threshold value. The latter
shows a more uncertain decision pattern, with some features pushing them
towards higher values while others lowering their output value; the result is
an output that settles close to the threshold value. Instances with an output
greater than the threshold value, thus assigned to the positive class, contribute
to the high FAR . For those instances, the graph shows that the feature that
most influences the decision is the LASCO width, which pushes the prediction
towards high values. However, the other features tend to lower the output
value by pushing back the output, making the model’s decision less secure.

This is interesting because it suggests that in these cases, the model is
principally ’confused’ by the value of the width of the CMEs; most of the
misclassified events are Halo CMEs (LASCO width = 360 degrees). Consid-
ering the instances incorrectly assigned to the negative class, although the
number of such events is very low, the decision plot suggests that the model
is generally relatively confident in the choice since almost all features push
the output towards values close to zero, although there are few misclassified
instances in this case.
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(A)

(B)

FIGURE 4.5: Interpretability plots for the classification Task. The
graphs refer to the Test set for the best-performing classifier
(random forest trained on Dataset V.2). (A) Histogram of the
classification confidence distribution. Red highlights the misclas-
sified instances, while green highlights the correct predictions.
(B) Decision plot for the misclassified instances. This plot shows
the decision patterns; the colour bar indicates the magnitude
of the output; in blue, those instances for which the model
returns values close to zero (assigned to the negative class)
are highlighted. In red are those associated with the positive
class. Examples related to values close to the base value (i.e. the

threshold value) are purple.
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4.2 A Bayesian approach to the drag-based mod-
elling of ICMEs

In this section, we present the results of our analysis, including convergence
diagnostics, the statistical properties of the parameter distributions, and the
model’s forecasting performance. For clarity, the discussion is divided into
two subsections: the ensemble approach and the individual approach.

4.2.1 Ensemble approach

The objective of the ensemble approach is to derive the PDFs of the DBM
parameters γ and w for two specific categories of CME events: those associ-
ated with slow solar wind (slow ensemble) and those with fast solar wind
(fast ensemble). To ensure robust DBM descriptions, we include only CMEs
classified as "Nice fits" by Mugatwala et al. [2024], which are deemed most
suitable for DBM analysis. This selection mitigates the risk of convergence
issues in the algorithm’s posterior PDFs by excluding unsuitable events. The
slow ensemble consists of 87 CMEs, while the fast ensemble includes 15 CMEs.

The MCMC algorithm utilizes the available CME data to solve the DBM
equations, with the prior distributions encoding existing knowledge about the
parameters. We perform the following analysis to assess the convergence and
stability of the resulting posterior PDFs. We generate four subsets for both the
slow and fast ensembles by randomly sampling 80% Each subset is subjected
to four independent MCMC chains, each starting from a different point in the
parameter space, with 10,000 iterations per chain. This number of iterations
strikes a balance between computational efficiency and the acceptance rate
of the resulting parameter distributions. Thus, 10,000 parameter samples are
generated for each subset, resulting in a total of 40,000 samples per subset.

Figure 4.6 illustrates the algorithm’s evolution for the slow ensemble.
Despite the chains starting from different initial conditions, they converge
to the same region of the parameter space within each subset, indicating
consistent sampling of the posterior distribution. Out of the 10,000 samples
generated from each of the four chains, the first 900 samples are discarded
as part of the burn-in phase. To reduce autocorrelation, the chains are
thinned by retaining one sample every 30 iterations based on the estimated
autocorrelation time. As a result, each subset contains 1,256 samples after
burn-in and thinning for both the fast and slow solar wind cases. This
procedure is applied uniformly across all four subsets.

Figure 4.7 presents the histograms of the marginal distributions for γ (left)
and w (right) derived from the four subsets for the fast (top) and slow (bottom)
solar wind cases. Additionally, Figure 4.8 displays the cumulative distribution
functions (CDFs) for the same subsets.

The PSRF , as discussed in Sec. 2.2.5, is used to assess convergence by
measuring the ratio of intra-chain variance to inter-chain variance. A PSRF
value close to one indicates that the chains are effectively sampling the same
region of the parameter space, confirming convergence. The PSRF scores
(reported in Figure 4.7) confirm the convergence of the chains across all cases.
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FIGURE 4.6: MCMC evolution plot illustrating the progression
of the algorithm for the slow ensemble across three stages:
100, 1000, and 10,000 iterations. The four chains’ initial points
(depicted as dots) are drawn from an over-dispersed distribution
relative to the target density. With the progression of iterations,
all chains converge toward the same region of the parameter

space defined by the DBM parameters γ and w.

Additionally, the PDFs of the different subsets exhibit highly similar mean
values. The standard deviation of the average values of the PDFs is close
to zero, as shown in Figure 4.7, indicating that the algorithm remains stable
despite slight variations in the dataset.

These results demonstrate the algorithm’s robustness in terms of both
convergence and stability. We can, therefore, conclude that all the extracted
samples are drawn from the same stationary posterior distribution, which
successfully distinguishes the fast case from the slow case. Figure 4.9 presents
the joint and marginal PDFs of γ and w. In the fast SW case, the posterior
PDF of the solar wind speed (w) exhibits an average value of 600 km/s, while
in the slow case, the average value is 430 km/s. Notably, in the fast SW
case, w values do not drop below 500 km/s, whereas in the slow case, the
highest value remains below 480 km/s. These findings align with the expected
behaviour of CMEs propagating in slow and fast solar wind conditions.

However, the marginal distributions of the drag parameter (γ) reveal
significant differences. The drag parameter, which models the interaction
between the CME and the solar wind, tends to be larger in the fast SW
ensemble compared to the slow SW ensemble, as shown in Figure 4.9 (lower
left). Additionally, a slight correlation between w and γ is observed in the slow
SW case (Figure 4.9, upper right), where an increase in w corresponds to an
increase in γ. The dispersion around the mean values also differs between the
two ensembles. In the slow SW case, the MCMC algorithm produces values
that cluster more tightly around the mean, leading to a smaller standard
deviation. This tighter distribution can be attributed to the larger size of the
slow SW ensemble compared to the fast SW ensemble. A key constraint in the
ensemble approach is that new samples (γ, w) are only accepted if they solve
the DBM equations for all CMEs in the ensemble. This constraint makes the
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FIGURE 4.7: Probability distribution functions for solar wind
speed w and drag parameter γ for fast (top) and slow (bottom)
CME obtained leveraging four different folds of the dataset. The
legend reports the mean value (avg), the standard deviation (std)

and the PSRF score of the folds.
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FIGURE 4.8: Cumulative distribution functions for solar wind
speed w and drag parameter γ for fast (top) and slow (bottom)
CME obtained leveraging four different folds of the dataset. The
legend reports the mean value (avg), the standard deviation (std)

and the PSRF score of the folds.
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slow SW case more conservative, as the accepted samples must account for a
wider range of events compared to the fast SW case.

The resulting PDFs represent the parameter values that best describe
the average behaviour of CMEs in the ensemble. However, these values
may not necessarily represent the optimal pair of parameters (γ, w) for all
individual CMEs in the group. In this framework, the dynamics of each CME
are modelled probabilistically, with the DBM parameters (γ, w) treated as
distributions rather than fixed values. Given the natural variability in solar
wind speed due to the solar cycle, solar rotation, and the different sources of
the wind on the Sun, the PDFs for the DBM parameters are expected to vary
across CMEs. Thus, the ensemble approach focuses on identifying parameter
samples that best fit the average behaviour of CMEs in the DBM framework.
In the following section, we will present the results obtained using these PDFs
to forecast CME transit times.

Validation: transit time forecasting

One of the primary applications of the P-DBM framework is to forecast the
transit time and impact speed of CMEs, along with their associated uncertainty.
This is achieved within a probabilistic framework by leveraging the estimated
PDFs of the DBM parameters (γ, w) to generate an ensemble of predictions for
the transit time. The mean of the predictions serves as the estimated transit
time, while the standard deviation provides the associated uncertainty.

In this study, we evaluate the forecasting capabilities of the PDFs derived
from the P-DBM framework using a cross-validation technique. The dataset
is divided into four training and test folds, with 80% of the events randomly
selected for training and the remaining 20% reserved for testing. The training
folds correspond to the four subsets described in the previous section, and
the PDFs are generated from the training set. The forecasting performance is
then evaluated on the test set.

