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Abstract 
The present thesis brings new understanding to the field of turbulent multiphase flows by 
exploring agglomeration phenomena involving non-spherical colloidal particles in 
quiescent and turbulent fluid flows. The work addresses a significant gap in the literature 
by explicitly capturing the full interplay between the disparate scales of turbulence and 
van der Waals induced agglomeration. The novelty of the work comes from combining 
particle-resolved multiphase fluid dynamics, orientationally-dependent ellipsoidal 
collision and agglomeration treatment, and high-fidelity fluid simulation. This creates a 
unique state-of-the-art simulation framework that allows the study of turbulent 
agglomeration processes at a new level of detail. Through application of the developed 
methods, contributions to both fundamental scientific understanding and industrial 
applications are made, of notable benefit to areas such as nuclear waste management 
and sedimentology.  

Whilst theoretical frameworks exist for microscopic forces such as DLVO interactions 
between non-spherical particle pairs, their explicit integration into macroscopic 
turbulence simulations remains largely unexplored. To address this, a state-of-the-art 
multiscale and multiphysics solver was developed and integrated with the open-source 
high-fidelity flow solver Nek5000. The fully resolved fluid field and structure-resolved 
particle-fluid coupling regime are thus obtained through direct numerical simulation and 
an immersed boundary method.  

Findings are presented across three distinct results chapters. The first investigates binary 
interactions in quiescent conditions, establishing a baseline understanding of the 
interactions in terms of threshold velocities, whilst also demonstrating the types of 
configurations that lead to agglomeration. For non-spherical particles, the distribution of 
surface curvature over the particle is shown to critically influence the interaction 
tendencies. Disks exhibit strong face-to-face interactions but reduced overall 
agglomeration due to their favouring of edge collisions at higher curvature regions on the 
surface that subsequently induce the lowest attractive forces. Conversely, needles 
demonstrate higher agglomeration rates due to interactions being distributed more 
evenly across their surfaces, under uniform random sampling. 

The second study builds upon the first by introducing turbulence, employing a 
homogeneous isotropic turbulence field which is validated against two reference 
studies. Turbulence is found to reduce overall agglomeration rates by increasing the 
relative velocities of particles, despite the tendency of the turbulence to improve the 
alignment characteristics of the particles. Disks increase their resistance to 
agglomeration due to their greater surface area for the fluid forces to act upon, inducing 
greater disruptive accelerations. As the turbulence level increases, spheres begin to 
become the favourable morphology for achieving agglomeration, as they have more 
optimal drag characteristics, despite lower overall attraction than needles. 
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The final study tackles behavioural modifications and multi-particle systems, introducing 
novel algorithms for scalable simulations of agglomeration under turbulence. 
Parallelisation of particle modules and computational efficiency improvements enable 
simulations over extended time and length scales, beginning to capture interesting 
emergent crystal-like structures. The thesis concludes by laying the foundation for future 
exploration of multiparticle structures and dynamics, bridging the gap between the micro 
and macroscales. The relative advantages of hard- and soft-sphere schemes are also 
discussed for the specific application of turbulent agglomeration. 
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1 Introduction 
1.1 Motivation  

Multiphase flows appear frequently in both nature and industry. These flows take many 

different forms and the category of ‘multiphase flow’ is far-reaching. The term 

encompasses flows containing dispersed phases, such as particles, droplets or 

bubbles (Loth, 2000), it includes multiple interacting continuous phases, and in the 

most complex cases there may be combinations of each (Thorn et al., 1997; Kim and 

Lowengrub, 2005). Familiar examples of multiphase flows include aerosol sprays, the 

formation and transportation of sediment in rivers, the removal and transport of 

industrial wastes, or the dynamic interplay between air and water travelling through a 

pipe. The generation of a deepened understanding of these flows naturally leads to 

the ability to improve current industrial methods, due to those working in industry 

having ever more avenues of exploration at their fingertips for the innovation of new 

processes. Improved environmental safety and conservation processes, and improved 

medical treatments, are further benefits that arise in the same way. As such, there is 

great value in scientific investigations that aim to develop our understanding 

surrounding the complex phenomena occurring in this rich field of study. 

Often, even with moderate flow rates, multiphase systems will be turbulent 

(Balachandar and Eaton, 2010). For flows with multiple continuous phases, there are 

many interesting phenomena at play such as heat and mass transfer effects due to 

turbulent mixing (Han et al., 2005; Corrsin, 1952; Morsi and Basha, 2015), or intricate 

non-linear dynamics occurring at the interface between phases (Roccon et al., 2023). 

In the case of particle-laden flows, similarly complex interactions occur between the 

turbulence field of the flow and the particles within (Squires and Eaton, 1990). The 

chaotic nature of the turbulence and the interdependent positions, orientations, and 

velocities of the particles creates a system that is challenging to study. With this 

challenge comes the opportunity for developments in important and seemingly 

unrelated fields such as medicine, sedimentology, and computing, or in mathematical 

disciplines like numerical analysis, chaos theory and statistics.    
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One powerful way to investigate such systems is through the use of numerical 

simulation. This approach is flexible and allows the investigator the ability to quickly 

cover a wide parameter space and probe systems in ways that are not possible 

through experiments. However, this relies on accurately capturing the physics at play. 

Since multiphase flows are so diverse, it can be challenging to work out exactly how 

to proceed in recreating the entire landscape of physical effects which can often 

operate on vastly different scales, with all such scales contributing to the overall 

behaviour of the system. In many particle-laden flows, the size of the particles is 

smaller than the smallest scales of turbulent motion, and yet their influence on the flow 

is significant (Mortimer et al., 2020; Wolde, 2023). 

There exists no all-encompassing computational framework, and so there are many 

approaches available for any given problem, each with their own strengths and 

weaknesses. Even still, the developments that are made in seemingly narrowly scoped 

systems often turn out to be directly relevant elsewhere, which is an exciting aspect of 

the field. For example, the immersed boundary method of Peskin (2002), developed 

originally for the purpose of studying the human heart, has been successfully 

expanded to all kinds of multiphase flow problems, such as particles in a pipe, or 

bubbles in a channel (Uhlmann, 2005; Ardekani et al., 2016; Fröhlich et al., 2022). This 

has contributed to the overall capability of simulating many flows entirely unrelated to 

human biology and has been significant in providing a means to include aspects such 

as non-sphericity in fluid-particle simulations. It is clear that, from the considerable 

difficulty posed by these systems, there emerges scope for scientific contribution and 

development. 

Wall-bounded multiphase flows are prevalent in many industries (Wiart et al., 2015), 

with problems usually involving solid boundaries in some important way. The three 

canonical wall-bounded flows – pipes, channels and spatially evolving boundary layers 

(El Khoury et al., 2013) – can all be observed regularly in industry: pipes and channels 

are encountered in transportation processes, for example those seen in the nuclear 

industry, whilst boundary layers are inherent to aerodynamic applications. However, 

the sheer scale of some industrial processes means that relevant investigation away 

from the site can be difficult. In that, both physical and numerical experiments will 
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struggle to recreate the full scale of the system – and, more importantly, the full range 

of scales involved.  

In the case of an industrial-scale particle-laden pipe flow, a pipe diameter may be on 

the order of a metre, with dispersed particles on the order of microns or nanometres. 

Then, it likely contains billions of particles whose behaviour is dependent on a vast 

range of scales and many different physical phenomena. To recreate such systems for 

investigation, whilst capturing all of the important scales at once and keeping track of 

all of the particles’ individual motions, poses an often-intractable challenge to both 

experimentalists and computational modellers alike. The path forward therefore is 

often to compartmentalise these problems into smaller subproblems that can be 

attacked. The acquired knowledge may then be used to inform and construct theories 

relating to the full-scale problem. Over time, as understanding deepens, 

methodologies develop, and resources increase, there can be continued steps 

towards fully understanding these systems. The alternative route is to model the full 

problem with extensive simplifications, and each approach has its place.   

One thing that is not well understood pertains to the fundamental mechanical and 

chemical interactions taking place between particles in these turbulent flows. There 

are several interesting emergent phenomena, such as agglomeration and flocculation 

of particles, that are not captured by numerical studies unless the necessary extra 

physics are included, and for many systems these phenomena are extremely 

important to capturing the bulk-scale dynamics and overall multiphase behaviour 

(Bridgeman et al., 2009; Almohammed, 2018). It is therefore logical to interrogate 

these interactions at the particle-scale first, so that they can be understood in a 

fundamental way. This newfound knowledge can then be leveraged to inform and thus 

improve the modelling assumptions that are made to reduce computational complexity 

as a matter of necessity, so that full scale scenarios can be modelled effectively. 

Equally, the design of experimental rigs can be improved by better understanding the 

processes occurring within.   

Driven by a desire to understand these systems at a fundamental level, this study aims 

to address the problem of particle interactions in turbulence from a first-principles 

basis, resolving as much of the physics as is computationally possible. As such, there 

is a need to compartmentalise and simplify the full systems being simulated. All of this 
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points towards a certain flow system that allows detailed study of the interplay between 

particle-particle interactions and turbulence in a small-scale and isolated way: periodic 

boxes of homogeneous and isotropic turbulence. These idealised flows will allow the 

study of both the fluid and particle physics at the length scales required to generate 

fundamental understanding that can be used to improve simulations where the 

turbulence and particle-interaction dynamics are modelled, whilst ensuring that the 

simulations are computationally feasible. In this system, there will be ample 

opportunity to develop and test numerical methods for the modelling of particle 

interactions in turbulence.  

1.2 Behavioural Modification 

There are certain control measures that can be taken to improve industrial systems. 

Such procedures rely on scientific understanding to form their basis. An example is 

the agglomeration and break-up behaviour of particles in a particle-laden flow, which 

can be better understood to improve the effectiveness of various industrial processes. 

For instance, it may be desirable for particles to agglomerate so that they can be easily 

detected and separated from a carrier-phase fluid if the particulate matter is unwanted. 

Conversely, one might wish for the particles to remain separated so that the flow rate 

remains stable and the mass transfer through the pipe is uniform. Another such benefit 

of minimised agglomeration is the avoidance of deposition and settling of particles out 

of the flow leading to pipe blockage and failure, which carries significant economic and 

environmental implications in many industries. In either case, an improved 

understanding of how modifications to the material, chemical and mechanical 

properties of the different phases affect agglomeration can be leveraged to obtain 

these desirable outcomes in the overall system’s behaviour – this leveraging is 

referred to as a behavioural modification (Mortimer and Fairweather, 2021).  

For example, the Hamaker constant, which governs the strength of attractive particle-

particle interactions, can be altered through the addition of salt to the fluid 

(Shahidzadeh et al., 1998) or through modification to its temperature (Bergström, 

1997). These are two very accessible behavioural modifications that could influence 

the long-time behaviour of the industrial system in terms of its bulk agglomeration 

behaviour. Another approach to counteracting the attraction between particles and 
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thus stabilising the suspension could be the matching of the refractive index between 

the particle and the fluid media; alternatively, an attempt can be made to introduce 

repulsive interactions that prevent aggregation, or polymers can be introduced into the 

situation to stabilise the suspension. By adsorption to the surface, polymers can create 

a volume exclusion effect. These ideas are discussed in detail from an experimental 

perspective by Mauleon-Amieva (2020). 

It can be prohibitively difficult to probe these systems in a laboratory due to the 

challenge of performing intrusive particle-scale experiments within the context of a 

large-scale flow system. The natural step to take is to look to computational 

approaches to obtain the required insight. Mortimer and Fairweather (2021) laid out a 

simulation framework for this type of investigation. The approach taken is to utilise 

multiphase computational fluid dynamics over a wide parameter-space of different fluid 

(temperature, Reynolds number, pH) and particle (Hamaker constant, Debye length, 

coefficient of restitution, surface charge potential) properties to gain fundamental 

understanding of which properties the system and its agglomeration dynamics are 

most sensitive to. In the context of nuclear waste management, this approach was 

proven successful in outlining the best parameters for exploitation in the cited paper. 

1.3 Sellafield and the Nuclear Industry 

Nuclear power currently contributes 15% of the United Kingdom’s electricity supply 

(World Nuclear Association, 2023), whilst supporting the country’s medical and 

defence industries. This is achieved through 8 advanced gas-cooled reactors and one 

pressurised water reactor. Associated with this is the challenge of managing nuclear 

waste. There is legacy nuclear waste in abundance at Sellafield in Cumbria, UK where 

more radioactive material per square metre is processed than at any other site in 

Europe (Office for Nuclear Regulation, 2023). There are over 1000 nuclear facilities 

making it one of the most complex nuclear sites in the world. Sellafield currently 

functions as a decommissioning site having previously been an active nuclear power 

generation site between 1956 and 2003. Accounting for roughly two-thirds of the 

Nuclear Decommissioning Authority’s annual spend, Sellafield is assigned a 

government funded budget exceeding £2 billion annually (Infrastructure and Projects 

Authority, 2023). 
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The decommissioning of legacy nuclear facilities is now a national priority – recognised 

as such by the UK Government (Nuclear Decommissioning Authority, 2021). In nuclear 

facilities, legacy waste has been sealed inside concrete containers and stored in 

ponds awaiting transfer to safer storage locations. The operation of transferring the 

waste from these legacy facilities to new storage locations is currently performed with 

extreme caution, which hinders the efficiency. Such caution is given due to the lack of 

understanding of how the flow will behave, hence investment is being made currently 

into scientific research to understand and predict the behaviours and mechanisms 

relevant to such flows.    

In the context of the nuclear industry, streamlining and developing their methodologies 

leads to the improvement of economic efficiency, the reduction of environmental 

impacts, and the increase of safety – which are three motivating factors underpinning 

Sellafield Ltd.'s interest and investment in this research area. For Sellafield, it is 

important that the build-up of reactive or corrosive materials does not occur in their 

industrial processes. For example, if this leads to pipe failure, there is a significant cost 

incurred at the expense of the UK taxpayer. This material build-up is also a challenge 

faced by active nuclear reactor facilities, in which the accumulation of corrosion-related 

unidentified deposits (CRUD) in the coolant circuit can greatly impact the heat transfer 

performance of the reactor (Short et al., 2013).  

The modification of certain physical and chemical parameters can help the nuclear 

industry to obtain desirable bulk flow properties and hence make operations safer and 

more controllable. Simple modifications to the bulk properties like fluid temperature 

and Reynolds number may be of great economic value, and alterations to the system 

can be further achieved through the injection of additives into the flow, like 

nanoparticles or polymers (Mortimer and Fairweather, 2022), and through the coating 

of particles (Gollwitzer et al., 2012).  

1.4 Non-Spherical Particle Systems 

There are endlessly many particle morphologies that can be classed as ‘non-spherical’ 

and might be of interest to study. The challenge of modelling them is to ensure the 

interesting effects of particle anisotropy are accurately captured without making the 

problem so complex that it is intractable. It is surprising just how complicated a system 
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becomes under the simple addition of non-sphericity. In the context of numerical 

methods, considerable time and effort must be spent considering how to incorporate 

such effects in a reasonable way. 

In industry, the accessibility of certain manufacturing techniques may influence the 

variety of shapes that are observed when it comes to studying the relevant multiphase 

systems, so too might an industry’s desire for certain morphological properties, which 

naturally influences the choice of shapes in processes like packed-bed heat 

exchangers. Typical industrial shapes that are easy to manufacture, or that might be 

chosen for their morphological properties, are cubes, cuboids, ellipsoids or cylinders, 

and so these are the natural first choices for non-spherical modelling. However, each 

shape requires different treatment, with different approaches for the tracking of the 

surface required and different models for the relevant forces. This means a simple 

change to the shape requires an overhaul of the numerical approaches employed. 

One can track the surfaces of ellipsoids neatly with mathematical equations; however, 

this is not so simple with cubes, cylinders or cuboids, whose surfaces are comprised 

of several faces, with a non-smooth character – in such cases, one can turn to 

‘superellipsoid’ and mesh-based approaches, but it becomes less clear how to 

precisely track and resolve forces between objects, for example during collisions. 

As these simple shapes break, as they often will due to collisions and interactions 

within the system, new shapes may be formed. In a simple case, long cylinders that 

snap can form shorter cylinders with the same diameter, which can lead to interesting 

particle size distributions that are a function of a single axial length. Alternatively, a 

needle-type shape might break in a similar way, but this time the result is two 

completely new shapes, which are difficult to include into a particle model 

mathematically, or to keep track of statistically.  

If the choice was made to include all effects – non-sphericity, polydisperse particle 

distributions, multiple different shapes, breakage processes, and so on – then the 

problem quickly runs away from the investigator and becomes impossible to study. So, 

investigations are typically limited to just one type of non-spherical shape, usually of 

one size, at a time. There is scope to go beyond this, but usually that would need to 

be the entire emphasis of the study. In the present work, there is a direct interest in 

non-sphericity, but also on the elucidation of the effects of turbulence and interaction 
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behaviours, which limits the scope of development in the direction of non-sphericity. 

Nevertheless, as will be seen in this thesis, there is a vast complexity that comes from 

including just one non-spherical shape at once, in terms of the entirely new 

phenomena that arise.  

Spheroidal geometry is the simplest extension to a smooth and continuous non-

spherical geometry, arrived at by ‘stretching’ or ‘squashing’ a sphere, giving ‘needles’ 

and ‘disks’, respectively. These non-spherical shapes can be thought of as 

representing a modal type of non-sphericity with either such operation leading to one 

mode of non-sphericity whose effect can thus be investigated. In Figures 1.1 – 1.3 it 

is demonstrated that these simple shapes occur regularly in both industry and nature. 

In particular, natural processes reliably lead to the promotion of shapes or structures 

of a certain kind. For example, in rivers, erosion can lead to long flat smooth pebbles, 

that are of a spheroidal or ellipsoidal shape (Koster et al., 1980). Or in very arid 

conditions, simple disk-shaped gypsum can aggregate to form beautiful desert rose 

structures (Al-Kofahi et al., 1993) – highlighting the complex emergent behaviour of 

spheroidal systems. In this case, the emergent complexity may be accessible from a 

modelling point of view by considering the disk-like constituent parts combined with a 

model for the interaction physics. This hypothesis underscores one of the hopes for 

the present work, where final investigations look to model the structures formed by the 

agglomeration process of non-spherical particles. 

It is known from scanning electron microscope (SEM) images provided by Sellafield 

Ltd. that their Magnox sludge agglomerates resemble a kind of quasi desert rose 

structure, and so it is of interest to see if the numerical models developed throughout 

this thesis can capture this highly complex emergent behaviour. Figure 1.1 shows 

examples of SEM images where disk-like particles have agglomerated to form intricate 

structures possessing clear order: the disks agglomerate at an angle to form an open 

interlocking platelet structure, as described by Gregson et al. (2011). Developing 

numerical models capable of simulating these systems will allow assessment of what 

the necessary physics are for the resolution of the crystalline order observed in nuclear 

waste agglomerates, as well as generate fundamental understanding of the processes 

occurring within the system, which can aid control measures.  
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In the case of gypsum desert roses, a precipitation process leads to their formation 

(Al-Kofahi et al., 1993). In the case of the aesthetically similar LiCoO2 samples shown 

in Figure 1.2, it is a much different process that leads to this structure forming, involving 

a chemical reaction (Chen and Grey, 2008). In the agglomeration process, it is likely 

that the observed crystalline structure arises due to charge properties of the surfaces. 

In the present work, surfaces are assumed to be of a homogeneous charge profile so 

it would be of interest to compare the structures that arise as a result of this assumption 

against experimental findings, in order to understand the importance and influence of 

anisotropic charge profiles.  

There are important secondary effects relating to the mechanical forces which may 

bias the structures also. The geometric element of this interaction – i.e., how two non-

spherical objects see each other and interact in 3-D space, given certain assumptions 

about their geometry – is scale independent, making the ideas developed in the thesis 

more widely applicable still, and thus the developed framework can potentially be 

applied to a wide range of physics and engineering problems. 

Finally, the agglomerated structure of needle-like particles is also of interest. For 

example, the microstructure of clay sediments is often composed of needle-like 

elements and their arrangement has implications for the porosity of the sedimented 

structure (Bennett et al., 1989). The arrangement itself is formed as a result of the 

interparticle forces and understanding the relationship between such forces and the 

resultant structures can give insight to the field and develop fundamental 

understanding of the mechanisms underpinning important geological processes.  
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Figure 1.1: SEM images showing agglomerated colloidal particles of corroded 

Magnox sludge taken from the pond facilities at Sellafield (Gregson et al., 2011). 
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Figure 1.2: SEM of micron-scale formation of ‘desert-rose’ type structures in LiCoO2 

samples. White scale bar indicates a length of 10μm. Image taken from Chen and 

Grey (2008). 

 

Figure 1.3: SEM photomicrograph of shallow-water oolitic carbonates, in particular a 

aragonite needle matrix (Bennett et al., 1989). 
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1.5 Aims, Objectives and Outline 

The high-level objective for the project is to contribute new understanding of 

multiphase flows, which will be achieved through investigations of particle 

agglomeration and non-sphericity. These two parameters are both challenging to 

implement individually, and in combination are very rarely studied. To the best 

knowledge of the author, there is no existing literature which incorporates both effects 

into high-fidelity simulations of turbulent flows, and so the novelty of the project is 

inherent to the methodology developed within. The aim is to devise a numerical 

framework that can form the basis for further expeditions into the field of turbulent non-

spherical particle agglomeration and lay the groundwork for further computational 

developments. The methodology will then be used to investigate the motion and 

agglomeration of non-spherical particles at a range of Taylor-Reynolds numbers, 

which have been specifically chosen to represent regions observed in pertaining wall-

bounded flows studied within the research group at the University of Leeds 

(Njobuenwu and Fairweather, 2015; Mortimer et al., 2019; Wolde, 2023). 

Practicality and industrial relevance are achieved through regular consultation with the 

industrial partner, Sellafield Ltd., who relay the challenges faced currently within the 

nuclear industry and hence inform the simulation set-ups. Both the particulate-phase 

and fluid-phase are modified to understand the most important factors affecting 

agglomeration, break-up, and dispersion in a turbulent flow. This information will be 

highly relevant to industry where behavioural modifications can be made to improve 

flow control. However, the freedom very much exists for obtaining insight at a much 

more fundamental level as seen fit, and this will be necessary to the development of 

the described novel models.  

In the homogeneous and isotropic turbulence box set-up used in this work, important 

features can be investigated in an isolated way which makes highlighting relevant 

mechanisms easier, as they are decoupled from other physical effects. Interactions 

can be studied in-depth to understand what is happening at the particle-scale – insight 

which can then be used to inform models that do not possess this level of fidelity. 

Specifically, boundary layers around the particle are resolved and their influence on 

particle motion studied. There will also be an implicit lubrication contribution due to the 

immersed boundary method. The particle interaction will be resolved in a time-
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dependent manner by consideration of the interaction potential between particles, the 

collisions will induce torques, as will DLVO contributions, thus there are a multitude of 

competing effects occurring at the particle-scale.  

DLVO theory, established by Derjaguin, Landau, Verwey, and Overbeek (Derjaguin 

and Landau, 1941; Verwey and Overbeek, 1948) describes inter-surface particle 

attraction and repulsion due to van der Waals and electrostatic forces. Such fidelity is 

not captured by conventional point-particle approaches and so the insight gained will 

be important in assessing the accuracy of approaches like Lagrangian particle tracking 

and providing recommendations on to how to improve those types of methods. 

Each of the larger-scale simulations utilise an immersed boundary technique coupled 

to the highly accurate flow solver, Nek5000. With the use of the University of Leeds' 

high performance computing clusters ARC3 and ARC4, high-fidelity simulations can 

be performed at scale to cover a wide parameter space and obtain many realisations 

of these chaotic systems.  

The current project used as its starting point an existing body of work (Mortimer, 2019). 

In existence already was an in-house immersed boundary code for spherical particles; 

this was coupled to forces facilitating (but having not yet resolved) permanent 

agglomeration in turbulence. There is significant scope to build upon this existing 

methodology. The code was written in such a way that it can be extended to non-

spherical particles, but further developments are to be made to complete this. There 

are many further challenges associated with non-sphericity that require significant 

code development. These include collisions and particle-particle force interactions 

which require modelling approaches that are known to be difficult to implement, and 

must be compatible with one another and the fluid solver. Lastly for the developments, 

the fluid simulations previously undertaken utilised the ‘linear forcing method’, further 

described in Chapter 2, which is to be replaced by an improved method to further 

develop the accuracy and breadth of capability of the simulation framework.  

All of this will first be tested, visualised, interrogated, improved and validated locally in 

the Python programming language before being integrated with the direct numerical 

simulation flow solver Nek5000 (written in the FORTRAN 77 language). Upon 

implementation of the code in the full solver, quiescent fluid conditions can be first 
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utilised to demonstrate the robustness of the method and highlight key elements of the 

model such as the influence of orientation and velocity on particle agglomeration and 

dynamics, where fluid effects are minimal. Then, homogeneous and isotropic 

turbulence will be introduced to the domain to study the interplay between non-

spherical particle agglomeration events and turbulent advection of the particles.     

The specific objectives of the project outlined at the beginning are as follows: 

• Improve the fluid-forcing technique for the generation of homogeneous and 

isotropic turbulence by implementing a forcing scheme more suitable for 

particle-laden systems. This should be formulated as an acceleration term that 

can be added to the Nek5000 ‘.usr’ file such that turbulence is forced at each 

time-step.  

• Perform a validation of the improved forcing scheme at two separate Reynolds 

numbers (𝑅𝑒𝜆 = 65 and 143), quantified and compared in terms of time-

averaged turbulence quantities and the time evolution of the flow field. 

• Implement a collision detection algorithm between non-spherical ellipsoidal 

particles and test its viability and robustness across the orientational-parameter 

space as a standalone piece of code in Python. Based upon this, develop the 

method with any adaptations necessary to improve convergence, robustness 

or applicability.  

• Incorporate this new piece of code as a module to Nek5000 (FORTRAN 77) 

such that it can be run concurrently with the flow solver in multiphase 

simulations. 

• Implement a hard-sphere collision algorithm that computes physically realistic 

collision outcomes between arbitrarily orientated ellipsoidal particles, built upon 

and coupled to the detection scheme. Test and adapt this in Python and then 

incorporate into the Nek5000 code.   

• Generate non-spherical particle meshes for the desired aspect ratios. Provide 

the necessary extensions to the immersed boundary solver such that the 

anisotropic particle meshes are properly tracked and rotated. Generalise the 

function used in the code for the particle’s inertia tensor such that arbitrary non-
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spherical shapes can be included. Generalise the rigid-body framework, in 

particular the update of particle torques, for particles of a non-spherical nature. 

Generalise the particle-phase boundary conditions to non-spherical particles. 

Generalise the injection code to non-spherical particles to ensure non-overlap. 

• Develop a methodology for including non-spherical DLVO forces into the 

particle advection module such that they experience realistic orientationally-

dependent forces. Verify the potentials formed between non-spherical particles 

across the orientational parameter space against existing literature. 

• Improve the numerical experimental set-up such that simulations resolve 

particle agglomeration (and do not always break up due to turbulence strength). 

Investigate the process of agglomeration and how this interacts with the 

collision module. 

• Investigate the role of orientations and velocities in particle agglomeration in 

periodic boxes of fluid with quiescent initial conditions for disks, needles, and 

spheres to provide insight into the role of morphology in agglomeration 

outcomes, as well as to provide a comparison case for turbulent simulations, 

and to better understand the proposed methodology in terms of the interaction 

between the modular components of the code. 

• Investigate the role of the strength of turbulence on particle agglomeration for 

three particle morphologies (spheres, needles and disks) and for three different 

turbulent flow conditions with properties aiming to approximate a viscous 

sublayer, buffer layer and bulk region of an associated channel flow.  

• Investigate the impact of behavioural modification techniques on the multiphase 

system in terms of the particle dynamics and interaction tendencies. These 

modifications should include alterations to the Hamaker constant, coefficient of 

restitution and the Taylor-Reynolds number of the flow. The same modifications 

will be made for both the spherical particle simulations and non-spherical 

simulations, which can then be compared in terms of their relative dependence 

on the varied parameters.  

• Develop a soft-sphere method for particle collisions that can be generalised to 

non-spherical shapes, making a proper correction for orientational 
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dependencies. Implement the methodology to run concurrently with Nek5000 

in place of the hard-sphere collision scheme, then validate the collision 

behaviours, and contrast with hard-sphere results. 

• Develop a computational framework that allows for the simultaneous 

computation of many particle interactions. Investigate the types of structures 

formed when more than two particles agglomerate in turbulence.  

1.6 Thesis Organisation 

To give a brief overview of the content of the thesis, the next Chapter will provide a 

theoretical background to the computation of turbulent multiphase flows, before 

focusing on reviewing the relevant literature relating to particle-laden flow dynamics, 

agglomeration and their numerical implementation. Chapter 3 will cover the 

methodologies used for all studies presented in the results chapters. Significant code 

and methodology development has taken place herein and this has been outlined in 

terms of the theory used and the numerical implementations undertaken. Chapter 4 

will be the first results chapter, and will demonstrate a validation of the particle-phase 

as well as present results on non-spherical particle interactions in a quiescent box. 

Chapter 5 will demonstrate a validation of the single-phase turbulence and present an 

investigation into the role of turbulence and morphology in non-spherical particle 

agglomeration. Chapter 6 will be the final results chapter, assessing the impact of 

behavioural modification techniques on non-spherical multiphase turbulent systems 

with recommendations for industry. This will be supplemented by a demonstration of 

the significant development of a non-spherical multi-particle soft-sphere 

implementation, with many mathematical and coding challenges overcome to reach 

this achievement described. Lastly, Chapter 7 will conclude the work and provide 

recommendations for future work in terms of extending the current approaches and 

developing new ones based on the insight obtained over the course of the project. 
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2 Literature Review 
This chapter provides a review of the particle-laden multiphase flow literature, focusing 

on the interaction of particles in turbulence and the computational methods commonly 

used in their study. An effort has been made to first describe the key theory as a 

foundation for the scientific developments in this thesis. Therefore, the chapter begins 

with important fundamental fluid dynamics concepts, which can be thought of as a 

background, containing discussions on the numerical solution techniques of the 

Navier-Stokes equations and computational fluid dynamics (CFD), as well as the 

theory of turbulence and its relevant length and time scales. This sub-section is 

rounded-off with a review of the literature pertaining to the most relevant flow-case to 

the present thesis – that of homogeneous and isotropic turbulence (HIT).  

Then, the focus turns to particles, addressing concepts such as motion, collisions, and 

interactions. Understanding these individual components in isolation is crucial to 

comprehending the complex interactions that occur when the two phases 

coexist. Finally, the review progresses to studies that focus on the interplay between 

particles and turbulence. This covers particle dispersion, clustering, and 

agglomeration findings, as well as the associated computational challenges and 

methodologies.  

2.1 Fluid Phase 
Fluid flows are encountered everywhere in nature and in industry: ranging from the 

gentle flow of water down a car windshield on a rainy day, to supersonic flows of burnt 

gases in a rocket nozzle. Fluids, which encompass liquids and gases, are composed 

of an unfathomable number of molecules at a microscopic level that behave like a 

continuous medium at the macroscopic level. The continuum approximation, which 

models fluid dynamic properties at a particular point in space and time as an ensemble 

average of molecular motion within a small local region, forms the basis of fluid 

dynamics. This ultimately allows for the formulation of the Navier-Stokes equations, 

which describe the motion of fluids to an exceptional degree of accuracy. The Navier-

Stokes equations are a set of partial differential equations which arise from enforcing 

conservation of mass and momentum on a small fluid element. Their solution and 
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analysis underpin much of the research undertaken in the field of fluid dynamics, but 

they are not yet analytically solvable in the general case, and it remains an open 

question in mathematics as to whether smooth and globally defined solutions always 

exist. Fortunately, numerical solution of these equations is possible, often with 

exceptional accuracy, paving a route forward.  

Naturally, numerical solutions present their own set of challenges because the 

equations are highly nonlinear and possess important information at a vast range of 

scales – often requiring significant computational resources or equation simplifications 

and models to achieve satisfactory results.  

2.1.1 Turbulence 

The nonlinearity of the Navier-Stokes equations gives rise to a fascinating 

phenomenon known as turbulence. Characterised by its chaotic and unpredictable 

motion at a range of scales, turbulence is highly irregular – and it remains poorly 

understood at a fundamental level, despite considerable attention. The mysterious 

nature continues to drive academic intrigue, and this is bolstered by its direct relevance 

to so many natural and industrial applications. 

In laminar flows, fluid layers travel parallel to one another in a predictable way. 

However, as the velocity of the fluid increases (relative to other properties), or 

disturbances are encountered in the flow field, instabilities arise. It is from these 

instabilities that turbulence is born. Turbulent flows have greatly enhanced mixing due 

to their transportation of fluid perpendicular to the mean flow direction, in what are 

referred to as vortices or eddies, which are the swirling motions associated with 

turbulent flow. This mixing occurs much faster than achieved by regular diffusion. The 

increased shear stresses in turbulent flows perform deformation work and thus act to 

convert kinetic energy in the fluid to internal energy; hence, a turbulent flow is also 

much more dissipative (Tennekes and Lumley, 1972).  

The relative importance of the individual terms in the Navier-Stokes equations (in 

particular, the inertial and viscous terms) helps researchers to understand conditions 

necessary for the onset of turbulence. From a physical viewpoint, there is a 

competition between the viscous forces which lead to the dissipation of energy and a 

dampening of the flow, and the inertial forces which can ultimately lead to the formation 
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of turbulent structures. The ratio of inertial to viscous forces is known as the Reynolds 

number and is defined as: 

𝑅𝑒 =
𝑈̃𝐿̃

𝜈
,    (1.1) 

where 𝑈̃ and 𝐿̃ are characteristic velocity and length scales, respectively, and 𝜈 is the 

kinematic viscosity of the fluid. 

This dimensionless parameter helps to characterise a flow and predict its flow regime, 

i.e. whether it is going to be laminar, turbulent, or transitional. For low Reynolds 

numbers, a laminar flow regime is expected; whereas, for high Reynolds numbers, 

that exceed the critical Reynolds number, turbulence is expected to occur. This critical 

number is geometry specific but, for example, it tends to be around 2000 for pipe flows 

(Tennekes and Lumley, 1972). 

2.1.2 Turbulent Energy Cascade 

A series of very important developments in the theory of turbulence originate from the 

seminal work of Richardson (1922) and Kolmogorov (1941). Much of the modelling of 

turbulence is based on their ideas. It was noted by Richardson (1922) that turbulent 

flows consist of eddies of different sizes which interact with each other in a special 

way:   

’Big whorls have little whorls that feed on their velocity; And little whorls have 

lesser and so on to viscosity.’ 

The different sizes of the eddies represent a range of length scales with corresponding 

time scales. Instabilities in the larger ‘mother’ eddies cause them to break down into 

smaller eddies – the ‘children’. This breaking down of size due to instability allows the 

transfer of energy to gradually cascade from the larger scales to the smaller scales. 

This continues until the kinetic energy is contained within a small enough flow scale 

that molecular diffusion becomes important, converting it into thermal energy, which is 

termed ‘viscous dissipation’. 

Kolmogorov (1941) theorised that, for the smaller scales of turbulence, statistically the 

flow is locally homogeneous and isotropic, which is to say that the average motion 
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does not depend on position or direction. The structure of the small scales within all 

instances of turbulence are therefore similar, regardless of the various mechanisms 

that might have led to the inception of the turbulence. In this theory, the totality of the 

small-scale turbulence can be characterised by two parameters, the energy dissipation 

rate 𝜖𝐹 and the kinematic viscosity 𝜈𝐹. Then, dimensional analysis leads to the 

following properties of a turbulent flow. The Kolmogorov length scale, the scale at 

which the fluid’s kinetic energy is dissipated to heat, is 𝜂 =  (
𝜈𝐹

3

𝜖𝐹
)

1

4
  and the associated 

Kolmogorov time scale is 𝑇𝜂 = √
𝜈𝐹

𝜖𝐹
. A real turbulent flow is fluctuating and so, locally, 

the fluid dynamics at these scales will be fluctuating too. Kolmogorov’s theory 

therefore only offers statistically representative scales typical of the given flow.  

The assumption of local homogeneity and isotropy is justified by the vast difference in 

time and length scales of the largest motions in comparison to the small ones. In the 

timeframe of the large motions, the small ones are effectively in statistical equilibrium 

(George, 2013). To give an impression of scale, atmospheric flows with large-scale 

motions on the order of kilometres can have a Kolmogorov length scale on the order 

of millimetres. For an industrial pipe flow with a diameter of around 10𝑐𝑚 the 

Kolmogorov scale could be expected to be on the order of 0.1𝑚𝑚, depending on 

Reynolds number. More precisely, Bailey et al. (2009) demonstrated experimentally 

that for a pipe with a diameter of 12𝑐𝑚 and a Reynolds number based on this diameter 

of 70,000, the Kolmogorov length scale is measured at 0.22𝑚𝑚.  

George (2013) outlines how Kolmogorov’s picture of turbulence may be incomplete, 

referring to a more complex reality of turbulence that can be inferred from modern flow 

visualisations and direct numerical simulations. The author suggests that there is a 

more dynamic interplay at hand between small and large structures, which appear to 

be inherently intertwined, particularly when it comes to coherent flow structures. The 

smaller scales can, in reality, also transfer energy back up to the larger scales, but the 

net direction (of energy transfer) is in keeping with Kolmogorov’s theory.  

2.1.3 Energy Spectra 

It has been established thus far that turbulent flows consist of a range of eddy sizes. 

Each of these eddy sizes contribute to the overall energy content of the flow and this 
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energy is not distributed evenly across the various scales – rather, the energy content 

forms a distribution known as the energy spectrum. This spectrum provides insight 

into the relative importance of various length scales in the turbulent flow, indicating the 

energy content at each length scale and allowing identification of the energetically 

dominant scales of motion in the flow.  

Rather than considering the length of the eddies directly, they can be characterised in 

terms of their spatial frequency, which is proportional to the inverse of their length. 

Eddies have a characteristic wavenumber 𝜅 based on their length scale 𝐿𝐸, defined 

by the simple relation 𝜅𝐸 =
2𝜋

𝐿𝐸
. 

 

Figure 2.1: Energy spectrum of a turbulent flow, with sub-ranges separated by 

vertical dashed bars, and the universal form indicated by a dotted line. The blue 

swirls illustrate the reducing size of the eddies, with three key length scales 

indicated. 

Figure 2.1 illustrates a typical energy spectrum for a turbulent flow which contains 

subdivisions into the energetic range, the inertial subrange and the dissipative 

subrange. The energetic range refers to the range of length scales where the bulk of 

the energy resides; this region is characterised by coherent structures, large-scale 

vortices, and includes the dominant modes of energy transfer within the flow. The 
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inertial subrange refers to the wavenumbers where the energy cascade occurs, 

transferring energy from the small wavenumbers to the large. At which point, the 

energy reaches the dissipative subrange where the viscous forces dominate, and the 

kinetic energy is converted to heat.  

Kolomogorov’s theory predicts a universal form for the energy spectrum in the inertial 

subrange. That is, 𝐸(𝜅𝐸) ∼ 𝜅𝐸
−5/3

 , which was noted independently by Obukhov (1941). 

This has been the subject of much validation which has increased the confidence in 

the overall theory (Dubrulle, 2019).  

2.1.4 Measuring Turbulence 

Turbulence is nontrivial to quantify, owing to its wide range of scales, structures, and 

intricate dynamics. This vast spatial and temporal landscape poses an experimental 

challenge too, in that achieving a high level of resolution for the velocity field in 

laboratory experiments simultaneously for all scales is very difficult. One of the primary 

challenges for these measurements is the disruption of the turbulence which can be 

caused by inserting probes or sensors into the flow field. The presence of 

measurement devices thus alters the flow characteristics, leading to results that are 

not representative of the desired system.  

To overcome this challenge, non-intrusive measurement techniques are sometimes 

utilised. Such techniques enable measurement without physical contact with the flow. 

Advanced imaging techniques, such as particle image velocimetry (PIV) or laser 

Doppler velocimetry (LDV), allow for the visualisation and analysis of turbulent flows 

without direct interference. For example, LDV was utilised by Den Toonder and 

Nieuwstadt (1997) to conduct an investigation of mean flow and turbulence statistics 

in a pipe, finding a Reynolds number dependence in their statistics. Mochizuki and 

Nieuwstadt (1996) present an exhaustive list of many experimental endeavours in the 

pursuit of analysing turbulent statistics and the Reynolds number independence of 

wall-bounded flows. The study of Den Toonder and Nieuwstadt (1997) is an example 

of high-quality experiments forming excellent benchmark cases for numerical 

simulations. It can be argued that progressing the field of fluid dynamics relies on an 

interconnection between physical and numerical experiments. In some cases, 

numerical investigation allows the researcher to go beyond what is possible with 



23 
 

current measurement techniques, but validation against experimental data is 

necessary to ensure the integrity of any such computations. 

