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Abstract

The global population is ageing, causing an increase in the number of people living with age-

related gait-affecting conditions that increase risk of falling. Current methods of gait analysis

enable healthcare professionals to evaluate a person’s fall risk and inform rehabilitation. How-

ever, gait analysis in unable to reproduce the real-world contexts in which people walk, limiting

its capacity as a tool for diagnosis and prognosis with respect to falls. Wearable sensors show

promise in enabling gait data to be captured outside the laboratory, but the context-labelling

of this data is necessary due to the dependency of gait on walking activity and terrain. Whilst

the field of Human Activity Recognition (HAR) provides successful methods of determining

walking activity, recent studies have highlighted a lack of consideration for terrain variation

among HAR datasets.

This work aims to produce a prototype automatic gait analysis system capable of collecting

gait data and labelling it with the context — that is, the activity and terrain, in which the

data was collected. Particularly, this work places a focus on producing the first dataset which

enables high-accuracy terrain classification using wearable sensors to take gait analysis out of

the laboratory and into the real world.

To achieve this aim, a comprehensive background and literature review is established, which

finds that technologies that address the underlying spatio-temporal gait parameters have the

widest reach and can be applied to both healthy and gait-impaired individuals alike. Following

this background, the thesis comprises material from four research papers submitted to various

journals and conferences, the first of which is a systematic review which explores the differing

healthcare and technological approaches to fall prevention and highlights a lack of real-world

data in many fall-related technologies, limiting the generalisation of proposed systems. Then, an

exploratory analysis into existing HAR datasets and methods for achieving high activity classi-
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fication accuracies finds that Support Vector Machines (SVMs) and Artificial Neural Networks

(ANNs) enable the highest classification accuracies, whilst Inertial Measurement Units (IMUs)

are the highest performing sensor types for activity classification. A novel sensor system is then

designed, comprising IMU sensors, Force Sensing Resistor (FSR) insoles, and novel LiDAR and

colour sensor implementations, which are investigated for their use in terrain recognition. This

sensor system is used to collect the Context-Aware Human Activity Recognition (CAHAR)

dataset, which features 7.8 hours of gait data collected from 20 participants, who each perform

38 combinations of 11 unique activities on 9 different indoor and outdoor terrains. This dataset

enables novel investigations into the effects of terrain on gait, and the detectability of these

changes using wearable sensors. Analysing this novel dataset shows that both the activity and

terrain in which gait data was collected can be classified using SVMs with 96% accuracy for an

optimised set of sensors featuring just IMU and colour sensor data only.

Overall, this thesis makes major contributions towards the fields of HAR and fall research

through the identification of interdisciplinary research gaps in the fall literature, a bias-reduced

analysis of existing HAR datasets, the development of a novel sensor system for both HAR

and terrain classification, the collection of the first multi-terrain HAR dataset, and the demon-

stration of the feasibility of high-accuracy terrain classification using wearable sensors. Each

of these contributions help to construct a foundation for remote gait analysis systems that can

determine the full context in which gait data was captured outside the laboratory.
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Chapter 1

Introduction

1.1 Introduction

Falls, defined as an unintentional event which results in a person resting on the floor or a lower

level if the body cannot restore balance in time [1], are the second leading cause of unintentional

injury death worldwide, with statistics from the World Health Organisation (WHO) in 2021

stating that an estimated 684,000 falls are fatal each year, while a further 37.3 million require

medical attention [1]. Furthermore, people aged over 60 years old are disproportionately likely

to suffer a fatal fall [1], which has severe implications given the ageing population [2], indicating

that hospitals and healthcare systems could become increasingly pressured as a result of fall-

related injuries.

Among the causes of falls, slips and trips are particularly prevalent [3, 4], and refer to sponta-

neous balance loss due to a low-friction surface or collision with a physical object. These slips

and trips typically occur more frequently in people with cognitive or muscle weaknesses, which

can be attributed to causes such as age and disability [5–7]. Whilst most falls occur indoors [8],

a high number of falls are reported outdoors, which can be more serious due to harder surfaces,

fewer opportunities to get back up, and hypothermia if the fall is unnoticed [4, 9].

In addition to environmental factors, increased fall risk is also present across a range of con-

ditions such as age, Parkinson’s disease, dementia, stroke, multiple sclerosis, amputation, etc.,

which affect a person’s gait [10–26]. As a result, gait analysis is a useful tool for identifying a

person’s risk of falling, and for providing valuable metrics which can guide rehabilitation and
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aid in the diagnosis of various conditions [27].

Fall prediction systems, therefore, should aim to perform gait analysis in real time whilst also

collecting environmental data such as the terrain that a person is currently walking on, which

may introduce slip and trip factors, or affect a person’s spatio-temporal gait parameters. The

fusion of these data would allow such a system to evaluate a person’s incremental fall risk

over time, which may result in more accurate fall prediction and forecasting whilst presenting

patients with diagnostic data, such as how different terrains affecting their gait, to help them

reduce risks in their daily life. Three core fields must be combined to achieve this: Human

Activity Recognition (HAR), terrain identification, and remote gait analysis.

HAR is a large, diverse research area which uses analytical techniques like machine learning

to determine what walking activity, such as level-ground walking, navigating ramps and stairs,

sitting, standing, etc., a person is performing from collected gait data [28–34]. However, few

studies to date have aimed to incorporate a range of terrain variations, with Luo et al. stating

in 2020 that “there is an urgent need to create large data sets that have an exhaustive set of

walking surfaces representative of the real environment outside the laboratory, preferably with

wearable and non-intrusive sensors” [35]. Furthermore, in a 2020 review of gait analysis using

wearable sensors by Saboor et al. [36], the authors highlight the effect of uneven surfaces on

gait, and outline a need to identify these surfaces in future work, stating: ”context awareness

is an essential requirement for the applicability of gait analysis in the outdoor environment”.

Without this context in which the gait data is collected, healthcare professionals cannot be sure

if gait abnormalities are caused by changes in motion planning due to terrain, or if they are

indicative of an underlying gait-affecting condition. Many studies in recent years have used

wearable sensors, such as Inertial Measurement Units (IMUs), to perform gait analysis [37],

however these studies do not fully utilise the remote nature of wearable sensors, which enable

data to be captured outside the laboratory on the terrains a person will be exposed to in daily

life, which are known to affect gait and fall risk [4, 38, 39].

This thesis outlines the process of creating a sensor system capable of HAR, terrain identifica-

tion, and gait analysis. This system is then used to collect and analyse a large, terrain-focussed

HAR dataset designed to fill the recognised research gap of terrain identification in the HAR

literature. Finally, the spatio-temporal parameters are extracted for each participant in the

dataset and evaluated to determine the effect of terrain on gait.
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1.2 Motivations

Due to the ageing population, the number of people who fall as a result of age-related gait-

affecting conditions, such as Parkinson’s disease, dementia, stroke, etc., is increasing. As a

result, falls have the potential to occupy large amounts of time and resources in healthcare sys-

tems due to admissions to accident and emergency departments, time occupying hospital beds,

performing gait analyses, and the associated follow-up appointments. Aside from some existing

fall-detection systems, most of which rely on human contact, few technological interventions for

falls have been adopted in recent years. Many prototype fall-intervention systems in research

are extremely promising, such as exoskeletons, automatic fall detection with smartphones, and

gait health monitoring devices, but these can be expensive, uncomfortable, inaccurate, and

burdensome, severely limiting adoption in healthcare systems.

The ’perfect’ fall-prediction system could be interpreted as one capable of predicting a fall in the

strides before it occurs, where the person wearing the device still maintains enough balance and

control to stop walking and rest, preventing the fall before it occurs. However, such a system

would require information about a person’s environment, the activity they’re performing, and

demographic information such as their age, weight, height, gender, history of falls, and any

gait-affecting health conditions. The fusion of these aspects that contribute towards a person’s

risk of falling would allow such a system to monitor the wearer’s incremental fall risk factors

over time, which may allow the prediction of fall events or provide diagnostic data that helps

people at risk of falling to avoid dangerous situations. While it’s simple to collect a person’s

demographic information, automatically determining external fall-risk factors caused by the

combination of walking activity a person is performing, and the terrain they’re performing this

on, presents a significant challenge.

As such, one major motivation for this research is to address the real-world aspects of fall

prediction research by introducing a novel method of performing terrain identification us-

ing lightweight, convenient, and privacy-retaining sensors. Furthermore, terrain identification

promises to make fall prediction and HAR technologies more robust, allowing the results of

this work to help future researchers develop devices which are both accurate and convenient to

accelerate the adoption of these technologies in healthcare systems.

One common procedure to determine and monitor fall risk is gait analysis, which many studies in
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the literature have aimed to automate through the extraction of gait parameters using wearable

sensors. Whilst this approach can enable gait analysis to be conducted remotely, it does not

fully utilise the multitude of advantages that wearable sensors provide over camera technologies.

As such, another motivation of this research is to bring gait analysis outside the laboratory so

that the collected data is more representative of daily life than data collected in a gait analysis

laboratory.

All in all, this research takes major steps towards developing implementable fall prevention

systems in healthcare settings to reduce the prevalence of falls in society and improve the lives

of those affected by fall-related injuries, deaths, and fears.

1.3 Aims and Objectives

This research aims to answer the primary research question: “Can the many external and

internal factors that contribute towards a person’s risk of falling in real-world environments be

monitored using wearable sensors?”. In order to answer this question, many aims and objectives

must be accomplished to establish the current approaches to fall research, identify the state of

HAR and how high accuracies are achieved when performing activity classification, and to design

a new sensor system which is suitable for collecting a novel dataset that enables high-accuracy

terrain classification. The aims of this research, therefore, are as follows:

1. To identify trends and research gaps in the large, cross-disciplinary field of fall prevention

research.

2. To develop a novel wearable sensor system capable of high-accuracy HAR and terrain

classification.

3. To collect and analyse a novel, terrain-labelled HAR dataset which will determine the

feasibility of terrain classification using wearable sensors.

4. To determine the effect of terrain on gait in real environments.

In order to achieve these aims, a variety of objectives must be met. These objectives and the

chapters which address them are as follows:

• To identify the underlying factors and gait parameters that contribute towards increased

fall risk.
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• To determine the current uses of sensor and machine learning technologies in fall research.

• To explore the current state of fall detection, prediction, prevention, and intervention

across both technology and healthcare research.

• To analyse existing datasets and sensor types used for HAR and determine the most

important sensors that contribute towards accurate HAR.

• To find the optimal parameters in the sliding window approach to feature engineering for

classifying core walking activities.

• To design and manufacture a novel sensor system designed for both activity and terrain

classification.

• To collect a large dataset of activities performed on a variety of different common terrains

found in daily life.

• To analyse this novel dataset and determine the feasibility of accurate terrain identification

using classical machine learning methods.

• To identify which sensors have the largest contributions towards high accuracy terrain

identification, such that the system can be optimised for future research and implemen-

tation.

• To extract the gait parameters from the collected dataset.

• To evaluate how changes in terrain and environment affect the gait parameters.

1.4 Scope

This thesis assumes that the capacity to perform gait analysis using wearable sensors is already

possible. Sensor types such as IMUs, Force Sensing Resistor (FSR) insoles, Electromyography

(EMG), and goniometers are already used in some gait laboratories and, as Chapters 2 and 3

will show, these sensor types have already been shown to enable the extraction of gait events and

the spatio-temporal gait parameters with high accuracy. Therefore, this research is designed

with the scope of augmenting these existing systems through the novel introduction of terrain

classification, which enables the full context, defined throughout this research as both activity

and terrain, to be extracted.
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Furthermore, this research primarily focusses on the practical limitations of adopting technolo-

gies in healthcare settings. That is, to reduce the burden placed on users of such devices,

sometimes at the cost of classification accuracy, so long as the device is still usable. As such,

particularly in Chapters 2 and 3, high accuracy or other performance metrics will be irrelevant

in systems that are so burdensome to users that they could not feasibly be introduced in a

healthcare setting. The generalisation capabilities of machine learning models are highly val-

ued for this reason, as any system which requires a training period will automatically be more

burdensome to users than a system which works ’off the shelf’. Chapter 4 highlights this scope

through the use of different terrains between participants in different weathers and lighting con-

ditions, as this will negatively impact classification accuracy, but these are necessary conditions

that such a system must deal with if it is to see real-world use.

Finally, the sensor system in this project is framed as a prototype system which will be tested to

evaluate it’s capability to capture various fall-risk factors, such as activity, terrain, and the gait

parameters. The intention is to discover where this system offers novel insights into fall-related

factors, and what changes should be made to the following iterations of this system to develop

a comfortable and convenient system capable of determining the internal and external fall-risk

factors. As a result, various chapters in this thesis focus on reducing the number of sensors

and the profile of the device, while maintaining the capabilities of the system to detect fall-risk

factors in real-world settings.

1.5 Contributions

The contributions of this research are plentiful in both the fields of fall research and HAR.

These contributions are as follows:

• The first cross-disciplinary systematic review of fall research, offering new insights into

the field.

Firstly, a wide literature review, featuring a 10-year systematic review, is performed, covering

the current state of fall-related research across both healthcare and technological fields. As a

result, this review offers unique, cross-disciplinary insights into the state of fall research, and

guides the direction of research in this thesis.

• A bias-reduced analysis of existing HAR datasets, which explores the contributions of
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various sensor types and analytical parameters towards classification accuracy.

Secondly, a first-of-its-kind cross-analysis of existing HAR datasets is performed, offering new,

more generalised conclusions on the performance of different sensor types, analytical models, and

data processing methods with reduced bias due to the novel approach of achieving homogeneity

between datasets.

• A novel sensor system capable of capturing relevant data to perform terrain-recognition.

A novel sensor system is developed which uses a combination of sensors known to be capable

of high-accuracy HAR, along with previously unexplored sensors such as a colour sensor and

body-worn LiDAR. This sensor system is shown to be capable of collecting data which enables

both activity and terrain to be classified with high accuracy.

• The collection of the first, openly-accessible, terrain-labelled HAR dataset.

The Context-Aware Human Activity Recognition (CAHAR) dataset is collected and is the

first terrain-labelled HAR dataset in the literature — a major step towards the real-world

implementation of remote, automated gait analysis systems. This dataset will enable future

researchers in the field of HAR to develop models with higher generalisation capabilities for

deployment in real-world applications.

• An evaluation of the feasibility of terrain classification using wearable sensors.

The CAHAR dataset is analysed using various machine learning techniques to determine the

feasibility of terrain classification and optimise the proposed sensor system to prepare for the

next design iteration, which will move towards testing and implementation in a healthcare

setting.

• An analysis into the effect of terrain on gait in real environments.

Finally, the CAHAR dataset, and a follow-up dataset designed to reduce variability between

walking trials on different terrains, is used to compare how walking on different terrains affects

the gait parameters. The results from this study are compared with those in the literature,

which augments the current understanding of how terrain affects gait for a large set of walking

trials captured in real-environments.
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1.6 Thesis Outline

Chapter 2 of this thesis contains a background and literature review of falls, fall risk factors

such as age, health conditions, and terrains, the current applications of sensor technologies in

gait-related research, and the current research on terrain identification. This review highlights

a wide range of wearable sensor applications, and identifies terrain classification and variety as

a research gap in the area of HAR. This chapter also features a systematic literature review of

fall-related research across the areas of fall detection, prediction, prevention, and intervention,

spanning the fields of healthcare and technology.

Chapter 3 features an analysis of four existing datasets which are made homogenous among

the number of participants, sample rate, activities, and classification methods to evaluate how

different sensor types and feature engineering parameters affect classification accuracy across

different datasets. These datasets are each analysed using a range of classical machine learning

models present in the literature. This chapter contains material published in the MDPI Tech-

nologies journal with the title: ”Analysis of Multimodal Sensor Systems for Identifying Basic

Walking Activities” [40].

Chapter 4 outlines the design of a novel wireless sensor system for gait data collection, along

with its use to collect the CAHAR dataset — the first terrain and activity labelled HAR

dataset featuring 20 participants each performing 11 activities on 9 different terrains for a total

of 38 activity-terrain combinations per participant. Additionally, the raw data is visualised to

demonstrate how this sensor system and dataset are suited to gait analysis, HAR, and terrain

classification.

Chapter 5 contains the analysis of the CAHAR dataset, and reports on the accuracy attainable

using classical machine learning methods for activity and terrain classification in both subject-

dependent, and subject-independent contexts. As a result, this chapter establishes the feasibility

of terrain classification using wearable sensors, and determines the factors which enable this so

that researchers can adopt terrain classification into future HAR and fall research. Furthermore,

this chapter identifies the most significant sensors that contribute towards high-accuracy terrain

classification, and explores the performance of the optimal configuration of sensors. This chapter

contains material from the paper “Machine Learning Techniques for Context-Aware Human

Activity Recognition: A Feasibility Study” which was published in the 30th IEEE International
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Conference on Mechatronics and Machine Vision in Practice [41].

Chapter 6 explores the effect of terrain on gait by extracting a series of gait parameters from

the CAHAR dataset, along with an additional follow-up dataset. This chapter performs an

analysis on the effect of terrain on gait, finding that terrain affects the gait parameters with

statistical significance, even in controlled environments in which factors like distance and pace

are controlled. This chapter highlights the capabilities of the proposed sensor system to monitor

gait variability, which is another fall risk factor, on real-world terrains.

Chapter 7 summarises the findings of this thesis and highlights the contributions of the work,

along with demonstrating how the aims and objectives were met, and discussing the future work

required to use the findings of this research to construct a fall-prediction system which monitors

the internal and external fall-risk factors using wearable sensors.
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Chapter 2

Background

2.1 Introduction

The fields of gait analysis and fall-related technologies incorporate many aspects from a wide

range of disciplines such as: medicine and healthcare, sensors, assistive robotics, statistics, and

machine learning. The following chapter first aims to establish the necessary background in-

formation to contextualise the need for such devices and explore commonly used technologies

and methods in this area. Next, the relevant literature is separated based on objectives and

outcomes, and each of these areas is explored and critically analysed. Finally, this review sum-

marises each area of research to identify overall gaps in the literature which must be addressed

before many of the prototype gait analysis, fall-risk assessment, and fall detection devices can

see practical, clinical use.

2.2 Activities of Daily Living

An Activity of Daily Living (ADL) is a fundamental action or skill necessary to maintaining

independence in daily life [42]. Examples of ADLs include eating, dressing, washing/grooming,

walking/ambulation, toileting and the ability to perform various leisure tasks such as watch-

ing TV. Along with these basic ADLs, an Instrumental Activity of Daily Living (IADL) is a

higher-level task such as partaking in sporting activities and the management of medication

and personal finances, which are crucial skills in modern life [42]. Whilst ADLs involve both

upper-limb and lower-limb actions, this section focuses on those that require healthy gait and

lower-limb mobility to perform.
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Inability to perform ADLs strongly correlates to decreased mental health, life satisfaction and

self-perceived quality of life [42–45]. Additionally, there is a strong correlation between the age

of an individual and their inability to perform both IADLs and ADLs as a result of various

conditions, such as back pain and osteoarthritis along with chronic neurological conditions

such as dementia, stroke, and Parkinson’s Disease (PD) which decrease the sensory, motor and

cognitive abilities of those affected [42, 43, 46–49]. Due to the age-related nature of many

of these conditions, it is older people who primarily lack ADL independence, with National

Health Service (NHS) England reporting that 28% of women and 24% of men aged 65 and over

required help with at least one ADL over a one-month period, whilst 29% of women and 21%

of men in the same age group needed help with at least one IADL over the same time period

[47]. Furthermore, it was found that as age increased from 65-69 to 80+, the proportion of

adults needing help with at least one ADL or IADL rose from 21% to 52% [47]. Regarding

specific activities, multiple studies find that older people are most likely to need assistance with

navigating stairs, bathing, household work, climbing in and out of chairs, and moving indoors

[44, 47, 48, 50].

There is a further connection between falling and inability to perform ADLs, as demonstrated

in a survey by Suzuki et al. [12] which found that elderly individuals who have an increased

fear of falling require assistance in ADLs such as dressing, bathing, walking and toileting, as

this fear typically leads to anxiety, disuse syndrome and lower-limb muscle weakness. These

conditions further contribute to a sense of unease and fear when performing ADLs which,

without intervention, can lead to individuals becoming completely ADL dependant [12]. Fear

of falling is typically associated with the act of falling, and is reported to affect a person for

up to a year after they experience a fall, which negatively impacts their quality of life for this

period [10, 51].

Whilst older people are the most likely to be ADL dependent, the American Bureau of Labour

Statistics (BLS), and the UK Office of National Statistics (ONS) report that sport and leisure

activities were the second-largest uses of time among retirement-age people in 2019 and 2023

respectively [52, 53]. Community sport and leisure activities such as yoga, dance, and karate

have shown to be effective in improving balance and reducing fall risk [54–56], highlighting a

need to maintain ADL and IADL independence in this group to prevent fall-related injuries.

This overview of the prevalence and impact of ADL dependency in elderly and disabled people
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highlights the need for interventions in this area, particularly with respect to performing walking

activities, which will mitigate much of the mental and physical strain on the affected population

[45], enabling ADL independence much later into life.

2.3 Falls: Prevalence and Impact

Whilst the risk of falling is prevalent in all people due to uneven terrain, misplaced footing, and

the temporary spontaneous loss of balance, certain groups of people will exhibit greater chances

of falling than others for a variety of reasons. Typically, older people are at increased risk of

falling primarily due to their diminished balance, strength, and vision as well as the introduction

of gait asymmetries and secondary factors such as heart disease or orthostatic hypotension [57,

58]. These primary factors are also present in a variety of other chronic diseases, such as multiple

sclerosis, dementia, Parkinson’s disease, stroke, and lower-limb amputation, where increased risk

of falling can also be observed [19, 23, 57, 59–61].

In 2018, the World Health Organisation (WHO) reported that falls are the second most common

cause of death due to injury globally, with 646,000 deaths and 37.3 million injuries caused by

falls annually [1]. Most of these deaths occur in individuals over 60 years.

Various studies have also indicated that falls are more common among individuals who are

isolated from their community due to similarities in risk factors, making them more vulnerable

to fall-related injury and morbidities [45]. This factor is especially prevalent in older people who

often cannot return to a standing position after falling, resulting in a sustained period of laying

on the floor, leading to further morbidities such as hypothermia [9]. These morbidities increase

mortality for people who fall with sustained periods of floor contact, with deaths occurring in

half of those on the floor for more than an hour within a six-month period after the fall [9].

Survivors of falls can suffer from hip fractures, head trauma, cognitive impairment, depression,

or other conditions which result in decreased quality of life and autonomy [1, 43, 46, 62].

The UK Office for Health Improvement and Disparities reported that in the 2022/2023 period,

209,989 people aged over 65 were admitted to hospital in England due to falls at a rate of 1,933

per 100,000 [63]. These figures rise dramatically to a rate of 4,845 per 100,000 in those over 80.

The combination of these age-related facts highlight a growing population of older people who

are increasingly ADL dependent and at risk of falling as they advance in age, whilst wishing
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to stay active and engage in sporting and leisure activities, the pursuit of which will naturally

reduce fall risk [47, 52–56, 63]. It is therefore in the best interest of society and healthcare

systems to develop systems that swiftly detect, diagnose, and rehabilitate older people with

gait-affecting conditions to maintain their ability to perform social, leisure, and sport activities

which act to naturally reduce risk of falling.

2.4 Personal Factors Contributing to Falls

Falls and risk of falling cannot be attributed to a single condition as, even within a healthcare

condition associated with falls, there is often large variability in the frequency, risk, and injury

caused by falling [11]. Despite this, many similarities are present between groups of people at

high-risk of falls with respect to unequal lower limb kinematics, spatio-temporal gait asymmetry,

and impaired cognitive abilities [11, 57]. The following sections aim to identify the underlying

factors leading to an increase in fall risk.

2.4.1 The Ageing Population

In 2000, 10% of the global population were aged 60 and over, which is projected to rise to 21.8%

in 2050 and 32.2% by 2100 with more developed regions such as Japan, Europe, North America

and China having the highest proportions of elderly people [2]. These trends can be attributed

to a variety of societal improvements, including the early detection and prevention of health

conditions associated with older people, such as type 2 diabetes mellitus, cancer, and cardiac

disease [64, 65]. Typically, women live longer than men, but spend on average only 0.6 years

longer without disability, making them one of the largest age groups at risk of falling and with

decreased ability to perform ADLs [66, 67].

Despite the heterogeneity among older people due to the large variance in health and activeness

[57, 68], many studies have aimed to identify commonalities in older people’s movement capa-

bilities. Typically, older people experience significantly reduced lower limb muscle force and

torque, reaction times, walking speeds, ankle dorsiflexion, vision, proprioception, and balance,

along with increased energy expenditure, oxygen requirements, postural instability and gait

asymmetry [11, 57, 69].

Reduction in muscle mass and strength do not correlate with increased chance of falling in

healthy, older people [11, 49, 69]. Rather, personal factors such as anxiety and fear from a history
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of falls are more likely to be causes due to balance loss through self-adjusting gait in an attempt

to mitigate falls [10–12]. Additionally, people over the age of 85 who fall have an increased

chance of fatality as a result of falling, with those who survive and become hospitalised being at

an increased chance of delirium, which can lead to further complications regarding treatment and

increase hospital discharge time [62, 67]. In a study specific to the older population, Rikkonen

et al. [4] monitored the causes of 1281 falls which occurred over two years among a population

of 914 women with a mean age of 76.5. Of these falls, slipping and tripping were the leading

causes, accounting for 457 and 425 falls respectively, highlighting balance loss and asymmetric

gait as primary risk factors. Furthermore, 608 of these falls occurred on a street, floor, or

otherwise even surface. This may be due to the frequency with which people are exposed to

these common surfaces, although studies which demonstrate that gait is affected by the terrain

underfoot [38, 39] suggest that terrain should be an area of interest when considering factors

which contribute towards falls.

2.4.2 Stroke

In 2016 alone, it was reported that 5.5 million deaths resulted from stroke globally, with 13.7

million strokes resulting in 116.4 million Disability-Adjusted Life Years (DALYs) [70]. In the

UK, strokes account for 75% of the deaths caused by cerebrovascular diseases, which were the

4th leading cause of death in 2018 [71]. Stroke incidence increases with age, from 100 per

100,000 people at age 40 to 1,000 at age 65 and 2,500 at age 90 [70]. Additionally, strokes are

more common in men from ages 50-85, becoming more common in women at age 90 due to

differences in the probabilities of risk factors such as smoking [66, 70].

Survivors of strokes typically experience impaired gait due to factors such as hemiplegia, de-

creased proprioception, and muscle spasticity [60, 72, 73]. These issues result in gait impairment

in the form of increased stride, stance, and swing time and decreased stride length, frequency,

velocity, cadence, ankle plantar flexion, and ankle dorsiflexion on the affected side, resulting in

asymmetry between legs during ambulation [13–15]. A study by Patterson et al. [74] grouped

54 stroke survivors by the severity of their gait asymmetries. Of these participants, 30 exhibited

some form of temporal asymmetry, whilst 18 were found to have spatial asymmetry in their

gait. Participants in the severe asymmetry groups also demonstrated a notable drop in walking

speed and large asymmetries in swing and stance time and step length, which aligns with the

findings of other studies on the walking characteristics of stroke survivors [14, 15, 72–74].

14



2.4. Personal Factors Contributing to Falls

2.4.3 Dementia

Dementia is an umbrella term for conditions affecting cognitive functions, the most common

of which are Alzheimer’s Disease (AD), Dementia with Lewy Bodies (DwLB) and Vascular

Dementia (VD) [75]. The probability of developing dementia increases with age, with the

World Alzheimer’s Report in 2015 stating that cases rise from 3.9 per 1000 between ages 60-64

to 104.8 per 1000 over age 90, with 46 million people living with dementia globally in 2015 [76,

77]. Due to the prevalence of dementia, its incurable nature, and the ageing population, many

healthcare systems are forced to spend increasing amounts of resources in this area without

appropriate technological or medical intervention [77].

With respect to ambulation in people living with dementia, gait impairments vary between

subtypes of dementia and much research has been conducted into whether gait analysis can

be used to definitively differentiate between these subtypes to allow for early detection [75, 76,

78–80]. With respect to spatio-temporal gait parameters, all dementia types typically result

in increased variation in stride length, stride velocity, stride time, swing time, stance time,

double support time, and single support time compared to healthy individuals [16, 17]. When

comparing between dementia subtypes, stride width is the largest indicator of AD or non-AD

dementia, with non-AD dementias having a larger mean stride width [17]. As a result of this

increased variability, fall prevalence is much higher in non-AD dementia types, such as Dementia

with Parkinson’s Disease (DwPD) and DwLB, as these affect different parts of the brain [81].

2.4.4 Multiple Sclerosis

Multiple Sclerosis (MS) is a degenerative neurological condition resulting from an immune

response in the brain and spinal cord that causes progressive cognitive, sensory and motor im-

pairments, which usually affects individuals aged 20–40 years old [82]. As a result of diminished

motor skills, People with Multiple Sclerosis (PwMS) are more likely to fall than people without

MS [83], with over 50% of PwMS suffering a fall over any given three-month period [84–86].

PwMS are also more likely to sustain injuries from falls [83], with up to 50% of those who

fall requiring medical attention, further increasing risk of falling and fear of falling, impacting

abilities to perform ADLs, and decreasing quality of life [12, 87].

PwMS typically experience increased gait variability when compared to healthy controls, with

studies showing increased variability in step width, length, and time which worsen as the disease
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progresses [18, 19]. This variability in gait typically results in decreased walking speed, step

length and step time with an increase in step width [18].

2.4.5 Parkinson’s Disease

Parkinson’s Disease (PD) is a neurological condition in which the brain’s capacity for produc-

ing dopamine is reduced as a result of nerve cell damage, resulting in reduced motor control

[88]. People with Parkinson’s Disease (PwPD) typically exhibit increased walking time due to

increased time spent in the stance and swing phase and a decrease in stride length, height,

velocity, ankle dorsiflexion, and ankle plantar flexion [23–26]. This reduction in the range of

motion of the ankle in addition to a reduced foot clearance are major contributors towards

the prevalence of falls in this group [11, 24]. A study by Wood [23] analysed the fall rates in

a group of 101 PwPD over one year. The study found that 69 (68.3%) of participants had

fallen, with 51 (50.5%) reporting multiple falls over the period of study. People who fell in this

study typically exhibited a reduced stride length, loss of arm swing, increased time spent with

the condition, and reduced cognitive abilities when compared with the people who did not fall

[23]. Motor deficiencies such as gait abnormalities, rigidity, and bradykinesia in PwPD often

precede diagnosis by four to six years, during which it can be difficult to distinguish between

PD, Alzheimer’s Disease and Dementia with Lewy Bodies as motor differences between these

conditions are extremely subtle [61, 89, 90].

An additional factor towards fall prevalence in PD stems from Freezing of Gait (FOG), which

is reported as the feeling of one’s feet being stuck to the ground with the potential to occur

spontaneously and frequently during ambulation [91, 92]. FOG events typically last less than ten

seconds, but have been reported to last over 30 seconds in previous studies [93, 94]. Furthermore,

FOG events commonly occur during gait initiation and turning, resulting in increased risk

of falling, with events appearing more frequently in those under increased stress, whom are

distracted, or those in an environment of increased spatial constraint [11, 93, 95]. In addition

to FOG events, PwPD tend to experience more severe falls, resulting in greater injury when

compared to other high-risk groups [67]. This results from an impaired ability to use the arms

for protection as a result of bradykinesia and impaired attentiveness from reduced cognitive

abilities [11].
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2.4.6 Lower-Limb Amputees

Lower limb amputations may take place for a variety of reasons, with the most common being

diabetes and arterial vascular disease [96]. Whilst amputations of the lower limb are carried out

at many different levels, all impact gait, with the most common major lower limb amputations

being transtibial and transfemoral [20, 59]. Post-operation, Lower-limb Amputees (LLAs) are

given the option to utilise a prosthetic device to return to walking, however a notable deteriora-

tion in walking ability and balance still occurs despite the modern advances in Microprocessor

Knees (MPKs) such as the Ottobock C-Leg [97–99].

With respect to spatio-temporal gait parameters, both Transtibial Amputees (TTAs) and Trans-

femoral Amputees (TFAs) experience decreased walking speed and step length along with in-

creased step width, gait asymmetry, and variability [20–22]. Additionally, TFAs exhibit more

extreme variations in these values than TTAs when compared to non-amputees. Both types

of amputee will also tend to place less body weight on a prosthetic leg, indicating a lack of

trust and further increasing gait asymmetry [22]. These spatio-temporal gait changes result in

a drastic increase in fall risk amongst amputees, along with increased incidence of osteoarthritis

due to gait loading asymmetries [100–102].

2.4.7 Summary

Based on the commonalities between affected populations, increased gait asymmetry and vari-

ability seem to be prevalent spatio-temporal gait parameters in people who are at the highest

risk of falling, regardless of the source of these abnormalities. Asymmetric gait results in un-

equal force distribution between legs during ambulation, which causes decreased balance and

increased loading on the non-affected limb, potentially resulting in joint pain and osteoarthri-

tis [74, 100, 103]. Furthermore, conditions affecting cognitive abilities seem to cause falls of

increased severity and injury probability as a result of reduced reaction speeds and reflexes,

which are more likely to impair one’s ability to save oneself during the fall. Interventions to

prevent falls, therefore, should focus on these underlying spatio-temporal parameters, rather

than individual healthcare conditions, to allow a single method of fall prevention to apply to

the largest population possible.
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2.5 External Factors Contributing to Falls

2.5.1 Slips and Trips

Slips and trips refer to spontaneous balance loss due to a low-friction surface or collision with

a physical object. In multiple studies that consider falls in older people, slips and trips are

commonly reported as a cause for falling, with 30-70% of all reported falls in these studies

being attributed to these two factors [3, 4, 104]. These slips and trips typically occur more

frequently in people with cognitive or muscle weaknesses, which can be attributed to causes

such as age and disability [5–7]. Whilst most falls occur indoors [8], a high number of falls are

reported outdoors, which can be more serious due to harder surfaces, fewer opportunities to get

back up, and hypothermia if the fall is unnoticed [4, 9].

Slips and trips are a product of the environment in which a person is walking, with low light

levels, temporary hazards, and frictional variations in foot contact among the reported causes

for falls [104–106]. As a result, visual impairments are reported to increase the frequency of

slips and trips and are an additional factor which contributes towards fall risk [104, 106].

2.5.2 Terrain

Terrain is used in varying contexts throughout the literature, with some studies using the term

to refer to situations that affect walking activity classification such as ramps and stairs [107],

whilst other studies are referring to common surface properties, such as grass, pavement, gravel,

etc [38, 108]. For this study, the latter definition of terrain is used - referring to the surface

properties of the ground underfoot.

Terrain has been shown to reduce gait speed and affect the variability of gait parameters such

as step width and step time, which is more pronounced among older people [38, 39, 108–112].

Kowalsky et al. [38] conducted an analysis of the effect different terrains had on several gait

parameters, along with metabolic rate. Ten subjects equipped with foot-mounted Inertial Mea-

surement Units (IMUs) walked across five terrains at a fixed pace. These terrains were, in

increasing metabolic cost: pavement, dirt, gravel, grass, and woodchip. Of the spatio-temporal

parameters, foot clearance, stride height, and stride width were found to correlate with terrain

[38]. Kang et al. [108] explored the effect of surface characteristics on gait parameters among

31 subjects walking on three types of surface: a levelled mat, a soft urethane mat, and a desta-
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bilising rock surface. Six infrared motion capture cameras and a pressure measurement system

monitored the subjects’ gait parameters on each surface, and it was found that uneven surfaces

decrease gait speed, shorten stride length, and vertically lower Centre of Mass (CoM) [108].

The authors comment that this may be a necessary response to ensure stability is maintained

on uneven terrains. Menant et al. [110] recruited ten young and 26 older subjects, the latter

of which had a range of health conditions, to walk seven metres on three different terrains.

The control terrain consisted of linoleum, which was covered with an even layer of water for

the ’wet’ terrain. The third ’irregular’ terrain consisted of uneven wooden blocks covered with

a layer of artificial grass [110]. On the irregular terrain, subjects exhibited reduced walking

velocity, cadence, step length, and double support time, with an increase in step width and toe

clearance. For the wet surface, subjects exhibited reduced walking velocity, step length, and

increased step width [110].

Overall, these studies highlight a general trend that, as terrain becomes uneven, people generally

slow their gait, taking shorter steps, increasing their foot clearance, and lowering their centre of

mass to increase stability [38, 39, 108–112]. While these studies tend to lack a wide variety of

terrains, with many choosing to emulate uneven terrains rather than considering common daily

terrains [108–112], these studies clearly identify how gait is dependent on the terrain underfoot.

2.6 Fall-Related Research

Fall-related research is multidisciplinary, spanning both the healthcare and technology litera-

ture. As a result, a comprehensive review of these areas is required to illustrate what progress

has been made, and what the state-of-the-art healthcare approaches to falls are, to identify

research gaps and ensure that appropriate sensor methods are selected for this work. The

following section details the results of a systematic review on fall-related research.

2.6.1 Categories of Fall Research

Fall-related research can be divided into four categories: fall detection, fall prediction, fall pre-

vention, and fall intervention. Figure 2.1 shows how these studies are classified. The definitions

of these areas in the context of this review are as follows:
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Figure 2.1: A visualisation of how fall detection, prediction, prevention, and intervention are
defined in this review.

Fall Detection

Fall detection encapsulates studies which aim to identify a fall event as it is occurring, typically

before the person hits the ground. Although there are applications for fall detection after the

person has hit the ground, these will not be considered in this review.

Fall Prediction

Fall prediction is the detection of a fall event before the fall occurs, enabling a fall to be

prevented ahead of time. This area can include the monitoring of diagnostic gait data, such

as the spatio-temporal gait parameters, which may aid in predicting the diminishing of gait

health and therefore the risk of fall. Alternatively, studies may aim to determine the risk of a

fall outright using novel analytical and sensing approaches.