For the slow case, the four training subsets consist of 68 events, while the
test subsets include 17 events. In the fast case, the training subsets consist of 12
events, and the test subsets contain 3 events. In total, we evaluate 68 slow and
12 fast test events. This cross-validation approach ensures robustness in the
performance evaluation and provides a sufficiently large test sample to assess
P-DBM’s forecasting capabilities. Using the P-DBM framework, we generate
distributions of predicted transit times rather than single-point estimates. The
mean value of this distribution is treated as the estimated transit time (T̂)
for each CME, and we expect the true transit time (T) to fall within the 1σ
confidence interval in approximately 68% of cases.

The forecasting results are summarized in Figure 4.10. The DBM achieves
prediction performance in line with the literature, with MAEs of approxi-
mately 10 hours for the slow case and 7 hours for the fast case and standard
deviations of 3.4 hours and 0.8 hours, respectively (Figure 4.10, left). The
forecast residuals (Figure 4.10, left) show minimal bias in the fast case (-0.9
hours) and a slight underestimation in the slow case (-4.55 hours) in terms
of MAE. However, from a probabilistic perspective, the performance of
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P-DBM is relatively low, as the true transit times fall within the 1σ confidence
intervals in fewer than 68% of cases for both the slow and fast ensembles. We
attribute this inconsistency to the structure of the inference method, which
imposes strict constraints on the DBM parameter values, as discussed in
Section 4.2.1. These constraints result in narrow posterior PDFs and the
acceptance of samples with high-likelihood errors.

In the next section, we will discuss the individual approach to modelling
CME transit times.

4.2.2 Individual approach

The ensemble approach provides PDFs of the DBM parameters for a group
of CMEs. In contrast, the individual approach seeks to further explore the
potential of the MCMC algorithm by generating specific P-DBM descriptions
for each CME event in the dataset. While the overall structure of the algorithm
is similar to that of the ensemble approach, several key distinctions are
introduced.

First, the input data now pertains to individual CMEs, with the aim of
producing output specific to each event. The resulting PDFs describe the
DBM parameters for each CME, without the constraints imposed by fitting
all CMEs in an ensemble. A notable difference is the introduction of the
CME initial velocity (v0) as a free parameter in the MCMC algorithm to
account for the heterogeneous error distribution of v0 in the dataset, which
can otherwise hinder convergence. We fix the heliospheric distance to 1 AU
to keep the degrees of freedom to a limited number. Achieving convergence
in the individual approach is more challenging compared to the ensemble
case, as the dynamics of each CME event may be described by different DBM
parameters. Thus, we adopt weakly informative prior PDFs. For example,
a broad Gaussian distribution is used for the solar wind speed w, with a
mean of 400 km/s and a standard deviation of 200 km/s. The prior for v0 is
centred on the dataset’s values with a standard deviation of 200 km/s, while
a log-normal PDF is chosen for the drag parameter γ. These priors guide the
sampling process toward regions of the parameter space close to the most
likely values.

The convergence study remains unchanged, with four MCMC chains
initialized with different starting values for each CME. The PSRF score is
recorded, and after the burn-in phase, the chains are thinned as before. This
approach allows for the independent investigation of each CME, with PDFs
generated for the DBM parameters of every event. For each CME, we record
statistical indicators such as the mean and standard deviation of the samples,
chain convergence, and the algorithm’s acceptance rate. Since the algorithm
is applied individually, there is no predefined distinction between CMEs
categorized as slow or fast. Instead, we define slow and fast ensemble PDFs
by concatenating the samples of CMEs labelled slow and fast, respectively,
according to Mugatwala et al. [2024]. In essence, the ensemble PDFs are
constructed by aggregating the individual PDFs of the relevant CMEs.
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Figure 4.11 displays the histograms of the marginal PDFs for the DBM
parameters in the slow and fast ensembles obtained using the individual
approach. The distribution of w values for the fast ensemble is noisier
compared to the slow ensemble, likely due to the smaller number and greater
heterogeneity of fast events. Nonetheless, the results are consistent with those
obtained from the ensemble approach, though the marginal distributions
are broader. The mean w values are 415 km/s for the slow case and 514
km/s for the fast case, while the average γ values are 0.82 × 10−7km−1 and
1.04 × 10−7km−1, respectively.

These findings indicate that even in the individual approach, the algorithm
tends to prefer w < 500 km/s for slow CMEs and w > 500 km/s for fast CMEs.
Additionally, γ assumes higher values in the fast case, with a distribution
that exhibits a longer tail. It is important to note that the algorithm does not
achieve convergence for all CME events. Some events exhibit non-robust
convergence, as the PSRF score and acceptance rate data indicates. To focus
on the most robust results, we selected events with a PSRF score of less than
1.05 for all free parameters and an acceptance rate above 5%. Of the 213 CMEs
in the dataset, 117 meet these convergence criteria. Among the 102 events
categorized as "Nice Fits" by Mugatwala et al. [2024], 64 demonstrate good
convergence.

A further noteworthy observation is the inconsistency between the average
values of the PDFs obtained through MCMC and the fast and slow labels
provided by Mugatwala et al. [2024].

Figure 4.12 shows that some events labelled as slow exhibit MCMC PDFs
with mean solar wind speeds exceeding 500 km/s. Additionally, most events
with high solar wind speeds occur during the ascending or descending phases
of the solar cycle. The resulting labelling scheme for CMEs, based on the
average values of the PDFs obtained through MCMC, has been adopted.
Of the 117 well-converged CMEs, 90 have an average solar wind speed of
w < 500 km/s and are labelled as MCMC Slow, while 27 have w > 500
km/s and are labelled as MCMC Fast. Figure 4.13 shows the PDFs of the
new ensembles alongside those from Mugatwala et al. [2024] (in grey). The
PDFs remain similar, spanning approximately the same range of values. The
distribution of w for the new slow ensemble shifts toward lower values,
with an average of 400 km/s. In contrast, the new fast ensemble gathers
higher w samples, with an average of 580 km/s. A shift is also observed
in the distributions of the drag parameter γ. The mean values for both the
MCMC and Mugatwala et al. [2024] ensembles are higher than before, and
the gap between them widens. Notably, the tail of the distribution for the
new fast ensemble is thicker and longer. Despite a larger sample size, the fast
ensemble’s distribution remains somewhat noisy, particularly for w. Finally,
the individual approach PDFs are used to test the forecasting capability of
CME arrival times.



4.3. Coronal jet identification with machine learning 81

Validation: transit time forecasting

In this section, we present the results of CME transit time forecasting using
the individual approach with P-DBM. The individual approach enables us
to generate specific PDFs for each CME event in the dataset, which can
then be aggregated to define PDFs for ensembles of CMEs with common
characteristics.

We define two versions of the PDFs for the slow and fast ensembles. In
the first version, the PDFs are constructed using the labels from Mugatwala
et al. [2024], resulting in 87 slow events and 15 fast events. In the second
version, we expand the dataset to include all CMEs that meet the convergence
criteria, yielding 90 slow events and 27 fast events. To evaluate forecasting
performance, we employ a 4-fold CV, similar to that used in the ensemble
approach. The dataset is divided into four sub-ensembles: three for training
and validation to define the PDFs and one as a test set for evaluation. For
the first version, each training set contains 68 slow events and 12 fast events,
while each test set contains 17 slow events and 3 fast events. In the second
version, the training sets consist of 72 slow events and 22 fast events, and the
test sets contain 18 slow events and 5 fast events.

The forecasting results for both versions are summarized in Figure 4.14.
The graphs in Figure 4.14 display the forecasting results obtained using

the individual approach with P-DBM. The upper graphs correspond to the
ensembles defined by the labelling from Mugatwala et al. [2024], while the
lower graphs represent the ensembles relabeled using the MCMC approach.
Overall, the forecasting performance of the individual approach is consistent
with that of the ensemble approach, with comparable MAE values indicating
similar levels of accuracy. In the first version of the PDFs, the slow ensemble
shows a slightly lower average error, while the fast ensemble has a higher
average error.

Although the model performs well from a probabilistic perspective,
the wide error bars associated with the transit time estimates reflect the
broadness of the PDFs. Similar to the ensemble approach, the model tends to
underestimate transit times. However, the results from the MCMC relabeled
ensemble PDFs are less promising, with higher MAE values indicating larger
errors. The overestimation of fast CMEs is particularly noticeable. This
discrepancy is further reflected in the probabilistic performance, where the
1σ confidence intervals are not consistently met. In contrast, the forecasting
performance for the slow ensemble remains satisfactory, likely due to the
larger size of the test set.

4.3 Coronal jet identification with machine learn-
ing

This section is devoted to the identification of coronal jets using machine
learning techniques. The focus is on the development of a comprehensive
dataset of coronal jets by combining results from multiple identification
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TABLE 4.2: Confusion matrix for the random forest classifier

Actual / Predicted Non-Jet Jet
Non-Jet 835 187

Jet 182 346

methods, such as SAJIA and MM. By employing the random forests algorithm,
the analysis provides a robust framework for expanding the existing dataset
and improving the accuracy of jet identification. These efforts aim to enhance
our understanding of coronal jets and their role in solar and heliospheric
dynamics.