2.1.5 Computational Fluid Dynamics 

Numerical modelling therefore offers an avenue to gain insight that is difficult to obtain 

through physical experiments: perhaps due to an experiment’s prohibitive costs or the 

complexity of recreating the desired system in a laboratory. The arrival of computers 

powerful enough to compute numerical solutions of the Navier-Stokes equations has 

revolutionised the field of fluid dynamics. Since then, computing power has continued 

to increase, meaning an ever-greater applicability of this avenue of investigation 

(Agarwal and Lewis, 1992; Jamshed, 2015).  

By discretizing the governing equations, the computational domain, and the evolution 

of time, computers can iteratively obtain solutions to the Navier-Stokes equations that 

become increasingly accurate as the resolution (the number of discrete points in space 

or time where the solution is obtained) is increased. This allows a spectrum of fidelities 

to be achieved at the discretion of the user. In the limit of increasing resolution, these 

solutions are bounded only by computational resources and the accuracy of the 

equations themselves.       

However, it is important to balance this enticement with an appreciation for the 

limitations. Just like experiments, mistakes appear, either through programmer error 

or oversights in the formulation of the numerical method. Careful consideration must 

therefore be made such that obtained results can be taken forward with confidence. 

This is achieved by first assessing assumptions made in the modelling stage. These 

assumptions guide the formulation of the numerical model and help capture the 

essential physics of the problem at hand. Making any such assessment therefore 

requires understanding the underlying physics, including identifying physically realistic 

boundary conditions, and understanding the limitations or requirements of the 

numerical methods employed.  

After this, it is important to validate against previous work, ideally experiments, 

wherever possible. Comparisons with experimental results allow for a critical 

evaluation of the model's ability to reproduce real-world phenomena. Sometimes a 

validation of the model against adjacent systems must suffice where direct validation 
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is not possible. In the case where such validation is not possible, it becomes doubly 

important to understand the system being modelled to the fullest extent possible, as 

well as to understand the common challenges associated with the implementation. 

This means that CFD research occurring at the forefront of current capabilities requires 

a real appreciation of the physics, since there often is no means of comparison or 

specific guidance. 

The vast range of scales inherent to turbulent systems means that significant 

resolution is required, but there are certain models and methodologies that look to 

circumvent this problem. Computational resources can be spared at the expense of 

accuracy, and it is up to the investigator to decide where to draw the line. Often this 

decision will be related to requirements of the academic or engineering challenge that 

is being investigated. For fast and instructive simulations aimed at determining key 

bulk phenomena, a lower degree of accuracy will suffice. To generate benchmark 

solutions or investigate fundamental phenomena, a greater level of accuracy is 

required. Sometimes, the very small scales of the flow have a large effect on the 

macroscopic behaviour of the system and so resolving these scales is necessary in 

obtaining sound results. This is the case with accurately resolving boundary layers on 

an aerofoil, or the dynamics of small particles immersed in a flow field.   

One way to reduce computational load is through intelligent meshing – where the 

‘mesh’ is the colloquial term for the numerical grid that overlays the domain to obtain 

a solution. Grid nodes, or mesh points, need not be evenly spaced across the domain 

and so it makes sense to have higher degrees of resolution at the points where it is 

needed, for example where the velocity gradients are greatest. Running test 

simulations and performing grid-independence studies can also help to instruct the 

design of the mesh, and so too can understanding the flow phenomena associated 

with certain geometries. Further still, one can use adaptive mesh refinement 

techniques which dynamically adjust local resolution to concentrate the computational 

efforts at the areas that require it (Hu et al., 2001). 

Another simplification that is widely employed is the use of a turbulence model. Rather 

than requiring very high resolution to capture every velocity fluctuation, knowledge 

about turbulence can be used to construct models that impact the mean flow in the 

same way that turbulence would. Such a model will then operate on the same length 
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and time scales as the bulk flow allowing for reduced computational requirements. 

These models essentially describe the averaged effects of turbulence. 

2.1.6 Reynolds-Averaged Navier-Stokes 

The Reynolds-Averaged Navier-Stokes (RANS) simulation technique is widely 

adopted in industrial settings and underpins many of the commercial CFD solvers that 

are used today, thanks to its fast compute time. The method relies on averaging the 

Navier-Stokes equations to obtain a set of equations that represent the mean flow, as 

alluded to in the previous subsection.  

Specifically, a Reynolds decomposition is employed where the flow is split into a mean 

and a fluctuating component. Averaging gives the RANS equations, but the 

nonlinearity of the Navier-Stokes equations means that a term known as the Reynolds 

stress still contains a dependence on the velocity fluctuations. This is known as the 

closure problem. It is this term which requires modelling. Commonly used to close the 

equations are the 𝑘 − 𝜖 and 𝑘 − 𝜔 turbulence models, which have many sub-

denominations in wide use (McConkey et al., 2021).   

With the small-scale behaviour averaged out, RANS allows the use of a relatively 

coarse numerical grid. This technique often drives towards a steady-state solution 

which means no requirement for time-stepping, and a further reduction in 

computational cost. Cases with time-dependence retained are known as unsteady 

RANS or URANS, utilised for applications with dynamic processes. 

2.1.7 Large Eddy Simulation 

As the name suggests, large eddy simulations (LES) remove the smallest eddies from 

the flow – through a filtering technique. These small scales require the most 

computational resources and so efficiency is increased. Much of the turbulence is still 

modelled, typically corresponding to around 80% of the turbulence energy content 

(Pope, 2000), and this is resolved all the way down to a certain cut-off length scale. 

Below this, a sub-grid scale model is employed which captures an averaged effect. 

This technique still obtains a reliable solution and lies between RANS and DNS in 

terms of accuracy. 
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2.1.8 Direct Numerical Simulation 

Direct numerical simulation (DNS) involves no additional modelling of the flow. All time 

and length scales are resolved down to the Kolmogorov scales described earlier. This 

often requires a very dense mesh with many grid nodes and a very small timestep to 

recover the dynamics on the order of the Kolmogorov scales. If these requirements 

are met, then the generated results are closely aligned with what the Navier-Stokes 

equations predict. As such, they are a very strong investigative technique for studying 

fundamental fluid phenomena in detail and offer a good avenue for research into 

turbulence. Naturally, this is not a practical technique for industrial applications due to 

the very long compute times. Access to high performance computing systems can aid 

with the practicality but these are often not used in current industrial settings; however, 

their use is increasing (Government Office for Science, 2021).    

2.1.9 Further Solution Methods 

These three simulation techniques span the levels of resolution available for the 

computation of the Navier-Stokes equations. However, within these techniques there 

are further denominations and methodologies. The way the solutions are obtained in 

terms of the discretisations used, the mesh topologies, and the way information is 

passed around the mesh, are all areas of difference. For example, finite-volume, finite-

difference, finite-element, and spectral methods (Boyd, 2001), are all numerical 

methods for the computation of partial differential equations and they all are used in 

CFD applications to generate solutions to the Navier-Stokes equations (Aref and 

Balachandar, 2018).  

Further still, simulation techniques exist which do not solve the Navier-Stokes 

equations directly, like the Lattice-Boltzmann method which has wide applicability to 

complex geometries due to its loose boundary conditions (Chen and Doolen, 1998). 

Smoothed particle hydrodynamics offers another avenue and is a method that does 

not require a mesh, which comes with its own advantages and challenges (Monaghan, 

1992). 
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2.1.10   Homogeneous Isotropic Turbulence and the Taylor-Reynolds 
Number 

Homogeneous and isotropic turbulence is a type of idealised turbulence in which the 

time-averaged statistics are independent of position and direction (Taylor, 1935). It 

typically exists within a periodic box. These boxes of turbulence offer a unique way to 

study turbulent behaviour free from the influence of mean flow or geometry, which can 

be particularly relevant to multiphase flows, since the interaction between particles and 

turbulence can thus be studied in an isolated way for the purpose of generating 

fundamental insight.  

In homogeneous and isotropic turbulence, it can be useful to introduce a parameter 

known as the Taylor microscale, used to characterise turbulence levels. The Taylor 

microscale represents the length scale at which the viscosity of a fluid significantly 

affects the dynamics of its eddies. This length falls within the inertial subrange and is 

larger than the Kolmogorov length scale (which falls in the dissipative subrange). The 

Taylor microscale (Tennekes and Lumley, 1972) is given by: 

𝜆 = √
15𝜈𝐹

𝜖𝐹
 𝑢′,    

(1.2) 

where 𝑢′ is the root mean squared (RMS) velocity fluctuation. This can then be used 

to define the Reynolds number based on the Taylor microscale, known as the Taylor-

Reynolds number: 

𝑅𝑒𝜆 =
𝜆𝑢′

𝜈𝐹
.    (1.3) 

2.1.11   Forcing of Homogeneous and Isotropic Turbulence 

As established in the background section, at the smallest scales of turbulence, energy 

is converted to heat and dissipated from the system. In the case of periodic boxes of 

homogeneous and isotropic turbulence, this mechanism eventually acts to dissipate 

all of the turbulence kinetic energy until the fluid is motionless at the continuum level. 

This is due to the absence of any inherent turbulence generating mechanisms like 

boundary-induced shear. Hence, for sustained turbulence, one must introduce a 
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numerical scheme that replenishes the dissipated energy. Such efforts are known as 

forced approaches – in contrast to decaying approaches, which involves an initial 

condition for the velocity field being chosen possessing energy and, as time evolves, 

the field is allowed to decay.  

The obvious disadvantage of a decaying turbulence field is the limited time window in 

which investigation can take place. In the context of particulate flows, this may be 

prohibitive to resolving desired phenomena such as multi-particle agglomeration 

structures, which can take a significant period of time to form (Spoelstra, 1989). Forced 

turbulence circumvents this problem and allows the turbulence field to become 

statistically stationary, often allowing the opportunity to select specific desired 

turbulence properties. This makes it a useful investigative tool. Outside of the context 

of periodic boxes, these same turbulence forcing techniques can be used to promote 

turbulence or to introduce turbulence-like randomness into RANS solutions, for 

example in aeroacoustic noise generation (Béchara et al., 1994; Bailly and Juve, 

1999). 

There are several successful approaches to the problem of forcing, most of which 

involve the addition of a forcing term to the Navier-Stokes momentum equation. One 

widely used method is that of Lundgren (2003) who introduced a forcing term 

proportional to the local velocity field. Lundgren considered the turbulence kinetic 

energy budget equation and noticed that the production term proportional to the 

velocity is absent in the case of homogeneous and isotropic turbulence, hence the 

author derived a forcing scheme that enhances the production of energy. The class of 

methods that have followed this approach are known as linear forcing schemes, for 

example that of Rosales and Meneveau (2005).  

Lundgren’s approach is simple to implement and effective at producing turbulence. 

However, it is well-established that the integral length scale of the turbulence is limited 

to 0.13 times the size of the box (Janin et al., 2021) which limits the range of turbulent 

systems available to the investigator. Beyond this, the turbulence is slow to become 

statistically stationary and has been observed to diverge over time particularly with the 

inclusion of particles (Chouippe and Uhlmann, 2015). Moreover, the transfer of kinetic 

energy from particles to the fluid is interfered with by linear forcing, since energy is 

introduced at all wavenumbers, including those at which the particles are having an 
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influence (Mallouppas et al., 2013). This makes such a scheme problematic for 

particle-laden flows and inappropriate for two-way coupling regimes and beyond (Lucci 

et al., 2010).      

An alternative approach to the linear forcing method, and to generating the forcing in 

physical space more broadly, is the construction of the forcing scheme in Fourier 

space. Kraichnan (1970) laid the mathematical work for many forcing methods that 

would follow, e.g. Mallouppas et al. (2013) and Janin et al. (2021). The idea of this 

method is to construct a synthetic velocity field in Fourier-space which can be used to 

generate a forcing field for the fluid. The random Fourier modes are summed over a 

spherical shell in such a way that statistical homogeneity and isotropy are recovered. 

The method takes as an input an energy spectrum which defines the distribution of 

energy added to the simulation through the forcing. One key advantage of this method 

is the ability to choose the wavenumbers of the fluid to which this energy is supplied. 

The common pertaining exploitation is to only supply energy to the smallest 

wavenumbers of the fluid, which is equivalent to driving the largest scale motions. The 

smallest scales of the turbulence are then developed by the energy cascade. In the 

case of multiphase flows, this removes the interference with length scales relevant to 

the particle-phase, demonstrated by Mallouppas et al. (2013).  

Some forcing methods depend on the resolved velocity field at each timestep, in which 

case the method is said to be deterministic. One advantage of this approach is to have 

more control over fluctuations in the global statistics of the flow during the simulation. 

For example, if the turbulence kinetic energy (TKE) drops due to the natural cascade 

of energy, more energy can be supplied to rectify this immediately. This controlled 

modulation of the turbulence field allows a reduction in the oscillations of such 

properties as the kinetic energy. Janin et al. (2021) introduced a synthetic source term 

into the Navier-Stokes equations based on the method proposed by Schmidt and 

Breuer (2017). In their work, the amount of energy to be injected at each timestep is 

drawn from an energy spectrum, and so they introduced a selective forcing scheme 

that only draws from the pre-defined spectrum up to a cut-off wavenumber, such that 

the correct amount of energy is supplied. This cut-off wavenumber can be dynamically 

controlled by considering the balance of required energy with the dissipation in the 

system. The result demonstrated by the authors was vast reductions in the oscillations 

of TKE in the system over time.  
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Another advantage of deterministic schemes is faster convergence towards the 

desired TKE levels, which is particularly pronounced in forcing schemes that use a 

modulation coefficient based on this desired energy, e.g. in the methods proposed by 

Carroll and Blanquart (2013), Mallouppas et al. (2013) and Bassenne et al. (2016).   

Eswaran and Pope (1988) and Alvelius (1999) are two examples of approaches that 

generate the forcing field independently of the resolved fluid velocity. Such schemes 

are said to be stochastic. Eswaran and Pope (1988) rely on the use of Uhlenbeck-

Ornstein random processes to drive the evolution of the field. The advantage of this 

approach is most obvious in application to multiphase flows, wherein a source of 

instability is removed that arises from the forcing being dependent upon the velocity 

(Chouippe and Uhlmann, 2015). Secondly, it is immediately clear what alterations to 

the (sufficiently time-averaged) fluid quantities were a result of the introduction of the 

particle-phase, since there is no interaction with the forcing scheme.  
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2.2 Particle-Phase 

2.2.1 Introduction and Relevance 

There are various numerical simulation techniques for capturing particle behaviour on 

many scales, such as molecular dynamics, the discrete element method (DEM), 

dissipative particle dynamics, and stochastic methods (Español and Warren, 2017). 

The work herein involves macroscopic particles treated as discrete and distinct entities 

and so the discrete element method (Cundall and Strack, 1979) and the pertaining 

literature is of relevance. There, particles are tracked individually with motions updated 

according to Newton’s second law, with contact mechanics resolved. Whilst the 

present work considers the interplay between the motion of particles and a fluid, the 

modelling techniques used to study particles in isolation can be instructive and, in 

some cases, directly applicable. Two key cases where this holds true are for the 

modelling of particle-particle collisions and particle-particle attractive interactions. 

Moreover, non-sphericity remains challenging to numerical studies, and many of the 

first steps to include the physics of non-sphericity have taken place in a simpler context 

that does not include a fluid.    

2.2.2 Non-Spherical Challenges 

The modelling and study of non-spherical particles is much more challenging than the 

spherical counterpart because of the orientational degrees of freedom and the 

additional complexity this introduces; for example, how the forces and torques 

experienced by the particles depend upon specific orientations. Further still, these new 

degrees of freedom can interact with the translational degrees of freedom in nonlinear 

and complex ways.  

The first challenge lies with tracking the orientation of the particles over the course of 

a simulation. For rigid-body particles, this is typically done through the use of Euler 

angles (Lu et al., 2015) which require an associated rotation convention (Goldstein, 

1950). There are multiple such conventions of choice, but the result is typically the 

construction of a rotation matrix which can be used to update the orientations of rigid 

particles. Evans and Murad (1977) developed an approach with a quaternion 

formulation of the orientation matrix, using Euler parameters, that allows for the robust 

and efficient tracking of particles. The use of quaternions in favour of Euler angles is 



32 
 

preferable since there are singularities inherent to the Euler angles which make them 

inefficient to compute, whilst there is no such problem with quaternions (Fan and 

Ahmadi, 1995).  

The quaternion approach was further developed by Zhao and van Wachem (2013) 

such that there is no requirement for an orientation matrix and rotations can be 

computed directly from the quaternions. These methods have been successfully 

applied to research problems such as the discrete element modelling of non-spherical 

particles (Langston et al., 2004) and two-phase channel flows (Mortensen et al., 2008; 

Njobuenwu and Fairweather, 2013a). The rotations and angular velocities of the rigid 

particles will then typically be calculated according to Euler’s rotation equations (Lu et 

al., 2015). 

2.2.3 Collisions: soft- and hard-sphere 

When two bodies come into contact there is an exchange of momentum and a loss of 

kinetic energy associated with the collision, this needs to be modelled in a simulation 

with particles to ensure the kinetic energy of the particle-phase remains physically 

realistic (Machado et al., 2012). There are many options when it comes to computing 

this process. At the most basic level of modelling, instead of computing collision 

mechanics, particle overlaps can be prevented without a physical model at all. 

Particles found to be overlapping could simply be moved such that they are no longer 

overlapping, or a non-physical repulsive force can be implemented normal to the 

particle surfaces preventing particles getting close enough to touch (e.g. Shardt and 

Derksen, 2012). At the other end of the spectrum, full tracking of the particle surface 

and its deformation under load can be computed and even coupled to a fluid-phase in 

the case of fluid-structure interaction problems. The most common approaches lie 

between these extremes. They are referred to as soft-sphere (Tsuji et al., 1993) and 

hard-sphere (Hoomans et al., 1996) collision models. Both look to model the kinetic 

energy loss in a collision event. These approaches are effective and computationally 

efficient hence why they predominate. In the literature, hard-sphere collisions may also 

be referred to as ‘event-driven’ and a soft-sphere collision as ‘time-driven’, in keeping 

with their respective implementations being instantaneous and temporal, respectively. 

Generally, hard-sphere collisions do not permit the overlap of particle surfaces for 

more than a single time-step and some models do not allow an overlap at all. In the 
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latter case, a collision is deemed to have occurred when the distance between particle 

surfaces is less than a small prechosen value. Momentum conservation is used to 

determine the mechanics of the collision, and this is computed in a classical way, 

reminiscent of pool-ball calculations undertaken in a high-school physics class. Except 

now, a parameter known as the ‘coefficient of restitution’ is included to model energy 

loss. The calculation takes place over a single time-step and can therefore be thought 

of as an impulse force model. Despite being a simple model, it is effective for materials 

which do not deform much under contact and have a known coefficient of restitution 

obtained through experiment. It is worth noting that a complexity arises for anisotropic 

morphologies (for both hard and soft models), where properties such as the coefficient 

of restitution are dependent upon the exact position on the surface that an impact 

occurred (Wynn, 2009).   

The soft-sphere model offers slightly more resolution and does permit overlap. 

Collisions under this model will take place over a number of timesteps with the strength 

of the collision force depending upon the depth of the overlap. A Hertzian contact 

model is employed under the assumption that deformations to the surface can be 

approximated to first order. The implementation is typically handled through a linear 

spring-dashpot system in which the coefficients used in the model are parameterised 

according to the material properties of the particles (Costa et al., 2015). 

It is not clear how to effectively handle multiple collisions in a single time-step between 

many particles in the hard-sphere model and so the soft-sphere approach holds an 

advantage for denser systems. It is for this reason that soft-sphere modelling is more 

widely used in DEM simulations (Ma et al., 2022) and commercial packages where 

many particles are present, for example in granular flows or the formation of 

sedimentary beds. Since the compute time that is required scales with the collision 

frequency, hard-sphere methods are preferable in the context of dilute systems. Buist 

et al. (2016) were able to combine the advantages of both in their creation of a hybrid 

scheme that uses an adapted hard-sphere methodology for binary collisions and a 

soft-sphere methodology for collisions involving multiple particles. 

Non-spherical collisions are significantly more complex to resolve due to their 

orientational dependency and the breaking down of many of the assumptions 

underpinning spherical collision modelling. The computation of the resultant physics 
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depends on the direction of the vector normal to the tangent surface at the collision 

point, and this is nontrivial for anisotropic particles. For a typical collision between non-

spherical particles, a torque will be induced by the fact that the normal vector along 

which the collision force acts very rarely points towards the centre of mass. Further, 

this creates confusion relating to the coefficient of restitution which is typically defined 

as the ratio of the post-collision normal velocity to the pre-collision normal velocity and 

as such, energy conservation in terms of the rotational degrees of freedom is often not 

properly considered for non-spherical particles, unless direct consideration is made of 

the contact point location which can be difficult to define. It also creates a challenge 

when it comes to choosing a coefficient of restitution to match a specific material, when 

it is very likely that this value has been obtained for normal spherical collisions.  

Regarding the numerical implementation, the first key element of a collision algorithm 

is the contact detection scheme. For spheres, this is very straightforward. One can 

simply subtract the sum of the radii from the distance between centres to find the 

distance between surfaces. It is much more complicated in the case of non-spherical 

particles, where determination of the contact can take around 80% of the particle-

phase computation (Williams and O’Connor, 1999). If the position of the particle 

centres is fixed in space, the distance between surfaces remains dependent on the 

relative orientation of the bodies. Hence, it is necessary to include an algorithm that 

can determine the contact, or closest distance vector, between particles. This vastly 

increases the computational requirement of the collision module in comparison to that 

of spheres. However, this may not greatly increase the overall compute time in 

multiphase systems if the solution of the fluid-phase is orders of magnitude more 

intensive; for an extreme example, imagine the case where just two particles are 

coupled to an entire channel flow DNS. 

For cases where there are many particles interacting, and potentially colliding, it is 

known that the number of particle interactions scales with the number of particles 

squared. There are, however, efficient algorithms that reduce the computational 

complexity and ought to be utilised for calculations with many particles. For example, 

Breuer et al. (2012) presented an efficient contact detection search algorithm that uses 

two staggered grids, reducing the computational complexity by an order of magnitude 

such that it is on the order of the number of particles. 
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In a review of recent advances in non-spherical DEM modelling, Ma et al. (2022) 

outline two key categories for collision detection algorithms between super-ellipsoidal 

(an extension of ellipsoidal) particles. These are the common normal and geometric 

potential approaches. In the former approach, the geometrical fact that a common 

normal vector, tangent to both surfaces, must be shared at the closest point between 

convex bodies, can be leveraged to devise iterative schemes that drive towards the 

points satisfying this condition (Jain et al., 2019) using a variation of gradient descent. 

Alternatively, the problem can be written as an optimisation problem to be solved by 

Newton’s method (Wellman et al., 2008). The geometric potential methods do not 

always satisfy the aforementioned condition which can lead to different results 

between approaches, but for small overlaps they tend to be closely aligned.  

Throughout the literature, the geometric potential method is preferred for its quick 

convergence (Dziugys and Peters, 2001; Gan et al., 2015). The idea of the geometric 

potential method is to devise a function – the geometric potential – that is minimised 

by the points of deepest penetration in opposing particles. This function is less than 

one for overlapping particles, equal to one for contacting particles, and greater than 

one for particles that are not touching. The minimum of the function in these cases 

then defines the deepest overlap point, the contact point, and the closest point of 

approach, respectively.  

Donev et al. (2007) used an overlap potential method for contact detection and 

resultant forces in the context of studying jammed packings of hard ellipsoids. Gan et 

al. (2015) used the geometric potential method for determining overlaps, contacts, and 

distances between attractive fine ellipsoidal particles in CFD-DEM simulations of 

fluidisation and again in simulations of packing (Gan et al., 2016); however, no attempt 

is made to account for particle shape in the resulting contact mechanics.  

There are also approaches to the problem of contact detection that use particle 

meshes which already exist for use elsewhere in the simulation. Nagata et al. (2019) 

used image points reflected over the particle boundary, which were already there as 

part of their ghost-cell immersed boundary method. These image points were reused 

as probes to check for collisions between non-spherical particles. Shardt and Derksen 

(2012) simulated dense suspensions (~45% volume fraction) of red blood cells with 

resolution of their bi-concave shape, and with collisions accounted for by distributing 
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normal vectors across the surfaces of the particles. These normal vectors were 

iterated over and checked for proximity to other normal vectors on neighbouring 

particles. Any distances below a small threshold were deemed to represent a contact 

and a repulsive force was applied along these normal vectors proportional to a 

computational parameter chosen to represent the strength of the collision force. The 

same normal vectors were also used in their immersed boundary scheme, saving 

computational resources. A full order of magnitude difference was observed in the 

sedimentation rates measured in their calculations when compared to a reference 

medical experiment. This was attributed to an absence of agglomeration-inducing 

forces and serves to highlight the importance of including such forces in the modelling 

of systems where they are acting. 

The robust and effective collision models developed for spheres are often extended 

and applied to non-spherical particles. There is not one agreed upon way to do this, 

and so different methods can generate different results (Ma et al., 2022). When it 

comes to non-spherical soft-sphere collisions and their requirement for an overlap, it 

is not agreed upon how the contact point should be defined during overlap (Lu et al., 

2015). The two foremost approaches are the use of the geometric centre of the 

overlapping volume, or the midpoint of the line that connects the two deepest points 

of overlap on the respective bodies.     

Upon identification of a contact, there remains the challenge of computing the resultant 

mechanics. For non-spherical particles, there lacks an all-encompassing framework 

for this computation and there is scope for the development of such. Jain et al. (2019) 

published an approach to modelling non-spherical hard-sphere collisions in a viscous 

fluid, with analysis undertaken to determine the requisite forces and torques, this 

included a novel contact detection scheme using a common normal method. This was 

complemented by a model for lubrication forces acting on a scale not resolved by the 

computational mesh wherein non-sphericity was accounted for using the local 

curvature of the body. Their initial findings demonstrated an orientational dependency 

in the resolved coefficient of restitution and an interplay between this parameter and 

the lubrication forces. Jain et al. (2020) successfully applied this method in a further 

study for the investigation of bedload sediment transport. In a comparison of collision 

detection schemes, Girault et al. (2022) reported issues with the convergence of this 

scheme for small separation distances, for which the original authors published an 
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addendum (Jain et al., 2022). In this addendum, the use of the scheme was not 

recommended due to the computational resources required at small separations. 

In the algorithm comparison paper of Girault et al. (2022), further methods for 

computing the distance between ellipsoidal particles were compared and assessed in 

terms of their applicability to particle-resolved direct numerical simulations. As well as 

the above common normal method, they contrast a Newton-Coulomb method 

(Abbasov, 2015), the Gilbert-Johnson-Keerthi (1988) algorithm, the penalty function 

method (Tasmasyan, 2014), an algebraic method (Uteshev, 2008), and the moving 

balls method (Lin et al., 2001). The comparison resulted in the Newton-Coulomb 

approach being ruled out for its divergent behaviour. The penalty function method and 

the common normal approach of Jain et al. (2019) were ruled out for computational 

efficiency reasons. The moving balls and Gilbert-Johnson-Keerthi methods were found 

to be comparable in terms of their robustness and speed, and well-suited to particle-

laden DNS. 

In a study of non-spherical particles in a channel flow, van Wachem et al. (2014) 

constructed their non-spherical particles entirely from spheres in the collision detection 

step and checked for collisions between the spheres that represented their abstract 

shape – as did Langston et al. (2004). The former was coupled to a soft-sphere 

approach, citing the spherical approach of Mindlin and Deresiewicz (1953), under an 

axisymmetric assumption about the contact points. It is not stated if there was any 

effort to include non-sphericity into the collision mechanics.  

The literature on soft-sphere methodologies for non-spherical particles is quite sparse 

for multiphase flows where a proper correction has been made to the soft-sphere force 

to account for shape and orientation. In the context of an immersed boundary method, 

Ardekani et al. (2016) implemented a non-spherical soft-sphere model based on one 

derived for spheres by Costa et al. (2015), with a correction made for the respective 

curvatures at the contact point on the interacting particles. This curvature was used to 

generate dissimilarly sized spheres to be used in the linear spring-dashpot model 

which in turn approximate the correct interaction magnitude.  

Wynn (2009) presented an approach for elastic ellipsoids colliding with a wall, using a 

Hertzian formulation. Unlike typical hard-sphere and spherical approaches, the normal 

stiffness of the body changes with local curvature in this model. Using this framework, 
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it was shown that implementing a constant coefficient of restitution over the entirety of 

a non-spherical body is a significant simplification to the collision mechanics – 

highlighting a limitation of hard-sphere approaches, such as that of Jain et al. (2019), 

and soft-sphere approaches that rely on a constant coefficient of restitution.  

2.2.4 Van der Waals and Interparticle Forces 

The van der Waals (vdW) force is a distance-dependent attractive interaction between 

particles. It can hold matter together at a range of scales, from the atomic to the 

colloidal. The force is fairly weak in comparison to those involved in chemical bonds 

and, as such, particles combined under this force are more susceptible to being 

separated. However, there are certain systems where this force will dominate over 

other typically stronger interaction forces. 

To understand the origin of van der Waals attraction, quantum mechanics must first be 

considered. The attraction arises due to the probabilistic nature of the electron cloud 

of a particle. Randomly, a quantum fluctuation can occur whereby one side of a particle 

becomes more positively or negatively charged due to an instantaneous local increase 

in electron density, thus creating a dipole. A nearby particle will have a dipole induced 

by the already slightly polarised particle and hence the particle pair will experience a 

positive attraction. Under these circumstances, two particles can combine without 

covalent or ionic bonding (Winterton, 1970). 

Throughout the literature, the term 'van der Waals force(s)' is used loosely. Sometimes 

it refers solely to the London dispersion force, which is described in the previous 

paragraph, and sometimes to that force plus the Keesom forces and Debye forces. In 

the literature, 'van der Waals force' also indiscriminately refers to solitary interactions 

between pairs of molecules, which can be referred to as microscopic vdW forces, as 

well as to effects at a larger scale. In the latter case, many such microscopic 

interactions are taking place between collections of molecules forming colloidal 

bodies; if the net effect of the sum of these interactions is considered, then this can be 

thought of as the macroscopic vdW force which operates on a larger scale. The 

present work considers interactions between particles at the colloidal scale and so 

hereafter ‘van der Waals force’ is used in the macroscopic sense. Specifically, to refer 

to the net attraction experienced between colloids as a result of averaging the 

molecular-scale van der Waals forces across all molecular interaction sites.  
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In a seminal paper, London (1930) showed that the interaction energy of two similar 

molecules is proportional to the inverse of the distance to the sixth power, through a 

quantum mechanical approach. This gives an approximate solution to the force 

experienced between two non-polar molecules at a microscopic level. Subsequently, 

Hamaker (1937) was able to derive a macroscopic expression for the interaction 

energy between two colloids suspended in a liquid, wherein the interaction energy is 

found to be proportional to the inverse of the surface separation distance. This 

derivation relies on the assumption of pairwise additivity, wherein the interaction 

between two atoms is treated independently of the influence from neighbouring atoms. 

For a pair of macroscopic bodies, these interaction pairs are summed to obtain an 

approximate total interaction – this is only 'approximate' because each of these 

interactions are interconnected with one another and not truly separate. Despite this 

simplification, this theory has been found to agree well with experiment (Magan and 

Sureshkumar, 2005).  

Homogeneously charged particles dispersed in a fluid can also form an electrical 

double-layer of ions. The first layer is adsorbed onto the surface from the surrounding 

fluid creating a charged surface. This charge then attracts counterions via the 

Coulomb force and hence a double layer is formed. Israelachvili (1992) gives a model 

to account for this effect based on the chemical properties of the system, with an 

exponentially decaying separation distance dependence. This model was successfully 

used by Fujita and Yamaguchi (2007) to study the behaviour of suspensions of 

nanoparticles.  

When the effects of the van der Waals attractive forces and electric double layer 

repulsive forces are considered under a single framework, with both effects combined 

to form a single distance-dependent interaction potential, this is known as DLVO 

theory, named after the important contributions of Derjaguin and Landau (1941) and 

Verwey and Overbeek (1955).  

2.2.5 Numerical Implementation of Van der Waals Forces 

Including vdW forces to multi-particle simulations can lead to the resolution of 

emergent phenomena such as agglomeration (Abbasfard et al., 2016) and fluidisation 

(Ye et al., 2004; Gu et al., 2016). The numerical implementation of these forces 

between colloidal particles under the DLVO framework provides a means to 
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approximate the physics. However, there are some limitations with the current 

modelling approaches. The most recognised issue is the requirement for an inter-

surface cut-off distance in the vdW potential. As two particles approach zero distance, 

the potential approaches infinity, since the expression is unbounded. To alleviate this, 

a distance is selected below which the expression will no longer increase in magnitude 

for decreasing separation distance. This cut-off distance is somewhat arbitrarily 

chosen throughout the literature, typically taking on values between 0.1-1.0 nm 

(Abbasfard et al., 2016). The lack of an established universal methodology for 

selecting this parameter means that this is a big source of discrepancy between 

studies and places a limitation on the repeatability of numerically obtained results. 

Moreover, Abbasfard et al. (2016) demonstrated that the critical velocity, beyond which 

two particles will bounce rather than agglomerate, is strongly dependent upon the 

value of the vdW cut-off distance. Mihajlovic et al. (2020) highlighted that it is the full 

interplay between this parameter, the Hamaker constant, and the numerical resolution 

of the simulation in terms of how well sampled the various forces are during the particle 

interaction, that determines whether two particles will rebound or agglomerate. If the 

necessary parameters are available, perhaps through accompanying experiments, 

then the cited study proposes a methodology for defining the cut-off distance. Based 

on the maximal values of the van der Waals force observed in pertaining experiments, 

and with a given Hamaker constant, the proposal is that the cut-off distance can be 

tuned such that the maximal van der Waals forces are matched between numerical 

and physical experiments. Sadly, without this full set of parameters from experiments, 

there is still the same uncertainty around how to select the cut-off distance and it 

becomes a computationally tuned parameter. Even theoretical approaches to 

rectifying this issue are destined to fall short, since the surface roughness proves to 

be very important in the determination of maximal van der Waals forces, and analytical 

derivations typically assume smooth surfaces which can increase the strength of the 

maximal forces by orders of magnitude. 

A further challenge is introduced when considering soft-sphere collisions: the particle 

surfaces can overlap and the DLVO potential does not account for this. Mihajlovic et 

al. (2020) investigated this problem in the context of fluidisation. They developed an 

approach in which the vdW force is excluded during particle overlap, guided by the 

theoretical work of Rietema et al. (1993). It was shown that including the vdW force 
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during overlap made the determination of simulation parameters unclear and therefore 

the best approach was said to be turning attractive forces off at the point of collision. 

It was further recommended that particle overlaps should be no more than 1% of the 

radius of the particle and the distance a particle travels in a single timestep should 

ideally be 10 times smaller than the cut-off distance for the vdW force, such that the 

maximal forces can be properly sampled. Similarly, Kobayashi et al. (2013) 

recommended a dynamic setting of the adhesion force in related studies, since smaller 

values of spring stiffness in the soft-sphere model can cause overestimation of 

adhesion effects. 

Another challenge presented when modelling these systems is the disparity between 

time and length scales associated with the different forces. If particles are mostly 

advected by a macroscopic behaviour, like through hydrodynamic forces, then for a 

general simulation the period that DLVO forces are important will be incredibly small 

in comparison to the macroscopic time scales. The vdW forces will only begin to spike 

when particles are at a very short separation distance, much smaller than the length 

of the radii. This poses a challenge with respect to computational efficiency if one is to 

fully resolve the physics and avoid resorting to a model for the short-range behaviour. 

It is unnecessary to have a very high level of resolution to calculate the interparticle 

forces when this is only required for a few timesteps, i.e. when the DLVO forces are 

significant. Equally, it is important not to choose a timestep that adequately resolves 

the particle advection due to the fluid behaviour but misses the level of fidelity required 

to resolve these short-range interaction phenomena. One solution is to use a variable 

timestep based on interparticle distance; another is to use a separate timestep for the 

fluid- and particle-phases. The first solution is only applicable to systems with a limited 

number of particles. For dense systems with many particles, the timestep is almost 

always very small and thus the computational load is barely reduced in comparison to 

just setting a very small timestep to begin with (Mihajlovic et al., 2020). 

2.2.6 Non-Spherical Interparticle Forces  

As evidenced, the modelling of interparticle forces poses a significant challenge. This 

is increased further by the orientational degrees of freedom associated with non-

sphericity. The interparticle forces under investigation herein are reliant upon the 

surface characteristics of the interacting particles and so models can be developed 
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based on these properties; in particular, on the surface curvature properties at the 

nearest points of approach, where non-spherical corrections can be applied to 

spherical models (Zhou et al., 2011).  

Hamaker’s (1937) derivation for the interaction between macroscopic bodies is valid 

only for spheres and involves carrying out a double integral, or sum, over the molecular 

interaction sites between two particles. It is not immediately clear how to incorporate 

arbitrary orientations into the evaluation of this integral. Everaers and Ejtehadi (2003) 

conducted a systematic approach to this problem for spheroids where they first 

evaluated the integrals using a Gay-Berne potential for pole-pole interactions where 

the axes of the spheroids were aligned, which simplified the problem and allowed for 

analytical solutions. They used these modal cases to inform their full model over the 

full orientational parameter space. This approach uses the analysis of White (1983) in 

deriving a full expression for arbitrary orientational configurations. The result is a 

continuous model that accounts directly for spheroidal shape.  

Schiller et al. (2011) also used the analysis of White (1983) and concepts from 

differential geometry to derive pair potentials for interactions between spheroidal 

bodies. This is generalised and thus not only applicable to van der Waals forces but 

also to capillary, depletion, and electrostatic forces. The paper reports that attractive 

forces between spheroidal bodies leads to an alignment between particle symmetry 

axes, whilst repulsive forces discourage this. Preliminary experiments performed in 

the present work demonstrate that the approaches of Everaers and Ejtehadi (2003) 

and of Schiller et al. (2011) are equivalent for vdW forces between arbitrarily orientated 

spheroids. 

2.3 Multiphase Flow 

2.3.1 Background and Theory 

The complexity of turbulence and the associated challenges have been introduced. 

Adding a dispersed-phase only increases this complexity, with many interdependent 

non-linear emergent behaviours. How the particles influence the fluid must be 

considered, as must how the fluid impacts individual particles and the particle-phase 

as a collective, as well as how the particles interact with one another.  
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The bulk behaviour of particulate flows is often quantified in terms of the particle 

dispersion, deposition, resuspension, and interactions, as well as the turbulence 

augmentation or attenuation as a result of the particle-phase. There are many 

interesting emergent phenomena that have been observed through consideration of 

these parameters. Each of which is impacted by the flow regime.  

The bulk parameters of a multiphase flow allow a classification of the flow regime; 

these parameters include volume fraction, particle-to-fluid density ratio, particle 

distribution, and particle size. The volume fraction, 𝜙𝑃, is simply the ratio of the volume 

occupied by the particles to the volume occupied by the fluid and particles, or the total 

volume. Despite its simplicity, it is a powerful parameter giving direct insight to how the 

particles are coupled to the flow. Using this tool paired with the Stokes number (a 

measure of particle response time, precisely defined below) one can predict well the 

flow regime of a given particulate flow (Elghobashi, 1994), and hence make a priori 

predictions as to how the multiphase system will behave.   

Generally, increasing volume fraction leads to an increased effect upon fluid 

turbulence. For the case 𝜙𝑃 ≤ 10−6, the flow is said to be one-way coupled 

(Elghobashi, 1991). This is where the impact of particles on the fluid turbulence (and 

the flow in general) is so minor that it can safely be ignored. The dynamics of the 

particles are determined by the fluid, but the particle-phase’s momentum is too 

insignificant to impact back upon the flow field. Beyond this lower bound, particles do 

have a momentum transfer effect on the fluid. Namely, in the interval 10−6 ≤ 𝜙𝑃  ≤

 10−3, the flow is said to be two-way coupled. In this region, sufficient momentum 

transfer is occurring to alter the flow field, but the occurrence of particle-particle 

interaction is infrequent enough that it can be neglected.  

For 𝜙𝑃 ≥ 10−3 particle-particle collisions are significantly impacting both particle 

dynamics and fluid turbulence. A system including these interactions is said to be four-

way coupled. In this regime, particle agglomeration and break-up can also be 

considered.  

The particle response time 𝜏𝑝 plays an important role in classifying the flow and 

predicting the mechanisms within it. For the Stokesian flow regime (very low Reynolds 

number), the parameter is defined by 𝜏𝑝 = 𝜌𝑝𝑑
2/18𝜌𝑓𝜈𝐹  where 𝑑 is the particle 
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diameter, 𝜈𝐹 is the kinematic viscosity of the fluid, and 𝜌𝑝 and 𝜌𝑓 are the densities of 

the particle and fluid phases, respectively. This is a reduced version of the full 

equation; however, for particle Reynolds numbers up to unity it remains a good 

approximation (Fessler and Eaton, 1994). The ratio of this response time to the fluid 

timescale can be used to define an important parameter 𝑆𝑡𝜂 which is the Stokes 

number based on the Kolmogorov timescale, 𝑆𝑡𝜂 =
𝜏𝑝

𝜏𝜂
 . Whilst the definition of particle 

response time is strictly valid for lower particle Reynolds number, it is widely used to 

get an impression of the multiphase behaviour. Once particle Reynolds numbers 

increase significantly, the drag force deviates from Stokes’ law and thus adaptations 

to the described relation are made which incorporate a more accurate drag coefficient 

(Fessler and Eaton, 1994) in order to retain its validity in different regimes, for example 

the drag relation of Oseen (1927). 

