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Abstract

Cardiovascular diseases (CVDs) remain a major global health concern. Early identification of individ-

uals at risk of CVDs is essential for effective preventive care, reducing healthcare costs, and improving

patient outcomes. Retinal imaging has recently emerged as a noninvasive method of detecting microvas-

cular alterations that might enable earlier identification and targeting of at-risk patients. This thesis

leverages retinal imaging from the UK Biobank, combined with advanced deep learning techniques, to

develop predictive models of CVDs risk and investigate causal links between cardiovascular outcomes

and retinal features.

First, we investigated the use of optical coherence tomography (OCT), combined with minimal clinical

data, to estimate CVDs risk by developing a convolutional variational autoencoder and a random for-

est framework. A novel explainability method was proposed to identify clinically interpretable retinal

biomarkers. Second, we demonstrated the synergistic value of multimodal retinal imaging through a

multi-channel variational autoencoder and a transformer-based classifier architecture that jointly analy-

ses OCT and fundus photographs. An explainability model was applied to highlight the most relevant

features from both retinal imaging modalities for classification tasks. Finally, through genome-wide

association studies of nnU-Net-derived OCT phenotypes and Mendelian randomization analyses, we

identified genetic variants and established causal relationships between cardiovascular traits and specific

retinal layer alterations.

These findings collectively advance our understanding of retinal-cardiovascular interactions, providing,

computational evidence that multimodal retinal imaging reveals biomarkers linked to systemic vascular

health, methodological frameworks for multimodal ophthalmic data integration, and genetic evidence

supporting causal links between cardiovascular traits and retinal alterations. The study bridges artifi-

cial intelligence and retina imaging data, offering novel insights into the estimation of CVD risk while

highlighting the retina’s potential as a window to cardiovascular health.
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Chapter 1

Introduction

1.1 Background

Cardiovascular diseases (CVD) are a major global health concern and the leading cause of death world-

wide. In 2021, 20.5 million people died from cardiovascular conditions, accounting for one-third of

all global deaths (World-Heart et al., 2023). Ischaemic heart disease is the leading cause of premature

death in 146 countries for males and 98 countries for females, with up to 80% of premature cardio-

vascular conditions being potentially preventable. Furthermore, a significant health disparity is evident,

with approximately 80% of CVD-related fatalities occurring in low- and middle-income countries, while

advancements in cardiovascular health are predominantly observed in high-income nations (Lindstrom

et al. 2023; D’Agostino et al. 2013). This inequity underscores an urgent need for targeted interventions

and global health initiatives. Notably, early identification of individuals at risk is crucial since premature

CVD is highly preventable. Effective primary prevention strategies can lead to a decrease in CVD mor-

tality and morbidity, as demonstrated in several previous clinical studies (Littlejohns et al. 2019; Wong

et al. 2022).

Emerging research suggests that retinal examination, direct imaging of the light-sensitive tissue lining

the back of the eye, may offer insights into certain systemic diseases, including microvascular abnor-

malities and central nervous system disorders. However, such findings remain investigational and are

not yet used in clinical practice. Advances in imaging technology have enabled the cost-effective as-

sessment of retinal parameters on a large scale, both in hospital settings and within community optician

practices (Farrah et al., 2019; Girach et al. 2024). This is facilitated by imaging techniques such as

fundus photography and optical coherence tomography (OCT). Fundus photography captures images of
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the retina and optic nerve (Zhang et al. 2024), while OCT provides a more detailed, non-invasive, in

vivo cross-sectional view of retinal tissues (Farrah et al. 2020).

The retinal and choroidal microvasculature have been identified as sensitive indicators of systemic vas-

cular conditions, including those affecting the cerebral and coronary vasculature (Farrah et al. 2020).

Thus, examining the microvasculature at the back of the eye through retinal imaging offers a valuable

opportunity to identify individuals at risk of common yet serious cardiovascular diseases, such as stroke

and myocardial infarction. The non-invasive assessment of the microvasculature via retinal imaging

provides a practical means of detecting microvascular dysfunction in the peripheral vasculature, which

may aid in the early identification of individuals at heightened risk of cardiovascular disease (Anderson

et al. 1995; Farrah et al. 2020; Rudnicka et al. 2022; Diaz-Pinto et al. 2022).

Taking advantage of its non-invasive nature and cost-effectiveness, retinal imaging is increasingly recog-

nised in research as a valuable tool for the early detection of cardiovascular disease, which is essential

for delivering timely preventive care and formulating effective treatment strategies (Wagner et al. 2020).

Retinal imaging techniques are routinely employed in hospital eye clinics and most optometric practices,

highlighting their potential as a widely accessible method for assessing cardiovascular disease risk. The

role of the retina in systemic diseases is well established in research (Flammer et al. 2013; Hanssen et al.

2022; Wong et al. 2022), with eye care professionals frequently diagnosing various systemic conditions,

such as diabetes, hypertension, and atherosclerosis, based on retinal appearance. As advancements in

imaging technology enhance the observation of retinal structure, a growing body of research is focused

on exploring the associations between retinal features and cardiovascular disease risk factors, as well as

developing predictive models for the early identification of individuals at risk of cardiovascular disease.

The intricate nature of biological tissues, organs, and disease processes necessitates the use of multi-

modal imaging techniques within the medical field to accurately characterise disease phenotypes and

extract clinically relevant quantitative information (Rajiah et al. 2019; Govindarajan et al. 2005). Recent

advancements in artificial intelligence (AI) methodologies for computational image analysis and pheno-

type extraction across multiple imaging modalities have shown considerable promise in elucidating the

underlying anatomical and physiological alterations associated with CVD (Amal et al. 2022; Milosevic

et al. 2024). As a result, the development of advanced statistical and machine learning techniques for

the effective analysis and integration of these diverse data sources is crucial for improving patient care

outcomes.
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1.2 Aims and objectives

The general aim of this thesis is to investigate and demonstrate how retinal medical imaging, in conjunc-

tion with advanced artificial intelligence techniques, can serve as an approach for the early prediction

and prevention of cardiovascular diseases. This research is guided by the following objectives:

• To implement deep convolutional autoencoder-like algorithms for extracting clinically relevant

features from OCT, which are predictive of cardiovascular diseases, and apply it to the population-

scale OCT dataset from UK Biobank of over 60,000 subjects. To learn a rich representation of the

dataset we aim to pretrain our algorithm with around 20,000 of participants.

• To implement interpretabilty algorithms which highlight the most relevant retinal features for the

task of predicting CVD, thereby enhancing clinical understanding and decision-making processes.

• To employ state-of-the-art DL-based architectures to perform segmentation of the different retinal

layers to obtain a finer-grained understanding of them.

• To perform genome-wide association studies on features obtained of retinal layer-wise thickness

maps by using an unsupervised autoencoder-like phenotyping algorithm, to understand the genetic

basis of these features.

• To employ Mendelian randomization techniques for exploring the biological mechanisms under-

lying the association between identified retinal biomarkers and CVD and establishing potential

causal relationships.

• To assess the potential of retinal multi-modal phenotyping, using fundus photographs and OCT

simultaneously, in order to improve the predictive performance for CVDs, by using multi-channel

variational autoencoders to perform unsupervised phenotypes and a transformer-based head for

carrying out the final prediction.

1.3 Contributions

This thesis makes different contributions, which are outlined below:

Methodological contributions:

• A two-stage framework: First, a deep convolutional autoencoder is used to learn rich representa-
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tions of OCT scans from 20,000 images (both eyes). Second, a random forest classifier estimates

the risk of CVD using data from patients at increased risk and a matched control group.

• An explainable algorithm based on vector fields that highlights relevant features in retinal images

contributing to the estimation of CVD risk in patients.

• An end-to-end multimodal retinal framework that combines a multi-channel variational autoen-

coder for unsupervised phenotype extraction from OCT and fundus images, with a transformer-

based classification head for cardiovascular risk prediction.

• A segmentation framework utilising the nnU-Net model to segment 10 retinal OCT layers using

limited annotated data (50 ground truth images).

Applications in retinal–cardiovascular interaction:

• Demonstrated the utility of OCT imaging in estimating cardiovascular risk, having highest predic-

tive results that using metadata. The choroidal layer identified as a particularly relevant feature.

• Developed a multimodal imaging approach using both fundus photographs and 3D OCT volumes,

showing that their combined use provides complementary information for predicting CVD.

Genetic and causal insights:

• Expanded the number of genetic loci associated with retinal OCT layer thickness through genome-

wide association studies.

• Provided evidence of causal links between cardiovascular traits and retinal thickness using forward-

direction Mendelian randomization analyses.

1.4 Thesis structure and chapter summaries

Chapter 1 provides a comprehensive introduction to the thesis. It outlines the significance of cardiovas-

cular diseases, the potential of retinal imaging in disease prediction, and presents the aim and objectives

of the research.

Chapter 2 establishes the theoretical and contextual groundwork for the research. It covers fundamental

concepts underpinning the study, including:
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• Description of the UK Biobank dataset, retina imaging, and genetic data used in the thesis exper-

iments

• Deep learning architectures utilised in this work, such as convolutional neural networks, autoen-

coder models, and segmentation models (e.g., nn-UNet)

• Concepts related to genetic association studies and Mendelian randomisation

The goal of this chapter is to provide a comprehensive background with the necessary theory to facilitate

understanding of the methodologies proposed in subsequent chapters.

Chapter 3 presents a critical review of recent literature, focusing on:

• The application of artificial intelligence methodologies with retinal medical images for two main

objectives: assessing CVD risk factors and biomarkers, and CVD events.

• Studies investigating causal relationships between CVD risk factors or events and retinal pheno-

types, with emphasis on deep learning methodologies

This review highlights the importance of retinal images, AI methods, and their intersection with cardio-

vascular disease research

Chapter 4 details our published work, proposing a framework that utilises OCT features in an unsu-

pervised learning approach to extract relevant features and then combine them with clinical and demo-

graphic data to predict patients likely to experience a cardiac event. The key contributions in this chapter

include:

• Development of a predictive model that merges multi-modal patient data (e.g., OCT imaging,

demographic, and clinical information).

• An innovative method for enhancing model interpretability, offering detailed localisation of the

features in retinal layers that most impact accurately identifying patients at risk of adverse CVD

events.

• A pioneering investigation into the application of 3D OCT imaging and artificial intelligence for

automatically forecasting patients vulnerable to adverse CVD incidents.

• Systematic evaluation of the contribution when combining OCT images from both eyes, a single-

eye OCT, or integrating OCT data with clinical and demographic information.

Chapter 5 presents work from our published paper, where we develop an innovative end-to-end mul-
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timodal deep generative learning model and transformer classifier. This model extracts retina-derived

phenotypes from both fundus and OCT images to classify patients at risk of cardiovascular disease. Key

contributions include:

• A novel predictive model that integrates multimodal retinal imaging (OCT and fundus retinal

data) by employing a multichannel variational autoencoder and a transformer network classifier

to identify individuals at risk of developing cardiovascular diseases within five years of image

acquisition.

• A pioneering study into the application of fused 3D OCT and fundus imaging to enhance the

prediction of patients at risk of cardiac events.

• An ablation study that reveals the impact of training our feature extraction model simultaneously

with classification, compared to performing these tasks separately.

• Systematic analysis quantifying the performance contributions of individual retinal modalities,

demonstrating that the combined use of both retinal imaging modalities enhances model perfor-

mance.

Chapter 6 describes a genome-wide association study to identify associations between genetic varia-

tions and retina-derived phenotypes. Additionally, it employs Mendelian randomisation techniques to

investigate the biological factors underlying the causal relationship between cardiovascular disease and

retinal morphology. The key contributions in this chapter include:

• First-time application of state-of-the-art nnUNet model for ten OCT layers segmentation.

• First-time application of genome-wide association study to autoencoder phenotypes involving ten

OCT layers.

• Identification of new genetic loci implicated in OCT-derived phenotypes.

• Establishment of a causal relationship between cardiovascular incidents and OCT features using

Mendelian randomization analysis.

Chapter 7 The final chapter presents a comprehensive overview of the thesis, synthesising contributions,

key findings and deriving conclusions. It also addresses limitations of the study and proposes avenues

for future research in this field.

6



Chapter 2

Background

This chapter aims to establish a robust foundation for the subsequent chapters by presenting key con-

cepts, contextual information, data details, and essential background necessary to support the study.

2.1 UK Biobank data

The UK Biobank is a large-scale, community-based prospective cohort study conducted in the United

Kingdom, recognised for its extensive and detailed data collection (UK Biobank 2024; Sudlow et al.

2015). The study recruited 500,000 participants aged 40–69 years at the time of enrolment between

2006-2010, who will be followed for many years through linkage to their health-related records (UK

Biobank 2024). Comprehensive baseline data were gathered from multiple sources, including de-

tailed questionnaires addressing general health, disabilities, socio-demographic factors, and lifestyle

behaviours such as smoking, alcohol consumption, and diet (Bycroft et al. 2018).

In addition, a wide range of physical measurements were recorded, including electrocardiography, exer-

cise tolerance tests, spirometry, and bone density assessments. Medical imaging data, such as magnetic

resonance imaging (MRI) and retinal imaging, were also acquired. Biological samples—blood, urine,

and saliva—were collected for further analysis, with DNA extracted from blood samples used for high-

throughput genotyping across all participants, generating an extensive genetic dataset (UK Biobank

2024).

The UK Biobank’s rich array of data offers an unparalleled resource for advancing the understanding

of disease risk factors and their interplay with genetic and environmental variables. All participants

provided written, informed consent prior to their inclusion in the study (UK Biobank 2024; Sudlow et
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al. 2015).

The UK Biobank is a valuable resource for investigating the complex interplay between genetic, environ-

mental, and lifestyle factors in relation to health outcomes (UK Biobank 2024; Sudlow et al. 2015). Its

extensive data collection, including biological samples, imaging, and detailed participant information,

enables robust analyses that contribute to the advancement of medical and epidemiological research.

However, despite its strengths, the UK Biobank has notable limitations in terms of generalizability.

The cohort is not fully representative of the broader UK population, with differences observed in ethnic-

ity, socioeconomic status, health behaviors, and disease prevalence. The overrepresentation of healthier,

wealthier, and more health-conscious individuals introduces selection bias, limiting its use for deriving

accurate population-level disease prevalence and incidence rates. For instance, findings indicate that

94.6% of UK Biobank participants were of white ethnicity, a proportion higher than the 91.3% reported

in the 2011 UK Census. Regarding sociodemographic factors, UK Biobank participants were more

likely to own their property outright (56.7%) compared to 40.6% in the 2001 UK Census. Conversely,

39.6% of individuals in the 2001 UK Census had a mortgage or loan, compared to 33.9% of UK Biobank

participants. Moreover, UK Biobank participants were less likely to live in rental accommodations than

the general population within the same age range (50–64 years) (Batty et al. 2020; Fry et al. 2017).

Additionally, lifestyle and health-related differences compared to national survey data suggest caution

in extrapolating absolute risk estimates from the UK Biobank to the general public. UK Biobank par-

ticipants, both men and women, were less likely to be current smokers across all age groups compared

to the Health Surveys for England (HSE) 2008. Furthermore, while they were less likely to be lifelong

abstainers from alcohol, they were also less likely to consume alcohol daily compared to the general

population included in HSE 2008. Regarding health conditions, UK Biobank participants exhibited a

lower prevalence of cardiovascular disease, stroke, hypertension, diabetes, chronic kidney disease, and

respiratory diseases compared to the general population, based on various HSE datasets(Fry et al. 2017).

Nevertheless, the large sample size, high-quality data collection, and long-term follow-up make the

UK Biobank an exceptional platform for studying associations between exposures and health outcomes.

While absolute disease frequencies may not be directly applicable to other populations, the relationships

identified between risk factors and diseases remain highly informative and generalizable when inter-

preted within the appropriate context. Despite its limitations, the UK Biobank remains a powerful tool

for advancing scientific knowledge on disease etiology and public health.
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2.2 Retina imaging

Optical Coherence Tomography (OCT) scans and fundus photography are non-invasive techniques that 

enable high-resolution imaging of the retina, making them highly effective for detecting subtle retinal 

changes. These methods offer a safe, cost-effective approach for diagnosing and monitoring the progres-

sion of eye diseases, and also play a crucial role in identifying individuals at risk of developing ocular 

conditions, facilitating early intervention. Furthermore, OCT and retinal photography provide insights 

into ageing processes and systemic conditions affecting the cardiovascular and neurological systems, by 

allowing direct visualisation of a highly vascularized part of the central nervous system (CNS) tissue 

and its vasculature. As a result, these imaging techniques serve as a valuable tool for assessing retinal 

health, which may reflect broader systemic health (Warwick et al. 2022).

2.2.1 Optical coherence tomography

OCT is a non-invasive, high-resolution imaging technique that uses light waves to capture cross-sectional 

images of biological tissues. By scanning vertically into tissue, OCT reveals internal structures, such 

as retinal layers (nerve fibers, photoreceptors) or skin strata, in micrometer-scale d etail. OCT relies on 

reflected light, making it ideal for semi-transparent tissues (e.g., retina, blood vessels, or cornea). Often 

called ’optical ultrasound,’ it provides real-time, subsurface visualization with exceptional precision 

(Huang et al. 1991).

The technical principles underlying OCT are akin to those of ultrasound; however, instead of sound 

waves, OCT measures light reflections. A  l ow-coherence l ight s ource, t ypically i n t he near-infrared 

range, is employed. OCT operates on the principle of interferometry, comparing reflected light from the 

sample with a reference beam. The light beam is split into two paths: one directed at the tissue sample, 

while the other serves as the reference. The sample beam is scanned across the tissue, penetrating to 

various depths. Light reflections f rom different retinal layers are then recombined with the reference 

beam. This recombination produces interference patterns containing detailed information about the 

depth and reflectivity of the tissue structures (see Figure 2.1) (Aumann et al. 2019; Farrah et al. 2020).

A photodetector captures the interference patterns, and advanced signal processing techniques, includ-

ing Fourier transformation, are employed to analyse these patterns, whether through a spectrometer (in 

spectral-domain OCT) or a tunable laser (in swept-source OCT). The analysis results in high-resolution, 

two-dimensional cross-sectional images or three-dimensional volumetric images of the tissue. Given its 

non-invasive nature and exceptional resolution, OCT has become an widely adopted tool in ophthalmol-
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Figure 2.1: Schematic representation of retinal optical coherence tomography (adapted from Farrah et
al. 2020)

ogy and numerous other medical fields (Aumann et al. 2019; Farrah et al., 2019).

These cross-sectional images, or tomograms, are composed of neighboring A-scans, each capturing the

reflective properties of the subject at a specific depth along the scanned beam’s path. By systematically

sweeping the beam across the sample and compiling adjacent A-scans, a B-scan (cross-sectional im-

age) is produced, providing a detailed slice of the tissue. A volumetric image is then constructed from

multiple B-scans (see Figure 2.2).

Due to its non-invasive nature and exceptional resolution, OCT has become an essential imaging tool in

ophthalmology and various other medical fields (Aumann et al. 2019; Farrah et al. 2020).

One of the key advantages of OCT is its exceptionally high axial resolution, typically ranging from 3

to 8 µm when imaging the retina. Furthermore, OCT enables comprehensive retinal scanning in just

a few seconds, often capturing over 100 scans. Owing to its precision and non-invasiveness, OCT has

been described as an “in vivo clinical biopsy,” providing high-resolution imaging of retinal structures.

It is particularly well-suited for accurately measuring neurosensory retinal thickness and visualising

the multilayered architecture of the retina, thus enabling the assessment of individual retinal sublayers

(Warwick et al. 2022; Keane et al. 2016).
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Figure 2.2: Scan types with Optical Coherence Tomography (adapted from Leica-Microsystems 2025)

Figure 2.3: Examples of three 64th B-scan OCT images, each from a different patient.

2.2.2 Fundus photography

Retinal fundus photography allows for non-invasive, in vivo visualisation of the vascular system within

the superficial inner retina, including central and branch veins, arteries, venules, and arterioles. These

retinal blood vessels are composed of tightly sealed endothelial cells (ECs), forming the inner blood-

retina barrier, and are encased by smooth muscle cells (SMCs) that support the vessel walls (Bharadwaj

et al. 2013).

The process of acquiring fundus photographs begins with the illumination of the retina. A bright light

source, typically a xenon flash lamp, generates a brief, intense burst of light, which passes through the

pupil to illuminate the interior of the eye. The fundus camera utilises a sophisticated system of lenses
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and mirrors, creating an optical pathway for both illumination and imaging. The outer portion of this

pathway is used for illumination, while the central portion captures the reflected light from the fundus.

As the light reflects off the retina, it travels back through the pupil and passes through the camera’s

optical system, where it is focused to form an image. A digital sensor then captures the image, converting

the focused light into a digital signal. The separation of the illumination and imaging pathways within

the camera design reduces reflections from the cornea and lens. Illumination light enters through the

periphery of the pupil, while the retinal image is captured through the centre. The resulting image can

be viewed, stored, and analysed immediately (see Figure 2.4) (Mishra 2024; Saine 2024).

Figure 2.4: Schematic representation of Fundus Photographs (adapted from Zhang et al. 2024)

Advanced fundus cameras, such as those employing scanning laser ophthalmoscopy, enable ultra-widefield

imaging. These systems use lasers to rapidly scan the retina, capturing a much wider view of the fundus

in a single image. By incorporating these advanced optical and imaging techniques, fundus photography

provides detailed visualisation of the retina, optic disc, blood vessels, and other structures at the back

of the eye, facilitating the diagnosis and monitoring of a wide range of ocular and systemic conditions

(Mishra 2024; Saine 2024).

2.3 Single nucleotide polymorphisms microarrays

Single Nucleotide Polymorphisms (SNPs) are variations at a single nucleotide position within the DNA

sequence that occur among individuals (see Figure 2.6). These variations can be located in both coding

and non-coding regions of the genome, potentially influencing gene expression or protein function.

SNPs represent the most prevalent form of genetic variation in humans (Visscher et al. 2017).

Genetic analysis has been revolutionized by the advent of SNP microarrays, which enable the detection
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Figure 2.5: Examples of three fundus images, each from a different patient.

Figure 2.6: The schema of Single nucleotide polymorphism (SNP) (adapted from Wikipedia)

of minute variations in DNA sequences (Wang et al. 2009). These sophisticated tools employ a vast

array of DNA probes, ranging from thousands to millions, each carefully engineered to bind with specific

genomic regions. SNP arrays are pairing of nucleotide bases: adenine (A) with thymine (T), and cytosine

(C) with guanine (G).

The process involves the application of single-stranded DNA from a sample to the array, which is popu-

lated with an extensive collection of distinct nucleotide probe sequences. These probes are designed to

be either perfectly complementary or nearly so to the DNA segments containing SNP sites. The strength

of the hybridization signal that results from this interaction allows for the identification of various ge-

netic alterations, including SNPs, insertions, deletions, and changes in copy number (Mccarroll et al.

2008).

This technology has significantly enhanced our ability to map genetic variations across the genome,

providing invaluable insights into human genetic diversity and disease susceptibility (Stranger et al.

2007).
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2.4 Machine learning methods

Machine Learning (ML) is a subfield of artificial intelligence (AI) that enables systems to automatically

learn patterns from data and make predictions without being explicitly programmed (Jordan et al. 2015).

ML techniques have been widely applied across various domains, including healthcare, finance, and

engineering, due to their ability to model complex relationships in data (Jordan et al. 2015; Waring et al.

2020).

ML models are broadly categorized into three learning paradigms: supervised learning, where the model

learns from labeled data; unsupervised learning, which uncovers hidden patterns in unlabeled data; and

reinforcement learning, which optimizes decision-making through trial and error (Bishop 2006).

There are several classes of ML algorithms, each with distinct characteristics and suitability for different

types of problems. These include linear models, tree-based models, and kernel-based models, among

others. In this thesis, we will focus specifically on random forests, as they are the ML method employed

in some of our work.

2.4.1 Random forest

Random forests (RF) are an ensemble machine learning method that involves multiple decision trees,

each of which is trained on a randomly selected subset of training data (Breiman 2001). Each deci-

sion tree in the RF is trained on a bootstrap sample, a randomly selected subset of the training data

with replacement, while the remaining data, known as out-of-bag (OOB) samples, are used for internal

validation. Additionally, at each node of a decision tree, a random subset of features is considered for

splitting, rather than the full feature set, which reduces overfitting and enhances model generalizability.

Formally, give a training dataset D = {(xi, yi)}Ni=1, where xi represents the feature vector and yi the

corresponding label, RF constructs T decision trees {ht(x)}Tt=1, each trained on a bootstrap sample of

D. The function ht(x) represents the prediction of the t-th decision tree in the forest when given input

x. So, if we have T trees in the forest, we get T predictions:

h1(x), h2(x), h3(x), ..., hT (x) (2.1)

Each ht(x) is an output from a different tree, and they may not always be the same because each tree

learns slightly different patterns from the data.
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The final prediction for classification is determined by majority voting:

ŷ = mode{ht(x)}Tt=1 (2.2)

Since each tree gives a separate classification, we need a way to combine their results into a final deci-

sion. The function mode simply finds the most frequently occurring class label among all T trees.

For regression tasks, the prediction is obtained by averaging the outputs of individual trees:

ŷ =
1

T

T∑
t=1

ht(x) (2.3)

In a regression problem, the RF predicts a continuous numerical value instead of a class label. Instead

of using ”mode,” RF take the average of all tree predictions to get the final output.