To train and evaluate our random forest classifier, we divided the dataset
into training and test sets with an 80-20 split. This approach ensures that
the model is trained on a substantial portion of the data while preserving a
separate set for unbiased performance evaluation.

Before training the model, we conducted a hyper-parameter tuning process
leveraging a TPE. TPE is a sequential model-based optimization method
[Bergstra et al., 2011] which leverages probability density functions to guide
the search towards more promising regions of the hyperparameter space. This
allows TPE to efficiently explore and exploit the search space, often leading to
faster convergence to optimal solutions.

We employed such a method through the optimization framework Op-
tuna2 [Akiba et al., 2019]. The optimal settings are evaluated by means of
k-fold cross-validation [Kohavi, 1995]. Once the model is optimized and
trained, we evaluate its performance on the test set.

To evaluate classifier performance, we use multiple standard metrics,
additionally we report confusion matrix. The confusion matrix, shown in
Table 4.2, includes TP, TN, FP, and FN, which provide detailed insights into
the model’s predictions. Using multiple evaluation metrics offers a broader
and more comprehensive understanding of the model’s performance. This
multi-metric approach helps identify strengths and weaknesses that a single
metric might overlook. Evaluation scores are stored in table 4.3.

The accuracy score is 0.76, but it measures the ratio of correctly predicted
instances to the total instances, and it can be misleading in unbalanced datasets
where one class significantly outnumbers the other.

The balanced accuracy, with a score of 0.73, addresses this by evaluating
the accuracy of each class individually and then averaging the results.

The model achieved an ROC-AUC score of 0.81. This metric represents
the area under the receiver operating characteristic (ROC-AUC) curve, which
plots the true positive rate (recall) against the false positive rate for various
thresholds. This suggests that the model performs reasonably well across
both classes. The high specificity indicates that the model effectively identifies
negative cases, minimizing false positives. However, the recall and precision
values reveal that there is room for improvement in correctly identifying
positive cases, as it misses some positives and incorrectly labels some
negatives as positives.

2Optuna documentation: https://optuna.readthedocs.io/en/stable/index.html

https://optuna.readthedocs.io/en/stable/index.html
https://optuna.readthedocs.io/en/stable/index.html
https://optuna.readthedocs.io/en/stable/index.html


4.3. Coronal jet identification with machine learning 83

Figure 4.15 displays the distribution of correct and incorrect predictions
across different thresholds. The green bar represents correct predictions (true
positives and true negatives), and the red bar represents incorrect predictions
(false positives and false negatives).

The plot shows that as the threshold increases, the confidence of the model
in correctly predicting jets increases.

In this study, we aim to leverage machine learning to expand our sample
of coronal jets. Hence, once the model is trained and validated, we apply it
to classify the unlabeled data. The MM dataset, consisting of 876644 total
structures, is extensive and diverse compared to the SAJIA dataset. Our
primary goal is to obtain new samples of coronal jets, hence we adjust the
prediction threshold from 0.5 to 0.95 to ensure the model outputs positive
results only for instances with higher confidence. Such an approach led to the
identification of 3452 new jet candidates. To further validate these results, we
performed a manual inspection of each candidate by analyzing SDO/AIA 304
Å images in GIF format, captured near the date of the jet eruptions, to verify
their authenticity.

Figure 4.17 presents an exemplary case where the new jet candidate is
confirmed as a true coronal jet. Now, for the sake of clarity, let us take a closer
look at the new coronal jets identified using the MM approach.

Figure 4.16 shows the distribution of the new detection in terms of intensity,
time, latitude and area.

The density distributions of MM jets, SAJIA jets, and SAJIA Non-jets reveal
several significant patterns. MM jets exhibit the highest densities at lower
intensities and smaller areas, indicating that these jets are predominantly low-
intensity, small-scale structures. Furthermore, MM jets are clustered primarily
during the early stages of solar cycle 24, and are concentrated at high latitudes.

In contrast, while SAJIA jets and SAJIA Non-jets show a more gradual
decline in density with increasing intensity and area, their distributions are
more widespread across latitudes and over the entire time period examined.
Importantly, the most populated areas for SAJIA jets coincide with the regions
where MM jets are clustered, suggesting that MM jets tend to cluster in these
highly populated areas of the training set.

To identify new jets, we utilized a machine-learning model with a decision
threshold set at 0.95. This high threshold compels the model to select MM jets
that are predominantly clustered in the most densely populated regions of the
training set, which consists of SAJIA instances.

However, it is crucial to consider that these distributions may be influenced
by the SDO intensity degradation effect [Ahmadzadeh et al., 2019, Barnes
et al., 2020, Zwaard et al., 2021]. Over time, the degradation in intensity could
impact the detection and classification of coronal jets. This degradation may
lead to an overrepresentation of detections in certain regions and periods,
potentially skewing the observed distributions. Therefore, while the data
suggest notable trends, these biases should be accounted for when interpreting
the results. After conducting the visual inspection of the candidate jets, we
identified 3268 true jets and 184 false positives.
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TABLE 4.3: Evaluation Metrics for random forest Classifier

Metric Score
Accuracy 0.76
Balanced Accuracy 0.73
ROC-AUC 0.81
Precision 0.66
Recall 0.65
F1 Score 0.65
Specificity 0.82

FIGURE 4.9: Posterior PDF obtained from the MCMC approach.
(Upper left) Joint distribution of DBM parameters (γ, w) for the
fast solar wind case. (Upper right) Joint distribution of DBM
parameters (γ, w) for the slow solar wind case. Marginal PDF
of γ (lower right) and w (lower left) for both fast and slow solar
wind cases. The legend displays the average (avg) and standard

deviation (std) values.
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FIGURE 4.10: The transit time forecasting results using P-DBM
with the ensemble approach. (Left) Histogram of the residuals
(T̄ − T), where T̄ is the predicted transit time and T is the
true transit time, providing an overview of the forecast error
distribution. The legend indicates the mean and standard
deviation of the residuals from four test folds. The mean value
represents the average bias of the predictions, while the standard
deviation reflects the variability of the errors. (Right) Scatter
plot of the residuals (T̄ − T) for each test CME, with associated
error bars derived from P-DBM. The vertical axis corresponds
to the CME number in the dataset, with each point representing

an individual CME.

FIGURE 4.11: Histograms of marginal DBM Parameter PDF
for the slow (Blue) and fast ensemble (Orange); obtained via

individual approach.
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FIGURE 4.12: Scatter plot depicting the average solar wind
speed (w) values of the PDFs obtained through the individual
approach. CMEs labelled as slow and fast by Mugatwala et al.
[2024] are shown as blue and orange dots, respectively. The
second x-axis shows the line plot of the annually averaged

Sunspot number (in green).

FIGURE 4.13: Histograms depicting the PDFs of marginal DBM
parameters for the MCMC slow ensemble (MCMC Slow) and the
MCMC fast ensemble (MCMC Fast) obtained via the individual
approach. For comparison, the PDF of the ensembles from
Mugatwala et al. [2024] (M-I Slow and M-I Fast) are also shown.
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FIGURE 4.14: The transit time forecasting results with P-DBM
obtained via individual approach. (right) Scatter-plot of the
residuals (T̄ − T) for all the test CMEs. (left) Histogram of the
residuals (T̄ − T) (T̄ is the predicted transit time and T is the

true transit time).
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FIGURE 4.15: Confidence in correct vs incorrect predictions.
Distribution of correct (green) and incorrect (red) predictions
across different thresholds. The x-axis represents the thresholds
ranging from 0.5 to 1.0, and the y-axis indicates the count of

predictions.

FIGURE 4.16: Figure shows the density distributions of MM
jets, SAJIA jets, and SAJIA non-jets across four different features:
Intensity (A), Time (B), Carrington Latitude (C), and Area (D).
Each subplot shows the comparative density for each class, with
MM jets indicated in green, SAJIA jets in orange, and SAJA non-

jets in blue.
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FIGURE 4.17: Confirmed true jet observed on May 22, 2010. The
jet is visible as a bright, elongated structure extending from the
solar surface into the upper atmosphere. The image is presented
in helioprojective coordinates, with the x-axis representing
helioprojective longitude (Solar-X) and the y-axis representing

helioprojective latitude (Solar-Y), both in arcseconds.
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Chapter 5

Discussion and conclusions

This thesis explored three distinct yet interrelated projects that apply ML,
Bayesian inference, and mathematical morphology to improve understanding
and forecasting of various space-weather phenomena. Although each project
targeted a different aspect of solar and heliospheric physics—from CMEs to
coronal jets—the unifying thread is the application of data-driven methods
to address the limited accuracy, data availability, and complexity of current
space-weather models.