The Stokes number governs the behaviour of particles with respect to the flow field, 

where a larger Stokes number indicates a larger heavier particle. At low Stokes 

numbers 𝑆𝑡𝜂 << 1, particles follow the streamlines very closely. Conversely, for large 

Stokes numbers 𝑆𝑡𝜂 >> 1, the response time of the particle far outweighs the 

timescales of vortical motions in the flow and hence the turbulence field has a limited 

effect on the particles. For 𝑆𝑡𝜂 ≈  1 the impact of vorticies on the particles is maximal: 

since the scales are well-matched. Significant coherent motions can be induced in the 

particulate-phase by similarly sized vortical structures. 

Interesting behaviour related to this parameter has been observed in multiphase 

turbulent flows – for example, the preferential accumulation of particles near to the 

wall in canonical wall-bounded flows. Originally it was believed that, without an 

external force, the stochastic forcing on the particles due to the turbulence field would 

ultimately lead to a uniformity in the particle distribution over time. This has been 

shown not to be the case with the observation of preferential accumulation of heavier-

than-fluid particles in regions where there is high strain-rate and low vorticity (Fessler 

and Eaton, 1994). The dispersion of the particles is believed to be the result of the 

centrifuging of particles away from the centre of eddies. This effect is strongest for 

Stokes numbers close to unity, due to the comparable timescales of the fluid and 

particle response, as described above. Conversely to larger particles ejecting away 

from eddies, lighter-than-fluid particles such as bubbles will accumulate in these 
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regions of intense vorticity because they do not possess the momentum to overcome 

the advection of the fluid. 

The motion of particles immersed in a turbulent flow field is largely thought to be 

dominated by the turbulent fluctuations and flow structures occurring at the length-

scale of the particle (Jiang et al., 2022). As such, the dynamics of particles and the 

associated scaling laws can be thought of in the context of Kolmogorov’s theory 

outlined in Section 2.1.2, particularly for tracer-like particles, e.g. Voth et al. (2002) 

took this approach in an experimental context to understand particle acceleration.  

Turbophoresis is the name given to the underlying process where particles migrate 

preferentially according to decreasing turbulence kinetic energy. This was predicted 

mathematically by Reeks (1983) via derivation from the particle kinetic equation. The 

result of this effect in wall-bounded flows is particles accumulating close to the wall 

(Kuerten and Vreman, 2005; Marchioli et al., 2008). Contrastingly to the ‘lighter-than-

fluid' particle example, turbophoresis requires that the inertia of the particle is 

sufficiently large that its motion can decouple from the fluid streamlines, hence 

crossing them and migrating towards the near-wall region where the turbulence level 

is comparatively low. A resultant effect is that wall collisions are seen to increase with 

increasing Stokes number. For Stokes numbers around 0.1, based on viscous scales, 

the probability of a particle-wall interaction taking place is negligible, whilst for larger 

values of the order 100 this is a common occurrence (Mortimer et al., 2019).  

The result of heavy particles being ejected from the vortices is that the TKE and its 

dissipation are reduced. For microparticles, where the volume fraction is high, the 

opposite effect is seen wherein TKE will decay at a lesser rate and energy dissipation 

can be increased. A balance between these two extremes exists where ‘ghost 

particles' found in the range 0.1 <  𝑆𝑡𝐾 ≤  1 have little effect at all on the TKE 

levels. These regions are shown diagrammatically in Figure 2.2. 
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Figure 2.2: The classification map for particle-laden turbulent flows, originally from 

Elghobashi (1991), this is an updated version (Elghobashi, 2006). Particle shear 

Stokes number is shown on the vertical axis, and volume concentration on the 

horizontal axis. 

 

The aforementioned effects fall under the category of turbulence modulation. For dilute 

systems there are several mechanisms whereby particles affect turbulence. One such 

effect is the enhanced turbulence energy dissipation due to a significant presence of 

particles and their drag. Another effect is how the addition of particles to a fluid 

increases the effective viscosity and can therefore reduce turbulence; similarly, the 

increased inertia can also reduce turbulence.  

There are also effects that increase the turbulence levels of a fluid. For example, when 

a particle's kinetic energy is transferred to the fluid, increasing the fluid's kinetic energy. 

The occurrence of vortices in the particle's wake region increases the velocity 

fluctuation in that area, also increasing turbulence through vortex shedding. On top of 
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this, Mittal (1999) presented another effect of significance when there is a high level 

of free stream fluctuations. That is, that the sphere acts like an oscillator and a 

resonance effect returns high levels of kinetic energy to the surrounding fluid. An 

excellent review of turbulence modulation is given by Loth (2023), as well as by Eaton 

(2006, 2009). 

2.3.2 Experimental Study of Particles in Turbulence 

Experimental research for wall-bounded multiphase flows generally looks to quantify 

the mean velocity, Reynolds stresses, and velocity fluctuations of the fluid and 

particles, as well as particle concentration. Another point of focus is the deposition and 

resuspension properties of the particulate-phase, which become of increasing 

importance for higher volume fractions where significant deposition can affect 

throughput in a pipe and potentially lead to blockages, as motivated in the 

introduction.  

There are a number of challenges that prevent progress in experimental particle-laden 

studies. For example, measurements of the fluid-phase are impeded by the presence 

of these particles in the flow. Similarly, many commonly used fluid measurement 

techniques require the inclusion of additional particles that follow the fluid streamlines, 

in order to visualise the flow field through the post-processing of camera-taken images. 

Laser-Doppler anemometry (LDA) measures the fluid-phase by inserting tracer-like 

particles that are assumed to follow the motion of the fluid. Then, measurements are 

taken using the Doppler shift of a laser beam reflected from a particle and fringe 

distance to estimate velocity. The tracer particles are assumed to have a negligible 

effect on the fluid-phase behaviour. For a multiphase experiment, the particulate-

phase particles are generally much larger than the tracer particles. Hence, they scatter 

more light, allowing for the particulate-phase to be separated by signal-processing. 

An early use of this method by Lee and Durst (1982) demonstrated interesting 

behaviours of glass particles in a vertical duct flow. At the time of publishing, there 

were discrepancies in the literature between theoretical predictions and experimental 

measurements. This work was able to propose a new consideration to improve the 

theoretical approach: beyond a certain cut-off frequency a particle becomes 

unresponsive to the turbulent fluctuations of the carrier-phase.  
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Kulick et al. (1994) investigated the interactions between small dense particles and 

fluid turbulence in a channel flow of 𝑅𝑒𝐵 = 13800 using LDA, where 𝑅𝑒𝐵 is the bulk 

Reynolds number. The particles were smaller than the Kolmogorov length scale and 

followed some but not all of the turbulent motions. The velocity fluctuations were higher 

in the streamwise direction for the particles compared to the single-phase fluid, but the 

reverse was true in the transverse direction which is contrary to the general findings 

in the experimental literature (Shokri et al., 2016). The addition of particles results in 

attenuation of the turbulence field. The attenuation increased with increasing particle 

Stokes number, particle mass loading and distance from the wall. Turbulence 

attenuation was found to be dependent upon the frequencies of the turbulence: there 

were preferred frequencies for which attenuation was seen with greatest effect. 

Caraman et al. (2003) investigated particles of the same size in a downward gas flow 

using phase-Doppler anemometry. They demonstrated that the particulate-phase had 

higher streamwise velocity fluctuations than the single-phase fluid and comparable 

velocity fluctuations in the radial direction. The same set-up was utilised in Borèe and 

Caraman (2005) for bidisperse particles of a higher concentration; here, particle 

velocity fluctuations in the radial direction were found to be higher than those of the 

fluid. In the literature, there is agreement that the streamwise fluctuations are higher 

for the particulate-phase compared to the fluid-phase, but there is no such consensus 

for the radial fluctuations. Where radial fluctuations were found to be lower for the 

particulate-phase (Kulick et al., 1994; Varaksin et al., 2000), the validity of the results 

have been questioned in relation to insufficient pipe-length, and insufficient 

consideration of electrostatics and wall-roughness.     

Particle image velocimetry (PIV) resolves the velocity instantaneously in a plane; 

again, using flow tracer particles. It holds the advantage over LDA of producing a 

vector field representation of the flow, as opposed to measuring velocity at a point. 

When the concentration of particles is low enough such that a single particle can be 

tracked from image-to-image, then it is referred to as particle tracking velocimetry 

(PTV). A useful overview of the dilute particle-laden pipe flow experimental literature 

is given by Shokri et al. (2016), with particular reference to PIV and earlier by 

Westerweel (1997) for digital PIV. 
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Noticing a limitation in the range of Reynolds numbers being investigated in the 

experimental literature (𝑅𝑒𝐵 < 30,000), Shokri et al. (2016) investigated a pipe flow at 

a high Reynolds number (𝑅𝑒𝐵 = 320,000) using a combination of PIV and PTV. This 

was motivated by the fact that current experimental Reynolds numbers were well 

below what is directly relevant to industrial applications. A vertical pipe orientation is 

utilised to avoid the axisymmetric particle concentrations due to gravity. In the core 

region (𝑟𝑙𝑜𝑐/𝑅𝑝𝑖𝑝𝑒 < 0.85,  with 𝑟𝑙𝑜𝑐 the location in the radial direction, and 𝑅𝑝𝑖𝑝𝑒 the pipe 

radius), the particles are observed to have a lower mean velocity than the fluid. 

Whereas, in the near-wall region (𝑟𝑙𝑜𝑐/𝑅𝑝𝑖𝑝𝑒 > 0.85), the particulate-phase mean 

velocity is higher than that of the fluid. This is attributed to the absence of a no-slip 

condition at the wall for particles. Also noted in the paper is the influence of the lift 

force on particle concentration in the core region. An overview of experimental 

techniques and their implementation is given by Balachander and Eaton (2010) and 

the limitations of PIV are discussed by Sciacchitano and Wieneke (2016). 

Bellani et al. (2012) were able to experimentally study turbulence modulation by large 

neutrally buoyant non-spherical particles in the context of homogeneous and isotropic 

turbulence, produced by directing flow through a grid. The chosen particles were of 

the length of the Taylor microscale. They found that spheres promoted TKE dissipation 

from the system as compared to the single-phase flow by 15%, whilst prolate 

spheroids of aspect ratio 2 only increased the TKE dissipation by 3%. The volume 

fraction was matched for this comparison; however, surface area was not matched.  

2.3.3 Numerical Study of Particles in Turbulence 

Particle-laden flows can be studied numerically by treating the particles in an Eulerian 

or Lagrangian way. The Lagrangian approach tracks the position of a particle in the 

flow and calculates the unique dynamics on each local particle by solving the 

Newtonian equation of motion (Maxey and Riley, 1983; Maxey, 1987). The Eulerian 

approach is more holistic wherein a function is devised describing the bulk behaviour 

of the particles as if this phase were a continuum (Durst et al., 1984). From this, 

volume-averaged values for relevant parameters can be calculated. The use of an 

Eulerian approach can be less computationally expensive but the intricacies of the 

dynamics are lost (Gouesbet and Berlemont, 1999). This method is more suited to 
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dense particulate flows of a high volume fraction, whereas the Lagrangian approach 

is more suited to dilute flows (Shirolkar et al., 1996).   

Within the Lagrangian framework, there are two main denominations of methods. The 

first is the point-particle approach, wherein particles are tracked as a single point within 

the fluid and advected based upon interpolations of the local fluid velocities to a point 

representing the particle’s location, (with necessary modifications made to accurately 

reproduce the coupling effects). The other route, offering more fidelity and resolution, 

is the class of particle-resolving methods. As the name suggests, the full surface of 

the particle is resolved in this case and the interaction with the fluid is calculated across 

this boundary, in terms of the stresses acting on the surface due to the fluid. The former 

approach is much less computationally expensive, whilst the latter offers an improved 

approximation of the finer-scale physics. The computational requirements of the fluid 

solution, in the case of particle-resolved methods such as the immersed boundary 

method, increases with decreasing particle diameter, as there is a greater requirement 

to resolve smaller and smaller flow scales. As such, the majority of particle-resolved 

studies involve particle diameters much greater than the Kolmogorov length scale; 

whereas, the majority of point-particle studies are restricted to particle diameters below 

the Kolmogorov length scale (Schneiders et al., 2019). This restriction is due to the 

fact that there is no longer a scale separation between the particle and fluid phases 

(Balachandar and Eaton, 2010) and thus the typically used equations of Maxey and 

Riley (1983) are no longer valid. Even still, some studies have attempted to extend the 

point particle approach beyond the Kolmogorov length scale (Marchioli and Soldati, 

2013; Marchioli et al., 2016) and work by Fröhlich et al. (2018) suggests that point 

particle methods have the potential to work for particle diameters on the order of the 

Kolmogorov length scale. Due to the computational requirements, the immersed 

boundary method typically is limited in the number of particles that can be dealt with 

(Van Wachem et al., 2015). More computationally expensive still is the arbitrary 

Lagrangian-Eulerian method (Hu, 1996; Hu et al., 2001) wherein particles are defined 

by unstructured meshes that evolve with time. This adaptive element requires 

remeshing which introduces much of the computational overhead.   

Each of the single-phase approaches (e.g. RANS, LES and DNS) can be used to 

simulate the carrier-phase in multiphase systems. They each have advantages and 

disadvantages beyond simply the single-phase resolution achieved. For example, 
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since LES does not capture all scales, dense particulate flows are not well modelled 

(Kuerten, 2016). This is because it is unknown how the two-way coupling influences 

TKE on the unresolved scales and one loses the benefits of resolving the large-scale 

turbulent structures through the loss of information most pertinent to the particle-phase 

(Elghobashi, 1994). 

In the same way, for a RANS approach, a correction would need to be included that 

improves the chosen turbulence model to account for the presence of particles and 

how particles affect the turbulence length scales and strength. The advantage of DNS 

is that with sufficient resolution one can resolve the boundary layers around resolved 

particles and more accurately describe the interplay between turbulence and particles 

at a local level, without complicated models. Unfortunately, this comes with high 

computational cost and such simulations are mostly restricted to small numbers of 

particles or reduced solution domains – for example, isotropic turbulence boxes, rather 

than full channels or pipes. Even if the surface of the particle is not resolved, for 

example in the case of Lagrangian particle tracking (LPT) simulations, the small-scale 

fluid fluctuations are still resolved and this will greatly increase the accuracy of the 

particle-phase behaviour, which is strongly influenced by these scales. 

The literature for particle-laden wall-bounded flows spans a limited range of Reynolds 

numbers, with much of the focus being centred at and around 𝑅𝑒𝜏 = 180. Beyond 

𝑅𝑒𝜏 = 360 the presence of particle data (in terms of shear stresses and velocity 

fluctuations) is more limited. To achieve Reynolds numbers of orders of magnitudes 

higher than this is difficult due to the exceptional level of mesh refinement that is 

required. With increasing computational resources, this will ultimately become 

possible, but for now it is a limiting factor on single-phase wall-bounded flows and thus 

also on the pertaining multiphase flows.  

One application of significant interest is how the particles and turbulence fields 

interact, and how this is influenced by the coupling scheme. Rani and Vanka (2000) 

conducted a study of two-way coupling effects in particle-laden pipe flow at a shear 

Reynolds number of 360 using DNS. The particle equation of motion considered only 

drag, and the volume fraction of the system was 6.84 × 10−5. The study concluded 

that mean velocity profiles and RMS statistics were unaffected by two-way coupling. 

However, energy spectra showed that turbulence augmentation was occurring at both 
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the pipe centre and at the wall, with augmentation falling rapidly away from these two 

extremes. The simulations showed particle accumulation along low-speed streaks and 

showed that two-way coupling reduced the strength of hairpin vortices in the flow, 

which are responsible for those streaks. So significant turbulence augmentation was 

said to be occurring at the smaller dissipative scales. 

Rani et al. (2004) conducted a parametric study investigating the influence on the 

turbulence field due to parameters such as the volume fraction, Stokes number and 

settling velocity. This time, interparticle collisions were also considered (four-way 

coupling). The result of this inclusion was that the particle concentration in the near-

wall region was reduced by a factor of 25%. So, particle-particle collisions were found 

to reduce the levels of turbophoresis but it remained a dominant mechanism in the 

flow, nevertheless. This effect is more prominent for particles with higher response 

times which has been observed by Yamamoto et al. (2001). As a result of this effect, 

more particles are found in the central region of the pipe. Hence, greater streamwise 

kinetic energy is imparted by the particles to the fluid at these locations, which is 

demonstrated by flattened streamwise and radial RMS plots. For locations at around 

20% of the pipe diameter, there is a clear increase in the velocity fluctuations (RMS). 

This is further exemplified by a reduction in the turbulent energy dissipation term here.  

DNS was coupled to LPT for a similar investigation by Marchioli et al. (2003) wherein 

a shear Reynolds of 337 was studied in an upward pipe flow. In this case, drag, lift and 

gravity were considered but the system was only one-way coupled. The simulations 

showed the expected accumulation of particles in the near-wall region, demonstrating 

that particle transfer towards the wall is more efficient than transfer away. The paper 

gives a useful description of the physics of particle migration, stating that particle 

transfer is achieved through preferential pathways corresponding to advective motions 

known as sweeps and ejections (Best, 1992). These motions are representative of the 

instantaneous Reynolds stresses, and they contribute to positive turbulence 

production. A sweep corresponds to a local increase of shear stress at the wall, whilst 

ejection corresponds to an analogous decrease.    

Vreman (2007) investigated via DNS the characteristics of vertical air-solid pipe flow 

for small heavy particles at a shear Reynolds number of 277. A Lagrangian approach 

was again utilised and the effects of particle collisions were included. The investigated 
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mass loadings covered a wide range from 0.1 to 30. A model for wall-roughness was 

incorporated and this was found to have a greater effect on the quality of the 

predictions in relation to experimental results than the inclusion of collision parameters 

or the lift force. 

At a fundamental level, the particle-phase’s interaction with turbulence can be studied 

in boxes of homogeneous and isotropic turbulence (HIT). Many studies have utilised 

this academic approach to elucidating some of the key mechanisms at play, as well as 

for the purpose of developing scaling laws. Squires and Eaton (1991) studied particle 

dispersion in both decaying and forced boxes of homogeneous and isotropic 

turbulence. They were able to demonstrate that particles accumulate in regions of high 

strain rate and low vorticity, due to particle inertia biasing the trajectories, which was 

predicted by Maxey (1987). Elghobashi and Truesdell (1989a, 1989b) studied also the 

effects of particle dispersion in decaying homogeneous and isotropic turbulence which 

evolved over the course of the simulation from 𝑅𝑒𝜆 = 25 down to 𝑅𝑒𝜆 = 16. This was 

compared to measurements by Snyder and Lumley (1971) with good agreement. 

Elghobashi and Truesdell (1993) further used their decaying homogeneous and 

isotropic turbulence boxes to investigate the effects of the particle-phase on the 

turbulence field due to two-way coupling, at a volumetric loading ratio of 5 × 10−4. 

They found that, at high wavenumbers, their particles increased the fluid turbulence 

kinetic energy – as well as increased the viscous dissipation rate and the transfer of 

energy from the larger scales. They concluded that in the absence of turbulence 

forcing or sustaining mechanisms, the inclusion of particles increases the speed at 

which the turbulence decays, even though the initial injection may decrease it 

momentarily.   

Most studies of particle-laden homogeneous and isotropic turbulence focus on 

neutrally buoyant particles, but interesting anisotropic effects can be observed through 

the influence of gravity forces, such as a reverse cascade (Elghobashi, 1994). More 

recently, Chouippe and Uhlmann (2015) studied the effects of gravity in HIT in the 

context of particle settling, making use of elongated boxes for their calculations and 

adapting their forcing scheme accordingly. This study used the immersed boundary 

method, one of the most prominent particle-resolving methods. 
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The immersed boundary method (IBM), developed by Peskin (1977, 2002) was 

originally devised for application to the human heart. This first formulation allowed for 

deformation of the immersed boundary; whereas, it is now often used alongside rigid-

body theory for non-deformable objects, particularly in the context of particulate flows 

(Uhlmann, 2005; Jain et al., 2020; Mortimer and Fairweather, 2021). The original 

framework involves determining a force distribution at arbitrary Lagrangian points 

across the boundary and applying this force back to the Eulerian phase through a 

regularised Dirac delta function, with the force relying upon the elastic properties of 

the material and a generalised form of Hooke’s law. This approach is named the 

distributive immersed boundary method and is generally regarded as first-order 

accurate (Mortimer and Fairweather, 2021). 

The non-distributive class of immersed boundaries involve enforcing the no-slip 

condition directly at the particle boundary or through direct solution of the Navier-

Stokes equations (Mark and van Wachem, 2008). To this end, Mohd-Yusof (1997) 

proposed a ‘momentum-forcing method’ that enforces the no-slip condition at the 

Lagrangian points of the immersed boundary by mirroring the velocity field over the 

surface of the immersed boundary such that a smooth gradient is achieved, precisely 

recovering the no-slip condition at the boundary. The direct advantage being the 

second-order accuracy achieved in comparison to the first-order distributive forcing 

methods. This method was subsequently taken forward by Tseng and Ferziger (2003) 

who devised the ghost-cell mirroring technique that ensures the no-slip condition is 

met by careful selection of interior and exterior points across a particle mesh. Whilst 

obtaining second-order accuracy and thus improving upon the original method, issues 

with mass conservation were reported under this approach, to which Kim and Choi 

(2006) provided a rectification using a mass source term. Finally, the ghost-cell method 

was further adapted by Mark and Van Wachem (2008) wherein an efficient 

implementation was demonstrated that does not allow for mass flux across the 

boundary.   

Schneiders et al. (2019) presented the first particle-resolved study on turbulence 

modulation for ellipsoidal particles on the order of the Kolmogorov scale through an 

immersed boundary technique, focusing on the energy balance between phases. An 

analysis was undertaken that considered the relative effect of the particles rotation 

rates on the kinetic energy of the fluid. The necessity was highlighted for resolving 
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orientationally dependent drag and lift forces in non-spherical point-particle models to 

accurately reproduce the multiphase global energy balance. Further 

recommendations and analyses pertinent to point-particle models were presented, for 

which the inclusion of non-sphericity remains a predictive challenge. The study thus 

also highlighted the strengths of IBM approaches versus point-particle approaches. 

2.3.4 Motion of Non-Spherical Particles 

Analytic expressions for the motion of, and torques acting on, ellipsoidal tracer 

particles were derived in the seminal work of Jeffery (1922) which is often used as a 

reference case for validation of studies involving ellipsoidal particles. As yet, there are 

no universal analytic expressions for spheroidal motion accounting for fluid inertia 

(Voth and Soldati, 2017) which emphasises the importance of numerical simulations 

as an investigative tool. 

One of the interesting behaviours of spheroidal particles is the preferential orientations 

and alignments in turbulent flows. In turbulent shear flows, there is an observed 

preferential alignment near to the wall, observed by Mortensen et al. (2008), Marchioli 

and Soldati (2013), and Zhao et al. (2015). There is a clear divergence between the 

behaviour of prolate and oblate spheroids: the prolate spheroids align with their 

symmetry axis in the streamwise direction and the disks align in the wall-normal 

direction, which can be understood through Jeffery orbits (Jeffery, 1922; Voth and 

Soldati, 2017), which are the dynamics arising from the solution of the Stokes 

equations for spheroids and arbitrary bodies of revolution (Bretherton, 1962; Ishimoto, 

2023). The particles essentially enter a repeated dynamic motion that is unique to such 

particle morphologies. 

Counterintuitively, particle alignment is still observed even when there is no mean flow. 

In the case of homogeneous and isotropic turbulence, it has been observed that 

particles that are nearby will locally align with one another through the action of the 

local velocity gradient tensor. Pumir and Wilkinson (2011) observed this in the case of 

slender rods. Using an immersed boundary method, Jiang et al. (2022) studied the 

dynamics of spheroids in HIT, they also observed a preferential alignment with local 

flow structures for particles that belonged to the inertial subrange, extending previous 

observations which had been limited to particles of the size of the dissipative range. 

The authors highlighted the importance of resolving the interface in the case of non-
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spherical particles, since much of the information relating to particle rotation comes 

from computation of the particle’s boundary layer.      

There have been experimental studies of the motion of non-spherical particles. For 

example, fibres have been studied extensively by the following authors using a range 

of techniques: Carlsson et al. (2006) studied the orientations of fibres in a shear flow; 

Dearing et al. (2012) studied the same in a turbulent pipe flow using PIV; and 

Hakansson et al. (2013) conducted similar experiments in a half-channel using 

cameras. Each study corroborated the fact that fibres accumulate near the wall in low 

speed streaks, aligning with the mean flow.  

Njobuenwu and Fairweather (2013a, 2013b, 2014a) studied one-way coupled 

ellipsoidal particles using Lagrangian particle tracking and a quaternion method, 

assessing the particle’s orientational and translational behaviour, and later assessing 

the role of particle shape on this behaviour (Njobuenwu and Fairweather, 2014b), 

finding that the forces and torques experienced by a particle are strongly dependent 

upon shape.  

Non-spherical particle motion in viscous fluid is often studied in terms of how the 

particles rotate with respect to their major axes. These rotation rates are important to 

a particle’s associated drag and lift coefficients and how the motion of a non-spherical 

particle can be expected to evolve over time. Njobuenwu and Fairweather (2015) 

extended their methodology to study the dynamics of ellipsoidal particles in a turbulent 

channel flow through the use of LES, leading to the observation of five modes of 

ellipsoidal particle motion: periodic, steady rotation, tumbling, precessing, and 

nutating. Disk-like particles were found to change between these states most 

frequently, as compared with needles. At a higher shear Reynolds number (467 as 

opposed to 300 in the previously cited study) Qi and Luo (2002, 2003) observed the 

following modes for needles: tumbling, precessing, nutating, log-rolling and inclined 

rolling. Huang et al. (2012) studied shear Reynolds numbers up to 700 and observed 

seven rotational modes and eight periodic modes. 

A review paper by Mandø et al. (2007) gives an appreciation for the breadth of non-

spherical particle motion in two-phase flow, with an emphasis on characterising and 

describing particle shape and motion. Ten years on, Voth and Soldati (2017) presented 
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a comprehensive review paper on non-spherical particles in turbulence, with particular 

emphasis on particle dynamics and modelling approaches. 

2.3.5 Agglomeration of Particles in Turbulence 

The introduction of turbulence to particle-fluid systems promotes collisions. This 

affects agglomeration in two ways. Firstly, the probability of an agglomerate structure 

forming is increased in a given time period purely through an increased number of 

interactions and collisions – often understood in the agglomeration literature through 

collision kernels (Saffman and Turner, 1956). Conversely, the shear experienced 

across agglomerates due to locally fluctuating velocity gradients leads to the capacity 

for breakage of said structures. On top of this, turbulence can lead to breakage of 

agglomerates through more frequent and stronger impacts with other freely moving 

particles and aggregates. The relative importance of these three mechanisms is 

impacted by the properties of the turbulence field such as the size of the flow structures 

and the strength of the velocity gradients (Breuer and Khalifa, 2019). Chen and Li 

(2020) showed, using DEM coupled to a DNS flow solver, that violent collisions and 

breakages occur in straining sheets where particles are rapidly ejected from vortices.  

As an agglomerate forms in the turbulent flow, its size increases and so the associated 

Stokes number changes. Hence, the effect of the turbulence on the particles differs 

over time as the size distribution evolves. This further increases the complexity of the 

turbulence-agglomeration interplay and highlights its dynamic nature. Ho and 

Sommerfield (2002) demonstrated the importance of modelling agglomeration effects 

when possible since there is an effect on the carrier-phase as well as the significant 

impact on the particle-phase.  

Turbulent agglomeration is an important area for study due to its wide applicability to 

industry and industrial processes. For example, agglomeration promoted through 

turbulence was found to be an effective pretreatment to fine particle extraction in an 

electrostatic precipitator (ESP) by Bin et al. (2018). A combination of turbulence-

enhanced and chemically-promoted agglomeration led to the ESP’s extraction 

efficiency increasing from 75.5% to 83.1%, which has relevance to the present thesis 

as both techniques fall into the category of potential ‘behavioural modifications’. The 

study found inclusion of turbulence to impact the size distribution by decreasing the 

concentration of small particles and increasing that of large particles. The 
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agglomeration efficiency was most pronounced for the smaller particles since their 

Stokes number is lower and hence the effect of the turbulence field is relatively 

stronger. Lastly, the presence of larger particles within the base particle distribution 

was seen to be a very important agglomeration mechanism, as these larger particles 

acted as a nucleus for the smaller particles to adhere to, highlighting that polydispersity 

has an important role in real systems.        

There have been efforts to incorporate agglomeration physics into LPT simulations, 

this is typically done as a ‘switch’, where a binary determination is made at the point 

of particle collision as to whether two point particles will agglomerate based on their 

velocities and other relevant properties. Breuer and Almohammed (2015) presented 

an effective methodology that considers an energy balance of the particles, integrated 

with a hard-sphere collision model. This was successfully applied to turbulent channel 

flows by Mortimer and Fairweather (2020) to study agglomeration phenomena. 

Almohammed (2018) separates LPT agglomeration models into two main categories: 

energy-based (Löffler and Muhr, 1972; Hiller, 1981) and momentum-based (Weber et 

al., 2004). The thesis of Almohammed (2018) offers a thorough evaluation of these 

approaches.   

Using a DNS-DEM coupled approach, Chen et al. (2019) investigated the 

agglomeration of particles in HIT using a simple adhesion parameter that can be tuned 

to control the overall ‘sticking’ efficiency of the particles. This was applied to study the 

collision-induced breakage of agglomerates in HIT (Chen and Li, 2020) and was 

further extended to include electrostatic effects, specifically the long-range Coulomb 

repulsive force (Ruan et al., 2021), which was found to reduce agglomeration without 

altering the form of agglomerate structures.   

A few studies attempt to fully resolve the physics acting at the particle scale. This 

approach is of value for particles whose size is comparable to the fluctuating length 

scales in the turbulent flow, since velocity gradients across the surface of the particle 

will be significant. This is especially true for non-spherical particles where increased 

aspect ratio can lead to greater rotations, further complicating the problem. Fully-

resolved particle aggregation in HIT was studied by Derksen (2011) for mono-sized 

spherical particles using an IBM. The author studied particles in a periodic turbulence 

box for which particle diameters were between two and 10 times the Kolmogorov 
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length scale. The turbulence was sustained using the linear forcing method 

implemented in a lattice Boltzmann solver. The particle interactions were calculated 

using a combination of the hard-sphere approach of Yamamoto et al. (2001) and a 

simple square-well potential for the attractive particle interaction. A square-well is a 

very crude approximation to the actual potential experienced between adhesive 

particles; nonetheless, this offered an opportunity to study the basic interplay between 

turbulence and the aggregation process. The study found stronger turbulence leads 

to smaller aggregates with less constituents, implying a reduction in agglomeration 

and/or a promotion of breakage.        

The inclusion of a more physically realistic interaction potential was achieved by 

Mortimer and Fairweather (2021) through use of DLVO theory; in particular, distance-

dependent force equations were incorporated into a turbulent system with finite-sized 

boundary-resolved particles. The equations used were those previously employed by 

Fujita and Yamaguchi (2007) to study the organisation of nanoparticles in a liquid 

solvent without turbulence. Similarly to Derksen (2012), an immersed boundary 

technique was used by Mortimer and Fairweather (2021) with turbulence in the 

periodic box sustained through the use of linear forcing, which was outlined as an area 

for improvement due to its unstable characteristics and slow convergence. The level 

of fidelity of the flow-field was comparatively greater, since a high-order spectral 

element method was used for direct numerical simulation of the fluid-phase. This 

allowed for the resolution of important fluid phenomena at the scale of the particle’s 

surface. A wide parameter study of binary particle interactions highlighted the most 

effective areas for exploiting agglomeration to optimise industrial processes; namely, 

the coefficient of restitution, the Debye length, and the turbulence strength, thus 

demonstrating further the applicability of the present investigations to industry. Whilst 

the DLVO forces had noticeable differences on the interaction behaviour, 

agglomerates did not form for extended periods, possibly due to the chosen turbulence 

levels being too great.   

2.4 Conclusions  
As evidenced, significant progress has been made towards the simulation of physically 

relevant turbulent agglomerating systems, but the state-of-play is simplistic and 
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idealised in some cases. Further steps that could be taken beyond the existing 

literature are as follows:  

• Firstly, through the inclusion of non-spherical particles, rough surface particles, 

or polydisperse particles, which are more representative of the true 

characteristics of physical systems. Simulation of these systems will increase 

the understanding of the accuracy and limitations of the spherical, smooth and 

monodisperse assumptions. Attempts have been made to include these 

elements at basic levels of fidelity, but there is clear scope for further 

development, as well as the fact the entire parameter space of these variables 

(non-sphericity, roughness, polydispersity) has not been investigated. 

• Secondly, there lacks entirely a computational framework that includes all of the 

elements of an agglomeration-resolved non-spherical and turbulent system. 

There are very few studies that attempt to include agglomeration at a particle-

resolved level even for spheres, whilst also resolving fluid turbulence. This is 

due to the disparate time and length scales involved. With access to high 

performance computing, steps can be made in this direction.  

• Thirdly, improvements could be achieved through increased realism in the fluid-

phase: whilst HIT boxes offer the chance to study the interaction between 

turbulence and agglomeration, true agglomeration will include effects owing to 

mean-flow and solid boundaries. The challenge there is that the full wall-

bounded flows of industrial significance are dimensionally huge in comparison 

to the scale of the particles and their interactions. The number of particles and 

thus computational requirements are thus also huge if particle-scale physics is 

to be resolved. A smaller step forwards would be the inclusion of an improved 

forcing method for the turbulence which thus far rely on the effective but limited 

linear forcing method which is not suited to particle-laden studies. The review 

of forcing schemes in Section 2.1.11 indicates the best route forward is to use 

the scheme of Eswaran and Pope (1988). 

• Collision modelling between non-spherical particles lacks a clear framework. 

There is a need for a soft-sphere model between spheroidal particles that does 

not rely on assumptions of sphericity. A first step towards this would be in 

generating a simple and effective way to track and compute particle overlap.  
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Lastly, there is scope for investigation of many particles interacting in turbulence 

with DLVO forces included, rather than a square well, and the effect on the 

turbulence field. This last point of investigation is only possible, in fact, with an 

improved forcing method, since the linear forcing is known to impact upon the 

particle-fluid coupling such that it is difficult to determine modulations on the 

turbulence field that occurred as a result of the particles as opposed to the 

forcing itself. 

In the present thesis, attempts have been made to provide solutions to the mentioned 

gaps in the literature. Non-spherical particle interactions have been tackled in detail 

with novel modelling contributions, coupling the methodologies previously used 

(without consideration of fluid) to a turbulent flow. In doing so, the existing methodology 

of Mortimer and Fairweather (2021) has been expanded, wherein developments have 

taken place to improve the turbulence forcing method, and to incorporate non-

sphericity into all elements of the modelling. Lastly, developments have taken place 

facilitating non-spherical particle collisions and agglomeration under a soft-sphere 

framework, which is not seen in the turbulent particle-laden flow literature.   
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3 Methodology 
This chapter discusses the numerical methods used for the simulation of the 

multiphase flows presented in the results chapters. It encapsulates both the existing 

methodologies that have been implemented, as well as the range of new 

developments made over the course of the project. Much of the work involved in this 

project has been focused on the development of novel codes for the purpose of 

simulating non-spherical particle agglomeration in homogeneous and isotropic 

turbulence. This has been approached using first principles modelling, with 

consideration of other relevant studies and how best to combine and improve upon 

them. This effort has mostly been in the direction of the particle-phase modelling, since 

non-sphericity introduces significant additional complexity; however, the fluid-phase 

has also received attention in terms of an implementation for turbulence forcing, as 

well as coupling with the particle-phase. All of this is outlined in detail throughout this 

chapter. 

Particle non-sphericity has been included in a way that accurately resolves the fluid 

dynamics very close to the surface of the particle – through an immersed boundary 

method (IBM) and an exceptionally high-fidelity turbulence-resolving direct numerical 

simulation (DNS). Combining this powerful simulation approach with a model for 

interparticle attractive and repulsive interaction forces is relatively unchartered territory 

in the existing literature, where a handful of studies have used this approach for 

spheres (Derksen, 2011; Mortimer et al., 2021) and, to the author’s knowledge, no 

such studies exist for spheroids. There exists a range of numerical studies that model 

each of the important components in isolation or with low fidelity techniques. For 

example, non-spherical particles interacting without resolution of the fluid-phase 

(Schiller et al., 2011), non-spherical immersed boundaries in turbulence without 

agglomeration forces (Jain et al., 2021), or immersed boundary spherical particles 

interacting in turbulence with attractive forces in a very limited number of cases 

(Mortimer et al., 2021). By combining these elements, more accurate simulation 

approaches are developed, and hence a better understanding of the fundamental 

behaviours of interacting non-spherical particles in real physical turbulent systems is 

provided. This forms the main methodology used throughout the thesis. 
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Finally, significant developmental work went into producing a soft-sphere capability 

that can handle small-scale DLVO agglomeration events in turbulence over much 

wider simulation times with many simultaneously interacting particles. Two new ideas 

were proposed here for the computation of overlap between interacting particles, and 

a third method was also implemented from an existing methodology, adapted for 

spheroids. 

3.1 Fluid-Phase 

3.1.1 Numerical Solution of the Navier-Stokes Equations  

The technique employed for the solution of the fluid-phase is direct numerical 

simulation. Time-dependent solutions to the incompressible Navier-Stokes equations 

of a Newtonian fluid are computed. Thus, there are two key assumptions: that of 

incompressibility, which is justified by the low Mach number of the present flows; and 

that of a Newtonian fluid, which is justified since the simulations involve water as the 

continuous medium. The DNS computations are facilitated by an existing open-source 

spectral-element method based CFD code, Nek5000 (Fischer et al., 2008), the 

numerical approach of which is described in detail here. The dimensional Navier-

Stokes equations solved in this process are: 

𝜕𝒖

𝜕𝑡
+ 𝒖 ⋅ ∇𝒖 = −

1

𝜌𝐹
(∇𝑝 − ∇ ⋅ 𝝉) + 𝒇𝐸𝑃,    (3.1a) 

∇ ⋅ 𝒖 = 0,    (3.1b) 

where, 𝒖(𝒙, 𝑡), 𝑝(𝒙, 𝑡), and 𝜌𝐹 are the fluid velocity, pressure, and density, 

respectively, and 𝝉(𝒙, 𝑡) is the viscous stress tensor. A forcing source term 𝒇𝐸𝑃 is 

included in the equations to introduce and maintain turbulence, which is described 

in detail in Section 3.1.4. 

The viscous stress tensor is defined by: 
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𝝉 = 𝜇𝐹[∇𝒖 + ∇𝒖T],    (3.2) 

with 𝜇𝐹 = 𝜈𝐹𝜌𝐹 being the dynamic viscosity. The divergence is implemented for a 

Newtonian fluid (due to constant viscosity) as:  

∇ ⋅ 𝝉 = 𝜇𝐹∇
2𝒖.    (3.3) 

DNS necessitates the resolution of all temporal and spatial scales involved in the flow, 

requiring a sufficiently fine grid. During the generation of the numerical mesh, it is 

ensured that both the Kolmogorov length scale 𝜂 and the integral length scale ℓ are 

captured; whilst the corresponding Kolmogorov and integral time scales 𝑇𝜂 and 𝑇ℓ are 

also captured through consideration of the time-step and simulation time, respectively. 

For the small-scale particle interactions seen in the present thesis, the full effects of 

the turbulence field are sampled across the many simulations making up the Monte-

Carlo study. 

Such a strong level of fidelity (i.e. DNS) is chosen since particles of a size that are 

known to be strongly influenced by the small turbulent motions of the fluid are 

investigated (Elghobashi, 1991; Mortimer and Fairweather, 2017). Moreover, the aim 

is to resolve phenomena such as boundary layers in the vicinity of the particle, which 

requires a very high level of resolution. This approach enables investigation of the 

fundamental and small-scale interaction behaviours.   

3.1.2 Nek5000 Flow Solver 

The spectral-element solver Nek5000 (Fischer et al., 2008) was employed for the 

solution of the fluid-phase. It is chosen in part for its excellent scalability, allowing for 

parallel computations to take place on the University of Leeds’ high-performance 

computing clusters, ARC3 and ARC4, which have been utilised for all the present 

simulations. These computations were typically distributed over 32 cores for forced 

turbulence simulations and 8 cores for initially quiescent liquid simulations, with 

runtimes ranging from 0.5 hours to 45 hours, depending on the specific problem. 

Nek5000 is written in FORTRAN 77 which gives fast execution times and efficient 
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memory usage; hence, this is the language used for each of the additional fluid and 

particle modules that were added to the code. The interfacing with the high-

performance computing clusters took place in a Linux environment. 

