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Abstract

This thesis develops and validates three innovative methodologies for surface wave tomography

using physics-informed neural networks (PINNs): pinnET (PINN-based eikonal tomography),

pinnEAET (PINN-based elliptical-anisotropic eikonal tomography), and pinnTET (PINN-based

teleseismic eikonal tomography). These methods progressively address challenges in seismic to-

mography from isotropic to anisotropic tomography, and ambient noise to teleseismic earthquake

applications. By integrating the eikonal equation as a physical constraint while leveraging neu-

ral networks’ approximation capabilities, PINN-based surface wave tomography demonstrates

several key advantages, including significant memory efficiency, physics-guided interpolation

for sparse data regions, simultaneous multi-frequency processing, and flexible evaluation at

arbitrary locations. However, challenges remain in computational efficiency and automated

parameter optimization.

When applied to the seismic dense array in northeastern Tibetan Plateau using both ambient

noise (10-40 s periods) and teleseismic data (20-80 s periods), these methods reveal significant

lateral heterogeneity in velocity structure and azimuthal anisotropy. Notably, they achieve

comparable resolution quality with only approximately 20% or even less of traditionally required

data. The results indicate prominent low-velocity zones beneath the western Qilian Orogen,

western Qinling Orogen, and Songpan-Ganzi Terrane, contrasting with high-velocity zones in

the Ordos Block and central Qinling Orogen. These findings provide new insights into the

region’s complex crustal and upper mantle structure while demonstrating the practical utility

of PINN-based approaches in seismic tomography.

Comprehensive uncertainty analysis, checkerboard resolution tests and cross-validation with

traditional approaches confirm the methods’ reliability and resolution capabilities. This work

demonstrates that PINN-based approaches provide valuable alternatives for seismic tomography,
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particularly in regions with limited data coverage, while establishing a foundation for future

developments in physics-constrained seismic tomography methods.
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Chapter 1

Introduction

1.1 Seismic tomography

1.1.1 Overview

Seismic tomography has significantly advanced our understanding of the Earth’s interior by

providing detailed images of subsurface structures. It employs seismic wave data from earth-

quakes, artificial sources or virtual sources using ambient noise to map variations in the Earth’s

seismic properties, such as velocity, anisotropy and attenuation. This process typically involves

solving a complex inversion problem by using observational data including seismic wave travel-

time, amplitude and/or other waveform characteristics. Methodologically, seismic tomography

first requires establishing a relationship d = g(m) between the seismic data d and the seismic

model m, where g is the forward operator that describes the physics of seismic wave propa-

gation, then predicting the data d from a given model, and finally finding a model m that

best fits the observations (Rawlinson et al. 2010). The concept of seismic tomography dates

back to 1976, when Aki and Lee (1976) pioneered the construction of a 3-D crustal velocity

structure beneath California based on the first-arrival P wave traveltime information from local

earthquakes. In 1977, Aki et al. (1977) inverted for the 3-D velocity structure of the lithosphere

beneath Norwegian Seismic Array based on the teleseismic P wave traveltime residuals. In the

same year, Dziewonski et al. (1977) constructed a 3-D velocity model of the lower mantle on

a global scale using the P wave traveltime residuals. The pioneering work of these researchers

triggered a wave of interest in using seismic tomography to study the Earth’s internal structure,

laying a critical theoretical foundation for future research. Today, the technique remains pivotal

1



1.1 Seismic tomography

in seismology, contributing to insights into topics such as plate tectonics, Earth’s dynamics and

earthquake generation.

According to the type of seismic waves utilized, seismic tomography can be divided into body

wave tomography and surface wave tomography. Body wave tomography focuses on the analysis

of P and S waves in terms of their traveltimes and waveforms as they travel through the Earth’s

interior. On the other hand, surface wave tomography specifically targets the study of Rayleigh

and Love waves, which propagate along the Earth’s surface. These surface waves have unique

characteristics that make them particularly useful for imaging the Earth’s crust and upper

mantle. One of the key methods employed in surface wave tomography is the use of dispersion

curves. The dispersive character of surface wave refers to the phenomenon where different

frequencies of the wavefield travel at different velocities, potentially allowing higher vertical

resolution compared to body wave tomography (Romanowicz 2020). By measuring the phase

or group velocities of surface waves across a wide range of periods, researchers can construct

dispersion curves that provide direct information of elastic velocity about the subsurface. In the

1950s and early 1960s, surface waves were used to explore the properties of the Earth’s structure,

particularly the crust and upper mantle (Ewing and Press 1954; Press 1956; Dorman et al. 1960;

Kuo et al. 1962), producing layered velocity models along the surface wave propagation path.

Since the 1970s, with the advent of digital recording, the deployment of broadband networks and

the subsequent methodological innovations, surface wave tomography has become a powerful

tool to construct 3-D models of velocity (Woodhouse and Dziewonski 1984; Anderson 1987;

Forsyth et al. 2005; Sabra et al. 2005; Shapiro et al. 2005; Nishida et al. 2009; Kaviani et al.

2020; Liu et al. 2021; Fan et al. 2024), anisotropy (Forsyth 1975; Tanimoto and Anderson 1985;

Montagner and Tanimoto 1990; Montagner and Tanimoto 1991; Gung et al. 2003; Gaherty 2004;

Hao et al. 2021; Magali et al. 2021), and attenuation (Dziewonski and Anderson 1981; Dalton

and Ekström 2006; Dalton et al. 2008; Savage et al. 2010; Bao et al. 2016; Meng et al. 2021) in the

crust and upper mantle on global, regional, and local scales. These studies have dramatically

enhanced our understanding of crust-mantle structure, geodynamic processes, seismic source

mechanics, mineral exploration and geohazard assessment. In this thesis, I employ surface

wave tomography approaches to investigate the lithospheric structure and better constrain the

geological implications in the study region.
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Chapter 1. Introduction

1.1.2 Teleseismic surface wave tomography

Surface wave tomography using teleseismic data involves analyzing of surface waves generated

by earthquakes to infer the Earth’s structure. At teleseismic distances, surface waves carry the

majority of long period energy (typically with periods exceeding 20 s) that provide constrains on

upper mantle structure. Several tomography methods have been developed to explore the upper

mantle structure based on teleseismic surface wave records. In the 1960s, the single-station

method was introduced to extract and analyze average dispersion curves by directly utilizing

surface wave signals generated by earthquakes (Brune et al. 1960). However, this method is often

affected by uncertainties in the earthquake’s origin time and hypocenter location. Teleseismic

surface waves carry information about both the Earth’s structure along the great circle path

from the source to the station and the earthquake source itself, making it one of the long-

standing challenges to separate the two (Romanowicz 2020). To eliminate the influence of source

information on the results, Sato (1955) proposes the two-station method that uses two stations

located approximately along the same great circle path to extract surface wave dispersion signals.

Romanowicz (1982) uses two events for a single station instead of two stations to obtain seismic

wave velocity from teleseismic records. In traditional surface wave tomography methods (such as

the two-station method), it is commonly assumed that teleseismic surface waves arrive as plane

waves. However, surface waves can deviate from the great circle path when they encounter

heterogeneities during propagation, resulting in non-plane wave energy and systematic bias

in velocity measurement (Friederich et al. 1994; Laske 1995). To handle the non-plane wave

energy, Forsyth et al. (1998) and Forsyth et al. (2005) propose the two-plane-wave tomography

method, which approximates the incident wavefield as the interference of two plane waves.

By simulating the interaction of these two plane waves, this method can more accurately fit

propagation characteristics of surface waves in complex geological structures.

Over the past two decades, significant improvements have been made in these methods for sur-

face wave tomography. For the two-station method, Meier et al. (2004) apply cross-correlation

functions to waveform of two stations and enhanced the accuracy of fundamental mode dis-

persion measurements through frequency-domain Gaussian filtering. Wu et al. (2009) present

a wavelet transform approach to measure inter-station phase velocity. For two-plane-wave to-

mography method, Yang and Forsyth (2006) utilize the finite-frequency theory to account for

the effects of heterogeneous structure on the wavefield, providing better resolution of local
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1.1 Seismic tomography

structure. Li and Li (2015) extend the method to Love waves, demonstrating that the joint

analysis of Rayleigh and Love waves enables simultaneous inversion for seismic velocity and

radial anisotropy. These methods have been applied to different datasets and earthquakes at

teleseimic distances to study the velocity structure in the crust and upper mantle. For example,

Bourjot and Romanowicz (1992) reveal the crust and lithosphere structure beneath the Tibet

using the two-event method based on Rayleigh wave data at 25 to 100 s. Curtis and Woodhouse

(1997) present fundamental mode Rayleigh and Love wave phase velocities at periods across 32-

200 s beneath the Tibetan Plateau and its surrounding regions through the two-event method.

Li and Fu (2020) construct long-period phase velocity maps of Rayleigh waves and Love waves

at periods between 20 and 143 s in the central and eastern parts of the Tibetan Plateau based

on the two-plane-wave tomography method. These studies have demonstrated the capability

of teleseismic surface wave tomography in resolving deep Earth structure and advancing our

understanding of lithospheric deformation and mantle dynamics.

1.1.3 Ambient noise tomography

Ambient noise tomography involves extracting the Green’s function between stations by per-

forming cross-correlations on long-term seismic noise recordings at two stations. The surface

wave dispersion curves obtained by Green’s functions can then be further analyzed through

tomography methods to resolve the velocity structure of the Earth’s interior. While ambient

noise was previously dismissed as lacking useful structural information, it has been found to

reveal valuable insights into Earth’s structure. In the early 2000s, a novel approach was intro-

duced to extract the medium’s Green’s function between two points through cross-correlation

of waveforms recorded at those points (Lobkis and Weaver 2001; Weaver and Lobkis 2001). In

seismology, Campillo and Paul (2003) compute the cross-correlation functions of seismic coda

data recorded at the Mexican National Seismological Network and successfully extracted the

Green’s function of fundamental mode Rayleigh and Love waves. Snieder (2004) also proves

that the Green’s function can be found by cross correlating scattered waveforms at two receivers.

Shapiro and Campillo (2004) first perform cross-correlations on ambient noise data and mea-

sured the group velocity dispersion curves of fundamental mode Rayleigh waves. The proposal

that Green’s functions could be extracted from ambient noise through cross-correlation, and

its subsequent confirmation through successful retrieval of surface wave signals, has laid a solid

foundation for ambient noise tomography.
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Compared to traditional tomography based on earthquakes or explosions, ambient noise tomog-

raphy offers several advantages. Firstly, the Green’s function obtained through cross-correlation

reflects the information of the subsurface medium between the two stations, thereby avoiding

errors associated with the earthquake’s origin time and hypocenter location. Furthermore, the

horizontal resolution of ambient noise tomography mainly depends on the spacing between sta-

tions and the wavelength of surface waves, rather than the ray distribution between stations

and earthquakes. More importantly, as short-period seismic surface waves attenuate rapidly,

traditional methods often fail to obtain high quality signals of short period surface wave. Due

to these advantages, much research in recent years has focused on ambient noise tomography.

Shapiro et al. (2005) apply this method to the USArray stations in southern California and

successfully extracted high-frequency Rayleigh wave information from 7 to 18 s using only a

month of continuous recordings and further analyzed group velocity distribution at 7.5 s and

15 s in this region. Yao et al. (2006) and Yao et al. (2008) demonstrate the variation of Rayleigh

wave phase velocity and shear wave velocity beneath southeastern Tibet by combining empiri-

cal Green’s function and the two-station method, suggesting a relationship between faults and

crustal structure. Yang et al. (2007) extend the study area to cover the entire European con-

tinent using continuous seismic waveform recordings over 1 year and obtained Rayleigh wave

group velocities from periods of 10 to 50 s, revealing high resolution maps of sedimentary basins

and crust. These applications imply that ambient noise tomography has become a popular and

reliable method for visualizing Earth’s structure across diverse scales.

Ambient noise tomography provides high resolution of crustal structures by extracting shorter-

period surface waves. This advantage in resolving shallow structures complements teleseismic

surface wave tomography, which primarily constrains deeper structures. The integration of both

methods enables comprehensive imaging across different depth ranges from the crust to upper

mantle.

1.1.4 Seismic anisotropy

Seismic anisotropy refers to the phenomenon where seismic wave velocity varies with propaga-

tion direction, as caused by the Earth’s elastic properties. This characteristic is often a result

of crustal and upper mantle deformation, which can arise from either the Lattice Preferred Ori-

entation (LPO) of anisotropic minerals or the Shaped Preferred Orientation (SPO) of isotropic

materials with distinct shapes (Crampin and Booth 1985; Nicolas and Christensen 1987; Silver
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1996; Montagner and Guillot 2002; Long and Becker 2010). Both LPO and SPO can cause sub-

stantial variations in wave velocities (up to approximately 10%) depending on the polarization

or propagation direction of seismic waves (Becker 2020). These orientation-induced velocity

differences can exceed those attributed to variations in composition or temperature within the

Earth. A number of measurements have been proposed to reveal seismic anisotropy that can

be categorized into body wave and surface wave methods. Body wave methods include shear

wave splitting, receiver function, and P wave arrival methods (Hess 1964; Silver and Chan

1991; Savage 1999; Park and Levin 2002; Bokelmann 2002). Shear wave splitting, which uti-

lizes both regional S arrivals to constrain crustal stress field variations and teleseismic arrivals

like SKS or SKKS core phases to study anisotropy in the lithosphere and mantle, offers good

lateral resolution (< 50 km) but faces fundamental limitations in depth resolution as it cannot

directly constrain the depth of anisotropic layers (Savage 1999). Receiver functions, on the

other hand, offer evidence of crustal anisotropy through split pS conversions. P wave arrival

methods usually contain Pn azimuthal anisotropy and P wave tomography. Hess (1964) first

uses Pn wave to detect seismic anisotropy in the upper mantle. P wave tomography can also be

used to infer mantle lithospheric anisotropy, though this requires knowledge of isotropic velocity

variations (Becker 2020).

Surface wave methods offer complementary information about seismic anisotropy, particularly

in terms of depth resolution. It is commonly used to study upper mantle anisotropy. Ambient

noise tomography has extended the applications to shorter periods allowing for better resolution

of crustal anisotropy. Furthermore, long-period surface waves and free oscillations of the Earth

provide invaluable insights into deep Earth structure, including inner core anisotropy (Tromp

2001). Surface wave studies can provide constraints on both radial and azimuthal anisotropy,

with the ability to construct 3-D models of anisotropy due to their dispersive character. The

observation that Love waves generally travel faster than Rayleigh waves implies the existence of

radial anisotropy in the upper mantle (Anderson 1965). This discovery led to the development

of transversely isotropic models with vertical symmetry axes, which formed the basis for the

Preliminary Reference Earth Model (PREM) (Dziewonski and Anderson 1981). In addition

to radial anisotropy, surface waves also exhibit azimuthal anisotropy, where wave propagation

velocities vary with azimuth relative to north (Forsyth 1975). The azimuthal variation of the

Rayleigh and Love wave phase velocity is defined as (Smith and Dahlen 1973):
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c(ω, θ) = A0(ω) + A1(ω)cos(2θ) + A2(ω)sin(2θ) + A3(ω)cos(4θ) + A4(ω)sin(4θ), (1.1)

where θ is the azimuth of the wavenumber, ω is the angular frequency, and the Ai terms depend

on the anisotropic elastic parameters within the medium. Note that both the phase velocity c

and coefficients Ai implicitly depend on the spatial location x = (x, y), as the elastic properties

of the medium vary with position. Romanowicz (2002) reviews the research on azimuthal

anisotropy in the crust and upper mantle using this expression. Based on azimuthal anisotropy

studies, Yuan and Romanowicz (2010) identify two distinct lithospheric layers throughout the

stable North American continent, providing new insights into the formation and stability of

cratons. Beghein et al. (2014) present the Gutenberg (G) discontinuity is primarily associated

with vertical changes in azimuthal anisotropy. These applications have proved that surface

wave azimuthal anisotropy is a promising way to detect layering. While their lateral resolution

is generally lower than that of body wave methods, surface wave studies have been crucial in

developing global and regional models of anisotropy, enabling more powerful petrological and

geodynamic inferences about Earth’s interior.

1.1.5 Eikonal tomography

Surface wave tomography is typically performed using either ’single-station’ or ’array-based’

methods. The single-station methods focus on measuring the traveltime of surface wave between

seismic sources and receivers and utilize ray theory or finite frequency kernels to evaluate the

wave speeds (Ekström et al. 1997; Yoshizawa and Kennett 2002; Yoshizawa and Kennett 2005).

While the array-based methods focus on analyzing the phase differences from the waveform

recorded across an array of stations to determine the dispersion characteristics, enabling high

resolution regional tomography or imaging of small structures (Friederich 1998; Prindle and

Tanimoto 2006). Compared to single-station methods, array-based methods have the advantage

of enhancing the signal-to-noise ratio (SNR) of coherent signals over incoherent noise (Rost and

Thomas 2009). With the development of dense arrays and seismic instruments, numerous

imaging methods have been developed to improve the spatial resolution of crustal and upper

mantle structure, such as beamforming tomography (Boué et al. 2014; Nakata 2016; Wu et al.

2023), wave gradiometry (Langston 2007; Liang and Langston 2009; De Ridder and Biondi

2015) and eikonal and Helmholtz tomography (Lin et al. 2009; Lin and Ritzwoller 2011; Jin
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Figure 1.1: Traveltime surface and velocity relationship. A traveltime surface (or wavefront) is
a surface in space that represents all points that a wave reaches at the same traveltime from a
source. The surface is shaped by the velocity structure of the medium, where regions of lower
velocity result in longer traveltimes (and regions of higher velocity result in shorter traveltimes).
The red star indicates the source. The contours represent wavefronts, which are lines of constant
traveltime. The green arrows indicate the direction of wave propagation, which is perpendicular
to the wavefronts and follows the gradient of the traveltime surface.

and Gaherty 2015), which are widely used in analyzing surface wave signals recorded at large

dense seismic networks. The detailed methods and applications of array seismology are reviewed

in Rost and Thomas (2002) and Schweitzer et al. (2012).

Eikonal tomography is a seismic imaging technique that utilizes the eikonal equation to study the

relationship between seismic wave traveltimes and subsurface velocity structures. In traditional

methods, if the effects of high frequency components and the directionality of scattering are

neglected, the traveltime of surface waves can be defined as (Lin et al. 2009):

τ(xr,xs) =

∫
S(x,xr,xs)

dx2

c(x)
, (1.2)

where τ(xr,xs) = τ(xr,xs, ω) is the frequency dependent phase traveltime between source xs

and receiver xr at frequency ω, S(x,xr,xs) is the finite frequency sensitivity integral kernel,

and x represent an arbitrary point, c(x) = c(x, ω) is the frequency dependent phase velocity at

location x and frequency ω. Equation 1.2 links the surface wave traveltime to wave speed, but

the traveltime acts as a global constraint.
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In contrast, eikonal tomography utilize the eikonal equation to directly obtain the local phase

velocities from interpolated phase traveltime surfaces (Lin et al. 2009). Figure 1.1 shows the

concept of traveltime surface, which represents the time taken for a seismic wave to propagate

from a source point to every location within a medium. By analyzing the traveltime surface and

its gradient, this method captures variations in wave propagation caused by velocity anomalies.

In regions with constant velocity, the traveltime surface forms concentric circular contours,

with the gradient direction perpendicular to the contours. In low-velocity anomaly regions, the

contours become denser, bend away from the source, and exhibit increased gradient magnitudes,

reflecting slower wave propagation. These changes in the traveltime surface and its gradient

provide direct insights into the bending of seismic ray paths in heterogeneous media, enabling

the reconstruction of subsurface velocity models through the eikonal equation.

The eikonal equation governs wavefront propagation in heterogeneous media and is derived by

applying the high-frequency approximation to the wave equation. For P-waves traveling through

heterogeneous media, the scalar potential ϕ obeys the wave equation (Shearer 2019):

∇2ϕ− 1

α2(x)

∂2ϕ

∂t2
= 0, (1.3)

where ϕ is the scalar for displacement u (u = ∇ϕ), α(x) is P wave velocity at point x. The

solution to this equation in the high-frequency domain assumes a harmonic form:

ϕ(x, t) = A(x)e−iω[t−τ(x)], (1.4)

where A(x) represents the amplitude function, τ(x) is the wavefront arrival time and ω is the

angular frequency (with ω ≫ 1 for the high-frequency approximation). Substitution of this

solution (Equation 1.4) into the wave equation (Equation 1.3) and subsequent differentiation

yields:

∇2A− ω2A|∇τ |2 − i
[
2ω∇A · ∇T + ωA∇2T

]
= −Aω2

α2
, (1.5)

Separation of the real and imaginary parts in Equation 1.5 produces two equations. The imag-

inary part corresponds to the amplitude transport equation, while the real part yields the
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Helmholtz equation:

|∇τ(x)|2 =
1

α2(x)
+

∇2A(x)

A(x)ω2
, (1.6)

At high frequencies (ω ≫ 1) or when the spatial variation of the amplitude is small com-

pared to the traveltime gradients, the second term on the right side becomes negligible. This

simplification leads to the eikonal equation (Aki and Richards 2002; Shearer 2019):

|∇τ(x)|2 =
1

α2(x)
, (1.7)

While this equation is derived specifically for P-waves, the same mathematical form applies

to other wave types. For surface wave propagating in a heterogeneous medium, the eikonal

equation can be written in this form (Wielandt 1993; Lin et al. 2009):

k̂i
ci(x)

= ∇τ(xi,x), (1.8)

where k̂i is the unit wave number vector for traveltime surface i at location x, ci(x) = ci(x, ω) is

the wave speeds for traveltime surface i at location x and frequency ω, ∇τ(xi,x) = ∇τ(xi,x, ω)

denotes the gradient of traveltime surface i at location x and frequency ω. The process of

eikonal tomography involves two main steps: wavefront or phase front tracking and gradient

computation based on the eikonal equation at each spatial node. By compiling and averag-

ing the local phase speeds and wave path directions from the traveltime surfaces centered on

each station (or earthquake), a comprehensive phase velocity distribution map is constructed.

Eikonal tomography avoids explicit regularization by replacing traditional ad hoc smoothing

parameters with implicit regularization through phase-front tracking (Lin et al. 2009). Travel-

time data are interpolated using minimum-curvature surface fitting (Smith and Wessel 1990),

which naturally smooths gradients while preserving structural trends, and statistical averaging

over multiple paths further stabilizes results.

Based on a high frequency analysis when entering an elliptical definition of c into the Helmholtz

equation, De Ridder et al. (2015) proposed an elliptical-anisotropic eikonal equation:
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1 =

[
∂xτ ∂yτ

]M11 M12

M21 M22


∂xτ
∂yτ

 . (1.9)

where τ represents the traveltime field, and its spatial derivatives ∂xτ and ∂yτ describe the com-

ponents of the slowness (the reciprocal of velocity) vector. The matrix elements are expressed

as:

M11 = M11(x, ω) = (c2f − c2s)sin
2(α) + c2s, (1.10)

M12 = M21 = M12(x, ω) = (c2f − c2s)sin(α)cos(α), (1.11)

M22 = M22(x, ω) = (c2f − c2s)cos
2(α) + c2s. (1.12)

where cf = cf (x, ω) and cs = cs(x, ω) are the fast and slow velocities, respectively, and α =

α(x, ω) is the azimuth of the fast direction. In this way, the eigenvalues and eigenvectors of the

matrix M =

M11 M12

M21 M22

 indicate the fast and slow velocities and directions, which enables

explicit spatial regularization during inversion (De Ridder et al. 2015).

Eikonal tomography complements traditional surface wave tomography by avoiding the forward

and inversion processes, accounting for bent rays and directly measuring azimuth-dependent

phase velocities at each point without making ad hoc assumptions. Eikonal tomography has

been applied to both regional and continental scale arrays and has become a promising method

to investigate the crust and mantle structure (De Ridder 2011; Qiu et al. 2019; Tong 2021; Hao

et al. 2021; Liu and Tong 2021; Kästle et al. 2022).

1.2 Physics informed machine learning

1.2.1 Machine learning for seismology

Seismology relies on observations to study the internal structures and properties of Earth and

other planets. Through analysis of these observations, seismologists can investigate natural
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phenomena such as faults and volcanoes, as well as the impact of human activities. With

the dramatic increase in observational data (e.g. volume) and advancements in computational

power, machine learning (ML) has emerged as a vital tool in seismological research, primarily

leveraging supervised and unsupervised learning techniques. The detailed ML applications in

seismology have been discussed in multiple review papers (Bergen et al. 2019; Kong et al. 2019;

Yu and Ma 2021; Mousavi and Beroza 2022; Li et al. 2023; Zhao et al. 2024). In the following,

I summarize main points relevant for my work.

Supervised learning is a type of machine learning where a model is trained on a labeled dataset,

meaning that each training example includes both input features and the correct output (la-

bel). The main task of supervised learning is to learn a mapping function from input features

to output labels, so that the model can predict the correct new output. Supervised learning

tasks encompass classification and regression, with commonly used algorithms in seismology

including logistic regression (LR), support vector machines (SVM), random forests (RF), and

neural network (NN). LR is a statistical model used for binary classification that provides good

interpretability and computational efficiency but may struggle with non-linear relationships

commonly encountered in seismic problem. SVM uses kernels functions to separate data classes

by maximizing margins that excels in handling high-dimensional data, though kernel selection

can be challenging. RF is an ensemble of decision trees for classification or regression that is

robust to noise and outliers and handles both numerical and categorical features well, but re-

quires significant memory for large datasets. NN is a computational model inspired by biological

neurons that offers flexible architecture for complex patterns and can automatically learn fea-

tures, but it has a complex training process and needs careful parameter tuning. These distinct

characteristics are suitable for different seismic tasks. For example, Xu et al. (2012) compare

bivariate statistics (BS), LR, artificial neural networks (ANNs), and three kinds of SVM models

for susceptibility mapping of earthquake-triggered landslides in a tributary watershed of the Fu

River affected by the 2008 Wenchuan earthquake, finding that LR models provided the highest

success and prediction rates. Hibert et al. (2017) validate the performance of the RF algorithm

in classifying seismic signals recorded at Piton de la Fournaise volcano, distinguishing rockfalls

and volcano-tectonic earthquakes with sensitivity exceeding 99% when sufficient training sam-

ples are available and remaining above 90% even with limited samples. Paitz et al. (2018) use

ANN to identify seismic time series suitable for noise tomography, achieving better performance

compared to manually classification with errors below 20%. The high accuracy achieved across
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these studies demonstrates the potential of supervised learning in automating, modeling and

inversion, which significantly improves traditional seismological analysis tasks.