In the following sections, we summarize each project’s key contributions,
discuss their limitations, and propose future research directions. We then syn-
thesize overarching lessons learned and comment on the broader implications
for space-weather forecasting.

Machine Learning for Earth-impacting CME prediction

Machine Learning continues to show strong potential in space weather
research, especially in forecasting when and if CMEs will arrive at Earth.
In our work, we delved deeper into the CAT-PUMA concept, examining how
ML algorithms could leverage CME observations to improve Earth-impact
predictions. Despite promising results in some cases, several challenges
became apparent, underscoring the complexity of the problem and the
limitations of current data.

One of the most pressing hurdles relates to the quantity and quality of the
data used to train ML models. The relatively small number of documented
Earth-Impacting CMEs makes it difficult to characterize the problem space
comprehensively, which in turn limits the model’s ability to generalize.

The relatively low number of well-characterised, Earth-impacting CMEs —
typically only a few hundred — constrains the training of more sophisticated
machine learning models and reduces the statistical reliability of predictive
performance metrics. Ideally, robust model development would benefit
from datasets comprising several thousand CME events with consistent
labels, physical parameter annotations, and reliable arrival-time information.
Whether such dataset sizes can be achieved through current or near-term
missions remains uncertain. Earth-directed CMEs are intrinsically rare,
and while ongoing missions such as Solar Orbiter and Parker Solar Probe
provide valuable new insights, their contribution to significantly enlarging
the pool of Earth-relevant training data may remain limited. In this context,
complementary strategies such as harmonising historical event catalogues
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across missions and exploring physics-informed data augmentation could
offer more immediate and scalable paths toward improving dataset utility
and model robustness.

Our regression analyses illustrated that ML performance can appear
sufficiently high under certain training–test splits; however, cross-validation
often revealed issues with overfitting and high variability in predictive
accuracy. In particular, depending solely on BSV for model selection can
inadvertently lead to cherry-picked data subsets, creating an unrealistic sense
of the model’s reliability.

Classification tasks also suffered from data-related constraints. Although
we observed that some models could identify the dominant (non-Earth-
impact) class with few mistakes, the FAR for Earth-impacting CMEs remained
stubbornly above 70%. This phenomenon aligns with the findings of Fu et al.
[2021] and other authors who reported similarly high false alarm rates, even
when employing sophisticated models. Consistent with Vourlidas et al. [2019],
our investigation indicates that high FAR values are not exclusive to ML-based
approaches but also appear in MHD-driven models; however, the sparse data
for Earth-impacting events exacerbates the problem in ML-focused research.

From a feature-engineering perspective, we focused primarily on CME
speed, mass, and angular width as key descriptors, yet these variables only
scratch the surface of CME interplanetary transport. Although CAT-PUMA
incorporates elements intended to encode the state of the solar wind, our
results—together with SHAP analyses—show that these features were either
too coarse or too approximate to markedly improve the classification. This
limitation is critical because the interplay between CMEs and the ambient
solar wind strongly influences travel times and the likelihood of Earth impact.
For instance, our assumption of a six-hour averaged SW speed at Lagrangian-
1 (L1) may be insufficient to capture the dynamic and spatially evolving
properties of the interplanetary medium.

Looking ahead, enriching the feature space stands out as a promising route
for boosting forecasting skill. One strategy could be to integrate derived
parameters, such as those in CAT-PUMA, with new features automatically
extracted from white-light or EUV images by deep learning frameworks
(Wang et al. [2019]; Fu et al. [2021]). Deep neural networks, in particular, can
reduce the need for hand-crafted inputs by learning from raw images, though
any such approach must carefully balance accuracy with the operational
necessity of timely forecasts. Incorporating advanced geometric or physical
descriptors of CMEs—for example, more precise information about their
direction of propagation or three-dimensional structure—could further refine
model predictions. Naturally, such expansions in input complexity may
increase processing times and demand higher computational resources, an
important practical consideration if we aim for near-real-time forecasting.

In summary, our exploration of ML within the CAT-PUMA framework
reaffirms the strong potential of data-driven approaches in space weather,
while drawing attention to the significant obstacles that must still be addressed.
Data sparsity, imperfect measurements, and limited feature representations
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consistently hinder model performance and forecasting reliability. Neverthe-
less, by deepening our understanding of the interplanetary environment and
leveraging the continuous improvements in ML methodologies, we see room
for substantial advances. In the broader context of this thesis, these findings
resonate with the challenges noted in both the Bayesian and jet-detection
projects, highlighting the indispensable roles of high-quality data, robust
inference techniques, and carefully engineered feature spaces in pushing the
boundaries of space-weather forecasting.

Bayesian approach to CME transit time forecasting

In this segment of the work, we explored how probabilistic methods could im-
prove CME transit-time predictions, focusing on the P-DBM framework. We
evaluated forecasting performance via a cross-validation scheme, where the
P-DBM used the PDF of DBM parameters to generate transit-time predictions.
Two complementary strategies were tested: (i) a group or ensemble approach,
and (ii) an individual, per-event approach.

Using an MCMC algorithm, we derived posterior distributions for the
DBM parameters by collectively fitting multiple CMEs. Only parameter sets
satisfying the DBM equations for all CMEs in the ensemble were retained, effec-
tively capturing their shared behavior under certain heliospheric conditions.
In particular, we investigated how the drag parameter (γ) and solar wind
speed (w) varied between slow and fast solar wind environments. Although
these ensemble-derived PDFs offered decent performance in terms of mean
absolute error (MAE), their probabilistic reliability was weaker, indicating
that applying one-size-fits-all parameter constraints can mask the nuances of
individual events.

By contrast, the individual approach the initial velocity v0 as a free
parameter, using weakly informative priors to maintain flexibility. We
generated a specific PDF for each CME, later aggregating results into slow and
fast solar wind categories. Despite showing MAE values comparable to the
ensemble method, individual predictions carried larger error bars, reflecting
greater uncertainty—but also more accurately capturing the variability among
distinct CMEs.

Overall, we found that CMEs in slow solar wind tended to cluster around
lower w values (roughly w < 500 km/s), while fast-wind events aligned with
w > 500 km/s, consistent with several previous studies [e.g., Napoletano
et al., 2018a, Mugatwala et al., 2024] except for the fast case in Napoletano
et al. [2022], where the PDF of w averages 490 km/s.

However, the parameter γ proved more challenging to interpret, show-
ing potential correlations with w in the ensemble approach that were less
pronounced on an event-by-event basis. We suspect these relationships may
partly stem from mathematical constraints embedded in the ensemble fitting.

Table 5.2 presents the results of CME transit time forecasting from this
study, alongside results from other studies utilizing the DBM framework,
including P-DBM and Drag based Ensemble model (DBEM). We also include
results from machine learning models for broader comparison. Comparing
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TABLE 5.1: The table presents the statistical moments (mean and
standard deviation) of the distributions for the DBM parameters
w and γ obtained in this study, along with a comparative

analysis of similar findings from prior research.

Study CME Ensemble w̄ [km/s] σw [km/s] γ̄ [×10−7km−1] σγ [×10−7km−1]

Napoletano et al. [2018a] Slow 400 66 PDF for all CMEs
Fast 600 76 0.83 1.21

Napoletano et al. [2022] Slow 370 80 PDF for all CMEs
Fast 490 100 0.96 3.62

Mugatwala et al. [2024] Slow 371 89 0.86 0.80
Fast 579 68 1.26 0.80

This work Slow 432 12 0.67 0.12
(ensemble approach) Fast 620 38 1.39 0.45
This work M-I Slow 415 75 0.82 0.61
(individual approach) M-I Fast 574 91 1.04 0.55

MCMC Slow 400 62 1.10 0.75
MCMC Fast 580 83 1.51 1.61

across studies is challenging due to the use of different datasets, criteria for
model evaluation, and sample sizes. To provide context, we include additional
information on the models, validation techniques, and test set sizes. Notably,
the results for both the ensemble and individual approaches (M-I slow and
fast) are based on the same training and test sets and evaluation methods,
making them directly comparable.

TABLE 5.2: The table summarizes the mean MAE results
achieved in this study for CME transit time forecasting and

compares them with results from previous studies.