Nek5000 relies on the spectral element method (Boyd, 2001) for its computations, 

where the solution to the Navier-Stokes equations is approximated as a sum of 

weighted basis functions. In typical finite element methods (FEMs), the chosen basis 

functions are often piecewise continuous hat functions, whereas spectral methods 

employ polynomials as basis functions. Consequently, FEMs are local in nature, while 

spectral methods are global. The spectral approach enables higher-order 

approximation of the solution and exhibits the desirable property of "spectral 

accuracy," where the computational error decays exponentially with increasing 

polynomial order (Aref and Balachandar, 2018). The spectral element method 

combines the advantages of both approaches by partitioning the domain into 

structured elements and constructing the polynomial basis functions within each 

element. 

Within these elements, the spectral element method operates on a non-uniform grid, 

with carefully chosen node distributions such that the quadrature rules ensure 

accurate integration of polynomials up to a specified degree. These choices facilitate 

mathematical conveniences that lead to faster convergence with fewer degrees of 

freedom compared to FEMs and other numerical approaches. For these reasons, the 

spectral element method is well-suited for high-fidelity fluid simulations, particularly for 

periodic domains with a simple global structure (Trefethen, 2000), as in the cases 

considered here.  

In Nek5000, these polynomials are constructed using Lagrange interpolants defined 

on nodes corresponding to the Gauss-Lobatto-Legendre quadrature points, ensuring 

integration and differentiation are highly accurate and numerically stable. 

3.1.3 Simulation Domain 

The general simulation domain is a cubic periodic cell with side-length 𝐿 (Figure 3.1). 

The value of 𝐿 is different for the fluid-phase validation and for the simulations involving 

particles. For the validation, 𝐿 = 2𝜋, was chosen to match the reference study of 
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Chouippe and Uhlmann (2015). When particles are introduced, the simulations take 

place in a dimensional domain with 𝐿 = 1 𝑚𝑚, to recreate the relative dimensions of 

the nuclear waste system being modelled and so that the particle-phase does not 

require non-dimensionalisation. This is best avoided since it is unclear how to non-

dimensionalise the DLVO equations presented in Sections 3.2.7 and 3.2.8 such that 

the relative strengths of the fluid and DLVO forces remain consistent. The domain size 

is chosen to recreate a small region within a turbulent channel or pipe flow that might 

be found in industry (Mortimer et al., 2019). Within these small regions, the direct 

interplay between small numbers of particles and the turbulence field can be studied 

to better understand the fundamental interaction behaviours and dynamics. By 

reducing the simulation domain to this extent, exceptional resolution at the scale of the 

particles is achieved. 

 

Figure 3.1: Schematic of the computational domain, with a binary particle interaction 

taking place between two needles. 
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Figure 3.2: Demonstrative example of the computational meshes used in the 

simulations; here, possessing 203 elements 

 

Figure 3.3: Slice of the computational mesh (left), with a zoom (right) demonstrating 

the Gauss-Lobatto-Legendre structure of the nodes within each element.  

The mesh is generated using the genbox tool in the Nek5000 software, with the results 

of this operation displayed in Figures 3.2 and 3.3. This allows the user to specify the 

number of elements in each orthogonal direction, defined by: nelx × nely × nelz. In the 

present work, these elements are distributed uniformly and equally in the three 
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directions. The simulation domain encloses 24 × 24 × 24 or 30 × 30 × 30 elements 

depending on the study, which are further discretised into the internal Gauss-Lobatto-

Legendre (GLL) nodes, the non-uniform spacing of which can be seen in Figure 3.3. 

The elements are evenly spaced, the internal nodes are not. This leads to a mesh 

totalling 2.7 million or 4.7 million equivalent grid points, respectively. Thus, an 

exceptional level of fidelity is achieved in the fluid-phase for which all length-scales of 

the turbulence field are resolved. The boundary conditions are set to be periodic in all 

three directions for both the fluid- and particle-phases. 

3.1.4 Turbulence Forcing Scheme 

A forcing source term 𝒇𝐸𝑃 is introduced to the equations to maintain homogeneous 

and isotropic turbulence according to the methodology of Eswaran and Pope (1988). 

The force is generated independently of the flow field and is parameterised a priori 

such that the long-time behaviour of the forced fluid converges upon the desired 

statistically stationary turbulence level and Taylor-Reynolds number.  

The generation of the field is achieved through the use of stochastic processes which 

drive the evolution of the forcing field 𝒇𝐸𝑃. Namely, six independent Uhlenbeck-

Ornstein (U-O) random processes are used for each of the forced wavenumbers in 

the fluid, corresponding to a real and imaginary part for each component of the 

wavenumber vector 𝜿 = (𝜅1, 𝜅2, 𝜅3). The forcing field is constructed in Fourier-space 

and is denoted by 𝒇̂𝐸𝑃(𝜿, 𝑡). Only small wavenumbers are excited, those below the 

cut-off wavenumber |𝜿| ≤ 𝜅𝑐𝑢𝑡, which corresponds to only exciting large-scale 

motions. Then, the natural turbulence energy cascade develops the smaller scales 

of the turbulence field until the full turbulent energy spectrum is resolved and 

sustained.  

The U-O random processes 𝒃̂(𝛋, 𝑡) are numerically updated using a finite-difference 

equation: 

𝑏̂𝑖
𝑗+1

= 𝑏̂𝑖
𝑗 (1 −

Δ𝑡

𝑇𝐿
) + 𝑒𝑖

𝑗 (2𝜎2
Δ𝑡

𝑇𝐿
)

1
2
, (3.4) 
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where the subscript 𝑖 refers to the wavenumber direction, superscript 𝑗 refers to the 

time level, Δ𝑡 denotes the fluid timestep, 𝑇𝐿 is the forcing timescale and 𝜎2 is its 

variance. The forcing parameters 𝜅𝑐𝑢𝑡, 𝜎 and 𝑇𝐿 are chosen to match those used by 

Chouippe and Uhlmann (2015), in order to perform a validation. This validation, 

found in Chapter 5, demonstrates the validity of these choices with respect to the 

resolution achieved in the simulations.  

The term 𝑒𝑖(𝜿, 𝑡) represents a complex random number that follows a standard 

normal distribution, generated using the Box-Muller transform approach during the 

simulation. The continuity condition in Fourier-space is 𝒇̂𝐸𝑃(𝛋, 𝑡) ⋅ 𝜿 = 0 which is 

satisfied by: 

𝒇̂𝐸𝑃(𝜿, 𝑡) = 𝒃̂(𝜿, 𝑡) − 𝜿(𝜿 ⋅ 𝒃̂(𝜿, 𝑡))/(𝜿 ⋅ 𝜿), (3.5) 

representing a projection of 𝒃̂ onto the plane normal to 𝜿. Then, an inverse Fourier 

transform is performed to obtain the entire forcing field 𝒇𝐸𝑃 used in the solution of 

the Navier-Stokes equations:  

𝒇𝐸𝑃(𝐱𝑖𝑗𝑘) = ∑ ∑ ∑ 𝒇̂
𝑁𝑓

𝑛=−𝑁𝑓
 exp (𝐼𝜅1,𝑙𝑥𝑖)exp (𝐼𝜅2,𝑚𝑦𝑗)exp (𝐼𝜅3,𝑛𝑧𝑘)

𝑁𝑓

𝑚=−𝑁𝑓

𝑁𝑓

𝑙=−𝑁𝑓
,

∀ 𝑖, 𝑗, 𝑘.  
(3.6) 

This transform is achieved in practice by three successive one-dimensional 

transforms to reduce the computational complexity (Chouippe and Uhlmann, 2015); 

however, a spectral grid is forced, so a transform is first performed onto a uniform 

grid, before interpolating the correct forcing to the computational mesh:  

𝑨𝑚𝑛𝑖 = ∑ 𝒇̂𝑙𝑚𝑛

𝑁𝑓

𝑙=−𝑁𝑓

exp(𝐼𝜅1,𝑙𝑥𝑖) , ∀ 𝑚, 𝑛, 𝑖 (3.7) 
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𝑩𝑛𝑖𝑗 = ∑ 𝑨𝑚𝑛𝑖  exp(𝐼𝜅2,𝑚𝑦𝑗)

𝑁𝑓

𝑚=−𝑁𝑓

, ∀ 𝑛, 𝑖, 𝑗 (3.8) 

𝒇𝐸𝑃(𝐱𝑖𝑗𝑘) = ∑ 𝑩𝑛𝑖𝑗

𝑁𝑓

𝑛=−𝑁𝑓

exp(𝐼𝜅3,𝑛𝑧𝑘).  ∀𝑖, 𝑗, 𝑘 (3.9) 

Equations (3.7) to (3.9) represent the successive one-dimensional transformations, at 

grid points 𝒙 = (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘), with 𝐼 = √−1 denoting the imaginary unit and 𝜅𝛼,𝛾 being the 

wavenumber vector, given by: 

𝜅𝛼,𝛾 = 2𝜋𝛾/𝐿𝛼 , (3.10) 

for 𝛾 ∈ {−𝑁𝑓, … , 𝑁𝑓} with zero forcing contribution at 𝛾 = 0 and 𝛼 ∈ {1,2,3} being the 

wavenumber direction. 

As is demonstrated in Figure 3.4, where a time evolution of two plane slices of the 

forcing field is presented, the stochastic processes are correlated in time: each 

iteration of the forcing field is dependent upon the last. It is also observed that the 

forcing structures generated are significant with respect to the size of the domain, 

these large structures begin to form the correct energy cascade and spectrum once 

coupled to a Navier-Stokes equation solver. This is the field used in the generation of 

the Taylor-Reynolds number 𝑅𝑒𝜆 = 65 (𝑇𝐿  =  1.67, 𝜖∗ =  0.00298) validation study 

described in Chapter 5: Section 2. Each realisation is separated in time by 0.3 non-

dimensional time units.  
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Figure 3.4: Demonstrative example of the Python implementation of an Eswaran and 

Pope (1998) non-dimensional forcing field 𝑭𝑢 for one slice in the 𝑥𝑦-plane (top) and 

one slice in the 𝑦𝑧-plane (bottom) evolving over a short period of time, with four 

evenly spaced realisations (blue arrow indicates time direction). 

 

Figure 3.5: Contour plot of non-dimensional velocity magnitude for 𝑅𝑒𝜆 = 65.  
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Figure 3.6: Isosurface plot of non-dimensional velocity magnitude for 𝑅𝑒𝜆 = 65 

around the non-dimensionalised root-mean-square velocity 𝑢′ = 0.7.  

In Figures 3.5 and 3.6, it is shown how this forcing scheme manifests itself once 

coupled to the Navier-Stokes equations using Nek5000. The white contour lines in the 

former figure demonstrate the range of scales in the flow as would be expected given 

the descriptions of Chapter 2: Section 1, whilst the shading of the surface in Figure 3.5 

represents the local velocity magnitude. The strongest velocity magnitudes often 

correspond to regions near to the centre of the turbulent eddies, where strong swirling 

motions are occurring. This range of scales can only be realised through the DNS 

solution of the Navier-Stokes equations, as clearly the smallest scales are not present 

in the raw forcing function (Figure 3.4). Lastly, the isosurface plot demonstrates 

locations at which the RMS velocity centres at 𝑢′ = 0.7, helping to visualise the 

coherent structures present in the flow about the mean fluctuation magnitude.  



73 
 

3.2 Particle-Phase Methodology 

3.2.1 Overview 

The modelling of the particle-phase is achieved by the addition of extra modules to the 

Nek5000 code. These modules are called and executed at every timestep and run 

concurrently with Nek5000; to achieve this, they are added to the base fluid solver 

code upon compilation. The particle meshes are read in as .raw files at the beginning 

of the simulation, storing all of the necessary information about faces and vertices, 

which are then accessible through matrices defined in the solver at initialisation.  

3.2.2 Morphology and Meshes 

By using a mesh to represent the particle, one has access to any shape that can be 

made in the meshing software, but incorporating interesting physics typically relies on 

models that have a precise definition of the surface – ideally a continuous one – and 

this is where the mathematical complexity increases with non-spherical shape. It is 

possible to model cubes, cuboids and cylinders continuously using ‘superellipsoids’, 

but for the present work, ellipsoidal particles were chosen. Specifically, spheroids, 

which is the special case of an ellipsoid where two of the principal axes are of the 

same length. This allows for the study of disks and needles, which are two shapes 

found regularly as products in nuclear waste transport systems, and in nature (Li et 

al., 2020; Slootman et al., 2023). This finds a good balance between mathematical 

tractability and the relevant morphological anisotropy.  

The quadric equation for the surface of a general unrotated ellipsoid is:  

(𝑥′)2

𝑎2
+

(𝑦′)2

𝑏2
+

(𝑧′)2

𝑐2
= 1, (3.11) 

where 𝒂 = (𝑎, 𝑏, 𝑐) contains the axial lengths of the particle in the respective 

orthogonal directions of the particle’s body-fixed frame 𝒙′ = (𝑥′, 𝑦′, 𝑧′). With 𝑏 = 𝑐, the 

equation reduces to that of a spheroid: 
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(𝑥′)2

𝑎2
+

(𝑦′)2 + (𝑧′)2

𝑏2
= 1.  (3.12) 

In this formulation, 𝑎 > 𝑏 defines a prolate spheroid, referred to from hereon as a 

‘needle’. The case 𝑎 < 𝑏 defines an oblate spheroid, referred to as a ‘disk’. Note that 

𝑎 = 𝑏 reduces Equation (3.12) to the equation for a sphere. 

Equation (3.12) is exploited throughout the current work for its mathematical simplicity. 

In practice, the coordinate system can always be transformed to the body-fixed frame 

of a given particle, where the exact location of every point on the surface of the particle 

is accessible through the given equation. This is convenient for operations such as 

calculating normal vectors, distances between surfaces, or the local curvature which 

proves to be very useful in non-spherical particle modelling.     

The term ‘symmetry axis’ (of the spheroid) will refer always henceforth to the principal 

axis of the spheroid, aligned with the 𝑥′-direction. Then, the asymmetry axes are those 

aligned with the 𝑦′- and 𝑧′-directions. The prime notation is referring to any variables, 

or later operators, defined with respect to the body-fitted coordinate system – the local 

coordinate system of a given particle. The unique length of the particle in the direction 

of the symmetry axis, as compared to the asymmetric axes, makes for geometric 

anisotropy. There is a circular symmetry about the 𝑥′-axis, and elliptic shape about the 

𝑦’- and 𝑧’-axes. This anisotropy creates orientational dependency in all elements of 

the modelling, further complicating: particle orientation tracking, the inertia tensor 

and resulting torques, collision detection and resolution, calculation of inter-particle 

separation, the dynamics resulting from the flow field, the assessment of results, the 

inter-particle force interaction model, and more. In each case, steps have been taken 

to deal with these additional complexities which will be explained throughout. 

For use in the simulations, icosphere meshes comprised of 320 triangular faces were 

generated in the graphics software tool, Blender (Hess, 2010). The number of faces 

was chosen to be in line with Mortimer (2019), which forms the basis of the present 

work. The cited work demonstrated that this level of resolution for the particle mesh 

was required to accurately reproduce the correct drag and lift properties in a validation 

study of the IBM. In Blender, the relative lengths of the icosphere's principal axes are 
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altered to create spheroids of two new morphologies. The morphologies, 

demonstrated in Figure 3.7, have a disk and needle shape. This is achieved by 

stretching or compressing the icosphere in the direction of the particle's symmetry axis 

and adjusting the scale accordingly such that volume is kept constant. The original 

volume is that of a sphere with 𝑟 = 50𝜇𝑚, which is a characteristic length for the 

particles and is sometimes referred to as the ‘volumetrically equivalent particle radius’.  

 

Figure 3.7: Computational meshes of the particles used in the immersed boundary 

simulations. Pictured from left to right: a needle, a sphere, and a disk.  

Table 3.1 demonstrates the surface area increase for increasing aspect ratio 

spheroids. It is worth noting that, as aspect ratio increases, the surface area of the 

disk diverges away from that of the volumetrically equivalent needle of the same 

aspect ratio, which could have implications when comparing results.  
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Table 3.1: Important quantities relating to the morphology of five relevant shapes. 

The coefficients are nondimensionalised by the volumetrically equivalent radius and 

hence volume and surface area are similarly nondimensional.  

Shape Aspect Ratio Coefficients (𝑎, 𝑏, 𝑐) Volume Surface Area 

Sphere 1:1 (1.00, 1.00, 1.00) 4.19 12.6 

Needle 2.5:1 (1.84, 0.737, 0.737) 4.19 14.2 

Disk 2.5:1 (0.543, 1.36, 1.36) 4.19 14.8 

Needle 5:1 (2.92, 0.585, 0.585) 4.19 17.1 

Disk 5:1 (0.342, 1.71, 1.71) 4.19 20.2 

3.2.3 Orientation Tracking and Quaternion Formulation 

The chosen tool to compute and update the orientation of the rigid bodies, as well as 

rotate any vector quantities between world space and their body space, is a 

quaternion formulation; specifically, the Euler parameters (Goldstein, 1950;  

Mortensen et al., 2008). Quaternions are an extension of the complex number 

system which allow for convenient computation of three-dimensional rotations. They 

are represented by a four-dimensional system comprised of a scalar and vector part, 

𝒒 = (𝑞0, 𝐯),  with  𝐯 = (𝑞1, 𝑞2, 𝑞3),  𝒒 ∈ ℍ,  𝑞0 ∈ ℝ, 𝐯 ∈ ℝ3.  

Specification of the orientation state of the rigid body firstly relies on the Euler angles 

(𝜙, 𝜃, 𝜓) which represent an ordered set of three rotation operations. The order is 

important since each individual rotation rotates the coordinate system about which 

the next operation will take place. For a visual description of this process the reader 

is referred to Goldstein (1950). It is possible to use these Euler angles in isolation to 

define the orientation of the body; however, a quaternion system is preferable since 

firstly it is not susceptible to gimbal lock (where two of the three rotational axes 

become parallel and thus the system loses a degree of freedom and its ability to 

represent all orientations), and secondly it is not singular (Fan and Ahmadi, 1995). 
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From the Euler angles, the Euler quaternion parameters 𝒒 can be constructed: 

𝑞0  = cos (
1

2
 [𝜓 + 𝜙]) cos

𝜃

2
, (3.13a) 

𝑞1  = cos (
1

2
 [𝜓 − 𝜙]) sin

𝜃

2
, (3.13b) 

𝑞2  = sin (
1

2
 [𝜓 − 𝜙]) sin

𝜃

2
, (3.13c) 

𝑞3  = sin (
1

2
 [𝜓 + 𝜙]) cos

𝜃

2
. (3.13d) 

In turn, a rotation matrix 𝑨 can be constructed which transforms between the 

orientational reference frame of the particle and the global frame. Specifically, the 

rotation matrix can be thought of as an operator which acts on the unprimed system 

to transform it into the primed system (Goldstein, 1950):  

A = (

1 − 2(𝑞2
2 + 𝑞3

2) 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞1𝑞2 − 𝑞0𝑞3) 1 − 2(𝑞1
2 + 𝑞3

2) 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 + 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 1 − 2(𝑞1
2 + 𝑞2

2)

) (3.14) 

This gives two equivalent ways to transform a vector 𝒑 between coordinate systems: 

either by using the quaternion method 𝒑′ = 𝒒𝒑𝒒∗, where 𝒒∗ is the conjugate of 𝒒; or 

by using the transformation matrix 𝒑′ = 𝑨𝒑. Then, the inverse rotation matrix, which 

can be used to transform in the opposite direction, is given by both the transpose 

and the inverse of 𝑨, since the matrix is orthogonal. This process reads as 𝒑 =

𝑨𝑇𝒑′ = 𝑨−1𝒑′; naturally, it is simpler to compute the transpose. In the case of the 

quaternions, this operation can be performed through 𝒑 = 𝒒∗𝒑′𝒒. 
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Figure 3.8: The three coordinate systems used to define the state of the body. The 

vector 𝑪 joins the origin to the particle centre in the global frame.  

In Figure 3.8, it is demonstrated graphically how the orientational and positional state 

of the body is defined and tracked. In the global coordinate frame 𝑥 − 𝑦 − 𝑧 there lies 

a fixed coordinate system against which it is possible to define the others, this is 

sometimes referred to as the laboratory frame. In the body-fixed particle frame 𝑥′ −

𝑦′ − 𝑧′ the system moves with the particle through space, allowing tracking of the 

particle’s intrinsic properties as it rotates and moves, and allowing relation of these 

properties back to the global frame using the methods described above. Finally, there 

is an intermediate frame that rotates with the particle  𝑥′′ − 𝑦′′ − 𝑧′′, the Eulerian or 

Orientational frame, which is not translated into its position in space 𝑪 but rather just 

keeps track of the orientational state.  

It is important to transform between these coordinate frames in the correct order. For 

convenience, most of the operations conducted on individual particles are 

implemented in the particle’s body-fixed frame. When moving the particle back into 

its correct configuration in the global frame, it must first be rotated and then 

translated. To achieve the opposite transformation, an inverse translation must first 

be performed, followed by the inverse rotation. 
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The particle orientation can hence be fully described by the quaternion vector 𝒒 and 

an associated matrix 𝑨 which describes the orientation of the rigid body. The next 

consideration is how to evolve these. The particles possess an angular velocity 𝝎𝑝 

which is used to determine the rotation of the body over time. First-order differential 

equations are solved to time-evolve the Euler parameters (Mortensen et al., 2008); 

in this work, this is performed using a standard Euler integration method. A Runge-

Kutta scheme is also implemented and available; however, the Euler scheme was 

sufficient for the present simulations, given the extremely small timestep, as will be 

discussed later. The following system of differential equations: 

d𝒒

d𝑡
=

(

 
 
 
 
 
 

d𝑞0

d𝑡
d𝑞1

d𝑡
d𝑞2

d𝑡
d𝑞3

d𝑡

 

)

 
 
 
 
 
 

 =
1

2
(

𝑞0 −𝑞1 −𝑞2 −𝑞3

𝑞1 𝑞0 −𝑞3 𝑞2

𝑞2 𝑞3 𝑞0 −𝑞1

𝑞3 −𝑞2 𝑞1 𝑞0

)(

0
𝜔𝑥

′

𝜔𝑦
′

𝜔𝑧
′

), (3.15) 

describes this quaternion evolution over time. The method of integrating the 

quaternions is effective but incurs error due to numerical drift, which ultimately can 

lead to the quaternions losing their unity during a simulation. It is imperative that the 

quaternions retain their unitary nature for accurate rotations. As such, a 

renormalisation is carried out every timestep to ensure unit quaternions are always 

dealt with: 

𝒒̂ =
𝒒

√𝑞0
2 + 𝑞1 

2 + 𝑞2
2 + 𝑞3

2
 . (3.16) 

3.2.4 Immersed Boundary Method and Coupling 

An immersed boundary method is utilised to couple the particle-phase to the fluid using 

the ghost-cell method described in Mark and van Wachem (2008). This allows the 

inclusion of finite-sized particles of a complex geometry in the flow. The IBM code used 

in the present work was an existing one – originally implemented for spherical particles 
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by Mortimer (2019) but written in such a way that it could be extended to non-spherical 

geometries. It has received the necessary modifications herein to make it properly 

compatible, for example in generalising the inertia tensor for use with ellipsoidal 

bodies, reformulating the boundary conditions, and extending the torque calculations’ 

compatibility to ellipsoids. The method runs concurrently with Nek5000 to couple the 

immersed particle meshes with the fluid-phase solver. Initially, a structured grid of 

surface points is read in which defines the locations of all the faces (made up of three 

vertices each) of the particle in the form of a .raw file. These data are then scaled 

during the particle injection module such that it is of the correct size for the simulation: 

of characteristic length 𝑟.  

The no-slip condition is enforced at the surface of the particle mesh discretely using a 

direct boundary condition imposition method. This is achieved by a ghost-cell mirroring 

technique (Tseng and Ferziger, 2003), in which fluid ‘ghost nodes’ inside the particle 

boundary are manually set to values which ensure the requisite boundary condition. 

Namely, it is ensured that the fluid velocity at the surface of the particle matches 

exactly with the velocity at the face of the particle by forcing the fluid very near to the 

surface. This requires multiple fluid points for each triangular face of the particle mesh. 

Inside the boundary are the ghost nodes; these are points in the fluid mesh that lie 

directly adjacent to the boundary, i.e. there are no fluid points that lie between a ghost 

node and the nearest particle boundary. The location of an ‘exterior point’ is then 

determined from a ghost node. This is done by reflecting the ghost node across the 

particle face to the outside of the particle. In doing so, the midpoint of the line formed 

between these two nodes represents a point directly on the particle surface. The 

schematic in Figure 3.9 demonstrates this for a smooth particle surface shown in 2-D 

on a simple uniform grid for explanatory purposes. The yellow ghost nodes are 

predetermined from the position and orientation of the particle with respect to the 

underlying fluid mesh. 
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Figure 3.9: Schematic demonstrating the implementation of the ghost-cell method on 

a computational grid, with points used in the calculation colour-coded: interior nodes 

(red), exterior nodes (green), ghost nodes (yellow). The thick black line represents a 

slice of the particle surface.  

Typically, this process will not align the exterior point with a point also in the fluid mesh 

and so the exact velocity value at this point must be determined through spectral 

interpolation of the nearby fluid points. Then, the no-slip condition is enforced by: 

𝒖𝐺 = 2𝒖𝐼𝐵 − 𝒖𝐸 , (3.17) 

with 𝒖𝐺 being the fluid velocity of the ghost node, 𝒖𝐼𝐵 the fluid velocity at the surface 

of the immersed boundary and 𝒖𝐸 the fluid velocity of the exterior point. Lastly, there 

are ‘interior nodes’ that lie inside the particle boundary but do not lie adjacent to the 

surface – these are set to match the velocity at the nearest boundary. 

Advection of the particle is computed by integrating the total hydrodynamic forces 

and torques acting on the surface. The surface of the icosphere mesh is naturally 

divided into its 320 constituent triangular faces. The area of each can be calculated 

using the relation: 𝐴𝑟𝑒𝑎 =
1

2
(PQ⃗⃗⃗⃗  ⃗ × PR⃗⃗⃗⃗  ⃗), for points P, Q, R that make up the vertices of 

the triangular face. 
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The total surface forces acting on the immersed boundary are given by the surface 

integral of the stress tensor on the particle: 

𝑭 = ∫ (−𝑝𝒏 + 𝝉 ⋅ 𝒏)𝑑𝑆
𝐼𝐵

, (3.18) 

with the first term on the RHS being the pressure forces and the second the viscous 

forces, evaluated numerically across the 320 faces through a summation:   

𝑭 = ∑ (−𝑝𝑓𝒏𝑓𝐴𝑓 + 𝝉 ⋅ 𝒏𝑓𝐴𝑓)𝑁 , (3.19) 

where the subscript 𝑓 represents a quantity evaluated at a given face, 𝑁 is the total 

number of faces, 𝒏 is the face unit normal, and 𝐴𝑓 is the area of the face. The pressure 

and viscous stresses are interpolated from their respective fields defined on the fluid 

mesh such that they are evaluated at the centre of the face they are acting on. The 

torque, 𝑻, can also be calculated by:  

𝑻 = ∑𝒓𝑓 × 𝑭𝑓

𝑁

, (3.20) 

where 𝒓𝑓 is the vector pointing from the particle centre to the face centre. The total 

torque of the body can then be used to update the angular velocity of the particle 

according to Euler’s rotation equations in the particle reference frame, as a rigid-body 

is assumed.  
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This was extended from the simplified spherical equation (𝑰 
d𝛚

d𝑡
= 𝑻) to give the 

spheroidal case (Goldstein, 1950):  

𝐼𝑥  
d𝜔𝑥

d𝑡
= 𝑇𝑥 + 𝜔𝑦𝜔𝑧(𝐼𝑦 − 𝐼𝑧), 

𝐼𝑦  
d𝜔𝑦

d𝑡
= 𝑇𝑦 + 𝜔𝑥𝜔𝑧(𝐼𝑧 − 𝐼𝑥), 

𝐼𝑧  
d𝜔𝑧

d𝑡
= 𝑇𝑧 + 𝜔𝑥𝜔𝑦(𝐼𝑥 − 𝐼𝑦), 

(3.21) 

where 𝛚 is the particle’s angular velocity and 𝑰 its inertia tensor, given for a general 

ellipsoid by: 

𝑰 =
𝑀

5
 (

𝑏2 + 𝑐2 0 0
0 𝑎2 + 𝑐2 0
0 0 𝑎2 + 𝑏2

), (3.22) 

where 𝑀 is the mass of the particle and 𝑎, 𝑏, 𝑐 are the radii of the unrotated spheroid 

in the 𝑥′, 𝑦′, 𝑧′ directions, respectively, with 𝑏 = 𝑐. 

The particles receive a force from the fluid in their advection, they exert an implicit 

force on the fluid through their boundary, and they interact with one another through 

collisions and inter-particle forces. In this way, the system is four-way coupled. 

3.2.5 Collision Detection 

For spheres, the inter-surface distance is found trivially by subtracting twice the 

particle's radius from the distance between the two particle centres. For ellipsoids, with 

that same distance between their centres as with the spheres, the inter-surface 

distance now depends on the relative orientation of the particles. Therefore, a more 

complex algorithm is required to determine distance or contact. 

The full collision implementation, which can be subdivided into the detection module 

and the mechanics module, is based on the work of Jain et al. (2019), chosen due to 
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the fact that a closest distance vector between a pair of surfaces, as well as the nearest 

surface points, are explicitly solved for. These quantities are useful in the calculation 

of the inter-particle forces herein since they arise due to surface-surface interactions.  

To give a brief overview, the method involves a common normal approach for the 

detection algorithm and a hard-sphere collision model for the resolution of the 

mechanics. A thorough description of the method is given but the reader is advised to 

refer to the original text for further details. The implemented modifications are outlined 

as follows. 

The collision search begins when the particle centres are within a distance of twice the 

longest particle radii, since this is the first instance a collision could occur between 

approaching particles. This is sometimes referred to as ‘bounding spheres’ and it 

prevents redundant calculations between particles that have no possibility of collision. 

When this condition is satisfied, the closest distance between the two surfaces is then 

searched for. For this, the parametric equations for an ellipsoid are used to determine 

a point 𝑹 on the surface in the body frame:  

𝑹 = (
𝑎 cos 𝜑 sin 𝜗
𝑏 sin𝜑 sin 𝜗

𝑐 cos 𝜗

), (3.23) 

with polar angle 𝜑 ∈ [0, 𝜋], azimuthal angle 𝜗 ∈ (−𝜋, 𝜋]  and coefficient vector 𝒂 =

(𝑎, 𝑏, 𝑐). Equation (3.23) is valid only for an unrotated body and so transformations 

between coordinate frames are conducted frequently in the implementation of the 

following algorithm. Differentiating 𝑹 w.r.t. 𝜑 and 𝜗 gives the tangent vectors 𝐭𝜑 and 

𝐭𝜗. The closest distance between two surfaces is found when the vector 𝒅 joining the 

two surfaces is perpendicular to both tangent vectors, for both particles. The surfaces 

share a common tangent plane at these locations, both normal to 𝒅. The 

implementation involves monitoring the four dot products:  

𝐷𝜑𝑖
= 𝐭𝜑𝑖

⋅ 𝒅, 𝑖 ∈ {1,2}, (3.24a) 
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𝐷𝜗𝑖
= 𝐭𝜗𝑖

⋅ 𝒅, 𝑖 ∈ {1,2}, (3.24b) 

until 𝐷𝜑𝑖
, 𝐷𝜗𝑖

→ 0 or, in practice, are smaller than some small value 𝜀, taken to be 10−6 

in the present calculations. 

Before starting the iterative procedure, initial guesses for the nearest surface points 

𝑹1
0 and 𝑹2

0 (for particles 1 and 2, respectively) are made as follows. A vector 𝒅0 is 

created between the two particle centres. The points on this line which intersect the 

particle surfaces are chosen as an initial guess. For a sphere, this would immediately 

give the closest points. The geometry is shown in Figures 3.10 and 3.11.  

To find the first initial point 𝑹1
0, the system is transformed into the reference frame of 

particle 1, i.e. its body-fixed frame centred at the origin. Then, the location of the centre 

of particle 2 after this transformation is none other than the vector 𝒅0 in the body frame 

of particle 1 which can loosely be denoted as 𝒅0
′ . The quadric equation for an unrotated 

ellipsoid can then be exploited. Namely, parametrically iterate along the vector 𝒅0
′ , 

from the origin (corresponding to the centre of the particle) with each iteration giving 

new points (𝑥′, 𝑦′, 𝑧′) that eventually satisfy Equation (3.11) once on the surface. This 

gives an initial 𝑹1
0 and the same process with 1 and 2 swapped gives 𝑹𝟐

0. 

 

Figure 3.10: Schematic of the approach to calculating the initial surface points via 

coordinate transform. 
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The following iterative process drives 𝜑𝑖 and 𝜗𝑖 from initial guesses towards the points 

𝑹1(𝒂,𝜑1, 𝜗1 ) and 𝑹2(𝒂, 𝜑2, 𝜗2 ) where the tangent vectors are normal to 𝒅: 

𝜑𝑖
𝑗+1

= 𝜑𝑖
𝑗
+  𝐶

𝐭𝜑𝑖

𝑗
⋅ 𝒅𝑗

|𝒕𝜑𝑖

𝑗
||𝒅𝑗|

, 𝑖 ∈ {1,2}, (3.25a) 

𝜗𝑖
𝑗+1

= 𝜗𝑖
𝑗
+  𝐶

𝐭𝜗𝑖

𝑗
⋅ 𝒅𝑗

|𝒕𝜗𝑖

𝑗
| |𝒅𝑗|

, 𝑖 ∈ {1,2}, (3.25b) 

with 𝐶 being the volume-equivalent diameter of a sphere divided by the principal axis' 

coefficient in Jain et al. (2019), 𝐶 = 2𝑟/𝑎. However, this term was modified and seen 

to improve convergence in higher aspect ratio morphologies, described below. In 

testing of the algorithm after implementation, its performance significantly reduced with 

increasing aspect ratios in terms of the algorithm’s ability to converge on the correct 

surface points at short distances. The solution to this problem was firstly to reduce the 

initial increments by which the angles changed, and then further reduce this increment 

when convergence was not achieved within 30 iterations of the algorithm. After each 

set of 30 iterations, the value of 𝐶 halves. The new coefficient can therefore be written 

as:  

𝐶𝑗 =
𝜋

180
𝑃𝑗 ,  (3.26) 

with 𝑃𝑗 ∈  {1,
1

2
,
1

4
,
1

8
,

1

16
,

1

32
,

1

64
,

1

128
} being the parameter which slows the increment by 

which the angles are updated. 

The authors released a corrigendum (Jain et al., 2019) to their work after the presently 

described modification had been implemented, which addresses the same issue. Their 

solution is to introduce an ad hoc appearance of 𝑎 in the denominator of the dot 

product, i.e., the denominator becomes 𝑎 + |𝒕𝜑𝑖

𝑗
||𝒅𝑗|. It was found that this also fixes 

the convergence issues described above. This issue may arise from the fact that the 
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increment that the angles are increased by does not consider the location on the 

surface. So, when moving parametrically through [0, 𝜋], equal increments of an angle 

do not correspond to equal distances traversed on the surface of the particle. Perhaps 

a more robust algorithm would account for this. It was attempted to directly account 

for this in the present work, such that increments were properly scaled, to test this 

hypothesis and potentially significantly improve the method. To do this properly, the 

need to compute elliptic integrals was found, which are notoriously difficult. In the 

interest of reducing computational complexity, this approach was abandoned in favour 

of the described approach wherein the angular update is halved. 

When the dot products in Equation (3.24) are approximately zero on both particles, 

the search is terminated, and the closest distance vector 𝒅 between the two particle 

surfaces is obtained. At each timestep where a collision is possible, 𝒅 is calculated. 

That is, until the closest distance between the two particle surfaces is less than a small 

value 𝜀 – at which point, a collision is said to have occurred. 

 

 

Figure 3.11: Variables used in the calculation of 𝑹𝑖. Variables with superscript ‘0’ 

indicate initial values and those without represent the final values converged upon by 

the algorithm. 

The collision detection algorithm typically does not converge for overlapping surfaces 

and so it is imperative that the surfaces are not allowed to overlap in the simulations. 

This requires setting a sensible value of 𝜀 that collides particles at the right moment. It 

is important not to set 𝜀 to be too small to run the risk of no collision being detected, 
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which can occur if the relative velocity of two particles is great enough to bypass this 

small window in a single timestep, allowing particles to move inside of one another, 

causing the algorithm to break down. Conversely, 𝜀 must not be so large that the 

particles are rebounding and moving apart too early in their interaction, such that they 

do not get close enough to experience the maximum values of the van der Waals 

(vdW) force.  

This touches on an important oversight that must be avoided where the timestep is so 

great that the maximal vdW forces are experienced only for a small number of 

timesteps, if at all. Then, given the large variation in the vdW force across small 

distances, the absolute value of this force experienced is effectively random. ‘Random’ 

in the sense that the separation distance falls somewhere in the interval (0, 𝜀) which 

is as dependent upon where the particles were located in the previous timestep, as 

much as it represents any true physics.  This interval is a small increment in terms of 

distance but it corresponds to a wide range of vastly different DLVO magnitudes 

(covered in Sections 3.2.7 and 3.2.8) – and the exact value of the maximal vdW force 

experienced has a very highly weighted impact on the resolved outcome of 

agglomeration. So, in work that considers agglomeration, it is very important that these 

maximal values are properly sampled to ensure that the outcome of the agglomeration 

procedure is deterministic. To properly resolve this, it must be ensured that the 

timestep is low enough for proper sampling. When coupling the simulations to a fluid-

phase, it is advisable to have a variable timestep or at least a separate timestep for 

the particle- and fluid-phase. 

In typical hard-sphere approaches, 𝜀 is constant; however, in the present work, a 

dynamic choice of this variable was implemented based upon the velocity of the 

particles at the points of closest approach. Note that this velocity is not necessarily 

the same as the translational velocity of the particle, since the non-spherical particle 

has a rotational component that contributes to the local velocity of a surface point. 

Denoting the velocity at the surface point as 𝒖𝑐, the minimum allowed separation 

distance is given by:  

𝜀(𝑡) = |Δ𝒖𝑐(𝑡)|Δ𝑡,  (3.27) 
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where |Δ𝒖𝑐(𝑡)| Δ𝑡  constitutes the maximum possible distance the two bodies can 

travel relative to one another, thus preventing overlap. Once a collision has been 

determined, the collision physics are modelled using the hard-sphere approach, 

which gives an impulsive collision force 𝐟𝑐 that acts over the interval Δ𝑡. The change 

in particle velocity is assumed to be instantaneous. In practice, this dynamic setting 

means that as particles lose speed (e.g. due to a collision) they are able to get 

successively closer and are thus more likely to sample larger values of the van der 

Waals force, allowing for repeatable results.  

A coefficient of restitution 𝑒 is included to model the kinetic energy loss in the collision 

as a result of surface deformation and other dissipative forces. In the present work, 

a value of 0.4 is typically chosen for 𝑒, which aligns with the material properties of 

calcite (Mortimer et al., 2019). This means that only 40% of the relative velocity is 

retained upon collision; although, the resolved value of 𝑒 is mildly orientationally 

dependent under this model. This orientational dependency is enhanced by the 

attractive interparticle forces which act to accelerate the approach and attenuate the 

speed of rebound – and are themselves orientationally dependent.       

3.2.6 Collision Mechanics  

Once contact is determined, the collision forces f𝑐 can be computed according to a 

hard-sphere model and applied to the particles. The impulsive collision force is applied 

only at one timestep and acts over the time interval Δ𝑡. Calculations to determine the 

force f𝑐 are made at the point of contact and variables computed at this contact point 

are denoted by the subscript 𝑐, whereas global variables that hold information of the 

full body are denoted by a subscript 𝑝.  

Just before collision, the velocity at the eventual contact point is: 

𝒖𝑐 = 𝒖𝑝 + 𝝎 × 𝒓𝑐, (3.28) 

where 𝒓𝑐 is the vector joining the contact point and the particle centre. 

At time step 𝑛, the quantity 𝒖𝑐 is related to the previous velocity by: 
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𝒖𝑐
𝑛  =  𝒖𝑐

𝑛−1  +  𝒖𝑒x  +  𝑲 ⋅ 𝒑𝑐, (3.29) 

where 𝒑𝑐 is the linear momentum and 𝒖ex  is the velocity due to external forces besides 

the collision force, acting during the interval Δ𝑡. The derivation of this can be found in 

Jain et al. (2019). This can then be used to derive the force via: 

f𝑐  =  𝑀
𝒖𝑐

𝑛−𝒖𝑐
𝑛−1

Δ𝑡
, (3.30) 

where 𝑀 is the mass of the particle. This can be applied to the particle mesh and hence 

directly included in the force balance. However, a different approach is adopted here. 

