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Abstract
Tracking multiple mobile audio sources in acoustic scenes where the layout, tar-
gets, and requirements change rapidly is a fundamental problem in the research
field of tracking only through listening with computational means. Recent de-
velopments in the field of robotics and artificial intelligence have enabled re-
searchers to further the capabilities of such systems – interconnected or not –
towards solving the localisation and tracking problem. Nonetheless, such re-
search focuses primarily on managing the accuracy of such systems with little
care for energy (i.e. battery) efficiency, especially in applications where move-
ment is required. Meanwhile, highly dynamic acoustic scenes are not always
accounted for in the designs using mobile listeners.

This thesis attempts to bridge these gaps by attempting to solve this problem
with a focus on energy efficiency: reaching the targets in a timely manner
conserving as much energy as possible. To achieve this goal a suitable system
has been designed and implemented, while bio-inspired computing has provided
the key inspiration towards developing a listening and tracking strategy that
can expertly adapt to such scenarios. Established machine-learning techniques
have been employed to further optimise this strategy, ultimately achieving even
higher efficiency through adaptation of psychological research towards improved
collaborative problem solving via emergence engineering.

The key contributions of this thesis are thus: a distributed system frame-
work based on microservices tailored for modern devices capable of listening and
tracking with both simulation and real-world deployment capabilities, an adapt-
ive strategy that can be utilised for standalone system solutions, and an even
more efficient approach for cooperative solutions. An example application could
be the deployment of several small robots in disaster scenarios for reaching and
aiding trapped individuals (e.g. building on fire with heavy smoke). Finally,
the interdisciplinary research process followed throughout this undertaking as-
pires to offer an incentive for other researchers to pursue similar avenues for
innovative applications or efficient solutions in the pertinent domains.
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Chapter 1

Introduction

Distributed infrastructures have become an integral aspect of our daily lives,
whether as cloud platforms, social networks, or the Internet itself, when per-
ceived from a higher level of abstraction. The technological breakthroughs of the
last decade regarding such capabilities, of what are now known as smart devices,
such as their energy reserves and processing potential, enable an assortment of
applications that can solve complex problems beyond merely promoting ease of
offering varied services. The intricacy of such networks, however, dictates con-
siderable effort focused on optimising and configuring them to carry out such
demanding tasks in an ideal manner, an example encountered in optimal power
administration on mobile robots operating in tandem to solve a specific complex
problem.

Nature displays a vast array of intricate networks that have evolved across
millennia, where organisms modify their own designs to adapt to environmental
changes and accomplish their goals – primarily survival – with utmost pro-
ficiency for their species. Emergence is a field that delves into analysing such
intricate systems found in nature and attempts to mimic their microscopic man-
nerisms and intelligence, whereby optimised strategies can eventually emerge at
a macroscopic level. As a field inspired by the blueprints encountered in biology,
emergence is well-suited for interdisciplinary research with disciplines that also
draw from nature’s designs. One prominent discipline pertains to reconstructing
auditory scenes via computational means, which model processes of the ear and
brain. This reconstruction process refers to that of interpreting and organising
the mixture of sounds in an environment to make sense of what is happening.
This concept is central to how humans and machines process complex auditory
input, like distinguishing different voices in a noisy room or identifying sounds
in nature.

One field concerned with the reconstruction of auditory scenes is the Audit-
ory Scene Analysis (ASA), an ever-evolving field of study that focuses on how
biological beings perceive an acoustic scene, primarily by the brain grouping and
separating different sound sources based on cues like pitch, timing, and spatial
location [2], spurned by the speculations around the cocktail party effect [3].

1



CHAPTER 1. INTRODUCTION 2

Computational ASA (CASA) is a related field that focuses on how machines can
be infused with the capacity for performing the exceptionally complex processes
that biological entities, primarily humans, can perform [1], such as localisation
of a speaker using two ears or distinguishing between a musical instrument and
a person speaking. CASA has tremendous potential to address real problems,
from optimising hearing aids to separating individual instruments in a song.
The latter, for example, can help music production fix issues with a specific
instrument recording, or be analogous to the case of having different humans
speaking and needing to isolate the speech of only one individual instead.

Putting together multiple systems with these capabilities could increase the
potential for solving problems of a much larger scale, especially when there is
interaction among them. Past work with decentralised systems and insights
from biology motivated the attempts of this project to discover commonalities
between fields, with a view to harnessing the best of each to develop a solution to
a complex problem. Moreover, it evoked the aspiration for the project to become
a framework for further evolving the results in the future, or for applying it to
other neighbouring disciplines and families of problems due to its multifaceted
and convertible design.

As will be elucidated during this thesis, there is demonstrated capacity for
research merging social behaviours, animal hearing, and Emergent Distributed
Systems (EDS) to produce highly optimised solutions adapting to complex
auditory challenges. EDS are distributed systems capitalising on interaction
between nodes modelled after social behaviours to optimise performance, which
can find many applications in the field at hand. By exploring animal models
capable of effectively tracking mobile sound sources, an area of research that has
been found to be of high interest in the literature review and especially when
optimisation problems are studied, this thesis launches on a trajectory to op-
timise such abilities. Moving forward, literature analysis will delve deeper into
defining emergence and assessing its resulting effects, investigating bio-inspired
solutions to auditory issues with a research gap and identifying computational
methods best aligned with these aims. Consequently, this endeavour aspires to
unite the arenas of emergence through decentralised frameworks and the com-
putational investigation of acoustic scenarios, by exploring the least-travelled
routes of the latter through the capable means of the former.

Research in the field has focused heavily on improving the accuracy and
capabilities of important aspects of CASA, such as source separation and audio
source localisation, or the even more recent successes in understanding speech.
Recent advances in the fields of robotics, networking and smart devices have
enabled the deployment of CASA systems in such a manner that they can solve
more complex acoustic problems and inspire innovative applications. Among
all research fields in CASA, studies will be presented that highlight the lack
of focus on moving listeners, and capitalising on traits biological entities other
than humans exhibit. And even those approaches tend to disregard the aspect
of energy available to the device performing the task, which can be crucial in
specific scenarios involving autonomous operation and a race against time.

Consequently, the cornerstone of this research is to design an infrastructure
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Figure 1.1: Illustration of the expected outcome of this study: a distributed
system of intelligent devices, which can solve the problem via optimal strategies
that have evolved through machine learning from bio-inspired models and emer-
gent interactions (e.g., sharing, inquiring information).

for autonomous smart devices that can solve the tracking of targets of interest
(sound sources) in dynamic environments, with a focus on minimising both time
and energy spent to do so, without any visual aids and reliant on sound alone.
Avoidance of visual aids is key in the application area this work can find, such
as disaster scenarios (e.g. earthquake, fires) with reduced or no visual capabil-
ities allowed. This is achieved with the individual nodes of a distributed system
possessing Artificial Intelligence (AI) faculties, driven by basic Reinforcement
Learning (RL), and augmented by socio-cognitive interaction traits towards Col-
laborative Problem Solving (CPS), that is a process where multiple individuals
or groups work together, combining their knowledge, skills, and perspectives to
identify, analyse, and develop solutions to complex problems. The contributions
of its results could be the facilitation of innovative and significant applications
in fields such as emergency response to disaster scenarios (e.g., rescuing people
in a building on fire, helping people trapped beneath earthquake ruins).

The solution to this problem developed through this thesis attempts to capit-
alise on advancements in the field of software engineering for the system design,
in addition to adopting bio-inspired decision-making based on the capacity of
treefrogs to track their targets efficiently be hearing alone, owing to the unique
energy-saving approaches they have adopted over years of evolution in their
hostile environments. Arboreal locomotion, which the treefrogs are strongly
characterised by, ordains that the subject returns to its arboreal state as soon
as possible, spending as little time and energy as possible to achieve any goals,
following nature’s principle for the conservation of energy [4]. Nature’s evolu-
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tion has made treefrogs capable of achieving this during their mating season,
where they descend from the trees and the females attempt to find the males
[5]. The strategies they employ to do so vary and can serve as inspiration.

Biological research related to treefrog behaviours will be discussed that high-
lights their capacity for efficiency and performing localisation tasks as good as
humans, providing an ideal bio-inspired model to adopt. The research ques-
tions pertinent to realising these goals are elaborated on the relevant piece of
this work and explored through the scientific method twice: first to develop a
solid such strategy for the individual, and then to determine how emergence
can contribute to addressing this issue through CPS. This will be achieved
through simulating tracking problem scenarios as accurately as possible and us-
ing bio-inspired models as a starting point to evolve optimal strategies for this
endeavour through machine learning designed for capitalising on CPS scenarios.
A high-level illustration of this concept can be found in Figure 1.1.

1.1 Aims and Objectives
To realise this vision of an EDS that can solve complex CASA problems in
an energy-efficient manner several distinct steps must be taken. First, there
needs to be a distributed system architecture, so that interaction among its
subsystems, referred to as nodes, is facilitated, to lay the ground for having
emergent phenomena through these interactions. Afterwards, these nodes must
be capable of exhibiting bio-inspired behaviour, which can be modelled at will,
as well as modified at runtime; and that is in addition to being capable of per-
forming CASA-related functions. The next step is to put to the test several
bio-inspired strategies for tracking and managing energy, with the goal of devel-
oping a strategy that can adapt to the environment and the state of the tracker
to achieve its goals. Finally, social interactions among the trackers are intro-
duced to gauge how better results in CPS scenarios involving energy-efficient
tracking can be achieved.

Consequently, the higher-level aims, whilst doubling as core contributions of
this thesis, can be summarised as:

A1 Implement a modern EDS for smart devices that can perform CASA func-
tions.

A2 Utilise bio-inspired tracking strategies to develop an adaptive, energy-efficient
strategy.

A3 Harness emergent behaviour through AI social interaction for CPS cases.

Each of the aims outlined above can be broken down to more atomic objectives
that need to be achieved to realise them. For A1 both a proper architecture that
can accommodate all future features of the desired system, as well as a system
that has the potential to be deployed and operate on modern smart devices,
are essential. Meanwhile, the AI subsystems for A1 need to be modelled in an
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extensible manner after the characteristics and behaviour of real-world anim-
als that exhibit the desired qualities for solving such problems. At the same
time, a robust CASA implementation needs to be utilised for locating audio
sources so that the smart devices equipped with the system can track them.
With regards to the bio-inspired strategies for A2, there needs to be a faithful
implementation of the original strategies, with verification of their properties,
followed by iterative experimentation of introducing new behaviours and evalu-
ating their outcomes, leading to the formulation of the coveted strategy. Finally,
A3 demands introduction of social and relevant characteristics, followed by sim-
ilar iterative experimentations as with A3 to determine the effects of the new
behaviours and to what extend they can contribute to CPS.

The objectives, as relating to the aims, are thus defined as:

A1-O1 Design and implement a modern distributed system for smart devices
that can support emergence.

A1-O2 Contrive a robust sound localisation mechanism for the intelligent nodes.

A1-O3 Instrument the AI to model the bio-inspired behaviour.

A2-O1 Evaluate the performance of original bio-inspired tracking strategies.

A2-O2 Utilise the findings from bio-inspired strategies to develop a new, arti-
ficial one and evaluate performance.

A2-O3 Develop the adaptive strategy for energy-efficient tracking through RL.

A3-O1 Introduce socio-cognitive traits and behaviour to the AI nodes.

A3-O2 Evaluate the performance of the evolved strategy in CPS attempts and
its capacity for emergence.

1.2 Research Project Overview
Apart from the current introductory chapter and the conclusions to this thesis,
there are 4 core chapters to showcase the work and present the findings of
this research endeavour. The next chapter presents an exploration of the field
domains explored by this research effort, focusing on the study of the fields
pertinent to the topic. The trailing three chapters break down the core work
with respect to the aims into thematic segments, each one also containing a
discussion on recent advances, theory, and technologies apropos of the work
they focus on.

An overview of the interdisciplinary research fields The primary goal of
this review was to identify and study the domains with the goal of understanding
their inner workings thoroughly, whilst pinpointing their possible interactions.
The secondary goal was that of discovering the research opportunities. This
chapter searches deeper through the fields of biological hearing, for humans and
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animals, discussing ASA and CASA, how they can be implemented and their
potential applications. Autonomous distributed systems based on the concepts
of collaborating intelligent sub-systems are explored, with a focus on sensor net-
works analogous to listening nodes. Emergent distributed systems are studied
next, presenting a case of exemplary work on the field that can be refashioned
into the desired system. The summary of this section ties everything together
to showcase the narrative of the current project, as it was conceptualised and
how it evolved into its final form.

A distributed system for tracking mobile audio sources (A1) To start
with, a deep dive into the architecture of the expected system is presented. The
reasoning behind the frameworks and technologies chosen is explained, and how
a simple mobile app or a low-capabilities device can be utilised as a node in
the system. What components is the system comprised of, and all the modes
of interaction that they can have with each other, as well as how they can be
mixed on assorted devices to formulate extremely versatile systems that can be
applied to a vast array of scenarios, is also discussed. Additionally, this chapter
includes the details of the CASA subsystem included in the nodes that can
perform tracking tasks. The process for ensuring that audio source localisation
can take place while being is as accurate as possible is described, and how this
subsystem interfaces with the nodes. The use of a supercomputer for generating
the required artefacts for the simulated sounds is also delivered.

Development of an adaptive, energy-efficient tracking strategy (A2)
this thesis next presents the bio-inspired approach to solving the problem of
tracking mobile audio sources efficiently. Implementation of the different strategies
is the core topic, both the original ones and the derived ones that could compete
with them. The chapters focus on detailing the environment, the actors, and the
methodology for the experiments that take place to evaluate the performance
of the strategies in an iterative manner. It also presents how the design of the
experiments evolved in a stepwise manner during the development process. The
research methodology to this end is outlined, as well as the methodology for ex-
ploiting the results towards developing the eventual adaptive strategy. Research
explored explains the choice of reinforcement learning over other solutions. The
chapter concludes with a discussion on the findings of the experiments carried
out to achieve the research aims related to this work.

Effects of emergence on collaborative tracking (A3) The final chapter
focuses on enabling the system to have more intricate and meaningful emergent
interactions. While emergent phenomena arise event from the simpler inter-
actions of the work carried out for the previous chapter, merely by means of
having intelligent systems interact with the environment and their target, the
different traits that can be associated with interactions among intelligent en-
tities can lead to more interesting results. Consequently, the investigation of
socio-cognitive traits that have been found to affect CPS capabilities in humans
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are incorporated in the system and put to the test, in a manner like the preced-
ing chapter. The discussion of the findings ends the chapter and attempts to
also convey the overall impact of the work and its potential.



Chapter 2

Literature Review

2.1 Introduction
This section revolves around a high-level, preliminary review of literature that
was carried out for the interdisciplinary research fields pertinent to the concept
of this thesis. These fields are, summarily: the listening through both biological
and machine-facilitated means, the distributed systems infused with intelligence,
and emergence in such systems. Primarily based on exploring the basics of the
background theory of each area, it also attempts to explore research opportun-
ities to capitalise on. This literature review specifically focused on the earliest
stages of this research, with a view to gaining a better understanding of the
fields.

In a stepwise manner, the aims of this review are to:

1. Gain a better understanding of biological listening, for both humans and
animals, highlighting treefrogs as models.

2. Explore the realm of machine listening for techniques to be used and
showcase the research gaps pertinent to this study.

3. Present the concepts of autonomous distributed systems that could be used
towards realising the goal of the study.

4. Research intelligent agents and determine which architectures could be
beneficial for each phase of this project.

5. Define emergence and its potential contributions through the lens of apro-
pos work in computing and social sciences.

6. Summarise the findings about useful architectures and research gaps that
this study focuses on to achieve its goals.

8
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2.2 Biological Listening
This section focuses on presenting some details on how humans hear, touching on
the surface and fundamentals of the research field that governs these important
functions, while expanding to animals and bio-inspired approaches, too. It
concludes with a presentation of treefrogs as the primary source of inspiration
for looking to solutions for the problem at hand, highlighting their strengths
towards tracking efficiency that could be leveraged.

2.2.1 Introduction to human hearing
Hearing, or audition, belongs to one of the traditional five senses and unlike
smell, taste and sight, which are based on chemical reactions, it is similar to
touch in that it requires sensitivity to mechanical stimuli [6]. The external,
mechanical stimulus in the case of human hearing is sound, which can be heard
through solid, liquid and gaseous media. Sound can be detected via the mechan-
ical phenomenon of vibrations, where variations in the pressure of the surround-
ing matter can be perceived through the ear. This indicates that the process of
auditory perception is a primarily mechanical process, and it has been described
as mechanosensation, due to the hearing functions that the hair cells residing
within the ear possess [7].

Hair cells alone do not account for the whole of the peripheral auditory
system, in fact they are present only in the innermost region of the ear. The
human ear can be broken down to three regions, the outer, middle and inner
ear, each of which performs a different function. Therefore, hearing is a multi-
step process and as such the auditory system is composed of several subsystems
that work in tandem. This includes the sensory organs, the ears, and parts of
the human sensory system, the nerves that pertain to audition. Consequently,
the purpose of the auditory system is transduction, in essence the conversion of
energy from the mechanical waves of sound into nerve impulses understandable
by the human brain.

Outer ear The outer consists of two parts, the pinna, which refers to the
visible parts including ear lobes and concha, and the auditory meatus, the ear
canal, which serves as the passageway to the rest of the parts of the ear. The
purpose of the outer ear is thus to gather energy from the mechanical waves
of sound and funnel it to the eardrum in the middle ear. Sound waves are
reflected but also attenuated when they encounter the pinna, a property that
can be attributed to its vertical asymmetry; modifications to these waves carry
cues along the ear canal that ultimately enable brain to perform several useful
functions, such as determining the vertical direction that the sound came from
[8]. The sound waves enter the auditory meatus after hitting the pinna and
the external ear selectively boosts sound pressure with frequency in the range
2–5kHz from 30 to even 100 times more, while the ear canal itself is capable of
amplifying sounds with frequencies in the range of 2–4kHz in adults [9].
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Middle ear In the mechanosensation process of hearing performed by the
auditory system, the middle ear plays a pivotal role. This is attributed to
the fact that it is capable of converting the vibrations from the sound waves,
essentially the changes to pressure in air, into fluid medium disturbances, those
found in the inner ear [10]. Consequently, the mechanisms that the middle ear
provides transfer sound energy from one medium type to another efficiently.
The waves are carried by the ear ossicles, a series of three consecutive bones,
the malleus, the incus and the stapes [11]. These delicate bones leverage the
low-pressure eardrum vibrations and turn them into high-pressure vibrations
for another membrane down the path, the oval window, which separates the air
medium in the ear (middle ear) from the water medium (inner ear) [12]. The
overall machinations of the middle ear achieve another goal: they account for
impedance matching and thus maximise energy transfer so that all information
is still carried through in wave form [11].

Inner ear The work of the inner ear begins when the sound waves reach
and pass through the oval window in the middle ear, now in turn encountering
the fluids within the cochlea, a spiral-shaped tube. In its length, the cochlea is
divided in two by the organ of Corti and within it the basilar membrane vibrates
when sound waves carry from the middle ear and through the cochlear fluid.
This membrane is responsible for the transduction of energy from mechanical to
neural that takes place within the inner ear; specifically it is made possible by the
presence of over 32, 000 hair cells and their depolarisation by the movement of
the basilar membrane [13]. While the hair cells do not produce action potentials
on their own, the emission of neurotransmitters at the synapses with fibres of
the auditory nerve trigger spatial and temporal firing patterns and achieve the
transmission of sound information to the brain [14].

Another integral property of hearing, which is realised through the inner
ear, is the spectral separation of sounds. The basilar membrane has tonotopic
properties, therefore it is capable of spatially arranging where sounds of varying
frequencies are processed; in particular, higher frequencies are processed closer
to the entrance of the cochlea, whereas the lower frequencies are processed closer
to its apical end [15]. This also signifies that the cochlea of the inner ear has
the capabilities of a frequency analyser, as well as the abilities of a non-linear
acoustic amplifier [8].

2.2.2 Auditory scene analysis
The purpose of the auditory system is to capture the sounds from all the sources
and then convert them into signals perceivable by the auditory nerve. It has sev-
eral astonishing capabilities, such as spatial and spectral frequency separation,
identifying direction of sound sources and amplifying sounds waves. All these
abilities are brought together to assist the brain in determining all important
information, to analyse all sources of sound and understand the auditory scene
around them. Auditory Scene Analysis (ASA) is a term coined by psychologist
Albert Bregman who proposed a model that can serve as the basis of human
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auditory perception [2]. The core idea behind the model is to provide a process
detailing how the auditory system manages to organise the perceived sounds
into elements meaningful for the human brain.

An auditory scene may be teeming with assorted acoustic sources that pro-
duce sounds composed of numerous interconnected parts, yet what arrives at
the ear is a single signal. For this complicated, incoming sound signal to be
understood, it is imperative for the auditory system to be able to recognise the
individual sound patterns. This is achieved by creating partitions and distribut-
ing bits of auditory information (i.e. unique characteristics of a specific signal)
accordingly to portions that describe individual sounds. Consequently, ASA re-
lies on the process of grouping, segregating and integrating sensory information
to form the auditory streams, distinct mental representations of the sounds in
the scene [16].

In the previous section, the peripheral auditory system has been analysed
primarily, but the central part in the brain plays an important role in ASA,
too. ASA is a complex cognitive process that allows the brain to interpret and
organise the multitude of sounds in an environment. Much of this processing
occurs in the central auditory system, particularly in the auditory cortex, which
is in the temporal lobe [17]. The brain takes in raw auditory input from the ears
and then uses various mechanisms, such as grouping, segregation, and recogni-
tion, to make sense of the soundscape [18]. Naturally, these processes assist the
listener in distinguishing individual sound sources, such as separating speech
from background noise or identifying the melody within a song.

Grouping and segregation occur as the brain identifies patterns in sound,
using cues like pitch, timing, and spatial location to determine which elements
belong together [17, 2]. For instance, if multiple sounds originate from the same
location and share similar frequency characteristics, they are perceived as a
single auditory object [18]. On the other hand, if sounds differ significantly in
these aspects, the brain segregates them into separate streams and, once the
sounds are separated, recognition involves comparing them to stored auditory
memories, thus allowing the brain to identify familiar voices, instruments, or
environmental sounds [19]. This entire process is supported by interactions
between the primary auditory cortex, superior temporal gyrus, and prefrontal
cortex, ensuring that auditory information is processed efficiently for commu-
nication, navigation, and environmental awareness [20].

2.2.3 Bottom-up grouping in ASA
The two ASA terms for the two methods used for grouping are simultaneous
and sequential grouping respectively [2]. The purpose of sequential grouping
is to perceptually fuse over time what would appear to be matching sounds.
Experiments have been conducted that indicate any type of grouping follows the
same principles of similar phenomena described by Gestalt psychology regarding
vision, where perception forms clusters of matching sensory inputs [21]. In the
case of the auditory system, this can be attributed to frequency variations in the
sound wave and results in streaming, the perceptual segregation of constituents
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of the sound wave in separate streams that are meant to represent a distinct
environmental sound pattern (e.g., speech, dog barking, musical instrument) [2].

Sequential grouping serves the purpose of associating sounds across time,
while simultaneous grouping assists in associating sounds concurrently. Essen-
tially, this enables the recognition of the different sound sources in an acoustic
scene, achieved by integrating grouping cues that operate across frequency. An
example of such a cue can be that the frequency is an integer multiple of a
common fundamental, which is the case for the periodic class of sounds (e.g.,
musical instruments, animal calls) [2]. Using such cues, the auditory system
manages to separate the sound sources, distinguishing between an animal call
or a human voice, or between two different human voices.

Experiments with a sound wave containing alternating tones of different
frequencies have been conducted to determine how segregation is performed
[22]. A higher difference between the frequencies of the tones results in the
formation of two streams, one where for the lower ones and one for the higher
ones, whereas a smaller difference results in only one stream perceivable by the
brain. Moreover, it appears that intermediate differences in frequencies may
result in either a single or a couple of auditory streams, and it might even be
possible to switch from one to the other with effort or under certain conditions.

The presentation rate also appears to affect the streaming phenomenon, as
do the spatial direction and acoustic transitions. A higher rate results in less
ambiguity even with smaller frequency differences, which could be attributed to
a type of “recent memory” kept by the primitive mechanisms of the auditory sys-
tem [2]. This could also influence the sequential grouping in acoustic transitions,
where it has been observed that gradual changes to a sound towards matching
a second sound can be perceived as a single stream, whereas the abrupt change
tends to be perceived initially as a difference one. These examples constitute
but a few of the grouping cues that can be exploited by the auditory system.
According to the ASA model proposed by Bregman [2], as well as work based
around it [23, 24, 25, 26, 3], several methods have been identified that can be
relied upon to explain grouping as far as time and frequency are concerned.

Methods used for simultaneous grouping are [24]:

Onset - offset Frequency components that share an onset time are more likely
to be integrated, while the same also happens when sharing an offset time,
albeit to a lesser extent.

Periodicity Acoustic components with frequencies that are integer multiples
of a fundamental frequency tend to be integrated in a single stream.

Spatial location Acoustic components with a common origin in space tend
to be grouped together, although this is possibly a secondary mechanism
[24]; this could be the case due to the capability of the auditory system in
humans to separate sound sources that originate from the same location.

Methods for sequential grouping are [27]:
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Transition A smooth acoustic transition or a continuous one result in segreg-
ation of the sounds in a single acoustic stream.

Time - frequency proximity The streaming phenomenon indicates that com-
ponents with similar frequency or those that are close in time tend to
become part of the same acoustic stream during segregation.

Amplitude - frequency modulation Frequency components with the same
temporal modulation are usually grouped together into the same acoustic
stream.

Rhythm In the case of events that occur in separate time periods, tones that
are rhythmically related are more likely to be grouped together during
segregation.

2.2.4 Top-down grouping in ASA
In ASA, top-down acoustic cues for grouping mechanisms come from cognitive
processes like attention, memory, and prior experience, which help organise and
interpret complex soundscapes [17]. Unlike the bottom-up cues discussed above,
which rely on raw auditory features (e.g., pitch, timbre, onset), these top-down
cues involve higher-level brain functions influencing how sounds are grouped
[28].

Prominent such top-down cues as mentioned in [28] are:

Attention and Expectation The brain actively focuses on certain sounds
based on expectations, an example from the cocktail party problem being
anticipating a speaker’s voice in a crowded room. Selective attention al-
lows grouping of relevant sounds while filtering out irrelevant ones, such
as when tuning in to a conversation despite background noise.

Memory and Learned Patterns Familiarity with sounds, such as recognising
a friend’s or family member’s voice, aids in grouping based on past experi-
ences. The brain uses learned schemas of speech, music, or environmental
sounds to predict and organise auditory input.

Contextual Understanding The meaning and relevance of a sound influence
how it is grouped. An example would be recognising words in a foreign
language, which tends to become easier with exposure. Speech segment-
ation benefits from language knowledge, thereby grouping syllables into
meaningful words for the listener.

Cross-Modal Integration Visual cues like lip movements help group auditory
signals (e.g. the McGurk effect in speech perception [29]). Gestures and
body language can also reinforce auditory groupings in communication.

Cognitive Scene Parsing The brain constructs a coherent auditory scene by
using logic and inference. Top-down modulation from the prefrontal cor-
tex influences how the auditory system prioritises and organises sound
streams.
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2.2.5 ASA inspired from animals
While communication problems abound in human interactions in our everyday
life, these problems are not limited to us alone but also extend to other animals
that share our unique capabilities. Generally, the perceptual organisation of
sound is performed by segregation and grouping of sounds in all of the verteb-
rates capable of hearing, including categories of animals such as the goldfish, the
starlings and assorted mammals [30]. Such animals are capable of segregating
and grouping sounds belonging to different sources within a dynamic acoustic
scene, spatially and temporally, each one doing so naturally within their own
capabilities and having evolved to adapt to the intricacies of their environment.
Consequently, inspiration can be drawn from the assorted species that have been
studied over the years and follow their approach, when faced with a difficult ASA
problem that falls within those domains.

Some animals have demonstrated exceptional capabilities with regards to
what they can do and understand by even the simplest communication calls,
such as a parent or child in a king penguin colony being able to distinguish
the familiar voice amidst the extremely noisy chorus of the colony [31]. In fact,
penguins are also capable of far more impressive feats, such as understanding
to which extend the wind interferes with their calls, with adequate precision,
and hence adjusting their voice appropriately to efficiently overcome the noise
[32]. Penguins are also social animals, with varying types of calls that can be
used when modelling a solution for a problem that could benefit from such
functionalities (e.g., locating a source, avoiding environments threats).

Another example is the bat and studies performed over its echolocation cap-
abilities, where the experiments have strongly indicated that they can analyse
an acoustic scene. This is possible due to the demonstrated capacity of percep-
tual organisation of the echoes gathered as they fly through the area, which they
form into echo streams belonging to the individual sources and objects within
an auditory scene and can hence track them spatially [33]. Applications with
a focus on tracking capabilities following similar techniques could be inspired
by such innovative implementations. Meanwhile, starlings have been able to
discriminate a target song when mixed with background noise and up to four
different songs, something human listeners have not been able to do even after
extensive training [34].

The treefrogs are also another family of animals that are excellent listeners,
expertly capable of tracking sounds in highly noisy environments during their
mating attempts, due to their capacity for localising sounds within just a few
degrees of error [35]. Drawing inspiration from their behaviour and unique
capabilities, complex communication problems that are analogous to the cocktail
party problem can be solved efficiently in an innovative manner [36, 37]. Not
all animals should be eligible for study and modelling, rather best effort should
focus on those that are biologically and evolutionary close to humans (e.g. two
ears – localisation), but also those that exhibit social behaviours that would
mimic a cocktail party problem in their natural environment [37].
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2.2.6 Proposed bio-inspired models: treefrogs
Experiments with treefrogs by animal behaviourists have been running for sev-
eral decades, and the results have indicated that they tend to be experts at
sound localisation thanks to their binaural auditory system [38, 39] – they can
segregate sounds and group them in the correct individual sources with the ease
other binaural mammals exhibit [38, 40]. Therefore, they tend to be excellent
candidates for study and modelling when attempting to solve issues pertaining
to the cocktail party problem [35, 41]. The important aspect of treefrog commu-
nication is that the studies over the years have also outlined the relationships
between their audition functions and their social behaviour [42, 43], which is
of prime importance to bio-inspired studies as it fosters emergence. Finally,
studies have identified several details of the perception aspect of the treefrog
auditory system, such as acoustic cues of importance and preferences on call
envelope over minor cues, among others [40, 43, 5].

Treefrogs are a peculiar species of frogs that have developed arboreal lo-
comotion, which refers to the property of certain animals to tend to climb to
trees and spent large spans of their life on them [44, 45]. Most such animals do
that only for specific purposes and limited time, although treefrogs fall to the
category of almost exclusively arboreal [46]. This implies that treefrogs do not
move a lot, which is an integral part of the CASA problem being researched
and thereby are not the best candidates to solve this problem. Contrary to that
assumption, the act of mating is what spurns them into action and demands
of them to be extremely efficient, provided they descent down to this alien for
them environment and have to find a partner as quickly as possible before their
energy reserves are depleted and they need to return to their default arboreal
state [46, 42].

Mating season is the most crucial part of the life-cycle in a treefrog com-
munity, as the performance of the local treefrog community can be essential to
the survival of the treefrog population in a bio-diverse environment [43]. This is
due to the fact that several larger frog species (e.g. bullfrogs) tend to invade the
environment of a community comprised of smaller species, producing stronger
sounds that tend to mask the mating calls of the latter [47]. This is more than
other noisy species that are frequently present in their environs, such as crick-
ets and birds. In consequence, if the local community cannot adapt to this
increasing population or invasion by improving their mating process, cases have
been observed where the whole population of the lesser species has been extinct
[47]. This problem they are tasks to solve presents an environment that fosters
adaptation and evolution, naturally, which are key characteristics of emergence
and optimal systems.

Female treefrogs face the core problem of localising the sounds and moving
closer to a male partner and, when they are close enough to the preferred source,
they tend to ignore other sources [43]; yet, they also need to tackle the problem
of filtering out the noise and navigate the hostile environment riddled with
high vegetation in this scenario. The auditory stream input for females is thus
comprised of what could be typical environmental noise and multiple audio
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sources belonging to different males of their own species. As such, the females
also have to decide which male is the one they have to move towards, with past
experiments showing that they prefer moving towards auditory sources that
exhibit higher dynamic properties rather than higher static properties of the
audio source (although they cannot be discounted), and which vary depending
on sub-species [5, 39].

The male species, on the other hand, have a more complicated issue to face.
Apart from producing the calls and filter out noise, they must perceive the calls
of other male species and find a way to produce better calls, so that females will
be attracted. This can result in highly varying calls from the same frog over
time, something which tends to confuse females and thus make them change
directions quite frequently [43, 5, 39]. Males also share another property of
females, and that is the movement [42, 48]. As such, they do not stay static and
merely change their call, rather they attempt to move away from noise sources
or competing males with purpose, but also randomly in hope of getting closer
to a female [42].

In an experiment where you have the tracker, a female trying to locate a
male, and the mobile audio source, a male moving around so that a female can
listen to them better, the treefrogs have been noted to fall into two categories by
virtue of how they combine the core tasks of listening and moving to achieve their
goal: (a) the regular breeders, who tend to wait and listen more than moving
and move in smaller distances when they do, and (b) the explosive breeders, who
prefer moving more and in longer distances to listening [49, 35, 48]. This can
serve as the best starting point for modelling different strategies based on the
observations of biologists. Indeed, by correlating the energy spent for the tasks
of listening and moving to that of mobile robots and related devices performing
tracking tasks, it is evident that performance data can be acquired within a
properly constructed simulation. These data can subsequently be used to guide
the designs towards evolved, more efficient strategies. The findings and their
ASA potential described here established the treefrogs as the prime inspiration
for the bio-inspired model to use towards solving the tracking problem in an
energy efficient manner.

2.3 Machine Listening
The core concept behind this section is to showcase the field of machine listening,
that is how we make devices capable of understanding a scene by means of sound
alone. The typical architectures and tools that will also be used in this study
are discussed with their strengths in mind, and thus the reason why they were
used. Additionally, the advancements in the field and potential applications
are also presented while looking for the research gaps that this study aspires to
bridge.
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2.3.1 Computational Auditory Scene Analysis
Over the years, machines have been used across multiple disciplines to solve
difficult problems, or even to combine them and explore solutions to more com-
plex problems. ASA in biological organisms is something that is handled by the
central nervous system, but in practice in the research field it is a combination
of analysing sound waves based on observation of biological capabilities of the
organisms in question. Techniques of ASA can be performed computationally
to utilise the processing power offered by one or multiple machines when ana-
lysing a sound wave. Additionally, this opens a wide range of applications, such
as hearing aids or speech recognition in noisy environments. Consequently, the
idea of utilising machines to perform grouping and segregation of sounds just
like humans do gave rise to the Computational Auditory Scene Analysis (CASA)
field [1].

The core principle of CASA is based around the idea of modelling the exact
same functionality, or a close approximation to it, of the auditory system. The
functions of the outer, middle and inner ear, based on the principles of ASA
and how sounds are perceived, are to be turned into functions that can be
evaluated by machines. Essentially, what is expected of such a system is to be
capable to carry out specific tasks related to speech perception with as close
efficiency as it is possible to a human. This implies a close connection of CASA
to biologically inspired computing; indeed, CASA applications tend to focus
on analysing input received from either one or two microphones (monaural and
binaural respectively), which is what humans and most animals studied through
ASA are capable of doing [1].

On the design layer, this close-knit relationship with such biological prop-
erties proves crucial to the idea of trying to solve a difficult problem from the
perspective of a single listener; the cocktail party, for example, would easily be
solved with a microphone placed at each sound source and everything fed back
to the individual trying to localise and separate sounds. On the application
layer, this enables developers to tackle problems such as having to work with
limited equipment (e.g. isolating speech of individuals in a crowded room with
only a few available microphones) or develop specialised products to solve diffi-
cult problems (e.g., single microphone on one ear providing localisation support
for monaural human, audio scene reconstruction via a single microphone).

An interesting aspect of CASA is that there does not appear to be a common
theory to the field [1]. Indeed, recent and extensive work on evaluating CASA
systems indicates that both applications and evaluation methods appear to be
rather splintered [50]. This demonstrates that practitioners and researchers in
CASA do not attempt to computationally solve the ASA problem in its entirety
by providing rivalling solutions to the problem itself, instead they choose to
focus on determining efficiency and effectiveness of specific sub-problems. Nat-
urally, this allows for the combination of potentially compatible and supporting
processes to form a more effective final solution. Some methods focus, for ex-
ample, on realistic sounds in natural environments [51, 52], others on developing
algorithms to simulate ASA experiments of a behaviour nature [53, 54, 55]. The
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Figure 2.1: Typical architecture for a CASA system as described in [1].

core ideas behind the approaches, the architectures of such systems and the
bio-inspired scene will be investigated in the following sections.

2.3.2 Typical CASA architectures
CASA focuses on analysing a digitally recorded acoustic signal and extracting
meaningful, perceivable auditory information from it. Following the ASA mod-
els proposed by Bregman, machines ought to be able and receive the input,
processing much in the same manner as the auditory system: perform functions
of the outer, middle and inner ear. Complete CASA systems tend to follow a
process where several tools are used to mimic each part of the auditory systems
– if incomplete, they just attempt to solve the problems of a single step instead
and optimise for it. Such systems also differ on the capabilities or approach at
each individual step, but also on the point of view towards the problem, as well
as the nature of the processes being employed [50].

One detailed and cohesive approach to this step-by-step process has been
described, with the following core steps, in [1] (illustrated in Figure 2.1):

1. Peripheral analysis of input.

2. Acoustic feature extraction.

3. Mid-level representations.

4. Acoustic scene organisation.

During the first step, the aim is to recreate an accurate representation of aud-
itory activity in the temporal domain, i.e. a time-frequency representation of
the signal, with tools such as the cochleagrams [56]. The focus is on separating,
or at least highlighting, the important parts of auditory activity contained in
the signal. In biological – and hence in machine – hearing, the time dimension
has been shown to play a key role in auditory perception; as time changes over
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time, changes in the energy in the signal indicate changes in frequency that can
be monitored through such processes to discern crucial auditory activity [6].

Once that has been performed, the next step would be to attempt and extract
all possible acoustic features that can be found in the stream with the help of the
temporal domain representation. Such features have been discussed earlier for
the ASA approaches towards managing sequential and simultaneous grouping
of different sounds within an audio stream. In CASA as well, these features
that can be employed include onset and offset times, amplitude and frequency
modulation, as well as periodicity, among others.

Mid-level representations are something that lies between the low-level rep-
resentations (e.g. time-frequency artefacts of notice) and the high-level repres-
entations (e.g. audio stream of a person speaking). [1, 57]. In essence, these
processes and tools use more abstract versions of lower-level processes and tools
to prepare the content for the next stage of segregating and grouping auditory
information by forming the basis for segment generation. Desirable properties of
such representations are: the capability of sound source separation, invertibility
of extracted data (e.g. re-synthesis of a specific sound), meaningful abstrac-
tion through component reduction and focus on physical attributes as opposed
to algorithmic ones, as well as a confinement to the prospective physiological
capabilities of the auditory system [57].

Organisation of the acoustic scene is the last step in the CASA, the one
that can lead to the re-synthesis of an individual, isolated audio stream that
can be evaluated, so that the efficiency and effectiveness of the CASA system
can be assessed by extent. Acoustic scene organisation relies on grouping cues
that have been identified over the years for the auditory system and/or mod-
els developed for specific sound sources or types of background noise [1, 24].
One important new aspect that has emerged since the work also entertains the
idea that predictive models are essential to de- and re-constructing the audio
scene [50]; much like the neurons in the auditory system are capable of predict-
ing primitive regularities, so can regularities derived from representations and
identified in the input stream predict potential individual sound sources [58].

2.3.3 Signal-based processes
Several means pertaining to signal manipulation and properties have been em-
ployed for most of the typical CASA systems, with research and practice on
the field attempting to improve such tools, creating more efficient ones with
similar ideas or combining them for more robust solutions [50]. In this section,
tools will be presented briefly that can be used in the process described in 2.2
in assorted steps of the process to realise the goals of the system. Naturally,
the focus of these tools is on signal manipulation, occasionally referred to as
spectral CASA, to distinguish among other approaches that will be discussed
later on (e.g., predictive, neural CASA).

Cochleagram One of the popular means of deriving a time-frequency repres-
entation of the audio input is the cochleagram [1], based on the idea of simulating
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the capabilities of the cochlea of the inner ear and the properties of hair cells
[59]. Harmonic components of the audio stream can be separated by the coch-
lea due to its great capacity for determining pitch and frequency [60, 1, 59],
thereby simulating the cochlea functionality in a computational manner can
result in the identification of artefacts of importance. Acting as a simulator of
the outer and middle ear, the signal is broken down to assorted frequencies that
would consequently be selected by the cochlea and the hair cells as detailed in
the biological hearing.

Hair cells produce spike patterns in their operation, which could naturally be
translated into a spike from the impulse response generated by a cochlea model-
ling process. A gamma function can be used with a tone input, to generate this
impulse response, based on a gammatone filterbank [1]. Such filters have been
formulated over the years through extensive observation of the auditory system
physiology and psychophysical responses to stimuli, thus proving excellent can-
didates for realising the cochlear filtering in a computational manner [61]. The
Meddis hair cell model also focuses on gammatone filterbanks and mimicking of
the hair cell transduction properties [62, 63]. One such example application of
this process is illustrated in Figure 2.2.

Correlogram and cross-correlogram Another process used to derive im-
portant information from the auditory stream comes in attempts to emulate the
pitch perception capabilities of the auditory system [64], which much like the
cochleagram is a representation in the temporal domain, too. The correlogram
can also be computed in the frequency domain, if discrete Fourier transform and
its inverse are applied [1]. Its importance and contribution as a model to pitch
perception is attributed to the capability of bringing together both resolved and
unresolved harmonics [1]. Through the analysis of the figures generated from
the correlogram, and specifically the position of the peaks, the perceived pitch
can be estimated. The correlogram also complements the cochleagram, given
that both representations (time-frequency analysis) enable CASA systems to
perform more robust source separation and auditory scene analysis by utilising
both spectral-temporal structure (cochleagram) and harmonic-pitch information
(correlogram).

One issue of speech perception modelling comes in the form of the interaural
lag of auditory information received through each ear, as the location of a sound
source has different distances from each ear, thus the signal travels at different
times through the ear. A solution to this problem is the cross-correlogram, which
aspires to compute the difference between the left and the right input channels
of the CASA system, and which is based on various physiological studies related
to this problem [1]. The process of cross-correlation, consequently, focuses on
the attempt at identification of similar peak patterns in the output, which would
suggest the same sound segments and/or sources.

Time-frequency masks One of the core concepts of the physical auditory
perception is the fact that a specific sound can become obfuscated behind a much
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Figure 2.2: Cochleagrams showcasing the combined signal, and then the separ-
ated speech and music after the application of Meddis filtering. The frequency
(Hz) on the vertical axis over time (s) on the horizontal axis. The overlap is
discernible within the frequency range 0− 500 in the combined signal.
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louder sound [26], which is referred to as masking and that has been considered
greatly in attempts at improving speech intelligibility and perception [65, 66],
and noise filtering [67, 68]. This gave rise to the idea of applying masks over
lower-level processes in a CASA system, such as the cochleagram, so that the
sound of desired “strength” or “level” can be segregated from an audio signal.
A Wiener filter is applied to this end, which is capable of weighing the target
regions and then suppressing the potentially undesired ones [1].