Study Model Validation method Test size MAE [h]
Napoletano et al. [2018a] P-DBM Hold-out 14 9.1

Hold-out 100 16.8
Dumbović et al. [2018] DBEM Hold-out 25 14.3
Paouris et al. [2021] DBEM Hold-out 16 14.31 ± 2.18
Napoletano et al. [2022] P-DBM Hold-out 100 16.3
This work P-DBM 4-fold CV Slow - 17 [×4] 10.3 ± 3.4
(ensemble approach) Fast - 3 [×4] 6.6 ± 0.7
This work P-DBM 4-fold CV M-I Slow - 17 [×4] 9.8 ± 4.1
(individual approach) M-I Fast - 3 [×4] 7.9 ± 3.2

MCMC Slow - 18 [×4] 11.1 ± 3.1
MCMC Fast - 5 [×4] 10.7 ± 7.7

This work CAT-PUMA Framework 5-fold CV 42 [×5] >10
Best hold-out (BSV) 42 7.6

Liu et al. [2018] Support Vector Best hold-out (BSV) 37 5.9
Machines

Wang et al. [2019] Convolutional 10-fold CV 22 [×10] 12.4
Neural Network

Alobaid et al. [2022] CMETNet 9-fold CV (adapted) ∼20 9.75
Guastavino et al. [2023] Physics-driven NN 100 randomized splits ∼20 9.64

As with any data-driven technique, the quality and scope of the underlying
datasets are critical. Recurring uncertainties in CME/ICME identification
and measurement approximations can significantly affect posterior estimates,
particularly for the sparser fast-wind events. Additionally, our binary
classification of CMEs into only slow or fast may oversimplify the range
of heliospheric states. This limitation was especially noticeable when the
ensemble method struggled to capture the smaller sample of fast-wind CMEs,
suggesting the need for more granular approaches or larger datasets.
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Another key consideration is how strictly the ensemble approach forces
parameter sets to satisfy the DBM equations for every CME in the group.
While this produces a cohesive collective PDF, certain events that do not fit the
model’s assumptions can skew the results. On the other hand, the individual
approach sacrifices some overall coherence to capture event-specific details,
resulting in broader (though arguably more honest) PDFs.

Our findings point to several avenues for further research. Testing the
algorithm on CMEs observed during different phases of the solar cycle
could illuminate how γ and w shift over time and in varied heliospheric
conditions. We also noted that the algorithm occasionally associates higher w
with ascending or descending solar cycle periods, hinting at a link between
solar-wind speed and cyclic changes in solar activity.

In addition, adapting more advanced MCMC strategies - for instance, the
ensemble samplers proposed by Goodman and Weare [2010] - could improve
the efficiency and accuracy of parameter estimation, yielding more robust PDF
estimates. These techniques might offer a better balance between capturing
inter-event variability and providing reliable ensemble constraints.

Despite its limitations, the DBM remains a widely used and computation-
ally efficient tool for CME forecasting. By layering Bayesian methodologies
on top of the basic drag-based framework, we gain both a clearer view of the
uncertainties and a path toward refining transit-time predictions. Ongoing
work to expand and improve the DBM characterization, coupled with smarter
Bayesian sampling techniques, has the potential to strengthen our probabilistic
forecasts of CME behavior and arrival times. In the broader context of this
thesis, these insights align with the overarching theme of leveraging rigorous,
data-driven approaches to tackle fundamental questions of space-weather
forecasting and operational reliability.

Coronal jet detection through Machine learning and mathemat-
ical morphology

In this work, we focused on augmenting our coronal jet dataset by applying
a random forest model and incorporating outputs from both the SAJIA
algorithm and a MM approach. Our primary objective was to enrich the
existing catalog of coronal jets and thereby deepen our understanding of these
features. By fusing SAJIA detections with MM-based geometric information,
we constructed a more comprehensive dataset that captures key structural
aspects of jet phenomena.

It is worth noting that the implementation of the MM algorithm in this
study was specifically optimised for the detection of off-limb coronal jets,
which are more easily distinguishable due to enhanced contrast and reduced
background interference. However, the method is not inherently limited
to off-limb events. With suitable adaptations—such as tailored background
subtraction, contrast enhancement, and refined structuring elements—the
MM framework could, in principle, be extended to detect on-disk jets as well.
Such an extension would be particularly valuable for constructing a more
complete inventory of jet activity across the solar surface. Future work may
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explore this direction, enabling more comprehensive statistical studies and
broader applicability of the jet detection pipeline.

The inclusion of MM features added vital shape and size descriptors,
ultimately boosting the classification model’s ability to differentiate genuine
jets from other solar phenomena. After training and validating the random
forest on a suitably large sample, we used the classifier to label previously
unclassified data with a carefully chosen threshold aimed at minimizing
false positives. This process yielded a total of 3452 new jet candidates,
which we then verified through a manual inspection of corresponding
Graphics Interchange Formats (GIFs) thereby confirming 3268 true jets and
identifying 184 false alarms. These results highlight not only the effectiveness
of integrating ML methods with analytical techniques but also the power of
combining automated detection with visual validation.

Beyond expanding the coronal jet dataset, our analysis suggests that har-
nessing machine learning in tandem with classic image-processing strategies
can significantly amplify the rate at which new solar features are discovered
and cataloged. This enlargement of jet statistics is particularly relevant
when investigating broader solar phenomena, such as active longitudes
[Chidambara Aiyar, 1932, Plyusnina, 2010, Zhang et al., 2008, Gyenge et al.,
2017], which remain a topic of ongoing debate. More extensive jet observations
may also play an important role in understanding the solar dynamo and, by
extension, improving space-weather forecasting models.

Despite these successes, we emphasize again the critical role of data
quality in sustaining reliable ML performance. As demonstrated in the
other projects (e.g., CAT-PUMA and P-DBM-based approaches), inaccurate or
incomplete data can yield misleading results, particularly in tasks requiring
high-confidence classifications. Ensuring sufficiently broad, well-labeled, and
representative datasets stands as a key priority for future progress in coronal
jet detection. Looking ahead, our pipeline could benefit further from deep
learning architectures that reduce dependence on manual feature engineering
and speed up the identification of newly emerging jets.

Taken together with the outcomes of the previous projects, these findings
show that advanced data-driven methods can be successfully adapted to a
range of solar-physics challenges, from forecasting CMEs to systematically
cataloging eruptive jets. By continuously refining both the data and the
algorithms, we can enhance our capability to monitor and interpret solar
phenomena, thereby contributing to more robust, data-rich space-weather
prediction frameworks.

Synopsis of key contributions and outlook

This thesis investigates how ML and Bayesian inference can improve our
ability to model the arrival times and effects of CMEs, which are central
drivers of space-weather phenomena. By combining supervised learning
techniques (such as SVMs, decision trees, and ensemble methods) with
probabilistic drag-based models enriched by MCMC, the research aims to
enhance our predictive understanding of CME propagation and mitigate the
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risk these events pose to Earth’s technological infrastructure. An additional
focus on coronal jets broadens the scope of solar phenomena under study,
illustrating how data-driven approaches can inform various eruptive events
on the Sun.

Several noteworthy findings emerge from this effort. First, by training
ML algorithms on CME observations, the work demonstrates a more robust
approach for predicting CME arrival times. Techniques such as SHAP
values offer detailed insights into which features (for example, CME speed,
angular width, or solar wind indicators) most strongly influence the model’s
predictions, thereby increasing both interpretability and user confidence.
Second, Bayesian inference, implemented through a revised Metropolis-
Hastings algorithm, refines our understanding of CME behavior by explicitly
quantifying uncertainties and providing more reliable estimates of transit
times. Finally, the thesis applies a random forest classifier, combined with
mathematical morphology, to augment coronal jet catalogs, illuminating
how ML can systematically identify rare or subtle phenomena in solar
datasets. Together, these advances address both data scarcity and uncertainty
management, thereby promoting more transparent and reliable space-weather
forecasting models.

Solar activity, and CMEs in particular, can severely disrupt satellite
communication, power grids, and other vital technologies. The methods
developed here provide new tools to tackle such challenges. By creating
more accurate and interpretable CME predictions, risk mitigation strategies
can be employed more efficiently, reducing the potential for system failures
or service interruptions. While traditional physics-based methods, such
as MHD simulations, remain valuable, the ML and Bayesian frameworks
introduced in this thesis afford greater flexibility and can integrate diverse
data sources, from coronagraph imagery to in-situ solar wind measurements
at L1. Moreover, augmenting jet datasets through ML contributes to a broader
understanding of solar eruptive phenomena and complements ongoing
research into topics like solar dynamo processes and active longitudes. Taken
together, these contributions form a more holistic, data-driven view of space-
weather forecasting than typically available in the literature.