RF have been extensively used in medical applications, including for CVD diagnosis, due to their ro-

bustness to noisy data and ability to handle high-dimensional feature spaces (Khozeimeh et al. 2022;

Yang et al. 2020). A key advantage of RF over other classification methods, such as support vector ma-

chines (SVMs) or neural networks, is their ability to natively handle heterogeneous data types, including

categorical, ordinal, and continuous variables, without requiring extensive preprocessing.

The performance of an RF model is influenced by several hyperparameters, including the number of

trees (T ), the maximum depth of individual trees, and the number of features considered at each split

(mtry). Increasing T generally improves stability but may lead to higher computational costs, while

selecting an optimal mtry balances variance reduction and model interpretability.

2.4.2 Neural networks

Neural networks are a subset of machine learning models inspired by the structure and functioning of the

human brain. These models consist of interconnected layers of neurons (also called nodes) that process

and transmit information. A neural network typically contains an input layer, one or more hidden layers,

and an output layer (see Figure 2.7). Each neuron in a given layer receives input from the previous

layer, applies a mathematical operation (e.g., a weighted sum followed by an activation function), and

passes the result to the next layer. Neural networks learn to perform tasks by adjusting the weights of

the connections between neurons based on the error of their predictions, a process typically guided by

the backpropagation algorithm (Schmidhuber 2014).
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Figure 2.7: A neural network with three input variables, two hidden layers and an output (adapted from
Waring et al. 2020)

Neural networks are capable of recognizing patterns in data and have been widely applied to tasks such

as classification, regression, and time-series forecasting. However, traditional neural networks with only

one or two hidden layers are limited in their ability to model highly complex relationships within data.

2.5 Deep learning

Deep learning (DL) is a subfield of Artificial Intelligence (AI) and ML that focuses on training models

using deep neural networks. Unlike traditional ML methods as RF, SVM, logistic regression, which

often require manual feature engineering, DL models autonomously learn relevant features from large

datasets, enabling them to intuitively discern patterns and insights. This ability to extract hierarchical

features has made DL particularly effective in domains such as image recognition, natural language

processing, and biomedical data analysis.

In traditional ML, feature selection is a crucial preprocessing step aimed at improving model perfor-

mance, reducing dimensionality, and enhancing interpretability. Common feature selection techniques

including filter methods (mutual information, correlation-based selection), wrapper methods (recursive

feature elimination) and embedded methods (regression models, tree-based feature importance). In con-

trast, DL models perform implicit feature selection through multiple layers of transformations. DL

facilitates the creation of computational models composed of multiple processing layers, each capable

of learning data representations with varying levels of abstraction. By employing the backpropagation

algorithm, deep learning models can uncover intricate structures within extensive datasets. This algo-

rithm guides the adjustment of internal parameters, determining how each layer’s representation should

evolve from the previous layer’s output (Voulodimos et al. 2018; Bishop 2006).

Essentially, deep learning operates by comparing the output error to the desired outcome and optimizing
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this discrepancy through weight adjustments across the architecture’s layers. This optimization is per-

formed automatically using methods such as Adam (Kingma et al. 2015) or Stochastic Gradient Descent

(SGD) (Ruder 2016), which iteratively modify weights based on gradient calculations over small data

batches, aiming to reach a local minimum (backpropagation).

The backpropagation procedure for computing the gradient of an objective function with respect to the

weights of a multilayered stack of modules is a practical application of the chain rule for derivatives.

The critical insight is that the derivative (or gradient) of the objective function concerning a module’s

input can be determined by tracing backward from the gradient concerning the module’s output (or the

input of the subsequent module) (Bishop 2006).

Despite its advantages, the lack of explicit feature selection in DL can lead to challenges, such as over-

fitting, computational inefficiency, and reduced interpretability. Besides, DL models often require large

amounts of data to learn meaningful features effectively. To mitigate these issues, researchers have

proposed hybrid approaches that combine traditional feature selection techniques with deep learning

architectures, such as Autoencoders for feature extraction.

2.5.1 Fully connected networks

Fully Connected Networks (FCNs), are a type of deep neural network where each neuron in one layer

is connected to every neuron in the next layer. This dense connectivity allows the network to learn

complex relationships between inputs and outputs. FCNs are typically composed of an input layer, one

or more hidden layers, and an output layer. Each layer is fully connected to the next layer, meaning

every neuron from the previous layer contributes to every neuron in the next layer. This type of network

is powerful but can become computationally expensive and prone to overfitting with very large datasets

(Schmidhuber 2014).

A fully connected layer is a function from Rn to Rm . Each output dimension depends on each input

dimension. Let xϵRn x = (x1, x2, ..., xn) be the input vector. The connections between the input layer

and the hidden layer are represented by a weight matrix W and bias vector b. If the hidden layer has m

neurons, the weight matrix W will have dimensions m x n, where n is the number of input features and

m is the number of neurons in the hidden layer. The bias vector b has dimension m.

The output h = (h1, h2, ..., hm) of the hidden layer is computed as:

z = Wx+ b (2.4)
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Figure 2.8: Example of a fully connected network (adapted from Ramsundar 2019)

where z is the pre-activation vector of the hidden layer. Each element of z is the weighted sum of the

inputs, plus the bias term. The pre-activation vector is then passed through an activation function f , such

as the Rectified Linear Unit (ReLU), sigmoid and Tanh.

If the network has a single output, we can define the output layer similarly. Let Wo be the weight matrix

connecting the hidden layer to the output layer, and bo be the bias for the output layer. The output y of

the network is computed as:

y = Woh+ bo (2.5)

The output y can then be passed through an activation function depending on the task, softmax for

classification, linear activation for regression.

2.5.2 Convolutional neural networks

Convolutional Neural Networks (CNNs) are a specialized type of neural network primarily used for

processing structured grid data, like images. Unlike fully connected networks, CNNs exploit the spatial

hierarchies of features by using convolutional layers, which apply local receptive fields and weight

sharing, significantly reducing the number of parameters and computational complexity.
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Figure 2.9: Example of a convolutional neural network (adapted from Ramsundar 2019)

A convolutional layer applies a set of learnable filters (or kernels) to the input to extract features such as

edges, textures, and patterns. The convolution operation is defined as:

z
(l)
ij =

k−1∑
m=0

k−1∑
n=0

W (l)
mnx(i+m)(j + n)(l−1) + b(l) (2.6)

where z
(l)
ij is the output feature map at position (i, j) in layer l; x(i+m)(j + n)(l−1) represents the

input from the previous later at position (i+m, j+n); W (l)
mn is the filter or kernel weights of size k x k;

and b(l) represents the bias term.

Each filter slides across the input, performing an element-wise multiplication followed by a summation,

producing a feature map. The number of filters determines the depth of the output feature map.

After convolution, an activation function is applied to introduce non-linearity, allowing the network

to learn complex features. The most common activation function is ReLU (Rectified Linear Unit) as

f(z) = max(0, z); this helps in preventing vanishing gradients and improves the training speed.

Pooling layers downsample feature maps to reduce computational complexity while retaining important

spatial information. The two main types of pooling are max pooling (takes the maximum value in a

given window, e.g. k x k ) and average pooling (computes the average value in a window). For a

pooling window of size k x k with stride s that controls how much the filter moves at each step, the

output is computed as:

O =
I − k

s
+ 1 (2.7)
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where O is the feature map size output, k is the kernel size, s is the stride.

After multiple convolutional and pooling layers, the feature maps are flattened into a vector and passed

through fully connected layers for classification or regression tasks. The output layer applies an activa-

tion function based on the task, for example softmax for classification:

P (yi) =
ezi∑
j e

zj
(2.8)

A key properties of the convolutional layer are the local receptive field where each neuron connects only

to a small region of the input insted of the whole input. Other things is that the same filter is applied

across the whole input, reducing the number of parameters compared to fully connected layers. CNNs

can be extended to operate on higher-dimensional data, adapting their convolutional filters to match the

input structure. The two most common extensions are 2D CNNs and 3D CNNs.

2D Convolutional Neural Networks

2D Convolutional Neural Networks (2D CNNs) are the standard CNNs architecture used for processing

grayscale and RGB images. In the context of 2D CNN, we consider a two-dimensional signal repre-

sented by xij . The convolution operation employs a n × n kernel, denoted as K ∈ Rn×n. Kernels

are generally odd-sized to allow for proper centering on the current pixel. The output feature map Z at

position (i, j) for a single convolutional layer is computed as Equation 2.5.2.

This operation is applied to all channels, and in the case of multiple input channels (e.g., RGB images),

the convolution extends as:

z
(l)
ij =

C−1∑
c=0

k−1∑
m=0

k−1∑
n=0

W (l)
mncx(i+m)(j + n)c(l−1) + b(l) (2.9)

where C represents the number of input channels.

3D CNN

3D CNN extend the concept of 2D CNN to process three-dimensional data. They are particularly useful

for analyzing volumetric data or sequences of 2D images. For 3D CNNs, the main difference is that the

convolution kernel extends across the depth (D) dimension, making the operation:
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z
(l)
ij =

C−1∑
c=0

k−1∑
m=0

k−1∑
n=0

k−1∑
p=0

W (l)
mncpx(i+m)(j + n)(k + p)c(l−1) + b(l) (2.10)

where the additional summation over p accounts for depth in volumetric data. Similar to 2D CNN,

3D CNN typically employ multiple kernels at each layer. The outputs produced by these kernels are

referred to as ”feature maps,” emphasizing their volume-like nature in the 3D context. This approach

allows 3D CNN to effectively process and analyze three-dimensional data, making them valuable for

tasks involving volumetric image analysis, video processing, and medical imaging applications.

2.6 Autoencoders

Autoencoders (AEs) are a class of neural networks primarily used for unsupervised learning. Their

objective is to learn a compressed, meaningful representation of input data while preserving essential

information. They are particularly useful for nonlinear dimensionality reduction, feature learning (cap-

turing underlying patterns), data denoising (removing noise from images/sounds), anomaly detection

(learning normal patterns and flagging deviations) and missing data imputation (reconstructing incom-

plete datasets) (Vincent et al. 2008). The fundamental idea behind autoencoders is to reconstruct their

input after passing it through a low-dimensional bottleneck, ensuring that only the most relevant infor-

mation is retained.

Figure 2.10: Example of a simple autoencoder
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The loss function typically minimizes the reconstruction error between the input x and the reconstructed

output x̂, often using Mean Squared Error (MSE):

L = ||x − x̂|| (2.11)

where x̂ = Dϕ(Eθ(x)), with Eθ represents the encoder that mapping input x to a latent representation

z; and the Dϕ is the decoder that recontruct x from z.

The encoder-decoder framework is a pair of encoding and decoding functions, Eθ : RK → Rnz and

Dϕ : Rnz → RK that are parameterised by a set of learnable coefficients θ and ϕ, respectively. Since

the latent space dimension nz ∈ N is typically much smaller than the input dimension K (nz ≪ K), the

network is forced to learn a compact representation (Rumelhart et al. 1986).

2.6.1 Variational autoencoders

Variational Autoencoders (VAE) are a class of generative models in the field of neural networks. They

consist of two interconnected components: the encoder and decoder networks, which are trained simul-

taneously. Given some input data x, the encoder is designed to approximate the posterior distribution

of the latent variables qϕ (z | x), where z is the latent space, under some assumed prior distribution

p(z) over the latent variables (typically, a multivariate Gaussian prior is used, that is, p(z) ∼ N (·)),

while the decoder is trained to reconstruct the input data by sampling from the approximated posterior

distribution pθ(x̂ | z), where x̂ is the reconstructed input. In other words, the encoder network maps

inputs to low-dimensional latent representations, and the decoder network acts as the generative model.

The approximation of the true but intractable posterior distribution is obtained by maximising the lower

bound of the evidence (ELBO), which can be expressed as follows:

ELBO = Eqϕ(z|x) [log pθ (x | z)]−DKL (qϕ (z | x) ||p (z)) (2.12)

where θ represents the parameters of the generative model, ϕ represents the parameters of the inference

model, and KL indicates Kullback-Leibler divergence. The Kullback-Leibler divergence DKL quanti-

fies the dissimilarity between the learnt latent distribution and a previously specified distribution p(z),

which normally is a multivariate Gaussian distribution. By minimising the KL divergence, the model is

incentivised to shape a latent space that adheres to the target Gaussian distribution.
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During the training phase of a VAE, the encoder maps input data to a probability distribution rather than

a fixed vector. For each latent variable zj where z = (z1, z2, ..., znz) is the latent vector in and j indexes

its components, the encoder learns two key parameters: mean: µj(x), and standard deviation: σj(x).

A realization zj is then sampled from the distribution Zj ∼ N (µj , σ
2
j ) and passed to the decoder for

output generation.

To encourage the variational approximate posterior to resemble a multivariate Gaussian with diagonal

covariance, a regularization term is employed.

This approach allows VAE to learn a structured latent space that balances between accurate reconstruc-

tion and adherence to a predefined distribution, enabling both effective data compression and generative

capabilities.

2.6.2 Multi-Channel variational autoencoder.

VAE have proven to be powerful generative models for learning representations of complex data. How-

ever, many real-world scenarios involve multiple data sources or modalities, which standard VAE are not

designed to handle efficiently. This limitation led to the development of Multi-Channel Variational Au-

toencoders (MCVAE), an extension of the VAE framework that can jointly model multiple data sources

or channels. This advancement allows for more comprehensive modeling of complex, multi-modal data

structures.

Consider a MCVAE with M channels. For each channel m, let xm be the input data, z the shared

latent variable, and θm the parameters of the generative model. The joint probability distribution of the

generative model is defined as [p(x1, . . . , xM , z) = p(z)
∏M

m=1 p(xm|z, θm)] where p(z) is typically a

standard normal distribution N (0, I). The Evidence Lower Bound (ELBO) for the multi-channel VAE

is:

ELBO = Eq(z|x,ϕ)

[
M∑

m=1

log p(xm|z, θm)

]
− KL(q(z|x, ϕ)∥p(z)) (2.13)

where x = x1, . . . , xM and the first term represents the reconstruction term and encourages the model

to accurately reconstruct the input data for each channel, and the second term, the KL divergence term

regularizes the approximate posterior to be close to the prior distribution of z. Since the true posterior

distribution p(z|x1, . . . , xM ) is intractable, we approximate it with q(z|x1, . . . , xM , ϕ), typically chosen

as a multivariate Gaussian. The MCVAE is trained to minimize the ELBO, promoting accurate recon-

struction of all channels while maintaining a regularized latent space. The shared latent representation z
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captures common information across all channels, facilitating the joint modeling of heterogeneous data

types (Antelmi et al. 2019).

2.7 Segmentation

2.7.1 UNet

U-Net is a deep learning architecture primarily used for semantic segmentation tasks in image analysis.

U-Net’s architecture consists of two main parts: encoder and decoder. The encoder is designed to capture

context and features from the input image. It consists of several convolutional layers followed by max

pooling operations, which progressively reduce the spatial dimensions of the input while increasing

the depth of feature maps. This allows the network to learn high-level features at various levels of

abstraction. The decoder aims to upsample the feature maps back to the original image size. This section

in the model includes upsampling layers that increase the spatial resolution of the feature maps, followed

by convolutional layers. A key feature of U-Net is the use of skip connections, which concatenate feature

maps from the encoder to the decoder. This helps retain spatial information that may be lost during the

downsampling process, allowing for more precise localization of features in the final segmentation map

(Ronneberger et al. 2015).

U-Net architectures perfom well with small dataset as some found in the field of medical imaging where

annotated data is normally few. In order to produce a precise segmentation, a network needs to extract

both, what objects are in the image (semantic information) as well as exactly which pixels belong to

them (spatial information).

A common loss function for segmentation in medical imaging is the categorical cross-entropy loss,

which measures the difference between the predicted and true class probabilities for each sample:

L = −
N∑
i=1

K∑
c=1

yi,clog(ŷi,c)), (2.14)

where k is the number of samples, K is the number of classes, yi,c is a binary indicator (0 or 1) if class

label c is the correct classification for sample i, ŷi,c is the predicted probability that sample i belongs to

class c, typically obtained via the softmax function (Azad et al. 2022; Siddique et al. 2020).
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2.7.2 nnUNet

nnUNet is a self-adapting framework based on the U-Net architecture commonly used for medical image

segmentation that automatically adapts to different datasets and tasks (Isensee et al. 2020). It automati-

cally configures the network architecture, hyperparameters, and other settings to optimize performance

for a given dataset and empirical optimization of other parameters through trial-and-error. nnUNet can

handle diverse medical image segmentation tasks, including 2D, 3D, and multi-modal data.

nnU-Net is a deep learning-based segmentation method that automatically configures itself, including

preprocessing, network architecture, training and post-processing for any new task in the biomedical

domain (Isensee et al. 2020).

2.8 Genome-wide association studies

Genome-wide association studies (GWAS) are used to identify genetic variants associated with specific

phenotypes by analyzing the genomes of large groups of individuals. A phenotype can be a binary

trait (such as disease presence or absence) or a continuous trait (such as height or body mass index).

GWAS has become a widely adopted method for uncovering genetic factors that contribute to the risk

of common and complex diseases. By testing millions of SNPs (see Section 2.3) across the genome,

GWAS offers an unbiased approach to identifying associations between genetic markers and traits. By

scanning the genomes of many individuals, GWAS seeks to pinpoint specific genetic variations that

may increase susceptibility to particular conditions, providing valuable insights into the genetic basis of

complex diseases (Uffelmann et al. 2021; Abdellaoui et al. 2023).

The most common approach in GWAS are the single-variant models because they allow for an exhaus-

tive, genome-wide search for genetic associations with traits.

2.8.1 Single-variant models.

A single-variant model in the context of GWAS refers to a statistical approach where each genetic

variant, SNP, is tested individually for its association with a phenotype.

The most common statistical approach used is a linear or logistic regression model, depending on

whether the trait is continuous or binary.

For an individual i, with genotype Gi at a given SNP, the association model is typically written as:
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Yi = β0 + β1Gi + ϵi (2.15)

where Yi is the phenotype (continuous trait) of individual i, Gi is the genotype at the SNP (coded as 0,

1, or 2, depending on the number of minor alleles), β0 is the intercept (representing the expected value

of the phenotype when the SNP genotype Gi is zero), β1 is the effect size (or regression coefficient) that

estimates how much the phenotype changes per one-unit increase in the SNP genotype, ϵi is the error

term, which accounts for unexplained variation in the phenotype.

For binary traits like the presence or absence of a disease (e.g., diabetes or heart disease), the association

is modeled using a logistic regression equation:

log
P (Yi = 1)

P (Yi = 0)
= β0 + β1Gi (2.16)

where P (Yi = 1) is the probability that individual i has the trait (i.e., the disease), and P (Yi = 0) for

controls (i.e., disease absent) (Kim et al. 2013).

In GWAS, different inheritance models can be used to encode the genotype variable Gi in the regression

model, affecting how SNP effects are estimated (Alliance et al. 2009):

• Recessive model: AA 7→ 0, Aa 7→ 0, aa 7→ 1. It is necessary to carry two copies of the

alternative allele (A) to observe a difference in the phenotype.

• Dominant model: AA 7→ 0, Aa 7→ 1, aa 7→ 1. A single copy of the alternative allele is enough

to affect the phenotype. In other words, as long as an individual carries at least one alternative

allele, they will have the same effect on the phenotype.

• Additive model: AA 7→ 0, Aa 7→ 1, aa 7→ 2, i.e. the effect of the SNP is assumed to increase

linearly with the number of alternative alleles. Most Common in GWAS.

Throughout this work, we will always assume an additive model.
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Hypothesis testing and statistical significance Each SNP is tested for association using a hypothesis

test:

H0 : β1 = 0, (no association)

HA : β1 ̸= 0, (significant association)

The p-value from the regression analysis determines whether the SNP is significantly associated with

the trait. Due to the large number of SNPs tested ( millions), a Bonferroni correction or False Discovery

Rate (FDR) correction is applied to control for multiple testing. A SNP is considered genome-wide

significant if p < 5× 10−8.

2.9 Mendelian randomization

Mendelian randomization (MR) is a method in genetic epidemiology that uses genetic variants as in-

strumental variables to investigate causal relationships between modifiable risk factors (exposures) and

health outcomes. It leverages the random assortment of genes from parents to offspring to mimic a

randomized controlled trial (the information of this section was based on Julian et al. 2021; Julian et al.

2022).

The core principle of MR relies on three key assumptions:

• The genetic variant (Z) is associated with the exposure of interest (X).

Cov(Z,X) ̸= 0

• The genetic variant is not associated with confounders (U).

Z ⊥⊥ U

• The genetic variant affects the outcome (Y) only through its effect on the exposure.

Z ⊥⊥ Y | X,U

Instrument selection. In practical MR analyses, the selection of appropriate SNVs as instruments

begins with setting an arbitrary p-value threshold for identifying candidate genetic variants. Typically,

a p-value threshold of p < 5 × 10−8 is used to ensure that the selected variants are strongly associated

with the exposure. This threshold is derived from GWAS to minimize the risk of false positives.

Proxies. When a direct exposure instrument is not available in the outcome dataset, a suitable proxy

is identified. Tools like the Ensembl server are commonly used for this purpose (Cunningham et al.
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2022). A proxy is a genetic variant that is highly correlated with the missing instrument and serves as a

substitute in the analysis.

Clumping. In MR, SNVs are typically clumped using a linkage disequilibrium R2 threshold (often set

at 0.001) and a genetic distance cut-off of 10,000 kilobases. A European reference panel is commonly

employed for clumping to ensure that the selected SNVs are independent of each other.

Harmonisation. Harmonization is the process of aligning the effects of genetic instruments on both

the exposure and the outcome so that the effect sizes (beta values) are expressed per additional copy of

the same allele. To reduce errors, palindromic alleles with a minor allele frequency (MAF ) > 0.42 are

often excluded from the analysis (Hartwig et al. 2016).

Removal of pleiotropic genetic variants and outliers. Pleiotropy occurs when a genetic instrument

influences multiple traits, which can bias MR estimates. Instruments that demonstrate stronger associ-

ations with the outcome than with the exposure are considered pleiotropic and are removed from the

analysis using statistical methods (Hemani et al. 2018).

2.9.1 Inverse variance weighted

The inverse variance weighted (IVW) method combines causal estimates from individual genetic in-

struments to provide an overall estimate of the causal effect. It assumes a linear relationship between

the genetic instruments and the exposure, and it provides an unbiased causal estimate when the IVs are

valid.

The IVW estimate can be represented as:

β̂IVW =

∑
iwi · βGi→Y∑

iwi
(2.17)

where wi = 1
SE(βGi→Y )2

is the weight for each instrument based on the inverse of the variance of the

effect estimate, and βGi → Y is the causal estimate for each instrument.

The IVW method relies on several key assumptions for valid causal inference:

• No horizontal pleiotropy: The genetic variants affect the outcome only through the exposure and

not through other independent pathways.
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• Linear relationship: There is a linear relationship between the genetic variant’s effect on the ex-

posure and its effect on the outcome.

• No measurement error: The genetic associations with the exposure are measured without error

(although this assumption is relaxed in some cases).

The IVW estimate β̂IVW provides a weighted average of the causal effects estimated by each genetic

variant, with more precise variants (those with smaller variances) contributing more to the overall es-

timate. This approach is similar to a meta-analysis of individual genetic variants’ effects, weighted by

their inverse variances.
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Literature review

This chapter begins with an introduction to CVDs. It then reviews published articles on the use of

deep learning and retinal imaging, organized into two main sections: (1) the use of retinal imaging for

assessing CVD risk factors; and (2) the use of retinal imaging for assessing CVD events. Each of these

sections is further divided based on the imaging modality used, fundus photography or OCT. The final

section focuses on studies that integrate genetic data, retinal imaging, and CVDs, including those that

apply causal analysis. In Sections 3.2.3 and 3.3.1, we also discuss the limitations and gaps identified in

the current literature.

3.1 Cardiovascular diseases

CVDs continue to represent a significant global health challenge, affecting over 500 million individuals

worldwide. Specifically, in 2021, CVD accounted for 20.5 million deaths (World-Heart et al., 2023).

It is particularly concerning that up to 80% of premature myocardial infarction (MI) and stroke cases

could potentially be prevented through early detection (World-Heart et al., 2023). Moreover, the burden

of CVD disproportionately impacts low- and middle-income countries, where nearly four out of every

five CVD-related deaths worldwide occur (Lindstrom et al. 2023).

Currently, tools such as QRISK (quantitative risk assessment tool for cardiovascular disease) are utilised

in primary care settings by healthcare professionals to identify patients at higher risk of various CVDs.

These tools are commonly employed during health assessments to evaluate a patient’s risk based on

factors such as demographic details (e.g., ethnicity, age, gender), clinical indicators (e.g., cardiac volume

measurements, blood markers, indicators of obesity, etc.), and socioeconomic data (Li et al. 2019).
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Notably, early identification of individuals at risk is crucial, as premature CVD is highly preventable.

Effective primary prevention strategies have been shown to reduce CVD mortality and morbidity, as

demonstrated in several previous clinical studies (Lindstrom et al. 2023).