Resynthesis This process is straightforward in that it merely attempts to
synthesise the original audio signal from a segregated source. An example of
doing that can be seen using a cochleagram and the desired masks that have been
applied to it. All the information required to isolate the desired sound sources
and group them along time has been gained at this stage. Consequently, the
masked cochleagram or correlogram can now be inverted. The masks account
for the desired energy levels by weighting them, thus removing unneeded aud-
itory information and reducing noise, and by the sum of all weighted responses
emerges a reconstructed audio signal containing the desired sounds [1]. This is
one of the more traditional processes, where recent advancements that will be
discussed next have offered new ways to tackle such problems.

2.3.4 Advances in CASA modelling
Whether inspired by neuropsychological properties, simple physics or physiolo-
gical properties of the auditory system, the core systems and processes described
in the comprehensive survey of the field up until 2006 [1] tend to focus on spec-
tral analysis for segregation, grouping, feature extraction etc. Current research
still aspires to improve these tools and make them more accurate and more
robust in their purpose, however several new, detailed models have emerged
over the last decade with different focus on processes employed or theoretical
principles regarding the CASA problem. The most important and descriptive
of them tend to feature aspects of predictive processing as means to the end,
meanwhile offering competing approaches to signal interpretation, but also with
theory behind them that can be drawn from Bayesian inference, Neuropsycho-
logy or Temporal coherence [50].

Predictive processing has been shown to contribute immensely to the audit-
ory system towards sound segregation. This is generally attributed to the fact
that, if a representation of a certain sound segment from a specific source has
been generated, then it is much easier to predict future sounds from the exact
same source [58, 69, 70]. Models based on Bayesian inference, the most preval-
ent ones being [54, 71], concentrate largely on reaping the benefits of predictive
processing. The models chronicle the acoustic scene in sound object classes or
vectors that describe all its dimensions, and which can be approximated from the
input. The Bayesian algorithms utilised to generate predictions take the vectors
or classes as inputs and compete on the probability of occurrence for concurring
vector dimensions or class properties. The goal in [54] is to produce series of
discrete states of the acoustic scene, where discovered sound segments are either
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integrated in a single class or segregated in more classes, with successful qualit-
ative evaluations. In [71], binaural input is provided and the model attempts to
segregate one or two voices present in the signal, with evaluations showing more
efficient and effective segregation with a single voice, but successful segregation
of voice envelopes nonetheless.

The application of Neuropsychological and Neurophysiological findings in
the field of audition to CASA has given rise to several models, which aspire to
infuse representations across all levels of their architectures with properties of
neurons or neural networks [50]. Characteristic attempts at this field are those
of [53, 72]; the former details auditory artefacts as linked to neurons that inter-
connect and interact with the neurons of other auditory artefacts, whereas the
latter employs representations of the various frequency channels as neural oscil-
lators in a two-dimensional map in the temporal domain. Predictive algorithms
are featured in [53], since the sound objects with the attached neurons are de-
signed to compete and it is imperative to ensure proper segregation of future
sound objects, with the end goal of produces a series of the most prevalent iden-
tified auditory artefacts. The oscillators in [72] are used to represent a single
object when synchronised, different ones when desynchronised, the activation
and excitement level of which is reliant on the external input. The expect results
of the model are based on the synchronisation of the oscillators, therefore it can
either be a state of integration or one of segregation, with results adhering to
expectations for audio streaming.

One of the new modelling principles is based on temporal coherence, which
is used to measure the average correlation between the value of a wave and
itself delayed by a specified interval (coherence time) at any pair of times. This
can demonstrate how a signal can interfere with itself across time; therefore
a property that can be observed is that across a single frequency the wave is
perfectly correlated with itself. Consequently, this can assist with segregating
and grouping together acoustic segments belonging to the same source due to
observations across time of their temporal coherence [73, 52]. Two models based
on temporal coherence are [52, 74], where the former generates a spectrogram of
the provided auditory signal and clusters features based on temporal coherence,
and the latter follows the same principles but focuses on clustering through
predicting subsequent inputs. In [52], two masks are generated by the model
that can be applied to the input signal so that the segregated streams can be
recreated individually, while [74] produced 5-dimensional stream representation
that can be utilised to re-synthesise the spectrogram of an auditory artefact.

2.3.5 CASA with neural networks
In recent years CASA has witnessed significant advancements propelled by deep
learning techniques. One notable development lies in the realm of source separa-
tion, where Deep Neural Networks (DNNs) are employed to disentangle overlap-
ping sounds within an acoustic environment [75]. By leveraging Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) [76, 77], re-
searchers have achieved remarkable results in isolating individual sound sources
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from complex audio mixtures [75, 78, 79]. This capability finds applications in
various domains such as speech enhancement, music transcription, localisation,
and noise reduction [78, 79, 80, 75].

Moreover, deep learning has revolutionised the field of sound event detection
and classification. Traditionally, this task involved handcrafted feature extrac-
tion and classification algorithms. However, deep learning models, particularly
convolutional and recurrent architectures, have shown superior performance
in automatically learning discriminative features from raw audio signals [80].
These models excel in detecting and categorising diverse sound events, ranging
from environmental sounds like footsteps and car honks to human activities like
speaking emotionally [81] or even music classification [82].

Furthermore, deep learning techniques have facilitated the integration of
contextual information and spatial awareness into CASA systems [75]. By incor-
porating multi-modal inputs such as visual data from cameras or depth sensors,
alongside audio signals, deep learning models can better understand and inter-
pret complex auditory scenes [75, 83, 84]. Consequently, this interdisciplinary
approach opens avenues for applications like autonomous vehicles, augmented
reality, and smart home systems, where accurate perception of the surrounding
auditory environment is crucial for decision-making and interaction.

Another exciting frontier in CASA is the synthesis of realistic auditory scenes
using Generative Adversarial Networks (GANs). GANs enable the creation of
synthetic audio data that closely resembles real-world recordings [85], facilitat-
ing data augmentation and training robust models [86]. This could be helpful
in interdisciplinary research endeavours attempting to leverage the tools CASA
provides through GANs. By training GANs on large datasets of audio record-
ings, researchers can generate diverse acoustic environments with varying back-
ground noise, reverberation, and spatial characteristics [86, 85]. Eventually,
these synthesised scenes can contribute to the development of more robust and
generalisable CASA systems.

2.3.6 Bio-inspired CASA applications
As it has been established, CASA itself is an inherently bio-inspired field. Non-
etheless, biology offers several fields on its own to draw inspiration from for
CASA practitioners and researchers. Inspiration from neuroscience – neuro-
physiology and neuropsychology – has contributed to how neural CASA sys-
tems have been designed and operate. A prime example of a bio-inspired CASA
system would be the formulation of a neural network based on the capabilities
of temporal coherence that aspires to improve the capacity for double-vowel se-
gregation [87]. Drawing from the evaluation results of this system, the idea of
using a simple, monaural input source and exploiting the capabilities discovered
in the neural network of spiking neurons could provide better results for source
separation [88]. Such capacity of an evolution of a CASA system through the
exploitation of earlier results is what drives research in bio-inspired CASA. The
research fields involved also span across various disciplines.

Another bio-inspired potential application could be the utilisation of CASA
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techniques for localising objects to assist people with blindness. Attempts in
this field have combined sound systems, based on the binaural capabilities and
head-related transfer function, in an augmented reality manner to help blind
subjects localise sounds, proposing a device combined with image processing
that will be capable of producing sounds that accurately localise the visually
identified objects [89]. Researchers working on this field could also draw further
inspiration from related bio-inspired ASA attempts, such as the echolocation
capabilities of bats discussed earlier that have shown great promise towards
localising auditory objects in a sonar-like manner.

Other attempts bring together the fields of CASA, biology and robotics
towards providing a more authentic and unique interaction experience of the
user with a robot. As an example, related work on the field has produced a
system that is capable of synthesising animal sounds at real-time through a
highly parametrised system mimicking mammal voice production [90]. Such
a tool could be highly valuable for practitioners and researchers working on
CASA applications using animals as the inspiration for solving or studying more
complex ASA problems, if the effort is spent to create presents for the desired
animal families and hence forgoing the need for recording the proper sounds
from live animals.

Meanwhile, more traditional CASA applications also benefit from bio-inspiration
for optimising algorithms tailored to solving specific tasks. As an example for
speech recognition optimisation, modelling the system after the exact proper-
ties of an outer and inner/middle ear, and combining these behaviours with
appropriate tools (Gammachirp auditory filterbank, low-pass filtering) has res-
ulted in improved feature extraction in noisy environments [91]. Others focus on
boosting monaural speech segregation capabilities by focusing on more efficient
energy extraction based on bio-inspired models [92], or bio-inspired tensor rep-
resentation of the input for more efficient separation of two seemingly identical
noise sources [93].

The range of possibilities for CASA is vast, including even solutions inspired
from other animals as mentioned previously and not only from human biology.
As discovered earlier, such attempts still concentrate on improving the effect-
iveness of the algorithms rather than exploring more paths to solving existing
problems [50]. Integrating numerous lower-scale solutions to the CASA problem
to create a larger-scale solution, or even bringing together different solutions to
a specific aspect, is one of the best directions for future research [50, 36]. Non-
etheless, the complexity of the individual parts or that of the expected sum can
be an impediment to the operational capabilities of the system, therefore great
care and effort towards optimisation and testing of the end-system is required
[36]. In conclusion, a gap in studying optimisation from other perspectives for
applications (i.e. energy efficiency for this study) supports the choice of tacking
the tracking problem in this study.
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2.3.7 Localisation and tracking
In the field of CASA, audio source tracking as an abstract concept is the prob-
lem of estimating the evolution of the positions of sources over time, especially
when the sources are mobile. Sound Source Localisation (SSL) is one of the
core techniques used for tracking, even if it is not used for every step of the way.
Indeed, there are technologies that employ SSL only for locating a potential
sound source of interest, thereafter relying on other cues that can be derived
from the received input in combination with expert knowledge of the sound
source and the expected environment – a very limiting approach, however, for
dynamic environments [75, 94, 95]. Other tracking solutions rely on more com-
plex and elaborate techniques, combing AI and distributed approaches that will
be investigated next.

To begin with, and considering the real-world problem this thesis attempts
to provide a solution for, the field of robotics is where the developed system can
find application in. Robotic solutions as trackers have a very specific obstacle
to overcome, and that is the isolation of internal sounds, commonly referred to
as self-noise or ego-noise [96]. Solutions tend to follow the predominant and
established stop-perceive-act principle (stop to prevent impulsive actions, per-
ceive the situation by gathering relevant information, act based on informed
reasoning and analysis), which this thesis follows and that also lends itself to
RL controlling agents, otherwise they attempt to listen continuously and tend
to resort to proper CASA processing filtering techniques for noise reduction
to remove the noise with varying degrees of success [96, 95, 75]. Other con-
tinuous listening solutions attempt to solve this issue by implementing inner
microphones that get a near perfect representation of ego-noise for signal filter-
ing properties [97, 95]. Admittedly, such implementations can provide better
tracking (i.e. target localisation over time) precision, although they acknow-
ledge the concerns of increased energy costs for both continuous listening and
extra processing requirements [97, 75].

2.3.8 Conventional vs. AI localisation and tracking solu-
tions

A common tracking technique for solving the problem include the computa-
tion of the Direction of Arrival (DoA) [98]. This technique operates by cal-
culating phase and frequency at peak values at initial processing of the sig-
nal, then continuing with any necessary filtering (e.g. noise via low/high-pass
FIR/Butterworth filters [99]) before performing the estimation through energy
distribution on the spatial spectrum. The key performance factors for DoA
are: the number, quality, and position of the listening elements, Signal-to-Noise
Ratio (SNR), and Signal Coherence (i.e. the similarity of signals confusing the
listener) [98]. Tracking is achieved by comparing either continuous or discrete
over time results to predict the target movement.

Having multiple listening elements (e.g. two microphones) enables the Time
Difference of Arrival (TDoA) technique [100], which the currently proposed
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system achieves through conventional binaural localisation: an inverse Fourier
transform of a weighted version of the cross-power spectrum between the signals
of the two ears and finding the time delay. For the case of the CASA component
here, this delay is mapped to the azimuth suggested by the HRIRs of the simu-
lated environment to maximise accuracy – in essence comparing the actual ITDs
with the theoretical ones for the environment, revealing the dependency for real-
world implementation on such a model. Naturally, the environment plays a key
role for the efficiency of TDoA techniques, therefore key performance indicators
for DoA also apply to TDoA. SNR from reverberation and ego-noise is also a
problem, the latter mostly for continuous listening attempts compared to dis-
crete ones [100]. One key advantage of TDoA that allowed its adoption for this
thesis is the moderate computational cost.

Solutions for tracking using AI and, primarily supervised or unsupervised
Deep Learning (DL), have been emerging over the latest decade with the ad-
vancements in the relevant fields of neural networks. With a very simple in
abstract level pipeline where they extract features from multichannel input sig-
nals to develop DoA estimates, recent surveys on SSL via DL have highlighted
their superior performance with regards to localisation accuracy over traditional
SSL for assorted applications [75, 79]. The prohibitive factor in adopting such a
solution for the problem being explored is that these systems require adequate in
both size and parameters training datasets. As mentioned briefly in the previous
chapter for the choice of implementation for the CASA component, the highly
dynamic environment the agent will operate it requires such a complex and im-
mense training dataset that constitutes it virtually infeasible for the scope of
this thesis. The most recent systematic review of DL acoustic systems drives
this point home with the results pertaining to the aspect of mobile tracking [75].

2.3.9 Distributed localisation and tracking solutions
At this point, distributed localisation and tracking solutions can be introduced.
As mentioned for the conventional approaches above, increasing the number of
microphones provides a new way of solving the problem. Consequently, several
techniques have been utilised to deploy multiple audio sensors, either combined
in an continuous array or as statically placed audio sensor networks across the
area [101]. Conventional methods can be applied comparing the inputs for each
sensor in an algorithm to this end, but generally such approaches capitalise
on the concept of beam-forming: an acoustic energy map developed by the
combined information from all the sensors being used, which is subsequently
analysed with assorted techniques to decide on the most accurate direction (e.g.
Steered-Response Power – SRP) [101, 78].

Distributed approaches produce excellent localisation results, but on the
other hand they introduce several costs not only on physical equipment, but also
in computational power – and by extent energy in autonomous devices [102, 101].
This fact demands a balance between computational costs and desired accuracy,
but even beyond that the sheer majority of implementations for such research
approaches are distributed only in the node deployment aspect – computation
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is usually performed in a centralised system that process the data [103, 102].
Tracker mobility is overlooked and when the distributed mobile trackers do
take the stage, thus the computation and decisions are again delegated to a
centralised intelligence that attempts to map the acoustic scene (e.g. acoustic
Simultaneous Localisation and Mapping – SLAM techniques [104]) and not to
reach a target in a timely manner to offer assistance [83, 84].

Acoustic SLAM research is the closest family of techniques localisation to
the problem this thesis aspires to provide a solution for. SLAM is primarily
used in robotics using visual aids towards mapping a scene [84, 104], whereas
in acoustics sound is also added [105, 104] – or in the few distinct cases of
interest to this study such as aSLAM for a room or its underwater equivalent
[106], it comprises the only type of sensor. The core concept of SLAM is to
localise the moving observer within its environment, while also mapping the
environment itself. Acoustic SLAM implementations rely on a Bearings-Only
Tracking (BOT) strategy [104], which is the process of tracking a target through
the bearing measurements collected by a moving listener – akin to the stop-
perceive-act approach but in a more continuous manner.

What makes SLAM-oriented approaches unsuitable for the problem studied
herein is the purpose with which they are designed: to simply explore a place
by “getting a feel” for it, rather than a razor-sharp focus of achieving a goal,
with no concerns for energy cost efficiency. However, there is an application
case for possible future work with acoustic SLAM architectures given a RL-
based intelligent tracker: they can employ acoustic SLAM for the exploration
functions and switching to exploitation actions, provided that a low-energy cost
solution can be incorporated. Regrettably, even initiatives such as the LOCATA
challenge and related surveys reveal the issue of a focus on static instead of
moving listeners tracking the targets [107]. Recent work on near-sensor and in-
sensor computing outlines the needs and challenges for transferring computation
to distributed nodes from centralised architectures for energy conservation that
this thesis aims to provide a framework for, too [108, 102, 103].

2.3.10 Proposed audio source localisation solution
The first choice regarding how the system will attempt to localise perceived
sounds comes in the form of a decision between monaural and binaural tech-
niques. While binaural has already been discussed in more length, monaural
provides a viable alternative for localisation purposes. Monaural localisation
prominently resorts to spectral analysis for discovering the cues of the signal,
such as the shape (sounds above tend to have different shapes than those be-
low), loudness (closer is louder in such analysis), or the Head-Related Transfer
Functions (HRTFs) [109]. These exceptional functions are designed to determ-
ine how a sound from a point in space, parametrised as frequency and source
location, would reach an ear [109]. Monaural cues are also integral for low-
frequency sound localisation, but ultimately shine when robustness is needed
and localisation is assisted by other sensory cues (e.g. vision) [94, 109].

Binaural techniques are employed when there is a need for higher precision
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in determining the location of a sound source [109, 110]. The brain of a binaural
animal is capable of determining the difference in time between when a sound
signal reaches each ear (Interaural Time Difference – ITD), when then assists
in deciding the angle from which it originated [110, 111]. Interaural Level Dif-
ference (ILD) is also another special function performed at the brain, where the
simple concept of a higher intensity sound in one ear translates into a source
being closer to that ear [111]. The ILD has been found to assist in localisation in
higher frequencies, usually well above 1000Hz, whereas the ITD is much more
useful for medium or lower ones. Binaural implementation can also benefit from
capitalising on HRTFs operating on inputs from each ear, so the correlated res-
ult can give a much accurate estimation of the sound origin angle related to the
head orientation [111].

To develop a system capable of running simulated experiments for evaluation
and research purposes, the design of the experiments must be considered. At a
higher abstraction level, there needs to be a specific environment where some
entities can produce and others can receive sounds, and these entities can change
positions as time passes thus creating and consuming sounds from different
positions. Ultimately, due to the ease of providing input files in simulation,
the core issue is that the function providing localisation logic to the trackers
must be able to receive simulated sounds as if they were generated at a specific
location and heard from a specific location.

This difficult problem can be overcome with the use of Impulse Responses
(IRs), brief input signals describing the reaction of a system to some external in-
put, which in CASA are referred to as Head-Related Impulse Responses (HRIRs)
[112] – they encode the brief analysis of the monaural cues as received from the
two different inputs (i.e. the two ears). Performing a convolution of an input
sound wave with an HRIR produces a new one, which represents how the input
sound would be heard at a specific location as originating from its source loc-
ation in the environment and with the head turned towards a specific compass
orientation.

A wholesome suite of tools that can cover these needs can be found in the
one developed during the Two!Ears project, which aspired to develop a compu-
tational framework for modelling active exploratory listening in a manner that
assigns meaning to auditory scenes [113]. Specifically, the suite provides binaural
simulation for generating HRIRs by providing different parameters for a two-
dimensional (2D) simulation environment, ranging from ear distance and head
orientation to sound reverberation, absorption, or reflection [113]. Moreover, it
provides excellent HRTF sets from KEMAR manikin measurements (a manikin
designed for anthropometric research that has many applications to binaural
CASA [114]) in the Spatially Oriented Format for Acoustics (SOFA as described
in [115], standardised in 2015) that can be utilised by the simulator to generate
the proper HRIR [113].

Evidently, using the Binaural Simulator component of the Two!Ears project
can provide a large set of HRIRs to describe the auditory scene of choice for
the experiments tailored to the needs of the study. The tracking part of the
solution will be covered by the strategies that will define the intelligent nodes
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of the proposed EDS that will be investigated next.

2.4 Autonomous Distributed Systems
When looking for innovative solutions to complex problems, sometimes an ap-
proach where the combined capacity for intelligence or processing power in a
system larger than a single device can be desirable. This section explores such
systems, and specifically the family of such systems that can exhibit autonom-
ous behaviour, which is much sought after property in a system that could
be deployed in dynamic environments, to survive and overcome the problems.
Means and architectures for developing such systems through multiple intelligent
agents are also discussed, including bio-inspired solutions, with advancements
and comparisons in sensor networks paving the way to the framework that needs
to be developed for this study.

2.4.1 Autonomy in distributed systems
The term distributed systems refers to systems comprising of networked ma-
chines that communicate and coordinate through a common protocol, ultimately
interacting with each other towards realising a common goal. Essentially, a dis-
tributed system is a collection of nodes capable of autonomous computation and
that possess local memory, with the communication between them actualised
via message passing facilities. The typical common goals of such systems are
to distribute the workload impossible for a single node to perform to several
nodes, to facilitate communication and information exchange among its users,
or to govern access and delivery of shared resources, offering an impressive array
of benefits to administrators and operations [116].

Distributed systems have many applications in the field of computing and
problem solving, some of which were mentioned above. Some of the applications
are naturally based on parallel computation, including scientific computing,
where some problems require massive amounts of computations, and parallel
rendering in heavy graphics applications (e.g., medical visualisation, virtual
reality), or even real-time process control in systems such as an aircraft control
system [117]. The advantage that such a system offers in these cases is primarily
that it could be much more cost-efficient to utilise a smaller network of simple
computers compared to a powerful supercomputer, to achieve the same results.

This practical benefit was the driving force behind the idea that, since these
systems operate over a network, they should be used as a solution to a variety
of telecommunication and network problems. Telephone and cellular commu-
nications can be enhanced by employing distributed systems [117, 118], while
wireless sensor networks can achieve wider coverage and address energy-related
problems when a node does not have to process the entirety of the workload
alone [119]. Even the World Wide Web is essentially a distributed system in its
core. Many telecommunication and networking problems can be solved much
more efficiently through application of concepts borrowed from distributed sys-
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tems, such as routing algorithms being enhanced through technologies like the
distributed hash tables [120].

Other typical implementations include online service-oriented systems, peer-
to-peer applications, distributed databases, and distributed sensor networks.
Wireless sensor networks can be designed to be distributed in nature and hence
span across larger areas of importance, too. Modern way of life has also found
such networked systems pervading many aspects of our everyday life, giving rise
to disciplines such as opportunistic sensing with multiple available devices in
close proximity [121]. The sheer number of cloud infrastructures or the ubiquit-
ous nature of distributed systems suggests challenges in the way such systems are
designed, managed and operate with minimal resources [122]. The fundamental
concept in distributed systems is that there is an assortment of interconnected,
communicating devices with a specific goal to fulfil, and it is essential to in-
vestigate the modern approaches to such systems, as well as the much desired
autonomous operation that can make them feasible [123, 124].

2.4.2 Developing autonomous systems
Autonomous operation is the most desirable property in distributed systems,
expected to provide most solutions to the complex sub-parts and their man-
agement. Any preliminary attempt at research in the broader field of auto-
nomic computing, as well as its sub-field of autonomy in the world of distrib-
uted systems, is bound to result in frustration and the formulation of a blurred
concept about the definition of autonomy. Arguably, this can be blamed on the
lack of uniformity in literature terms employed towards describing the concept
and its aspects, ending up with a reference to the very same concepts and de-
sired properties using several terms interchangeably: adaptivity, autonomy, self-
management, self-regulation, self-organisation (leading to the often-encountered
term Self-* properties) [125].

Considering all these terms, it becomes apparent that any autonomous sys-
tem ought to have certain properties that enable it to operate within its intended
life cycle, and all those properties have one thing in common: they are devoid of
human intervention. Accordingly, the concept of autonomy in computing can be
defined as the capacity of a system to operate within its life cycle to its fullest
potential with minimal to virtually no human intervention at all. The concept
of autonomic computing was introduced by IBM in 2001 at the beginning of the
new century, expecting to see extremely rapid changes in how software is used
or developed, an extremely inflated size of source code to manage and attempts
at integration of heterogeneous devices and environments [126]. The proposed
solutions to such issues came in the form of designing and implementing systems
from the beginning that should be suitable for following several goals set by the
developer, essentially administrative tasks disguised as goals, so that the sys-
tems can manage their own state as optimally as a human administrator would
[127].

The literature and practice suggest that, arguably, the best solution to
solving autonomy issues comes from the agent-based programming paradigm
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[128, 125]. Even before the vision of autonomic computing, utilising collaborat-
ing agents manages to induce stability in the system and diminish complexity.
Indeed, the agents can process the state of a distributed system and make de-
cisions on best strategies to follow by utilising several mechanisms: rewarding
right choices [129], migrating agents [130], distributed artificial intelligence [131],
managing distinct system components [132], among many more. Multi-agent
systems offer the most to autonomy, and distributed systems in particular, be-
cause through the properties and interactions of agents may emerge robustness,
scalability and adaptability using partial views, feedback and self-evaluation
functions [125]. Meanwhile, self-assembly, self-healing and self-optimisation
emerge from multi-agent systems where agents are responsible for managing low
level resources [133]. Another interesting approach to achieving self-organisation
comes from the idea of deploying agents in a network and letting them discover
resources and attempt to manage them, then offer their information or func-
tionality as services [134].

Services and SOA are also capable of providing some degree of autonomy
to distributed systems. Services can handle the task of communication or in-
formation sharing, and focusing on lightweight services with descriptions based
on standards will definitely contribute to enhancing the awareness aspect of
autonomy [135, 136]. Services as an abstraction mechanism can also be em-
ployed to realise agent functionality and provide access to it for other agents
or sub-systems, too [137]. In addition to borrowing from the field of Service-
Oriented Architectures (SOA), principles fundamental to the component-based
paradigm can be utilised for autonomous distributed systems, as do software
design patterns at an architectural level, such as strategy and adapter patterns
achieving adaptivity and self-optimisation, or observer pattern for awareness
and self-monitoring, even the abstract factory for self-repair and self-healing, to
name a few [138].

The complex problem this study aspires to face and overcome is centred
around the idea of a real-life scenario where several intelligent robots cooperate
to track all targets by sound alone in a disaster scenario. Autonomy in this
eventual distributed system is, consequently, of high value to the success. This
means

2.4.3 Multi-agent systems
Multi-Agent Systems (MAS) are systems composed of many individual agents,
which interact with each other to solve a problem. They are usually employed in
situations where problem solving cannot be handled by a single agent, or a non-
agent-based software program, much like distributed systems. The applications
of MAS can range from disaster scenarios and social response modelling, to
geographical information systems and logistics management [139], or shine in
more complex fields, such as simulation, construction of synthetic worlds, or even
robotics and mathematical modelling for complex systems [140]. Obviously, the
need for many agents to cooperate basically stems from the need to distribute
the entirety of the workload across many different agents, either because one
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agent alone cannot handle the size of the knowledge, or because it cannot solve
the problem fast enough, effectively resembling distributed systems but on a
localised scale.

Looking further into the machinations of a MAS, the issue of agent cooper-
ation and life-cycle inside the environment is starting to become an important
and complex issue. Indeed, in one MAS the agents may be working together
to achieve the same goals, meaning that they share a purpose and each one
of them tries to contribute (e.g., robot guidance), while in another MAS the
agents may be competing against each other, such as the example of two stock-
exchange simulation agents buying or selling the same stocks competing against
each other, even if they still share the same higher purpose of taking part in
trading and maximising their profits [141].

The observations naturally hint to the need of a proper design and model-
ling of the agents to be used, their purpose and smaller scale goals, as well as
of the environment they “live” inside, too. Meanwhile, agents that face such
problems during their life-cycle, and especially so when the environments they
find themselves operating in are dynamic in nature (i.e. they change over time),
need to be able to deal with unexpected circumstances and issues efficiently.
Notwithstanding the cooperation strategies, there is a need for the designed
MAS to have certain characteristics that will enable solutions to any such issues
that may be encountered during its expected life-cycle, effectively enhancing its
problem solving capabilities.

These essential characteristics can be condensed into [142, 143, 144]:

Autonomy The agents must be partially autonomous, adjusting as required
and transferring control to humans if, and only if, it has been decided that
they cannot decide. This also enables the agents to behave differently from
each other, otherwise it could be argued that they work in tandem as one,
effectively forming one super-agent instead that represents the undesirable
central point of control, and consequently failure, inside the MAS.

Decentralisation Distribution of knowledge data and processing power to
multiple agents is of paramount importance in an MAS, because it elim-
inates the chances of having a single point of control failure for the ap-
plication, because the components of the MAS will be significantly more
loosely-coupled in this case. Apparently, this also strengthens autonomy
in the system, which as stated above is a much desired characteristic.

Local View Agents in the MAS should be limited only to knowledge of one
part of the system only, their own part and not the whole system instead.
This “part of the system” refers to the logical spatial position in the system
and not actually the physical one in the network (e.g., agent relationships
and not proximity of individual physical system IP addresses). Natur-
ally, this aspect enhances their ability to achieve their goals through their
localised interactions with other agents.

Utilising agent autonomy, data and processing decentralisation, as well as limit-
ing the agent awareness to the local view, the MAS can achieve the best possible
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solution to the problem it was created for without substantial human interven-
tion. A high degree of autonomy, and possibly even a limited degree, too, to-
gether with the adaptivity provided by all the other characteristics, has resulted
in the MAS frequently being referred to as “self-organised systems” or “adaptive
systems”, as well [141]. Evidently, depending on the agent architecture, their
communication and the structure of the environment, the MAS exhibit several
properties that enhance their effectiveness and efficiency as problem solving
systems.

2.4.4 Bio-inspired MAS
Another attempt that enjoys increased popularity is to draw inspiration from
nature where millions of years of evolution have resulted in elegant solutions to
overly complex problems, one of the motivations behind the work carried out for
the Emergent Distributed Bio-Organisation (EDBO) [145]. This field of study
has been referenced with many terms, most popular of which appear to be the
bio-inspired or organic computing [134, 146]. Essentially, this approach relies
on studying biological systems and concepts that already display autonomous,
subsequently modelling solutions applicable to computer systems, ultimately
expecting those properties to emerge in the computer systems, too.

Apart from EDBO itself, architectures such as the Organic Grid, where
agents attempt to colonise resources they discover in the distributed system
much like an array of biological organisms would (humans included), achieve
self-organisation and hence a satisfying degree of autonomy [134]. Notwith-
standing the fact that organic computing can lead to achieving autonomy in a
distributed system, the emergent properties may not always be the ones sought
after, or even remotely desirable. This could eventually lead to unwanted beha-
viour that adversely affects the system, therefore extreme care should be taken
when modelling such solutions and extensive evaluation of the final system is
of paramount importance [146]. Emergence in bio-inspired solutions will be
elaborated through the exploration of EDBO at a later stage in this review.

2.4.5 Distributed Artificial Intelligence
Distributed Artificial Intelligence (DAI) is a subfield of AI that focuses on solv-
ing complex problems by distributing computation and intelligence across mul-
tiple processing nodes or agents [147]. These systems emphasise parallelism,
robustness, and scalability by leveraging multiple computational entities work-
ing together to achieve a common goal, much like the MAS discussed above
[148]. DAI capitalises on distributed computing infrastructure, including cloud,
edge, and decentralised networks, to enhance scalability, efficiency, and fault tol-
erance in such systems, which are widely desirable traits for applications such
as multi-robot systems, intelligent transportation, and large-scale data analysis
[147, 149].

By virtue of its nature, the strengths of DAI lie in its scalability, robustness,
and efficiency. By distributing workloads across multiple agents or systems,
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DAI can handle large-scale problems that are computationally infeasible for a
single AI system [149]. It enhances fault tolerance by reducing single points of
failure, ensuring continuity even if individual agents fail. Moreover, it enables
parallel processing, leading to faster and more efficient decision-making. DAI is
particularly beneficial in dynamic and real-time environments, such as financial
markets, autonomous vehicle networks, and cybersecurity, where decentralised
intelligence improves responsiveness and adaptability.

MAS improve upon traditional distributed AI by incorporating autonomous
agents that possess individual decision-making capabilities [148]. Unlike DAI,
which focuses on distributing computation [149], MAS emphasises agent inter-
action and adaptability. MAS are particularly advantageous in environments
requiring decentralised control, emergent behaviours, and complex inter-agent
cooperation [145, 149, 148]. Examples include swarm robotics, automated trad-
ing systems, and collaborative AI applications, where the ability of agents to
act independently and coordinate dynamically provides superior performance.

The superiority of MAS over traditional DAI arises from their flexibility,
robustness, and ability to handle uncertainty [150, 151]. In DAI, coordination
mechanisms tend to be rigid, often requiring predefined protocols for informa-
tion sharing and decision-making [147]. Conversely, with the extensive review
of MAS so far, it allows for adaptive and dynamic interactions, making them
arguably better suited for real-time and unpredictable environments. Addition-
ally, MAS can integrate learning mechanisms, enabling agents to evolve their
strategies over time, which is particularly beneficial in domains like smart grids,
autonomous transportation, and distributed healthcare systems, but even more
so for the design and goals of this study.

2.4.6 Microservices in distributed MAS
Microservices play a crucial role in enhancing multi-agent distributed systems
by providing a modular and scalable architecture where different agents can
communicate seamlessly [152]. In a MAS, various independent agents interact
to achieve common objectives, often requiring coordination and data sharing.
Microservices break down complex applications into smaller, independent ser-
vices that can be developed, deployed, and scaled separately. This enables each
service to be responsible for a very specific functionality, and it communicates
with other services using lightweight protocols like HTTP or messaging queues
[152]. Consequently, this modular approach ensures that MAS can efficiently
distribute workloads, making it easier to manage, update, and scale individual
components without disrupting the entire system, which is ideal for autonomous
distributed system applications.

Another key advantage of microservices in distributed MAS is their ability
to improve flexibility and resilience of the system. Since agents in such sys-
tems often have distinct responsibilities, microservices allow for independent
service updates, choice of assorted implementations of microservices at runtime,
as well as optimisations without affecting the entire ecosystem or requiring a
restart [153]. For example, if an agent responsible for data processing needs an
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algorithm improvement, only its corresponding microservice needs an update,
reducing downtime and minimising the risk of system-wide failures. Similarly,
if the agent needs to perform differently at runtime when asked to do a spe-
cific thing, it can utilise a different microservice implementation for its function
without system disruptions. Additionally, microservices enable fault isolation,
that is if one service fails, it does not necessarily bring down the entire system,
improving overall system reliability and uptime [153, 154].

Microservices also enhance interoperability and communication among agents
within a distributed system [155, 152]. Given the fact that each microservice
is independent and exposes Application Programming Interfaces (APIs), dif-
ferent intelligent agents can interact without needing to understand the un-
derlying complexities of each other’s implementations. This abstraction allows
developers to integrate heterogeneous systems and technologies, fostering adapt-
ability and easier collaboration in multi-agent environments [155]. Furthermore,
the use of cloud-native microservices enables horizontal scaling, ensuring that as
the number of agents increases, the system can efficiently allocate resources and
maintain performance [153]. Consequently, by leveraging microservices, distrib-
uted MAS can be infused with the necessary qualities that complex real-world
applications required, such as the one that is needed for the CASA tracking
problem being addressed here.

2.4.7 Proposed architecture for the EDS framework
Distributed system architectures are encountered consistently in our everyday
lives, powering our social media apps, e-commerce sites, and video streaming
among a wealth of other services, making our digital experiences seamless and
efficient. The most higher-level categories of abstraction for these systems can
be described by the following three terms: client-server, peer-to-peer (P2P), and
microservices [156]. The traditional client-server model has become costly with
regards to scalability in distributed applications, due to the need for adding
hardware to support parallelism and increasing workload demands [156, 116].
While the problem at hand might not have such needs, it resembles too closely
the typical centralised architectures, raising concerns with regards to the ease of
introducing emergence on an architectural level, as well as node discoverability
and availability.

On the other hand, P2P networks (as EDBO is modelled after) are excellent
for such cases, where the nodes can perform several different roles, resources can
be utilised and distributed efficiently, and even if a node fails the system can
keep functioning; the latter forming a highly desirable trait for the proposed
system [157, 158]. Each peer, however, needs to possess all functionalities and
smaller subsystems, even though they may not utilise them eventually, intro-
ducing efficiency and operational concerns for the component in question. This
where the microservices shine, as they handle the problem of functionality re-
sponsibility in the best possible manner and, by extent, become easier to scale,
maintain, develop, and keep independent; a failure in one microservice does not
necessarily dictate a failure of the component [159, 160].
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As a result of utilising the microservice approach proposed earlier, the de-
sired system could employ a hard separation of concerns and responsibilities,
as per the object-oriented SOLID principles [161], where each node can decide
what role they need to assume in a scenario to solve it more efficiently. Consider
the separation of listening for sources and gathering information about the en-
vironment, for example. A P2P node as a tracking robot should possess both,
but this increases the operational costs (e.g. a database for saving data) and
with a failure the data can be lost to the rest. A client-server system would keep
that information on a server and reduce the costs for the client robots but that
introduces another point of failure, more catastrophic for the system than the
previous one. But if a data microservice can be hosted in only a few nodes (e.g.
on one robot and a mobile phone) and the rest can keep it idle until needed to
enable it, overall system performance and cost is reduced.

To instrument microservices several technologies exist, but can effortlessly be
narrowed down when considering distributed systems. The key differentiating
factor here as opposed to other more specialised approaches, such as streaming
services or close-range communicating devices, is the availability of the solution
of choice for an array of overlay networks (e.g., Internet, WiFi LAN) to be used
for communication. The REpresentational State Transfer (REST) used as a
means for realising APIs that operate over HTTP, which the sheer majority of
modern smart devices support through networking [162], is the ideal candidate
for microservice interaction and state-of-the-art distributed systems [163]. The
modern .NET implementations have introduced in the last few years the concept
of a Minimal REST API, an approach that manages to serve highly efficient
communication with the least required memory and computational power [164].

The other strong contender for implementing the most crucial part of the dis-
tributed system (i.e. communication through microservices) is gRPG, Google’s
Remote Procedural Call (RPC) solution [165]. Indeed, this approach offer un-
paralleled performance due to memory handling and binary serialisation tech-
niques for contract-oriented microservices and shine in low-latency cases [166].
The contract concept enforces a more static than versatile approach to hand-
ling services, whereas in REST the contracts can gradually evolve as needed
[165]. Naturally, this comes to contrast with the flexibility desired of intelligent
agents and evolving systems, while at the same time passes on the ubiquity
that REST offers with its implementation-agnostic approach for heterogeneous
communicating devices.

The fact that .NET also supports deploying such APIs on mobile devices, on
top of all the major operating systems including lightweight Linux-based dis-
tributions, is what nominates microservices as minimal API implementations
ideal for the task at hand. The .NET ecosystem also provides several other
efficient and modern means to problems that arise in constructing distributed
systems, such as mechanisms for node discovery, message passing, lightweight
data storage, but most importantly the hosted workers [164]. These workers
are an abstraction for the traditional agents that utilise low-level language op-
timisations in .NET systems to operate with minimal memory and power costs
in resource-constrained systems – an excellent candidate for developing the in-
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telligent, bio-inspired agents. Accordingly, a .NET minimal API to describe
the functions of its constituents and hosted workers operating as bio-inspired
agents will provide a modern solution that can be run on an assortment of
heterogeneous devices trying to form an EDS.

2.5 Intelligent Agents
The core elements of autonomy in distributed systems, as well as the catalytic
factor in facilitating functionality in that system that can solve the problems
they were designed for, are the intelligent agents. This section describes these
agents, starting from the older traditional architectures and reaching to the more
advanced modern architectures, while at the same time discussing the benefits
and detriments of each. This serves the purpose of reaching a conclusion for
which strategies should be used at each point of this study and why.

2.5.1 Traditional agent architectures
Intelligent agents are systems that perceive their environment, process inform-
ation, and take actions to achieve specific goals. These agents are widely used
in AI, robotics, and MAS. To differentiate between the structure of intelligent
agents, behaviour, and decision-making capabilities, one need only focus on the
defining factor: their architecture. This section explores the fundamental and
advanced architectures of intelligent agents, including their characteristics, ap-
plications, and evolution over time. A The typical classification scheme that can
be used to present them uses the three high-level categories of classic, hybrid,
and advanced architectures [167].

Classic architectures The oldest and most widely used intelligent agent ar-
chitecture has been titled Reactive [167]. These agents have also been synonym-
ous to reflex agents, due to the way they operate they simply use a condition-
action rule-set to respond to environmental stimuli as by reflex. A more complex
version has been proposed by Brooks, which has been highly utilised in robotics
in the past, where hierarchical layers are introduced with the lower levels hand-
ling basic reflex actions, whereas the higher levels add any necessary complexity
[168]. Consequently, these agents tend to be very robust in dynamic environ-
ments, due to possessing fast response times, albeit severely handicapped by the
provided rule-sets and incapable of learning.

To overcome such issues in older architectures, the Deliberative agent paradigm
was conceived. The simple idea behind these agents is to incorporate reasoning
and planning to decide on the best course of action based on internal represent-
ations of the world [169]. These architectures either use logical representations
and inference mechanisms, or keeping an internal world model to plan and
execute actions, thereby gaining the capacity to have more complex decision-
making especially under unforeseen circumstances, which unfortunately comes
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at the expense of computational cost that may also translate into slower re-
sponse time in real-time application [169]. Given that the computational costs
in modern day systems are not as significant, this is an ideal approach to tackling
issues in dynamic environments as the ones this study will face when learning
is not required.

Hybrid architectures The hybrid architectures evolved as a natural combin-
ation of both Reactive and Deliberative, to balance the efficiency of the former
with the capacity for intelligence of the latter. The first family of such is that
of the Three-layered architecture (best described in [170]), which is comprised
of: (a) the reactive layer, (b) the deliberative layer, and (c) the executive or se-
quencing layer. Layer a handles immediate response to the environment, layer
b plans actions using the internal model, and layer c coordinates the two layers
by translating the abstract plans of layer b to immediate actions and ensuring
long-term agent goals are respected. Consequently, it keeps the best of both
worlds from the two classic architectures it combines, still keeping the main
problems of inability to learn, as well as the design complexity for layer c that
can have problems scaling [170].

The other prominent hybrid architecture is known as Belief-Desire-Intention,
or simply BDI. The BDI model is distinct from the previous approaches in that
it attempts to follow a cognitive path towards designing intelligent agents closer
to human reasoning [171], although it still retains some of the same concepts.
The agents Beliefs is reminiscent of the environment perceived state as en-
countered in the other architectures, with the Desires describing the long-term
goals of the agent (e.g. to successfully track a target), and lastly Intentions en-
compassing the commitment to specific actions as a differentiating factor form
the previous ones [171]. The greatest strength of this model lies in the effective
handling of goal-driven behaviour, while at the same time offering adaptability
under uncertainty, nonetheless the computational cost it introduces in tandem
with the complexity towards designing for dynamic environments [172]. Both
disadvantages can constitute severe handicaps for the study at hand.

2.5.2 Proposed architectures for the bio-inspired strategies
The bio-inspired strategies are simple by virtue of their design, which in turn
is based on simple observations from the biological studies relating to treefrogs.
The traditional strategies are hence adequate for modelling the tracking beha-
viours in the form of strategies during the first attempts at solving the problem.
The three steps in this process have been presented as: (a) purely bio-inspired
behaviour, (b) advanced behaviour based on the findings from the earlier ex-
periments, and (c) a truly adaptive behaviour that combines all the findings
and learning capabilities. Strategy c cannot be addressed by the traditional
strategies given their lack of learning capabilities, so it will have to rely on
advanced techniques that will be discussed later.

For strategy a it is imperative that the simple observations provided by
the biological strategies are converted into intelligent agent strategies as accur-



CHAPTER 2. LITERATURE REVIEW 40

ately as possible. The rules describing these behaviours are elementary and
straight-forward, as they are not accompanied by information related to cog-
nitive functionality and decision-making, given the natural inability to know
the mind of treefrog. This is a boon for the design of such strategies since the
simple rules can easily be covered by the most elementary and performant, as
well as easy to implement, reactive architecture. The rules can be designed as
such: type of frog dictates a chance for listening vs. a chance for moving, and
the agent then takes the action. This keeps the strategy as close to biology as
possible, while at the same time allowing to establish a much-needed baseline
for the performance of the advanced strategies to follow them.