Unsupervised learning, on the other hand, involves training a model on a dataset that con-

tains only input features and no labels. The main task of unsupervised learning is to discover

hidden patterns or data groupings within the dataset, without any external guidance on what

those patterns should be. Unsupervised learning tasks contain clustering and dimensionality

reduction, with commonly used algorithms in seismology including k-means, self-organizing

map (SOM), principal component analysis (PCA) and dictionary learning. k-means is a simple

and efficient clustering algorithm that partitions data into k clusters but requires pre-specified

cluster numbers and is sensitive to initial values. SOM is a NN-based algorithm with topological

preservation and adaptive learning capabilities though it needs careful parameter tuning and

can be computationally intensive. PCA projects data onto lower-dimensional orthogonal axes

that offers linear dimensionality reduction and noise filtering while maintaining computational

efficiency, but may miss important non-linear relationships and requires an understanding of

the data for result interpretation. Dictionary learning represents data sparsely via learned basis

functions that enables adaptive sparse representation of signals and effective noise suppression,

though it demands significant computational resources and careful dictionary design. In seismic

applications, Galvis et al. (2017) employ k-means to detect and classify surface waves in seismic

data acquired in Colombia, presenting well-differentiated zones that improves seismic interpre-

tation. Roden et al. (2015) utilize PCA to determine the most significant seismic attributes,

which are then used as inputs for SOM training, revealing previous unidentified geological fea-

tures. Nazari Siahsar et al. (2017) propose a data-driven 3-D dictionary learning algorithm

with multitasking strategy for seismic data processing, achieving efficient and effective random

noise attenuation of synthetic and real 3-D data when compared to several established filtering

methods. These studies highlight how unsupervised learning can reveal hidden patterns and

structures in seismic data that might be missed by traditional analysis methods, particularly

valuable when dealing with the growing volume of observational data.

NNs are computational models inspired by the human brain’s neural structure. A standard

NN consists of interconnected nodes (neurons) organized in layers: an input layer, one or more

hidden layers, and an output layer (Figure 1.2). Each connection between neurons carries a

weight that is adjusted during training to optimize the network’s performance. These weights
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Figure 1.2: Basic structure diagram of neural networks (modified from Bishop (1994)).
x1, x2, ..., xn are inputs, w1, w2, ..., wn are weights,

∑
represents the weighted sum of inputs, σ

represents non-linear activation function and z is output.

are typically updated using automatic differentiation, a computational technique that efficiently

calculates derivatives by tracking operations during forward computation, enabling the network

to learn from its errors. In a feedforward NN, information flows unidirectionally from input to

output. Each neuron performs two operations: (1) computing a weighted sum of its inputs and

a bias term, and (2) applying a non-linear activation function to this sum. Mathematically,

z = σ

(
n∑

i=1

wixi + b

)
, (1.13)

where wi represents the weight and b represents the bias. A weighted sum of the inputs plus a

bias is then transformed using a non-linear activation function σ to give a final output z (Bishop

1994). NNs are trained using training data, which is carefully selected examples that represent

the problem space, allowing the model to learn patterns and relationships. During training, the

network’s predictions are compared to the actual expected outputs, and the difference is quanti-

fied as a loss, which is a numerical measure of prediction error that guides the weight adjustment

process. This architecture forms the basis of deep learning, where multiple hidden layers enable

hierarchical feature learning. Hinton and Salakhutdinov (2006) extend the classical ANN by

integrating numerous hidden layers to construct deep neural networks (DNNs) that are capable
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of extracting complex features from massive amounts of data. This approach, which involves

training DNNs to learn high-level abstractions from data, is known as deep learning (DL). By

leveraging the power of multiple layers of non-linear processing units, DL models can automat-

ically discover and represent complex patterns and hierarchical structures in the data (LeCun

et al. 2015). Deep learning algorithms also encompass both supervised and unsupervised tasks

with commonly used architectures such as fully connected neural network (FCNN), convo-

lutional neural network (CNN), recurrent neural network (RNN) and generative adversarial

network (GAN). A FCNN consists of multiple layers of neurons where each neuron in one layer

is connected to every neuron in the next layer, providing a simple and intuitive NN architecture.

A CNN typically consists of convolutional layers, pooling layers, and fully-connected layers. It

significantly reduces the number of parameters by featuring parameter sharing and sparse con-

nections. RNNs have a loop in their architecture that allows them to maintain a hidden state

over time, offering a strong ability in handling sequence data. A GAN is composed of a gen-

erator and a discriminator that are trained simultaneously in an adversarial manner, enabling

the remarkable ability to generate new data that resembles the real data distribution. Though

these DNN architectures share the advantages of strong non-linear fitting capabilities and wide

application adaptability, they also face issues such as high computational resource requirements,

over-fitting risks, and poor model interpretability.

The DL applications in seismology can be discussed from several aspects, such as seismic denois-

ing, arrival time picking and earthquake location. Zhu et al. (2019) propose a denoising/decom-

position method called DeepDenoiser based on a DNN, which simultaneously learns a sparse

representation of data in the time-frequency domain and maps it into masks for seismic signal

and noise separation. By automatically learning noise statistics from data, DeepDenoiser sig-

nificantly improves SNR and generalizes well to real noisy data sets. A challenge in DL based

seismic denoising is to obtain clean seismic data or noise and an effective solution is create

semisynthetic white noise. Wu et al. (2019) use a modified denoising CNN with variational

mode decomposition (VMD) that simulates the user-generated white noise, presenting effec-

tively rejection on white noise and migration artifacts. Unsupervised learning such as GAN

can also be used for noise attenuation by learning the domain mapping from noisy data do-

main to effective signal data domain (Li et al. 2020). With the ability of DNNs to identify

predefined targets in images, and given the vast amount of seismic data along with manually

labeled examples, seismic arrival picking has become a popular application of DL in seismic data
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processing. Zhu and Beroza (2019) apply U-Net, a kind of CNN, to identify the first arrivals

of P-waves and S-waves based on training data from the Northern California Seismic Network

catalog, enabling automatic seismic phase picking, particularly effective in reliably extracting

S-wave arrivals. Yuan et al. (2020) combine CNN and RNN for first-arrival picking that uses

an RNN to optimize picking after U-net segmentation, improving the picking performance and

reducing human intervention. For earthquake location determination, Zhang et al. (2020b) uti-

lize DNN to determine the locations of small earthquakes in Oklahoma and are able to locate

small event (ML ≥ 2.0) with a mean epicenter error of 4-6 km. Mousavi and Beroza (2020)

present a single-station earthquake location method based on Bayesian neural network that is

capable of estimating the epicenter, origin time, and depth along with their uncertainties. Other

DL applications in seismology include solving seismic forward and inverse problems (DeVries

et al. 2018; Araya-Polo et al. 2018; Das et al. 2019; Gatti and Clouteau 2020; Münchmeyer

et al. 2021; Jianguo and Ntibahanana 2024). DL has already shown great potential in different

seismic tasks and will likely soon become a routine approach for various seismic data analyses.

The evolution of ML applications in seismology demonstrates a clear progression from traditional

methods to more sophisticated approaches. Traditional supervised learning methods like LR,

SVM, and RF offer reliable performance with good interpretability for specific tasks, while

unsupervised learning techniques enable the discovery of hidden patterns in unlabeled seismic

data. The emergence of DL has further transformed seismic data analysis by providing powerful

tools for handling complex, large-scale datasets. As each ML method has its own advantages and

disadvantages, careful consideration of task requirements, data characteristics, and desired level

of model interpretability is essential when selecting a specific approach. These methods have

revolutionized seismological research by enabling automatic analysis of large datasets, solving

forward and inverse problems, and discovering new patterns or relationships, thereby enhancing

our understanding of Earth’s structure and dynamics.

1.2.2 Scientific machine learning

As a purely data-driven method, traditional ML faces several fundamental challenges. First,

it heavily relies on large-scale datasets for model training, which presents significant barriers

for complex physical systems where data collection is costly and limited. Second, the design of

NN architectures lacks solid theoretical foundations, relying primarily on empirical experimen-

tation rather than systematic principles. Third, the internal decision-making process of DNN
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Figure 1.3: (a) A representation of balance between data and scientific knowledge (modified
from Karpatne et al. (2017)). The x-axis indicates the use of data while the y-axis indicates the
use of scientific knowledge. Theory-based models rely heavily on scientific principles with min-
imal data, while data science models use extensive data with less emphasis on theory. Theory-
guided data science models integrate both, enhancing scientific understanding by combining
data-driven approaches with theoretical knowledge. (b) Illustration of SciML methods (mod-
ified from Moseley (2022)). The three colored rectangular blocks represent different ways of
integrating scientific knowledge into ML models. Each block contains specific implementation
methods. The color intensity (along the x-axis) indicates the degree of scientific knowledge
constraint imposed by each approach. Note that the scientific constraint’s strength is a rather
vague concept. Here the methods closer to the traditional workflow enforce stronger physical
principles.

functions as a ”black-box”, making it difficult to understand and validate their predictions.

Fourth, despite their strong representational power, these data-based models typically exhibit

poor generalization capability beyond their training distribution (Lazer et al. 2014). Before

the development of data-driven approaches, model-driven approaches (or physics-based mod-

els) served as the primary framework for understanding physical systems. These approaches

construct mathematical representations based on fundamental physical laws, typically expressed

through partial differential equations (PDEs). They transform conceptual understanding into

quantifiable frameworks, ranging from simple process models to complex multi-system integra-

tions. The key advantages of model-driven approaches include their mechanistic interpretability,

explicit incorporation of physical principles, and reduced reliance on large datasets. However,

purely model-driven method also faces limitations. Simpler models may oversimplify complex

phenomena and introduce significant errors, while more sophisticated models often become

computationally intractable. The inherent complexity of real-world systems, combined with

our limited understanding of relationships and trade-offs, makes it difficult to fully capture

the relationships between various factors and their dependencies. Additionally, these models
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1.2 Physics informed machine learning

struggle with inverse problems, particularly in complex geometries or high-dimensional spaces,

which can significantly limit their practical applications.

Given these limitations, new methods are needed that can learn from limited or noisy data while

incorporating physical knowledge to handle the complexity of dynamic Earth systems. As shown

in Figure 1.3 (a), theory-based and data science models represent the two extremes of knowledge

discovery and neither is sufficient for tackling complex scientific problems independently. A

better way is to combine the strengths of both through theory-guided data science models. To

address this, a new and rapidly advancing field known as scientific machine learning (SciML)

has established (Baker et al. 2019; Karniadakis et al. 2021; Willard et al. 2022). SciML aims

to integrate existing scientific knowledge into ML algorithms, generating more sophisticated

algorithms that can leverage our prior scientific understanding while maintaining the powerful

learning capabilities of ML approaches. This integration is achieved through loss function

modification, architecture design or hybrid approaches (Moseley 2022). Figure 1.3 (b) presents

the specific SciML methods and illustrates the different strengths to which these methods impose

scientific principles into ML algorithm. For loss function modification methods, additional

physical constraint terms are added to the loss function, serving as regularizers or physical priors.

These constraints guide models toward physically consistent solutions while maintaining learning

flexibility (Beucler et al. 2021; Daw et al. 2022; Raissi et al. 2019). For architecture design

methods, traditional ”black-box” architectures are transformed into physics-informed systems

by embedding scientific principles directly into their design. This introduces strong inductive

biases, narrowing the model’s hypothesis space (Daw et al. 2020; Panju and Ghodsi 2020; Wang

et al. 2020b). For hybrid methods, ML algorithms are integrated with traditional scientific

methods to create hybrid systems that simultaneously leverage the adaptability of data-driven

learning and established physical knowledge (Chen et al. 2018; Pawar et al. 2021; Um et al.

2020). These methods encompass varying degrees of scientific constraints, and there is no single

best approach for incorporating underlying theories. By embedding scientific principles, SciML

creates more interpretable, generalizable, and efficient models that address the challenges posed

by data limitations and complex physical equations.

1.2.3 Physics informed neural network

Physics-informed neural network (PINNs), introduced by Raissi et al. (2019), are designed to

solve various PDEs using DL techniques. PINNs represent a novel type of SciML framework,
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Figure 1.4: Schematic of PINN for solving a general PDE. Inputs x1, x2, ..., xn are processed by
neural network N(θ;x), producing the predicted solution u. Automatic differentiation is used

to compute different order of derivatives ∂
∂x1

, ∂
∂x2

, ..., ∂2

∂x2
1
, ∂2

∂x2
2
, ..., which is essential for enforcing

physical constraints. In the PINN algorithm, the loss function L is composed of two parts: the
loss of data Lu and the loss of physical constraint Lr. This physical constraint contains the
governing equation along with appropriate initial and boundary conditions.

which embedding the governing equations of a system into the training process (see ’Encoding

governing equation’ in Figure 1.3 (b)). Rather than simply incorporating constraints on a sys-

tem’s physical quantities into the loss function, integrating knowledge of underlying governing

equation is more effective (Moseley 2022). PINNs leverage the automatic differentiation to in-

corporate the differential form constraints from PDEs directly into the loss function, thereby

merging data- and physics-based models (Baydin et al. 2018). This approach functions as a

mesh-free technique, which uses NNs to directly approximate functions at arbitrary points with-

out the need for spatial discretization. A generic schematic illustrating the network structure

of PINN is shown in Figure 1.4. Consider u(x) is the unknown solution in a PDE, a PINN is a

NN, N(θ;x), with trainable parameters θ to approximate the solution u(x). The loss function

consists of two components: the data loss Lu, which measures the discrepancy between the

NN’s predictions and available observations, and the physics loss Lr, which ensures that the

NN’s predictions respect the governing PDEs. This is achieved by penalizing the residuals of

the PDE at collocation points distributed across the domain. The loss function is given by:
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1.2 Physics informed machine learning

L = Lu + Lr, (1.14)

where

Lu =

Nd∑
i

||N(θ;xi) − u(xi)||2, (1.15)

Lr =

Np∑
j

||r(xj)||2, (1.16)

where Nd and Np are the numbers of data and physics points. r(xj) represents the residual of

PDE at a set of points xj over the entire domain.

By incorporating physical laws into the NN architecture, PINNs offer several advantages over

both purely data-driven and model-driven approaches. At the foundational level, PINNs achieve

better generalization and provide a more interpretable framework compared to conventional

NNs, as their solutions naturally respect underlying physical principles. From a computational

perspective, their mesh-free nature yields continuous, differentiable solutions without requir-

ing discretization schemes, significantly simplifying the modeling process. Furthermore, PINNs

demonstrate remarkable data efficiency, requiring substantially less training data than tradi-

tional NNs while enabling effective extrapolation beyond the given points. Finally, PINNs offer

a unified framework for solving both forward and inverse problems, and the same architecture

can be adapted with minimal modifications to handle both types of problems, even in cases

involving complex geometries or high-dimensional spaces where traditional numerical methods

struggle. These characteristics make PINNs particularly valuable for practical applications in

scientific computing.

The success of the basic PINN framework has generated numerous methodological extensions,

each addressing specific challenges in physical modeling. These extensions can be broadly cat-

egorized into two groups: physics-oriented variants and NN architectural adaptations. The

physics-oriented variants encompass conservative PINNs (cPINNs) (Jagtap et al. 2020), frac-

tional PINNs (fPINNs) (Pang et al. 2019), nonlocal PINNs (Pang et al. 2020), variational

PINNs (vPINNs) (Rojas et al. 2024) and extended PINNs (XPINNs) (Jagtap and Karniadakis
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2020). The NN architectural adaptations include Bayesian neural networks (BNNs) (Yang et

al. 2021), CNNs (Fang 2021; Gao et al. 2021), RNNs (Viana et al. 2021; Lu et al. 2024), long

short-term memory (LSTM) networks (Zhang et al. 2020a), GAN (Yang et al. 2020; Yang and

Ma 2023). The diversity of these extensions reflects both the potential and challenges of PINNs,

suggesting a trend toward more specialized and sophisticated implementations while maintain-

ing the core philosophy of combining ML and physics-based models. Researchers have applied

PINNs to diverse fields, including fluid mechanics (Raissi et al. 2020; Mao et al. 2020; Cai

et al. 2021), solid mechanics (Goswami et al. 2020; Tao et al. 2020), material science (Fang and

Zhan 2019; Chen et al. 2020b; Islam et al. 2021), biomedicine (Kissas et al. 2020; Sun et al.

2020) and power systems (Misyris et al. 2020). In addition, several software packages have been

developed to implement efficient PINNs training based on different framework, for example,

DeepXDE (Lu et al. 2021), NeuroDiffEq (Chen et al. 2020a), NVIDIA SimNET (Hennigh et al.

2021) and SciANN (Haghighat and Juanes 2021). These frameworks facilitate the practical

implementation and broader adoption of PINNs. A comprehensive literature review on PINNs

can be found in Karniadakis et al. (2021) and Cuomo et al. (2022).

In seismology, PINNs have demonstrated remarkable potential in various applications, address-

ing both forward and inverse problems. For forward problems, PINN has been applied to solve

isotropic and anisotropic eikonal equation (Smith et al. 2020; Waheed et al. 2021; Waheed et al.

2020; Taufik et al. 2022) and wave equation in the time and frequency domains for isotropic

and anisotropic media (Alkhalifah et al. 2020; Karimpouli and Tahmasebi 2020; Moseley et al.

2020a; Moseley et al. 2020b; Song et al. 2021; Huang and Alkhalifah 2022a; Huang and Alkhali-

fah 2022b; Song et al. 2022; Song and Wang 2023; Chai et al. 2024; Alkhalifah and Huang 2024;

Zou et al. 2024). For inverse problems, PINNs have been applied to traveltime tomography (Wa-

heed et al. 2021; Agata et al. 2023; Gou et al. 2023; Song et al. 2024), wavefield reconstruction

inversion (Song and Alkhalifah 2021) and full waveform inversion (Rasht-Behesht et al. 2022;

Yang and Ma 2023; Lu et al. 2024). During these applications, several key methodological

advances have enhanced PINN’s performance. Alkhalifah et al. (2020) introduced frequency-

domain scattered wavefield simulation to avoid point-source singularity challenges. Song et al.

(2022) developed adaptive sinusoidal activation functions to achieve faster convergence during

training. Huang and Alkhalifah (2022a) employed frequency upscaling and neuron splitting to

model high-frequency wavefields. For multi-frequency wavefield solutions, Huang and Alkhal-

ifah (2022b) incorporated a single reference frequency into the loss function, while Song and
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Alkhalifah (2021) introduced Fourier feature PINNs. Moseley et al. (2020b) and Moseley et

al. (2020a) proposed ”curriculum learning” for training efficiency and developed finite basis

PINN (FBPINN) for large computational domains. Agata et al. (2023) and Gou et al. (2023)

utilized Bayesian PINNs to estimate uncertainty in seismic tomography. For full waveform

inversion, Yang and Ma (2023) proposed physics-informed GAN to handle inversions without

requiring training datasets. Alkhalifah and Huang (2024) developed physics-informed neural

wavefields that models the wavefield as linear combinations of Gabor basis functions governed

by the wave equation, improving the efficiency and accuracy of NN solutions. Zou et al. (2024)

proposed a velocity-encoded PINN (VE-PINN) that introduces feature parameters to represent

different layered velocity models, enabling generalization across various initial conditions.

While PINNs have demonstrated remarkable achievements in seismological applications, they

also face significant challenges in transitioning from theory to practice. First, the scalability

issue, where computational resource requirements grow exponentially when handling large-scale,

complex seismic data, limiting their practical applicability. Second, the optimization challenge

of network architecture and training workflows, where different seismological problems require

different network structures and parameter settings, yet systematic configuration standards

are lacking. Third, the balance between model complexity and interpretability, where despite

enhanced interpretability through physics incorporation, a better balance between the ”black-

box” nature of NNs and the transparency of traditional methods is still needed. Addressing

these challenges, future research should focus on three directions: developing robust methods for

complex geological environments, establishing standardized practical guidelines, and improving

uncertainty quantification for field applications. Through these efforts, PINNs are expected

to successfully transition from theoretical achievements to practical applications, ultimately

playing a more significant role in seismological research and applications.

1.3 Geological background

The northeastern Tibetan Plateau, characterized by the interaction between the stable Ordos

Block, North China Craton, and the actively deforming Tibetan Plateau, preserves critical

evidence of the ongoing India-Asia continental collision. The dense seismic networks deployed

across the region provide excellent data coverage, while its well-documented geological complex-

ity allows us to rigorously test our method’s resolution capabilities. Furthermore, the wealth
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of previous seismic studies using conventional approaches provides a robust framework for eval-

uating our results, making northeastern Tibet particularly well-suited for both demonstrating

our methodological innovations and advancing our understanding of continental dynamics.

1.3.1 Crust-mantle structure of northeastern Tibetan Plateau

The Tibetan Plateau (Figure 1.5), with its complex and intense tectonic activities, provides

one of the most ideal environments on Earth to study continental crust-mantle deformation.

However, the tectonic evolution of the Tibetan Plateau, especially the mechanisms of its uplift

and deformation, remains debated. There are several dynamical models proposed to explain

these mechanisms (Figure 1.6), including underthrusting, oblique continental subduction, con-

vective removal of mantle lithosphere, lower crustal flow, slab tearing/break-off and lithosphere

delamination. Among these, the two most representative models are the rigid block extrusion

model (Molnar and Tapponnier 1975) and the lower crustal flow model (Royden et al. 1997).

The rigid block extrusion model suggests that internal continental deformation relates to plate

tectonic theory, primarily through the southward oblique subduction of blocks along ancient

sutures, leading to the formation of large strike-slip faults and crustal shortening (Molnar and

Tapponnier 1975; Tapponnier et al. 2001). The lower crustal flow model suggests that the uplift

and crustal thickening of the Tibetan Plateau results in a low-strength, low-viscosity layer in

the middle-lower crust, which flows outward under pressure (Royden et al. 1997; Clark and

Royden 2000; Royden et al. 2008). This model indicates that the middle-lower crustal flow

divides into two branches: one flowing toward the southeastern margin of the Tibetan Plateau,

and the other toward its northeastern margin (Clark et al. 2005).

The northeastern margin of the Tibetan Plateau is located at the junction of the Alxa Block,

Ordos Block, western Qinling Orogen, Sichuan Basin, Songpan-Ganzi Terrane and Qilian Oro-

genic Belt (Figure 1.5 (b)). It is internally developed with complex large faults, such as the

Altyn-Tagh Fault, Haiyuan Fault and Kunlun Fault. This area is the front part of the plateau’s

internal expansion towards the northeast, where intense orogenesis lead to the rapid uplift of

orogenic belts such as the Qilian Orogen and western Qinling Orogen (Yin 2010). It is also

a significant area for the tectonic extrusion of plateau materials towards the east (Tappon-

nier et al. 2001). Seismic data and deep structure contribute significantly to understanding

these processes and to validating dynamic models. Ye et al. (2015) identify a low-velocity layer

in the middle-lower crust beneath the northeastern Tibetan Plateau through P-wave receiver
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1.3 Geological background

Figure 1.5: Overview of the tectonics, topography and distribution of seismic stations in north-
eastern Tibetan Plateau. (a) Dense array geometry used in the following chapters. Black lines
indicate the main faults, blue triangles indicate stations. (b) Geological settings of the study
area (modified from Sethian (1999) and Ren et al. (2024)). The main faults are labeled as:
ATF = Altyn-Tagh Fault; HLSF = Helanshan Fault; HYF = Haiyuan Fault; JTF = Jintan
Fault; KLF = Kunlun Fault; LPSF = Liupanshan Fault; LSSF = Longshoushan Fault; WQF
= West-Qinling Fault. The main tectonic blocks are labeled as AB = Alxa Block; CAOB =
Central Asian Orogenic Belt; HB = Hexi Basin; HG = Hetao Graben; JB = Jilantai Basin; LB
= Longzhong Basin; OB = Ordos Block; QOB = Qilian Orogenic Belt; RB = Ruoergai Basin;
SB = Sichuan Basin; SGT = Songpan-Ganzi Terrane; WB = Weihe Basin; WQO = Western
Qinling Orogen; YG = Yinchuan Graben.

functions, suggesting that the lithospheric mantle of the North China Craton has underthrust

beneath the Qilian Orogen. Yu and Chen (2016) perform SKS wave splitting to estimate the

seismic anisotropy in the upper mantle beneath the southern Ordos and Qinling-Dabie Orogen,

finding that a narrow eastward channel flow along the Weihe Basin and Qinling-Dabie Orogen

could provide a pathway for asthenospheric flow from the northeastern Tibetan Plateau. Guo

and Chen (2017) illustrate two separated low velocity zones in the upper mantle beneath the

North China craton and northeastern Tibetan Plateau using joint inversion of ambient noise

tomography and receiver functions, showing that the eastward asthenospheric flow from the

Tibetan Plateau does not extend beneath the Qinling orogen. Sun and Zhao (2020) present

P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath the

northeastern Tibet using body wave traveltime tomography. Their findings indicate that the

low-velocity zone in the middle-lower crust extends northeastward but is resisted by surrounding

rigid blocks, preventing further eastward extrusion of crustal flow between the Ordos Orogen
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and Sichuan Basin. These observations reveal a complex crust-mantle structure in the north-

eastern Tibetan Plateau, highlighting the need for new constraints and advanced methodologies

to further clarify the region’s tectonic evolution and dynamics.