Since the particles are rigid bodies, the angular velocity is defined globally, allowing 

derivation of the particle angular velocity from: 

𝝎𝑝 = 𝝎𝑐 =
𝒓𝑐×𝒖𝑐

|𝒓𝑐|2
, (3.31) 

which can be used to update the particle velocities by rearranging Equation (3.28):  

𝒖𝑝 = 𝒖𝑐 − 𝝎𝑝 × 𝒓𝑐. (3.32) 

In Equation (3.29), the symmetric system matrix is given by: 

 K = 𝑚−1𝕀 + [𝒓c]×
T ⋅ 𝐢−1 ⋅ [𝒓𝑐]×, (3.33) 

Where [𝒓𝑐]× is the skew symmetric matrix of 𝒓𝑐 and 𝐢 is the inertia matrix in the global 

coordinate system arising from the transformation 𝐢 = 𝑨 ⋅ 𝑰 ⋅ 𝑨T, with 𝑰 being the body 

frame inertia tensor defined in Equation (3.22). Neglecting 𝒖ex and using Newton's 

third law to determine how the linear momentum should be shared between particles 

(equal and oppositely), the following equations are derived: 
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    𝒖𝑐,1
𝑛  = 𝒖𝑐,1

𝑛−1  −  𝐊1 ⋅ 𝐩𝑐, (3.34a) 

    𝒖𝑐,2
𝑛  = 𝒖𝑐,2

𝑛−1 + 𝐊2 ⋅ 𝐩𝑐 . (3.34b) 

Taking the difference of these two equations gives the relation: 

    𝐩𝑐 = −𝐊12
−1 ⋅ Δ𝒖, (3.35) 

with 𝐊12 = 𝐊1 + 𝐊2. By defining the relative velocity between the two particles at the 

point of collision as 𝒖𝑟, the change in relative velocity due to a collision can be defined,  

Δ𝒖 = 𝒖𝑟
𝑛−1  − 𝒖𝑟

𝑛, in a way that can be implemented using known quantities: 

    Δ𝒖 = 𝒖𝑟
𝑛−1 + 𝑒(𝒖𝑟

𝑛−1 ⋅ 𝐧)𝐧, (3.36) 

where the second term on the RHS comes from using the Poisson hypothesis and 𝑒 

is the normal coefficient of restitution. 

3.2.7 Spherical DLVO Interaction Force 

As introduced in Section 2.2.4, van der Waals forces are important in the interactions 

between neutrally-charged particles at the nano- and micron-scale. The forces have 

been included, along with electric double layer (EDL) repulsive forces, through the 

DLVO framework (Derjaguin and Landau, 1941; Verwey and Overbeek, 1948). The 

following equation for the attractive van der Waals forces between two homogeneously 

charged spherical particles of the same radius 𝑟 is well-established, derived by 

Hamaker (1937): 

𝑭vdW = −
𝐴𝑟

12𝑑2
, (3.37) 
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where 𝐴 is the Hamaker constant and 𝑑 is the inter-surface separation. Less well-

established, EDL repulsive forces are treated in several different ways throughout the 

literature. For the present work the following expression is used, from Israelachvili 

(1992), used also by Fujita and Yamaguchi (2007): 

𝑭EDL =
64𝜋𝑟𝑛𝑘𝐵𝑇𝛩2𝑒−𝜅𝑑

𝜅
, (3.38) 

where n is the number density of electrolyte ions, 𝛩 is the reduced surface potential, 

𝑘𝐵 is the Boltzmann constant, T is the fluid temperature and κ is the inverse Debye 

length. These forces are then linearly combined by: 

𝑭DLVO = 𝑭vdW + 𝑭EDL . (3.39) 

The reduced surface potential is calculated using:  

𝛩 = tanh (
𝑧𝑒𝑞𝑒Ζ

4𝑘𝐵𝑇
) , (3.40) 

where 𝑧𝑒 is the electrolyte ionic valency, 𝑞𝑒 is the elementary electric charge, and Ζ is 

the zeta potential. Each of these quantities has been chosen to match calcite particles 

in water at 20°C, typical conditions used for this nuclear waste simulant. The full list of 

parameters is given in Chapter 4: Table 1. Introducing 𝜀0 as the permittivity of a 

vacuum and 𝜀𝑠 as the relative permittivity of solvent, the inverse Debye length can be 

defined as:       

𝜅 = √
2𝑛𝑧𝑒

2𝑞𝑒
2

𝜀0𝜀𝑠𝑘𝐵T 
  . (3.41) 
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The force is evaluated at every timestep between particle pairs and is included in both 

interacting particles’ force balances with equal magnitude and opposite direction along 

the vector of closest approach. The charge distribution is assumed to be uniform 

across the particle surface, for both spherical and non-spherical particles, in line with 

the assumptions made in Hamaker (1937) theory.  

Finally, due to the divergent nature of Equation (3.37), a cut-off distance must be 

chosen for the van der Waals force beyond which the force does not increase 

(Abbasfard et al., 2016). In this work, the parameter is set to be 5 nm. This is a source 

of discrepancy between studies and agglomeration proves to be strongly dependent 

upon this parameter in the following chapters. Experimental validation would be very 

useful to optimise this parameter correctly. Currently, it somewhat overrides the 

importance of the Hamaker constant (which ideally should govern the strength of the 

vdW force alone) and is thus a limitation on the numerical modelling of these forces.  

The resultant DLVO potential for two interacting spheres is shown below in Figure 

3.12, where the vdW cut-off is seen acting to prevent divergence. Clearly, changing 

the location of this cut-off distance has significant effects on the overall potential.  

 

Figure 3.12: Plot of DLVO interaction potential normalised by thermal energy, for two 

interacting spherical particles as a function of separation distance normalised by 

particle radius.  
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3.2.8 Non-Spherical DLVO Interaction Force 

The DLVO forces are important at a length-scale much shorter than the radii of the 

particles, which is one way of stating the Derjaguin approximation. This is evidenced 

by Figure 3.12, where the 𝑥-axis has been appropriately scaled. In fact, due to their 

very short-range nature, most of the contribution to the force occurs around the points 

of nearest approach. Different relative orientations of the particles can lead to greatly 

different geometric properties at these points. 

One way of accounting for this orientational dependency and its effect on the surface 

interaction is to consider the local curvature of the surface at the points of closest 

approach on the respective particles. The Gaussian curvature is a measure of local 

surface curvature and it can be defined at each point on a surface. The calculation of 

this quantity for an ellipsoid in its body-fixed frame is given by: 

𝐺 = {𝑎𝑏𝑐 [
(𝑥′)2

𝑎4
+

(𝑦′)2

𝑏4
+

(𝑧′)2

𝑐4
]}

−2

, (3.42) 

which allows for a definition of the radius of Gaussian curvature through: 

𝑟𝐺 =
1

√𝐺
 . (3.43) 

This approach is used by Jain et al. (2019) for the calculation of lubrication forces 

between ellipsoidal particles and appears also in Ardekani et al. (2016). Since DLVO 

forces are also a product of a surface-surface interaction, a similar method can be 

constructed. Namely, the spherical radius 𝑟 can be replaced with a representative 

radius 𝑟𝐺, approximating the amount of surface interaction taking place for a given 

orientational configuration. These radii are calculated at the points of closest approach 

on the surfaces of the interacting particles, obtained through the collision detection 

scheme, with those points previously referred to as 𝑹1 and 𝑹2.  
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Considering two interacting bodies which are orientated differently to one another in 

general, each particle will have its own radius of Gaussian curvature at its own point 

of closest approach 𝑟𝐺,1,  𝑟𝐺,2, as in Figure 3.13. Since forces are being discussed, it is 

required that their magnitudes are shared equally and oppositely, and so these radii 

must be combined to form a characteristic length which represents the correct 

interaction magnitude. This is done by taking the harmonic mean of the radii of 

Gaussian curvature:      

𝑅𝐺 =
2 𝑟𝐺,1𝑟𝐺,2

𝑟𝐺,1 +  𝑟𝐺,2
 . (3.44) 

This characteristic length 𝑅𝐺 then replaces the volumetrically equivalent spherical 

radius 𝑟 in Equations (3.37) and (3.38). 

 

Figure 3.13: Schematic demonstrating how the surface interaction is captured about 

the point of closest approach in Equation (3.43) – not drawn to scale. 

It was found that this approach performed well in introducing orientational 

dependencies into the DLVO force modelling for interactions between normal 

configurations; however, there is a further degree of freedom not accounted for in the 

above model whose effect becomes pronounced when particles interact in off-normal 
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configurations. After derivation and implementation of the above model was 

completed, it was then discovered by the author that Everaers and Ejtehadi (2003) 

had proposed a term 𝜒𝑖𝑗𝜂𝑖𝑗 that accounts for the orientational dependency based upon 

the local surface curvature, with consideration for the omitted degree of freedom. This 

degree of freedom is the rotation of the bodies relative to one another about their 

shared normal vector, depicted diagrammatically in Figure 3.14.  

The 𝜒𝑖𝑗𝜂𝑖𝑗 term was included in the equations for two interacting spherical particles to 

give the final equation for the force between two interacting non-spherical particles 

and it was this new equation that was ultimately taken forward into the generation of 

the results presented herein. The first derived model was found to generate the same 

results as the second in the quiescent fluid velocity study, as demonstrated in Chapter 

4; however, across the full spectrum of orientations, discrepancies do arise – which is 

a result of the differing interaction potentials demonstrated at the end of this subsection 

in Figure 3.15(d). 

Including the term given by Everaers and Ejtehadi (2003), the final equations are 

written as follows, where the first bracketed term on the RHS represents the vdW 

attraction and the second term describes the EDL repulsion: 

𝑭DLVO = −𝜒𝑖𝑗𝜂𝑖𝑗  (
𝐴σ

12|𝒅|2
−

64𝜋σ𝑛𝑘𝐵𝑇𝛩2𝑒−𝜅|𝒅|

𝜅
) 𝒅̂, (3.45) 

𝜒𝑖𝑗𝜂𝑖𝑗 =
2σ−1

√(
1
𝜁𝑖

−
1
𝜁𝑖
′) (

1
𝜁𝑗

−
1
𝜁𝑗
′ 
) sin2(α) + (

1
𝜁𝑖

+
1
𝜁𝑗

)(
1
𝜁𝑖
′ +

1
𝜁𝑗
′)

. 
(3.46) 

Here, 𝒅 is the vector of closest approach, 𝜁𝑝=𝑖,𝑗 and 𝜁𝑝=𝑖,𝑗
′  are the surface’s principal 

curvatures at the point of closest approach, and α is the relative orientation of the 

particles about the shared closest approach vector. Finally, σ is the characteristic 

length-scale of the particles, taken simply to be 𝑟 and not 𝑅𝐺 (to avoid accounting for 

the surface curvature twice). A complete description of 𝜒𝑖𝑗𝜂𝑖𝑗 is given by Schiller et al. 
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(2011), where it is derived geometrically. As expected, the effect of 𝜒𝑖𝑗𝜂𝑖𝑗  on the 

potential is that the well deepens for particles experiencing greater surface interaction 

as a result of their configuration, and shallows for the reverse.  

The surface’s principal curvatures can be calculated directly, from the first fundamental 

form (Yan Bin-Jia, 2020), or indirectly using the Gaussian and mean curvatures. Since 

the Gaussian curvature is already calculated in the initial implementation, an indirect 

approach was chosen, which is conceptually simpler. Hence, the mean curvature can 

be calculated by (Bektas, 2017):   

𝐻 =
|(𝑥′)2 + (𝑦′)2 + (𝑧′)2 − 𝑎2 − 𝑏2 − 𝑐2 | 

2 𝑎2𝑏2𝑐2 [
(𝑥′)2

𝑎4 +
(𝑦′)2

𝑏4 +
(𝑧′)2

𝑐4 ]
3/2

 . 
(3.47) 

From this, the principal curvatures 𝜁𝑝=𝑖,𝑗 and 𝜁𝑝=𝑖,𝑗
′  can be determined by exploiting the 

fact that both the Gaussian and mean curvatures can be expressed in terms of the 

principal curvatures: 𝐺 = 𝜁𝜁′ and 𝐻 =
(𝜁+𝜁′)

2
, by definition. These relations are then 

used to form a quadratic equation for 𝜁, from which the desired variables can be found:  

𝜁2 − 2𝐻𝜁 + 𝐺 = 0 , (3.48a) 

𝜁′ = 2𝐻 − 𝜁 . (3.48b) 
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Figure 3.14: Diagram depicting the definition of 𝛼 for two interacting spheroids. 

In Equation (3.46), 𝛼 is described as the relative orientation of the particles about their 

closest approach vector, 𝒅. This relative orientation is defined in terms of the symmetry 

axes of the particles. To understand this, the closest approach vector connecting the 

particles is considered in Figure 3.14 and it may be noted that the rotation of the 

particles relative to one another about this vector preserves the surface properties at 

the points of closest approach – if the angle made between 𝒙̂′ and 𝒅 is preserved. 

However, the surface properties local to (but not directly at) this point will change as a 

result of orientation. In order to calculate 𝛼, the angle that the 𝒙′̂ vector of the particle 

makes in the plane normal to 𝒅̂ is first calculated for both particles, then the difference 

in these two angles is computed. 

 

 

 



99 
 

  

  

Figure 3.15: Non-spherical DLVO interaction potentials for the three available 

modelling approaches, compared also to a sphere-sphere interaction. The insert 

window shows the pertaining orientation. On the legend, Schiller refers to Schiller et 

al. (2011), and Everaers refers to Everaers and Ejtehadi (2003). Separation distance 

is normalised by the characteristic particle radius. 

In Figure 3.15, the effect of incorporating the orientational dependencies into the 

model for aspect ratio 5:1 needles is illustrated, where the various approaches 

mentioned are contrasted with a sphere-sphere interaction. The first three subfigures, 

(a) to (c), examine the pole interactions, where the curvature radii are maximal and 

minimal. It is observed that end-point-to-end-point interactions are energetically 

unfavourable, with a well depth roughly an order of magnitude lower than spheres of 

the same volume. This is in contrast to the configuration in Figure 3.15(c), where the 

well depth more than doubles for this alignment, as compared to spheres.  

It is noted that for these normal interactions, the adopted model (Everaers and 

Ejtehadi, 2003) produces identical results to those used by the authors noted above; 

however, taking an arbitrary configuration of the particles in Figure 3.14(d) 
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demonstrates how the adopted model begins to differ in the predicted well depth. 

Lastly, it is noted that the orientation terms that appear in the approaches of Everaers 

and Ejtehadi (2003) and Schiller et al. (2011) are identical, with their lines falling 

precisely on top of one another in the plots, despite their formulation being expressed 

differently in the cited papers. They are both guided by the mathematical approach of 

White (1983). These plots were generated by implementing all three proposed models 

in Python, and that of Everaers and Ejtehadi (2003) was therefore used in the full 

solver.     

3.2.9 Non-Spherical Soft-Sphere Overlap Calculation  

The full description including the reasoning and motivation behind developing soft-

sphere approaches, as well as the challenges associated, are discussed in detail in 

Chapter 6. For brief context, the key challenge with soft-sphere models for non-

spherical particles is that the method necessitates an overlap of the particle surfaces, 

which is nontrivial to keep track of for arbitrarily orientated bodies.  

When two ellipsoidal particles are overlapping, the problem of finding the two nearest 

surface points becomes a problem of finding the deepest points of overlap, from which 

one can work out the overlap distance and thus the requisite collision force. The 

optimisation method that found the closest points of approach is no longer useful for 

the overlapping problem, since the problem itself is no longer convex – and so the 

iterative procedures no longer converge.  

The overlap problem itself is different in nature to the computation of the closest 

distance and is more difficult to solve. The previously described common normal 

condition uniquely defines the precise closest distance vector between non-

overlapping surfaces. There is no simple analogue for overlapping bodies.  

For a soft-sphere scheme to be implemented between two colliding bodies, the chosen 

method must return,  

1. A shared contact point, to which the force interaction is assumed localised, 

2. A shared collision normal, along which the force acts, and 

3. A penetration or overlap depth.  
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The following subsection presents three different approaches for the calculation of the 

listed quantities. Additionally, since the chosen soft-sphere scheme also dissipates 

energy, it is necessary to compute the relative velocity at the collision point, which is 

also described. 

Approach 1: Collision Point Tracking  

The first method relies on a simple assumption: that the deepest collision points 

remain the same for the duration of the collision. This is a reasonable assumption for 

small overlaps in normal collisions, which take place over a relatively short interval 

with respect to the other physics of the problem. This assumption has been used in 

the literature for other collision-based approaches (Wynn, 2008). However, to the best 

of the author’s knowledge, the presently described approach is new.  

If the stated assumption holds, then there is a simple way forward, because the 

location of the collision points an instant before collision are already defined within the 

present framework. Those are the points previously used to compute the hard-sphere 

collision. The implicit second assumption here is that the deepest overlap points, which 

this method aims to track, are also the correct points to be using to define the location 

of the collision points. 

It is possible to perform no hard-sphere collision and instead track the location of these 

fixed points for the duration of a soft-sphere collision to easily and efficiently calculate 

the elusive parameter. Dependent on the overlap depth, a penalty force is incurred by 

the overlapping particles, which acts to separate them – so the overlap depth majorly 

influences the motion of the bodies. Since the particles are rigid bodies, the location 

of points at the surface will obey the rigid body equation and follow the same motion 

that is applied to the full body due to the soft-sphere force. Thus, although the common 

normal algorithm for computing these points no longer works after overlap, the location 

of the assumed points is still known to the same accuracy as that of the particle’s 

motion.  
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The developed algorithm is described below. 

1. Calculate non-overlapping variables: 

• Calculate closest surface points 𝑹𝟏, 𝑹𝟐 between the ellipsoid surfaces 

using Jain et al.’s (2022) common normal detection scheme. 

• Calculate the vector of closest approach 𝒅 = 𝑹𝟐 − 𝑹𝟏 . 

• Calculate the surface separation distance 𝑑 = |𝒅| . 

• Calculate the velocity at points of closest approach on the surface 

using the following rigid body equation,  𝒗𝑐 = 𝒗𝑝 + 𝝎𝑝 × 𝒓𝑐 

 

2. Calculate the relative velocity at the surface points: 𝑣𝑟𝑒𝑙 = | 𝒗𝑐,2 − 𝒗𝑐,1|. 

Determine whether overlap will occur in the next time-step by checking 

whether the distance travelled in the next update exceeds the separation 

distance, i.e., 𝑣𝑟𝑒𝑙 ⋅ 𝑑𝑡 > 𝑑. 

• If No, return to Step 1. 

• If Yes, store collision points 𝑹𝟏, 𝑹𝟐 by setting 𝑻1, 𝑻2 = 𝑹𝟏, 𝑹𝟐.  

• Advect 𝑻1, 𝑻2 separately at the end of the timestep, once all forces are 

calculated using 𝑻𝑖
𝑗+1

= 𝑻𝑖
𝑗
+ 𝒗𝑐,𝑖

𝑗
⋅ 𝑑𝑡.  

• Proceed to Step 3. 

 

3. An overlap was predicted in the previous timestep for the new time level. 

Advance time level: 𝑡𝑗+1 = 𝑡𝑗 + 𝑑𝑡. Confirm the overlap. The following 

approach was used to confirm the overlap in the initial implementation used for 

the results in Chapter 6. However, it was later realised that it is much simpler 

to just evaluate the candidate overlap point inside the shape function of the 

other body – this subsequently is implemented and described in Approach 3. 

• Calculate the distance to centre for overlapping point. That is: the 

distance between deepest overlap point 𝑻2 and particle centre 𝑪1. 

Compare this with the distance to surface, the distance between 𝑪1 

and 𝑺1 where 𝑺1 must lie on the line 𝑪1𝑻2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Shown diagrammatically in 

Figure 3.16.  
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• 𝑺1 is an unknown, to find this point, rotate back to particle 1 reference 

frame. Then, use a line search along the line ( 𝑪1𝑻2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

′
= 𝑻2

′  updating 

location 𝒙′ = (𝑥′, 𝑦′, 𝑧′) until  

(
𝑥′

𝑎
)
2

+ (
𝑦′

𝑏
)
2

+ (
𝑧′

𝑐
)
2

− 1 = 0 is satisfied.   

• If the distance from 𝑪1 to 𝑺1 is greater than 𝑪1 to 𝑻𝟐, then overlap is 

confirmed, proceed to step 4. Else, return to step 1 and discard 𝑻1, 𝑻2.  

 

 Figure 3.16: Diagram showing the approach taken to confirm overlap. 

4. Overlap is now confirmed, return zero for the interparticle separation 

calculations. Turn off the DLVO forces as recommended by Mihajlovic et al. 

(2020). Calculate the required soft-sphere collision variables (with reference to 

Figure 3.17): 

• Collision point 𝑷𝒄𝒐𝒍 is the midpoint of 𝑻1𝑻2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  

• Collision normal 𝒏𝑐𝑜𝑙 = 
𝑻1𝑻2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

|𝑻1𝑻2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 . 

• Overlap distance 𝛿 = |𝑻1𝑻2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| . 

• Relative velocity at collision point 𝒗𝑐,𝑟𝑒𝑙 = 𝒗𝑐,2 − 𝒗𝑐,1.   

• Velocity acting along collision normal is 𝒗𝑐𝑜𝑙 = (𝒗𝑐,𝑟𝑒𝑙 ⋅ 𝒏𝒄𝒐𝒍) 𝒏𝒄𝒐𝒍  
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 Figure 3.17: Definition of the overlap variables computed in Approach 1. 

 

5. At the end of the timestep, update 𝑻1, 𝑻2 using the new velocities. Do this until 

the overlap condition is no longer met. 

• Important subtlety: in the code, the tracking of the collision continues 

after the points are no longer inside the opposite shape for a couple of 

timesteps because other nearby points may still be overlapping after 

the completion of the theoretical overlap. Here, 𝑻1, 𝑻2 will not 

necessarily be the deepest points at the final collision step due to 

torques induced. If the common normal algorithm will not converge, it is 

implied there must still be a small overlap and as such a small force is 

added to move the particles apart. That can be seen in Fig 3.18, where 

a small overlap contribution needs to be added at 𝑡 = 0.029𝑠.    

• Once the separation distance moves beyond the distance that the 

particles can travel in a single timestep based on their current 

velocities, discard 𝑻1, 𝑻2 and the soft-sphere collision is complete. 

Return to Step 1. 
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Figure 3.18: Demonstration of the two combined methods for computing overlap 𝛿 

and separation 𝑑 facilitating a soft-sphere collision between aspect ratio 5:1 needles. 

Both quantities are normalised by the volume equivalent radius 𝑟. SS is soft-sphere; 

HS is hard-sphere. 

 

Figure 3.18 shows how the soft-sphere scheme is operating for a case with an 

arbitrarily chosen orientation between two needles. When particles are non-

overlapping, 𝛿 is zero and when particles are overlapping 𝑑 is zero. There is a smooth 

transition between the two schemes for calculating distance, as the overlap begins. 

The transition from overlap back to non-overlap is not as smooth. This holds the 

potential to destabilise simulations, although this did not happen in testing between 

two particles.  

The method works well for binary particle collisions where the initial velocities, and 

hence collisions, are normal. Where there is more rotation at the point of impact, or 

large torques are induced by the collision, the assumption that 𝑻𝑖 are the deepest 

points will become worse as the collision progresses, and the transition back to non-

overlapping conditions will be less robust. That means for many particles interacting, 

with multiple torques coming from the mechanics of multiple collisions and the 

background turbulence, this may not be the suitable choice. A full evaluation is made 

in Chapter 6.    
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Approach 2: Surface Scaling 

The second novel approach that was developed uses an idea from the geometric 

potential framework. There, a family of similar surfaces are constructed with each level 

surface representing a variation of the value of a ‘potential’. Roughly, the amount the 

potential must be varied to find a contact point (black marker in Figure 3.19) can be 

used to define the overlap depth of the bodies. Some examples of this method being 

used were highlighted in Chapter 2 Section 2.3. 

 

 

Figure 3.19: Illustration of varying through a family of similar surfaces to simplify the 

overlap problem. The outer curves represent the real definition of the ellipsoidal 

surfaces. The dotted lines are the similar surfaces, with the innermost curves 

therefore representing the solution to the relaxed problem.  

 

In Approach 2, this scaling idea is applied to the existing tools available in the code. 

Thus, the surfaces were varied by a scaling factor 𝜇, which was applied to the 

parametric form of the surface equation (Equation (3.23)) to give the following, 

𝑹∗ = (
𝑎∗ cos 𝜑 sin 𝜗
𝑏∗ sin𝜑 sin 𝜗

𝑐∗ cos 𝜗

), (3.49) 
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where 𝒂∗ = (𝑎∗, 𝑏∗, 𝑐∗) = 𝜇 ⋅ (𝑎, 𝑏, 𝑐) is the scaling applied to the surfaces through the 

principal axes vector 𝒂. The effect of this is illustrated in Figure 3.19 by the dotted 

lines. Then, at each level, the common normal algorithm was conducted between the 

scaled down surfaces until the scheme converged.  

Once the solution converged, points 𝑹1
∗  and 𝑹2

∗  were identified as the points that 

satisfied the common normal constraint for a similar surface. Therefore, this gives a 

solution to a relaxed version of the common normal problem but does not directly 

satisfy it. This approximation improves for smaller overlaps and varies as a function 

of position on the respective surfaces.  

The useful output from the above procedure is the parametric locations of the surface 

collision points, 𝜑𝑖 and 𝜗𝑖, which can be substituted back into Equation (3.23) and 

transformed to the global frame to give the location of the collision points in that 

frame. In the same way as Approach 1, the shared contact point is deemed to be the 

midpoint between these two surface points, and the collision normal is the unit 

normal connecting these two surface points. 

In terms of how to vary 𝜇 through the interval (0,1), or equivalently how to scale the 

surfaces from one iteration to the next, two approaches are proposed. The first 

trialled approach was to simply scale 𝜇 by a factor close to one, e.g., 𝜇𝑝+1 = 0.99𝜇𝑝 

or 𝜇𝑝+1 = 0.999𝜇𝑝, with a trade off between speed and precision. This biases the 

sampling of 𝜇 towards values closer to one, which is reasonable given the small 

overlap requirement, but is a somewhat arbitrary method and can lead to long 

converge times and lower precision in cases where the penetration depth is greater. 

This was the method chosen initially and is thus the method that was used in the 

results shown in Chapter 6, where 0.995 was the chosen scaling factor. This typically 

required hundreds of total iterations to converge. 

A second, more intelligent, approach would be to use a bisection algorithm, taking 

advantage of the fact that the algorithm does not converge when the surfaces 

overlap. Thus, there is a condition (i.e., whether the algorithm converged or not) that 

allows one to halve the search interval repeatedly, leading to comparatively fast 

convergence.  
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The problem that was ultimately seen with the attempted implementations of this 

idea, irrespective of the search method used, was that the formulation is too heavily 

reliant on the common normal algorithm either converging or not to determine the 

overlap state of the bodies. Whilst this is an extremely strong predictor, it is not 

entirely robust, as sometimes the algorithm will converge on erroneous points when 

in a state of overlap. This was no great problem for the two particle case, but when 

moving to multiple particles this edge case was able to cause problems as there are 

many simultaneous overlaps to evaluate.  

The solution to this issue is to pair the algorithm with a precise mathematical 

definition of the overlap state of the bodies, which is typically done through 

constructing a fourth-order polynomial characteristic equation (that describes the 

orientational state of the bodies) and then interrogating the discriminant to 

understand whether they are in a state of overlap (Pazouki et al., 2012). Alternatively, 

one can construct a matrix system that describes the problem and this is either 

degenerate or not depending on the overlap state.  

Whilst feasible, at this point the methodology was becoming complex without 

guarantee of the desired level of robustness, as well as getting very close to a 

standard geometric potential implementation. So, it was reasoned that a more 

pragmatic approach was to find a demonstrably robust implementation for the multi-

particle case and proceed with that. It will be demonstrated in Chapter 6 that both 

concepts work for the two-particle case, including for particle agglomeration. As 

future work, it would be of interest to see whether the two proposed ideas can be 

made reliable for multi-particle simulations with minor modifications.  

Approach 3: Optimisation Technique 

The following method adapts the work of Podlozhnyuk et al. (2017), a non-spherical 

soft-sphere scheme which is used in the open-source discrete element method (DEM) 

solver LIGGGHTS (Kloss et al., 2012), where its robustness has been repeatedly 

demonstrated. Their formulation is for the general case of superquadric particles, 

whereas here the model is implemented into a FORTRAN 77 code that is capable of 

handling the specific case of ellipsoids (and in the present thesis only spheroidal 

particles are investigated.) This new capability is then included as a module to the 
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existing code which sits within a Nek5000 coupling framework as before. However, 

with this robust capability developed, it is possible to extract the full particle module 

outlined in the methodology for the purpose of stand-alone DEM simulations of non-

spherical particles should future work choose to go in this direction.  

3A. Problem Formulation 

The general idea of the method is for an optimisation technique to converge on a 

contact point that fulfils two competing constraints. This is achieved by a Lagrange 

multiplier approach.  

For the twice continuously differentiable interacting spheroidal particle surfaces, 

defined by their global shape functions, 𝐹1(𝒙) and 𝐹2(𝒙), it is possible to formulate the 

contact detection problem as seeking a point that is midway between particles 1 and 

2, and closest to both (Houlsby, 2009): 

Minimise 𝐹1(𝒙) + 𝐹2(𝒙), subject to 𝐹1(𝒙) = 𝐹2(𝒙). (3.50) 

The formulation of the Lagrange multiplier approach will be presented momentarily, 

but it is important to define some of the key building blocks of the method. Firstly, the 

shape function of a spheroid with its symmetry axis aligned with 𝑥′ in the body frame 

can be taken from Equation (3.12), rewritten here as  

𝑓(𝒙′) =
(𝑥′)2

𝑎2
+

(𝑦′)2 + (𝑧′)2

𝑏2
− 1. (3.51) 

This gives a convenient way of confirming overlap, as well as attacking certain 

subproblems within the method:  

• 𝑓(𝒙′0) < 0 defines a point 𝒙′0 inside the spheroid,  

• Whilst 𝑓(𝒙′0) = 0 implies a point on the surface,  

• And 𝑓(𝒙′0) > 0 implies the point lies outside of the surface.  

Thus, a transformation back to the body frame always allows evaluation of the 

penetration state of a given coordinate with respect to the spheroid.  



110 
 

Such a transform can make use of the raw quaternion method described earlier, but 

to align closely with the cited paper, this was performed via  

𝒙′ = 𝐴𝑇 ⋅ (𝒙 − 𝒙𝑐). (3.52) 

using the rotation matrix 𝐴 defined in Equation (3.14).  

Thus, 

𝐹(𝒙) = 𝑓(𝐴𝑇 ⋅ (𝒙 − 𝒙𝑐)), (3.53) 

represents an evaluation of the global shape function, using the local analogue with a 

suitable transformation.  

The gradients and second derivatives are required in the algorithm to form the Hessian 

matrix. Again, these are much easier to compute in the local body frame and so the 

gradient in the body frame is computed as,  

∇′𝑓 = (

2𝑥′/𝑎2 

2𝑦′/𝑏2

2𝑧′/𝑏2

), (3.54) 

 and the second derivatives form a constant local Hessian matrix as follows: 

𝐻𝑒(𝑓) =  (

𝑓𝑥𝑥 𝑓𝑥𝑦 𝑓𝑥𝑧

𝑓𝑦𝑥 𝑓𝑦𝑦 𝑓𝑦𝑧

𝑓𝑧𝑥 𝑓𝑧𝑦 𝑓𝑧𝑧

) = (

2/𝑎2 0 0

0 2/𝑏2 0

0 0 2/𝑏2

), (3.55) 

where the subscripts are used to denote a partial derivative of the function with respect 

to the written variable. Using methods described previously, this allows the 

transformation back to global coordinates via, 

∇𝐹(𝒙) = 𝐴 ⋅ ∇′𝑓, (3.56) 

𝐻𝑒(𝐹) = 𝐴 ⋅ 𝐻𝑒(𝑓) ⋅ 𝐴𝑇 . (3.57) 
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This offers a useful simplification to the general framework described by Podlozhnyuk 

et al. (2017) which has cross terms in the Hessian and further complexities relating to 

later curvature computations. The present code has been structured (in terms of the 

subroutine variables and data) such that this can be extended to superquadrics quite 

straightforwardly if required, which would further allow the simulation of cubes and 

cuboids.    

Returning to the optimisation problem and introducing a Lagrange multiplier Λ, the 

Lagrangian for this problem is  

𝐿(𝒙, Λ) = 𝐹1(𝒙) + 𝐹2(𝒙) + Λ (𝐹1(𝒙) − 𝐹2(𝒙)). (3.58) 

The general theory gives ∇𝒙,Λ 𝐿(𝒙,Λ) = 0 as the location of the stationary point of the 

system which can be computed and simplified to give the following system of 

equations, 

∇𝐹1(𝒙) + 𝜇𝐿
2∇𝐹2(𝒙) = 0, (3.59a) 

𝐹1(𝒙) − 𝐹2(𝒙) = 0, (3.59b) 

with 𝜇𝐿
2 = (1 − Λ)/(1 + Λ). This gives four equations and four unknowns, and the 𝒙0 

that satisfies this system is said to be the ‘contact point’. In the present framework, this 

is used to identify the collision variables in the state of overlap only. The methodology 

for determining the inter-surface distance described earlier is retained for any pair of 

particles that are not overlapping, as with the previous two approaches, even though 

the present method also converges for spheroids not overlapping and could thus be 

used to define a distance function.  

The previous method of Jain et al. (2019) gives the point at which the surface normal 

vector is shared, which is the geometrically precise way to define the shortest distance 

between convex shapes. The presently described formulation is not as precise, but 

the problem of overlap is more complex, and this method has the advantage of being 

proven to robustly and reliably define contacts. Paired together, there is a strong 

framework developed for the complete definition of a dynamic system of non-spherical 

particles.  
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Even though the model assumptions change between the three approaches, all three 

are successful in solving the problem, with different advantages and disadvantages 

addressed in Chapter 6. 

3B. Numerical Solution 

To solve the system formulated in Equation (3.59) an iterative scheme based on 

Newton’s method is employed. Following Podlozhnyuk et al. (2017), the problem can 

be written as the linear matrix system  

𝐽 ⋅ 𝛿𝒁 = −𝜱 (3.60) 

where the solution variables 𝒁 = (𝑥, 𝑦, 𝑧, 𝜇𝐿)
𝑇 are incrementally updated through 

solving the above system for 𝛿𝒁 and computing  

𝑍𝑛+1 = 𝑍𝑛 + 𝛼𝐿 ⋅ 𝛿𝒁. (3.61) 

Here, 𝛼𝐿 is a scaling parameter that ensures convergence. Specifically, it relaxes the 

increment of update at each iterative step in a subloop until |𝜱𝑛| > |𝜱𝑛+1|, which was 

implemented in the same way as the heuristic approach developed in Section 3.26 to 

fix the convergence issues of Jain et al.’s (2019) common normal approach (i.e., 

repeatedly halving the value of 𝛼𝐿 when the described condition is not met and 

recomputing).    

The vector 𝜱 stores the formulation of the problem from Equation (3.59), thus 

𝜱 = (

𝛷(1)

𝛷(2)

𝛷(3)

𝛷(4)

) =

(

 
 

𝜕𝑥𝐹1 + 𝜇𝐿
2𝜕𝑥𝐹2

𝜕𝑦𝐹1 + 𝜇𝐿
2𝜕𝑦𝐹2

𝜕𝑧𝐹1 + 𝜇𝐿
2𝜕𝑧𝐹2

𝐹1 − 𝐹2 )

 
 

, (3.62) 

with 𝜕𝑥𝑖
 used as shorthand for the partial derivative operator with respect to 𝑥𝑖 ∈

{𝑥, 𝑦, 𝑧, 𝜇} and a bracketed superscript is used to represent the entries of the vector 𝜱. 

In Equation (3.60), 𝐽 is the associated Jacobian of 𝜱(𝑥, 𝑦, 𝑧, 𝜇), 

𝐽 =  (

𝜕𝑥𝛷
(1) ⋯ 𝜕𝜇𝛷

(1)

⋮ ⋱ ⋮
𝜕𝑥𝛷

(4) ⋯ 𝜕𝜇𝛷
(4)

) ,  (3.63) 
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∴  𝐽 =

(

 
 

 

𝜕𝑥
2𝐹1 + 𝜇𝐿

2𝜕𝑥
2𝐹2 0 0 2𝜇𝐿𝜕𝑥𝐹2

0 𝜕𝑦
2𝐹1 + 𝜇𝐿

2𝜕𝑦
2𝐹2 0 2𝜇𝐿𝜕𝑦𝐹2

0 0 𝜕𝑧
2𝐹1 + 𝜇𝐿

2𝜕𝑧
2𝐹2 2𝜇𝐿𝜕𝑧𝐹2

𝜕𝑥[𝐹1 − 𝐹2] 𝜕𝑦[𝐹1 − 𝐹2] 𝜕𝑧[𝐹1 − 𝐹2] 0 )

 
 

. 

 

This gives a 4 × 4 matrix that needs to be constructed and then inverted to give the 

key ingredient of the solution at each iterative step, 𝛿𝒁.  

Inverting a 4 × 4 matrix is the bottleneck. In the special case of spheroids, the fixed 

sparsity of the matrices can be exploited, seen above in Equation (3.63), for a small 

advantage. Thus, a tailored implementation of 𝐿𝑈-decomposition was employed, 

ensuring no redundant calculations.  

This approach splits the matrix 𝐽 into lower 𝐿 and upper 𝑈 diagonal matrices such that 

𝐽 = 𝐿𝑈, (3.64) 

through Gaussian elimination principles (Doolittle’s method), allowing  

𝐽−1  =  (𝐿𝑈)−1  =  𝑈−1𝐿−1 (3.65) 

which is comparatively simple to compute for triangular matrices 𝐿 and 𝑈 via forward 

and back substitution, respectively.  

It is noted here that since FORTRAN 77 is the native language of Nek5000, no external 

libraries were used for these calculations and every algorithm in the eventual code 

base was written from the ground up utilising only fundamental functions (e.g., 

trigonometric, exponential, absolute value, etc.) and standard program procedures, 

which greatly increased the amount of development work required, but served as 

useful training.  

In contrast to the other two approaches, this method solves directly for the contact 

point, rather than for the two surface points on the respective colliding bodies, which 

is not sufficient to determine the overlap depth and collision normal. Therefore, it is 

necessary to construct an overlap normal via 𝒏 = ∇𝐹1/|∇𝐹1| or 𝒏 = −∇𝐹2/|∇𝐹2|. One 

can then iterate from the collision point along this normal direction until the evaluation 
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of the shape function at the iterative point is approximately zero, to identify the colliding 

surface points. This was again done using a bisection method, exploiting the fact that 

evaluation of the shape function changes sign whenever the surface is crossed. This 

provides a rule through which to halve the search domain, i.e., evaluate the shape 

function at the midpoint and see if the sign changed: if it did, then the root is contained 

within this half of the search domain; if not, then it lies in the other half of the domain. 

There are faster algorithms for finding such roots, but this worked quickly in the present 

context. 

Finally, Podlozhnyuk et al. (2017) described a procedure for guaranteed convergence 

of the method, wherein for the first contact between a particle pair, the problem was 

solved from the equivalent spherical case to form an initial guess of the contact point 

and then iteratively the particles were ‘grown’ into the correct shape by gradually 

increasing the shape and blockiness parameters of the superquadric surfaces towards 

their true values. This was implemented in the present code, with the iterative 

procedure first being conducted on spheres with radius equal to the smallest spheroid 

radius and then incrementally grown to the full spheroidal shape through 10 equal 

intervals. Ultimately, the growth procedure was seen to be unnecessary and was 

turned off for the results generated in Chapter 6, saving computational resources as 

the method converged anyway. Full details of the more complex approach are given 

in the referenced paper. In the present work, using the analogous spherical case with 

radius equal to the smallest spheroidal radius min(𝒂) as the initial guess for the 

Newton iteration led to convergence in all cases.   
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Figure 3.20: Illustration of varying the shape parameters to give a reasonable 

starting value for the iterative method, ensuring convergence in the full case.  

 

3.2.10   Non-Spherical Soft-Sphere Collision Physics  
For simplicity, and to be consistent with the hard-sphere implementation, only normal 

collisions were considered, i.e., the tangential force component was neglected, but 

this could be included straightforwardly as an extension to the method without the 

need to compute any further variables. 