On the other hand, strategy b will have to introduce to the functionality of
the agents beyond what is covered by the bio-inspired strategies. Moreover, even
if this strategy will still not rely on learning, it does require a new means of ap-
plying the lessons learned from the experiments with the bio-inspired strategies.
This can be designed as a new layer that provides such reasoning capabilities
for the agents, which could allude to emulation of cognition on the intelligent
nodes of the system. Both prominent hybrid strategies do allow for this, non-
etheless the implementation complexity they introduce is something that should
be avoided. Especially so given the fact that several advantages they bring (e.g.,
the beliefs and desires from BDI or sequencing from Three-layered) would re-
quire a more intricate breakdown of the cognition layer that will be required,
which might not be possible due to the yet unknown experiment results. Natur-
ally, the deliberative model with its simple decision-making based on a recorded
state of the world (as perceived by the agent alone) can provide what is needed
for this case.

2.5.3 Advanced agent architectures
The agents that would be capable of an adaptive strategy, which will be able to
address changes to the environment on the fly, need to be a step up in complexity
from the traditional ones to be able to carry out their task. Naturally, this
leads to needs for a consideration of the proper AI techniques to use, the ones
infused with learning capability that the traditional ones lack. RL stands out
for its ability to learn from interactions, handle delayed rewards, and make
sequential decisions, constituting a suitable AI approach for dynamic scenarios
where immediate actions impact future outcomes [173, 174]. As a matter of
fact, this is a perfect description of the current research goals, but the other
two predominant Supervised and Unsupervised Learning (SL – UL) approaches
need to be considered before a choice is made.

The SL machine learning paradigm aspired to teach the prospective intel-
ligent system to learn a mapping from input data to desired outputs. This
is achieved through what is labelled as the training dataset, a pair of input
data with expect outputs, which is continuously supplied to the system with
varying inputs and outputs, so that the system can them attempt through the
implemented logic to derive a mapping function. To achieve that the algorithm
needs to be able to generalise from the unknown inputs to a reasonable out-
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put. The iteratively developed and enhanced function receives constant and
explicit feedback during training sessions. Naturally, SL is typically applied for
scenarios where mappings are easier to derive, such as speech and handwriting
recognition, language translation, and image classification [175].

On the other hand, UL refers to fundamental AI techniques that attempt
to understand the provided data without relying on specifying the expected
outcomes. Essentially, it revolves around discovering distinct patterns, hidden
relationships, or larger structures in non-categorised input data. Typical meth-
ods for achieving these difficult tasks are the clustering of similar data points
together based on certain features, identifying associations or co-occurrences
among items, and attempting to reduce the number of discovered features whilst
preserving information deemed crucial for the data. The core idea, as per its
literal definition, is to not intervene in the learning process and leave the system
to operate in an autonomous manner. The typical use cases for a UL system
include providing recommendations, detecting anomalies in provided data, as
well as improved feature extraction [175].

RL is a machine learning paradigm with a focus on enabling agents to take
actions in a dynamic environment through sequential decisions that will eventu-
ally lead to maximising the cumulative rewards, however these are modelled in
the system. No training data, whether inputs or expected outputs, are provided
in this pure case of RL. Instead, the AI interacts with its environment and learns
how to choose the next action based on rewards or penalties, which constitute
the training feedback. To realise its purpose, a RL agent employs the concepts
of exploration and exploitation via a balancing act. To elaborate, the agents
find themselves in dynamic, unknown environments, with a risk of performing
unrewarding actions when they explore, or at the cost of missing better alternat-
ives when exploiting familiar approaches. Abundant applications can be found
in robotics, as well as game playing, or even recommendation systems accepting
user feedback for their accuracy [174].

The key advantage of RL over SL and UL is that it promotes learning through
interaction with a dynamic environment, while these resort to work with static
datasets. The prominent disadvantage can be that RL receives delayed rewards,
as the agent must live for a time in the environment and attempt to adapt to
it, whereas SL and UL do not for cases where training happens at problem-
solving runtime [175]. SL is extremely handicapped with regards to the mobile
audio source tracking problem in this specific dynamic environment. The static
datasets for such a scenario are immense and the environment is ever-changing,
considering the very nature of mobility and randomised obstacles along the way.

Meanwhile, typical UL such as with neural networks suffers from similar
problems of requiring immense training datasets, albeit halved as compared
to SL (i.e. only input), yet the pattern discovery such systems are lauded
for can be beneficial only in a theoretical basis for the problem at hand – in
practice, the agent will need to re-evaluate its decisions every step of the way
towards the target with a high processing cost, whilst the act of developing such
training datasets could be an entirely different study of its own [176, 175]. And
this is where RL shines, in that it is designed to work in making sequential
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decisions, step-by-step, mostly relying on exploration at the start and resorting
to exploitation at the end. As a matter of course, this establishes it as the prime
AI technique for the complex adaptive strategy of the targeted problem.

2.5.4 Reinforcement learning
The goal of this thesis is to infuse intelligence in the tracking nodes to foster
adaptivity in the tracking behaviour, after the preliminary experiments with the
bio-inspired strategies. RL is an interdisciplinary area of machine learning and
optimal control that is concerned with the capacity of an intelligent agent to
take actions within a dynamic environment with the goal of maximising their
cumulative rewards [177]. Optimal control theory focuses on contriving an al-
gorithm through variables that the system can manipulate over the course of
time to minimise cost to satisfy design objects [178]. The cumulative reward is
the concept that can be used to minimise the cost function [177]. The interdis-
ciplinary nature and focus of RL align with the goals of the expected system
that can solve the problem.

In RL the agent life cycle can be described as follows: the agent interacts
with the environment, receives a reward – or possibly a penalty – for the action
that could come at a delayed time, and receives an updated state. Unlike SL,
RL does not require input-output pair training data, rather it operates with
a trial-and-error strategy, eventually learning by interacting with the environ-
ment. This introduces the ideas that have been mentioned previously in the
study, the Exploration (trying new actions) vs. the Exploitation (using known
actions) to maximise long-term rewards. The environment is typically modelled
as a Markov Decision Process (MDP), which defines the transition probabilities
between states based on chosen actions [177, 174].

MDP is defined by the following 4-tuple [177]:

(S,A, P a, Ra)

S The set of States.

A The set of Actions.

P a (s, s′) The probability for action a to lead to state s′ from state s.

Ra (s, s′) The expected or immediate reward for action a when transitioning
from state s to state s′.

Cardinal concepts of RL as related to the above is the state space, the action
space, whether these two are continuous or discrete, and the policy for control.
Discrete states characterise finite or countable states (e.g. tic-tac-toe game),
whereas continuous states are uncountable and often represented by continuous
result functions of multiple parameters (e.g. robotic arm control) [177, 173].
Discrete actions refer to finite, distinct actions (e.g. placing either X or O on
the tic-tac-toe board), whilst a continuous action set define continuous range of
possible actions (e.g. applying force to the robotic arm joint). In discrete spaces
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exploration strategies tend to be straightforward, compared to the challenge of
infinite possible actions that typically require neural networks to reach the best
action [179]. Policy defines the decision-making strategy the agent employs in
RL, providing the mapping function between current state and action. Policies
can be either deterministic (e.g. move every time) or stochastic (e.g. stay still
3 out of 10 times, move the rest) [173]. In policy-based RL the agent learns a
good policy through the iterative process of exploring an action, evaluating its
impact on rewards, and updating the policy accordingly [173].

A highly attractive variant of RL is the Inverse Reinforcement Learning
(IRL) [180]. This machine learning approach shifts the focus to inferring the
underlying rewarding function from observed behaviour. IRL can find applica-
tions in real-world scenarios where there is no access to explicit reward functions
by means of observing the results of other more successful agents or policies
[180, 181]. Consequently, given expert demonstrations the IRL mechanism de-
vises a reward faction that can assist the agent in mimicking the expert agents
behaviour and performing better [181]. The most detrimental challenges with
IRL are: it is an under-defined problem in the sense that it lacks a unique solu-
tion and multiple reward functions could elicit the same results, and they require
a large number of expert demonstrations which can be infeasible to obtain [180].

Moreover, there are RL techniques categorised as off-policy [173, 179], which
allows the agent to learn from historical data collected by a different policy than
the currently active one. In such cases, there is a target policy that needs to be
improved by using a different, behaviour policy that interacts with the environ-
ment. This approach allows for historical data re-usability and provides sample
efficiency due to learning from diverse data without additional exploration. A
more noteworthy trait, however, is that the behaviour policy can explore widely,
a key requirement in dynamic tracking scenarios, whereas the target policy can
exploit the best actions [177, 179].

In closing, there is also an alternative to policy-based RL: value-based RL
[173, 177], where the focus is on estimating the value of different states or state-
action pairs, essentially developing a value function as a policy. There are two
value functions to consider: (a) V (s) which is concerned with state and what
rewards can be gained from being in it, and (b) A (s, a) which focuses on the
right action from a specific state. Relying primarily on Bellman equations, they
aspire to update value estimates based on future rewards. For the balancing
act between exploration and exploitation, strategies like ε-greedy (pronounced
epsilon-greedy) offer optimal results. True to its name, it chooses a greedy
action to get the most immediate reward by exploiting the current action-value
estimates he agent knows, which generally leads to favouring good known actions
by being only occasionally exploratory [179]. It is evident that value-based
strategies shine when the states and actions can be discrete, aligning perfectly
with the stop-perceive-act paradigm the in robotics. For a high-risk undertaking
such as the tracking of mobile targets with energy concerns, this could be a
candidate for an optimal solution.
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Figure 2.3: A high-level taxonomy for reinforcement learning algorithms, cat-
egorised based on the predominant algorithm properties.

2.5.5 Reinforcement learning algorithms
Figure 2.3 illustrates a possible high-level taxonomy of RL algorithms, show-
casing the first choice being between a model-based and model-free algorithm.
The former attempts to choose the best policy based on the model of the envir-
onment (either provided or contrived), whereas the latter chooses the optimal
policy based on a trial-and-error approach [182]. In model-based algorithms the
agent can decide what action to choose by knowing what is expected to happen
based on the known model, a property that does provide higher sample efficiency
than trial-and-error, albeit at the cost of focusing occasionally on irrelevant de-
tails. This can have a detrimental effect on an evolving environment and the
model-free approach will ignore such details by default. Another strength of the
model-free approach is, naturally, the ease of implementation and use given the
lack of a binding model to factor into the assorted functions [182, 177].

A second level of taxonomy visited earlier, could constitute the policy-based
as opposed to the value-based approach. Policy-based RL directly optimises
the agent’s policy, which is a mapping from states to actions, without relying
on a specific value function. Instead of estimating action values like in value-
based methods, policy-based methods learn and improve a parametrised policy
using assorted techniques to maximise expected rewards [177]. One fundamental
difference between these two categories that can have a high impact on providing
a solution to the problem at hand, is the higher variance and slower adaptation
of policy-based vs. value-based [182]. The value-based methods try to pick the
action which maximises the action-state value function which will improve the
policy in the direction to the best policy – and by extend in a faster manner
and with lower variance, while policy-based methods attempt a little step and
smoothly update in that direction estimated to be more stable but in the same
time less efficient and sometimes leads to higher variance. This property also
drives policy-based approaches to converge to a local optimum instead of a
global, which is desired for the scenario at hand in the long term. The concept
of convergence in RL refers to achieving the optimal policy after an arbitrarily
long period of time [183].
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Finally, there are off-policy and on-policy algorithms: the former uses a dif-
ferent policy for exploring and uses the results to improve the different exploiting
policy, the core balancing act in RL, whereas the latter attempts to improve a
single policy. Beyond the freedom given to exploration in off-policy RL high-
lighted earlier, there are other desirable traits to capitalise on. In particular,
off-policy tends to learn a better policy eventually, as opposed to a safer policy
that its counterpart attempts to achieve, albeit at the cost of convergence time
[183, 182]. Off-policy also is great at avoiding getting trapped in local minima
in its function thanks to the wider exploration behaviour, too [182]. In conclu-
sion, these traits crucial for the specific scenario of energy-efficient tracking of
sources in a dynamic acoustic scene argue for an algorithm that is model-free,
value-based, and off-policy, which describes the dominant traits of Q-learning.

2.5.6 Proposed adaptive strategy solution: Q-learning, ε-
greedy

Q-learning [184] is an algorithm that exhibits the RL algorithm traits that have
been deemed necessary for the current agents, and it is important in how it
expertly realises them. The core concept of Q-learning are the Q-values (Q
stemming from Quality), which are assigned to each state-action pair for the
agent to know value for a specific action in a specific state. These are used to
create the Q-function, in essence a look-up table that maps actions to states and
holds a value in each cell, referred to as the Q-table. These Q-values usually
start at 0 and are assigned a proper value as the agent explores the environment
and gets a reward (or a penalty) for the action compared to the new state. In the
end, the action-reward iteration until a terminal state is reached keeps updating
the table until it reaches the state where it holds the optimal Q-function. One
training session, start state to terminal state (i.e. reached a target or out of
energy), comprises an episode [184].

to update the Q-values, especially at the beginning, the agent needs to ex-
plore first. In Q-learning the agent has a behaviour policy (off-policy) that
determines if the agent should explore to update the main policy (Q-function)
or exploit it instead. This policy is called ε-greedy, at the centre of which is
the variable ε that takes values up to 1.0, and defines through a random value
between 0 − 1 if the target explores (value between 0 − ε) or exploits (value
between 1 − ε). Consequently, training starts with an ε at max so that the
agent can explore and start creating values, eventually lowering this value in
consequent episodes to start exploiting and finding better Q-values. This is how
the agent can ideally learn by interacting with the environment repeatedly [184].

One important note is that Q-learning belongs to another category of RL
algorithms, that of Temporal Difference (TD) [182]: get a reward immediately
after an action instead of after concluding the episode. This aligns with the
problem at hand where every action has an associated energy penalty, which
can readily factor in the reward assignment function by teaching the agent
eventually to minimise the energy cost. The last concept of importance to RL
and Q-learning is the updating of the Q-value, which is calculated using an
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adapted form of the Bellman Equation [184]:

Q(St, At) = (1− α)Q(St, At) + α (Rt+1 + γ ·maxaQ(St+1, A))

Q(St, At) The new/former Q-value (left/right of the equation respectively).

S Represents a state.

A Represents an action.

t The current time step (t+ 1 being the next one).

Rt+1 The reward for taking an action for the next time step.

α The learning rate.

γ The discount factor.

The state, actions, and rewards are familiar concepts to this point, with two key
factors being introduced that define the success or failure of the optimal policy
training can be identified within that equation: α, the learning rate of the
agent, and γ, the discount rate on future rewards. The new Q-value for taking
an action thus considers all these parameters, and the learning and discount
rates naturally affect the outcome heavily. Accounting also for the exploration
rate ε, which affects overall performance of the strategy, the list of factors that
can affect the training of a policy are expanded by one.

Naturally, the three variables that heavily affect training are:

α Determines the learning rate of the agent – higher rate means more aggressive
updates; lower rate means slower updates. The learning rate has a high
impact on convergence for the optimal policy: a higher rate demonstrates
earlier convergence with a risk for sub-optimal values and instability, a
lower rate reaches convergence more slowly but reduces the risk of over-
shooting in values. This variable takes values between 0 − 1.0, with 0
indicating that the agent learns nothing from new actions and 1.0 mean-
ing that it entirely ignores prior knowledge.

γ Determines whether the agent relies more on short-term or long-term solu-
tions. Consequently, with a lower rate the agent learns to look for the best
possible immediate rewards, whereas a higher rate teaches the agent to
accept a punishment in immediate rewards so that it may get higher re-
wards later. Environment plays a key role in whether short- or long-term
rewards are preferable. This variable takes values between 0 − 1.0, with
0 instructing the agent to totally ignore future rewards and 1.0 to really
focus on obtaining high rewards, although at the cost of getting stuck in
local optima.

ε Determines the exploration rate for the agent, as explained above. Plays a
crucial role in allowing the agent to escape the local optima that could be
introduced by other factors (e.g. high γ value).
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The above variables are also referred to as hyperparameters and their tuning
process is essential for the success of the training process due to co-dependencies
[185, 186]. The balancing act between exploitation and explorations for the
success of the strategy needs to be expanded to include balancing of learning
rates and rewards. These will be addressed in the section devoted to the on-
policy training later. In closing, Q-learning as a machine-learning means of
infusing an agent with the capacity to address the mobile sound source tracking
problem in an energy-efficient manner can be stated as fitting. It is free of a
model, with a design to look for the optimal approach with lower variance and
in a faster time, while avoid getting stuck in local optima and being easier to
implement – an important aspect given the constraints and focus of this thesis.

2.6 Emergent Systems
The final step in this study is to harness emergence in an autonomous distrib-
uted CASA system, where devices attempt to solve the complex, energy-efficient,
tracking problem in tandem. This section gives a brief overview of what emer-
gence is, how such systems incorporate it and what its effects can be, as well
as why it is desirable for this study. The core inspiration behind the proposed
system is presented through the lens of its conceptual predecessor system, while
the research field of solving problems in a collaborative manner via pertinent
behaviours derived from research in social sciences, is also investigated for solu-
tions that can be incorporated into the final solution this research work proposes
to foster emergence.

2.6.1 Emergence in complex systems
In large entities, such as complex systems, comprised of or populated with smal-
ler entities in nature, it can be observed that the interactions among these
smaller entities allow for the larger entity to possess properties that the smaller
entities do not possess [187, 188]. This phenomenon has been called emergence
and it has been encountered in several disciplines, as well as spanning across
them, such as the phenomenon of life, a living working organism studied by
biology being based on the interactions of the chemical elements in the body
studied by chemistry, or a flock of birds exhibiting behaviour not found in each
single bird studied by both biologists and the social sciences [189].

Emergence in general may also be divided into two distinct categories, weak
and strong emergence; a division that is based on the capacity of an emergent
property in a system to be simulated with computers or not [190, 191]. Weak
emergence is focused on the typical concepts of emergence, where interactions
at the lower levels produce properties in the high-level system, with the core
concept being that these properties, whether desirable or not, have to be de-
termined through the observation or simulation of the system [190]. Strong
emergence, on the other hand, is rooted in the idea that there are systems that
cannot be simulated, essentially advocating that in these systems attempts to
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simulate emergent properties can only lead to the breaking down of a system
to its parts that possess these properties, rather than parts that interact to
produce them [191].

2.6.2 Architectures for emergent systems
In the field of computer science, weak emergence is the key to developing sys-
tems with desirable properties. Examples include the engineering of emergence
in MAS populated with software agents that are capable of infusing the system
with such properties through their basic interactions [192]. Such systems are
usually modelled after complex systems found in nature, simulating properties
and behaviours such as the swarming of birds, ant colonies, or even human so-
cieties and activities (e.g. stock exchange). The goal is to apply these findings
to improve efficiency and effectiveness of assorted computer systems. Regard-
ing the autonomous systems domain in particular, emergence has been explored
with regards to the capability of providing microscopic properties to the con-
stituents of the system, consequently anticipating in the macroscopic level self-
organisation capabilities for the system when the constituents interact, or as the
system grows.

Emergence is something that is unpredictable, something that can have both
negative and positive repercussions, and from the definition of emergence it can
only be determined when the system has been developed and in operation,
through either simulation or observation. This begs the question of how it
is possible to engineer emergence in computer systems. Some of the answers
lie within the existing research and results of past endeavours, such as the
computational, bio-inspired solutions to problems [188]. The optimal approach,
nonetheless, is to begin with the design of a high level, abstract model that is no
manner influenced by the expected implementation as a computer system, rather
it is infused with creativity in design that may not be part of a standardised
solution [193, 188].

In the more recent and advanced realm of artificial intelligence, generative
models like GANs – much like the recent advancements in CASA discussed
earlier – and reinforcement learning algorithms are also fostering emergent be-
haviour in complex systems, whether distributed in nature or not [194]. GANs
generate realistic data samples by pitting two neural networks against each other
in a game-theoretic framework, leading to the emergence of novel and diverse
outputs [194, 195]. Similarly, reinforcement learning agents learn to make se-
quential decisions by interacting with an environment, often exhibiting emergent
strategies and behaviours beyond what was explicitly programmed [177, 174].

2.6.3 Emergent Distributed Bio-Organisation
The Emergent Distributed Bio-Organisation (EDBO) is a model based on work
focusing on the exploitation of emergent phenomena that can be developed
within distributed systems. Initial work on understanding the interaction between
microscopic and macroscopic links among properties of the agents and system
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respectively, has been the driving force behind the development of a disciplined
framework for engineering emergence [145]. EDBO follows the best practice of
beginning with a creative, high-level, abstract model with an aim to engineer
emergent properties at the macroscopic level, with further work investigating
its implementation feasibility and capabilities as distributed system.

EDBO is based on the concepts of weak emergence for software systems,
focusing on properties and interactions at the microscopic level to enable the
development of potentially desirable properties at the global, or macroscopic,
level. Most bio-inspired approaches tackle specific problems with limited scope,
whereas EDBO aspires to provide an expanded, a holistic, approach to tackling
multiple operational issues that distributed systems suffer from. EDBO has been
instrumental towards the inspiration for this thesis and its first steps, developed
as a distributed system first [196] and then transformed into a middleware for
Internet of Things (IoT) applications [197].

As an abstract model, the scope of EDBO is limited to the topmost layer
of the design of autonomous distributed systems. The formulation of a basic,
unstructured distributed system model has been devised so that it is infused
with properties that allow for a high level of availability, scalability, and robust-
ness, under assorted operational conditions. By introducing biologically-inspired
properties in the software agents at the core of the MAS the model describes,
EDBO utilises techniques of the agent-based paradigm to prepare the ground
for desirable phenomena to emerge in the system. These agents represent the
network nodes and are called BioBots and reside in what is referred to as the
BioSpace.

BioBot behaviour is based on several bio-inspired mechanisms that guide its
decision-making process, which governs life-cycle functions such as energy man-
agement, migration, reproduction, replication, birth and death. These prop-
erties have been introduced in the model in an abstract manner and could
therefore be transferred to various different functionalities in implementation
scenarios (e.g., robots equipped with sensors migrating to better acoustic posi-
tions, agents reproducing to serve a higher volume of concurrent user requests).
The life-cycle heuristics assess the state of the BioBot with regards to energy
levels and make decisions regarding which functionalities are available and how
many relationships can be supported.

The model currently proposes two different energy types:

Discovery energy The discovery energy is awarded to the BioBot that succeed
in completing the discovery process.

Service energy Service energy is allocated to each BioBot interacting with
each other that managed to succeed in the discovery process.

This is a prime example of emergence: introduction of the above microscopic
properties generating macroscopic emergent behaviours through agent interac-
tions. In the natural world, biological organisms aspire to maximise the energy
gain and minimise the energy loss as a vital principle for survival. As an ex-
ample, BioBots that keep losing energy will end up dying, however that trans-
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lates into implementation specifics (e.g., node removed from network, sensor
temporarily powering down to conserve energy), while successful energy man-
agement is rewarded with the ability to expand relationships and reproduce.

This adaptation through natural selection is the product of fitness-based
evolution, primarily through energy management, which is relevant to the CASA
problem this thesis attempts to solve via energy-efficient tracking. By con-
sequence, introducing such microscopic properties to the CASA framework to
be developed, via the modelling of bio-inspired strategies and their evolution,
desired behaviours that offer an optimised solution to the problem at hand can
emerge. This approach to problem-solving and optimisation has been a key
influence in the design of this study: treefrog-inspired strategies evolved into
advanced approaches and using meaningful interactions among the agents to
foster better problem solving, which means collaboration. Infusing collabora-
tion is what should be discussed next through the lens of social sciences.

2.6.4 CPS in social sciences
Collaborative Problem Solving (CPS) in social studies involves a group of indi-
viduals working together to identify, analyse, and resolve complex social or men-
tal issue, even real physical challenges [198, 199]. In this approach, participants
utilise their entire arsenal, pooling their knowledge, skills, and perspectives to
attempt to address problems that may be too intricate or multifaceted for any
single person to solve alone – the community can achieve the goal instead, is the
focus of this field. CPS in social studies emphasises collaboration, critical think-
ing, communication, and empathy as part of the essential skills for navigating
these assorted complex issues as effectively as possible [198, 199].

In a CPS setting within social studies, participants engage in activities such
as group discussions, debates, case studies, and simulations to explore real-
world problems [200, 198]. These problems could range from issues related to
politics, economics, culture, education, or social justice; however they can also
relate to physical activities such as solving a problem harnessing the powers of
each individual in the community towards the best possible outcome. Through
collaboration, participants draw on their diverse backgrounds, experiences, and
possibly physical skills where they excel at so that they can get into the root
causes of these problems and develop potentially efficient and effective solutions
[200, 198].

Additionally, CPS in social studies encourages active engagement with dif-
ferent perspectives and encourages constructive dialogue among participants
[201], albeit with the caveat of balancing what has to be communicated and
how to achieve the desired degree of efficacy in the CPS endeavour [202]. By
considering various viewpoints and evaluating evidence, individuals can develop
a deeper understanding of complex social phenomena and the interconnected-
ness of societal structures [203, 204], a core aspect of emergence found in CPS
[203]. This collaborative approach fosters critical thinking skills and promotes
civic engagement by empowering individuals to take informed action to address
social and physical challenges within their communities and beyond.
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Overall, CPS in social studies serves as a valuable tool for promoting social
awareness, empathy, and collective problem-solving skills essential for navigat-
ing an increasingly complex and interconnected world [198, 203]. Consequently,
presenting optimal solutions via CPS essentially revolves around finding the
proper way of organising such communities of individuals, by providing models
that assist the undertaking to learn, communicate, and apply their skills effi-
ciently [198, 199, 203, 205]. In social sciences, this field is vast and involves
an immense array of microscopic behavioural and intelligence-related properties
that not all are applicable to intelligent agents that are the focus in this thesis,
which dictates the need to look for traits that can be applied to the case at hand
and utilised in software systems.

2.6.5 CPS for intelligent agents
CPS employing intelligent agents is a methodology that relies solely on Ar-
tificial Intelligence (AI) instead of humans to address the complex problems
a software system could pitted against. In this framework, intelligent agents
interact with each other, sharing information, analysing data, and generating
solutions autonomously, nonetheless with a view towards contributing to the
overall solution with their individual part [206, 207]. These agents encompass
a spectrum of AI technologies, from basic algorithms to sophisticated systems
capable of learning and adapting [200, 207, 206]. Naturally, the objective is to
harness the collective computational power and problem-solving capabilities of
these agents to attain the more efficient and effective problem resolution.

An essential aspect of CPS using intelligent agents is the integration of
diverse AI techniques and methodologies, obviously dependent on the even-
tual real-world application of the system, which ranges from elementary RL to
more advanced neural network implementations and – the more recently and
rapidly advanced – conversational type agents [208]. Consequently, having re-
viewed such fields earlier in this thesis, such agents leverage various approaches
– machine learning, optimisation algorithms, and natural language processing
to name a few – to collaborate in problem-solving tasks. Going a step further,
by combining different AI methodologies, they can tackle multifaceted problems
that may be beyond the capacity of individual agents [208, 204, 200]. This col-
laborative approach thus enables intelligent agents to explore a broader solution
space, leading to more robust and innovative outcomes that can be exploited.

Moreover, CPS using intelligent agents facilitates decentralised problem-
solving across distributed networks [209, 207]. Through communication pro-
tocols and data exchange mechanisms, intelligent agents can collaborate seam-
lessly across different locations, such as by employing overlay networks locally
or even the Internet in global scale, and assorted computational environments:
smart devices, smartphones, robots, servers, satellites, etc. This decentral-
ised model enables scalable and parallelised problem-solving, as highlighted
repeatedly when discussing the autonomous distributed systems, allowing in-
telligent agents to address large-scale and dynamic challenges efficiently.

Ultimately, CPS using intelligent agents represents a paradigm shift in the
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human-typical CPS methodologies, harnessing the collective intelligence of AI
systems to tackle complex problems, autonomously but in collaboration, and
effectively. Once more, the problem that intelligent agents and AI techniques
must face when it comes to adapting the social – or biological as evidenced in
previous parts of this work – science findings, techniques, and models, is that of
how to properly translate these properties to something that the software and
hardware at hand can utilise and capitalise on. Feasibility of such implement-
ations is a core issue, as is the meaningful selection of what is communicated
[201, 210]. These will be explored next in the context of emergence.

2.6.6 Socio-cognitive traits for EDS
Decentralised systems naturally allude to the Emergent Distributed Systems
(EDS). The developed EDS framework is put to the task of solving the energy-
efficient tracking of mobile audio sources in dynamic acoustic scenes through
CPS – the culmination of this thesis. The aim is to touch on the surface of
emergence by performing preliminary studies in facilitating CPS through unique
interactions. As discussed earlier when exploring the field of emergence and
through EDBO, these microscopic properties that can be introduced to the
agents may eventually produce desirable effects at the macroscopic level that
contribute to a more efficient and effective solution to the problem. Crucial
element in the success of such undertakings is hence the investigation of which
micro-properties to introduce to the agents so that they could eventually achieve
their goals better.

The field of emergence is vast and the applications, research directions, as
well as optimisation opportunities abound. Careful design and planning are re-
quired to determine which micro-properties could have macro-effects beneficial
and not unintended for the problem being addressed. This requires meticulous
investigation of work pertinent to CPS that could be adapted to software and
intelligent agents in a manner that would assist the problem-solving capabilities
of the system. What this endeavour also entails is analysis of opportunities in
the software itself, which have been made clear through the design and architec-
ture of the expected system from the start: communication between the nodes
of a distributed system. Naturally, the focus on background research narrowed
down the research into the field of CPS to communication between the inter-
acting individuals in social sciences, and how it can be incorporated into the
architecture of agents.

2.6.7 Proposed social traits
There is wealth of traits and behaviours that factor into CPS performance for
human individuals. Prominent qualities for humans that contribute to CPS
appear to be the broader categories empathy, communication skills, critical
thinking, leadership and fellowship, as well as flexibility and adaptability, all of
them to varying degrees depending on context [211, 202, 212, 213, 203]. Trait
theory in social sciences groups such qualities under specific traits categories, the
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highly popularised since the 1980s “Big Five”, or OCEAN model from the initials
of these give important traits that shape personality and, by consequence, the
entire life of a human [214, 215].

The OCEAN traits are:

Openness inventive/curious vs. consistent/cautious

Conscientiousness efficient/organised vs. extravagant/careless

Extraversion outgoing/energetic vs. solitary/reserved

Agreeableness friendly/compassionate vs. critical/judgmental

Neuroticism sensitive/nervous vs. resilient/confident

Naturally, computer science work related entirely with the problem of CPS on
its own, as well as its immediate impact, focuses on realising these traits in
their EDS or MAS for simulation purposes and studying emergent behaviours
in that context [216, 211], albeit not within the context of CASA or related
solutions that have eventual repercussions in the physical world as applications
that attempt to solve such a problem. Evidently, such mechanisms could be
implemented for the case at hand, nevertheless not in a timely manner for its
scope and goal, leading to the need for distilling the important lower-level mi-
croscopic properties that are common in such characteristics that the agents can
effortlessly implement and utilise given the developed EDS. Indeed, intelligent
agents tend to capitalise primarily on properly developed communication that
fosters cooperation in tandem with problem-solving orientation [217, 218, 219].

These studies and the properties of the traits above highlight the importance
of some traits that can seem elementary and microscopic, as desired in emergence
studies, such as being inquisitive or open to sharing. The former can combine
openness and agreeableness, provided that the agent is curious to learn what
other targets it could track and willing to consider the information shared by
its peers, whereas the latter can combine extraversion and neuroticism, which
can be done through the willingness to share and help others while at the same
time trying to be confident in helping others or nervous about own performance.

Consequently, these two traits can easily be integrated to the behaviour of
the agents who are aware of what characteristics of a signal they are tracking and
its position, as well as through the employment of the communication subsystem
implemented. The high/low values desired for each can thus govern: (a) for
inquisitive how often they want to learn more and how willing they are to
accept the information, and (b) for sharing how often the share information
about known targets and their tracking confidence.

2.6.8 Proposed cognitive traits
Cognition plays a key role in the capacity for general-problem solving, which
does factor into the domain of CPS. Indeed, CPS attempts to leverage the best
problem-solving skills of each entity for each sub-task that the complex problem
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can be broken down into, hence the reason why intelligent agents are expected
to perform autonomously first and foremost, and only then considered how they
can perform the task optimally in collaboration with other entities. Accordingly,
the primary trait that cannot be discounted and absent from the study is the
core problem-solving skill that the strategies have been attempting to address up
until now: the energy-efficient tracking of targets in the acoustic scene. Indeed,
this neatly combines some of the predominant base cognitive traits into one:
memory, perception, executive function, and spatial awareness [220].

To this end, thinking on performance capabilities associated with CPS and
the high/low distinction between the traits, the developed tracking strategies
can be employed respectively: adaptive/combined. Critical thinking, which the
former strategy has developed much more intricately through Q-learning, is an
integral aspect of CPS [212, 211, 216] and the weakest aspect of the latter. This
constitutes the problem-solving trait one of the most important in the outcome
of the EDS and its capacity to address the problem it has been developed for.
The intelligent agents are thus expected to possess one of these two strategies
that are the more performant and combine it with the other social traits and
another cognitive trait towards realising the socio-cognitive AI entities.

One key aspect of cognition beyond the problem-solving skills is the expert-
ise an individual in the CPS community possesses, which is also interacting
with critical thinking and contributes greatly towards knowledge creation and
exploitation [212, 213, 211, 221]. Part of the expertise can be found in the
developed problem-solving skill of the individual, yet a more obscure and inter-
esting part of it can be tied to self-confidence that has an immense impact on
decision-making and eventual achievements in any undertaking, whether posit-
ive [221, 213, 220] or negative [222, 213], however also it may have even social
impact [223, 220].

Naturally, self-confidence can comprise the second desired microscopic prop-
erty of the agent that can affect CPS performance for the agents. This new
cognitive trait is chosen among several others that have been discounted, such
as attention, creativity, and introspection [220]. This can be attributed to the
lack of developed mechanisms to support these implementations, or ease of ad-
opting and training new ones from other pertinent work on the field within the
scope of this work. High/low values for this trait can describe an agent that
trusts their own state of the world and problem-solving skills more than what
other agents can share with them. This can be facilitated by not attempting
communication too often, as well as by not considering information coming from
others and relying on own faculties, for high self-confidence cases as an example.

2.7 Summary of findings
The biology of hearing delivers a vast space in which to study behaviour pat-
terns and qualities of auditory systems and hence develop aids and tools to
tackle specific problems or allow to capitalise on the strengths of existing tools
to solve bigger, more complex problems that tend to be overlooked. ASA is
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a multi-faceted area which intersects various research fields, as well as sub-
disciplines of each one. Consequently, novel research in this area can benefit
from interdisciplinary work be seeking concrete solutions in each field that can
be brought together to solve important practical problems. Indeed, the work
should not necessarily be confined to human hearing. Over the years, observa-
tion and modelling of animal behaviours has produced optimised solutions – at
best for a variety of problems narrow in scope but also contributing to tackling
the grander problem of auditory perception.

CASA is the key to exploiting advancements in both ASA and technology to
solve problems that could have high impact to our life, such as speech perception
and localisation of talkers for monaural people, or even guidance aiding for
blind people. Advancements have led work in fields such as neuroscience and
probabilistic theories for optimising performance, shying away from mere min-
maxing of spectral analysis input. Research is usually confined to solving very
specific, small-scale problems in the most efficient and effective manner, which
inadvertently results in multiple highly heterogeneous end-systems, when the
need arises to compile a more holistic solution to the auditory perception system
in general. Mobility of the listener and/or of the audio sources is something that
tends to be disregarded in many cases and can provide a wealth of information
to work with and exploit within a CASA system. Tracking mobile targets hence
constitutes an undertaking that can further advance the field.

Autonomous distributed systems are essential to the realisation of scalable
and robust solutions utilising networked, heterogeneous devices. Autonomous
operations of such systems can be bolstered with the utilisation of agents at the
backend handling all functions, while bio-inspired approaches can offer selective
optimisation of sub-routines or new solutions to old problems, much like it does
with ASA/CASA. Here the opportunity arises to create a modern, distributed
system that can provide such functions through AI, while operating as a net-
worked listening device. Meanwhile, the reliance of such systems on energy for
autonomous operation inspires the utilisation of bio-inspired tracking strategies
for the intelligent nodes and is something that is lacking in related research.

Emergence is a field that can take roots in most disciplines, bringing out
the best of bio-inspired concepts and applications in them. The most basic
requirements for implementing emergent systems are bio-inspired properties in
their constituent sub-systems, notwithstanding the need for interactions among
them. Engineering emergence starts at a conceptual level with a model of a sys-
tem found in nature, followed by the faithful reproduction of those properties
in a microscopic level (e.g. a bio-inspired nodes in an EDS), and finalised with
evaluation of the system at runtime. Iterative design, implementation and eval-
uation is the key to causing the desired macroscopic properties of a system to
emerge. The inspiration from EDBO drives the ideas behind the evolved design
for AI capable of basic RL and interactions with socio-cognitive properties that
attribute to success in CPS scenarios.

Putting it all together, there is an intersection of all those fields where current
research has not delved into sufficient depth, yet: solving the CASA tracking
problem using bio-inspired approaches that may be bolstered by emergence with
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the goal of minimising energy costs. What the outcome of this thesis could
provide is a distributed system powered by RL and emergence, which can self-
optimise tracking energy costs via collaborating intelligent agents. The case of
robots with binaural microphone setups tracking down specific sound sources
with minimal energy consumption in disaster scenarios is one such prominent
example.



Chapter 3

A Distributed Framework for
CASA

3.1 Introduction
The first chapter is centred around the design and development of the proper
EDS that can support these tasks. Through the research gaps and opportun-
ities identified through the literature review of this interdisciplinary study, it
became clear that: (a) there are benefits to utilising microservice-based MAS
with capability for designing and implementing socio-cognitive traits and social
interactions, and (b) that is something missing from CASA distributed systems.
Moreover, the system should be able to both be deployed on real devices and
act as a simulation framework, too. The designs and implementations, with
new ideas and utilising robust tools to achieve the goals, aspire to contribute a
new tool for CASA research and development. But most importantly, to serve
as the framework for the rest of the study that focuses on the tracking problem
to be tackled here. The chapter focuses on presenting these designs and im-
plementation details for the proposed EDS framework, demonstrating the way
the viability of the components has been evaluated and discussing how they can
help achieve the goals.

3.2 Conceptual System Architecture
The conceptual architecture of the developed EDS for CASA is on a found-
ation of microservices, enabling a highly modular and scalable framework for
intelligent agent interactions. Each agent within the system operates as an
independent computational entity, leveraging microservices to perform special-
ised tasks, and specifically signal processing (from a simulated environment)
and decision-making on the intelligent nodes. By ad3.1opting a microservices
approach, the system ensures that each functional component remains loosely
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Figure 3.1: Conceptual interactions between agents, and between an agent and
its environment, through the microservices at the core of each agent.

coupled, facilitating adaptability, and the ability to integrate new functional-
ity as needed (e.g., decision-making strategy, signal-processing solution) for the
specific CASA application.

This architectural choice also supports assorted distributed deployment con-
figurations, allowing agents to be deployed across heterogeneous devices, in-
cluding edge devices, cloud environments, and hybrid configurations, ensuring
optimal performance based on the needs of the application. The primary con-
tribution of this system, apart from serving as the means to conduct this study,
is to also provide a framework and developmental approach to realising close
to real-world applications in CASA. Such systems will be infused with all the
benefits of a microservice-based approach that has not been explored in this
research field, yet, at least when combined with intelligent agents in distributed
systems as elicited from the literature.

The intelligent agents at the core of this system interact with each other,
as well as with the environment itself, through these microservices (Figure 3.1).
These microservices and their interactions will be described in detail when re-
viewing the designs of each component below in this chapter. However complex
the implementations and interactions of these microservice-based components
can be or become, there is a very high level of abstraction that can define famil-
ies of such microservices and other system-level components that are used. How
they interact among themselves is sequential and thus can comprise three dif-
ferent layers by which anything coming from the outside world passes through
the intelligent node and results in the effect it has on the world in turn.

These three layers, which are depicted in Figure 3.2, are:

1. Perception – microservices that analyse anything received from the envir-
onment (or the entities within it).

2. Intelligence – microservices that employ results of above analysis to make
decisions on how to act.
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Figure 3.2: Conceptual interactions among the layers within two agents and
their environment.

3. Action – microservices that implement the decisions taken, thus affecting
the environment (e.g., move, communicate).

At the perception layer, agents employ CASA techniques to analyse and interpret
auditory environments, extracting meaningful information from complex acous-
tic scenes. This involves CASA processes executed within the microservices
framework, but also minor processes such as obstacle detection and listening
for other agent communications at the later stages. For the EDS framework
developed, the ability to distribute these services across multiple agents, and
consequently devices, enhances the system’s efficiency, enabling a form of col-
laborative processing of the acoustic scene, albeit without a common processing
system for these results – the collaboration emerges from the agent interactions
instead.

The intelligence layer is designed to accommodate assorted agent architec-
tures that constitute strategies for solving the problem, allowing flexibility in
the decision-making process. Agents can employ rule-based systems, machine
learning models, reinforcement learning strategies, or hybrid approaches, de-
pending on the application requirements. This adaptability is achieved through
an abstraction layer that allows seamless switching between different intelli-
gence paradigms without disrupting the overall system’s operation (e.g., keep
same perception and action layer but replace intelligent only).

At first glance, the action layer is the most straight-forward in design and
implementation, given that it generally consists of simple actions dictated by the
decisions made earlier, such as the robot moves, or it waits to listen better again,
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or it shares its information with other agents. Nonetheless, this layer is the one
that has the most impact in the end for the problem at hand: every action
costs energy and time and the sum of these costs are what ultimately leads to
success or failure. This layer also handles communication, so agents can interact
and collaborate. Naturally, via this layer agents can share learned insights
with one another, forming an emergent intelligence network where distributed
agents ultimately collaboratively refine their perception and decision-making
capabilities over time.

Finally, the system supports diverse deployment configurations to meet vary-
ing computational and infrastructural demands. Agents can function autonom-
ously on low-power devices due to the development technologies employed, col-
laborate in clustered environments for higher performance, or integrate with
cloud-based resources for large-scale data analysis if needed (though not for the
current study). This holistic architectural approach positions the system as a
versatile and scalable solution for a wide range of CASA-driven applications, a
contribution to interdisciplinary studies in the fields involved.

3.3 Core Components
This section presents design and implementation details regarding the core com-
ponents of the developed EDS CASA framework. These components are essen-
tial for utilising the EDS as a framework for developing assorted CASA applic-
ations with intelligent agents powering the reasoning and functionality in the
system. Naturally, these are not constrained only by the existing CASA prob-
lem that is being addressed, neither by the specific agents needed, and serve to
establish the base of the distributed system (how nodes interact, how the find
each other in a decentralised manner). Moreover, it gives a prototype imple-
mentation of simulation instead if needed around the Environment microservice
that will be presented.

3.3.1 Interaction microservices
These interaction components – discovery and communication – of the system
are the core of the distributed architecture. They allow assorted heterogeneous
systems to achieve interoperability and (e.g. a mobile phone receiving streaming
video and casting it to a TV) are an essential component for emergence to
arise among entities that can communicate in a specific manner. That by no
means disallows emergence to occur outside of communication, naturally, as the
intelligent component can interact with the environment itself and cause it. In
the case of a distributed system, there are two hard requirements that need to
be satisfied: (a) a means for nodes to communicate with, and (b) a means for
the nodes to discover each other so that they can communicate.