Recent research has highlighted the potential of retinal imaging as an innovative, non-invasive tool for

systemic vascular assessment (Guo et al. 2020; Yeung et al. 2020). The retinal and choroidal microvascu-

lature, which share embryological and physiological similarities with cerebral and coronary vasculature,

serve as sensitive indicators of systemic vascular pathology (Farrah et al. 2020). Retinal examinations

may thus provide early insights into microvascular dysfunction associated with CVD, including stroke

and MI (Anderson et al. 1995; Farrah et al. 2020).

The clinical utility of retinal imaging is further supported by its non-invasive nature, widespread avail-

ability in optometric and ophthalmologic practice, and established role in diagnosing systemic condi-

tions such as diabetes mellitus, hypertension, and atherosclerosis (Wagner et al. 2020; Flammer et al.

2013). Emerging evidence suggests that retinal vascular phenotypes, including vessel tortuosity, caliber

changes, and fractal dimension, correlate with cardiovascular risk profiles, offering a novel avenue for

early CVD detection (Hanssen et al. 2022). Furthermore, advances in AI-based image analysis have

enhanced the precision and scalability of retinal biomarkers for large-scale risk prediction (Wong et al.

2022).

3.2 Deep learning and retinal imaging

Numerous previous studies have investigated the application of AI in predicting both CVDs risk factors

and CVDs events through retinal imaging (Wong et al. 2022). This approach has garnered significant in-

terest due to the ease with which retinal images can be obtained during routine visits to ophthalmologists

or optometrists, as well as the cost-effectiveness of employing such modalities. These factors present a

valuable opportunity for the early detection of cardiovascular disease.

In this section, we will categorise the studies into two groups. First, we examine research that utilises

retinal imaging to assess CVD risk factors such as age, sex, and blood pressure. Next, we review

papers that investigate the relationship between retinal phenotypes and CVD events. In each of these

categories, we will focus on studies that employ only fundus photography and OCT data, as these are

the data utilised in this thesis.
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3.2.1 Retinal imaging for assessing CVD risk factors

Recent advancements in AI have been notably applied in the assessment of CVD risk through retinal

imaging. Various studies have investigated different AI techniques and retinal imaging modalities to

identify and evaluate CVD risk factors (Table 3.2.1).

Fundus Photography

Poplin et al. 2018 were the first to predict cardiovascular risk factors from retinal images using DL

methods. They employed a convolutional neural network (CNN) to analyze fundus photography (FP)

images, aiming to predict multiple CVDs risk factors, including age, sex, smoking status, blood pressure,

body mass index (BMI), and HbA1c level. Their model was validated on two datasets: UK Biobank and

EyePACS-2K. The study reported mean absolute errors (MAE) of 3.26 and 3.42 for age prediction,

respectively. For gender classification, they achieved an area under the curve (AUC) of 0.97 for both

validation sets. The model highlighted blood vessels when predicting risk factors such as age, sex, and

systolic blood pressure (SBP).

Similarly, Vaghefi et al. 2019 employed a CNN to predict smoking status using FP images, achieving an

accuracy of 88%. Their model highlighted the perivascular region and the fovea as key features.

Other studies have also utilized DL to predict various risk factors, including non-modifiable risk factors

(age, sex), modifiable lifestyle factors (drinking, smoking, BMI, waist-to-hip ratio), modifiable medi-

cal and biological factors (blood pressure, body composition, hemoglobin A1c, relative fat mass, glu-

cose, insulin, lipid profile, diabetes-related measures, C-reactive protein, hematocrit, mean corpuscular

hemoglobin concentration, bilirubin, hematological parameters, kidney and liver function, and thyroid

function markers), and hormonal factors (sex hormone-binding globulin, estradiol, testosterone) (Gerrits

et al. 2020; Zhang et al. 2020; Rim et al. 2020).

Sabanayagam et al. 2020 explored the use of CondenseNet for detecting chronic kidney disease (CKD)

using FP images, achieving an accuracy of 90%, highlighting the applicability of AI in detecting sys-

temic conditions from retinal images. Similarly, Zhang et al. 2021 utilized the ResNet-50 architecture,

incorporating metadata alongside FP images to predict CKD. Their study reported an AUC of 0.91

when combining image data with additional patient information, demonstrating superior performance

compared to using individual modalities alone.

Diaz-Pinto et al. 2022 employed a combined model of mcVAE and ResNet-50 to analyse FP, in conjunc-
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tion with cardiac magnetic resonance (CMR) and demographic data. This study focused on predicting

left ventricular mass (LVM) and left ventricular end-diastolic volume (LVEDV), achieving correlation

coefficients of R=0.65 and R=0.45, respectively. This demonstrates a stronger association between reti-

nal features and LVM compared to LVEDV.

Rim et al. 2020 utilised EfficientNet on FP to predict coronary artery calcium (CAC) scores, a crucial

indicator of atherosclerotic plaque burden. Their model achieved AUC of 0.73, indicating moderate

predictive capability. Son et al. 2020 applied the Inception-v3 model to FP to classify individuals into

low and high CAC score groups, with their model achieving an AUC of 0.83.

Lau et al. 2018 employed a pattern recognition neural network (PRNN) method to detect various retinal

vessel measurements, including arteriovenous nicking, arteriolar occlusion, and tortuosity. The model

aimed to predict the grade of age-related white matter changes, achieving a sensitivity of 0.93 and

specificity of 0.82.

Zee et al. 2021 implemented a ML framework combining a ResNet50 CNN for retinal feature extraction

with a classification tree model to analyze retinal vascular parameters, including the central retinal artery

equivalent (CRAE), central retinal vein equivalent (CRVE), and fractal dimensions of retinal vessels to

predict age-related white matter changes (ARWMC), achieving high diagnostic performance with a

sensitivity of 0.90 and specificity of 0.97.

Khan et al. 2022 used a support vector machine (SVM) to evaluate a broad range of retinal biomarkers,

including arteriovenous ratio, tortuosity index, and multifractal parameters, to predict pial collateral

blood flow in acute ischaemic stroke. Their model demonstrated a sensitivity of 0.74 and specificity of

0.71, reflecting balanced performance in identifying critical blood flow alterations during stroke events.

Nusinovici et al. 2022 applied the Visual Geometry Group (VGG) neural network to FP images, devel-

oping a model called ’RetiAGE’ to predict the probability f an individual being ≥ 65 years old. The

model demonstrated high performance, achieving an AUC of 0.968 and an area under the precision-

recall curve (AUPRC) of 0.83 in the Korean Health Screening study cohort. When validated on the

UK Biobank dataset, it showed lower performance, with an AUROC of 0.756 and AUPRC of 0.399.

Recently, Zhu et al. 2022 employed the Xception model to predict retinal age, a proxy for biological

age, achieving a MAE of 2.9 years, further underscoring the potential of advanced AI models for age

estimation from retinal images.
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Optical coherence tomography

In the realm of OCT imaging, Hassan et al. 2021 employed BagNet33 to predict chronological age and

sex, achieving a MAE of 4 years with a coefficient of determination (R2) of 0.77 for age prediction, and

an AUC of 86% for sex classification. Similarly, Chueh et al. 2021 applied ResNet18 to OCT images

for sex prediction, reporting an AUC of 0.91. The MAE for age prediction using DL on macular OCT

was 5.78 ± 0.29 years. Lastly, Munk et al. 2021 employed a CNN on OCT images to predict age and

sex, achieving an accuracy of 84% and an MAE of 5.625 years.

Menten et al. 2023 investigated the use of counterfactual generative adversarial networks (GANs) for

predicting retinal ageing through OCT images, with their model achieving a MAE of 3.1 years.
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Table 3.1: Overview of studies using AI for predicting CVD risk factors from retinal images

Paper AI Method Retina Modality CVD risk factors Database (n) Performance Metrics

Poplin et al. 2017 CNN FP Age, gender, smoking status, systolic

blood pressure, BMI, HbA1c levels

UKbiobank

(120090); Eye-

PACS (1684896)

MAE: 3.26%, 3.42%;

AUC: 0.97, 0.97; AUC:

0.71, n/a; MAE: 11.35,

n/a; MAE: 3.29, n/a;

MAE: n/a, 1.39

Vaghefi et al. 2019 CNN FP Smoking status Auckland (165103) Accuracy: 88%

Gerrits et al. 2020 MobileNet-V2 FP Age, sex, systolic blood pressure, diastolic

blood pressure, Haemoglobin A1c, relative

fat mass, testosterone

Qatar Biobank

(12000)

MAE: 2.78 years;

AUC:0.97; MAE: 8.96

mmHg; MAE: 6.84

mmHg; MAE: 0.61%;

MAE: 5.68 units; MAE:

3.76 nmol/L

Rim et al. 2020 VGG16 FP Age, sex, height, BMI, DBP, SBP Korea, China and

Singapore (236257)

AUC: 0.96; MAE: 2.43

years; MAE: 5.20 years;

MAE: 2.15; MAE: 7.20;

MAE: 9.29

Zhu et al. 2022 Xception FP Retinal age prediction UKbiobank (19200) MAE: 2.9 years

Sabanayagam et al.

2020

CondenseNet FP Chronic kidney disease detection SEED (11673) Accuracy: 90%
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Paper AI Method Retina Modality CVD risk factors Database (n) Performance Metrics

Zhang et al. 2021 ResNet-50 FP (metadata) Chronic kidney disease detection, type 2

diabetes

Henan, China (1222) AUC: 0.91

Hassan et al. 2021 BagNet33 OCT Age, sex UKbiobank (66767) Accuracy: 92%

Chueh et al. 2021 ResNet18 OCT Age, sex Taiwan (6147) MAE: 5.78; AUC: 0.91

Menten et al. 2023 Counterfactual

GANs

OCT Retinal aging UKbiobank (85709) MAE: 3.1 years

Diaz-Pinto et al.

2022

mcVAE+ResNet-

50

Fundus Photographs (CMR

and demographics)

Left ventricular mass, left ventricular end

diastolic volume

UKbiobank (5663) R:0.65 (LVM); R:0.45

(LVEDV) 0.45

Nusinovici et al.

2022

VGG FP Probability of an individual being ≥ 65

years old

Korea (161554) AUC: 0.968; AUPRC:

0.83

Rim et al. 2021 EfficientNet Fundus Photographs CAC prediction Korea (5590) AUC: 0.73

Son et al. 2020 Inception-v3 Fundus Photographs Low and high CAC scores Korea (44184) AUC:0.83

Lau et al. 2018 Pattern recog-

nition neural

network

Retinal vessel measure-

ments, arteriole-venous

nicking and arteriole oc-

clusion, hemorrhages,

tortuosity, bifurcation co-

efficients, asymmetry of

branches and bifurcation

angles

Age-related white matter changes grade CU-RISK (180) Sensitivity: 0.93;

specifcity:0.82
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Paper AI Method Retina Modality CVD risk factors Database (n) Performance Metrics

Zee et al. 2021 ResNet50 CNN +

classification tree

model

Central retinal artery equiv-

alent, central retinal vein

equivalent, arteriole–venule

ratio calculate, arteriole-

venous nipping, arteriole

occlusions, presence of

hemorrhage and exudates,

tortuosity, arterioles and

venules bifurcation co-

efficients, arterioles and

venules bifurcation angles,

arterioles, venules asymme-

try and fractal dimensions

Age-related white matter changes grade CU-RISK (240) Sensitivity: 0.90;

specifcity:0.97

Khan et al. 2022 SVM Arteriovenous ratio, Tortu-

osity index, Monofractal Df,

Vessel width, Multifractal,

Curve asymmetry, Singular-

ity length, f(α)max

Pial collaterals blood flow in acute is-

chemic stroke

Qatar (35) Sensitivity: 0.74;

specifcity: 0.71

Munk et al. 2021 CNN OCT Age, sex Bern, Switzerland

(85536)

MAE: 5.625 years;

AUC: 84%
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3.2.2 Retinal imaging for assessing CVD events

The use of AI in predicting CVD events through retinal imaging has garnered significant attention in

recent years. Table 3.2 summarises various studies employing diverse AI methodologies to analyse

retinal images for assessing CVD risk, with notable performance metrics.

Fundus photography

Diaz-Pinto et al. 2022 implemented a logistic regression model using demographic data alongside LVM

and LVEDV measurements derived from FP. Their model focused on predicting myocardial infarction,

achieving an AUC of 0.80. Poplin et al. 2017 employed the Inception-v3 model to analyse fundus

photographs for predicting major adverse cardiac events (MACE), reporting an AUC of 0.70.

Nusinovici et al. 2022 showed that the RetiAGE had a moderate predictive accuracy for cardiovascu-

lar mortality, achieving an AUROC of 0.70. The model demonstrated 76% sensitivity in identifying

individuals who died from CVD within a 10-year follow-up period.

Al-Absi et al. 2022 used the DenseNet-121 model on FP to differentiate between individuals with and

without CVDs, reporting an accuracy of 0.76, which demonstrates the model’s potential in distinguishing

between individuals with and without CVD.

Ma et al. 2021 applied a hybrid model combining Inception and ResNet-v2 to FP for predicting is-

chaemic CVD. The study reported a R2 of 0.88, indicating a strong correlation between predicted and

actual outcomes, and thus high predictive accuracy for ischaemic events.

Rudnicka et al. 2022 employed a Cox regression model to develop a retinal risk score based on age and

sex, using fundus photographs. The study aimed to predict circulatory mortality, stroke, and MI, with

R2 ranging from 0.33 to 0.44 for circulatory mortality, 0.21 to 0.35 for stroke, and 0.15 to 0.23 for MI.

Dai et al. 2020 utilised a CNN to analyse FP for predicting hypertension. The model reported an AUC

of 0.65, indicating moderate predictive accuracy for hypertension based on retinal images.

Mueller et al. 2022 applied a deep attention-based multiple instance learning approach to FP to distin-

guish between individuals with and without peripheral arterial disease. The model achieved an AUC of

0.89, reflecting high accuracy in differentiating peripheral arterial disease from other conditions.

Qu et al. 2022 employed the ResNet50 model to analyse various retinal features, including arteriove-

nous nipping, occlusion, haemorrhages, exudates, vessel tortuosity, and bifurcation angles, to predict
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ischaemic and haemorrhagic stroke. The model achieved AUCs of 0.93 for ischaemic stroke and 0.95

for haemorrhagic stroke, indicating excellent performance in stroke prediction based on retinal vascular

characteristics.

Gupta 2019 used a SVM on FP to predict stroke, achieving an accuracy of 0.95. This result underscores

the high precision of SVM in identifying stroke from retinal images.

Optical coherence tomography

Zekavat et al. 2023 employed logistic regression and Cox proportional hazards models to analyse retinal

layer thinning using OCT images. This study predicted a broad spectrum of cardiovascular conditions,

including coronary atherosclerosis, hypertensive heart and renal diseases, and peripheral vascular dis-

ease. The model’s performance was assessed using z-scores, demonstrating its comprehensive capacity

to predict a range of CVD outcomes based on retinal layer measurements.

Zhong et al. 2021 utilised multivariable logistic regression, incorporating clinical ECG and OCTA data,

to analyse the densities of the superficial and deep capillary plexuses in the perifovea. Their model aimed

to predict coronary artery disease (CAD) in patients with suspected angina, achieving a sensitivity of

0.813 and a specificity of 0.850, indicating strong diagnostic performance.

Zhou et al. 2023 introduced RETFound, a deep learning model trained on FP and OCT to predict MI,

heart failure (HF), and ischaemic stroke (IS), achieving AUCs of 0.737, 0.794, and 0.754, respectively.
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Table 3.2: Overview of studies using AI for predicting CVD events from retinal images

Paper AI Method Retina Modality CVD Events Database (n) Performance Metrics

Diaz-Pinto et al.

2022

Logistic regres-

sion model

LVM/LVEDV (demograph-

ics)

Myocardial Infarction UKbiobank (5663) AUC:0.80

Poplin et al. 2017 Inception-v3 FP Major adverse cardiac events UKbiobank

(120090); Eye-

PACS (1684896)

MACE: 0.70

Nusinovici et al.

2022

PhenoAGE + Re-

tiAGE system

FP Cardiovascular mortality Korea (161554) AUROC of 0.70

Zekavat et al. 2023 Logistic re-

gression, Cox

Proportional

hazard

Layer Thinning of OCT lay-

ers

Coronary atherosclerosis, hypertensive

heart/renal disease, hypertensive chronic

kidney disease, peripheral vascular dis-

ease, angina pectoris, nonspecific chest

pain, cardiac dysrhythmias, ischemic heart

disease, atrial fibrillation/flutter, essential

hypertension

UKbiobank (44823) z-score

Al-Absi et al. 2022 DenseNet-121 FP CVD vs. no CVD Qatar Biobank

(1839)

Accuracy:0.76

Zhong et al. 2021 Multivariable lo-

gistic regression

(Model clinical

ECG OCTA)

Superficial and deep capil-

lary plexus densities in the

perifovea

CAD in suspected angina patients Guangdong, China

(795)

sensitivity: 0.813; speci-

ficity: 0.850
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Paper AI Method Retina Modality CVD Events Database (n) Performance Metrics

Ma et al. 2021 Inception-

Resnet-v2

FP Ischaemic CVD China (841916) R2: 0.88

Rudnicka et al. 2022 Cox regression

model

Retinal risk score (Age and

sex)

Circulatory mortality, stroke, MI predic-

tion

UKbiobank (66326) R2: 0.33-0.44 (Circu-

latory mortality); R2:

0.21-0.35 (Stroke); R2:

0.15-0.23 (MI);

Dai et al. 2020 CNN FP Hypertension Shenyang, China

(2012)

AUC: 0.65

Mueller et al. 2022 Deep attention-

based Multiple

Instance Learn-

ing

FP Peripheral arterial disease vs No peripheral

arterial disease

Bonn, Germany

(135)

AUC:0.89

Qu et al. 2022 ResNet50 Arteriole-venous nipping

and occlusion, hemor-

rhages and exudates, Vessel

tortuosity, bifurcation coef-

ficients, Branch asymmetry

and bifurcation angles

Ischaemic and haemorrhagic stroke Shenzhen, China

(711)

AUC: 0.93 (Ischaemic

stroke); AUC: 0.95

(haemorrhagic stroke)

Gupta 2019 SVM FP Stroke NIH-eyeGENE (200) Accuracy:0.95
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Paper AI Method Retina Modality CVD Events Database (n) Performance Metrics

Zhou et al. 2023 RETFound FP and OCT MI, HF, IS MEH-MIDAS,

Kaggle EyePACS

(904,170 FP, 736,442

OCT)

AUC MI: 0.737 ; AUC

HF:0.794 ;AUC IS:

0.754
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3.2.3 Limitations in the current literature review

Despite its promising outlook, challenges remain in translating AI based CVD prediction into clinical

practice. These challenges include issues related to retinal image quality, data accessibility, and the

interpretability and generalizability of DL algorithms.

Most of the studies using retinal imaging has fundus photographs as modalities for the clinical settings.

While retinal fundus photographs offer a two-dimensional depiction of retinal vasculature, OCT with its

high-resolution 3D imaging capabilities allows for quantitative assessment of the thickness and structure

of different retinal layers and microvasculature, providing insights not possible with fundus photography

alone. The potential of 3D OCT imaging lies in its ability to detect subtle abnormalities in retinal

microstructure and microvasculature that may go unnoticed in 2D images, making it a valuable tool for

identifying early disease indicators (Farrah et al. 2020).

A major limitation of deep learning systems is their inherent “black-box” nature, which makes it diffi-

cult to interpret how features are extracted and how predictions are made. To address this, some studies

have employed explainability techniques, such as heatmaps, to highlight the most discriminative regions

in the decision-making process. Many heatmap-based methods, such as Grad-CAM, tend to produce

patchy and non-continuous regions, which makes it difficult to correlate highlighted areas with mean-

ingful anatomical structures. For instance, Zhou et al. 2023 identified the optic nerve head and retinal

vessels as key discriminative regions in fundus photography for CVDs prediction. However, their qual-

itative interpretability results lacked clear spatial coherence, as the heatmaps highlighted only small,

scattered regions rather than consistently delineating these structures. Similarly, in their OCT analysis,

they suggested that the nerve fiber layer and ganglion cell layer were the most critical features for pre-

diction. Yet, their heatmaps failed to provide clear, layer-specific activation, making it challenging to

determine which retinal layers significantly influenced the model’s predictions.

Furthermore, several studies (Diaz-Pinto et al. 2022; Zekavat et al. 2023) have not incorporated any

interpretability analysis, further limiting the clinical applicability of their deep learning models. The

absence of robust explainability methods hinders trust and adoption in medical practice, emphasizing

the need for more advanced and reliable interpretability techniques beyond conventional heatmaps.

In studies utilizing OCT imaging from the UK Biobank, a common approach has been to use only the

64th B-scan out of the available 128 B-scan volumes (Menten et al. 2023; Zhou et al. 2023). While this

selection may be a practical compromise, it risks excluding valuable structural information contained in
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the full volume, potentially affecting model performance and clinical relevance.

There is a notable gap in research exploring the integration of multiple retinal imaging modalities for

CVDs prediction. Many CVD-related retinal biomarkers manifest differently across imaging techniques,

yet only a limited number of studies have incorporated more than one modality in their analyses. For

instance, Zhou et al. 2023 successfully trained the RETFound model separately on FP and OCT images,

achieving strong predictive performance for MI, HF, and IS, with AUC values of 0.737, 0.794, and 0.754,

respectively. However, training a model that integrates both modalities could further enhance predictive

accuracy and robustness by leveraging complementary structural and vascular information from FP and

OCT. A multimodal approach could enable the detection of a broader range of retinal biomarkers, some

of which may not be discernible in a single imaging modality, thereby improving diagnostic precision.

Moreover, in real-world clinical practice, ophthalmologists and cardiologists rely on multiple imaging

techniques to inform their diagnoses. Therefore, a DL model trained on both FP and OCT could provide

AI-driven insights that more closely align with clinical decision-making, ultimately facilitating a more

comprehensive and reliable assessment of CVD risk.

3.3 Genetic and causal factors associated to cardiovascular disease risk

via retinal imaging

In this section, we focus in relevant literature that has explored intricate relationships between retinal

phenotypes, CVD events, and CVD risk factors, using genetic insights to deepen our understanding of

these associations. The synthesis of findings from several key studies highlights the retinal phenotypes,

associated CVDs, related genes, and, in some cases, the identified causal relationships.

Tomasoni et al. 2023 examined the tortuosity of arteries, veins, and a combination of both vessel types in

relation to type 2 diabetes, coronary heart disease, myocardial infarction, and other cardiovascular con-

ditions. The study identified significant associations with genes such as HMG20A, WDR12, COL4A2,

MYOZ2, LHFPL2, LRCH1, CSK, and CPLX3. Their findings suggest that increased arterial and ve-

nous tortuosity is linked to lower BMI and other cardiovascular risk factors, highlighting the genetic

underpinnings of these retinal changes.

Jiang et al. 2023 focused on arteriolar and venular tortuosity and width, linking these retinal phenotypes

to waist-hip ratio (as an indicator of obesity) and cardiovascular function via the COL4A2 and PDE3A

genes. The study found that increased arteriolar tortuosity causally influences blood pressure, offering

44



Genetic and causal factors associated to cardiovascular disease risk via retinal imaging

insights into how retinal vascular changes reflect systemic cardiovascular conditions.

Zekavat et al. 2023 explored fractal dimension (FD) and vascular density in relation to elevated blood

pressure and type 2 diabetes. Although specific genes were not mentioned, the study reported that

individuals with higher blood pressure and diabetes exhibited lower retinal vascular density and FD,

illustrating the impact of systemic conditions on retinal vasculature.

Vela et al. 2023 investigated a range of retinal vascular parameters, including artery and vein temporal

angle, tortuosity, vascular density, and diameters, in relation to hypertension and heart disease. The study

identified the FLT1 gene as a key marker, noting that elevated blood pressure correlates with reduced

retinal vascular density, and that BMI influences venous and arterial diameter variability.

Sergouniotis et al. 2024 analysed the inner and outer retinal limits using OCT, associating these with

the AFAP1L1 and ABLIM3 genes related to waist-hip ratio. While the study did not establish causal

relationships, it provided valuable genetic links to retinal structural changes.

Veluchamy et al. 2017 explored arteriolar and venular tortuosity, CRAE, CRVE, and other retinal mea-

surements in relation to heart rate and waist-hip ratio, identifying the ACTN4 and COL4A2 genes. Al-

though causal relationships were not established, the study demonstrated significant genetic associations

with retinal vascular phenotypes.

Currant et al. 2020 focused on the retinal nerve fibre layer and ganglion cell-inner plexiform layer,

linking these retinal layers to BMI via the INVS/FOXO3 and IGFBP3 genes. While causal relationships

were not discussed, the study highlighted important genetic correlations between retinal structure and

body mass.