The spring-dashpot framework is used for the soft-sphere collision physics, where a 

spring force and a damping force are used to separate the particles and reduce the 

velocities post-collision, respectively. The normal collision soft-sphere force is thus, 

𝑭𝑆𝑆 = −𝑘𝑛 ⋅ 𝛿 ⋅  𝒏𝑐𝑜𝑙 − 𝜂𝑛 ⋅ 𝒗𝑐𝑜𝑙 (3.66) 

with 𝒏𝑐𝑜𝑙 again the collision normal, 𝛿 the overlap depth and 𝒗𝑐𝑜𝑙 = (𝒗𝑐,𝑟𝑒𝑙 ⋅ 𝒏𝑐𝑜𝑙) 𝒏𝑐𝑜𝑙  

the relative velocity at the contact point in the direction of the collision normal. The 

model coefficients are 𝑘𝑛 the spring constant and 𝜂𝑛 the dashpot coefficient. These 

are derived by Van Der Hoef et al. (2004) and represent the solution of a linear 

harmonic oscillator which enforces the following relationship: that the magnitude of the 

relative velocity post-collision is equal to the coefficient of restitution times the pre-

collision relative velocity, which introduces 𝑒 back into the model. 
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𝑘𝑛 =
𝑚𝑒(𝜋

2 + ln2 𝑒)

(𝑁𝑐Δ𝑡)2
⋅ √𝑅𝐺 (3.67a) 

𝜂𝑛 = −
2𝑚𝑒 ln 𝑒

𝑁𝑐Δ𝑡
 (3.67b) 

where 𝑚𝑒 = (
1

𝑀1
+

1

𝑀2
)
−1

 is the effective mass, and 𝑁𝑐 is the number of timesteps the 

collision is computed over, effectively determining the collision duration. Set too high, 

the collisions take unrealistically long to complete, and the overlap depth becomes 

large. Set too low, there is a loss of accuracy as the force varies largely between 

timesteps. In the present work, a value of 𝑁𝑐 = 40 was used, which is much higher 

than typical approaches, e.g., 𝑁𝑐 = 8 in Ardekani et al. (2016), but the timestep of the 

simulation is extremely low to accommodate the van der Waals forces, so the collision 

duration should not be made vanishingly small in real terms.  

Finally, the spring constant is scaled by the radius of Gaussian curvature to reflect the 

difference in stiffness along an ellipsoidal body. The square root of this quantity was 

chosen in line with Zheng et al. (2013). This quantity is implemented using the same 

relations described in the development of the non-spherical DLVO force model, which 

can be seen in Equations (3.42) – (3.44) and thus the existing code was able to be 

leveraged again here.  
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4 Non-Spherical Particle 
Interactions in a Quiescent Liquid 
 

4.1 Introduction 
The thesis to this point has described the development of a unique methodology for 

the numerical simulation of particle agglomeration within initially quiescent and 

turbulent fluid flows, and there was a significant development period to reach this point. 

Now, beyond testing the developed techniques, it is important to investigate the 

sensitivity of the agglomeration model to the relevant degrees of freedom: velocity and 

orientation. These two properties affect the total kinetic energy and potential energy, 

respectively, and thus govern the agglomeration outcomes of interaction events 

between colliding particle pairs.  

The relative orientation of the particles affects the amount of surface interaction taking 

place at the closest point of approach and therefore alters the depth of the DLVO 

potential well. The relative velocity of the particles affects their kinetic energy and thus 

determines whether particles can escape the potential well. The simulations performed 

and discussed in this chapter are designed to investigate the agglomeration and 

collision behaviours with respect to these variables in a quiescent liquid so as to 

decouple the turbulence effects that will become important later.  

To this end, a parameter study is undertaken to investigate the role of initial velocity in 

particle interactions between spheres and between four representative orientation 

cases of spheroidal particles. Further, a Monte Carlo study is used to investigate the 

full orientational parameter space, generating probability density functions (PDFs) that 

describe the overall system behaviour. Analysis of the PDFs takes place with respect 

to the separation distance and relative velocity tendencies, as well as to particle 

alignment. Further breaking down of these results into the distinct categories of 

agglomerating and bouncing particles helps to understand which orientations, 

velocities, and system properties lead to an agglomeration event, rather than a 

rebound.    
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4.2 Agglomeration Transition of Spherical Particles  
The potential well governing a particle interaction remains the same for all orientations 

of interacting spheres. Hence, the first relevant dynamic variable in the interaction is 

the approach velocity, or the initial kinetic energy, of the particles. At some fixed 

velocity, a transition should occur where particles no longer agglomerate upon 

collision. This is referred to herein as the cut-off velocity, below which particles 

agglomerate and above which they rebound. The precise value of this velocity is 

dependent upon the properties of the system, e.g. the Hamaker constant, the Debye 

length, the zeta potential at the surface, the fluid temperature, and so on.  

For all of the present simulations, the particles under investigation are composed of 

the material calcite, and they are suspended in water at 20 °C, since this is an 

informative analogue to nuclear waste systems where calcite can be used as a 

simulant due to its similar physical and chemical properties (Hussain et al., 2021). The 

full list of properties for the quiescent system is presented in Table 4.1. 

Table 4.1: Calcite particle parameters used in the simulations. 

Parameter Value Units 

Particle density, 𝝆
𝒑
 2710 𝑘𝑔 𝑚−3 

Volume-equivalent spherical radius, 𝒓 50 𝜇m 

Restitution coefficient, 𝒆 0.4 - 

Hamaker constant, 𝑨 22.3 zJ 

Inverse Debye length, 𝛋 328947368 m-1 

Surface charge density, 𝚯 0.00037 Cm-2 

Van der Waals cut-off distance 5 nm 

 

To investigate the value of the cut-off velocity for spheres, a parameter study over a 

suitable velocity range was undertaken. Two particles were injected into the quiescent 

box of liquid at a fixed separation of 5𝜇𝑚, which is one tenth of a particle radius. This 

small separation was chosen since the velocity field is quiescent, and so the particle 

motion does not change significantly on approach. The particles were given equal and 

opposite velocities such that a normal collision occurs at the centre of the box. The 
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range of velocities were chosen to represent all collision velocities observed in a 

channel flow at 𝑅𝑒𝜏 = 180 (Mortimer et al., 2020); here, the system properties were 

also chosen to be consistent with the cited study. An additional benefit of this present 

study was thus to obtain a validation of the cut-off velocity chosen in the cited paper’s 

Lagrangian particle tracking (LPT) agglomeration model, which itself is an adaptation 

of Breuer and Almohammed’s (2015) method. In their deterministic energy-based 

model, and in LPT agglomeration models in general, the physics are being resolved 

at a lower fidelity on account of the agglomeration determination procedure acting over 

a single timestep as a binary calculation. The deterministic instantaneous model is 

employed upon detection of a collision. There, a determination is made, based on the 

colliding particle’s energies, as to whether an agglomerate is formed or not. A formed 

agglomerate of two spherical particles then becomes a larger spherical particle that 

preserves the volume of the particle-phase. The present methodology offers a 

significant increase on this level of detail and thus the results should be instructive to 

LPT models, perhaps offering a means of validation to the cut-off velocities chosen 

therein.   

For the present study, 14 separate simulations were conducted with initial relative 

velocities assigned over the range [0.175, 2.45] 𝑚𝑚 𝑠−1. The total number of timesteps 

for each simulation was chosen such that a collision occurred at half of the total 

number of timesteps. In the absence of interaction forces, this would mean the 

particles always finish at the same separation at the end of the simulation, irrespective 

of initial velocities; however, with interaction forces present, one can look at the final 

separation distance or mean distance covered to ascertain the influence of the 

interaction. Particles finishing with approximately zero separation have agglomerated 

and those with appreciable separation have rebounded. The mean separation 

(averaged over the respective simulation) can then be plotted as a function of the initial 

relative velocity to determine the so-called ‘cut-off velocity’, and this will be the means 

used to determine cut-off velocity (e.g., in Figure 4.3).       
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Figure 4.1: Time evolution of inter-particle separation for interacting particles, 

illustrating how this looks for typical agglomeration (solid line) and bouncing (dashed 

line) events.    

In Figure 4.1, the time evolution of the separation distance between particle surfaces 

is shown for two example cases of particle agglomeration and rebound. For this 

illustration, the same initial velocity is chosen in both cases, but for the Bounced case, 

the attractive forces are not resolved, thus making clear precisely what effect the 

attractive forces are having.  

Particle pairs finishing with roughly zero separation after the full simulation time form 

what is constituted in this work as an agglomerate, where the interacting pair of 

particles have succumbed to attractive forces. In this state, particles lie nearby at 

approximately zero but finite separation with approximately zero relative velocity. They 

are bound in this state by the attractive part of the DLVO forces, or the van der Waals 

(vdW) force, requiring thereafter a sufficient injection of kinetic energy to break their 

bond. In a real physical system, this may come about from the surrounding fluid or a 

tertiary particle collision. In Figure 4.2, this separation evolution is plotted for all 

velocity cases (for which there are 14 equally spaced initial velocities investigated), as 

well as graphs of: particle relative velocities, the magnitude of the DLVO forces 

experienced between particles, and the relative velocity normalised by the initial 

velocity. 
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Figure 4.2: Trajectory data for the 14 initial velocity cases of spherical particle 

collisions. Labelled left to right, top to bottom: (a) inter-particle surface separation 

distance, (b) particle relative velocity, (c) total DLVO interaction force, and (d) 

normalised relative velocity. The legend remains consistent across subfigures.   

 

Of the 14 initial velocities studied, 10 pairs of particles rebounded and four 

agglomerated – the lowest two velocity cases, as might be expected. The very lowest 

initial velocity case resulted in an agglomerate forming almost immediately upon 

collision, whilst the second lowest case displayed more interesting behaviour. There, 

the particles are seen to initially collide and begin to move apart, but the kinetic energy 

retained after the collision is not sufficient for the particles to escape the potential well 

and thus the van der Waals attractive force successfully acts to accelerate the particles 

back towards one another, reversing their velocities.  
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Non-instantaneous agglomeration events suggests that there is interesting 

interparticle behaviour occurring in a ‘transition region’ that lies between the cases that 

directly rebound and the cases that quickly agglomerate. These intermediate velocity 

cases display a more dynamic interplay over the interaction period – an effect which 

will be missed by simpler models. The ramifications of this interplay are best described 

in terms of the velocity evolution, discussed shortly. 

Before discussing this, it is important to make explicit a key mechanism shown by this 

study, which is the interplay between DLVO forces and the hard-sphere collision 

scheme. With the given physical parameters, the contribution of the electric double 

layer (EDL) to the total DLVO forces is low enough that the total force remains positive, 

or attractive, for all separation distances (which is not the case for all systems), this is 

evidenced by Figure 3.12. The result of necessarily attractive DLVO forces is 

guaranteed collisions between particle surfaces that approach one another 

unimpeded and, as such, the post-collision velocity rather than the pre-collision 

velocity determines whether particles will agglomerate or rebound, as this is the lower 

energy state.  

The observed mechanism of agglomeration is that the particles collide, losing energy, 

but they retain some post-collision velocity allowing them to begin to separate. At 

which point, the attractive forces act to bring the particles back together until another 

collision occurs, losing further kinetic energy, and this continues until the pair reach a 

form of equilibrium. In other words, post-collision, a competition ensues between the 

retained kinetic energy of the particle pair and the DLVO forces which act to bring the 

particles back together. There is a constant exchange of kinetic and potential energy 

observed across the present simulations in this way.  

Even in this quasi-equilibrium state of agglomeration, with particles very close and 

barely moving, the DLVO force contribution remains non-zero and thus the particles 

are always being accelerated toward one another, which will be demonstrated in the 

subsequent discussion. From a computational perspective, there is then a continual 

need to compute collisions to counteract this and prevent overlap – exacerbated if 

there is some background disturbance to the particle’s positions within the potential 

well, such as from a turbulence field. For some non-spherical orientations, the amount 

that the DLVO forces can accelerate the particles leads to velocities that surpass the 
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collision detection distance and an overlap can occur between agglomerated particles, 

which is a source of numerical instability (given that the detection scheme necessarily 

requires non-overlap), albeit this is rare. Special treatment needs to be taken for this 

case, which can either be to artificially separate the particles by moving them a very 

small amount when overlap is detected, or by increasing the collision detection 

distance such that it accounts for the maximal single timestep acceleration due to 

interparticle forces. The former option being chosen here, separating the particles by 

1.0 𝑛𝑚.      

In Figure 4.2(a), the particles approach along constant lines, where the gradient 

corresponds to the velocity. Upon reaching zero separation and undergoing a collision, 

particles retain 40% of their velocity (equivalently, 16% of their kinetic energy) as per 

the user-defined coefficient of restitution, which is chosen based on available data for 

calcite particles (Njobuenwu and Fairweather, 2017). The velocity change can be 

observed clearly in Figure 4.2(b). A loss of energy because of the impact occurs 

instantaneously in the collision model. So, the velocity graph should be a step function 

in the absence of DLVO interaction forces. However, it is observed that the lower the 

initial relative velocity, the more the graph deviates from this expected shape.  

On the one hand, as the particles approach one another just before impact, and the 

DLVO force shown in Figure 4.2(c) increases, the particles are slightly accelerated. 

This effect is more pronounced for lower initial velocities, because the lower velocity 

cases allow the DLVO forces to act for a longer period. Importantly, the acceleration is 

only occurring over a very short distance, just before collision, where this extra kinetic 

energy is gained from the DLVO potential energy.  

Secondly, and most importantly for the simulations in this thesis, the observed 

coefficient of restitution varies as a function of initial velocity, as a result of the DLVO 

forces. Where a more prolonged interaction takes place, more kinetic energy is lost 

overall and so the observed coefficient of restitution is lower once the particles 

separate, despite the collision model specifying the coefficient of restitution (COR) as 

𝑒 = 0.4 indiscriminately. (The observed COR can be defined here as the ratio of the 

observed post-interaction velocity to the observed pre-interaction velocity.) This finding 

indicates that agglomeration processes have a strong influence on the global energy 

balance of the particle-phase for systems where such interactions are prominent. For 
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macroscale models this implies that the enforced coefficient of restitution in a collision 

should vary as a function of the experienced vdW force.    

Figure 4.2(d) emphasises this point by normalising the relative velocity evolutions by 

their respective initial relative velocity. For simulations absent of DLVO interactions, 

these collision events would then collapse onto one curve post-collision on this graph, 

but something very different is observed. That is, as the initial relative velocity is 

reduced, the observed COR is also reduced and the acceleration of the particles pre-

collision is increased. The horizontal dashed line indicates the value of the COR set in 

the simulation, and it is therefore clear that only the fastest moving particle cases 

approach the set value. The slower moving cases reduce below this line monotonically 

until reaching the cases in which particles agglomerate. Such cases could be thought 

of as zero observed COR. The acceleration experienced pre-collision is so 

pronounced for the initially slowest moving particles that the velocity before collision 

is doubled compared to the prescribed initial velocity. Even still, these particles 

agglomerate. This shows that for the lower velocities the DLVO forces have much 

more control over the overall energy evolutions of the particles. In other words, the 

prominence, or relative importance, of these forces in a given system is a function of 

the initial kinetic energy of the particle phase. Said another way, fast moving particles 

will effectively behave independently of these forces such that their inclusion in a 

model is not required to the same degree.    

Finally, returning to Figure 4.2(c), the temporal evolution of the DLVO forces can be 

seen. From this plot, it is made abundantly clear just how short the range of these 

forces is. As alluded to earlier, the contribution of the EDL is negligible for the present 

system and so the total DLVO contribution is dominated by the vdW attraction. This 

attraction only begins to spike in magnitude for particles extremely close to one 

another. The graphs themselves are only displaying data starting from 1𝜇𝑚 of 

separation, which is 1/50 of the particle radius. This poses a significant computational 

challenge, since the scales of the DLVO forces are miniscule in comparison to the 

overall particle motion (as well as the fluid timescales, demonstrated in Chapter 5). 

The increase in DLVO force is resolved smoothly and the simulations remain stable; 

however, a timestep of 𝑑𝑡 = 1.0 × 10−6 was required to achieve this. For comparison, 

this is two orders of magnitude lower than the timestep used for the single-phase 

turbulence. It is later described that this becomes even starker in contrast when 
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replacing spherical particles with non-spherical particles. It was found that reducing 

the vdW cut-off parameter further increased the requirement for timewise resolution. 

It is therefore clear why models are typically used for multiphase fluid simulations that 

include agglomeration, rather than explicitly resolving these forces each timestep, but 

this is at the expense of resolving the previously described phenomena.  

 

Figure 4.3: Mean particle surface separation distance over the interaction simulation 

for the 14 initial velocity cases.   

To summarise the preceding analysis, the overall relationship between initial velocity 

and agglomeration is shown in Figure 4.3. It is seen that initial relative velocities in the 

range [0.175, 0.7] 𝑚𝑚 𝑠−1 define the agglomeration range, with 0.7 𝑚𝑚 𝑠−1 therefore 

defining the cut-off velocity for this system. Beyond this, there exists a transition region 

observed in the range [0.7,   1.575] 𝑚𝑚 𝑠−1 where the vdW forces are still reducing the 

distance travelled in a simulation to varying degrees, through their action upon the 

post-collision velocities. Beyond 1.575 𝑚𝑚 𝑠−1 the distance travelled by the particles 

tends towards a stable value indicating little influence from the DLVO forces.  
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Figure 4.4: Short time-scale view of agglomerating particles reaching a quasi-

equilibrium state. 

Figure 4.4 demonstrates, over a very short time window, the effect that including a 

dynamic collision detection separation has, which was introduced in Section 3.2.5. 

After each collision, in which particles lose 60% of their speed and 84% of their 

kinetic energy, the separation distance at which a collision is detected becomes 

smaller, proportional to the loss of velocity. Ultimately, this allows the particles to 

become much closer to one another than if a fixed collision detection separation was 

set.  

The advantage is twofold. Firstly, over time there is a much greater likelihood of the 

highest vdW forces being sampled by the interacting particles. Importantly, whether 

an agglomeration event occurs or not is strongly dependent upon the highest vdW 

forces sampled in an interaction. Thus, this approach increases the reliability in 

predicting deterministic agglomeration outcomes. In particular, when the final 

separation before collision can fall in a wide band between 0 and 𝜀 (the dynamic 

collision detection distance) as a result of low temporal resolution, there enters a 

degree of randomness as to whether an agglomerate forms based on exactly what 

this separation is. Allowing progressively smaller 𝜀 values alleiviates this without 

having to dramatically reduce the timestep – which would be the required approach 

if 𝜀 was constant, in order to recover the necessary resolution. Secondly, the 
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agglomerate that is formed is more stable to perturbations from the flow field because 

there is a greater distance for the particles to travel for them to leave the potential 

well. 

4.3 Agglomeration Transition for Non-Spherical 
Particles of a Fixed Initial Orientation 
To begin to understand the role of non-sphericity and orientation in the agglomeration 

outcomes, the same study was conducted again for non-spherical particles with 

‘normal’ or ‘modal’ orientational configurations. Specifically, two relative orientations 

were chosen: those that induce the maximal vdW interaction forces and those that 

induce the minimal. For needles, the former occurs when the 𝒙′̂ axes are aligned but 

their centres are separated perpendicularly to these vectors, and the latter occurs 

when the 𝒙′̂ axes are aligned and their centres both lie on this same line. Simply put, 

either there is a long-edge-to-long-edge interaction, or there is an end-to-end 

interaction. For disks, the reverse is true: the maximal forces are induced by a face-

to-face interaction, whilst the minimal are induced by edge-to-edge interactions. This 

is because for the disks, the faces represent the regions of least curvature, or greatest 

surface interaction; whilst for the needles, this same region is found along the long 

edge. For now, the degree of freedom wherein particles can rotate about the closest 

approach vector is excluded, although this would induce even lower forces for the 

disks, but would not change the needles, since the minimal configuration is symmetric 

about this vector. The full parameter space, including this variable, is addressed later 

in the orientational study, as well as in the boxes of homogeneous and isotropic 

turbulence in Chapters 5 and 6. These configurations can be seen in Figure 4.5, whilst 

the potential wells formed by the configurations were shown in Section 3.2.8. 
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Figure 4.5: The modal configurations of non-spherical particles used in the velocity 

study.  

Figures 4.6 and 4.7 demonstrate the evolution of dynamic properties during the needle 

interactions. The behaviour is qualitatively similar to the spherical case where a 

transition occurs from agglomerating to bouncing events; however, the points at which 

this occurs are different. In other words, the cut-off velocity is a function of orientation, 

with disparate behaviour observed when comparing the two configurations. The 

minimal force inducing configuration has a cut-off velocity of les than 0.350 𝑚𝑚 𝑠−1; 

whereas the maximal configuration experiences agglomeration until an initial velocity 

of 1.225 𝑚𝑚 𝑠−1 is reached. 

In the time evolution plots, a relative increase in the effect of the DLVO interaction is 

seen for the maximal vdW orientation case as compared to the minimal. This is 

evidenced by the sharper increase in relative velocities which in turn affects the 

evolution of the separation distances. Specifically, the change in velocity before 

collision becomes appreciable enough so as to be seen in the separation graphs: the 

lines begin to deviate from a straight line, becoming curved before collision. The same 

effect is seen post-collision where rebounding particles have deflected separation lines 

owing to the strong attractive vdW component of the DLVO force. The increased 

strength is evidenced by the DLVO plots, wherein the graphs peak at different DLVO 

force values. In the maximal case, a peak of 10.5 𝑛𝑁 is observed and for the minimal 

case this value lies at 0.79 𝑛𝑁, which is greater than a full order of magnitude 

difference; it can hence be determined that relative orientation is very important to the 

interaction strength and the subsequent interaction dynamics under the given model. 

This is particularly the case here because the chosen aspect ratio is 5: 1, which allows 

for significant deviation in the local surface properties across the particle.  

The values at which the interaction forces peak in each set of plots remains the same 

for all velocity cases, since the orientation remains the same. (For exactly normal 
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collisions, which these are, no torque is induced and so there is not a dynamic 

component of orientation.) The exact value at which the DLVO plots peak is thus a 

direct consequence of the chosen vdW cut-off distance, as well as the physical system 

parameters.  

Finally, a very slight dip can be observed in the DLVO strength, best seen in the DLVO 

plot of Figure 4.7 for the slowest velocity case. This is owing to the EDL contribution. 

The vdW force reaches an artificial maximum at 5 × 10−9 𝑚 separation but the EDL 

force is not capped until a 1 × 10−11 𝑚 separation is achieved. For agglomerating 

particles, the separation distance continues to evolve within this range as the 

previously described energy exchange takes place; as such, there is a small amount 

of room for manoeuvre where the EDL force exercises minor influence on the system. 

This takes a small period to reach equilibrium, at which point the DLVO plots become 

stationary, indicating system equilibrium. The EDL contribution acts to separate the 

surfaces and this reduces the overall attractive magnitude of the DLVO interaction.  
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Figure 4.6: Simulation trajectory data for the lowest vdW force-inducing needle 

configuration. Plots show separation distance over time (top left), relative velocity 

over time (top right), DLVO force over time (bottom left), and mean distance covered 

in a simulation as a function of initial velocity (bottom right).   
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Figure 4.7: Simulation trajectory data for the highest vdW force-inducing needle 

configuration. Plots show separation distance over time (top left), relative velocity 

over time (top right), DLVO force over time (bottom left), and mean distance covered 

in a simulation as a function of initial velocity (bottom right).   
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Figure 4.8: Simulation trajectory data for the lowest vdW force-inducing disk 

configuration. Plots show separation distance over time (top left), relative velocity 

over time (top right), DLVO force over time (bottom left), and mean distance covered 

in a simulation as a function of initial velocity (bottom right).   
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Figure 4.9: Simulation trajectory data for the highest vdW force-inducing disk 

configuration. Plots show separation distance over time (top left), relative velocity 

over time (top right), DLVO force over time (bottom left), and mean distance covered 

in a simulation as a function of initial velocity (bottom right).   

Very similar trends are seen for the interacting disks in Figure 4.8 and Figure 4.9, as 

those described for the needles. The maximally attractive configuration once again 

leads to much greater spikes in the relative velocities and forces. Deflection of the 

separation lines occurs again for the maximal case. All of this leads to the same 

divergence in the behaviour for which a greater cut-off velocity is obtained by the 

maximal configuration. 

For the disk morphology, the cut-off velocity for the minimally orientated particles lies 

at 0.525 𝑚𝑚 𝑠−1, and at 2.10 𝑚𝑚 𝑠−1 for the maximally orientated particles. So, for 

both needles and disks there is an approximate quadrupling of the velocity required to 

facilitate post-collision rebounds, between the minimal and maximal cases. A key 

result here is that the disks possess the capacity for agglomeration at the highest 
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velocities, as long as the particles are maximally orientated, whilst needles can avoid 

agglomeration at the lowest velocities so long as they are minimally orientated.   

Investigating this further, the DLVO force of the disks reaches peak values of 31 𝑛𝑁 

and 1.2 𝑛𝑁 for the maximal and minimal configurations, respectively, meaning the 

maximal force is triple that of the needles, whilst the minimal peak DLVO force for the 

disks is around double that of the needles. This immediately indicates that disks will 

form the strongest agglomerates, requiring the most energy to break apart, whilst the 

needles will create the weakest. This is owing to their geometric properties, as will be 

analysed in Section 4.6. Whilst this gives a strong indication of what is happening at 

the extremes, this gives no insight as to how the behaviour interpolates between these 

extremes, and so further investigation must take place to understand the full 

orientational parameter space.       

In Figures 4.10 and 4.11, the overall results are shown for the three morphologies, 

where the spherical results are also presented again in contrast with the two extreme 

non-spherical configurations. Both the disks’ and the needles’ extreme cases are 

bisected by the spherical results. The curves of these two extreme cases and the 

spheres do not intersect and thus the spherical case remains bounded between them. 

This is to be expected, since the local surface curvature at all points on a sphere is 

greater than the maximal case and lower than the minimal case of a spheroid with 

equal volume, and the non-spherical DLVO model is primarily a function of local 

surface curvature when velocity is held constant.   

As the mean separation distance over the simulation converges to an approximately 

stable value, with increasing initial velocity, the minimal curve for both needles and 

disks appears to roughly converge on that of the spheres. Whereas the maximal 

curves for both needles and disks appear to converge at a significantly lower value, 

and, even with increasing initial velocity, the separation appears to remain reduced. 

This indicates that even when the effect upon the relative velocity is not great, the 

distance travelled in the simulation remains lower. Contrary to these findings, it may 

be expected that the curves would converge upon one another as velocity increases 

because the impact of DLVO interactions becomes negligible. Perhaps this is the 

ultimate trend that would be seen if a greater range of velocities is sampled.  
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It is possible that this finding is a result of a prolonged interaction taking place, due to 

the DLVO forces but it is not clear what the mechanism is causing this.  

It can also be observed from the preceding figures that the transition region – i.e. the 

range of velocities for which DLVO forces are having a significant impact, but not 

significant enough for agglomeration – spans a wider range of velocities for the 

maximal configurations in both morphological cases. This is particularly pronounced 

for the maximally orientated disks that retain significant DLVO effects even beyond the 

initially chosen velocity range. This was partly also the reason for expanding the 

velocity range in this case. For comparative purposes and completeness, a final run 

was undertaken in the minimal and spherical cases at a higher velocity, where 

convergence of their respective mean distances is further confirmed. The implication 

therefore is that a binary on/off agglomeration model at a macroscopic level is a better 

approximation for minimal vdW force configurations than for the maximal ones. 

Finally, the maximally orientated disks formed a good calibration case to understand 

what the maximum timestep was that could be used in simulations that would span 

the full orientational parameter space. The very first simulations undertaken herein 

matched the timestep of the fluid-phase, 𝑑𝑡 = 1 × 10−4 𝑠, which was immediately 

shown to be a poor choice by the lack of determinism in the mean distance plots. It 

was found that a timestep of at most 1 × 10−6 𝑠 was required to ensure that the 

spherical results were fully deterministic, otherwise the DLVO forces were not properly 

sampled. The issue was that agglomeration events were seemingly as reliant on the 

quasi-random discrete separations they found themselves at just before collision, as 

much as the actual energy they possessed. The collision detection distance is a 

function of how far the particles can travel relative to one another in a single time step, 

which means that for a low temporal resolution simulation the particles can undergo a 

collision well before they enter the effective DLVO range, thus missing what should 

have been an agglomeration event. Conversely, for a small fixed separation distance, 

the particles would indeed experience DLVO forces more often, but there would be a 

large risk of overlap occurring which causes simulations to diverge. 

In the case of the maximally orientated disks, this timestep needed to be lowered even 

further still to 𝑑𝑡 = 2 × 10−7 since instabilities arose for particle pairs sitting in a 

potential well for extended periods. It was consistently observed that for this 
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configuration, particles ‘vibrate’ against each other much more after agglomerating. 

The DLVO forces always remain active, and so they continue to supply significant 

energy to the system, facilitating motion at a very close range. For the maximal 

interaction cases, this supply of energy is significant enough to cause problems with 

the collision algorithm, because particles can accelerate enough to bypass the 

collision distance and cause overlap. When controlled, particles are still accelerated 

over a small number of timesteps, but they then lose this energy again through a hard-

sphere collision and the simulation remains stable. The relative velocity plot in Figure 

4.9 illustrates this where the line on the graph appears thicker after agglomeration as 

a result of this ‘vibration’ or constant exchange of energy at high frequency. 

 

Figure 4.10: Mean separation distance plotted as a function of initial velocity for the 

two modal needle cases, compared with spheres.  
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Figure 4.11: Mean separation distance plotted as a function of initial velocity for the 

two modal disk cases, compared with spheres. 

The key findings of this velocity study are recorded in Table 4.2, demonstrating the 

reliance on orientation in determining the cut-off value of velocity, and underscoring a 

need to resolve non-sphericity to capture the peak forces in the system.   

Table 4.2: Results of the non-spherical cut-off velocity study compared by 

morphology.  

Result Sphere Needle (5:1) Disk (5:1) 

Cut-off velocity, maximal config. (𝒎𝒎 𝒔−𝟏) 0.7 1.225 2.10 

Cut-off velocity, minimal config. (𝒎𝒎 𝒔−𝟏) 0.7 0.35 0.525 

Peak vdW force, maximal config. (𝑛𝑁) 3.69 10.5 31.1 

Peak vdW force, minimal config. (𝒏𝑵) 3.69 0.79 1.20 

 

4.4 The Role of Morphology in Non-Spherical Particle 
Agglomeration  
Having varied the relative velocity of the particles, the disparate cut-off velocities 

between morphologies and between modal configurations indicates a dependence on 

the shape of the particle, as well as the orientation. To isolate these contributions, it 

makes sense to keep the initial relative velocity fixed and randomise the initial 



138 
 

orientations such that the full parameter space of configurations is sampled. Then, the 

overall results can be compared between disks and needles to isolate the effect of 

morphology. Naturally, spheres cannot be included in this analysis, since their DLVO 

contribution is not a function of orientation. Since these are deterministic simulations, 

the simulation result is the same every time for spheres of a fixed initial velocity, unlike 

the results of Chapter 5 where the chaos of the turbulence field is able to introduce 

significant variability to the spherical case.   

To obtain randomly orientated spheroidal particles is not straightforward, in the sense 

that one cannot just uniformly randomly distribute the Euler angles 𝒆𝜃: this generates 

oversampling towards the poles and thus generates bias in the distribution of 

configurations. To alleviate this, a special distribution must be given to the angles such 

that sampling of orientations is uniformly random over the surface of a sphere. If this 

is achieved, then the orientational parameter space being sampled for each particle is 

uniformly random, as required by the Monte Carlo study.  

The required distribution for 𝒆𝜃 is as follows (Simon, 2015): 

𝜙𝑖 = 2𝜋 ⋅ 𝑋𝑖,1,    (4.1a) 

𝜃𝑖  = arccos(1 − 2 ⋅ 𝑋𝑖,2),    (4.1b) 

𝜓𝑖 = 2𝜋 ⋅ 𝑋𝑖,3,    (4.1c) 

where 𝑋𝑖,𝑗 ∼ 𝑈(0, 1) – i.e., the three unique realisations of 𝑋𝑖,𝑗, for particles 𝑖 ∈ {1,2}, 

are uniformly randomly distributed in the interval [0,1], thus giving six uniform random 

variables per simulation. Obtaining these random variables was achieved through the 

drand() command built into FORTRAN 77 where the seed was set uniquely for each 

simulation through a pertaining bash script that generates the file structure required to 

run the many realisations on the University of Leeds’ HPC system, ARC4. Figure 4.12 

demonstrates the application of this procedure to a unit normal vector 𝒙̂ = (1, 0, 0) for 

50,000 realisations obtained in Python, where a clear oversampling is pronounced on 

a band around the sphere’s equator for the incorrect case, which is not present for the 

case that uses Equations (4.1).  
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Figure 4.12: The incorrectly sampled distribution (left) and the amended distribution 

(right), for uniformly sampled orientations. 

Within the present computational framework, the injection location and orientation of 

the particle is prescribed by the user in terms of the location of the centre of the particle 

and the three Euler angles defining the initial orientation. However, this does not allow 

one to specify an initial closest surface point separation, since this is dependent upon 

relative orientation, for non-spherical particles. Therefore, to ensure that particle 

surfaces begin at a fixed separation, for all orientations, a further algorithm was 

required. 

This injection algorithm places the particles equidistantly about the 𝑥𝑧-plane with a 

separation equal to 2.1 times the length of the longest particle principal radii, to ensure 

no overlap is possible. Here, the separation distance is measured using the existing 

collision detection algorithm, and the particles are moved along the closest approach 

vector 𝒅 by the correct amount such that the required initial separation is met.  

Like the methodology adopted in the previous section, two non-spherical particle 

meshes of the same morphology and size are injected. Initially, particles were once 

again moved to 5 𝜇𝑚 apart but the preliminary simulation results indicated that even 

this small separation is an unnecessarily large distance, given how short-range the 

interaction forces are. Hence, a separation of 2 𝜇𝑚 was chosen, which is justified in 

the following figures, wherein the final state of the simulation is reached in advance of 

the total simulation time for all realisations. The goal with the analysis is to generate 
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PDFs that describe the average interaction behaviour of all realisations of the system 

and so the key is to resolve the entirety of the interaction phenomena and nothing 

thereafter. Any surplus data accumulated in the results simply serves to obscure the 

interaction behaviour in the final PDFs. The PDFs were generated by applying a Monte 

Carlo approach, wherein many cases were simulated to capture statistical variations. 

To ensure robustness, histograms of the resulting data were first plotted in Python, 

and kernel density estimation (KDE) was applied to obtain smooth probability density 

functions. The KDE plots were used exclusively in the thesis, as they provided a clear 

and continuous representation of the distribution. The number of instances was 

deemed sufficient once the PDFs remained stable upon the addition of new data, 

implying convergence.     

As described above, upon injection, the closest approach vector between the two 

particles was calculated and it was along this direction that the particles were set to 

approach, with an equally shared relative velocity of 0.875 𝑚𝑚 𝑠−1. The injection 

velocity was chosen as a representative value in accordance with observations of 

relative collision velocities made in a 𝑅𝑒𝜏 = 180 channel flow (Mortimer et al., 2020), 

which corresponds to the mean particle-phase collision velocity in the bulk flow region. 

Although the particles are initially separated about the 𝑥𝑧-plane, directing their initial 

velocities normal to this plane would not ensure that the particles collide after an equal 

time for all simulations, hence the two particles are directed to approach along the 

closest approach vector 𝒅. As before, the simulations were allowed to run for an 

amount of time pre- and post-collision such that the full interaction behaviour could be 

simulated. 

Presented below are the same time evolution plots as introduced in the previous 

subsection. This time, the results have been subdivided into two groups: 

agglomeration events and bouncing events. The determination of these categories 

was made by the separation distance at the end of the respective simulation: if a 

particle pair were at a separation distance that lies within the pertaining potential well 

at the final timestep, particles were said to have agglomerated, with this determination 

taking place in the post-processing step. Both disks and needles received 120 

realisations, which was the required amount to obtain smooth PDFs for the overall 

behaviour of the respective morphologies once simulations had been subdivided into 
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agglomeration and bouncing events. The PDFs and histograms of the Euler angles 

were also monitored to ensure no oversampling was present for any range of angles.  

4.4.1 Monte-Carlo Simulation of Randomly Orientated Interacting Disks 

 

Figure 4.13: Temporal evolution of inter-particle separation distance for 

agglomerating disks (left) and rebounding disks (right).  

 

Figure 4.14: Temporal evolution of relative velocity for agglomerating disks (left) and 

rebounding disks (right). 
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Figure 4.15: Temporal evolution of DLVO force magnitude between particles for 

agglomerating disks (left) and rebounding disks (right). 

From the results of Figures 4.13 to 4.15, the contrast in the behaviour between 

agglomerating particles and rebounding particles is immediately clear for interacting 

disks. For the agglomeration cases, the separation plots are comparatively 

homogeneous. Particles pairs have all agglomerated well before the full simulation 

time, with some attempting, unsuccessfully, to escape the potential well, giving rise to 

the small bump after the collision point – the particles beginning to rebound are 

recaptured by the attractive vdW component of the DLVO force.  

In contrast, the separation plots of the bouncing particles serve to highlight quite 

clearly how significant the particle orientation is on the observed coefficient of 

restitution. Recalling that each particle pair receives the same relative initial velocity, 

it is clear that there is a wide spectrum of CORs resolved by varying the orientations, 

evidenced by the wide range of gradients of the separation distance time evolution 

plots. This is further evidenced in the relative velocity plots which also show a spectrum 

of post-collision velocities.  

As with the separation plots, the relative velocity plots display a stark contrast in the 

behaviour of agglomerating and rebounding particles. The ‘agglomerated’ relative 

velocity plots are noisy, with a significant number of collisions taking place for any 

given agglomeration event. It is interesting how there is significant noise and continual 

behaviour in the relative velocity plots that does not translate to significant behaviour 

observed in the separation distance plots. As alluded to earlier, this is because whilst 

the DLVO forces can significantly increase the relative velocity quickly, the particles 
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also lose this velocity quickly through the hard-sphere collision step and so particles 

remain trapped close to one another.       

It is also clear that there is a much wider variety of interaction strengths taking place 

when varying the orientational configurations of the particles, as compared with the 

velocity study. Observing the DLVO plots, there is a wide range of values resolved, but 

the way these values are distributed is not uniform, despite the variation of the 

orientations being uniform. This indicates that there is an importance in the way that 

the DLVO force magnitude is distributed according to the shape of the surface of the 

particle, which will be analysed in Section 4.6. It also could indicate that despite the 

orientations being uniformly distributed for both particles, there could still be bias for 

which points on the surface of the non-spherical particles experience collisions most 

frequently, due to the anisotropic nature of the particle geometries and how this 

influences the collision point.        

Interestingly, the very maximum values of the DLVO forces are rarely observed for the 

disks, indicating that the probability of a face-to-face collision is low. So even though 

disks were shown to facilitate the strongest interaction strengths, this precise 

configuration is rarely observed in the collisional parameter space. Further still, 

interaction magnitudes within its vicinity are also rarely observed. Rather, there is 

significant clustering of observed interaction strengths in the range [0.5, 5] 𝑛𝑁, which 

is a significantly reduced range compared to the full range, demonstrated in the 

previous section to be [1.2, 31.1] 𝑛𝑁. The fact that peak values are resolved even 

lower than the so-called minimal range, as mentioned earlier, occurs since introducing 

rotations about the vector of closest approach allows for even smaller forces to be 

experienced.      

Finally, it is possible to analyse the overall system behaviour for the disk morphology 

by combining the trajectory data into PDFs, as seen in Figure 4.16. As would be 

expected by the preceding analysis, a clear divergence between agglomerating and 

bouncing particles is observed. Naturally, the separation distances spike towards zero 

more for the agglomerating particles than with rebounding ones. There is also much 

greater variability in the plot of the bouncing particles, as is to be expected.  

The relative velocity PDFs also demonstrate behaviour that is in keeping with 

expectations. There is a natural spike in the PDFs at the initially prescribed value of 
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0.875 𝑚𝑚 𝑠−1, and then the agglomerating particles retain less velocity post-collision 

and ultimately approach an equilibrium state, biasing the PDFs towards low relative 

velocities. In contrast, the rebounding particles retain greater proportions of their initial 

kinetic energy – enough to escape the DLVO potential well. The variance in the 

agglomerating particles may have been expected to be lower, since in real physical 

systems, a pair of agglomerated particles would not retain any relative velocity, but the 

quirk of using a hard-sphere method with discrete energy exchanges, is that the 

velocity is able to increase for a short while, which allows a range of perhaps 

unphysical velocities to be sampled, thus showing up in the PDFs. A soft-sphere 

methodology (as presented in Chapter 6) circumvents this problem by allowing 

collisions, or energy exchanges, to take place more smoothly between particles, and 

therefore a more stable equilibrium state can be reached upon agglomeration.      

 

Figure 4.16: PDFs of inter-particle separation (left) and relative particle velocity 

(right) compared for agglomerating and rebounding disks. 
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4.4.2 Monte-Carlo Simulation of Randomly Orientated Interacting Needles 

 

Figure 4.17: Temporal evolution of inter-particle separation distance for 

agglomerating needles (left) and rebounding needles (right).  

 

Figure 4.18: Temporal evolution of relative velocity between particles for 

agglomerating needles (left) and rebounding needles (right). 

 

Figure 4.19: Temporal evolution of DLVO force magnitude between particles for 

agglomerating needles (left) and rebounding needles (right). 
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The results shown in Figures 4.17 to 4.19 demonstrate that the general behaviour of 

the particle interactions for the case of the needles is qualitatively similar to the disks. 

In much the same way, there is a clear divergence in the behaviour between 

agglomerating and bouncing particles. 

However, there are a few key differences in the trajectory plots, compared with the 

disks. The first of which is that there are far fewer bouncing events for the needles. 