Figure 1.6: Model of the major geodynamic mechanisms proposed to explain the formation and
evolution of the Tibetan Plateau (modified from Ding et al. (2022)). (a) Underthrusting (Powell
and Conaghan 1973). The Indian lithosphere subducted horizontally beneath the crust of the
Tibetan Plateau, led to crustal thickening. (b) Oblique continental subduction (Tapponnier
et al. 2001). The northward growth of the Tibetan Plateau was driven by the subduction of
continental lithosphere along sutures. (c) Convective removal of mantle lithosphere (Molnar
et al. 1993). The uniform thickening of the lithosphere, followed by the removal of its dense
lower part, led to a surface uplift by 1.0–2.5 km within a few million years. (d) Lower crustal
flow (Royden et al. 2008). The flow of weak lower crust driven by topography could have uplifted
eastern and southeastern Tibet. (e) Slab tearing/break-off (Webb et al. 2017). Dynamic surface
subsidence occurs during the break-off of a dense slab, followed by surface uplift after the break-
off. (f) Lithosphere delamination (Kelly et al. 2020). The northward advancing subduction of
the Indian lithosphere induced thickening and delamination of the weaker Asian lithosphere.
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1.3 Geological background

1.3.2 Surface wave studies in northeastern Tibetan Plateau

Surface wave tomography methods have been widely used in the northeastern Tibetan Plateau,

providing reliable characteristics of crust-mantle velocity structure and anisotropic structure

in this region. Early studies, such as Romanowicz (1982), obtain phase velocities of Rayleigh

waves and Love waves at 30-90 s in the Tibet, finding a low velocity zone (LVZ) at a depth

of 100 to 150 km. With increasing seismic station density, more detailed studies emerged. For

example, Bao et al. (2013) utilize ambient noise and earthquake data from Chinese regional

digital seismic networks and temporary seismic arrays to reveal S wave velocity structure down

to 120 km in the North China Craton and northeastern Tibetan Plateau. The results illustrate

an isolated mid-crustal LVZ in the Qilian Orogen, with relatively higher velocity compared to

other LVZs at similar depth, suggesting a young LVZ that may reconcile vertically coherent

deformation model. Jiang et al. (2014) construct Rayleigh wave maps at 10–60 s and a 3-D

Vsv model using ambient noise data from 280 stations. The LVZs in the middle crust exhibit

significant west–east variations along the Kunlun Fault, which is consistent with the north-

eastward flow. Guo and Chen (2016) construct a crustal model of the eastern Qinling Orogenic

Belt through joint analysis of surface waves, receiver functions and gravity data from 35 portable

seismometers and 22 permanent stations. The low velocities in the middle-lower crust indicates

no mafic lower crust.

The deployment of 676 seismic stations of ChinArray-Himalaya II (Figure 1.5 (a)) enables more

comprehensive surface wave tomography studies in this region. Li et al. (2017) reveal Rayleigh

wave phase velocity maps at 10-80 s of the northeastern Tibetan Plateau and western Sino-

Korea Craton using two-station method, showing a relatively thick lithosphere beneath the

Ordos and northeastern Alxa block and thinning lithosphere beneath the southwestern Alxa

block and Qilian Orogen. Zhong et al. (2017) obtain Rayleigh wave phase velocity maps at

12-60 s using eikonal tomography. The low velocities at 16-60 s beneath the western Qilian

Orogen, western Qinlin Orogen and Songpan-Ganzi Terrane indicate low mechanical strength

of the crust and uppermost mantle in these areas, which is prone to deformation under intense

tectonic stress. Wang et al. (2020a) construct 2-D Rayleigh wave phase velocity maps at 7-35 s

using beamforming method. The velocity model presents two LVZs in the mid-to lower crust

beneath the Songpan-Ganzi Terrane and northwestern Qilian Orogen, providing an evidence

for lower crustal flow. Li et al. (2022) invert for radial anisotropy by joint analysis of Rayleigh
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and Love wave dispersion curves. The results show positive crustal radial anisotropy beneath

the Songpan-Ganzi Terrane and negative radial anisotropy beneath the Qilian Orogen, which

suggests crustal shortening deformation may took place in the early stages of plateau evolu-

tion, followed by crustal channel flow in later stages. Wu et al. (2023) obtain a 3-D azimuthal

anisotropic velocity model using double beamforming tomography method. The results indicate

different deformation mechanisms of the Songpan-Ganzi Terrane and Qilian Orogen and decou-

pled crust and mantle deformation beneath the eastern Alxa and Ordos block. These findings

from different surface wave tomography methods have provided essential constraints on the

heterogeneous lithospheric structure of the northeastern Tibetan Plateau, demonstrating the

effectiveness of surface wave tomography in investigating regional deep dynamics and deforma-

tion mechanisms. The methodological diversity and robust results from these studies provide

valuable references for developing and validating new approaches to surface wave tomography,

particularly for PINN-based surface wave tomography.

1.4 Scientific gap

Current studies on seismic tomography and PINNs have made significant progress, yet critical

limitations remain:

1. Conventional eikonal tomography methods rely on generic interpolation algorithms (e.g.,

linear or bicubic spline) to reconstruct traveltime surfaces, introducing velocity biases and res-

olution loss, especially in regions with sparse or irregular station coverage. These approaches

lack physical consistency, as interpolation does not inherently enforce wave propagation physics,

leading to potential artifacts in velocity models.

2. PINN applications in seismology lack uncertainty quantification and adaptive optimization,

limiting their reliability for real-world tomography. Most studies focus on synthetic or idealized

cases, neglecting the impact of field data noise, irregular sampling, and complex geology on

model stability and generalizability. Additionally, computational inefficiencies prevent applica-

tions on large-scale datasets from dense arrays like ChinArray-Himalaya II.

1.5 Aims and objectives

The aims of this dissertation are:
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1. Develop and validate a novel surface wave tomography method that leverages physics-

informed neural networks (PINNs) to advance the technology behind surface wave tomography.

2. Investigate practical advantages and limitations of PINN-based surface wave tomography

using field data recorded by a dense network (ChinArray-Himalaya II) deployed in northeastern

Tibetan Plateau.

To this aim the following objectives are identified:

1. Reshape eikonal tomography as a PINNs training problem where the neural networks (NNs)

predict the medium properties and the traveltime observations.

2. Quantify and analyze the uncertainty in the estimated phase velocity models.

3. Develop an approach for choosing the hyper-parameters of the NNs to ensure their ability of

accurately representing the effect of complex geology on phase velocity and traveltimes.

4. Adapt the setup of the NNs and validate PINN-based surface wave tomography for phase

velocity tomography across range of periods using both ambient noise and teleseismic data.

5. Compare the surface wave phase velocity maps obtained using PINN-based surface wave

tomography to traditional eikonal and beamforming tomography techniques.

1.6 Thesis Outline

In chapter2, I propose a novel eikonal tomography approach that leverages physics-informed

neural networks (PINNs) to derive Rayleigh wave phase velocities, grounded in the eikonal

equation. Initially, I introduce the framework of the PINN-based eikonal tomography (pinnET).

This approach is then compared with classical eikonal tomography methods. To demonstrate

its application, I utilize 25 s Rayleigh wave data from ChinArray-Himalaya II in the north-

eastern Tibetan plateau. Furthermore, the results are validated against those obtained through

conventional eikonal tomography. This work has been published as Chen et al. (2022).

In chapter 3, I introduce a multi-frequency, elliptical-anisotropic eikonal tomography approach

using PINNs, termed pinnEAET. The development of pinnEAET focuses on simultaneously

estimating medium properties and reconstructing traveltimes across several frequencies. This

approach demonstrates comparable results even with limited inputs. To showcase its appli-

cation, I utilize ambient noise data from ChinArray-Himalaya II in the northeastern Tibetan

Plateau. The pinnEAET approach produces anisotropic phase velocity maps for Rayleigh waves
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within a 10-40 s period range. Additionally, these results are compared with those obtained

through conventional tomography methods. This work has been published as Chen et al. (2023).

In chapter 4, I extend the PINN-based eikonal tomography method to teleseismic Rayleigh wave

tomography (pinnTET). I demonstrate the adaptation of the PINNs’ structure and parameters

for the analysis of teleseismic data, its application to teleseismic Rayleigh wave data from the

northeastern Tibetan Plateau, and a comparison of the results with those obtained through

ambient noise tomography presented in previous chapters. Additionally, this work discusses the

advantages and challenges associated with using PINNs for teleseismic tomography. This work

is ready for submission.

In chapter 5, I discuss the comprehensive development and evaluation of PINN-based surface

wave tomography. The discussion covers five key aspects: 1) a summary of the research con-

tributions and achievements, 2) a comprehensive evaluation of the methodological advantages

and implementation considerations, 3) an analysis of current limitations and challenges, 4) im-

plications for understanding the structure of the northeastern Tibetan Plateau, and 5) future

research directions. Through this systematic evaluation, I demonstrate both the theoretical ad-

vances and practical applications of PINNs in seismic tomography while providing a foundation

for future developments in physics-constrained approaches.
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Abstract

We present a novel eikonal tomography approach using physics-informed neural networks (PINNs)

for Rayleigh wave phase velocities based on the eikonal equation. The PINN eikonal tomogra-

phy (pinnET) neural network utilizes deep neural networks as universal function approximators

and extracts traveltimes and velocities of the medium during the optimization process. Whereas

classical eikonal tomography uses a generic non-physics based interpolation and regularization

step to reconstruct traveltime surfaces, optimizing the network parameters in pinnET means

solving a physics constrained traveltime surface reconstruction inversion tackling measurement

noise and satisfying physics. We demonstrate this approach by applying it to 25 s surface wave

data from ChinArray II sampling the northeastern (NE) Tibetan plateau. We validate our

results by comparing them to results from conventional eikonal tomography in the same area

and find good agreement.

Plain Language Summary

Eikonal tomography is an efficient approach to resolve velocity structure from surface wave data.

Classical ambient noise eikonal tomography constrains the local phase velocity with all station

pairs and uses a generic interpolation to reconstruct traveltime surfaces. Here we implement

physics-informed neural networks for eikonal tomography. Unlike traditional neural networks

that only rely on a large volume of data that is agnostic to physical laws, physics-informed

neural network eikonal tomography (pinnET) can combine the data-driven model and theory-

based model, which includes eikonal equation and boundary conditions as physical constrains

on the system. We apply this pinnET to NE Tibetan plateau and our Rayleigh wave phase

velocity results are quite similar with other established methods but use much less data.
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2.1 Introduction

2.1 Introduction

Eikonal tomography was proposed to directly obtain the phase velocity of surface waves from

interpolated phase traveltime surfaces (Lin et al. 2009) and is often applied to ambient noise sur-

face wave data. In ambient noise eikonal tomography, each station is considered as a ‘source’ and

the traveltime surface can be estimated between this source and other stations whose recordings

have been cross-correlated with those of the main source. Eikonal tomography constrains the

phase velocity by locally evaluating the eikonal equation. The eikonal equation is a first-order

nonlinear partial differential equation (PDE) that represents a high frequency approximation

to the wave equation (Shearer 2019). The eikonal equation directly relates wave velocity and

propagation directions to the spatial gradients of a traveltime surface (Lin and Ritzwoller 2011).

Following Lin et al. (2009), a series of new applications in eikonal tomography soon followed

(De Ridder 2011; Gouédard et al. 2012; De Ridder et al. 2015; Qiu et al. 2019).

In contrast to traditional surface wave tomography, eikonal tomography automatically accounts

for ray bending and thereby provides a more accurate representation of wave propagation (Lin

et al. 2009). However, classical eikonal tomography uses a generic interpolation algorithm to

reconstruct the traveltime surfaces between stations in order to evaluate the eikonal equation

that yields the velocity. This approach effectively biases the velocity depending on the particular

algorithm used for interpolation. Linear interpolation enforces a homogeneous velocity between

stations, whereas bicubic spline interpolation smoothens the traveltime surfaces reducing the

resolution. One way to solve this problem is to introduce known physical constraints, similar

to the introduction of the wave equation as PDE constraint in seismic waveform fitting (Van

Leeuwen and Herrmann 2013; Van Leeuwen and Herrmann 2015; De Ridder and Maddison

2018; Shaiban et al. 2022). Here we argue that a physics based interpolation is easily achieved

using neural networks (NNs) by formulating the surface wave tomography problem in a physics-

informed neural network (PINN) framework.

Over the past decade, deep learning has been used as an efficient tool in many domains, such as

image recognition (Krizhevsky et al. 2012), natural language processing (LeCun et al. 2015) and

object detection (Pathak et al. 2018). In seismology, deep learning also found many applications

to improve seismic data processing and imaging (Lim 2005; Zhang et al. 2014; Liu et al. 2018).

Recently, an advanced deep learning framework, called physics-informed neural network (PINN),

was proposed to solve PDEs, which imposes deep neural networks (DNNs) as universal function
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approximators (Raissi et al. 2019). In contrast to classic DNNs, PINNs are better placed to

combine data science and theory-based models. They leverage the mathematical descriptions of

the physical process as constraints to the data driven deep learning approaches and determine

the physical parameters during the training process. PINNs have successfully been included

in other machine learning approaches, like transfer learning and meta-learning (Chakraborty

2021; Psaros et al. 2021), probabilistic PINNs (Grigo and Koutsourelakis 2019; Yang et al. 2021)

and error analysis (Mishra and Molinaro 2020; Jiao et al. 2021). This idea is highly beneficial

to seismic tomography for avoiding the iterative process required by the nonlinearity and can

directly extract the predicted parameters (e.g., velocity) for the model. The PINN framework

has already shown great potential in solving the seismic forward problem (Waheed et al. 2021;

Smith et al. 2020; Moseley et al. 2020; Song et al. 2021) and seismic inverse problem (Song

and Alkhalifah 2021). Waheed et al. (2021) suggested a PINN framework for exploration scale

seismic tomography based on a factored eikonal equation, supported with synthetic examples.

Here we present a PINN-based algorithm for eikonal tomography and show the application in

regional scale. The PINN framework is realized in SciAnn - a high-level deep learning library

for physics-informed deep learning (Haghighat and Juanes 2021). We use the eikonal equation

to define the loss function, which is used to describe the difference between predicted and true

value, and train this NN to obtain the solution of the inversion by minimizing the loss function.

In contrast to traditional eikonal tomography, this approach utilizes DNNs to optimize the

field data and extract the traveltime and velocity during the optimization process. We will first

formulate pinnET and then present the results of a field data trial using data from ChinArray II

in the northeastern (NE) Tibetan plateau, see Figure 2.2(a).

2.2 Physics-informed Deep Learning for Eikonal Tomography

A classical NN is defined as a mathematical operation (a general function) that generates an

output value given several input values. Training data is used to optimize the parameters of

the NN such that the error between predicted output and true output (in the training data) is

minimized (here using an L2 loss function):

L(θτ ) =

Nsrc∑
j

Nrcv∑
i

∣∣∣Nτ (θτ ;xr;i,xs;j) − τi,j

∣∣∣2, (2.1)
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Figure 2.1: Workflow and PINN framework for traveltime eikonal tomography, where co and τ0:
initial phase velocity and traveltime; Nc and Nτ : neural networks of velocity and traveltime;
τ : observed traveltime; ĉ and τ̂ : predicted phase velocity and traveltime from pinnET; c̄:
average phase velocity from all sources. In the PINN algorithm, the loss function L consists
of two parts: the neural networks composed of Nc and Nτ used to minimize the misfit of the
traveltime data providing the approximate solution and the physical constraint utilizing the
approximate solution and adding the residual of physical equation. This physical constraint
contains the eikonal equation and appropriate boundary conditions.

where i and j are the index of receivers and sources respectively, θτ are the hyperparameters

of the traveltime NN Nτ , Nsrc represents the number of sources, Nrcv represents the number of

receivers, xr;i = (xr, yr)i and xs;j = (xs, ys)j are the receiver and source locations of the spatial

coordinates x, τi,j represents the traveltime surfaces of seismic waves. L is the loss function.

Representing traveltimes by NNs does not guarantee that their output conforms to the physics

of wave propagation. We add a physics constraint to the NN (forming a PINN). In contrast

to classical NNs, PINNs ensure interpretability in NNs by combining data sets and physical

constraints (Figure 2.1). In this study, we choose the eikonal equation as the governing physical

law. The eikonal equation directly relates the local phase velocity to the local spatial gradients

of the traveltime surface. In the high frequency approximation, the eikonal equation can be

expressed in first order-hyperbolic form (e.g. (Wielandt 1993)):

|∇τ(x)|2 ≈ 1

c2(x)
, (2.2)

where ∇ is the Laplace operator. The traveltime is expressed as a continuous scalar function

τ(x), and c(x) represents the local phase velocity on the surface of the Earth, at location

x = (x, y). In our study, both the traveltimes and the phase velocity are expressed as outputs
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of a NN, thus the physical constraint can be written as:

Le(Nτ , Nc) = |∇Nτ |2 −
1

N2
c

, (2.3)

where Nτ = Nτ (θτ ;xr,xs) is the traveltime at xr from a source at xs, and Nc = Nc(θc;xr)

is the phase velocity at xr, representing the traveltime surfaces τ(xr,xs) and velocities c(xr).

θτ and θc are hyperparameters of traveltime and velocity NNs, respectively. Combining Equa-

tion 2.1 and 2.3, we define the PINN loss function:

L(θτ , θc) =

Nsrc∑
j

Nrcv∑
i

[∣∣∣Nτ (θτ ;xr;i,xs;j) − τi,j

∣∣∣2 + ϵe

∣∣∣Le(Nτ (θτ ;xr;i,xs;j), Nc(θc;xr;i))
∣∣∣2], (2.4)

where ϵe is a parameter that describes the relative weight of the eikonal constraint. Both

terms of the loss function are evaluated at collocated points, coinciding with the observations

locations of the traveltime data. If ϵe is chosen too large, the first estimate for the velocity

in the eikonal equation constraint will completely control the outcome of the optimization. In

that regime, the velocity NN will not be updated, and the velocity captured in the outputs of

the traveltime NN will not deviate from the first estimate for the velocity. Alternatively, if ϵe is

too small, the observed data will dominate this process and the results are evaluated without

actually enforcing the physics constraint. So ϵe was chosen to be in between these two regimes,

which we ascertained through tests was a rather narrow range. SciAnn (Haghighat and Juanes

2021) allows to specify physics constraints symbolically and handles them through automatic

differentiation in the optimisation.

Here the training process is the only step needed to learn the correct physics. The training

process aims to obtain the hyperparameters θ̂τ and θ̂c by minimizing the loss function:

arg min
θτ ,θc

{L(θτ , θc)} → θ̂τ , θ̂c. (2.5)

In order to train a PINN, we would need the true velocity model of the Earth. The principle

concept of pinnET is to update the velocity in the eikonal equation (physics) constraint, while

training a NN that fits the observations.
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2.2 Physics-informed Deep Learning for Eikonal Tomography

We follow a training procedure that starts with individually pre-training the traveltime and

velocity NNs using a starting velocity model, followed by iterated training in which the travel-

time and velocity NNs may be updated simultaneously or sequentially (individually retraining

the velocity NN), see Figure 2.1. The starting velocity c0, for pre-training Nc, is calculated

by dividing the sum of distances between all station pairs by the sum of observed traveltimes.

The initial traveltimes τ0, for pre-training Nτ , are calculated by dividing each distance between

station pair by the initial velocity c0. The traveltime NN is pre-trained using a loss function as

in Equation 2.1, with τi,j = τ0;i,j for pre-training, and the velocity NN is pre-trained using:

L(θc) =

Ngrid∑
i

[∣∣∣Nc(θc;xi) − ci

∣∣∣2, (2.6)

with ci = c0;i for pre-training, where Ngrid is the number of grid points. The pre-training

process provides good initial weights for the NNs and results in a stable convergence during

the process of iterated training. Simultaneous training aims to minimize the loss function in

Equation 2.4. After this process, the velocity can be extracted in two different ways. The first

method is by evaluating the velocity directly from the trained NNs, denoted ĉ:

ĉ(x) = Nc(θ̂c;x), (2.7)

where ĉ is the trained velocities. The second method is by evaluating the traveltime NN on a

fine regular grid using finite differences, yielding c̄:

c̄(x) =
1

Nsrc

Nsrc∑
j

1∣∣∣∇Nτ (θ̂τ ;x,xs;j)
∣∣∣ , (2.8)

where c̄ is the average velocity surfaces from all predicted traveltime surfaces, Nτ indicates

the trained traveltime surfaces τ̂ . In fact we employ a trimmed geometric mean (discarding

the 10 percentile outliers at both extremes) and compute its corresponding standard deviation.

The second method is relevant for sequential updates during which the velocity NN is updated

explicitly by minimizing the loss function in Equation 2.6. We perform 2 outer iterations (with

one sequential updating) to update the estimate for the velocity, and find that this strategy

accelerates the overall convergence rate (see the Supplementary Material in Appendix A). An-
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Figure 2.2: (a) Overview of the station network in Tibet used in data example. Black lines
indicate main faults, blue triangles indicate stations of the network and black stars indicate
the selected source stations for the velocity determination. (b) An example of Z-Z component
cross-correlations for station pairs at station 51511 (red triangle in (a)), the V-shaped arrivals
are Rayleigh waves.

other advantage of using traveltime surfaces to predict the velocity is that it works robustly

(parameter tuning is less tenuous) and comes with a measure of uncertainty (Figure 2.4(c)).

2.3 PINNs Eikonal Tomography on NE Tibetan Plateau

To demonstrate the suitability of our algorithm we apply it to a sample dataset of 25s period

Rayleigh wave traveltimes collected from station of the ChinArray II network located on the NE

Tibetan Plateau (Figure 2.2(a)). This dataset allows us to compare the pinnET approach with

other eikonal tomography solutions, traditional surface wave tomography and ambient noise

surface wave tomography results. The station distribution of the network is also well suited for

our approach and the tectonic history of the region shows a variety of structures which allow

us to test the resolution capabilities of our pinnET approach.

Since the collision of the Indian and Eurasian continents (∼ 60 Ma), the Tibetan Plateau was

elevated due to the N-S shortening of the crust (Yin and Harrison 2000). The physical processes

that controlled the deformation and the mechanisms of crustal shortening remain subject for

debate (Avouac and Tapponnier 1993; England and Molnar 1997; Clark and Royden 2000;

Tapponnier et al. 2001; Yang et al. 2012; Guo and Chen 2017; Hao et al. 2021). The ChinArray II

61



2.3 PINNs Eikonal Tomography on NE Tibetan Plateau

Figure 2.3: (a) Input synthetic velocity model of checkerboard resolution test for pinnET; (b)
Retrieved Rayleigh wave phase velocity at periods of 25 s.

dataset has also been used to derive two-station Rayleigh wave tomography (Li et al. 2017), joint

receiver functions and Rayleigh wave tomography (Wang et al. 2017), beamforming Rayleigh

wave tomography (Wang et al. 2020) and Rayleigh wave eikonal tomography (Hao et al. 2021)

allowing us to compare our results with more established methods. The traveltime data at each

source station are obtained based on the seismic ambient noise cross-correlations between all

station pairs and arrival time picking. Here we choose Rayleigh wave data at 25 s period as

a proof-of-concept dataset to reveal phase velocity structure beneath NE Tibetan Plateau. In

contrast to standard ambient noise or eikonal tomography we restrict the number of sources

used in our approach to 10 sources recorded at all 676 stations of the network compared to

all source-receiver combinations common in other methods. We randomly choose 10 sources

to provide a good coverage of the model space. The training points are selected as the cross-

correlated traveltime between those and other stations but we removed the points one kilometer

around the sources to avoid singularity around them. The physics constraint is only enforced

at the spatial locations of all the training traveltime data.

Our PINNs algorithm for traveltime eikonal tomography comprises two parts: the traveltime

NN that is used to approximate the traveltime t̂si and the velocity NN which aims to extract

the velocity ĉ(x). There are 10 hidden layers in both NN, but for the traveltime NN, each

layer contains 20 neurons while only 5 neurons in each layer of velocity NNs. The size and

numbers of layers in the NN where tuned to be able to represent all 10 traveltime surfaces with

sufficient accuracy as not to reduce uncertainty in the final velocity. The ’arctan’ function is
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Figure 2.4: (a) The predicted 25s phase velocity map beneath NE Tibetan Plateau using pinnET
(Block and structure are as follows: AB = Alxa Block; CAOB = Central Asian Orogenic Belt;
OB = Ordos Block; QL = Qilian; SB = Sichuan basin; SGB = Songpan-Ganzi Block; WQO
= Western Qinling Orogen); (b) The 25s phase velocity structure generated by conventional
eikonal tomography; (c) The 25s phase velocity uncertainty map.

used as the activation function for the hidden layers. The optimizer is defined as the ’adam’

optimizer (Kingma and Ba 2014), which is computationally efficient and widely used in deep

learning. We divide all samples into a batch size of 676 and train the networks for 2000 epochs.

The learning rate for all samples is 0.0002. These hyperparameters were all chosen based on

systematic synthetic tests.

We use checkerboard tests to evaluate the resolution of our results (Figure 2.3). The synthetic

velocity model has a background velocity of 3.45 km/s on 8 × 8 anomalies. The magnitudes of

the velocity perturbations are 2 % and these anomalies have a maximum radius of 75 km dis-

tributed in the latitude and longitude direction, respectively. The distance between alternating

low and high velocity anomalies is therefore 150 km (Figure 2.3(a)). We choose the same number

and distribution of 676 stations with 10 sources (Figure 2.2(a)) for the checkerboard resolution

tests as in the recorded data. Gaussian noise with a mean of 0.1 s and a standard deviation of

0.01 has been added to the traveltime data to simulate noise in the observed data. Figure 2.3(b)

shows the recovered velocity structure by PINNs eikonal tomography. Most anomalies can be

well recovered when the ray coverage is sufficient. Less well sampled structure at the edge of

station networks is still acceptably resolved. We observe some lateral smearing especially in

SW-NE direction in the north of the network which could be related to the choice of the source

distribution. The checkerboard tests show that our phase velocity results are reliable with these

parameters at 25 s.
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2.3 PINNs Eikonal Tomography on NE Tibetan Plateau

We apply our pinnET approach to recorded ambient noise data from the Tibetan Plateau

(Figure 2.2(a)). The convergence rate of the different training processes is shown by the loss

curves in Figure A.1 in the Supplementary Material. Using 10 sources to all stations and

averaging the velocities from the solution for different sources (Equation 2.8), we resolve the

phase velocity structure (Figure 2.4(a)) beneath NE Tibetan Plateau. Comparing with solutions

derived from other Rayleigh wave tomography approaches, we find very good agreement. We

show a direct comparison with the results at 25 s by ambient noise eikonal tomography. The

phase velocities we find in the region are within ± 0.1 km/s of other methods. We find good

agreement with the lower velocities beneath the Songpang-Ganzi block, Qilian and Western

Qinling Orogen. At the southeastern and northwestern edges of the network we find lower

velocities beneath the Sichuan Basin and the Central Asian Orogenic Belt. This could be

because bicubic spline interpolation (used in conventional eikonal tomography) flattens the

interpolated traveltime surfaces near the edges of the data coverage. Boundaries of all features

are in good agreement with other studies (Zhong et al. 2017; Wang et al. 2020). Figure 2.4(c)

shows the Rayleigh wave local phase velocity uncertainty. The uncertainty of most area across

the map is less than 0.02 km/s. Large uncertainties occur in a small part of the southeastern

Ordos Block, the western Songpan-Ganzi Block and the eastern Sichuan basin, these are most

likely due to data coverage in the random selection of 10 sources.