One of the benefits of the minimal API architecture is that the requests and
responses can be performed in an asynchronous manner [164]. This means that
the system does not need to be locked down while waiting for a reply and keep
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performing its functions. As such, an agent can send a request for communica-
tion and keep performing its tracking functions no matter if a reply is received
in a timely manner or not – when it arrives the agent can act accordingly. With
the current architectural approach, the minimal API implementation is designed
with REST in mind. As such, the design pattern is as follows: an Endpoint maps
an Action request to a function in a Service of the system (microservices in this
case).

As an example, the following are synonymous:

• POST > “user@provider.com” > http://192.128.236.10/users >
IUserService.CreateUser(“user@provider.com”)

• “192.128.236.10” create for me a new user whose email is “user@provider.com”.

Communication The ICommunicationService interface composes the mi-
croservice handling API requests and responses in a RESTful manner for com-
munication purposes. At the first iteration of the system architecture, its
GetStatus() and SendStatus() functions are mapped to the corresponding en-
dpoints and interact with another microservice of the system, IStatusService.
Notably, the former is a stateless service whereas the latter is a stateful one,
achieving a clear separation of responsibility and adhering to SOLID principles.
The information delivered via the status service

The original supported Endpoints for this microservice are the following:

GET /status Returns the status of this node. Always available.

POST /status Receives the status of another node. Always available.

Discovery The IDiscoveryService interface defines the way the nodes in
the distributed system can discover each other. Nodes can be configured to
listen to a specific port at their defined endpoint in the overlay network they
reside, and other nodes can try to hit IPs with requests that they know could
be available in the system. An example would be the overlay network being
configured to use the subnet 128.198.256.X where X can be the number of the
node. Here the agents can utilise the DiscoverNodes() method to send GET
requests to the Endpoint and hopefully find new nodes in the system.

The default implementation for this microservice comes with preconfigured
range of such IP addresses so that there is less time and processing cost involved
into discovering nodes in the environment, as eventually will be dictated by
the tracking strategies. As the study progresses, this can be extended to use
a different implementation when the discovery response to another node may
include the nodes that the system currently is aware of. In this manner, a social
network can be formed from which interesting interactions may emerge during
CPS attempts.

The default endpoints for the discovery microservice are:

GET / Returns the contact information of this node.

POST / Receives the contact information of another node.
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Figure 3.3: An example of interactions among the core microservices of an
agent, and with those of other agents. Interaction directions describe which
microservice can call methods from another.

3.3.2 Intelligent agents microservices
The bio-inspired trackers, the intelligent agents of the system, comprise the
most complex of its components, utilising the hosted worker architecture and
injecting all services provided up until now, including the ones that perform
the communication functions, thus capable of networking. This creates a list
of dependencies including communication, status, discovery, movement, and
environment. To be able and realise their goal of locating a mobile source,
however, they also depend on perception of the environment and taking actions
– as is the case for AI nodes operating under the RL machine learning paradigm
(interaction with the dynamic environment).

The default implementation for the new microservices will be discussed in
greater length in the subsequent sections, as they heavily touch the realms
of CASA and RL respectively for perception through listening and decision-
making. A teaser for the new services introduced at the abstract design level is
found below. The idea of having this type of abstraction is that so it will be easy
for architects modifying the system to their needs for future work and assorted
real-world problem-solving studies and applications, to be able to simply add
their own interface. If a future study attempts to add visual aid for the robots,
all that is needed is to inject it in the perception layer and call it when the
update function is called. The same for acting if the robot can fly, or pick up
and put down things, or even make radio calls to support personnel.

The possibilities are endless and all that will be needed is to simply add
the interface with the implementation. This provides a highly modular design
that can create unique applications. The interactions among the primary agent
microservices that exist in the system are illustrated in Figure 3.3. It is evident
that the perception microservice can, for example, be expanded by a vision
microservice that can visually capture information from the environment, and
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consequently the intelligence microservice can then factor that in reasoning.
This is one of the strengths of this modular architecture.

The final list of the dependency tree of microservices for the trackers is
formed as:

• IDiscoveryService

• ICommunicationService

– IStatusService

• IIntelligenceService

– IPerceptionService

∗ IListeningService
· IEnvironmentService (simulations only)

– IActionService

∗ IMovementService
· IEnvironmentService (simulations only)

3.4 Simulation Components
The purpose of this section is to explain the details of how specific components
crucial to this study have been developed. These mostly pertain to the sim-
ulations that followed with the strategies that were developed towards solving
the energy-efficient tracking problem at hand. The focus is on the process of
creating artificial treefrog mating calls close to normal ones that can be used
as sources for creating the localised sounds the mobile sound sources use, to
capitalise on cues known from the treefrog studies that can serve as tracker
preferences. Then how the acoustic scene has been created for accuracy, in-
cluding the immense dataset of IRs for generating the localised treefrog sounds.
Finally, the SSL method that the trackers employ is detailed, with elaboration
on how it was tested for accuracy to ensure that the strategy experiments to
follow were carried out correctly.

3.4.1 Environment microservice
The representation of the physical environment is an essential component of the
system when it will be used towards research through simulations. There are
arguments to be made towards incorporating it in the solution as node that can
communicate this with accuracy, but this adds another vast dimension to the
real-world application of the system and its intended purpose. Specifically, the
nodes would need to possess their own system for determining their position
to report it, or for the environment node to be able to determine their posi-
tions. There are trade-offs here with significant costs to computational power
and energy consumption, and the focus of this thesis on attempting to solve
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this problem through a different, bio-inspired manner, does not align with this
approach.

In the form of a stateful microservice, the IEnvironmentService holds key
information pertaining to:

• The location of the sound sources.

• The location of the trackers.

• The boundaries of the environment.

• The number of obstacles.

Regardless of the complexity and dynamic nature of the real-world problem,
the simulated environment need only be concerned with the aspects due to
the manner by which a distributed system operates. The interface of this mi-
croservice offers the means to both trackers and targets to update their location
when they move. The environment then responds to this update by letting the
nodes know, for simulation purposes of course, whether they have moved into
an empty space, a target, or an obstacle. The default implementation keeps this
state in-memory and not in an external system but can be parametrised to do
so with efficient persistence systems – or costly such as databases – as needed
for the application.

The simulated environment For the purposes of this thesis, the simulated
environment will be a two-dimensional grid with a size of 10 tiles for each side,
each tile representing 1m, essentially a square room. More details for this choice
will be presented when discussing the binaural simulation for the room and the
generation of IRs. Finally, the entities moving inside this logical 2D space will
be able to move on all 8 basic directions of the compass (N, NE, E, SE, S, SW,
W, NW). Naturally, movement implies that no obstacle is present, otherwise
the service will return the corresponding result. Entering the space of an audio
source signifies that the tracker has encountered an obstacle, too, which they
need to handle in a proper manner in their decision-making process.

The generation of obstacles needs to be addressed. These obstacles represent
points where the moving tracker cannot cross and bumps into, simulating pos-
sible debris, walls, or even furniture in a room or floor. A way to ensure that the
trackers can indeed reach their target is of the utmost importance. Attempts
at fully randomising the allocation of obstacles was found to create walled off
sections with targets or trackers trapped inside. Maze algorithms were studied
next due to their unique property of always having a path through all corridors
and from start to end, albeit most algorithms produce an extremely snake-like
result that cannot represent the expected scenes faithfully.

Recursive division is the only algorithm that could develop something that
even remotely resembles the intended acoustic scene, due to its tendency to
create mazes with long straight walls and corridors. Indeed, Figure shows how
an empty room can be turned into a maze in just a handful of steps but stop at
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Figure 3.4: The recursive division algorithm in action: (A) initial empty envir-
onment, (B) divide by two walls at random (x, y), (C) create holes in the walls,
and (D) recursively repeat B-C until necessary.

one of the previous steps and there is something closely resembling an apartment
or building floor. The implemented algorithm can produce two types of rooms,
by stopping at a different step each time and randomly removing a random
small number of obstacles already added: one that has few obstacles (e.g. step
3 with 3 tiles removed), and one that has many (e.g. step 4 with one more
division and 3 tiles removed). Iterations required for experiments can be found
in Appendix A.

The mobile sound sources Comprising the targets of the trackers in the sys-
tem, similarly to the environment they are not designed as nodes, too. There
is no permutation of the energy-efficient mobile tracking problem where these
components would need to be real targets outside of simulations. Consequently,
their operation is not taxing to the system with an extremely lightweight imple-
mentation as they do not need to even keep their own state in memory. They do
depend on the environment microservice, however, so that they can update their
location when they decide to move, but only through the IMovementService
that injects it. This service is introduced here and can be used by any com-
ponent or node of the system that needs to move (i.e the trackers). It has the
simplest interface of all the services, with the function Move(), which in its
default implementation for the simulations merely updates the location of the
entity and its head orientation in the simulated environment. A variant of this
microservice for a real-world application would be akin to calling the API of the
robot to move its wheels (e.g. a low-level function in an embedded system to
spin the rotor).

At this point there is an encounter with another elegant solution the light-
weight .NET services offer for representing repeated tasks (i.e. the target moving
at set intervals), but which also generally characterise intelligent agents and AI
components. Thanks to the Hosted Services the mobile sound source compon-
ent can be declared as a worker that awakens at discrete points in time with a
set interval and perform its tasks (e.g. cleaning a database table) – or that can
even run continuously if required. These types of hosted workers can perform
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Figure 3.5: Demonstration of mobile sound source output propagation to the
tracker via the Environment microservice. The mobile sound source is inspired
by the male treefrog, whereas the tracker by the female treefrog from biology
studies.

from menial tasks (such as for the mobile sound source) to extremely complic-
ated, such as interaction with other APIs or running a whole distributed system
deployment for big enterprises.

For the task at hand, the worker wakes up at set intervals and decides if
they will move randomly or not. The major advantage over treating them as
simple classes is the asynchronous mode in which they can be set up to operate,
effectively freeing up resources in the system when there is no need to perform
an action. Given that workers consume resources only when waking up, they
manage to free up the node to perform other tasks if needed. This provides both
potential for more intricate applications with the resulting distributed system,
where the nodes perform multiple functions, but also manages to conserve energy
for the tracking nodes that will be discussed next. Finally, with regards to the
audio generated by the mobile sound sources that the trackers will attempt to
localise, the details are presented in the section of the chapter for the auditory
sensory component.

This audio, which the tracker should hear localised, is propagated with the
mechanisms featured in Figure 3.5. How these sounds are generated and local-
ised within the simulation environment is detailed in the following sections. The
Environment microservice is there for simulation purposes, so if a real-world ap-
plication of the system was deployed, this microservice should be removed from
the interaction pipelines. Indeed, the mobile sound source depicted there would
be an actual entity in the real world that generates sound in whatever way it
can (naturally or artificially), whereas the tracker entity would have actual mi-
crophones that interface with its reasoning layer providing the already localised
call carrying all the properties of a real-world environment applicable.
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3.4.2 Generating treefrog sounds
With a view to having numerous audio sources moving in the environment, each
one with different characteristics so that the agents may have decisions to make
towards tracking the right one, different treefrog audio sources would need to
be available. However, for the purpose of repeated experiments it is not feasible
to acquire many actual, clear treefrog calls that have the exact desired acoustic
properties that will be set for the trackers, too. Consequently, a call generation
mechanism had to be implemented that can incorporate these parameters. The
signal processing toolkit of MATLAB has been used to produce synthetic sounds
emulating those of the treefrogs, based on a set of properties that define the
synthetic call, and by empirical testing the output by ear compared to a real-
world treefrog call during generation.

The properties that are passed as parameters to this function are:

• Attack time (ms).

• Decay time (ms).

• Gap time in (ms).

• Start pitch (Hz).

• End pitch (Hz).

• Harmonics number.

• Harmonics levels.

• Number of pulses.

Values for these properties passed to the function and as used in experiments
can be found in Appendix A.

The synthetic call generation process is the following:

1. The attack and decay ramp times are calculated.

2. An envelope is created using attack, decay, and gap time.

3. Envelope is made complex using harmonics parameters.

4. The signal is then scaled to peak value using harmonics levels.

5. A final waveform is produced by using the number of pulses.

To evaluate the efficiency of the outputs of the synthetic call generation
process, an ideal recorded sample from a marsh environment has been used as a
guide towards fine-tuning the property ranges. The resulting signals have been
visualised and compared to the actual calls, with the results in Figures 3.6 to
3.8, empirically verifying an approximation of the expected outcome.
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Figure 3.6: Original treefrog mating call obtained online from currently unavail-
able source.

Figure 3.7: Synthetic call produced by the auditory sub-system for a higher-
pitched treefrog call.

Figure 3.8: Synthetic call produced by the auditory sub-system for a lower-
pitched treefrog call.
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3.4.3 Generating localised sounds
This crucial step in the design and implementation of the CASA subsystem
involved several intricate steps to bring to fruition. In a real-world application
of the system, this part of the work would be entirely discarded due to the
input being provided by actual sound sources. This was an iterative work that
had to tackle several issues that arose during implementation and the steps to
produce the localised sounds had to be repeated several times. Problems faced
were unexpected results in localised sounds due to problematic settings (e.g.
erroneous high-volume reflections when close to walls) or problematic algorithms
under certain conditions (e.g. reverberation applied when using values above a
specific threshold) in the binaural simulator. Also detrimental was the immense
localised collection size and processing power to create the multiple IRs, as well
as the availability of the dataset for running experiments (i.e. the generated
impulse responses for the simulations).

Two steps were necessary to complete this task:

1. Design the acoustic scene and its characteristics, imposing necessary con-
straints.

2. Create the necessary HRIRs that would provide the localised sounds at
runtime.

3.4.4 Acoustic scene simulation
The acoustic scene is the environment wherein the bio-inspired trackers will live
and attempt to fulfil their purpose. Real-world parallels to the agent tracking
a sound source moving in the environment cannot be captured in their entirety
without large-scale efforts. This fact dictates that several constraints need to
be imposed to the acoustic scene, while at the same time ensuring that these
limitations will not become an impediment to the goals of the experiments. But
to be able to describe the acoustic scene, it is necessary to image an analogous
real-world problem scenario where energy-efficient tracking of the audio sources
can provide a solution. To this end, and for the future experiments, the parallel
drawn is to that of an area in a disaster scenario with zero visibility and people
calling for help trying to find their way (e.g. a subway tunnel collapsing and
no electricity, a building on fire and thick smoke) and debris littering the floor,
where robots are deployed and need to locate their targets through sound. This
will be revisited when the iterative experiments are presented, too, but an early
reference here is required to explain the specifics of the acoustic scene.

To start with, the “shoebox” binaural simulator supports three-dimensional
(3D) rooms expressed as 2D grids stacked on the z-axis. A 3D environment
where robot-like devices operate tracking targets implies a much more complex
environment and problem to solve – from devices akin to flying drones, intro-
ducing the extra problem of extreme self-noise, to totally different energy costs,
and even the problem of how such devices could be controlled without vision or
a similar system (and if there where such capabilities, why rely on sound alone).
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These concerns and issues outside the scope of this research undertaking led to
the decision of the modelling of a 2D space pertaining to the movement and
obstacle design, where traditional robots on the ground are simulated trying to
localise and locate their target. The major advantage from the 3D capabilities
of the simulator is that the sound can be simulated in 3D while the operating
space can stay in 2D, therefore giving a more accurate representation of the
sound signal. The base input model used was that of KEMAR readings for
anechoic room [224].

The dimensions of the room in metres have been set as a 10 by 10 on the
2D space, with a height of 3 that could represent a large building floor for the
scenario. The permutations of listener-speaker positions and orientation can
grow to high numbers as will be showcased next, constituting another reason
for this. Reverberation has been set according to the standardised formula
RT 60 = k · V

A , where factor k is 0.161m, V the room volume in m3, and A the
equivalent absorption surface in m2. A calculator has been utilised to provide
the proper value, which operates on material input for the surfaces (i.e. painted
concrete) and dimensions of the room, also providing the related absorption
and reflection coefficients for the simulator [225]. Head orientation of the actors
as per the simulated environment configuration adheres to the 8 base compass
directions, which have been mapped to 0− 315 azimuth, where 0 is North and
315 Northwest, on the proper intervals of 45. As a clarification, this is listeners
with human head physiology (from KEMAR) tracking treefrog sounds (from
synthetic calls), which is beneficial due to the ease of modelling the bio-inspired
strategies based on the known cue requirements for treefrogs, and for developing
and testing the localisation solution. These parameters can also be found in
Appendix A in more details, bound to their framework values.

3.4.5 Impulse response generation
Having set up the acoustic scene, the next step is to generate a proper IR.
The system requires the following inputs for both the listener-tracker and the
speaker-target: position in x-axis, position in y-axis, and head orientation. Once
these have been provided, the algorithm can be run to produce the proper func-
tion for the HRIR on the side of the listener. The output can then be convoluted
with the synthesised treefrog call and subsequently analysed by the localisation
function at the tracker. While this approach provides verified, excellent regards,
the time and processing requirements for generating the single IR for a specific
pair of listener-speaker locations with specific head orientation, requires a few
minutes. Evidently, it would be infeasible to do this at simulation runtime for
every tracker. A solution to this obstacle is to pre-generate the impulse re-
sponses. Once the responses are stored, the convolution of one with a synthetic
call is a matter of a couple of seconds at most. This would significantly reduce
the time needed to perform the function on the fly as needed by the tracker
and make simulations feasible.Nonetheless, even creating all the needed files in
advance is a lengthy task.

Attempting to calculate the required responses provides the following in-
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sights:

• Potential listener or speaker single locations: 10 · 10 = 100

• Potential listener and speaker locations pairs: 100 · 100 = 10, 000

• Potential listener or speaker head orientation on a single location: 8

• Potential listener and speaker head orientations on a single location pair:
64

• Potential listener and speaker head orientations on all location pairs: 64 ·
10, 000 = 640, 000

A total of 640, 000 HRIRs need to be generated to cover this scenario, a function
of IR = (x · y · o)2, where x the width of the room in metres, y the length of the
room in metres, and o the number of available head orientations. This is one
of the reasons that imposed the constraints on final environment dimensions
or orientations – a mere increment of 1m could lead to tens of thousands of
additional files. Moreover, the generated audio file to be used for the convolution
with the synthetic call has a size of 200KB, which results in a dataset of the
size of approximately 130GB. Notwithstanding, the most important problem
of generating these files was time. At the moment in time when this endeavour
took place, it took an average of about half a minute, or 30s, for the local
machine to create one. This could lead to cost in hours in the region of 5000,
or roughly 7 months of non-stop IR generation.

To make this feasible, generation of datasets was moved to the first gener-
ation HPC clusters at the University of Sheffield, which supported MATLAB
functions and could handle the workload of the Two!Ears binaural simulator.
The machine used to create the original batches of datasets was the – now
retired – Iceberg cluster [226]. Requiring several milliseconds for each file com-
pared to half a minute, the file generation costs were reduced by a factor close
to 100, making this task feasible. The restricted personal storage space on the
cluster for queued job outputs required breaking down the job to smaller ones,
specifically the manageable case of rows by orientations. Iteratively the files
where created, downloaded over File Transfer Protocol (FTP), storage cleared,
and new rows with orientation queued, over numerous iterations.

3.4.6 Binaural localisation at the tracker
The final part of the CASA component in the system is the localisation of the in-
put signals at the side of the tracker, which refers to the default implementation
of the IListeningService.

The auditory pipeline for the experiments can be defined in the following
stepwise manner:

1. Generate a random synthetic call akin to treefrog calls for each mobile
speaking target (mimics a speaking target).
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2. Perform a convolution of the synthetic call of each target with the proper
HRIR for the locations and head orientations of both tracker and target
(mimics sound reaching the ears of a listener)

3. If more than one speaking targets, then merge the outputs for each one
into a single signal (mimics a complex acoustic scene).

4. Pass the signal through the binaural simulator so that the tracker can
derive an angle in azimuth of the desired target (performs localisation on
the provided acoustic scene).

Step 1 has already been detailed, while the rest are discussed here. In a real-
world setting, there would be no need for the extra step of combing all sounds
as in the simulated environment to create a faithful representation of it. Each
channel of the stereo signal output of the previous stages (i.e. a channel for
each ear) is convoluted with the synthetic call to create the expected sound. A
scaling factor for normalisation is applied to minimise the artefacts introduced
by the convolution 2. Lastly, mixing of any noise and call signals that essential
to simulate the real environment performs on the input are performed at the
beginning of this stage, to simulate what the tracking agent would be hearing
in reality, albeit with the limitation of excluding self-noise. This is step 3 and
it is achieved by first adjusting the two different source sound levels ensuring
balance in volume (normalise to prevent clipping) and subsequently combining
them with a simple addition (superposition) without any weighted mixing.

The final step 4 is the crucial one for ensuring that the core entities in
the experiments, the bio-inspired trackers, properly perform the localisation
tracking so that the focus can shift on the actual tracking behaviours. The
tracker must be able to perform two tasks: (a) determine the best target in
the environment to follow, and (b) to localise that target. Task a is a highly
involved process for the treefrogs, with biological studies discovering that they
tend to show a preference to the overall envelope of a treefrog call, rather than
very specific acoustic cues. However, there are two secondary cues that are play
an important role to treefrog decision-making and can be exploited instead of
attempting to do complex envelope matching. These are the average frequency,
especially when it falls within the range 1000 − 1300Hz, and a higher pulse
rate. The weights for each are not clear, so the algorithm is designed to pick the
one with the least deviation from the preference set on the tracker. Accordingly,
MATLAB signal toolkit functions are utilised to find the local peaks in the signal
to determine the pulse rate – peaks over the average treefrog signal period as
defined in the synthetic call generation – and to estimate the frequency. But for
the tracker to have a choice of which source to choose, they need to have a list
of potential sources first.

This is where the localisation pipeline acts:

1. Perform auto-correlation (ACF) for each ear to estimate frequency and
amplitude.

2. Load the HRTFs for each ear on the location.
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Figure 3.9: Overview of a sample room performing tests with the CASA pipeline.
Listener is −45o from the high-frequency target (1100Hz), and +72o from the
low-frequency target (800Hz).

3. Iterate through azimuth and each orientation (North to East, North to
West) computing the ITDs with cross-correlation (CCF).

4. Generate a mapping function for ITD to azimuth.

5. Use CCF on the input signal and apply weighting function by ACF to find
the ITDs and get the relevant peak(s).

6. Employ the HRTF azimuth mapping function to get the azimuth for each
peak.

7. Choose among peak azimuths based on frequency and amplitude deviation
from preferences.

A sample demonstration of parts of the localisation pipeline and tests against
the ground truth can be observed in Figures 3.9 to 3.12. To evaluate the accur-
acy of localisation, two tests where run: (a) complex scenarios to ensure that the
proper target was chosen each time, and (b) a full test of all returned azimuths
compared for a listener in a static spot and a speaker in every other spot of
the grid. For the evaluation of test case a, a handful of scenarios were created
where the listener had two speakers, one with lower frequency and pulse rate
and another with higher values for each. The full pipeline for generating the
acoustic scene was run and the chosen azimuth was tested against the ground
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Figure 3.10: Cross-correlation and summary, targets estimated around −55o

(−10o error) and +78o (+6o error).

Figure 3.11: Auto-correlation for both ears. Left ear estimates a 1025Hz target
(−75Hz error) and right ear estimates a 868Hz (+68Hz error).
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Figure 3.12: Weighted auto-correlation using period snapshot from ears applied
to all cross-correlation channels, keeping the two highest peaks for each ear and
using their average for result.

truth. This resulted in a near perfect match for the expected choice, the outliers
falling to the category of ±100Hz max.

Regarding test case b the results were extremely promising, and they were
tested against the ground truth for both lower and higher frequency sources.
In fact, the average error was ±6ofor frequencies around 1000Hz when the dis-
tance was up to 8m, compared to ±10o for for 1300Hz for the same distance.
These values fall indeed within the ±10olocalisation accuracy that treefrog stud-
ies have shown, and which are also like human capabilities [35]. Regrettably,
beyond these distances the margin of error approximated the class of 40o. This
can be accredited to two factors, firstly that the signal has degraded due to
distance, and secondly that the listener is very close to a wall and confused due
to reflections (range of 8− 10m). This could constitute a significant limitation
to the study, were it not for the fact that this allows for exploring how efficient
the tracking strategy overall can be when it cannot get the best results out of
the CASA component under adhere conditions.

There is one important caveat when using the measured ITD approach,
however, and that is the front-back localisation problem. This problem refers to
the fact that a sound arriving from either the front or the back of the listener,
same distance and angle, will always have an identical ITD, as evidenced by
Step 3 of the localisation pipeline above. There are typically two ways by
which binaural biological organisms attempt to solve this problem: (a) use a
complementary sense – predominantly vision – and, (b) turn the head a few
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degrees to one side so that the distance changes [227]. ILD has been considered
for solving this problem in recent studies, however the results indicate that there
need to be very specific conditions in the acoustic scene for the ILD predictive
model to work [228], which is uncharacteristic of the problem this thesis aims
to solve.

This, naturally, settles the design choice down to finding a way of getting a
better ITD reading, such as by rotating the head by at least one whole compass
orientation (e.g. ±45o to spend less energy on rotation) towards the ITD-
suggested azimuth so that a better reading can be gained. The unfortunate by-
product of this design is higher energy costs, specifically the robot having to use
motors to turn the head with microphones, as well as time costs. This is not an
issue that should affect the result of studies when working with the original bio-
inspired treefrog strategies, because treefrogs have nearly no reliance on vision
unless they have another treefrog in front of them, and especially in marsh
or rainforest environments with high vegetation where it is nearly impossible
to see. An alternative to the head rotation is standing still and waiting for the
next call to come, hopefully by the target having moved. However, some targets
may be stationary for extend periods of time as they wait for someone to reach
them, thus more time could be wasted in locating them – a reason why treefrogs
mainly attempt to solve the problem with head rotations.

Having finalised this component, Objective A1-O2 has been brought to
completion.

3.5 The Bio-inspired Trackers
The most important entity in this thesis is the tracker – their capabilities, be-
haviours, and interactions are what will shape the outcomes. The entire dis-
tributed system being developed, the design of its microservices, as well as the
elaborate CASA subsystem, have all been to enable the bio-inspired trackers to
fulfil their purpose. While their designs are more detailed and documented in
the respective sections in the following chapters, starting from the Reactive bio-
inspired strategies, then moving to the Deliberative architecture of the combined
strategy, thus ending with the RL-based strategy of the adaptive and socio-
cognitive strategies, an introduction to this component is here as the baseline
for developing intelligent agents in the proposed EDS.

All the components so far have been showcased, except for the last one:
the decision-making process, which is the implementation of the microservice
IIntelligenceService. On a higher abstraction layer, this service is respons-
ible for calling when needed the IPerceptionService to develop an under-
standing of the local state of the world for the agent and then process this state
to determine which action to take through the IActionService. The latter
will only have a single possible option at this point in the design and that is
movement, much like the IPerceptionService can only rely on listening. Non-
etheless, it is provided for future work that could have the agents, and by extent
possible robots in real-world applications, to perform more complex functions if
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Figure 3.13: The preliminary microservice interaction designs for the bio-
inspired intelligent agents, serving as a CASA-powered entity in the system
(arrows indicate invocation capability).

needed (e.g. move and pick up something and then notify someone).
From the new microservices added, perception is labelled as IPerceptionService,

which is dependent on IListeningService that provides clues pertaining to
that sensory input. This listening component attempts to emulate a captured
sound that will be localised, which for the goals of this project will be supplied
via the binaural simulator. What perception attempts to do is understand the
local state of the world (i.e. the state limited only to what the agent can under-
stand) by relying on inputs from other functions (i.e. listening for the purposes
of this thesis), and returns this state of the world to the intelligence service
(IIntelligenceService) in a format that can be processed decide how to act
upon. The complex interactions of these microservices in the agent are depicted
in Figure 3.13.

The decision-making process of the agent at this point in the design of the
study is that of a simple Reactive agent architecture, which decides every few
seconds, after evaluating its state and having received a stimulus. At the start-
ing point of this research undertaking no more complex AI has been deemed
necessary, because these capabilities are enough to model the two basic treefrog
behaviours (i.e. regular, explosive breeders). As this project evolves, the com-
plex balancing act between exploring the environment and exploiting gathered
knowledge to achieve the goal, the core pillar of RL, will be introduced to this
agent. The more abstract life-cycle of the agent can be described in the flowchart
found in Figure 3.14.

With the design and implementation of this final component Objective
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Figure 3.14: Basic life-cycle of the agent in a higher level of abstraction.
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A1-O1 has been achieved.

3.6 Conclusions
This chapter has portrayed the design and implementation of a distributed sys-
tem that allows nodes to communicate and discover each other effortlessly across
heterogeneous devices, either strong or weak performance-wise. Furthermore, it
has the architecture to perform a multitude of CASA functions on the nodes,
such as generation of accurate synthetic calls and robust localisation of sound
sources in the simulated environment. A core contribution of the new system
is that it can hose host AI components that can make complex decisions and
take actions as needed. The ease of extending these components for other types
of intelligence and functionality will also be demonstrated in the following two
chapters.

While a multitude of systems for CASA exist for each specific aspect in-
volved, as observed through the literature review, it also became clear that not
all of them attempt to combine all that this system attempts to achieve here and
this is where the innovation lies. Microservice-based CASA system architectures
have not been spotted outside the realm of sensor networks or similar solutions.
Most importantly, they do not allow for the flexibility of possible deployment
scenarios demonstrated through the architecture of this new system. Indeed,
its development framework allows it to compete even with lower-level languages
and frameworks, establishing it as a powerful tool for developing both simula-
tion and actual systems that could benefit from these advantages. Meanwhile,
most systems are designed to either run in simulations or are on actual devices,
not easily allowing through their architecture for both with a mere different
registration of a service.

All the above meld together to provide a system that might not excel at
very specific, single-responsibility and application tasks, but it can tie them all
together and hopefully serve as a framework for future research on the field of
CASA. Accompanied by this document on how to extend it effortlessly, both
as seen so far and with the following chapters, and with the documented pro-
cess on how to generate datasets with robust tools that can be used to create
scenarios. Several other frameworks exist, but the developed EDS here will
show its strengths in the future within this study, how it can go so far as to
model learning AI, or to operate with socio-cognitive traits and demonstrating
emergence.

This might not be as significant a contribution to the field as the work that
follows it, the evolution from the bio-inspired to the optimal strategies with
emergence that solve the chosen tracking problem and given the numerous other
CASA systems with higher expertise in application and performance. However,
what it aspires to do, that is to serve as a tool for researchers that aim to
perform similar research, with an ease of swapping between simulation and real
deployments, or from one to another AI approach, is also the gap identified in the
literature that this system attempted to fill – no system could be found through
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the existing literature that could tick all the boxes mentioned above and serve
as the ideal tool for carrying out this study as envisioned. In closing, this now
allows for a strict focus on contriving an energy-efficient strategy for tracking
mobile sound sources next, through a framework for the future exploration of
emergence, thereby achieving Goal A1 of this thesis.



Chapter 4

Developing an Adaptive
Strategy

4.1 Introduction
The next research endeavour towards bringing this project to fruition is the
development of a tracking strategy for the bio-inspired agents, in particular
one that can adapt to the dynamic environment of mobile audio sources and
obstacles – and by extend a possible rescue undertaking in a disaster scenario
in real-world applications. Adaptivity for AI and autonomous systems is an in-
dispensable trait when they are put to the task of solving problems with a high
degree of complexity. But for an efficient problem-solving tool to be assembled,
concrete foundations to build upon are paramount. These are provided via the
strategies that the treefrogs exhibit in real life and have allowed them to sur-
vive as a species for hundreds of years in extremely bio-diverse and threatening
environments such as the Amazon Rainforest.

The concept of energy in the context of the problem at hand is also elab-
orated on, how it is addressed in nature and how it can be adapted to the
system in both a conceptual and physical manner. The sections trailing after
this analysis constitute the experiments ran using the system and the assorted
tracking strategies, before concluding with the progress so far and determining
the progress so far.

The research methodology followed is the same for each set of experiments,
including consecutive chapters:

1. The concept and goals of the experiments is introduced.

2. The research questions are formulated.

3. The required modifications to the system are detailed.

4. The experiment designs, variables and methodology, are presented.

81



CHAPTER 4. DEVELOPING AN ADAPTIVE STRATEGY 82

5. The results are gathered and analysed.

6. A discussion wraps up the set of experiments with thoughts on moving
forward.

4.2 Energy in the System
This part discusses briefly the concept of energy in the context of this study and,
by extent, in the problem of efficiently tracking multiple mobile audio sources in
dynamic environments. This is essential to the design of the experiments with
all strategies and their evaluations for the rest of this work.

4.2.1 The concept of energy
Energy is a concept that has been mentioned repeatedly throughout this thesis
so far, still there has not been a formal reference on how exactly it is repres-
ented in the system and what exactly it entails in the context of this thesis.
Consequently, when this thesis refers to the concept of Energy, it refers to the
quantitative property, finite in quantity, of a node in the distributed system
that can performing actions in the environment by consuming an amount of
this property. For the goals of this thesis, energy thus refers to motor mo-
tion, either for head orientation changes (e.g., solving the front-back problem,
obstacle detected) or for movement, but also for listening processes.

From the cosmological zero- or constant-energy-sum state of the universe
theories to the prevalent theory of a heat death of the universe [191], energy is
a fascinating concept and its interactions can be observed and felt all around
and inside of humans constantly. In robotics and distributed systems, energy
conveys the meaning from the prior definition in this thesis. In Biology, energy
essentially dictates the very life of even the smaller living organism – the very
core definition of living in biological studies is the continuous reproduction of
cells through the consumption of environmental energy [229]. Management of
incoming and outgoing energy is, naturally, the most integral aspect of life and
how it is addressed provides either efficiency or impediments to every action
that needs to be taken, every problem that needs to be solved.

As a result of the impact of energy management, biological organisms and
systems are in a state of constant struggle to follow the principle of conservation
of energy. This principle – or law – states that energy cannot be created or
destroyed but merely converted from one form to another. When a system is
treated as a closed system (i.e. no transfer of energy in or out), this principle
implies that the total energy of the system remains constant. The volatility of
a living organism due to its constant interactions with external systems, and by
the definition of life itself, puts them in the peculiar state of always transforming
energy from one form to another. Notwithstanding, the internal system of the
living organism attempts to conserve the energy – it produces cells because
energy needs to be expended to keep the system stable, or it consumes energy
to replenish energy lost on performing an action [229].
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Outliers always exist in every complex system, still the studies show that
even the outliers have the firm belief that by expending more energy they will
eventually reach a more desirable state of energy stability in the near or far
future, whether they are hallucinating or not [230, 229]. The case of treefrog
explosive breeding, is a prime example. They descended to the ground from
the trees to make, abandoning briefly their arboreal state, and optimise every
single action and choice they take towards spending the least amount of energy
to satisfy their goal before returning to a more stable energy (i.e. arboreal)
state again. In fact, some of the more explosive breeding treefrog species tend
to do this only once in their lifetime, resorting to spend the rest of their life in
a constant stable energy state and skip subsequent mating seasons [231].

In robotic systems the difficulty in energy conservation stems from the fact
that they are typically designed to spend energy to perform a complex action
[232]. Meanwhile, for most of applications they do not generally have the capa-
city to replenish their energy (i.e. battery) reserves, nor do they have the ex-
pertise to sustain themselves dissimilar to biological organisms thanks to years
of evolution, or at least not yet. Consequently, optimising energy consumption
to achieve the goals constitutes an imperative design goal in most such systems.
As will be highlighted next and has been pinpointed in the domain exploration
study, tracking applications tend to be mostly static listeners that primarily fo-
cus on minimising energy costs for the algorithms employed, or moving trackers
that do not necessarily have the highest priority of reaching their target but
rather to better understand the acoustic scene. This is a research gap that will
be exploited in this thesis, with a view to developing a strategy that can address
this problem and a framework for studying such systems.

4.2.2 Energy efficiency in the system
To produce meaningful results for the experiments in this thesis, there needs to
be a mapping between motor motion and processing energy costs. For the model
to be used in the experiments, a four-wheeled robot is chosen. It possesses 5
motors: 1 for each wheel, and 1 for the head. A single head orientation change is
the turn of ±45o, whilst it is assumed that a spin of 360o is enough to relocate the
robot to the next grid tile. As such, the cost of the head turn for the motors can
be the base cost Eo and the cost for the movement to be Em = 4 ·8 ·Eo = 32 ·Eo;
a notable discrepancy between cost of listening and moving.

Without a frame of reference for the CASA component costs of this imple-
mentation in real devices, a limitation of this thesis is the cost that must be
assigned to the algorithm. To tackle this issue, pertinent research was explored
with results indicating significantly smaller costs for software vs. motor energy
consumption [108, 233, 234], even close to values expressed in % or h, operating
system and algorithm efficiency being the deciding factors. For the purposes of
this thesis, and assuming constant operating system functions, more complex
software with unoptimised algorithms – or for future implementations using
more evolved localisation and tracking algorithms – the cost will be defined as
El = 1

10Eo (i.e. significantly smaller than motor motion costs).
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This formulates the total energy consumption function:

Eloss = a · Em + b · Eo + c · El = Eo · 320·a+10·b+c
10

a Number of times the agent moved by 1 step.

b Number of single orientation changes.

c Number of individual listening attempts.

The function plays a role in the final definition related to energy that needs
to be presented for the designs of this study – that is the concept of Perform-
ance. With regards to the tested strategies, performance is evaluated on two
fundamental fronts: (a) how much Time was spent to reach the target, and (b)
how much Energy was lost. Obviously, lower values in both indicates better
performance for a strategy, whereas high values in either will need to be dis-
cussed in the context of the real-world application. A by-product of this twofold
classification is that the simulations can suggest strategies to use based on their
performance in the corresponding performance indicator of interest. Naturally,
failure to locate a target or fully depleting energy reserves fully disqualifies the
attempt, given that the ratio of Successful attempts (i.e. reaching the target)
a strategy has in a set of experiments will also be highlighted in the results.
In closing, energy loss and time-to-target will not be counted for unsuccessful
attempts – energy loss is expected Emax and time approaching ∞ (max variable
type value in implementation).

4.3 Experiments with Treefrog Behaviours

4.3.1 Introduction
This section introduces the first set of experiments, which has the goal of test-
ing the capability of the original bio-inspired treefrog strategies. Additionally,
it provides the first opportunity to fully test the developed framework in a re-
search study. The original treefrog tracking behaviours have been labelled as
the Regular strategy and the Explosive strategy. There term “explosive” here
has been inspired by the concept of Explosive Breeding (EB), one that is usually
applied to seasonal species and especially amphibians, in particular ones that
exhibit arboreal locomotion: it refers to the way they swiftly start and conclude
a mating season [42, 45]. In the case of treefrogs, this term has also been used in
pertinent literature to describe a subgroup of treefrogs in a specific population
that have shown much more aggressive tracking characteristics than the rest,
hence “explosive” for the corresponding strategy.

The research questions pertaining to the above goals will be presented next,
which will drive the evolution of the system. Because these strategies follow
typical reactive agent architectures (discussed in an earlier chapter), the im-
plementation is straightforward. The experiment setups are showcased next,
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explaining the way they can assist in answering the research questions presen-
ted earlier. A presentation of the results follows, concluding with a discussion
on the findings in respect to the research questions. This research methodology
flow will be repeated in each of the following two experiment sets.

4.3.2 Research questions
The purpose of this section is to identify how the two strategies modelled after
biological treefrog behaviour perform when attempting to solve the complex
problem of reaching a mobile target conserving as much energy as possible. The
qualities of the two bio-inspired strategies will be presented in detail next with
regards to implementation, but at the abstract level they behave as follows:

Regular Spends more time listening for a target. Moves less and in shorter
distances.

Explosive Spends less time listening for a target. Moves more and in longer
distances.

The studies already discussed have demonstrated that the treefrogs are efficient
trackers with the simplest above strategies. Some of them try to localise their
target better and move slower towards them so that they do not lose energy if the
target is lost. The rest eschew most of the listening efforts in favour of reaching
their target faster, once they believe they have heard one. An interesting finding
from biological studies on EB species is that the opposite gender tends to show
appreciation to the observation of the physical effort behind it [235, 48]. In
contrast, the treefrogs rely on virtually no vision whatsoever towards locating
their partner until they are a few feet from each other [42, 48]. Naturally, the
effort would be wasted on the partner, and it would not factor in the actual
choice of mating with them or not, or potentially waiting for another partner.

One could assume that this explosive strategy is therefore wasted on treefrogs
and should have been discarded by natural selection over the course of time.
Nevertheless, it appears that this strategy has been retained because it has
proven quite effective under certain conditions. Both strategies seem to be
opposites, still they serve their purpose well for certain mating environments.
EB types of treefrogs tend to be more successful in finding partners during
the mating season when there are fewer obstacles in the environment, or there
are more potential partners [48, 49]. On the other hand, the regular treefrog
breeding behaviour has proven more effective in bio-spaces riddled with more
obstacles and less potential partners [42, 235, 48].

These biologically established findings give rise to the question of whether the
strategies of the real-world animals can have the same impact when employed by
robots attempting to perform a similar task in analogous environments. Mean-
while, it is evident that both strategies have stood the test of time and survived
the natural selection process, so they are both necessary for the survival of the
species. Still, when the mating season begins, those two types of population
– and by extent strategies – find each other competing for the same partners
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moving around and calling till they find a mate. How would, then, each strategy
perform when they compete for the same targets? Therefore, these experiments
will attempt to answer questions related to the performance of each strategy
under multiple scenarios reflecting such dynamic acoustic scenes.

Combining these curiosities, the research questions for these experiments are
formed:

RQ1 How do the strategies perform when tracking a single mobile audio source
in an environment with few obstacles?

RQ2 How do the strategies perform when tracking a single mobile audio source
in an environment with many obstacles?

RQ3 How do the strategies perform when tracking multiple mobile audio sources
in an environment with few obstacles?

RQ4 How do the strategies perform when tracking multiple mobile audio sources
in an environment with many obstacles?

RQ5 How do the strategies perform when tracking two mobile audio sources
in an environment with few obstacles and they are in competition?

RQ6 How do the strategies perform when tracking two mobile audio sources
in an environment with many obstacles and they are in competition?

As a final note, the research questions regarding competing strategies only focus
on multiple sources due to what the expected real-world application could be:
deploy a few robots to locate as many people as possible in a disaster scenario.
The answers from the previous questions are deemed as satisfactory for just
a single target. The fascinating – and unknown even in the existing treefrog
behaviour literature – outcome, will also become the first emergent behaviour
in the system. As stressed before, interaction in a bio-inspired system need
not only be in the form of communication for emergence to occur, but rather
communication also just bolsters the potential.

4.3.3 System evolution
This section describes the changes required to the system to enable the experi-
ments so that the research questions can be answered to a high degree. Most of
the work has already been covered in the previous chapter, which was also the
first goal of the project: to create a framework that can effortlessly be paramet-
rised for experiments. The obstacle generation methodology for the acoustic
scene via a modified recursive division algorithm has illustrated what few and
what many obstacles would look like. In the meantime, the synthetic treefrog
call generation component has demonstrated the capacity to generate multiple
calls with different desired characteristics (i.e. pulse rate and frequency). What
needs to be confronted is the implementation of the two bio-inspired strategies.
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Obstacles Obstacle avoidance is addressed by a simple algorithm: if there was
an obstacle towards the direction the perceived target is located at, move away
from it and remember that previous obstacle direction for the next 5 steps. This
is an attempt to emulate treefrog tracking memory, which is further assisted by
visual perception (e.g. understanding a high bush and moving around it). Initial
experiments did not account for this fact due to factoring obstacle detection
via an energy-consuming means outside of the scope of this thesis, eventually
producing experiment results where the trackers were stuck in corners trying to
move towards the target and were stuck in a loop stepping continuously on the
same two or three grid tiles. These obstacles are designed as simple movement
impediments and not significant enough to factor into sound propagation in the
environment.