Fall Prevention

Fall prevention is the physical prevention of a fall as the fall is occurring through external

factors such as orthotics, exoskeletons, and balance-correction devices. Generally, any device

which imposes a force on the wearer will be classified as fall prevention in this study.
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Fall Intervention

Fall intervention includes approaches to preventing a fall before it occurs, typically through

rehabilitation programs and targeted muscle-strengthening exercises. The outcomes of these

programs are often measured through some form of standardised test, such as the Timed Up

and Go (TUG) test, Berg Balance Scale (BBS) score, etc.

2.6.2 Eligibility Criteria

This review was performed according to the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) guidelines. Studies were obtained from online searches spanning

from January 2012 to April 2024 using the CINAHL, Embase, PubMed, IEEE Xplore, and Web

of Science (Core Collection) databases. In addition to the results of these database searches, ci-

tation searches, Google Scholar, and some expanded search terms were used to obtain additional

relevant papers.

2.6.3 Database Search Terms

Each database in this review varies in the formatting of a search. As such, a generic search

term was formulated to encapsulate all four research areas considered in this review and was

translated for all databases. This search term was:

((human) AND ((fall* OR trip) AND (detect* OR prevent* OR predict* OR risk* OR

reduc* OR interven*)) AND ("machine learning" OR "deep learning" OR robot* OR

sensor* OR sensing OR exoskeleton OR orthotic OR rehab* OR balance OR assist*)

NOT (Parkinson* OR stroke OR "multiple sclerosis" OR "cerebral palsy" OR

dementia)).

Due to the large number of results from this search, additional tagging and filtering was per-

formed to obtain a subset of relevant studies for each of the four areas of interest in this review.

As such, all records were exported and custom automation tools were created using Python to

perform duplicate removal along with title, abstract, and keyword searching, and filtering to

return a list of studies for each of the four areas of interest. Title, abstract, and full record

screening was performed on the remaining studies to determine eligibility for inclusion in the

review.

During full record screening, a scoring criteria, previously used in the literature [113], was
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Figure 2.2: The PRISMA diagram for this review.

applied to further refine the search results. A record received up to two points for each of the

following:

• Are the research question/aims and design clearly stated?

• Is the research design appropriate for the aims and objectives of the research?

• Are the methods clearly described?

• Is the data adequate to support the authors’ interpretations/conclusions?

• Are the results generalizable?

Studies which scored less than five points were removed from the study. The PRISMA diagram

for this study can be seen in Figure 2.2. A full list of papers included in this study can be found

in Appendix A.

2.6.4 Fall Detection

Many fall detection studies draw their data from one of a variety of open access fall detection

datasets, or produce a dataset for future researchers to access, the details of which can be found

in Tables 2.1 and 2.2. Figure 2.4 shows the frequency with which fall detection datasets were

analysed in this review. Of the available datasets, URFall and Multiple Cameras Fall (MCF)
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were the most frequently analysed by a large margin. These datasets most prominently feature

a Kinect and RGB cameras [114–116], with the accelerometer data from URFall typically being

excluded when this dataset is analysed [117–125]. This highlights a phenomenon in which most

IMU-based datasets are only analysed a single time, typically being recorded and analysed

within a single study. Furthermore, these single-study datasets feature a large variation in

number of participants, as seen in Figure 2.3a, which can hinder the validity of proposed fall

detection approaches due to insufficient test sets. One approach to tackle this issue is seen in the

FARSEEING dataset proposed by Klenk et al. [126], which defines a data capture procedure

rather than a sensor system, resulting in a large multicentre dataset where researchers can

select and analyse data based on their desired sensor type. Future studies should work to

augment this dataset or produce a similar repository that allows researchers to contribute

towards a collective data pool or pull from it to test novel analytical techniques with a universally

recognised validation set.

Table 2.1: Fall Detection Datasets

Dataset Year Sensor(s) Sensor Locations Participants Activities

FallFree [127] 2017 Kinect Ambient

2 healthy participants
mimicking the

walking pattern of
cane users.

42 true falls, 23 pseudo falls, and 14
ADL, each repeated 4 to 5 times.

SisFall [128] 2017
Accelerometer
and gyroscope.

Waist

Different activities
and falls performed
by 2 groups: 23

healthy young adults
and 1 older person,

and 14 healthy people
over 62 years old.

Young healthy people and 1 older
person: 19 ADLs and 15 falls,
healthy older people: 15 ADLs.

UMAFall [129] 2017

4x 9-axis IMUs
connected to a
central mobile
phone acting as
a data sink.

Chest, wrist,
waist, and ankle.

17 participants aged
18-55 (mean: 26.9)

8 ADLs and 3 falls

UCIFall [130] 2014
6x 9-axis IMU
and barometer

nodes.

Head, chest,
waist, right wrist,
right thigh, and
right ankle.

14 participants with a
mean age of 22.75.

16 ADLs and 20 falls.

FallAllD [131] 2021
3x 9-axis IMU
and barometer

nodes.

Neck, waist, and
wrist.

15 participants aged
21-53 (mean: 32)

Up to 44 ADLs and 35 falls whilst
wearing protective equipment.
However, participants only wore
devices and completed activities
convenient to them, resulting in a

large variation.

Kinect
Activity

Recognition
Dataset

(KARD) [132]

2015 Kinect Ambient
10 participants aged

20-30

Around 1 hour of data comprised of
10 gestures and 8 actions but no

falls.
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Table 2.2: Fall Detection Datasets — continued

Dataset Year Sensor(s) Sensor Locations Participants Activities

Le2i [133] 2013 RGB camera Ambient 9 participants

191 videos are captured of
participants performing ADLs and
falls in 4 different indoor locations.
143 of these videos contain a fall.

Northwestern-
University of
California
(NUCLA)

[134]

2014
3x Kinect
cameras

Ambient 10 participants 16 activities but no falls.

MCF [116,
135]

2011
8x RGB
cameras

Ambient 1 participant
24 ADLs and 22 falls with varying

configurations of the cameras.

High Quality
Fall

Simulation
(HQFS) [136]

2016
5x RGB
cameras

Ambient 10 participants

Participants watched footage of
real falls and re-enacted them

including using different walking
aids. This totalled 17 ADLs and 55

fall activities.

SDUFall [137] 2014 Kinect Ambient 10 young participants
5 ADLs and 1 fall. The lighting,
direction, and position of the

Kinect was changed throughout.

Fall Detection
Dataset

(FDD) [115]
2012 RGB camera Ambient N/A

six ADLs and 3 falls in 4 different
locations.

UPFall [138] 2019

1x Electroen-
cephalogram
(EEG) sensor,
5x nodes each
consisting of an

IMU and
ambient light
sensor, 6x
infrared

sensors, and 2x
RGB cameras.

Neck, waist, right
pocket, wrist,
ankle, and
ambient.

17 participants aged
18-24.

6 ADLs and 5 fall activities.

IRMTv1 [139] 2018
2x depth
cameras

Ambient 2 young participants 20 ADLs and 20 falls.

TSTv2 [140] 2016
Kinect and 2x

IMUs.
Ambient, wrist

and waist.
11 participants aged

22-39
4 ADLs and 4 falls.

RealAct [141] 2021
Accelerometer
and barometer

neck (7 subjects),
wrist (9 subjects)

16 participants aged
80 or older.

Data is captured during a
participant’s daily life in which 2
real falls occurred over the total

400 days worth of data.

Fall360 [142] 2022
360°RGB
camera

Ambient 22 young participants

4 types of falls are captured among
1327 video clips along with 5

non-fall ADLs in a further 1387
clips.

Unnamed
Dataset -
Medrano et
al. [143]

2014
Smartphone

IMU

Both pockets or
both in a

handbag (falls), 1
pocket or 1 phone

in a handbag
(non-falls)

10 participants
8 falls and a prolonged period of

unlabelled ADLs

FARSEEING
[126]

2016

Accelerometer,
gyroscope,
various

additional
sensors.

Various Various

This dataset is a large growing
repository of fall data. As such,

activities, falls, sensor systems, and
participants vary heavily. However,
all sensor signals include at least an
accelerometer and gyroscope, with

a further 58% including a
magnetometer.

UT-A3D [144] 2012 Kinect Ambient 10 participants 10 ADLs but no fall events.

ACT42 [145] 2012 Kinect Ambient 24 participants 12 ADLs and 2 falls.

URFall [114] 2014
1x/2x Kinect

and 1x
accelerometer

Ambient and
pelvis region

5 participants

2 fall activities captured across 30
fall trials using 2 Kinects and an

IMU. 40 ADL trials are also
included which were recorded by
just a single Kinect and IMU.
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(a) Single-study datasets (b) Multi-study datasets

Figure 2.3: Box plots of the number of subjects in fall detection studies.

One issue with these datasets is that many studies make use of actors falling onto crash mats

or otherwise simulating a fall [142, 146–151], where other studies showed this to diminish the

performance of models when introduced to real-world falls [141, 152]. Datasets such as HQFS

[136] and RealAct [141] have demonstrated an awareness of this factor and made an effort

to improve the quality of simulated falls and capture real falls, respectively. However, there

remains a need for studies which capture a large enough quantity of real falls to facilitate a

sizeable dataset, something which may be unfeasible for the young healthy population, due to

the infrequency of falls in this group.

Due to the wide variation in datasets, a wide range of sensor types are also present among the

fall detection studies in this review. As seen in Figure 2.5, IMU, Red Green Blue (RGB) cam-

eras, and Kinect/depth cameras are the most prevalent across both single-study and externally

collected datasets. Many IMU-based studies feature either a single sensor [148, 150, 152–158]

or multiple sensors [131, 141, 146, 159–161] at different combinations of the neck, chest, waist,

wrists, thighs, and ankles. To address the issue of convenience in fall detection systems, some

studies aimed to analyse IMU sensor data from existing body-worn devices such as smartphones

[148, 154, 157] or smartwatches [156]. Ribeiro et al. [162] also demonstrated the versatility of

IMU-based solutions by using these sensors to monitor floor vibrations in an ambient-sensing

approach.

As depth cameras and Kinect sensors also capture RGB data, there is much overlap between

25



Chapter 2: Background

Figure 2.4: The number of times each fall detection dataset was analysed in this review.

these sensor types in regard to datasets, data preprocessing, and classification methods. As with

the IMU studies, a variety of setups are considered for camera-based solutions featuring either

a single [120, 125, 139, 142, 151, 163–169] or multiple [118, 119, 121–124, 170–175] cameras,

typically dependent on the dataset being analysed. Two major approaches present themselves

throughout the camera-based solutions, each with advantages and disadvantages. The first of

these approaches is to access and monitor the skeleton data, which can be extracted from RGB

[122, 125] or depth camera images [120, 163, 168, 169]. These approaches enable fast-acting

threshold algorithms that monitor features extracted from the relative and absolute positions

of the joints, while achieving performance metrics comparable to more complex methods [120].

However, the need for access to raw footage of the subject may raise privacy concerns [120].

On the other hand, some studies in this area choose to make use of silhouette data [119,

151, 174, 176], which reduce the amount of personal data being processed whilst maintaining

high performance metrics. In addition to these manual feature extraction approaches, some

studies aim to use powerful deep learning approaches such as Convolutional Neural Networks
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(a) Single-Study fall detection sensor use

(b) Externally-referenced fall detection sensor use

Figure 2.5: Graphs of the frequency with which sensors are used in fall detection studies for
single-study datasets and external datasets.

(CNNs) and Long Short-Term Memory (LSTM) models to perform automatic feature extraction

and fall detection on sequences of image data [121, 142, 170, 172]. Whilst this approach has

demonstrated high accuracies and versatility, it also suffers from the aforementioned privacy

concerns.

Whilst IMU, RGB cameras, and depth cameras are extremely popular, several other sensor

systems are adopted in the literature for the purpose of fall detection. Radar-based approaches

allow researchers to create non-restrictive ambient systems that offer data rich enough to yield

performance metrics up to 100% sensitivity when detecting a fall [149], while maintaining the
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privacy of the subject [149, 162, 177, 178]. Butt et al. [147] exploited the body’s reaction to

a fall using Electrocardiogram (ECG) sensors with a CNN to achieve a classification accuracy

of 97.36%, whilst using transfer-learning to reduce training times. Using information from the

5G C-band wireless channel, Haider et al. [179] obtained a kappa score of 0.98 when classifying

between falls and five ADLs. Pyroelectric Infrared (PIR) sensors are also verified through the

works of Liu et al. [180] and Luo et al. [181], who propose and refine novel sensor systems that

rapidly detect falls with a 93.1% accuracy with four participants, and 92.2% accuracy with eight

participants using Hidden Markov Models (HMMs). Another privacy-secure ambient approach

is presented by Haffner et al. [182], who use capacitive sensors embedded in both static and

portable flooring to classify falls and ADLs with accuracies of 92.6% and 100% respectively,

using a Least Squares (LS) classifier.

A large variety of classification methods are adopted across the studies included in this review,

with many studies testing multiple classifiers to optimise their results [117, 118, 123, 124,

131, 139, 141, 142, 152–156, 159, 161–163, 171, 172, 174, 178, 179, 182]. Figure 2.6 shows

the distribution of classification methods in fall detection studies. Among all fall detection

studies, Support Vector Machines (SVMs) were the most common models with 22 appearances,

followed by K-Nearest Neighbours (KNN) at 13 appearances, and the equally popular CNN

and Artificial Neural Network (ANN) classifiers at ten appearances. Despite their popularity,

SVMs, KNN, and ANNs only outperform other models in 47.3%, 27.3%, and 20% of their

appearances, respectively. In contrast, CNN-based methods, which were typically compared

with classical machine learning models, appeared as the highest performing model in 60% of

multimodel studies, being outperformed typically by LSTMs, another deep learning approach

[161, 178]. Furthermore, some models such as Näıve Bayes, and Decision Trees (DTs), were

featured five and four times respectively without a single appearance as the highest performing

model. It is suggested that future research continues to validate deep learning approaches, and

that more studies consider contrasting their methods with other classification approaches, as

21 of the 50 studies in this area only consider a single model.

Overall, the results acquired in this area are extremely positive, with many studies reporting

performance metrics ranging from 90-100% [117–125, 131, 141, 142, 146–150, 152, 154–178,

180–182], yet many studies fail to address the limitations outlined in this section which prevent

the wide scale adoption of this technology in the daily lives of those at risk of falling, such
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(a) All studies.

(b) Single-classifier studies removed.

Figure 2.6: The instances in which each classifier was used, and was the highest performing
model, in fall detection classification.

as generalisability, convenience, and privacy concerns. These limitations must be overcome on

a large scale to allow for the comparison of equally-viable approaches to fall detection, such

that specific sensors and models can be identified for use in real-world implementations to help
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reduce the impact of falls on society.

2.6.5 Fall Prediction

Fall prediction studies typically contain two approaches to identifying a person’s individual fall

risk. The first of these approaches is the extraction of the spatio-temporal gait parameters using

a novel sensor system, allowing healthcare professionals to maintain their current approach

to determining fall risk, whilst offering the advantages of increased portability, comfort, and

convenience [183–195]. Many studies in this area propose a novel sensor system designed to

mimic the function of commercially available systems, such as the Wii Balance Board (WBB)

[183], GAITRite [194], or motion capture systems [184, 186]. Agreement measures between IMU

and Force Sensing Resistor (FSR) insole devices and the existing standards are particularly high

[183, 184, 186, 188, 189], highlighting these sensor types as powerful wearable alternatives to

the current standards, all of which are stationary devices.

Alternatively, some studies aim to directly determine fall risk using methods such as machine

learning trained on healthy and abnormal gait, to determine the risk of falls in unseen subjects

[195–207]. Where in fall detection these models could be trained on fall vs non-fall data, in

fall prediction, another measure must be used to determine the risk of falling. In defining the

ground truth, studies tend to vary, with clinical assessments [196, 198, 199], questionnaires

[200], history of falls [202], fear of falling [204], asymmetry [205], a previous step [206], and

various spatio-temporal gait parameters [195, 207] all being used to determine the risk of falling.

This variety of ground-truth values, input data, and outcome measures illustrate an issue with

current fall prediction research in determining a measure for fall risk. Real fall events are

dangerous, unpredictable events, yet the inability to capture them results in a wide variety of

outcome measures. However, many of the studies in this area did achieve reasonable performance

metrics, demonstrating a capacity to automate sections of fall-related healthcare work such as

automatically determining fall risk from the BBS, six-minute walking test, TUG, and 30-second

sit to stand tests [196, 199, 200].

Regarding fall prediction datasets, no common datasets exist among the studies in this review.

Particularly with regard to direct fall risk prediction, these datasets are essential in reducing the

barrier to entry for future researchers who specialise in analytical models. This is reflected in

the performance metrics and chosen models in this area, with the average classification accuracy
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(a) Number of subjects (b) Age of subjects

Figure 2.7: Box plots of the number of subjects and mean age of subjects in fall prediction
studies.

across fall risk prediction studies being much lower than with fall detection, and with just a

single study by Savadkoohi et al. [204] making use of deep learning techniques which achieved

extremely high performance metrics of 99.9% specificity and 100% sensitivity on a dataset of 163

participants. Without robust, multi-study testing on collected datasets, proposed approaches

cannot be adequately verified, increasing the time for such methods to be adopted in healthcare

settings. Furthermore, fall prediction studies typically collect more robust datasets with an

increased number, and a wider age range, of subjects when compared to fall detection datasets.

As opposed to fall detection, fall risk analysis and spatio-temporal gait parameter extraction do

not require a subject to risk harm when building a training set, reducing the ethical barriers to

collecting data from the target population at risk of falling. Figure 2.7 shows the wide variety

of reported mean subject ages in fall prediction studies.

Among the area of fall prediction, spatio-temporal gait parameters are featured in most studies,

either extracting large numbers of parameters suitable for gait analysis [184, 186, 192, 194,

198, 207], calculating a more focused or limited set depending on the available hardware and

intended application [183, 185, 187–191, 193, 195, 200, 202, 204], or choosing to forgo observing

any spatio-temporal gait parameters in favour of a more specific approach [196, 197, 199, 201,

203, 205, 206]. Of the extracted spatio-temporal gait parameters, Figure 2.8 shows the frequency

with which each parameter was referenced with respect to fall prediction for those parameters

which were referenced more than once. This highlights Centre of Pressure (CoP)/CoM and
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step length as the parameters most relevant to fall prediction, which reflects the most popular

sensors found in Figure 2.9, of IMUs, depth cameras, and force sensing insoles.

Figure 2.8: The instances in which each spatio-temporal gait parameter was used in fall
prediction for those parameters which were referenced more than once.

Figure 2.9: The frequency with which each sensor type is used in fall prediction.
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2.6.6 Fall Prevention

Fall prevention studies are extremely varied in their devices, sensors, participant numbers, and

results [208–219]. Box plots of the mean number of participants in fall prevention studies can be

seen in Figure 2.10a. Regarding devices, most studies in this review featured exoskeletons [208,

209, 212, 214, 218–220]. These were primarily active lower-limb exoskeletons which supplied

additional torques to the hip [209, 219], knee [209, 218], and ankle joints [208, 212, 214].

The goal of these external torques vary between studies and include reducing gait variability

[208, 212], improving balance [209], aiding recovery after a slip or perturbation [218, 219], and

increasing foot clearance [214]. These active exoskeletons are tested on small populations of

subjects which, whilst insufficient if the device is to be adopted in a healthcare setting, is less

important at the prototype stage than in areas such as fall detection, where the training set

directly affects the performance of the proposed solution. Another method of applying corrective

forces to maintain balance was proposed by Romtrairat et al. [215], who proposed a device that

used the gyroscopic procession forces of two flywheels in a backpack worn by the subject to

counteract postural sway and maintain balance. Unfortunately, this device was only tested on

a simulated subject. Some devices are external, user-held devices designed to intelligently offer

support and prevent a fall event once it is detected [210, 211, 213, 216, 217]. Robotic walking

frames augmented with various sensors, such as force sensors [210], IMUs [211], and depth

sensors [217], monitor a subject whilst they walk and intelligently provide support and enact

preventative measures when a fall is detected. These devices are typically extremely large, and

were only tested on limited datasets of one [210, 211], and four [217] healthy subjects. A more

portable alternative is found in robotic walking canes [213, 216], which reposition themselves

to maximise the user’s stability. Similar to robotic walkers, robotic walking canes feature very

small datasets of healthy participants and highlight a need for such devices to be tested on

those who will adopt the device, such as older people. Furthermore, these devices demonstrate

an application for fall detection and fall prediction research, particularly relating to the use of

the smaller sensors embedded in walking canes like IMUs and force sensors.

2.6.7 Fall Intervention

Like fall prevention, fall intervention studies feature a wide array of methods with varying

outcome measures [221–231]. As such, this section will explore the approaches and methods

of a handful of studies to establish how healthcare studies approach fall impact reduction and

33



Chapter 2: Background

(a) Fall Prevention (b) Fall Intervention

Figure 2.10: Box plots of the number of subjects and mean age of subjects in fall prevention
and fall intervention studies.

identify how these can benefit from recent technological advances.

Fall intervention studies in this review include yoga [221], dance [223], elastic-band resistance

exercises [227], karate and fitness training [4, 228, 232], Otago training [230], and various Balance

training (BT) programmes [222, 224–226, 229, 231, 233, 234]. Participants underwent these

programs for 4–52 weeks, before having their fall risk or fear of falling tested through a variety

of methods such as the Illinois Fear of Falling (FoF) measure, BBS, TUG, Self-reported Number

of Falls (SNF), Falls Efficacy Scale (FES) etc.

Schmid et al. [221], Duque et al. [222], and Phu et al. [231] propose interventions to tackle fear

of falling along with improving balance parameters. Schmid et al. [221] provided 14 participants

aged 65 and older with a 12-week yoga program. Participants were issued a yoga mat, block,

and resistance band which were each incorporated into the classes, which required participants

to mimic postures whilst sitting in a chair or standing and using the chair as a support. After

the 12-week program, participants exhibited a 6% decrease in fear of falling, and an increase in

static balance by 4% and lower-body flexibility by 34% [221]. Duque et al. [222] instead make

use of Virtual Reality (VR) in a randomised controlled trial for the purpose of decreasing fear

of falling and improving balance parameters. In this study, 60 participants aged 65 years and

older underwent a six-week programme using a custom balance rehabilitation unit that combines

variable somatosensory, visual and vestibular conditions to assess and train balance. After the

program, participants who underwent training with the balance rehabilitation unit exhibited
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improved Survey of Activities and Fear of Falling (SAFFE) scores, along with significantly

improved balance parameters, which were associated with a reduction in falls and fear of falling

[222]. Finally, Phu et al. [231] demonstrated improvements in fear of falling in 195 participants

with a mean age of 78. This was achieved through dividing participants into three groups: an

exercise group who underwent modified Otago exercises; a VR-based BT group; and a control

group. After six weeks, both the Otago and VR BT group demonstrated improved scores on

the FES, Sit to stand (STS), Upright Stance Posturography (USS) and TUG tests, along with

improved gait speed and handgrip strength [231].

Regarding postural sway methods, Koceja and Greiwe [224] required a single, 63-year-old par-

ticipant to undergo a balance training program for a month using a self-developed apparatus

consisting of a stable platform and free-floating handles which allow for postural sway control

during the provided exercises [224]. Similarly, Schwenk et al. [225] recruited 33 participants

with a mean age of 84.6 to undergo a month of balance training, such as weight shifting and

performing specific movements, with data captured from IMUs to establish virtual obstacles

and provide visual feedback of the training exercises. This approach reduced CoM, ankle, and

hip sway, improved gait speed, and improved Alternate Step Test (AST) and TUG scores [225].

Freyler et al. [226] compared the effects of sensorimotor training and reactive balance training

over a one-month program on a population of 38 participants with a mean age of 23.5. This

study found that, whilst both methods were effective in improving balance and neuromuscu-

lar activation, the reactive balance training group showed larger improvements when using a

swinging platform and in situations featuring cognitive interference [226]. Coubard et al. [223]

trialled the effects of contemporary dance on the CoP of 38 subjects with a mean age of 71.6 who

were asked to participate in contemporary dance sessions for four weeks. Participants had their

CoP recorded before and after the process using a Techno-Concept platform, and Detrended

Fluctuation Analysis (DFA) was performed on the time series of CoP displacements. In the

contemporary dance group, the alpha component of the DFA increased, indicating higher pos-

tural confidence in this group [223]. Together, these studies demonstrate a variety of successful

methods for reducing fall risk by improving CoM-related parameters. Finally, Dehzangi et al.

[235] investigated the effect of vibrotactile feedback devices positioned on the chest and ankle

of 12 older people, which alerted the wearer when their postural sway become too high. The

device was tested on a population of 12 older people at risk of falls, who were split into a control

and experimental group. Use of the device was shown to counteract the degradation of gait
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health in the experimental group and improved lateral sway and posture control [235].

Another approach to fall intervention aims to reduce falls by targeting step-related spatio-

temporal gait parameters such as step time, frequency, and length [228]. Pliske et al. [228]

split 68 participants with a mean age of 68 into groups who underwent a 20-week program

of either karate or fitness training, along with a control group. Both the karate and fitness

training groups demonstrated improved spatio-temporal gait parameters such as reduced single

step time, increased step frequency and step length, and improved cognitive performance which

was tested using a dual-task gait test in which subjects counted backwards in intervals of three

from a given number [228].

Many studies use a series of standardised balance/fall scales to determine the success of a fall

intervention whilst featuring a wide variety of methods such as BT, elastic-band resistance ex-

ercises, and Otago training [220, 225, 227, 229–233]. Kwak et al. [227] split 45 participants aged

65 or older into two groups, one of which received elastic-band resistance exercises, whilst the

other was issued general physical therapy for an eight-week period. After the exercise program,

participants were evaluated using various scales such as the Functional Reach Test (FRT), BBS,

TUG, Sit and Reach Test (SRT), and Activities-specific Balance Confidence Scale (ABC). Sub-

jects showed significant improvements in both groups, with the elastic band resistance group

showing more effectiveness [227]. Allison et al. [229] issued 20 participants aged 70 or older and

who had a history of falls with an eight-week program of sensory-challenge balance training using

a SMART Balance Master device. After the program concluded, participants exhibited signifi-

cant improvements in the ABC, BBS, Sensory Organization Test (SOT), and Lower Extremity

Strength Score (LESS) scales, along with improved CoM gain and phase [229]. Liu-Ambrose

et al. [230] conducted a large study in which 345 participants with a mean age of 81.6 at risk

of falling were either issued a series of Otago exercises, or were part of a control group who

received their usual care. After 52 weeks, participants were evaluated using the Physiological

Profile Assessment Scores (PPAS), TUG, Short Physical Performance Battery Scores (SPPBS),

and SNF, which identified no significant improvements in physical performance, despite an in-

crease in the SNF, which reflects a decrease in fear of falling. Verrusio et al. [220] propose

a passive exoskeleton designed to improve cognitive and motor function in 150 people with a

mean age of 64.85, who demonstrated improved scores in the Tinetti Gait and Balance Test,

Tinetti Balance, SPPBS, a Numeric Rating Scale (NRS) for pain, and SF-36 QoL. Chittrakul
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et al. [232] propose a Multi-system Physical Exercise (MPE) program targeting proprioception,

muscle strength, reaction times, and balance in a randomised controlled trial on 72 participants

aged 65 and above, 36 of whom received the MPE. After 12 and 24 weeks, these participants

underwent several standardised assessments targeting fall risk, fear of falling, depression, and

quality of life. Among the MPE group, all assessment scores were observed to improve after 12

weeks, with depression and quality of life scores returning to their baseline values after the 24-

week assessment. Finally, Zahedian-Nasab et al. [233] measure improvements in FES, TUG, and

BBS scores of the control group from a 60-participant cohort with balance disorders aged over

60 years using a Kinect. The Kinect group performed two, 30-45 minute exercise sessions a week

for six weeks using the penalty, goalkeeping, ski, and darts activities from the ”Kinect Sports”

games. After the course, TUG and FES test scores decreased whilst BBS scores increased,

indicating improved balance and a reduction in fear of falling.

Finally, two studies by Rikkonen et al. [4] and Sturnieks et al. [234] perform year-long studies

in which the outcome measure is the frequency of falls between the control group and the

intervention group. Rikkonen et al. [4] split a cohort of 914 women into two groups, one of

which was the control whilst the other was given complimentary access to their city’s exercise

facilities for a year, and were subscribed to a six-month program comprising a one-hour circuit

gym session and one-hour of Tai Chi, with warms ups and 50 minutes of training, each week. In

a follow-up after 24 months, the intervention group exhibited a 14.3% reduction in fall rate and

improvement in TUG speed when compared to the control group. Similarly, Sturnieks et al. [234]

perform a randomised controlled trial of 716 participants in which 231 participants were assigned

Exergame training, 239 were assigned cognitive training, and the remaining 246 were the control

group. The Exergame and cognitive group were assigned eight games to play for 120 minutes

a week using either their feet or a keyboard, respectively, as inputs for the game. Participants

spent an average actual time of 79.7 minutes per week performing the tasks, and a decrease in

falls occurred among the Exergame group when compared to the cognitive and control groups.

Furthermore, the Exergame group exhibited improvements among some cognitive and general

health aspects of the Patient Health Questionnaire 9 (PHQ-9), Iconographical Falls Efficacy

Scale (IFES), and Late Life Function and Disability Instrument (LLFDI).

These studies outline a wide variety of methods and outcomes, which demonstrate many forms

of exercise and balance training that can have a positive impact on balance and reduce the
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likelihood and fear of falls. Studies generally make use of large cohorts of appropriately-aged

participants, as seen in Figure 2.10b, and use a variety of established scales, tests, and spatio-

temporal parameters related to falls to determine their success. This approach immediately

validates proposed methods in the context of established or current methods, which can more

easily communicate the successes of such methods, creating opportunities for adoption in health-

care settings.

2.6.8 Summary of Fall-Related Research

This review offers an insight into the wide range of literature that shares the goal of reducing

the impact of falls in society. Whilst developments, trends, and future research in each of the

four core areas have been identified, this cross-disciplinary approach to fall literature searching

highlights broader research gaps which, when addressed, will help to accelerate the adoption of

all fall-related technologies in healthcare settings.

Fall Detection

Fall detection research, despite being the largest area of research in this review, has shown very

little change in direction over the past ten years. These studies employ a formulaic approach

of capturing limited datasets using novel configurations of a narrow range of sensor types,

without consideration for the user experience or the implementation complexities involved in

adopting such a solution in a real-world healthcare setting. This approach to fall detection lies

in stark contrast to fall intervention, and as such is insufficient in producing results which can

be adopted in real-world scenarios, leaving this area stagnant for many years. Future research

in this area should be designed with implementation, rather than analytical results, as the

research outcome, such that the large variety of high-performing fall detection methods in this

study are exposed to the nuances of real-world falls in subjects at risk of falling. Furthermore,

novel sensor systems must be designed with the input of those at risk of falling, as privacy

concerns, the comfort of having such a system equipped, and the convenience of charging and

maintaining the device are factors more likely to affect the adoption of this technology than

small variations in accuracy. Future research in this area must introduce larger, more realistic

datasets consisting of subjects at risk of falls, perform qualitative studies into the needs and

feasibility of the current successful methods, and take additional steps to design infrastructure

such as mobile apps or alarm systems which act upon the detected fall.
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Fall Prediction

Fall prediction features a wide variety of approaches to automate several aspects of what would

be a traditional gait analysis procedure. This involves either extracting the spatio-temporal

gait parameters in novel ways, or skipping this process and determining a person’s risk of fall

directly. As such, these studies have a lower potential impact than fall detection, prevention,

or intervention, but do help to improve and standardise the existing fall-related healthcare

pipeline. For this reason, these studies are much more healthcare-focussed than fall detection

and prevention studies, typically already featuring large datasets of appropriate subjects and

looking to implement their systems in real gait-analysis settings. Fall prediction studies which

aim to replace some existing tools used in gait analysis, such as the GAITRite, WBB, and motion

capture systems, with simpler portable systems, have demonstrated the feasibility of IMUs and

force-sensing insoles as powerful wearable alternatives to the existing stationary approaches.

Future research should take full advantage of these methods and enrich gait analysis with data

captured outside the laboratory, as studies have demonstrated a dependency on gait performance

with terrain [38, 39]. With regard to direct fall risk assessment, many studies used just a single

physiotherapist as the ground truth value for determining if a subject was at risk of falling, which

introduces bias into these datasets. The future work of these studies, therefore, should be to

improve their models and datasets with additional physiotherapist evaluations of a subject’s fall

risk, such that risk assessment can be reliably automated. Furthermore, given the frequency

with which fall-related standardised scales, such as the BBS, are used in fall intervention, fall

prediction studies, such those of Colagiorgio et al. [196], Eichler et al. [199], and Haescher et al.

[200], which aim to automate fall-risk analysis through the automated scoring with these scales

are shown to augment existing healthcare approaches to fall intervention, and should be further

pursued.

Fall Prevention

Fall prevention studies feature a broad range of approaches to preventing a fall through inducing

forces or providing feedback to the user during walking. These devices are generally complex and

in the prototype stage, with several proposed systems being tested on just a single subject. As

such, one large requirement in this area is the need to consider activities other than walking. It

can be seen, therefore, how dependent the future of fall prevention is on the current developments

in fall detection and prediction, with each of these fields containing crucial developments which
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fall prevention approaches must incorporate before they can be adopted. With respect to fall

detection, fall prevention systems must be capable of determining when a fall is occurring,

when activities other than walking are being performed, and accurately differentiating between

common daily activities and falls, so that these systems know when to activate and prevent a

fall. This lack of consideration for other walking activities can also be seen in the type of device

being proposed, as many of the exoskeletons, walking canes, and robotic walkers are unusable or

untested outside of walking on level ground. Furthermore, many fall prediction methods offer the

capabilities to monitor the spatio-temporal gait parameters and determine fall risk, which are

also crucial variables when controlling a fall prevention device. Fall detection and fall prediction

make heavy use of IMUs and force-sensing insoles, respectively, each of which is prominently

featured in many of the fall prevention methods in this review. Future studies in this area

should continue to develop systems with these sensor types, and investigate the effectiveness of

combining fall detection and fall prediction methods to augment and contextualise the devices

proposed for the purpose of fall prevention.

Fall Intervention

Fall intervention studies typically aim to swap existing fall intervention and rehabilitation pro-

grams with novel exercises which offer increased benefits such as balance training or more general

exercise like yoga, karate, dance, etc. Some of these studies make use of technology such as

VR, IMUs, Kinect, and the SMART balance training device, however most studies make use of

traditional exercises and manual fall risk assessment methods. This reflects a lack of impact in

fall prediction studies, particularly of those that automatically determine the spatio-temporal

gait parameters or directly assess fall risk. Furthermore, fear of falls only appears as an outcome

in fall intervention studies, despite being relevant to all areas of fall research. Fall intervention

studies also feature the most appropriate datasets of each area in this study, with large cohorts

of older people at risk of falling being commonplace among fall intervention studies. This could

be due to a variety of reasons, such as an increased difficulty in obtaining ethical approval to

explore novel technologies on vulnerable populations, or reduced trust by potential participants

in these technologies.
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2.7 Human Activity Recognition

The field of Human Activity Recognition (HAR) involves the use of classification methods,

such as Machine Learning (ML) and Deep Learning (DL), to determine the activity a person is

performing from data collected using a wide variety of sensors [236]. Whilst some studies and

datasets aim to classify activities involving the upper limbs [236, 237], this review focusses on

lower-limb HAR, such as walking, navigating stairs and ramps, and non-ambulation activities

like sitting and standing [238–246]. Due to the nature of the detected activities, wearable sensors

have shown to be effective in enabling high-accuracy activity recognition whilst maintaining a

high level of portability, leading many modern studies to use sensory data from smartphones

[247–249]. However, another application of HAR is in the control systems of microprocessor

knees, which must determine user intent with high accuracy in extremely short times [244, 250].

HAR studies feature a multitude of sensor systems, datasets, and classification techniques, re-

sulting in large between-study variations in reported performance metrics. Attal et al. [28] used

nine IMUs placed on the chest, right thigh, and left ankle and a variety of classical ML models

to classify between 12 classes of human activities. The study found that KNN and Random

Forest (RF) were the most accurate models, and that all supervised ML methods performed

better than the unsupervised methods. However, this paper was limited by cumbersome wear-

ables, a lack of participants and a biased training set where over 30% of the data belonged

to a single activity. Sok et al. [30] use HMMs to increase the accuracy of HAR classification

algorithms by preventing the model from switching between states that did not make logical

sense (for example, rapid alternations between lying down and walking) which resulted in an

increased accuracy of up to 2.6%. Asim et al. [31] proposed a system to perform context-aware

HAR, where data collected from a smartphone was assigned classes for both the activity and

the context (such as: lying down — watching TV, and lying down — sleeping). The researchers

state that this approach would increase utility due to the variety of different situations asso-

ciated with a given activity. After performing feature extraction and training various models,

RFs demonstrated the highest accuracy and only a small accuracy drop was reported between

the six-class, context-independent data and the 15-class, context-dependant data. This paper

is a good initial step into HAR for real-environment activities, however, this study is limited by

the lack of terrain variation [31].

HAR models can be trained subject-dependently or subject-independently, where accuracy or

41



Chapter 2: Background

generalisation are prioritised, respectively [246, 251]. Subject-dependent models are trained

using data gathered from the end user, which typically involve lengthy training programmes for

each individual using the system and attain high accuracies, whilst subject independent models

use a large database for training, striving for ‘off the shelf’, pre-trained systems at the cost of

subject-specific accuracy [246]. Some studies combine these approaches, adding a small amount

of subject-specific data to a large database, which yields further accuracy improvements [33,

246, 252].

With respect to DL methods, Bianchi et al. [32] demonstrate the potential accuracy of CNNs

by achieving accuracies of 92.5% and 97% on two popular datasets, whilst Lawal and Bano [33]

convert sensor signals from the RealWorld Human Activity Recognition dataset into images for

analysis with a CNN, which can perform automatic feature extraction and classification. The

model utilised decision fusion to combine individual predictions from each of the two sensors to

increase accuracy. Despite this technique, a relatively low accuracy of 78% was reported when

classifying between all eight activities due to the confusion between the ‘walking’ and ‘climbing

up’ activities. This factor was also identified by Murad and Pyun [34], who found that their

Deep Recurrent Neural Network (DRNN) could not differentiate between the ’elevator’ classes

of the USC-HAD dataset, despite achieving an accuracy of 97.8% and outperforming SVMs,

KNN, RFs, and CNNs across five datasets. In summary, the potential accuracy gains of LSTM

and CNN seem to depend on the application, presenting a need for further investigation into

the contexts in which these models excel.