The observed difference between the phase velocity maps resulting from conventional eikonal

tomography result and pinnET could be considered significant (in some areas in the order of

100 m/s). The resolution of pinnET (in general) depends on the observation station spacing, the

trade off between the measurement errors in the data and the number of traveltime sets (source

instances) used, and on the hyperparameters of the NN, and parameters controlling the training

process. The method is certainly memory efficient because compressing the traveltimes as

outputs to a NN is a concept akin to compressed sensing. We use much less data to achieve

the similar imaging with a benefit of including the physics constraint while reconstructing the

traveltime surfaces.

We restricted ourselves to an inversion at 25 s period. Data at other periods can be inverted

using pinnET in the same way leading to wide spectrum phase velocity maps that can be

inverted from surface wave tomography using traditional approaches or neural networks.
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2.4 Conclusions

We present a novel method for traveltime eikonal tomography using PINNs and apply it to

recorded field data. The method leverages neural networks as universal function approxima-

tors and utilizes the estimated medium properties in the eikonal equation which are treated as

underlying physical laws. Reconstruction inversions based on NN function approximators are

memory efficient. The hyperparameters of the NNs should be carefully selected to ensure the

appropriate resolution of pinnET, e.g. through a checkerboard test. The final algorithm is an

eikonal tomography that uses physics consistent interpolation while reconstructing (interpolat-

ing) the traveltimes. The reconstruction inversion mitigates errors in the original traveltime

measurements and the number of traveltime sets used in the training can be significantly re-

duced.

We applied the PINNs eikonal tomography on seismic data recorded by ChinArray II installed

over the NE Tibetan Plateau. We extracted Rayleigh wave phase velocities at 25 s and asso-

ciated uncertainties using only 10 sources. The results compares well to the velocity structure

obtained by the conventional eikonal tomography using all 676 sources of the seismic networks.

Open Research Section

The traveltime data sets used in this study and the Rayleigh wave phase velocity models can

be downloaded at https://doi.org/10.5281/zenodo.7223219.
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Abstract

We develop a novel approach for multi-frequency, elliptical-anisotropic eikonal tomography

based on physics-informed neural networks (pinnEAET). This approach simultaneously esti-

mates the medium properties controlling anisotropic Rayleigh waves and reconstructs the trav-

eltimes. The physics constraints built into pinnEAET’s neural network enable high-resolution

results with limited inputs by inferring physically plausible models between data points. Even

with a single source, pinnEAET can achieve stable convergence on key features where traditional

methods lack resolution. We apply pinnEAET to ambient noise data from a dense seismic ar-

ray (ChinArray-Himalaya II) in the northeastern Tibetan Plateau with only 20 quasi-randomly

distributed stations as sources. Anisotropic phase velocity maps for Rayleigh waves in the pe-

riod range from 10-40 s are obtained by training on observed traveltimes. Despite using only

about 3% of the total stations as sources, our results show low uncertainties, good resolution

and are consistent with results from conventional tomography.

Plain Language Summary

Anisotropy refers to the directional dependence of seismic wave velocities, which can arise from

a variety of factors such as crystal alignment, stress fields, or fluid-filled cracks. Elliptical-

anisotropic eikonal tomography is a variant of eikonal tomography that can be used to estimate

medium properties and reconstructed traveltimes from ambient noise data. In this study, we

propose a new algorithm to implement multi-frequency, elliptical-anisotropic eikonal tomogra-

phy based on physics-informed neural networks (pinnEAET), which combine data-driven models

with theory-based models that include physics constraints on the system. We apply this ar-

chitecture to data from a dense seismic array deployed on the northeastern Tibetan Plateau.

Our results can achieve at least the same resolution as traditional methods while requiring less

traveltime data. This strategy can provide new insights into the seismic imaging in case of

limited or noisy data.
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3.1 Introduction

3.1 Introduction

Seismic anisotropy is the characteristic that seismic wave velocity varies with propagation di-

rection, providing essential structural constraints on geodynamic evolution of the Earth. For

example, crustal and upper mantle deformation often leads to seismic anisotropy, either due

to lattice preferred orientation of anisotropic constituent minerals, or caused by shaped pre-

ferred orientation of isotropic materials with distinct shapes (Crampin and Booth 1985; Nicolas

and Christensen 1987; Silver 1996; Montagner and Guillot 2002; Long and Becker 2010). Dif-

ferent measurements have been proposed to reveal anisotropic structure such as shear wave

splitting (Savage 1999; Li et al. 2011), surface wave tomography (Yao et al. 2010; Russell

et al. 2019), body wave tomography (Zhao et al. 2016; Creasy et al. 2019) and receiver func-

tions (Schulte-Pelkum and Mahan 2014; Zheng et al. 2021). Recovering seismic anisotropy using

seismic tomography has key implications for understanding the dynamic processes of tectonic

units.

In contrast to other methods, surface wave tomography has better vertical resolution of seismic

anisotropy, making it a critical tool for measuring anisotropy in the crust and upper mantle (Si-

mons et al. 2002; Ekström 2011; Becker et al. 2012). In case of sufficient azimuthal path cover-

age, phase velocity and azimuthal anisotropy can be derived either from earthquake data (Mon-

tagner 1986; Romanowicz 2002; Yao et al. 2010) or ambient noise cross-correlations (Wapenaar

et al. 2010; Ritzwoller et al. 2011). Compared with earthquake-based surface wave tomography,

ambient noise tomography enables substantial additional coverage at short periods (Shapiro

et al. 2005). Numerous array-based tomographic methods have been developed to derive

anisotropy from ambient noise, such as eikonal and Helmholtz tomography (Lin et al. 2009;

Lin and Ritzwoller 2011), wave gradiometry (De Ridder and Curtis 2017; Cao et al. 2020) and

beamforming (Wu et al. 2023; Soergel et al. 2023).

Eikonal tomography is a surface wave tomography method that relates phase front tracking

to local propagation direction dependent wave speed (Lin et al. 2009). Conventional eikonal

tomography estimates azimuthal anisotropy by fitting a parametric function to phase veloci-

ties from different azimuths, obtained using an isotropic eikonal equation. De Ridder et al.

(2015) proposed an elliptical-anisotropic eikonal tomography which employs ellipse parameters

to characterize anisotropic velocity structures with an anisotropic eikonal equation. This method

enables explicit regularization of the medium parameters and retrieves azimuthal anisotropic
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velocity robustly (De Ridder et al. 2015). However, the interpolation schemes in these eikonal

tomography methods reduce the resolution since it smooths the phase traveltime surfaces be-

yond the level of the inter-station spacing.

In recent years, deep learning has been applied to diverse aspects of geoscience, such as geol-

ogy (Kim and Yun 2021; Ho et al. 2023), geomorphology (Li et al. 2020), geochemistry (Luo

et al. 2020) and geophysics (Yang and Ma 2019). Particularly, a broad range of methods using

deep neural networks (DNNs) in seismology are proposed to leverage the increasing amount of

observed data for modeling, prediction, detection and classification (Yu and Ma 2021). These

applications of utilizing deep learning to solve seismic problems include but are not limited to

arrival time picking (Ross et al. 2018), seismic data processing (Zhu et al. 2019), earthquake

location (Mousavi et al. 2020) and seismic imaging (Araya-Polo et al. 2018). As a data-driven

method, classical DNNs have been proven to overcome some limitations in traditional seismic

methods. But in these applications, the training data often imply some prior knowledge that is

ignored in classical deep learning methods. This purely data-driven training is more susceptible

to observation errors and leads to poor generalization of predicting seismic wave propagation

outside of the span of the training data. Combining data-driven and physics-based models is a

promising way for seismic machine learning.

Physics-informed neural networks (PINNs), a new kind of deep learning framework, were pro-

posed by Raissi et al. (2019) to solve forward and inverse problems of partial differential equa-

tions (PDEs). PINNs utilize the capability of automatic differentiation which is widely used in

training DNN and it also allows adding underlying physical laws to the loss function to com-

bine the data-based model and theory-based model during the training process (Baydin et al.

2018; Karpatne et al. 2017). PINNs have gradually become a research highlight of scientific

machine learning within various fields, such as fluid mechanics (Raissi et al. 2020), material

science (Fang and Zhan 2019), biomedicine (Kissas et al. 2020) and power systems (Misyris

et al. 2020). During these applications, PINNs can train accurate and generalized models even

with limited data by automatically incorporating physics constraints of the system.

Significantly, PINNs have already shown great potential in seismological applications. For for-

ward problems, PINNs have been applied to the eikonal equation for traveltime calculation in

isotropic and anisotropic media (Waheed et al. 2020; Smith et al. 2020; Waheed et al. 2021;

Taufik et al. 2022) and directly simulate wave equation solutions for acoustic and elastic wave
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propagation (Alkhalifah et al. 2020; Karimpouli and Tahmasebi 2020; Moseley et al. 2020a;

Moseley et al. 2020b; Song et al. 2021; Song et al. 2022; Song and Wang 2023). For inverse

problems, PINNs have been proposed for exploration-scale seismic tomography with the fac-

tored eikonal equation (Waheed et al. 2021; Gou et al. 2023) and wavefield reconstruction

inversion (Song and Alkhalifah 2021). A PINN algorithm has also been developed for full wave-

form inversion, as demonstrated through various synthetic case studies (Rasht-Behesht et al.

2022). Recently, Chen et al. (2022) presented the first application of PINNs to field seismic data

for eikonal tomography, demonstrating their feasibility on real datasets and at scale. However,

PINN-based tomography methods, especially for anisotropic models of field data, remains an

open area for continued progress.

Here we propose a PINN based elliptical-anisotropy eikonal tomography (pinnEAET) to retrieve

Rayleigh wave phase velocity and azimuthal anisotropy for multiple frequencies simultaneously.

Two kinds of neural networks (NNs) are used to represent azimuthal dependence of phase

velocities related matrices and phase traveltime surfaces (Figure 3.1). We apply our algorithm

to field data gained from a dense network of stations on the northeastern Tibetan Plateau and

discuss the advantages and challenges of the proposed approach.

3.2 Methods

In this section, we will introduce the fundamental aspects of elliptical-anisotropic eikonal equa-

tion, then describe incorporating this PDE into a PINN framework, and finally share the idea

of estimating the Rayleigh wave anisotropic phase velocity from the trained networks.

3.2.1 Elliptical-anisotropic eikonal equation

In the wave number domain, the phase velocity c = c(ϕ,x, ω) at location x = (x, y) and

frequency ω, where ϕ is the direction of wave propagation, exhibiting elliptical-anisotropic

azimuthal anisotropy can be defined as (De Ridder et al. 2015):

c2(ϕ) = c2fcos
2(ϕ− α) + c2ssin

2(ϕ− α), (3.1)

where cf = cf (x, ω) and cs = cs(x, ω) are the fast and slow velocities, respectively. α = α(x, ω)

is the azimuth of the fast direction. Equation 3.1 describes an ellipse with the major and minor
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Figure 3.1: Schematic of PINN framework for elliptical-anisotropic eikonal tomography, where
Nτ and NM are the traveltime and medium property NNs, x, y and sx, sy are spatial location
coordinates of receivers and sources respectively, p contains discrete distinct periods for the
multi-period solutions, τ̂ and M̂ are the outputs of trained traveltime and medium properties,
Ld(Nτ ) represents the observed Rayleigh wave traveltime data constraint, Le(Nτ , NM ) repre-
sents the elliptical-anisotropic eikonal equation constraint. The neural network part on the left
is used to approximate the solution, while the data and physics constraints part on the right is
used to optimize the network parameters. The training process ends when the model is consid-
ered converged.

radii corresponding to cf and cs.

To derive an eikonal equation for elliptical anisotropy, the scalar wavefield is transformed from

the wave number domain to the spatial domain and the phase traveltime τ = τ(x,xs, ω) for a

given source location xs = (xs, ys) at a specific frequency ω (also known as the linear phase)

is introduced (Aki and Richards 2002). In the high-frequency approximation, we can find the

elliptical-anisotropic eikonal equation (De Ridder et al. 2015):

1 =

[
∂xτ ∂yτ

]M11 M12

M21 M22


∂xτ
∂yτ

 . (3.2)
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The matrix elements are respectively expressed as:

M11 = M11(x, ω) = (c2f − c2s)sin
2(α) + c2s, (3.3)

M12 = M21 = M12(x, ω) = (c2f − c2s)sin(α)cos(α), (3.4)

M22 = M22(x, ω) = (c2f − c2s)cos
2(α) + c2s. (3.5)

Then the problem of solving the phase velocities and azimuthal anisotropy converts to computing

the eigenvalues (c2f and c2s, representing the fast and slow velocities) and eigenvectors (indicating

the fast and slow directions) of the matrix M =

M11 M12

M21 M22

. For the 2×2 matrices M , there

is an explicit algebraic solution of the eigenvalues and eigenvectors (see Appendix B.1). In this

way, the fast and slow velocity can be computed as:

cf = cf (x, ω) =

√
(M11 + M22 +

√
(M11 + M22)2 − 4(M11M22 −M2

12))

2
, (3.6)

cs = cs(x, ω) =

√
(M11 + M22 −

√
(M11 + M22)2 − 4(M11M22 −M2

12))

2
, (3.7)

and if M12 is not zero, the fast direction of anisotropy can be defined as:

α(x, ω) = arctan(
cf −M22

M12
). (3.8)

Note that this is just one specific way to represent the fast and slow velocity and the azimuthal

angle. Consequently, the isotropic component, which is the radius of a circle with an area equal

to the velocity ellipse (Weisstein 2014), can be calculated as:

c0 = c0(x, ω) =
√
cfcs. (3.9)
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Alternatively, we could have used the average between the fast and slow velocity c0 = (cf +cs)/2.

The anisotropic component can be characterized as either eccentricity, e = e(x, ω) =

√
1 − c2s

c2f
,

flattening factor, f = f(x, ω) = 1 − cs
cf

(Weisstein 2014), or equivalent amplitude (Smith and

Dahlen 1973):

A = A(x, ω) =
cf − cs

2
(3.10)

Here we use equivalent amplitude A to represent the strength of anisotropy commonly used in

other studies (Lin et al. 2009; Hao et al. 2021; Kästle et al. 2022).

3.2.2 Elliptical-anisotropic eikonal tomography using PINNs

In order to approach this problem, we first consider a feed-forward NN (see Figure 3.1), which

consists of L layers with network parameters W and b:

zl = σ(W l · zl−1 + bl), l = 1, . . . , L, (3.11)

where L is the maximum number of layers with l being the layer. z refers to the affine trans-

formations between the layers of NN, when l = 1, z0 represents inputs of the model; when

l = L, zL = N(W 1, . . . ,W L, b1, . . . , bL; z0), where N is the NN, represents the outputs of

the model and other zl, l = 2, . . . , L − 1 represent the neurons in hidden layers. σ is the

activation function that is usually nonlinear. W l and bl are the weights and the biases of each

layer l, respectively. Training a feed-forward NN involves passing data through interconnected

layers that learn to map features in a hierarchical fashion, with backward-propagated weight

adjustments.

We take the traveltime τ = τ(xr,xs, ω), where xr,xs are receiver and source locations, as the

field value of the NN architecture. Whereas the trainable parameters (W and b) are repre-

sented with θ, the chosen parameters such as number of layers, neurons and type of activation

functions are unique for each NN and denoted with the subscript to N . Then a transforma-

tion of Equation 3.11 can be used to represent an approximate solution for phase traveltime

surfaces τ = τ(x,xs, ω) in the eikonal equation:
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τ(x,xs, ω) = Nτ (θτ ;x,xs, ω) = Nτ (W 1, . . . ,W L, b1, . . . , bL; z0) (3.12)

where θτ indicates the trainable parameters of the traveltime NN, Nτ . In this case, the inputs in

Equation 3.11 are z0 = (xr,xs, ω) for specific coordinates and the outputs are zL = (x,xs, ω)

for generic coordinates. The main idea of training the NN is to find the appropriate weights and

biases to minimize the errors between the observations and predictions, where the sum of errors

defines the loss function. For a specific frequency ω, we use the mean squared error (MSE)

with an L2 norm to define the loss function only including a difference between predictions and

observations:

Ld(θτ ) =

Nsrc∑
j

Nrcv∑
i

∣∣∣Nτ (θτ ;xr;i,xs;j , ω) − τi,j

∣∣∣2, (3.13)

where Ld is the loss function of the data constraint, i and j are the index of receivers and sources,

respectively, Nsrc is the number of sources, Nrcv is the number of receivers, xr;i = (xr, yr)i and

xs;j = (xs, ys)j are the receiver and source locations, τi,j represents the observed traveltime

data.

In classical NN architecture, the phase traveltime surfaces of seismic waves are denoted as in

Equation 3.13. This data-constrained loss can learn features based on observed data but has

no knowledge of the underlying physical principles. Unlike this purely data dependent training,

PINNs enable NNs to naturally meet the physical laws by modifying the loss function and

modulating the training phase. In this study, the PINN framework is realized in SciAnn, a

Keras and Tensorflow wrapper designed with physics-informed deep learning (Haghighat and

Juanes 2021). Our model incorporates Equation 3.2 to govern the Rayleigh wave propagation,

and the physics-constrained loss function at a single frequency can be written as:

Le(Nτ , NM ) = NM11∂
2
xNτ + 2NM12∂x∂yNτ + NM22∂

2
yNτ − 1, (3.14)

where Le is the loss function of the elliptical-anisotropic eikonal constraint, NM = NM (θM ;xr, ω) =

[NM11(θM11;xr, ω), NM12(θM12;xr, ω), NM22(θM22;xr, ω)] specify the NNs of medium property

matrices M in Equation 3.2, Nτ = Nτ (θτ ;xr,xs, ω) is the traveltime at xr from the source loca-
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tion xs. θτ and θM indicate parameters of traveltime NN, Nτ and medium property NNs, NM ,

respectively. Please note that here we use three NNs to represent the medium property matrices

described by Equations 3.3, 3.4, and 3.5, but they share the same NN parameters. To enhance

the robustness and efficiency of our methodology, we also explore the use of a single medium

property NN for representing the three medium property matrices (M11,M12,M22). Our find-

ings reveal that although a single large network led to a reduction in training time, it also

introduced unexpected artefacts, particularly noticeable at the corners of velocity maps (Fig-

ure B.3 in Supplementary Material). These artefacts are likely due to the lower sampling at

the edge of our study areas. Detailed results and further discussion can be found in the Sup-

plementary Material.

Equation 3.13 and 3.14 demonstrate single frequency loss functions. In practice, surface waves at

different frequencies have depth-dependent sensitivity expressed as sensitivity kernels. So multi-

frequency solutions are required for Rayleigh wave tomography to fully resolve the medium.

Here we extend the NNs of the traveltime and medium property matrix to contain a period

term as input so that the results of different periods can be obtained by training the network

only once. For the case of simultaneous optimisation of anisotropic velocities at k frequencies,

the multi-frequency total loss function that consists of data and physics constraints is expressed

as:

L(θτ , θM ) =

Nfreq∑
k

Nsrc∑
j

Nrcv∑
i

[∣∣∣Nτ (θτ ;xr;i,xs;j , ωk) − τi,j,k

∣∣∣2
+ϵe

∣∣∣Le(Nτ (θτ ;xr;i,xs;j , ωk), NM (θM ;xr;i, ωk))
∣∣∣2],

(3.15)

where k and Nfreq are the frequency index and maximum number of frequencies, ωk represents

the selected frequency k, τi,j,k is the phase traveltime surface at frequency k. ϵe is a weight

factor set to normalize the different terms of data and physics constraints. The value of ϵe

has been determined through synthetic tests and can be chosen within a narrow range: large

enough to allow velocity model updates but small enough to enforce the physics constraints.

The collocation points to evaluate the physics constraints coincide with the available data

locations, although other choices are possible. In this network, the inputs are the spatial

coordinates of observed source and receiver locations and given period values. For displaying
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purposes, the trained NNs are evaluated on a chosen set of points forming a grid over a chosen

extent. The network must be designed to have sufficient capability to represent the diversity and

complexity in a set of phase traveltime surfaces over anisotropic velocity structures. By including

physics constraints as loss terms, pinnEAET is fundamentally a joint state and parameter space

approach.

The objective of the elliptical-anisotropy eikonal tomography is to estimate velocity structure

and azimuthal anisotropy. The fast and slow velocity and the azimuth information can be

directly evaluated from the trained networks NM . Meanwhile, the reconstructed phase travel-

time surfaces τ̂ can be obtained by training the networks Nτ . With the loss term of elliptical-

anisotropic eikonal equation, these trained phase traveltime surfaces can capture the constrained

velocity information by calculating their gradients. The updated network parameters are gen-

erated by minimizing the MSE loss function:

arg min
θτ ,θM

{L(θτ , θM )} → θ̂τ , θ̂M . (3.16)

where θ̂τ specifies the parameters of the trained network Nτ while θ̂M specifies the parameters

of the trained network NM .

Once the networks are trained based on the observed data points, we can directly evaluate the

phase traveltime surfaces and three medium property matrices (Equation 3.3, 3.4 and 3.5) at

regular sampling grid points. The final Rayleigh wave phase velocity solution can be extracted

in two ways based on the trained networks. One way is to solve the eigenvalue and eigenvector

problem of the inverted medium properties. The inverted Rayleigh wave phase velocity is shown

in Equation 3.9. The orientation of the anisotropic fast axes and the magnitude of anisotropy

can be computed as Equation 3.8 and 3.10. Employing this method we can directly obtain

the isotropic phase velocity and anisotropic amplitude and directions. An alternative way to

extract the velocity information from the trained networks is to calculate the gradient of the

trained phase traveltime surfaces:

c̄(x, ω) =
1

Nsrc

Nsrc∑
j

1∣∣∣∇Nτ (θ̂τ ;x,xs;j , ωk)
∣∣∣ , (3.17)

where c̄ is the average velocity surface from all predicted phase traveltime surfaces, Nτ indicates
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Figure 3.2: Dense seismic array geometry deployed on the northeastern Tibetan Plateau. Black
lines indicate the main faults, blue triangles indicate stations from ChinArray-Himalaya II and
stars indicate the selected source stations used in this study. The main faults and tectonic blocks
are labeled as: ATF = Altyn-Tagh Fault; HYF = Haiyuan Fault; LMSF = Longmenshan Fault;
WQF = West-Qinling Fault; AB = Alxa Block; CAOB = Central Asian Orogenic Belt; HTB
= Hetao Graben; OB = Ordos Block; QOB = Qilian Orogenic Belt; SB = Sichuan Basin; SGT
= Songpan-Ganzi Terrane; WQO = Western Qinling Orogen; YCG = Yinchuan Graben.

the trained phase traveltime surfaces τ̂ . In order to reduce or even eliminate the influence of

singular values near the sources, we take a trimmed geometric mean to exclude the 10 percentile

outliers of the traveltime gradient datasets (Chen et al. 2022). We also calculate the associated

standard deviation between the phase velocities from individual virtual sources and the average

phase velocity c̄ at each frequency and spatial location. This process results in phase velocity

standard deviations at each location, providing estimates of standard uncertainties in our model.

Both Equation 3.9 and 3.17 can illustrate the isotropic phase velocity of Rayleigh waves and

their results are quite similar. Given that gradient calculations may introduce errors, here we

choose Equation 3.9, 3.8 and 3.10 as isotropic and anisotropic components. The trained phase

traveltime surfaces τ̂ and average phase velocities in Equation 3.17 are used to measure the

uncertainties.

83



3.3 Results

Figure 3.3: (a) The stacked waveform of Z-Z component cross-correlations for station pairs at
station WT045 (red star in Figure 3.2) for a period range of 10-40 s, the V-shaped arrivals
indicate the signals of Rayleigh wave; (b) The 25 s Rayleigh wave phase traveltime measured
from cross-correlation centred on station WT045 shown as a star; (c) The 25 s Rayleigh wave
phase traveltime surfaces predicted at station WT045 using pinnEAET.

3.3 Results

3.3.1 Training data

In this section, we apply our algorithm to ambient noise cross-correlation multi-frequency

Rayleigh wave phase traveltime data recorded by the dense seismic array ChinArray-Himalaya II (Fig-

ure 3.2). Since 50 Ma, the continuous collision of India and Eurasia continents has led to high

topography and crustal thickening within the Tibetan Plateau interior that primarily affects the

tectonics in Asia (Molnar and Tapponnier 1975; Yin and Harrison 2000). The northeastern Ti-

betan Plateau plays a key role in studying the geodynamic mechanism of the crustal thickening

and deformation of the Tibetan Plateau. Several hypotheses for the topographic elevation have

been proposed (e.g. crustal flow (Royden et al. 1997; Clark and Royden 2000); oblique subduc-

tion of lithospheric mantle and strike-slip extrusion (Tapponnier et al. 2001); thin viscous sheet

model (England and Houseman 1986)) to explain the mechanism of continental deformation,

but the precise source of deformation remains enigmatic and subject to debate.