The first attempt before this type of short-term memory was introduced
relied on randomness to control this variable, albeit the improvement was not
major particularly in the cases of walled corridors, notwithstanding the fact that
it was not analogous to the known treefrog behaviour. One item that needs to be
stressed regarding movement is what happens when obstacles are encountered.
Much like treefrogs only manage to see their obstacles when they are close, so
can the robots in these experiments. It is assumed that some type of extremely
low energy proximity sensor is implemented, and the costs do not factor into
the energy spent. Energy is primarily concerned with the movement and the
listening functions, modelled as described in the corresponding section of this
chapter earlier.

Intelligence microservice To this end, the design ought to touch the in-
telligence or decision-making microservice of the agent. Implementation for
these strategies follows the stop-perceive-act robotics paradigm reminiscent of
the EDBO BioBot life-cycle. The TrackerHostedWorker life cycle has already
been illustrated in Chapter 3.?, with the focus now being on implementing the
IIntelligenceService.ProcessOwnState method for each strategy. At this
point, both strategies share a common feature – the first step is to check en-
ergy reserves and if depleted to notify the IEnvironmentService to remove the
agent, which ends the simulation if no agents are active.

The agents use the following mixed strategy at this point: am I close to the
target, or an obstacle, otherwise do I listen, or do I move, and if so, how far?
Consequently, the agent that is to be implemented as a reactive model agent
has the simple functions based on rules through sensing and acting combina-
tions demonstrated in Figure 4.1. These are translated into simple if-else
statements in the intelligence microservice implementation, covering the 4th
rule depicted in the graph.

Treefrog behaviour showed the following probability numbers for each strategy:

Regular Approx. 60% chance to wait and listen, 40% to move the normal
distance (1 step = 1m).
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Figure 4.1: Rule-based graph showing how the agent performs in each round of
its life-cycle. Rule 4 differentiates between the two bio-inspired strategies.
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Explosive Approx. 30% chance to wait and listen, 45% to move the normal
distance, 25% to move double the normal distance (2m).

Perception microservice The IPerceptionService also performs intern-
ally the action of rotating the head to solve the front-back problem in ITD
computation. However, much like the treefrogs it is modelled after, this occurs
once after the very 1st turn (i.e. birth of the agent in the environment), and
then only every 5th turn. Treefrogs, and by extent the tracking robots, do this
to conserve energy but also due to movement providing a better frame of ref-
erence for continuous localisation of a sound source. Naturally, this front-back
algorithm can also be called out of turn when the azimuth received by the ITD
mapping function is dramatically higher (i.e ±45o) than the expect. This en-
tails that the agent, much like real-world treefrogs, expects something closer
to the direction they were moving towards before and only acts like this as an
exception to ensure nothing went wrong.

4.3.4 Experiment designs
The experiments to be carried out for this part of the study pertain to the
evaluation of treefrog-inspired strategies to answer the research questions that
emerged. A lot of variables are introduced, with multiple strategies, options for
actors (i.e trackers and targets), and lastly obstacle density. The experiments
therefore had to be broken down to several categories to ensure that only one
independent variable is touched every time. The variables for the experiments
will be presented, followed by the setup for each set of experiments.

The Dependent variables:

Time The time spent to reach the target.

Energy The energy left after reaching a target.

The Independent variables:

Strategy The current strategy followed by the tracker, with values: regular,
and explosive.

Targets The number of mobile sound sources in the environment, with values:
one, two, and three.

Obstacles The number of obstacles in the environment: low, and high (e.g.
Figure 3.4 cases C and D respectively).

The Controlled Variables:

Placement The starting position of tracker, target(s), and obstacles.

Signal The properties of target signals and tracker preferences.
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It was discussed previously that when measuring efficiency for the strategies the
factors are time spent and energy left after reaching a target, if successful, hence
they were measured and constitute the dependent variables. A lower time spent
reaching the target in most scenarios means efficiency on the tracking aspect,
while less energy spent means efficiency on the energy management aspect. Since
the study focuses on the combination of these two, both were measured.

As far as the controlled variables are concerned, these were variables that
are expected to have some effect on the outcome. The relevant position of
the tracker to the target can have a big impact in efficiency on both tracking
and energy – spawning right next to each other will have dramatically different
results than spawning to the opposite corners of the 2D grid, with obstacles in
between. With close to 10, 000 starting position combinations and extremely
higher numbers factoring in possible obstacle locations, the results would not
be viable. This was controlled in the following manner: (a) it was ensured that
there is always a path to the target via the designs of the recursive division
algorithm and with a different starting column-row for division each time, and
(b) the starting positions of both tracker and target were made random. A large
number of simulations (1, 000 for each set) was decided to ensure that a large
enough number of possible cases were captured so that meaningful results could
be derived.

Regarding the independent variables, the best practices are to test only for
one variable each time, which was the case for the experiment sets. The variables
were chosen for two reasons: (a) there are existing biological studies based on
the performance of treefrogs in relating scenarios to compare to, albeit not with
hard numbers, and (b) they can cover an assortment of different scenarios a
tracker would face in a real-world applications (e.g., tracking targets trapped
inside a warehouse floor, tracking targets inside an apartment). Initially, the
regular strategy and few obstacles were constant starting with one target and
increasing to two and three in the following sets, gathering results each time.
This process was repeated next with many instead of few obstacles. All the
above were then repeated for the explosive strategy. In closing, the competitive
experiments have only one independent variable, and that was the number of
obstacles.

Accordingly, the following were the experiment sets, each with 1, 000 exper-
iments (i.e. simulations):

RF* Regular strategy, few obstacles, * targets.

RM* Regular strategy, few obstacles, * targets.

EF* Explosive strategy, few obstacles, * targets.

EM* Explosive strategy, many obstacles, * targets.

BF2 Regular and explosive (2 trackers), few obstacles, two targets (locate
both).

BM2 Regular and explosive (2 trackers), many obstacles, two targets (locate
both).
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Success Rate (%) Energy Left (%) Time-to-target (s)
RF1 71 21 129
RF2 72 24 122
RF3 74 22 118
RM1 59 14 141
RM2 58 15 142
RM3 61 18 149
EF1 59 5 52
EF2 65 2 59
EF3 73 8 62
EM1 35 1 90
EM2 49 3 86
EM3 54 3 73
BF2 81 12 94
BM2 79 11 98

Table 4.1: Success rates (finding a target), energy remaining (for successes
only), and time-to-target (for successes only) rounded to closest integer for the
bio-inspired strategies experiments.

4.3.5 Results collection
At the end of each simulation run, a logger implemented in the system stored
the dependent and independent variables as a 5-tuple in a plain ASCII format
file. The 5-tuple consisted of the values:

(T,E, S,O,M)

T Time spent (always odd number due to 2s stop-perceive-act inter-
vals).

E Energy remaining (i.e. E = Emax − Eloss).

S The runtime Strategy of the tracker (binary value regular or explos-
ive).

O The obstacle density (binary value few and many).

M The number of mobile sound sources (or targets), an integer between
1− 3.

The results were gathered from the files and processed to determine average
values for the depended variables of interest, as well as the success ratio, which
was derived from where T and E values existed inside the tuple – the code design
dictates that these values were not to be logged when energy was depleted.
Naturally, this would not provide a metric of how much time it took to deplete
the energy, still if it was needed it can be derived based on the implementation
of each strategy and the Eloss function designed for the model. An overview
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Figure 4.2: A graph representing the metric percentages for the bio-inspired
strategies in the different environments they were tested in.

Figure 4.3: A scatter graph representing the time-to-target for the bio-inspired
strategies in the different environments they were tested in.
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of the results, categorised by scenario with regards to the metrics of interest,
is presented in Table 4.1 and Figures 4.2 and 4.3. Values S, O, and M are
primarily used for the ease of identifying and categorising results.

4.3.6 Regular strategy results
When going over the results of the regular strategy alone (Table 4.1, rows start-
ing with R), indeed it verifies what the biological studies suggested about the
treefrogs, too: they tend to be highly successful in mating, especially so when
there are more obstacles or sources in the environment. While no results with
success ratio numbers in similar scenarios exist for the biological studies, the
viability of this strategy through its success rate of 72.3% across all the indi-
vidual tracking attempts is clear. Additionally, it appears to retain a similar
success rate across all attempts with different number of targets with miniscule
deviation, which could also not be attributed to the fact that the tracker at-
tempts to listen for their preferred target more frequently and hence find their
way to them better. The larger deviation of approximately −13% compared to
the rest was expected when introducing obstacles, however it is close enough to
the original to provide a solution most of the time for such cases – and it also
is close for the number of targets, too. Overall, in respect to the success rate
of this strategy, the results are very optimistic.

Going over the results of energy remaining after finding the target, it is
evident that the strategy shows the capacity for reserving a decent amount of
energy for the scenario at hand. Listening and making decisions about the
location of the target and next move to make more intelligently, proves indeed
that the significantly lower cost of processing power has merits when facing
tracking problems. Much like the success rate results, there appears to be once
more only a small deviation of energy loss from the increasing number of targets
– a 1.3%, which is similar to the deviation demonstrated in the success rate,
too. Introducing obstacles does increase energy consumption, but once more the
deviation of 7.7% is not that significant and not that far from the success ratio
results, proving its consistency. Generally, energy efficiency for this strategy
appears to be very good and to align with success rate results.

On the other hand, the most significant problems of this strategy are pin-
pointed when the time performance aspect is investigated. For low obstacle
scenarios, the same pattern identified above of small deviations to find the
target, even with increasing number of targets, can be identified here again.
However, the average time of 123s for few obstacles does appear to be rather
high for the given environment and criteria, especially in comparison with the
explosive strategy that will be discussed next. Nonetheless, what is much more
interesting is the much higher deviation in time-to-target when more obstacles
are brought in, in that it does not follow the pattern identified earlier for en-
ergy and success and is disproportionate by 21s average (+17). This can be
ascribed to the combination of both more listening actions in turn caused by
more movement actions to tackle the higher number of obstacles. In closing,
time efficiency for the regular strategy proves atypical of the strategies energy



CHAPTER 4. DEVELOPING AN ADAPTIVE STRATEGY 94

efficiency and success rate.

4.3.7 Explosive strategy results
The explosive strategy produced more varied and interesting results than the
regular strategy in general (Table 4.1, rows starting with E). To begin with, the
analogous biological studies alluded to a higher success rate in comparison to the
regular approach under specific conditions: more targets and less obstacles in the
environment. The results for this strategy did validate the part of high success
rate expectations under such conditions, nevertheless they did not achieve the
much higher success rate expected of them as compared to the regular strategy
(difference of −9.9% instead of gains). This could be accredited to the design of
the experiments, and specifically to the values of Em as compared to Emax. An
outlier to the success rate results, something unexpected was the performance of
the strategy with many obstacles (where it is expected to be lacking) but with
also several targets (max of three), with results deviating merely −4% from the
regular strategy. These results were explored with added tracking to the logger
of the run, to determine why the case was so: the agent managed to reach one
of the three targets, even if they weren’t the most preferred one given by their
randomly assigned signal preferences. Overall, success rate for this strategy
was not acceptable except for very specific conditions, raising concerns for its
general viability for dynamic scenarios.

Energy efficiency for this strategy was also found to be lacking. Success
rate is defined by the ability to locate and reach the target before going out of
battery. In the case of the explosive strategy, looking at the results for success
rated discussed above it is crystal clear that most of the time the virtual robot
ran out of energy before it was able due to the higher emphasis on choosing
movement, and moving more tiles per turn, to listening instead. A specific
simulation could have been the following: target could have moved the very next
turn after moving 2 tiles, and follow again with the same action choice, where
a target has moved too and repositioned themselves inside a room and towards
the exact opposite direction. Even for the successful attempts, the pattern
followed demonstrates that the energy was barely sufficient to be successful in
the cases with obstacles (average of 2%), whereas the results were far more
encouraging (difference of +3%) in the experiments with a lower number of
obstacles. Generally, energy efficiency was expected to be lower than the
regular strategy, but not so much that the success rate in the scenario could be
affected as greatly.

Finally, time-to-target for the explosive was analysed. This is where the
strategy performs extremely well compared to its competition, when viewed
outside of the overall context of a real-world application or success itself. For
the far less times it did manage to complete the objective, it did so almost
3 times faster than the regular strategy when there are fewer obstacles, and
reaching up to approximately 2 times faster with more obstacles introduced
to the environment. These results also do align with the energy consumption
results and highlight the “explosive” nature of the strategy. In conclusion, the
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time efficiency of this strategy is exceptional and something that could be
exploited under specific conditions.

4.3.8 Competing strategies results
The two strategies were pitted against each other in a very specific scenario:
attempt to find two moving targets in the environment, whether there are few
or many obstacles. This choice was made primarily due to the scenario provid-
ing the middle ground, but also to determine how the two strategies fared when
another tracker was also active in the operational space. The simulation comple-
tion parameters were changed as compared to the previous simulations, merely
to ensure that the simulation ends again when at least one target is found, or
both trackers lose all their energy, it turned into: find both targets, or both
trackers ran out of energy.

The logger gathered the same 5-tuple of (T,E, S,O,M) ,but this time for
each tracker (Table 4.1, rows starting with B). As communication among agents
was still not implemented, any interaction they had was from the positioning of
each other, but also from the success of each other. Even this low-impact, low-
level interaction, nonetheless, can produce emergent phenomena for the system.
The core difference with this scenario is that it is regarded as a cooperative
problem, therefore the results are dissimilar to the individual ones before as
they consider the success rate of the scenario, and the time or energy efficiency
of both actors, thereby of the overall “deployed” system itself.

With regards to success rate, the results for the overall performance were
dramatic. Overall success rate for the scenario of locating at least one target was
increased far beyond both individual strategies (reaching an average of 80%),
which is welcome in real-world applications such a system could be used for,
and an +7.5% average increase over the best so far (the regular alone). These
observations present the first emergent phenomenon in the system, where the
interaction of the agents in the microscopic level (i.e. the explosive strategy
stealing rewards from the regular strategy) created a unique interaction, which
in turn produced desirable in fact results in the microscopic level (i.e. increased
overall system success rate).

Going over the energy efficiency specifics, the result showcase that the
explosive strategy once more seemed to have a larger impact in the result, with
high costs incurred towards achieving the goal due to explosive-type movement.
However, a problem in the system was outlined: the total energy loss is much
higher than selecting the best one for each scenario regular for both scenarios,
and somewhat better than selective explosive for the one where it seems to
perform best. What was ultimately observed is that right after the explosive
tracker ran out of energy the regular tracker could keep going, thereby most of
the times being successful even if at the much higher cost of energy, in import-
ance trade-off.

Finally, time efficiency also follows the previously observed pattern: the
explosive strategy brought its unique traits once more and improved overall
efficiency of the deployed system when successful, with the regular one picking
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up its pieces as needed to increase system success rate even at the extra cost in
time. This was true for either obstacle density scenario, too. However, another
important observation is that the time-to-target for the scenario as compared
to the results of the regular has been decreased by an outstanding 28s and
44s for few and many obstacles respectively, a by-product that is estimated to
have been caused by its obstacle avoidance troubleshooting relying on the other
tracker, especially so in the case where they happen to start tracking the same
target.

4.3.9 Discussion
To derive these results for a better overview of the strategies and how they
compare to each other to answer the questions, some elementary metrics have
been looked at utilising existing provided values and functions. In general, the
explosive strategy demonstrates an average success ratio, notwithstanding it is
significantly disproportional to the energy loss over time as compared to the reg-
ular strategy. It excels in the tracking of at least one target when it is presented
with many possible targets and especially in a less-obstructed environment, still
proving useful even when there are more obstructions in the environment with
many targets to track.

On the other hand, the regular strategy has an exceptional overall energy loss
over time that tends to result in a much higher success rate for every scenario.
However, this is where the second most importance divergence in the metrics
plays its part from the time-to-target analysis. The significance of the far shorter
time required when using an explosive strategy, at the cost of the energy lost
notwithstanding, can be significant depending on the real-world application of
the energy-efficient mobile sound source tracking. Indeed, if there is a disaster
scenario where every second counts towards finding a target, the choice could
be to rely on the explosive one, whereas in a scenario where leniency in time is
allowed then the regular approach is preferable for higher accuracy.

Consequently, regarding research questions RQ1, RQ2, RQ3, and RQ4,
barring the ones related to competition, the answers can be summarised as
follows: the regular strategy can be anywhere from ??% to ??% more successful
in reaching the target, at an energy cost that wanders between twice or four
times less than the explosive strategy, although at virtually the same cost in time
proportionally. As far as the competition between the strategies is concerned for
RQ5 and RQ6, the results highlight the fact that the explosive strategy is the
winner for most cases, since it tends to reach the targets faster than the regular
one – bot only when it is capable of localising them properly. Nevertheless, the
two appear to complete each other offering increased success ratio under the
specific scenario.

Both time and energy have been designated as the factors that define the
level of efficiency of each strategy, yet it is becoming apparent that the two
bio-inspired treefrog strategies might be related to a very-basic trade-off here
based on the conservation of energy: regular prefers to put the energy to use in
a much more meaningful manner expecting that the outcome will be achieved,
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whereas the explosive attempts to solve the problem as fast as possible with a
view to minimising lost energy (pertinent the arboreal locomotion behaviour).
The majority of treefrog populations have evolved to survive the problematic
mating seasons in hostile environments following this approach, and with the
competitive scenario requiring to locate both targets the emergent phenomenon
of complementarity was identified [236]. Indeed, the two strategies complement
each other in locating both, with the regular strategy making up for the failures
of the explosive one.

The complementarity implies two things: (a) there is merit in running ex-
periments with more complex scenarios to determine how many trackers of each
strategy could solve a more complex problem together to reduce overall system
energy requirements, and (b) there is reason to investigate whether a combina-
tion of the two strategies might be capable of solving the problem more efficiently
on its own. While (a) would be an interesting avenue to explore, the focus of
the study is to develop first and foremost a better strategy for the single agent,
an adaptive one that can overcome more efficiently the problem, therefore con-
stituting (b) the best option of the two. Introducing better awareness than the
typical reactive approach the bio-inspired strategies employed could result in
more meaningful choices between acting and perceiving that would provide a
more efficient and effective solution.

Meanwhile, some limitations and weakness of the experiment and system
design for the simulations have also emerged through the experiments. The
core problem refers to the assumptions on the energy availability and costs for
the actions performed by the intelligent agents acting now as virtual robots. As
detailed in energy management discussion before with regards to energy, care
was taking through pertinent literature to derive a proper analogy of processing
costs to motor costs, albeit each different hardware model could have different
results.

In conclusion, verification of the experiments could be performed at more
rigorous level by having hardware availability that can run the system. Then the
hardware could be left running the operating system with listening algorithm
on loop to derive proper values for everything, as well as running motors on a
separate experiment to determine proper energy – and eventually compare it
to the max value of its battery. While costs have been cared for, total energy
available to the virtual robot was assumed to be low enough so that the strengths
and weaknesses of each strategy can be highlighted. This decision will remain
stable throughout this thesis, to have meaningful results to compare to with the
upcoming optimisation attempts. Objective A2-O1 has been achieved at this
point.
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4.4 Evaluating a Combined Approach

4.4.1 Introduction
The bio-inspired strategies that were explored relied heavily on the observed
behaviours of frogs, both in respect to their energy management as well as basic
perception and knowledge of the world, such as the limited memory for obstacle
avoidance or more simplistic decisions regarding choosing the proper angle out of
a few they could localise and identify as relevant. This imposed some limitations
to the performance expected of a modern system that could use more complex
capabilities and processing tasks to determine the best choice. It was presented
that the literature on agents suggests that their autonomy and efficiency in
performing their highly specialised tasks naturally stems from having a better
view of the local system than the whole. Therefore, the first step for a better
strategy could be letting the agent know more about its environment, obviously
limited only to its available perception system but including more knowledge
about its previous actions, too.

The complementarity of the two strategies also highlighted a new path to-
wards contriving a better strategy. Each of the two strategies were shown to
have its strengths and weakness, so the question was raised of how an agent could
perform when attempting to solve the problem when they could switch between
each strategy at will. Treefrogs are more one-dimensional in the strategy the
follow, and if the mating season ends without having found a partner, they will
try again in the next season following the same approach. An intelligent agent,
however, can make more informed decisions, especially with an expanded know-
ledge of the state of the world through their previous actions and perception
attempts.

The fundamental concept here is that the agent can make an informed de-
cision on how to act. RL has a similar approach, where the agent has some
knowledge on the state of the world and makes more informed decisions after
the training through the reward function, and chooses the right policy (i.e. reg-
ular or explosive) to apply for actions. While this will be explored at a later
step, the core idea behind the RL decision-making process will be adopted for
this combined strategy. To this end, the agent should wake up and evaluate
the state of the environment as it knows it and then make a decision between
moving or listening based on the strategy that they believe would be the best
under the circumstances.

A path to problem-solving combining the best of each approach now that
it has been determined through the experiments could bolster overall strategy
success and produce one that is better at dealing with even more dynamic
environments than simply moving targets. This could be new sound sources
entering the scene, or more obstacles appearing in the scene, and the agent
understanding that the explosive would be a best solution to the former or
switching to the regular for the later. Accordingly, this section focuses on the
design of the system to establish this strategy, the research questions that need
be answered and the experiments design to this end. The results will be present



CHAPTER 4. DEVELOPING AN ADAPTIVE STRATEGY 99

and discussed, looking into the performance of this strategy and what can be
capitalised on from its design for an even more elaborate adaptive strategy.

4.4.2 Research questions
The purpose of this experimental iteration in the study is to determine the
capability of the new combined strategy to address the energy-efficient tracking
of mobile sound sources. With the results of the previous experiments now
providing a substantial foundation to compare performance against (given that
the biological studies provided no such hard data), naturally the first set of
research questions of interest revolve around the performance of the combined
strategy under the same scenarios. This includes tracking one or many targets
in an environment with a few or many obstacles. Additionally, competing agents
with the combined strategy will also be used to try and find both targets, looking
for performance in such cases, too. The questions are thus analogous to the
previous RQ1-RQ4, and RQ5-RQ6 respectively. Meanwhile, a new question
has been formed through the speculation of the expected capabilities of the new
strategy in more complex environments, and by consequence problems.

Accordingly, the following questions need to be answered:

RQ1 How does the combined strategy perform when tracking a single mobile
audio source in an environment with few obstacles?

RQ2 How does the combined strategy perform when tracking a single mobile
audio source in an environment with many obstacles?

RQ3 How does the combined strategy perform when tracking multiple mobile
audio sources in an environment with few obstacles?

RQ4 How does the combined strategy perform when tracking multiple mobile
audio sources in an environment with many obstacles?

RQ5 How does the combined strategy perform when tracking two mobile audio
sources in an environment with few obstacles and they are in competition?

RQ6 How does the combined strategy perform when tracking two mobile audio
sources in an environment with many obstacles and they are in competi-
tion?

RQ7 How do the strategies perform in a highly dynamic environment?

A highly dynamic environment for the purposes of this thesis is defined as an
environment where the defining parameters do not remain static but may change
over time. The defining parameters in the scenarios generated for this thesis
are the number of actors and the number of obstacles. Therefore, in such an
environment new mobile sound sources will be introduced over time and new
obstacles can be added, too, while the agent attempts to track their original
target and overcome the new obstacles. Answers on what the viability of the new
combined strategy is in a highly dynamic environment are crucial to determining
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how capable the strategy is at switching from one strategy to the other on the
fly to be more efficient with the new state of the world. To have a comparison
basis, experiments need to be run for the other strategies, too.

4.4.3 System evolution
Implementation of the combined strategy involved studying both implemented
bio-inspired strategies and taking under consideration the answers to the previ-
ous research questions in this chapter. These answers were pivotal in determin-
ing when the agent will decide to adopt which strategy for its problem-solving
capabilities. However, to be able to decide the agent will need to become more
intelligent, which primarily entails retaining a better state of the world so that
decisions can be made. The key elements that comprise the environment, as well
as the problems the agents have encountered in past attempts, factored in the
decision of what must be remembered and considered towards decision-making.

This section describes the work towards materialising this new, artificial
strategy inspired from the complementarity the bio-inspired strategies exhibited.
The design process at this point also considers possible future needs for the
adaptive strategy, and by extent for laying the foundations for enabling RL
implementations. To this end, the architectural concepts of a state space and
action space are introduced. Furthermore, policies are also introduced at the
same time, so that the agent can choose the best policy to follow based on the
states. The reward concept was not of consequence at the time, due to the lack
of a learning process as well as a proper design for rewarding the agents at this
stage. However, the state and action spaces in combination with the policies
were enough to design an aspiring, artificial strategy.

4.4.4 Action space design
The action space for the implementation of this strategy was the more straight-
forward to create. This is attributed to the fact that the only requirement is to
create a set of all the actions an agent can perform in any strategy and bring
them together:

• Move one tile.

– Implemented for 8 orientations.

• Move two tiles.

– Implemented for 8 orientations.

• Attempt to localise a target.

– Additionally solve the front-back problem.

The above actions are all that an agent can do, albeit the agents take these ac-
tions with a randomised approach at each interval with the bio-inspired strategies.
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Having only 2 tiles as an extra move action for the explosive strategy is essen-
tial to observe the impact of such a minor change to the system while staying
true to the bio-inspired strategies. A potential higher number of movement tiles
possible could have far more drastic effects and should be studied separately
in experiments, potentially highly expanding the scope of this study. For the
combined strategy the policy dictates which action will be chosen from the ac-
tion space. For any future RL implementations, this state space is expected to
remain largely unchanged.

4.4.5 State space design
The agent was infused with a new State with more properties to describe the
environment. In the past, the agents were only aware through the state only the
direction of the last encountered obstacles for memory and obstacle avoidance
properties. This was the starting point in trying to determine what would be
of interest to an agent pertaining the state of the environment, although it
should be something they can know. Overview of agent capabilities based on
its perception systems, both the listening and the obstacle detection systems
(i.e. a proximity sensor), produced the following list:

• The number of signal peaks identified (i.e. sound sources of interest).

• The cues of importance (i.e. base frequency) for each sound source that
was identified.

• The angle at which a specific source with a particular signal was identified.

• The direction at which obstacles were identified around.

These capabilities of the agent can be combined to develop a more advanced
memory and perception mechanism. The two bio-inspired strategies have been
designed to only keep some of that information only and not utilise them beyond
choosing a target closer to the preferences of the tracker, as well as knowing
where obstacles were encountered recently to avoid going that way. These were
chosen as they simulated the basic observed behaviours of the treefrogs, and
so they did not incorporate memory or knowledge about number of possible
targets. Still, the artificial strategy need not be constrained by such bounds,
therefore the following intelligent functions memory functions pertaining to the
state of the world were added:

• An ordered list of the angles each target appeared to be at for the last
rounds relative to current orientation.

• A number representing the possible targets to track.

• An association of the above with the preference function for selecting a
target.

• An estimation of the number of obstacles encountered in the environment.
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Figure 4.4: UML diagram depicting a State class that defines the State space
items.

The state space, in conclusion, for the purposes of this approach that does
not reflect a true RL implementation, is constraint only to the next states the
agent can be in. It is expanded from the original with the above properties and
can be used by a policy to determine the best course of action. Figure 4.4 shows
an abstract depiction of the class used in the system for describing States in the
State space, illustrated in the Unified Modelling Language (UML).

4.4.6 Policy design - new intelligence microservice
The above memory functions can serve as a catalyst to the agent for deciding on
which policy to follow, which means when to switch to a regular approach or to
an explosive one. The IIntelligenceService was hence redesigned to make
the decision through a new IPolicyService that receives as input the state of
the world returned by the IPerceptionService. The policy was designed to
return a proper action from the action space described next based on the state,
much like the policies do in police-based RL, although without the function
mapping between states and rewards that did not exist.

The checks that are performed, and have been derived from the answers to
the earlier research questions, are as follows:

• Number of sound sources count weighs more heavily than obstacle density
count (66%− 33% respectively).

• When there are few targets, try to take regular strategy actions.

– Otherwise try to take explosive strategy actions to better reach any.
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Figure 4.5: Deliberative agent architecture – core components and interactions
among them. Environment is the external component, all else belongs to the
agent.

• When it is estimated there are few obstacles, try to take explosive strategy
actions.

– Otherwise try to take regular strategy actions to better avoid them.

• If the target seems to be moving a lot (i.e. angles changing by more than
±30o), check number of targets:

– If only a few and the other target has large deviation from preference,
try to take regular actions.

∗ Otherwise switch to explosive actions to cover more ground.

This covers the basis for the policy directing which type of actions to take. When
the algorithm above mentions to “try and take actions from another strategy”,
it refers to the fact that the strategy swapping will not be fast. To elaborate,
the agent will try to take at least 3 turns in a strategy before re-considering
whether a better approach will be needed.

A new implementation for the IIntelligenceService interface has been
created that can be used for the combined strategy. The proposed model for this
type of agent has been the Deliberative model – a model close to the previously
used Reactive one but with the extra layer that handles the more advanced
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decision-making. The general architecture of Deliberative agents is depicted in
Figure 4.5.

The components showcased there are:

Perception Gathers data from the environment.

Knowledge Base Stores information about the world.

Reasoning Evaluates and makes decisions.

Planner Determines the best course of action.

Action Execution Carries out actions in the environment.

Environment The external world with which the agent interacts.

How this architecture translates into the Combined strategy agents:

Perception The IPerceptionService of the agent (with the core function of
listening).

Knowledge Base The State Space design described above.

Reasoning The high-level decision making in the Policy design described in
this section.

Planner Either the Regular or the Explosive strategy as chosen by the Reas-
oning component above.

Action Execution Would be the IActionService of the agent.

Environment Real-world or simulated environment (IEnvironmentService).

This is part of the reason why Action and State spaces, as well as the Policy
design that ties them together, were developed at this point during the study, the
other part being preparation in the system for the true RL implementation to
follow. Essentially, the new implementation titled CombinedStrategyService
is a mapping of the rule-based approach above using the new IPolicyService
and serves as the deliberative layer of the intelligent agent. As per the model
requirements, the State space described above serves as the internal world model
that is needed for the deliberative reasoning layer.

4.4.7 Experiment designs
The experiment designs follow the patterns outlined in the previous section,
given that most of the experiments will be repeated to answer both the previous
and the new research questions, but this time only with the combined strategy in
focus. The variables are also the same, although this time the Strategy variable
will not be changing across experiments except for the last one for which no
prior results exist.

This shapes the experiments into the following list:
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Success Rate (%) Energy Left (%) Time-to-target (s)
CF1 69 17 83
CF2 75 18 85
CF3 79 14 91
CM1 58 13 92
CM2 63 14 96
CM3 69 12 99
DF2 82 7 95
DM2 83 8 97

Table 4.2: Success rates, energy remaining, and time-to-target rounded to
closest integer for the combined strategy experiments.

CF* Combined strategy, few obstacles, * targets.

CM* Combined strategy, many obstacles, * targets.

DF2 Dual combined trackers, few obstacles, 2 targets (locate both).

DM2 Dual combined trackers, many obstacles, 2 targets (locate both).

HDR Highly dynamic environment, one regular tracker.

HDE Highly dynamic environment, one explosive tracker.

HDC Highly dynamic environment, one combined tracker.

Except for the experiments of the highly dynamic family (HD*), the designs
for the rest of the experiments are already familiar. In this case, a high degree
of randomness is involved. Targets (except for the one of interest to the tracker)
enter at random intervals reaching up to 3 sound sources in the environment
(average of 20s intervals). After a random and medium amount of time (average
of 50s) one target that is not of interest leaves, specifically the 2nd target that
enters to confuse the tracker. Obstacles are also increased over time, which is a
jump from the category of few to many as seen in past experiments (the maze
generation algorithm runs with new settings and updates the environment) but
stay till the end of the experiment runtime at the new high state. This happens
during an average of 60s after the start of the simulation. The design of this
experiment attempts to confuse the tracker by creating the more dynamic envir-
onment, to determine how each strategy can tackle such an advanced problem
(details in Appendix A).

4.4.8 Results
An overview of the important results with the pertinent metrics are presented
in Table 4.2, which can be compared to Table 4.1 to determine any significant
changes that have emerged with the new strategy. The (T,E, S,O,M) 5-tuple is
used once more for logging and analysis purposes with the S remaining constants



CHAPTER 4. DEVELOPING AN ADAPTIVE STRATEGY 106

for all experiments in this batch. In advance of the summary for each individual
aspect of interest (i.e. success rate, energy efficiency, time efficiency), the results
showed that the combined approach manage to improve most metrics across the
board, some significantly and some not. First, the results pertaining to the
similar past experiments will be discussed, followed by a separate analysis for
the D*2 and HD* experiment sets.

With regards to the success rate, the results appear to be close to the
results for the regular strategy when facing few obstacles: +3% to +5% better
for the cases with multiple targets and few obstacles, although −2% worse in the
single target scenario. These deviations were slightly more exaggerated with the
introduction of more obstacles (+5%, +8%, and −3% respectively). The extra
costs introduced by virtue of borrowing behaviours from the explosive strategy
may have contributed to the reductions in the few cases where obstacles could
not be escaped, whereas the increased movement ought to have helped when
tracking multiple targets as it did with the pertinent scenarios in the explosive
strategy results.

The energy efficiency results were, unfortunately, not as clear to determine
despite being similar across all cases. Indeed, they do not appear to follow
closely for specific families of problems either of the two strategies examined
before. The cause for this can be the swaps between strategies being not so
consistent, or at least not as expected. To clarify, there could be cases where
the agent tends to listen a lot in the regular strategy and then switching to the
explosive, only to fall to the smaller chances that they listen again, thus ending
up with a higher energy result. The same, evidently, could have happened with
movement, producing such difficult to make sense of results with regards to
efficiency. One clear property that could be identified through these experiments
was that the overall Eloss in the system was increased, naturally due to the
increased movement introduced and thus not getting benefits from the regular
strategy part of the combination.

In contrast to energy, time efficiency delivered the most important results
for this batch of experiments. Across all experiments, the time was greatly
reduced with relation to that of regular attempts at solving the problem; in
fact the difference between the two strategies was almost cut in half (range of
37 − 46s). In tandem with the success rate being close to that of the regular
strategy, this would suggest that the combined strategy could effectively replace
the regular strategy due to the sheer decrease in T in spite of the volatility of
Eloss.

The observations from the experiments related to the competition of the
trackers for two targets (D*2) did not provide any significant results. The
results only have a small average deviation of +2% to success from the existing
ones for the two competing strategies and thus there are no observations of
note, other than a small increase in Eloss in the overall deployed system (−4%
average less energy left). At the same time, no emergent phenomena were
observed through the interactions of the similarly behaving agents. Where the
two strategies appeared to complete each other if seen as a CPS instead of
competition, this strategy that borrows the best behaviours from both seems to
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Success Rate (%) Energy Left (%) Time-to-target (s)
HDR 44 9 152
HDE 13 2 101
HDC 66 7 109

Table 4.3: Success rates, energy remaining, and time-to-target rounded to
closest integer for bio-inspired and the combined strategy.

Figure 4.6: A graph representing the metric percentages for the combined
strategy in the different environments it was tested in.

have the capability to solve the problem in the same manner but does not bring
forth any noteworthy observations that could be used for improving strategies
in the future.

Lastly, there was the HD* collection of experiments, still a new category
that did not have prior results to compare to. The three strategies were put
through the test and the results demonstrate the difficulty of this scenario (Table
4.3). Success rate plummeted for both bio-inspired strategies, especially so
for the explosive strategy hence establishing it as a prohibitive choice for such
problems, while at the same time the combined strategy appears to perform
almost 50% better than the regular one (achieving the goal 2 out of 3 times).
Regular energy efficiency reached explosive levels, too. Combined strategy still
retained an impressive time efficiency (roughly 2/3) as compared to its only real
competitor for this scenario, thankfully at a very slightly lower energy efficiency
(−2%).

Overall, the most important result with regards to combined is that the



CHAPTER 4. DEVELOPING AN ADAPTIVE STRATEGY 108

Figure 4.7: A scatter graph representing the time-to-target for the strategies
in the different environments it was tested in. Trend line indicates the rising
difficulty of the different scenarios.

metrics across all cases have been brought up to a very uniform and hence
predictable number despite obstacles or target numbers, which could comprise
one of the strengths of this strategy – stable and thus predictable performance
across most environments as illustrated in Figures 4.6 (success and energy rates)
and 4.7 (point closeness to trend line indicating predictability in time-to-target).

4.4.9 Discussion
The analysis of the observations for the combined strategy with respect to the
research questions posed could be pinpointed to a single fact: this strategy
has success rate akin to that of the regular strategy but reaches its goal in
significantly shorter time at an energy cost far lower than the time gains. Indeed,
this strategy does achieve a better balance of the two strategies with a sufficient
efficiency between time spent and energy consumed, establishing it as the best
choice for the three in most case, with an apparent predictability across most
cases with regards to all metrics. The best traits of both strategies were thus
combined successfully, and it is evidenced by the results, while the implemented
logic of switching between strategies using the newly expanded local view of the
world state the agent possesses has been a great tool in achieving this outcome.
This is an answer that holds true for all the research questions RQ1-RQ4.

On the other hand, the answer to questions RQ5-RQ6 is not encouraging.
No significant improvements were observed when the combined strategy is used
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on multiple agents for a CPS attempt that DF2 and DM2 encourage. In fact,
the utilisation of the two bio-inspired strategies at the same time does seem
to offer a slight increase in energy efficiency. The reason why this happens is
not readily apparent through the gathered metrics, which implies that maybe a
more thorough investigation for this scenario and the combined strategy in CPS
is required. Investigation of strategy swapping times did reveal that the small
amount of randomisation the new algorithm adopts provides more predictable
behaviour in a less dynamic environment, which connotes that a more advanced
and adaptive strategy would require a more advanced decision-making algorithm
– or a higher degree of randomisation.

Meanwhile, the newly introduced concept of a highly dynamic environment
and an experiment design for it delivered another basis for testing the capabil-
ities of strategies. The goal for an adaptive strategy is to offer the best results
under any circumstances by being able to make the best decision at any given
moment no matter the state of the environment. Accordingly, a scenario like
that is ideal for determining how the strategies can react, both how how fast
and how efficiently, and eventually manage to solve the problem. RQ7 was
centred on this scientific need pertaining to the developed strategies, and it has
been answered, too: explosive is almost entirely incompetent, while the much-
increased energy over time efficiency of the combined strategy establishes it as
the winner. Nonetheless, these results are not encouraging as compared to much
better performance in more specific scenarios for some of these strategies.

Moving forward, a question emerged earlier with regards to how to best
steer these attempts towards a more adaptive strategy: more informed decision-
making, or more reliance on randomisation with the combined approach. While
this last solution (i.e. randomisation in decision-making) has been debated over
the years, and there have been historical cases where randomisation has im-
proved decision-making in lieu of the more deterministic nature of a strategy,
the new tools the field of AI offers can be exploited to formulate more adapt-
ive strategies instead. Having studied the different machine-learning and AI
paradigms, there is opportunity in leveraging the existing developed strategies
and tools (e.g. world state and CASA ) developed throughout this thesis via the
means of a more robust AI than more into randomisation sampling and related
techniques for adaptivity in highly dynamic environments. This concludes the
work towards realising Objective A2-O2 of this thesis.

4.5 Towards an Adaptive Strategy

4.5.1 Introduction
RL has basked in the recent years in significant advancements, both in practice
and in theory, and is well-known for its applications in an assortment of different
and interdisciplinary domains, including but not limited to robotics, healthcare,
finance, gaming, and education [177, 179, 174]. When looking into advanced
machine-learning techniques that could be used to improve upon the bio-inspired
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and other artificial approaches to solving the problem this thesis revolves around,
RL offers an array of unique properties that can be beneficial to this end. Most
important of which, however, is that it is an active learning approach where
the agents continuously improve by interacting with the environment. This is a
case of real-time learning as opposed to static training datasets that the other
core machine-learning paradigms employ.

Summarising the findings in the researched field earlier, RL follows an un-
supervised approach, therefore no training specific sets infeasible to create for
such scenarios are needed, an additional boon for development purposes. Addi-
tionally, RL need not always rely on an explicit modelling of the environment,
which can range from inaccurate when it is dynamic to infeasible depending on
the problem and the variables involved, therefore it can be argued that a model-
free RL approach is robust to uncertainty. Meanwhile, the policies developed
can also ensure that the best actions are taken based on the new state of the
world, one more tool in the arsenal against this complex problem. Finally, the
path planning involved in this case has been found to be a strength of RL for
complex scenes, due to the capacity for adapting to random starting and final
positions by finding the best path forward. Most importantly, though, it is the
fact that the core concept of maximising the eventual rewards, which in this
case could be the remaining energy.

With the overwhelming strengths of RL for this scenario, the focus then
shifts towards what the best RL algorithm is to employ. While recent advance-
ments in Deep Reinforcement Learning applied to the traditional approaches
has produced outstanding results for several applications [179, 177], designing
and developing the sheer amount of data needed for the training on this dy-
namic acoustic scene defeats one of the reasons why RL is chosen. Accordingly,
more traditional algorithms ought to be considered that can be implemented
within this step and the scope of this thesis. There are several properties and
parameters that affect the type of approach as related to the problem, because
these define an algorithms strengths and weaknesses. A preliminary review of
these was presented in the background theory discussion for this chapter, there-
fore outlined next is the reason why a Q-learning, ε-greedy approach has been
chosen.

4.5.2 Research questions
Having entered the third step of an iteration on strategy making and evaluation
in the search for a proper adaptive strategy, the previous research questions
RQ1-RQ7 remained relevant for this step, too. Question RQ7 is the most
important question to answer, specifically because the highly dynamic environ-
ment is the one that demands the highest degree of adaptivity. The principal
reason for developing the new adaptive strategy was to reach a point where
the overall energy-efficient tracking solution via CASA would be capable of ad-
apting to any situation at any time. Consequently, the reinforcement learning
approach followed here will also be attempting to reach that state and this can
be evaluated by repeating the experiments with the new strategy.
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Furthermore, one more question emerged through the consideration of the
best strategy to use to this end: is the chosen approach of a Q-learning, ε-
greedy strategy appropriate for solving this problem? Several other approaches
and strategies have been considered, and this one was chosen for its identified
properties via research and pertinent literature. Nonetheless, there are some
problems with this approach that will be discussed in relation with the answer to
this question when the experiments are concluded. Moreover, this new question
aspires to determine whether this RL approach is viable for future studies by
researchers in the field by more in-depth optimisation studies, or if such research
should probably lean towards a more optimal solution.

To conclude, the research questions for this iteration of experimentation are:

RQ1 How does the adaptive strategy perform when tracking a single mobile
audio source in an environment with few obstacles?

RQ2 How does the adaptive strategy perform when tracking a single mobile
audio source in an environment with many obstacles?

RQ3 How does the adaptive strategy perform when tracking multiple mobile
audio sources in an environment with few obstacles?

RQ4 How does the adaptive strategy perform when tracking multiple mobile
audio sources in an environment with many obstacles?

RQ5 How does the adaptive strategy perform when tracking two mobile audio
sources in an environment with few obstacles and they are in competition?

RQ6 How does the adaptive strategy perform when tracking two mobile audio
sources in an environment with many obstacles and they are in competi-
tion?

RQ7 How does the adaptive strategy perform in a highly dynamic environment?

RQ8 Is Q-learning suitable for solving the energy-efficient CASA tracking prob-
lem?

4.5.3 Implementing Q-learning for CASA
One challenge for the implementation of Q-learning as a strategy in the current
system was also an opportunity to evaluate its architectural design. The initial
architecture was designed to facilitate the previous strategy implementations,
however the demands of the system in implementation given the new machine-
learning requirements were much higher. The ought to be able to leverage its
designs for supporting both RL training and Q-learning operations with the
minimal implementation requirements and without having to resort to architec-
tural changes to achieve this goal. Indeed, the distributed system framework
was thus extended minimally to realise this new adaptive strategy, although the
new introductions dictated by Q-learning were substantial.