This appears to arise from the different ways in which the DLVO interaction 

magnitudes are distributed, which is the second key difference. Specifically, the bulk 

of the peak interaction magnitudes appear to fall in the range [2, 12] 𝑛𝑁, which is twice 

as wide as the disks’ range. Unlike the disks, the needles are in the vicinity of the 

maximal possible interaction strengths much more frequently, indicating that the 

probability of a long-edge-to-long-edge interaction is much more likely than the 

analogous face-to-face interaction in the disks. Furthermore, there are clearly not 

many interactions sampled where the minimal interaction forces are induced for the 

needles. This again indicates the importance of investigating the role of the surface 

geometry, which will be considered further in Sections 4.5 and 4.6.     

One final important observation relates to the computational method rather than the 

physics. That is the fact that particles do not collide at exactly the halfway point with 

the same reliability seen with the disks. The slopes on the separation distance graph 

for around one third of the results reduce in gradient as these particle pairs approach 

collision, but no such reduction in the corresponding relative velocity is observed. So, 

this is not a physical effect but it is the accuracy of the collision detection algorithm 

(used to compute the closest approach vector) breaking down at very short 

separations, which introduces a degree of uncertainty to this separation – as reported 

by Girault et al. (2022). The computation remains stable and smooth and is only 

impactful at extremely small distances. However, this cannot be ignored since it allows 

the DLVO forces to act for slightly longer, which likely further promotes agglomeration 

for the needles.    
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Figure 4.20: PDFs of inter-particle separation (left) and relative particle velocity 

(right) compared for agglomerating and rebounding needles. 

The overall system behaviour in terms of PDFs of the inter-particle separation distance 

and the relative particle velocity for the needles is shown in Figure 4.20, displaying 

similar trends to that of the disks. Simply, agglomerating particles spend longer close 

together with lower separation 𝑑𝑥 and with lower relative velocity 𝑑𝑣. Whilst this seems 

self-evident for collisions in a stagnant flow, this approach to analysing the system will 

prove to be more useful when averaging out the turbulence effects in Chapter 5. There 

is not quite the same difference between agglomerating and bouncing particles in the 

relative velocity plots, compared with the disks, but the sample size being very low for 

the bouncing particles makes it difficult to draw any specific conclusions on this. 

4.4.3 Direct Comparison of Morphologies 

  

Figure 4.21: PDFs of inter-particle separation (left) and relative particle velocity 

(right) compared for disk interactions (solid line) and needle interactions (dashed 

line). 
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Contrasting the system behaviour for the two morphologies is possible by comparing 

the overall PDFs from the total collected data. In Figure 4.21, it can be observed that 

the needles have a greater propensity to agglomerate across the orientational 

parameter space for the present initial velocity. This is evidenced in the PDFs by the 

needles remaining closer together, with a lower relative velocity on average.  

In the case of relative velocities, the rightmost PDF shows a sharp peak at the 

prescribed initial velocity but the interesting behaviour occurs on the left of the plot 

where the post-collision behaviour is accumulating. From the variance of this plot, it is 

possible to get a feel for the vdW force acting to alter the observed coefficient of 

restitution and how this is different across morphologies. There is a wider variation in 

the disks which can be partly attributed to fewer agglomeration events, allowing for a 

greater weighting of non-zero post-collision velocities in the sampling, since for 

agglomeration events there is an oversampling of very low relative velocities.  

 

Figure 4.22: PDFs of the maximum achieved DLVO force magnitude in each 

simulation for disks (solid line) and needles (dashed line). 

An interrogation of the vdW forces in Section 4.3 indicated that disks have the potential 

to resolve the highest attractive force at the point of collision, but the results of the 

preceding section indicate that the needles overall have much higher average values 

of the vdW force across orientations. To confirm this, only the maximum obtained vdW 

attractive force registered in each simulation was taken as an individual data point and 

PDFs were generated for each morphology based on this data. Shown in Figure 4.22, 

a very stark discrepancy is observed between the two shapes.  
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As described, the disks indeed facilitate the greatest possible vdW forces and, in 

support of this, a single datapoint is registered at around 20 𝑛𝑁, which is much greater 

than the rightmost registered value of the needles. However, the overall distribution 

for the disks has a much narrower character, indicating a lower variance despite a 

wider range. The bulk of the disk data is accumulating at the low end of the available 

vdW force range. Both of the distributions are right-skewed, but the needles are much 

less concentrated around lower vdW values, and vdW forces beyond 5 𝑛𝑁 are 

resolved with much greater frequency.  

Figure 4.22 is particularly insightful since these PDFs should be almost independent 

of velocity, short of considering lubrication and fluid effects. That means that the figure 

gives a good approximation to the distribution of forces experienced across the 

collisional parameter space for all velocities (within reason) and thus indicates the 

forces that should be expected between aspect ratio 5:1 spheroids irrespective of 

velocity.   

To conclude, this analysis helps to explain why 73 disks agglomerated and 47 

rebounded, at an agglomeration rate of 61%, whilst 114 needles agglomerated and 

just 6 rebounded, at a rate of 95%. The results are tabulated below.  

Table 4.3: The results of the randomly distributed orientation study. 

Result Needle (5:1) Disk (5:1) 

Agglomerated 114 73 

Bounced 6 47 

Agglomeration Rate 95% 61% 

 

4.5 Orientational Order in Particle Agglomeration 
To this point, a picture is emerging that there is difference in the behaviour of disks 

and needles that arises from some interplay between the respective geometries and 

the orientations at the point of collision. To further understand this, PDFs have been 

generated based on the alignment of the particle’s symmetry axes. A perfect alignment 

between symmetry axes facilitates a face-to-face interaction for the disks, which is the 

maximal energy configuration; however, this alignment also allows for a minimal 
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configuration, which occurs for an edge-to-edge interaction. The same is true for the 

needles, where a collision at the end points occurs only if the particles are aligned, 

and a collision with the strongest force also occurs when the particles are aligned – 

when the long edges collide. So, a priori it is not immediately obvious if there ought to 

be any order to this parameter, but Figure 4.23 demonstrates that there is.  

4.5.1 Alignment of Symmetry Axes 

 

Figure 4.23: PDFs of relative symmetry axis orientations between particle pairs for 

disks (left) and needles (right), broken down into cases of agglomeration (solid line) 

and rebound (dashed line). Vertical line indicates 
𝜋

4
 or half-way between 

perpendicular and parallel alignments. 

It can be observed in Figure 4.23 that for both disks (left) and needles (right), there is 

a clear dependency on the relative orientation of the particle symmetry axes when it 

comes to determining whether a particle agglomerates. To highlight this, the data has 

been broken down into categories of agglomerating and rebounding particle pairs and 

plotted over [0,
𝜋

2
], which is the periodic region given the symmetry of the shapes. A 

further line has been drawn at 
𝜋

4
 which highlights the half-way point between parallel 

and perpendicular configurations. The left half of the plot can be thought of as the 

more parallel alignments, with the right half the more perpendicular. For both graphs 

this roughly defines where there is a crossover from agglomeration being dominant, in 

the left half of the parameter space, corresponding to the more aligned configurations, 

to the right half of the domain where bouncing events dominate.  

For disks, this is extremely pronounced: there is practically no representation of 

bouncing particles in the more parallel region of the alignment domain and a significant 
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overrepresentation, with a clear peak, in the perpendicular region. This indicates that 

the outcome of the collision, in terms the particle pair’s agglomeration state, can be 

predicted reliably from a knowledge of the particle symmetry axis alignment, so long 

as the disks’ alignment falls in the interval ∼ [0.25, 0.65] radians.  

The disk-like particles that agglomerated tended to be aligned; however, perpendicular 

alignments still have a significant representation for agglomerating particles. In 

perpendicular arrangements, the edge of one disk will collide close to the face of 

another. So, the representation of perpendicular arrangements in the agglomeration 

distribution is perhaps due to the significant strength of the contribution coming from 

a point that is located near to the centre of a disk’s face, which appears to outweigh 

the reduced contribution from the corresponding edge location.  

This touches on a subtle detail that comes from the design of the numerical 

experiment, which can be considered a limitation: by starting with particles at fixed 

locations in space, then randomly orientating them, and then directing them normally 

to one another, the particles will never experience an edge-edge collision in a 

perpendicular arrangement because the vector along which they must approach in this 

case prevents this. This is due to the particle centres being fixed in space at the point 

of injection. Hence, not all possible collisions are sampled under this methodology, but 

the results remain instructive nonetheless since such a wide area of the parameter 

space is considered. To describe this precisely, the full orientational parameter space 

is sampled, but the full collisional parameter space is not, which is all possible pairs of 

collision points.  

In the next chapter, with particles placed in a turbulence field, the added degree of 

chaos will naturally impact the normal vectors along which the particles approach, and 

widen the collisional sample space studied, hence helping to move towards the goal 

of understanding binary particle collisions as fully as possible.  

Returning to Figure 4.23, for needles, the picture is less divergent than for the disks, 

since both PDFs retain significant representation over the length of full parameter 

space. There is, again, a favouring of parallel configurations for agglomeration events. 

The PDFs intersect one another close to the half-way point, and then bouncing events 

are prevalent for the more perpendicular alignments. Practically all values of particle 

alignment are traversed by both the agglomeration and rebound distributions at a non-



152 
 

zero value. This lack of disjointedness in the distributions comes from the fact that 

there are more degrees of freedom at play than just this one, indicating further analysis 

is required to fully understand non-spherical particle agglomeration. 

Overall, parallel configurations appear to be favoured for agglomerating particles for 

both morphologies. This is in line with the results of Schiller et al. (2011) who studied 

attractive spheroidal particles without resolution of a fluid, concluding that attractive 

forces favour parallel alignment whilst repulsive forces favour perpendicular 

alignment. As alluded to, this phenomenon occurs partly because alignment of the 

symmetry axes facilitates the greatest surface interaction cases and hence greater 

attractive vdW forces in the present case.  

Finally, an interesting effect is seen in the case of the disks at exactly parallel 

alignment, for which the rebound line slightly overtakes the agglomeration line. In the 

limit of a sufficiently large sample size, these two lines would perhaps meet here, since 

there is an equal number of ways to sample a perfect edge-edge collision in disk 

configurations as there is a perfect face-face collision. The reason this region of the 

graph is noteworthy, is that the peak of the agglomeration distribution therefore does 

not occur at the configuration that facilitates maximal forces but rather just tilted away 

from this.  

In conclusion, the distributions reflect both the influence of attractive forces on the 

system, as well as subtle geometrical features of the unique morphologies, which 

influences the probabilities of certain arrangements.    

4.5.2 Surface Collision Points 
The initial orientations of the particles, and the orientations of the particles at the point 

of collision, only tell a part of the story. The points on the surfaces at which the collision 

takes place can also be monitored and analysed to further understand non-spherical 

particle agglomeration.  

The following results use the parametric form of the ellipsoidal equation, introduced in 

Equation 3.2.3, wherein the unrotated ellipsoid is parameterised in terms of two 

angles, 0 < 𝜃 < 𝜋 and −𝜋 < 𝜙 < 𝜋, which define a unique location on the surface. For 

a spheroid whose symmetry axis is in the 𝑥′ direction, varying 𝜃 for constant 𝜙 defines 

the parallels of the surface, whilst varying 𝜙 and keeping 𝜃 constant defines the 
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meridians of the surface; these are the lines of curvature. Traversing a parallel of the 

surface retains the same curvature, since these lines represent the circular symmetry 

about the so-called symmetry axis. Whereas traversing the meridians will lead to a 

variation in the local surface curvature, since they are of elliptical shape, with such a 

cross-section drawn in Figure 4.24.  

In theory, agglomeration outcomes and interaction strengths ought to be a function of 

𝜙 alone when considering the collision points on the surface. The strength of this 

interaction is further mediated by the alignment of the symmetry axes, as 

demonstrated in Section 4.5.1, as well as the relative orientations about the vector of 

closest approach. Finally, as established throughout the preceding analysis, the 

velocity of the particles ultimately decides whether there is sufficient kinetic energy to 

escape the potential well, and therefore avoid agglomeration, given the configurational 

and collisional conditions. 

 

Figure 4.24: Meridian of the surface, describing the angle 𝜙, for disks (red) and 

needles (blue).     
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Figure 4.25: PDFs of collision points in terms of the parametric angles 𝜃 (left) and 𝜙 

(right) for disks. 

 

Figure 4.26: Scatter plot of the (𝜃, 𝜙) parameter space, for agglomerating disks (red) 

and bouncing disks (blue). 

First analysing the disks, presented in Figure 4.25, the PDFs of collision points on the 

surfaces of the colliding particles are shown. For each interaction there are two pairs 

of datapoints collected, which is the 𝜙 and 𝜃 values on the respective surfaces, 

defining the points at which the collision took place. This means that each datapoint 

relies on another specific datapoint to determine its agglomeration state. A datapoint 

appearing in a region where attractive forces are largest can still not be an 

agglomerate, since its partnering datapoint might be in the lowest attractive force 

region, and vice versa. 

The results displayed above agree with the prediction made in the previous paragraph; 

that is, there is no clear dependence on 𝜃, with the small deviation between lines 

probably being attributable to sample size. Whereas a very significant trend is 
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observed for 𝜙. In particular, the total collision points on the surface of the disk are 

collecting at around 𝜙 = ±
𝜋

2
, which is the location of the edge points of the disks. At 

these locations, the DLVO forces induced are minimal since the surface interaction is 

minimal. As expected, then, at these locations there is a clear predominance of 

bouncing events, rather than agglomeration events. Conversely, near to the face of 

the disk, at around 𝜙 = 0, where DLVO forces being induced are maximal, there is a 

predominance of agglomeration events.  

Figure 4.26 shows the full parameter space on a single plot and further visualises that 

which is described in the previous paragraph. Across 𝜃, the collision points appear to 

be roughly uniform with no predominance of red or blue datapoints. Whereas there is 

a clear stratification seen in 𝜙, in that all points accumulate around the edge locations, 

whilst at the very edge of the shape, bouncing events accumulate. 

    

Figure 4.27: PDFs of collision points in terms of the parametric angles 𝜃 (left) and 𝜙 

(right) for needles. 
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Figure 4.28: Scatter plot of the (𝜃, 𝜙) parameter space, for agglomerating needles 

(red) and bouncing needles (blue). 

The breakdown for needles, seen in Figures 4.27 and 4.28, does not carry the same 

insight for agglomeration as it did with the disks, on account of the fact there is not a 

great enough sample size of bouncing events to make any meaningful conclusions. 

The agglomeration distribution very closely follows the total distribution, as would be 

expected given the weighting of agglomeration events in the overall collision sample; 

however, a pattern is perhaps emerging where there is an overrepresentation of 

agglomeration at 𝜙 = ±
𝜋

2
, and a very slight underrepresentation at 𝜙 = 0, which is the 

opposite of the disks. Further investigation is required to confirm this.  

Plotting the 6 bouncing events was avoided given the limited sample size and the lack 

of statistical confidence that can therefore be placed in the trends shown.   

Turning the focus to the total distributions of disk collisions and needle collisions, there 

is a clear difference in the locations on the surfaces that ultimately experience a 

collision, irrespective of DLVO forces. The probability of colliding at the various 

locations on the particle surfaces is different based on morphology, even when 

uniformly randomly sampling the orientations, as is the case here. This raises the 

question of why.  

One hypothesis can be constructed by considering particle shape. Disks are shown to 

be much more likely to collide in the vicinity of the circular band that defines the ‘edge’ 

of the shape, and needles are much more likely to collide along their long edges. Under 
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a stretching transformation, the spheroids remain topologically equivalent, and the 

collision points accumulate in similar regions of the (𝜃, 𝜙) parameter space. However, 

the physical mechanisms driving these accumulations differ due to the anisotropic 

geometry and curvature distributions of the spheroid. Specifically, collisions peak 

about the circle, or the central parallel line of curvature, that lies normal to the 𝑥′ axis 

at 𝑥′ = 0 for both spheroid types. In a disk morphology, this circle manifests itself as 

the so-called ‘circular band’ defining its outermost meridian – and in needles it is simply 

the central circle perpendicular to the so-called ‘long-edge’, where DLVO forces 

happen to be maximal. 

Relating this back to Section 4.4.2, there were not many events where minimal forces 

were induced for the needles, nor maximal forces induced for the disks, which led to 

results contrary to initial expectation. A good explanation for this finding, therefore, is 

linked to this effect. Since there are only two points on a needle where the forces are 

minimised, the end-points, or the poles, it stands to reason that these points are not 

often frequented in collisions over the entire orientational parameter space. This runs 

in contrast to disks, where the minimal forces are induced on the circular band. 

Analogously, the maximal forces on the disks are only induced at two points: the direct 

centres of the faces, and the least frequented locations. This is in contrast to needles, 

where the maximal forces exist on a band around the centre of the shape, the most 

frequented locations. 

This is an adequate first explanation, however it does not fully capture why disks do 

not still frequently induce large vdW forces in the regions close to those central points 

on the face: nearby to those points, the surface curvature is still low and thus the 

induced forces are high.  

An explanation is hypothesised here, and the results that follow give credence to the 

idea. Since two particles are involved in the interaction, both contribute surface 

collision points to the interaction. The Gaussian curvature model involved combining 

the radii observed at said collision points to give an equal and opposite strength of 

force experienced by both particles, based on a weighted contribution of either surface 

curvature. The way the mathematics is set up there biases the scaling towards the 

smaller radius involved, which disproportionately reduces the interaction strength in 

general. If the statistical sampling of surface collisions points is such that minimal 
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locations are often frequented and maximal locations are rarely frequented, then the 

probability of achieving two near-maximal surface locations is very low, and in fact the 

total orientational parameter space that facilitates such maximal interactions is clearly 

low for the disks: small perturbations away from a maximal configuration quickly 

presents the edge of one disk into the interaction, which thusly scales the interaction 

magnitude down significantly. There is actually a very mathematically rich problem 

here that looks to investigate the emergent probability distribution of colliding 

geometrical objects, irrespective of the present application.        

 

Figure 4.29: PDFs of the collision points 𝜃 (left) and 𝜙 (right), for all disks (solid line) 

and all needles (dashed line). 

The described effects can be considered in greater depth by directly comparing the 

overall distributions of 𝜃 and 𝜙 for the two morphologies on a single plot, as is shown 

in Figure 4.29. Once again, there is no order to 𝜃 and the information about spheroidal 

collisions in terms of the surface points can be described fully by 𝜙. The overall 

qualitative nature of the graphs is very similar: both distributions have two local 

maxima located at ±
𝜋

2
 and a local minimum at zero, with the distributions falling away 

at ±𝜋. As has been illustrated by the agglomeration findings, it is where these 

distributions differ which greatly impacts agglomeration. Specifically, the needles 

vastly outweigh the disks at 𝜙 = ±
𝜋

2
 and the reverse is true at 𝜙 = 0 and 𝜙 = ±𝜋. This 

confirms that needles are sampling their maximally attractive configurations much 

more frequently than the disks are equivalently sampling theirs. 

Lastly, the distribution of the disks is more uniform than the needles, arising from the 

local minima being less extreme. This indicates that the frequency of experiencing the 
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respective lowest probability configurations is greater for the disks than for the 

needles. In other words, it is found to be more likely to collide with the centre of a disk, 

than with the end point of a needle.      

4.6 Effect of Surface Curvature Distribution on 
Agglomeration 
The surface area of a disk is greater than a needle for a fixed volume, and so the 

results to this point run contrary to what might be an initial expectation. One might 

expect forces that depend on surface interaction to be, in general, more prominent 

across shapes of greater surface area.  

Beyond this, the total curvature of the surface – defined as the integral of the Gaussian 

curvature over the entire surface – is constant for spheroids. The geometric properties 

important in governing the interaction behaviour of spheroids is therefore encoded in 

the way that this curvature is distributed across the surface. Recall, crucially, that the 

strength of the interaction is scaled by the local curvature at the points of closest 

approach in the present model. 

Observing Figures 4.30 and 4.31, it is clear that the curvature accumulates at the 

extremities of the shape. For disks, this means that most of the curvature of the shape 

is located on the circular band defining its boundary; whilst the curvature accumulates 

at the end points of the needles, and thus so do the minimal values of the radius of 

Gaussian curvature. (The radius of Gaussian curvature crudely approximates the 

magnitude of the surface interaction coming from a given particle in the present 

agglomeration model.) The curvature is seen to be comparatively homogeneous 

across the rest of surface, compared to the extremes. This means that the penalty 

incurred, in terms of the resolved force, for colliding at a location near to these 

extremities is stark.   

Moreover, in the limit of increasing aspect ratio, the extent to which the curvature gets 

concentrated at the extremes increases, and the curvature across the rest of the body 

decreases, to conserve total curvature. This has interesting implications for very high 

aspect ratios. In the current literature, aspect ratios of 5: 1 are high for spheroidal 

investigations, particularly for immersed boundary studies that must rely on a certain 

number of fluid points to be resolved in every direction within the particle mesh, and 
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thus scale badly with increasing aspect ratio from a computational perspective. 

Related to this topic, for discrete shapes like non-spherical particle meshes, the 

curvature is concentrated at the vertices, since the actual triangular faces of the mesh 

possess zero curvature. This means that mesh-based approaches for resolving forces 

that depend on local curvature, have a limitation placed on them by the resolution of 

the mesh, so too do they face a challenge in how to calculate and implement this local 

curvature. The continuous model used herein is therefore well suited to agglomeration 

modelling.  

 

Figure 4.30: Normalised Gaussian curvature shown as a colour map for needles 

(left) and disks (right). 

 

Figure 4.31: Normalised radius of Gaussian curvature shown as a colour map for 

needles (left) and disks (right). 
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The visualisations of the surface curvature bring more cognisance to the results 

obtained since disks were found to collide frequently near to the visualised penalty 

region, whilst needles avoided theirs generally. The upshot of this is for needles to 

agglomerate at a higher rate than disks: 95% compared to 61%. As mentioned, there 

is an obvious difference in the probability of colliding with a band rather than a point, 

on account of the former occupying much more of the domain than the latter. But there 

is another geometric effect which compounds this. This is the matter of which points 

on the surface protrude the most, which relates to both the morphology and the 

respective curvature of the surface.   

To illustrate this, consider just one rotational degree of freedom, 0 < 𝜂1 < 𝜋/2, shown 

in Figure 4.32, which will be the amount of relative tilt towards one another for two 

spheroids that are initially perfectly aligned in their maximally attractive configuration, 

i.e., face-to-face for the disks or long-edge-to-long-edge for the needles. As before, 

the spheroids approach one another along their vector of closest approach. For no 

‘tilt’, or 𝜂1 = 0, the spheroids will collide at the centre of the faces (disks) and at the 

centre of the long edges (needles). Tilting the particles towards one another, there will 

come a point where the edge overtakes the front of the shape and becomes the 

colliding point, or the point closest to the other particle. The amount of so-called ‘tilt’ 

required for the edge, or minimal force locations, to become the point at which a 

collision occurs, is significantly less for the disks than for the needles, owing to the fact 

that the stomach of the needle protrudes further than that of the disk. In this case a 

greater proportion of the 𝜂1 parameter space is thus occupied by minimal attractive 

interactions for disks, than analogously for needles. This is a simplification in one 

rotational degree of freedom aiming to hypothesise as to why the observed 

distributions differ as a result of geometry. 

This is further compounded. For both shapes that have undergone some rotation 𝜂1, 

there is a second rotational degree of freedom which is symmetric and will not affect 

the forces (rotation about the 𝑥′ axis) but there is another rotation 𝜂2 that still carries 

significance. Performing this 𝜂2 rotation for the needles will always immediately move 

the end-point, or minimal force location, away from the other particle, allowing the end-

points to avoid another during approach, resulting in a collision location that thus 

increases the attractive force; whereas, for disks there is no such guarantee. This 

further favours the agglomeration propensity of needles. Overall, the way the same 
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volume is distributed between the two shapes, clearly leads to overall differences in 

the points of collision under uniform sampling.  

 

Figure 4.31: Diagram to illustrate perturbation of orientational configuration for 

aspect ratio 5:1 disks. 

Increasing the aspect ratio extremises these effects by concentrating the curvature at 

the extremities of the shape and reducing the protrusion of the shapes in the direction 

of the smallest radii. However, there is no reason to assume that each of these effects 

behaves linearly with respect to the others, when changing the aspect ratio. It would 

seem there is rich potential for mathematical (both geometric and statistical) 

investigation in this direction and this is perhaps even necessary to fully understand 

the collisional and attractive/repulsive interaction behaviours of spheroidal particle 

pairs – as the results are clearly strongly sensitive to the particles’ changing 

morphologies. 

4.7 Conclusions 
The spherical and non-spherical elements of the particle model have been 

investigated to demonstrate robustness. All elements of the model have been shown 

to be numerically stable, with the only fault being in the determination of extremely 

small separations between needles, in a limited number of cases.  
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A velocity study was first undertaken for spherical particles, to understand DLVO force 

interaction in detail under the present framework, giving insight into the precise value 

at which particles no longer agglomerate, labelled the ‘cut-off velocity’. The velocity 

parameter space investigated was chosen to match collision velocities in a related 

channel flow. The cut-off velocity was shown to be located at around 0.7 𝑚𝑚 𝑠−1, which 

is in keeping with Mortimer et al. (2020), providing extra validity to the choice of value 

in the LPT simulations undertaken in the nuclear research group at the University of 

Leeds.  

After this, the focus turned to investigating how the cut-off velocity changes for non-

spherical particles of two distinct morphologies. Namely, disks and needles of a 5:1 

aspect ratio. This same study was undertaken for two modal configurations of the 

respective morphologies, with interesting variation in the results. Face-to-face disks 

were found to continue to agglomerate at the highest velocities, with this configuration 

facilitating maximal vdW force magnitudes of triple those observed in the maximal 

needle configuration. Collisions at the end points of needles were found to induce the 

lowest attractive forces in the configurations considered, and thus particle rebound 

occurred at the lowest velocity for this case. 

Following this, orientations were varied uniformly such that random collisions could 

take place, generating insight into the role of morphology and orientation on 

agglomeration outcomes under the present model, at a fixed velocity. The study 

indicated that needles have a significantly higher propensity to agglomerate, and both 

morphologies tend to show an alignment of their symmetry axes when undergoing 

agglomeration. A further important finding relates to the observed coefficient of 

restitution, where it was seen that this outcome is strongly dependent upon the 

orientation of the shape at the point of collision. 

The findings were further understood in terms of the geometry of the shapes. It was 

demonstrated that the curvature of the particles accumulates at the extremities of the 

surface, which creates regions where the resolved attractive forces are very different 

to the overall shape average. Pairing this understanding with an investigation into the 

probability with which certain locations on the surface experience a collision, these 

results generate new understanding relating to binary spheroidal particle collisions 

under uniformly randomised initial conditions. Namely, disks are found to be much 
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more likely to collide at locations close to their edge, which coincides with the greatest 

curvature of the shape and thus the lowest attractive forces. Conversely, needles are 

found to collide at locations away from the accumulation of surface curvature, thus 

facilitating stronger interactions on average. This ultimately leads to needles favouring 

agglomeration more than disks, despite the greater surface area of disks and the 

greater maximal van der Waals forces obtainable in theory. In fact, the van der Waals 

force distribution highlighted this point most clearly, where needles were shown, 

contrary to expectation, to resolve much higher average forces.   

The preceding analysis is limited in two ways. Firstly, the analysis only considers 

spheroids of a 5: 1 aspect ratio. The protrusion of the shape was theorised to place a 

bound on the extent to which it must be tilted towards its counterpart to result in an 

edge-based collision. In the limit of increasing aspect ratio, this so-called protrusion 

reduces, but the distribution of surface curvature is also changed as a function of 

aspect ratio. Therefore, there are uncharacterised relations there rich for mathematical 

investigation, and, by extension, the results herein may not translate to significantly 

greater aspect ratios. 

Secondly, the restriction for particles to approach along their closest approach vectors 

allowed for a simple means to ensure the initial distance, and simulation times, 

remained consistent. However, this aspect of the numerical experiment places a slight 

restriction on which locations on the surface can experience a collision on a second 

particle, given some fixed orientation of the first, which will be alleviated by introducing 

turbulence on approach.  

Overall, agglomeration has been shown to be dependent upon: particle velocity, 

relative orientation of the particles’ symmetry axes, relative orientation of the particles 

about the closest approach vector, the location of surface collision points, particle 

shape (or, equivalently, the distribution of surface curvature), and it is predicted that 

aspect ratio is also crucial. A further analysis could look at this from a mathematical 

perspective to understand the relationship between curvature, aspect ratio, and the 

relation to collision points.   

Translating these findings to applicable physical scenarios allows the formulation of a 

few potential ideas. For disks and needles with the present geometries, the results 

suggest that systems of needles should aggregate faster than disks, and that the 
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resulting aggregates would be more stable with respect to potential shear-induced 

disaggregation or breakage since their components are associated with stronger 

interactions on average. Agglomeration, and the resultant sedimentation or deposition, 

assuming the fall velocity of the formed aggregates is sufficient for net sedimentation, 

will be faster for needles. This suggests that shape in aggregating systems has a first 

order effect on sedimentation rates. However, there are further effects to investigate 

before having conviction in this statement, since multiple interacting particles can 

complicate things considerably. At the very least there is the strong indication that the 

formation of doublet agglomerates is considerably more likely for a system of 5:1 

aspect ratio needles than the analogous disks.  

Disks were seen to agglomerate over less of the total orientational parameter space, 

which may imply a restriction of the types of structures disks can realistically form, if 

they are reliant on a certain configuration to agglomerate. Relating this back to the 

observation about likelihoods – there are only two locations on a disk that facilitate the 

maximal configuration. Once these are occupied by other particles already 

agglomerated, the regions of the disks that are still exposed and thus candidate 

locations for another particle to join, are also the regions of the shape that do not 

facilitate agglomeration. In the most extreme case, this would only allow disk 

agglomerates to form only in long chains with the faces adhered. Such a chain would 

become increasingly unstable in a turbulent flow as it lengthened. 
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5 Non-Spherical Particle 
Interactions in Forced Homogeneous 
and Isotropic Turbulence 
 

5.1 Introduction 
In the previous chapter, steps were taken to understand the way that the fundamental 

properties of the particles and the fluid affect collisions, interaction behaviours and 

agglomeration propensities. From this base, there is now a general understanding of 

the particle-phase behaviour in relative isolation, from which it is possible to approach 

the more dynamic problem of turbulent particle agglomeration. 

Industrial processes that are impacted by agglomeration will very often be turbulent, 

for example in pipe-based transportation of particulate matter (Ho and Sommerfeld, 

2002; Reeks, 2014; Bin et al., 2018). As motivated earlier, the particles observed in 

industry will almost always be non-spherical in nature. Current methodologies and 

studies in the literature rarely address these two important points, and there are no 

existing studies that simultaneously address both non-spherical particle agglomeration 

and turbulent particle advection, as demonstrated in the literature review in Chapter 2. 

Further still, any such endeavours into particle agglomeration do not utilise a fully 

resolved DNS-IBM approach, as is used here. These studies may therefore miss the 

particle-scale dynamics and interactions that can influence the bulk behaviour of the 

system. Hence, this chapter presents a state-of-the-art simulation approach aiming to 

obtain insights at a deeper, more fundamental, level than previous work.  

A theme throughout the thesis relates to DLVO forces operating on very short length 

and time scales – smaller than those of the fluid – and the fact that this creates a 

challenge with respect to their modelling. To resolve both the fine length scales 

required for a DNS of turbulence and the short time scales required to deterministically 

resolve DLVO-induced agglomeration events, (shown in the previous chapter to be 

𝑑𝑡 ∼ 𝑂(10−7) 𝑠 for non-spherical shapes), there is a heavy computational cost incurred 
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both spatially and temporally for the respective elements of the simulation. This partly 

motivates the following studies being restricted to periodic boxes of homogeneous and 

isotropic turbulence (HIT), in which the particle meshes can be made sufficiently large 

compared to the computational fluid domain, such that the restrictions on the 

immersed boundary technique can be met without requiring unfeasible numbers of 

grid points, or adaptive meshing, as would be the case in an industrial scale pipe or 

channel geometry. In the work by Chouippe and Uhlmann (2015) for example, 16 

nodes were required across a particle diameter to accurately simulate immersed 

spherical boundaries. In the present work, 15 nodes are used.  

A second simplification is employed: pairs of particles will be studied at first to reduce 

computational overhead, as opposed to the millions of particles present in realistic 

industrial systems. As alluded to, for a realistic size pipe or channel geometry, the 

particles are so small in relation to the full domain that the number of mesh points 

would become so large as to make the present study unfeasible, whilst retaining the 

DLVO and IBM requirements on the constituent particles. However, as computational 

resources continue to improve, for example with the accelerating field of GPU 

processing (which is particularly well suited to particle methods), these requirements 

will be more readily met. So, there is great value in developing these approaches now, 

such that progress further down the line is faster. Naturally, the large particle numbers 

of real systems give rise to many important effects due to multiple simultaneous forces 

acting at once from the nearby particles. Hence, it is of value to develop this method 

further to accommodate many interacting particles, which will be demonstrated in 

Chapter 6. 

The key benefit of these initial simplifications is the opportunity to study in detail the 

process of collision and agglomeration from a fundamental perspective. An isolated 

interaction between two particles is of great interest since the models most frequently 

employed in the literature treat particle interactions as distinct, often relying on 

algorithms that visit each particle pair consecutively rather than simultaneously. 

Therefore, a deeper understanding of individual pair interactions can improve those 

models. Lastly, this problem set up allows an examination of the influence that 

turbulence has over the collision and agglomeration process. By resolving all flow 

scales, it is possible to examine how the finest flow structures can affect the close-

range interaction as it happens, whilst also capturing the particle-scale turbulent 
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structures’ effect on the larger scale particle motions. The boxes of HIT allow a range 

of flow scales to be resolved, and so a wide and chaotic parameter space is explored. 

Employed throughout this chapter and the next, there is an attempt made to match the 

system properties to channel flow LPT-DNS calculations performed at the University 

of Leeds (Mortimer et al., 2020). The idea, rather than picking the turbulence and 

particle-phase properties arbitrarily, was to choose those most consistent with the 

different flow regions as seen when traversing the width of a channel, to get a complete 

picture of the background fields two agglomerating particles may be subject to when 

immersed in a canonical wall-bounded flow. The flows chosen in the cited work were 

representative of those encountered in nuclear waste processing flows, and so is the 

present work. 

This matching introduces some cognisance to the studies by imparting representative 

fluid forces and turbulent flow structures on the particles, but it is important to note 

what will be colloquially referred to as the ‘viscous sublayer’, ‘buffer’ and ‘bulk flow’ 

regions are just approximations based upon the mean statistics calculated in those 

regions and cannot capture some of the more intricate fluid physics that take place, 

due to the homogeneity and isotropy restrictions. For example, larger scale coherent 

motions cannot form in boxes of HIT, nor is there a mean flow direction or geometric 

wall effects, and these two things are very important to the overall particle dynamics 

in industrial scale flows.  

The approximation aims to simulate particle collision processes in the reference frame 

of a collision taking place in a typical nuclear waste flow. Some of the effects of the 

mean flow on the particles are therefore included in the initial relative velocities as they 

collide, as measured in supplementary channel flow calculations. This reduces the 

need to consider the mean flow, leaving the fluctuating component of the velocity field 

to be approximated by the HIT set-up. In this frame of reference, the turbulence is 

matched in terms of the Taylor-Reynolds number and the root mean squared velocity 

fluctuations to create the types of conditions experienced by particles colliding and 

agglomerating in industrially relevant scenarios.        
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5.2 Validation of Single-Phase Turbulence 
As described in Section 3.1.4, the forcing scheme of Eswaran and Pope (1988) was 

chosen to force and sustain the turbulence in the fluid. The choice of forcing function 

was made due to two main factors. Firstly, since the turbulence will not be ultimately 

used for solely a single-phase domain, but rather with particles for a multiphase study, 

it was important to choose a method that did not interfere with the particle-scale 

forcing, and vice versa. This is achieved through forcing the larger scale modes in the 

flow, i.e., the smallest wavenumbers, as introduced earlier. Described by Mallouppas 

et al. (2013), such an approach ensures the nonlinear transfer function, as well as the 

redistribution of energy, remain unaffected by the interaction between the forcing of 

the fluid turbulence and of the particle-phase. Then, for numerical studies it becomes 

easier to isolate the effect of the particles on the fluid-phase.    

Secondly, the method of Eswaran and Pope (1988) was selected in part due to the 

arguments given in Chouippe and Uhlmann (2015). The latter work showed the 

method is applicable to immersed boundary particle-laden HIT. The specific arguments 

informing their choice of method related to the following four criteria: small-scale 

statistics should be repeatable and agree with previous studies; long-time integration 

should remain stable in the presence of two-way coupled particles; the forcing should 

be efficient to compute, even within a non-pseudospectral framework; the scheme 

should allow for a priori estimation of the resolved turbulence based on the chosen 

forcing parameters. Each of these criteria were demonstrated within the reference 

material, giving further confidence to the selection of methodology. 
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Figure 5.1: Pseudocolour velocity magnitude plots demonstrating the onset of 

turbulence, separated by intervals of 0.5 normalised time units. 

Figure 5.1 demonstrates the successful implementation of the forcing scheme 

achieved in the present work. The figure helps to show how the development of 

turbulence within the domain is achieved over time through the action of the forcing 

function. This figure and subsequent ones make use of the large eddy turnover 

timescale 𝑇𝑒 = 𝑢′2/𝜖𝐹 for normalisation of the time units. Values for the forcing 

parameters used here are 𝑇𝐿 = 1.67389 and 𝜖∗ = 0.00298 in line with case I of the 

validation presented shortly hereafter. This corresponds to a resolved Taylor-Reynolds 

number of 𝑅𝑒𝜆 = 65. 

From a quiescent initial condition shown in the first plot, a forcing function is applied 

to the incompressible Navier-Stokes momentum equations. The result is that after 0.5 

time units, as shown in the second plot, a non-zero velocity field emerges.  

The largest scales, corresponding to the smallest wavenumbers, are exclusively 

targeted by the forcing function – which is visible in the second subplot, where the 

scales are similar in size to that of the domain. It can be seen in the subsequent three 

subplots that these larger scale structures break down into smaller eddies, in line with 
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Kolmogorov’s theory of turbulence (Chapter 2.1.2), at which point the full turbulence 

energy spectrum has emerged, and this remains stable throughout the simulation. 

With a periodic box of homogeneous and isotropic turbulence successfully sustained, 

particles can be added to the domain with the knowledge that the fluid effects 

experienced over a simulation will be on average the same due to the ergodicity of the 

stochastic forcing field. However, within each individual simulation considered below, 

the intricacies of motion resulting from the chaotic turbulence field are explored. 

5.2.1 Calculating Statistical Quantities 
Two validation cases were conducted to demonstrate the correct implementation of 

the forcing function in the code. The natural choice for validation was the work of 

Chouippe and Uhlmann (2015), rather than Eswaran and Pope (1988), because of the 

more comparable computational power employed presently as well as the availability 

of validation data for two different Taylor-Reynolds number cases.  

As described earlier, the Taylor-Reynolds number characterises the turbulence levels 

experienced within a region of turbulent flow. It is important to demonstrate that the 

correct Taylor-Reynolds number is met, as this is the chief number characterising the 

behaviour of the system (Equation (2.2)). As with a typical Reynolds number, it 

combines the characteristic velocity, length and kinematic viscosity of the fluid system. 

In this case, the characteristic velocity is taken to be the root mean square of the 

velocity fluctuation 𝑢′ and the length scale is the Taylor microscale 𝜆 (Section 2.1.10).  

The Taylor microscale is estimated from the local fluctuating strain rate field, which 

can then be spatially averaged over the simulation domain to give the global value at 

each timestep. The local velocity fluctuations are averaged in the same way, whilst the 

viscosity is constant, giving that which is required for the calculation. This is tracked 

temporally over the simulation and time-averaged to demonstrate convergence.  

The relation between the fluctuating strain-rate field and the Taylor microscale 𝜆 is 

given by Equation (5.1) (Hinze, 1975), expressed in one dimension without loss of 

generality since the flow is isotropic. In practice, all three spatial directions are used 

with equal weighting in the averaging to improve the sample size, after ensuring 

isotropy. It is possible to use the same field to estimate the dissipation in the system 

and this relation is given in Equation (5.2): 
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(
𝜕𝑢′

𝜕𝑥
)
2̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝑢′2̅̅ ̅̅

𝜆2
 , (5.1) 

𝜖𝐹 = 2𝜈𝐹𝑆𝑖𝑗𝑆𝑖𝑗
̅̅ ̅̅ ̅̅ ̅, (5.2) 

where 𝜖𝐹 is the turbulent fluid kinetic energy dissipation rate, 𝜈𝐹 is the fluid kinematic 

viscosity, 𝑆𝑖𝑗 is the strain-rate tensor, and an overbar is used to represent a spatially 

averaged quantity. Similarly, the turbulence kinetic energy 𝑘 of the fluid is calculated 

via:  

𝑘 =
1

2
𝑢𝑖

′𝑢𝑖
′̅̅ ̅̅ ̅̅ =

3

2
𝑢′2̅̅ ̅̅ , (5.3) 

where 𝑢𝑖
′ are the local velocity fluctuations in the three Cartesian directions, and 𝑢′ is 

the root mean squared velocity fluctuation defined earlier, with the simplification again 

owing to isotropy.   