For the ChinArray-Himalaya II array, a total of 676 stations were deployed between 2013 and

2016 for about 2.5 years of continuous recordings with a station spacing of 40 to 70 km. Due

to the good coverage of the northeastern Tibetan Plateau, these data enable us to test the

capability of the proposed approach. In addition, the ChinArray-Himalaya II dataset has also

been used to study the Rayleigh wave phase velocity and anisotropy using various methods,
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for example, two-station Rayleigh wave tomography (Li et al. 2017), joint receiver functions

and Rayleigh wave tomography (Wang et al. 2017), beamforming Rayleigh wave tomography

(Wang et al. 2020) and Rayleigh wave eikonal tomography (Hao et al. 2021). These results

enable comparison of the performance of the pinnEAET approach.

The training phase traveltime data are generated following the seismic ambient noise data

processing steps as in Bensen et al. (2007) and Lin et al. (2008): the Z component of raw

data are processed by resampling, removing the instrument response, filtering and applying

temporal and spectral normalization. Traveltime calculation involves cross-correlating signals

across station pairs and measuring the phase delay (or traveltime) of the resulting waveform.

Figure 3.3 (a) shows an example of Z-Z component cross-correlations for station pairs associated

with station WT045, filtered in the period range 10-40 s. Under ideal conditions, ambient

noise cross-correlations should yield empirical Green’s functions in both causal and anti-causal

time windows (Lobkis and Weaver 2001; Wapenaar 2004). In Figure 3.3 (a), the energy of

the fundamental Rayleigh wave can be clearly captured for both causal and anti-causal time

windows. Figure 3.3 (b) shows the measured Rayleigh wave phase traveltime data centred

on station WT045 at 25 s period. After picking phase traveltimes, 20 source stations are

quasi-randomly selected among all 676 stations to achieve good coverage of the geographic

area (Figure B.1 in Supplementary Material). The training targets are determined by the

selected 20 phase traveltime surfaces. Figure 3.3 (c) shows an example of the 25 s Rayleigh

wave phase traveltime surface evaluated from the trained Nτ at the effective source station

WT045. It is worth emphasizing that receivers located within two wavelengths radius of each

source are removed, because traveltime measurements collected at distances shorter than 1-2

wavelengths are unreliable (Lin et al. 2009).

3.3.2 Resolution tests

Before applying our approach to field data, we perform checkerboard tests to assess the perfor-

mance of the pinnEAET and tune the NN design. As shown in Figure 3.4 (a)-(d), the isotropic

synthetic checkerboard model assumes a constant background velocity defined by subtracting

the observed frequency-dependent traveltime from the inter-station distances. Then ±2% of

alternating velocity perturbations are added to the initial model to build the synthetic phase

velocity model for checkerboard tests. There are 8 × 8 anomalies at each period with a maxi-

mum radius of 75 km for each anomaly. These alternating low and high velocity patterns are
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Figure 3.4: (a)-(d) Input synthetic Rayleigh wave phase velocity model of checkerboard resolu-
tion tests at periods of 10, 20, 30 and 40 s; (e)-(h) Corresponding retrieved velocity slices using
pinnEAET.

distributed at 150 km intervals in latitude and longitude direction, respectively. The network

parameters used in the checkerboard tests are consistent with the parameters of the subsequent

field data training. The synthetic traveltimes of the checkerboard model are calculated using the

fast marching method based on the eikonal equation (Sethian 1999; Treister and Haber 2016),

and 0.1 s Gaussian random noise with a standard deviation of 0.01 is added to the synthetic

traveltime data to simulate the noise level in observed data.

Figure 3.4 (e)-(h) shows the cross-section view of the retrieved Rayleigh wave phase velocity

maps at 10, 20, 30 and 40 s for the resolution tests. It can be seen that the inversion recovers

the pattern of velocity variation well. The resolution of less sampled structures at the periphery

of the station network is still satisfactory. The northern part of the network exhibits lateral

blurring in the SW-NE direction and the edges of the velocity anomalies appear indistinct.

These may be linked to the selection of the source distribution.

3.3.3 Phase velocities and azimuth anisotropy beneath northeastern Tibetan

Plateau

As discussed in the Methods section, the pinnEAET algorithm consists of two different struc-

tures of networks (see Figure 3.1) with a total of four fully connected feed-forward NNs: one
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Figure 3.5: History of convergence of the total loss function (Total), the data constraint (Tau)
and physics constraint (PDE) in Equation 3.15 for pinnEAET in the northeastern Tibet

traveltime NN Nτ and three medium property NNs NM . In addition to a parameter of tar-

get period k, Nτ training requires spatial locations and corresponding observed traveltimes,

whereas NM needs only spatial coordinates. Both networks are set to have 20 hidden layers.

There are 80 neurons in each layer for Nτ while we use 60 neurons for all NM . The number of

neurons and hidden layers in the NNs were chosen based on the checkerboard tests and adjusted

to accurately represent all phase traveltime surfaces, without compromising the uncertainty in

the final anisotropic velocity and azimuthal anisotropy. The network was trained using an Adam

optimizer over 5000 epochs (Kingma and Ba 2014), with a learning rate of 0.001. These training

parameters were chosen based on systematic synthetic tests for accurately and efficiently ex-

tracting maximum details from field data. Figure 3.5 shows the convergence processes of three

loss functions: data constraints, physics constraints as well as total loss. These terms converge

quickly and uniformly to below 10−3, indicating that the model has a fast learning speed and

the training process exhibits strong stability.

The results of analyzing Rayleigh wave phase velocity and azimuthal anisotropy over periods of

10, 20, 30 and 40 s in northeastern Tibet are shown in Figure 3.6. Figure 3.7 shows the corre-

sponding uncertainties estimated from the traveltime NNs (Equation 3.17). The uncertainties

for all periods are below 50 m/s and below 20 m/s in most areas. Compared to the central

study area, the uncertainties tend to be higher along the boundaries. The higher uncertainty

in the Hetao Graben at 10 s is likely due to the lower signal-to-noise ratio at shorter periods

in that region. Although the uncertainties increase slightly with period, the overall reliability
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Figure 3.6: (a)-(d) Azimuthal anisotropic phase velocity at periods of 10, 20, 30 and 40 s beneath
northeastern Tibetan Plateau using pinnEAET. Black bold vectors indicate the strength and
fast propagation direction of anisotropy, black thin lines indicate main faults.

remains high.

For azimuthally dependent phase velocity, as a whole the distribution of low or high veloc-

ity zones and anisotropic fast directions seem significantly controlled by the fault strikes and

block boundaries. Prominent low velocity zones (LVZs) exist at almost all periods along the

southwestern boundary of the study area, corresponding to the Qilian Orogenic Belt and the

Songpan-Ganzi Terrane, and relatively high velocities appear in the northern and southeast-

ern regions, corresponding to the Central Asian Orogenic Belt, Western Qinling Orogen and

Sichuan Basin. The fast directions of azimuthal anisotropy changes slowly at each period.

The 10 s azimuthal anisotropic phase velocity is sensitive to the structure of the shallow sed-
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Figure 3.7: (a)-(d) Uncertainty map of the Rayleigh wave phase velocity at periods of 10, 20,
30 and 40 s beneath northeastern Tibetan Plateau using pinnEAET.

imentary layer and the upper crust. Unlike other periods, it is primarily distinguished by the

presence of LVZs in the northeast and relatively high velocity zone (HVZ) in the southeast of the

study area. These LVZs are closely associated with the sedimentary basins in Hetao Graben,

Yinchuan Graben, Alxa Block and Ordos Block, while the relatively HVZ may be linked to

the exposure of metamorphic rocks and granites in the east of the Western Qinling orogen and

the northern Sichuan Basin (Wang et al. 2020). The anisotropic fast direction is related to

fault strikes and block boundaries in most study areas. The fast direction in the southwest

regions of Qilian Orogenic Belt, Western Qinling Orogen and Songpan-Ganzi Terrane is mainly

in NE-SW direction. The fast directions at 10 s beneath the Songpan-Ganzi Terrane are not

consistent with longer periods, supporting the idea that crustal flows are predominantly found

in the middle and lower crust (Gao et al. 2020; Li et al. 2022).
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Figure 3.8: (a) The 25 s azimuthal anisotropic phase velocity beneath northeastern Tibetan
Plateau using pinnEAET; (b) The 25 s azimuthal anisotropic phase velocity generated by
conventional eikonal tomography; (c) The difference between 25 s azimuthal anisotropic phase
velocity (background) from pinnEAET (black lines) and eikonal tomography (red lines).

The 20 s azimuthal anisotropic phase velocity mainly represents structures of the mid-crust.

Relative to the velocity distribution at 10 s, the low velocity anomalies in Yinchuan Graben,

Alxa block and Ordos Block disappear, but there is still a smaller LVZ in the Hetao Graben.

The northwestern (Central Asian Orogenic Belt) and southeastern parts (Sichuan Basin) are

characterized by relatively high velocity anomalies without clear boundaries. In the southwest

corner of the study area the fast directions resolved by periods of 10 s and 20 s are similar.

It shows a tendency of near clockwise rotation along the margin of the northeastern Tibetan

Plateau. The anisotropic strength is relatively weak in the Ordos Block.

The 30-40 s azimuthal anisotropic phase velocity illustrates the lower crustal and part of upper

mantle structures. The main features in these periods are significant LVZs in the southwest

and high velocity in the northeast. As the period increases, the velocity difference between

the Tibetan Plateau and the surrounding areas progressively becomes more pronounced. The

anisotropic strength increases noticeably in areas such as the Central Asian Orogenic Belt and

Qilian Orogenic belt, which is possibly related to the inhomogeneity of the Moho (Zhang et al.

2020).

3.4 Discussion

Figure 3.8 shows a comparison of the azimuthal anisotropic velocities obtained by pinnEAET

and traditional anisotropic eikonal tomography. We find very good agreement in the Rayleigh
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wave phase velocity structures in most regions with differences of under 50 m/s. Two major

differences between the results exist in the northwest corner of the study area as well as part of

the Qilian Orogenic Belt along the margin of the northeastern Tibetan Plateau where the result

of conventional eikonal tomography shows significant high velocity zones that are not visible in

other results. These could be spurious anomalies caused by less path coverage at the boundary.

A similar discrepancy can be found in a small region in the centre (105◦E, 37◦N) of the study

area. To facilitate the analysis, we also compare the results of azimuthal double beamforming

tomography (Wu et al. 2023) (Figure B.2 in Supplementary Material) and no differences of more

than 50 m/s were found in these areas except for a very small area at the edge of the northeast

corner, which also confirms the reliability of our method.

In the case of anisotropy, the pinnEAET directly calculates an equivalent amplitude of anisotropy

using Equation 3.10 whereas traditional eikonal tomography fits a function of phase velocity

variations over azimuth. Due to the different strategies, we only compare the azimuth of the

fast propagation direction of those results. Both of them exhibit a trend of clockwise rotation

in the fast direction along the margin of northeastern Tibetan Plateau. They show similar

distribution of azimuthal anisotropy inside the study area, except that our anisotropic results

illustrate the NWW-SEE-dominated fast direction in the Western Qinling Orogen rather than

the NNW-SSE-dominated fast direction obtained by the conventional eikonal tomography. It is

worth pointing out that our fast direction results have a better correspondence with the strikes

of the West-Qinling Fault. In the centre of the study area, south of the Alxa block, the fast

directions of anisotropy of the two are not consistent, but our results are in good agreement

with those of azimuthal double beamforming tomography (Figure B.2 (c) in Supplementary Ma-

terial). The anisotropy results for both differ considerably at the boundaries of the study area,

especially in the northeast corner (Hetao Graben). Combined with supplemental Figure B.2 (c),

the anisotropy results of all three methods differ in this region, which may be due to the fact

that the path distribution on the boundary is relatively poor from some directions.

We also compare our anisotropic phase velocities with past studies in the region to assess the

validity of the pinnEAET to the alternative approaches employed, such as teleseismic data based

surface wave tomography (Li et al. 2017; Hao et al. 2021) and ambient noise beamforming to-

mography (Wang et al. 2020). These phase velocity results corroborate the velocity distribution

of the southwest low velocities and northeast high velocities in the study area. The anisotropy
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3.4 Discussion

Figure 3.9: (a) The 25 s Rayleigh wave phase velocity beneath northeastern Tibetan Plateau
using pinnEAET with only one source station (purple triangle in Figure 3.2); (b) The 25 s
phase velocity generated by conventional eikonal tomography with same datasets.

results are also overall similar compared to those of Hao et al. (2021), only differing in small

regions at certain periods. For example, for the 25 s period, our result shows a NW-SE fast

direction in the northeast of Songpan-Ganzi Terrane (104◦E, 33◦N), while their result shows a

near N-S direction. This is probably caused by the difference in the generation mechanism and

information content between ambient noise data and teleseismic surface wave data. Combining

the above comparisons, our results are consistent with those of other methods, confirming the

viability of our pinnEAET approach.

To verify the accuracy and reliability of the pinnEAET for small datasets, we choose only one

station as the virtual source to invert for the Rayleigh wave phase velocity at 25 s. The NN

hyperparameters are kept the same as those used in the field data training with multiple sources.

Traditional ambient noise eikonal tomography is applied to the same data, utilizing the same

source for direct comparison of phase velocity models and evaluation of methodology resolution.

The velocity results in the vicinity of the source are unreliable due to the ambiguity between

overlapping causal and anti-causal empirical Green’s functions close to the source. Thus the

data points with a region of 1.6◦ around the source location are removed from both results.

Figure 3.9(a) illustrates the phase velocity result for a single source recovered by pinnEAET
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while Figure 3.9(b) demonstrates that retrieved by conventional eikonal tomography. Both

results show the main low velocity zones along the Qilian Orogenic Belt, Western Qinling

Orogen and Songpan-Ganzi Terrane. The result from pinnEAET is closer to that of others

utilizing all stations. It well recovers the majority of velocity structures except for some areas

where path coverage is extremely limited. The result using conventional eikonal tomography

displays many spurious velocity anomaly patterns and obvious smearing phenomena. It is clear

that the results of pinnEAET show a more accurate solution compared to these earlier studies.

The performance test gives support to the ability of our approach especially when the available

data are limited.

3.5 Conclusion

We have developed a deep learning method for anisotropic ambient noise tomography based

on physics-informed neural networks. By integrating physics constraints into the architecture,

these models can effectively capture the underlying physics of the elliptical-anisotropic eikonal

tomography problem. This method is designed to achieve high accuracy and robust results even

with limited data and noisy input. We apply this approach to the Rayleigh wave correlation

traveltime data recorded by a dense seismic array deployed on the northeastern Tibetan Plateau.

The algorithm enables the simultaneous training of multiple periods of traveltime by setting the

period as training data. The results can be achieved with comparable resolution as conventional

methods using only 20 source stations, minimizing necessary data and memory requirements.

We also show that our method still performs well when using extremely limited data and resolves

structures that are more consistent with established results than those obtained from traditional

eikonal tomography. Anisotropy fast directions can be well resolved and are in agreement with

existing fault zone structure. Overall, we show that elliptical-anisotropy eikonal tomography

based on physics-informed neural networks is a competitive alternative to traditional methods

to extract anisotropic velocity information from Rayleigh wave data.

Open Research Section

The traveltime datasets from ambient noise cross-correlations used in this study and the Rayleigh

wave azimuthal anisotropic phase velocity models can be downloaded at https://doi.org/10.

5281/zenodo.8088610.
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Ekström, Göran (2011). “A global model of Love and Rayleigh surface wave dispersion and

anisotropy, 25-250 s”. In: Geophysical Journal International 187.3, pp. 1668–1686.

England, Philip and Gregory Houseman (1986). “Finite strain calculations of continental de-

formation: 2. Comparison with the India-Asia collision zone”. In: Journal of Geophysical

Research: Solid Earth 91.B3, pp. 3664–3676.

Fang, Zhiwei and Justin Zhan (2019). “Deep physical informed neural networks for metamaterial

design”. In: IEEE Access 8, pp. 24506–24513.

Gao, Yuan, Yutao Shi, and Qiong Wang (2020). “Seismic anisotropy in the southeastern margin

of the Tibetan Plateau and its deep tectonic significances”. In: Chinese Journal of Geophysics

63.3, pp. 802–816.

Gou, Rongxi, Yijie Zhang, Xueyu Zhu, and Jinghuai Gao (2023). “Bayesian physics-informed

neural networks for the subsurface tomography based on the eikonal equation”. In: IEEE

Transactions on Geoscience and Remote Sensing 61, pp. 1–12.

Haghighat, Ehsan and Ruben Juanes (2021). “Sciann: A keras/tensorflow wrapper for scien-

tific computations and physics-informed deep learning using artificial neural networks”. In:

Computer Methods in Applied Mechanics and Engineering 373, p. 113552.

96



Chapter 3. PINNs for Elliptical-Anisotropy ET: Application to Data from the NE Tibet

Hao, Shijie, Zhouchuan Huang, Cunrui Han, Liangshu Wang, Mingjie Xu, Ning Mi, and Dayong

Yu (2021). “Layered crustal azimuthal anisotropy beneath the northeastern Tibetan Plateau

revealed by Rayleigh-wave Eikonal tomography”. In: Earth and Planetary Science Letters

563, p. 116891.

Ho, Madison, Sidhant Idgunji, Jonathan L Payne, and Ardiansyah Koeshidayatullah (2023).

“Hierarchical multi-label taxonomic classification of carbonate skeletal grains with deep learn-

ing”. In: Sedimentary Geology 443, p. 106298.

Karimpouli, Sadegh and Pejman Tahmasebi (2020). “Physics informed machine learning: Seis-

mic wave equation”. In: Geoscience Frontiers 11.6, pp. 1993–2001.

Karpatne, Anuj, Gowtham Atluri, James H Faghmous, Michael Steinbach, Arindam Banerjee,

Auroop Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin Kumar (2017). “Theory-

guided data science: A new paradigm for scientific discovery from data”. In: IEEE Transac-

tions on knowledge and data engineering 29.10, pp. 2318–2331.
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Abstract

In this study, we present a novel approach to teleseismic Rayleigh wave tomography using

physics-informed neural networks (PINNs), termed pinnTET, to investigate the crustal and

upper mantle structure beneath the northeastern Tibetan Plateau. The method employs two

neural networks, one for modeling phase velocities and another for traveltime surfaces, while

incorporating physical constraints from the eikonal equation. We apply this approach to data

from the dense seismic array deployed, analyzing Rayleigh wave phase velocities at periods

between 20-80 s. Our results reveal significant lateral heterogeneity in velocity structure that

correlates well with major tectonic features. The method achieves reliable resolution using only

approximately 20% of the observational data compared to traditional approaches. Comparison

with ambient noise tomography results shows good consistency in velocity anomaly patterns at

overlapping periods, while highlighting the combination of earthquake and ambient noise data

provides a systematic understanding of phase velocity structure across multiple periods. The

study demonstrates that PINN-based teleseismic eikonal tomography offers a memory efficient

and robust approach for investigating deep Earth structure, particularly beneficial in regions

with sparse or unevenly distributed data.

Plain Language Summary

Teleseismic surface wave tomography is a vital tool for studying the Earth’s interior using seismic

records from earthquakes. In this study, we develop a new method to obtain subsurface images

by combining deep learning with physics principles. Traditional methods require large amounts

of earthquake data to produce clear images, but our approach, which we call pinnTET, can

achieve similar quality results with much less data. We applied this method to the northeastern

Tibet. Our results reveal the velocity variations in the crust and upper mantle, which help us

understand this region’s tectonic evolution and dynamics. When comparing our results with

those from other methods, we find a good consistency about the structure beneath Tibet. This

method could be particularly useful in regions where earthquake data is limited, helping us

better understand Earth’s structure in previously challenging areas.
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4.1 Introduction

Unraveling the structure of the crust and upper mantle is crucial for understanding a wide

range of the Earth’s geodynamic processes, including plate tectonics, mantle convection, and

earthquake generation. Among various geophysical techniques, seismic surface wave tomography

has emerged as a pivotal tool for obtaining the subsurface velocity structure of the crust and

upper mantle (Woodhouse and Dziewonski 1984; Anderson 1987; Forsyth et al. 2005; Sabra

et al. 2005; Shapiro et al. 2005; Nishida et al. 2009). Surface waves are particularly sensitive to

shear wave velocity variations within the crust and upper mantle, due to their dispersive nature

and depth-dependent sampling properties. These properties allow surface waves with different

periods to provide valuable constraints on the velocity structure at different depths, enabling

higher vertical resolution compared to body wave tomography. Surface wave tomography can

generate phase and/or group velocity models using either earthquake data (Zhang et al. 2011)

or ambient noise (Li et al. 2014). Teleseismic surface wave tomography leverages the long-

period surface waves generated by global earthquakes. As these waves propagate through the

Earth’s interior, they carry information about the subsurface velocity structure over extended

distances. In contrast to ambient noise tomography, which relies on shorter-period surface waves,

teleseismic tomography can reveal deeper structures into the upper mantle due to the longer

wavelengths involved, making it a powerful tool for investigating deeper geological features and

geodynamic processes.

With the development of dense arrays, a large number of high-resolution imaging methods

have been developed, including the two-station method (Sato 1955; Yao et al. 2005; Yao et al.

2006), two-plane-wave surface wave tomography (Forsyth et al. 1998; Forsyth et al. 2005; Li

and Li 2015), and eikonal and Helmholtz tomography (Lin et al. 2009; Lin and Ritzwoller 2011;

Jin and Gaherty 2015), which are widely used in analyzing surface wave signals generated by

earthquakes. Among these methods, eikonal tomography has emerged as a particularly effective

approach. The main steps in eikonal tomography involve wavefront tracking and gradient cal-

culation based on the eikonal equation, enabling it to directly obtain surface wave phase/group

velocity without conventional forward and inverse processes (Lin et al. 2009). The eikonal to-

mography method avoids the errors introduced by manual parameter setting during the inverse

processes, and the calculation is relatively straightforward. However, a fundamental limitation

of conventional eikonal tomography method is the reliance on simple interpolation schemes for
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reconstructing continuous traveltime surfaces. These interpolation methods can introduce sig-

nificant errors and uncertainties, particularly when station spacing is irregular or sparse, thereby

limiting the method’s accuracy and resolution (Li et al. 2023).

The application of deep learning has brought new development opportunities to seismology.

Deep neural networks (DNNs), composed of multiple layers of interconnected neurons, are able

to learn to represent and extract complex patterns from massive amounts of seismic data. For

instance, DNNs have been widely used in seismic arrival time picking (Zhu and Beroza 2019),

earthquake and noise classification (Seydoux et al. 2020) and earthquake location (Zhang et

al. 2020). Beyond these applications, the powerful nonlinear fitting and regression abilities of

DNNs have led to substantial advancements in seismic tomography, enhancing both efficiency

and precision (Araya-Polo et al. 2018; Bianco et al. 2019; Yang and Ma 2019; Fu et al. 2021;

Liu et al. 2021; Jo and Ha 2023; Muller et al. 2023). A key feature of DNNs is their use

of automatic differentiation, which eliminates the need for discretization (Baydin et al. 2018).

Moreover, deep learning offers significant advantages in its ability to operate without relying

on mesh grids. Neural networks (NNs) function as mesh-free methods, capable of evaluating on

new data points regardless of their distribution after training (Grossmann et al. 2024). These

capabilities enable DNNs to handle the partial differential equations (PDEs) in tomographic

problems more effectively. Compared to traditional grid-based methods, deep learning provides

a more adaptable and robust approach to solving the eikonal equation.

Physics-informed neural networks (PINNs) represent a novel framework for solving various PDEs

using deep learning techniques (Raissi et al. 2019). This approach combines the strengths

of data-driven and theory-based modeling, enabling the training of accurate and generalized

models even with limited data. It offers several advantages over purely data-driven models,

including improved robustness to observation errors and enhanced generalization beyond the

training data. In seismology, PINNs have demonstrated remarkable potential in various appli-

cations, such as wave equation simulations (Karimpouli and Tahmasebi 2020; Moseley et al.

2020; Waheed et al. 2021; Song et al. 2021; Huang and Alkhalifah 2022a; Huang and Alkhalifah

2022b; Song and Wang 2023; Wu et al. 2023; Chai et al. 2024; Ren et al. 2024), traveltime

tomography (Waheed et al. 2021; Agata et al. 2023; Gou et al. 2023; Chen et al. 2022; Chen

et al. 2023; Song et al. 2024), wavefield reconstruction inversion (Song and Alkhalifah 2021) and

full waveform inversion (Rasht-Behesht et al. 2022; Yang and Ma 2023; Lu et al. 2024), which
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include forward and inverse problems in isotropic and anisotropic media and in time-domain

and frequency-domain. During these applications, the framework and architecture of PINNs

have also been improved using Bayesian theory (Agata et al. 2023; Gou et al. 2023), Fourier

feature (Song and Wang 2023; Chai et al. 2024), recurrent neural network (Lu et al. 2024) and

generative adversarial network (Yang and Ma 2023). Particularly, Chen et al. (2022) and Chen

et al. (2023) were the first to apply PINNs to dense arrays using ambient noise eikonal tomogra-

phy for both the isotropic and anisotropic case, demonstrating their practicality on large-scale,

real-world datasets. However, PINN-based tomography in analyzing long-period surface waves

and earthquake data in complex tectonic regions like Tibet remains unexplored.

In this study, we introduce a PINN-based teleseismic eikonal tomography method (pinnTET)

to simultaneously retrieve Rayleigh wave phase velocities across multiple frequencies. Our

approach employs two types of NNs to model phase velocities and traveltime surfaces. We apply

this teleseismic eikonal tomography technique to traveltimes collected from a dense network of

stations on the northeastern Tibetan Plateau, highlighting the benefits and challenges of the

proposed method.

4.2 Data

The seismic records were collected from ChinArray-Himalaya II, a dense seismic array consisting

of 676 stations deployed across the northeastern Tibetan Plateau and its surrounding regions.

These stations were deployed between September 2013 and March 2016, with inter-station

spacing from 40 to 70 km (Figure 4.1). The earthquake events were selected based on the

following criteria: epicentral distances between 20◦ and 160◦, source depths less than 50 km, and

magnitude greater than Ms 5.8. Data preprocessing of the ZZ-component included cutting into

1-day segments, resampling to 1 Hz and removing mean value, trends and instrument responses.