These studies emphasise the intricate interplay between retinal phenotypes, cardiovascular and metabolic

diseases, and genetic factors. The repeated identification of genes such as COL4A2 and FLT1 across

multiple studies underscores their central role in retinal vascular health and systemic disease, pointing

to potential targets for future research and therapeutic interventions. Performance metrics, including as-

sociation strength and causal influence, provide quantitative evidence of these relationships, reinforcing

the utility of retinal imaging in understanding and predicting cardiovascular and metabolic health.
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Paper Retina Phenotypes CMD and Gene Causal Relationships
Tomasoni et al. 2023 Tortuosity measures of arteries, veins, and

combining both vessel types
type 2 diabetes HMG20A, coronary heart
disease WDR12, myocardial infarction
WDR12, waist-hip ratio (obesity) COL4A2
and MYOZ2, pulse pressure LHFPL2 and
LRCH1, diastolic blood pressure CSK and
CPLX3, mean arterial pressure CSK

arteries, and increased venous
tortuosity reduced BMI

Jiang et al. 2023 Arteriolar tortuosity, arteriolar width, venular
tortuosity and venular width

waist-hip ratio (obesity) COL4A2, cardiovas-
cular function PDE3A

increased AT causally influence
blood pressure

Zekavat et al. 2021 FD and vascular density N/A elevated blood pressure have
lower retinal vascular density
and FD, type 2 diabetes also had
lower retinal vascular density

Vela et al. 2023 Artery and vein temporal angle, ratio and vein
and artery tortuosity, ratio vascular density,
artery and ratio central retinal, artery and vein
std diameter, vein central retinal, bifucartions,
vein and artery vascular density, artery and
vein and ratio median diameter

hypertension and heart disease FLT1 elevated BP tend to have lower
retinal vascular density, BMI
may cause higher variability in
venous and arterial diameter

Sergouniotis et al. 2024 The inner- and outer-most limits
of the retina phenotypes of OCT

AFAP1L1/ABLIM3 waste-hip ratio N/A

Veluchamy et al. 2017 Arteriolar tortuosity, maximum arteriolar tor-
tuosity, venular tortuosity, maximum venular
tortuosity, CRAE, CRVE, arteriole-to-venule
ratio, nonvascular optic disc radius

heart rate ACTN4, waist-hip ratio (obesity)
COL4A2

N/A

Currant et al. 2020 Retinal nerve fibre layer and ganglion cell in-
ner plexiform layer

BMI INVS/FOXO3, Body Mass IGFBP3 N/A
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3.3.1 Limitations in the Current Literature Review

Retinal segmentation has been widely studied using fundus imaging, with most studies focusing on arte-

rial and venous metrics such as vessel width, arteriolar and venular tortuosity, and other morphological

features (Tomasoni et al. 2023; Jiang et al. 2023). However, research utilizing OCT imaging remains

limited, and when OCT is used, it often focuses on only a few retinal layers rather than providing a

comprehensive analysis (Sergouniotis et al. 2024). This gap restricts a deeper understanding of retinal

microstructure and its potential links to systemic diseases.

Additionally, research exploring the causal relationships between retinal biomarkers and broader phe-

notypic traits, diseases, or cardiovascular conditions using OCT imaging remains limited (Zekavat et

al. 2023; Sergouniotis et al. 2024). Existing studies primarily focus on association analyses, which do

not establish causality. In contrast, causal investigations have been more extensively conducted using

fundus photographs or phenotypes derived from them, highlighting a gap in OCT-based research.

Current segmentation methods in large-scale studies, such as Topcon Advanced Boundary Segmentation

(TABS), have been applied in datasets like the UK Biobank, achieving an average processing time

of 58 seconds per volume, including data fetching and analysis making it computationally intensive

and may not be optimal for large-scale applications (Keane et al. 2016). In contrast, deep learning-

based approaches, particularly CNN-based models, offer the potential to accelerate segmentation while

requiring fewer manually labeled ground truth images.

Among deep learning models, U-Net has gained popularity in medical image segmentation due to its

efficiency and accuracy in handling large datasets (Zekavat et al. 2023). More advanced architectures,

such as nnU-Net, have emerged, offering further improvements in segmentation performance. Despite

these advancements, the application of U-Net to OCT B-scan volumes remains largely unexplored, pre-

senting a promising avenue for future research. Integrating U-Net-based approaches into OCT analysis

could enhance automation, improve segmentation accuracy, and facilitate large-scale retinal imaging

studies. Future studies should explore these methodologies to unlock their full potential in clinical and

epidemiological applications.
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Chapter 4

Predicting cardiovascular diseases using

optical coherence tomography imaging

and demographic and clinical data

4.1 Introduction

This chapter is based on our paper Maldonado-Garcia et al. 2024, currently available on arXiv and un-

der review at Frontiers in Artificial Intelligence. This study introduces a predictive model that integrates

various types of data, including features derived from 3D OCT imaging through a self-supervised deep

neural network, along with patient demographic and clinical details. The aim is to detect individuals

at risk of Myocardial Infarction (MI) or stroke within five years after image capture. To the best of

our knowledge, this is a pioneering investigation into the application of 3D OCT imaging and artificial

intelligence for automatically identifying patients vulnerable to adverse CVD incidents. The main con-

tributions of this research are: (i) the development of a self-supervised feature selection VAE integrated

with a multimodal RF classification model, which effectively combines diverse patient data, including

OCT imaging, and clinical variables; (ii) the introduction of an innovative method for enhancing model

interpretability through vector field, enabling detailed localization of retinal features that significantly

contribute to the accurate identification of patients at risk of adverse cardiovascular events; and (iii) the

identification of the choroidal layer as the key feature influencing the model’s predictive accuracy for

cardiovascular disease risk.

48



Database

We described the most relevant studies in the Chapter 3 Section 3.2 employing fundus photographs, OCT

imaging as CVD risk factors, CVD biomarkers, CVD events predictors. In this study, we propose the

use of OCT due to its high-resolution 3D imaging capabilities, which allow for a quantitative assessment

of the thickness and structure of different retinal layers and microvasculature. This provides insights that

are not possible with fundus photography alone, and the potential of OCT has not been as extensively

studied compared to fundus photography. The strength of 3D OCT imaging lies in its ability to detect

subtle abnormalities in retinal microstructure and microvasculature that may go unnoticed in 2D images,

making it a valuable tool for identifying early disease indicators (Farrah et al. 2020). This advancement

in OCT technology has transformed retinal imaging by enabling the visualization of the chorioretinal

microcirculation, which can serve as an early sign of microvascular disease.

4.2 Database

In this research, we utilised retinal OCT imaging data sourced from the UK Biobank, captured using the

Topcon 3D OCT 1000 Mark 2 system (details regarding OCT are explained in Section 2.2.1). A total

of 68,109 and 67,681 participants underwent retinal imaging for their right and left eyes, respectively

at the Initial assessment visit (2006-2010). To ensure only high-quality images were included, we auto-

matically evaluated image quality using a quality index (QI) detailed in a prior study (Stein et al. 2006).

This QI is a globally accurate quality assessment algorithm derived from the intensity ratio, which is

based on a histogram covering the entire image, and the tissue signal ratio, indicating the ratio of highly

reflective pixels to less reflective ones. The QI is calculated as the product of two terms referred to as

Intensity Ratio (IR) and Tissue Signal Ratio (TSR). The IR is akin to the signal-to-noise ratio (SNR), but

rather than considering the maximum SNR value among all A-scans, it encompasses the entire image.

Meanwhile, TSR represents the ratio of highly reflective pixels to those with lower reflectivity. Figure

4.1 shows the distribution of the QI from both eyes.

We excluded images applying a quality score threshold, resulting in the exclusion of 14,573 images

for the left eye and 20,873 images for the right eye, leaving 53,108 and 47,236 remaining images,

respectively. Among these, we identified 2,448 (left eye) and 2,228 (right eye) images from participants

who had experienced a stroke or MI event, referred to as CVD+ participants. However, only images

from the left eye of 875 participants and the right eye of 791 participants were taken before the CVD

event. Furthermore, we omitted 131 patients with diabetes and/or cardiomyopathy for the left eye and

121 patients for the right eye. We also removed cases to address data imbalance, resulting in a final
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(a) Distribution of QI of the left eye (b) Distribution of QI of the right eye

Figure 4.1: Comparation of the distribution of the Quality Index from both eyes.

cohort of 612 subjects for both eyes. A visual representation of the participant selection and exclusion

criteria used to establish the cohort for this study is depicted as a STROBE diagram in Figure 4.2.

67,681 patients with OCT left eye
68,109 patients with OCT right eye

Population-Based Study Utilizing the UK Biobank Dataset

53,108 patients with OCT left eye
47,236 patients with OCT right eye

Excluded due to insufficient image quality:
14573 OCT left eye
20873 OCT right eye

2448 patients with CVD+ for left eye
2228 patients with CVD+ for right eye

50,660 CVD- controls for left eye
45,008 CVD- controls for right eye

Excluded because the image was taken 
after having CVD: 
1573 OCT left eye
1437 OCT right eye

875 patients with CVD+ for left eye
791 patients with CVD+ for right eye

131 and 121 patients diagnosed with  
cardiomyopathy and/or diabetes for the 
left and right eye, respectively

744 CVD patients classifier for left eye
670 CVD patients classifer for right eye

2234 CVD patients to 
train/validate CVD- classifier 
for the left eye
2234 CVD patients to 
train/validate CVD- classifier 
for the right eye

Unused images:
28,426 OCT left eye
22,774 OCT right eye

20,000 patients to 
train/validate VAE for left 
eye
20,000 patients to 
train/validate VAE for right 
eye

Excluded due to imbalance data:
132 for OCT left eye
58 for OCT right eye

612 patients to train/validate CVD classifier for 
left eye
612 patients to train/validate CVD classifer for 
right eye

Figure 4.2: STROBE flow chart describing participant inclusion and exclusion criteria applied to define
the study cohort.

This study exclusively encompasses patients who experienced MI or stroke within a five-year period

after OCT image acquisition. Figure 4.3 presents a bar plot illustrating the methods used to determine

the onset date of stroke or MI for the 612 CVD+ subjects involved in our classification task. The majority

of cases, approximately 350, were attributed to hospital primary records, followed by hospital secondary

records. The fewest cases were associated with death contributory records.
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Figure 4.3: Bar plots showing the methods used to determine the onset date of stroke or MI for the 612
CVD+ subjects involved in our classification task

The size of the CVD+ group was determined based on the application of specific inclusion and ex-

clusion criteria, as outlined in the STROBE diagram in Figure 4.2, resulting in a final count of 612

participants with OCT images of both eyes. For the non-CVD group, 2,234 participants were propen-

sity score-matched based on sex and age or CVD- for OCT images of both eyes. The essential patient

characteristics used to match the CVD+ and CVD- groups included demographic factors and clinical

measurements, which are detailed in Table 4.1. The average age of individuals with and without CVD

was 60.78 ± 6.47 years, showing no significant difference between the two groups. The majority of par-

ticipants in the UK Biobank cohort were of white ethnicity, with similar proportions in both groups. The

average body mass index (BMI) was 28.31 ± 4.45 kg/m² for those with CVD and 27.43 ± 4.33 kg/m² for

those without. In terms of blood pressure readings, individuals with CVD had a systolic blood pressure

(SBP) of 147.26 ± 19.57 mm Hg, while those without CVD had an SBP of 145.1 ± 18.75 mm Hg. The

diastolic blood pressure (DBP) was 84.75 ± 10.23 mm Hg for individuals with CVD and 83.22 ± 9.73

mm Hg for those without. The mean level of haemoglobin A1c (HbA1c) was 36.52 ± 4.32 mmol/L for

individuals with CVD and 36.59 ± 6.61 for those without. A notable percentage of participants reported
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being current alcohol consumers, accounting for 90.69% of individuals with CVD and 91.83% of those

without. These participant characteristics for both groups are summarized in Table 4.1.

Characteristics CVD+ CVD-

Number of subjects 612 2234

Age: Mean (s.d), years 60.78 (6.47) 60.78 (6.47)

Gender: F, M % 29.74, 70.26 29.74, 70.26

Ethnicity, % 90.18 White, 4.26 Mixed, 3.93
Asian or Asian British, 0.33
Black or Black British, 0.16 Chi-
nese, 1.15 Other ethnic group

89.22 White, 4.25 Mixed, 4.41
Asian or Asian British, 0.82
Black or Black British, 0.49 Chi-
nese, 0.82 Other ethnic group

BMI: Mean, kg/m2 28.31 (4.45) 27.43 (4.33)

SBP: Mean, mm Hg 147.26 (19.57) 145.1 (18.75)

DBP: Mean, mm Hg 84.75 (10.23) 83.22 (9.73)

HbA1c: Mean, mmol/mol 36.52 (4.32) 36.59 (6.61)

Alcohol consumption: N, P, C, NA % 3.59, 5.72, 90.69, 0 3.92, 3.92, 91.83, 0.33

Table 4.1: Characteristics of patients in the CVD+ and CVD- sets. N, Never. P, Previous. C, Current.
NA, Not answer.

We used an age-sex-matched cohort for controls in CVD and non-CVD scenarios with a ratio of 1:3,

respectively. One significant benefit of employing an age-sex-matched study cohort is that it helps

mitigate the effects of confounders that might heavily influence the predictive model. Machine learning

models may capture spurious correlations (i.e. to learn shortcuts) between predictors and targets, such

as, for example, linking age or gender to the presence of pathology, unless care is taken when defining

the predictors and study cohort (Brown et al. 2022). Figure 4.4 illustrates the age and sex in the CVD+

and CVD- patient groups, which were used to train and evaluate the predictive model proposed in this

study. The construction of the metadata incorporated eight clinical variables, namely sex, age, HbA1c,

systolic and diastolic blood pressure, alcohol consumption, and body mass index. The decision was

made to omit the smoking variable from the study analysis because a significant number of participants

did not provide responses to the relevant questionnaire item. From now on, the term metadata will be

used to describe patient details, including demographic and clinical history information.
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Figure 4.4: Distribution of age-sex cohort match. M, Male. F, Female. The left histogram illustrates the
total of CVD+ labeled data used solely for the classification task. The middle histogram shows the total
of CVD- for the classification task, while the right histogram illustrates CVD- used for the pretraining
task.

4.3 Methodology

4.3.1 Framework of self-supervised feature selection Variational Autoencoder and mul-

timodal random forest classification

This study proposes a predictive model for classifying patients into CVD+ and CVD- categories, com-

prising a Variational Autoencoder (VAE) (Kingma et al. 2014) to extract features in a self-supervised

manner from retinal OCT images, and a Random Forest (RF) classifier which combines the former with

patient metadata and uses the resulting set of multimodal features as predictors. The proposed model

consists of two stages, a self-supervised feature extraction stage, and a subsequent classification stage.

A schematic diagram of the overall predictive framework is shown in Figure 4.5.

Self-supervised VAE

In the first stage of the proposed model, a VAE is used to learn latent representations for B-scan OCT

images. We describe VAEs with more detail in Chapter 2 Section 2.6.1.

The loss function utilised for training the proposed self-supervised VAE comprises two key elements:

(1) the loss of mean square error (MSE) LMSE , detailed in Equation (4.2), which evaluates the dis-

crepancy in reconstruction between the original data (xi) and the reconstructed data (x̂i), and (2) the

loss of Kullback-Leibler divergence LKL, illustrated in Equation(4.3). KL divergence quantifies the

dissimilarity between the learnt latent distribution and a previously specified distribution p(z), which, in

this scenario, is a multivariate Gaussian distribution. The parameters of the learned distribution q(z) are

its mean (µi) and variance (σ2
i ) (the derivation of the KL divergence between the q(z|x) and the p(z)
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Figure 4.5: The workflow diagram illustrates the comprehensive process of training the Variational Au-
toencoder (VAE) and subsequently using it to acquire the latent vectors (upper section). These latent
vectors are then combined with metadata and serve as inputs to the Random Forest (RF) classifier (mid-
dle section). Finally, we perform an interpretability analysis by perturbing the most relevant features,
reconstructing the corresponding image and computing the vector field between the perturbed recon-
structions (lower section). zleft represents the latent vector obtained from the training of the VAE for
the left eye. Zright corresponds to the latent vector acquired from training the VAE for the right eye.

is explained in Kingma et al. 2014). By minimising the KL divergence, the model is incentivised to

shape a latent space that adheres to the target Gaussian distribution. The integration of these two loss

components steers the VAE towards the dual objective of reducing reconstruction errors and aligning the
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learnt latent distribution with the intended prior distribution.

LV AE = LMSE + βLKL (4.1)

LMSE =
1

N

N∑
i=1

(xi − x̂i)
2 (4.2)

LKL =
1

2

[
1 + log

(
σ2
i

)
− σ2

i − µ2
i

]
(4.3)

We trained independent VAEs for the left and right eye, to learn unique latent features from the OCT

images. Subsequently, a classifier used these learnt features to predict the probability of an individual’s

prospective CVD incidence.

Classification

Using the features acquired from the VAE in the previous stage, we trained a Random Forest (RF) clas-

sifier to distinguish between individuals in the CVD+ and CVD- categories, as illustrated in Figure 4.5.

The input for this process consists of the latent vector representation of each OCT image generated by

the VAE for each eye, which is merged with a vector containing the relevant patient information. RF

are a type of ensemble machine learning method that involves multiple decision trees, each of which

is trained on a randomly selected subset of training data (Breiman 2001)(see Section 2.4.1). Using the

power of numerous decision trees and incorporating random feature selection, this ensembling technique

enhances the generalisability of the predictive model to new data by reducing model variance by averag-

ing predictions from the trees in the ensemble. RF have been widely applied in medical settings for both

classification and regression tasks, including in previous studies related to CVD diagnosis (Khozeimeh

et al. 2022; Yang et al. 2020). One notable advantage of RF compared to other classification algorithms

is their ability to easily handle multimodal data that include various data types (such as categorical, or-

dinal, and continuous). Decision trees within the ensemble operate independently, and their combined

predictions are aggregated to produce the final RF prediction for a given input using majority voting for

classification tasks. This structure also provides feature importance, which enhances the explainability

of the model’s decisions. Additionally, RF is computationally efficient when compared to more complex

models, such as neural networks, as it does not require GPU resources for training.
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4.3.2 Model explainability

Predictive models based on machine/deep learning algorithms, proposed for identifying risk of disease

from medical imaging often fail to report both local and global explanations for the model’s predictions.

This is especially prevalent in the case of deep learning-based approaches that are often treated as black

boxes, with little information provided on the mechanism by which models arrive at specific predictions.

Local explanations provide insights to individual decisions/predictions of the model. For example, this

may involve identifying specific input variables/regions of an image that had the most influence on

the model’s prediction for that instance. On the other hand, global explanations describe the model’s

behaviour across predictions for all instances in all classes of interest. Specifically, global explanations

provide information on the most common discriminative features identified by the model for all instances

in each class of interest. Providing both local and global explanations of model behaviour is essential

for developing responsible AI in healthcare applications, as it can help identify systematic biases in data

and mitigate for the same (e.g., learning of ‘short-cuts’ is a common issue encountered in the application

of deep learning-based methods for predictive tasks using medical images), build trust in AI systems by

improving transparency in model decision making, and may even provide new insights to previously

known associations between image-derived phenotypes and the presence or progression of diseases.

Therefore, in this study, we employ distinct techniques to provide both local and global explanations for

the proposed predictive model.

Local explanations

To provide local explanations of the behaviour of the model and elucidate how the model uses OCT

imaging-derived features to classify instances in the CVD+ group, we first selected the best performing

RF classifier according to AUC value. Subsequently, based on the selected RF classifier, we identified

the latent variable derived from the OCT image with the highest importance assigned by the RF, which

we denoted zmax. To visually assess the regions of the retina in OCT images that contribute significantly

to the prediction of CVD, we propose a novel vector field-based latent traversal approach that evaluates

the impact of perturbing the most important latent feature zmax on subsequent reconstructions of OCT

images. Specifically, given an image x, we compute the corresponding latent vector z using the trained

encoder network. Next, we perturb only the dimension zmax of the calculated latent vector and re-

construct the corresponding image. This perturbation is performed by multiplying the latent dimension

zmax by a scalar value, which in this case is the standard deviation of this latent component, calculated
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across the training population and defined as σmax. The remaining latent variables in the computed la-

tent vector are left unchanged, resulting in a perturbed latent vector ẑ. Finally, we reconstruct the input

OCT image x̂ using the perturbed latent vector ẑ.

To visualise the regions in the reconstructed OCT images affected by the altered latent vector ẑ, we

examine the differences between the initial image x and the reconstructed image x̂ derived from ẑ.

In this context, we calculate the vector field between these images using the Lucas-Kanade algorithm

(Lucas et al. 1981). The resulting vector field, showing the magnitude of the vector field for the moving

pixels, was then superimposed on the original image, as shown in Figure 4.9. The vector field indicates

how the pixels between the images (that is, x̂ and x̂) change due to the latent traversal from z to ẑ. The

estimated vector field between x and x̂ helps to visually illustrate the regions in the OCT image that

were altered by modifying the latent component zmax. This aids in pinpointing the areas of the image

influenced by alterations to the crucial latent variable for accurately classifying a patient’s CVD risk

based on their OCT image(s), and consequently, helps to understand which retinal areas are informative

for distinguishing between the CVD+ and CVD- patient groups.

Global explanations

To provide global explanations of the behaviour of the model, we calculate the importance of the char-

acteristics assigned to each characteristic by the RF in each predictive model investigated. As mentioned

previously, the RF in each predictive model were trained using a reduced set of characteristics identified

by RFE. Feature importance is calculated in RF as the average Gini information gain for any given fea-

ture, calculated across all decision trees in the forest. The feature importance values for all classifiers

studied in this work, across all test set instances, are summarized as bar plots later. Additionally, we cal-

culate the relative importance of the type / channel of data used as inputs/predictors in this study, namely,

OCT images of the left and right eye and patient metadata, for the task of distinguishing between the

CVD+ and CVD- groups.

4.4 Experiments

All experiments were carried out with an NVIDIA Tesla M60 GPU. The model was trained using Py-

Torch (v1.10.2) and a grid search strategy was used with five-fold cross-validation to determine the best

hyperparameters (Table A.1). The data set was divided into training, validation, and test sets in a ratio

of 6: 2: 2. The encoder and decoder networks were constructed with six 2D convolution layers each; the
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encoder used Rectified Linear Unit (ReLU) activations, while Leaky Rectified Linear Unit (LeakyReLU)

activations were used in the decoder (see Table A.2).

During the classification phase, we conducted a thorough investigation into the impact of latent repre-

sentations derived from the OCT images of the left and right eyes, along with patient metadata, on the

predictive task. This was accomplished by generating seven distinct datasets from the same group of

2846 patients, each comprising different combinations of data sources: (i) latent representations from

the left eye only (LE); (ii) latent representations from the right eye only (RE); (iii) latent representations

from both eyes (BE); (iv) metadata only (MTDT); (v) left eye with metadata (LE-MTDT); (vi) right eye

with metadata (RE-MTDT); and (vii) both eyes with metadata (BE-MTDT). Random Forest classifiers

were trained separately on each of these seven datasets, as depicted in Figure 4.5 for the BE-MTDT

dataset. Finally, the optimal hyperparameter values of RF classifiers were determined through a combi-

nation of grid search and empirical experimentation, to identify the best performing RF model for each

specific dataset (see Table A.3). We divided the dataset into training, validation, and test sets, following

a distribution ratio of ∼ 5 : 2 : 3, respectively (resulting 1882 patients in the training set and 964 patients

in the held-out unseen test set). Grid search was performed using five-fold cross-validation, while an

independent, unseen test set remained fixed throughout all experiments to evaluate all trained classifiers

fairly. Furthermore, a feature selection method using Recursive Feature Elimination (RFE) (Guyon et al.

2002) was employed to mitigate overfitting and train the model with the most relevant variables for clas-

sification. RFE is to select features by recursively considering smaller and smaller sets of features. In

the majority of cases, the model was trained with the top 10 most significant features, with the exception

of the RE case, where, we used only 5 variables to avoid overfitting.

To evaluate the effectiveness of our model, we compared predictive performance against the QRISK3

algorithm (Li et al. 2019), the current gold standard used by healthcare professionals / cardiologists

to assess the patient’s risk of stroke or heart attack (acute myocardial infarction), in a 10-year period.

The QRISK score was calculated within the specified test dataset, following the methodological guide-

lines outlined in (Li et al. 2019). The evaluation of the QRISK3 score involved entering essential

variables such as the cholesterol-to-HDL ratio, age, SBP, standard deviation of SBP, smoking status,

BMI, Townsend score, sex, weight, height, and ethnicity based on available data. For our classification

task, we evaluated the model performance using a range of metrics. Accuracy, precision, sensitivity,

and specificity were determined by calculating true positives, true negatives, false positives, and false

negatives (using a classification probability threshold of t = 0.5, i.e. if the predicted probability is
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≥ 0.5, the patient is classified as CVD+, else as CVD-). The receiver operating characteristic (ROC)

curve was constructed by computing the true positive rate and false positive rate. The area under the

ROC curve (AUROC) was then employed as a performance measure to assess both our model and the

QRISK3 algorithm.

4.5 Results

4.5.1 Classification performance

As discussed previously, we trained and evaluated the performance of several RF classifiers, where

each classifier was trained and evaluated independently using seven different combinations of data types

obtained from the same set of patients (comprising CVD+ and CVD- groups). Specifically, the datasets

used were LE, RE, BE, LE-MTDT, RE-MTDT, BE-MTDT and MTDT. Henceforth, for brevity, we

refer to classifiers trained and evaluated on these datasets as LE-RF, RE-RF, BE-RF, LE-MTDT-RF, RE-

MTDT-RF, BE-MTDT-RF, and MTDT-RF. The performance of all seven classifiers was evaluated and

compared using the same unseen test set (which contains 964 patient data, 834 CVD- and 130 CVD+),

and using the same set of evaluation metrics outlined in Section 4.4.