CHAPTER 4. DEVELOPING AN ADAPTIVE STRATEGY 112

4.5.4 Q-learning on- and off-policies
The first step was to develop the two different policies, implementing the in-
terface IPolicyService for the on-policy (ε-greedy) and the off-policy (Q-
function). The on-policy was implemented as a stateful service with the only
property being the variable titled epsilon so that the parameter can be tweaked
as needed for exploration vs. exploitation balancing. This is the first call the
new and updated IIntelligenceService providing the Q-learning implementa-
tion makes, a straight-forward implementation. The on-policy creates a random
number and compares it to the epsilon value to decide whether one random
action from the existing Action Space will be called, or the off-policy will be
called to provide the optimal action instead. This uses the space created for
the combined strategy: listen, solve the front-back problem, move in one of 8
compass directions one tile or two – random pick among a total of 18 possible
actions.

The off-policy, the one being improved, was constructed as another stateful
service with a simple variable as detailed earlier – the QTable. A simple interface
method for updating the policy was added, implementing the reward function as
per the Bellman Equation adapted to Q-learning, which will be presented next.
Regarding the table variable, it was made to accept actions as columns that are
a fixed 18 in total representing the actions that can be taken, while the rows
that would be inserted as encountered represented states that are of an unknown
total number but discrete in manner, not continuous State Space. Encountering
states happens from how the agent starts and explores, specifically the starting
point being a state that provides another 8 encountered states (i.e. the adjacent
tiles in the 2D environment), initialised with a 0 as Q-value and updated after
the reward function runs if the specific cell is selected as an action through the
off-policy.

These changes alter the microservice interaction in the reasoning layer of
the agent. The new IIntelligenceService interaction flow for this new Adaptive
strategy is depicted in Figure 4.8.

4.5.5 Q-learning action and state spaces
The Action Space was the same as for the previous implementation, since the
agent possible actions do not change (i.e. no new sensors or motor functions
introduced). The State Space, on the other hand, required further investigation
due to the problem of having to limit the number of states in the space for
a Discrete State Space algorithm such as Q-learning [184]. At that moment,
the states were not designed with RL in mind and how many states needed to
be introduced to make a feasible space, because it has a high impact on the
algorithm, and their design could even be used for a Continuous State Space
policy instead.

The new states, titled QState, can be uniquely identified by:

ObstacleNorth Values true or false.
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Figure 4.8: The new interactions between the microservices as initiated by the
decision-making layer of the agent in the new Adaptive strategy.
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ObstacleEast Values true or false.

ObstacleSouth Values true or false.

ObstacleWest Values true or false.

OrientationTracker Values N, NE, E, SE, S, SW, W, NW.

OrientationTarget Values N, NE, E, SE, S, SW, W, NW, U (unknown).

The above list can identity where the tracker is facing, where the target they
had localised appears to be at, and what obstacles are around them. This could
assist the agent in devising their strategies for obstacle avoidance depending on
their current position in relation to the perceived position of the target [237],
which is crucial to minimising energy loss and time spent tracking. This is
a representation of the environment free from artificial or observer knowledge
that only considers what the perception mechanisms of the agent are capable
of, thereby ensuring that the training takes place under the conditions and
restrictions that would be imposed to the agent in a real-world application, too.
This design evidently limits the State Space to | Si |= 2 · 2 · 2 · 2 · 8 · 9 = 1152
total states, and by consequence rows in the QTable with a resulting, cell count
(i.e Q-value count) of | Q(Si,Ai) |=| Ai | · | Si |= 18 · 1152 = 20, 736.

The reason behind choosing this approach was to teach the agent how to
minimise costs by best avoiding obstacles on their way to their localised target.
Introducing more variables to the design of a single state or keeping some of those
developed for the combined strategy, would highly increase the number of state-
pairs an agent can explore to numbers that can make simply training simulations
prohibitive. This is where a Deep RL approach could be used instead to get
better results [177], or at the very least function approximation techniques can
be designed and realised to estimate the Q-value of the unknown state-action
pair [238], both of which could eventually result in a more efficient strategy.

4.5.6 Q-learning rewards and penalties
The final piece of the puzzle for development purposes was to implement a
reward mechanism. This is a key step in every TD algorithm such as Q-learning,
as it happens at every single time interval where the agent transitions into a
new state instead of just receiving delayed rewards at the very end. In the case
of energy (i.e. battery) efficiency in optimal control theory and similar fields the
cost function is generally described using penalties instead of rewards to ensure
that the agent is taught that every step of the way incurs a penalty. For Q-
learning that capitalises on positive rewards, similar cost efficiency approaches
introduce the addition of a bias value to ensure positive rewards. The reward
function in such cases is analogous to the cost function in conventional optimal
control theory, thereby offering a well-established link to the energy optimisation
effort [239].

Designing the function, the energy lost for the action taken is the main
factor here, compared to the total energy still available to the agent. The
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total energy needs to be included in the function so that its weight is reflected
in the training of the agent, given that it was not included in the State Space
design. Unfortunately, that could create a continuous instead of a discrete space
introducing huge problems to the chosen RL algorithm and possibly require
reliance on more advanced methods that would expand beyond the scope of this
project. Moreover, there is a need to factor the time-to-target in the reward
function, as it is the secondary factor in the energy-efficient metrics for the
results. The bias introduced to elicit positive rewards, as expected of the Q-
learning algorithm training process, is a multiple factor of the average action
cost in the action space of the system and the time required to take an action
(i.e. the stop-perceive-act interval) – this is bound to change depending on
different physical-to-logical mapping of energy values and motor spin times.

In consequence, the reward function uses a bias with the energy lost per
interval over the total energy to enable energy maximisation with positive re-
wards:

R = b− EA·∆t
Emax

R The reward for the action taken.

b The constant bias to guarantee positive rewards.

EA The energy cost for the chosen action.

∆t The duration in time for this action.

Emax The total energy available to the agents.

The time duration is fixed as designed for 2s, which represents the stop-perceive-
act cycle of the agent. Same for all actions except for moving 2 tiles when
applicable, which is double that. The maximum energy available to agents and
energy costs have been described when discussing the concept of energy for this
study earlier, as the product of the very earlier experiments with bio-inspired
strategies and evaluating the system. Bias is used as proposed by similar studies
by [239].

4.5.7 Policy training - hyperparameter tuning
As a first step in the policy training phase of RL, this section revolves around the
values for the triplet of ε-α-γ that have impact on both training and runtime
for the parameters. As mentioned earlier, these parameters are interconnected
to various degrees and changes in one also affect the expect outcome of another,
or its expected impact instead. Therefore, each individual hyperparameter will
be revisited and discussed in the context of how it was utilised to train the
adaptive strategy before it can be put to the test in a real environment.
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Learning rate (α) The learning rate governs to what extend the values in the
off-policy are updated for each action taken during a training session [240]. The
learning rate is usually designed to be a non-stationary parameter, much like
the Q-values are also non-stationary. Consequently, an eventual degradation
from an initial value across training sessions for this value is desirable [186]. As
outlined before, higher rates mean quicker learning but also non-optimal policy
formulation, whereas lower rates extend the development of such a policy but
nearly guarantee that it can be reached. This guarantee has been mathemat-
ically proven when each state has been revisited an infinite number of times,
although in practicality this means that at least each state-action pair has a
non-zero value for extremely large state spaces [184].

Deterministic environments can benefit from high learning rates, however
dynamic environments should gradually start from high and move to low over
several iterations [186]. While there can be a delay in reaching the optimal
policy towards the end when the rate is significantly decreased, this is a pro-
cess that is bound to ensure that a more optimal policy for adapting to the
environment under any circumstances can be formulated. In fact, the type of
degradation itself can result in either polynomial or exponential time costs in
reaching convergence as a factor of the discount rate γ, with polynomial vs. lin-
ear degradation rates [186]. With the former being more suitable for training,
the concession is that the learning rate should start high and decrease at high
intervals.

Exploration rate (ε) Exploration rate has an analogous effect in training
to the learning rate [185]: higher rate allows more exploration and population
with less than optimal values in the Q-table, with the lower rate exploiting more
and thus learning to choose better actions over time. The difference here is that
exploration rate is also something that factors in the final performance of the
algorithm, too, apart from the training, while having different roles in each:
in the former it helps with escaping local optima in decision-making, whereas
in the later it allows for fine-tuning existing Q-values or filling in missing ones
[186, 185].

In consequence, analogous to that of the learning rate is also a gradual
degradation of a starting high exploration rate for training. In the beginning it
is required to employ high e to populate zero-value Q-table entries, with a view
to improving them in the future with a lower rate. What a high ε also offer to
the table in training is the reduced risk of missing optimal action by relying on
sub-optimal known exploitation options instead [186, 185]. Accordingly, while
the training of the agent in the adaptive strategy evolved, so did the exploration
rate decrease in a manner parallel to the decrease in learning rate.

Discount rate (γ) Discount rate differs from the above in its actual effects
and plays other important roles in the fine-tuning of training hyperparamet-
ers. Lower rates ensure the agent values short-term rewards during training,
nonetheless the focus of this strategy is to create one that can adapt in the
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various environments by reaping high rewards in the end. Given the R function
described earlier, this would entail the lowest combination of cost and time,
thereby ensuring the best possible time and energy saving with a view to the
eventual goal of locating the target. Evidently, the training would require set-
ting a higher γ value to ensure that the whole training process is centred around
always maximising the best rewards in the long run.

Unlike the learning and exploration rates, there is no gain for training with
varied values across the whole process [186]: a lower rate would only establish
not exploring “hidden paths” to better rewards serving only to explore in local
minima and improve the values there for short-term goals. Another advantage
of a high discount rate value relates to the possibility of enforcing a form of
exploration without relying on the exploration rate – to elaborate, this occurs
due to learning to skip the discount rewards to find these more optimal “hidden
paths” to the long-term goal [186, 185]. Moreover, similar research in battery
cost optimisation utilising Q-learning and focusing on reward maximisation in
tandem with the research on learning rate costs and optimal hyperparameters
[239, 241] , reveal that discount rate factors for such cases should waver between
0.7 and 9.0, with the latter being the advised choice [186, 241, 239]. Accordingly,
this value will be set for all experiments.

4.5.8 Policy training - episodic training
What is described as an episode is the deployment of an agent through the
baseline scenario with specific hyperparameters to populate the Q-table with
Q-values were missing (i.e. having a value of 0), or to improve those values with
new ones owing to a new set of training hyperparameter combinations. Given
that the agent will need to be able to adapt to a highly dynamic environment,
this is the baseline scenario that the agent was trained in: few obstacles raising
to high during operation, and one initial source with the additional “noise” of
more sources being introduced gradually. Through this scenario the agent could
learn to tackle obstacles, find routes even through new obstacles, and reach the
desired target as needed.

Therefore, every episode consisted of this scenario and the agent running
through it until completion (i.e. depleted energy or target reached), updating
the Q-table along the way with each episode step (i.e. taking an action). Con-
sequently, the table was serialised in a condensed binary format given its size
and was reloaded at the beginning of the next episode so that the values could
be updated. Lastly, the different episode sets refer to the assorted combinations
of hyperparameter values that ran through several episodes each. For each such
set some information had to be gathered before moving on to the next set, to
keep track of possible algorithm convergence through proper metrics.

One of the most prominent tools for determining algorithm convergence in
machine-learning is the use of Root-Mean Square Error (RMSE), a tool primar-
ily used as a regression model performance indicator:

RMSE =

√∑ (P i−Oi)2

N
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P i The predicted choice at each step (i.e the optimal path if it were
known).

Oi The observed choice at each step (i.e. the choice the agent made
then).

N Total number of episode steps taken.

To enable the system to be capable of providing a value for P i there needs to
be a way to ensure what the best possible choice would be at each step. In this
case, the focus is on finding the best next step rather than cost, where a Dijkstra
uniform-cost search would be more appropriate. This can only be provided in
theory by the observer and to achieve this goal the use of Breadth-First Search
(BFS) was necessary, an algorithm specialised in finding the minimal path from
start-to-end in a grid-like environment with obstacles, as compared to Depth-
First Search (DFS) for example [242]. The implemented algorithm for BFS
provides the best possible path to move into towards the target, which is a set
of state-action pairs where the action Ai there is a single move action, still that
is the only capability it offers.

BFS provides the path as a list of Q-table cells, from which eventually
more processing is required: first to determine if listening is needed, which
the IEnvironmentService determines if the target moved in the last step and
is one compass direction farther than the agent, and second if two consecutive
steps can be taken towards one direction instead of just one to reduce time.
Lastly, these comprise the next best prediction and thus the P i, while the Oi

is the state-action pair the agent eventually chooses. Apparently, this is a very
costly step in computational power to perform at each episode step, which cu-
mulatively builds up to a much higher training runtime for an episode and by
extent a training set. As such, this metric has only been used to observe con-
vergence capabilities of the adaptive strategy only during the last two sets of
hyperparameter combinations that revolve around exploration rate ε and will
be of consequence to the eventual experiment results that will be showcased
next. The use case is the highly-dynamic scenario with only one tracker, the
one being trained (i.e. with the adaptive strategy).

The following episode sets emerged and followed in order where γ = 0.9 for
each:

ES1 {ε = 0.9, α = 0.9}

ES2 {ε = 0.6, α = 0.9}

ES3 {ε = 0.3, α = 0.9}

ES4 {ε = 0.6, α = 0.6}

ES5 {ε = 0.3, α = 0.6}

ES6 {ε = 0.3, α = 0.3}
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ES7 {ε = 0.1, α = 0.3}

ES8 {ε = 0.3, α = 0.1}

ES9 {ε = 0.1, α = 0.1}

In closing, the very last set ES9 was, naturally, the one to be used on the ex-
periments as the aspiring optimal and final adaptive strategy for the agents,
nevertheless ES8 has been persisted as well, for investigation through the de-
veloped BFS-RMSE convergence metric for evaluation purposes. Numbering
5, 000 episodes each, due to the average number of episode steps for each epis-
ode being enough to cover the entirety of the state space | S |, thanks to the
exploration randomness at least for the start.

4.5.9 Policy training - training observations
This section presents some noteworthy observations related to the ES* iter-
ations and how the agent started to learn how to solve the tracking problem
step by step. To begin with ES1, the most important part of this set was to
explore vastly and aspire to populate all Q-value states with a non-zero value as
per the R function. Indeed, the results showcased a coverage of about 100% of
the Q-table cells, which was also continued with more optimised values through
ES2. These initial training sets provided the based for the rest of the training
process to iterate and evolve into the coveted optimal policy.

Moving on with training sets ES3-ES4, the most interesting observation as
Q-values were improved from episode-to-episode from these initial sets was that
the agent appeared to learn, that the first thing they should do at each initial
state is to attempt and localise the target. The initial state of the episode always
sets the OrientationTarget value of the state S1 to U, which is the unknown
location of target. Evidently, most attempts where the first exploration step of
such resulted in anything other than listening for localisation led to eventual
energy starvation due to not knowing where to head towards. This proves in
practice beyond just theory for the CASA tracking case at hand that Q-learning
can provide a valuable strategy towards solving the energy-efficiency problem.

Consequent attempts ES5-ES7 proved once more the Q-learning fact: the
agents started to learn to follow walls when a target was on the other side
of that wall. Instances between attempts were investigated by parsing the
Q-values for specific similar action-state pairs. The pattern that was identi-
fied had to do with similar Obstacle* values aligning on the Q (Si,Ai)value
where OrientationTarget value was within one step of that: an example of
ObstacleNorth is true and OrientationTarget is NW, N, or NE for consecutive
Si states, examples of which can be found in Figures 4.9 to 4.11. This can
be argued to be the outcome of a high γ value teaching the agent to follow
such consecutive states with the eventual high reward of finding the target at
the end. This something unique in all the strategies implemented up until that
moment, as the original strategies did not have any elaborate obstacle tack-
ling mechanism, merely a reminder of where an obstacle was just to not go
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Figure 4.9: Rewards for possible movement actions for the optimal policy
(highest reward will be chosen). Higher values for going closer to the target
and closer to the obstacle.

Figure 4.10: Rewards for possible movement actions for the optimal policy
(highest reward will be chosen). Higher values towards grids away from past
obstacles and closer to target. Notice how previous step is still high, as it means
following an obstacle, but due to the current orientation of the head (i.e. East)
the value there is much higher.
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Figure 4.11: Rewards for possible movement actions for the optimal policy
(highest reward will be chosen). Higher values demonstrating how the agent
eventually learned to overcome obstacles.

near it in short-term exploration. Eventually, this comprises one of the gains of
machine-learning over the more basic bio-inspired strategies.

At the same time, a similar observation was made with regards to the en-
vironment open-space sprint towards a target, which is characteristic of the
explosive strategy. In this scenario we have the pure AI algorithm learning to
behave as a treefrog under favourable explosive breeding conditions merely by
being given the choice of having double-move as a potential action in the action
space A. Indeed, states where both target and tracker where in the open space
and the target orientation did not deviate more than one step on the compass
showcased high Q (Si,Ai) values. One more key takeaway from this observation
is that the agents learned to also value the time to reach the target apart from
the energy cost. In detail, the double-move action has much higher cost, but
the potential of reaching a target close by in open space just by following two
consecutive double-move actions greatly increased the final rewards as compared
to the immediate ones, another benefit of training with a high γ value.

The final two sets ES8-ES9 did not have anything ground-breaking to show-
case as an observation, but fundamental information was observed through ana-
lysis of the BFS-powered RMSE metric for convergence. The combination of
values {α = 0.1, γ = 0.9} in these sets naturally assure the proper pace of learn-
ing and the significance of the future reward. Indeed, some training processes,
nonetheless in less dynamic environments with smaller state space, prefer to
just start with these values and run a significantly higher number of episodes
until convergence can be observed.

Table 4.4 demonstrates the values of RMSE for the last two training sets that
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RMSE (25%) RMSE (50%) RMSE (75%) RMSE (100%)
ES8 0.8597 0.8543 0.8441 0.8398
ES9 0.7991 0.7911 0.7889 0.7877

Table 4.4: RMSE values over percent of total training episodes (5, 000) com-
pleted.

were of importance. Naturally, RMSE values indicate better performance the
closer they are to 0. Relevant stability across and between the last two episodes
also indicates that there were no significant gains in training sessions, therefore
more stable values were being achieved. Accordingly, these values indicate that
potentially more episodes might be required to provide a full convergent policy,
however these values are close to what an optimal policy fluctuates within and
thus could be utilised towards evaluation against other strategies with ES9
provides the best performance.

4.5.10 Experiment designs
Having reached the point of an adaptive strategy trained to sufficient length,
the time was ripe for answering the research questions. The experiment designs
have been detailed in the respective section that corresponds to the combined
strategy and, given the similar questions for that set of experiments, there is
nothing to change or add here with new designs are needed towards answering
the research questions pertinent to this iteration – including RQ8. The only
two factors that changed at this point were the strategy that the agent employs
at any time, that is the fully-trained adaptive strategy, and the exploration rate.

The final experiment list was shaped as:

AF* Adaptive strategy, few obstacles, * targets.

AM* Adaptive strategy, many obstacles, * targets.

BF2 Both Adaptive trackers, few obstacles, two targets (locate both).

BM2 Both Adaptive trackers, many obstacles, two targets (locate both).

HDA Highly dynamic environment, one adaptive tracker.

For the purposes of the experiments a trained policy is used, which implies that
the triplet of ε-α-γ that governs the eventual behaviour of the algorithm is now
obsolete. Indeed, it is now condensed down to the single value of ε, which factors
into the normal operation of the Q-learning algorithm. The exploration value
in highly and meticulously trained policies, which have been deemed to have
achieved convergence and generally operate in non-dynamic or low-dynamic
environments, is usually set to values below 0.01. This is to ensure that the
optimal decisions are made at each point during the runtime operation of the
agent towards solving a real problem and not during a training episode.
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Success Rate (%) Energy Left (%) Time-to-target (s)
ε 0.1 0.3 0.1 0.3 0.1 0.3

AF1 93 91 35 22 59 65
AF2 94 90 36 21 55 66
AF3 95 89 39 23 51 69
AM1 91 86 29 18 65 72
AM2 92 88 31 19 63 74
AM3 92 87 30 19 60 70
BF2 91 83 19 14 84 94
BM2 90 85 17 12 88 98
HDA 88 78 18 8 72 85

Table 4.5: Success rates, energy remaining, and time-to-target rounded to
closest integer for the adaptive strategy experiment runs, for both values of
ε.

Taking into consideration the dynamics of the environment and the less
extensive training of the policy, which is also not supporting with more advanced
techniques such as Deep RL, a value much higher is needed to ensure that the
agent will not get stuck in local optima or obstacle loops. In such cases, a value of
ε of at least 0.1 is used as discussed in training, prompting the experimentation
with different values to answer the research questions. To this end, the values
of 0.1 and 0.3 were chosen for 2 runs of the experiment sets using the fully
trained policy as resulted from ES9 but with a differing ε value. The chosen
value of ε = 0.3 is also close to the value of movement in the explosive strategy
given that exploration means movement one out of five times but using the fully
trained policy this time.

4.5.11 Results
Results for the final experiment collection towards evaluating the adaptive strategy
compared to the bio-inspired and combined strategies were critical in determin-
ing its viability for the purposes of this thesis. Many results to compare to were
available, which only served to bring to the spotlight the performance gains of
this strategy: vastly outperforms the bio-inspired strategies, while at the same
time outperforming the combined one by a significant margin. The important
results are organised in Table 4.5 (a high-level overview). A presentation of res-
ults in the context of success rate, energy and time efficiency will be performed
once more gathered through the (T,E, S,O,M) logging. The combined strategy
had offered the best results up to this point to compare with (Table 4.2). A
quick look at Table 4.5 side by side with Figures 4.12 and 4.13 reveals that
ε = 0.3 provided absolutely no benefits in any cases as compared to ε = 0.1,
therefore the results will be presented for the latter only.

Regarding success rates, it is clear that the values are staggeringly higher
in all base experiments with few obstacles (ranging from +16− 24%), and even
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Figure 4.12: A graph comparing the metric percentages for the adaptive strategy
in the different environments it was tested in for both values of ε.

Figure 4.13: A scatter graph representing the time-to-target for the adaptive
strategy in the different environments it was tested in for both values of ε.
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higher compared to the boosts gained from the combined strategy when a larger
amount of obstacles is involved in the scenario (average gains of +28.3%). An-
other noteworthy observation with regards to success rate for the competitive
tasks (BM2) is that once more the gains were far higher than the combination
of explosive and regular strategies, or the combined alone, with a gain close to
+9% to either of the two. Final substantial gains come with the highly dynamic
environment experiments (HDA), where the gain amounts to an impressive
+22% over the combined strategy, with the bio-inspired ones not offering any
competition as discussed in the previous chapter.

Meanwhile, energy efficiency appears to also be improved in most cases
and, especially so in the experiments with few obstacles this time instead, but
more importantly the gains seem to be somewhat analogous to the gains dis-
played for the success rates: +17% for more as opposed to +19.6% for less
obstacles, surpassing the highest numbers so far that the regular strategy has
exhibited by almost as much. The increase holds true for the base test cases but
not the competitive tasks, admittedly, where the gains were just lower that a
flat 10%, producing naturally better results than the combined strategy but not
nearly as impressive. In HDA (a +11% increase over combined), notably, the
energy efficiency gains for ε = 0.1 are almost double in contrast to the ε = 0.3.
In fact, the latter has had much lower gains in energy efficiency than in success
rate unlike the former.

The most distinguished observations come with the time efficiency results,
due to the uniformity they represent across scenario families (62.6s for many
obstacles, 55s for few obstacles). Moreover, it is evident that adaptive is the
very first strategy that produced consistently high success rates at moderate
time costs, thus overtaking anything the regular strategy had to offer to the
problem-solving with also similar energy costs and much higher success. Time
efficiency is very close to that of the explosive strategy, nevertheless not only
for the more open spaces where that strategy shines. The most important gains
here are also on the HDA experiments, where investigation of time-to-target
showcases roughly 2/3 of that of the combined strategy. Lastly, similar gains were
found in the competing experiments, but merely of a factor of −10s average.

4.5.12 Discussion
The first question that can effortlessly be answered through the results above,
and their proximity to optimal values, is RQ8: indeed, an adaptive strategy
based on Q-learning and trained extensively with degrading hyperparameters
can provide a solution to the energy-efficient mobile audio source tracking prob-
lem. With the high success rates and a balance of energy to time ratio towards
finding a target under any environment, whether less or more dynamic, an agent
trained in this manner can adapt to the problem and find an efficient solution
in a timely manner. Consequently, most of the research questions posed can be
provided the exact answer (RQ1-RQ4), except perhaps the competing set of
experiments where no significant gains could be observed (RQ5-RQ6). Lastly,
the high adaptability demonstrated for the highly dynamic environments is also
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the much sought-after answer to RQ7.
Ultimately, the more concise discussion for these findings in this section

focuses on the observations and how they are tied to the RL approach. One
interesting finding was pertinent to the performance in dense environments.
This can be assigned to the policy training observation highlighted earlier: how
the agents learned to follow long walls in overcoming obstacles. Its significance
is attributed to the recursive division algorithm employed towards simulating
a floor- or apartment-like environment does indeed tend to create at least one
larger corridor, but also both spacious and smaller rooms, simulating a much
more space. Naturally, the trained algorithm could adapt in such a manner
to actual real-world spaces that bare such characteristics. Nonetheless, the
importance of being able to efficiently tackle obstacles in a dense environment is
essential in disaster scenarios, further increasing the applicability of the adaptive
strategy in demanding cases.

Another fact that emerged through observation of the results and a brief
analysis of choices made by the agents after running isolated experiments, is
that the agents learned to balance listening and moving to get the best results
in both energy and time costs, thus reminiscent of regular strategy traits. The
investigation showed that the behaviour with which the agents were trained
learned to stop and listen after somewhere between two and four steps taken
depending on the compass direction distance in their orientation from the ori-
entation of the listener. This ensured they did not move more than needed
towards the direction of a target before that target had changed their position
or they have moved much further from that position. It is speculated that the
long term-reward emphasis through the high discount rate suggested for such
cases contributed to this behaviour.

Investigating the results for the most open-space (i.e. low-obstacle environ-
ments) tracking showcased the adaptation of the capabilities of the explosive
strategies towards finding the targets, albeit in a more sophisticated manner.
The previous observation also could be parallelised to the more intricate stop-
and-listen behaviour of regular strategies, still once more in a more expert man-
ner accounting for other important factors, too. This highlights the fact that the
idea of reaching a point of attempting to create a machine-learning AI through
bio-inspired approaches contributed to the success of the eventual policy. In-
deed, the double-move action would not normally be a choice presented in a
design starting from scratch given the actions robots could take by default –
simple move is expected to be the only choice by default.

On the other hand, a confounding observation can be made after repeated ex-
periments with the competing trackers (even when possessing the same strategy):
any optimisations through better strategies provide minimal gains as compared
to other scenarios, even the more dynamic one. It can be argued that the nature
of the problem itself, which can be branded as a case of CPS to some extent
provided it is required to find all targets, is what contributed to the overall
high energy and time costs for all strategies in the end. Naturally, this provides
an opportunity to find other ways to solve the problem, obviously through col-
laboration instead of competition on a personal level, which can be facilitated
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Figure 4.14: A graph representing the metric percentages for all strategies in
the different environments they were tested in.

through social emergence that is planned to be studied next.
Finally, setting the exploration rate to a value much higher (0.3) than the

expected (0.1) for similar attempts did not offer any significant advantages in any
of the scenarios, making the default choice adequate as an option. Admittedly,
results with a much lower rate (i.e. the suggested 0.01 at most) could have
been investigated, too. Nevertheless, the combination of the lack of gains using
a much higher rate with the suggestions from background theory that less-
than-optimal outcomes can be gained with such low rates in highly dynamic
settings, notwithstanding the time constraints imposed by the scope of the study,
resulted in skipping this attempt. Having developed, fine-tuned, and evaluated
an adaptive strategy, the study Objective A2-O3 has been fulfilled.

4.6 Conclusions
The purpose of the work covered in this chapter sought to focus on developing a
strategy for tracking sound sources moving erratically within assorted complex
acoustic scenes in an energy-efficient manner. The process was carried out
entirely in the developed CASA distributed system framework, despite the lack
of use of much of the distributed aspect of it. Nonetheless, it was capable of
accommodating anything from simulations to bio-inspired strategies, to artificial
strategies, and even machine-learning training in the form of RL. Consequently,
this chapter also served as further validation of the capabilities of the distributed
framework for CASA applications and research.
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Figure 4.15: A scatter graph representing the time-to-target for all strategies
in the different environments they were tested in.

The strategy development process was heavily influenced by bio-inspired
computing. Indeed, the evolution process for the strategy followed the very dis-
tinct steps: modelling the bio-inspired strategies, establishing a baseline from
them, leverage any important features and behaviours to develop a more per-
formant artificial approach, and ultimately employ all that knowledge to develop
an AI capable of addressing the problem using established machine-learning al-
gorithms and disciplined development processes. Strategy evolution perform-
ance with regards to the metrics is illustrated in Figures 4.14 and 4.15.

An argument could be made against following this approach but instead
starting right away with designing and training an AI to solve the specific prob-
lem. Such an approach would allow for a much more elaborate and involved
training process in a more refined stepwise manner, where the strategy is training
in even more steps where the exploration and learning rates gradually decrease,
or overall including more involved hyperparameter tuning, whilst ensuring the
state-action pairs are covered almost in their entirety several times across all
iterations. While this could ensure much better results towards ensuring the
off-policy in the Q-learning AI could have achieved convergence, there would be
missed opportunities that were discussed above towards the whole process.

The first and most important would be the idea to utilise a double-move
action inspired by the explosive breeding treefrogs and other arboreal locomotion
animals employ, which did provide better performance under specific conditions
and, by consequence, in highly dynamic environments when the agents find
themselves operating under similar conditions at times. The second would be
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the baseline that was established by the original bio-inspired strategies, as well
as the combined one – these offer benchmarks to compare future work to, given
the lack of results from similar research work to evaluate against (i.e. energy-
efficient target tracking by sound alone). Finally, the emergent phenomenon
of complementarity would not have been observed, spurning the idea about
combining strategies for a better solution to the problem, especially given a
future CPS solution.

Ultimately, the chosen approach resulted in a strategy that can provide
an adequate solution to the energy-efficiency for trackers using sound alone in
highly dynamic acoustic scenes, thereby allowing this thesis to reach its second
high-level Goal A2. The twofold contribution that stems from this aim is
comprised of the strategy itself, which could be now used with the necessary
adaptation to real-world scenarios or further studies, as well as the methodology
of how to borrow inspiration from nature or biology and evolve this into highly
performant software that can solve complex problems. Furthermore, the whole
process towards realising goal A2 also validated the high-level goal A1 once
more, bringing together the two of the three parts of this thesis and setting the
scene for attempting to realise the next aim.

Some limitations of the product so far need to be acknowledged. Particularly,
the energy reserves (defining Emax) have been chosen arbitrarily, in contrast to
the energy costs for actions which have been devised according to relevant met-
rics. Nonetheless, while the value is not analogous to that of potential real-world
hardware applicable to the problem being solved, it has been selected diligently
after test runs of the initial strategies. This was to ensure that the values would
be enough to support both formulating a proper baseline to compare with for
future results, as well as for future problem-solving endeavours to have room
for improvement and thus provide substantial results, if possible. The other
important issue remains the extent to which convergence has been achieved on
the optimal policy of the adaptive strategy – whilst the BFS-RMSE evaluation
results did reveal the strategy being close to convergence, it has not been in-
vestigated to painstaking length. Evidently, the results through the experiments
were enough to justify its efficiency and efficacy over the other strategies and in
general as a tool towards solving the energy-efficient tracking of mobile audio
sources.

These limitations could, eventually, be addressed through future work. Areas
that could be touched include but are not limited to: the deployment of the
system on robotic devices to measure energy reserves and costs relationship in
actual hardware, more extensive training with increased episode count in sets
to cover more state-action pairs more efficiently, expanded hyperparameter fine-
tuning during training, and rigorous investigation of optimal policy convergence.
Such steps could ensure that the strategy has achieved its peak performance and
can indeed be utilised towards real-world testing and evaluations. To conclude,
the existing results are encouraging and supply a firm foundation to facilitate
further experimentation on improving such policies through other avenues, such
as through emergence.



Chapter 5

Leveraging Social Emergence

5.1 Introduction
Collaborative Problem Solving (CPS) is a field that involves communication
and interaction between entities during learning, problem-solving, or coordin-
ated tasks. Such tasks can be complex problems in complex environments that
require the impeccable effort of numerous individuals to solve and naturally
result in complex systems to manage. When intelligent agents take over the
role of individuals in CPS, the concept takes on a new dimension and results
in complex distributed systems of cooperating AI of possibly assorted capabil-
ities, all working together to achieve a goal. Such systems, heterogeneous and
interacting, are distributed systems that can foster emergent developments that
can either contribute to or detract from the capacity to solve the problem in
question.

This chapter is focused on adapting the socio-cognitive traits that can en-
able emergence and its beneficial properties in the system, within the intelli-
gent agents that govern the new behaviour for CPS purposes. The architecture
changes in the system and the AI, the research questions, and the experiments
related to these preliminary studies with emergence are presented to showcase
how the previous results from this thesis can be applied to achieve higher ef-
ficiency and efficacy in solving the even more complex scenario of tracking all
mobile targets in a highly dynamic acoustic scene. In conclusion, it is imperative
to define that the focus on determining emergent behaviour will be reliant on
empirical evidence via the experiment results instead of a disciplined and frame-
work that would require not only additional work, but rather even higher degree
of complexity to the problem and implementation of tools that can identify such
phenomena in a more robust manner.

130
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5.2 The Socio-cognitive Traits

5.2.1 Introduction
Having discovered the traits that can be utilised for improving the CPS capab-
ilities in the system, the designs can be developed to embed it to the existing
intelligent agents. Up until this point the only CPS capabilities that have been
identified in the system came from the experiments in the competitive category
where two trackers tried to find all targets in the acoustic scene without any
interaction between them. This is where the complementarity emergent phe-
nomenon was also observed that inspired further work in the CPS field. Towards
enhancing this potential for solving the more complex issue, the designs of the
adaptive and combined strategies had to be revisited and tweaked to support
the new decision-making behaviours demanded by the new traits.

Meanwhile, the EDS framework developed allowed for an interface for com-
munication though no such implementation was made, which is something else
that will be showcased, too. This is part of the social traits being introduced
along with the need for reliance on external input from other agents to determ-
ine what they should be doing or if they are on the right track. Cognition plays
a larger role in the decision-making of the agents, naturally, so the new cognitive
traits of the agents are detailed here. These include the degree of certainty an
agent “feels” they have for their current tracking task, and which affects their re-
liance on social interactions, as well as the strategies that the agent will employ
to track their targets.

The distinction implies a new separation of concerns for the agents, the
decision-making for what to do generally and the decision-making if they need
to track their target. Naturally, the latter is the part where the adaptive and
combined strategies are evoked, whereas the former is governed by the new
implementation that accounts for both new social and cognitive traits, and their
low and high states. These traits are, evidently, the micro-properties introduced
to the agents that aspire to provide new and interesting results through emergent
phenomena for solving the problem of tracking all mobile sound sources in a
highly dynamic acoustic scene in the most energy-efficient manner.

5.2.2 Cognitive traits
The cognitive traits introduced to the agents aspire to provide, or rather to
further ameliorate, the dimension of critical thinking capacity. The agent needs
to be able to make decisions based on their confidence for how well they are
tracking their target, while at the same time using their own personal chosen
strategy to track. The existence of the implementation for the two strategies
that will be utilised to this end greatly reduced the effort towards realising this
step. There are several new concepts and aspects of this endeavour that need
to be defined and discussed here, pertinent to the selection of the strategies and
what high/low cognition means in the context of this thesis, and similarly for
communication.
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Notably, the traits covered here will be part of the state the agent knows
about itself and not in the state of the environment, as is the case with machine-
learning with RL studied earlier. Naturally, the core inspiring social study for
working with the high/low binary values is [211], which offers a baseline to
compare to alike the treefrog biological studies.

5.2.3 Base cognitive traits design
Cognition variance between the values high and low in this context refers to two
aspects as also derived from the psychological studies: (a) how capable they are
of solving the problem on their own, and (b) how confident they can be about
their capacity to do so. With the results of the latest round of experiments
dealing with the development of the adaptive strategy, it is obvious for aspect
a that the most performant strategy is that one and hence assigned to high
cognition, whereas the runner-up (i.e. combined) is pertinent to lower cognitive
skills. This mapping is simple to implement provided the most demanding task
is already solved. As such, the trait of ProblemSolving is introduced with
binary choice of values being high and low, thereby mapping respectively to
adaptive (optimal) and combined (less-performant) strategy.

On the other hand, and in relation to aspect b, the situation is more com-
plicated as observed by psychologists. Most subjects that are not confident in
their problem-solving skills will seek help from peers, whilst a smaller number of
individuals tend to have a false perception about their problem-solving skills, be
it due to a higher developed degree of egotism, perceived self-worth, or other be-
havioural elements. Breaking down the traits into that many smaller to cover all
cases would become a detriment towards the conclusion of this thesis within its
scope, while at the same time it can be argued that the reason behind the choice
would not matter in finding an optimal solution to the CASA tracking problem,
rather possibly further associations between behavioural traits and performance
in such scenarios which could contribute more towards the field of psychology.
Evidently, this ordained the introduction of a single SelfConfidence trait in
the state of agent itself, with binary choice between values of high and low.

ProblemSolving in tandem with SelfConfidence have been implemented
in the system as inheriting the IState interface (defines an agent state) the
agents employ to make decisions and hence creating the new CognitiveState
class. These two values will be considered during the first step when the agent
“wakes up” in its stop-perceive-act cycle and when they attempt to decide what
to do next. This process will be detailed later, as the values of high and low
need not necessarily translate into binary decisions. To be able to define that
the social traits need to be discussed next.

5.2.4 Tracking confidence design
The final part of cognitive implementation comes in the form of the tracking
confidence, which is entirely different from the SelfConfidence trait – in fact,
it is not a trait whatsoever. This is essentially a function that does consider the
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SelfConfidence trait of the agent and compares it to its own perceived recent
tracking performance. Naturally, the agent does not have a perception of the
wider environment to be able to ascertain with a high degree of confidence that
they are doing it right, which would defeat the purpose given the restrictions
imposed upon the tracking tasks. Accordingly, the agent, through its limited
view of the world, ought to be able to determine how well the tracking is going.

Without overloading the agent with information, what it already keeps and
knows from the state of the environment can be stored and used. This includes
the following: the perceived orientation of the target, own perceived orientation,
and recent actions taken towards tracking. In elaboration, the agent attempts to
ascertain that they are on the proverbial “right track” by checking how often they
had to change their orientation and by how much during their recent movement
actions. This is possible thanks to the values retained in the CognitiveState
type of property of the agent. Lastly, this confidence is further modified by the
value of SelfConfidence, thereby accounting for this important cognitive trait.

This manages to utilise the much-needed local state of agent without reliance
on central authority for information, hence keeping functions distributed in
nature [243]. The three values – confidence, frequency of and deviation by
orientation changes – have equal weight on the outcome. Inspiration for this
approach and the manner the function was designed was taken from pertinent
research found in [244, 245, 246], and more specifically the tracking confidence
displayed to other being also based on self-confidence apart from what could
affect it in the realm of mobile audio source tracking.

The function is designed as follows:

C = c+ 1
O + 1∑

Ai

n

C Tracking confidence.

c Tracker self-confidence (value between 0− 1).

O Times tracker changed orientation recently.

Ai The perceived target orientation changes so far.

n Number of perceived target orientation changes.

5.2.5 Social traits
The core of emergence is the interactions among intelligent entities in complex
systems, as witnessed when the first bio-inspired strategies competed in exper-
iments only to highlight how they complement each other, still even more so
when this interaction is facilitated through meaningful communication. The aim
of introducing communication among agents is at the centre of this attempt so
that better performance can be gained. Psychological studies for humans have
also highlighted how CPS helps the less capable members of a community to
perform better, therefore this is something to look forward to in the results. To
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start realising this behaviour, the ICommunicationService must be extended
first, followed by the traits that govern the social behaviour of the intelligent
agent.

5.2.6 Communication microservice changes
At the time of the implementation of the social traits, the only capability the
ICommunicationService offered relates to the status of the agent, as described
in the corresponding section earlier. What this does exactly is allow the agent
to ask for the status of another agent, or to reply with the current state of
the agent from what it knows (from IStateService): energy left, target being
tracked. The extended ICommunicationService needed to be able to convey
more information about the world as the agent knows it, thus transferring in-
formation about: (1) the details of a specific known target (i.e. frequency, pulse
rate), and (2) the tracking confidence of the agent towards tracking its own
target.

Regarding 1 it is essential so that communication of details of the current and
preferred targets can take place, which can enable an agent to decide whether
they can switch their preference to follow the details of that target. Information
piece 2 can be beneficial for a tracker receiving this information from another
one so that it can decide: if my co-tracker is so confident in tracking their own
target, should I keep following that one or switch to another? The combination
of these two data types that can be transferred over the EDS serves the purpose
of enabling them to make more complex decisions at runtime to contribute in a
more effective manner to the CPS attempt. The above data types can be used
in RESTful requests for the asynchronous API call communication between the
agents. To enable such communication new endpoints were created that agents
can utilise to achieve the higher-level social functions of sharing and requesting
information.

The data shared for both requests is common and transfers information
about the details of the target, and an associated TrackingConfidence value,
as per the function output from above when the request takes place, for each
of these targets. This information for each Target includes the estimated fre-
quency, pulse rate, and perceived positional orientation in the environment (8
compass directions). Of course, an empty such value denotes a target that is
not actively being tracked and, given the fact that the agents are tracking a
single target, it also conveys the current target of the agent. This should be
enough to leverage decision-making on the side of the agent, while at the same
time allowing for the implementation of the social traits. Figure 5.1 captures
this design in a UML class diagram.

These endpoints in the Minimal API are designed as:

GET /targets Returns the targets the agent is aware of. Only for agents with
enabled social traits.

POST /targets Receives the targets from another agent that shares it. Only
for agents with enabled social traits.
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Figure 5.1: Designs for the information pertaining to communication of targets
to other agents. The double value associated with the Target in the Targets
list is the TrackingConfidence.

5.2.7 Sharing and inquiring traits designs
The study of the background theory revealed that for CPS to be effective in
providing better solution, two important and intertwined factors that were of
interest: willingness to ask for information, and willingness to consider shared
information. Obviously, varying degrees of cognition received varying degrees of
gains, such as high cognition subjects usually not relying too much on sharing,
although most times when they did consider it they stood to gain from this
concession. Meanwhile, another factor was the willingness to share information
with others, which enabled weaker members of the community to eventually
over-perform under the right condition (e.g. when shared by a high cognition
subject with excellent problem-solving skills). Consequently, a combination of
these traits could produce emergent phenomena that are bound to boost overall
CPS performance.

The first two connected factors were thus combined into a single trait, which
is labelled as Inquisitive and follows the established pattern of high/low val-
ues. This trait enables agents to determine how often they should ask for a
state on targets from its peers, and how willing they are to consider the con-
veyed information. Sharing (high/low) is the other trait pertinent to CPS that
was introduced to the agents, and it oversees how often they will be sharing
targets information with their peers, to expand the perception of their peers to
the larger world state so that they can make more informed decisions. The im-
plementation of these traits is also as properties of the stateful inheriting class
of the IState interface titled SocialState. Along with the CognitiveState,
they live in the IIntelligenceService of the agent and factor into the decision-
making process.