Following these criteria and preprocessing steps, we identified 119 teleseismic events suitable for

surface wave tomography analysis. The spatial distribution of these earthquakes (Figure 4.2)

shows generally good backazimuthal coverage, though with a higher concentration of events

from the northeast directions and relatively fewer from the northwest. It should be noted that

this pinnTET was accomplished utilizing only approximately 20% of the total seismic events,

with the number of events varying across different periods, as detailed in Figure C.1 of the

Supplementary Material.
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Figure 4.1: Seismic stations geometry and geological background in northeastern Tibetan
Plateau. Black lines indicate the main faults, blue triangles indicate stations. The main faults
are labeled as: ATF = Altyn-Tagh Fault; HYF = Haiyuan Fault; KLF = Kunlun Fault; LMSF
= Longmenshan Fault; WQF = West-Qinling Fault. The main tectonic blocks are labeled as
AB = Alxa Block; CAOB = Central Asian Orogenic Belt; HG = Hetao Graben; OB = Ordos
Block; QOB = Qilian Orogenic Belt; SB = Sichuan Basin; SGT = Songpan-Ganzi Terrane;
WQO = Western Qinling Orogen.

Gee and Jordan (1992) proposed a generalized seismological data functional (GSDF) that em-

ploys cross-correlations between observed and synthetic waveforms to extract phase and am-

plitude from individual seismograms. A five-parameter Gaussian wavelet was then applied to

the narrow-band filtered cross-correlation functions to extract a series of dispersion parameters.

This method has been widely used to construct models of Earth’s crust and upper mantle (Ga-

herty and Jordan 1995; Gaherty et al. 1996; Gaherty 2001; Gaherty 2004; Chen et al. 2007).

Jin and Gaherty (2015) extended the GSDF method by applying cross-correlation functions

between neighboring stations to derive dispersion parameters from observed waveforms rather

than synthetic waveforms, and then applied it to multi-channel analysis. We use this automated

surface wave measuring system (ASWMS) to measure phase delays between all nearby station

pairs. The five-parameter Gaussian wavelet used in this approach is defined as (Gee and Jordan
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Figure 4.2: Distribution of the earthquakes after data processing. Black dots indicate teleseismic
events, red triangle indicates the center of the seismic array, and the rose map indicates the
backazimuth distribution of those events.

1992):

Fi ∗WcC(t) ≈ AGa[σ(t− tg)]cos[w(t− tp)], (4.1)

where Fi ∗ WcC(t) represents the filtered correlograms obtained by convolving each narrow-

band filter Fi (centered at frequency ωi) with the windowed cross-correlogram WcC(t), Wc is a

window function, C(t) = S1 ∗WsS2 represents the cross-correlation function between record S1

and windowed record WsS2, Ga is the Gaussian function e−x2/2, five parameters are A, σ, ω, tg

and tp, which respectively represent the amplitude factor, the half-bandwidth, the center fre-

quency, the frequency-dependent group delay time and the phase delay time. These parameters

are estimated by fitting Equation 4.1 to the filtered and windowed cross-correlogram using a

weighted least-squares method. The phase delay tp is further corrected for cycle-skipping and

bias caused by the window function Ws (Gee and Jordan 1992; Jin and Gaherty 2015):

δτp = tp − t̃p, (4.2)

112



Chapter 4. Teleseismic Rayleigh wave tomography in northeastern Tibet using PINNss

where δτp is the bias-corrected phase delay time, t̃p is obtained by fitting the five-parameter

Gaussian wavelet to the filtered, windowed cross-correlation function C̃(t) = S2 ∗WsS2 between

record S2 and windowed record WsS2. We calculated the phase delay time between a given

station and several nearby stations, with the inter-station distance usually within a radius of

200 km.

4.3 Methodology

4.3.1 Physics-informed neural network

PINNs leverage the powerful capabilities of DNNs as universal function approximators to solve

problems governed by physical laws (Hornik et al. 1989). The fundamental principle of PINNs

is to embed PDEs as soft constraints in the training process, allowing the network to learn

solutions that naturally satisfy the underlying physical constraints. This is achieved by adding a

PDE-based penalty term to the network’s loss function (Raissi et al. 2019). Through automatic

differentiation, the network learns to approximate functions that map input coordinates to

solutions while respecting the governing physical equations.

PINNs provide a flexible framework for solving diverse types of PDEs, generally expressed

as (Raissi et al. 2017):

ut + F [u] = 0, x ∈ Ω, t ∈ [0, T ], (4.3)

where u = u(x, t) represents the solution to be determined, x and t denote spatial and temporal

coordinates, respectively, ut represents the partial derivative of u with respect to t, and Ω is

a subset of Rd. The differential operator F [·] encapsulates the mathematical structure of the

PDE, which can accommodate both linear and nonlinear systems, as well as time-dependent and

time-independent problems. Given initial and boundary conditions, the physical field u(x, t)

can be solved over the spatiotemporal domain.

The PINN loss function typically consists of two terms: one term ensuring adherence to the

governing equations, and another term enforcing consistency with observed measurements. The

total loss function in PINNs is expressed as:
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L =

Nd∑
i

||Nu(θ;xi, ti) − u(xi, ti)||2 +

Np∑
j

||L(Nu(θ;xj , tj))||2, (4.4)

where Nd is the total number of data points, Nu(θ;xi, ti) refers to the NN’s prediction at

points (xi, ti), θ denotes the network’s parameters that are specific to each NN, u(xi, ti) rep-

resents the observed data value, Np is the number of collocation points for enforcing physical

laws, L represents the residual constructed based on Equation 4.3. The first term (denoted the

data term) on the right side of Equation 4.4 measures the discrepancy between the network’s

output and the known values and the second term (denoted the physical term) measures how

well the network satisfies the PDE residual at collocation points. This combined loss guides the

NN to find solutions that satisfy both the data and the governing equations, forming a robust

framework for solving complex physics-based problems.

4.3.2 Teleseismic eikonal tomography using PINNs

In seismic tomography problems we are interested in solving for both the traveltimes and the

medium parameters (e.g. velocity) governing the traveltimes through a PDE. Figure 4.3 presents

a schematic diagram of PINN architecture for teleseismic eikonal tomography. The pinnTET is

composed of two main networks (Nτ and Nc) working in conjunction with physical constraints,

ensuring that the predicted velocity (Nc) and traveltime fields (Nτ ) are consistent with wave

propagation physics while fitting the observed data. In this section, we work with frequency-

dependent phase velocities and traveltimes, where the spatial variations of phase velocity are

mapped to the observed phase traveltimes through the eikonal equation. The automatic differen-

tiation capability enables efficient computation of derivatives needed for the physical constraints,

making the system both physically accurate and computationally tractable.

To further classify this PINN-based approach, it is important to understand the eikonal equa-

tion, a first-order PDE linking the surface wave traveltime with local velocity. Traditionally,

seismic tomography involves solving a global inverse problem where observed traveltimes are

related to velocity structure through ray path integrals. This means that each traveltime ob-

servation provides constraints on phase velocities along the entire ray path, rather than at

specific points. While this global approach provides robust large-scale structural information, it

may have limited resolution for features smaller than the wavelength of seismic waves. In con-

trast, eikonal tomography directly determines local phase velocities from the spatial gradients
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Figure 4.3: Schematic of PINN for teleseismic eikonal tomography. Nτ and Nc are the traveltime
and velocity NNs, respectively, x, y represent the spatial coordinates of seismic receivers in
the study area, ϕ denotes the measured backazimuth, ω represents the angular frequency of
the Rayleigh waves being analyzed, τ̂ and ĉ are the predicted traveltime and velocity field
from the trained Nτ and Nc. The total loss function (L) consists of two main terms: L =
Ldata+Lphysics, where Ldata (Ld(Nτ)) represents the data misfit between predicted and observed
Rayleigh wave traveltimes, Lphysics (Le(Nτ,Nc)) enforces the eikonal equation constraint. The
automatic differentiation of NNs calculates spatial derivatives ∂

∂x and ∂
∂y , which relates the

traveltime gradient to the local velocity structure. The neural network part on the left is used
to approximate the solution, while the data and physical constraints part on the right is used
to optimize the network parameters Nθ. The training process should terminate when the model
is considered converged.

of traveltime surfaces, avoiding the need for conventional forward and inverse processes (Lin

et al. 2009). At each frequency, the eikonal equation provides a direct relationship between the

traveltime and the local phase velocity:

1

c2(x)
= |∇τ(x)|2 , (4.5)

where τ(x) represents the phase traveltime from an effective source to a receiver at location

x = (x, y), while c(x) denotes the local phase velocity at the same receiver location. Note

that both τ and c are frequency-dependent parameters due to the dispersive nature of surface
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waves. The eikonal equation provides a first-order approximation of wave propagation. Based

on Equation 4.5, the physical term in the loss function is defined as:

Le(Nτ , Nc) = |∇Nτ |2 −
1

N2
c

, (4.6)

where Le is the loss function of the eikonal constraint, Nτ = Nτ (x, ϕ, ω) is the NN-based

estimates of traveltime at locations x and angular frequency ω with local backazimuth ϕ, re-

spectively, Nc = Nc(x, ω) represents phase velocities evaluated at x for a specific frequency.

Notably, here we used measured backazimuth instead of using source locations or theoretical

backazimuth and epicenter distance indicate effective source information (ϕ in Figure 4.3). Us-

ing measured backazimuth allows us to eliminate the effects of uncertainties in source location

and depth on the results.

Here we use two NNs to model phase velocities and traveltime surfaces. The overall loss function

used to train these networks simultaneously has the form:

L(θτ , θc) =

Nfreq∑
k

Nsrc∑
j

Nrcv∑
i

[∣∣∣∣Nτ (θτ ;xi, ϕj , ωk) − τi,j,k

∣∣∣∣2

+ϵe

∣∣∣∣Le

(
Nτ (θτ ;xi, ϕj , ωk), Nc(θc;xi, ωk)

)∣∣∣∣2
]
,

(4.7)

where Nfreq, Nsrc and Nrcv are the maximum number of frequencies, sources and receivers, and

i, j, k are the index of those value, respectively. τi,j,k is phase traveltime at locations xi = (xi, yi)

and frequency ωk from direction ϕj . ϵe is the weight factor for data term and physical term.

The loss function design adopted a multi-term combination approach, including data constraint

terms (ensuring prediction fits with observational data) and physical constraint terms (guar-

anteeing solutions satisfy the eikonal equation). The weight factor was determined based on

synthetic tests to ensure each term has a reasonable weight during the training, avoiding over-

fitting for any term.

The training process is to find proper value for θτ and θc by minimizing the the loss function

in Equation 4.7:
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Figure 4.4: (a) Observed Rayleigh wave phase delay time for seismic event 201502131859 mea-
sured using the ASWMS. (b) Schematic illustration of the measured backazimuth calculation.
The colored surface represents a 2-D linear interpolation of the observed traveltimes shown in
(a), the arrow indicates geographic north, the red curve represents the measured backazimtuh
that is the clockwise angle between the normal vector to the observed traveltime surface and
geographic north. (c) Predicted traveltime surface for seismic event 201502131859, evaluated
from the trained Nτ network using the pinnTET method.

arg min
θτ ,θc

{L(θτ , θc)} → θ̂τ , θ̂c. (4.8)

After training, the phase velocities across all frequencies can be direly evaluated from the trained

velocity NN Nc. We can also evaluate traveltime surfaces from the trained traveltime NN Nτ .

4.4 Results

4.4.1 Training inputs and targets

We applied the pinnTET method to teleseismic recordings collected from the dense seismic

array deployed in the northeastern Tibetan Plateau to obtain Rayleigh wave phase velocities

for periods of 20-80 s. As shown in Figure 4.3, the inputs to both NNs include the spatial

coordinates (x, y) of stations, measured backazimuths ϕ, and frequencies ω. The training tar-

gets are observed traveltime (Figure 4.4 (a)) and the residual of the eikonal equation. The

NNs are trained to fit the observed traveltimes while simultaneously driving the residual of the

physical equation towards zero. The spatial coordinates of stations were converted from lati-

tude and longitude coordinates to the Cartesian coordinate system using Universal Transverse

Mercator (UTM) projection. As shown in Figure 4.4 (b), the backazimuths were determined

from the phase delay times by fitting the 2-D linear traveltime surfaces to these delays and

calculating the normal vectors to the fitted planes. The backazimuth is defined as the clockwise
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angle between geographic north and the traveltime surface normal direction, where the normal

direction is measured from the station location to the point of minimum traveltime (source

location), giving the effective source direction relative to the receivers without requiring precise

source locations. This use of backazimuth, rather than direct source locations, offers several

advantages. Since teleseismic earthquakes occur at great distances from the stations, projecting

source and receiver locations from latitude/longitude to Cartesian coordinates can introduce

errors due to Earth’s curvature. The backazimuth, being derived from the direction of wave

arrival at the local array, is less sensitive to these distance-related inaccuracies. Furthermore,

the method of fitting 2-D linear traveltime surfaces and calculating their normal vectors pro-

vides a robust way to capture the wavefront’s direction, thereby offering a local constraint for

phase velocity determination. Figure 4.5 displays the distribution of the measured backazimuth

data along with the distribution of the observed traveltime data. The backazimuth spans nearly

the full range of possible angles (0-360 degrees), though the distribution is uneven. The dis-

tribution is characterized by several distinct peaks and gaps, with the most prominent peak

occurring around 140-150 degrees, reaching nearly 7000 counts. The traveltime distribution

shows a more regular, roughly bell-shaped pattern with clear concentration between approxi-

mately 50 to 250 s. In addition, the period values are discrete numbers ranging from 20 s to

80 s. All training inputs underwent normalization processing to ensure their values are on the

same order of magnitude. This normalization is crucial to prevent errors that could arise from

the significant scale differences between input parameters. Without normalization, inputs with

larger numerical ranges (like spatial coordinates) might dominate the NN’s learning process

over inputs with smaller ranges (like periods), leading to biased or unstable training results.

4.4.2 Neural network design

PinnTET employs two separate NNs (Nτ and Nc) to learn the traveltime and the phase velocity

respectively. Each network is designed as a deep fully-connected NN with specific architecture

to handle the complexity of seismic wave propagation. The input layers for each network

are designed to fulfill specific functions. Nτ takes 4-D inputs (x, y, ϕ, p), while Nc takes 3-D

inputs (x, y, p), as phase velocity is independent of propagation direction. The design of the

PINN architecture follows a ”step-by-step design, joint optimization” strategy. First, we need to

design the structures of the traveltime network (Nτ ) since this network has direct observational

data as evaluation criteria. To determine the optimal network architectures, we conducted
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Figure 4.5: (a) Distribution of the measured backazimuth. (b) Distribution of the observed
traveltime.

several experiments evaluating the trade-off between prediction accuracy and computational

efficiency. The analysis focused on both the model performance and practical implementation

considerations. We used the root mean square error (RMSE) to represent the discrepancy

between the observations and the NN’s predictions:

RMSEτ =

√√√√ 1

Nrcv

Nrcv∑
i=1

(τpredi − τ obsi )2, (4.9)

The computational time is the training time for the entire dataset. We tested various network

configurations with combinations of different numbers of layers and neurons. Specifically, we

had configurations with 5, 10, 20 and 30 layers respectively. For each layer configuration, we

also tested networks with 5, 10, 20, 30, 40, 50 and 60 neurons. As Shown in Figure 4.6, there is

a clear trade-off between the number of layers and neurons in the network and the computation

time required. Generally, as the number of layers and neurons increases, the RMSE decreases,

indicating better performance. However, this improvement in performance comes at the cost

of increased computation time. For example, the RMSE of 5-layer networks decrease rapidly

with 5, 10, 20, 30, 40, 50 and 60 neurons respectively, while the RMSE of 30-layer networks

have lower RMSE values but much longer computation times with the same range of neurons.

Based on these tests, we determined that the best trade-off for Nτ contains 10 hidden layers

with 50 neurons in each layer (red circle in Figure 4.7). This configuration achieves a good

balance between prediction accuracy (RMSE ≈ 0.2) and computational efficiency (computation

time ≈ 5000 s), beyond which adding more neurons or layers yields diminishing returns in
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Figure 4.6: Trade-off between traveltime prediction errors and computational cost. The different
colors and curves indicate the different number of layers, and the different points and labels
indicate the different number of neurons in each layer. The red circle highlights an optimal
configuration for traveltime NNs with 10 layers and 50 neurons per layer.

performance improvement. After determining the network structures of Nτ , we proceed to

design the structure of the velocity network (Nc). Since Nc has no direct observational data,

its evaluation mainly relies on the eikonal equation residual and the prediction accuracy of the

entire system. By fixing the optimized structures of Nτ , testing different Nc configurations,

observing the convergence of the eikonal equation residual and the overall system performance,

we finally determine a 10-layer network with 50 neurons per layer as optimal NN design. This

step-by-step design approach not only simplifies the optimization process but also ensures the

physical consistency and numerical stability of the entire system.

4.4.3 Training inputs

All other network parameters were determined through systematic synthetic tests. We selected

the Adam optimizer due to its ability to effectively handle non-convex optimization problems

and excellent performance in processing large-scale data (Kingma and Ba 2014). The learning

rate was set to 0.0001, which demonstrated a good balance in synthetic tests. This value
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Figure 4.7: Convergence of the total loss function (Total), the data constraint (Tau) and physical
constraint (PDE) in Equation 4.7.

is neither too large to cause training instability nor too small to result in slow convergence.

The total number of training epochs was set to 5000, determined based on the convergence

characteristics of the loss functions. The weights for physical constraints (ϵe in Equation 4.7)

were set to increase linearly with period, since data at longer periods typically have lower signal-

to-noise ratios and are more susceptible to measurement uncertainties. We used arctangent as

the activation function, which determines the nonlinear approximation effect of the NN. These

parameter selections not only ensure the model’s ability to accurately and efficiently extract

maximum details from field data but also guarantee the stability and reliability of the training

process. Figure 4.7 shows the convergence processes of data constraints, physical constraints,

and total loss. The total and data terms converge quickly and uniformly to below 10−3 and

the physical term converge to below 10−4, indicating fast learning speed and strong training

stability.

4.4.4 Phase velocity maps in northeastern Tibet

The Rayleigh wave phase velocity maps across periods of 20-80 s are shown in Figure 4.8, with

corresponding velocity uncertainties presented in Figure C.2 of the Supplementary Material.

Figure 4.8 indicates the distribution of low velocity zones (LVZs) and high velocity zones (HVZs)
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Figure 4.8: (a-f) Rayleigh wave phase velocities at periods of 20, 25, 30, 40, 60, and 80 s beneath
northeastern Tibetan Plateau obtained from pinnTET.

are controlled by the strike of faults and the boundaries of blocks, with significant lateral

heterogeneity. It can be seen that the phase velocity patterns in different geological units vary

with different periods. The phase velocities of different periods are sensitive to the S-wave

velocities at different depths with roughly about one-third of its wavelength.

The phase velocities of Rayleigh waves with periods of 20-25 s are sensitive to the S-wave veloc-

ities at a depth of 20-40 km, mainly reflecting the velocity variations in the middle crust within

the study area. While the actual depth sensitivity is described by continuous kernels rather than

discrete depth ranges, this simplified interpretation helps identify the main structural features.

Along the southwest boundary, prominent LVZs exist in the western Qilian Orogen, western

Qinling Orogen, and Songpan-Ganzi Terrane. From 20 s to 25 s, both the range and strength

of these LVZs increase. The Hetao Graben also shows a relatively low-velocity anomaly. HVZs

appear in the northern and eastern boundaries and southeastern corner of the area, correspond-

ing to the southern central Asian Orogenic Belt, northern Alxa Block, Ordos Block, and central

Qinling Orogen (the north of Sichuan Basin).

The phase velocities of Rayleigh waves with periods of 30-40 s are sensitive to the S-wave
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velocities at a depth of 30-70 km, mainly reflecting the velocity variations in the lower crust

and the uppermost mantle within the study area. Significant LVZs remain in the western Qilian

Orogen, western Qinling Orogen, and Songpan-Ganzi Terrane, while the isolated LVZ in the

Hetao Graben disappears. The range of HVZs in the central Qinling Orogen shrinks. The high-

velocity anomalies in the southern Ordos Block and central Qinling Orogen form a continuous

feature. The high-velocities in the central Asian Orogenic Belt and Alxa Block weaken as the

period increases, showing generally uniform medium-high velocity characteristics.

The phase velocities of Rayleigh waves with periods of 60-80 s are sensitive to the S-wave

velocities at a depth of 70-120 km, mainly reflecting the velocity variations in the upper mantle

within the study area. The lateral heterogeneities of the phase velocity in these blocks are further

reduced. Overall, the Ordos Block and central Qilian Orogen show relatively high velocities,

while the rest of the areas show relatively low velocities. The HVZs and LVZs are separated by

the faults distributed around the blocks. A relatively HVZ appears in the northwestern corner

of the study area at 60 s, which may be related to the sparse station distribution in this region.

The LVZs along the southwestern boundary of this region almost merge together, with relative

low velocity remaining in the Songpan-Ganzi Terrane at 80 s. Phase velocities in the central

Alxa Block change from a relatively higher velocity compared to its surroundings to a similar

velocity value from 60 s to 80 s.

4.5 Discussion

In this paper, we obtained surface wave phase velocities at periods of 20-80 s using PINN-based

teleseismic eikonal tomography, achieving reliable resolution with only approximately 20% of

the observational data. In this section, we first compare our results with those from traditional

eikonal tomography. Figure 4.9 and C.3 show the phase velocity results obtained by both

methods at different periods and their differences. Overall, the phase velocity differences in most

regions are within 0.05 km/s, with velocity differences in the northwestern and southeastern

corners of the study area likely caused by lower ray coverage. As shown in Figure 4.9 (a) (b)

and (c), at 20 s period, both methods observe LVZs in the western Qilian Orogen, western

Qinling Orogen, Songpan-Ganzi Terrane, and Hetao Graben, as well as HVZs in the Ordos

Block and central Qinling Orogen. However, differences exceeding 0.05 km/s exist at the study

area’s margins between the two methods. The traditional eikonal tomography results show
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Figure 4.9: (a)(d) Rayleigh wave phase velocity at periods of 20 and 80 s beneath northeastern
Tibetan Plateau obtained from pinnTET. (b)(e) Rayleigh wave phase velocity at periods of 20
and 80 s beneath northeastern Tibetan Plateau obtained from conventional eikonal tomography.
(a)(d) Difference of Rayleigh wave phase velocity between two methods at periods of 20 and
80 s.

lower velocity anomalies, and the high-velocity connection between the southern Ordos Block

and central Qinling Orogen observed in traditional results is not present in the pinnTET results,

possibly due to insufficient event numbers and uneven event distribution at 20 s (Figure C.1 (a)).

For phase velocity results at periods greater than 20 s, the differences between the two methods

are generally less than 0.05 km/s, particularly at 30, 40, and 80 s (Figure 4.9 and C.3). As shown

in Figure 4.9 (d) (e) and (f), at the 80 s period, lateral heterogeneity in velocity distribution

significantly weakens, but the pattern of low velocities in the southwest and high velocities in

the east remains observable. The HVZs in the Ordos Block and central Qinling Orogen show

clear correlation with fault distributions.

To verify the reliability of our findings and gain a deeper understanding of the velocity structure

characteristics beneath the northeastern Tibetan Plateau, we conducted a detailed comparison

between the Rayleigh wave phase velocity results obtained using the pinnTET and the previously

published results based on ambient noise data in the same study area (Chen et al. 2023).
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Figure 4.10: (a)-(c) Rayleigh wave phase velocity at periods of 20, 30 and 40 s beneath northeast-
ern Tibetan Plateau obtained from pinnTET. (d)-(f) Rayleigh wave phase velocity at periods
of 20, 30 and 40 s beneath northeastern Tibetan Plateau obtained from pinn-based ambient
noise tomography.

In general, teleseismic surface wave tomography is capable of revealing the deeper structure

in the lower crust and upper mantle based on surface wave at longer periods generated by

earthquakes, whereas ambient noise tomography has the ability to leverage the surface wave

at shorter periods, exhibiting higher resolution in the shallow crustal structures. Here we

compared results of Rayleigh wave phase velocities at 20, 30 and 40 s period, which represents

an overlapping interval where both methods exhibit reasonable resolution. Figure 4.10 shows

phase velocity maps obtained through PINN-based eikonal tomography using both teleseismic

data and ambient noise data from the same dense array. The absolute velocity differences

are shown in Figure C.4. At all three periods, both methods observe distinct LVZs along the

southwestern boundary of the study area, corresponding to the western Qilian Orogen, western

Qinling Orogen, and Songpan-Ganzi Terrane, while relatively HVZs are observed in the eastern

to southeastern parts of the study area, corresponding to the Ordos Block and central Qinling

Orogen. However, the amplitude of velocity anomalies, especially the low-velocity anomalies,

is larger in the ambient noise tomography results compared to the teleseismic surface wave
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tomography results. The areas where velocity differences exceed 0.05 km/s gradually decrease

with increasing period (Figure C.4), reflecting different constraining capabilities of the two data

types at different periods.

At 20 s period, the teleseismic surface wave tomography results (Figure 4.10 (a)) show weaker

LVZs in the western Qilian Orogen, western Qinling Orogen, and Songpan-Ganzi Terrane, as well

as in the Hetao Graben, compared to the ambient noise tomography results (Figure 4.10 (d)).

These LVZs along the southwestern boundary is separated from the LVZ in the Hetao Graben,

while in the ambient noise tomography results, the low-velocity anomalies form a continuous

feature from southwest to northeast across the Alxa Block. At 30 s, the teleseismic surface

wave tomography results (Figure 4.10 (b)) show intensified low-velocity anomalies along the

southwestern boundary, though still smaller than the ambient noise tomography results in these

area (Figure 4.10 (e)). However, stronger HVZs can be found from the Ordos Block to the

central Qinling Orogen compared to the ambient noise tomography results. At 40 s, the velocity

differences between the two methods in the western Qinling Orogen and Songpan-Ganzi Terrane

are mostly less than 0.05 km/s (Figure C.4 (c)), but significant differences in the low-velocity

anomaly amplitude still exist in the western Qilian Orogen. Additionally, the ambient noise

tomography results (Figure 4.10 (f)) show a higher velocity anomaly in the Ordos Block than

in Figure 4.10 (c). Overall, the two datasets demonstrate good consistency in the distribution

of velocity anomalies across major tectonic units. The ambient noise tomography results shows

stronger low-velocity anomalies, particularly at shorter periods (20-30 s). This difference likely

reflects varying depth sensitivity between the two methods, with ambient noise having better

resolution of shallow structures.