Despite the promise of ML and deep learning methods, several factors
decisively influence their effectiveness in space-weather research. Data quality
and diversity remain essential, given that sparse or noisy measurements can
lead to biased or unstable predictions. This reinforces the importance of
comprehensive, well-labeled, and balanced datasets, which can also benefit
from synthetic data generation if managed with attention to physical realism.
Equally critical are the evaluation methodologies employed: metrics like
precision, recall, F1-score, AUC, and MAE should align with the specific
modeling goals, whether classification, regression, or probabilistic inference.
Furthermore, model interpretability is crucial for scientific scrutiny; if decision-
making processes are opaque, results may be met with skepticism, particularly
in operational environments. Architectural and algorithmic considerations
also matter. Deep learning architectures and transfer-learning strategies
can extract hierarchical features from complex solar data, but they must be
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carefully tailored to the available observations and computational resources,
especially when near-real-time forecasts are needed. Bayesian methods,
similarly, benefit from more specialized MCMC variants, such as ensemble
samplers, that can handle high-dimensional solar data without sacrificing too
much computational efficiency.

Building on the foundational work presented in this thesis, several
promising pathways for future research in space weather forecasting emerge.
A key opportunity lies in expanding the use of multi-wavelength observations,
including X-ray, EUV, and white-light coronagraph data, to better capture
the intricate details of CME formation and propagation. These rich datasets,
coupled with advanced ML paradigms—particularly deep learning models
designed for spatiotemporal data—offer significant potential for enhancing
predictive accuracy.

In particular, specific features extracted from EUV and white-light ob-
servations—such as coronal dimmings, EUV wave fronts, and pre-eruptive
structures like cavities and sigmoidal loops—have been shown to correlate
with key CME parameters and may serve as valuable inputs for predictive
models [Aschwanden, 2010, Dissauer et al., 2019, Harrison et al., 2003, Zhang
et al., 2007]. Coronal dimmings, for instance, are strongly associated with
CME mass and speed, while EUV waves often indicate the onset and lateral
extent of eruptions [Thompson et al., 1998, Muhr et al., 2011]. Sigmoidal loop
morphologies and coronal cavities are also linked with eruptive potential,
as they typically reflect highly sheared or flux-rope-dominated magnetic
topologies [Sarkar et al., 2019, Savcheva et al., 2015]. The emergence of
missions like Parker Solar Probe and Solar Orbiter further expands the horizon
of feature accessibility. By providing multi-perspective, high-resolution
observations of the low corona and inner heliosphere, instruments such
as SoloHI, Metis, and EUI can help overcome projection effects, capture
early eruption signatures, and refine estimates of CME dynamics [Rouillard
et al., 2016, Andretta et al., 2021, Howard et al., 2020]. Incorporating such
physically grounded features into data-driven pipelines may support more
robust, generalisable, and operationally relevant forecasting frameworks.

Techniques such as transfer learning and domain adaptation can address
the challenge of data scarcity by leveraging knowledge from related tasks or
larger, more accessible datasets.

Transfer learning, for example, allows models pre-trained on large-scale
datasets, such as ImageNet [Deng et al., 2009], to be fine-tuned for specific
space weather tasks. By adapting generalised feature extraction capabilities,
this approach reduces the need for extensive task-specific data and compu-
tational resources [Pan and Yang, 2010, Tan et al., 2018, Zhuang et al., 2019].
Recent studies, such as Upendran et al. [2020], demonstrate the effectiveness
of transfer learning in predicting solar wind speeds at L1. Their model utilises
EUV images from NASA’s SDO, specifically leveraging the 193 Å wavelength
for its sensitivity to coronal holes and the 211 Å wavelength for its focus on
active regions. Such applications underscore the potential of transfer learning
to enable accurate predictions in data-constrained environments.

Another promising direction involves leveraging deep learning to integrate
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diverse data sources and capture the complex, multi-scale dynamics of space
weather. For example, deep neural networks have shown great potential in
predicting solar wind speed at Earth. Models that process SDO/EUV image
sequences use CNNs for spatial feature extraction, combined with attention-
based modules to capture critical temporal and spatial patterns. These models
predict key solar wind properties such as speed, density, and, potentially,
magnetic field components, contributing to a deeper understanding of solar
wind dynamics.

Recent advancements, such as those presented by Brown et al. [2022], high-
light the effectiveness of attention-based architectures like Vision Transformer
(ViT) for solar wind speed forecasting. By processing sequences of image
patches, these models dynamically assess spatial relationships and temporal
evolution, identifying patterns such as the development and movement of
coronal holes. Advanced architectures like Transformer in Transformer (TNT)
and Swin Transformer [Han et al., 2021, Liu et al., 2021] further enhance the
capacity to handle time-dependent data by building hierarchical feature maps
and processing patches within patches. These methods excel at capturing solar
activity’s complex temporal evolution, particularly during the declining solar
cycle phase when coronal holes dominate. Studies have consistently shown
that attention-based models outperform traditional convolutional approaches
in these scenarios, reinforcing their value for future applications.

Moreover, generative AI represents a promising frontier in space weather
research, offering innovative solutions to longstanding challenges such as
data scarcity and class imbalance in solar flare forecasting. The work of
Ramunno et al. [2024] exemplifies this potential by introducing Denoising
Diffusion Probabilistic Models (DDPMs) to generate synthetic solar images
with controlled solar flare intensities. By addressing the rarity of high-energy
events like M- and X-class flares, this approach not only balances datasets
but also enhances the training and performance of machine learning models
for solar activity classification and prediction. Their findings demonstrate
that generative AI can outperform traditional data augmentation techniques,
ensuring more accurate and diverse datasets while maintaining physical
relevance. This highlights how generative models can advance both predictive
capabilities and fundamental understanding of solar phenomena, paving the
way for future research applications in heliophysics and beyond.

Another area ripe for exploration is uncertainty quantification. Bayesian
inference and sampling strategies can enhance the interpretability and reliabil-
ity of predictions, providing probabilistic outputs that are more actionable for
real-world applications. Incorporating these approaches into deep learning
models could help bridge the gap between scientific advancements and
operational forecasting.

While the machine learning models developed in this thesis — including
the CAT-PUMA-inspired regressors — offer speed and adaptability, they do
not currently account for the observational uncertainties associated with
input CME parameters, such as speed, angular width, or mass, which
are often subject to measurement error and inter-catalogue variability. In
contrast, the probabilistic framework implemented via MCMC sampling in
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the P-DBM model was specifically designed to propagate uncertainty in the
forecast outputs, such as time of arrival and arrival speed, by sampling from
empirically derived input distributions. This approach enables the generation
of both point estimates and credible intervals, thereby enhancing forecast
reliability and transparency. Looking ahead, the development of machine
learning models that are intrinsically uncertainty-aware represents a promis-
ing research direction. Probabilistic deep learning methods — including
Bayesian neural networks, Monte Carlo dropout [Gal and Ghahramani, 2016],
and ensemble-based approaches [Lakshminarayanan et al., 2017] — provide
mechanisms to model both epistemic uncertainty (due to limited training data)
and aleatoric uncertainty (due to noise in observations). These techniques are
gaining traction in scientific domains where understanding model confidence
is critical [Abdar et al., 2021]. Additionally, hybrid frameworks that integrate
physical constraints — such as drag-based propagation models — with deep
neural networks are emerging as powerful tools for improving data efficiency
while maintaining physical plausibility [Reichstein et al., 2024, Karniadakis
et al., 2021]. As space weather datasets continue to grow in volume and
richness, embedding uncertainty quantification into forecasting frameworks
will be vital for improving predictive skill and supporting the transition to
reliable, operational deployment.

Operational integration will require efficient and maintainable pipelines
for data ingestion, model training, and prediction delivery. Technologies such
as cloud computing and containerization can streamline these processes,
ensuring that deep learning models are scalable and ready for real-time
applications. For instance, embedding these techniques into operational
forecasting systems could revolutionise our ability to provide timely and
accurate predictions, mitigating the disruptive impacts of space weather on
critical infrastructure.

In this context, it is worth noting that the machine learning models
explored in this thesis—such as random forests and CAT-PUMA-style re-
gressors—exhibit low computational demands: training typically completes
within minutes, and inference times are well below one second per event on a
standard desktop machine. This computational efficiency makes them well
suited for real-time deployment scenarios.