The agents can interact with each other using the following ways:
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Figure 5.2: Microservice interaction designs demonstrating the socio-cognitive
behaviours among agents.

High Inquisitive Will ask all their known peers.

Low Inquisitive Will ask all the most recently interacted with peer.

High Sharing Will share with all their known peers.

Low Inquisitive Will share with the most recently interacted with peer.

Most recently interacted with defines the peer that they last had an inter-
action with initiated by the agent itself, or interaction initiated by the peer
themselves, whichever was the most recent case. Figure 5.2 presents the revised
interactions among the intelligent agents when participating in socio-cognitive
behaviours in this new CPS approach.

5.3 Final system implementation
The implementation state of the final system brought everything together to
create the improved intelligent agents that will participate in the experiments
in the more complex scenarios requiring CPS. Several parts of the system had
to be changed at this point to tie everything: implement peer discovery for the
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agents, change the energy loss function (Eloss) to account for communication
energy costs, and redefine the IIntelligenceService for the perceive step
before acting to factor the new traits in the decision-making process. The design
and architecture of the underlying distributed system framework for emergence
allowed for ease of extension and introduction of new steps seamlessly, whether
by re-using existing components and extending them in an appropriate manner
or by introducing new steps to the agent life-cycle.

5.3.1 Agent peer discovery
The first important change in the final system was the introduction of peer dis-
covery. The agents in this state of the system finally form an overlay network
between them. For the purposes of the experiments at hand and this thesis,
this has been determined as a Wireless Local-Area Network (WLAN). Borrow-
ing from the Active Components framework capabilities exploited by the former
work with EDBO [172], the current framework took it one step further to narrow
down the WLAN IP address to a pre-set range that the agents will post REST
requests for at the appropriate endpoint with the corresponding action: at / us-
ing GET request as described earlier for the IDiscoveryService implementation
in Chapter 3.

When the agent receives a response to the request, the IP of the agent is
stored in a newly implemented list within the agent object titled KnownPeers so
that the agent can communicate with them as needed in the future (e.g., asking
for target info, sharing target info). This is a task that happens the moment
the agent is deployed in the environment and every 10th stop-perceive-act cycle.
This ensures that the agent is always up-to-date and to simulate possible real-
world applications where connectivity can be lost, or simply because a fellow
tracker may have ran out of energy and has been disabled, thereby not attempt-
ing communication with non-operational agents and thus spending more energy
than needed. The current implementation only covers a WLAN setting, but fu-
ture endeavours could employ other protocols for the overlay network the agents
will operate within as the scenario allows. Any agent that was last interacted
with, even if discovered, is pushed to the top of the interaction preference list.

5.3.2 Energy loss refactoring
The second set of changes revolved around the new energy costs and thus the
energy loss function described before has been expanded to factor in the new
communication costs. One convenient fact about these new costs is that all types
of communication in the system have the same processing overhead and manner
of operation: a request with some low-sized data (no high transfer costs) is sent
and a reply is received asynchronously when the other agent can reply. Together,
this expected cost is akin to the cost of performing the listening task (El),
albeit is not factored into the equation is the cost of keeping the WLAN system
operating. It is assumed, at this point, that this is factored into the operating
system energy costs and therefore only the required communication attempts
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are what incur the energy cost for evaluating agent behaviour and strategy
efficiency. All actions pertinent to peer discovery, sharing target information,
and inquiring about tracker information incur the same communication costs.

Consequently, the new energy loss function is:

Eloss = a · Em + b · Eo + c · El + d · Ec = Eo · 320·a+10·b+c+d
10

Ec The base energy cost for communication cycles.

d The total number of communication cycles (at least 1 at deploy-
ment).

5.3.3 Decision-making with traits
The last set of changes focused on redesigning the decision-making process for
the agent. This process has been similar up until this point: “wake up” (stop),
evaluate the vitals (perceive), decide based on the strategy (act). For the bio-
inspired strategies, this act step was a simple choice between move and listen,
while for combined it involved a more refined evaluation of the local state of the
world known to the agent before deciding whether to move or listen. The fully
trained adaptive strategy did not strain that far from this – only the training
process did: ultimately it was a choice between a random action (on-policy) or
the highest-rewarding one from the Q-table values (off-policy).

This particular and most important step in the stop-perceive-act cycle is
still relevant for the socio-cognitive capable agents and will once more be a
choice of move or listen, given that it will be using either the combined or
the adaptive strategy. Inspired by the on-policy of Q-learning, which is the
ε-greedy algorithm, the decision-making process introduces a step before acting
that attempts to evaluate all socio-cognitive traits and determine if a sharing
or inquiry communication attempt should take place before acting. RESTful
API communication, barring the cases of network connectivity issues, happens
in time negligible for the agent that usually takes only a few dozen milliseconds
– average of 47.3ms through a test run of repeated 1000 calls while deployed for
the current system. This means that an agent can send their call and if they do
not receive an action for the defined tr = ∆t− tc (i.e. stop-perceive-act interval
minus call await time), then they act as they normally would – otherwise they
take that into account before action.

The traits and the tracking confidence weigh in on the outcome of the final
decision, which is eventually a very simple outcome: keep following the same
target or choose a new one from the suggested targets. When needed, a new
target must be chosen among the suggested targets, because many replies can
be received from more than one agent and thus a proper target must be selected.
These targets are stored by the agent as they inquire of or receive from other
trackers such information. Randomisation is included but not parametrised, to
simulate more actual spontaneous behaviour just like ε-greedy does. To over-
simplify the actual effect of the socio-cognitive trait management and social
interactions: the agent may only change their desired target to track based on



CHAPTER 5. LEVERAGING SOCIAL EMERGENCE 139

interactions and their traits. This is, as per the concept of emergence, a very
small behaviour change (microscopic property) that could have a large impact
on the solution to the problem in the long-term (macroscopic outcome).

In conclusion, the whole life-cycle of the agent there has evolved from the
simple one presented in earlier chapters of this work. The final, abstract life-
cycle is illustrated as a flowchart in Figure 5.3 to provide a better understanding
of the complex stop-perceive-act life-cycle of the intelligent agents that attempt
to solve the complex problem of energy-efficient tracking of mobile sound sources
in highly dynamic acoustic scenes. This part of the work concludes Objective
A3-O1, thereby introducing social behaviour to the system that can produce
emergent phenomena, which can then be utilised towards improving CPS cap-
abilities. This, however, remains to be determined through a final iteration of
designing experiments and evaluating the results.

5.4 Preliminary Experiments with Emergence

5.4.1 Introduction
This section covers the familiar process of putting new strategies to the test
following the same methodology as seen times and times over in the previous
chapters and experiment sections, although the section regarding evolution of
the system to accommodate the new requirements has already been detailed in
the previous chapter. These experiments revolve around the research questions
pertinent to the introduction of socio-cognitive traits to the system and under-
taking the effort of attempting to solve a more complex problem this time, given
that the trackers need to find all targets in the acoustic scene.

More importantly, this batch of preliminary experiments with the socio-
cognitive traits aspire to determine if the introduction of those traits has had
any effect on the expected system performance through emergent phenomena.
Empirical evidence will be crucial in this case, lacking the tools to investigate
in a more rigorous manner, and comparisons with CPS performance baseline
regarding high/low socio-cognitive trait research, as well as the existing results
from previous experiments. This is also the final round of experiments in this
thesis, and therefore the ultimate chance to get more information on the per-
formance indicator, in addition to the best possible strategy for the problem at
hand and especially in more complex acoustic environments and tracking goal
requirements (e.g. to locate all targets).

5.4.2 Research questions
With the aim towards the conclusion of this thesis, there remain a few important
research questions that ought to be answered, in addition to a couple of questions
that were posed in previous sections and that are now relevant for the brand new
and more intricate approach utilised towards solving the problem. The cases
being tested for performance included tracking all targets, something which was
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Figure 5.3: The final agent life-cycle of the adaptive strategy now infused with
socio-cognitive traits and new behaviours, illustrated at a high abstraction level
in this flowchart.
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done in past experiments with benchmarks to compare to, raising the question
of how much performance does the newly introduced socio-cognitive stand to
gain from this. This is an important question to gauge how much energy and
time efficiency is gained at the cost of the newly introduced communication
costs, leading to a better performing system for more complex cases where CPS
is essential.

One more interesting question that can be answered with the new system
is how the findings from socio-cognitive CPS studies align or not with the be-
haviour displayed by the intelligent agents, when the analogous socio-cognitive
characteristics are introduced to them in the microscopic level. An answer to
this question, whether they match closely or not, can have a larger impact on
future studies related to emergence in CASA applications and problem-solving.
If such microscopic-level properties can produce desirable traits in the mac-
roscopic level in a system comprised of AI entities working towards solving a
complex problem, then further research in related bio-inspired fields can offer
similar benefits to other real-world problems and applications.

Furthermore, emergent phenomena, if any can be observed and identified em-
pirically through the experiments, forms another interesting research question
pertinent to the problem at hand. Naturally, a more rigorous and disciplined
framework employing modern machine-learning methods for identifying such
phenomena would give more definitive and credible answers. Nonetheless, this
attempt can explore this direction empirically through the experience with pre-
vious related work, as well as with experience gained within the confines of the
study at hand, too.

In conclusion, the research questions for the preliminary study in emergence
are:

RQ1 How do the different socio-cognitive combinations perform when tracking
two targets in an environment with few obstacles?

RQ2 How do the different socio-cognitive combinations perform when tracking
two targets in an environment with many obstacles?

RQ3 How do the different socio-cognitive combinations perform when tracking
two targets in a highly dynamic environment?

RQ4 Is the expected contribution of socio-cognitive traits reflected in the per-
formance of the intelligent agents?

RQ5 Have the socio-cognitive traits induced emergent behaviour in the distrib-
uted system?

5.4.3 Experiment designs
The last experimentation phase in this thesis faced a serious problem with the
demands pertaining to the number of experiments sets that would be required
to have a 100% coverage of all possible combinations of socio-cognitive traits
thrown in an assortment of scenarios pertinent to the research questions being



CHAPTER 5. LEVERAGING SOCIAL EMERGENCE 142

posed. This resulted in the creation of a long list of required experiment sets
that ought to be considered and a need to reduce that number in a meaningful
manner so that the research questions can be answered adequately through this
process. To begin with, nonetheless, it is essential to review the possible sets.

Firstly, there are 4 different cognitive trait combinations (2 traits with 2
possible values each) that were associated with 4 different social trait combina-
tions (same as for cognitive) for a total of 16 socio-cognitive trait combinations
for each AI component. Moreover, these would need to be combined with each
other in scenarios where the two trackers were not the exact same in nature,
as for example not being both with high values in every trait but one with all
high working together with one of all low etc. Evidently, a combination of 256
unique trait combinations for two trackers exist, each to be tested in 3 different
scenarios: low and high obstacle density environments, as well as the highly
dynamic environment. Consequently, the unyieldingly large number of 768, 000
experiments (3 · 256 sets of 1, 000 experiments each) had to be averted.

The core questions RQ1-RQ3, are questions that need to be answered spe-
cifically for the adaptive strategy, which is the more performant of the strategies
and the increased efficiency and efficacy in it are the most desired outcomes of
this endeavour. This suggests a total of 8 combinations of traits, provided that
the ProblemSolving remains constant in this case, with 3 types of experiments
for a total of 24 sets of experiments. RQ4 can be answered with some of these
results, but there is merit in seeking to determine whether these traits had
any effect in the less capable strategies or not, which is also something that is
expected to produce results towards answering RQ5.

Regarding RQ5, more dramatic emergent behaviour is expected to emerge
from the less competent strategies, and through the interaction of the higher
socio-cognitive agents with the higher social but lower cognitive capabilities
agents. This expectation allows for a significant reduction in the sheer number
of combinations for experiment sets required to elicit answers. Accordingly,
additional experiment sets were added that cover the cases of a variance between
low and high social traits in agents with static low cognition alone (i.e. combined
strategy and low self-confidence), in all 3 scenarios of interest: highly dynamic
environment, low, and high obstacle density environments. In closing, 12 more
experiment sets when the low cognition experiment sets are added for a grand
total of 36 experiment sets.

5.4.4 Results
For the gathering and analysis of the results, the familiar (T,E, S,O,M) tuple
defined at the start has been utilised again and extended only so far as that
the S part has been revised to also display now the strategy along with the
current values of socio-cognitive traits. This specific iteration of experiments has
been the more extensive in numbers, although thanks to the existing implement
mechanisms for analysing the results and capable of accommodating the new
requirements seamlessly, the process was performed efficiently. The research
questions were revisited with the results, which are gathered in Table 5.1 for a
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Success Rate (%) Time-to-target (s) Energy Left (%)
sis-2F 95 21 79
siS-2F 95 21 78
sIs-2F 96 23 76
sIS-2F 95 22 77
Sis-2F 93 21 80
SiS-2F 93 20 81
SIs-2F 94 22 79
SIS-2F 92 20 83
sis-2M 94 21 85
siS-2M 93 19 86
sIs-2M 94 24 82
sIS-2M 92 20 81
Sis-2M 91 19 84
SiS-2M 93 19 83
SIs-2M 92 22 85
SIS-2M 92 18 83
sis-HD 90 21 66
siS-HD 89 20 68
sIs-HD 93 23 62
sIS-HD 91 21 64
Sis-HD 90 19 69
SiS-HD 91 18 70
SIs-HD 93 22 66
SIS-HD 92 20 67
Cis-2F 88 8 90
CiS-2F 87 8 91
CIs-2F 92 9 88
CIS-2F 90 8 90
Cis-2M 88 8 91
CiS-2M 89 9 92
CIs-2M 92 8 89
CIS-2M 92 9 90
Cis-HD 69 5 99
CiS-HD 68 5 101
CIs-HD 71 6 97
CIS-HD 69 6 100

Table 5.1: Success rates, time-to-target, and energy remaining rounded to
closest integer for the socio-cognitive experiment runs. Lowercase letters i and
s represent low Inquisitive and Sharing traits respectively, and uppercase
high values accordingly. Lowercase s letter represents low SelfConfidence ex-
periments for adaptive strategy, whereas uppercase is for high value trait. C
represents the experiments for the combined experiments. 2* and HD keep
representing the familiar dual-tracker (one adaptive one combined) with varied
obstacles and highly dynamic environments respectively.
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concise representation and need to be consulted for the results presented next,
once more categorised by energy-time efficiency and success rate.

Beginning with the latter, the success rates of the experiments involving
only the adaptive strategy showed only a minor increase within the range of an
additional 2− 5% for all experiment scenarios, slightly boosting the already im-
pressive success rates of the strategy. The more significant gains, though, come
in the case of the combined strategy (i.e. the lower cognition experiments). The
success rates for this strategy with the low social trait values have demonstrated
an increase of +5.5%, while an even more substantial average difference of +9%
is displayed for high Inquisitive trait for the dual tracker experiments of both
few and many obstacles over the low value. On the other hand, the increase
does not appear to be as substantial on average (+3.3%) for any cases involving
the highly dynamic scenario.

Energy efficiency for the adaptive strategy only experiments has shown
an improvement across the board, too, and in this case contrary to the success
rates analysis the increase is much more impactful. Specifically, of high interest
is the example of high Inquisitive and low Sharing demonstrating an increase
of +7%, which is evidently almost double the increase of +4% shown for both
high social traits, when value of SelfConfidence cognitive trait is low for the
important highly dynamic environments. Meanwhile, the high SelfConfidence
trait does not appear to gain much in final energy reserves as compared to
the low values, whilst a look at higher Sharing traits do not appear to offer
any groundbreaking energy efficiency gains, either. Combined strategy showed
similar low gains for the less dynamic environments, albeit it did actual show a
very important loss (−9%) with regards to the highly dynamic environment.

In closing, the time efficiency showed an almost analogous increase to
energy efficiency (i.e. decrease in the time-to-target T ), when comparing Tables
5.1 and 4.5, in relation to the adaptive strategy. Indeed, even the variance of
gains between the two are within the margin of ±2% (in seconds). As such,
these results on time should be discussed in the context of the results to energy,
too, for a potential empirical relationship. The combined strategy did verify
the low analogous increase for less dynamic and decrease for more dynamic
environment scenarios as with energy, also, nevertheless the gains in success
rates are substantial enough to merit the experiments with socio-cognitive traits.

5.4.5 Discussion
The first set of research questions, RQ1-RQ3, were designed with the evalu-
ation of the performance of the adaptive strategy in mind, and with whether
new micro-properties could produce macro-benefits to CPS scenarios. The in-
crease of efficiency across all of the tree metrics – energy, time, and success –
is the answer to these questions, illustrated in Figures 5.4 and 5.5. Indeed, the
introduction of socio-cognitive traits to the agents had a beneficial effect and
the strategy. Even with the introduction of these basic traits alone, it has been
enough to increase the performance of CPS when attempting to locate all tar-
gets in any scenario. Notwithstanding, there were also important information
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Figure 5.4: A graph representing the metric percentages for the strategies using
adaptive vs. socio-cognitive (average for all trait combinations) vs. the most
performant socio-cognitive trait combination (low confidence, highly inquisitive)
in the important cases they were tested in. Highlights overall performance gains
for the evolution of the strategy for each case.
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Figure 5.5: A scatter graph representing the time-to-target for the strategies us-
ing adaptive vs. socio-cognitive (average for all trait combinations) vs. the most
performant socio-cognitive trait combination (low confidence, highly inquisitive)
in the important cases they were tested in.
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to derive with regards to the extent that such traits affected performance and
the implications these pose, also in the context of emergence.

Particularly, the first set of interesting observations pertains to the SelfConfidence
trait of agents, and how if it is high, it does not offer that much to the capab-
ilities of the strategy in success rates and efficiency. For the success rates it is
inarguably the result of the fact that the strategy is already very capable at suc-
ceeding in tracking both targets in a timely manner (i.e. high ProblemSolving
representing the adaptive strategy), even so when it comes to energy and time
efficiency there are less gains due to the fact that the strategy chooses to ig-
nore the input about trackers of others due to the high confidence. Notably,
when the co-tracker possesses high Inquisitive behaviour there is a somewhat
higher gain instead, arguably due to increased suggestion inputs triggering more
frequently the algorithm to choose a suggestion and correct the course and gain
time in finding the extra target.

Low confidence, on the other hand, enjoyed bolstered efficiency in all cases,
suggesting that communication between the cooperative agents in a CPS scen-
ario is of paramount important. How this relates to the social behaviour is
through the link between a low SelfConfidence prompting more interactions
with getting better tracking suggestions from partners, but it also appears to be
reliant on the Inquisitive trait being high as well, thereby urging the agent to
consider the information they retrieve. These results do adhere to the findings
of the pertinent social studies explored earlier [211, 213, 212].

Moreover, this could also form an empirical relationship between the in-
creased efficiency when meaningful collaboration takes place, such as the case
of a competent tracker suggesting to another competent tracker that they can
indeed pursue another target instead as the former is confident to succeed and
the latter can make up for time and energy spent. This is an emergent phe-
nomenon where division of workload and delegation take place, as the trackers
decide between them which target each one should track to better achieve their
goal, giving a partial answer to RQ5.

Ultimately, the results for the already expert adaptive tracking strategy can
be boiled down to the following observation: when there is a mix of a high-
confidence, high-social tracker joining forces with a low-confidence, highly in-
quisitive tracker. This alludes to the scenario where the confidence of the more
capable overall target allows them to play the role of a potential coordinator in
the community of agents in a CPS. This emergence of a potential leader in the
community is one more emergent phenomenon, the emergence of leadership and
fellowship such studies suggest, initial signs of which can be observed empirically
through these results.

This is evidenced by the higher gains and better success rates and efficiency
being found in this specific collaboration scenario. In fact, this is more pro-
nounced in the highly dynamic environment than the less dynamic ones, albeit
the gains in the latter category are still of utmost importance, another signific-
ant contribution towards the answer to RQ5: through the socio-cognitive traits
there emerged leaders, fellowships, workload division, and delegation. Lastly,
this prompts potential for research with a higher number of collaborating agents
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to establish more rigorously how these relationships and statuses emerge, as well
as if they would be able to handle the workload division and delegation with
similar efficiency and efficacy.

Finally, the results did not produce satisfying results with regards to the low
ProblemSolving strategy. Indeed, the higher success rates were welcome, but
there were no gains – and in fact in some observations losses instead – when
the important costs in energy and time were to be considered. This also inar-
guably suggests that a capable tracking strategy trained for such applications is
required first to improve it with socio-cognitive micro-properties: the time lost
due to subpar obstacle tackling and open-space recognition cannot be overcome
by these micro-properties in the macroscopic level. This provides a final answer
to the RQ4 question, with a caveat: yes, these traits improve the tracking effi-
ciency behaviour of intelligent agents as the social studies suggest, albeit only in
the context of already efficiently developed solo tracking strategies. With these
final answers, Objective A3-O2 has been achieved, concluding the objectives
for this part of the work.

5.5 Conclusions
The core focus of the work in this chapter centred around improving the problem-
solving capabilities of both the developed framework and the developed tracking
strategy under CPS circumstances, the core contributions previous presented
in this thesis. This chapter concludes the work regarding the attempted im-
provements of an already viable and performant tracking strategy inspired by
emergence and pertinent studies from the domain of the social sciences. The
evolution of the strategies passing through the four consecutive steps of bio-
inspired to combined to adaptive to infused with socio-cognitive traits has been
documented extensively. The three apropos efficiency metrics (i.e. success rates,
energy left, and time-to-target) have been improved over the course of this thesis
for the important dynamic acoustic scenes the solution has been developed for.

The work in this chapter illustrated the worthiness in seeking for inspiration
in fields that can contribute to emergence in intelligent agent interactions when
seeking solutions to complex problems through distributed systems utilising
a cooperating approach. The social studies relevant to CPS complemented
expertly, even with their elementary implementation, the adaptive strategy in
provided and even more optimal solution, whilst also showcasing the potential
to improve even in specific and reduced capacity even less performant options.
Results were in sync with the observations detailed in the cases applicable to
humans and validated through the experiments for the AI nodes exhibiting such
behaviours.

Results showcased the capacity of complex emergent phenomena to appear
from the simple introduction of even the most basic new microscopic proper-
ties. Indeed, in the macroscopic level, hints towards the emergence of leadership
in the community of collaborating agents were found. Additionally, meaning-
ful collaboration was facilitated through sharing of pertinent information in a
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truthful manner (i.e. with the accompanying confidence level for own tracking
capabilities). Any other emergent phenomena were not observed due to reliance
on empirical observations, albeit more could be possible through a more discip-
lined approach and extended experimentation. Both contributed to improving
the performance of the end-system and provide more parameters to fine-tune in
any future attempts at improving the end-system.

Regrettably, a limitation of this thesis was the number of possible experi-
ments sets that could be run within the allotted time-frame due to the given
exponential increase of required experiments even with a simple new factor and
new research questions. A new social or cognitive trait, or even something ar-
tificial inspired by studies on emergence contributing to self-* properties and
CPS cases. What new emergent phenomena could be possible when introdu-
cing one more tracker and target, or is the leadership expectations validated
with proper experiment setups? More fine-grained levels of behaviour assigned
to the traits could also provide a better performance, such as a medium level of
self-confidence, which could not be covered through this thesis.

In conclusion, this chapter offered two major contributions towards realising
the final goal of this thesis, Goal A3: it showcased both a methodology for
implementation and results that can be utilised, even out-of-the box as a solution
for a real-world application with the necessary tweaking (e.g. proper energy-
to-battery-to-actions mapping for the strategies). Future work opportunities
arise for even more interesting avenues to follow and exploit in providing more
optimal solutions. With this part of the work concluded, the overarching study
for energy-efficient CASA tracking of mobile targets has reached its end.



Chapter 6

Conclusions

6.1 Key Outcomes
This thesis started with a heavy focus on interdisciplinary research, inspired
by previous work with bio-inspired computing and distributed systems, having
contemplated the potential to apply such knowledge in the field of CASA to
solve complex problems in a novel manner. Through this preliminary dive into
pertinent research on the domains of interest, the gap in research endeavours
with potentially impactful applications became clear: virtually non-existent en-
ergy efficiency management in audio tracking solutions, lack of focus on the
capabilities of a mobile listener, or even oversight in exploiting the astounding
behaviours animals exhibit related to listening and tracking. Consequently, a
plan was laid out to follow a methodology for combing everything in a single
complex problem that could have real-world applications in assorted fields, such
as target tracking in crowded and noisy environments, or locating targets under
threat in disaster scenarios were devices operating on listening alone can offer
solutions efficiently.

This undertaking aspired to leave behind the following legacy: a framework
for developing CASA applications to solve even more complex problems in the
future, a methodology in a stepwise manner towards borrowing themes from
various domains and evolving them into real and novel CASA solutions, thus
ultimately providing a solution for a well-defined problem where none were found
to exist. Accordingly, a distributed systems framework for CASA applications
has been developed to be used with concepts inspired by biology and established
AI techniques, paving the way towards the formulation of an energy-efficient
tracking strategy for highly dynamic acoustic scenes, and lastly leveraging ideas
from the social sciences towards beneficial emergent phenomena and CPS to
develop an even more efficient cooperation model for such scenarios.

150
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6.1.1 A distributed system framework for CASA
Developing such a CASA distributed system framework required studying the
state-of-the-art in distributed systems, sensor networks, and related solutions,
whilst combining them with the most modern, efficient, and future-proof devel-
opment tools to overcome reliance on outdated and low-performance solutions.
The system was designed to be highly extensible by providing a basis that re-
quired minimal implementation to build upon and create an application, as well
as for running simulations. Key feature is the ease of switching from simulation
to real-world application. Capacity for having a robust, scalable, and flexible in
environments wrought with uncertainty even for disaster scenario applications.

Moreover, the system demonstrated the capability of acting as a framework
for future solutions by accommodating an assortment of AI techniques for in-
telligence and communication over the course of the study: from bio-inspired
algorithms to artificial ones for reactive agents, to machine-learning for both
training and execution, and even to directly interacting and cooperating nodes
by virtue of minimal parametrisation. Simulation performance was fast, al-
beit not as fast as simulation-only frameworks due to the overhead of calling
costly functions at both the operating system and higher logic layers. Balancing
between real-world and simulation performance is another key feature of this
framework. The limitation of factoring in the experiments real-device operating
costs could be studied through future work, lending further credit to the light-
weight implementation offered by the end-system when deployed in real-world
applications.

6.1.2 An energy-efficient tracking strategy
A major outcome of the study is the developed adaptive strategy, which was the
lengthier part of the process in the lifetime of this work. This process of devel-
oping the strategy delivered a robust tool for performing the tracking of mobile
audio sources in both high and low dynamic acoustic scenes efficiently with re-
gards to both time and energy spent. Notably, there are specific assumptions
about the environment that were required to facilitate these developments, such
as the type of room and acoustic characteristics of the scene, that could poten-
tially narrow down its implementation in different scenarios. Nevertheless, the
background theory and means for adapting this approach to other environments
now exists by virtue of this thesis, but also for repeating pertinent experiments
in such new environments to ascertain its applicability without modification.

At the same time, the process of developing the adaptive strategy offered
a methodology for starting from something simpler and even borrowed from
external fields of research and reaching this point. This demonstrates a path
towards achieving desired results in bio-inspired computing through an iteration
of modelling, experimentation, and exploitation of outcomes with consistency:
start from a simple inspiration from biology and something with potential form-
ing a baseline, attempt to combine the best parts of it in an artificial attempt
to improve upon the baseline, and finally how to employ advanced tools for
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optimal control solutions to attain higher efficiency and efficacy.
While the approach has been established for several related research endeav-

ours and software design over the years, thus by no means claiming innovation,
this one demonstrates its disciplined application to the field of optimisation
in the context of CASA when inspiration is elicited from animal behaviours.
Indeed, the results by the end of this process highlighted the significance of
not skipping a step in this process and rushing head-first towards relying on
the trending machine-learning paradigms alone. Such arguments for this are
the explosive breeding movement patterns and the complementarity showcased
by the two different bio-inspired strategies – even if in the end the adaptive
strategy outperformed them, it allowed for combining different strategies in the
emergence experiments that followed (i.e. different traits, better overall system
performance).

Invoking the effect of explosive breeding in arboreal locomotion inspiring
various degrees of movement, or the frequency of movement in general, both of
which could have been missed otherwise, is indicative of what significant profits
can be reaped by lending more time to this stepwise design and implementation
instead at the cost of more time. This trade-off between time and possible dif-
ferent optimisation approaches not being attainable or having to be discounted,
has naturally constituted an impediment in potentially achieving more optimal
goals throughout the study. These can be ameliorated via future work now that
the core exists, but it also outlined the weight of choosing the right tool for the
work given such constraints (i.e. Q-learning instead of SL and similar). Ulti-
mately, the results of the strategy as it has evolved can also stand as a measure
for future work in the field with similar aspirations – something missing as the
domain research highlighted.

6.1.3 Emergent solutions in cooperative tracking
The final contribution of this thesis brought another dimension into the bio-
inspired optimisation design and implementation: that of social sciences and
what communities can achieve when working together towards solving a goal.
Moving away from animal behaviour, which excels in providing unique solu-
tions often overseen by humans, and going towards the behaviour of the latter,
which has multi-layered and much more elaborate communication and interac-
tion mechanisms, is an indication of what emergence can offer when explored
diligently. Admittedly, it also brought to attention the vast space it can oc-
cupy and the demands for design, experimentation, and evaluation it can evoke,
such as four simple traits causing an exponential demand in simulations, more
cumbersome analysis, and far more intricate architecture considerations.

Despite the challenges posed by the workings of emergence, narrowing the
focus down to the bare necessities that could be identified as beneficial to the
complex problem at hand, it did become possible to introduce the important
microscopic properties to the intelligent agents that eventually provided sig-
nificant macroscopic profits through basic emergent phenomena. The already
performant strategy evolved into a more efficient form when in cooperating
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tasks, especially so under certain conditions. Some agents can act as coordin-
ators or leaders, depending on their adopted socio-cognitive traits, and others
as more reliant on their betters to perform a task that improves overall system
efficiency.

Even with these simple additions, this can inarguably serve to suggest the
potential benefits that can be leveraged from introducing more such properties,
running the experiments with many more actors, and potentially with a more
rigorous analytical framework of for determining when emergence occurs or to
which degree it should be allowed in the system. Despite such future consid-
erations, the final result of this thesis is clear: an adaptive strategy that can
perform efficiently in an isolated manner, and a way to improve its high per-
formance even further when more tools are available, or the scenario is more
complex.

6.2 Future Work
Reflecting on the progress of this work, the results suggest that it manages
to provide a robust solution to the energy-efficient tracking of mobile audio
sources in dynamic environments with smart devices, whether they need to
perform the task alone or in tandem with other devices operating in an overlay
network. Apart from the strategies, the distributed system framework tailored
for CASA applications has so many more possibilities to offer for future work
in this specific field, and potentially to more problems if desired and extended
in the proper manner demonstrated in latter steps. Up until this point, when
discussing the results of evaluations and when designs were presented, a wealth
of such opportunities has been revealed, which this section aspires to organise
in a classified manner.

The limitations of this thesis have been highlighted at each step of the way,
being one of the first attempts to improving this work and making the end-
product more robust. Meanwhile, optimisation of the training process using
more steps or better designs, or even different AI techniques and approaches,
can offer significant results. Lastly, the numerous avenues that open up thanks
to emergence by building on the provided baseline can offer boundless research
opportunities, whether for purely analytical, scientific purposes or for focused
strategy optimisation undertakings. These will be organised in the following
paragraphs in the form of research questions asked and, briefly, how they can
be addressed, as well as what they can offer, using the fundamental tools created
through this work.

How does the system perform when deployed on real devices? Know-
ing that the system can be deployed on assorted smart and robotic devices by
virtue of its development tools, a new baseline can be established by measuring
the performance of the adaptive strategy as is. It can also provide proper eval-
uation for the assumptions made and indicate whether this is a required step
for an optimal result. Implementation can be achieved by simply replacing the
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energy cost reductions after each logical action by instead changing the function
to call the interface of the motors of the device.

What performance costs do the software requirements incur? This
work could complemented the above work by offering even better measurements
for energy costs and actually developing a “personalised” strategy for specific
families of devices, but it can also stand alone to offer an approximation strategy
for energy costs in related studies. Actualisation of this can be done by deploy-
ing the system on an real device and measuring for the expected operational
time-frames the costs when running the system (e.g., operating system, Wi-Fi
networking, motor costs).

Can the adaptive strategy achieve higher convergence? Due to the
time constraints and the scope of this project, hyperparameter tuning and con-
vergence estimation have not been as diligent as they could potentially have
been. Such work can help alleviate this issue and, if the answer is yes, result in
an even stronger strategy. This would require a revised training approach, more
fine-grained control of hyperparameters, far increased training episodes, suppor-
ted by a similar convergence metric combining BFS and RMSE but reviewed in
every single step.

Do revised energy costs train a significantly different strategy? Per-
tinent to the first – and possibly combined with the second – question above,
this one can help ascertain whether such changes can cause smaller or larger
changes to the eventual optimal policy after training. Utilising a revised energy
cost policy and putting the strategy through the same training can provide an
answer to this question. Possible new observations on how the agent learns any
new things, that is if it really changes that much, will also be valuable.

Does X outperform Q-learning for this specific problem? This ques-
tion would require much more extensive work to do so compared to the previous
questions. This X could range from using continuous -space RL algorithms to
elaborate techniques such as neural networks or even extending the Q-learning
implementation to become Deep RL. The feasibility of modelling the dynamic
environment is unknown, as is the feasibility of developing a framework for
producing input-output pairs for SL attempts, therefore this can be a risky
endeavour. The distributed framework offers the tools to implement it, non-
etheless, while examples of adapting it to the needs of such a project can be
found in the various sections detailing system changes occurred by each strategy
evolution phase.

Does the new trait X offer gains to the strategy in CPS? This is a
question that could require expanded research, and even across domains if not
within a single domain, to determine what trait X to introduce. Thankfully, the
framework and the existing work from this thesis outline the steps to take after
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that and how to carry out this process in an effective manner. A cautionary
sign is raised here, so that the trait is rigorously evaluated with all other traits
and possible combinations, albeit at the cost of time, as it could offer benefits
in specific cases of interest, still becoming a detriment in others.

Are there more emergent phenomena to be leveraged? While this
question is less clear than all before it, it is so that it can be rephrased by spe-
cifying how one expects to approach it: better emergence identification mechan-
isms (e.g. by machine-learning), higher volume of experiments (e.g. by focusing
on skipped trait combinations), expanded number of actors (e.g. bigger com-
munities and more potential forms of interactions and outcomes). The latter
is the one suggested to begin with, as it is evidently the biggest limitation of
the chapter focusing on emergence in this work. Despite requiring a mere ad-
dition of more entities to the environment layer of the framework and running
experiments, the sheer number of them required were deemed infeasible for the
scope and time allotted to this thesis – thereby the preliminary results having
to suffice.



Bibliography

[1] D. Wang and G. J. Brown, Computational auditory scene analysis: Prin-
ciples, algorithms, and applications. Wiley-IEEE press, 2006.

[2] A. S. Bregman, Auditory scene analysis: The perceptual organization of
sound, 1994.

[3] W. A. Yost, “The cocktail party problem: Forty years later,” in Binaural
and spatial hearing in real and virtual environments, 1997, pp. 329–348.

[4] H. Witte, H. Preuschoft, and M. S. Fischer, “The importance of the evol-
utionary heritage of locomotion on flat ground in small mammals for the
development of arboreality,” Zeitschrift für morphologie und anthropolo-
gie, pp. 221–233, 2002.

[5] J. A. Doherty and H. C. Gerhardt, “Acoustic communication in hybrid
treefrogs: sound production by males and selective phonotaxis by fe-
males,” Journal of Comparative Physiology A, vol. 154, no. 3, pp. 319–330,
1984.

[6] B. C. J. Moore, “Basic auditory processes involved in the analysis of speech
sounds,” Philosophical Transactions of the Royal Society of London B:
Biological Sciences, vol. 363, no. 1493, pp. 947–963, 2008.

[7] C. Kung, “A possible unifying principle for mechanosensation,” Nature,
vol. 436, no. 7051, pp. 647–654, 2005.

[8] A. J. Hudspeth, “How the ear’s works work,” Nature, vol. 341, no. 6241,
pp. 397–404, 1989.

[9] A. Hudspeth, Making an Effort to Listen: Mechanical Amplification in
the Ear, 2008, vol. 59, no. 4.

[10] A. J. Hudspeth and M. Konishi, “Auditory neuroscience:
development, transduction, and integration.” Proceedings of
the National Academy of Sciences of the United States of
America, vol. 97, no. 22, pp. 11 690–1, 2000. [Online]. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=34336&tool=pmcentrez&rendertype=abstract

156



BIBLIOGRAPHY 157

[11] H. Hudde and C. Weistenhofer, “Key features of the human
middle ear.” ORL; journal for oto-rhino-laryngology and its related
specialties, vol. 68, no. 6, pp. 324–8, 2006. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/17065824

[12] J. D. Bronzino, Biomedical Engineering Fundamentals (The Biomedical
Engineering Handbook, Third Edition), 2006.

[13] W. M. Roberts, J. Howard, and a. J. Hudspeth, “Hair cells: transduction,
tuning, and transmission in the inner ear.” pp. 63–92, 1988.

[14] W. A. Yost, “Audition.” in Handb. Psychol. Exp. Psy-
chol. Vol. 4, 2003, pp. 121–146. [Online]. Available:
http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2003-
04681-005&site=ehost-live http://search.ebscohost.com/login.aspx?direct=true%7B&%7Ddb=psyh%7B&%7DAN=2003-
04681-005%7B&%7Dsite=ehost-live http://search.ebscohost.com/login.aspx?direct=true%25

[15] T. M. Talavage, M. I. Sereno, J. R. Melcher, P. J. Ledden, B. R. Rosen, and
A. M. Dale, “Tonotopic organization in human auditory cortex revealed by
progressions of frequency sensitivity.” Journal of neurophysiology, vol. 91,
no. 3, pp. 1282–1296, 2004.

[16] J. S. Snyder, M. K. Gregg, D. M. Weintraub, and C. Alain, “Attention,
awareness, and the perception of auditory scenes,” Frontiers in psychology,
vol. 3, p. 15, 2012.

[17] J. H. Kaas and T. A. Hackett, “’what’and’where’processing in auditory
cortex,” Nature neuroscience, vol. 2, no. 12, pp. 1045–1047, 1999.

[18] R. J. Zatorre and P. Belin, “Spectral and temporal processing in human
auditory cortex,” Cerebral cortex, vol. 11, no. 10, pp. 946–953, 2001.

[19] E. Hemery and J.-J. Aucouturier, “One hundred ways to process time,
frequency, rate and scale in the central auditory system: a pattern-
recognition meta-analysis,” Frontiers in computational neuroscience,
vol. 9, p. 80, 2015.

[20] R. Näätänen and I. Winkler, “The concept of auditory stimulus represent-
ation in cognitive neuroscience.” Psychological bulletin, vol. 125, no. 6, p.
826, 1999.

[21] S. E. Palmer, “Vision science,” System, p. 810, 1999.

[22] L. P. A. S. van Noorden, “Temporal coherence in the perception of tone
sequences,” 1975.

[23] W. M. Hartmann, “Pitch perception and the segregation and integration
of auditory entities,” Auditory Function, Neurobiological Bases of Hearing,
pp. 623–645, 1988.



BIBLIOGRAPHY 158

[24] C. J. Darwin, “Auditory grouping,” Trends in cognitive sciences, vol. 1,
no. 9, pp. 327–333, 1997.

[25] M. R. Jones and W. Yee, “Attending to auditory events: the role of tem-
poral organization,” in Thinking in Sound The Cognitive Psychology of
Human Audition, 1993, pp. 69–112.

[26] B. C. J. Moore, “An Introduction to the Psychology of Hearing,” Boston
Academic Press, vol. 3, p. 413, 2003.

[27] C. J. Darwin, R. W. Hukin, and B. Y. Al-Khatib, “Grouping in pitch
perception: evidence for sequential constraints,” Journal of the Acoustical
Society of America, vol. 98, no. 2, pp. 880–885, 1995.

[28] C. Alain, S. R. Arnott, and T. W. Picton, “Bottom–up and top–down
influences on auditory scene analysis: Evidence from event-related brain
potentials.” Journal of experimental psychology: human perception and
performance, vol. 27, no. 5, p. 1072, 2001.

[29] L. Rosenblum, “Audiovisual speech perception and the mcgurk effect,”
Oxford Research Encyclopedia, Linguistics, 2019.

[30] N. Itatani and G. M. Klump, “Animal models for auditory streaming,”
Phil. Trans. R. Soc. B, vol. 372, no. 1714, p. 20160112, 2017.

[31] T. Aubin and P. Jouventin, “Cocktail-party effect in king penguin
colonies,” Proceedings of the Royal Society of London B: Biological
Sciences, vol. 265, no. 1406, pp. 1665–1673, 1998. [Online]. Available:
http://rspb.royalsocietypublishing.org/content/265/1406/1665

[32] T. Lengagne, T. Aubin, J. Lauga, and P. Jouventin, “How
do king penguins (Aptenodytes patagonicus apply the mathemat-
ical theory of information to communicate in windy conditions?”
Proceedings of the Royal Society of London B: Biological Sci-
ences, vol. 266, no. 1429, pp. 1623–1628, 1999. [Online]. Available:
http://rspb.royalsocietypublishing.org/content/266/1429/1623

[33] C. F. Moss and A. Surlykke, “Auditory scene analysis by echolocation in
bats,” The Journal of the Acoustical Society of America, vol. 110, no. 4,
pp. 2207–2226, 2001.

[34] M. Lewicki, B. Olshausen, A. Surlykke, and C. Moss,
“Scene analysis in the natural environment,” Frontiers in Psy-
chology, vol. 5, p. 199, 2014. [Online]. Available: ht-
tps://www.frontiersin.org/article/10.3389/fpsyg.2014.00199

[35] M. A. Bee, Treefrogs as animal models for re-
search on auditory scene analysis and the cocktail party
problem., 2015, vol. 95, no. 2. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167876014000051



BIBLIOGRAPHY 159

[36] A. S. Bregman, “Progress in understanding auditory scene analysis,” Mu-
sic Perception: An Interdisciplinary Journal, vol. 33, no. 1, pp. 12–19,
2015.

[37] M. A. Bee and C. Micheyl, “The "Cocktail Party Problem"; What Is It?
How can It Be Solved? And Why Should Animal Behaviorist Study it?”
Jurnal Comparative Psichology, vol. 122, no. 3, pp. 235–251, 2009.

[38] M. A. Bee and J. Christensen-Dalsgaard, “Sound source localization and
segregation with internally coupled ears: the treefrog model,” Biological
Cybernetics, vol. 110, no. 4-5, pp. 271–290, 2016.

[39] H. C. Gerhardt, “Female mate choice in treefrogs:
Static and dynamic properties,” Animal Behaviour,
no. 42, pp. 615–635, 1991. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0003347205802453

[40] A. M. Simmons, R. C. Buxbaum, and M. P. Mirin, “Perception of complex
sounds by the green treefrog, Hyla cinerea: envelope and fine-structure
cues,” Journal of Comparative Physiology A, vol. 173, no. 3, pp. 321–327,
1993.

[41] S. H. Hulse, “Auditory scene analysis in animal communication,” Advances
in the Study of Behavior, vol. 31, pp. 163–200, 2002.

[42] K. D. Wells, “The social behaviour of anuran amphibians,” Animal Beha-
viour, vol. 25, no. PART 3, pp. 666–693, 1977.

[43] D. B. Kelley, “Vocal communication in frogs,” Current Opinion in Neuro-
biology, vol. 14, no. 6, pp. 751–757, 2004.

[44] A. R. Lammers and U. Zurcher, “Stability during arboreal locomotion,”
Theoretical biomechanics, pp. 319–334, 2011.