By combining ambient noise tomography results at short periods with teleseismic surface wave

tomography results, we can develop a systematic understanding of the lithospheric structure in

the northeastern margin of the Tibetan Plateau. In the sedimentary layer and upper crust (Chen

et al. 2023), the western Qilian Orogen, western Qinling Orogen, and Songpan-Ganzi Terrane ex-

hibit low-velocity anomalies. Notably, distinct LVZs are present in the Hetao Graben, Yinchuan

Graben, central Alxa Block, and central Ordos Block, particularly in the Hetao Graben, which is

typically attributed to loose basin sediments (Fu and Xiao 2020). In the middle and lower crust,

the western Qilian Orogen, western Qinling Orogen, and Songpan-Ganzi Terrane manifest as

extensive LVZs, while the Hetao Graben maintains relatively low velocities. The Ordos Block
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and central Qinling Orogen display prominent HVZs. These patterns reflect significant tec-

tonic differences in the middle and lower crust between the northeastern margin of the Tibetan

Plateau and its surrounding blocks. The LVZs typically indicate lower mechanical strength of

the medium, making these regions more susceptible to deformation under tectonic stress. In

upper mantle, the relative contrast between low and high-velocity anomalies diminishes. The

LVZs extend across all areas except the Ordos Block and central Qinling Orogen. The Songpan-

Ganzi Terrane exhibits particularly distinct relative low velocities, potentially associated with

asthenospheric upwelling following the delamination of thick lithospheric root (Li et al. 2017).

4.6 Conclusion

This research demonstrates the successful application of physics-informed neural networks to

teleseismic Rayleigh wave tomography in the northeastern Tibetan Plateau. The pinnTET

method provides several key advantages over existing methods: it requires significantly less ob-

servational data while maintaining resolution quality, naturally incorporates physical constraints

through the eikonal equation, and shows strong consistency with traditional tomographic meth-

ods. The phase velocity maps reveal detailed structural variations that correlate well with

known tectonic features in crust to upper mantle. Low-velocity zones in the western Qilian

Orogen, western Qinling Orogen, and Songpan-Ganzi Terrane contrast with high-velocity zones

in the Ordos Block and central Qinling Orogen, reflecting significant tectonic differences in

the region. The integration of deep learning with physical principles opens new possibilities for

surface wave tomography, particularly in regions with limited data coverage. By combining tele-

seismic surface wave data with ambient noise data using PINN-based eikonal tomography, we

can achieve a more systematic understanding of the velocity structure across the northeastern

Tibetan Plateau.
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Chapter 5

Discussion

5.1 Summary of work

5.1.1 Summary of research contributions

This thesis presents a comprehensive development and validation of physics-informed neural net-

works (PINNs) for surface wave tomography, progressing from a basic implementation (isotropic

ambient noise tomography) to more complex applications (anisotropic ambient noise tomogra-

phy and teleseismic earthquake tomography). Through examples from the northeastern Tibetan

Plateau, it demonstrates how PINNs can advance seismic tomography technology and better

resolve the lithospheric structure. My research began with the development of PINN-based

eikonal tomography (pinnET) (chapter 2, Chen et al. (2022)), where I established the founda-

tional framework by integrating the eikonal equation into neural networks (NNs). This novel ap-

proach demonstrated that PINNs could effectively reconstruct traveltime surfaces while handling

measurement noise, achieving comparable phase velocity results with less data to conventional

methods. The success of this initial implementation validated the potential of physics-informed

deep learning approaches in seismic tomography. Building on this foundation, I expanded my

research to develop PINN-based elliptical-anisotropic eikonal tomography (pinnEAET) (chap-

ter 3, Chen et al. (2023)), addressing the more complex challenge of seismic anisotropy. This

extension enabled simultaneous estimation of medium properties across multiple frequencies,

providing crucial insights into crustal structure. This method has ability to achieve stable

results with only 3% of available stations as effective sources, representing a significant ad-

vancement in memory efficiency and practical applicability. In the final phase, I extended the
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methodology to PINN-based teleseismic eikonal tomography (pinnTET) (chapter 4), demon-

strating the framework’s flexibility across different data types. Using only 20% of the data

required by traditional methods, PinnTET enabled the investigation of deeper structures at

longer periods while maintaining resolution quality. The integration of both earthquake and

ambient noise data provided a more comprehensive understanding of velocity structures across

multiple periods, from 10 s to 80 s. Overall, my research maintained focus on methodological

innovation and practical implementation. The successful application to the northeastern Ti-

betan Plateau not only validated PINN-based methods through uncertainty quantification and

comparison with established results but also provided valuable insights into this geologically

complex region. I paid particular attention to optimizing NN hyperparameters and validating

results against conventional methods, ensuring the reliability of my findings and establishing

a foundation for future applications in seismology and other geophysical disciplines. A consis-

tent achievement throughout my work has been the ability to obtain high-quality results with

substantially reduced data volumes that makes these methods particularly valuable for regions

with sparse or uneven data coverage.

5.1.2 Addressing the scientific gaps

1. This research successfully addresses the limitations of traditional eikonal tomography meth-

ods that rely on generic interpolation algorithms. The developed series of PINN-based meth-

ods (pinnET, pinnEAET, and pinnTET) embed the eikonal equation directly into NNs, ensur-

ing that traveltime field reconstruction adheres to wave propagation physics rather than relying

on physically inconsistent interpolation methods. This physics-consistent approach inherently

eliminates velocity biases and artifacts caused by interpolation. My research demonstrates that

PINN methods excel with sparse or irregularly distributed data, requiring much less data volume

needed by traditional methods to achieve comparable quality results. Furthermore, the contin-

uous representation provided by PINNs offers significant advantages over traditional grid-based

methods, allowing researchers to evaluate NN outputs at any spatial location and frequency

within the study domain, providing great convenience for subsequent analysis.

2. Regarding the limitations of PINNs in seismological applications, this research provides viable

solutions through multiple improvements for practical applications. I implemented reliable

data uncertainty assessment mechanisms, addressing stability issues of PINN methods. PINN-

based surface wave tomography provides a unified framework that naturally integrates forward
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modeling and inversion processes, simultaneously optimizing traveltime prediction and medium

property reconstruction by incorporating both data fitting and physical constraints into the

loss function. By applying these methods to field data from northeastern Tibet, I demonstrated

the effectiveness of PINN methods in handling complex geological conditions, extending beyond

previous studies limited to synthetic or idealized cases. The revealed velocity structure and

anisotropy patterns exhibit remarkable consistency with the region’s principal tectonic features,

enhancing our understanding of lithospheric architecture within the study area.

5.1.3 Evaluation of aims and objectives

The two primary aims of this thesis were achieved through the systematic development of three

complementary methodologies (pinnET, pinnEAET, and pinnTET). These methods advanced

from isotropic to anisotropic, ambient noise to teleseismic earthquake applications, while demon-

strating significant practical advantages in data efficiency and resolution capabilities when ap-

plied to the recorded dataset. The successful realization of these aims was accomplished through

meeting five specific technical objectives, detailed below:

Reshape eikonal tomography as a PINNs training problem where the NNs predict

the medium properties and the traveltime observations.

I designed a PINN framework for eikonal tomography that comprises NNs with complemen-

tary functions. The traveltime NN (Nτ ) takes 4-D (or 5-D) inputs, including station coordi-

nates (x, y), source information (either source coordinates Sx, Sy or backazimuth ϕ), and pe-

riod p (enabling multi-frequency training). The velocity NN (Nc, or medium property NN NM)

operates with 3-D input, consisting of station coordinates (x, y) and period p. The eikonal

equation was incorporated as a physical constraint in the loss function, where the training pro-

cess simultaneously fits the traveltime surfaces and minimizes the eikonal equation residual.

This physical constraint ensures wave propagation principles are involved during the inversion.

After training, phase velocities can be directly evaluated through the trained velocity network,

providing an efficient way to extract physically plausible velocity models.

Quantify and analyze the uncertainty in the estimated phase velocity models.

I conducted uncertainty analysis by utilizing the traveltime NN predictions to calculate average

velocities across different sources, and the uncertainty was quantified through standard devia-

tions from these average velocities. The uncertainty map serves as a reasonable metric relative
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to the average velocity map from the traveltime NN, but it is only a proxy for the velocity

values directly inverted by the velocity NN. The uncertainty map adopted in this thesis is a

statistical measure of the average velocity distribution, not the model uncertainty directly out-

put by the velocity NN. While it can indicate the local dispersion of data fitting, it is essential

to note its distinction from model uncertainty in the strict sense. Overall, the PINN-based am-

bient noise tomography results generally showed lower uncertainties compared to PINN-based

teleseismic surface wave tomography results, demonstrating the inherent challenges in resolving

deeper structures with longer-period teleseismic surface waves. For ambient noise data (10-

40 s), the uncertainty maps show consistently low values (below 0.02 km/s) across most of

the study area. The distribution of uncertainties remains relatively uniform from 10-30 s, with

slightly higher uncertainties (up to 0.03 km/s) appearing around the edges of the network. At

40 s, while maintaining generally low uncertainties in the central region, there is an increase

in uncertainty values in the northeastern part of the study area (reaching about 0.04 km/s).

Teleseismic data (20-80s) exhibits more complex spatial patterns with period-dependent varia-

tions. At shorter periods (20-30 s), uncertainties remain relatively low (below 0.05 km/s) and

uniformly distributed. However, as period increases, uncertainties become larger and more spa-

tially variable. For 60 s and 80 s, significantly higher uncertainties (reaching about 0.1 km/s)

are observed in the western and southwestern regions of the study area, particularly in Qilian

Orogen and Songpan-Ganzi Terrane. This spatial pattern likely reflects both the structural

complexity of these regions and the variations in data quality and volume.

Develop an approach for choosing the hyperparameters of the NNs to ensure their

ability of accurately representing the effect of complex geology on phase velocity

and traveltimes.

I optimized the hyperparameters following a strategy that emphasized independent optimization

of each parameter while maintaining others constant, enabling clear assessment of the effects of

individual parameters on model performance. For instance, the size of the traveltime NN was

determined by evaluating the trade-off between prediction accuracy and computational cost.

After establishing the optimal traveltime network configuration, the velocity network architec-

ture was determined by testing different sizes and assessing their performance while keeping

the traveltime network fixed. Similar progressive optimization from simple to complex config-

urations was applied to other hyperparameters until the trained networks demonstrated the
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ability to represent complex geological effects. The effectiveness of the hyperparameter selec-

tion was evaluated through multiple criteria including prediction accuracy between observed and

predicted data, convergence behavior of the loss function, resolution capability through checker-

board tests, and uncertainty estimates. This comprehensive evaluation framework ensured that

the final network configuration achieved both physical consistency and computational efficiency

while maintaining the ability to resolve complex geological structures.

Adapt the setup of the NNs and validate PINN-based surface wave tomography for

phase velocity tomography across range of periods using using both ambient noise

and teleseismic data.

I adapted the NN structures for different data types and volumes across pinnET (single-

frequency ambient noise data), pinnEAET (multi-frequency ambient noise data), and pin-

nTET (multi-frequency teleseismic earthquake data). To accommodate multi-frequency train-

ing, I modified both the traveltime and medium property networks by adding period as an

additional input term, enabling direct evaluation of traveltimes and velocities at any desired

period. The network architectures were then scaled appropriately based on the volume of ob-

servational data for each application. For different data types, I implemented distinct network

design strategies. The batch size selection followed a unified principle of approximating one

complete traveltime surface, but was applied slightly different according to data characteristics.

For ambient noise cross-correlations, I set the batch size equal to the number of stations, while

for teleseismic data, I determined batch sizes by dividing the total number of traveltimes by

the total number of earthquakes across all periods. The treatment of the eikonal constraint

weight (ϵe) also varied between data types. For ambient noise data, where data quality remains

relatively consistent across periods, I applied a constant ϵe value. However, for teleseismic data,

where quality generally decreases with increasing period, I implemented a period-dependent

linear increase in ϵe. This gradual increase in the physical constraint’s influence helps com-

pensate for declining data quality at longer periods while maintaining solution stability. These

adaptations enabled successful application of the methods across different data types and fre-

quency ranges, as validated through the consistency of results in checkerboard resolution tests

and agreement with conventional methods.

Compare the surface wave phase velocity maps obtained using PINN-based surface

wave tomography to traditional eikonal and beamforming tomography techniques.
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I compared the results from PINN-based surface wave tomography with those from traditional

methods. Specifically, the phase velocity results from pinnET and pinnTET were compared with

conventional eikonal tomography results, showing differences generally less than 0.05 km/s in

well-sampled regions. For pinnEAET, I conducted more extensive comparisons, evaluating both

phase velocities and azimuthal anisotropies against results from conventional eikonal tomogra-

phy and double beamforming tomography. In regions with good ray coverage, all methods

showed consistent velocity patterns and fast directions. Moreover, I conducted a specific com-

parison using data from just a single source to evaluate the performance of different methods.

The results demonstrated that PINN-based surface wave tomography maintained reliable imag-

ing capabilities even with such limited data, producing results similar to those obtained from

sufficient data coverage. In contrast, conventional eikonal tomography showed many artifacts

and smearing effects under the same limited data conditions. This difference highlights the

power of PINNs in stabilizing the inversion and extracting maximum information from limited

observations. These comparisons validate the reliability of PINN-based approaches while high-

lighting their advantages in data efficiency. The consistent results across different methods and

data types provide strong support for the robustness of PINN-based surface wave tomography.

5.2 Methodological evaluation

5.2.1 Comparative advantages

The PINN-based surface wave tomography methods (pinnET, pinnEAET, and pinnTET) de-

veloped in this thesis demonstrate several significant advantages over traditional tomography

methods, as evidenced by the results across different applications.

Most notably, these methods achieve comparable results using only approximately 20% or even

less of the data typically needed for conventional tomography. For ambient noise tomogra-

phy, pinnET produced comparable resolution using just 10 source stations compared to tradi-

tional approaches that would use all available stations (676), while pinnEAET achieved stable

anisotropic results with only 20 sources. This efficiency extends to teleseismic applications,

where pinnTET generated robust velocity models using approximately one-fifth of the available

earthquake data. These substantial reductions in data requirements across multiple tomographic

applications demonstrate the potential of PINN-based surface wave tomography in dramatically

improving data efficiency while preserving resolution quality.
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Furthermore, the PINN-based eikonal tomography provides natural regularization through the

eikonal equation constraint, improving the reduction in resolution caused by linear interpola-

tion in traditional eikonal tomography. This physics-guided interpolation provides physically

plausible models in regions with sparse or unevenly distributed data, as shown by checker-

board resolution tests and uncertainty analyses. This ability is particularly validated in the

single-source experiment, where PINN-based approach produced velocity models closely resem-

bling those obtained with sufficient data coverage, while traditional eikonal tomography showed

significant artifacts under the same limited data conditions.

Moreover, PINN frameworks demonstrate flexibility in both multi-frequency processing and

result evaluation. PINN-based approaches can achieve simultaneous inversion across multiple

frequencies simplified by incorporating period terms directly into the NNs. This joint processing

ensures more coherent velocity structures across different depth ranges, as demonstrated by

Rayleigh wave phase velocity results spanning periods from 10 to 80 s. Once trained, the outputs

of NNs can be evaluated at any spatial location and frequency within the study domain without

additional interpolation or computation. The continuous representation of PINNs stands in

contrast to traditional grid-based methods, which are limited to fixed sampling points. This

ability proves particularly valuable for subsequent analysis, allowing researchers to examine

structural variations at any desired scale without the computational burden of reprocessing

data.

Another advantage is that PINN-based surface wave tomography provides a unified framework

that naturally integrates forward modeling and inversion processes. Unlike traditional methods

that typically separate forward simulation and inverse problem into different steps, these ap-

proaches simultaneously optimizes the predicted wavefield (forward problem) and recovers the

medium properties (inverse problem) through the physics-constrained training process. This

integration is achieved by incorporating both data fitting and physical constraints into the

loss function, where the traveltime NNs learn to predict wave propagation while the velocity

NNs reconstruct the medium properties. This simultaneous optimization not only simplifies

implementation but also enhances solution stability, as the physical constraints guide both the

forward and inverse components throughout the training process.
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5.2.2 Practical implementation consideration

The implementation of PINNs to field data presents several challenges that require careful

consideration. Here, I will analyze the implementation strategies and their feasibility for PINN-

based surface wave tomography methods.

The initial step involves data preprocessing and training set preparation. The data preprocess-

ing follows conventional seismological practices, usually including mean removal, trends removal,

resampling, filtering, and instrument response removal. After obtaining observed traveltimes

through cross-correlations, selecting an appropriate training dataset volume becomes crucial.

A common challenge in PINN implementation is the lack of guidelines regarding optimal data

quantity requirements. To address this challenge, I conducted experiments with varying data

volumes to empirically determine the optimal amount of training data. For example, through

empirical analysis with increasing source numbers (as demonstrated in Figure B.2, Appendix B),

I observed that the average phase velocity stabilized when the number of sources reached ap-

proximately 20 for pinnEAET, with minimal variation upon further increases. It is important

to note that the optimal data quantity requires problem-specific evaluation. To ensure training

stability, all data undergo normalization to similar magnitude ranges, preventing larger-valued

parameters from dominating the learning process over smaller-valued ones.

The network architecture was designed through a a step-by-step strategy, starting with simple

architectures and gradually increasing complexity while monitoring performance improvements.

For the traveltime NNs, I evaluated the trade-off between prediction accuracy (e.g. measured

by RMSE between predicted and observed traveltimes) and computational cost (e.g. train-

ing time) as this network was direct observational data as evaluation criteria (illustrated in

Figure 4.6, chapter 4). The NN architecture should provide the optimal balance, achieving

RMSE below target threshold while maintaining reasonable training times. After establish-

ing the size of traveltime NNs, I systematically increased the number of layers and neurons in

the velocity NNs until performance improvements reached a stable level. In addition, PINN

implementations require particular attention to activation function selection due to partial dif-

ferential equations (PDEs) operations, as activation functions determine the NN’s nonlinear

approximation characteristics. The arctangent function was selected as the activation function

since its smooth derivatives better matched wave equation physics compared to alternatives like

ReLU (Cuomo et al. 2022).
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The training optimization framework required systematic tests of multiple critical hyperparam-

eters. The learning rate was determined through a decay strategy, starting with a relatively

large value (0.001) and gradually decreasing based on loss function convergence. The batch size

was determined through the principle of preserving complete traveltime surfaces in each batch.

Specifically, I configured the batch size to match the number of measurements that constitute

a single traveltime surface for each source. This approach ensures that each batch contains

the full spatial sampling of wave propagation, maintaining the physical coherence of the data

during training. The physical constraint weighting parameter ϵe required particularly careful

tuning within a narrow effective range. It needs to be small enough to allow velocity updates

but big enough to maintain physical constraints. The selection of ϵe should also account for

both the quantity and quality of training data. While ambient noise applications performed

well with constant weights, teleseismic data required period-dependent scaling (chosen linear

increase with period as the simplest approach) to compensate for declining signal quality at

longer periods. This adaptation proved essential for maintaining solution stability.

To ensure robust parameter selection, each hyperparameter was tuned independently while

maintaining sufficient training time and keeping other conditions constant, allowing for clear

comparisons of their individual effects on model performance. This methodical optimization

strategy ensured both data efficiency and solution accuracy while maintaining physical consis-

tency.

5.2.3 Critical assessment of physics-informed regularization

While the presented PINN-based approaches have demonstrated promising results, it is essential

to critically examine the fundamental value added by the physics-informed framework compared

to conventional methods. A key question emerges: given that the traveltime network (Nτ ) could

theoretically be differentiated in space to obtain a velocity field consistent with the eikonal

equation, what genuine advantage does the additional velocity network (Nc) and the physics-

informed constraint provide?

In principle, one could directly compute gradients of the traveltime surfaces from Nτ to de-

rive velocities without employing a separate velocity network. However, this direct approach

frequently leads to unstable solutions, particularly when dealing with field data containing

measurement noise. The differentiation operation amplifies noise in the traveltime surface,
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potentially resulting in unphysical velocity artifacts. The introduction of Nc and the eikonal

constraint serves as a form of regularization, imposing smoothness on the solution space.

When comparing with regularization in conventional eikonal tomography, PINNs rely on the

eikonal equation as a soft constraint within a high-dimensional NN, whose implicit regularization

is less interpretable. The advantage of PINNs lies in their ability to adaptively balance data

fitting and physics, especially in regions with sparse data. However, the subjective choices

in NN’s design (e.g., NN size, activation functions) may unintentionally bias solutions. The

strong performance in sparse data scenarios, as demonstrated in the single-source experiments

where PINN-based approaches outperformed conventional eikonal tomography, suggests that

the PINNs can indeed extract more information from limited data than traditional approaches.

This may be attributed to the NN’s capacity to learn spatially varying regularization patterns

that adapt to the underlying physics rather than applying uniform smoothing constraints.

Future research should consider architectures with more physical interpretability, such as radial

basis function networks which have clearer spatial localization properties. These approaches

might bridge the gap between traditional regularization methods and NN flexibility, providing

a more transparent framework for understanding how the regularization influences the final

solution.

5.2.4 Current limitations

Through the integration of data and physical constraints, PINN-based surface wave tomog-

raphy has demonstrated significant advantages and helped reduce training data requirements.

However, several key limitations remain in its real-world applications.

First, each method requires specific design considerations for each application scenario, with

performance heavily dependent on careful parameter tuning. As demonstrated across the the-

sis chapters, different applications - whether handling multiple frequencies (chapters 3 and 4),

incorporating anisotropic parameters (chapter 3), or adapting to different data types (ambient

noise in chapters 2 and 3 versus teleseismic data in chapters 4) - demand substantial experi-

mentation for network design and parameter adjustment. Specific parameter settings that work

well for one problem may fail for another, and incorrect parameter settings can lead to local

optimum solution, requiring repeated testing and manual adjustments. While design principles

have been discussed in previous chapters, automated parameter optimization methods remain a
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critical area for future research, as current parameter tuning still relies heavily on comparisons

with traditional approaches to validate and optimize performance.

Second, while PINN-based approaches (pinnET, pinnEAET, and pinnTET) have significantly

reduced data requirements in field applications, they haven’t advantages for demonstrated com-

putational efficiency. Traditional methods often require less processing time even with larger

input datasets compared to PINNs. As data volumes and training parameters increase, the

global approximation nature of PINNs requires processing large datasets and complex com-

putational graphs in each iteration, leading to high computational resource requirements and

slow computational speed. Furthermore, balancing physical constraints with data fitting in

sophisticated loss functions can create convergence conflicts, further increasing computational

resource demands. In resource-constrained environments, this limitation can make it imprac-

tical to achieve real-time processing or rapid calculations, potentially limiting the method’s

applicability in time-sensitive scenarios or large-scale applications.

Third, although incorporating physical constraints enhances model generalization and inter-

pretability, accurately modeling subsurface velocity structures at arbitrary locations remains

challenging. NNs cannot truly learn the underlying physical processes for different datasets, and

the trained models only reflect solutions under specific data and physical constraints. While the

networks can predict velocities at arbitrary positions, accuracy significantly decreases when eval-

uation points fall outside the training data distribution. This limitation is especially apparent

in areas without stations, particularly near the boundaries of the study area, where uncertain-

ties increase significantly. Consequently, any change in study area or physical constraints may

require complete system retraining.

Finally, the implementation of physical constraints remains controversial. Theoretically, the

competition between physical loss and other loss terms in the optimization objective may lead to

solutions that prioritize data fitting over physical consistency. This balance becomes particularly

critical when dealing with noisy or incomplete data, as the physical constraints and noise may

contain inconsistent information. While I have attempted to address this through adjustments

of the eikonal constraint weight (ϵe) for different applications, the fundamental question of how

effectively physical principles are imposed through loss function regularization requires further

investigation.
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5.3 Geological implications for northeastern Tibetan Plateau

Based on seismic ambient noise data (10-40 s) and teleseismic earthquakes (20-80 s), PINN-

based surface wave tomography was applied to measure the Rayleigh wave phase velocity and

azimuthal anisotropy beneath the northeastern Tibetan Plateau. Figure 5.1 presents a 3-D

representation of multi-period Rayleigh wave phase velocity and azimuthal anisotropy structure

in the study area, where the Z-axis from top to bottom indirectly reflects the velocity structure

from shallow to deep depths. The results reveal significant lateral heterogeneity in the study

area, showing good correlation between geological features and subsurface velocity structures.

In the crust and upper mantle, the velocity structure shows generally low velocities within

the Tibetan Plateau transitioning to high velocities in surrounding regions. In the crust, the

azimuthal anisotropy varies gradually across the region, with fast directions near the Tibetan

Plateau showing a clockwise rotation trend along the northeastern margin of the plateau.
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Figure 5.1: 3-D representation of Rayleigh wave phase velocity structure at 10, 20, 30 and
40 s and azimuthal anisotropy at 10 and 20 s. (a) Topography and geological units of north-
eastern Tibetan Plateau. Red lines indicate the main faults. The main tectonic blocks are
labeled as AB = Alxa Block; CQO = Central Qinling Orogen; HG = Hetao Graben; OB =
Ordos Block; QOB = Qilian Orogenic Belt; SGT = Songpan-Ganzi Terrane; WQO = Western
Qinling Orogen. (b) Azimuthal anisotropic phase velocity at period of 10 s obtained from pin-
nEAET. (c) Azimuthal anisotropic phase velocity at period of 20 s obtained from pinnEAET.
(d) Isotropic phase velocity at period of 40 s obtained from pinnTET. (d) Isotropic phase ve-
locity at period of 80 s obtained from pinnTET.
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The western Qilian Orogen, western Qinling Orogen, and Songpan-Ganzi Terrane exhibit promi-

nent low-velocity zones (LVZs) across all periods, which is highly consistent with previous sur-

face wave studies using different methods (Li et al. 2017; Zhong et al. 2017; Wang et al. 2020;

Hao et al. 2021; Wu et al. 2023). These low-velocity anomalies indicate that the crustal and

upper mantle media in this region have relatively low mechanical strength and are prone to

deformation under tectonic stress, corresponding to the fast uplift of the northeastern Tibetan

Plateau (Zhong et al. 2017). However, interpretations of these crustal LVZs remain controver-

sial. For instance, Li et al. (2014) suggest that the LVZ beneath the western Qilian Orogen

might be related to crustal thickening, while Jiang et al. (2014) propose that the mid-crustal

LVZs result from partial melting. Our results show that the Songpan-Ganzi Terrane has lower

velocities and stronger azimuthal anisotropy in the middle crust compared to the western Qilian

Orogen. These findings may support different origins for the LVZs in these two tectonic units:

the LVZ beneath the Songpan-Ganzi Terrane might be caused by crustal partial melting, while

the LVZ beneath the western Qilian Orogen might be attributed to fluid infiltration (Li et al.