HAR datasets offer a large range of different sensor configurations and modalities. [35, 238–241,

253, 254]. However, due to class imbalances, differences in subject numbers, varying sample

rates, different sensor modalities, and the use of a wide range of classification models, it can

be difficult to determine what factors result in high-accuracy HAR [255, 256]. Furthermore,

generalisation can be a concern, with datasets typically using a single staircase or ramp, resulting

in the models learning only a single step height and ramp incline. Camargo et al. [254] manage

to mitigate some of these issues by using ramps and stairs of varying heights, which helps to

increase model generalisation. However, this dataset utilised an extremely cumbersome sensor

system which would not be viable for daily usage. In 2020, a novel dataset was proposed by

Luo et al. [35], with a focus on under-explored, real-environment HAR. However, this dataset is

still limited due to a lack of activities as, although ten were collected, eight were simply level-
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ground walking on different terrains, with two remaining stair ascent classes. This approach is

too minimal to produce a model that sufficiently generalises when considering the number of

permutations of terrain and walking activity in daily life.

In summary, RF classifiers seem to provide extremely high accuracies for HAR, often outper-

forming other classical ML algorithms when acting on the same dataset [28, 30, 31, 248, 257].

On the other hand, DL methods can further increase accuracies, particularly with respect to

CNN and LSTM models, which have consistently exhibited high accuracies and reasonable de-

cision times [32–34, 258, 259]. HAR datasets lack terrain and real environment data, despite

the large number of publicly available datasets which, in recent years, demonstrate a focus on

Internet of Things (IoT) applications, telemedicine, remote monitoring and identification of

activities among vulnerable populations [32, 247]. HAR is an application of sensor technologies

somewhat removed from reducing the impact of falls, and may be best suited to the labelling of

remotely collected gait data such that the healthcare professionals who analyse these data are

aware of the context in which it was collected. As this gait data can be used in multiple areas

of diagnosis and prognosis, this context is crucial to prevent misdiagnoses and allow healthcare

specialists to select which activities they want to analyse the data from. Furthermore, HAR

can be used to detect bouts of walking in unobserved subjects for the purpose of remotely mon-

itoring the gait parameters to evaluate fall risk in real-time. With these applications in mind,

the lack of real-environment datasets severely limits the potential for healthcare applications of

HAR.

2.8 Gait Event Detection

Human gait is considered to be symmetrical and composed of eight phases separated by whether

the foot is contacting the ground or is not in contact with the ground [36, 260, 261]. These

eight phases of gait are as follows: the Stance Phase consisting of Initial Contact (IC)/Heel

Strike (HS), Loading Response (LR), Mid-Stance (MSt), Terminal Stance (TSt), and Pre-

Swing (PSw)/Toe-Off (TO), and the Swing Phase consisting of Initial Swing (ISw), Mid-Swing

(MSw) and Terminal Swing (TSw). Gait event detection typically involves classifying the gait

phase using sensor data and threshold algorithms or ML models [36, 262–269], with some

studies additionally aiming to identify a general activity or ‘gait mode’ such as walking or

climbing [243–245]. Applications of gait phase and gait mode detection typically relate to
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control systems for prosthetic limbs, which restore natural ambulation to amputees [243, 246],

or for use in diagnostics along with spatio-temporal gait parameter estimation [25, 270–272]. In

all of these areas, three methods are traditionally used for classification: rule-based algorithms,

user-dependant ML models and user-independent ML models [246, 266, 273].

Rule-based gait phase detection algorithms typically involve identification of the HS and the TO

events by monitoring when sensor signals or calculated variables, such as CoP, cross a threshold

or reach a specific value [265, 266, 274]. One example of the benefits of such algorithms can

be seen in the work of Maqbool et al. [267], where peak detection is used to find the HS and

TO events with 100% accuracy on both a healthy control and multiple amputees, regardless of

the worn prosthetic. Whilst demonstrating a high accuracy, problems arise when considering

the order in which detection of events occurs, resulting in detection issues during the initial

stride [267]. Additionally, as all data was collected in a laboratory environment, the accuracy in

real-world settings is unknown. Many threshold based algorithms are simple to implement and

reliable in systems where only HS and TO events are required, but generally lack the capacity

to accurately identify additional gait phases [266]. The use of machine learning techniques

is more applicable for higher resolution gait phase detection with high accuracy at the cost

of increased decision time, as shown by Farah et al. [275], Heng et al. [276], and Ding et

al. [277], the latter of which additionally demonstrates that DL methods such as LSTMs can

further increase accuracies over classical ML models. Furthermore, the sequential, cyclical

nature of gait enables certain techniques, such as finite state machines and HMMs, to improve

classification accuracy through the inclusion of state probabilities [30, 263, 278]. Once the

HS and TO events are identified, data from individual strides can be processed to extract the

spatio-temporal parameters such as stride length, stride width, velocity, and cadence, which

hold clinical relevancy in diagnosis, prognostication, and rehabilitation [271].

2.9 Terrain Identification

Terrain identification is not uniquely applicable to human fall-related research, with stroke

research [279], walking robot control systems [280–282], exoskeletons [283], and prosthetics

[284] all benefitting from knowledge of the terrain underfoot. However, in the context of human

gait and fall research, as stated by Das et al. [285], ”Identification of the type of terrain (e.g.,

grass, flat ground, sand, gravel, etc.) is scarcely covered in the current literature.”, highlighting
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a need for additional terrain identification systems. The following section explores studies and

research trends in recent years which aim to address this issue.

Moore et al. [286] created a dataset of online videos recorded from a range of indoor and outdoor

terrains from YouTube videos. They then created three CNN-based models to classify the video

frames and determine whether the scene is indoor/outdoor, if the floor is visible, and whether

the terrain was asphalt, concrete blocks, grass, gravel, sand, snow, or woodland. The model was

tested on two subjects and performed well under certain conditions, with accuracies of 45-80%

when tested on 720p-resolution video, which increased to 70-90% when the quality was increased

to 1080p [286]. Similarly, Nouredanesh et al. [287] used a belt-mounted wearable camera to

collect a novel dataset from nine subjects walking on eight terrains: pavement, gravel/stone,

soil, grass/foliage, high-friction materials, indoor tiles, and wood. Several models were trained,

and classification scores were high, with the outdoor and indoor models achieving accuracies of

99.23% and 85.26%, respectively. However, not all subjects walked on all possible terrains, with

subjects OA2 and OA9 walking exclusively on indoor terrains [287]. Diaz et al. [284] attached a

Samsung S6 smartphone camera to a subject’s prosthetic with the aim of identifying terrain for

use in the control system of these devices to increase safety and comfort. The subject walked

for four minutes on six different terrains: asphalt, carpet, cobblestone, grass, mulch, and tile.

A bag of words classifier was then used to identify each terrain, and achieved a mean accuracy

of 86%, although this appears to be inflated due to large class imbalances, with grass being

classified with less than 50% accuracy [284]. Zhong et al. [288] compared the locations of two

wearable cameras: a custom device placed on the leg, and the Tobii Pro Glasses 2 eye tracker

for the purpose of terrain classification. Seven participants wore both systems while walking at

a self-selected pace on tile, grass, brick, cement, upstairs, and downstairs. A Bayesian neural

network was then trained to predict the terrain a participant was about to walk on within the

next one to two seconds. Of the tested model architectures, the Bayesian gated recurrent unit

model achieved the highest accuracy at 91.30%. When combining features from the glasses and

the leg-mounted device, this accuracy increased to 95.36% [288]. Finally, Das et al. [285] had

two subjects walk on concrete, cobblestone, sand, and gravel while equipped with IMUs on the

feet, lower legs, upper legs, lumbar, and sternum, along with GoPro Hero 4 cameras placed

on the ankle, chest, and head. The researchers built two CNN models for terrain classification

using either camera or IMU data. Whilst the camera-based classification achieved an accuracy

of 97.79%, this study demonstrates the capacity to predict terrain with IMU data, with 1D CNN
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models trained on this data achieving accuracies of 94.90%-97.00% depending on the position

of the IMU, with the sternum being the position that achieved the highest accuracy [285].

Regarding IMU-only studies, Hashmi et al. [289], Dixon et al. [290], and Hu et al. [291] aim to

classify terrain using data from one to two IMUs. Hashmi et al. [289] attached a smartphone to

the chest and lower back of 40 subjects who walked on six terrains separated into soft (carpet,

grass, and soil) and hard (concrete, asphalt, and tiles) surfaces. Features were extracted from

the data, which were then processed by a SVM and RF model. Of the sensors and models, the

highest accuracy was obtained by the RF using data from the sensor on the lower back, which

classified between the six terrains with 88.7% accuracy [289]. Dixon et al. [290] collected data

from 29 participants, each of which wore a 3-axis accelerometer on the lower back and the right

tibia, while running on three surfaces: concrete, synthetic, and woodchip. CNN and Gradient

Boosting (GB) models were then trained on the data from these sensors. The highest performing

combination of model and sensor used GB with both accelerometers, which identified terrain

with 97.0% accuracy [290]. Hu et al. [291] had 17 older, and 18 younger subjects walk over

flat and uneven brick surfaces while equipped with a IMU on the trunk [292]. These data were

then used to train an LSTM model, which classified terrain with 96.3% accuracy [291]. Whilst

accurate, all of these studies consider only subject-dependent cross validation, which impedes

the generalisation of these models.

Whilst these studies show the current state of terrain classification for human subjects, this

field is not limited to this application, with some studies demonstrating the capacity for depth

cameras like the Microsoft Kinect V2 to classify terrain for robot walkers with accuracies of

94-99% across 10-12 classes [280–282]. Additionally, LiDAR technologies have proven useful in

classifying terrain in the context of robotics [293, 294]. However, due to the size and weight of

devices like the Kinect V2, these do not see applications for terrain classification with human

subjects.

2.10 Notable Sensor Types In Fall-Related Research

Each area of this chapter highlights different sensor types as being effective towards the associ-

ated application. The following section explores the most promenade sensor types in different

areas of fall-related research.
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IMUs appear throughout almost all areas of technology-related fall research. These sensors

comprise an accelerometer, gyroscope, and magnetometer, the data from which are fused to

identify movements in 3D space [247, 295]. IMUs are also small, lightweight devices which can

easily be attached to the body, resulting in their popularity among gait analysis [36, 37] and

HAR [35, 238–241, 253, 254, 296].

FSR insoles appear frequently among fall prediction research, as demonstrated in Figure 2.9,

and are suited to extracting the CoP/CoM [186, 188–190] and identifying the gait phase [265,

297–299]. These sensors are also convenient, comfortable, and subtle when equipped by simply

placing them inside the shoes.

Finally, while camera technologies are effective across most areas of fall-related research, the

area where they offer unique capabilities in the literature is through effective terrain classifica-

tion. However, to preserve the privacy of subjects, alternative methods must be investigated to

replicate these successes without capturing images. Das et al. [285] demonstrated the capability

for IMUs to achieve high accuracy terrain classification, however it is possible that a combi-

nation of LiDAR and colour sensor could capture depth and low-dimensionality visual data,

which reflect the success of depth cameras in terrain classification while protecting the wearer’s

privacy.

2.11 Gaps in the Literature

Current studies into gait analysis lack environmental context [35, 36, 300] and focus too heavily

on specific conditions, despite the medical literature suggesting that many people who are at

high risk of falling share certain spatio-temporal gait abnormalities such as increased variability

and asymmetry, as noted by Li et al. [13] and Fasano et al. [11]. If projects were more tailored

to these underlying properties of gait, a more general utility could be created to aid in the

rehabilitation and recovery process of those with hip replacements, new prosthetics, or gait-

affecting injuries, whilst also monitoring progressive conditions such as MS and PD.

Existing fall research, particularly fall prediction research, can use variations in the spatio-

temporal parameters to assess a person’s risk of falling. However, these parameters are subject

to variations caused by internal and external factors, such as health conditions and the ter-

rain underfoot. As such, it is crucial for data collection systems designed for use in real-world
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scenarios to collect contextual data about the environment and activity being performed. Fur-

thermore, terrain itself has been shown to contribute towards a person’s risk of falling through

introducing slip and trip hazards, and inducing changes in gait to accommodate the reduction

in balance on these surfaces. To address this issue, some studies have aimed to perform terrain

classification using wearable sensors, such as body-mounted cameras and IMUs. However, there

are privacy concerns with systems that use body-mounted cameras [236], whilst the IMU-based

approaches are not tested using subject-independent cross validation, meaning that a training

period would be required if implementing these in healthcare systems. Furthermore, many

IMU-based approaches do not consider a wide range of common indoor and outdoor terrains.

This highlights a need for a privacy-retaining sensor system which collects data from subjects

walking on a range of indoor and outdoor terrains to explore the contributions of unexplored

sensor types.

Finally, the areas of gait analysis and fall-risk detection lack real-environment devices and ap-

plications, as the spatio-temporal gait parameters have been shown to differ greatly in real

environments when compared to laboratory conditions [301]. This has significant clinical impli-

cations when considering that currently, gait analysis occurs in a confined area of laboratory-like

conditions when using systems such as the GAITRite [302]. Furthermore, the effect of terrain

on gait is largely separated into smooth and uneven terrain [108–112], without consideration

for the effect of individual real-world terrains on gait. As a result, the future of automatic

gait analysis must account for realistic terrains, which can augment data collected using meth-

ods such as IMUs in real environments to better represent the context in which the data were

captured, and offer insights into the effect of terrain on fall risk [300].

These areas highlight a gap in the literature for the development of a terrain-identification

system which incorporates the sensor types required for remote gait analysis, fall prediction,

and HAR, such as IMUs and FSR insoles. Furthermore, due to the successes in the literature of

using depth cameras for terrain identification in robotic applications, a combination of LiDAR

and colour sensors may be capable of emulating this success by extracting depth and basic

visual information about the terrain underfoot, without capturing image data to maintain the

privacy of the wearer. Such a system will be capable of monitoring the incremental internal and

external fall-risk factors that occur during natural walking on a range of terrains throughout a

person’s daily life for the purpose of real-time fall prediction.
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2.12 Summary

This chapter introduces the multidisciplinary research field of falls and fall-impact reduction

research such as the various internal and external fall risk factors, how the technological and

healthcare literature address falls through detection, prediction, prevention, and intervention,

HAR, gait event detection, and terrain classification. These areas highlight the many conditions

encountered in daily life which can contribute towards a person’s fall risk. While a ’perfect’ fall

prediction system would be able to detect a fall in the steps before it occurs, this capability

does not exist at present. As such, a more useful approach in the current landscape of fall

research may be to monitor a person’s individual risk of falling in real-time, which is calculated

by combining knowledge of how various health conditions affect gait, along with automatically-

detected external risk factors such as terrain. This thesis outlines the design of a prototype

system capable of monitoring these changing real-time fall-risk factors such that a person’s

fall risk can be monitored and estimated throughout the various different terrains and walking

activities encountered in daily life.
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Analysis of Existing Datasets

3.1 Introduction

The development of a device which can monitor incremental risk factors first requires the ability

to differentiate walking from other activities. Once the subject is determined to be walking, the

spatio-temporal gait parameters can be extracted from this data and used to monitor gait health

and risk of falling, as covered in Chapter 2. This prevents the system from attempting to deter-

mine the spatio-temporal parameters during activities which will affect the gait cycle, such as

ramps and stairs. Many studies have been conducted in the field of Human Activity Recognition

(HAR) with respect to analysing existing datasets, offering a large range of classifiers, results,

and preprocessing parameters [29, 303–306]. Among this wide variety of approaches to activity

classification, Semi Non-Overlapping Windows (SNOW) and Fully Non-Overlapping Windows

(FNOW) are a popular approach in converting time-series data to individual samples, which

can be used to train Machine Learning (ML) models [307–311]. This approach is also used,

although is not necessary, with many deep learning techniques such as Convolutional Neural

Networks (CNNs), Deep Neural Network (DNN), and Long Short-Term Memory (LSTM) mod-

els [312–314]. Due to the wide array of sliding window parameters used in these studies, some

researchers have aimed to analyse the effects of changing these parameters on the classification

accuracy of ML and Deep Learning (DL) models [313, 315].

Dehghani et al. [315] explore the effects of window size on the classification accuracy of two

datasets by Baños et al. [316] and Morris et al. [317]. This study finds that window size does

not correlate with classification accuracy, as one dataset decreases in accuracy with window size
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whilst the other increases. Rather, this study concludes that use of SNOW correlates with the

underperforming of subject-dependent (Train-Test Split (TTS)) cross-validation, whilst having

no effect on subject-independent (Leave One Subject Out (LOSO)) cross-validation despite

increasing the computational costs during training. However, this study is limited by the choice

of classification method as, while K-Nearest Neighbours (KNN), Decision Tree (DT), and Näıve

Bayes (NB) are somewhat prevalent in the literature, Nearest Centroid Classifiers (NCCs) are

rarely seen, and all of these methods are shown to be less popular or effective than Random

Forests (RFs), Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs) [318–

320]. Furthermore, a limited feature set is used, each dataset contains only Inertial Measurement

Unit (IMU) sensors, and there are large variations in activity type, number of activities, and

number of subjects between datasets. Banos et al. [311] studied the effect of window size on

classification performance for a single dataset featuring accelerometers placed on each thigh,

shank, upper arm, forearm, and the back [256]. This work highlights the need for a balance

between high accuracy and rapid decision times, and finds that larger window sizes do not

correlate to increased classification performance, with the optimal window sizes occurring below

two seconds using DTs, KNN, näıve bayes, and a NCC. Similarly, Niazi et al. [321] analysed the

codependency of window size and sample rate to determine what parameters enable the highest

classification accuracy using RFs and a single hip-worn accelerometer. This study found that

window sizes of two to ten seconds are optimal, contrasting the results of Banos et al. [311].

Both of these studies highlight that future work is needed to consider additional technologies

and sensor types. Li et al. [322] discuss the difficulty of determining an optimal window size for

a given application, instead choosing to use different window sizes for each activity based on the

temporal properties of that activity, which increases classification performance. Jaén-Vargas et

al. [313] collect a novel dataset from ten healthy participants using an IMU and motion capture

system. Participants performed three core movement activities: walking, squatting, and sit-to-

stand. Using various window sizes ranging from 200 samples down to just 50, the study found

that larger window sizes increased model performance across all models for both the motion

capture and IMU data. Whilst accounting for the introduction of bias, this study is limited by

the use of a single dataset and a limited range of activities and sensors. Furthermore, the use

of automatic feature extraction in deep learning limits the scope of these results for researchers

wishing to use more lightweight wearable devices who may wish to use classical ML algorithms,

as the use of human-extracted features may change these results.
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Regarding sensor placement, Duan and Fujinami [255] placed seven accelerometers on the upper

arm, wrists, thighs, and chest to determine how sensor location affects classification accuracy.

This study found that sensors placed on the subject’s dominant side, the right side in all

cases for this study, exhibited increased performance with the right wrist being the highest-

performing sensor type when used alone. Furthermore, this study evaluated the use of RF

models along with deep learning techniques such as convolutional neural networks, transformers,

and long short-term memory models, with the latter. Kulchyk and Etemad [323] analysed the

performance of sensors positioned on the sternum, left thigh, right ankle, and right shoulder

using a convolutional neural network for both subject-dependent and subject-independent cross-

validation. This study found the right ankle to be the optimal sensor location, with multiple

pairs of sensors including the ankle sensor resulting in 100% classification accuracy [323]. Fianlly,

Khan et al. [324] place five sensor nodes consisting of accelerometers and gyroscopes on each

forearm, the waist, and each ankle and perform HAR using simple logistic regression, näıve

bayes, and sequential minimal optimization classifiers. The study found that individual sensor

performance was dependent on activity type, with sensors on the chest and thigh being optimal

for stationary tasks, whilst sensors on the thigh, lower back, and ankle performed better at

movement tasks [324]. Many studies which consider sensor placement for HAR consider only

accelerometers or IMUs [255, 323–326], leaving much room for sensor position analysis using

additional technologies which can capture motion data.

In summary, due to contrasting results across these analyses, there exists a need to analyse

the sliding window feature extraction parameters across multiple datasets whilst accounting

for variations in subject number, sample rate, and activities. This analysis will help to elimi-

nate the effect of variations in datasets on reported model performances, which may introduce

classification bias, affecting the results and conclusions of these analyses. Furthermore, both

subject-dependent and subject-independent cross-validation must be considered to verify the

findings of Dehghani et al. [315], and different sensor types must be explored such that this

analysis is applicable to a larger number of sensor systems and datasets found in the literature.

This chapter outlines the homogenisation and subsequent analysis of four multi-sensor HAR

datasets in the literature to identify these trends and verify the findings of existing studies in

this area, along with identifying the optimal sensor locations and analytical methods for the

development of a system capable of monitoring incremental fall risk.
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3.2 Methods

Four datasets were selected for this study which feature a wide variety of sensor systems, an

appropriate number of participants for sufficient model generalisation, and walking activities

comparable between datasets. A description of each dataset along with the reasons it was chosen

for this analysis follows.

3.2.1 Dataset 1: USC-HAD

The USC-HAD dataset [238] was published in 2012 and features 14 participants with a mean

(standard deviation; std) age, height and weight of 30.1 (std: 7.2) years, 170 (std: 6.8) cm and

64.6 (std: 12.1) kg respectively. Each subject was equipped with a single ‘MotionNode’ IMU

containing a 3-axis accelerometer, gyroscope, and magnetometer, totalling nine data channels.

The IMU was mounted to the participants’ anterior right hip in a pouch designed for mobile

phones. Data was recorded using a laptop which was held under the arm, pressed to the waist

by the subject and connected to the IMU via a cable.

The USC-HAD dataset features 12 activities which were performed at the participant’s own pace

[238]. These activities were: walking forwards, left, and right, walking upstairs and downstairs,

running, jumping, sitting, standing, sleeping, and going up and down in a lift.

USC-HAD was chosen because this dataset has been well explored in the literature since its

publication [34, 327, 328]. Therefore, this dataset will act as a control for the newer datasets

to validate the chosen methods and models.

3.2.2 Dataset 2: HuGaDB

The HuGaDB dataset [239] was published in 2017 and features 18 participants with a mean

age, height, and weight of 23.67 (std: 3.69) years, 179.06 (std: 9.85) cm, and 73.44 (std: 16.67)

kg respectively. The sensor system worn by each participant consisted of IMU sensors placed

at the thigh, shank and foot, and an Electromyography (EMG) sensor placed on the vastus

lateralis, each of which are sampled at around 60Hz. This setup was mirrored on each leg, for

a total of six IMUs and two EMG sensors.

Participants were asked to perform the following 12 activities at a usual pace: walking, running,

navigating stairs, sitting (stationary), sitting down, and standing up, standing (stationary),

53



Chapter 3: Analysis of Existing Datasets

cycling, going up and down in a lift, and sitting in a car [239].

3.2.3 Dataset 3: Camargo et al.

Camargo et al. [254] created an open-source dataset for the study of lower-limb biomechanics

in 2021, featuring 22 healthy participants with a mean age, height, and weight of 21 (std: 3.4)

years, 170 (std: 7.0) cm and 68.3 (std: 10.83) kg respectively. Subjects were equipped with 11

EMG sensors, three goniometers and four, 6-axis IMUs on their right side only. Sensor locations

and sample rates can be found in Table 3.1.

Table 3.1: The sensor type, position, and sample rate of each sensor in the Camargo et al.
dataset.

Sensor Position Sample Rate

Goniometer
Hip

1000HzKnee
Trunk

Inertial Measurement Unit

Trunk

200Hz
Thigh
Shank
Foot

Electromyography Sensor

Gastrocnemius Medialis

1000Hz

Tibialis Anterior
Soleus
Vastus Medialis
Vastus Lateralis
Rectus Femoris
Biceps femoris
Semitendinosus
Gracilis
Gluteus Medius
Right External Oblique

Whilst participants only performed six basic activities, the transition states have also been

labelled, raising the activity count to 19 [254]. With the ‘idle’ class removed as no activities

were being performed, 18 walking activities remain, consisting of six core activities and the

transitions between them. These core activities were ramp ascent, ramp descent, stair ascent,

stair descent, stand, turning, and walking.
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3.2.4 Dataset 4: CSL-SHARE

CSL-SHARE is a dataset published in 2021 for the purpose of exploring activity recognition

for common sport-related movements [240]. The sensor system is a multimodal, knee-mounted

system featuring two, 6-axis IMUs placed on the thigh and shank, four EMG sensors placed on

the vastus medialis, tibialis anterior, biceps femoris, and gastrocnemius, a goniometer placed on

the lateral knee, and an airborne microphone. Like the Camargo et al. dataset, these sensors

were placed on the right leg only. The CSL-SHARE dataset features 22 activities, and was

upscaled to 1000Hz due to differing sample rates for the various sensors [240].

3.2.5 Summary of Datasets

The datasets chosen for this study cover a variety of environments, activities, and sensor con-

figurations. Analysis of the datasets with the same ML models and pre-processing methods will

provide insight into how sensor configuration and type affect classification accuracy in HAR. A

comparison of these datasets can be found in Table 3.2.

Table 3.2: A Summary of the Properties of Each Dataset in This Analysis

Dataset Features USC-HAD Camargo et al. HuGaDB CSL-SHARE

Participants 14 22 18 20
Mean Age (Years) 30.1 21 23.67 30.5
Mean Height (cm) 170 170 179.06 N/A
Mean Weight (kg) 64.6 68.3 73.44 N/A

IMU Sensors 1 4 6 2
EMG Sensors 0 11 2 4
Goniometers 0 3 0 1

Acoustic Sensors 0 0 0 1
Activities 12 18 12 22

Sample Rate 100Hz 200Hz/ 1000Hz 60Hz 100Hz/ 1000Hz

3.2.6 Dataset Preprocessing

Normalisation Between Datasets

As this study focuses on the sensor types in the HAR datasets, steps were taken to reduce

the differences in bias and variation in the datasets. Of the variables in Table 3.2, participant

numbers, activity types, and sample rates were normalised. To achieve this, the number of

participants in each dataset was limited to the minimum number available across all datasets,

which was 14, with additional participants being excluded from the datasets where appropriate
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to maintain a fair comparison between the datasets. For example, in CSL-SHARE, participants

2, 11, and 16 contained different data due to varying protocol versions, device communication

issues, and a participant stopping early due to knee pain. As such, these three participants were

removed, before cropping the number of participants down to 14. Of the activities included in

the four datasets, only walking, standing, stair ascent, and stair descent were common across

datasets, and are activities of interest with respect to fall-related research [329, 330]. Therefore,

the additional activities were removed from each dataset. Finally, 100Hz was chosen as the

common sample rate, resulting in the sample rate for the Camargo et al., and CSL-SHARE

datasets being subsampled to 100Hz, whilst HuGaDB was interpolated up to 300Hz with fifth-

order polynomial interpolation, before being subsampled to 100Hz.

Filtering

Before data can be presented to the machine learning models, a series of pre-processing steps

must be performed to prepare the data for use by the machine learning models. This process

begins with a fourth-order low-pass Butterworth filter with a cut-off frequency of 7Hz before

windowing and feature extraction occur. This cut-off frequency was chosen through testing and

lies around the 10Hz mark, which is typical for analyses using inertial sensors [331].

3.2.7 Feature Extraction

As is typical for performing classification with time-series data, semi-overlapping sliding windows

are used to extract statistical features such that a single sample represents a larger time window

of raw data. The size of these windows and the amount of overlap varies between studies,

with lower window sizes being preferable for real-time classification, whilst larger window sizes

consider more of the gait cycle per sample and can result in higher classification accuracies.

For this study, a search is performed to identify trends in accuracy from a one second to ten-

second window size, with a 75% window overlap for each window size. This overlap is chosen

to combine co-dependent window parameters and reduce computation times.

For each window of time-series data, a wide array of statistical features is extracted to enable

the ML models to make accurate predictions. There is little consensus on which features are

necessary for accurate HAR, with many studies considering a mean of 15 features [327, 332–338].

This analysis includes 22 features from each sensor, including commonly chosen features from

existing research [327, 334–337, 339]. Feature selection methods are then used to eliminate noisy
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features before classification. This combination of increased feature numbers with appropriate

feature selection techniques to accommodate this ensures that relevant data from each sensor

is present to allow a sensor-focussed analysis. The list of included features is as follows:

• Maximum value

• Minimum value

• Mean

• Median

• Standard Deviation

• Mean Absolute Deviation

• Median Absolute Deviation

• Number of Zero Crossings

• Root Mean Square

• Maximum Gradient

• Kurtosis

• Skewness

• Variance

• Interquartile Range

• Entropy

• Energy

• Maximum Frequency Amplitude

• Mean Frequency Amplitude

• Maximum Power Spectral Density

• Mean Power Spectral Density

• Frequency Kurtosis

• Frequency Skewness

After feature extraction, the data is split into train and test data by leaving out the data from

a single subject. Scikit-Learn’s ‘MinMaxScaler’ function is then fit to the train set and applied

separately to the train and test sets to scale each feature between 0 and 1. Principal Component

Analysis (PCA) is performed to reduce the number of features whilst retaining the amount of

variance they represent. As with the scaler, the PCA is fit to the train set and applied separately

to the train and test sets. The number of selected principal components varies for each dataset

due to the different features which were dependent on the sensors but is controlled by choosing

the minimum amount required to retain 95% of the variance of the full feature set. Finally,

another round of scaling is performed to prepare the data for the machine learning algorithms.

3.2.8 Cross-Validation and Test Data

As mentioned by Dehghani et al. [315], two methods of cross-validation and testing are prevalent

in the literature for gait- and fall-related studies: subject-dependent analysis using TTS cross-

validation and subject-independent analysis using LOSO cross-validation. TTS cross-validation

uses a set percentage of the total data from all subjects as test and validation data, whilst
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LOSO leaves out the data from a specific subject. Each of these methods of cross-validation

offers differing advantages and disadvantages, with TTS creating models with higher accuracies

at the cost of poor generalisation, whilst LOSO typically creates models with lower accuracies

that perform better with data from new subjects. This enables researchers and engineers to

choose whether the subject should undergo a training period to build a higher accuracy model,

or if the system should work ’off the shelf’ at the risk of reduced accuracies when performing

HAR on the new subject. For this study, both TTS and LOSO cross-validations are used to

make the results applicable to both types of device, and to be more comparable with existing

and future studies.

3.2.9 Models

For classification, KNN, SVM, DT, RF, ANN, an ensemble Voting classifier, and an ensemble

Stacking classifier are chosen due to their prevalence in the literature. Ensemble models are

constructed from each of the individual models (KNN, SVM, DT, RF, and ANN), with either

a voting or a logistic regression classifier fusing the decisions. This inclusion of a variety of ML

models reduces bias that could be introduced due to the various properties of each model, such

as how prone they are to overfitting and how dataset size affects their classification performance.

Each type of model in this analysis features various tunable hyperparameters, which affect the

classification capabilities of that model. For example, the parameter k in KNN models affects

how prone the model is to overfitting, with a k of 1 resulting in the model labelling a sample

with the same class as the single closest data point, whilst a k of 100 will consider the most

occurring class among the closest 100 samples. The other models in this analysis contain similar

parameters, which affect overfitting and generalisation, such as the box constraint C for SVMs,

the number of neurons in each layer in ANNs, the number of estimators and tree constraints

in RFs, and the splitting criterion in DTs, to name just one parameter for each model. Due

to the different cross-validation methods, parameters relating to both higher and lower levels

of generalisation will be required in different circumstances. Furthermore, due to the large

number and range of these parameters, an unrealistic number of parameter combinations exist

to manually search through. As such, hyperparameter optimisation is employed to identify a

good set of hyperparameters for each model with each cross-validation method.

Hyperparameter tuning typically consists of employing search algorithms to train a model, and
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use a validation set to obtain a validation score, which can then be used to determine how

the hyperparameters should be changed. In a typical grid or randomised search, this process

is iterated until either all possible combinations have been exhausted, or for a set number of

random combinations, respectively. However, the former of these methods is not possible for

the large number of parameters in this analysis, and the latter is not guaranteed to yield a good

set of hyperparameters. As such, Bayesian hyperparameter tuning was implemented, which

compares the predictions of model performance with the actual performance after training,

using Bayes theorem, to iteratively improve the model performance by intelligently adjusting

the hyperparameters between iterations. Hyperparameter tuning, therefore, is performed using

25 iterations of the Scikit-Optimize Bayesian hyperparameter search. All models are trained

on a computer with 32GB of RAM, a 12th Generation Intel i9-12900K processor, and a 12GB

Nvidia RTX 3060 GPU using the Scikit-Learn library for Python.

3.3 Results

To determine the optimal window size for sliding window feature extraction, each model is

trained using all the extracted features for each window size, ranging from one to ten seconds.

Ten seconds was selected as the maximum time due to issues with class distributions and the

number of samples in each class at larger window sizes. This process is repeated three times

for each model to reduce the impact of random initialisations, which can lead to models getting

stuck in local minima during training. The results for subject-dependent cross-validation can

be seen in Figures 3.1 and 3.2, whilst the results for subject-independent cross-validation can

be found in Figures 3.3 and 3.4.

3.3.1 Subject-Dependent Cross-Validation

Determining Optimal Window Sizes

Figure 3.1 shows the mean performance of each model over the three repeat trials for each

window size. The trend lines present in these figures demonstrates a clear increase in accuracy

with window size for subject-dependent cross-validation using TTS across all models and all

datasets. The exceptions to this trend suggest that overfitting may be occurring as the number of

samples decreases, with some models decreasing in accuracy with nine- and ten-second window

sizes, where the amount of data from each class is at a minimum. This issue is most prevalent
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(a) USC-HAD (b) Camargo et al.

(c) HuGaDB (d) CSL-SHARE

Figure 3.1: Trend graphs showing the mean accuracy across all models and window sizes for
the four datasets in this analysis when using TTS cross-validation.

with the ANNs among the smaller datasets, whilst the Camargo et al. dataset is the only

one in which ANN accuracy does not drop at higher values of window size. Although accuracy

generally trends upwards with window size, all datasets except for CSL-SHARE, which exhibited

100% accuracy for most models at all window sizes, plateau at around four to five seconds.

Furthermore, CSL-SHARE appears to exhibit overfitting at higher window sizes for both ANN

and SVM, likely due to a lack of data.

Figure 3.2 shows the average highest performing model among all window sizes, along with the

average accuracy at each window size across all models. These figures highlight SVM and the

stacking ensemble classifier as the most capable models across all window sizes, and that a peak

in model performance occurs in the range of four- to seven-second window sizes.

Regarding the individual (non-ensemble) highest performing model, all models perform fairly

similarly between datasets, with SVM being the only model that performs significantly higher

than others with average accuracies of 99.5%, 83.7%, 99.8%, and 100.0% on each of the USC-

HAD, Camargo et al., HuGaDB, and CSL-SHARE datasets respectively. However, these results
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(a) Average accuracy for each model across all
window sizes for each dataset.

(b) Average accuracy across all models at each win-
dow size from 1 to 10 seconds for each dataset.

Figure 3.2: Model and window size effect on classification accuracy across all four datasets
using TTS cross-validation.

also suggest an issue with the Camargo et al. dataset, as the average accuracies for all models

and window sizes is far reduced for this dataset when compared with the others. An overview

of the highest performing individual models can be found in Table 3.9.

Individual Sensor Analysis

The optimal window sizes for each dataset are used to determine the sensor importance for

achieving high accuracies among the four core activities. As USC-HAD contained just a single

sensor, it was excluded from this analysis. Due to its high performance across all datasets, and

due to the SVM failing to converge on these reduced datasets, an ANN is trained to classify

between the four activities using data from individual sensors.

Tables 3.3, 3.4, and 3.5 show the precision, recall, f1 score, and accuracy of the ANN trained from

features extracted from each sensor in the Camargo et al., HuGaDB, and CSL-SHARE datasets

respectively. These tables highlight IMUs as the most effective individual sensor, providing

accuracies of 87%-100% across all datasets. Goniometers also appear as a high performing

sensor, with the 3-axis goniometers of at the hip and ankle of the Camargo et al. dataset

exhibiting accuracies comparable to IMUs at 86.8% and 97.4% respectively. Following the 3-axis
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goniometers, both the Camargo et al. and CSL-SHARE datasets feature 2-axis goniometers at

the knee, which enable accuracies of 74.2% and 99.6% respectively. Finally, EMG sensors exhibit

the lowest accuracies across all datasets. Among the EMG sensors, placement heavily affects

classification accuracy, with the vastus lateralis and biceps femoris performing extremely poorly,

whilst the tibialis anterior, soleus, gastrocnemius, and gracilis generally appear to outperform

sensors placed on other muscles. However, even the highest performing EMG sensors in each

dataset are 5%-30% less accurate than the IMUs.