The rationale for comparing all seven classifiers against each other was to:

• Assess whether combining latent features learnt from OCT images of both eyes (BE) provided

greater discriminative power than using those from either left (LE) or right eye (RE) alone

• Compare the discriminative power of OCT image-derived latent features against patient metadata

• Evaluate the discriminative power gained by enriching OCT image-derived latent features with

patient metadata

The performance of all seven classifiers on the unseen test set is summarised in Table 4.2. These results

show that the BE-MTDT-RF classifier consistently outperformed all six other classifiers, with statisti-

cally significant differences in p-values (refer to Table 4.3). This suggests that combining information

from OCT images of both eyes (ie, learnt latent representations) with patient metadata was more infor-

mative in distinguishing between the CVD+ and CVD- groups. In terms of evaluating the effectiveness

of OCT image-derived characteristics and metadata information for classifying CVD+ and CVD- pa-

tients, results for the BE-MTDT-RF, LE-MTDT-RF, RE-MTDT-RF and MTDT-RF classifiers indicate

that combining latent features learnt from OCT images with patient metadata (i.e. BE-MTDT-RF, LE-
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MTDT-RF, RE-MTDT-RF), consistently improves classification performance relative to using patient

metadata alone (MTDT-RF).

Classification Criteria

Classifiers Accuracy Sensitivity Specificity AUC

LE-MTDT-RF 0.68 0.69 0.68 0.72

RE-MTDT-RF 0.67 0.69 0.67 0.70

BE-MTDT-RF 0.70 0.70 0.70 0.75

MTDT-RF 0.52 0.52 0.52 0.57

LE-RF 0.61 0.56 0.62 0.64

RE-RF 0.58 0.53 0.59 0.62

BE-RF 0.64 0.57 0.65 0.67

Table 4.2: Predictive analysis of cardiovascular disease (CVD) metrics utilizing UK Biobank data across
seven distinct cases.

Specifically, the BE-MTDT-RF classifier demonstrated the highest performance, achieving an accuracy

of 0.70, sensitivity of 0.70, specificity of 0.70, and an AUC score of 0.75. Furthermore, combining latent

features from RE or LE OCT images with metadata (i.e., LE-MTDT-RF and RE-MTDT-RF) resulted in

improvements of 13− 17% across all classification metrics relative to the MTDT-RF classifier. Notably,

the MTDT-RF classifier exhibited the lowest values across all classification metrics, with an accuracy,

sensitivity, and specificity of 0.52, and an AUC score of 0.57. The BE-RF, RE-RF, and LE-RF classifiers

also consistently outperformed the MTDT-RF classifier in all classification metrics. However, they were

outperformed by classifiers that incorporated OCT image-derived features with patient metadata (i.e.,

BE-MTDT-RF, LE-MTDT-RF, RE-MTDT-RF).

Figure 4.6 presents four histograms depicting true positives, true negatives, false positives, and false

negatives for the seven classifiers investigated. A consistent observation across all our results is that

the BE-MTDT-RF classifier misclassified fewer instances in the CVD+ group, than all other classifiers,

which is consistent with the classification metrics summarised in Table 4.2. Similarly, the LE-MTDT-RF

and RE-MTDT-RF classifiers exhibited good sensitivity by incurring few false negative errors percent-

ages (11%) in the CVD+ group were incorrectly classified. The MTDT-RF classifier yielded fewer true

positives and true negatives (12% in both) compared to the other classifiers that utilized only OCT fea-

tures, which aligns with the results presented in Table 4.2.

A significant observation in the results is that including both eyes was advantageous for both cases, BE-

MTDT-RF and BE-RF, compared to their counterparts, LE-MTDT-RF and RE-MTDT-RF, RE-RF, and

60



Results

Classifier 1 Classifier 2 χ2 P value

BE-MTDT-RF LE-MTDT-RF 15.21 9.261× 10−05

BE-MTDT-RF RE-MTDT-RF 21.16 4.22× 10−06

BE-MTDT-RF MTDT-RF 93.23 4.65× 10−22

BE-MTDT-RF BE-RF 10.59 0.0011

BE-MTDT-RF LE-RF 27.43 1.63× 10−07

BE-MTDT-RF RE-RF 43.83 3.57× 10−11

BE-RF LE-RF 21.16 4.22× 10−06

BE-RF RE-RF 37.78 7.89× 10−10

LE-MTDT-RF RE-MTDT-RF 6 9.61× 10−05

LE-RF RE-RF 17.06 4.22× 10−06

Table 4.3: Comparison between various classifiers based on different configurations of eye data (both
eyes, left eye, right eye) and metadata inclusion. The chi-squared (χ2) values and associated p-values
indicate the statistical significance of differences between these classifiers.

LE-RF, respectively. Furthermore, in both scenarios, with/without metadata, the left eye consistently

provided improved classification performance compared to the right eye. This finding was statistically

significant, as indicated by the p-values reported in Table 4.3. This observation is in concordance with

the global explanations of models’ predictions summarised in Figure 4.7, wherein features attributed to

the left eye were found to be more discriminative (i.e., had higher feature importance) than those of the

right eye. We posit that the impact on the latent vectors associated with the left eye is interconnected with

the superior image quality of the images of the left eye within our cohort (see Figure 4.1). The UKBB

standard operating procedure stipulated that the second eye imaged was consistent with the left eye. This

protocol was not randomised. As a result, there may be potential systematic disparities between left and

right eye OCTs (for example, left eye scans might consistently exhibit better quality because they are

the second scan performed and patients are potentially more adept at following instructions). These

collective findings underscore the improved performance achieved by integrating retina OCT imaging

and metadata in the classification task.

Subsequently, we conducted a comparative analysis of the best classifier identified from the previous

experiments, namely BE-MTDT-RF, and the QRISK3 algorithm, the current clinical standard for as-

sessing patients at risk of stroke or MI. In our age-sex matched UK Biobank cohort, BE-MTDT-RF

achieved modestly higher discriminative performance (AUC: 0.75 vs. 0.60; Table 4.4). However, this

difference requires careful interpretation. QRISK3’s relatively lower performance here may reflect the

cohort’s age-sex matching, which attenuates the algorithm’s reliance on its two strongest predictors (age
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Figure 4.6: Comparison of classifier performance in terms of True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN). Values above the bars represent the corresponding per-
centages for each classifier.

and sex) (Ghosa et al. 2022). In contrast, our model leverages retinal microvascular features, which

may capture risk heterogeneity independent of demographics, potentially identifying high-risk individ-

uals overlooked by QRISK3’s macrovascular/metabolic focus. While promising, this advantage must be

validated in prospective, unmatched cohorts to assess real-world utility, as QRISK3 remains robust in

general populations.

Modality Accuracy Sensitivity Specificity AUC-Value

BE-MTDT-RF 0.70 0.70 0.70 0.75

QRISK 0.55 0.60 0.545 0.60

χ2 = 95.72, df = 1, p = 1.31× 10−22

Table 4.4: Comparison of classification metric results between our model employing both ocular data
and metadata (BE-MTDT) and the QRISK algorithm. McNemar’s Test (*p < 0.005)

62



Results

4.5.2 Ablation study

We conducted an ablation study comparing the BE-MTDT-RF model, which achieved superior results,

against a Multilayer Perceptron (MLP) algorithm. Table 4.5 provides the classification performance

metrics evaluated on the same holdout set used for the experiments reported in Table 4.2. For the MLP

model, we conducted a comprehensive grid search to identify its optimal configuration, ensuring a fair

comparison (Table A.4). Both models were evaluated using ocular data and metadata as input features.

The BE-MTDT-RF model demonstrated superior performance across all evaluated metrics. Beyond its

better performance, the BE-MTDT-RF model offers additional advantages: (i) RF feature importance

analysis provides insights into the contribution of individual features, aligning with our exploratory

goals and enhancing domain-specific understanding; (ii) Unlike MLPs, RF are less computationally

demanding and do not require GPU acceleration, making them more practical for our analysis.

Classification criteria

Modality Accuracy Sensitivity Specificity AUC-Value

BE-MTDT-RF 0.7 0.7 0.7 0.75

MLP 0.65 0.635 0.65 0.719

Table 4.5: Comparison of classification metric results between our model employing both ocular data
and metadata (BE-MTDT-RF) and the MLP algorithm.

4.5.3 Model explainability

In order to provide global explanations for the behavior of all classifiers investigated in this study, we

analysed the most important features identified by each model (refer to Figure 4.7) for distinguish-

ing between the CVD+ and CVD- groups. Important features identified for the best performing classi-

fier, namely, BE-MTDT-RF in particular, provided some noteworthy insights. As highlighted in Fig-

ure 4.7(a), we found that a latent variable learned from the left-eye OCT image, denoted zl066, had

the most influence on the classifier’s ability to separate CVD+ and CVD- patient groups. Additionally,

among the top 10 most important features identified for the BE-MTDT-RF classifier, 9 of the features

pertained to latent variables learned from the left-eye OCT image (see Figure 4.8). BMI was the only

feature from the basic set of patient metadata used to train the classifier, that was identified to have

a significant influence on the classifier’s predictions. Furthermore, looking at the global explanations

summarised in Figure 4.7(b), (e) and (f), we observe that latent variable zl066 consistently ranks among

the top two most important features for the LE-MTDT-RF, BE-RF and LE-RF classifiers, respectively.

This indicates that the retinal features encoded by zl066 are consistently considered to be relevant across
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(a) BE-MTDT-RF (b) BE-RF

(c) LE-MTDT-RF (d) LE-RF

(e) RE-MTDT-RF (f) RE-RF

(g) MTDT-RF

Figure 4.7: Calculation of feature importance magnitudes for the seven different classifiers investigated,
where each classifier uses different combinations of data channels/modalities. Latent variables starting
with ’zr’ refer to the right eye, while those starting with ’zl’ refer to the left eye.
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all four classifiers presented in Figure 4.7(a), (b), (e) and (f). Among the classifiers which combined

retinal OCT-image derived features with patient metadata, namely, BE-MTDT-RF, LE-MTDT-RF and

RE-MTDT-RF, we observed that only two features, namely, BMI and HbA1c, ranked among the top 10

most important features for the classification task. Both features are known and established cardiovas-

cular risk factors, and importantly, we infer from these results that the latent variables learned from the

retinal OCT images, had a greater influence on the classifiers’ predictions than the patient metadata vari-

ables. As previously highlighted, we hypothesize that the significant importance of the latent variables

corresponding to the left eye can be attributed to the superior image quality of left-eye OCT images

within our cohort (as illustrated in Figure 4.1). As a result, corresponding latent vectors z effectively

capturing image features that potentially enhance predictive capabilities.

Figure 4.8: Global explanations of features from different data modalities/channels which were consid-
ered important by the predictive model for separating the CVD+ and CVD- groups. Bar plot summarises
the relative importance of latent variables from left (zl) and right (zr) eye OCT images and patient
metadata, as percentages.

Using the insights gained from analysing the global explanations of classifier behavior summarised in

Figure 4.7, we propose a novel approach based on latent space traversals to translate the former into

local explanations that provide insights to regions of the OCT image that contain relevant information

for correctly identifying patients at risk of cardiovascular disease. Specifically, having identified latent

variable zl066, derived from left-eye OCT images as being the most important feature for classification,

our local explainability approach (refer to Section 4.3.2) begins by perturbing the values of the latent

variable for any image in the CVD+ group, reconstructs the OCT image using the perturbed latent rep-

resentation (using the pretrained VAE) and then estimates vector field maps between the original and

perturbed OCT image reconstructions, seeking to pinpoint the specific image regions that change as a
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result of the perturbation.

We conducted a qualitative analysis by estimating the vector field maps between the original recon-

structed B-scan OCT images and their perturbed counterparts for all CVD patients in the test set. By

overlaying the estimated vector field map onto the original OCT images, we visualized the retinal image

features encoded by the latent variable of interest. Although this process was applied to all high-risk

CVD patients, we present results for five representative cases here (Figure 4.9), with each row repre-

senting one patient. For each patient, we analyzed three B-scans: the 1st (top row), 64th (middle row),

and 128th (bottom row).

Optic flow maps

1st A-scan

64th A-scan

128th A-scan

Patient 1 Patient 2 Patient 3 ILM
RNFL

GCL
IPL

OPL
INL

IBMEIS
IB_OPR
IB_RPE
OB_RPE

Patient 4 Patient 5

Figure 4.9: Vector field maps presented for three differents B-scans for the left eye. The top row corre-
sponds to the 1st B-scan, the middle image for the 64th B-scan while the bottom row depicts the final
B-scan. The yellow circles represent the regions that the vector field maps highlight when modifying
the latent variable zl066.

The vector field maps generated by our model highlighted the choroidal layer in the majority of B-scans,

with additional identification of layers adjacent to the choroid, including the retinal pigment epithelium

(RPE). Additionally, the vector field maps highlighted the regions in the inner retinal layers, likely

corresponding to the retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) (Zhou et al. 2023).

Although some other layers received some, if less, emphasis, the main focus remained on the choroidal

layer and the innermost layers. The vector field maps provide precise localisation of the image regions

modelled by latent variable zl066 (visualised as landmarks, as shown in Figure 4.9), thereby providing

local explanations for the most discriminative regions within the OCT, and providing insights to which

retinal layers may contain relevant information for predicting risk of CVD in patients. In particular,

these local explanations highlighted the relevance of information contained within the choroidal layer

of the retina, for distinguishing between CVD+ and CVD- patient groups. Furthermore, vector field
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maps demonstrated the most consistent choroidal representation across all B-scans compared to other

established explainability methods (see Figure A.1).

4.6 Discussion

Our findings indicate that the use of retinal OCT images in conjunction with VAE and multimodal RF

classification has potential to identify patients at risk of CVD (within a five-year interval). Our inves-

tigation included the deployment of a self-supervised VAE coupled with an RF classifier framework,

which incorporates B-scan OCT images and metadata as distinct modalities. This integration allowed

our model to discern the specific attributes within the OCT images that contribute significantly to the

prediction of CVD. Importantly, our study distinguishes itself by interpreting the particular OCT image

features (at both the global i.e. class/category, and local i.e. instance, levels), which are relevant to

the classification task and thereby provide insights to the key regions of the retinal image that are most

discriminative. To the best of our knowledge, some studies have ventured into the application of OCT

within a primary care framework for CVD. However, these studies were limited in their explanatory

capacity regarding the effects of including images from both eyes and different types of patient data,

and used a small portion of the OCT B scans, limiting the information from the entire volume. Never-

theless, the performance results show promising outcomes for OCT as a modality in the primary care of

CVDs (Zhou et al. 2023). Additionally, a key benefit of the proposed approach is that it lends itself to

explaining model predictions in both a global (across all instances) and local (instance-specific) sense,

and thereby, provides insight into which retinal layers contain the most relevant information to identify

risk of CVD.

Interestingly, our results suggest that choroidal morphology is a predictor of identifying patients at risk

of CVD, which is consistent with previous studies (Yeung et al. 2020) that have reported significant

associations between choroidal characteristics and the risk of stroke and acute myocardial infarction.

Given that the choroid has the highest flow per perfused volume of any human tissue and that there is

growing evidence that changes in the choroid microvasculature can be indicative of systemic vascular

pathology (Ferrara et al. 2021), our findings offer clinical interpretability to the predictions of our classi-

fier. Currently, UK Biobank images are captured using a spectral domain (SD) OCT (Keane et al. 2016).

SD-OCT images suffer significant light scattering at the choroid, which limits the resolution of this layer.

Despite this limited resolution, it is encouraging to observe that the proposed approach focused on fea-

tures within the choroidal layer to identify patients at risk of stroke or myocardial infarction. To provide
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a greater context to the key findings reported in this study, it appears probable that once image modalities

with deeper tissue penetration, such as swept source OCT, become available at scale in population imag-

ing initiatives (such as UK Biobank), the predictive performance of learning-based systems such as ours

will improve (Copete et al. 2013). In addition to the choroidal characteristics, our results indicated that

the inner retinal layers contributed to the classification, including the retinal nerve fibre layer (RNFL),

the ganglion cell layer (GCL), and the inner plexiform layer (IPL). These aspects of the neurosensory

retina consist of retinal ganglion cells, their synapses with bipolar cells, and their axons. Regarding

the choroid, thinning and defects in these layers have received extensive study in relation to established

CVD, but their role as predictors of future disease has received limited attention (Chen et al. 2023;

Matuleviiūtė et al. 2022). Mechanisms that may underpin the role of neurosensory retina morphology

as a predictor of CVD are yet to be elucidated, although it could be hypothesised that subclinical ocular

circulatory pathology could explain morphological changes through local ischaemic damage (Chen et al.

2023), or neuronal degeneration could even occur through silent subclinical cerebral ischaemic vascular

changes manifesting in the inner retina through transneuronal retrograde degeneration (Langner et al.

2022; Park et al. 2013).

While our DL model demonstrates superior predictive performance compared to QRISK3, a direct com-

parison between the two is not entirely fair due to fundamental differences in their design and target

population. QRISK3 has been extensively validated across large, diverse population datasets, such as

the QResearch (Hippisley-Cox et al. 2017) and Clinical Practice Research Datalink (CPRD) cohorts

(Livingstone et al. 2021), and is widely used in clinical practice. Besides, QRISK3 incorporates well-

established clinical risk factors, including age, cholesterol, diabetes status, and smoking history, which

have strong, well-documented associations with CVD (Parsons et al. 2023). In contrast, our model relies

solely on retinal imaging, an emerging modality for CVD risk assessment that, while promising, has not

yet been as extensively validated as traditional risk models. Furthermore, our cohort consists of age-

and sex-matched participants, which may attenuate the algorithm’s reliance on these two strong predic-

tors (age and sex; Ghosa et al. 2022) and limit generalizability to real-world, unmatched populations.

Given that QRISK3 is already clinically validated and widely adopted, further research is needed to de-

termine how retinal imaging-based models can complement or enhance traditional risk assessments in a

clinically meaningful way.

A key limitation of this study stems from the varying class imbalance ratios across different stages of the

analysis. Initially, the CVD+ to CVD- ratio in the OCT imaging dataset was 1:30, reflecting the natural
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prevalence in the UK Biobank. After exclusions for data quality, this ratio improved to 1:4, which was

used for model training. While this balanced approach enhanced the classifier’s ability to learn CVD+

patterns, it may have introduced optimism bias in performance metrics. The test set used a 1:8 ratio

to better approximate real-world conditions, but this intermediate prevalence still differs from both the

natural distribution and the training set. Consequently, while the model shows strong discriminative

power (AUC 0.75), its sensitivity and specificity may not directly translate to clinical settings with

different prevalence rates. Future work should validate these findings in entirely unmodified cohorts and

explore techniques like cost-sensitive learning to account for natural class imbalances (Fernández et al.

2018).

Additionally, our dataset is derived from the UK Biobank, which is known to be less representative of

the general UK population. Participants in UK Biobank tend to be older, more likely to be female, live

in less socioeconomically deprived areas, have lower obesity rates, consume less alcohol, smoke less,

and generally have fewer health conditions (Fry et al. 2017). This healthy volunteer bias could influence

our model’s performance and limit its generalizability to broader clinical settings.

Although the focus of this study was on spectral domain OCT imaging, future improvements to the

presented work could include the use of more informative retinal imaging modalities such as swept

source OCT imaging or wide-field OCT angiography (OCTA) imaging. We hypothesise that learning

representations from multi-modal retinal imaging (e.g. fundus photographs, OCT, OCTA) may improve

the classification performance of the proposed approach.

In general, this investigation has supported the utility and prospective predictive value of OCT imaging

to identify people at risk of stroke or acute myocardial infarction, suggesting it may be useful for future

clinical risk prediction.
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Chapter 5

Integrating deep Learning with fundus

and optical coherence tomography for

cardiovascular disease prediction

5.1 Introduction

This chapter builds upon a conference paper originally presented at the PRIME workshop of the MIC-

CAI conference (Maldonado-Garcia et al. 2025). In this chapter we employ both retina images available

from the UKBiobank, fundus photographs and OCT, for CVD prediction. This study presents a novel

predictive model that integrates various types of retinal data, including features derived from OCT imag-

ing and fundus photographs, by employing a multichannel variational autoencoder and a transformer

network classifier. The key contribution of this research is the development of an advanced predictive

model that synergistically combines multi-modal retinal patient data to identify individuals at risk of

developing CVD within five years of image capture. This approach aims to enhance our understanding

of the systemic changes that contribute to an increased risk of cardiovascular diseases in patients.

A literature review on the use of retinal imaging is discussed in Chapter 3, Section 3.2. In this study, we

propose the use of two retinal imaging modalities (fundus and optical coherence tomography). The intri-

cate nature of biological tissues, organs, and disease processes requires the integration of complementary

information provided by multimodal imaging techniques. This approach offers the medical community

a more accurate characterization of disease phenotypes and enables the extraction of clinically relevant
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quantitative data (Rajiah et al. 2019; Govindarajan et al. 2005).

Retinal imaging has shown significant promise in predicting CVDs, particularly due to its accessibility

during routine ophthalmological or optometric exams. This accessibility suggests that cardiovascular

health screening could become an ancillary benefit of standard eye assessments. However, the literature

reveals a lack of studies that utilize both imaging modalities concurrently for CVD prediction. Most

existing research fails to fully leverage the potential of combined data or conduct comprehensive com-

parative analyses of dual-modality approaches versus single-modality methods (Zhou et al. 2023; Huang

et al. 2023).

Therefore, the development of advanced statistical and machine learning techniques for the effective

integration and analysis of these diverse data sources is crucial for improving patient care.

5.2 Dataset

For the present study, we utilized retinal OCT and fundus imaging data obtained from the UK Biobank.

We focused on retinal imaging of the left eye, as we assumed that prior familiarity with the testing

procedure appeared to yield scans with systematically higher overall quality (Sergouniotis et al. 2024;

Patel et al. 2016). During the baseline visit (2006-2010), a total of 67,656 participants underwent retinal

imaging for both modalities. Quality control exclusion criteria for OCT and fundus images were applied

in accordance with established protocols (Zekavat et al. 2023; Fu et al. 2019). Following rigorous

quality assessment, 43,097 participants with high-quality OCT images and 41,271 participants with

high-quality fundus images were identified as suitable for further analysis. Among these, 5,125 patients

with OCT data and 3,911 patients with fundus data experienced a CVD event. After excluding patients

whose images were acquired post-CVD events and those diagnosed with ocular diseases or diabetes, the

final cohort comprised 2,142 patients for OCT images and 1,652 patients for fundus images who suffered

CVD (CVD+). Notably, 977 CVD+ patients had both retinal modalities available. For the patients without

CVD or control group (CVD-), 38,886 participants had OCT data, and 38,553 participants had fundus

data. Of these, 21,758 participants had both retinal modalities available.
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Figure 5.1: STROBE flow chart outlines the patient selection process for a study using the UK Biobank
dataset with OCT and Fundus images of the left eye.

Figure 5.1 illustrates the inclusion and exclusion criteria for our study. The focus of the study is on

the left eye’s OCT and Fundus images. The study balances the cohorts by excluding cases with image

quality issues, post-diagnosis images, other eye diseases, and imbalanced data, resulting in a robust

dataset for assessing cardiovascular disease using retinal imaging.

5.3 Methodology

5.3.1 Framework of Task-Aware Multi-Channel Variational Autoencoder (task-aware

MCVAE)

This study proposes a predictive model for classifying patients into CVD+ and CVD-. The methodology

comprises two stages: (1) training a Multi-Channel Variational Autoencoder (MCVAE) (Antelmi et al.

2019) using both retinal modalities as inputs from approximately 18,000 CVD- patients, with the ob-

jective of extracting features from retinal OCT and fundus images, and (2) implementing a transformer-

based binary classifier. The inputs consist of volumetric OCT B-scans and fundus photographs, which

are utilized to learn a compressed latent representation of the high-dimensional image data. This latent

representation is subsequently employed by the transformer classifier to differentiate between CVD-
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Figure 5.2: The illustration shows the architecture of our model. During the pre-training phase (left),
fundus photographs and OCT images are processed through a 2D CNN and a 3D CNN encoder-decoder
network (in a multi-channel VAE configuration), respectively. In the fine-tuning phase (right), the im-
ages are processed through the pre-trained encoder-decoder networks. The resulting latent vectors are
aggregated and input into a transformer architecture, followed by a fully connected layer. The model
undergoes end-to-end training in both phases.

subjects and those at risk of future CVD (CVD+) (see Fig. 5.2).

The detail of Multi-channel Variational Autoencoder (MCVAE) is given in the Section 2.6.2.

Transformer encoder classifier

To further utilize the latent representation z obtained from the MCVAE, we introduce a classifier built

using a transformer architecture (Vaswani et al. 2017). The input to the classifier is the latent space

representation z, which is fed into a series of transformer encoder layers. We propose using a transformer

as the Multi-Head Self-Attention mechanism has demonstrated the ability to focus on different parts of

the input representation, capturing dependencies and interactions between different latent dimensions

(Benarabet al. 2022). The final output of the transformer encoder layers is passed through a fully

connected layer followed by a softmax activation function to produce classification probabilities. The

transformer encoder classifier is trained to minimize a binary cross-entropy loss function, enabling it to

learn from the latent representations and make accurate predictions.