2017). Clark et al. (2005) propose that there exists a channel flow with low viscosity in the

middle-lower crust within the Tibetan Plateau, flowing outward around the Sichuan Basin. The

LVZ in the middle-lower crust beneath the Songpan-Ganzi Terrane, combined with strong pos-

itive radial anisotropy (Li et al. 2022), can serve as evidence for the existence of crustal flow in

this region, though the extent of this crustal flow requires further discussion. The LVZs in the

upper mantle beneath the western Qilian Orogen, western Qinling Orogen, and Songpan-Ganzi

Terrane indicate weak lithosphere and the presence of mantle flow in these regions.

The velocity characteristics of the regions surrounding the northeastern Tibet differ from the

LVZs within the plateau. The central Qinling Orogen exhibits a high-velocity zone (HVZ) across

almost all periods, particularly the section between the Sichuan Basin and Ordos Block shows

relatively high velocities throughout the crust, suggesting that crustal flow may not have passed

through this area or is in an early developmental stage of crustal flow (Bao et al. 2013). The Or-

dos Block shows distinct low velocities at 10 s, likely related to its thick sedimentary layers (Sun

et al. 2010). At 20 s and longer periods, the lithosphere in this region displays prominent high-

velocity characteristics accompanied by weak crustal azimuthal anisotropy, with fast directions

well correlated with the fault strikes along the block boundaries, reflecting its rigid charac-

teristics as a stable Cratonic block. However, near its western boundary, the phase velocities

are lower than within the block and show significant lateral heterogeneity, suggesting that the
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stable Ordos Block may have been affected by tectonic activities and undergone deformation at

its western margin (Zhong et al. 2017). The Hetao Graben also exhibits significant low-velocity

anomalies in the shallow crust, associated with approximately 10 km thick sedimentary lay-

ers (Wang et al. 2017). This LVZ persists up to 25 s period, which Ge et al. (2011) attributed

to partial melting. However, since the low-velocity anomaly values in this region are not as low

as those in the LVZs of the western Qilian Orogen, western Qinling Orogen, and Songpan-Ganzi

Terrane, our results may support that this LVZ from mafic magmatic underplating (Wang et al.

2014).

5.4 Future work

5.4.1 Applying physical constraints on finer grids

Current PINN implementations enforce physical constraints only at traveltime grid nodes (sta-

tion locations). However, wave propagation physics requires continuous validity across the

domain. Should physical constraints be applied to a finer grid than the traveltime grid?

From a theoretical perspective, applying physical constraints to a finer grid offers potential ad-

vantages. When dealing with complex geological structures, a finer grid can capture more subtle

geological variations. For example, in the presence of small-scale faults or velocity anomalies

within the study area, applying physical constraints only at station locations might overlook

the influence of these small-scale geological features on wave propagation. Applying physical

constraints on a finer grid allows for a more accurate description of wave propagation paths

and velocity variations in the medium, thereby improving the precision and resolution of tomo-

graphic results. For instance, in simulating wave propagation, a finer grid enables more precise

calculations of wavefront shapes and propagation directions, resulting in velocity models that

better reflect actual geological conditions.

However, in practical applications, applying physical constraints to a finer grid also presents

several challenges. First, computational costs increase significantly. A finer grid means more

nodes and computational units, requiring the NN to process larger datasets and more complex

computational graphs during training. Each iteration involves calculating physical constraints

and loss functions at more nodes, substantially prolonging training time and demanding signif-

icantly more computational resources. For large-scale seismic data processing, this increase in
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computational cost may render the method impractical. Second, determining an appropriate

fine grid scale is a challenge. Different geological regions and research objectives may require

different grid scales. If the grid is too fine, it may introduce unnecessary complexity; if it is not

fine enough, the advantages of a finer grid may not be fully realized. This requires an in-depth

understanding of the geological characteristics of the study area and extensive experimentation

to determine the optimal grid scale.

In summary, whether to apply physical constraints to a finer grid requires balancing potential

advantages with practical challenges. Future research could explore compromise approaches,

such as applying physical constraints on finer grids in key areas or regions with significant impact

on results while maintaining the current grid scale in other areas to balance computational costs

and imaging accuracy. Simultaneously, developing more efficient computational algorithms and

optimization strategies to reduce computational costs and avoid overfitting will be key to making

this approach feasible.

5.4.2 Helmholtz tomography using PINNs

The success of PINN-based surface wave tomography opens opportunities to incorporate multi-

ple physical parameters in seismic tomography. While this study demonstrates the effectiveness

of eikonal tomography, including additional constraints such as amplitude information through

Helmholtz tomography could further improve resolution and accuracy. The eikonal equation

provides a first-order approximation of wave propagation. However, it neglects amplitude in-

formation, which may introduce errors in the phase velocity measurement when the velocity

anomalies are smaller than the wavelength or multi-path propagation of waves occurs (Li et al.

2023). The Helmholtz equation, a second order non-linear PDE, further correct the influence

of amplitude on the basis of the eikonal equation (Lin and Ritzwoller 2011):

1

c2(x)
= |∇τ(x)|2 − ∇2A(x)

A(x)ω2
, (5.1)

where τ(x) represents the traveltime from an effective source to a receiver at location x = (x, y),

while c(x) denotes the local phase velocity at the surface for the same receiver location, A(x)

represents the amplitude at position x, ω is the angular frequency. By incorporating this

correction, the Helmholtz equation improves the accuracy of phase velocity estimates especially
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at longer periods.

Based on Equation 5.1, the physical term in the loss function is defined as:

LH(Nτ , NA, Nc) = |∇Nτ |2 −
1

N2
c

− ∇2NA

NAω2
, (5.2)

where LH is the loss function of the Helmholtz constraint, Nτ = Nτ (x, ϕ, ω) and NA =

NA(x, ϕ, ω) are the NN-based estimates of traveltime and amplitude at locations x and angular

frequency ω with local backazimuth ϕ, respectively, Nc represents phase velocities evaluated at

x for a specific frequency.

Three NNs are needed to model phase velocities, traveltime surfaces and amplitudes. The

overall loss function used to train these three networks simultaneously has the form:

L(θτ , θA, θc) =

Nfreq∑
k

Nsrc∑
j

Nrcv∑
i

[∣∣∣∣Nτ (θτ ;xi, ϕj , ωk) − τi,j,k

∣∣∣∣2
+ϵA

∣∣∣∣NA(θA;xi, ϕj , ωk) −Ai,j,k

∣∣∣∣2
+ϵH

∣∣∣∣LH

(
Nτ (θτ ;xi, ϕj , ωk), NA(θA;xi, ϕj , ωk), Nc(θc;xi, ωk)

)∣∣∣∣2
]
,

(5.3)

where Nfreq, Nsrc and Nrcv are the maximum number of frequencies, sources and receivers, and

i, j, k are the index of those value, respectively. τi,j,k and Ai,j,k are phase travetime and ampli-

tude at locations xi = (xi, yi) and frequency ωk from direction ϕj . ϵA and ϵH are weight factors

for different data terms and physical term. The structural phase velocity from PINN-based

Helmholtz tomography can be obtained by training the PINNs with appropriate hyperparame-

ters to minimize Equation 5.3.

This multi-physics approach could be further extended to full waveform inversion, though this

would require careful consideration of the increased complexity in both the physics and the

optimization problem.
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5.4.3 Physics constrained dispersion curve inversion

While this study achieved Rayleigh wave phase velocity imaging in the northeastern Tibetan

Plateau, converting these phase velocities to depth-dependent S-wave velocity structure would

provide more direct insights into the region’s crustal and upper mantle structure. Since PINN-

based approaches have demonstrated reliable performance in solving seismic inverse problems,

developing physics-constrained dispersion curve inversion could effectively accomplish this goal.

Aki and Richards (2002) introduce a matrix method for analyzing plane waves in homogeneous

media. If we define the stress-displacement vector for Rayleigh wave as (r1, r2, R3, R4), where

r1, r2 are scalar displacement functions, σrr = iR3 and R4 = σrz. Under the assumptions of a

traction-free boundary condition at the free surface and vanishing displacement as the bottom,

the Rayleigh wave eigenproblem is defined as:



0 − λ
λ+2µ

d
dz

1
λ+2µ 0

d
dz 0 0 − 1

µ

ρω2 0 0 d
dz

0 −ρω2 − d
dz (4µ(λ+µ)

λ+2µ
d
dz ) − d

dz
λ

λ+2µ 0





r1

r2

R3

R4


= k



r1

r2

R3

R4


(5.4)

where z is the depth and k is the wavenumber. The elastic medium is characterized by its

density ρ and Lame parameters λ and µ. r1 = r2 = 0 at the bottom and d
dz

(
(λ + 2µ)dr2dz

)
+

λdkr1
dz = 0 and R4 = 0 at the free surface. This equation can be converted to a finite-dimensional

generalized matrix eigenvalue problem at N + 1 collocation points within each layer using a

collocation method. Then the Equation (5.4) can be discretized as (Denolle et al. 2012):



0 − λ
λ+2µD

1
λ+2µ 0

D 0 0 − 1
µ

ρω2 0 0 D

0 −ρω2 −D(4µ(λ+µ)
λ+2µ D) −D λ

λ+2µ 0





uR
0

.

.

.

uR
4N+3


= k



I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I





uR
0

.

.

.

uR
4N+3


(5.5)

where D is a difference operator of size (N+1)×(N+1) used to approximate d/dz. I denotes the
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identity matrix of identical size to D. The vector uR encompasses the components r1, r2,R3,R4

sampled at the collocation points. λ, µ and ρ are diagonal matrices of the depth-dependent

shear modulus and density, respectively, evaluated at the collocation points.

Equation 5.5 takes the form of A(m)v = kIv at each frequency, where m contains medium

properties λ, µ and ρ, v contains all Rayleigh-wave displacement and stress vectors. If observed

phase velocities cobs (replacing wave number k) are available for specified Nf frequencies, the

cost function can be defined as:

C(c,v,m) =

Nf∑
i

(ci − cobs,i)
2 +

Nf∑
i

∥∥([Ai(m) − ciI]vi)
∥∥2
2

(5.6)

where c =
[
c1, c2, · · · cNf

]T
represents the phase velocities at different frequencies from 1 to

Nf , and m = [µ1, µ2, · · · , µNl
]T represents the medium properties of different layers from 1

to Nl in the layered medium. Given the observed phase velocities within the corresponding

frequency range, the elastic parameters of the subsurface medium can be obtained by optimizing

Equation 5.6, from which the shear wave velocity can be further calculated.

By extending physics-constrained optimization approach to dispersion curve inversion, the ben-

efits of incorporating physical principles could be maintained while resolving vertical velocity

variations. This would enable better understanding of crustal and upper mantle structure in

complex tectonic regions, such as the northeastern Tibetan Plateau, while ensuring solutions

remain physically plausible through explicit physical constraints.

5.5 Conclusions

In this thesis, I presented three surface wave tomography methods using physics-informed neu-

ral networks (PINNs) and demonstrated their feasibility through field data applications in the

northeastern Tibet. Through the development of PINN-based eikonal tomography (pinnET),

PINN-based elliptical-anisotropic eikonal tomography (pinnEAET), and PINN-based teleseis-

mic eikonal tomography (pinnTET), this research shows a progression in handling various seis-

mic tomography problems, including isotropic and anisotropic velocity structure modeling for

both ambient noise and teleseismic surface waves. These works establish that PINNs can suc-
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cessfully solve real-world seismic tomography problems while adhering to underlying physical

principles.

The PINN-based approach offers several distinct advantages over traditional methods. Most

importantly, it achieves comparable resolution using only approximately 20% or even less of

conventionally required data, significantly improving data efficiency without compromising so-

lution quality. The framework naturally incorporates physical constraints through the eikonal

equation, providing physics-guided interpolation that improves results in regions with sparse

or uneven data coverage. Furthermore, the ability to simultaneously process multiple frequen-

cies through direct integration of period terms into the neural networks (NNs) ensures more

coherent velocity structures across different depth ranges. However, implementing PINNs for

seismic problems also presents important challenges. The methods require careful parameter

tuning and network architecture design for each specific application, with performance heavily

dependent on these choices. While data requirements are reduced, computational demands re-

main significant due to the global approximation nature of NNs and the complexity of balancing

physical constraints with data fitting in the loss function. Additionally, while the networks can

predict velocities at arbitrary positions, accuracy decreases notably when evaluation points fall

outside the training data distribution.

Through extensive testing on field data from the northeastern Tibetan Plateau, this research

provides practical guidelines for implementing PINN-based seismic tomography methods. The

successful resolution of complex geological structures, validated through uncertainty analysis

and comparison with conventional methods, demonstrates that these approaches can reliably im-

age Earth structure when properly implemented. The revealed velocity structure and anisotropy

patterns show good correlation with major tectonic features, such as the prominent low-velocity

zones beneath the western Qilian Orogen and Songpan-Ganzi Terrane, which may indicate dif-

ferent deformation mechanisms. The presence of a high-velocity zone in the central Qinling

Orogen suggests that the mid-to-lower crustal flow from the Songpan-Ganzi Terrane currently

lacks a channel between the Ordos Block and Sichuan Basin. These findings contribute to

our understanding of the crustal deformation and deep processes in the study area. The re-

duction in data requirements is particularly valuable for regions where dense data coverage is

impractical or impossible to achieve. While meeting the primary objectives of the research,

I also provide several promising avenues for future development. These include extension to
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multi-physics problems like Helmholtz tomography to incorporate amplitude information and

physics-constrained dispersion curve inversion for S-wave velocity structure inversion. The

methodologies developed here provide a solid foundation for future developments in seismic

tomography using physics-constrained approaches.

While PINN-based approaches may not replace traditional seismic methods, they represent a

valuable addition to the seismologist’s toolbox, particularly for scenarios with limited data avail-

ability. The ability to combine data-driven learning with physical principles offers promising

directions for advancing not just surface wave tomography, but potentially other geophysical

applications as well. Future work should focus on addressing the identified limitations, partic-

ularly in computational efficiency and automated parameter selection, to make these methods

more accessible to the broader geophysical community.
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Appendix A

Supplementary material for Chapter

2

Contents of this appendix

1. Figure A.1

A.1 Introduction

This supporting information contains the figure with the loss curves for the different training

processes. The loss terms for the traveltime data and PDE constraint (the two terms in Equa-

tion 2.4) run for a total of 4000 epochs (2000 in each outer iteration), while the loss function

for accelerated updating of the velocity neural network (Equation 2.6) ran for 2000 epochs (this

occurs at the start of the second outer iteration). Having retrained the velocity neural network,

the PDE loss term drops steeply.



A.1 Introduction

Figure A.1: Evolution of the different loss terms for the final training.
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Contents of this appendix

1. Figures B.1 to B.3
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B.1 Introduction

The first part in Appendix B is the derivation of the eigenvalues of matrix M =

M11 M12

M21 M22

.

The eigenvalues λ of M satisfy the characteristic equation:

det(M− λI) = 0, (B.1)

where I is the identity matrix. Expanding the determinant:

(M11 − λ)(M22 − λ) −M12M21 = 0, (B.2)

Since M12 = M21, this simplifies to:

λ2 − (M11 + M22)λ + (M11M22 −M2
12) = 0, (B.3)

The quadric equation in λ has solutions:

λ =
M11 + M22 ±

√
(M11 + M22)2 − 4(M11M22 −M2

12)

2
, (B.4)

According to the matrix elements in Equations 3.3 to 3.5, the phase velocities cf and cs are the

square roots of the eigenvalues λ. Thus, the eigenvalues of M are c2f and c2s. For each eigenvalue

λ, solve (M− λI)v = 0 (e.g. fast wave λ = c2f ):

M11 − c2f M12

M12 M22 − c2f


vf1
vf2

 = 0 (B.5)

Looking at the first row and rearranging to solve for the ratio of components:

vf2
vf1

= −
M11 − c2f

M12
= − tanα, (B.6)

Thus, the fast eigenvector is parallel to the anisotropy symmetry axis α. Similarly:
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vs2
vs1

= −M11 − c2s
M12

= cotα. (B.7)

The slow eigenvector is orthogonal to vf . Therefore, the the eigenvalues and eigenvectors of M

indicates the fast, slow and the principle directions of the anisotropy.

This supporting information also contains 3 figures. Figure B.1 shows how the 25 s Rayleigh

wave phase velocity model varies with the number of source stations. Models were generated

using 1, 5, 10, 20, 30, 40 and 50 effective source stations among the total 676 stations. When

fewer than 20 sources are used, the average phase velocity changes more sharply as the number

of sources increases. This phenomenon illustrates non-unique solutions and the resolution limi-

tations of the 25 s Rayleigh wave phase velocity for sparse input data. Though computationally

cheaper, models with less than 20 sources poorly approximated phase velocities and lacked

detail. While the source number increases from 20 to 50 sources, the average phase velocity

stabilizes around 3.46 km/s. The change in mean absolute error is more intuitive with the error

dropping rapidly from about 0.09 at 1 sources to below 0.02 for 20 sources, then remaining

below 0.02 from 20 to 50 sources. Overall, the resolution and accuracy of the trained phase

velocity model gain rapidly with increasing source number and tend to level off after 20 sources.

We select 20 stations as effective sources in this study to incorporate sufficient sampling and

limit computational expense.

Figure B.2 compares the azimuthal anisotropic velocities obtained by pinnEAET and azimuthal

double beamforming tomography (Wu et al. 2023), respectively. The phase velocities correspond

closely across most regions of the study area, diverging primarily in small areas at the northeast

and south boundaries and within parts of the Central Asian Orogenic Belt. However, our results

are consistent with traditional eikonal tomography (Figure 3.8 (c)) in those areas. Centrally,

azimuthal anisotropy orientations show close agreement between the two models. Discrepancies

near boundaries likely arise from lacking ray paths in certain directions at the boundary. The

fast direction derived from the conventional eikonal tomography and azimuthal double beam-

forming tomography also differ on the boundary (Figure 3.8 (b) and Figure B.2 (b)). Overall,

pinnEAET azimuthal anisotropic phase velocities match azimuthal double beamforming results

well where data coverage is sufficient but diverge near the boundaries, where limited azimuthal

coverage likely degrades model resolution and accuracy in both studies.
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Figure B.3 shows the results of Rayleigh wave phase velocity and azimuthal anisotropy over

periods of 10, 20, 30, and 40 s in northeastern Tibet obtained from simultaneously training

with the same traveltime NN and a single medium property NN. Employing a single network is

estimated to save approximately 20 % of the training time to achieve a similar convergence level

compared to the use of three networks, while maintaining consistent training conditions in all

other aspects. In the map of inverted phase velocities (Figure B.3), we observe a noticeable high

velocity anomaly at the southeast corner of the array across all periods, which is not present

in the results using three networks for the medium properties (Figure 3.6). Additionally, as

shown in Figure B.3 (b)-(d), the phase velocities exhibit a more extensive area of significant low

velocity anomalies along the southwestern boundary in the Western Qinling Orogen compared

to the results in Figure 3.6 (b)-(d). These differences may indicate that a single network is more

influenced by data coverage. Regarding azimuthal anisotropy, the results from both network

architectures are highly similar. Minor differences can be observed within small areas for certain

periods. For example, comparing the azimuthal anisotropy in Figure 3.6 (d) and Figure B.3 (d),

anisotropic results using three networks illustrate a distinct NW-SE fast direction at 40 s at the

northeastern corner in the study area beneath the Hetao Graben, which is absent in the results

from a single network. Overall, using a single medium property NN can improve training

efficiency, but it also introduces some unexpected artefacts possibly due to unintentionally

introduced cross-dependencies. Further optimization of the methodology is necessary to strike

a balance between efficiency and accuracy.
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Figure B.1: Variation of the 25 s Rayleigh wave phase velocity with 1 to 50 source stations. Blue
stars and line indicate the variation of average phase velocity, starting at a background velocity
of 3.45 km/s; red stars and line indicate the variation of mean absolute error calculated between
the phase velocity models generated from input data for each two adjacent source numbers.

Figure B.2: (a) The 25 s azimuthal anisotropic phase velocity beneath the northeastern Tibetan
Plateau using pinnEAET; (b) The 25 s azimuthal anisotropic phase velocity generated by
azimuthal double beamforming tomography (Wu et al. 2023); (c) The difference between 25 s
azimuthal anisotropic phase velocity (background) from pinnEAET (black lines) and azimuthal
double beamforming tomography (red lines).
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Figure B.3: (a)-(d) Azimuthal anisotropic phase velocity at periods of 10, 20, 30 and 40 s
beneath northeastern Tibetan Plateau using pinnEAET with a single medium property NN.
Black bold vectors indicate the strength and fast propagation direction of anisotropy, black thin
lines indicate main faults.
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C.1 Introduction

This supporting information contains 4 figures.

Figure C.1 shows the number and distribution of earthquakes selected in this study at different

periods of 20, 25, 30, 40, 60, and 80 s, with 11, 15, 30, 25, 25, and 25 seismic events used,

respectively. The event selection criteria required that at least 400 stations recorded each

seismic event, and the events should have a relatively uniform backazimuth distribution. From

Figure C.1, we can see that the distribution of seismic events at 20 s and 25 s is relatively sparse,

with 20 s seismic events showing gaps in the clockwise range from southwest to northeast,

specifically between backazimuth 200 to 360 degrees and 0 to 40 degrees, indicating insufficient

teleseismic data at shorter periods. The seismic events at other periods show a more uniform

distribution.

Figure C.2 shows the map of Rayleigh wave phase velocity uncertainties for periods from 20 to

80 s. Overall, the velocity uncertainty shows a clear increasing trend with increasing period.

Between 20 and 30 s, the velocity uncertainties are generally less than 0.04 km/s and most

value concentrate in the lower uncertainty range. At 40 s, the velocity uncertainties mainly

concentrate between 0.04-0.08 km/s. For 60 s and 80 s, the velocity uncertainties primarily fall

between 0.06-0.12 km/s, showing a significantly wider distribution range of uncertainties. This

gradual broadening of the distribution range indicates larger velocity measurement uncertainties

at longer periods, suggesting a decrease in measurement precision as the period increases.

Figure C.3 compares our results with those from traditional eikonal tomography at periods of 25,

30, 40, and, 60 s, as a supplement to Figure 4.9. In these periods, the difference in Rayleigh wave

phase velocity between both methods is generally within 0.05 km/s, showing consistency in the

recovery of velocity distribution. At 25 s, the velocity difference is located in the southwestern

margin of the study area between 32◦ N and 36◦ N. Our results show LVZs in western Qilian

Orogen and western Qinlin Orogen, Songpan-Ganzi Terrane are separated by a relative HVZ. At

30 and 40 s, both methods show consistent results. From 30 to 40 s, the low-velocity anomalies

in western Qilian Orogen, western Qinlin Orogen, and Songpan-Ganzi Terrane increase, while

the high-velocity anomalies in southern central Asian Orogenic Belt and northern Alxa Block

decrease. The relative variation of high-velocities in Ordos Block and central Qinling Orogen also

decreases. At 60 s, differences exceeding 0.05 km/s are observed in the southwestern boundary
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of the the study area between 33◦ N and 37◦ N, as well as between 37◦ N and 40◦ N. The

traditional eikonal tomography results show a continuous relative LVZ along the southwestern

boundary and low velocities only appear in Songpan-Ganzi Terrane, while our results show two

LVZs in western Qilian Orogen and Songpan-Ganzi Terrane. Another velocity difference exists

as a isolated roughly circular region between 39◦ N-42◦ N and 98◦ E-101◦ E, which may be

related to poor ray path coverages.

Figure C.4 shows the difference between phase velocity structures obtained using PINN-based

teleseismic surface wave tomography and ambient noise tomography, as a supplement to Fig-

ure 4.10. The difference in velocity results obtained from PINN-based eikonal tomography using

the two datasets is mainly reflected in the strength of low-velocity anomalies. This difference

gradually decreases with increasing period. At 20 s, the ambient noise tomography results show

lower velocity values in western Qilian Orogen, western Qinling Orogen, Songpan-Ganzi Ter-

rane, and Hetao Basin. At 30 s, these differences narrow to regions in western Qilian Orogen,

Songpan-Ganzi Terrane, and part of western Qinling Orogen. At 40 s, the differences essentially

remain only in western Qilian Orogen. This indicates that different types of data enable varying

constraints on phase velocity results at different periods.
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Figure C.1: Distribution of the earthquakes utilized in the analysis for periods across 20, 25,
30, 40, 60, and 80 s. Black dots indicate teleseismic events, red triangle indicates the center of
the seismic array.
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Figure C.2: (a-d) Uncertainty map of the Rayleigh wave phase velocity at periods of 20, 25, 30,
40, 60, and 80 s beneath northeastern Tibetan Plateau using pinnTET.
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Figure C.3: (a-j) Rayleigh wave phase velocity at periods of 25, 30, 40, and 60 s beneath
northeastern Tibetan Plateau obtained from pinnTET. (b-k) Rayleigh wave phase velocity at
periods of 25, 30, 40, and 60 s beneath northeastern Tibetan Plateau obtained from conventional
eikonal tomography. (c-i) Difference of Rayleigh wave phase velocity between two methods at
periods of 25, 30, 40, and 60 s.
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Figure C.4: (a-c) Difference of Rayleigh wave phase velocity beneath northeastern Tibetan
Plateau at periods of 20, 30, and 40 s between PINN-based teleseimic surface wave tomography
and ambient noise tomography.
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