Table 3.3: Subject-Dependent Performance Metrics of Each Individual Sensor in the Camargo
et al. Dataset

Sensor Precision Recall F1 Score Accuracy

Trunk IMU 0.801 0.798 0.799 0.897
Thigh IMU 0.753 0.751 0.744 0.874
Shank IMU 0.778 0.769 0.772 0.881
Foot IMU 0.814 0.787 0.774 0.894
Gastrocnemius Medialis EMG 0.716 0.630 0.621 0.758
Tibialis Anterior EMG 0.636 0.547 0.523 0.755
Soleus EMG 0.676 0.620 0.629 0.774
Vastus Medialis EMG 0.459 0.493 0.470 0.652
Vastus Lateralis EMG 0.158 0.256 0.169 0.458
Rectus Femoris EMG 0.185 0.252 0.212 0.374
Biceps Femoris EMG 0.296 0.348 0.302 0.561
Semitendinosus EMG 0.216 0.296 0.242 0.423
Gracilis EMG 0.763 0.460 0.456 0.652
Gluteus Medius EMG 0.348 0.357 0.316 0.577
Right External Oblique EMG 0.372 0.372 0.336 0.594
Ankle Goniometer 0.741 0.747 0.708 0.874
Knee Goniometer 0.410 0.500 0.445 0.742
Hip Goniometer 0.753 0.744 0.742 0.868

Table 3.4: Subject-Dependent Performance Metrics of Each Individual Sensor in the HuGaDB
Dataset

Sensor Precision Recall F1 Score Accuracy

Right Thigh 0.990 0.994 0.992 0.995
Left Thigh 0.993 0.996 0.995 0.997
Right Shank 0.995 0.997 0.996 0.998
Left Shank 0.989 0.990 0.989 0.993
Right Foot 0.973 0.979 0.976 0.987
Left Foot 0.978 0.984 0.981 0.991
Right Vastus Lateralis EMG 0.669 0.509 0.506 0.775
Left Vastus Lateralis EMG 0.597 0.478 0.457 0.783
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Table 3.5: Subject-Dependent Performance Metrics of Each Individual Sensor in the
CSL-SHARE Dataset

Sensor Precision Recall F1 Score Accuracy

Vastus Medialis EMG 0.691 0.699 0.695 0.661
Tibialis Anterior EMG 0.659 0.648 0.644 0.592
Biceps Femoris EMG 0.430 0.383 0.391 0.367
Gastrocnemius EMG 0.582 0.550 0.534 0.475
Airborne Microphone 0.550 0.536 0.534 0.454
IMU Upper 1.000 1.000 1.000 1.000
IMU Lower 1.000 1.000 1.000 1.000
Goniometer 0.997 0.996 0.997 0.996

3.3.2 Subject-Independent Cross-Validation

Determining Optimal Window Sizes

Figure 3.3, shows the performance trends of each model at each window size for the four datasets

in this study using LOSO cross-validation. The maximum accuracy for USC-HAD occurs at a

ten-second window size with an SVM exhibiting an accuracy of 91.9%, whilst the Camargo et

al. dataset achieves a maximum accuracy of 80.8% at nine seconds using an ANN. Both the

CSL-SHARE and HuGaDB datasets achieve 100% classification accuracy with multiple model

types at one and two seconds respectively, which is maintained up to a window size of ten

seconds. The DT, RF, and KNN models perform erratically across all datasets and window

sizes, which causes the stacking and voting ensemble methods to underperform when compared

to ANN and SVM.

Figure 3.4 shows the mean accuracies across all time windows and models. From Figure 3.4a,

SVMs and ANNs appear as the classifiers with the highest classification accuracy where there

is a statistically significant difference between classifier performances, with SVMs achieving

79.1%, 68.4%, 98.8%, and 99.9% accuracy, whilst ANNs achieve 75.4%, 73.6%, 99.9%, and

100% accuracy on each of the USC-HAD, Camargo et al., HuGaDB, and CSL-SHARE datasets

respectively. As such, ANN and SVM can clearly be identified as the highest performing model

types across all datasets, as seen in Table 3.9. Concerning window size, each dataset presents a

different window size at which the maximum mean accuracy occurs. For USC-HAD, the highest

mean accuracy across all models occurs at a three-second window size, whilst for the Camargo

et al. dataset it occurs at five seconds, both of which are similar to the time at which model

accuracy plateaus using subject-dependent cross-validation. Both HuGaDB, and CSL-SHARE
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achieved accuracies of 100% on several models, but due to the lower accuracies of other models,

their highest mean performances occur at eight seconds for HuGaDB, and any value from three

to ten seconds for CSL-SHARE.

(a) USC-HAD (b) Camargo et al.

(c) HuGaDB (d) CSL-SHARE

Figure 3.3: Trend graphs showing the mean accuracy across all models and window sizes for
the four datasets in this analysis when using LOSO cross-validation.

Individual Sensor Analysis

As with the subject-dependent individual sensor analysis, an ANN is trained on the features

extracted from each individual sensor. Tables 3.6, 3.7, and 3.8 show the performance metrics

for each sensor used in the Camargo et al., HuGaDB, and CSL-SHARE datasets respectively.

Like with the subject-dependent analysis, IMUs achieve the highest accuracies across all three

datasets, whilst EMG sensors exhibit consistently poor performances. In this scenario, perfor-

mance metrics are drastically reduced, with only the EMG sensors placed on the soleus, tibialis

anterior, and gastrocnemius medialis for the Camargo et al. dataset, and the vastus medialis

for the CSL-SHARE dataset achieving performance metrics above 50%. The 3-axis goniome-

ters on the ankle and hip from the Camargo et al. dataset exhibit high performance metrics,

comparable to those of the IMUs, whilst the 2-axis goniometers positioned on the knee in the
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(a) Average accuracy for each model across all
window sizes for each dataset.

(b) Average accuracy across all models at each
window size from 1 to 10 seconds for each dataset.

Figure 3.4: Model and window size effect on classification accuracy across all four datasets
using LOSO cross-validation.

Camargo et al. and CSL-SHARE datasets exhibit much lower performance metrics.

Overall, the trends among these sensors were largely the same as with the subject-dependent

analysis, with the main difference being an overall reduction in accuracy for the EMG sensors,

further highlighting the volatility of performance when using these sensors.

3.4 Discussions

The results of the window size analysis do not exhibit a consistent peak or plateau, with accura-

cies appearing volatile across the four datasets for each window size, and trend lines displaying

misaligned peaks. Furthermore, the averaging of accuracies across all models at each window

size shows no clear single optimal window size across the four datasets and methods of cross-

validation.

Before any further discussions, it must be noted that the performance metrics of the Camargo

et al. dataset do not align with the other multimodal datasets in terms of overall classification

accuracy. These systems all make use of the same 6-axis IMU positioned on the thigh, yet

the Camargo et al. dataset achieves significantly reduced accuracies when trained on only this
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Table 3.6: Subject-Independent Performance Metrics of Each Individual Sensor in the
Camargo et al. Dataset

Sensor Precision Recall F1 Score Accuracy

Trunk IMU 0.801 0.798 0.797 0.897
Thigh IMU 0.753 0.751 0.744 0.874
Shank IMU 0.778 0.769 0.772 0.881
Foot IMU 0.814 0.787 0.774 0.894
Gastrocnemius Medialis EMG 0.716 0.630 0.621 0.758
Tibialis Anterior EMG 0.636 0.547 0.523 0.755
Soleus EMG 0.676 0.620 0.629 0.774
Vastus Medialis EMG 0.459 0.493 0.470 0.652
Vastus Lateralis EMG 0.158 0.256 0.169 0.458
Rectus Femoris EMG 0.185 0.252 0.212 0.374
Biceps Femoris EMG 0.296 0.348 0.302 0.561
Semitendinosus EMG 0.216 0.296 0.242 0.423
Gracilis EMG 0.763 0.460 0.456 0.652
Gluteus Medius EMG 0.348 0.357 0.316 0.577
Right External Oblique EMG 0.372 0.372 0.336 0.594
Ankle Goniometer 0.741 0.746 0.708 0.874
Knee Goniometer 0.410 0.500 0.445 0.742
Hip Goniometer 0.753 0.744 0.742 0.868

Table 3.7: Subject-Independent Performance Metrics of Each Individual Sensor in the
HuGaDB Dataset

Sensor Precision Recall F1 Score Accuracy

Right Thigh 1.000 1.000 1.000 1.000
Left Thigh 0.970 0.966 0.966 0.984
Right Shank 1.000 1.000 1.000 1.000
Left Shank 0.976 0.997 0.986 0.992
Right Foot 0.953 0.960 0.952 0.982
Left Foot 0.874 0.824 0.779 0.923
Right Vastus Lateralis EMG 0.211 0.290 0.229 0.478
Left Vastus Lateralis EMG 0.428 0.330 0.330 0.726

Table 3.8: Subject-Independent Performance Metrics of Each Individual Sensor in the
CSL-SHARE Dataset

Sensor Precision Recall F1 Score Accuracy

Vastus Medialis EMG 0.846 0.634 0.624 0.757
Tibialis Anterior EMG 0.475 0.375 0.332 0.456
Biceps Femoris EMG 0.366 0.361 0.270 0.417
Gastrocnemius EMG 0.300 0.458 0.354 0.573
Airborne Microphone 0.525 0.517 0.475 0.427
Thigh IMU 0.992 0.993 0.992 0.990
Shank IMU 0.935 0.931 0.924 0.903
Knee Goniometer 0.884 0.767 0.706 0.738
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Table 3.9: Maximum Accuracy, Precision, Recall, and F1 Score for Each Dataset,
Non-Ensemble Model, and Method of Cross-Validation

Dataset Model Window Size(s) Acc(%) Prec(%) Rec(%) F-Score(%)

USC-HAD TTS SVM 5 99.90 99.73 99.90 99.81
USC-HAD LOSO SVM 10 91.89 79.29 91.89 81.17
Camargo et al. TTS SVM 4 86.15 92.56 92.52 92.51
Camargo et al. LOSO ANN 5 80.41 86.66 86.06 85.19
HuGaDB TTS SVM 4 99.97 99.82 99.97 99.90
HuGaDB LOSO ANN 2 100 100 100 100
CSL-SHARE TTS ALL 2 100 100 100 100
CSL-SHARE LOSO ALL 3 100 100 100 100

sensor when compared to HuGaDB and CSL-SHARE. Given the large number of controlled

variables in this study, this indicates a difference in experimental procedure or activity data

distribution, which is negatively affecting the results of the Camargo et al. dataset. Figures

3.5a and 3.5b show the confusion matrix for an SVM trained on the Camargo et al. dataset,

which shows the misclassifications to be between the stair ascend and stair descend classes. This

is also shown to not be caused by sample weighting, as Figures 3.5c and 3.5d show the confusion

matrices for the HuGaDB and CSL-SHARE datasets respectively, which feature more extreme

sample weightings than the Camargo et al. dataset whilst achieving 100% accuracy. As such,

the accuracy differences in this dataset for high accuracies, i.e. above the 7̃5% of samples that

belong to the walking and standing classes which are typically classified correctly, cannot be

relied upon due to the error introduced for these samples.

Figure 3.9 highlights SVMs as the most effective individual model for HAR using subject-

dependent cross-validation, with ANNs proving more effective when using subject-independent

cross-validation. This is likely due to the tendency for ANNs to overfit, which is further pro-

nounced by the use of a TTS in creating test data for subject-dependent cross-validation,

whereas SVMs typically perform well in these scenarios due to the maximisation of the margin

when creating a decision boundary.

For subject-dependent cross-validation, peak accuracies occur at smaller window sizes, ranging

from 2–5 seconds. The trend lines in Figures 3.1 and 3.3 also exhibit rises in accuracy for some

models as they approach a 10-second window size, indicating that, if the dataset contains enough

samples in each class for this to be viable, larger window sizes offer more rich features which

lead to higher classification accuracies. For subject-independent cross-validation, the highest

performing models occur at 2, 3, 5, and 10 seconds for the HuGaDB, CSL-SHARE, Camargo
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(a) Camargo et al. Vastus Lateralis (b) Camargo et al. Vastus Medialis

(c) HuGaDB Vastus Lateralis (d) CSL-SHARE Vastus Medialis EMG

Figure 3.5: Confusion matrices of a SVM trained on data from a single EMG sensor using
LOSO cross-validation.

et al., and USC-HAD datasets respectively. Apart from USC-HAD, this further highlights

the range of 2–5 seconds as an effective range of window sizes in achieving high classification

accuracy for the core activities of HAR.

Aside from the Camargo et al. dataset, the multimodal datasets achieve much higher classifica-

tion accuracies when using the same models and window sizes, which allows high accuracies to be

obtained with much smaller windows sizes. This has significant implications when considering

the delay time, portability, and convenience of systems, as increasing the number of sensors can
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enable high accuracy HAR using very computationally inexpensive methods such as DT. These

computationally low-cost methods can also allow designers of real-time HAR systems to incor-

porate low-power computational devices with reduced size profiles and battery consumption,

therefore increasing the comfort and convenience of the device. Additionally, the fact that high

accuracies can be obtained in multimodal systems with low window sizes means much faster

response times for real-time HAR systems, as some models trained on the CSL-SHARE dataset

achieve 100% accuracy using just 1 second windows with a 0.25s fixed delay time caused by

the step size. Whilst it is shown that accuracy at each window size is dependent on the sensor

types used in each dataset, further work is needed to identify how model performance varies

with window size for each individual sensor type. This will enable the building of a knowledge

database to help future researchers choose a window size given a sensor system without the need

for lengthy, brute-force approaches to finding the most appropriate window size, combination

of sensors, and choice of model for each novel dataset produced in this field.

Regarding individual sensor types, IMUs exhibit the highest accuracies across all datasets, fol-

lowed by goniometers, and finally EMG sensors. Among IMU locations, accuracy varies among

the different locations, with no clear ranking between all datasets. Only the Camargo et al. and

CSL-SHARE dataset feature goniometers, with the 3-axis goniometers at the thigh and ankle of

the Camargo et al. dataset showing large performance improvements over the 2-axis goniome-

ters located on the knee in both the Camargo et al. and CSL-SHARE datasets. Goniometers

are low power devices with fewer data dimensions than IMUs which can be incorporated into

smart clothing devices to improve comfort and convenience. Given the competitive performance

of goniometers in this study, 3-axis goniometers should be considered in future datasets and

HAR systems. On the other hand, EMG sensor performance is volatile between locations and

datasets, which may be due to differences in filtering methods, varying placements on muscles,

or changes in experimental procedures. As such, it is not currently possible to compare the

locations of these sensors, particularly with so few datasets for reference. More datasets are

required to accurately rank the locations of these sensors so that the impact of differences in

experimental setup can be minimised.

The results of this chapter align with the findings of Banos et al. [311], who found that in-

creased window size does not necessarily increase activity classification performance across

many datasets. However, this new study offers insight into the reason for this assumption,
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with subject-dependent cross-validation demonstrating this pattern until accuracy begins to

reduce at larger values of window size due to insufficient sample sizes. Crucially, this work

considers both subject-dependent and subject-independent methods of cross-validation, which

highlights how the choice of cross-validation method impacts the selection of an optimal win-

dow size, which was not considered in their study [311]. Niazi et al. [321] considered the effect

of window size and sample rate on classification accuracy using a RF classifier, where it was

reported that window sizes could appear optimal between two to ten seconds using subject-

dependent cross-validation. The results of this chapter support these findings, and demonstrate

that this also applies to additional classical machine learning models such as ANN, SVM, KNN,

and DT. Duan and Fujinami [255] considered the optimal placement of sensors using deep

learning techniques for a single dataset, finding that sensors placed on the right leg exhibited

increased performance. Those results align with the findings of the current study, with the

HuGaDB dataset demonstrating that, when subject-independent cross-validation is used, the

performance metrics of the right leg are higher than the left. Finally, Khan et al. [324] report

that sensor performance is dependent on the activities being performed in the dataset. By

removing the variation between datasets, this new study controls for this factor, resulting in a

reliable ranking of sensor locations that achieve high performances and offer future researchers

the necessary information to build effective HAR systems.

It is important to note that the results of this study do not necessarily suggest that EMG is

an ineffective method for HAR. EMG extracts unique physiological signals which are known

to be suited for detecting user intent in the context of controlling exoskeletons and prosthetics

[340]. When combined with IMUs, it is possible that these sensors can augment classification

accuracies, as has been shown in previous research [341]. However, in the context of this

study, issues with repeatability and difficulty obtaining comparable EMG readings between

participants [340] may have resulted in significant accuracy drops when assessing the test set.

For the purpose of developing a system for assessing incremental fall risk however, these issues

also need to be avoided, so EMG sensors remain unattractive for use in the proposed sensor

system.

Regarding the sample rates of each dataset, no correlation is present between the native sample

rates of each dataset and the final classification accuracy, with the HuGaDB dataset exhibiting

far higher accuracies than USC-HAD and the Camargo et al. dataset, despite having the lowest
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native sample rate of 60Hz. As such, whilst sample rate is expected to have an effect at even

lower values, 60Hz can be considered a sufficient sample rate for high-accuracy HAR, and will

act as a minimum for the sensor system designed in this thesis.

Finally, this study features several limitations due to the computational cost of performing this

analysis. The first of these limitations was the lack of investigation into the effects of step size,

which was set to 25% of the window size for the duration of the study. This could have been

set to a fixed time value for all window sizes, or have been individually analysed to explore the

co-dependent effects of step size and window size. Furthermore, the choice of datasets which

feature a sufficiently large number of participants and sensors, along with the core activities

included in this study was limited, resulting in the inclusion of just four datasets. Finally, the co-

dependencies and combinations of sensor types and locations was not explored. As mentioned,

combinations of IMU and EMG have been shown to improve accuracies in the past [341]. Each

sensor, even if incapable of accurate HAR on its own, may offer high classification accuracies on

classes where another lacks the appropriate data to do so. However, incorporating these factors

into such a large analysis is extremely computationally expensive across all four datasets, and

would not offer much additional information in the scope of selecting the optimal sensor types

and positions for accurate HAR in the context of identifying walking activities for the extraction

of gait parameters and other incremental fall risk factors.

3.5 Contributions

This chapter outlines the analysis of four existing datasets using a novel approach of achieving

homogeneity across several dataset properties such as number of subjects, activities, and sample

rate, which reduces bias when determining the most effective sensors and classification methods

across these different datasets. Furthermore, this chapter performs both a subject-dependent

and subject-independent analysis of the effect of window size on classification accuracy in the

sliding window approach to feature engineering, finding that a window size of two to five sec-

onds is optimal for obtaining high accuracies, which will help to guide future researchers when

performing analyses on future HAR datasets without the need for lengthy, brute-force compu-

tational procedures. Finally, this chapter offers new insights into 3-axis goniometer sensors for

HAR which, despite being under-explored in the literature, have shown to be competitive with

IMU sensors and should be further explored in future research.
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3.6 Summary

This study addresses the research objectives of exploring and analysing existing HAR datasets,

and finding the optimal parameters for sliding window feature engineering. Furthermore, this

study is the first of its kind in providing a bias-reduced, normalised, cross-dataset analysis of

HAR datasets. First, ANNs and SVMs are found to be the highest-performing models across

multiple multimodal HAR datasets, with the optimal window size used to create samples for

these models being in the range of two to five seconds when using the semi non-overlapping

sliding window approach to feature engineering with a 75% overlap. Where datasets are large

enough to reduce the impact of class imbalance, or models are sufficiently powerful to generalise

with smaller sample numbers, accuracies are also shown to trend upwards with larger window

sizes of nine to ten seconds. Regarding the contributions of individual sensor types to classifica-

tion accuracy, IMUs and 3-axis goniometers are the overall largest contributors to high-accuracy

HAR, whilst EMG sensors are largely incapable of performing HAR on the basic mobility activ-

ities that underpin human functioning. It remains appropriate for researchers collect large HAR

datasets, and to investigate alternative methods of HAR using multimodal sensor systems and

smart clothing to investigate how the size and inconvenience of these systems can be minimised

whilst maintaining high accuracy using low-computational complexity classification methods.

The findings of this chapter align with those of Chapter 2 in highlighting IMUs as a powerful

sensor type for both HAR and fall risk assessment using wearable sensors, which will guide

the development of the sensor system in this thesis to ensure that high-accuracy HAR can be

attained. Furthermore, there was no correlation between sample rate and classification accuracy

in this study, with HuGaDB, the lowest sample rate dataset, exhibiting much higher accuracies

than the USC-HAD and Camargo et al. datasets, which were sampled at 100Hz, and 200Hz,

respectively. As such, 60Hz will form the lower bound of acceptable sample rates in the design

of the sensor system used to collect the dataset in the upcoming chapters. By designing a sensor

system with the limitations of this study in mind, high-accuracy HAR can be achieved, allowing

a system to determine when a person is walking so that the spatio-temporal gait parameters

can be estimated for the purpose of fall prediction. When combined with accurate terrain

identification, this will form the basis for a novel system capable of determining a person’s

incremental fall risk factors in their daily life.

This study was limited by the scarcity of open multimodal gait datasets with large numbers
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of sensors and common activities. As a result, future research on this topic should include

more datasets, activities, and sensor types to investigate how classifier performance in HAR is

affected by these properties. Additionally, elements such as step size, proportion of data for

each activity, features, and sample rate should be investigated for their contribution towards

achieving efficient and convenient high-accuracy HAR.
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A Real-Environment Gait Dataset

4.1 Introduction

As outlined in Chapter 2, terrain affects fall risk through the introduction of slip and trip

hazards, along with affecting the gait parameters in such a way that increases variability - a

factor commonly found in people at increased risk of falling [4, 38, 39]. When designing a

sensor system capable of detecting incremental risk factors for falling, terrain is a significant

factor which must be automatically identified by the system, along with the current activity, to

determine the external fall risk factors. Many research projects in recent years have achieved

high-accuracy Human Activity Recognition (HAR) with lightweight, convenient, and power-

efficient sensor systems. However, studies which consider the terrain in which the gait data

were collected are both rare and limited [36, 284, 289–291, 342], largely due to the lack of

terrain-labelled datasets [35].

Where studies do attempt to classify terrain in the context of human activities, gait activity

is typically limited to walking or running [284, 289–291], and some approaches raise potential

privacy concerns through the use of camera technologies [284, 342]. Dixon et al. [290] classify

between three terrains using Gradient Boosting (GB) and Convolutional Neural Network (CNN)

classifiers on data collected from two Inertial Measurement Units (IMUs) placed on the lower-

back and right tibia while a participant is running. GB is found to be the highest performing

sensor on data from both sensors combined with an accuracy of 97.0%, whilst CNN is the

highest performing classifier on a single sensor, with an accuracy of 96.1% on data from the

tibia alone. Similarly, Hashmi et al. [289] aims to classify between six terrains using IMUs on
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the chest and lower-back, and obtain an 88.7% accuracy using Random Forest (RF) on data

from the lower-back alone.

To address the limitations in the field of terrain classification in the context of HAR, this

study aims to collect a new context- and terrain-aware gait dataset with a novel sensor system

that builds on the current state-of-the-art activity classification systems. This dataset will

enable researchers to develop and train machine learning models for real-world HAR and terrain

classification, advancing the field of gait analysis by enabling the contextual labelling of gait

data collected outside the lab, and allowing the identification of external fall risk factors caused

by the terrain. Furthermore, there exists a need to explore the contributions of additional

sensing methods for terrain classification. While IMU and camera technologies have been shown

to achieve high accuracies [284–291], other sensing methods used in fall prediction like Force

Sensing Resistor (FSR) insoles, and those used in terrain classification for robotic walkers, such

as LiDAR, should be explored. If these additional sensor types are effective at performing terrain

classification, this may enable future terrain-classification systems to reduce costs, improve

privacy, or exploit data collected for other aspects of the system.

With the goal of this research being to develop a system that can identify the incremental

risk factors which contribute towards a person’s instantaneous fall risk, the following chapter

outlines the design of a sensor system and experimental procedure used to collect a dataset which

enables the classification of terrain - a significant external fall-risk factor. The development of

this sensor system, collection of the dataset, and subsequent analysis to determine the feasibility

of terrain classification, will form the foundation for a system which can identify both internal

and external fall risk factors.

4.2 Sensor System Design

4.2.1 Sensor Types and Locations

To collect a dataset of real-environment gait data, a novel sensor system comprising existing

sensor types that are known to enable high-accuracy HAR, along with new sensor types which

are unexplored for terrain identification, is designed. As this is a feasibility study into the

capacity to perform both activity and terrain identification, the sensor system featured in this

project is a prototype, with the aim being to remove redundant sensors through the analysis of
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the collected data.

Existing HAR datasets feature IMUs frequently [35, 238–240, 254, 343] and analyses of these

datasets typically yield high performance metrics with both traditional machine learning and

deep learning approaches [344–347]. As such, an InvenSense ICM-20948 9-DoF IMU is posi-

tioned on the waist of the subject and on the top of each foot. This IMU was chosen due to the

inclusion of a magnetometer for additional data dimensionality, for its low power requirements,

and for the inclusion of a digital motion processor which helps to reduce drift [348].

Whilst the use of IMUs is expected to enable accurate HAR, it is not feasible to incorporate

the depth cameras or body-mounted Red Green Blue (RGB) cameras shown to be successful in

Chapter 2 for this application due to size, weight, and privacy issues. As such, this study aims

to combine the data from colour sensors and LiDARs to function as a one-dimensional depth

camera, providing the colour and distance to a single point on the ground over time, while

maintaining the privacy of the wearer. The colour sensor used in this system is a TCS34725

colour sensor [349] positioned on the outside of the heel and facing the ground. This sensor

provides contextual information in multiple forms, such as the red, green, and blue components

of the colour of the ground directly underfoot, as well as the ambient light levels [349]. This

should allow analytical methods to easily identify constant-colour terrains such as grass and

paving slabs, along with helping to determine if the terrain is indoor or outdoor. As the

TCS34725 monitors the colour of the reflections when shining a light on an object [349], the

operating range is low, resulting in the need for the sensor to be placed on the side of the foot,

and as low to the ground as possible.

Whilst the colour sensor may be capable of differentiating grass from paving slabs, the existence

of multicolour carpets, gravel, and tarmac adds more complexity to the problem, and results

in a need to identify additional separating factors about the terrain underfoot. For this reason,

a VL53L1X LiDAR [350] is placed at the back of the shank, pointing towards the ground.

Variation in the distance between the sensor and the ground should aid in determining the gait

cycle when considering the low frequency data, and in building a noise profile of the ground

underfoot when considering the high frequency data. These noise profiles of the ground can be

used to separate terrains which are similarly coloured, but vary in texture. It is for this reason

that a LiDAR was chosen over an ultrasonic distance sensor, as the LiDAR can be sampled at

a much higher rate. The VL53L1X has a minimum operating distance of 40mm [350], meaning

76



4.2. Sensor System Design

that it cannot be mounted with the colour sensor, and must be separately attached higher up

on the shank.

Finally, as covered in Chapter 2, force-sensing insoles are an effective sensor type in studies that

propose novel wearable devices for remote gait analysis and fall risk analysis [351, 352]. Whilst

many FSR insoles are available on the market, these are expensive [353, 354] and typically do

not accommodate different shoe sizes [355, 356], with the intended solution to this problem

being to remove excess material at the top and bottom of the device. However, this approach

does not properly scale the device to differently-sized feet so that the sensors remain in the same

relative position [355, 356]. Furthermore, when a participant requires a larger shoe size than the

provided insole, these devices may move around in the shoe and no longer represent the force

exerted by a specific part of the foot. To avoid these issues, low-cost insoles are manufactured

consisting of 13 Interlink 402 FSRs [357] each. These insoles consist of a 0.6mm thick layer,

which is 3D printed using Polylactic Acid (PLA) at a chosen shoe size, where resizing the 3D

model automatically adjusts the locations of the markings that denote where the FSRs should

be placed, allowing the insoles to properly scale with differently-sized feet. The 3D model used

to print these insoles can be seen in Figure 4.1. This allows the insole to be manufactured to

various different shoe sizes whilst maintaining the relative position of the FSRs on the feet.

The FSRs are attached to the insole via a silicone-based adhesive, which is then covered by

a 1mm thick layer of silicone to protect both the FSRs and the wearer’s feet. A layer of

flexible prototyping board is adhered to the underside of the PLA layer, to which the FSRs

are soldered. Simple potential divider circuits are needed to obtain voltage readings from the

changes in resistance that the FSRs exhibit, and the location of these circuits changes between

two versions of the insoles. Version 1 insoles feature the potential divider circuits on the base

of the insole. This has the advantage of reducing the number of wires from the insole down

to 15: 13 data channels along with a positive and ground wire. However, this also introduces

the weakness of having a power and ground wire which, if either break, will cause the loss of

readings from all 13 FSRs. The version 1 insoles can be seen in Figure 4.2. Each insole was

worn by participants of that size and the size above to reduce manufacturing times, and because

of inconsistencies in the size of the provided shoes.
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Figure 4.1: The 3D models of the insole.

(a) The top side of the insole. (b) The circuitry on the bottom of the insole.

Figure 4.2: The version 1, size 9 insoles.

As the wires from the sensor system to the insole are somewhat loose, the subject would oc-

casionally catch them on an object during a trial, or due to the insole breaking through wear,

insoles needed to be replaced several times over the course of the data collection sessions. As

a result, a second version of the insole was manufactured, which moved the potential divider

circuits off the insole. This has the advantage of speeding up insole manufacturing speed and

robustness as there was no longer a power or ground wire, at the cost of needing 26 wires to
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connect the insole to the sensor system, which may affect the convenience of the device. Testing

and subject feedback suggested that there was no increase in discomfort, resulting in version

2 insoles being used for most trials. Both versions feature an additional layer of 1mm thick

silicone beneath the circuitry layer, and a multiplexer is used to reduce the number of inputs

from 13 down to 5 before connecting to the microprocessors.

4.2.2 System Control and Synchronisation

To take readings and control the system, each sensor is connected to one of three Arduino Nano

BLE 33 microcontrollers positioned on the waist, left leg, and right leg, which sample the data

and store them on a micro-SD card via a HW-125 micro-SD adaptor. The Arduino Nano BLE

33 was chosen due to its high clock speed (64MHz) and low profile of 45×18mm [358]. To ensure

that the data is synchronised in time between the waist, left leg, and right leg subsystems, three

pairs of HC-05 Bluetooth modules broadcast the global time and commands from a central

Arduino Mega to each of the subsystems.

All data sent from the central Arduino Mega to each subsystem is formatted as a string of 11

digits. The first digit tells the subsystems whether to start recording, stop recording, or delete

a file, whilst digits two and three contain the two-digit activity number, digits four and five

contain the two-digit trial number, and digits 6-11 contain the six-digit time elapsed since the

start of the trail in milliseconds. Each subsystem captures a new sample from each sensor upon

receiving a new time value from the central Arduino Mega, and each sample is labelled with the

timestamp from the received string. All data is saved as a text file, which is named with the

four-digit activity and trial number. A laptop is used to enter the five digit control and naming

command, which is then sent to the Arduino Mega, which subsequently broadcasts the full 11

digit command to all three subsystems at the chosen sample rate. An overview of the system

can be seen in Figure 4.3.
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Figure 4.3: An overview of the sensor system design.

Because the subsystems read a sample when they receive a new string of digits via Bluetooth,

the sample rate is consistent across the entire system and can be set to any value on the Arduino

Mega. However, whilst many of the sensors are capable of high sample rate data capture, data

was captured with a delay of 16ms, resulting in a sample rate of 62.5Hz. This value was

determined via experimentation, as delays lower than 16ms resulted in insufficient time for the

subsystems to write the data to the SD card before the next command to take a sample was

issued.

The algorithms for the transmitting Arduino Mega and the receiving Arduino Nano 33 BLEs

can be found in Figures 4.4 and 4.5 respectively. Whilst the transmitting Arduino Mega features

fairly simple data processing and transmitting via serial, the receiver algorithm features multiple

validation checks to ensure that the sensor data does not get corrupted or captured in error

due to data losses over Bluetooth. Hence, the algorithm for receiving data checks to ensure

that the received command is the expected 11 digits long, along with updating the transmitter

with the current status of the data capture. In order to maximise the sample rate, SD card

data is written to a buffer before being transmitted to the SD card in a single operation, as

write operations are time expensive and will severely limit sample rates if performed after each

reading is taken. This buffer, and therefore all the data for a single trial, is then written to the

SD card upon receiving a stop command from the transmitter. Due to the importance of this

operation, and the computational cost of performing it, it is vital to know if the command was

successful, and the receivers accommodate this by transmitting the status of the data capture

back to the laptop after a stop command is issued. This can also be used to check if files exist
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on the SD card prior to recording to ensure that no files get overwritten and to help mitigate

human errors which ultimately help to prevent subjects from being taken back to locations

to perform trials again, and to prevent data loss. Finally, a delete command is available to

allow the removal of files remotely, which acts to speed up the data collection process in the

case of human errors. All algorithms were written in C/C++ using the Arduino Integrated

Development Environment (IDE).

Figure 4.4: Flowchart of the Arduino Mega algorithm.

Figure 4.5: Flowchart of the Arduino Nano 33 BLE algorithm.

Data capture commands are issued to the transmitter via a laptop with a custom User Interface

(UI) made using Python with the PyUI and PySerial libraries. This increases the efficiency of

data collection by reducing the number of digits needed from the user to just four — the activity

and trial numbers. The UI also features two data input boxes, which can be used for opposing

actions such as sit-to-stand and stand-to-sit or ramp ascend and ramp descend, speeding up the
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process of capturing multiple trials. The UI design can be found in Figure 4.6

Figure 4.6: The UI design for the data capture laptop.

The sensor system is attached to the body through multiple methods. Subjects are provided

with plain canvas-style shoes which were augmented with a small, 3D-printed box on the outer

lateral side of the foot. This box contained the multiplexer for the insoles and the colour sensor.

The foot IMU was also attached to the shoe by threading the shoelaces through another box

containing the IMU. This method of attachment ensured that the inertial sensors remained in

the same location relative to the foot for each subject, that the attachment was comfortable,

and that noise generated by a loose attachment was minimised. A large box containing the

Arduino Nano 33 BLE, a 9V battery, the SD card adaptor, and wiring was attached to the

outer lateral side of the shank via two elastic straps. The LiDAR is then positioned in another

small box and attached to the lower of these straps at the back of the leg on the frontal plane,

facing the ground. All sensors in the various locations around the leg are wired together using

I2C communications. For the waist sensor, the IMU is embedded into the same box as the

Arduino Nano 33 BLE, 9V battery, SD card adaptor, and wiring, which was attached to the

back of the subject’s trousers via a clip. The various 3D models and final versions of the sensor

attachments can be found in Figure 4.7.

82



4.2. Sensor System Design

(a) The multiplexer box CAD. (b) The 3D printed multiplexer box.

(c) The foot IMU holder CAD. (d) The 3D printed foot IMU holder.

(e) The Arduino and circuitry housing CAD. (f) The 3D printed Arduino and circuitry housing.

(g) The LiDAR box CAD. (h) The 3D printed LiDAR box.

(i) The waist box CAD. (j) The 3D printed waist box.

Figure 4.7: The various CAD elements, and their real counterparts, of the sensor system.
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The circuitry for the sensor system comprised potential divider circuits for the insoles, and a

voltage regulator for the Arduino Nano 33 BLE microprocessors. For the insoles, changes in

force applied to the force sensors cause a reduction in resistance across the sensor [357], allowing

a simple potential divider circuit to convert from variable resistance to variable voltage. This

circuit can be found in Figure 4.8

Figure 4.8: A simple potential divider circuit for converting FSR resistance changes to voltage
changes.

The Arduino Nano 33 BLE can only accept and output voltages in the range of 0-3.3V, with

these values being interpreted as values in the range of 0-1023 internally when reading from the

analogue pins. Force applied to the FSR is inverse-logarithmically proportional to the resistance

of the FSR [357], meaning that choosing a value for R0 is crucial for setting the range, and

sensitivity with which we will be able to detect changes in pressure. With participants expected

to weigh between 50kg and 120kg, the maximum force exerted on a sensor would be expected to

be around 500-1200N when stationary, and could be much higher when the user is walking. As

such, a value of 330Ω was chosen for R0, which results in the force-to-input graph found in Figure

4.9. This sensor should offer large changes in value within the most common operating range of

around 0-1200N, whilst also enabling enough headroom that higher forces are distinguishable

from noise.

The potential divider equation for calculating the voltage across the FSR can be found in

Equation 4.1:

VFSR =
R0

R0 +RFSR
VIN (4.1)
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Figure 4.9: A graph showing how the resolution of the analogue values on the Arduino change
when the fixed resistor is changed, and a range of forces are applied to the FSR.

Aside from the potential divider circuits, most other circuitry involved simply connecting devices

and regulating voltages, as all sensors were chosen to operate at 3.3V, whilst the SD card adaptor

and Bluetooth modules required an input of 5V. The internal view of the multiplexers, waist,

and shank sensors can be found in Figure 4.10

(a) The multiplexer box circuitry. (b) The transmitter circuitry.

(c) The waist sensor hub circuitry. (d) The shank sensor hub circuitry.

Figure 4.10: The circuitry of the multiplexer, transmitter, waist sensor hub, and shank sensor
hub.
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4.3 Data Collection

Ethics was received from Leeds University EPS Research Ethics in May 2022 (reference: MEEC

21-016) for data to be collected from 20 healthy participants, which took place from November

2022 to February 2024. Data were collected from one to two subjects per week each Friday

between 11am and 4pm, with some weeks being cancelled, and some subjects being split between

two weeks due to rain or snow. As this dataset was designed to be a real-environment dataset,

the spacing of the trials ensured that data was captured at regular intervals through all seasons,

which is crucial for a dataset with a focus on real-world applications. Appendix B contains the

ethical approval documentation and files given to participants before the study.

4.3.1 Participant Recruitment

Participants were recruited through obtaining verbal interest from healthy people at Chapel

Allerton Hospital (CAH) with a range of ages, weights, heights, shoe sizes, and from diverse

ethnic backgrounds. The inclusion and exclusion criteria for recruitment was as follows:

Inclusion Criteria:

• Age ≥ 18

• Able to walk indoors and outdoors without a walking aid.

Exclusion Criteria:

• Age < 18

• Unable to walk indoors and outdoors without a walking aid.

• Inability to consent to the study

• Confirmed diagnosis of Parkinson’s disease, dementia, acquired brain injury (stroke, cere-

bral palsy, etc.), multiple sclerosis, or have had a lower limb amputation.

• Unable to walk safely with provided shoes (need for specialist shoes)

• Allergy to materials used in the study, such as silicone and elastic fibres

A participant information sheet was provided before the study, and informed consent to par-

ticipate was obtained in writing before the trials began. Anonymised participant demographic

information was collected for those properties that affect gait, and can be found in Table 4.1
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(a) Weight (b) Height (c) Age

Figure 4.11: Box plots of demographic data for the 20 participants, along with the median
(orange) and mean (green) values.

and Figure 4.11. It should be noted that participant 15 reported plantar fasciitis of the left foot,

and arthritis in the right foot, but still met the inclusion criteria, and was the only participant

with a gait-affecting condition.

Table 4.1: Participant demographic information.