Losses

The loss function used to train the proposed model is presented in Equation (5.1), and is composed of:

(1) the mean square error (MSE) LMSE loss (see Equation (5.2)) for the reconstruction error between

the original data (xi) and reconstructed data (x̂i); (2) the binary cross-entropy loss LBCE (see Equation
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(5.3)) for the classification task, where, ygi and ypi denote the ground truth class label and predicted class

probability for the ith sample; and (3) the derivation of KL divergence loss LKL (see Equation (5.2;

details in Kingma et al. 2014)).

Ltask−aware−MCV AE = Lrecon + Lclass (5.1)

Lrecon =
1

N

N∑
i=1

(xi − x̂i)
2 +

1

2

N∑
i=1

[
1 + log

(
σ2
i

)
− σ2

i − µ2
i

]
(5.2)

Lclass = LBCE = − 1

N

N∑
i=1

[ygi log (y
p
i ) + (1− ygi ) log (1− ypi )] (5.3)

Model interpretation

To elucidate the model’s behavior and provide local explanations for its classification decisions, par-

ticularly in relation to the CVD+ group, we employed a two-step approach leveraging both feature

importance analysis and visualization techniques. Initially, we utilized the SHAP (SHapley Additive

exPlanations) library to compute SHAP values (Lundberg et al. 2017), enabling the identification of

latent variables derived from both retinal imaging modalities that contribute most significantly to the

CVD classifications. This approach allows for a quantitative assessment of feature importance within

the learned latent space. Subsequently, we applied the methodology of vector field maps, as developed

in Chapter 4 Section 4.3.2. This process focused on the latent vectors exhibiting the highest contribu-

tion to the classification outcomes. We systematically altered these critical latent vectors, visualized the

resulting reconstructions of the modified latent representations, and subsequently calculated the vector

field between the original and perturbed reconstructions.

5.4 Experiments

The experimental procedures were conducted utilizing an NVIDIA Tesla M60 GPU. The model was

implemented using PyTorch (v1.10.2), and optimal hyperparameters were determined through a grid

search strategy employing five-fold cross-validation (see Table B.1). The dataset was partitioned into

training, validation, and test sets in a 5:2:3 ratio. For the fundus network, both encoder and decoder

architectures comprised six 2D convolutional layers. The OCT image network utilized four 3D con-
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volutional layers for both encoder and decoder components. In both instances, the encoder employed

Rectified Linear Unit (ReLU) activations, while the decoder implemented Leaky Rectified Linear Unit

(LeakyReLU) activations (refer to Tables B.2 and B.3).

Our end-to-end model architecture consists of two primary stages: the Multi-Channel Variational Au-

toencoder (MCVAE) training stage and the task-aware MCVAE transformer classifier training stage. The

model accepts two types of retinal images as input: fundus photographs and B-scan OCT images. Each

modality is processed by its respective encoder. The MCVAE is optimized to minimize the reconstruc-

tion loss (the discrepancy between original and reconstructed images) and the KL divergence between

the latent variable distributions and the prior p(z). In the fine-tuning phase, the latent representations z

serve as input to the multimodal transformer classifier. The transformer encoder processes these latent

representations, utilizing its capacity to capture complex dependencies and interactions within the latent

space. It enhances the latent features through multi-head self-attention mechanisms and feed-forward

neural networks, thereby learning richer representations. The transformer encoder’s output is subse-

quently processed through a fully connected layer. During this stage, the model is trained to minimize

the classification loss, employing a binary cross-entropy loss function that quantifies the difference be-

tween predicted and actual CVD classifications. All subjects’ images used for pre-training the MCVAE

were excluded from subsequent experiments, where the task-aware MCVAE was trained and evaluated to

identify patients at risk of future CVD based on their retinal images. We employed an age-sex-matched

cohort for the CVD+ and CVD- groups. This approach has been demonstrated to offer a significant ad-

vantage in mitigating the influence of confounding variables on the predictive model (Zhou et al. 2023;

Brown et al. 2022). During the classification phase, we conducted a comprehensive investigation into

the impact of latent representations derived from OCT and fundus imaging on the predictive task. This

was accomplished by generating three datasets from the same cohort of around 3,000 patients, each

comprising different combinations of data sources: (i) latent representations from fundus photographs;

(ii) latent representations from OCT imaging; and (iii) latent representations from both fundus and OCT

modalities.

5.5 Results

5.5.1 Classification performance

In this study, we aim to evaluate the efficacy of two retinal imaging modalities, fundus photography

and OCT, for predicting patients at risk of having a CVD event. To accomplish this objective, we have
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constructed datasets comprising three distinct cohorts: one utilizing solely fundus images, another em-

ploying only OCT images, and a third integrating both retinal modalities (Fundus-OCT). To evaluate

the model’s efficacy, we have employed the three classifiers on test set not used for learning, com-

prising 1,000 CVD- subjects and 100 CVD+ subjects. Our primary aim is to investigate whether the

amalgamation of latent features derived from OCT images and fundus photographs provides superior

discriminative power compared to the utilization of either modality in isolation.

Figure 5.3: The bar chart displays the classification metrics for Fundus, OCT, and combined Fundus-
OCT modalities. The metrics shown include Accuracy, Precision, Sensitivity, Specificity, and AUC
(Area Under the Curve) values, with their respective standard deviations. The colors represent different
modalities: Fundus (black), OCT (red), and Fundus-OCT (yellow). Each bar is labeled with its corre-
sponding value.

The results indicate that the combined Fundus-OCT classifier generally demonstrates superior or equiv-

alent performance to the individual Fundus and OCT classifiers across the majority of metrics, with

particular emphasis on precision and sensitivity. The observed minor variations in accuracy and AUC

among the modalities fall within the margins of error, suggesting that while the integration of modali-

ties tends to enhance performance, these improvements may not always achieve statistical significance.

Nevertheless, the combined Fundus-OCT modality consistently exhibits higher or equal performance

across various metrics, lending support to the hypothesis that the integration of multiple retinal imaging

modalities can provide more comprehensive and discriminative features for CVD prediction (see Fig-

ure 5.3). The overlapping confidence intervals (CI) suggest that the differences in performance metrics

among the modalities are not highly significant (refer to Table 5.1). However, the consistent perfor-
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mance improvement observed with the combined modality (Fundus-OCT) indicates practical benefits in

the simultaneous utilization of both imaging modalities.

Metric Fundus CI OCT CI Fundus-OCT CI
Accuracy (0.662, 0.677) (0.6827, 0.697) (0.675, 0.687)
Precision (0.693, 0.707) (0.662, 0.678) (0.733, 0.746)

Sensitivity (0.674, 0.688) (0.713, 0.727) (0.723, 0.738)
Specificity (0.641, 0.658) (0.606, 0.619) (0.672, 0.687)

AUC (0.753, 0.767) (0.772, 0.787) (0.773, 0.788)

Table 5.1: 95% CI for classification metrics of the Fundus, OCT, and Fundus-OCT classifiers. Each
interval represents the range within which the true metric value is expected to lie with 95% confidence,
providing insight into the precision and reliability of the classifiers’ performance.

The superior performance of combined fundus photography and OCT in cardiovascular risk stratification

stems from their complementary capabilities in assessing different aspects of microvascular pathology.

Fundus photography provides comprehensive two-dimensional visualization of the retinal vasculature,

enabling evaluation of structural changes such as arteriolar narrowing, venular widening, and altered

vascular branching patterns, all established markers of systemic microvascular dysfunction. Meanwhile,

OCT offers three-dimensional, depth-resolved quantification of both neural retina and choroidal lay-

ers, detecting early subclinical alterations like choroidal thinning (indicative of impaired ocular blood

flow) and retinal nerve fiber layer loss (reflecting end-organ damage from hypertension). The synergistic

value arises because fundus images primarily assess the superficial vascular plexus, while OCT specif-

ically evaluates the deeper choroidal circulation and neural tissue integrity - together providing a more

complete assessment of ocular microvascular health. This combined approach captures both the struc-

tural vascular changes (via fundus) and the resulting tissue-level consequences (via OCT), mirroring

the panvascular nature of cardiovascular disease pathophysiology. Additionally, while fundus photog-

raphy excels at detecting established microvascular damage through visible vascular alterations, OCT’s

ability to identify preclinical changes (e.g., choroidal thinning before visible retinopathy develops) pro-

vides earlier detection capability. The integration of these modalities thus offers a more comprehensive

evaluation of microvascular health across different disease stages, explaining their enhanced predictive

performance compared to either modality alone in cardiovascular risk assessment.

Furthermore, we conducted a comparative analysis between the Fundus-OCT classifier, which demon-

strated the highest performance across classification metrics, and the QRISK3 algorithm, the current

clinical standard for assessing patients at risk of stroke or myocardial infarction. The results of this com-

parison are presented in Table 5.2, where our model outperformed the QRISK3 algorithm in terms of
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accuracy, sensitivity, specificity, and AUC. The observed superior performance of our model compared

to QRISK3 in age- and sex-matched cohorts may be partially attributed to the diminished contribution of

QRISK3’s strongest predictors (age and sex) (Ghosa et al. 2022) within this study design. As QRISK3

was developed and validated in general population cohorts where age and sex contribute substantially to

risk prediction, its performance may be attenuated in matched cohorts. This methodological approach,

while controlling for demographic confounders, may introduce selection biases that artificially enhance

our model’s apparent performance, as it relies more heavily on retinal biomarkers that are less dependent

on these demographic factors.

Classification metrics

Modality Accuracy Sensitivity Specificity AUC-Value

Fundus-OCT 0.68 ± 0.02 0.73 ± 0.02 0.68 ± 0.01 0.78 ± 0.02

QRISK 0.55 0.615 0.545 0.59

Table 5.2: Comparative analysis of our model (Fundus-OCT) and QRISK algorithm in predictive clas-
sification metric.

5.5.2 Ablation study

Confusion matrices for the classification of retinal images using Fundus, OCT, and Fundus-OCT modal-

ities (see Figure 5.4). Each matrix displays the true positives (TP), false negatives (FN), false positives

(FP), and true negatives (TN) for each modality, along with the totals for prediction positives, prediction

negatives, and overall totals. To evaluate the efficacy of our end-to-end training approach, we conducted

an ablation study in which only the classifier component was trained, omitting the training of the MC-

VAE. In this experimental scenario, our loss function was restricted to the classification loss exclusively

(refer to Equation (5.3)).

Consistent with our previous findings, the utilization of both retinal modalities yielded superior out-

comes across nearly all classification metrics. The results demonstrate that, when compared to our

comprehensive end-to-end model, the classification metrics for all three classifiers (Fundus, OCT, and

Fundus-OCT) were significantly diminished in the ablation study. This observed discrepancy suggests

that the end-to-end training approach enhances the model’s capacity to learn and focus on the salient fea-

tures that distinguish CVD+ and CVD- patients, thereby improving overall classification performance.

The classification metrics for the retinal modalities in the ablation study are presented in Table 5.3. It is

evident that while the Fundus-OCT classifier maintains its superior performance relative to the individual

Fundus and OCT classifiers, the overall performance is attenuated compared to the end-to-end trained
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Figure 5.4: Comparison of classifier performance in terms of TP, TN, FP, and FN. Values above the bars
represent the corresponding percentages for each classifier.

model. Specifically, we observed reductions in all classification metrics. These findings underscore the

critical importance of comprehensive end-to-end training for optimizing classifier performance.

Metrics Fundus Fundus CI OCT OCT CI Fundus - OCT Fundus - OCT CI
Accuracy 0.58 0.56 - 0.60 0.62 0.60 - 0.64 0.60 0.58 - 0.62
Precision 0.60 0.58 - 0.62 0.57 0.54 - 0.60 0.62 0.59 - 0.65

Sensitivity 0.58 0.56 - 0.60 0.56 0.52 - 0.60 0.62 0.59 - 0.65
Specificity 0.56 0.53 - 0.59 0.58 0.55 - 0.61 0.55 0.52 - 0.58

AUC - Value 0.60 0.57 - 0.63 0.63 0.60 - 0.66 0.64 0.63 - 0.65

Table 5.3: Classification metrics for the retina modalities (Ablation Study). This table compares the
performance of classifiers trained without the end-to-end approach, highlighting the reduced efficacy
across all metrics when the MCVAE is not trained alongside the classifier.

5.5.3 Interpretation.

Following the identification of latent vectors exhibiting the highest contribution to the prediction of pa-

tients at elevated risk of future cardiac events using the SHAP values (see Figure 5.5), we systematically
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altered the z values of both OCT and fundus images that demonstrated the highest values. For each

case, we reconstructed the retinal modality utilizing the modified z values and subsequently estimated

the vector field maps between the original reconstructed image and the perturbed reconstructed image.

In Figure 5.6, we present examples from five randomly selected patients purely for visualization pur-

poses, all identified as being at high risk of developing CVD. For simplicity, in the case of OCT, we only

show the 64th B-scan example, although the entire volume was processed. Figure 5.6(a) displays the

qualitative OCT results, while Figure 5.6(b) shows the fundus results, where the yellow points highlight

the most pronounced differences.

Figure 5.5: The top 5 latent vectors z58, z112, z24, z106, and z101 are identified based on their SHAP val-
ues, which measure the contribution of each feature to the model’s prediction of cardiovascular disease
risk.

Figure 5.5 illustrates the top 5 latent vectors that have the greatest influence on the prediction of CVD

risk, as identified using the SHAP methodology. These vectors represent the features extracted by the

task-aware MCVAE model that contribute most significantly to the predictive performance. Specifically,

the vectors z58, z112, z24, z106, and z101 are shown to have the highest SHAP values, indicating their

importance in the model’s decision-making process.

The vector field maps generated by our model predominantly emphasized the choroidal layer in the
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Figure 5.6: a) The top row displays a sequence of Optical Coherence Tomography (OCT) images, high-
lighting the different layers of the retina with yellow markers indicating regions of interest. b) The
bottom row shows corresponding fundus images with vascular structures and regions of interest also
marked in yellow. These images are utilized for analyzing and predicting cardiovascular disease risks
based on retinal biomarkers.

OCT volume, as well as the retinal pigment epithelium (RPE). These results suggest that the choroidal

layer may play a pivotal role in distinguishing between CVD+ and CVD+ patients. In the case of fundus

images, blood vessels were prominently highlighted in the majority of patients in the unseen test set,

along with the optic disc. This observation aligns with established clinical indicators of retinal vascular

health and its association with cardiovascular risk. These findings provide quantitative evidence of the

specific retinal features that our model prioritizes in its classification process, offering insights into the

potential biomarkers for cardiovascular risk assessment using multi-modal retinal imaging.

5.6 Discussion

Our findings demonstrate the efficacy of latent representations derived from retinal OCT images and

fundus photographs, learned through a MCVAE, in predicting CVD when employed within a multimodal

transformer classifier. This outcome corroborates previous studies that have identified relevant vascular

biomarkers and cardiac health indicators within retinal imaging (Maldonado-Garcia et al. 2024; Zhou

et al. 2023). Our study utilized a pre-trained MCVAE that integrates B-scan OCT images and fundus

photographs as distinct modalities, enabling our model to identify specific attributes within both types

of retinal images that significantly contribute to CVD prediction. To our knowledge, only one other

study has employed both fundus and OCT modalities for predicting certain CVDs; however, that study

was limited to a single B-scan of the OCT, did not train the modalities jointly, and provided limited
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detail on the advantages and contributions of each modality (Zhou et al. 2023). A key contribution

of our study is the interpretation of specific features in OCT images and fundus photographs that are

relevant to the classification task, providing insights into the most discriminative regions of the retinal

image. Our results suggest that choroidal morphology is a significant predictor of CVD risk, aligning

with previous studies reporting associations between choroidal characteristics and the risk of stroke and

acute myocardial infarction (Yeung et al. 2020). Similarly, our model highlighted the optic disc and

prominent veins in fundus images, which have been extensively studied and recognized as indicators of

cardiovascular health. Abnormalities in retinal vessel caliber, branching patterns, and overall vascular

geometry have been consistently correlated with CVD risk in previous studies. Furthermore, alterations

in the morphology of the optic disc, including variations in its size, shape, and coloration, have been

associated with various cardiovascular risk factors (Guo et al. 2020). These features are instrumental in

elucidating the systemic impacts of cardiovascular health on the retinal microvasculature.

Several important limitations of this study warrant consideration when interpreting our results. First, our

exclusive reliance on UK Biobank data means our findings inherit the known limitations of this resource,

particularly its reduced representativeness of the general UK population. The cohort’s well-documented

“healthy volunteer” bias, with participants being predominantly white, more likely female, and exhibit-

ing healthier behaviors (lower smoking and alcohol consumption rates) than population averages, may

affect the generalizability of our model to more diverse clinical settings (Fry et al. 2017).

The comparison between our retinal imaging-based model and QRISK3 requires nuanced interpretation.

While we observed superior discriminative performance in our age-sex matched cohorts, this advantage

must be contextualized. QRISK3’s predictive power derives substantially from age and sex factors

(accounting for approximately half of its risk calculation (Ghosa et al. 2022)), which were deliberately

controlled in our study design. In clinical practice, QRISK3 benefits from extensive validation across

diverse populations through the QResearch and CPRD databases (Hippisley-Cox et al. 2017; Livingstone

et al. 2021), and incorporates well-established risk factors including cholesterol levels, diabetes status,

and smoking history. In unmatched general populations, QRISK3’s AUC typically reaches 0.75-0.80,

suggesting our results may overstate the relative advantage of OCT in clinical practice (Hippisley-Cox

et al. 2017; Li et al. 2019). Our retinal imaging approach, while demonstrating promise as a potential

complementary tool, requires further validation to establish its clinical utility alongside these established

risk assessment methods.

Methodologically, our use of varying class balance ratios across study phases (from the initial 1:20 CVD+
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to CVD- ratio in the full dataset to 1:20 in model training and 1:10 in testing) introduced important

considerations. While this progressive balancing strategy improved model stability during development,

it may have created optimistic performance estimates compared to real-world prevalence rates. Future

validation efforts should prioritize evaluation in unmodified cohorts reflecting natural disease prevalence

and explore alternative approaches like cost-sensitive learning to better handle inherent class imbalances

(Fernández et al. 2018).

Looking ahead, two key research directions emerge to advance this work. First, the integration of multi-

organ imaging data could potentially enhance the model’s predictive accuracy and provide a more holis-

tic view of cardiovascular health. Additionally, the inclusion of an external validation dataset will be

crucial for assessing the generalizability of our model across diverse populations and clinical settings.

This step is essential for establishing the robustness and clinical applicability of our approach in real-

world scenarios.

The concordance between our model’s emphasis on these specific retinal features and established clinical

indicators of cardiovascular risk provides validation for our approach. It suggests that our deep learning

model has learned to identify and prioritize clinically relevant features in both OCT and fundus images

for cardiovascular risk prediction. This alignment between machine learning-derived features and known

clinical markers not only enhances the interpretability of our model but also reinforces its potential

clinical utility. However, substantial work remains to establish whether and how retinal imaging can

meaningfully contribute to clinical decision-making pathways for cardiovascular disease prevention and

management.
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Chapter 6

Mendelian randomisation studies of

OCT-derived retinal phenotypes and

cardiovascular disease

6.1 Introduction

In this chapter, we explore an alternative approach to understanding the use of retinal imaging in relation

to CVDs. Specifically, we introduce a framework that employ Mendelian randomisation to explore the

causal relationships between CVDs and OCT phenotypes, utilising the large-scale genetic data from the

UK Biobank alongside retinal images to investigate genetic variants that influence the thickness of retinal

layers. The aim is to investigate the biological mechanisms underlying the association between identified

retinal biomarkers and cardiovascular diseases, thereby establishing potential causal links. This study

makes three key contributions: i) the application of the state-of-the-art nnU-Net segmentation model for

10 OCT layers using 50 ground truth images, ii) the identification of novel genetic loci associated with

OCT-derived phenotypes, and iii) the establishment of a causal relationship between OCT features and

cardiovascular events through Mendelian randomisation.

Recent genetic investigations into retinal microvasculature and vasculature have uncovered numerous

previously unidentified loci, as well as genes and pathways implicated in CVD (Tomasoni et al. 2023;

Jiang et al. 2023; Zekavat et al. 2021; Vela et al. 2023; Currant et al. 2020), a review of the literature

on retinal imaging and genetic data is discussed in Chapter 3, Section 3.3. In this study, we propose
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integrating OCT imaging with genetic data to gain a more comprehensive understanding of the complex 

biological mechanisms underlying systemic diseases such as CVD. OCT was specifically chosen as it has 

been less extensively studied compared to fundus imaging, and offers valuable insights into the thick-

ness of retinal layers, which these images provide. Furthermore, we demonstrate through Mendelian 

randomisation that CVD, along with some well-known risk factor for the disease, is strongly implicated 

in the causal pathway affecting OCT layer thickness. This approach has the potential to uncover new 

insights that could contribute to the development of enhanced diagnostic tools and therapeutic strategies.

6.2 Dataset

6.2.1 OCT imaging data from the UK Biobank

For this study, we utilized retinal OCT imaging data from the UK Biobank (see Chapter 2 section 2.2.1 

for more references). We focused on retinal imaging of the left eye, which we found that is generally of 

higher quality than the right eye (see Figure 4.1). During the baseline visit (2006-2010), retinal imaging 

was performed on 67,339 participants for both modalities. We applied quality control exclusion criteria 

for OCT data according to established protocols (Zekavat et al. 2023). First, we excluded participants 

with an image quality score (a measure of scan signal strength) below 45, as defined by UK Biobank 

(Data-Field-28552), retaining 61,708 subjects. Next, we excluded the bottom 20% of scans based on 

the ILM indicator quality, which quantifies boundary sharpness and detects artifacts (e.g., blinks, signal 

fading, or segmentation errors) (Data-Field-28542; Ko et al. 2017). This step removed an additional 

18,611 participants, ensuring robust data for downstream analyses. Finally, we focused on individuals 

within a genetically homogenous white European cohort (Data-Field-22006). The final dataset for the 

primary analysis comprised 42,350 subjects (see Figure 6.1).

6.2.2 SNP microarrays used in the UK Biobank.

The genotypic data available from the UK Biobank, was employed two closely related SNP arrays to 

generate its extensive genotypic dataset (Bycroft et al. 2017). This ambitious genotyping effort en-

compassed over 480,000 participants, utilizing technology from Affymetrix to capture a wide spectrum 

of genetic markers.

The initial phase of genotyping involved 49,550 participants, who were assessed using the UK BiLEVE 

Axiom array. This array provided coverage of 807,411 distinct genetic markers. Following this, the 

majority of participants, 438,427 individuals, were genotyped using the UK Biobank Axiom array, which
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Figure 6.1: STROBE flow chart describing participant inclusion and exclusion criteria applied to define
the study cohort.

expanded the coverage to 825,927 markers. Despite being separate arrays, these tools were designed

with significant overlap, sharing 95% of their marker content to ensure consistency across the study

population.

The arrays were custom-designed for the UK Biobank project, with marker selection guided by several

strategic considerations:

• Phenotype-specific markers: Approximately 45,000 markers were chosen based on their relevance

to particular traits or conditions of interest.

• Genomic hotspots: Around 47,000 markers were selected from regions of the genome known to

be of particular scientific or clinical importance.

• Coding variants: A substantial portion of the arrays, about 125,000 markers, focused on variations

within protein-coding regions of genes.

• Population genetics: The arrays were designed to provide comprehensive genome-wide coverage,

facilitating accurate imputation in European populations. This coverage spanned both common

variants (those with a minor allele frequency greater than 5%) and low-frequency variants (those

with a minor allele frequency between 1% and 5%).

This carefully curated approach to marker selection ensured that the UK Biobank’s genetic data would

be a valuable resource for a wide range of genetic studies, from common disease risk to population

structure analysis.
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6.2.3 Genotype imputation in the UK Biobank.

The UK Biobank’s genetic dataset was significantly enhanced through the application of genotype impu-

tation, a sophisticated statistical technique that expands the scope of genetic information beyond directly

assayed markers. This process leverages densely genotyped reference panels to infer genotypes at loci

not directly measured in the study sample, thereby increasing the resolution and power of genetic anal-

yses.

Imputation serves multiple crucial functions in genetic research:

• It amplifies the statistical power of association studies.

• It enables more precise identification of causal variants through fine-mapping.

• It facilitates the integration of findings across studies using different genotyping platforms.

The UK Biobank imputation effort utilized two distinct reference panels: i) A composite panel combin-

ing data from The UK10K project (Ciampi et al. 2015) and The 1000 Genomes Phase 3 (Oleksyk et al.

2015) (This panel encompassed 12,570 haplotypes and over 87 million bi-allelic markers); ii) The Hap-

lotype Reference Consortium (HRC) panel (McCarthy et al. 2016) (Included nearly 65,000 haplotypes

and covered approximately 40 million markers).

The imputation process employed a modified version of the IMPUTE2 algorithm, which uses a hidden

Markov model to estimate missing genotypes. When a SNP was present in both panels, the HRC impu-

tation was preferentially selected. This comprehensive approach resulted in a vastly expanded dataset

comprising: 92,693,895 autosomal genetic variants, including SNPs, short insertions and deletions (in-

dels), and large structural variants across 487,442 individuals.