This thesis underscores the transformative potential of blending ML,
Bayesian inference, and domain expertise in space-weather forecasting. By
emphasizing model interpretability, robust validation, and thoughtful data
handling, it provides a methodological blueprint for grappling with the
complexities of CMEs and related solar eruptions. The findings set the
stage for more accurate, trustworthy, and ultimately actionable predictions,
strengthening our collective capability to anticipate and mitigate the risks
of an active Sun. Future endeavors that embrace deeper neural networks,
generative data augmentation, and real-time operational pipelines hold the
promise of further refining both predictive power and scientific rigor, ensuring
that society’s critical infrastructure remains resilient against disruptive solar
events.
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Appendix A

Bayesian Method

A.1 Fundamental Concepts of Bayesian Theory

In this section, we will highlight some fundamental concepts of Bayesian
theory [Regis, 2015, Ivezić et al., 2019]. Probability is commonly defined as
the quantification of the degree of randomness or uncertainty associated with
an event. In general, probability is a measure of the likelihood or chance of
various events occurring, which is evident from our everyday usage of the
term "probability". The concept of probability is intrinsically linked to the
notion of uncertainty. Probability can be viewed as a function of an event that
produces a numerical value representing the likelihood or chance of that event
happening. There are multiple ways to define and calculate such a probability
function [Kolmogorov and Bharucha-Reid, 2018].

Historically, the differing interpretations of the concept of probability
stem from its dual significance — epistemic and empirical. The epistemic
conception of probability considers the uncertainty linked to the concept of
probability, which arises from the limited and imperfect nature of human
knowledge and understanding. This conception acknowledges that our
ability to predict and model probabilistic events is constrained by gaps
and biases in our knowledge, as well as the inherent complexities and
unpredictabilities of the phenomena we study. In contrast, the empirical
conception views uncertainty as an intrinsic and irreducible characteristic of
phenomena themselves, existing independently of human knowledge. This
perspective holds that even with complete information, certain events and
processes possess inherent randomness that cannot be fully eliminated or
predicted [Jaynes, 2003].

Bayesian statistics originates from an epistemic perspective, where uncer-
tainty stems from incomplete knowledge of a fundamentally deterministic
system. This perspective acknowledges underlying causal mechanisms but
recognizes our ability to model them is limited by the information available.
The Bayesian approach provides a formal framework for updating beliefs
about the system as new information becomes available, allowing for iterative
refinement of knowledge and reduced uncertainty over time [Eddy, 2004].

Probability can, in fact, be defined in three different ways. The classical
definition states that the probability of an event is the ratio between the number
of favorable cases and the number of possible cases, assuming all events
are equally probable [Marquis de Laplace, 1902]. The frequentist definition
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describes probability as the limit of the frequency of an event when the
number of observations, N, tends to infinity [Mises, 2013]. Lastly, the Bayesian
definition interprets probability as a measure of the degree of credibility of a
proposition [Jaynes, 2003]. Each approach has inherent limitations due to the
assumptions they rest upon.

The classical conception of probability, which assumes discrete and finite
events, faces challenges when applied to continuous variables. A key
limitation is the presumption of perfect uniformity, wherein all possible
outcomes are known a priori and equally likely, introducing circularity in
the definition [Haack and Duica, 1993]. This assumption renders the classical
framework ill-suited for more complex systems where equal likelihood cannot
be consistently presumed.

Conversely, the frequentist interpretation defines probability in terms
of the relative frequency of an event’s occurrence in repeated trials. This
definition is linked to the law of large numbers, which asserts that the
experimental frequency will approach the true probability as the number
of trials, N, tends to infinity [Kolmogorov and Bharucha-Reid, 2018]:

lim
N→+∞

P
[(

NE

N
−P(E)

)
< ϵ

]
= 1, (A.1)

where ϵ is an arbitrarily small positive number. This formulation implies that
the probability of the frequency of the event deviating from its true value by
more than ϵ becomes increasingly small as N grows. However, the frequentist
approach assumes the experiment is repeatable under identical conditions,
which may not always be feasible [Feller, 1991].

The Bayesian approach differs from classical and frequentist methods by
incorporating subjective beliefs about the likelihood of an event occurring.
This is achieved by assuming an a priori distribution that represents the degree
of credibility assigned to a hypothesis before any data is observed [Bernardo
and Smith, 2009]. Bayesian inference updates this prior distribution using
observed data to compute a posterior distribution, quantifying the updated
belief about the hypothesis in light of evidence.

A central tenet of Bayesian theory is Bayes’ theorem, which provides a
systematic way to update a-priori probabilities with new empirical evidence.
By adjusting initial beliefs based on observed frequencies, Bayes’ theorem
enables calculation of an a-posteriori probability, a revised assessment of the
hypothesis’s credibility after accounting for data. This interplay between
subjective beliefs and objective observations is a hallmark of the Bayesian
approach, enabling probability assessments even in scenarios lacking directly
relevant frequency data. Bayesian probability theory is grounded in axiomatic
principles governing coherent assignment and manipulation of probabilities
[Bayes and Price, 1763, Hanke et al., 2014].

Referring to S as the space of events (i.e. the set of all the possible results
of an experiment) and considering an event A (i.e. a subset of S , A ⊂ S), the
probability P associated to A is a real number such that:

Axiom 1. For any event A, P(A) ≥ 0 (a negative probability has no meaning).
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Axiom 2. If S is the sample space for a given experiment, P(S) = 1 (probabilities
are normalized so that the maximum value is unity).

Axiom 3. If A ∩ B = ⊘, then P(A ∪ B) = P(A) + P(B). More generally, For
an infinite number of mutually exclusive sets Ai, i = 1, 2, 3... (Ai ∩ Aj = ⊘ for all
i ̸= j),

P
( ∞⋃

i=1

Ai
)
=

∞

∑
i=1

P(Ai).

In particular, the second part of Axiom 3 is to be taken from the following
corollary

Corollary A.1.0.1. Consider M sets A1, A2, ..., AM which are mutually
exclusive, Ai ∩ Aj = ⊘ for all i ̸= j,

P
( M⋃

i=1

Ai
)
=

M

∑
i=1

P(Ai)

Proof. The proof is given using mathematical induction. it is noted that by
Axiom 3, the statement applies for M = 2, and hence it must be true for M = 3.
Since it is true for M = 3, it must also be true for M = 4, and so on. In this way,
we can prove that Corollary A.1.0.1 is true for any finite M.

From these axioms, the entire theory of probability can be developed.

A.1.1 Bayes’ Theorem

This subsection is devoted to the introduction of one of the fundamental
results of Bayesian theory, namely Bayes’ theorem. The main properties of
probability theory that characterise the Bayesian approach are the concepts of
joint probability and conditional probability.

Definition A.1.1 (Joint Probability). Given two events, A and B, the joint
probability of events A and B (typically denoted by P(A, B) ≡ P(A ∩ B)) is
defined as the probability that the events occur simultaneously.

Definition A.1.2 (Conditional Probability). For two events A and B , the
probability of A conditioned on knowing that B has occurred is

P(A|B) = P(A, B)
P(B)

The notion of event A given event B does not mean that event B has occurred
(e.g. is certain); instead, it is the probability of event A occurring after or in
the presence of event B for a given trial.

We now show some results with the aim of arriving at the formulation of
Bayes’ theorem.
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Theorem A.1.1. For any events A and B such that P(B) ̸= 0,

P(A, B) =
P(B|A)P(A)

P(B)

Proof. From Def. A.1.2:

P(A, B) = P(A|B)P(B) = P(B|A)P(A).

Theorem A.1.1 follows directly by dividing the preceding equations by P(B).

Theorem A.1.2 (Theorem of Total Probability). Let B1, B2, ..., Bn be a set of
mutually exclusive and exhaustive events. That is, Bi ∪ Bj = ⊘ for all i ̸= j
and

n⋃
i=1

Bi = S ⇒
n

∑
i=1

P(Bi) = 1

Then

P(A) =
n

∑
i=1

P(A|Bi)P(Bi)

Proof. the event A can be written as

A = {A ∪ B1} ∩ {A ∪ B2} ∪ ... ∪ {A ∩ Bn}

Also, since the Bi are all mutually exclusive, then the {A ∪ Bi} are also
mutually exclusive so that

P(A) =
n

∑
i=1

P(A, Bi) (by Corollary A.1.0.1),

=
n

∑
i=1

P(A|Bi)P(Bi) (by Theorem A.1.1).

Bayes’ theorem will be introduced below, this theorem basically gives a
relation between conditional probabilities. The validity of this theorem derives
essentially from the definition of conditional probability and the combination
the results of Theorems A.1.1 and A.1.2 represents the foundation of the
Bayesian method [Bayes, 1958, Gelman et al., 1995, Bishop and Nasrabadi,
2006, Bernardo and Smith, 2009].