Subject Sex Age Weight (kg) Height (cm) UK Shoe Size UK Shoe Size Provided

1 M 25 86.0 182.5 9 10
2 M 22 67.6 184.0 10 10
3 M 50 64.4 175.0 9 10
4 M 24 94.1 177.0 10 10
5 M 25 82.5 188.2 10 10
6 M 26 97.9 179.6 10 10
7 M 43 97.5 182.5 10 10
8 F 44 72.4 170.5 7 7
9 F 39 59.1 162.5 5 7
10 F 35 85.0 165.0 6 7
11 F 50 62.0 159.0 5.5 7
12 F 48 63.9 167.5 6.5 7
13 F 22 69.0 159.0 6 7
14 F 28 47.4 166.0 4 7
15 F 58 75.6 164.5 5.5 7
16 M 26 106.4 178.5 10 10
17 M 24 66.6 176.0 9 9
18 F 23 65.7 174.5 6.5 7
19 M 26 78.9 183.0 10 10
20 F 24 51.8 165.5 6 7
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4.3.2 Experimental Procedure

After consent is obtained from each participant, participants were equipped with the sensor

system with aid from the research team. Each participant was offered the shoe size that felt the

most comfortable to them, which is reported in Table 4.1. Weight and height were measured

after the system was equipped.

Regarding the activities, the data collection procedure was mapped out such that one continuous

route could be taken through CAH with various stops in different locations to capture data.

These activities and locations were chosen to be representative of common real life scenarios.

This route can be seen in Figure 4.12, and an activity matrix and full list of activities and their

activity codes can be found in Figure 4.13 and Table 4.2 respectively.

Figure 4.12: The location of each trial and the planned route through CAH.
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Figure 4.13: The matrix showing all combinations of activities and locations. Activity codes
correspond to those found in Table 4.2.

A total of 38 real-world activity-terrain combinations were recorded for each participant, result-

ing in 7.8 hours of captured gait data. Each walking activity consisted of two sets of walking

anticlockwise, then clockwise, around the researcher recording the data, for 30 seconds each.

Participants were instructed to walk in straight lines where possible, but also to prevent piv-

oting on the spot at the corners. This was to ensure that walking data would not contain one

singular turn for the entire duration of the trial. The exception to this was the gravel and

paving slab walking, where participants walked along a straight track three times. This was

due to limitations in the availability of large gravel and paving slabs areas. Ramp ascend, ramp

descend, stair ascend, stair descent, sit to stand, and stand to sit trials were performed three

times each to ensure that enough data was present for analysis with these short activities. For

standing and sitting, participants were simply instructed to remain relaxed and still whilst the

activity was recorded. The final two activity types involve travelling up and down in a lift. This

was captured from the lower ground floor to the second floor of CAH where possible. In some

instances, this trial would be interrupted due to a member of the public joining or leaving the

lift early. In these cases, less data may be available for the lift activities.
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Table 4.2: The full activity list for data collection.

Index Activity Terrain Location Exercise

1 Walking Grass Outside 1 2x – Walk for 30 seconds
2 Ramp Ascend Grass Outside 1 3x – Walk up the ramp
3 Ramp Descend Grass Outside 1 3x – Walk down the ramp
4 Standing Grass Outside 1 1x – Stand still for 10 seconds
5 Walking Paving Slabs Gym (Outdoors) 3x – Walk for 10 seconds (straight line)
6 Walking Gravel Gym (Outdoors) 3x – Walk for 10 seconds (straight line)
7 Standing Paving Slabs Gym (Outdoors) 1x – Stand still for 10 seconds
8 Standing Gravel Gym (Outdoors) 1x – Stand still for 10 seconds
9 Sit to Stand Paving Slabs Gym (Outdoors) 3x – Stand up from an outdoor chair
10 Stand to Sit Paving Slabs Gym (Outdoors) 3x – Sit down on an outdoor chair
11 Sitting Paving Slabs Gym (Outdoors) 1x – Stay sitting for 10 seconds
12 Walking Laminated Flooring Gym (Indoors) 2x – Walk for 30 seconds
13 Standing Laminated Flooring Gym (Indoors) 1x – Stand still for 10 seconds
14 Sit to Stand Laminated Flooring Gym (Indoors) 3x – Stand up from an indoor chair
15 Stand to Sit Laminated Flooring Gym (Indoors) 3x – Sit down on an indoor chair
16 Sitting Laminated Flooring Gym (Indoors) 1x – Stay sitting for 10 seconds
17 Stair Ascend Laminated Flooring Gym (Indoors) 3x – Walk up a set of stairs
18 Stair Descend Laminated Flooring Gym (Indoors) 3x – Walk down a set of stairs
19 Sit to Stand Toilet OT Bathroom 3x – Stand up from a toilet
20 Stand to Sit Toilet OT Bathroom 3x – Sit down on a toilet
21 Sitting Toilet OT Bathroom 1x – Stay sitting for 10 seconds
22 Stair Ascend Paving Slabs Outside 2 3x – Walk up a set of stairs
23 Stair Descend Paving Slabs Outside 2 3x – Walk down a set of stairs
24 Ramp Ascend Paving Slabs Outside 2 3x – Walk up the ramp
25 Ramp Descend Paving Slabs Outside 2 3x – Walk down the ramp
26 Ramp Ascend Asphalt Outside 2 3x – Walk up the ramp
27 Ramp Descend Asphalt Outside 2 3x – Walk down the ramp
28 Walking Asphalt Outside 2 2x – Walk for 30 seconds
29 Standing Asphalt Outside 2 1x – Stand still for 10 seconds
30 Elevator Down Lift Lift 1x – Travel down in the lift
31 Elevator Up Lift Lift 1x – Travel up in the lift
32 Walking Carpet Chapel 2x – Walk for 30 seconds
33 Standing Carpet Chapel 1x – Stand still for 10 seconds
34 Sit to Stand Carpet Chapel 3x – Stand up from an indoor chair
35 Stand to Sit Carpet Chapel 3x – Sit down on an indoor chair
36 Sitting Carpet Chapel 1x – Stay sitting for 10 seconds
37 Stair Ascend Hospital Stairs Hospital Stairs 3x – Walk up a set of stairs
38 Stair Descend Hospital Stairs Hospital Stairs 3x – Walk down a set of stairs

Some variation was introduced between data collection sessions due to a variety of reasons,

from human error to environmental factors. Some of the more notable elements that introduced

variation were the inconsistent availability of the chapel on Friday afternoons, and the pres-

ence of a mobile Magnetic Resonance Imaging (MRI) machine in the hospital car park, which

appeared to affect the sensor system. The most common variation was to change the room

in which the experimental setup, and therefore the “flat smooth”, activities occurred based on

their availability. Room 1 was a communal room, room 2 was an office, and room 3 was a

hydrotherapy pool changing room. A list of experimental variations can be found in Table 4.3.

Most variations simply involved moving to different areas around the hospital with the same
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terrain, however there are some instances where files were missing. These files are usually one

of a set of three trials such as sit to stand, stand to sit, ramp, or stair activities, however there

is one instance where activity 12 - walking in the setup room, was missing. In this instance, our

participant was time pressured and was not able to perform the activity again. Additionally,

due to errors in the first few trials, subjects 1 and 3 had their data recollected in 2024, where

it was originally collected in late 2022, and early 2023 respectively.

For many of the early subjects, data from the waist sensor is limited and inconsistent. This

was caused by a couple of electrical issues which could not be diagnosed until the later trials.

The first issue found was with the SD card adapter, which was damaged, preventing the SD

card from fixing in place. This made the SD card connection inconsistent as the device was

being moved around, which would corrupt the data from the waist sensor. Once this issue

was fixed, data was no longer being corrupted, but the waist sensor still remained inconsistent

when compared to the relatively more complicated leg subsystems. During a later trial, the

waist sensor power wire snapped and was reattached with an increased amount of slack. This

reparation fixed the issues with the waist sensor, suggesting that the issue was the loose wiring.

In addition to the issues with the waist sensor, the insoles broke on multiple occasions. Before

switching to the version 2 insoles, this would cause a loss of data from all sensors on the insole

when this occurred. Both of the size-nine version 1 insoles broke after subject 7’s trial, and the

size-six version 1 right insole broke during subject 10’s trial. The breakage of the latter of these

insoles was not noticed until subject 14’s trial was complete. Additionally, one of the FSR wires

snapped on the size-six version 2 right insoles during subject 20’s trial.

91



Chapter 4: A Real-Environment Gait Dataset

Table 4.3: Experimental procedure variations.

Subject Variation(s)

1 Setup in room 3, version 2 insoles.

2 Setup in room 1, MRI interference, trials split into 2 sessions due to darkness, version 1 insoles.

3 Setup in room 1, version 2 insoles.

4 Setup in room 2, MRI interference, version 1 insoles.

5 Setup in room 2, paving slab and asphalt ramp and stairs moved to front car park, version 1 insoles.

6
Setup in room 3, office carpet used, paving slab and asphalt ramp and stairs moved to front car park,
only 10 seconds of walking data recorded, version 1 insoles.

7
Setup in room 3, office carpet used, paving slab and asphalt ramp and stairs moved to front car
park, left multiplexer ground wire snapped during final trials, but data doesn’t appear to be affected,
version 1 insoles.

8
Setup in room 3, paving slab, asphalt, and grass ramps and stairs moved to front car park, 0202
missing, version 1 insoles.

9
Setup in room 3, paving slab, asphalt, and grass ramps and stairs moved to front car park, very light
rain during outdoor activities, version 1 insoles.

10
Setup in room 1, paving slab, asphalt, and grass ramps and stairs moved to front car park, split into
2 sessions due to rain, version 1 insoles.

11
Setup in room 1, paving slab, asphalt, and grass ramps and stairs moved to front car park, split into
2 sessions due to rain, version 1 insoles.

12
Setup in room 1, paving slab, asphalt, and grass ramps and stairs moved to front car park version 1
insoles.

13 Setup in room 1, version 2 insoles, trials split into 2 sessions due to rain.

14
Setup in room 3, paving slab, asphalt, and grass ramps and stairs moved to front car park, 1202
missing, version 1 insoles.

15
Setup in room 3, paving slab, asphalt, and grass ramps and stairs moved to front car park, version 2
insoles.

16 Setup in room 3, 0202 missing, version 2 insoles.

17 Setup in room 3, version 2 insoles.

18 Setup in room 3, meeting room carpet used, version 2 insoles.

19 Setup in room 3, 1001 missing, meeting room carpet used, version 2 insoles.

20 Setup in room 3, 0903 missing, FSR 1 wire snapped in chapel, version 2 insoles.

Despite these issues with some of the sensors during data collection, the high data dimensionality

of the system and the nature of soft computing methods such as machine learning means that

this should not be an issue when performing activity classification or terrain identification.

Furthermore, this dataset contains lengthy trials with difficult terrains and a complex sensor

system, resulting in an increased likelihood for breakages and increased difficulty in diagnosing

these issues. These factors should be mitigated in future research into terrain classification by

constructing more robust or less complex systems.

4.4 Processing and Visualisation

Despite some issues with data collection, a complete dataset was produced from each of the

20 healthy participants, with 85-86 activity files produced for each subsystem. For each leg,

these files contain 29 channels of data, whilst the waist data contains nine, resulting in 67 total

data channels for each activity file. Files are organised into folders for each subject and sensor
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subsystem, and are named with the two-digit activity code, which can be found in Table 4.2,

and two-digit trial number. Due to errors thought to be caused by the MRI interference, in early

trials some additional files were recorded with invalid activity codes. Most of these occurred

during the original recordings of subject 1 and subject 3, which were later recollected, but some

of these still appear, such as “0000.txt” in the data from subject 4. These files are left in the

dataset in the case that they can be useful with unsupervised learning.

4.4.1 Additional Activities

For subjects 1 and 3, additional activities were recorded for testing purposes. These activities

can be found in Table 4.4.

Table 4.4: The bonus activity list for subjects 1 and 3.

Index Activity Terrain Location Exercise

39 Sit to Stand Gravel Outside 2 3x – Stand up from an outdoor chair
40 Stand to Sit Gravel Outside 2 3x – Sit down on an outdoor chair
41 Sitting Gravel Outside 2 1x – Sit still for 10 seconds
42 Sit to Stand Grass Outside 1 3x – Stand up from an outdoor chair
43 Stand to Sit Grass Outside 1 3x – Sit down on an outdoor chair
44 Sitting Grass Outside 1 3x – Sit still for 10 seconds
45 Standing Toilet OT Bathroom 1x – Stand still for 10 seconds
46 Ramp Ascend Laminated Flooring Hospital Corridor 3x – Walk up the ramp
47 Ramp Descend Laminated Flooring Hospital Corridor 3x – Walk down the ramp

These activity and terrain combinations were chosen to be relevant, yet less common than the

main dataset. Models constructed to perform activity and terrain classification can utilise these

activities in testing to ensure that their models have generalised well. It is speculated that, due

to certain activities only being performed in certain locations, some bias may be introduced.

For example, a model that determines the activity is stair ascent will never consider that gravel

or the bathroom could be valid locations, just as a model that determines the activity is grass

will never consider sit to stand or stand to sit. These additional activities will allow researchers

the opportunity to demonstrate the generalisation capabilities of their models.

4.4.2 Data Reformatting and Visualisation

When plotting the data, the reformatted data is input and filtered down to the chosen sensor. A

10Hz, 4th order Butterworth low-pass filter is then applied to the data to remove high-frequency

noise. Figure 4.14 shows the unfiltered and filtered data from the gyroscope X axis during file

“3201” from subject 20.
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(a) Unfiltered.

(b) Filtered.

Figure 4.14: Gyroscope X-axis data from file ”3201.txt” from subject 20.

Due to the large number of FSR data channels, plotting this data in its raw or unfiltered form

is not useful. As such, the FSR data from each insole is summed and normalised to display the

total force on each foot. The plot of this data for subjects 1 and 20 can be found in Figure 4.15.
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(a) Subject 1.

(b) Subject 20.

Figure 4.15: The summed and normalised FSR data from the file ”3201.txt” from subjects 1
and 20.

Another method of visualisation for the collected data is presented in the form of short heatmap

videos of the force on each sensor in the insole over time. Through these videos, the pattern

of force on a foot can be observed over the course of any captured activity. As seen in Figure

4.16, these heatmaps can offer insight into the force distribution of the foot, and therefore the

Centre of Pressure (CoP), over the course of each activity in this dataset.

While these various figures demonstrate the capability of this dataset for gait analysis by offering

insights into the spatio-temporal gait parameters, it is crucial that this dataset also enables

accurate classification of the activity being performed, along with the terrain that the activity

is being performed on. Various datasets have already demonstrated the potential to enable

high-accuracy activity classification using data from as little as a single smartphone IMU [343–

347]. As such, this dataset collected with a large, multimodal sensor system, including a waist-
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(a) 480ms (b) 640ms (c) 800ms

(d) 960ms (e) 1120ms (f) 1280ms

Figure 4.16: Heat maps of the FSR data 160ms apart during subject 1’s walking on carpet trial.

mounted IMU to mimic the capabilities of these smartphone-based studies, should enable high-

accuracy activity classification. Regarding terrain classification, the colour sensor and LiDAR

generate data that enables the various terrains to be distinguished from one another. Figure

4.17 shows the combined red, green, and blue colour channels captured from the colour sensor

on various terrains. From this figure, it can be seen that the colour sensor data reflects the

colour of the terrain underfoot, along with the ambient light, which can be seen when the foot

is lifted and is white for the outdoor terrains, and much darker for the gravel captured in the

shade, and laminated flooring captured inside the hospital. It is also notable that the indoor

terrain colour maps are extremely dark, which may indicate that the colour sensor was mounted

too far from the ground for these indoor trials, resulting in insufficient light being reflected from

the floor to the sensor to produce a more accurate reading.
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(a) Grass (b) Gravel

(c) Asphalt (d) Laminated Flooring

Figure 4.17: Colour over time captured from the left leg during walking on 4 different flooring
types.

Alongside colour, the data from the LiDAR was theorised to provide insight into the coarseness

of the terrain underfoot. However, some preprocessing is required, as the LiDAR data primarily

reflects the large changes in distance from the shank to the ground during a stride, as seen in

Figure 4.18a. Taking only the high-frequency data, the low-frequency strides are removed, leav-

ing fluctuations in distance which represent the coarseness of the ground underfoot. Examples

of the unprocessed and processed LiDAR data can be found in Figure 4.18, in which the large

variation in coarseness can be seen between grass and laminated flooring.
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(a) Raw LiDAR data

(b) High-Passed on Grass

(c) High-Passed on Laminated Flooring

Figure 4.18: Raw LiDAR readings along with high-pass filtered LiDAR data at a cut-off
frequency of 30Hz for the walking activity on grass and laminated flooring for subject 17.

The final dataset was uploaded to the IEEE DataPort data repository, and is dubbed the

Context-Aware Human Activity Recognition (CAHAR) dataset [241]. A comparison of the

properties of the CAHAR dataset compared to other recent real-environment datasets can be

found in Table 4.5, while a comparison to other terrain-identification studies can be seen in

Table 4.6.
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Table 4.5: A Comparison of Real-Terrain Activity Recognition Datasets.

Dataset Subjects Sensors Activities Terrains

Activity-
Terrain

Combina-
tions

Locations

Luo et al.
[35]

30 6x IMUs 5 9 9
9 outdoor,
0 indoor

Losing and
Hasenjäger

[359]
20

17x IMUs & barometer nodes,
2x insoles with 8x FSRs each, 1x

eye tracker
9 5 12

12 outdoor,
0 indoor

Proposed
Dataset

20
3x IMUs, 2x LiDARs, 2x colour
sensors, 2x insoles with 13x

FSRs each
11 9 38

19 outdoor,
19 indoor

Table 4.6: A Comparison of This Study to Existing Terrain-Identification Studies with Human
Subjects.

Dataset Subjects Sensors Terrains Locations

Nouredanesh
et al. [287]

9 1x camera 8 4 outdoor, 3 indoor

Diaz et al.
[284]

1 1x camera 6 4 outdoor, 2 indoor

Moore et al.
[286]

2
A diverse range of individual

cameras used to capture YouTube
videos

7

0 indoor, 7 outdoor, though
indoor/outdoor binary

classification was
implemented.

Zhong et al.
[288]

7 2x cameras 5 0 indoor, 5 outdoor

Das et al.
[285]

2 8x IMUs and 3x cameras 4 0 indoor, 4 outdoor

Hashmi et
al. [289]

40 2x IMUs 6 2 indoor, 4 outdoor

Dixon et al.
[290]

29 2x accelerometer 3 0 indoor, 3 outdoor

Hu et al.
[291]

35 1x IMU 2 0 indoor, 2 outdoor

Proposed
Dataset

20
3x IMUs, 2x LiDARs, 2x colour
sensors, 2x insoles with 13x FSRs

each
9 4 outdoor, 5 indoor

4.5 Discussions

HAR datasets are prevalent in the literature, with each proposing novel sensor systems, enabling

additional analytical methods, or increasing the generalisation capabilities of models through

various means [35, 238–240, 254, 360]. However, HAR datasets are yet to focus on the combina-

tion of activities and terrains, with terrain in particular being overlooked in existing datasets.

As such, this chapter outlines the design of a novel sensor system, experimental procedure, and

dataset which enables future researchers to perform context-aware HAR through the capture of

gait data on a range of terrains.

With respect to terrain-classification studies, Table 4.6 compares the protocol of this study to

that used to collect datasets for terrain classification. This highlights the number of terrains

and diversity of sensing methods as particularly novel aspects of the CAHAR dataset, while the
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inclusion of 20 participants ensures that the results of the analysis are sufficiently generalisable.

Furthermore, this study considers a range of both indoor and outdoor terrains which is suited

to daily living, avoiding terrains like sand, snow, woodland, and woodchip which are present

in existing studies [285, 286, 290], but are rarely encountered in daily life for most people and

would likely be avoided by those at risk of falling due to their extreme irregularity.

The sensor system used to collect this dataset combines known and unexplored sensor types,

the latter of which are shown to be capable of extracting the colour and coarseness of the terrain

underfoot, which will aid classification models in determining both terrain with high accuracy.

These novel sensor types also prove useful in determining aspects of the gait cycle, with the

low frequency LiDAR information reflecting individual strides, as seen in Figure 4.18, along

with the colour sensor, which displays the ambient light during the swing phase, as seen in

Figure 4.17. Regarding the sensors known to be effective in HAR, three IMUs are positioned on

the legs and waist, which are common in existing HAR datasets [35, 238–240, 254, 343], along

with force-sensing insoles which are known to be effective in wearable gait analysis devices [351,

352, 361–363]. These sensor types outline a system capable of collecting data relevant to both

activity and terrain classification, whilst also being suited to the application of remote gait

analysis for monitoring the effect of terrain on gait and fall risk.

Although this dataset offers a large, novel selection of activities and terrains, limitations are still

present in this study. Primarily these limitations are sourced from the sensor system, which was

susceptible to wear over the lengthy data collection process, resulting in some damage to the

system throughout the trials. This issue was mitigated through the two-way communications

between the Arduino Mega and the Arduino Nano 33 BLE sensors, ensuring that no data was

lost for either of the leg sensor subsystems. However, some waist sensor data was lost in the

first 12 trials due to these issues. Another limitation of this dataset is related to the sit to

stand activities. These activities are extremely quick to perform, resulting in much fewer data

from these trials than others, such as the 30 seconds of walking, which could lead to large class

imbalances when performing classification. This was mitigated by asking participants to repeat

this trial three times but, in future, activities should be performed for equal times to ensure

that classification models have sufficient data to train on.
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4.6 Contributions

This chapter outlines the development of a novel sensor system comprised of known and unex-

plored sensor types with regards to HAR, which is capable of collecting inertial, force, colour,

and distance data which relate to both the wearer’s gait and the terrain underfoot. This sen-

sor system is used to collect the CAHAR dataset, which features a greatly expanded scope

when compared to existing datasets in the literature, containing 38 combinations of 11 activi-

ties performed on nine different terrains, with a dedicated test set comprising nine additional

combinations of activity and terrain. By containing activities repeated on multiple terrains,

this dataset offers unique insights into the effect of terrain on gait, along with enabling terrain

classification which was not previously possible with the existing HAR datasets in the litera-

ture. As such, this chapter takes a large step towards producing a system capable of collecting

gait data which can be labelled with the appropriate context, forming the basis for a prototype

system capable of monitoring internal and external factors that contribute towards fall risk.

4.7 Summary

This study proposes a novel HAR dataset comprised of 38 combinations of 11 walking activities

performed on nine terrains by 20 healthy subjects, totalling 7.8 hours of continuous activity

data. As the first HAR dataset to label activity and terrain separately, this dataset enables new

developments in determining the full context surrounding a person’s gait data to enable the

design of analytical techniques required for implementing remote gait analysis using wearable

sensors, and enables researchers to perform terrain classification, along with HAR, on a variety

of indoor and outdoor surfaces. Furthermore, when compared with other real-world HAR and

terrain-identification datasets in the literature, the CAHAR dataset features a much larger

number of activity-terrain combinations which are evenly divided between indoor and outdoor

surfaces, as shown in Tables 4.5 and 4.6, offering greater capacity for the generalisation of

models trained on this dataset. A novel sensor system is designed to collect this dataset which

combines popular, proven HAR, terrain-identification, and gait analysis sensors in the literature,

such as IMUs and force-sensing insoles, with previously unexplored colour and LiDAR sensors,

that are shown to be capable of determining properties such as colour and coarseness of the

terrain underfoot. This novel sensor system produces a high-dimensional dataset suited for

analysis with powerful machine learning techniques to attain the high accuracy, precision, and
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generalisability needed to enable the detection of real-world fall-risk factors, such as terrain and

its effect on the gait parameters.

The following chapters detail the analysis of the CAHAR dataset to demonstrate the feasibility

of terrain-classification using wearable sensors, along with investigations into the contributions

of individual sensors towards classification accuracy to optimise future iterations of this sensor

system and improve the comfort and convenience of the device through removing redundant or

low-performing sensors.
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Chapter 5

Analysis of the CAHAR Dataset

5.1 Introduction

Whilst Chapter 4 outlines the creation of the necessary dataset to perform both activity and

terrain classification, an analysis of this dataset is still required to determine the feasibility

of terrain classification, and therefore the identification of external fall risk factors, in real-

environments. As such, this chapter explores the proposed Context-Aware Human Activity

Recognition (CAHAR) dataset [241] using the classical Machine Learning (ML) models and

sliding window parameters from Chapter 3, with the intention of guiding future researchers

on the potential for terrain classification. Particularly, this analysis will function as a baseline

analysis for this dataset, enabling future researchers to validate and verify novel Deep Learn-

ing (DL) models against the performance of a range of classical ML models, with optimised

parameters.

Furthermore, as this study focusses on the optimisation of a prototype system for identifying

internal and external fall risk factors, an exploration of the contributions of each sensor type

towards terrain classification will be conducted, highlighting which sensors can be removed from

the system, and which sensors may be of interest in future terrain classification studies.

5.2 Methods

As covered in Chapter 4, the CAHAR dataset [241] features data captured from participants

equipped with a novel sensor system performing common walking activities on a variety of
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terrains, both indoor and outdoor. 20 participants (ten male, ten female) with a mean weight

of: 74.69 ± 15.63kg, height: 173.02 ± 8.71cm, and age: 33.10 ± 11.34 performed 38 unique

combinations of 11 activities on nine terrains. Participants performed these activities over the

course of 17 months, capturing a wide variety of outdoor light levels, temperatures, and weather

conditions.

Participants performed these activities while equipped with a novel sensor system featuring an

Inertial Measurement Unit (IMU) on the waist, and each foot, a colour sensor on each foot,

a LiDAR on each shank, and a custom force-sensing insole which contain 13 Force Sensing

Resistors (FSRs). Fig. 5.1 shows the sensor system when equipped by a participant, while Fig.

5.2 shows the insoles placed within each shoe. Data was captured at 62.5Hz and is synchronised

by a central data sink that broadcasts the time to each of the leg and the waist subsystems,

which is then embedded into the sample captured at that time.

Figure 5.1: The various sensor system components and their locations when equipped to a
participant.
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Figure 5.2: The custom insole, showing the position of the 13 FSRs.

5.2.1 Data Preprocessing

Data Cleaning and Filtering

The data from the CAHAR dataset is initially cleaned by removing any irrelevant files and

labelling each sample with the activity, terrain, and activity-terrain combination, which can

later be used as classes for supervised machine learning. A fourth-order, low-pass, zero-phase

Butterworth filter with a cut-off frequency of 20Hz is then applied to the data from the IMUs,

LiDAR, and force-sensing insoles, to remove any high-frequency noise which may have been

introduced through loose clothing or momentum causing excessive oscillations during motion.

This value of cut-off frequency was chosen in line with recommendations from previous studies

in this area [325, 364]. An investigation into the raw LiDAR data demonstrated a relationship

between the high-frequency information and the coarseness of the terrain underfoot, as shown

in Fig. 5.3. As such, a second set of LiDAR data, which is high-passed using a fourth-order

Butterworth filter with a cut-off frequency of 30Hz, is added to the raw data. Finally, due to

the inconsistent data from the waist IMU, only data from the legs was considered in this study.

Sliding Window Feature Engineering

Sliding windows are a common approach to generating samples for machine learning from time-

series data [344, 365]. Furthermore, as discussed in Chapter 3, window sizes of around two to

five seconds are preferential when performing Human Activity Recognition (HAR) on a subset of

activities, all of which are included in this dataset. However, windows of 1.2 seconds with a 75%
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(a) Grass

(b) Laminated Flooring

Figure 5.3: High-frequency LiDAR readings high-pass filtered at a cut-off frequency of 30Hz for
the walking activity on grass and laminated flooring for participant 17.

overlap were experimentally determined to return the highest accuracies with the full dataset.

For the individual sensor analysis, three-second windows were used with an 80% overlap, which

were experimentally determined to give the highest accuracies in this context.

Twenty-two features are extracted from each data channel, resulting in a total of 1276 features.

These features are: maximum, minimum, mean, median, standard deviation, mean absolute

deviation, median absolute deviation, number of zero crossings, root-mean-square, maximum

gradient, kurtosis, skewness, variance, interquartile range, entropy, energy, maximum frequency

amplitude, mean frequency amplitude, maximum power spectral density, mean power spectral

density, frequency kurtosis, and frequency skewness. Some features failed to generate from the

raw data due to low variance or noise caused by broken wires for the FSRs, resulting in 1260

total features.
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Undersampling

Due to large class imbalances, undersampling is employed to reduce the computational burden

of training a model on such a large dataset. The implementation of this undersampling involves

selecting a random number of samples from each class equal to the number of samples in the

smallest class — sit to stand on carpet, multiplied by three. This allows the training set to

contain a reasonable number of data points for generalisation where they are available, without

wasting computation time or risking overfitting on the extremely large walking classes.

Feature Selection

Due to the large number of features, feature selection was employed to reduce the number

of features whilst maintaining the variance needed to enable high-accuracy classification. To

achieve this, Principal Component Analysis (PCA) is performed to reduce the dimensionality of

the data by determining and selecting the most relevant principal components. This value was

determined through selecting the minimum number of principal components needed to retain

95% of the variance in the original feature set.

Train-test Splits

Two major approaches can be employed when generating a set of data with which to test models

for this type of study, depending on the desired application. A standard, randomised, Train-Test

Split (TTS) removes a selected percentage of the data for use as a test set at random. This test

set contains some bias due to the models being trained on data from all participants, improving

the classification performance in the context of this study, at the cost of poor generalisation.

On the contrary, Leave One Subject Out (LOSO) leaves out the entire dataset from a single

subject as the test set, improving generalisation at the cost of lower classification accuracies due

to the lack of overfitting. TTS—trained models, when deployed, are usable if the participant

undergoes a training period, whilst a LOSO-trained model enables high accuracies ’off the shelf’.

Both of these methods will be explored.

5.2.2 Model Classification

A variety of classical machine learning and deep learning models are prevalent in the literature

for HAR. In this study, K-Nearest Neighbours (KNN), Support Vector Machines (SVMs), Ran-

dom Forests (RFs), and Artificial Neural Networks (ANNs) will be explored to evaluate how
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each model performs at both activity and terrain classification. Furthermore, due to the effect

of various model parameters on classification accuracy, Bayesian hyperparameter optimization

is performed for 25 iterations per model. Models are implemented and trained using the Scikit-

learn library for Python. For each model, two methods of activity and terrain classification will

be explored.

Single-model classification uses the combined activity-terrain labels as the classes, limiting

the classifier to select from just 38 possible activity-terrain combinations. This model is expected

to be more accurate at the cost of needing a dataset which captures all possible activities and

terrains that a person could encounter in their daily lives.

Multimodel classification involves training two separate models for activity and terrain

classification for each model type. When testing the combined performance of these models,

the prediction of each model will be combined and compared to the original activity-terrain

combination labels for samples in the test set. This approach has the benefit of generalising

more suitably to a real-world environment, due to the capacity to classify a sample as any

of the 99 possible combinations of activity and terrain, despite the original dataset containing

data from only 38 activity-terrain combinations. Furthermore, this multimodel approach can be

tested with the bonus activities included in the dataset for participants 1 and 3, which feature

unseen activity-terrain combinations, to determine how well the model has generalised.

5.3 Results

5.3.1 Single-Model Classification

Train-test Split

When training a single model using a randomised TTS, all model types achieve a weighted

average accuracy, precision, recall, and F1-score of 94% as seen in Table 5.1. Furthermore, the

classification reports for each model show identical performances on each class, indicating that a

fixed 6% of samples from the dataset are unable to be classified correctly. Misclassified samples

were distributed among most classes, except for sitting and standing, which were typically

classified with 100% accuracy.
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Leave One Subject Out

As with the TTS analysis, the LOSO approach yielded identical results for all models, as seen

in Table 5.2, indicating that, again, a fixed subset of samples is unable to be classified. The

classification metrics of each model show an accuracy of 50%, precision of 52%, recall of 50%,

and F1-score of 46%. Contrary to the TTS results, misclassified samples typically belonged to

the sitting and standing classes, most of which exhibited 0% accuracy, with all samples being

classified as the correct activity on the incorrect terrains.

Table 5.1: Single-Model performance using TTS.

Model Accuracy Precision Recall F1-Score

KNN 0.94 0.94 0.94 0.94
SVM 0.94 0.94 0.94 0.94
RF 0.94 0.94 0.94 0.94
ANN 0.94 0.94 0.94 0.94

Table 5.2: Single-Model performance using LOSO.

Model Accuracy Precision Recall F1-Score

KNN 0.50 0.52 0.50 0.46
SVM 0.50 0.52 0.50 0.46
RF 0.50 0.52 0.50 0.46
ANN 0.50 0.52 0.50 0.46

Table 5.3: Multimodel performance using TTS.

Model Accuracy Precision Recall F1-Score

KNN 0.82 0.82 0.82 0.82
SVM 0.85 0.86 0.85 0.85
RF 0.82 0.83 0.82 0.82
ANN 0.84 0.84 0.84 0.84

Table 5.4: Multimodel performance using LOSO.

Model Accuracy Precision Recall F1-Score

KNN 0.31 0.34 0.31 0.28
SVM 0.42 0.47 0.42 0.37
RF 0.21 0.28 0.21 0.17

ANN 0.43 0.47 0.43 0.42
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5.3.2 Multimodel Classification

Train-test Split

When using multimodel classification with a TTS, performance metrics are much lower across

all models, with SVM exhibiting the highest performance metrics with an accuracy of 85%,

precision of 86%, recall of 85%, and F1-score of 85%, followed by ANN with scores of 84%

across all performance metrics, as seen in Table 5.3. Investigations into the highest-performing

SVM models show that sit to stand and stand to sit were the most misclassified activities, whilst

gravel was the most misclassified terrain, as seen in Fig. 5.4. Despite these misclassifications,

the SVM achieved weighted average performance metrics of 97.94% for activity classification,

and 99.57% for terrain classification.

However, as expected due to the low generalisation of TTS-trained models, the performance

metrics of the TTS multimodel SVM on the dedicated test set of unseen activity and terrain

combinations were extremely poor, with a weighted average precision of 2%, recall of 1%, and

F1-score of 1%.

Leave One Subject Out

As with the TTS implementation, performance metrics using LOSO are lower when using a

multimodel approach compared to a single-model approach. However, LOSO classification

results are much more similar between the single-model and multimodel implementations, with

ANNs exhibiting the highest accuracy of 43%, precision of 47%, recall of 43%, and F1-score of

42%. The performance of the individual models for activity and terrain classification can be

seen in Fig. 5.5, which highlight the lift, sit to stand, and stand to sit activities, and gravel,

hospital stairs, and paving slab terrains as those which are most frequently misclassified.

Regarding the dedicated test set, the LOSO multimodel implementation outperformed the TTS

implementation with an accuracy of 7%, precision of 29%, recall of 7%, and F1-score of 10% due

to the increased generalisation capabilities of a model trained in this way. However, these metrics

are still extremely low, indicating that more powerful classification techniques are required to

enable this level of generalisation.
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(a) Activity

(b) Terrain

Figure 5.4: Accuracy and precision of each individual class for activity and terrain classification
using multimodel SVMs and a TTS.

5.3.3 Individual Sensor Analysis

Following the analysis of the full dataset, an individual sensor analysis was conducted to eval-

uate how the weight, size, and computational complexity of the system can be reduced whilst

maintaining the capacity for high-accuracy terrain and activity classification. Furthermore, this

analysis will determine the success of the colour and LiDAR sensors introduced in the CAHAR

dataset.
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(a) Activity

(b) Terrain

Figure 5.5: Accuracy and precision of each individual class for activity and terrain classification
using multimodel ANNs and LOSO.

Figures 5.6 and 5.7, along with Table 5.5, show the performance metrics for a SVM trained

on each individual sensor type. Both activity and terrain classification were highest when

using data from the IMUs, with terrain classification accuracy at 89%, activity classification

at 91%, and both activity and terrain classification at 86% using TTS cross validation and

data from the right, left, and left IMU respectively. For LOSO cross validation, classification

accuracy was lower at 63% for terrain classification, 71% for activity classification, and 49% for

activity and terrain classification using data from the right, left, and right IMUs respectively.
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(a) Terrain

(b) Activity

(c) Terrain and Label

Figure 5.6: Individual sensor classification metrics using TTS cross validation.

Data from the FSR insoles appear as the second-highest performing sensor when using TTS, but

exhibit extremely low accuracies when performing subject-independent training using LOSO. As

expected, the colour sensor performs poorly for activity classification, but contributes heavily
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towards terrain classification, achieving 71% and 66% accuracy when using TTS and LOSO

respectively. Furthermore, the colour sensor matches the IMU as the highest performing sensor

for terrain classification when using LOSO.