To ensure standardization and facilitate integration with other genetic databases, dbSNP Reference SNP

(rs) IDs were assigned to markers wherever possible. These identifiers were sourced from rs ID lists in

the UCSC genome annotation database, based on the GRCh37 assembly of the human genome. This

imputation strategy significantly broadened the scope of genetic variation captured in the UK Biobank,

creating a rich resource for diverse genetic investigations, from common disease risk to complex trait

analysis.
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Figure 6.2: Example of a 64th B-scan OCT, displaying the boundaries of 10 layers. The corresponding
labels for these layers are provided in the figure on the right.

6.3 Methodology

6.3.1 Optical coherence tomography imaging segmentation

The delineation of retinal layers was established through The Iowa Reference Algorithms (Retinal Image

Analysis Lab, Iowa Institute for Biomedical Imaging, Iowa City, IA) (Abràmoff et al. 2010), identify-

ing boundaries for 10 distinct layers across 50 OCT volumetric scans which will be the ground truth

masks for the segmentation model. The boundaries of the OCT volumes are: ILM (Internal limiting

membrane), RNFL Retinal nerve fiber layer, GCL Ganglion cell layer, IPL Inner plexoform layer, INL

Inner nuclear layer, OPL Outer plexiform layer, BMEIS Boundary of myoid and ellipsoid of inner seg-

ments, IS/OSJ Inner/outer segment junction, RPE Retinal pigment epithelium, IB OPR Inner boundary

of Outer segment PR/RPE complex, IB RPE Inner boundary of RPE, OB RPE Outer boundary of RPE

(see Figure 6.2).

Subsequently, layer boundaries are translated into a format suitable for semantic segmentation where

we assign labels to individual pixels in the image to mark the specific boundaries of different regions in

the image.The 50 original OCT volume images and their corresponding 50 ground truth segmentation

masks were used to train the state-of-the-art nn-UNet model (Isensee et al. 2020), while the remaining

OCT volumes were reserved for testing. This demonstrates the advantage of using deep learning algo-

rithms, where a small amount of ground truth data is sufficient to train the model efficiently, requiring

minimal computational resources and completing the training process in a short time (less than 2 hours

for training and under 10 hours overall). The segmented output obtained by the nn-UNet were then used
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to calculate the thickness maps of each layer (totaling 10 layers).

6.3.2 Phenotypes of thickness maps of variational autoencoder

To calculate the thickness of each retinal layer, we analysed OCT images where each layer had been

delineated using segmentation masks (binary images) highlighting specific retinal structures. For each

of the 512 points along the horizontal axis, we measured the vertical distance between the upper and

lower boundaries of the segmentation mask corresponding to the layer of interest. The final result is a

volume consisting of 10 slices, each representing one of the layers where each slice has dimensions of

128 x 512, where 128 corresponds to the projection of each A-scan of the volume, and 512 represents

the width of each scan. We did this process for all the UK Biobank patients that met the inclusion criteria

in this study (see Figure 6.1).

6.3.3 Mendelian randomization

We performed Mendelian randomization (MR) analyses using published GWAS summary statistics from

the EBI GWAS Catalog, CARDIoGRAMplusC4D, and FinnGen databases. To avoid sample overlap

bias, we excluded all UK Biobank-derived GWAS from our exposure datasets. While our restriction

to European-ancestry cohorts limits the generalizability of findings to other populations, it minimizes

confounding due to population stratification and ensures robust instrument strength. Full details of the

GWAS sources, including accession links and sample sizes, are provided in Appendix C Section C.2.1.

We used the 64 latent vectors derived from the VAE of retinal layer thicknesses, as described in Section

6.3.2. The MR methodology, including instrument selection, and causality assumptions, is detailed in

Chapter 2 Section 2.9.

6.4 Experiments

All experiments, both for the segmentation task and the autoencoder, were conducted using an NVIDIA

Tesla M60 GPU. For the segmentation of the OCT B-scan volumes, the nnUNet was trained over 100

epochs. The optimal model was determined to be the 3D variant, based on the best hyperparameters iden-

tified. For the VAE model, we utilised PyTorch (v1.10.2) and implemented a grid search strategy with

five-fold cross-validation to select the best hyperparameters (see Table C.1). The dataset was split into

training, validation, and test sets in a ratio of 6:2:2. The final encoder and decoder networks were each

constructed using three 2D convolutional layers; the encoder employed Rectified Linear Unit (ReLU)
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activations, while Leaky Rectified Linear Unit (LeakyReLU) activations were used in the decoder. The

latent dimension was set to 64 (see Table C.2).

The UK Biobank used SNP microarrays to genotype all participants. Quality control of the genetic data

involved filtering variants according to several criteria: a minor allele frequency (MAF) threshold of

1%, a Hardy–Weinberg equilibrium test with a significance threshold of p < 10−5, and an imputation

information score greater than 0.3. After applying these filters, 8,000,193 genotyped variants were

retained. Retinal phenotypes were adjusted for various covariates, including sex, age, age2, height,

weight, refractive error (calculated as spherical error + 0.5 × cylindrical error), and 10 genetic principal

components.

For the GWAS, we employed an additive linear model implemented in BGENIE (BGENIE 2018). Dur-

ing preprocessing, all latent vectors were inverse rank-normalised before being modelled with BGENIE.

Mendelian randomisation analysis was conducted using the TwoSampleMR package in R (Hemani et al.

2018). In this analysis, summary statistics from genetic association studies related to various CVD and

their associated risks were utilised as the exposure variable (see details in C.2.1). These studies were

selected based on genome-wide significance (p < 5× 10−8). The latent vectors obtained from the VAE

of the OCT-derived phenotypes served as the outcome variable, with the same set of technical covariates

applied as in the aforementioned GWAS. The inverse variance weighting (IVW) method was employed

for this analysis.

6.5 Results

6.5.1 Results of qualitative segmentation

An example of the qualitative results is shown in Figure 6.3. Visually, the segmentation masks appear

to be of high quality, with clear separation of the retinal layers. This indicates that the model has

successfully learned the corresponding pixels for each layer, demonstrating its effectiveness for the

subsequent task of determining the thickness of each layer.

6.5.2 Results from qualitative and quantitative analysis of thickness maps

An example of a reconstructed subject is shown in Figure 6.4. The resulting images display promising

outcomes, suggesting that the model is effectively learning the most representative features of the thick-

ness maps. This allows the model to capture the characteristics of the variation in layer thickness across
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Figure 6.3: An example of the nnUNet segmentation results for the ten layers of OCT.

patients, yielding high-quality results in OCT scans.

Figure 6.4: Thickness maps generated from Optical Coherence Tomography (OCT) data, illustrating the
Variational Autoencoder (VAE) model’s performance in analyzing 10 layers of tissue.

The table 6.1 presents the Root Mean Square Error (RMSE) values for the 10 different retinal layers,

indicating the accuracy of a predictive model or measurement method in quantifying the thickness or

properties of these layers.

Layer RMSE
Layer 1 (ILM-RNFL) 0.22 ± 0.08
Layer 2 (RNFL-GCL) 0.27 ± 0.11
Layer 3 (GCL-IPL) 0.14 ± 0.07
Layer 4 (IPL-INL) 0.21 ± 0.08
Layer 5 (INL-OPL) 0.16 ± 0.07
Layer 6 (OPL-BMEIS) 0.10 ± 0.05
Layer 7 (BMEIS-IS/OSJ) 0.53 ± 0.13
Layer 8 (BMEIS-IB OPR) 0.64 ± 0.14
Layer 9 (IB OPR-IB RPE) 0.23 ± 0.10
Layer 10 (IB RPE-OB RPE) 0.17 ± 0.06

Table 6.1: Root Mean Square Error (RMSE) for each retinal layer.

Layer 6 (OPLBMEIS) has the lowest RMSE of 0.10 ± 0.05, suggesting that the model or method used

to predict or measure the thickness of this layer is the most accurate among all layers. Otherwise, layer

8 (BMEIS-IB OPR) has the highest RMSE of 0.64 ± 0.14, indicating that this layer’s thickness is the

most challenging to predict or measure accurately, with the largest discrepancies between the predicted
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and actual values; also, this layer has a relatively high variability (0.64 ± 0.14), which suggests that

the errors are not consistent and can vary widely. Layers with RMSE values between these extremes,

such as Layer 7 (BMEIS-IS/OSJ) with an RMSE of 0.53 ± 0.13, also suggest areas where prediction

accuracy could be improved.

6.5.3 Results of the GWAS

We demonstrate that this approach effectively discovers additional biologically relevant genetic asso-

ciations. It identifies 90 loci with study-wide significance, expanding on previous knowledge. All

discovered genes are provided in Table 6.2.

Our GWAS revealed 17 novel retinal associations (20% of significant loci), highlighting previously un-

recognized genetic influences on retinal structure. Several of these loci are implicated in ocular patholo-

gies. For example, ERCC6 is linked to age-related macular degeneration (AMD), with studies showing

altered mRNA levels in RPE cells of healthy and early AMD donor eyes (Baas et al. 2010). Another

gene, NGLY1, is associated with congenital disorder of deglycosylation, leading to reduced tear pro-

duction and other ocular abnormalities in affected children (Adam et al. 2019). Additionally, HSP90B1

plays a critical role in retinal nervous system function (Nasaré et al. 2015).

We also replicated 54 known retinal loci (64%), many with well-established phenotypic roles. The Sine

oculis homeobox gene SIX6 regulates glaucoma development (Carnes et al. 2014), while PITX3 con-

tributes to congenital posterior subcapsular cataract (Wu et al. 2019). RDH5 is associated with familial

fleck retina and night blindness (Qian et al. 2022), and mutations in LAMC1 disrupt ocular basement

membranes, including the inner limiting membrane, as demonstrated in zebrafish models (Richardson et

al. 2017). Finally, GUCY2D, essential for photoreceptor function, is critical for normal vision (Neubauer

et al. 2022).
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Table 6.2: This table presents the results of our GWAS, including: significant SNPs, their closest genes, prior known associations with retinal phenotypes from
existing GWAS literature, and classification as either novel or previously reported in retinal GWAS.

SNP Closest Gene
Prior Retinal

GWAS Associations
Retinal Association

Status

1:200383761 GTTCCTG

AACAAATAAAAT G

PDE6B None reported Novel

rs56029302 CDC42BPA Cataracts Established

rs12408663 NBL1 Retinal thickness Established

rs3737306 ALOX5 None reported Novel

rs4838417 ERCC6 None reported Novel

rs56238729 LINC02640 Optic nerve measure-

ment

Established

rs10998176 COL13A1 Optic disc size Established

rs4601657 PITRM1 None reported Novel

rs2817706 CNNM1 None reported Novel

rs4919505 PITX3 Lens, Ocular stroma,

and its derivatives

Established

rs2071754 PAX6 Optic cup Established

rs12408663 NBL1 Retinal thickness Established

rs72930261 TPCN2 Retinal vascular frac-

tal dimension

Established
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SNP Closest Gene
Prior Retinal

GWAS Associations
Retinal Association

Status

rs1126809 TYR Melanin for pigmen-

tation in the eye, in-

cluding the iris and

RPE

Established

rs10753550 E2F2 Overexpression

relate to increase

retinal RPE cell

density in vivo

Established

rs12791393 OAF Retinal thickness Established

rs12319755 PLEKHA5 None reported Novel

rs3138142 RDH5 Refractive error,

High myopia, Spher-

ical equivalent

Established

rs117821803 LINC02410 Refractive error Established

rs2373980 HSP90B1 None reported Novel

rs566259299 TRPV4 retinal ganglion cells

and bipolar cells

Established

rs5442 CDCA3 Glaucoma, Refrac-

tive error, Myopia

Established

rs72680588 GCH1 None reported Established

rs2350892 SIX6 Glaucoma Novel
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SNP Closest Gene
Prior Retinal

GWAS Associations
Retinal Association

Status

rs56073585 VSX2 retinal progenitor

cells

Established

rs7152160 FLRT2 Development of the

zebrafish eyes

Established

rs35337422 RD3L Refractive error,

GCIPL thickness,

myopia

Established

rs2614205 UNC13C None reported Novel

rs796924936 ALDH1A3 Retinoic acid gradi-

ent

Established

rs1800407 OCA2 Ocular albinism, eye

color

Established

rs759019844 CHRNA7 None reported Novel

rs139966754 MIR3178 Retinal thickness Established

rs4635359 DYNLRB2-AS1 Refractive error,

Macular thickness,

Retinal thickness

Established

rs726799 HS3ST3A1 Retinal thickness Established

rs538508139 BCAS3 Optic cup area Established

rs7503221 NPLOC4 Benign neoplasm of

eye, Catarats

Established
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SNP Closest Gene
Prior Retinal

GWAS Associations
Retinal Association

Status

rs201723937 GUCY2D Retinal guanylyl cy-

clase

Established

rs17452020 COLEC12 Retinal thickness Established

rs7229033 FECH None reported Novel

rs34085461 LAMC1 lens, retina, and RPE

of the developing ze-

brafish eye

Established

1:183342754 CT C - None reported Novel

rs2386994 TULP2 ocular diseases Established

rs199806394 FLRT3 Retinal Ganglion

Cells

Established

rs6433036 LRP2 Optic disc size Established

rs17581284 PDK1 None reported Established

rs11129195 NGLY1 None reported Novel

rs2371070 SLC4A7 Color vision disorder Established

rs73058466 LIMD1 None reported Novel

rs115456027 MIR9-2HG Vertical cup-disc ra-

tio, Retinal venular

width

Established

rs35437406 TFAP2D Retinal thickness Established

rs13057533 LIF-AS1 age-related macular

degeneration

Established

96



R
esults

SNP Closest Gene
Prior Retinal

GWAS Associations
Retinal Association

Status

rs3770778 STRN Retinal thickness Established

rs11681837 RNU6-1168P AMD Established

rs112174475 NGLY1 None reported Novel

rs77877421 FOXP1 Optic disc size Established

rs200857348 MREG Macular thickness Established

rs5752638 Photoreceptor

cell layer thick-

ness phenotypes

MN1 Established

2:48792184 CTT C None reported -

rs115483925 VWA5B2 Retinal thickness Established

rs377713857 MITF Retinal vascular frac-

tal densityd

Established

rs7614016 ADCY5 age-related macular

degeneration

Established

rs13080798 VEPH1 pigmented layer of

retina

Established

rs2326451 MIR588 Optic disc size Established

rs34790261 GRB10 Retinal thickness Established

rs55634298 EBAG9 None reported Novel

rs60862542 EBAG9 None reported Novel

rs10643278 STRIP2 pigmented layer of

retina

Established
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SNP Closest Gene
Prior Retinal

GWAS Associations
Retinal Association

Status

rs10124312 CDKN2A Vertical cup-disc ra-

tio

Established

rs11143996 VPS13A Aone reported Established

rs7834615 BPNT2 None reported Novel

rs3857971 CLVS1 Optic disc size Established

rs13261390 GDAP1 None reported Novel

rs759784176 PKD1L1 Cataract Established

rs10781177 RORB-AS1 Photoreceptor cell

layer thickness phe-

notypes

Established
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6.5.4 Results of mendelian randomisation

Using MR, we assessed causal relationships between cardiovascular traits and latent representations

derived from a 64-dimensional retinal autoencoder space. We analysed three CVDs (CAD, stroke, MI)

and two risk factors (body fat, triglycerides).

To comprehensively assess the direction of causality, we performed bidirectional MR analyses:

• Forward MR: Cardiovascular traits (exposure) → Retinal latent vectors (outcome)

• Reverse MR: Retinal latent vectors (exposure) → Cardiovascular traits (outcome)

Table 6.3 presents only the significant results of the forward MR (Cardiovascular Traits → Retinal Latent

Vectors) analysis, which we will explain in detail below:

Coronary Artery Disease: We found seven latent variables that exhibited significant p-values using the

inverse variance weighting (IVW) method. Notably, both positive and negative effects were observed

depending on the dataset (e.g., positive in z006 and negative in z007), indicating heterogeneity in the

results across studies.

Body Fat: Five latent vectors displayed significant p-values. Most IVW results were negative, suggest-

ing that increased body fat is likely to decrease the measured outcome, with notable significance (e.g.,

p = 0.0028 for z008).

Stroke: This cardiac event showed the fewest associations, with only two latent vectors exhibiting sig-

nificant p-values in the exposure analysis. The IVW method yielded mixed results (e.g., causal in z020

and protective in z034), albeit with some significant p-values, suggesting potential causal relationships.

Triglycerides: Predominantly negative effects were observed with the IVW method, indicating a pro-

tective effect, with some significant results (e.g., p = 0.0081 for z057). When considering triglycerides

as an exposure, we identified eight latent vectors associated with causal/protective effects.

Myocardial Infarction: Four latent vectors showed significant p-values in the IVW analysis. The IVW

method generally indicated positive effects with very significant p-values (e.g., p = 0.0011 for z017),

suggesting a potential causal effect of the studied exposures.

The significant p-values observed across various results from different datasets and the IVW method

underscore that these exposures (CVD risk/event GWAS) may causally influence outcomes (changes in

retinal layer thickness) through MR analysis.
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Exposure Outcome Method Effect size SE p-value
coronary artery disease z006 IVW 0.021842734 0.046360357 0.033799024
coronary artery disease z007 IVW -0.047641087 0.01497833 0.001469362
coronary artery disease z011 IVW 0.032862319 0.016667996 0.048657362
coronary artery disease z022 IVW 0.043992163 0.013013543 0.000723565
coronary artery disease z027 IVW -0.043314214 0.016455424 0.008483018
coronary artery disease z028 IVW -0.033791813 0.011483565 0.003254435
coronary artery disease z048 IVW 0.040541422 0.01504963 0.007063227

Body Fat z008 IVW -0.221130867 0.073915693 0.002774621
Body Fat z021 IVW 0.139399257 0.066586534 0.036304078
Body Fat z023 IVW -0.178709589 0.074242137 0.01607897
Body Fat z045 IVW -0.274720864 0.096375735 0.004364794
Body Fat z050 IVW -0.194423637 0.076286391 0.01081557

Stroke z020 IVW 0.064005961 0.025608992 0.012441962
Stroke z034 IVW -0.086440108 0.032131075 0.007140194

Triglycerides z008 IVW 0.05960648 0.023847513 0.012437427
Triglycerides z010 IVW 0.051006721 0.023062696 0.02699053
Triglycerides z020 IVW -0.060597755 0.026446227 0.021942757
Triglycerides z030 IVW -0.054716527 0.024062892 0.02297221
Triglycerides z046 IVW -0.063050367 0.02615641 0.015930102
Triglycerides z049 IVW 0.060201327 0.029662129 0.042400407
Triglycerides z057 IVW -0.060881105 0.02298727 0.008085692
Triglycerides z060 IVW -0.06260239 0.025140471 0.012770569

Myocardial Infarction z017 IVW 0.054949462 0.016777536 0.001055944
Myocardial Infarction z020 IVW -0.083064999 0.020502557 5.09E-05
Myocardial Infarction z031 IVW 0.051770067 0.01343862 0.000149076
Myocardial Infarction z033 IVW 0.055573735 0.015306058 0.00036604

Table 6.3: Summary of statistically significant results from forward MR analyses. The table presents
effect size estimates, standard errors, and p-values for associations between exposures (e.g., cardiovas-
cular traits) and outcomes (retinal latent vectors). IVW, inverse-variance weighted.

Table 6.4 shows the most suggestive (though non-significant) associations from reverse MR analyses

(Retinal Latent Vectors → Cardiovascular Traits), reporting the lowest observed p-values alongside

effect estimates. This suggests retinal changes are more likely a consequence of CVD than a causative

factor, aligning with known mechanisms of microvascular damage secondary to hypertension (Chen et

al. 2012). While the retina shares vascular systemic circulation (Zhong et al. 2021), our findings do not

support a primary role of retinal structure in driving CVD pathogenesis.

To our knowledge, prior studies investigating the causal relationship between retinal traits and CVD

remain limited. As summarized in Chapter 3, Section 3.3 (Table 3.3), only a subset of existing work

has explored this direction of causality, and, based on current literature, no studies have reported causal

associations using OCT-derived phenotypes. For example, elevated blood pressure has been linked to

reduced retinal vascular density in observational and genetic studies (Zekavat et al. 2021; Vela et al.
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Exposure Outcome Method Effect size SE p-value
z000 coronary artery disease IVW 0.033451859 0.021344829 0.117065290
z008 coronary artery disease IVW 0.040025622 0.027487363 0.145351891
z010 coronary artery disease IVW 0.010044497 0.06013645 0.1387896
z002 Body Fat IVW 0.01667006 0.012199793 0.171806659
z007 Body Fat IVW 0.0134027927 0.022744478 0.155567563
z013 Body Fat IVW -0.004805159 0.047811931 0.192214959
z015 Stroke IVW -0.0145653114 0.016850169 0.138736739
z054 Stroke IVW -0.013502069 0.024147223 0.157605511
z058 Stroke IVW -0.090462195 0.047771911 0.087537266
z003 Triglycerides IVW -0.052877788 0.0291568659 0.097091343
z032 Triglycerides IVW -0.011882036 0.017266189 0.149134731
z053 Triglycerides IVW 0.003489408 0.023697221 0.188293494
Z012 Myocardial Infarction IVW -0.007949401 0.016774837 0.163555656
Z024 Myocardial Infarction IVW -0.015039617 0.049185166 0.176758156
Z031 Myocardial Infarction IVW 0.017659624 0.023860922 0.145923536

Table 6.4: This table summaries the top associations (lowest p-values) from analyses testing retinal la-
tent vectors (exposures) against cardiovascular outcomes, including effect estimates (β), standard errors
(SE), and statistical significance (pvalues).

2023).

Our bidirectional MR supports a unidirectional causal pathway (cardiovascular traits → retinal struc-

ture), with no evidence for reverse causation. This reinforces the retina’s role as a “window” to systemic

vascular health rather than an active contributor to CVD risk.

6.6 Discussion

In this study, we employed MR to enhance our understanding of the relationship between CVDs and

retinal phenotypes. We present the findings from a genome-wide assessment using OCT images of the

retina from 42,350 individuals. The genome-wide association analysis of ten retinal layer thicknesses

identified 90 genetic loci. Comparative genetic associations revealed multiple ocular and systemic traits

linked to OCT-derived phenotypic thickness. To the best of our knowledge, this is the first study to

conduct an in-depth investigation into the causal relationships between OCT-derived features and CVD.

Our GWAS identified several genes associated with ocular diseases, retinal characteristics, or compo-

nents. While some of these genes had been previously reported, others represent novel findings in the

context of retinal phenotypes. For instance, genes such as SIX6, frequently highlighted in other studies,

are linked to retinal measurements and ocular diseases such as glaucoma (Carnes et al. 2014). A partic-

ularly notable gene is LAMC1, mutations in which lead to defects in the inner limiting membrane of the
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zebrafish eye (Lee et al. 2007). The identification of genes previously associated with ocular traits lends

credibility to the methodology employed in this study.

In relation to genes linked to cardiac events, biomarkers, or risk factors, several, including E2F2, were

identified in our study. E2F2 has been associated with vascular contractility and blood pressure regula-

tion. Mice deficient in the E2F2 gene exhibit significantly higher systolic and diastolic blood pressure

levels compared to wild-type mice (Zhou et al. 2009). Another gene, NR5A2, shows reduced expres-

sion in metabolic syndrome. Exercise has been shown to increase NR5A2 expression in patients with

metabolic syndrome, suggesting it as a potential therapeutic target for improving this condition through

physical activity (Meng et al. 2023).

Our bidirectional MR analysis supports a unidirectional causal pathway, with cardiovascular traits influ-

encing retinal structure but no evidence for reverse causation. We observed both causal and protective

effects of CVD risks and events on retinal layer thickness. Genetically elevated body fat percentage

showed protective associations with OCT-autoencoder phenotypes, aligning with prior work linking

adiposity to retinal layer alterations (Zekavat et al. 2023). Myocardial infarction, stroke, and coronary

artery disease exhibited significant, likely causal relationships with OCT-derived phenotypes.

These findings reinforce the retina’s role as a “window” to systemic vascular health rather than an active

driver of CVD risk. Supporting this, our group previously identified specific OCT features, including

choroid layer thickness, GCL, and RNFL, as potential early predictors of MI and stroke (Maldonado-

Garcia et al. 2024). In contrast, fundus imaging (e.g., macular and venous metrics) has been more

extensively studied for CVD prediction (Diaz-Pinto et al. 2022), highlighting the need to expand OCT-

based causal frameworks.

Nevertheless, we acknowledge the limitations of our study, particularly its reliance on UK Biobank

data, which suffers from underrepresentation of non-White ethnicities (< 5% South Asian, < 2% Black

African/Caribbean) (Sudlow et al. 2015), overrepresentation of urban and affluent populations, and a

“healthy volunteer” bias (participants are healthier and wealthier than the UK general population) (Fry

et al. 2017). These biases may limit the generalizability of our findings, especially to younger, lower-

income, or non-European ancestry groups.

While our use of latent representations may partially capture universal biological pathways, replication

in more diverse cohorts is essential to validate these results. Future studies should prioritize inclusive

recruitment, ancestry-aware GWAS methods, and cross-population MR frameworks to assess causal
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robustness (Cai et al. 2021).
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Chapter 7

Conclusions

In this chapter, I bring this thesis to an end by summarising the key findings of our work. Then, I

highlight limitations of this work and, finally, some avenues for future research.

7.1 Summaries and key findings

7.1.1 Using optical coherence tomography as a predictive tool for cardiovascular dis-

eases.