Theorem A.1.3 (Bayes’s Theorem ). Let B1, B2, ..., Bn be a set of mutually
exclusive and exhaustive events. Then,

P(Bi|A) =
P(A|Bi)P(Bi)

∑n
i=1 P(A|Bi)P(Bi)

.
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P(Bi) is often referred to as the a-priori probability of event Bi, while P(Bi|A)
is known as the a-posteriori probability of event Bi given A [Bayes, 1958,
Gelman et al., 1995].

The reason why this theorem is considered so fundamental to the construc-
tion of Bayesian theory is that it allows the use of the machinery of probability
theory to describe the uncertainty in model parameters, often denoted by the
symbol θ (or w), or indeed in the choice of the model itself [Bernardo and
Smith, 2009]. In more detail, it allows capturing the assumptions about θ,
before observing the data, in the form of a prior probability distribution P(θ),
then the effect of the observed data D = {dt1 , ..., dtN} is expressed through the
conditional probability P(D|θ).

Bayes’ theorem, which takes the form:

P(θ|D) =
P(D|θ)P(θ)

P(D)
, (A.2)

then allows us to evaluate the uncertainty in θ after D has been observed in
the form of the posterior probability P(θ|D). The quantity P(D|θ) on the
right-hand side of Bayes’ theorem is evaluated for the observed dataset D
and can be viewed as a function of the parameter vector θ, in which case it is
called the Likelihood function [Berger, 1985, Bishop and Nasrabadi, 2006].

Bayesian priors

P(θ) is called the prior distribution because it does not take into account any
information regarding experimental data (D). It therefore represents a sort
of bias placed before measurements are even made [Bayes, 1958, Bernardo
and Smith, 2009]. The prior incorporates all other knowledge that might exist,
but is not used when computing the likelihood and therefore can include the
knowledge extracted from prior measurements of the same type as the data at
hand.

For example, we may know from older work that the value mA of the mass
of an elementary particle, with a Gaussian uncertainty parametrized by σA,
but we wish to utilize a new measuring apparatus or method. Hence, mA and
σA may represent a convenient summary of the posterior PDF from older work
that is now used as a prior for the new measurements [Gelman et al., 1995].
Therefore, the terms prior and posterior do not have an absolute meaning.
Such priors that incorporate information based on other measurements (or
other sources of meaningful information) are called informative priors [Bolstad
and Curran, 2016]. When no other information, except for the data we
are analyzing, is available, one possibility is to assign priors by formal
rules. Sometimes these priors are called uninformative priors but, despite the
misleading name, these priors can incorporate weak but objective information
such as “the model parameter describing variance cannot be negative” [Jaynes,
2003]. Note that even the most uninformative priors still affect the estimates,
and the results are not generally equivalent to other inference approaches.

Although uninformative priors do not contain specific information, they
can be assigned according to several general principles. These principles are



106 Appendix A. Bayesian Method

formulated under the belief that the same prior information should result in
the assignment of the same priors. A few examples are given below:

• Principle of indifference: A set of basic, mutually exclusive possibilities
needs to be assigned equal probabilities [Keynes, 2013]. An example
could be the case of a fair six-sided die, where each of the outcomes has
a prior probability of 1/6.

• Principle of consistency: The prior for a location parameter should not
change with translations of the coordinate system and yields a flat prior.
Similarly, the prior for a scale parameter should not depend on the
choice of units [Bernardo, 1979].

In addition, when we have additional weak prior information about some
parameter, such as a low-order statistic, we can use the principle of maximum
entropy to construct priors consistent with that information [Jaynes, 1957].

A.1.2 Likelihood Function

Given an independent and identically distributed (iid) sample Dn =
(d1, ..., dn) from a density f θ, with an unknown set of parameters θ =
θ1, θ2, ..., θp, where θi ∈ Θ (an example could be the mean µ and variance
σ of a Gaussian distribution), the associated likelihood function is

L(θ|D) =
n

∏
i=1

lθ(xi). (A.3)

This quantity is a fundamental entity for the analysis of the information
provided about the parameter θ by the sample Dn, and Bayesian analysis
relies on this function to draw inference on θ [Berger, 1985, Gelman et al.,
1995].

This quantity can be viewed as a function of the parameter vector θ and
it expresses how probable the observed data set is for different settings of
the parameter vector θ [Robert et al., 2007]. Note that the likelihood is not
a probability distribution over θ, and its integral with respect to θ does not
(necessarily) equal one.

The major input of the Bayesian perspective is that it modifies the
likelihood, which is a simple function of θ, into a posterior distribution on the
parameter θ. In this sense, the likelihood is transformed into an a-posteriori
distribution, dependent on the parameter θ defined by

P(θ|Dn) =
L(θ|Dn)P(θ)∫
L(θ|Dn)P(θ)dθ

. (A.4)

The above likelihood offers the dual interpretation of the probability
density of Dn conditional on the parameter θ, with the additional indication
that the observations in Dn are independent given θ [Gelman et al., 1995].
The numerator in (A.4) is therefore the joint density on the pair (Dn, θ), and
the Bayes theorem provides the conditional (or posterior) distribution of the
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parameter θ given the sample Dn. The denominator is called the marginal
(likelihood) M(Dn) [Berger, 1985].

Bayesian Inference

This subsection provides a concise overview of the key conceptual steps in
the Bayesian inference process. Statistical inference refers to the procedure of
drawing conclusions from model estimations. The Bayesian approach extends
traditional statistical inference by allowing probability statements not only
about data but also about model parameters and the models themselves
[Berger, 1985, Jaynes, 2003]. In this framework, inferences are made by
producing PDFs, treating model parameters as random variables rather than
fixed quantities [Gelman et al., 1995].

At the core of Bayesian inference is Bayes’ theorem, which formalizes
the process of continually updating knowledge about a phenomenon [Bayes,
1958]. Initially, prior information is encoded in the prior distribution, which
represents beliefs about the parameters before observing any data. Once
the data D is observed, the likelihood function is multiplied by the prior
to produce the posterior distribution, representing the updated knowledge
about the parameters after considering the data [Bishop and Nasrabadi, 2006].
Importantly, when new data are collected, the posterior from the previous
analysis can serve as the prior for the subsequent analysis, facilitating an
iterative refinement of knowledge.

The Bayesian inference process involves the formulation of the likelihood
function, L(θ|D), which represents the probability of the observed data given
the model parameters. The next step is the selection of the prior, P(θ), which
incorporates any relevant prior knowledge or beliefs about the parameters
that are not directly related to the data. Finally, the posterior distribution,
P(θ|D), is calculated using Bayes’ theorem by combining the likelihood and
the prior [Bayes, 1958, Bayes and Price, 1763, Gelman et al., 1995].

Once the posterior distribution is computed, the next task is to estimate the
model parameters θ that maximize the posterior probability. This is commonly
achieved using the Maximum a Posteriori (MAP) estimate, given by:

θMAP = arg max θP(D|θ)P(θ), (A.5)

which yields the parameter values that are most likely given the observed
data and prior information [Bishop and Nasrabadi, 2006].

Beyond obtaining a point estimate, Bayesian inference also focuses on
quantifying the uncertainty of these estimates. This is done by constructing
credible intervals, which provide a range of values within which the true
parameter value is likely to lie. In the one-dimensional case, the (1 − α)-level
credible region is determined by finding values a and b such that:∫ a

−∞
P(θ|D)dθ =

∫ ∞

b
P(θ|D)dθ =

α

2
. (A.6)
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Thus, the probability that the true value of θ lies within the interval (a, b) is
1 − α, and this interval is referred to as the (1 − α) posterior interval [Gelman
et al., 1995]. The process of integrating over the probability distribution to
focus on specific parameters is known as marginalization, and the resulting
distribution is called the marginal posterior PDF.

In cases where the model involves multiple parameters, the joint posterior
distribution provides the a posteriori probability for all parameters θ. To
analyze individual parameters, marginalization is used to reduce the joint
posterior to a distribution for a specific parameter θi:

P(θi|D) =
∫

P(θ|D)dθ1dθ2 . . . dθm, (A.7)

where the integration is performed over all other parameters except θi [Robert
et al., 2007]. Marginalization is also valuable for understanding covariances
between parameters, as it allows for integration over so-called nuisance
parameters, which are not of primary interest. This process facilitates the focus
on parameters of scientific importance while accounting for the uncertainty in
the remaining parameters.

In summary, Bayesian inference provides a powerful framework for
parameter estimation and uncertainty quantification, where both the data and
prior information are incorporated in a cohesive probabilistic manner, and
conclusions are continually updated as new information becomes available
[Bayes, 1958, Gelman et al., 1995].
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