(a) Terrain

(b) Activity

(c) Terrain and Label

Figure 5.7: Individual sensor classification metrics using LOSO cross validation.
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Terrain - TTS

Sensor Accuracy Precision Recall F1-Score
Left Colour 0.71 0.69 0.66 0.67
Left Distance 0.31 0.28 0.18 0.15
Left FSR 0.84 0.83 0.84 0.84
Left IMU 0.89 0.89 0.89 0.89
Right Colour 0.68 0.68 0.65 0.65
Right Distance 0.30 0.32 0.18 0.15
Right FSR 0.82 0.82 0.83 0.82
Right IMU 0.89 0.90 0.89 0.89

Activity - TTS

Sensor Accuracy Precision Recall F1-Score
Left Colour 0.49 0.38 0.38 0.36
Left Distance 0.27 0.26 0.28 0.25
Left FSR 0.85 0.85 0.85 0.85
Left IMU 0.91 0.91 0.91 0.91
Right Colour 0.47 0.42 0.37 0.35
Right Distance 0.37 0.26 0.25 0.21
Right FSR 0.84 0.84 0.84 0.84
Right IMU 0.88 0.87 0.88 0.88

Activity and Terrain - TTS

Sensor Accuracy Precision Recall F1-Score
Left Colour 0.51 0.49 0.50 0.49
Left Distance 0.24 0.22 0.22 0.21
Left FSR 0.79 0.78 0.78 0.78
Left IMU 0.86 0.85 0.85 0.85
Right Colour 0.51 0.50 0.50 0.49
Right Distance 0.19 0.18 0.18 0.17
Right FSR 0.77 0.77 0.76 0.76
Right IMU 0.84 0.83 0.83 0.83

Terrain - LOSO

Sensor Accuracy Precision Recall F1-Score
Left Colour 0.66 0.66 0.61 0.56
Left Distance 0.19 0.24 0.21 0.19
Left FSR 0.13 0.13 0.16 0.10
Left IMU 0.61 0.66 0.63 0.63
Right Colour 0.63 0.63 0.63 0.57
Right Distance 0.28 0.18 0.16 0.10
Right FSR 0.31 0.31 0.31 0.27
Right IMU 0.63 0.66 0.64 0.63

Activity - LOSO

Sensor Accuracy Precision Recall F1-Score
Left Colour 0.49 0.35 0.42 0.37
Left Distance 0.35 0.25 0.24 0.21
Left FSR 0.28 0.25 0.26 0.22
Left IMU 0.71 0.69 0.66 0.67
Right Colour 0.32 0.23 0.25 0.23
Right Distance 0.30 0.21 0.24 0.20
Right FSR 0.45 0.33 0.38 0.32
Right IMU 0.61 0.68 0.64 0.63

Activity and Terrain - LOSO

Sensor Accuracy Precision Recall F1-Score
Left Colour 0.35 0.40 0.37 0.32
Left Distance 0.11 0.06 0.12 0.07
Left FSR 0.09 0.10 0.08 0.05
Left IMU 0.41 0.45 0.39 0.36
Right Colour 0.30 0.28 0.28 0.25
Right Distance 0.09 0.04 0.09 0.05
Right FSR 0.10 0.08 0.10 0.07
Right IMU 0.49 0.50 0.48 0.44

Table 5.5: Model Performance Metrics by Sensor Location.
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Figure 5.8 shows the contributions of the colour sensor and IMU towards classifying each terrain

using LOSO cross validation. The colour sensor is shown to be largely incapable of classifying

the lift and gravel terrains, likely due to the similar colour of these surfaces, but exhibits much

higher performance metrics on the other terrains. The IMU, however, determines the lift class

with high accuracy, highlighting the role each sensor plays in the towards accurate terrain

classification in the analysis of data collected from the full sensor system.

(a) Left IMU

(b) Left Colour Sensor

Figure 5.8: Classification accuracy and precision per terrain using LOSO cross validation.
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5.3.4 Optimised System Metrics

Following the high performance metrics of individual IMUs and colour sensors for terrain clas-

sification, another set of SVMs were trained on the combined data from these sensors for each

leg. Using TTS, this combination yielded 98%, 93%, and 94% accuracy for activity, terrain, and

combined activity and terrain classification respectively on the left leg, which were higher than

the metrics of the right leg. When considering both legs, these metrics rise to 99%, 96%, and

96% for terrain, activity, and combined activity and terrain, respectively. These parameters are

significantly reduced when using LOSO, even with data from both legs, at 86%, 74%, and 69%

for activity, terrain, and combined activity and terrain, respectively. Notably, these performance

metrics are higher than when the full dataset is used, indicating that the lower-performing sen-

sors, such as the LiDAR, may contain noisy features which impede the classification accuracy of

the full feature set. Tables 5.6, 5.7, and 5.8 show the performance metrics for the terrain, activ-

ity, and combined terrain and activity, respectively, for the IMU and colour sensor combination

on different legs.

Table 5.6: Terrain classification performance using combined IMU and colour sensor.

Settings Accuracy Precision Recall F1-Score

Left leg — TTS 0.98 0.98 0.98 0.98
Right leg — TTS 0.97 0.97 0.98 0.97

Both legs — TTS 0.99 0.99 0.99 0.99
Left leg — LOSO 0.84 0.86 0.84 0.82
Right leg — LOSO 0.78 0.82 0.81 0.79
Both legs — LOSO 0.86 0.89 0.84 0.83

Table 5.7: Activity classification performance using combined IMU and colour sensor.

Settings Accuracy Precision Recall F1-Score

Left leg — TTS 0.93 0.93 0.93 0.93
Right leg — TTS 0.92 0.91 0.92 0.92

Both legs — TTS 0.96 0.96 0.96 0.96
Left leg — LOSO 0.69 0.69 0.66 0.64
Right leg — LOSO 0.66 0.65 0.65 0.63
Both legs — LOSO 0.74 0.74 0.73 0.71
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Table 5.8: Combined activity and terrain classification performance using combined IMU and
colour sensor.

Settings Accuracy Precision Recall F1-Score

Left leg — TTS 0.94 0.93 0.93 0.93
Right leg — TTS 0.93 0.91 0.92 0.91

Both legs — TTS 0.96 0.96 0.96 0.96
Left leg — LOSO 0.63 0.56 0.59 0.53
Right leg — LOSO 0.63 0.54 0.58 0.53
Both legs — LOSO 0.69 0.63 0.65 0.60

5.4 Discussions

This study performs the first investigation into terrain classification using the CAHAR dataset

consisting of data from IMUs, FSR insoles, colour sensors, and LiDAR sensors. Multiple ap-

proaches present in the literature are applied to this dataset to produce classification metrics

that indicate the potential for context- and terrain-aware HAR, and the detection of external

fall-risk factors.

Regarding subject-dependent models, this study finds that high classification accuracies are

possible when potential users of the device undergo a training period on a complete set of ter-

rains and activities which represent those they expect to encounter in daily life. Single-model

classification resulted in a consistent 94% for each performance metric, though the removal of

the noisy LiDAR and FSR sensor data improves this accuracy to 96%. Reasonable performance

metrics were also present in the multimodel approaches, which demonstrated performance met-

rics around 85% for the SVM. However, despite these performance metrics on existing activity-

terrain combinations when using a multimodel approach, interpolation of predictions to identify

unseen activity-terrain combinations on TTS-trained models was found to be infeasible.

For implementation in real-world settings such as healthcare applications, subject-independent

models are desirable to prevent lengthy training periods which may be susceptible to human

error or require specialist training to perform. However, this approach exhibits drastically re-

duced classification accuracies, as observed in this study. Despite this, the constituent models

in the multimodel implementation exhibited reasonable performance on terrain and activity

classification independently, indicating that alternative approaches to fusing the predictions

of individual models may be an effective approach to improve overall performance of multi-

model implementations. As expected, the subject-independent implementation outperformed
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the subject-dependent implementation with regard to the dedicated test set of unseen activity-

terrain combinations. However, whilst promising for the future direction of this research area

and implementations using more powerful deep learning techniques, these performance metrics

are still far too low at this stage for consideration in a real-world setting.

The individual sensor analysis exhibited reduced accuracies when compared to the full sen-

sor array, although the IMU alone was able to achieve high performance metrics, which were

comparable to the full system in the case of the single-model combined activity and terrain clas-

sification. The FSR insoles proved to be useful in the case of subject-dependent model training,

which has positive implications given how convenient these sensors can be, but lacked accuracy

in the subject-independent case. This may have been caused by the issues reported in Chapter

4, where the insoles broke for some participants, which would affect subject-independent train-

ing disproportionately. Of the novel colour and LiDAR sensors, the colour sensors exceeded

expectations by exhibiting similar performances to the IMU sensors with respect to terrain

classification. Furthermore, given the difference in which terrains were accurately classified

from the data of each sensor, it can be seen that the colour sensor and IMU sensors complement

one another, enabling a much higher classification accuracy when combined. On the contrary,

the LiDAR sensor, despite the raw data exhibiting a visual separability of terrains, does not

appear to contribute towards the classification accuracy of the system and should either be

processed more heavily to extract useful terrain information or discarded in future systems.

Furthermore, the combination of IMU and colour sensor outperforms the full dataset at 96%

accuracy, indicating the prevalence of noisy features produced by other sensors. Additionally,

a classification accuracy of 96% is high in the context of the literature for HAR, which ranges

from 78%-100% accuracy [28–34], despite the increased number of 38 classes in this dataset due

to the combinations of activity and terrain.

The appearance of the IMU as the most useful sensor for terrain classification could reflect one of

two possibilities: that the dataset has overfit to specific activities, as the activities and terrains

are fundamentally linked in the collected data, or that subtle changes in motion planning due

to the different terrain types were captured by the IMUs, which can then be used to determine

the terrain. For some terrains, such as the elevator, the IMUs are able to detect that the user

is not performing an activity, yet is accelerating upwards, which is a property unique to the

elevator activity and terrain. Equally, the bathroom activities contained only sit to stand and
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stand to sit, again enabling the IMU to primarily use the activity to determine the terrain. The

high accuracies with which these activity-specific terrains are classified can be seen in Figure

5.8a. Of the terrains with multiple activities, classification accuracy is still higher than random

chance, indicating that some degree of motion planning is being captured in the IMU data. To

some extent, this potential overfitting issue is acceptable given that activity and terrain are

expected to be dependent on one another in real-world settings. For example, walking in a

lift or bathroom are unlikely to occupy large amounts of a person’s daily activities, and some

activities such as stair ascent will likely never occur in these locations, highlighting how terrain

and activity are co-dependent in these settings. For this reason, despite potential bias added

by these activities, the results of terrain classification using IMUs are still reliable and relevant

for the application of classifying gait activity context in a person’s daily life.

Overall, the results of this analysis indicate that a system comprising shoes instrumented with

an IMU and colour sensor would be suitable to determine the fall-risk introduced by the ter-

rain that a person is walking on in real-world scenarios, given a short training period and a

single-model solution. Gait data from the other sensors, particularly the FSR insole, may prove

useful for gait analysis, but have not been shown to be suited to terrain or activity classification

in this study. Future work is needed to improve these accuracies such that context-labelling

can be performed ’off the shelf’, and to enable multimodel approaches capable of interpolating

classifications such that unseen activity-terrain combinations can be accurately identified. Fur-

thermore, the waist sensor was excluded from this study due to an incomplete feature set but,

with appropriate analytical methods, this sensor should be analysed to determine the feasibility

of terrain classification using smartphones and other waist-mounted IMU systems, due to the

convenience of using these sensors as opposed to instrumented shoes.

In the context of this thesis and incremental fall risk factors, these results identify the most

effective sensors capable of identifying fall risk factors introduced by the environment in which

a person is walking, such as slip and trip hazards and increased gait variability caused by

uneven terrains. The system designed to collect the CAHAR dataset was developed with the

intention of containing many sensing modalities to explore the relevance of these sensors in

terrain identification. This study identifies the IMU and colour sensor as being capable of

identifying the terrain underfoot, and future work in which the CAHAR sensor system is refined

should reduce the system to just an IMU and colour sensor on each foot. This future version
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will have a reduced profile, making it more convenient and comfortable to wear, while offering

high-accuracy HAR and terrain-classification in real-time, thereby enabling the monitoring of

contextual fall-risk factors that a person encounters in their daily life.

5.5 Contributions

This chapter offers the first analysis of the CAHAR dataset, and therefore the first investigation

into the feasibility of terrain classification across multiple activities using wearable sensors and

machine learning. IMUs placed on the foot are found to be capable of terrain classification

alone, indicating that future HAR datasets should label data with the terrain it was captured

from, as existing sensor systems may be capable of terrain classification due to the popularity of

IMUs in the literature. Furthermore, this chapter clearly demonstrates the feasibility of terrain

classification using wearable sensors, answering the primary research question in this thesis,

and prompting future researchers to integrate terrain recognition into automatic gait analysis

systems to add context to the collected data.

5.6 Summary

This study addresses the research aim of determining the feasibility of terrain classification using

wearable sensors by offering the first analysis of the CAHAR dataset — the first activity and

terrain-labelled HAR dataset. Commonly-used preprocessing steps, such as the sliding window

feature engineering technique, along with popular methods in the field of HAR, such as SVMs

and ANNs, are investigated to determine the feasibility of terrain classification using wearable

sensors. An accuracy of 99% is obtained for terrain classification, while 96% is obtained for

combined activity and terrain classification when using an optimised feature set and subject-

dependent training. These accuracies are high-performing in the context of reported accuracies

in the literature for HAR, despite the large number of classes in the CAHAR dataset. The

contributions of individual sensors are analysed, and it is found that IMUs are capable of

collecting sufficient data for acceptable terrain classification, but are augmented by the inclusion

of a colour sensor. In either case, this study demonstrates that terrain and activity classification

is feasible using wearable sensors, therein highlighting the capability of this system to monitor

the external factors which contribute towards fall risk in real-world settings. Future studies

should aim to produce more powerful models and optimised sensor systems towards the final
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goal of accurate context-aware HAR and terrain classification for monitoring the internal and

external fall-risk factors encountered in daily life for the purposes of fall prediction.
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Chapter 6

The Effect of Terrain on Gait

6.1 Introduction

As discussed in Chapter 2, many internal and external factors affect the gait parameters such

as health conditions and the terrain underfoot. Particularly, a range of studies highlight that

coarser terrains cause those walking on them to exhibit reduced cadence, step length, stride

length, double support time, Centre of Mass (CoM) height, and overall gait speed, whiles step

width and foot clearance increased [38, 39, 108–112]. Additionally, metabolic rate is shown to

correlate with terrain coarseness [38], highlighting the burden that coarse terrains have on those

navigating them. In Chapter 4, a novel sensor system is developed with the goal of monitoring

these gait-affecting factors, and therefore assessing the wearer’s incremental fall risk factors.

To this end, Chapter 5 demonstrates the capability of this system to accurately identify both

walking activity and the terrain underfoot from nine different commonly-encountered indoor

and outdoor surfaces such as grass, asphalt, and laminated flooring.

Each person’s gait kinematics are unique to that person [366, 367], meaning that this system

cannot simply compare a person’s gait parameters to a database of walking on various terrains

to establish if they are at risk of falling. Rather, the system should be capable of extracting a

person’s gait parameters on each terrain to compare gait-related responses within the context

of that person. These changes can then be analysed by clinicians, or by a future version

of this system, to assess the incremental fall risk factor associated with the terrain underfoot.

However, there may also be general trends This chapter evaluates the effect of terrain on various

gait parameters in the Context-Aware Human Activity Recognition (CAHAR) dataset.
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6.2 Methods

6.2.1 Sensor Selection

As mentioned in Chapter 4, the insoles were damaged during some of the subject trials, affecting

the reliability of data from these sensors for those subjects. Whilst soft computing methods like

machine learning can adapt to these conditions for the Human Activity Recognition (HAR) and

terrain-identification aspects of this work, spatio-temporal parameters are typically extracted

using threshold- and peak-detection-based algorithms [368, 369], meaning that sensors with

missing data cannot be utilised in this study. This eliminates the insole and waist sensor due

to damage and missing data in a small number of trials. Furthermore, the LiDAR and colour

sensor were chosen to assess the coarseness and colour of the terrain underfoot, limiting their

usefulness for extracting the spatio-temporal gait parameters.

This leaves the foot-mounted Inertial Measurement Unit (IMU) on each foot as the most ap-

propriate sensor for estimating the spatio-temporal gait parameters across all participants in

the CAHAR dataset. Many previous studies have used foot-mounted IMUs to estimate the gait

parameters, demonstrating high levels of agreement between this approach and measurements

from motion capture systems [368–373].

6.2.2 Gait Parameter Estimation

Gait Event Detection

To calculate the gait parameters, it is required to identify gait events such as Initial Contact

(IC), Mid-Stance (MSt), Terminal Contact (TC), and Mid-Swing (MSw). For this aspect, this

work follows the methods of Sabatini et al. [374], who used a single IMU on the foot to obtain

estimations for the IC and TC during walking. This method involves using peak-detection

algorithms on the mediolateral gyroscope axis data from each IMU, where small negative peaks

correspond to IC events, while large negative peaks correspond to TC events. The following

algorithm is implemented using Python.

For the CAHAR dataset, the gyroscope data from each foot is first filtered using a second- order

low-pass filter with a cut-off frequency of 2Hz. While this value for cut-off frequency is much

lower than the algorithms used by Sabatini et al. [374], it was found that the uneven terrain,

particularly gravel which caused movement while the foot was in contact with the ground,
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Figure 6.1: Mediolateral gyroscope data from the left foot-mounted IMU filtered with a
second-order low-pass filter with a cut-off frequency of 2Hz.

Figure 6.2: Low-pass filtered mediolateral gyroscope data from the left foot-mounted IMU
with gait events identified using the peak-detection algorithm.

introduced additional peaks that needed to be filtered out using a much lower cut-off frequency.

A cut-off of 2Hz was found to produce the most reliable results. The filtered gyroscope data

can be seen in Figure 6.1.

After filtering, the ”find peaks” algorithm from the ”Scipy” library for Python is used to obtain

the peaks associated with each gait event. First, this algorithm is applied to the positive values

with a ”prominence” of one, which reliably obtains the peaks relating to MSw. Then, the data

from between each of these peaks is extracted, and peak detection is again performed on the

positive peaks to obtain MSt. Finally, the data is inverted, and the negative peaks are identified.

These peaks are then compared, with the smallest peak being labelled as IC, and the largest

peak being labelled as TC. The results of this method can be found in Figure 6.2.

Step Verification

While this algorithm successfully identifies the gait parameters, in some instances, potentially

caused by uneven terrains, one or more of these peaks can be difficult to identify, as seen in
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Figure 6.3: The performance of the gait event detection algorithm on subject 7.

Figure 6.3. If the steps are determined to simply be the data between subsequent IC and TC

events, and left unvalidated, this will introduce steps that are too long or too short. To prevent

this, a simple check is performed to ensure that between each IC event, exactly one MSw, MSt,

and TC event occurs. However, this only validates strides from a single leg. When dealing with

steps, calculated between legs, pairs of valid strides are identified and stored. At the end of this

stage, a list of validated steps and strides have been identified, and the gait parameters can now

be calculated.

Gait Parameter Estimation

As discussed in Chapter 2, many fall prediction studies discuss the importance of step and

stride length as clinical parameters related to falls. However, these parameters are difficult to

calculate accurately using IMUs due to issues such as gyroscope drift, accelerometer noise, and

placement on the foot [370, 375, 376]. Furthermore, as the CAHAR dataset was designed for

HAR and terrain recognition, no validation data is available to test the accuracy of spatial gait

parameters such as step and stride length. As a result, this analysis will focus on applying

validated methods, such as those proposed by Sabatini et al. [374], to obtain the temporal

parameters such as step time, stride time, swing time, and stance time, which were shown

to be relevant to fall prediction in Chapter 2, Figure 2.8. Furthermore, while it would be

beneficial to show the effect of terrain on the spatial parameters, the scope of this study is to

monitor the effect of terrain on gait, which can still be done using temporal parameters. Future

studies should look into establishing outdoor motion capture systems to validate the spatial

gait parameters on real terrains.

With timestamps for the gait phases established, each of the temporal parameters can be
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determined by calculating the time difference between each event. The definition of each of the

temporal parameters in this study in terms of IC and TC is as follows:

Stride Time = t(IC(n+1))− t(IC(n))

Step Time = t(IC
(n)
R )− t(IC

(n)
L ) or t(IC

(n)
L )− t(IC

(n)
R )

Single Stance Time =
t(IC(n))− t(TC(n))

Stride Time
× 100%

Single Swing Time =
t(IC(n+1))− t(TC(n))

Stride Time
× 100%

6.3 Results

6.3.1 Analysis of the CAHAR Dataset

Each temporal parameter is extracted for all trials of the walking activities performed on each

of the 6 terrains that participants walked on: grass, flat laminated indoor flooring, carpet,

asphalt, paving slabs, and gravel. Bar charts of the mean stride time, step time, single stance

percentage, and single swing percentage can be found in Figure 6.4, and Tables 6.1-6.4.

(a) Mean stride time (b) Mean step time

(c) Mean single stance percentage (d) Mean single swing percentage

Figure 6.4: Bar charts showing the mean and standard deviations of each gait parameter for
all subjects on each of the terrains in the CAHAR dataset.
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Table 6.1: Mean and standard deviation of stride time across each terrain

Terrain Left Leg (µ± σ) Right Leg (µ± σ)

Grass 1.330 ± 0.121 1.328 ± 0.119
Flat 1.418 ± 0.139 1.415 ± 0.136
Carpet 1.332 ± 0.120 1.333 ± 0.121
Asphalt 1.236 ± 0.106 1.235 ± 0.108
Paving 1.144 ± 0.072 1.144 ± 0.066
Gravel 1.182 ± 0.082 1.185 ± 0.081

Table 6.2: Mean and standard deviation of step time across each terrain

Terrain Left Leg (µ± σ) Right Leg (µ± σ)

Grass 0.663 ± 0.063 0.666 ± 0.061
Flat 0.710 ± 0.072 0.704 ± 0.064
Carpet 0.663 ± 0.063 0.668 ± 0.059
Asphalt 0.619 ± 0.062 0.616 ± 0.049
Paving 0.574 ± 0.041 0.573 ± 0.026
Gravel 0.594 ± 0.041 0.593 ± 0.044

Table 6.3: Mean and standard deviation of single swing across each terrain

Terrain Left Leg (µ± σ) Right Leg (µ± σ)

Grass 50.236 ± 2.434 50.177 ± 2.663
Flat 48.550 ± 2.445 48.744 ± 2.265
Carpet 49.660 ± 2.609 49.420 ± 2.631
Asphalt 51.201 ± 2.292 51.063 ± 2.744
Paving 52.573 ± 2.208 52.602 ± 1.700
Gravel 52.112 ± 2.164 52.266 ± 2.760

Table 6.4: Mean and standard deviation of single stance across each terrain

Terrain Left Leg (µ± σ) Right Leg (µ± σ)

Grass 49.764 ± 2.434 49.823 ± 2.663
Flat 51.450 ± 2.445 51.256 ± 2.265
Carpet 50.340 ± 2.609 50.580 ± 2.631
Asphalt 48.799 ± 2.292 48.937 ± 2.744
Paving 47.427 ± 2.208 47.398 ± 1.700
Gravel 47.888 ± 2.164 47.734 ± 2.760

While these results indicate that terrain has a significant effect on the gait parameters, there

remains a large standard deviation, particularly in terrains where the location data was collected

from was changed between subjects, such as grass, flat laminated indoor flooring, carpet, and

asphalt. Gait, and therefore the gait parameters, are known to be unique to each person [366,

367], meaning that additional parameters like age, gender, and height may also be factors

contributing towards differences in the gait parameters between subjects. To account for this,

a repeated measures Analysis of Variance (ANOVA) was performed across all subjects for each
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Table 6.5: The repeated measures ANOVA results for each gait parameter across both legs.

Gait Parameter Left (F-value) Left (p-value) Right (F-value) Right (p-value)

Stride Time 74.086 0.000 72.838 0.000
Step Time 60.753 0.000 66.727 0.000
Single Swing 32.326 0.000 31.161 0.000
Single Stance 32.326 0.000 31.161 0.000

Figure 6.5: The paving slab and gravel terrains in the CAHAR dataset.

leg using the ”AnovaRM” function from the ”statsmodels” library for Python. The test is set

up such that the null hypothesis is that terrain has no effect on the mean of each gait parameter.

The results of this analysis can be found in Table 6.5.

These results suggest that coarser terrains like gravel reduce stride time and step time when

compared with smoother terrains like the flat indoor surface and carpet. The exception to this

is with the paving slabs, which would be expected to be relatively smooth, particularly when

compared to grass. However, as seen in Figure 6.5, the paving slabs and gravel terrains were

positioned next to one another, with small plants and obstacles that require attention underfoot.

It follows that participants in the CAHAR dataset walked similarly between these terrains.

However, it should be noted that, as these terrains were selected to be as natural as possible

in the CAHAR dataset, participants encountered a different amount of corners in each of these

settings. For the paving slab and gravel terrains, no corners were encountered, which may result
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in an increased average walking speed of the participants. Furthermore, the indoor terrains

required participants to walk around the edge of a room, and was the first activity participants

performed, which may result in an increased stride time due to slower walking caused by being

unfamiliar with the equipment. Additionally, when navigating the paving slabs and gravel

terrain, the researcher walked with the participant to keep the wireless connection stable due

to the walkway being linear, whilst participants walked around the researcher at a constant

distance in the grass, flat laminated indoor flooring, carpet, and asphalt trials. Figures 6.4c and

6.4d suggest that these factors may be affecting the results, with reductions in the stance phase

for the paving and gravel terrains suggesting an increase in walking speed when compared to

the flat laminated flooring terrain. As a result, whilst these results appear to agree with the

literature, these additional factors in the data suggest that capturing natural walking in natural

environments is a complex, multifaceted issue which requires a much more diverse dataset,

or a more specific experimental protocol that reduces the impact of human behaviour when

navigating different environments.

6.3.2 Follow-up Analysis

To mitigate these issues with the protocol of the CAHAR dataset for the purpose of extracting

the temporal gait parameters, a follow-up study was conducted in which participants 1, 3, 5, 8,

and 12 participated in a second data collection procedure. In this new procedure, participants

walked for four repetitions of a fixed distance of 20 metres in a straight line on a flat laminated

flooring surface, along with the gravel and paving slab terrains from the original analysis. This

time, the flat surface was the corridor outside the room used for the original flat surface with the

same surface properties, and the researcher walked with the participants in all trials, removing

the effect of corners and other variations between terrains which may affect the walking speed

of the participants. These surfaces were chosen to verify the findings of the analysis using the

CAHAR dataset, as these were the terrains with the largest difference in gait parameters. The

results for the follow-up analysis can be seen in Figure 6.6 and Tables 6.6-6.9.

Another repeated measures ANOVA was performed for the gait parameters in the follow-up

analysis, which can be found in Table 6.10, showing that terrain has a statistically significant

impact on gait.
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(a) Mean stride time (b) Mean step time

(c) Mean single stance percentage (d) Mean single swing percentage

Figure 6.6: Bar charts showing the mean and standard deviations of each gait parameter for
all subjects on each of the terrains in the follow-up dataset.

Table 6.6: Mean and Standard Deviation of stride time across the terrains in the follow-up
dataset

Terrain Left Leg (µ± σ) Right Leg (µ± σ)

Gravel 1.157 ± 0.077 1.156 ± 0.075
Paving 1.134 ± 0.069 1.137 ± 0.069
Corridor 1.208 ± 0.058 1.209 ± 0.057

Table 6.7: Mean and Standard Deviation of step time across the terrains in the follow-up
dataset

Terrain Left Leg (µ± σ) Right Leg (µ± σ)

Gravel 0.577 ± 0.042 0.581 ± 0.039
Paving 0.565 ± 0.040 0.571 ± 0.033
Corridor 0.601 ± 0.034 0.610 ± 0.024
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Table 6.8: Mean and Standard Deviation of single swing across the terrains in the follow-up
dataset

Terrain Left Leg (µ± σ) Right Leg (µ± σ)

Gravel 53.993 ± 2.166 53.637 ± 1.776
Paving 53.621 ± 2.032 53.323 ± 1.685
Corridor 52.156 ± 1.456 51.245 ± 1.144

Table 6.9: Mean and Standard Deviation of single stance across the terrains in the follow-up
dataset

Terrain Left Leg (µ± σ) Right Leg (µ± σ)

Gravel 46.007 ± 2.166 46.363 ± 1.776
Paving 46.379 ± 2.032 46.677 ± 1.685
Corridor 47.844 ± 1.456 48.755 ± 1.144

Table 6.10: The repeated measures ANOVA results for each gait parameter across both legs
with the follow-up dataset.

Gait Parameter Left (F-value) Left (p-value) Right (F-value) Right (p-value)

Stride Time 6.418 0.022 6.888 0.018
Step Time 5.791 0.028 7.287 0.016
Single Swing 4.747 0.044 12.717 0.003
Single Stance 4.747 0.044 12.717 0.003

6.4 Discussions

The results of this analysis highlight the effect of terrain on the temporal gait parameters such

as stride and step time, along with single stance and single swing as a percentage of a single

stride. Both the data from the CAHAR dataset, along with a focussed follow-up study are

analysed to evaluate the effect of terrain on gait.

The results of the study on the CAHAR dataset, and the difference between those results and

that of the follow-up study, highlight the effect that environment and context have on gait.

Participants in the CAHAR dataset walked under specific conditions for each terrain, such as

walking with a researcher, or walking in a confined room, to keep these environments as natural

as possible. The gait parameters reflect these conditions, but this analysis does not enable a

fair comparison between terrains with respect to the gait parameters. As a result, a follow-

up study was performed, and under these normalised conditions, the difference between the

gait parameters was reduced, but the trends remained, with the effect of terrain on the gait

parameters in this controlled setting being found to be statistically significant.

Existing studies on the effect of terrain on gait highlight that coarser terrains generally result
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in shorter, slower steps [38, 39, 108–112]. The findings in this study agree with the literature,

finding that coarse terrains like gravel induce shorter steps with increased variability than

smooth terrains like the flat corridor. Variability was also exaggerated in the non-dominant leg

of each participant in the follow-up trial, which translated to increased step and stride time

standard deviations.

There are some limitations to this study, primarily due to the fact that the CAHAR dataset

was not designed for the extraction of the spatio-temporal gait parameters. As a result, the

dataset lacks validation data for any algorithm which estimates the spatial parameters. While an

existing, validated algorithm could be applied to the dataset to mitigate this, these algorithms

are not validated for use on the range of terrains featured in the CAHAR dataset, which would

limit the reliability of these results [36, 262–269]. The temporal parameters are much simpler

to extract, relying on peak detection rather than the integrals of accelerometer and gyroscope

signals over time, which are susceptible to drift and noise [375, 376]. The follow-up dataset

eliminated many of the environmental issues caused by the context in which the CAHAR dataset

was captured, but future work should consider implementing and validating algorithms that

extract the spatial gait parameters across multiple real-world terrains.

6.5 Contributions

This chapter performs an analysis of the effect of multiple terrains and surfaces on gait by

extracting the temporal gait parameters from the CAHAR dataset. The results of this study

validate the findings in the literature regarding the effect of terrain on gait using a novel sensor

system in real environments. A repeated measures ANOVA demonstrates a statistical signif-

icance when evaluating if terrain has an effect on the temporal gait parameters, highlighting

the need for future studies to consider variation in terrain when performing remote gait anal-

ysis using wearable sensors. Furthermore, the effect of the environment on gait is highlighted,

giving insight into how our surroundings and being accompanied whilst walking can affect the

gait parameters, which may be significant for future datasets and experimental protocols in this

area.
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6.6 Summary

This chapter addresses the aim of investigating the effect of terrain on gait, along with the

objectives of extracting the gait parameters and observing how changes in terrain and environ-

ment affect the gait parameters. A validated methodology for identifying the gait phases using

inertial data from the foot is implemented for the CAHAR dataset, enabling the temporal gait

parameters to be extracted from the walking data. A repeated measures ANOVA is then used

to determine the effect of terrain on gait, which is found to be statistically significant. Coarse

and uneven terrains are found to cause a reduction in step and stride time, which is mirrored

in the literature in which rough terrain has been shown to cause shorter steps.

With respect to the aims of this thesis, the sensor system used to collect the CAHAR dataset

is shown to be capable of determining the walking activity a person is performing, the terrain

they’re performing that activity on, and monitoring the gait parameters on these terrains.

Each of these capabilities allows the system to monitor one of the incremental fall-risk factors

encountered in daily life, whether it’s an irregular activity like ascending a ramp or stairs, the

introduction of trip and slip hazards via the terrain underfoot, or an increase in gait variability

caused by uneven terrains such as grass and gravel. As such, with these capabilities, this system

is shown to be an effective prototype for monitoring the various incremental fall risks that people

encounter in daily life, answering the primary research question of this thesis.
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Summary, Conclusions, and Future

Work

7.1 Summary

7.1.1 Contributions

• The first cross-disciplinary systematic review of fall research, offering new insights into

the field.

Despite fall research spanning multiple disciplines, many literature reviews only address small

subsections of healthcare or technological approaches to fall prevention [377–381]. By perform-

ing a novel cross-disciplinary systematic review spanning over 10 years, this research contributes

many new insights into the current state of fall research, particularly with regard to the large

disparity in dataset quality between technological interventions and rehabilitation approaches,

and through the identification of interdisciplinary research gaps such as the application of fall

detection research to fall prevention, and how fall prediction studies can be integrated into fall

intervention programmes. Furthermore, this contribution fulfils the aim of identifying trends

and research gaps in the large, cross-disciplinary field of fall prevention research, along with the

research objective of exploring the current state of fall detection, prediction, prevention, and

intervention across both technology and healthcare research.

• An analysis of normalised, existing Human Activity Recognition (HAR) datasets, which

explores the contributions of various sensor types and analytical parameters towards clas-
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sification accuracy.

Many HAR dataset analyses have been performed in the literature. However, the analysis in

this study contributes a novel insight into the performance of sensors and machine learning

classifiers between multiple datasets by reducing the classification biases that would normally

be introduced through the differences between these datasets. This bias reduction is performed

by homogenising several aspects of each dataset, such as the number of participants, sample

rate, and activity types. Furthermore, this study finds two to five seconds is an optimal range of

values for window size when performing the sliding window technique — an extremely common

approach to time-series classification in HAR datasets, which provides future researchers with

evidence to base their choice of window size on in future analyses. This contribution also

addresses the research objectives of finding the sensors and sliding window parameters which

contribute the most towards high-accuracy HAR, which contribute towards the development of

the sensor system — another research aim.

• A novel sensor system capable of capturing relevant data to perform terrain-recognition.

The sensor system proposed in this research is capable of high-accuracy HAR, whilst also

achieving accurate terrain identification through the introduction of the colour sensor, which

augments the Inertial Measurement Unit (IMU) data from the feet. Compared to HAR sensor

systems in the literature, the proposed system features fewer sensors [35, 239, 240, 254], resulting

in a more lightweight and convenient system to wear, whilst still capturing sufficient data to

enable novel terrain recognition and competitive HAR accuracies.

• The collection of the first, openly-accessible, terrain-labelled HAR dataset.

The proposed Context-Aware Human Activity Recognition (CAHAR) dataset is a major con-

tribution towards the field of HAR, directly addressing the need for a large dataset with an

exhaustive set of walking surfaces representative of the real environment outside the laboratory,

outlined by Luo et al. [35]. Furthermore, whilst extremely high accuracies are achieved in the

analysis of this dataset using subject-dependent training in Chapter 5, future researchers may

succeed in improving the subject-independent accuracies using powerful deep learning meth-

ods which are popular in the literature. Additionally, the dedicated test data included in this

dataset from participants 1 and 3 issues a further challenge for researchers to build models

capable of combining individual activity and terrain classifications, enabling 99 possible com-
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binations of activity and terrain to be classified from a training set of just 38. This dataset

meets the research aim and objective of collecting a novel HAR dataset on a range of different

terrains commonly encountered in daily life.

• An evaluation of the feasibility of terrain classification using wearable sensors.

This thesis demonstrates that terrain classification is possible using IMU data alone, but that

accuracy is significantly improved through the addition of a colour sensor, with overall accura-

cies of 99% and 96% for terrain and combined terrain-activity classification respectively, using

classical machine learning techniques. These accuracies are extremely competitive with the lit-

erature for HAR, which range from 78%-100% accuracy [28–34] across far fewer activities than

the CAHAR dataset, due to the repetition of each activity on multiple terrains. Furthermore,

this research demonstrates a terrain classification accuracy of 99% across nine terrains, com-

pared to existing studies which achieve 97% on three terrains [290], and 88.7% on six terrains

[289], with a more limited range of activities. With these results, activity and terrain classi-

fication, and therefore the external fall risk factors considered in this study, are demonstrated

to be identifiable with the proposed wearable sensing system, addressing a large aspect of the

main research question for this work.

• Analysing the effect of terrain on the gait parameters.

This thesis highlights the effect of both terrain, and walking context, on the gait parameters,

finding that subjects walked with a reduced step and stride time on coarser terrains such as

gravel and natural paving slabs. Many studies in the literature have reported similar findings

when considering changes to the gait parameters between uneven terrains and smooth terrains

[38, 39, 108–112]. However, many of these studies consider terrains as being only smooth or

uneven, rather than discussing the effect of specific terrains on gait [108–112]. As such, this

thesis analyses the temporal parameters using validated methods from the literature [374] across

each of the six terrains that featured walking activities in the CAHAR dataset, along with a

follow-up dataset with more controlled variables. These findings demonstrate that coarser

terrains like gravel have a statistically significant effect on the gait parameters when compared

to the flat laminated indoor terrain.
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7.1.2 Discussions

This research project aims to investigate the feasibility of, and take crucial steps towards,

developing a prototype system capable of monitoring fall-risk factors such as activity, terrain,

and changes in the gait parameters. The following section summarises the developments and

findings in this thesis towards answering the primary research question: ”Can the many external

and internal factors that contribute towards a person’s risk of falling in real-world environments

be monitored using wearable sensors?”

Chapter 2 of this thesis highlights the current progress made to date by researchers across

many disciplines, which aim to reduce the frequency and impact of falls through a wide variety

of technological and rehabilitation approaches. Studies which monitor the spatio-temporal gait

parameters of people with a variety of conditions known to cause falls, such as Parkinson’s dis-

ease, dementia, stroke, multiple sclerosis, lower-limb amputation, and ageing, show an increase

in gait asymmetry and variability, resulting in reduced balance when walking. These factors

are also prevalent in the literature for the effect of terrain on gait, along with fall interven-

tions in healthcare research, where balance training is commonplace and parameters such as

postural sway, gait speed, and Centre of Mass (CoM)/Centre of Pressure (CoP) are frequently

used to monitor the success of an intervention. These areas highlight how demographic and

environmental factors can contribute towards fall risk.

Fall-related research can be categorised in to four areas: detection, prediction, prevention, and

interventions. Each of these areas is independently capable of reducing the impact of falls,

whether through rapidly alerting family members, automating parts of the healthcare pipeline,

physically preventing a fall, or improving fall-related factors like balance. However, despite

advancements in each of these areas, falls remain as largely unpredictable events in the steps

that precede them. While a perfect fall prediction system would be able to alert a person of

an upcoming fall so that they can stop walking and prevent the incident, this is a multifaceted

issue comprising the real-time monitoring of many internal and external risk factors.

This research, therefore, aims to build the foundations of a remote, wearable gait data collection

system, which can automatically monitor incremental fall risk factors like activity, terrain, and

the gait parameters. Such a system should be capable of identifying all the known factors which

contribute towards fall risk while maintaining the privacy of the wearer, with the goal of being

optimised in future iterations by reducing the number of sensors needed to perform this task.
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The following sections highlight how each chapter in this thesis contributes towards this goal,

resulting in a validated prototype sensor system capable of monitoring the fall risk factors that

a person encounters in their daily life.