We developed a predictive model that integrates imaging data with non-imaging data to predict car-

diovascular issues within a five-year period post-acquisition. This work is the first to provide detailed

evidence of how OCT images can be utilised in clinical settings to estimate risk of CVD. Our framework

employs a self-supervised representation learning approach based on a VAE with convolutional layers,

pre-trained on OCT images from 20,000 healthy subjects. After feature extraction, the learned latent

representations were used as input features for a RF classifier, which integrated these with non-imaging

data (e.g., patient demographics and clinical variables) to identify patients at risk of stroke or myocardial

infarction.

Our proposed method demonstrated that the latent variables learned from the retinal OCT images, had

a greater influence on the classifiers’ estimation of risk of myocardial infarction or stroke than conven-

tional metadata. Specifically, in age- and sex-matched cohorts free from confounding these biomarkers,

our model achieved balanced accuracy, sensitivity, and specificity of 0.70 and an AUC value of 0.75,

using OCT imaging data from both eyes and associated metadata. In contrast, the model using only

metadata produced lower results, with accuracy, sensitivity, and specificity values of 0.52 and and AUC
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value of 0.57.

A significant contribution of this work is the development of a novel explainability AI method that aids

in interpreting the OCT image features influencing the model’s predictions. This method, based on

vector field, provides more visually interpretable results compared to commonly used techniques, such

as occlusion-based methods, thereby offering a deeper understanding of the model’s decision-making

process. Specifically, our findings highlight the choroid layer in OCT images as the most important

feature for predictions.

7.1.2 A multimodal deep learning method using fundus photographs and optical coher-

ence tomography for predicting cardiovascular diseases.

We developed an innovative end-to-end DL method that utilises retinal phenotypes extracted from both

fundus photographs and OCT images to classify CVDs, including myocardial infarction, stroke, angina,

heart failure, and rheumatic heart disease. The two-stage architecture first pretrains a MCVAE on 18,000

healthy retinas, then fine-tunes with a transformer classifier on 3,000 matched CVD+/CVD− cases,

where the input data consist of both retinal imaging modalities.

Our proposed framework demonstrated that the combination of both retinal modalities resulted in sig-

nificantly better performance compared to using a single retinal modality, achieving accuracy, precision,

sensitivity, specificity, and AUC values of 0.68, 0.74, 0.73, 0.68, and 0.78, respectively, for the optimal

model (Fundus-OCT). These findings highlight the complementary value of multimodal retinal imag-

ing: fundus photography captures the superficial vascular plexus, while OCT specifically assesses the

choroidal circulation, together enabling a holistic evaluation of microvascular health.

Furthermore, we demonstrated that training a multimodal model to simultaneously extract relevant fea-

tures from the input data and utilise those features for classification yields better results than training

each task separately, with CI of 0.773 and 0.788 for AUC values for the first approach, compared to a

CI of 0.63 - 0.65 for the AUC values of the second approach. This dual-task optimisation enhances the

overall performance of the model.

Additionally, we showed that our explainability model, originally developed using vector field maps

for OCT images, is also effective with other medical imaging modalities, such as fundus photographs,

suggesting its potential applicability to other medical imaging for different organs.
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7.1.3 Genetic basis and causal links influencing OCT-derived phenotypes and cardio-

vascular diseases.

We conducted GWAS on OCT-derived phenotypic data from the UK Biobank, which were extracted in

an unsupervised manner. To achieve this, we implemented the state-of-the-art nn-UNet model to train

segmentation of ten OCT layers using ground truth data from only 50 patients, obtained via a non-deep

learning algorithm. We highlight the advantages of using a deep learning–based segmentation model,

which required only a small amount of annotated data to scale to the full dataset. Besides, this approach

proved to be more efficient compared to other studies that require more extensive segmentations with

fewer segmented layers. We then converted the ten segmented layers into thickness maps, which served

as input for our 3D convolutional VAE architecture. This study is noteworthy for using a latent vector

that represents novel features of retinal structure across ten OCT layers, making it the study with the

most segmented OCT layers using DL techniques. This approach facilitated the discovery of previously

unidentified 17 genetic loci associated with retinal thickness, and replicated 54 known retinal loci.

Furthermore, we established, for the first time, causal links between CVD and associated risks and

OCT layer thickness through MR studies of OCT phenotypes. Using the IVW method, we obtained

significant p-values of < 0.05, indicating that CVD risk factors such as body fat, and triglycerides, as

well as CVD events like coronary artery disease, myocardial infarction, and stroke, have causal and/or

protective relationships with certain OCT-derived features. Reverse MR analyses suggested that retinal

thickness alterations are more likely a consequence of CVD rather than a causative factor.

This GWAS of 3D OCT retinal images identifies genetic variants linked to retinal layer thickness and

suggests potential causal relationships between cardiovascular diseases and retinal layer thickness.

7.2 Implications and significance

Clinical implications: Our research suggests that OCT and fundus photography can reveal microvascu-

lar alterations that may enable earlier identification and targeting of individuals at risk for cardiovascular

disease in a noninvasive manner. While the models developed in this thesis are not yet ready for clinical

deployment, the findings highlight the potential for future studies to further explore and validate their

clinical utility.

Biological implications: We identified previously unreported genetic loci associated with retinal layer

thickness and established causal relationships between cardiovascular risk factors and OCT-derived mor-
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phological phenotypes. These findings enhance our understanding of the biological link between retinal

structure and cardiovascular health, suggesting that retinal changes may function as indicators to sys-

temic vascular disease.

Methodological implications: We highlight the effectiveness of using predictive DL techniques along-

side medical imaging to obtain more detailed imaging-derived phenotypes, which enhance the accuracy

of CVDs prediction. The frameworks we proposed could be applied to other medical imaging chal-

lenges, thereby broadening the impact of our research beyond just CVDs prediction. Additionally, the

development of a novel explainability method for AI models significantly enhances the interpretability

of DL models, making them more transparent and trustworthy for clinical use. This is particularly im-

portant in medical AI, where understanding the rationale behind predictions is crucial for gaining the

trust of clinicians and patients.

7.3 Limitations, challenges, and opportunities for future research

In this section, we outline some of the limitations of this work and, in certain cases, propose ideas for

addressing them in future studies.

External validation dataset. The primary limitation of this work is the lack of accessible datasets

that include both OCT images and comprehensive information on whether patients have experienced

cardiovascular events, along with corresponding clinical and demographic data. While more datasets

are available for fundus imaging that include cardiovascular event information, they often do not include

the other retinal modalities like OCT. To the best of our knowledge, no existing datasets meet all these

criteria and are accessible for validation purposes.

Limitations of the UK Biobank and impact on generalizability. The UK Biobank is an invaluable

resource for large-scale biomedical research, but its design introduces several well-documented limita-

tions that must be considered when interpreting our findings. Participants are predominantly of white

European ancestry and exhibit a “healthy volunteer” bias, with lower rates of smoking, drinking alcohol,

obesity, and socioeconomic deprivation compared to the general UK population. Besides, UK Biobank’s

CVD outcomes rely on hospital admissions and death registers, potentially missing milder or undiag-

nosed cases. Nevertheless, replication in more diverse cohorts, is essential before clinical deployment.
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Class imbalance across study phases. A key limitation stems from inconsistent class imbalance ra-

tios across experimental stages (Chapters 4–5). While the original UK Biobank retina dataset preserved

a clinically realistic CVD+-to-control ratio, pre-processing exclusions created mismatched training dis-

tributions. Although balancing improved feature learning for CVD+ cases, it may have inflated per-

formance metrics (optimism bias). The test set adopted an intermediate ratio approximating clinical

prevalence but remained discordant with both natural distributions and the training environment. Fu-

ture work should validate findings in unmodified cohorts and explore cost-sensitive learning to address

inherent imbalances.

Comparative limitations with QRISK3. While our model demonstrated superior discriminative per-

formance compared to QRISK3 in age-sex matched cohorts, this comparison has important considera-

tions. QRISK3’s lower performance may partly reflect our intentional age-sex matching, which neutral-

izes its strongest predictors. In unmatched general populations, QRISK3’s AUC typically reaches high-

est perfomance, suggesting our results may overstate the relative advantage of OCT in clinical practice.

Additionally, QRISK3 has been externally validated in > 10 million patients across diverse settings,

whereas our OCT model requires validation in comparable real-world cohorts to assess generalizability

beyond the UK Biobank’s selected population.

Incorporating additional retinal imaging modalities. Recently, OCT-Angiography (OCTA) has shown

promise as a retinal imaging technique that could be more effective for predicting cardiovascular dis-

eases. The use of more informative retinal imaging modalities with deeper tissue penetration, such as

swept source OCT or wide-field OCTA imaging, could potentially enhance prediction models. We hy-

pothesize that incorporating representations from multi-modal retinal imaging (e.g., fundus photographs,

OCT, OCTA) may further improve the classification performance of the proposed approach.

Utilising multi-organ data. A promising direction for future research involves the integration of data

from multiple organs. Combining information from various sources could significantly improve the

performance of predictive models. Resources such as the UK Biobank, which offer extensive datasets,

present the opportunity to incorporate medical images from different organs, such as liver and pancreas

imaging, or cardiac magnetic resonance imaging (MRI), all of which have been utilised to assess car-

diovascular risk factors and events. This approach would enable a more comprehensive investigation of

cardiovascular and cardiometabolic conditions.
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7.4 Final remarks

In this thesis, we have demonstrated the potential of combining deep learning methodologies with reti-

nal imaging to make meaningful contributions to cardiovascular disease research, supporting the idea

that deeply multidisciplinary approaches can yield valuable insights into the mechanisms of health and

disease.

We hope that the novel scientific findings on the clinical relevance of retinal phenotypes in relation

to cardiovascular disease, together with the methodological advancements presented in this work, will

serve as a foundation for improving patient care and inspiring further research in related domains.
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Appendix A

Supplementary information to Chapter 4

A.1 Supplementary information to 4.3

Hyperparameter Tested Values Optimal Value

CNN channels

[128, 256, 128]
[128, 256, 128, 64]
[128, 256, 128, 128]
[128, 256, 128, 128, 64]
[128, 256, 128, 128, 64, 64]
[128, 256, 128, 128, 64, 32]

[128, 256, 128, 128, 64, 64]

Batch size 4, 8, 16, 32 8

Learning rate
Log-scale: 10−1 to 10−6;
Multiples: 0.3, 0.5, 0.7, 0.9

0.0001

Weight decay
Log-scale: 10−1 to 10−6;
Multiples: 0.3, 0.5, 0.7, 0.9

0.0001

Latent space size 128, 256, 512, 1024 128

Train/Val/Test split ra-
tio

4:3:3, 5:3:2, 5:2:3, 6:2:2 6:2:2

Table A.1: Hyperparameter grid search for the VAE model. Tested values include architectural choices
(CNN channels, latent space size), optimization parameters (learning rate, weight decay), and data splits.
The optimal configuration was selected via 5 cross-validation.

Table A.2 shows the architectural design of the VAE used in our model, detailing the encoder and

decoder components. It presents the structure of each network, including the layer types, configurations,

and dimensional transformations that occur between layers. The encoder extracts features from the input

RGB image, while the decoder reconstructs the image from the latent variables. The training of our

model occurred in two phases, initially engaging in self-supervised learning for each eye independently
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Encoder Decoder

Input: 128× 224× 224 (RGB image) Latent variables, Fully Connected, Reshape

Conv2D(128, 3× 3, stride=2× 2, padding=1× 1) Conv2D(64, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(128) BatchNorm2d(64)

ReLU ReLU

Conv2D(256, 3× 3, stride=2× 2, padding=1× 1) Conv2D(64, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(256) BatchNorm2d(64)

ReLU ReLU

Conv2D(128, 3× 3, stride=2× 2, padding=1× 1) Conv2D(128, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(128) BatchNorm2d(128)

ReLU ReLU

Conv2D(128, 3× 3, stride=2× 2, padding=1× 1) Conv2D(128, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(128) BatchNorm2d(128)

ReLU ReLU

Conv2D(64, 3× 3, stride=2× 2, padding=1× 1) Conv2D(256, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(64) BatchNorm2d(256)

ReLU ReLU

Conv2D(64, 3× 3, stride=2× 2, padding=1× 1) Conv2D(128, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(64) BatchNorm2d(128)

ReLU ReLU

Latent variables, Fully Connected Output: 128 × 224 × 224 (Reconstructed RGB im-
age)

Table A.2: Architectural design of the VAE, showing the encoder and decoder structures with their
respective layers, configurations, and dimensional transformations.

to acquire latent representations, which were then utilised to initialise the subsequent fine-tuning phase.
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Hyperparameter Tested Values Optimal Value

Random state 0,1,2

BE-MTDT-RF: 1
BE-RF: 1
LE-MTDT-RF:2
LE-RF: 1
RE-MTDT-RF:0
RE-RF: 2
MTDT-RF: 1

Estimators 100–1000 (step 50)

BE-MTDT-RF: 300
BE-RF: 100
LE-MTDT-RF: 500
LE-RF: 500
RE-MTDT-RF: 700
RE-RF: 100
MTDT-RF: 400

Min samples split 10–500 (step 10)

BE-MTDT-RF: 210
BE-RF: 410
LE-MTDT-RF: 160
LE-RF: 360
RE-MTDT-RF: 260
RE-RF: 460
MTDT-RF: 360

Min samples leaf 10–500 (step 10)

BE-MTDT-RF: 60
BE-RF: 60
LE-MTDT-RF: 260
LE-RF: 10
RE-MTDT-RF: 10
RE-RF: 10
MTDT-RF: 260

Max features 0.25, 0.5, 0.75

BE-MTDT-RF: 0.25
BE-RF: 0.25
LE-MTDT-RF: 0.25
LE-RF: 0.25
RE-MTDT-RF: 0.25
RE-RF: 0.75
MTDT-RF: 0.5

Max depth 1, 2

BE-MTDT-RF: 1
BE-RF: 2
LE-MTDT-RF: 1
LE-RF: 1
RE-MTDT-RF: 1
RE-RF: 2
MTDT-RF: 1

Criterion gini, entropy

BE-MTDT-RF: gini
BE-RF: gini
LE-MTDT-RF: entropy
LE-RF: entropy
RE-MTDT-RF: entropy
RE-RF: entropy
MTDT-RF: gini

Table A.3: Hyperparameter grid search for RF models. Tested ranges and optimal values are shown
for each variant (BE/LE/RE-MTDT-RF, BE/LE/RE-RF, and MTDT-RF). Step sizes are indicated in
parentheses for ranged parameters.
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Hyperparameter Tested Values Optimal Value

number channels of CNN

[1]
[8, 1]
[16, 1]
[32, 1]
[64, 1]
[32, 16, 1]

[16, 1]

batch size 4,8,16,32 8

learning rate
Log-scale: 10−1 to 10−6;
Multiples: 0.3, 0.5, 0.7, 0.9

0.00001

Weight decay
Log-scale: 10−1 to 10−6;
Multiples: 0.3, 0.5, 0.7, 0.9

0.000001

Ratio splits 4:3:3, 5:3:2, 5:2:3, 6:2:2 5:3:2

Table A.4: Hyperparameter grid search for the MLP model. Tested values include architectural choices
(CNN channels), optimization parameters (learning rate, weight decay), and data splits. The optimal
configuration was selected via 5 cross-validation.
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Variables used in QRISK3

Gender

Age

Atrial fibrillation

Atypical antipsy

Regular steroid tablets

Erectile disfunction

Migraine

Rheumatoid arthritis

Chronic kidney disease

Severe mental illness

Systemic lupus erythematosis

Blood pressure treatment

Diabetes1

Diabetes2

Weight

Height

Ethnicity

Heart attack relative

Cholesterol HDL ratio

Systolic blood pressure

Std systolic blood pressure

Smoke

Townsend

Table A.5: List of Variables used to calculate QRISK3
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A.2 Supplementary information to 4.5

Figure A.1: Captum images present three different B-scans for the left eye. The top row corresponds to
the 1st B-scan, the middle image to the 64th B-scan, and the bottom row depicts the final B-scan. The
yellow zones highlight regions of the oblation method when modifying the latent variable zl066.

A.3 Links to Docker image and Github

The Docker image containing the computational environment and dependencies used for the experiments

in Chapter 4 is available at: Docker/scclmg/OCT-VAE-RF

The code used in this study in Chapter 4 is available on GitHub at the following address:Github/Predicting-

CVD-using-OCT-images
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Supplementary information to Chapter 5

B.1 Supplementary information to 5.2

The provided heatmaps (refer to Figures B.1 and B.2) illustrate the distribution of patients with vari-

ous CVDs across two different diagnostic imaging methods: Fundus and OCT. Each heatmap visually

represents the number of patients diagnosed with different CVDs, where the elements along the diago-

nal indicate the number of patients with a given diagnosis and the off-diagonal elements represents the

number of patients with co-occurrence of pairs of diagnoses.

Fundus (Figure B.1 : The highest concentration of stroke patients is observed, with a count of 690.

MI has the highest number of patients, totaling 1000. It also shows some overlap with Stroke (64),

Angina (150), and Heart Failure (78). There are 530 patients with Angina, with notable overlaps with

MI (150) and Heart Failure (39). A significant number of patients (320) are reported with eart Failure

(HF), with minor overlaps with other CVDs. Very few patients fall into rheumatic heart, with minimal

overlap with other diseases.

OCT (Figure B.2) : The highest concentration is 930 for Stroke, with minor overlaps with MI (94)

and other CVDs. MI also shows the highest number of patients (1400), with overlaps in Angina (230)

and HF (110). There are 740 patients with Angina, with significant overlaps with MI (230) and Heart

Failure (66). A considerable number of patients (460) are recorded with HF, with overlaps in Angina

(66) and Rheumatic Heart (32). Similar to the Fundus heatmap, RH shows a small number of patients,

with minor overlaps with other diseases.
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Figure B.1: Heatmaps indicating the number of patients with different CVDs and fundus phographs,
where the diagonal represents the number of patients with a given diagnosis and the off-diagonal ele-
ments indicate co-occurence of pairs of diagnoses.
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Figure B.2: Heatmaps indicating the number of patients with different CVDs and OCT, where the di-
agonal represents the number of patients with a given diagnosis and the off-diagonal elements indicate
co-occurence of pairs of diagnoses.
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B.2 Supplementary information to 5.3

Hyperparameter Tested Values Optimal Value

CNN channels

Fundus:
[3, 128, 256, 512]
[3, 128, 256, 512, 1024]
[3, 128, 256, 512, 1024, 2048]
OCT:
[1, 32, 64]
[1, 32, 64, 128]
[1, 32, 64, 128, 256]
[1, 32, 64, 128, 256, 512]

Fundus:
[3, 128, 256, 512, 1024, 2048]
OCT:
[1, 32, 64, 128, 256, 512]

Batch size 4, 8, 16, 32
Fundus: 2
OCT: 4
Fundus-OCT: 4

Learning rate
Log-scale: 10−1 to 10−6

Multiples: 0.3, 0.5, 0.7, 0.9

Fundus: 0.001
OCT: 0.0001
Fundus-OCT: 0.0001

Weight decay
Log-scale: 10−1 to 10−6

Multiples: 0.3, 0.5, 0.7, 0.9

Fundus: 0.0000001
OCT: 0.000001
Fundus-OCT: 0.000001

Latent space size 128, 256, 512, 1024
Fundus: 2048
OCT: 512

Train/Val/Test split ra-
tio

4:3:3, 5:3:2, 5:2:3, 6:2:2
Fundus: 5:2:3
OCT: 5:2:3
Fundus-OCT: 5:2:3

Table B.1: Hyperparameter grid search for the MCVAE model. Tested values include architectural
choices (CNN channels, latent space size), optimization parameters (learning rate, weight decay), and
data splits. The optimal configuration was selected via 5-fold cross-validation.
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Encoder Decoder

Input: 3× 224× 224 (RGB image) Latent variables, Fully Connected, Reshape

Conv2D(3, 3× 3, stride=2× 2, padding=1× 1) Conv2D(2048, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(3) BatchNorm2d(2048)

ReLU ReLU

Conv2D(128, 3× 3, stride=2× 2, padding=1× 1) Conv2D(1024, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(128) BatchNorm2d(1024)

ReLU ReLU

Conv2D(256, 3× 3, stride=2× 2, padding=1× 1) Conv2D(512, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(256) BatchNorm2d(512)

ReLU ReLU

Conv2D(512, 3× 3, stride=2× 2, padding=1× 1) Conv2D(256, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(512) BatchNorm2d(256)

ReLU ReLU

Conv2D(1024, 3× 3, stride=2× 2, padding=1× 1) Conv2D(128, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(1024) BatchNorm2d(128)

ReLU ReLU

Conv2D(2048, 3× 3, stride=2× 2, padding=1× 1) Conv2D(3, 3× 3, stride=2× 2, padding=1× 1)

BatchNorm2d(2048) BatchNorm2d(3)

ReLU ReLU

Latent variables, Fully Connected Output: 3× 224× 224 (Reconstructed RGB image)

Table B.2: Architectural design of the VAE for fundus images, showing the encoder and decoder struc-
tures with their respective layers, configurations, and dimensional transformations.
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Encoder Decoder

Input: 1× 128× 224× 224 (RGB image) Latent variables, Fully Connected, Reshape

Conv3D(1, 3×3×3, stride=2×2×2, padding=1×
1× 1)

Conv3D(128, 3×3×3, stride=2×2×2, padding=1×
1× 1)

BatchNorm3d(1) BatchNorm3d(128)

ReLU ReLU

Conv3D(32, 3×3×3, stride=2×2×2, padding=1×
1× 1)

Conv3D(64, 3×3×3, stride=2×2×2, padding=1×
1× 1)

BatchNorm3d(32) BatchNorm3d(64)

ReLU ReLU

Conv3D(64, 3×3×3, stride=2×2×2, padding=1×
1× 1)

Conv3D(32, 3×3×3, stride=2×2×2, padding=1×
1× 1)

BatchNorm3d(64) BatchNorm3d(32)

ReLU ReLU

Conv3D(128, 3×3×3, stride=2×2×2, padding=1×
1× 1)

Conv2D(1, 3×3×3, stride=2×2×2, padding=1×
1× 1)

BatchNorm3d(128) BatchNorm3d(1)

ReLU ReLU

Latent variables, Fully Connected Output: 1 × 128 × 224 × 224 (Reconstructed RGB
image)

Table B.3: Architectural design of the VAE for OCT images, showing the encoder and decoder structures
with their respective layers, configurations, and dimensional transformations.

B.3 Links to Docker image and Github

The Docker image containing the computational environment and dependencies used for the experiments

in Chapter 5 is available at: Docker/scclmg/OCT-MCVAE

The code used in this study in Chapter 5 is available on GitHub at the following address:Github/Multimodal-

Retina
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C.1 Supplementary information to 6.2

Hyperparameter Tested Values Optimal Value

CNN channels
[10,32]
[10, 32, 64]
[10, 32, 64, 128]

[10, 32, 64]

Batch size 4, 8, 16, 32 8

Learning rate
Log-scale: 10−1 to 10−6

Multiples: 0.3, 0.5, 0.7, 0.9
0.0001

Weight decay
Log-scale: 10−1 to 10−6

Multiples: 0.3, 0.5, 0.7, 0.9
0.00001

Latent space size 32,64,128 64

Train/Val/Test split ra-
tio

4:3:3, 5:3:2, 6:2:2, 7:2:1 7:2:1

Table C.1: Hyperparameter grid search for the VAE model. Tested values include architectural choices
(CNN channels, latent space size), optimization parameters (learning rate, weight decay), and data splits.
The optimal configuration was selected via 5-fold cross-validation.

C.2 Supplementary information to 6.3

C.2.1 GWAS databases links used as exposure data in the Mendelian randomization

Analysis

Coronary Artery Disease: Cardiogramplus

Body fat percentage: GCST003435
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Encoder Decoder

Input: 10× 128× 512 Latent variables, Fully Connected, Reshape

Conv3D(10, 3×3×3, stride=2×2×2, padding=1×
1× 1)

Conv3D(64, 3×3×3, stride=2×2×2, padding=1×
1× 1)

BatchNorm3d(10) BatchNorm3d(64)

ReLU ReLU

Conv3D(32, 3×3×3, stride=2×2×2, padding=1×
1× 1)

Conv3D(32, 3×3×3, stride=2×2×2, padding=1×
1× 1)

BatchNorm3d(32) BatchNorm3d(32)

ReLU ReLU

Conv3D(64, 3×3×3, stride=2×2×2, padding=1×
1× 1)

Conv3D(10, 3×3×3, stride=2×2×2, padding=1×
1× 1)

BatchNorm3d(64) BatchNorm3d(10)

ReLU ReLU

Latent variables, Fully Connected Output: 1× 128× 512 (Reconstructed RGB image)

Table C.2: Architectural design of the VAE for thickness maps of OCT retinal layers, showing the
encoder and decoder structures with their respective layers, configurations, and dimensional transforma-
tions.

Stroke: GCST90104534

Triglycerides: GCST002216

Myocardial Infarction: FinnMI

Diabetes: FinnDiabetes

C.3 Links to Docker image and Github

The Docker image containing the computational environment and dependencies used for the nn-UNet

experiments in Chapter 6 is available at: Docker/scclmg/OCT-nn-UNet

The code used in this study in Chapter 6 is available on GitHub at the following address: Github/GWAS-

pipeline
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