[45] H. Preuschoft, “What does" arboreal locomotion" mean exactly and what
are the relationships between" climbing", environment and morphology?”
Zeitschrift für Morphologie und Anthropologie, pp. 171–188, 2002.

[46] F. J. Zamora-Camacho, “Evolution and ecology of locomotion in amphi-
bians,” in Evolutionary Ecology of Amphibians. CRC Press, 2023, pp.
135–157.

[47] C. Both and T. Grant, “Biological invasions and the acoustic niche: the
effect of bullfrog calls on the acoustic signals of white-banded tree frogs,”
Biology Letters, vol. 8, no. 5, pp. 714–716, 2012. [Online]. Available:
http://rsbl.royalsocietypublishing.org/cgi/doi/10.1098/rsbl.2012.0412

[48] S. Neckel-Oliveira and C. Gascon, “Abundance, body size and movement
patterns of a tropical treefrog in continuous and fragmented forests in the
Brazilian Amazon,” Biological Conservation, vol. 128, no. 3, pp. 308–315,
2006.



BIBLIOGRAPHY 160

[49] H. C. Gerhardt, R. E. Daniel, S. A. Perrill, and S. Schramm, “Mating
behaviour and male mating success in the green treefrog,” Animal Beha-
viour, vol. 35, no. 5, pp. 1490–1503, 1987.

[50] B. T. Szabó, S. L. Denham, and I. Winkler, “Computational models of
auditory scene analysis: A review,” Frontiers in neuroscience, vol. 10,
2016.

[51] C. S. Thakur, R. M. Wang, S. Afshar, T. J. Hamilton, J. C. Tapson, S. A.
Shamma, and A. van Schaik, “Sound stream segregation: a neuromorphic
approach to solve the "cocktail party problem" in real-time,” Frontiers in
neuroscience, vol. 9, 2015.

[52] L. Krishnan, M. Elhilali, and S. Shamma, “Segregating complex sound
sources through temporal coherence,” PLoS computational biology, vol. 10,
no. 12, p. e1003985, 2014.

[53] R. W. Mill, T. M. Hohm, A. Bendixen, I. Winkler, and S. L. Denham,
“Modelling the emergence and dynamics of perceptual organisation in aud-
itory streaming,” PLoS computational biology, vol. 9, no. 3, 2013.

[54] D. Barniv and I. Nelken, “Auditory streaming as an online classifica-
tion process with evidence accumulation,” PloS one, vol. 10, no. 12, p.
e0144788, 2015.

[55] J. Rankin, E. Sussman, and J. Rinzel, “Neuromechanistic model of audit-
ory bistability,” PLoS computational biology, vol. 11, no. 11, 2015.

[56] D. L. Wang, “The time dimension for scene analysis,” IEEE Transactions
on Neural Networks, 2005.

[57] D. P. W. Ellis and D. F. Rosenthal, Mid-level representations for compu-
tational auditory scene analysis. Perceptual Computing Section, Media
Laboratory, Massachusetts Institute of Technology, 1995.

[58] I. Winkler, S. L. Denham, and I. Nelken, “Modeling the auditory scene:
predictive regularity representations and perceptual objects,” Trends in
cognitive sciences, vol. 13, no. 12, pp. 532–540, 2009.

[59] R. F. Lyon, “A computational model of filtering, detection and compres-
sion in the cochlea,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, Paris, 1982, pp. 1282–1285.

[60] L. Wiegrebe and R. Meddis, “The representation of periodic sounds in
simulated sustained chopper units of the ventral cochlear nucleus,” Journal
of the Acoustical Society of America, vol. 115, no. 3, pp. 1207–1218, 2004.

[61] R. D. Patterson, J. Holdsworth, and M. Allerhand, “Auditory models as
preprocessors for speech recognition,” The Auditory Processing of Speech:
from Auditory Periphery to Words, pp. 67–89, 1992.



BIBLIOGRAPHY 161

[62] R. Meddis, M. J. Hewitt, and T. M. Shackleton, “Implementation details
of a computational model of the inner hair-cell/auditory-nerve synapse,”
Journal of the Acoustical Society of America, vol. 87, no. 4, pp. 1813–1816,
1990.

[63] C. J. Sumner, E. A. Lopez-Poveda, L. P. O’Mard, and R. Meddis, “A
revised model of the inner-hair cell and auditory-nerve complex,” The
Journal of the Acoustical Society of America, vol. 111, no. 5, pp. 2178–
2188, 2002.

[64] R. O. Duda, R. F. Lyon, and M. Slaney, “Correlograms and the separation
of sounds,” in Signals, Systems and Computers, 1990 Conference Record
Twenty-Fourth Asilomar Conference on, vol. 1. IEEE, 1990, p. 457.

[65] N. Madhu, A. Spriet, S. Jansen, R. Koning, and J. Wouters, “The potential
for speech intelligibility improvement using the ideal binary mask and the
ideal wiener filter in single channel noise reduction systems: Application to
auditory prostheses,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 21, no. 1, pp. 63–72, 2013.

[66] Y. Shao, Z. Jin, D. Wang, and S. Srinivasan, “An auditory-based feature
for robust speech recognition,” in Acoustics, Speech and Signal Processing,
2009. ICASSP 2009. IEEE International Conference on. IEEE, 2009, pp.
4625–4628.

[67] Y. Xu, J. B. Weaver, D. M. Healy, and J. Lu, “Wavelet transform domain
filters: a spatially selective noise filtration technique,” IEEE transactions
on image processing, vol. 3, no. 6, pp. 747–758, 1994.

[68] Y. Li and D. Wang, “On the optimality of ideal binary time–frequency
masks,” Speech Communication, vol. 51, no. 3, pp. 230–239, 2009.

[69] A. Bendixen, I. SanMiguel, and E. Schröger, “Early electrophysiological
indicators for predictive processing in audition: a review,” International
Journal of Psychophysiology, vol. 83, no. 2, pp. 120–131, 2012.

[70] S. L. Denham and I. Winkler, “The role of predictive models in the form-
ation of auditory streams,” Journal of Physiology-Paris, vol. 100, no. 1,
pp. 154–170, 2006.

[71] J. Nix and V. Hohmann, “Combined estimation of spectral envelopes and
sound source direction of concurrent voices by multidimensional statistical
filtering,” IEEE transactions on audio, speech, and language processing,
vol. 15, no. 3, pp. 995–1008, 2007.

[72] D. Wang and P. Chang, “An oscillatory correlation model of auditory
streaming,” Cognitive neurodynamics, vol. 2, no. 1, pp. 7–19, 2008.



BIBLIOGRAPHY 162

[73] S. A. Shamma, M. Elhilali, and C. Micheyl, “Temporal coherence and
attention in auditory scene analysis,” Trends in neurosciences, vol. 34,
no. 3, pp. 114–123, 2011.

[74] M. Elhilali and S. A. Shamma, “A cocktail party with a cortical twist:
how cortical mechanisms contribute to sound segregation,” The Journal
of the Acoustical Society of America, vol. 124, no. 6, pp. 3751–3771, 2008.

[75] P.-A. Grumiaux, S. Kitić, L. Girin, and A. Guérin, “A survey of sound
source localization with deep learning methods,” The Journal of the
Acoustical Society of America, vol. 152, no. 1, pp. 107–151, 2022.

[76] B. Bahmei, E. Birmingham, and S. Arzanpour, “Cnn-rnn and data aug-
mentation using deep convolutional generative adversarial network for en-
vironmental sound classification,” IEEE Signal Processing Letters, vol. 29,
pp. 682–686, 2022.

[77] K. Zaman, M. Sah, C. Direkoglu, and M. Unoki, “A survey of audio clas-
sification using deep learning,” IEEE Access, 2023.

[78] H. A. Kassir, Z. D. Zaharis, P. I. Lazaridis, N. V. Kantartzis, T. V. Yioult-
sis, and T. D. Xenos, “A review of the state of the art and future challenges
of deep learning-based beamforming,” IEEE Access, vol. 10, pp. 80 869–
80 882, 2022.

[79] N. Yalta, K. Nakadai, and T. Ogata, “Sound source localization using deep
learning models,” Journal of Robotics and Mechatronics, vol. 29, no. 1, pp.
37–48, 2017.

[80] T. Ya, L. Yun, Z. Haoran, J. Zhang, W. Yu, G. Guan, and M. Shi-
wen, “Large-scale real-world radio signal recognition with deep learning,”
Chinese Journal of Aeronautics, vol. 35, no. 9, pp. 35–48, 2022.

[81] C. Hema and F. P. G. Marquez, “Emotional speech recognition using cnn
and deep learning techniques,” Applied Acoustics, vol. 211, p. 109492,
2023.

[82] M. Won, A. Ferraro, D. Bogdanov, and X. Serra, “Evaluation of cnn-based
automatic music tagging models,” arXiv preprint arXiv:2006.00751, 2020.

[83] B. Amjad, Q. Z. Ahmed, P. I. Lazaridis, M. Hafeez, F. A. Khan, and Z. D.
Zaharis, “Radio slam: A review on radio-based simultaneous localization
and mapping,” IEEE Access, vol. 11, pp. 9260–9278, 2023.

[84] T. Zhang, H. Zhang, X. Li, J. Chen, T. L. Lam, and S. Vijayakumar,
“Acousticfusion: Fusing sound source localization to visual slam in dy-
namic environments,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021, pp. 6868–6875.



BIBLIOGRAPHY 163

[85] A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak, “Adversarial
generation of time-frequency features with application in audio synthesis,”
in International conference on machine learning. PMLR, 2019, pp. 4352–
4362.

[86] D. Zhang, M. Ma, and L. Xia, “A comprehensive review on gans for time-
series signals,” Neural Computing and Applications, vol. 34, no. 5, pp.
3551–3571, 2022.

[87] R. Pichevar and J. Rouat, “Double-vowel segregation through temporal
correlation: A bio-inspired neural network paradigm,” in ISCA Tutorial
and Research Workshop on Non-Linear Speech Processing, 2003.

[88] ——, “Monophonic sound source separation with an unsupervised network
of spiking neurones,” Neurocomputing, vol. 71, no. 1-3, pp. 109–120, 2007.

[89] F. Dramas, B. Oriola, B. G. Katz, S. J. Thorpe, and C. Jouffrais, “Design-
ing an assistive device for the blind based on object localization and aug-
mented auditory reality,” in Proceedings of the 10th international ACM
SIGACCESS conference on Computers and accessibility. ACM, 2008,
pp. 263–264.

[90] R. K. Moore and B. Mitchinson, “A Biomimetic Vocalisa-
tion System for MiRo,” pp. 1–12, 2017. [Online]. Available:
http://arxiv.org/abs/1705.05472

[91] Y. Zouhir and K. Ouni, “A bio-inspired feature extraction for robust
speech recognition,” SpringerPlus, vol. 3, no. 1, p. 651, 2014.

[92] W. Yu, L. Jiajun, C. Ning, and Y. Wenhao, “Improved monaural speech
segregation based on computational auditory scene analysis,” EURASIP
Journal on Audio, Speech, and Music Processing, vol. 2013, no. 1, p. 2,
2013.

[93] S. Sundaram and S. Narayanan, “Discriminating two types of noise
sources using cortical representation and dimension reduction technique,”
in Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE
International Conference on, vol. 1. IEEE, 2007, pp. I—-213.

[94] M. Risoud, J.-N. Hanson, F. Gauvrit, C. Renard, P.-E. Lemesre, N.-X.
Bonne, and C. Vincent, “Sound source localization,” European annals of
otorhinolaryngology, head and neck diseases, vol. 135, no. 4, pp. 259–264,
2018.

[95] Z. Wang, W. Zou, W. Zhang, H. Ma, C. Zhang, and Y. Guo, “Auditory
feature driven model predictive control for sound source approaching,”
International Journal of Control, Automation and Systems, vol. 22, no. 2,
pp. 676–689, 2024.



BIBLIOGRAPHY 164

[96] A. Pico, G. Schillaci, V. V. Hafner, and B. Lara, “How do i sound like? for-
ward models for robot ego-noise prediction,” in 2016 Joint IEEE Interna-
tional Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob). IEEE, 2016, pp. 246–251.

[97] A. Schmidt, H. W. Löllmann, and W. Kellermann, “A novel ego-noise
suppression algorithm for acoustic signal enhancement in autonomous sys-
tems,” in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 6583–6587.

[98] T. E. Tuncer and B. Friedlander, Classical and modern direction-of-arrival
estimation. Academic Press, 2009.

[99] I. W. Selesnick and C. S. Burrus, “Generalized digital butterworth filter
design,” IEEE Transactions on signal processing, vol. 46, no. 6, pp. 1688–
1694, 1998.

[100] F. Gustafsson and F. Gunnarsson, “Positioning using time-difference of
arrival measurements,” in 2003 IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03).,
vol. 6. IEEE, 2003, pp. VI–553.

[101] B. G. Gorshkov, K. YÃŒksel, A. A. Fotiadi, M. Wuilpart, D. A. Korobko,
A. A. Zhirnov, K. V. Stepanov, A. T. Turov, Y. A. Konstantinov, and
I. A. Lobach, “Scientific applications of distributed acoustic sensing:
State-of-the-art review and perspective,” Sensors, vol. 22, no. 3, 2022.
[Online]. Available: https://www.mdpi.com/1424-8220/22/3/1033

[102] F. Sun, Q. Lu, S. Feng, and T. Zhang, “Flexible artificial sensory systems
based on neuromorphic devices,” ACS Nano, vol. 15, no. 3, pp. 3875–3899,
2021.

[103] F. Zhou and Y. Chai, “Near-sensor and in-sensor computing,” Nature Elec-
tronics, vol. 3, no. 11, pp. 664–671, 2020.

[104] H. Taheri and Z. C. Xia, “Slam; definition and evol-
ution,” Engineering Applications of Artificial Intelligence,
vol. 97, p. 104032, 2021. [Online]. Available: ht-
tps://www.sciencedirect.com/science/article/pii/S0952197620303092

[105] S. Michaud, S. Faucher, F. Grondin, J.-S. Lauzon, M. Labbe, D. Le-
tourneau, F. Ferland, and F. Michaud, “3d localization of a sound source
using mobile microphone arrays referenced by slam,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2020,
pp. 10 402–10 407.

[106] W. Zhang, G. Han, X. Wang, M. Guizani, K. Fan, and L. Shu, “A node loc-
ation algorithm based on node movement prediction in underwater acous-
tic sensor networks,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 3, pp. 3166–3178, 2020.



BIBLIOGRAPHY 165

[107] C. Evers, H. W. Lollmann, H. Mellmann, A. Schmidt, H. Barfuss, P. A.
Naylor, and W. Kellermann, “The locata challenge: Acoustic source loc-
alization and tracking,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 28, pp. 1620–1643, 2020.

[108] M. Flottmann, M. Eisoldt, J. Gaal, M. Rothmann, M. Tassemeier,
T. Wiemann, and M. Porrmann, “Energy-efficient fpga-accelerated lidar-
based slam for embedded robotics,” in 2021 International Conference on
Field-Programmable Technology (ICFPT), 2021, pp. 1–6.

[109] A. K. Fuchs, C. Feldbauer, and M. Stark, “Monaural sound localization,”
in INTERSPEECH, 2011, pp. 2521–2524.

[110] H. Zhang, Y. Zhou, and L. Reiss, “Listening with two ears–new insights
and perspectives in binaural research,” Frontiers in Neuroscience, vol. 17,
p. 1323330, 2023.

[111] B. A. Wright and M. B. Fitzgerald, “Different patterns of human dis-
crimination learning for two interaural cues to sound-source location,”
Proceedings of the National Academy of Sciences, vol. 98, no. 21, pp.
12 307–12 312, 2001.

[112] J. Sodnik, R. Sušnik, M. Štular, and S. Tomažič, “Spatial sound resolution
of an interpolated hrir library,” Applied Acoustics, vol. 66, no. 11, pp.
1219–1234, 2005.

[113] F. Winter, H. Wierstorf, A. Raake, and S. Spors, “The two! ears database,”
in Audio Engineering Society Convention 142. Audio Engineering Society,
2017.

[114] M. Burkhard and R. Sachs, “Anthropometric manikin for acoustic re-
search,” The Journal of the Acoustical Society of America, vol. 58, no. 1,
pp. 214–222, 1975.

[115] P. Majdak, Y. Iwaya, T. Carpentier, R. Nicol, M. Parmentier, A. Rogin-
ska, Y. Suzuki, K. Watanabe, H. Wierstorf, H. Ziegelwanger et al., “Spa-
tially oriented format for acoustics: A data exchange format representing
head-related transfer functions,” in Audio Engineering Society Convention
134. Audio Engineering Society, 2013.

[116] H. Shukur, S. R. Zeebaree, A. J. Ahmed, R. R. Zebari, O. Ahmed, B. S. A.
Tahir, and M. A. Sadeeq, “A state of art survey for concurrent computation
and clustering of parallel computing for distributed systems,” Journal of
Applied Science and Technology Trends, vol. 1, no. 4, pp. 148–154, 2020.

[117] G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed
Programming. Addison-Wesley, 2002.

[118] D. Peleg, Distributed Computing: A Locality-Sensitive Approach. Society
for Industrial Mathematics, 1987, vol. 5.



BIBLIOGRAPHY 166

[119] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile Sensor Network
deployment Using Potential Fields: A Distributed, Scalable Solution to
the Area Coverage Problem,” in Proceedings of the 6th International Sym-
posium on Distributed Autonomous Robotics Systems (DARS02). Cite-
seer, 2002, pp. 299–308.

[120] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker,
and J. Hellerstein, “A Case Study in Building Layered DHT Applications,”
in ACM SIGCOMM Computer Communication Review, vol. 35, no. 4.
ACM, 2005, pp. 97–108.

[121] Q. Liang, X. Cheng, S. C. H. Huang, and D. Chen, “Opportunistic sensing
in wireless sensor networks: theory and application,” IEEE Transactions
on Computers, vol. 63, no. 8, pp. 2002–2010, 2014.

[122] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of internet services and applications,
vol. 1, no. 1, pp. 7–18, 2010.

[123] Y. Demchenko, F. Turkmen, C. de Laat, C. Blanchet, and C. Loomis,
“Cloud based big data infrastructure: Architectural components and
automated provisioning,” in High Performance Computing & Simulation
(HPCS), 2016 International Conference on. IEEE, 2016, pp. 628–636.

[124] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, “Cost-aware challenges for
workflow scheduling approaches in cloud computing environments: Tax-
onomy and opportunities,” Future Generation Computer Systems, vol. 50,
pp. 3–21, 2015.

[125] B. Biskupski, J. Dowling, and J. Sacha, “Properties and Mechanisms
of Self-Organizing MANET and P2P Systems,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 2, no. 1, p. 1, 2007.

[126] P. Horn, “Autonomic computing: IBM’s Perspective on the State of In-
formation Technology,” 2001.

[127] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[128] G. Coulouris, J. Dollimore, and T. Kindberg, “Distributed Systems: Con-
cepts and Design Edition 3,” vol. 15, p. 4, 2001.

[129] T. Hogg and B. A. Huberman, “Controlling Chaos in Distributed Sys-
tems,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 21,
no. 6, pp. 1325–1332, 1991.

[130] I. Satoh, “MobileSpaces: A Framework for Building Adaptive Distributed
Applications Using a Hierarchical Mobile Agent System,” in Distributed
Computing Systems, 2000. Proceedings. 20th International Conference on.
IEEE, 2000, pp. 161–168.



BIBLIOGRAPHY 167

[131] R. W. Brennan, M. Fletcher, and D. H. Norrie, “An Agent-Based Ap-
proach to Reconfiguration of Real-Time Distributed Control Systems,”
Robotics and Automation, IEEE Transactions on, vol. 18, no. 4, pp. 444–
451, 2002.

[132] S. Fujita, H. Hara, K. Sugawara, T. Kinoshita, and N. Shiratori, “Agent-
based Design Model of Adaptive Distributed Systems,” Applied Intelli-
gence, vol. 9, no. 1, pp. 57–70, 1998.

[133] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J. O.
Kephart, and S. R. White, “A Multi-Agent Systems Approach to Auto-
nomic Computing,” in Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems-Volume 1. IEEE
Computer Society, 2004, pp. 464–471.

[134] A. J. Chakravarti, G. Baumgartner, and M. Lauria, “The Organic Grid:
Self-Organizing Computation on a Peer-to-Peer Network,” Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
vol. 35, no. 3, pp. 373–384, 2005.

[135] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, and V. Sunderam, “To-
wards Self-Organizing Distributed Computing Frameworks: The H2O Ap-
proach,” Parallel Processing Letters, vol. 13, no. 02, pp. 273–290, 2003.

[136] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl, “A
Journey to Highly Dynamic, Self-Adaptive Service-Based Applications,”
Automated Software Engineering, vol. 15, no. 3-4, pp. 313–341, 2008.

[137] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, C. Dobre,
A. Muraru, A. Costan, M. Dediu, and C. Stratan, “MonALISA: An Agent
Based, Dynamic Service System to Monitor, Control and Optimize Dis-
tributed Systems,” Computer Physics Communications, vol. 180, no. 12,
pp. 2472–2498, 2009.

[138] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J. O. Kephart,
“An Architectural Approach to Autonomic Computing,” in Autonomic
Computing, International Conference on. IEEE Computer Society, 2004,
pp. 2–9.

[139] T. Máhr, J. Srour, M. de Weerdt, and R. Zuidwijk, “Can Agents Measure
Up? A Comparative Study of an Agent-Based and On-Line Optimiza-
tion Approach for a Drayage Problem with Uncertainty,” Transportation
Research Part C: Emerging Technologies, vol. 18, no. 1, pp. 99–119, 2010.

[140] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley Reading, MA, 1999, vol. 33.

[141] W. van der Hoek and M. Wooldridge, “Multi-Agent Systems,” Foundations
of Artificial Intelligence, vol. 3, pp. 887–928, 2008.



BIBLIOGRAPHY 168

[142] M. Wooldridge, An Introduction to Multiagent Systems. Wiley, 2009.

[143] L. Panait and S. Luke, “Cooperative Multi-agent Learning: The State of
the Art,” Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3, pp.
387–434, 2005.

[144] N. R. Jennings, “On Agent-based Software Engineering,” Artificial Intel-
ligence, vol. 117, no. 2, pp. 277–296, 2000.

[145] G. Eleftherakis, O. Paunovski, K. Rousis, and A. Cowling, “Emergent dis-
tributed bio-organization: A framework for achieving emergent properties
in unstructured distributed systems,” in Intelligent Distributed Computing
VI. Springer, 2012, pp. 23–28.

[146] H. Schmeck, “Organic Computing - A New Vision for Distributed Em-
bedded Systems,” in Object-Oriented Real-Time Distributed Computing,
2005. ISORC 2005. Eighth IEEE International Symposium on. IEEE,
2005, pp. 201–203.

[147] E. Baccour, N. Mhaisen, A. A. Abdellatif, A. Erbad, A. Mohamed,
M. Hamdi, and M. Guizani, “Pervasive ai for iot applications: A survey
on resource-efficient distributed artificial intelligence,” IEEE Communic-
ations Surveys & Tutorials, vol. 24, no. 4, pp. 2366–2418, 2022.

[148] N. Vlassis, “Multiagent systems and distributed ai,” Intelligent Autonom-
ous Systems, Informatics Institute, University of Amsterdam, 2003.

[149] N. Mungoli, “Scalable, distributed ai frameworks: Leveraging cloud com-
puting for enhanced deep learning performance and efficiency,” arXiv pre-
print arXiv:2304.13738, 2023.

[150] M. C. Huebscher and J. A. McCann, “A Survey of Autonomic Computing
- Degrees, Models, and Applications,” ACM Computing Surveys (CSUR),
vol. 40, no. 3, p. 7, 2008.

[151] O. Paunovski, G. Eleftherakis, and A. J. Cowling, “Disciplined Explora-
tion of Emergence Using Multi-Agent Simulation Framework,” Computing
and Informatics, vol. 28, no. 3, pp. 369–391, 2012.

[152] R. W. Collier, E. O’Neill, D. Lillis, and G. M. O’Hare, “MAMS:
Multi-Agent MicroServices,” in Companion Proceedings of the 2019
World Wide Web Conference. ACM, 2019, p. 8. [Online]. Available:
https://dl.acm.org/doi/fullHtml/10.1145/3308560.3316509

[153] C. Ihejimba and R. Z. Wenkstern, “A Cloud-Based Microservices Solution
for Multi-Agent Traffic Control Systems,” in Proceedings of the 23rd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024). IFAAMAS, 2024, pp. 889–897. [Online]. Available:
https://www.ifaamas.org/Proceedings/aamas2024/pdfs/p889.pdf



BIBLIOGRAPHY 169

[154] M. Jagutis, S. Russell, and R. Collier, “Using Multi-Agent MicroServices
(MAMS) for Agent Based Modelling,” arXiv preprint arXiv:2307.14745,
2023. [Online]. Available: https://arxiv.org/abs/2307.14745

[155] C. J. Amaral, S. P. Bernardes, M. Conceição, J. F. Hübner,
L. P. A. Lampert, O. A. Matoso, and M. R. Zatelli, “Find-
ing new routes for integrating Multi-Agent Systems using Apache
Camel,” arXiv preprint arXiv:1905.10490, 2019. [Online]. Available:
https://arxiv.org/abs/1905.10490

[156] M. Lombardi, F. Pascale, and D. Santaniello, “Internet of things: A gen-
eral overview between architectures, protocols and applications,” Inform-
ation, vol. 12, no. 2, p. 87, 2021.

[157] A. R. Naik and B. N. Keshavamurthy, “Next level peer-to-peer overlay
networks under high churns: a survey,” Peer-to-Peer Networking and Ap-
plications, vol. 13, no. 3, pp. 905–931, 2020.

[158] A. I. Ameur, A. Lakas, M. B. Yagoubi, and O. S. Oubbati, “Peer-to-peer
overlay techniques for vehicular ad hoc networks: Survey and challenges,”
Vehicular Communications, vol. 34, 2022.

[159] A. Razzaq and S. A. Ghayyur, “A systematic mapping study: The new
age of software architecture from monolithic to microservice architecture
- awareness and challenges,” Computer Applications in Engineering Edu-
cation, vol. 31, no. 2, pp. 421–451, 2023.

[160] H. Siddiqui, F. Khendek, and M. Toeroe, “Microservices based archi-
tectures for iot systems-state-of-the-art review,” Internet of Things, p.
100854, 2023.

[161] G. M. Hall, Adaptive code: Agile coding with design patterns and SOLID
principles. Microsoft press, 2017.

[162] J. Thönes, “Microservices,” IEEE software, vol. 32, no. 1, pp. 116–116,
2015.

[163] L. Baresi and M. Garriga, “Microservices: The evolution and extinction of
web services?” Microservices: Science and Engineering, pp. 3–28, 2020.

[164] A. Lock, ASP. NET core in Action. Simon and Schuster, 2023.

[165] F. Henderson, “Software engineering at google,” arXiv preprint
arXiv:1702.01715, 2017.

[166] M. Śliwa and B. Pańczyk, “Performance comparison of programming inter-
faces on the example of rest api, graphql and grpc,” Journal of Computer
Sciences Institute, vol. 21, pp. 356–361, 2021.

[167] R. C. Cardoso and A. Ferrando, “A review of agent-based programming
for multi-agent systems,” Computers, vol. 10, no. 2, p. 16, 2021.



BIBLIOGRAPHY 170

[168] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
journal on robotics and automation, vol. 2, no. 1, pp. 14–23, 1986.

[169] C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur, “Deliberative
normative agents: Principles and architecture,” in Intelligent Agents VI.
Agent Theories, Architectures, and Languages: 6th International Work-
shop, ATAL 99, Orlando, Florida, USA, July 15-17, 1999. Proceedings 6.
Springer, 2000, pp. 364–378.

[170] J. P. Müller, The design of intelligent agents: a layered approach. Springer
Science & Business Media, 1996, vol. 1177.

[171] F. Meneguzzi and L. De Silva, “Planning in bdi agents: a survey of the
integration of planning algorithms and agent reasoning,” The Knowledge
Engineering Review, vol. 30, no. 1, pp. 1–44, 2015.

[172] L. Braubach and A. Pokahr, “Developing distributed systems with active
components and Jadex,” Scalable Computing: Practice and Experience,
vol. 13, no. 2, 2012.

[173] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learn-
ing: A survey,” Journal of artificial intelligence research, vol. 4, pp. 237–
285, 1996.

[174] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1238–1274, 2013.

[175] M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A. J. Aljaaf,
“A systematic review on supervised and unsupervised machine learning
algorithms for data science,” Supervised and unsupervised learning for data
science, pp. 3–21, 2020.

[176] G. Mitrentsis and H. Lens, “Data-driven dynamic models of active distri-
bution networks using unsupervised learning techniques on field measure-
ments,” IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 2952–2965,
2021.

[177] D. J. Joshi, I. Kale, S. Gandewar, O. Korate, D. Patwari, and S. Patil,
“Reinforcement learning: a survey,” in Machine Learning and Information
Processing: Proceedings of ICMLIP 2020. Springer, 2021, pp. 297–308.

[178] D. E. Kirk, Optimal control theory: an introduction. Courier Corporation,
2004.

[179] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.



BIBLIOGRAPHY 171

[180] S. Arora and P. Doshi, “A survey of inverse reinforcement learning: Chal-
lenges, methods and progress,” Artificial Intelligence, vol. 297, p. 103500,
2021.

[181] A. Y. Ng, S. Russell et al., “Algorithms for inverse reinforcement learning.”
in Icml, vol. 1, no. 2, 2000, p. 2.

[182] H. Zhang and T. Yu, “Taxonomy of reinforcement learning algorithms,”
Deep reinforcement learning: Fundamentals, research and applications,
pp. 125–133, 2020.

[183] A. W. Beggs, “On the convergence of reinforcement learning,” Journal of
economic theory, vol. 122, no. 1, pp. 1–36, 2005.

[184] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp.
279–292, 1992.

[185] P. Probst, A.-L. Boulesteix, and B. Bischl, “Tunability: Importance of
hyperparameters of machine learning algorithms,” Journal of Machine
Learning Research, vol. 20, no. 53, pp. 1–32, 2019.

[186] T. Eimer, M. Lindauer, and R. Raileanu, “Hyperparameters in reinforce-
ment learning and how to tune them,” in International conference on
machine learning. PMLR, 2023, pp. 9104–9149.

[187] J. H. Holland, Emergence: From chaos to order. OUP Oxford, 2000.

[188] S. Stepney, F. A. C. Polack, and H. R. Turner, “Engineering emergence,”
in Engineering of Complex Computer Systems, 2006. ICECCS 2006. 11th
IEEE International Conference on. IEEE, 2006, pp. 9—-pp.

[189] H. Sayama, Introduction to the modeling and analysis of complex systems.
Open SUNY Textbooks, 2015.

[190] M. A. Bedau, “Weak emergence,” No{û}s, vol. 31, no. s11, pp. 375–399,
1997.

[191] R. B. Laughlin, A different universe: Reinventing physics from the bottom
down. Basic Books, 2006.

[192] J. I. N. S.-Y. H. Hong-Bing and F. A. N. Gao-Jun, “Emergence-Oriented
Research on Multi-Agent Systems and Its State of Arts [J],” Chinese
Journal of Computers, vol. 6, p. 1, 2008.

[193] R. Abbott, “Emergence explained: Abstractions: Getting epiphenomena
to do real work,” Complexity, vol. 12, no. 1, pp. 13–26, 2006.

[194] D. Foster, Generative deep learning. " O’Reilly Media, Inc.", 2022.

[195] J. Cheng, Y. Yang, X. Tang, N. Xiong, Y. Zhang, and F. Lei, “Generative
adversarial networks: A literature review,” KSII Transactions on Internet
and Information Systems (TIIS), vol. 14, no. 12, pp. 4625–4647, 2020.



BIBLIOGRAPHY 172

[196] D. Pappas, “Implementing Emergent Distributed Bio-Organization,” Uni-
versity of Sheffield, Tech. Rep., 2013.

[197] ——, “Emergent Distributed Bio Organization: A Middleware for the
Internet of Things,” Master’s thesis, 2014.

[198] A. R. Pollastri, J. S. Ablon, and M. J. Hone, Collaborative Problem Solv-
ing. Springer, 2019.

[199] L. M. Nelson, “Collaborative problem solving,” in Instructional-design the-
ories and models. Routledge, 2013, pp. 241–267.

[200] A. C. Graesser, S. M. Fiore, S. Greiff, J. Andrews-Todd, P. W. Foltz, and
F. W. Hesse, “Advancing the science of collaborative problem solving,”
Psychological Science in the Public Interest, vol. 19, no. 2, pp. 59–92,
2018.

[201] J. Allen, C. M. Teng, and L. Galescu, “Dialogue as collaborative problem
solving: A case study,” Advances in Cognitive Systems, vol. 7, no. 2019,
pp. 195–214, 2018.

[202] N. Blaylock, J. Allen, and G. Ferguson, “Managing communicative inten-
tions with collaborative problem solving,” Current and new directions in
discourse and dialogue, pp. 63–84, 2003.

[203] N. M. Dowell, Y. Lin, A. Godfrey, and C. Brooks, “Exploring the relation-
ship between emergent sociocognitive roles, collaborative problem-solving
skills, and outcomes: A group communication analysis.” Journal of Learn-
ing Analytics, vol. 7, no. 1, pp. 38–57, 2020.

[204] A. C. Graesser, S. Greiff, M. Stadler, and K. T. Shubeck, “Collaboration
in the 21st century: The theory, assessment, and teaching of collaborative
problem solving,” p. 106134, 2020.

[205] C. Sun, V. J. Shute, A. Stewart, J. Yonehiro, N. Duran,
and S. D’Mello, “Towards a generalized competency model
of collaborative problem solving,” Computers & Educa-
tion, vol. 143, p. 103672, 2020. [Online]. Available: ht-
tps://www.sciencedirect.com/science/article/pii/S0360131519302258

[206] M. Zhang, Q. Bai, F. Ren, and J. Fulcher, “Collaborative agents for com-
plex problems solving,” Computational Intelligence: Collaboration, Fusion
and Emergence, pp. 361–399, 2009.

[207] W. Pedrycz and P. Rai, “A multifaceted perspective at data analysis: A
study in collaborative intelligent agents,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 4, pp. 834–844,
2009.



BIBLIOGRAPHY 173

[208] Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang, J. Wang,
S. Jin, E. Zhou et al., “The rise and potential of large language model
based agents: A survey,” arXiv preprint arXiv:2309.07864, 2023.

[209] E. H. Durfee, “Cooperative distributed problem solving between (and
within) intelligent agents,” in Neuroscience: From Neural Networks to Ar-
tificial Intelligence: Proceedings of a US-Mexico Seminar held in the city
of Xalapa in the state of Veracruz on December 9–11, 1991. Springer,
1993, pp. 84–98.

[210] M. Kountouris and N. Pappas, “Semantics-empowered communication for
networked intelligent systems,” IEEE Communications Magazine, vol. 59,
no. 6, pp. 96–102, 2021.

[211] J. Andrews-Todd and C. M. Forsyth, “Exploring social and
cognitive dimensions of collaborative problem solving in an
open online simulation-based task,” Computers in Human Be-
havior, vol. 104, p. 105759, 2020. [Online]. Available: ht-
tps://www.sciencedirect.com/science/article/pii/S0747563218305156

[212] K. Y. Yin, A. G. K. Abdullah, and N. J. Alazidiyeen, “Collaborative prob-
lem solving methods towards critical thinking.” International Education
Studies, vol. 4, no. 2, pp. 58–62, 2011.

[213] T. J. Nokes-Malach, M. L. Meade, and D. G. Morrow, “The effect of ex-
pertise on collaborative problem solving,” Thinking & Reasoning, vol. 18,
no. 1, pp. 32–58, 2012.

[214] I. A. Novikova, “Big five (the five-factor model and the five-factor theory),”
The encyclopedia of cross-cultural psychology, vol. 1, no. 3, 2013.

[215] F. Durupinar, N. Pelechano, J. Allbeck, U. GÃŒdÃŒkbay, and N. I.
Badler, “How the ocean personality model affects the perception of
crowds,” IEEE Computer Graphics and Applications, vol. 31, no. 3, pp.
22–31, 2011.

[216] S. J. Guy, S. Kim, M. C. Lin, and D. Manocha, “Simulating heterogen-
eous crowd behaviors using personality trait theory,” in Proceedings of the
2011 ACM SIGGRAPH/Eurographics symposium on computer animation,
2011, pp. 43–52.

[217] B. L. Putro, Y. Rosmansyah, and S. Suhardi, “An intelligent agent model
for learning group development in the digital learning environment: A
systematic literature review,” Bulletin of Electrical Engineering and In-
formatics, vol. 9, no. 3, pp. 1159–1166, 2020.

[218] Á. Carrera and C. A. Iglesias, “A systematic review of argumentation
techniques for multi-agent systems research,” Artificial Intelligence Re-
view, vol. 44, pp. 509–535, 2015.



BIBLIOGRAPHY 174

[219] X. Fan and J. Yen, “Modeling and simulating human teamwork behaviors
using intelligent agents,” Physics of life reviews, vol. 1, no. 3, pp. 173–201,
2004.

[220] Y. Wang and V. Chiew, “On the cognitive process of human problem
solving,” Cognitive systems research, vol. 11, no. 1, pp. 81–92, 2010.

[221] K. Hoffman and C. Elwin, “The relationship between critical thinking and
confidence in decision making,” Australian Journal of Advanced Nursing,
The, vol. 22, no. 1, pp. 8–12, 2004.

[222] M. Fisher and F. C. Keil, “The curse of expertise: When more knowledge
leads to miscalibrated explanatory insight,” Cognitive science, vol. 40,
no. 5, pp. 1251–1269, 2016.

[223] O. Askarisichani, E. Y. Huang, K. S. Sato, N. E. Friedkin, F. Bullo, and
A. K. Singh, “Expertise and confidence explain how social influence evolves
along intellective tasks,” arXiv preprint arXiv:2011.07168, 2020.

[224] H. Wierstorf, M. Geier, A. Raake, and S. Spors, “A Free Database
of Head-Related Impulse Response Measurements in the Horizontal
Plane with Multiple Distances,” Jun. 2016. [Online]. Available:
https://doi.org/10.5281/zenodo.55418

[225] “Rt60 calculator wallace c. sabine calculation reverb time reverberation
time sabin sanine’s formula online sound pressure sound level - sengpielau-
dio sengpiel berlin,” https://sengpielaudio.com/calculator-RT60.htm, ac-
cessed: 2024-04-27.

[226] “Iceberg - sheffield hpc documentation,” ht-
tps://docs.hpc.shef.ac.uk/en/latest/decommissioned/iceberg.html,
accessed: 2024-04-27.

[227] H. Pontynen and N. H. Salminen, “Resolving front-back ambigu-
ity with head rotation: The role of level dynamics,” Hearing
Research, vol. 377, pp. 196–207, 2019. [Online]. Available: ht-
tps://www.sciencedirect.com/science/article/pii/S0378595518305550

[228] S. T. Birchfield and R. Gangishetty, “Acoustic localization by interaural
level difference,” in Proceedings.(ICASSP’05). IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, 2005., vol. 4. IEEE,
2005, pp. iv–1109.

[229] J. E. Schneider, “Energy balance and reproduction,” Physiology & beha-
vior, vol. 81, no. 2, pp. 289–317, 2004.

[230] R. Pascal and A. Pross, “Stability and its manifestation in the chemical
and biological worlds,” Chemical Communications, vol. 51, no. 90, pp.
16 160–16 165, 2015.



BIBLIOGRAPHY 175

[231] W. E. Roberts, Evolution and ecology of arboreal egg-laying frogs. Uni-
versity of California, Berkeley, 1994.

[232] J. Vasarhelyi, O. M. Salih, H. M. Rostum, and R. Benotsname,
“An overview of energies problems in robotic systems,” Energies,
vol. 16, no. 24, 2023. [Online]. Available: https://www.mdpi.com/1996-
1073/16/24/8060
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Appendix A

Simulation and Experiment
Parameters

Treefrogs - synthetic call parameters
The following table describes the values that the treefrog synthetic call function
has been tested with and found empirically to be true to real-world treefrog
mating call samples. High and low values for experimentation are provided, as
well as the numbers used for the two different target types that have been used
in the experiments: those with low frequency, and those with high frequency.
These two targets were used due to the ease of extracting base frequency and
setting them as preferences later for the trackers.

Low freq. High freq.
Parameter Low High target target
Attack time 5 50 40
Decay time 25 75 40
Gap time 20
Start pitch 500 1300 700 950
End pitch 500 1300 1050 1300
Harmonics [0.3, 1.0, 0.7, 0.3, 0.3]
Harmonics 0.1 + 0.1 0.1 + 1.0 1 1

Number of pulses 5 15 10 10

Acoustic scene - binaural simulator parameters
This table provides the values used for the binaural simulator from Two!Ears
that describe the acoustic scene for the purposes of generating impulse responses.
The parameter names are exactly the ones used in the toolkit for defining the
non-default values. These values have been used across all experiments to not
affect strategy performance otherwise. From the child objects of the simulator
given values, Sinks refers to the listener, while the rotateAroundZ function is

177



APPENDIX A. SIMULATION AND EXPERIMENT PARAMETERS 178

used to define the orientation of the listener. Values named scenario_* refer
to values taken from the experiment, specifically listener and speaker location
in X and Y and orientation of the entity in the room with O.

Object Parameters Values

simulator
MaximumDelay 0.05

PreDelay 0

simulator.Sources
Name Target

Position
[scenario_X,

scenario_Y, 0.2]

simulator.Sinks
Name Tracker

Position
[scenario_X,

scenario_Y, 0.2]

rotateAroundZ
Sources scenario_O
Sinks scenario_O

simulator.Room

Name Room
Position [0, 0, 0]
UnitX [1, 0, 0]
UnitY [0, 0, 1]

LengthX 10.0
LengthY 10.0
LengthZ 3.0

ReverberationMode 2D
ReverberationMaxOrder 8

RT60 1.0
ReflectionCoeffs [0.1, 0.1, 0.1, 0.1, 0.1]
AbsorbtionCoeffs [0, 0, 0, 0, 0]

Obstacles - recursive division parameters
This defines the number of iterations required by the recursive division to
provide the desired outcome. Iterations include a step of “divisions” of the walls
and then “opening doors” to ensure there is access everywhere. All experiments
use one of these two values, or both in the case of highly dynamic experiments.

Density Iterations Divisions Openings
few 1 1 3

many 3 3 9

Highly dynamic environment - simulation parameters
The highly dynamic environment experiments have been defined as those where
the obstacles increase over time, and the number of targets also change over time.
The following table shows at which time intervals in seconds during simulation
runtime the changes occur. The time intervals randomiser selects a number from
the bounds presented below. Low vs high interest for the targets means that the
target has a base frequency farther than the preferred one of the trackers which
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is assigned at creation runtime. These values are governed by the high/low
frequency target settings presented earlier in this Appendix.

Time from start Action
15s− 25s 2nd target appears (of low interest)
25s− 50s 2nd target leaves
40s− 60s Obstacle density increase
50s− 75s 3rd target leaves (of high interest)

Socio-cognitive traits - value ranges
The following table shows the value ranged for the different high/low cases used
in simulations for the socio-cognitive traits. For the social ones (inquisitive,
sharing) these are the probabilities to take the respective action during agent
reasoning in the new decision-making layer introduced. These value ranges were
chosen to have significant divergence from each other and thereby get meaningful
results.

Trait Value Value range

ProblemSolving
high Adaptive strategy
low Combined strategy

SelfConfidence
high 0.6− 0.9
low 0.1− 0.4

Inquisitive
high 0.6− 0.9
low 0.1− 0.4

Sharing
high 0.6− 0.9
low 0.1− 0.4