The sensor system in this research project is constructed following the results of an analysis

of existing datasets to identify sensor types, locations, and sample rates which enable high-

accuracy HAR. This preliminary study finds that a single IMU is sufficient to attain high

performance metrics on HAR tasks alone, leaving room for new sensor modes to be explored for

the purpose of terrain classification. Regarding the classifiers suited for activity classification,

Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) consistently exhibit

higher accuracies than the other single-model classifiers: Decision Tree (DT), Random Forest

(RF), and K-Nearest Neighbours (KNN), whilst combining these models using stacking and

voting ensemble methods can further help to increase performance. Data was prepared for

these models using the sliding window approach to time-series feature engineering, for which it

was found that window sizes in the range of two to five seconds are preferable when performing

HAR. This finding led to the decision to repeat certain activities in the experimental procedure

for the collection of the CAHAR dataset to ensure that at least two seconds of data would be

available for the shortest activities: sit to stand and stand to sit.

With the experimental procedure and sensor system confinements determined in Chapter 3 to

ensure that high-accuracy HAR would be possible with the novel dataset, a focus is placed on

using the remaining Force Sensing Resistor (FSR) insoles, LiDAR, and colour sensor to improve

HAR accuracies and introduce sufficient data for performing terrain classification. Camera

sensors are popular in the literature for terrain recognition, particularly depth cameras such

as the Microsoft Kinect, due to their high data dimensionality. However, these approaches

introduce privacy concerns when attached to the body, or when observing a person in their

daily life. Many studies use silhouetting to circumvent this issue, but this approach is not

suitable when colour is a significant factor in determining a type of terrain. Therefore, the

use of a colour and LiDAR sensor function together as a low-information depth camera which

obtains the basic colour and coarseness of the ground underfoot, whilst maintaining the privacy

of the wearer. This was found to be successful, with the merged red, green, and blue data

channels accurately reflecting the colour and light levels of many terrains, whilst the high-

frequency information of the LiDAR sensor generated coarseness plots which enable the visual
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separation of terrains. Regarding the capacity of the system for extracting the spatio-temporal

gait parameters, the FSR insoles gather valuable information for determining the gait phase,

step time, cadence, and CoM/CoP, the IMU on the foot enables the calculation of gait phase,

step width, step length, and step height, and the IMU on the waist enables the calculation of

postural sway, each of which were reoccurring parameters of interest in the fall intervention

studies of Chapter 2.

With regard to the data collection process, 20 participants were recruited for this study who

each performed 38 combinations of 11 activities on nine different terrains, resulting in a novel

dataset comprising over 7.8 hours of gait data. This makes the dataset suited for data min-

ing approaches such as deep learning, which require large datasets to obtain high performance

metrics. As such, the reach of this dataset has been tailored for researchers to test powerful,

novel approaches to classification tasks, such as Convolutional Neural Networks (CNNs), trans-

formers, and other deep learning architectures. Regarding the generalisability and robustness of

this dataset, the data collection process occurred over the course of 15 months from November

2022 to February 2024, resulting in a range of ambient light levels, weather conditions, surface

properties, and temperatures to ensure that this dataset reflects real-world conditions. Further-

more, some terrains, such as the carpet, grass, and laminated flooring were changed between

participants to maximise the generalisation of models trained on these data. Whilst this ap-

proach may have impacted the terrain classification accuracy of models, particularly when using

Leave One Subject Out (LOSO) cross validation due to the changes occurring between partic-

ipants, it allows the resulting analyses of this dataset to more accurately reflect a real-world

implementation of terrain recognition.

An investigatory study is performed on the collected dataset to determine the feasibility of

performing terrain classification using existing methods such as those used in Chapter 3. Here

it is found that terrain can be classified with 99% accuracy when using a SVM trained on

terrain-labelled data only. When considering both activity and terrain, a single model achieves

96% accuracy with a feature set extracted from just the IMU and colour sensor. This highlights

the success of the proposed dataset, along with a clear path for future research in this area,

as multimodel approaches to terrain and activity classification can enable the interpolation of

individual classifications such that models can accurately identify a combination of activity and

terrain outside the scope of the train set. These multimodel approaches resulted in extremely
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low accuracies in this study when tested with the dedicated test data of the CAHAR dataset.

However, given the initial findings of this study, and the potential to implement much more

advanced classification algorithms such as CNNs, Long Short-Term Memory (LSTM) models

and transformers, a new challenge and direction of this research area is presented, as high-

generalisability multimodel solutions to context classification will enable this technology to be

adopted without a training period and with the capacity to detect a much wider range of activity

and terrain combinations.

Finally, Chapter 6 studies the effect of terrain on the gait parameters, therein demonstrating

the capacity for this system to monitor how terrain affects gait and how these changes reflect

an increased fall risk. A validated algorithm for extracting the temporal parameters of gait

using a foot-mounted IMU is applied to calculate the stride time, step time, single stance, and

single swing phases on each of the six terrains which featured a walking activity in the CAHAR

dataset. Terrain is found to have a significant impact on gait in these conditions, however

the context in which the data was collected could be seen as an additional factor affecting the

gait parameters. Whilst this is also relevant to fall risk, a follow-up dataset is collected which

eliminates these contextual differences between walking bouts for the flat laminated indoor

flooring, paving slabs, and gravel terrains. In this controlled comparison of the gait parameters,

statistically significant changes are still present between the terrains, highlighting how terrain

can induce gait parameters which reflect those in groups at high risk of falling, as highlighted

in Chapter 2.

This Thesis outlines the development and validation of a sensor system suited to monitor the

internal and external fall-risk factors. By implementing a system like this, wearers could have

their incremental fall-risk factors communicated to them in real time, allowing them to respond

to increases in fall risk and act to prevent falls in the steps before they occur. Such a system

brings the field of fall prediction closer to the development of a ’perfect’ fall prediction system

which informs users that they are about to fall in the steps preceding a fall.

7.1.3 Limitations of This Research

This study features several limitations due to the scope of the project. Whilst minor limitations

are outlined in each chapter, this section explores the greater limitations and how these affect

the results of this research project.
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Firstly, the scope of the exploration of optimal window sizes in existing datasets had to be

controlled due to the limitless combinations of both window size and step size. For this study, it

was determined that window size would be the independent variable, whilst all other variables

such as model types, model hyperparameters, and step size were controlled to ensure a fair

comparison. However, by limiting the step size to 25% of the window size, this variable became

dependent on the window size. This was chosen due to the computational cost of training

many models, as larger step sizes mean fewer samples and therefore less training time, and

due to the idea that step size should scale with window size. This is because large windows

with small step sizes will contain largely the same values as the previous window, whereas the

approach in this study ensures that 25% of the values in each window are different. However,

the resulting co-dependency means that the results of Chapter 3 should be considered to be

the model performance at a given window size and step size. Whilst this is still a useful study

in recommending parameters to other researchers for this task, identifying high-performing

sensors, and removing the classification bias that affects the results in other works of the same

kind, the generalisation of the results is diminished compared to a study in which both window

size and step size are independent variables.

Another major limitation for this work is in the prototypic nature of the sensor system. This

research was primarily a feasibility study for detecting a range of internal and external fall-risk

factors using a single wearable sensor system. However, given the success of the project, it

is regrettable that the sensor system was not suited to perform a full, out-of-lab clinical trial

due to issues with the battery life and robustness of the device. As such, future research in

this area will require the development of a new sensor system using the results of this research

which is less obtrusive, and has improved battery life and durability. Given the results of the

analysis in Chapter 5, the removal of the waist and LiDAR sensors would be justified due to

their incompleteness and poor performance respectively, which would improve battery life and

convenience.

Another issue presented by the nature of this work being a feasibility study is that insufficient

validation measures existed when calculating the spatio-temporal gait parameters, restricting

the study to the implementation of a pre-validated algorithm for estimating the temporal pa-

rameters only. This does not affect the conclusions of the relevant chapter, but knowledge of

the CoP/CoM, step length, and stride length would have given a more complete understanding
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of the effect of terrain on balance and gait.

Finally, the classification methods in this research, while capable and well-used in the literature,

are no longer the cutting-edge analytical techniques in this field, with transformers and large

CNNs being more popular in recent years. This does not affect the results of this project,

perhaps even highlighting the success of the dataset to obtain such high accuracies without

these powerful models, however it does mean that future work is needed to determine the true

potential of terrain classification using the CAHAR dataset with multimodel solutions that

achieve high accuracies with the dedicated test set.

7.2 Conclusions

This thesis finds that falls can typically be attributed to detectable factors such as gait ab-

normalities and terrains which cause slips and trips, with gait analysis being a useful tool to

identify factors that increase a person’s fall risk. However, while the impact of terrain on gait

and fall risk is known, the literature on fall prediction is yet to incorporate these factors to build

a system capable of monitoring incremental fall-risk factors in real time and on real terrains.

This work addresses that research gap.

The analysis of existing datasets finds that a single IMU is sufficient for accurate HAR, which

led to the inclusion of IMUs in the novel sensor system outlined in Chapter 4. Furthermore,

here it is found that Electromyography (EMG) sensors are largely unreliable with respect to

HAR, with accuracies appearing volatile between subject-dependent and subject-independent

training, and never reaching the heights of IMU sensors. In addition to these common methods,

goniometers are also found to be capable sensors with regard to HAR, and should be explored

further in future research.

The findings in Chapters 2 and 3 guide the design of a novel sensor system comprised of

IMUs, FSR insoles, colour sensors, and LiDARs, which is suited to the collection of a terrain-

recognition HAR dataset. Upon the evaluation of this system, the IMUs and colour sensors were

found to be the largest contributors towards terrain classification, with the FSR insoles proving

useful only in the case that subject-dependent training was performed. This could be due to a

variety of factors, such as the need for more robust calibration procedures, the damage caused

to the insoles throughout some of the trials, or the presence of sensor saturation occurring at
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different stages in the gait cycle for different participants. Additionally, the LiDAR proved to

be inadequate for both terrain and activity classification, despite the visual separability of the

high frequency information when comparing coarse and smooth terrains, which could indicate

that alternative signal processing methods are required to extract useful information from these

sensor types.

The CAHAR dataset, collected with the novel sensor system, features 38 combinations of 11

activities performed on nine unique terrains. The problems with existing datasets outlined in

Chapter 2 are mitigated via this dataset through the recruitment of 20 participants with a wide

range of age, weight, height, ethnicity, and shoe size, along with a 1:1 ratio of males and females

which, in combination with the alternating locations of carpet and grass trials, ensures that the

generalisation of models built using this dataset is maximised. Through these considerations,

and the inclusion of a dedicated test set taken from participants 1 and 3, this dataset will enable

future researchers to develop and test powerful machine learning classifiers which further the

field of HAR.

Chapter 5 addresses the research goal of determining the feasibility of terrain classification using

the CAHAR dataset. For subject-dependent analysis, the full sensor system obtains accuracies

of 94% when classifying between the 38 combined activity and terrain classes, which is increased

to 96% when reduced to just the foot IMU and colour sensor of both legs. Furthermore,

individual classifications of activity and terrain were achieved with 96% and 99% respectively.

When performing subject-independent classification, these accuracies drop to 50% using the full

dataset, and 69% when using data from just the IMU and colour sensor. Given these results,

the proposed sensor system can be reduced in future iterations to just an IMU, colour sensor,

and FSR insole on each foot, which can be conveniently implemented into intelligent shoes for

comfort.

Finally, Chapter 6 addresses how the terrain underfoot affects the gait parameters, finding that

coarser terrains result in shorter steps which aligns with the findings in the literature. As such,

this thesis outlines the design of a prototype sensor system capable of monitoring the current

activity a person is performing, the terrain they’re performing the activity on, and the gait

parameters if that activity is walking. These factors enable the system to evaluate the external

and internal fall-risk factors, answering the primary research question of this thesis.
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7.3 Future Work

Whilst the aims of this research project were met, much room remains for future work to

extend this work from a feasibility study, to the development of a prototype incremental fall-risk

analysis system and its adoption in healthcare settings. Immediately following this research,

the findings of Chapter 5 should be used to refine the proposed sensor system by removing

the LiDAR sensors, along with reducing the profile of the device to increase convenience and

comfort. An Internet of Things (IoT) approach would be suited to this device, and should also

be investigated at this next stage to allow wireless communications from the device to the cloud,

which will enable the telehealth monitoring of fall-risk factors. Additional minor hardware and

software modifications are needed to enable the analysis of risk factors in real-time, either

onboard the sensor system, or on the cloud, using the classification techniques from Chapter

5. Finally, validated algorithms should be developed and implemented to extract the full set of

spatio-temporal gait parameters from the gait data collected by the system, and process them

to determine fall-risk.

Following the finalisation of the system, this device must be tested in collaboration with health-

care professionals to ensure it offers an effective solution for reducing the prevalence of falls

in society. This will involve measuring the agreement between the device and existing fall-

risk measures across multiple healthcare centres, along with obtaining user feedback to iterate

upon and improve the system. The foundational research performed in this project towards the

identification of fall-risk factors addresses the individual challenges of identifying external and

internal fall risks, bringing fall prediction and its vast benefits, closer to adoption in healthcare

systems globally.
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Appendix A

Systematic Review Tables

The following appendix contains the full tables detailing the summaries for each of the 104

studies included in the systematic review performed in Chapter 2. Tables A.1-A.3, A.4-A.5,

A.6-A.7, and A.8-A.10 contain the summaries of each fall detection, prediction, prevention, and

intervention study, respectively.
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Table A.1: Fall Detection

Authors &
Year

Sensor(s)
Sensor

Locations
Dataset Activities

Classification
Methods

Results

Alarifi and
Alwadain
[159] 2020

6x 9-DoF
Inertial
Measure-
ment Unit
(IMU)

Chest, waist,
head, right
wrist, right
ankle, and
right thigh.

New dataset -
14 participants

16 Activity of
Daily Living
(ADL) and 20
falls, repeated 5

times each.

Convolutional
Neural
Network
(CNN),

Support Vector
Machine (SVM),
Artificial Neural
Network (ANN),
and Recurrent
Neural Network

(RNN).

Acc: 99.5%, Prec:
99.6%, Rec: 99.8%, F1:

99.7%.

Alzahrani
et al. [163]

2019
Kinect V2 Ambient FallFree N/A

Decision Tree
(DT), Random
Forest (RF),
ANN, SVM.

Acc: 99.5%.

Attaoui et
al. [152]
2020

1x 6-DoF
IMU

Chest

SisFall, New
dataset for
testing - 6
participants

19 ADLs and 15
falls

SVM, RF,
K-Nearest
Neighbours
(KNN) ANN.

Scenario A: Acc: 99.9%
Scenario B: Acc 97.6%

Real-World: Acc:
94.42%

Aziz et al.
[146] 2014

4x
Accelerom-

eter

Left and right
lateral
malleoli,
anterior

waist, and
sternum.

New dataset -
12 participants

Recreate a
recording of a
fall onto a
mattress.

Linear
Discriminant

Analysis
(LDA)

Acc: 78% Spec: 97%

Butt et al.
[147] 2021

1x 3-lead
Electrocar-
diogram
(ECG)

Chest
New dataset - 6
participants

30 trials
consisting of a
10 second rest
followed by a
fall and laying.

CNN Acc: 97.36%

Cal et al.
[153] 2022

1x
accelerom-

eter
Wrist

UMAFall,
UCIFall, and

FallAllD
N/A

KNN,
EKMeans

(ensemble of
KNN and
K-means

Fall vs No-Fall Acc:
56.7% Multiclass ADL:

Acc: 58.0%

Chen et al.
[148] 2017

IMU

Smartphone
in right-side

trouser
pocket

New Dataset -
10 participants

8 ADLs and 6
falls

SVM
Sens: 93.3% Spec:

95.71%

Dhiman
and Vish-
wakarma
[117] 2019

Kinect Ambient

URFall, KARD,
NUCLA, and a
new dataset

dubbed ’AbHA’
featuring 8
participants

5 ailment-based
activities such
as headache,
fainting, chest
pain, backwards

fall, and
forwards fall.

KNN, SVM

URFall: Acc: 96.5%
KARD: Acc: 96.6%
NUCLA: Acc: 86.4%
AbHA: Acc: 95.9%

continued on the next page
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Chapter A: Systematic Review Tables

Table A.2: Fall Detection Studies — continued

Authors &
Year

Sensor(s)
Sensor

Locations
Dataset Activities

Classification
Methods

Results

Dhiman
and Vish-
wakarma
[117] 2019

Kinect Ambient

URFall, KARD,
NUCLA, and a
new dataset

dubbed ’AbHA’
featuring 8
participants

5 ailment-based
activities such
as headache,
fainting, chest
pain, backwards

fall, and
forwards fall.

KNN, SVM

URFall: Acc: 96.5%
KARD: Acc: 96.6%
NUCLA: Acc: 86.4%
AbHA: Acc: 95.9%

Fan et al.
[170] 2017

RGB
Camera

Ambient

Le2i, Multiple
Cameras Fall

(MCF) dataset,
High Quality
Fall Simulation
(HQFS) dataset,
new ’YouTube
Fall Dataset’

430 videos
containing a fall
and 176 videos
featuring normal

activities

CNN

Le2i: Sens: 98.4% Spec:
100% MCF: Sens: 97.1%

Spec: 97.9% HQFS:
Sens: 74.2% Spec: 68.6%

Youtube Fall: Sens:
63.7% Spec: 68.1%

Ezatzadeh
et al. [171]

2021

RGB
Camera

Ambient MCF dataset N/A

SVM, Hidden
Markov
Model
(HMM)

Acc: 98.7% Sens: 98.7%
Spec: 98.6%

Espinosa
et al. [172]

2019

RGB
Camera

Ambient
2 cameras from
the UP-Fall
dataset

N/A
CNN, SVM,

RF, ANN, KNN

Acc: 95.6% Prec: 96.9%
Sens: 98.0% Spec: 83.1%

F1: 97.4%

Fan et al.
[173] 2016

RGB
Camera

Ambient
MCF dataset
and RGB data
from SDUFall

N/A
DAGSVM
(Ensemble

SVM)

MCF: Acc: 98.3%
SDUFall: Acc: 81.3%

Garripoli
et al. [149]

2015
RaDAR Ambient

New dataset -
16 participants

40 random
walking

activities, 30
sitting and
standing

activities, and
40 fall activities.

SVM Sens: 100%

Hadjadji et
al. [174]
2022

RGB
Camera

Ambient
MCF, HQFS,
and URFall
datasets

N/A

SVM, One
class-Principal
Component
Analysis
(PCA)

MCF: Acc: 99.6% Sens:
100% Spec: 99.2%

HQFS: Acc: 87.9% Sens:
89.9% Spec: 99.2%
URFall: Acc: 100%

Sens: 100% Spec: 100%

Haffner et
al. [182]
2018

Flooring
augmented

with
capacitive
sensors

Ambient
(system 1),
portable
version

(system 2).

New dataset - 4
participants

System 1: 2
falls, 4 static

non-fall events.
System 2: 1 fall,
1 static non-fall

event.

Least Squares
(LS), KNN,

SVM

System 1: Acc: 92.6%
System 2: Acc: 100%

Haider et
al. [179]
2019

5G C-band
wireless

channel in-
formation

Ambient
New dataset - 8
participants

5 ADLs and 1
fall.

SVM, Näıve
Bayes, DT

Kappa score: 0.98

Harrou et
al. [118]
2017

RGB
Camera

Ambient
URFall, Fall
Detection

Dataset (FDD)
N/A

Multivariate,
exponentially-

weighted
moving-

average SVM,
KNN, ANN,
Näıve Bayes

Acc: 96.7% Sens: 100%
Spec: 94.9% Prec: 93.6%
F1: 95.2% AUC: 95.3%

Jin et al.
[177] 2022

mmWave
RaDAR

Ambient
New dataset - 2
participants

5 ADLs and 4
falls

RNN-based
autoencoder

dubbed
HVRAE

Detection rate: 98%

Kambhampati
et al. [154]

2015
IMU

Smartphone
mounted to
the waist.

New dataset - 6
participants

5 ADLs and 4
falls along with

transitions

SVM, Näıve
Bayes, DT,

ANN

Fall detection: Acc:
97.3% Activity

recognition: Acc: 95.6%
Falls and activities:

Acc: 96.1%

continued on the next page
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Table A.3: Fall Detection Studies — continued

Authors &
Year

Sensor(s)
Sensor

Locations
Dataset

Spatiotemporal
Gait Parameters

Classification
Methods

Results

Kwolek
and Kepski
[164] 2014
Kwolek

and Kepski
[165] 2015
Kwolek

and Kepski
[166] 2016

6-axis IMU
& Kinect

Pelvis (IMU)
and ambient

URFall and new
dataset - 5
participants

URFall with 3
additional falls
and 6 additional
ADLs including

IMU data

SVM, KNN,
Fuzzy Logic

Study 1: Acc: 98.3%
Prec: 96.8% Sens: 100%
Spec: 96.7% Study 2:

Acc: 95.8% Prec: 90.1%
Sens: 100% Spec: 92.9%
Study 3: Acc: 97.1%

Prec: 93.7% Sens: 100%
Spec: 95.0%

Li et al.
[155] 2013

Accelerometer
Waist

New dataset - 5
participants

6 ADLs ANN, KNN Acc: 98.3%

Liu et al.
[180] 2011

3x Pyro-
electric
Infrared
(PIR)
sensors

Ambient
New dataset - 4
participants

7 ADLs and 1
fall

HMM
Acc: 93.1% Prec: 92.6%
Sens: 93.7% Spec: 92.5%

Luo et al.
[181] 2012

7x PIR
sensors

Ambient
New dataset - 8
participants

4 ADLs and 1
fall

HMM
Acc: 92.2% Prec: 97.7%
Sens: 86.5% Spec: 98.0%

Mansoor et
al. [167]
2022

Kinect Ambient
New dataset - 5
participants

7 ADLs and 3
falls

KNN Acc: 90.8%

Mazurek et
al. [139]
2018

Kinect Ambient
IRMTv1 and

TSTv2 datasets
N/A

SVM, ANN,
Näıve Bayes

IRMTv1: False Negative
(FN): 0.0% False

Negative Rate (FNR):
0.0% False Positive (FP):
1.0% False Positive Rate
(FPR): 1.25% TSTv2:
FN: 3.0% FNR: 2.27%
FP: 16.0% FPR: 12.1%

Min et al.
[168] 2018

Kinect Ambient TSTv2 dataset N/A SVM Acc: 92.1%

Narasimhan
[150] 2012

Accelerometer
Torso

ADLs: New
dataset - 15
participants
Falls: New
dataset - 10
participants

11 ADLs and 10
falls

Threshold
algorithm

ADLs: Sens: 100%
Falls: Sens: 99%

Olivieri et
al. [176]
2012

RGB
Camera

Ambient
New dataset -
12 participants

5 ADLs and 1
fall

KNN Acc: 98.28%

Panahi
and Ghods
[119] 2018

Kinect Ambient
URFall and new

dataset - 5
participants

URFall with 3
additional falls
and 6 additional

ADLs

SVM,
threshold
algorithm

Sens: 100% Spec: 97.5%

Ribeiro et
al. [162]
2022

IMU and
Doppler
RaDAR

Nodes
containing
both sensors
are placed in

various
locations on
the floor

New dataset -
number of

participants not
listed

1 fall and 4
noise classes

Mortlet
Wavelet, ANN

Acc: 92.5%

Saleh et al.
[131] 2021

IMU and
barometer

Neck, waist,
and wrist

Sisfall,
UMA-Fall,
AllFallD

N/A

CNN, ANN,
autoen-

coder,Long
Short-Term
Memory

(LSTM), SVM,
KNN,RF

Sisfall: Acc: 99.5%
UMA-Fall: Acc: 98.49%
FallAllD: Acc: 93.46%

Saleh et al.
[141] 2021

IMU and
barometer

Neck and
wrist

AllFallD and
RealAct

N/A

Gradient
Boosting,SVM,

RF,
Adaboost,DT,
KNN, LDA,
Quadratic

Discrimenant
Analysis (QDA),

Näıve Bayes

Neck Sensor: Acc: 99.0%
Sens: 100% Spec: 98.5%

Wrist Sensor: Acc:
96.9% Sens: 100% Spec:

96.7%

continued on the next page
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Chapter A: Systematic Review Tables

Table A.3: Fall Detection Studies — continued

Authors &
Year

Sensor(s)
Sensor

Locations
Dataset Activities

Classification
Methods

Results

Saurav et
al. [142]
2022

360-degree
RGB

Camera
Ambient

UPFall,
Kinetics-400,

UCF101, Fall360
N/A

Multiple
hybrid CNN
and LSTM

model
architectures.

Fall360: Acc: 98.42%
UPFall: Acc: 100%

Sengul et
al. [156]
2022

IMU
Wrist-

mounted
smartwatch

New dataset -
15 participants

4 ADLs and 2
falls

KNN, SVM, RF,
Bidirectional

LSTM

Leave-one-activity-out:
Acc: 99.69%

Leave-one-subject-out:
Acc: 100%

Shrivastava
and

Pandey
[157] 2019

IMU
Smartphone
in a pocket

Medrano et al’s
dataset,

FARSEEING
N/A SVM

Acc: 99.25% Sens: 100%
Spec: 98.77% F1:

99.53%

Su et al.
[175] 2015

RGB
Camera

Ambient MCF N/A
Ensemble

SVM

Acc: 98.00% Sens:
85.00% Spec: 100% F1:

92.00%

Tran et al.
[120] 2017

Kinect Ambient

URFall, LE2I,
New datasets -
20 participants

dubbed
”MICAFALL-1”

and 4
participants

MICAFALL-1:
200 ADLs & 40
falls, Unnamed:
206 ADLs & 95

falls.

Threshold
algorithm,

SVM

Skeleton-based:
Acc: 93.02% Sens:
81.25% Spec: 100%
Prec: 100%
URFall:

Acc: 99.37% Sens: 100%
Spec: 99.23% Prec:

96.77%
LE2I:

Acc: 99.61% Sens:
98.00% Spec: 99.69%
Prec: 94.32%
MICAFALL-1:
Acc: 98.75% Sens:
95.24% Spec: 100%
Prec: 100%
Unnamed:

Acc: 96.01% Sens:
88.42% Spec: 99.51%

Prec: 98.82%

Vaiyapuri
et al. [121]

2021

RGB
Camera

Ambient MCF, URFall N/A CNN

Multiple cameras fall:
Acc: 99.76% Spec:

99.29% Prec: 99.68%
Rec: 99.85% F1: 99.65%

URFall:
Acc: 99.57% Spec:

99.52% Prec: 99.72%
Rec: 99.55% F1: 99.38%

Wu et al.
[158] 2015

IMU Waist
New dataset - 3
participants

5 ADLs, 4 falls
Threshold
algorithm

Acc: 96.25%

Wu et al.
[160] 2019

IMU
Waist and
right thigh

New dataset -
15 participants

7 ADLs, 2 falls
Fisher

discriminant
analysis

Sens: 95.50% Spec:
97.30%

Xiong et
al. [122]
2020

RGB
Camera

Ambient

URFall, FDD,
MCF, New
dataset - 12
participants

4 ADLs, 1 fall CNN

URFall: Acc: 100%
FDD: Acc: 100% MCF:
100%, Unnamed: Acc:

98.18%

Yao et al.
[169] 2022

Kinect Ambient
TSTv2,
UT-A3D

N/A CNN
TSTv2: Acc: 97.35%
UT-A3D: Acc: 100%

Yu et al.
[151] 2013

RGB
Camera

Ambient
New dataset -
12 participants

38 ADLs, 18
falls

One-class,
unsupervised

SVM

True Positive Rate
(TPR): 100% FPR: 3%

Yun and
Gu [123]
2016
Yun and
Gu [124]
2016

RGB
Camera

Ambient
MCF, URFall,

ACT42
N/A

AdaBoost,
SVM

MCF:
Sens: 100% Spec: 100%

URFall:
Sens: 100% Spec: 100%

ACT42:
Sens: 98.13% Spec:

94.48%

continued on the next page
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Table A.3: Fall Detection Studies — continued

Authors &
Year

Sensor(s)
Sensor

Locations
Dataset Activities

Classification
Methods

Results

Lee et al.
[161] 2023

IMU
Chest, wrist,
necklace/-

torso

New dataset -
20 participants

4 ADLs, 1 fall

LSTM, CNN,
Bidirectional
LSTM, Hybrid
CNN and LSTM

Acc: 93.26% Prec:
97.57% Rec: 96.06% F1:

96.74%

Cardenas
et al. [178]

2023

Continuous-
Wave

Doppler
RaDAR

Ambient
New dataset -
11 participants

2 ADLs, 1 fall.
Later reduced to
1 ADL, 1 fall

LSTM, CNN

With stairs: Acc:
82.20%

Without stairs: Acc:
94.95% Prec: 92.1% Rec:

82.00%

Wang and
Deng [125]

2024

RGB
Camera

Ambient URFall, Le2i N/A RF

Acc: 89.99%, Sens:
90.33%, Spec: 89.66%,

Prec: 89.73%, F1:
90.02%.

Table A.4: Fall Prediction Studies

Authors &
Year

Sensor(s) Sensor
Locations

Dataset
Spatiotemporal Gait

Parameters
Classification

Methods
Results

Bertolotti
et al. [183]

2015
IMU Waist

Two new
datasets - 10
participants, 8
participants
(healthy)

Centre of Pressure
(CoP)/Centre of Mass

(CoM)
N/A

IMU found to produce
reliable estimates for

CoP/CoM when compared
with the gold standard Wii
Balance Board (WBB).

Anwary et
al. [184]
2018

IMU Feet

New dataset - 20
participants (10
healthy, 10 with
gait-affecting
conditions)

Stride Length, Stride
Time, Stride Velocity,
Step Length, Step

Time, Cadence, Step
Velocity, Step Length
Ratio, Stance Length,
Stance Time, Stance

Velocity, Swing
Length, Swing Time,

Swing Velocity

Threshold
algorithm

Extracted gait parameters
exhibit 97.73%-100%
agreement with the

Qualiysis motion capture
device for healthy
participants, and

88.71%-92.67% agreement
for those with gait-affecting

conditions.

Cai et al.
[185] 2017

RGB
Camera

Ambient

New dataset -
15 participants

(healthy,
simulated

gait-affecting
conditions)

Step Length, Step
Length Ratio

Threshold
algorithm

Mean Absolute Error
(MAE) between the

calculated parameters and
measurements taken from
footprints in sand was

1.95%, 2.40%, and 3.97%
for 90, 45, and 30 degree

views respectively.

Chen et al.
[186] 2022

Robot-
mounted
Kinect,
IMU,
and
force-
sensing
insoles

Ambient
and Feet

New dataset -
10 participants
(all healthy)

Margin of Stability
(MoS), CoP/CoM,
Stride Length, Step
Length, Step Width,

Stride Velocity

Threshold
algorithm

Intra-class correlation
coefficient (ICC) between
calculated parameters and
those captured with an

Optitrack motion capture
system: Anterioposterior
MoS: 0.98, MoS: 0.92,
Mediolateral MoS: 0.26,
Stride Length: 1.0, Step

Length: 1.0, Stride
Velocity: 1.0, Step Width:

0.77

Colagiorgio
et al. [196]

2014
Kinect Ambient

New dataset -
79 participants
(13 young, 66
older people)

N/A

Majority
Classifier,
DT, SVM,
KNN, Näıve

Bayes

Participants classified as at
risk of falling or not. SVM
was the highest performing

with Acc: 84.3% Sens:
91.3%.

Cuddihy et
al. [187]
2012

Pulse-
Doppler
Range
Control
Radar
(RCR),
Kinect

Ambient
New dataset -
13 participants

(healthy)
Gait Speed N/A

MAE used to find the
similarity between manual
timing, a Kinect, and the
RCR. RCR alone: 14.5%,
Kinect-corrected RCR:

11.9%, calibrated,
Kinect-corrected RCR:

10.9%

continued on the next page
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Table A.5: Fall Prediction Studies — continued

Authors &
Year

Sensor(s) Sensor
Locations

Dataset
Spatiotemporal Gait

Parameters
Classification

Methods
Results

Das and
Kumar

[188] 2015

Force-
sensing
insole

Feet
New dataset - 3
participants
(healthy)

Stride time, swing
phase, stance time,

single support
N/A

Mean error for temporal
parameters when compared
to the Zebris pressure mat

is 0.01s

Deguchi et
al. [197]
2017

Robot-
mounted
Kinect

Ambient
New dataset - 4
participants
(healthy)

N/A

Balanced
Iterative
Reducing

and
Clustering

using
Hierarchies
(BIRCH)
Clustering

Normal and abnormal gaits
are clustered and then
observed for similarity.
Abnormal gait can be

adequately seperated from
healthy gait after 500
skeletons are observed,
which took around 2

minutes.

Dubois et
al. [198]
2021

Kinect Ambient
New dataset -
30 participants

(healthy)

Step length, step
length variation, step

time, step time
variation, cadence,

cadence variation, and
gait speed

DT,
AdaBoost,
ANN,
Näıve
Bayes,

KNN, SVM,
RF, QDA

Participants are classified
as high-risk or low-risk

fallers. ANN, Näıve Bayes,
and KNN achieve 100%

mean accuracy.

Eguchi and
Takahashi
[189] 2019

Force-
sensing
insole

Feet
New dataset - 6
participants
(healthy)

Ground Reaction
Force (GRF)

Gaussian
Process

Regression

Mean error between insole
and ground truth measured
on force plates was 8%.

Eichler et
al. [199]
2022

Kinect Ambient

New dataset -
130 participants
(100 in-patents,

30 carers)

N/A RF, SVM

RF is used to predict the
score of each Berg Balance

Scale (BBS) task with
accuracy ranging between

52% and 100%. For
predicting fall risk, the

SVM classifies subjects into
low, medium, and high risk,
with a physiotherapist’s
decision as the ground

truth.

Abou
Ghaida et
al. [190]
2014

Force-
sensing
insole

Feet
New dataset - 8
participants
(healthy)

CoP/CoM N/A

Root Mean Square (RMS)
error between the proposed
system and the commercial

F-SCAN system.
Mediolateral displacement

error: 4.3-7.8mm,
anteroposterior

displacement error:
2.4-5.9mm, mediolateral
CoP RMS error: 3±2mm,
anteroposterior CoP RMS

error: 2±1.5mm.

González
et al. [191]

2012

WBB,
Kinect

Underfoot
and

ambient

New dataset - 5
participants
(healthy)

CoP/CoM N/A
RMS error for each subject

between 13.00mm and
37.83mm

Gutta et
al. [192]
2021

Depth
Camera

Ambient
New dataset -
22 participants

(healthy)

Stride length, stride
time, stride speed,
step length, step
width, step time,

cadence, stance time,
swing time, stance to
swing ratio, double
support time, foot
angle, maximum
velocity, foot
clearance

N/A

Mean error is used to
compare the system to a
Vicon motioncapture

system. Error is extremely
low for all parameters

except for step width and
foot angle. Over 90% of
parameters are inliers.

Haescher
et al. [200]

2020
IMU Wrist

New dataset -
13 participants
(healthy, older

people)

Stride length
Threshold
algorithm

A questionnaire and
literature guidelines are
used to determine if an

individual is at high risk of
falling. Then the system
predicts the risk of falling
after each of 3 tests is
performed: 6-minute

walking: 96.55%, Timed up
and go: 86.43% 30-second
sit to stand test: 78.15%.

continued on the next page
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Table A.5: Fall Prediction — continued

Authors &
Year

Sensor(s) Sensor
Locations

Dataset
Spatiotemporal Gait

Parameters
Classification

Methods
Results

Horiuchi et
al. [193]
2017

Kinect Ambient
New dataset -
11 participants

(healthy)
CoP/CoM ANN

RMS error of 154mm for
body position prediction
and 79mm for Centre of
Gravity (CoG) position

prediction.

Johnson et
al. [201]
2019

Kinect Ambient

New dataset -
74 participants
(healthy and

with
gait-affecting
conditions)

N/A ANN
Median absolute error when
predicting fall risk using
the BBS score was 0.93.

McManus
et al. [202]

2022
IMU Lower back

New datasets -
39 and 248
participants

(healthy, older
people)

Postural sway
Logistic

regression

Study 1 acts as a validation
of the systems, study 2
classifies between fallers
and non-fallers: Acc:

65.83% Sens: 90.59% Spec:
29.29% Positive Predicted

Value (PPV): 68.75%
Negative Predicted Value

(NPV): 64.44%

Nouredanesh
et al. [203]

2016

IMU,
ECG,
Elec-

tromyo-
graphy
(EMG)

rectus
femoris,
biceps
femoris,
tibialis
anterior,
gastrocne-

mius

New dataset - 5
participants
(healthy)

N/A
KNN, SVM,

RF

Compensatory balance
responses predicted with an

accuracy of 92.35%.

Savadkoohi
et al. [204]

2021

Force
plate

Underfoot

New dataset -
163 participants

(various
gait-affecting
conditions)

CoP/CoM

Hybrid
CNN,
LSTM,

ANN, RNN

Fall risk automatically
determined by predicting
fear of falling with Sens:
100%, Spec: 99.9%, Prec:

100%.

Seifert et
al. [205]
2019

Micro-
Doppler
RaDAR

Ambient

New dataset - 14
participants (10
healthy, 4 with
gait-affecting
conditions)

N/A
Bayesian

information
criterion

Gait is classified as
symmetric or asymmetric
when walking towards

(Mean Acc: 96.43%), and
away (Mean Acc: 82.22%)

from the sensor.

Shen et al.
[206] 2016

IMU
Smartphone
in pocket

New dataset - 6
participants (4
older people, 2
amputees)

N/A
High-Level
Fuzzy Petri

Net

Falls predicted one step
before occurring. Forward
fall: Rec: 91.60% Prec:
78.57% Backwards Fall:

Rec: 87.5%, Prec: 77.78%
Sideways Fall: Rec:

95.83%, Prec: 79.31%

Wang et
al. [207]
2019

Motion
capture
system,
force
plates

Full-body
and

underfoot

New dataset -
112 participants
(older people)

Step length, step
width, gait speed,
CoP/CoM, segment
angles, segment

velocity, for all trunk,
thigh, shank, and
foot. GRF, CoM

velocity

Logistic
regression

Body weight, step length,
relative CoM position at
heel strike, momentum

change from heel strike to
toe-off, right thigh angle,

and angular velocity at heel
strike can predict fall risk
with greater than 60%

accuracy.

Single et
al. [194]
2024

LiDAR,
IMU,

GAITRite

Ambient,
IMUs on

feet,
GAITRite
underfoot

New dataset -
45 participants
(healthy, some
older people)

Step length, step
time, stride length,
stride time, cadence,

velocity

N/A

The novel LiDAR approach
is validated against the
GAITRite and IMU

approaches. The extracted
spatiotemporal gait

parameters from each of
the systems are found to

have no significant
statistical differences.

Liu et al.
[195] 2024

IMU,
force-
sensing
shoes

Shank and
instru-
mented
shoes

New dataset -
31 participants
(10 healthy, 11
Parkinsons, 10

stroke)

GRF N/A

GRF is calcualted with a
maximum error of around
20% and mean error of

around 6%. Dynamic fall
risk factor is caculated for
each participant allowing
fall risk to be quanitfied.

continued on the next page
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Table A.6: Fall Prevention

Authors &
Year

Device Sensors
Prevention
Method

Device
Location

Number of
Partici-
pants

Results

Antonellis
et al. [208]

2018

Bilateral
ankle ex-
oskeleton

load cells
and linear
displace-
ment
sensors

Torque applied
to the ankle to
aid with ankle

flexion.

Ankle
10 partici-

pants
(healthy)

Lyapunov exponent decreased at
higher values of exoskeleton power,
whilst the Floquet multiplier was

found to increase. As such, whether
the exoskeleton aided in reducing

variability is uncertain.

Deng et al.
[209] 2019

Lower-limb
exoskele-

ton

IMU &
force-

sensors in
shoes.

Torque applied
to the hip and
knee joints.

Full
lower-limb
exoskele-

ton
attached
to the
waist,
thighs,
shanks,
and feet.

10 partici-
pants

(healthy)

The system is reported to have helped
improve balance and reduce the

instability caused by upper body tilt.

Geravand
et al. [210]

2015

Assistive
robot
walker

A range of
sensors
including
6-DOF
force

sensors

User holds a
handle mounted
to the robot via
actuated arms.
This arm is
manipulated

according to the
user’s

extrapolated
CoM

User ma-
nipulates
the device
with their
hands.

1
participant
(healthy)

Device reacted appropriately to
provoked falls.

Hirota and
Murakami
[211] 2016

Assistive
robot
walker

IMU

Falls are
detected using

the IMU, and an
algorithm brings
the walker to a
stop intelligently
such that the

fall is prevented.

User ma-
nipulates
the device
with their
hands.

1
participant
(healthy)

The device is tested in 3 different
experiments, each of which was

successful, with the walker
autonomously adapting to the

situation and returning the user to a
state of balance.

Hu et al.
[212] 2021

Soft
robotic
orthotic

N/A

Assistive torque
is appled to

ankle
dorsiflexion to
reduce gait
variability

Ankle

24 partici-
pants
(older

people, 12
low, and

12 medium
risk of fall)

Step width and step length variability
decreased at all 3 speeds of walking

that the device was tested at,
becoming more promenant at lower
speeds. The device was also found to
reduce variability, although by a lesser

amount, when attached but
deactivated.

Van Lam
and

Fujimoto
[213] 2019

Robotic
walking
cane

Gyroscope
and touch
sensor

Wheeled robotic
walking cane

which can adjust
the output

torque of the
wheels to restore

balance and
prevent falls.

User ma-
nipulates
the device
with their
hands.

7 partici-
pants

(healthy)

Body vibration is measured when
using no support, a traditional cane,
and the robotic cane. Vibrations are
significantly reduced with the robotic
cane, with a larger difference between
a traditional cane and robotic cane
than no cane and a traditional cane.

Nomura et
al. [214]
2015

Ankle ex-
oskeleton

Force-
sensing
insole

6-DOF parallel
bar active
orthotic

exoskeleton to
increase foot
clearence

Ankle
3 partici-
pants

(healthy)

Foot clearance was reported to
increase when the device is active.

Romtrairat
et al. [215]

2019

Gyroscopic
balance

correction
backpack

2-axis
inclination
sensor

2 gyroscopic
flywheels

generate torque
to counteract
postural sway,
increasing
balance and
stability.

Lower back
1

simulated
participant

The device performs well in a
simulated environment and is below
the recommended backpack weight.

continued on the next page
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Table A.7: Fall Prevention — continued

Authors &
Year

Device Sensors
Prevention
Method

Device
Location

Number of
Partici-
pants

Results

Yan et al.
[216] 2016

Robotic
walking
cane

Force
sensors,

laser range
finder

The cane
calculates the
user’s stability
and can adapt
and reposition
itself to prevent

falls.

User ma-
nipulates
the device
with their
hands.

N/A
Device appears to have been tested
and responds accordingly to fall-like
scenarios, acting to prevent the fall.

Taghvaei
and

Kosuge
[217] 2018

Passive
robot
walker

Kinect

The user is
watched by the
Kinect while
using the

walker. If a fall
is detected, a
servo break is
enabled to
stabalise the

user.

User ma-
nipulates
the device
with their
hands.

4 partici-
pants

(healthy)

Falls are detected with 98.75%
accuracy, enabling the device to detect

and prevent different types of fall.

Zhu and
Yi [218]
2023

Bilateral
knee ex-
oskeleton

7 IMUs

Torque applied
to the knee to
aid in slip
recovery.

Knee
6 partici-
pants

(healthy)

The group wearing the exoskeleton
with the proposed slip prevention

controller recovered in all 16 of the fall
trials, whereas the control group

without an exoskeleton recovered in
only 6/16 trials.

Monaco et
al. [219]
2017

Active
pelvis
orthosis

Torque-
calculating
actuators

A threshold
algorithm
detects

perturbations
and uses
complient

actuators to
apply torques to
the hip joints.

Pelvis

10 partici-
pants (all

older
people, 2
amputees)

The device detects a perturbation in
350ms and successfully reduces the
range of motion in the hip joint and
keeps the wearer’s CoM within a

region of stability.

Table A.8: Fall Intervention

Authors
and Year

Intervention
Duration
of Pro-
gram

Number
of

Partici-
pants

Testing Method Results

Schmid et
al. [221]
2010

Yoga
12

weeks
14

Illinois Fear of Falling (FoF)
measure, BBS, back scratch test,

chair sit and reach test

decreased FoF (6%), increased
static balance (4%) and

lower-body flexibility (34%)

Duque et
al. [222]
2013

Virtual
Reality

(VR)-based
Balance

training (BT)

6 weeks 60
VR based balance test, Survey of
Activities and Fear of Falling

(SAFFE)

increased balance parameters and
reduced FoF

Coubard et
al. [223]
2014

Contemporary
dance

4 weeks 38
Upright Stance Posturography

(USS)

increased alpha component in a
Detrended Fluctuation Analysis

(DFA)

Koceja
and

Greiwe
[224] 2014

BT using a
self-developed
apparatus

4 weeks 1
Postural stability during the

training
decreased sway area, lateral sway

and anterior sway

Schwenk et
al. [225]
2014

BT with IMU
sensors and

visual
feedback

4 weeks 33

Reciprocal Compensatory Index
(RCI), Alternate Step Test (AST),
Timed Up and Go (TUG), user

experience questionnaire

reduced CoM sway, ankle and hip
sway. Improved AST and TUG

score and gait speed

Freyler et
al. [226]
2016

Sensorimotor
training and
reactive BT

4 weeks 38
Spinning top test, swinging

platform test, transfer task with
cognitive interference

improved postural sway and
co-contraction index

continued on the next page
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Table A.9: Fall Intervention — continued

Authors
and Year

Intervention
Duration
of Pro-
gram

Number
of

Partici-
pants

Testing Method Results

Kwak et
al. [227]
2016

Elastic-band
resistance
exercise

8 weeks 45

Functional Reach Test (FRT),
BBS, TUG, Sit and Reach Test
(SRT), and Activities-specific

Balance Confidence Scale (ABC)

improved scores for FRT, BBS,
TUG, SRT, and ABC

Pliske et
al. [228]
2016

Karate and
fitness
training

20
weeks

68 Gait test and dual-task test
reduced single-step time, increased
step frequency and step length and
improved cognitive performance

Allison et
al. [229]
2018

Sensory
challenge BT

8 weeks 20
ABC, BBS, Sensory Organization
Test (SOT), Lower Extremity

Strength Score (LESS)

improved CoM gain and phase,
BBS, SOT and LESS

Liu-
Ambrose
et al. [230]

2019

Otago
training

52
weeks

345

Physiological Profile Assessment
Scores (PPAS), TUG, Short
Physical Performance Battery
Scores (SPPBS), Self-reported

Number of Falls (SNF)

improved SNF and no significant
differences in physical performance

Phu et al.
[231] 2019

VR-based BT 6 weeks 195
Sit to stand (STS), TUG, USS,
Falls Efficacy Scale (FES), gait

speed, handgrip strength

improved gait speed, FES,
handgrip strength, and TUG

Dehzangi
et al. [235]

2013

IMU-based
Vibrotactile
feedback
nodes

20
minutes

12

Randomized controlled trial in
which the experimental group and

control group have their gait
parameters compared before and

after the training period.

Improved lateral sway and posture
control. The experimental group
maintained pre-training scores for
parameters like cadence and gait
velocity, whilst the control group
exhibited increased variability over

the same period.

Verrusio et
al. [220]
2016

Full body
passive

exoskeleton

52
weeks

150

Tinetti Gait and Balance, Tinetti
Gait, Tinetti Balance, SPPBS, a
Numeric Rating Scale (NRS) for

pain, and SF-36 QoL

Improved scores in the Tinetti
Gait and Balance, Tinetti Balance,
SPPBS, NRS, and SF-36 QoL.

Chittrakul
et al. [232]

2020

Multi-system
Physical
Exercise
(MPE)

12
weeks

72

Physiological Profile Assessment
(PPA), Thai Fall Efficacy Scale

(TFES), Thai Geriatric Depression
Scale (TGDS), Health-Related

Quality of Life (HRQOL)

MPE group exhibited reduced fall
risk, fear of falling, depression

score, and increased HRQOL after
12 weeks. At 24 weeks, depression
score and HRQOL returned to

pre-trial levels.

Zahedian-
Nasab et
al. [233]
2021

Simulated
balance
exercises

using Xbox
Kinect

6 weeks 60 FES, TUG, BBS

BBS, FES, and TUG scores
improved in the intervention group
and were unchanged in the control

group.

Rikkonen
et al. [4]
2023

26 weeks of a
1-hour circuit
gym session
and 1-hour
Tai Chi

session each
week, with
warm-ups 50
minutes of
training,

followed by a
year of

unlimited
access to
facilities.

26
weeks/12
months.

914 (re-
cruited),
850 (12-
months),
838 (24-
months)

TUG and fall rate

Slight improvements in leg
extension strength and one leg

stance time, improved TUG speed.
14.3% reduction in fall rate among
the exercise group after 24 months.
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Table A.10: Fall Intervention — continued

Authors
and Year

Intervention
Duration
of Pro-
gram

Number
of

Partici-
pants

Testing Method Results

Sturnieks
et al. [234]

2024

Goal of 120
(79.7 mean,

actual)
minutes of
exergame

step training
or cognitive
training per

week

52
weeks

716

Fall rate, postural sway,
coordinated stability, single task
gait velocity, single task gait

variability, dual-task gait velocity,
dual-task gait variability, short
physical performance battery,

TUG, hand reaction time, choice
stepping reaction time, inhibitory
choice stepping reaction time,
stroop choice stepping reaction

time, trail making test B minus A,
controlled oral word association

test, digit span test forwards, digit
span test backwards, Victoria
Stroop test interference effect,
Victoria Stroop test errors,
Addenbrooke’s Cognitive

Examination-Revised (ACE-R),
Patient Health Questionnaire 9
(PHQ-9), Generalized Anxiety

Disorder Scale (GADS),
Iconographical Falls Efficacy Scale

(IFES), World Health
Organisation Disability

Assessment Schedule v2.0
(WHODAS v.2.0), Late Life

Function and Disability
Instrument (LLFDI)

Exergame group exhibited 26%
reduction in self-reported fall rate
along with improvements in the
PHQ-9, IFES, and LLFDI tests,
whereas cognitive training was

found to be relatively ineffective.
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Appendix B

Ethical Approval Documentation

The following appendix includes the documentation pertaining to the ethical approval of the

study conducted in Chapter 4. All personal information such as email addresses, names, etc.

which refer to anyone other than the author of this work have been redacted. Included in

this section are: the initial ethical approval from University of Leeds (UoL); approval of an

amendment to increase the number of participants from 10 to 20; the participant information

sheet; the consent form; the risk assessment; and the experimental procedure.
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Participant Information Sheet 
Context and Terrain-Aware Gait Analysis and Visualisation 

Please also see the Research Participant Privacy Notice and Experimental Procedure 

documents included with this information sheet. 

Invitation to Participate 

We’d like to invite you to participate in a research study. Participation in the research is entirely 

optional but before you decide, please take the time to read the following information and feel 

free to discuss it with others. This document will first walk you through the research topic and 

design of the research. Then we will inform you of what to expect during the study. Should 

you have any questions or require further information, please reach out using the contact 

information at the end of this document. 

Project Summary 

Many studies have been conducted in the past to use wearable sensors to record gait 

(walking-related) data remotely as users perform activities such as walking, climbing stairs, 

traversing ramps, and sitting down. It is the hope of these studies that one day the process of 

gait analysis can be made remote, replacing hospital visits and lengthy camera studies with a 

minimalistic sensor system that is prescribed to enable clinical decisions to be made from real-

world data, rather than that collected in a specialised environment. Unfortunately, many of 

these studies do not consider how an individual’s gait can change based on the terrain that 

one is walking on, which is crucial to provide context to the collected data and prevent incorrect 

diagnosis or prognosis. 

As a result, this study is part of a 3-year PhD project which will capture both the gait data and 

the environmental data using additional sensors. This data will then be analysed and used to 

build a system that captures gait activity, terrain, and environment in real time. This research 

is a key step in enabling such devices to be adopted in healthcare scenarios which will reduce 

hospital contact time for patients whilst increasing the efficiency and capacity of healthcare 

systems which have been increasingly strained in recent years.  

Why have I been chosen? 

You have been chosen because you meet the requirements for this study (healthy participant 

with fully functional limbs). There will be 20 participants in this study. 

Do I have to take part? 

Participation in this research is entirely optional and participants are free to decline the 

invitation or withdraw from the project at any point. If you decide you want to participate, you 

will be given this information sheet to keep along with a copy of the experimental procedure 

and a consent form, which you will be asked to sign and return before the data collection can 

occur. 

What to Expect when Taking Part in this Study 

This study will involve participants meeting the research team at Chapel Allerton Hospital, 

where they will be weighed, measured, and asked for their age before being equipped with a 

sensor system comprised of sensors on the trunk, shanks, and feet. These sensors come in 

the form of a belt and some insoles for existing shoes. Participants will meet with the study 

team at the hospital, where they will equip the sensor system before being escorted to specific 

areas which feature certain terrains and structures (ramps, stairs, etc). At these locations, 
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participants will be asked to perform several activities at a leisurely pace. Breaks will be offered 

between activities, and participants are encouraged to take them, as fatigue will not only 

increase risk of falling, but will also diminish the quality of gathered data. More significant 

breaks will be offered when travelling between activity areas. 

Participants will perform the following activities: 

Index Activity Terrain Location Exercise 

1 Walking Grass Outside 1 2x – Walk for 30 seconds 

2 Ramp Ascend Grass Outside 1 3x – Walk up the ramp 

3 Ramp Descend Grass Outside 1 3x – Walk down the ramp 

4 Standing Grass Outside 1 1x – Stand still for 10 seconds 

- Rest Opportunity - - - 

5 Walking Paving Slabs Gym (Outdoors) 3x – Walk the length of the walkway 

6 Walking Gravel Gym (Outdoors) 3x – Walk the length of the walkway 

7 Standing Paving Slabs Gym (Outdoors) 1x – Stand still for 10 seconds 

8 Standing Gravel Gym (Outdoors) 1x – Stand still for 10 seconds 

9 Sit to Stand Paving Slabs (Chair) Gym (Outdoors) 3x – Stand up from an outdoor chair 

10 Stand to Sit Paving Slabs (Chair) Gym (Outdoors) 3x – Sit down on an outdoor chair 

11 Sitting Paving Slabs (Chair) Gym (Outdoors) 1x – Stay sitting for 10 seconds 

- Rest Opportunity - - - 

12 Walking Laminated Flooring  Gym (Indoors) 2x – Walk for 30 seconds 

13 Standing Laminated Flooring Gym (Indoors) 1x – Stand still for 10 seconds 

14 Sit to Stand Laminated Flooring (Chair) Gym (Indoors) 3x – Stand up from an indoor chair 

15 Stand to Sit Laminated Flooring (Chair) Gym (Indoors) 3x – Sit down on an indoor chair 

16 Sitting Laminated Flooring (Chair) Gym (Indoors) 1x – Stay sitting for 10 seconds 

17 Stair Ascend Laminated Flooring Gym (Indoors) 3x – Walk up a set of stairs 

18 Stair Descend Laminated Flooring Gym (Indoors) 3x – Walk down a set of stairs 

- Rest Opportunity - - - 

19 Sit to Stand Toilet OT Bathroom 3x – Stand up from a toilet 

20 Stand to Sit Toilet OT Bathroom 3x – Sit down on a toilet 

21 Sitting Toilet OT Bathroom 1x – Stay sitting for 10 seconds 

- Rest Opportunity - - - 

22 Stair Ascend Paving Slabs Outside 2 3x – Walk up a set of stairs 

23 Stair Descend Paving Slabs Outside 2 3x – Walk down a set of stairs 

24 Ramp Ascend (low incline) Paving Slabs Outside 2 3x – Walk up the ramp 

25 Ramp Descend (low incline) Paving Slabs Outside 2 3x – Walk down the ramp 

26 Ramp Ascend Asphalt Outside 2 3x – Walk up the ramp 

27 Ramp Descend Asphalt Outside 2 3x – Walk down the ramp 

28 Walking Asphalt Outside 2 2x – Walk for 30 seconds 

29 Standing Asphalt Outside 2 1x – Stand still for 10 seconds 

- Rest Opportunity - - - 

30 Elevator Up Lift Lift 1x – Travel up in the lift 

31 Elevator Down Lift Lift 1x – Travel down in the lift 

32 Walking Carpet Chapel 2x – Walk for 30 seconds 

33 Standing Carpet Chapel 1x – Stand still for 10 seconds 

34 Sit to Stand Carpet Chapel 3x – Stand up from an indoor chair 

35 Stand to Sit Carpet Chapel 3x – Sit down on an indoor chair 

36 Sitting Carpet Chapel 1x – Stay sitting for 10 seconds 

37 Stair Ascend Hospital Stairs Hospital Stairs 3x – Walk up a set of stairs 

38 Stair Descend Hospital Stairs Hospital Stairs 3x – Walk down a set of stairs 

- Rest Opportunity - - - 

Amendment 1: 3 activities were removed: sitting to laying, laying to sitting, and laying down. 

Rows, columns, and numbering was updated to reflect this. 

Activity and terrain combinations will not be artificially created so performing activities such as 

stair navigation on grass or gravel will not be required. The whole procedure should not take 

more than 1 to 2 hours, depending on the chosen lengths of breaks. Participants should note 

that the sensors will be clipped onto the users clothing using 3D-printed cases and elastic 

straps, and that there is a risk of skin abrasion as such. To mitigate this risk, we ask that 

participants wear the recommended clothing, as found in the experimental procedure 

document which is provided alongside this information sheet. 

Once the data collection has been completed, the study will conclude, the sensor system will 

be removed, and participants will be free to return home. There are no further requirements 
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for participants to remain a part of the research or engage in any follow-up after the data 

collection event. 

Benefits of Participating 

Whilst individual benefits cannot be guaranteed, the creation of this dataset will enable the 

implementation of a prototype remote gait analysis system to provide key insights into how 

terrain and environment data can offer a level of robustness to these devices. The findings of 

this study may also further the field of remote gait analysis by moving away from pure analysis 

and focussing more on implementation, which may lead to these devices being adopted by 

healthcare systems in the future. Furthermore, the publication of this dataset will allow other 

researchers to make further discoveries and, as this is the first of its kind, this dataset may 

inspire future research to also consider factors such as terrain and environment, bringing these 

devices closer to real-world adoption. 

Potential Risks of Participating 

Participants will come into contact with a silicone insole and an elastic-fibre strap, such as 

those seen in sporting applications for supporting an injured joint. Regarding the sensor 

system, the system has been designed with comfort and convenience in mind. As such, there 

should be no additional risks created by equipping the system and performing activities on 

common terrains which are encountered frequently in daily life. 

Use, publication, and storage of research data 

After the data is collected on site, it will be processed, anonymised, and stored on the 

University of Leeds SharePoint cloud storage. The data in this study also has the potential to 

be published in journal articles and will be published as part of the thesis at the end of the 

PhD. Data will be anonymised at the point of collection, meaning that it cannot be traced back 

or used to identify a participant. During publication, this anonymised data will be made 

available to third parties.  

What will happen to my personal information? 

After collection, data will be stored with a participant number, rather than a name, resulting in 

the anonymisation of the data. Any photos or videos taken on site at the time of data collection 

will be digitally masked to remove any identifying qualities of the participant such as the face 

and head. Should participants decide to withdraw from the study, any contact information will 

be destroyed, whilst anonymised data (age, weight, height, gender, questionnaire answers, 

and gait data) will be retained for the study. 

What will happen to the results of the research project? 

All the contact information collected during the study will be kept strictly confidential, 

encrypted, and stored separately from the research data. Additionally, recorded data will be 

anonymised at the time of collection, to make participants unidentifiable after publication. 

The results from this study will be published within 18 months of recording, and participants 

can request to receive a copy of the results or a link to the article once published. Data 

collected in this study may be used or analysed further in future studies, but this data will only 

be available in a fully anonymised state. 

Photos and video recordings made during the research will only be used for illustrative 

purposes in journal articles, conference papers, and lectures. No other use will be made of 

these images and videos without explicit written consent and in all cases, these will be 
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blurred/masked to hide the identity of the participant. Nobody outside the research project will 

ever have access to the original recordings. 

What type of information will be sought from me and why is the collection of 

this information relevant for achieving the research project’s objectives? 

The personal information collected will include the age, height, weight, shoe size, and gender 

of participants as these factors will all contribute towards the manner in which a person walks. 

If all data was collected from people of above average height, or was all collected from a single 

gender, the dataset would be biased, resulting in a decrease in quality of the analysis and 

reducing the scope of potential applications. As a result, we need to record these factors to 

prove the validity of our dataset and enable it to have a significant real-world impact on the 

largest population possible. Individual age, weight, height, and gender will be anonymised and 

assigned a subject number along with the recorded gait data.  

Who is organising/funding the research?  

This research has been organised by the University of Leeds. There are no external 

independent bodies or companies associated with this research. 

Supporting Information 

Contact for further information: 

Lead Researcher: John Mitchell. Email: menjmi@leeds.ac.uk  

Contact for complaints: 

Academic Supervisor: Prof. Rory O’Connor. Email: r.j.o'connor@leeds.ac.uk   

Documents provided to participants: 

• Signed consent form. 

• This Participant Information Sheet 

• Participant Experimental Procedure 

• Research Privacy Notice 

• Testing Risk Assessment 

Thank you for taking the time to read this information. 

Version Control 

Project title Document type Version # Date Changelog 

Context- and Terrain-
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1 15/02/2022 First version. 
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Participant 

Information 
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1.1 24/01/2023 Updated the table of 

activities. 
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Consent to take part in Context- and Terrain-Aware Gait Analysis and Visualisation 

Participant Number:  

Add your initials 
next to the 

statement if you 
agree 

I confirm that I have read and understand the information sheet explaining the above 
research project and I have had the opportunity to ask questions about the project. 

 

I understand that my participation is voluntary and that I am free to withdraw at any time 
without reason without negative consequences. Upon withdrawal personal data will be 
destroyed however anonymised data could be retained as set out in the Participant 
Information Sheet. 
Email: ll15j3cm@leeds.ac.uk 

 

I give permission for members of the research team to have access to my anonymised 
responses. I understand that my name will not be linked with the research materials, and I 
will not be identified or identifiable in the report or reports that result from the research. 

 

I agree for the data collected from me to be stored and used in relevant future research in 
an anonymised form. 

 

I agree that photographs and videos may be taken during testing on the conditions that: 
media is only used to illustrate the research in papers, presentations, lectures, and 
conferences; and the participants face will be digitally masked to maintain anonymity. 

 

I understand that other genuine researchers will have access to this data only if they agree 
to preserve the confidentiality of the information as requested in this form. 

 

I understand that other researchers may use information collected in publications, reports, 
web pages, and other research outputs, only if they agree to preserve the confidentiality of 
the information as requested in this form. 

 

I understand that relevant sections of the data collected during the study, may be looked at 
by auditors from the University of Leeds where it is relevant to my taking part in this 
research. I give permission for these individuals to have access to my records. 

 

I agree to take part in the above research project and will inform the lead researcher should 
my contact details change during the project and, if necessary, afterwards. 

 

I confirm that I am not allergic to silicone or elastic fibres such as those found in sporting 
joint supports. 

 

 

Name of participant  

Participant’s signature  

Date  

Name of lead researcher John Mitchell 

Signature  

Date*  

*To be signed and dated in the presence of the participant.  
Once this has been signed by all parties the participant will receive a copy of the signed and dated participant consent form, the 
letter/ pre-written script/ information sheet and any other written information provided to the participants. A copy of the signed and 
dated consent form should be kept with the project’s main documents which must be kept in a secure location.  

Project title Document 

type 

Version # Date 

Context- and Terrain-Aware Gait Analysis and Visualisation Consent form 1 12/01/2022 
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  PRSG27.5 v1         WELLBEING, SAFETY AND HEALTH MANAGEMENT SYSTEM 
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RISK ASSESSMENT DETAILS DEGREE OF RISK RISK RATING MATRIX 

 
Faculty/School/Service Mechanical Engineering 

Team  

 

Risk Assessment Title Data Collection 

Risk Assessment Log Reference  

Date 15/02/2022 

Name of Assessors John Mitchell 

Manager Responsible Prof. Abbas Dehghani-Sanij, Prof. Shane 
Xie. Prof. Rory O’Connor 

Location Chapel Allerton Hospital 

Details of Activity 
Use of a sensor system to collect gait data during various walking activities on a 
range of terrains. 

 
Other assessments which might also be required, ✓  if needed: 

• Manual Handling         REF 

• COSHH         REF 

• Personal Protective Equipment (PPE)       REF 

• Noise         REF 

• Other         REF 

 

 

LIKELIHOOD (L) 

5 Inevitable 

4 Highly Likely 

3 Possible 

2 Unlikely 

1 Remote Possibility 
 

 

  SEVERITY 

  
  
 L

IK
E

L
IH

O
O

D
 

 1 2 3 4 5 

1 1 2 3 4 5 

2 2 4 6 8 10 

3 3 6 9 12 15 

4 4 8 12 16 20 

5 5 10 15 20 25 
 

 

SEVERITY (S) 

5 Very High -Multiple 
Deaths 

4 High - Death, serious 
injury, permanent 
disability 

3 Moderate - RIDDOR 
over 7 days 

2 Slight - First Aid 
treatment 

1 Nil - Very Minor 
 

PERSONS AT RISK 

 

PERSONS AT RISK 

Employees 

Students 

Clients 

Contractors 

Members of the public 

Work Experience students 

Other Persons 
 

 

REVIEW DATES 

  

  

  
 

 

RISK RATING 
SCORE 

ACTION 

1 - 4 Broadly Acceptable - No action required 

5 - 9 Moderate - Reduce risks if reasonably practicable 

10 -15 High Risk - Priority Action to be undertaken 

16 -25 Unacceptable -Action must be taken 
IMMEDIATELY 
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HAZARD 
AND 

RELATED 
ACTIVITIES 

 
e.g. trip, falling 
objects, fire, 

explosion, noise, 
violence etc. 

PERSONS 
 AT RISK 

 
 

e.g. Employees, Customers, 
Contractors, Members of the 

public 

POSSIBLE 
OUTCOME 

 
 
 
 

RISK 
RATING 
BEFORE 

CONTROLS 
(LxS) 

 
 
 

EXISTING CONTROLS 
 
 

e.g. Guards, Safe Systems of Work, 
Training, Instruction, Authorised 

Users, Competent Persons, Personal 
Protective Equipment (PPE) 

RISK 
RATING 
AFTER 

CURRENT 
CONTROLS 

(LxS) 

FURTHER 
CONTROLS 
REQUIRED? 

RISK 
RATING 
AFTER 

ADDITIONAL 
CONTROLS 

(LxS) 

Trip/fall  Participant/Researcher Fall, 
potentially 
down a set 

of stairs 

8 Period of familiarity with the 
sensor system on safe 

terrain before data 
collection. Terrains are 
chosen to be familiar to 
participants and safe. 

3   

Rash or 
abrasion 

caused by 
sensor 
system 

Participant Superficial 
abrasion 

2 Participant feedback will be 
gathered throughout the 

procedure to monitor 
comfort. Purchased elastic 

and flexible materials will be 
those used for common 

sporting purposes. 

2   

Coronavirus Participant/Researcher Contraction 
of COVID-

19 

9 Participants are required to 
take lateral flow tests, 
young participants are 

chosen, many activities are 
in ventilated areas or 

outside, masks and hand 
sanitiser will be available, 
date pushed back to avoid 
the winter peak in cases. 

3   
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MANAGEMENT AGREED 
 

ADDITIONAL CONTROL MEASURES 
REQUIRED 

ACTIONED BY ACTION COMPLETE 

POSITION NAME DATE MANAGER SIG DATE 

       

       

       

       

       

       

       

       

 

COMMUNICATION OF RISK ASSESSMENT FINDINGS TO STAFF 

REFERENCE OF 
FORMAL 
COMMUNICATION TO 
STAFF 

METHOD YES DATE COMMENTS 

Copy of risk assessment issued to staff    

Controls covered in team procedure issued to staff    

Staff Handbook issued to staff    

Other -     

ADDITIONAL 
METHODS OF 
COMMUNICATION 

Induction    

Toolbox Talk    

Team Meeting    

E-mail circulation    

Other -     
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COMMENTS AND INFORMATION 
(Use this section to record any dynamic risk assessment comments and information) 

 

 
 

 

Do additional controls adequately lower high 
risk activities to an acceptable level? 
 

YES / NO 
 
 

If NO explain 
in comments 
box above 

SIGNATURE OF MANAGER 
"The risks identified in this assessment are controlled so far as is reasonably practicable" 

Signature: 
 
Abbas Dehghani 

 
 
Rory J O'Connor 

 
 
 
Shane Xie 

 
 

Date: 
 
15/2/2022 
 
 
 
 
15/02/2022 
 
 
 
 
 
 
 
 
16/02/2022 
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DATE OF REASSESSMENT 
(Every two years minimum) 

ARE THERE ANY CHANGES TO THE ACTIVITY SINCE 
THE LAST ASSESSMENT? 

SIGNATURE OF MANAGER 

   

   

   

 
 

LOCATION OF CURRENT SIGNED RISK 
ASSESSMENT 

 

 

 

 

RISK ASSESSMENT LOG 

Directorate: Area: 

 
Section/Team Risk 

Assessment 
Title 

Version 
No. 

Risk 
Assessment 

Category 

Code 
/Location 

Risk 
Assessor 

Manager 
responsible 
for signing 

off risk 
assessment 

Date 
assessment 
signed off 

Review 
Due 

Review 
Date 

Outstanding 
Controls/Actions 

Yes/No 

Comments 
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Participant Experimental Procedure 
To be supplied along with the participant information sheet. 

What Should I Wear? 

Shoes and Socks 
Participants will have several devices attached to and inserted into their shoes. These shoes 

will be provided, and a range of sizes will be available. For sanitary reasons, please wear 

socks. 

Avoid Tight Trousers 
Baggy/elasticated trousers are advised for comfort and to enable a small box to be fitted to 

the top of the trousers via a clip. Try to avoid wearing a belt as this may make the clip 

uncomfortable. 

The Sensor System 

Foot Sensor 
The foot sensor features a silicone insole which is placed within the shoes, a box which 

attaches to the side of the shoes via a clip, and another box which attaches to the top of the 

shoe via the laces.  

Ankle Sensor 
The ankle sensor features a box fitted to the outer side of the leg, along with a small sensor 

on the back of the ankle. 

Waist Sensor 
The waist sensor will consist of a small box which clips to the back of the trousers. 

Where should I go? 
The procedure will take place at Chapel Allerton Hospital in Leeds. Upon arriving the research 

team will meet you at the entrance and we will make our way down to the bottom floor where 

a weight and height measurement will be taken. 

What Activities Will I Perform? 
Participants will perform 38 short activities in 8 different areas of Chapel Allerton Hospital. A 

full list of activities can be seen below: 

Index Activity Terrain Location Exercise 

1 Walking Grass Outside 1 2x – Walk for 30 seconds 

2 Ramp Ascend Grass Outside 1 3x – Walk up the ramp 

3 Ramp Descend Grass Outside 1 3x – Walk down the ramp 

4 Standing Grass Outside 1 1x – Stand still for 10 seconds 

- Rest Opportunity - - - 

5 Walking Paving Slabs Gym (Outdoors) 3x – Walk the length of the walkway 

6 Walking Gravel Gym (Outdoors) 3x – Walk the length of the walkway 

7 Standing Paving Slabs Gym (Outdoors) 1x – Stand still for 10 seconds 

8 Standing Gravel Gym (Outdoors) 1x – Stand still for 10 seconds 

9 Sit to Stand Paving Slabs (Chair) Gym (Outdoors) 3x – Stand up from an outdoor chair 

10 Stand to Sit Paving Slabs (Chair) Gym (Outdoors) 3x – Sit down on an outdoor chair 

11 Sitting Paving Slabs (Chair) Gym (Outdoors) 1x – Stay sitting for 10 seconds 

- Rest Opportunity - - - 

12 Walking Laminated Flooring  Gym (Indoors) 2x – Walk for 30 seconds 

13 Standing Laminated Flooring Gym (Indoors) 1x – Stand still for 10 seconds 

14 Sit to Stand Laminated Flooring (Chair) Gym (Indoors) 3x – Stand up from an indoor chair 

15 Stand to Sit Laminated Flooring (Chair) Gym (Indoors) 3x – Sit down on an indoor chair 
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16 Sitting Laminated Flooring (Chair) Gym (Indoors) 1x – Stay sitting for 10 seconds 

17 Stair Ascend Laminated Flooring Gym (Indoors) 3x – Walk up a set of stairs 

18 Stair Descend Laminated Flooring Gym (Indoors) 3x – Walk down a set of stairs 

- Rest Opportunity - - - 

19 Sit to Stand Toilet OT Bathroom 3x – Stand up from a toilet 

20 Stand to Sit Toilet OT Bathroom 3x – Sit down on a toilet 

21 Sitting Toilet OT Bathroom 1x – Stay sitting for 10 seconds 

- Rest Opportunity - - - 

22 Stair Ascend Paving Slabs Outside 2 3x – Walk up a set of stairs 

23 Stair Descend Paving Slabs Outside 2 3x – Walk down a set of stairs 

24 Ramp Ascend (low incline) Paving Slabs Outside 2 3x – Walk up the ramp 

25 Ramp Descend (low incline) Paving Slabs Outside 2 3x – Walk down the ramp 

26 Ramp Ascend Asphalt Outside 2 3x – Walk up the ramp 

27 Ramp Descend Asphalt Outside 2 3x – Walk down the ramp 

28 Walking Asphalt Outside 2 2x – Walk for 30 seconds 

29 Standing Asphalt Outside 2 1x – Stand still for 10 seconds 

- Rest Opportunity - - - 

30 Elevator Up Lift Lift 1x – Travel up in the lift 

31 Elevator Down Lift Lift 1x – Travel down in the lift 

32 Walking Carpet Chapel 2x – Walk for 30 seconds 

33 Standing Carpet Chapel 1x – Stand still for 10 seconds 

34 Sit to Stand Carpet Chapel 3x – Stand up from an indoor chair 

35 Stand to Sit Carpet Chapel 3x – Sit down on an indoor chair 

36 Sitting Carpet Chapel 1x – Stay sitting for 10 seconds 

37 Stair Ascend Hospital Stairs Hospital Stairs 3x – Walk up a set of stairs 

38 Stair Descend Hospital Stairs Hospital Stairs 3x – Walk down a set of stairs 

- Rest Opportunity - - - 

What if I need a rest outside of the rest opportunities? 
If participants need to rest, to visit the toilet, or to stop for any other reason, please inform the 

researchers and the sensor system will be unequipped for the duration of the rest. Please 

don’t hesitate to let the research team know if a rest is needed, as fatigue or discomfort will 

diminish the quality of the data and could increase the risk of a fall. On the other hand, if rest 

opportunities are not needed before moving to a new area, this option is also available. The 

data collection procedure is flexible as data is only be recorded during an activity, so feel free 

to give feedback throughout the process. 

What can I expect when performing one of the activities? 
Before the data recording of an activity, participants will be told or shown where to move and 

what to do. After this demonstration, a countdown will be given in the form “3, 2, 1, Go”. On 

‘Go’ the data collection will begin and participants will be free to perform the activity. Data 

collection will be automatically stopped upon reaching the end of the activity, or with another 

countdown in the case of timed events. 

What happens when all activities are completed? 
When all activities are complete, the sensor system will be removed, and participants are free 

to leave. 

Project title Document type Version # Date Changelog 

Context- and Terrain-

Aware Gait Analysis and 

Visualisation 

Participant 

Experimental 

Procedure 

1 15/02/2022 First version. 

Context- and Terrain-

Aware Gait Analysis and 

Visualisation 

Participant 

Experimental 

Procedure 

1.1 24/01/2023 Removed bed activity 

from activity list. 
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