These variables are explicitly computed at each timestep in the simulation and 

outputted as data, whereas the rest of the turbulence quantities computed in the 

validation are derived from this live data set, using the well-known relations of 

Kolmogorov (Chapter 2.1.2). Eswaran and Pope (1998) describe that such estimates 

are most reliable when the Reynolds number is high enough for the small scales to 

decouple from the larger scales. 

The forcing function was described in Section 3.1.4 in terms of the general ideas of 

the method as well as the implementation. It is possible to describe also some of the 

key properties of the method, starting with the complex vector-valued random 

processes 𝒃 that drive the time evolution of the forcing field.  

Recall the method takes place in wavenumber space with the vector 𝜿 = (𝜅1, 𝜅2, 𝜅3) 

describing the pertaining wavenumbers. These wavenumbers only receive 

contributions of non-zero forcing in a limited band. In particular, the lowest 

wavenumber band corresponding to the largest scale motions in physical space, 

where the Navier-Stokes equations are solved. In the present simulations, the 

condition 0 < |𝜿| ≤ 𝜅𝑐𝑢𝑡 is enforced which ensures that only wavenumbers within a 
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spherical shell are excited, excluding the origin. So, 𝜅𝑐𝑢𝑡 is the maximum wavenumber 

of the forced modes.  

As for the properties of the process: firstly, each random process exhibits a mean of 

zero in the limit Δ𝑡 → 0. The implication for the forced velocity field is that it also exhibits 

zero mean, as is required by HIT. Secondly, each realisation of the forcing field is 

correlated in time since the stochastic process itself is correlated. These properties 

are laid out in Equations (5.4) and (5.5), respectively: 

〈𝒃(𝜿, 𝑡)〉  = 0, (5.4) 

〈𝑏𝑖(𝜿, 𝑡)𝑏𝑗(𝜿, 𝑡 + 𝑠)〉 = 2𝜎2𝛿𝑖𝑗 exp(−𝑠/𝑇𝐿), (5.5) 

where 𝜎2 is the variance of the random process, 𝛿𝑖𝑗 is the Kronecker delta, 𝑇𝐿 is the 

forcing timescale, 𝑠 represents a dummy variable arbitrarily shifting the temporal 

variable, and angular brackets indicate temporal averaging. 

In practice, the variance is not prescribed directly and is instead calculated from the 

relation 𝜖∗ = 𝜎2𝑇𝐿, where the non-dimensional quantity 𝜖∗ is introduced and referred 

to in the original text as the non-dimensional dissipation rate. In the limit that 𝑇𝐿 → 0, 

the simulation becomes white noise (Eswaran and Pope, 1988) and the mean energy 

input trivially tends to zero (Chouippe and Uhlmann, 2015). As such, 𝑇𝐿 and 𝜖∗ must 

be chosen independently. 

In the work of Chouippe and Uhlmann (2015), it is reported that since the number of 

forced wavenumber modes is small (less than 100) the cost associated with a 

computation of the turbulence forcing is small in comparison to the Navier-Stokes 

solver step. The same choice was made in the present work in terms of the number of 

forced modes, and so a similarly small relative cost was observed. In the present work, 

the random processes are updated once globally per time step and passed to the 

separate processors to be evaluated locally on the physical grid.  



174 
 

5.2.2 A Priori Estimation of Forcing Parameters 
To pre-calculate the quantities that should be expected out of the simulation, given a 

set of input forcing parameters, there were two relations available: one from each of 

the two main sources followed.  

Eswaran and Pope (1988) define new non-dimensional parameters which are 

constructed from their forcing input parameters (𝑇𝐿 , 𝜖
∗, 𝜅𝑐𝑢𝑡). These are then used to 

generate an estimate of the dissipation rate, Kolmogorov length scale and the Taylor-

Reynolds number. They introduce the non-dimensional forcing timescale as 𝑇𝐿
∗ =

𝑇𝐿(𝜖
∗)1/3𝜅0

2/3
, with 𝜅0 being the lowest forced wavenumber, which can be calculated 

by 𝜅0 =
2𝜋

𝐿
 for domain length 𝐿. Then, their estimate of the non-dimensional dissipation 

rate is 𝜖𝑇
∗ = 4𝜖∗𝑁𝑓/(1 + 𝑇𝐿

∗𝑁
𝑓

1

3/𝛽), with 𝑁𝑓 the total number of forced wavenumbers. (𝛽 

is a constant set to 0.8 in the reference material, and that was used here.) The estimate 

of the Kolmogorov length scale is given by 𝜂𝑇 = (
𝜈𝐹

3

𝜖𝑇
∗ )

1/4 

. From this base, they use 

these parameters and their data set to generate an empirical relation for estimating 

the Taylor-Reynolds number as: 

𝑅𝑒𝜆
𝑇 = 8.5 / ((𝜂𝑇𝜅0)

5/6𝑁𝑓
2/9

). (5.6) 

Chouippe and Uhlmann (2015) reported an overprediction by this quantity and instead 

proposed an alternative. They introduced the central wavenumber 𝜅𝑐 = (𝜅0 + 𝜅𝑓)/2 , 

and defined a macroscopic length scale as 𝐿𝑐 = 2𝜋/𝜅𝑐. From this, they give their own 

estimate as: 

𝑅𝑒𝜆
𝑇 =

20𝐿𝑐(𝑇𝐿𝜖𝑇
∗ )

1
2

(3𝜈𝐹))
1
2

, (5.7) 

and consequently report an improved discrepancy (3% versus 8%) between prediction 

and outcome, when compared to the former paper. In the present work, the latter 

estimation method was also seen to be more accurate.   
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5.2.3 Validation Case I: 𝑅𝑒𝜆 = 65  
Presented in Table 5.1 are the validation parameters used, which were derived from 

the non-dimensional values given in the reference paper, since they were not stated 

explicitly. So, the choice of 𝑇𝐿 is somewhat arbitrary. It is the relation between the two 

forcing parameters that is important, and this is consistent between studies. The 

parameters include 𝜇 the dynamic viscosity (𝑃𝑎 ⋅ 𝑠), 𝜌 the fluid density (𝑘𝑔 ⋅ 𝑚−3), 𝜅𝑐𝑢𝑡 

the cut-off wavenumber (𝑚−1) normalised by the smallest wavenumber 𝜅0 (𝑚
−1), 𝑁𝐹 

the number of forced modes in the simulation, the non-dimensional forcing 

parameters, i.e. 𝑇𝐿 the forcing timescale and 𝜖∗ the forcing ‘dissipation’, 𝐿 the box 

length (𝑚), and 𝑛𝑒𝑙𝑥 the number of seventh-order spectral elements in the spatial 

directions.  

Table 5.1: Forcing parameters used in the two validation cases.  

Case 𝝁 𝝆 𝜿𝒄𝒖𝒕/𝜿𝟎 𝑵𝑭 𝑻𝑳 𝝐∗ 𝑳 𝒏𝒆𝒍𝒙 

I 6 × 10−3 1.2 2.3 56 1.67389 0.00298 2𝜋 24 

II 6 × 10−3 1.2 2.5 80 1.67389 0.28234 2𝜋 30 

   

 

Figure 5.2: Pseudocolour non-dimensional velocity magnitude contours on the 

exterior surfaces shown for the turbulence box with 𝑅𝑒𝜆 = 65. 
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Figure 5.3: Temporal convergence of the spatially averaged turbulence quantities for 

validation case I, Taylor-Reynolds number (top left), Taylor microscale (top right) and 

large eddy length scale (bottom). The black horizontal lines show the time-averaged 

values reported by Chouippe and Uhlmann (2015). 

Figure 5.2 shows a snapshot of the 𝑅𝑒𝜆 = 65 turbulence velocity field, corresponding 

to the graphs in Figure 5.3 which display the evolution of the measured turbulence 

properties. There is an initial transient where the Taylor-Reynolds number rapidly 

increases to a value of 100, at which point it begins to decrease again towards a more 

stable value approximately equal to the desired value of 65. The mechanism for the 

peaking of the value is the consistent addition of forcing to the Navier-Stokes 

momentum equation through the source term. The eventual peaking and reduction 

back to the target value occurs through the development of the turbulence energy 

cascade, a process which is seen to occur between one and two normalised time units. 

It is worth noting that even though the forcing remains constant, thus increasing the 

energy in the domain, the evolution of the Taylor-Reynolds number does not increase 

indefinitely, due to the change and development of flow scales over this period through 
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the energy cascade. This is reflected by the changing length scales demonstrated in 

the plots of 𝜆 and 𝑙 prior to the system reaching equilibrium. A key mechanism 

governing the overall evolution is the turbulence energy dissipation taking place at the 

smallest scales, and in the present set-up these smallest scales must first form for the 

dissipation to begin to take place at this scale. Overall, the system reaches equilibrium 

when the turbulence energy dissipation rate balances with the injected kinetic energy.    

It can be seen that the fluctuations about the requisite value are significant, roughly 

±10 units; however, the sufficiently time-averaged value remains stable indefinitely as 

the simulation continues, and the magnitude of the fluctuations about the mean 

depends only on the stochastic process rather than the current velocity field.   

5.2.4 Validation Case II: 𝑅𝑒𝜆 = 143 
For the 𝑅𝑒𝜆 = 143 validation case, similar trends are seen in each of the plots of Figure 

5.4. The turbulence energy cascade takes roughly the same amount of time to 

develop, but the peak of the Taylor-Reynolds number is four times higher. 

Proportionally, the Taylor-Reynolds number fluctuates about its mean value to a similar 

degree; however, in absolute terms, the fluctuations about the mean value are 

approximately ±20 units. 

The validation cases demonstrate a range of integral length scales can be resolved 

within the simulation domain, which places it as an improvement upon the linear 

forcing method of Lundgren (2003) which is known to be restricted by integral length 

scale considerations (Lucci et al., 2010).  
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Figure 5.4: Temporal convergence of the spatially averaged turbulence quantities for 

validation case II, Taylor-Reynolds number (top left), Taylor microscale (top right) 

and large eddy length scale (bottom). The black horizontal lines show the time-

averaged values reported by Chouippe and Uhlmann (2015). 

5.2.5 Validation Case Comparison 
Presented in Table 5.2 are the time-averaged results, obtained by averaging over the 

latter half of the simulation time. Following the reference material for this comparison, 

the parameters are named and calculated as follows: the large-eddy length scale 𝑙 =

𝑘3/2 𝜖𝐹; the Taylor microscale 𝜆 = (
15𝜈𝐹𝑢′2

𝜖
)
2

; the Taylor-Reynolds number 𝑅𝑒𝜆 =
𝜆𝑢′

𝜈𝐹
 ; 

the Kolmogorov length scale 𝜂 = (
𝜈𝐹

3

𝜖𝐹
)
1/4

; 𝐿 is the domain length and Δ𝑥 the grid step 

width (the average grid step width in the present case); and the vorticity fluctuation 

amplitude is given by 𝜔𝑓𝑙𝑢𝑐 = (
𝜖

𝜈𝐹
)
1/2

, with the large-eddy turnover timescale as 𝑇𝑒 =

𝑢′2

𝜖
. Here it is stated explicitly that Δ𝑥 used in the final column of Table 5.2 is not 

obtained from the simulation and is therefore not a part of the validation but is shown 



179 
 

for comparative purposes. A Python script was used to automatically calculate the 

Kolmogorov scale in relation to the grid spacing, which ensured that the requirements 

of direct numerical simulation were met in each simulation throughout the thesis.  

Table 5.2: Time-averaged results comparison against both validation cases of 

Chouippe and Uhlmann (2015), denoted CU.  

Case Author 𝑹𝒆𝝀 𝒍/𝑳 𝝀/𝑳 𝜼/𝑳 𝑻𝒆 𝝎𝒇𝒍𝒖𝒄 𝜼/𝚫𝒙 

I CU 65.5 0.5970 0.074 0.0047 16.92 1.20 

I Present 65.9 0.5832 0.072 0.0046 16.93 0.75 

II CU 143.0 0.5665 0.032 0.0014 37.26 0.70 

II Present 148.2 0.640 0.037 0.015 37.93 0.33 

 

The time-averaged values are matched very closely for Case I. Discrepancies are 

observed within a couple of percent in the worst cases, but this can be attributed to 

the slightly lower resolution, which notably does not compromise the validity of the 

method (DNS) since the Kolmogorov scales are still resolved, as described in Table 

5.2. The numerical method for the Navier-Stokes solution is also different, with a 

seventh-order spectral element method arguably being preferable to a second-order 

finite difference scheme, particularly in a simple structured cubic and periodic domain 

as is the case here.  

Case II is not reproduced as closely as Case I but there is still strong agreement for 

most quantities. In the convergence plots it was demonstrated that the key variables 

converged closely. In Table 5.2, the Kolmogorov scale and the vorticity multiplied by 

the turnover timescale are well matched. In Case II, the resolution used is considerably 

lower than the reference paper, as the Kolmogorov resolving nature of the simulations 

is met with twice the strictness by the reference paper compared to the present work. 

Despite this, it is the Kolmogorov scale that is met with the closest accuracy to the 

reference paper; whereas it is the Taylor microscale and large-eddy turnover length 

scale that deviate from the reference material the most in the second validation case.  

Given that the boxes of turbulence used for the work in the present thesis are at 

Reynolds numbers below those used even in Case I, and not approaching those used 

in Case II, the validation demonstrates a successful implementation of the method with 
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reliable results for the presently available computational resource. The forcing method 

was therefore taken forward with confidence.  

5.3 Forcing Dimensional Turbulence Boxes 
The turbulence domains used hereafter move away from non-dimensional boxes to 

dimensional ones. This is to ensure that the particle-phase properties remain exactly 

as required, since the particle models are dimensional. It is not straightforward to non-

dimensionalise the particle-phase to a 2𝜋 domain, since there are multiple competing 

length and time scales inherent to the various equations which describe the particle 

phase. Hence, it was reasoned that it was simpler to adjust the fluid-phase to the 

required scales of the particles rather than vice versa. A suggested improvement would 

be to solve the fluid within a non-dimensional box of turbulence, with the particle-phase 

appropriately non-dimensionalised. This would generalise the results more easily to a 

wider range of systems. 

Relations exist for a priori estimation of the resolved Taylor-Reynolds number based 

on the chosen forcing parameters as shown above. However, when applied to the 

present dimensional boxes, the predictive relations were not useful. So, trial-and-error 

across around 30 single-phase simulations was utilised to arrive at the correct forcing 

parameters.  

The present baseline box dimension is 1𝑚𝑚 chosen to ensure the 50𝜇𝑚 particles 

remained small compared to the box dimensions. The buffer and bulk region 

approximating boxes are larger, at a length of 5𝑚𝑚, which was found to be necessary 

to arrive at the required turbulence conditions.   

The strategy herein was to control the difference in the turbulence boxes by using two 

numbers, those were: the Taylor-Reynolds number, and the mean velocity fluctuation. 

The choice of the values for the three different boxes were taken from mean 

observations in channel flow simulations performed by Mortimer et al. (2020).  

Whilst it is not possible to recreate precisely what is going on in a channel by using 

homogeneous and isotropic boxes of turbulence, the matching of these two values 

creates an environment where the first order statistics as experienced by the particles 

are similar. The three regions of turbulence chosen for approximation were the viscous 

sublayer, the buffer region, and the bulk flow region. 
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Shown below in Figure 5.5 are data accumulated from a single-phase channel flow 

with a Reynolds number based on the shear velocity of 𝑅𝑒𝜏 = 180. The data were 

generated as a supplementary run arising from the work of Mortimer et al. (2020) and 

are included here for completeness. The variables are non-dimensionalised by the 

channel half-height, with a full description of this process included in the referenced 

material.  

This simulation was used to determine the required Taylor-Reynolds numbers used 

later in this chapter for the fully turbulent study. The figure, and the ultimate 

calculations of the required values, only considered the two directions perpendicular 

to the mean flow direction in the channel. This is because the calculation for the 

collision is performed in the reference frame of the collision, thereby reducing the 

necessity to consider the mean flow. As such, removing this component of the flow 

from the calculations allowed the effects of the fluctuating flow component to be 

isolated.    

  

Figure 5.5: Non-dimensional Taylor microscale (left) and Taylor-Reynolds number 

(right) measured across a non-dimensional channel flow for 𝑅𝑒𝜏 = 180. 
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Figure 5.6: Pseudocolour velocity magnitude contours on the exterior surfaces 

shown for the viscous sublayer approximation turbulence box with 𝑅𝑒𝜆 = 2.5. 

 

 

 

Figure 5.7: Pseudocolour velocity magnitude contours on the exterior surfaces 

shown for the buffer layer region approximation turbulence box with 𝑅𝑒𝜆 = 12.1. 
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Figure 5.8: Pseudocolour velocity magnitude contours on the exterior surfaces 

shown for the bulk flow region approximation turbulence box with 𝑅𝑒𝜆 = 22.2. 

 

Figures 5.6 to 5.8 visualise the velocity magnitude field in the three boxes. 

Qualitatively, the first two boxes appear similar, with similar flow scales in relation to 

the size of the domain. However, the domain size is different in the two cases and thus 

the absolute flow scales are different. Notably, the colour bar is also scaled differently, 

indicating a slightly higher peak velocity in the buffer layer box, and higher still in the 

bulk flow region box. Lastly, the box approximating the bulk flow region has a wider 

range of scales present and more closely resembles classic turbulence. The first two 

boxes appear to be dominated by a comparatively homogeneous distribution of flow 

scales. These boxes can be thought of as chaotic fluid motion, whilst the bulk box can 

more readily be thought of as classical fluid turbulence due to the wider scale 

separation.  

These visualisations of the turbulence field in combination with the validation cases, 

demonstrates that a wider scale separation appears when increasing the Taylor-

Reynolds number, which will have important influence upon non-spherical particle 

motion.  
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Figure 5.9: Temporal evolution of the viscous sublayer approximation box for the two 

controlled quantities, Taylor-Reynolds number (left) and velocity fluctuation (right). 

  

Figure 5.10: Temporal evolution of the buffer layer region approximation box for the 

two controlled quantities, Taylor-Reynolds number (left) and velocity fluctuation 

(right). 

 

Figure 5.11: Temporal evolution of the bulk flow region approximation box for the two 

controlled quantities, Taylor-Reynolds number (left) and velocity fluctuation (right). 
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As evidenced by Figures 5.9 to 5.11, the three boxes converge upon their required 

turbulence levels, where a transition has been achieved to a dimensional domain from 

the non-dimensional forcing method through the described modifications to the forcing 

method.  

With respect to recreating the desired turbulence quantities as experienced in a 

canonical channel flow at 𝑅𝑒𝜏 = 180, the mean fluid velocity fluctuations are correctly 

matched, which should help impart representative fluid forces onto the particles. 

Similarly, the correct Taylor-Reynolds number is matched as calculated from the length 

scales observed in the spanwise and wall-normal directions of the channel.  

Inspecting these boxes of turbulence, both in terms of the visualisations and statistics, 

it becomes clear the extent to which it is not possible to recreate exactly the properties 

of turbulence experienced in a channel flow through the proposed approach. In the 

bulk region of a channel flow, the flow tends to be characterised by larger scales and 

less chaotic motion, but that is not seen in the turbulence box approximating the bulk 

flow region. Instead, both the range of scales and the size of the velocity fluctuations 

observed are highest. This is simply what happens when trying to increase 𝑅𝑒𝜆 under 

the constraints of the HIT system. From here, the boxes will be referred to colloquially 

by the regions that they were designed to represent (e.g. ‘the bulk flow region box’) in 

order to make referring to each case simple and clear, but it is important to bear in 

mind the limitations of this description when considering the results demonstrated. 

Relatedly, the terminology of ‘lowest’ and ‘highest’ levels of turbulence will be used; for 

clarity, this refers to the Taylor-Reynolds number of the box. 

Table 5.3 describes the forcing parameters that were used in the present work to 

achieve the dimensional boxes of turbulence, whilst Table 5.4 details the time 

averaged quantities observed as a result of using these forcing values. Each of these 

resolved values are representative of those seen in the channel flow statistics 

described earlier. 
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Table 5.3: Forcing parameters used to achieve the desired properties in the 

dimensional cases.  

Region 𝝁
𝑭
 𝝆

𝑭
 𝜿𝒄𝒖𝒕/𝜿𝟎 𝑵𝑭 𝑻𝑳 𝝐∗ 𝑳 𝒏𝒆𝒍𝒙 

Viscous 1 × 10−3 997 2.3 56 0.1 0.1 1𝑚𝑚 24 

Buffer 1 × 10−3 997 2.3 56 1.0 0.0001 5𝑚𝑚 30 

Bulk 1×10−3 997 2.3 56 1.0 0.05 5𝑚𝑚 30 

 

Table 5.4: Resultant values observed in the dimensional simulations and used for 

the following study, all variables are as before and 𝑢′ is given in 𝑚𝑚𝑠−1. 

Region 𝑹𝒆𝝀 𝑢′ 𝜆/𝐿 𝜂/𝐿 

Viscous 2.5 8 0.20 0.040 

Buffer 12.12 20 0.21 0.035 

Bulk 22.2 10 0.13 0.012 

 

5.4 Simulation Set-Up 
The overarching aim of the investigation was to further understand the influence of 

morphology and turbulence on particle agglomeration, as well as the dynamic 

processes that occur during particle interactions with DLVO effects. Morphology and 

turbulence introduce much variability into the system and so it was important to design 

Monte Carlo trials that would widely sample this variability whilst ultimately offering 

insights into the emergent behaviour of the system.   

Pairs of disks and needles were injected into the turbulent boxes with randomised 

initial orientations using the same approach seen in Chapter 4. The same converged 

fluid file was used to start each of the simulations, but the location of injection was 

uniformly randomly distributed to ensure that a range of turbulence conditions were 

sampled. Further, the random nature of the fluid forcing ensured that no two 

simulations evolved the same. The particles were injected with a fixed minimal 

separation distance of 2𝑚. This distance was chosen to ensure that a collision 

occurred, but also to ensure the particles were well outside of the effective range of 
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the DLVO forces so that the full short-range interaction was simulated. Initially placing 

the particles too far apart was seen to lead to much of the information of the initial 

conditions being lost in the chaos of the turbulence field by the time of collision – if a 

collision still occurred at all. At initial separations on the order of the particle diameters, 

collisions were seen to be infrequent, with the turbulence typically leading to the 

particles being carried far apart and not interacting at all. As such, it was a necessity 

to start them close enough to enforce a collision. The effects of the turbulence leading 

up to the collision are assumed to be partly included in the initial conditions of the 

particles, by matching the relative velocities observed at the moment of collision in the 

channel flow simulations of Mortimer et al. (2020). By starting the particles nearby, 

there was a retention of control over the velocity at the moment of collision, which is 

crucial for agglomeration outcomes. The particles were given their initial relative 

velocity corresponding to the measured averaged collision velocity for colliding 

particles in the respective region of the channel flow for each case. This means that 

the results are not one-to-one comparable with the earlier quiescent results, as the 

kinetic energy of the system is higher, and different in each box of turbulence, but 

overall trends can be compared. 

The chemical parameters remained the same as for the quiescent box. The 

interactions were allowed to run for 4 ms, which is much longer than the previous 

study. This was necessary to allow enough time for the turbulence to significantly 

influence the particle velocities or for an agglomerate to form.  

Table 5.5 introduces the initial conditions for the particle phase, where 𝑣𝑟𝑒𝑙
𝑝

 (𝑚𝑚𝑠−1) 

is the initial particle relative translational velocity, 𝜔𝑝 (𝑚𝑚𝑠−1) is the initial angular 

velocity of each particle, and |𝒅|𝑖𝑛𝑖𝑡 (𝜇𝑚) is the initial separation distance.  

Table 5.5: Initial conditions used in the turbulence simulations. 

Approximated Region and Turbulence Level 𝒗𝒓𝒆𝒍
𝒑

 𝝎𝒑 |𝒅|𝒊𝒏𝒊𝒕 

Viscous (low turbulence) 4.2 0.0 2.0 

Buffer (intermediate turbulence) 4.3 0.0 2.0 

Bulk (high turbulence) 0.875 0.0 2.0 
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5.5 Qualitative Analysis of Collision and Agglomeration 
Dynamics 
The purpose of this section is to introduce some of the general behaviours seen for 

particle interactions in turbulence to bring more clarity to the results presented in the 

following subsections.  

Figure 5.12 highlights three key cases of interacting disks in the viscous sublayer box. 

Case 1 is an example of an agglomerate forming. The mechanism through which this 

occurs is energy loss in successive collisions reducing the relative velocities of the 

particles enough that they cannot escape the potential well by the final collision. The 

separation distance plot shows the separation repeatedly going to zero, which is when 

a collision occurs. The relative velocity plots show sharp reductions in velocity due to 

the instantaneous hard-sphere collision, whilst the particles are able to accelerate 

towards one another through the action of the attractive van der Waals forces before 

colliding again. In the second case, Case 2, the particles remain close but not through 

an agglomeration event. Rather, the particles experience similar flow conditions due 

to being advected by the same turbulent eddy, and a small van der Waals contribution 

keeps them close before finally they are swept apart by an adverse velocity gradient. 

In the third case, Case 3, the disks collide on their edges and hence the van der Waals 

force is not strong enough to greatly influence the collision at the given velocities and 

so they move apart indefinitely.  

 

Figure 5.12: Temporal evolution of separation distance (left) and relative velocity 

(right) of three illustrative interaction cases between disks.  
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Figure 5.13: Velocity magnitude (𝑚𝑠−1) contour plot for a lone needle intersecting a 

turbulence field.   

 

  

Figure 5.14: Velocity magnitude (𝑚𝑠−1) contour plot for a pair of disks interacting in a 

turbulence field. 

Figure 5.13 depicts an example of a lone needle interacting with the turbulence field 

approximating the viscous sublayer. The turbulence is shown as a two-dimensional 

velocity magnitude contour plot, with a three-dimensional velocity vector plot overlaid 

at a slightly raised position, normal from the slice. The particle meshes are then 

overlaid in three dimensions and allowed to intersect the slice. At the location where 

the particle intersects the velocity magnitude contour slice, it can be observed that the 
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imposition of a no-slip boundary condition is forcing the fluid to around zero at the 

surface of the particle because the velocity of the particles is much lower than that of 

the surrounding fluid in this case. This influences the local velocity field, creating a 

boundary layer that moves with the particle and reduces the local velocity magnitude. 

Conversely, the local velocity field – which is acting uniformly in direction towards the 

top of the plot – contributes a force to the particle, through the pressure and viscous 

forces acting at the surface of the particle. This facilitates the advection of the particle 

and is balanced against any inertia that the particle already possesses to dictate how 

the particle motion evolves temporally.    

Away from the particle’s direct influence, a region of low velocity magnitude is 

observed in the plot to the left of the particle, identifiable as the blue region of the 

contour plot. This region of low velocity magnitude lies at the centre of a vortex, or 

turbulent eddy, characterised by the swirling flow that surrounds it. The size of this 

eddy is on the same order of magnitude as the needle, as such one could expect this 

fluid motion to induce a rotation in the particle’s motion. For particles with low inertia 

relative to the fluid, this can be a region of entrainment where particles become trapped 

before eventually being ejected by a sweeping motion in the flow, whereas particles 

with high inertia are able to pass through such flow structures relatively unimpeded.   

At the bottom right of the figure, visible as the orange region corresponding to greater 

velocity magnitude, there is a display of more directionally homogeneous fluid motion. 

Such regions are able to influence particles of a larger Stokes number, imparting more 

total force in one coherent direction over the surface of the particle and thus facilitating 

greater momentum transfer and greater influence over the particle’s inertia. 

Figure 5.14 displays a similar interaction taking place, in that the fluid velocity is 

significantly attenuated close to the surface of the particles. This reduces the velocity 

magnitude in the region where the agglomeration process takes place and thus 

reduces the disturbance from the flow field in this vicinity, favouring agglomeration. 

This raises an important point, which is that local to the DLVO interaction, the flow can 

be much more laminar, whilst the overall particle motion is subjected to more turbulent 

effects. 

An interesting mechanism was observed through which agglomeration occurred 

between colliding non-spherical particles. Particles that collided on off-normal angles 
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and at off-centre collision points were found to convert their translational kinetic energy 

into rotational kinetic energy. This meant that, whilst the particles retained the correct 

total kinetic energy as determined from the prescribed coefficient of restitution, the 

energy was not always converted directly to translational kinetic energy (which 

generally results in particles moving away from one another). Rather, a spinning is 

induced that keeps the particles close to one another and facilitates a prolonged DLVO 

interaction. The rotation also makes a secondary collision much more likely, as points 

on the opposite side of the non-spherical shape are propelled back towards the 

opposing particle, depending on their relative orientation. Naturally, a secondary 

collision results in further energy loss and so this mechanism under the right conditions 

can quickly reduce the overall kinetic energy or total momentum of a pair of particles 

that beforehand would have looked unlikely to agglomerate based on their kinetic 

energy and initial surface collision points. This demonstrates that there are complex 

secondary effects at play which also determine agglomeration outcomes beyond just 

the initial collision points and kinetic energies.  

This effect also works to counterbalance the distribution of DLVO forces, in that, the 

points on the non-spherical surfaces that induce this effect tend to be the points at 

which the agglomeration-inducing forces are lowest. The maximal forces are induced 

by collision points towards the centre of the particles for both non-spherical 

morphologies, which are the regions of the particle surfaces that do not lead to large 

torques upon collision, due to the symmetry of the moment of inertia tensor about 

these points. In other words, there is an inverse relationship when traversing the non-

spherical surface between the size of DLVO effects and the size of the induced 

collisional torques.   

5.6 Particle Interactions in HIT Approximating the 
Viscous Sublayer 
Presented in the following three subsections are results demonstrating the behaviour 

of the three different particle morphologies (needle, sphere and disk) in the three 

different regions of turbulence. The results are shown here in terms of the primary 

trajectory data, i.e., the temporal evolution graphs of both the interparticle separation 

distances and the relative velocities between the interacting particle surfaces. In 
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Section 5.8, this data is combined to form PDFs describing the overall system 

behaviour encompassing multiple instantiations of an interaction event in a Monte 

Carlo approach.  

For brevity, comprehensive descriptions of the behaviours are given for the first region 

of turbulence, whilst for the second two regions of turbulence there is an emphasis on 

the contrasts seen with the first region, to avoid excessive repetition.  

I. Spheres 
 

 

Figure 5.15: Temporal evolution of separation distance (left) and relative velocity 

(right) between spheres interacting in the viscous sublayer turbulence box. Each line 

represents an individual interaction simulation. 

Displayed in Figure 5.15 are the time evolution plots for the closest separation 

between particle surfaces 𝑑𝑥 and the relative velocities at these points 𝑑𝑣 for all of the 

spherical particle interaction simulations. The most general trend is for the particles to 

move apart and accelerate away from one another post-collision. Evidently, these are 

the rebound events. At the same time, there is agglomeration occurring where particles 

stick together and thus remain nearby with low relative velocity. Naturally, the extent 

to which this occurs is less visible from the separation plot but can be seen slightly 

more clearly from the velocity plot.  

For spheres in the lowest turbulence box, particles that separate post-collision 

continue to separate indefinitely over the studied time interval, as opposed to 

experiencing forces that bring them back together. At very short time intervals after a 

collision, DLVO forces remain effective and are thus the prevailing mechanism through 

which particles move back towards each other – but, outside of this short effective 
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range, the relative motion of the particles is a result of the background fluid velocity 

field, as well as the inertia that the particles possess. As such, energetically 

unfavourable (with respect to agglomeration) collision events occur over very short 

time periods, whilst agglomeration events continue to occur for extended periods, and 

indefinitely if the turbulence is not strong enough to separate them. From a 

computational modelling perspective this places a requirement on the numerical 

interaction models to always be active. This can be challenging as there is a need to 

achieve a balance, or quasi-equilibrium, in the energy that is exchanged as a result of 

the two separate methods – one that does not diverge over time.  

The trend in this region of turbulence (of continued separation) is instructive on the 

background fluid motion. Specifically, the resolved fluid dynamics are such that the 

particles experience longer and more uniform sweeping motions in their frame of 

reference. This means that in the simulation time studied, particles tend not to 

experience wide variability in the background fluid force.  

The tendency for the particles to move apart after collision creates a strong separation 

of scales in the simulations between cases where agglomeration is observed and 

where it is not. This underscores the challenge with studying these systems. It 

becomes abundantly clear that the DLVO interactions occur on very short timescales 

compared to the turbulence, or fluid motion. This creates challenges for lower-fidelity 

modelling approaches, like those seen in industry, because capturing both elements 

of the physics in its entirety requires very low timesteps and thus large compute times. 

Hence why an instantaneous model is typically used for agglomeration physics. The 

existing models, as described in the literature review, are primitive in the case of non-

spherical particle interactions and thus this area of study has the added benefit of 

informing any further model developments that may take place.   

The continued separation tendency of the particles is compounded by an acceleration, 

seen in the relative velocity plot, wherein particle relative velocities continue to 

increase. The general trend appears to be an approximately quadratic increase in the 

particle separation for a linear increase in the particle relative velocities.  

Since the particles are injected at very close separations to ensure collision, there is 

an obvious accumulation of collision behaviours seen in the first 0.5 𝑚𝑠 of the 

simulations, best seen in the relative velocity plots represented by a sharp and 
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instantaneous decrease in velocity. Each of these lines, for the individual simulations, 

almost lie atop one another. As the respective simulations advance, further collisions 

are seen infrequently in cases where either the turbulence, the DLVO forces, or both 

acted to ensure particles remained close by. The short-time collision behaviour is 

therefore predictable, but the chaos of the turbulence means that the further time 

advances from the initial condition, the less predictable the behaviour of the system 

and, specifically, the less predictable the occurrence of a further collision. Some 

collisions happen late into the simulation time but, by this point, their frequence is 

random.      

II. Needles 
 

 

Figure 5.16: Temporal evolution of separation distance (left) and relative velocity 

(right) between needles interacting in the viscous sublayer turbulence box. 

Figure 5.16 shows that the general behaviour of the needles possesses greater 

variability than the spheres in the same turbulence box. The maximum separations 

experienced are similar between the two morphologies, but the maximum relative 

velocities achieved are marginally greater in the case of the needles. This indicates 

that the needles are slightly more susceptible to the fluid forces in the extreme cases, 

likely owing to the greater surface area of the needles. When this surface area aligns 

in such a way that the symmetry axes lie perpendicular to the local mean flow direction, 

the forces will have their greatest effect, and a greater total force will be imparted than 

in the equivalent scenario with a sphere. When the end of the needle faces the local 

flow direction, in a parallel alignment, the total force imparted will be lower than that of 

a sphere. (However, this configuration is more susceptible to perturbation, meaning it 
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does not sustain itself.) This point is relevant to the total behaviour over morphologies 

discussed in Section 5.9. 

As with the spheres, particle pairs that separate quickly post-collision continue to 

separate generally, but two simulation cases are seen to begin to move back towards 

each other, which is only possible if the fluid force experienced towards the end of the 

simulation opposes the direction of the original fluid force. In general, this effect relates 

to the length and time scales of the fluid, which are in theory constant between the 

different morphological cases studied. So, the difference between the two scenarios 

can be explained by the morphology of the shape: the longest axis of the needle is 

greater than that of the spheres. Therefore, the extent of the velocity field probed by 

the needles is greater and this allows the needle-like particles to experience the fluid 

at a slightly different length scale. The particles will also alter the turbulence field itself 

differently based on morphology in a coupled way. 

Most clearly seen in the relative velocity plots, the needles experience far more 

collisions, extending further into the total simulation time with sustained frequency. By 

interrogating the specific cases where this happened, it was observed that one 

mechanism for this was due to secondary collisions induced by the specific 

configuration of the first collision. In such cases, the orientational configuration is 

generally such that the collision points lie away from the centre of the particle’s 

principal axes. This means that the force acts off-normal with respect to the centre of 

mass and thus there is a torque induced which leads to the kinetic energy of the 

particles being redistributed into predominantly rotational motion as described earlier. 

When this occurs, the particles remain nearby, since the translational motion is the key 

mechanism through which the particles separate. With the particles rotating close to 

one another, a further collision is inevitable; thus, without considering DLVO forces at 

all, this leads to repeated collisions and thus repeated losses of energy through the 

inelastic collisions (𝑒 = 0.4). This is therefore observed to be a secondary mechanism 

keeping particles close together with a reduced energy besides the attractive van der 

Waals force. These two effects can also work in tandem to further increase 

agglomeration propensity, since the lack of translational separation allows the DLVO 

forces to act for longer in the case of non-spherical shapes. Further to this, the edge-

based collisions inducing a spin causes the orientational configuration often to pass 
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through face-face or long-edge-long-edge alignment, thus promoting more maximal 

van der Waals forces in this window.     

It can be seen from the relative velocity plots that the amount of velocity lost in a 

collision is much greater than 60% as prescribed by the coefficient of restitution. This 

indicates a strong influence from the DLVO forces in reducing the kinetic energy of the 

system. 

III. Disks 
 

 

Figure 5.17: Temporal evolution of separation distance (left) and relative velocity 

(right) between disks interacting in the viscous sublayer turbulence box. 

The disks, shown in Figure 5.17, are similar to the needles, however they reach greater 

maximum values of separation and of relative velocity than both the spheres and 

needles. Again, with different principal lengths compared to the spheres, there is the 

opportunity for disks to sample the flow differently due to morphology. As a result, 

cases can be seen where the separation begins to reverse, this time much quicker 

than the needles, showcasing the unique acceleratory effect the flow is able to have 

on the disks.   

The results for the agglomeration versus bouncing outcomes are displayed in Table 

5.6, helping to give weight to the prior observations. The spheres and needles are 

shown to give comparable rates of agglomeration, with the disks showing the lowest 

rate of agglomeration over the full parameter space. 
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Table 5.6: Agglomeration results for the lowest turbulence level box. 

Result Needle (5:1) Disk (5:1) Sphere Total 

Bounced 65 73 35 173 

Agglomerated 32 23 15 70 

Agglomeration Rate 32% 23% 30% 28% 

 
 

5.7 Particle Interactions in HIT Approximating the Buffer 
Layer Region 
 

I. Spheres 
 

 

Figure 5.18: Temporal evolution of separation distance (left) and relative velocity 

(right) between spheres interacting in the buffer layer turbulence box. 
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II. Needles 
 

 

Figure 5.19: Temporal evolution of separation distance (left) and relative velocity 

(right) between needles interacting in the buffer layer turbulence box. 

III. Disks 
 

 

Figure 5.20: Temporal evolution of separation distance (left) and relative velocity 

(right) between disks interacting in the buffer layer turbulence box. 

The general trends are repeated in the case of all morphologies in the buffer layer box 

when compared with the viscous sublayer results, this can be seen from Figures 5.18 

to 5.20. One key difference is that all three morphologies are accessing higher 

velocities and separations in the extreme cases, which is indicative of the overall 

higher available kinetic energy budget of the fluid. Clearly, in the studied interval there 

is enough time for this difference in turbulence level to influence the outcomes of the 

particles. Secondly, the relative velocity plots are beginning to look less smooth for all 
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three morphological cases. The slightly wider range of scales present in the 

intermediate turbulence box increases the variability of the velocities. 

Presented in Table 5.7 are the overall breakdowns for agglomeration rate. Again, the 

spheres are seen to be comparable with the needles with the disks now falling even 

further behind. The trend for the needles to behave similarly to the spheres is retained, 

and both morphologies maintain similar values of agglomeration rate when mildly 

increasing the turbulence level. Interestingly, the overall agglomeration rate of the box 

is the same (28%) as the lowest turbulence box.  

Table 5.7: Agglomeration results for the intermediate turbulence level box. 

Result Needle (5:1) Disk (5:1) Sphere Total 

Bounced 64 79 34 177 

Agglomerated 34 18 16 68 

Agglomeration Rate 34% 18% 32% 28% 

 

5.8 Particle Interactions in HIT Approximating the Bulk 
Flow Region 
I. Spheres 
 

 

Figure 5.21: Temporal evolution of separation distance (left) and relative velocity 

(right) between spheres interacting in the bulk flow turbulence box. 
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II. Needles 
 

 

Figure 5.22: Temporal evolution of separation distance (left) and relative velocity 

(right) between needles interacting in the bulk flow turbulence box. 

III. Disks 
 

 

Figure 5.23: Temporal evolution of separation distance (left) and relative velocity 

(right) between disks interacting in the bulk flow turbulence box. 

Observing Figures 5.21 to 5.23, the contrast with the previous box is similar again in 

that the separation distances and relative velocities reached in both the extreme cases 

and in general have greatly increased. The variability in the relative velocity plots is 

also much more pronounced in the highest turbulence level box. Collisions, seen most 

clearly by sharp reductions in the relative velocity, are much less frequent later into the 

simulation time. This is because the particles are more quickly and reliably transported 

to regions in the simulation domain away from one another where they cannot collide. 

This shows agreement with what is generally observed in a channel flow, where the 
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bulk flow region experiences collisions least frequently (Mortimer et al., 2020), 

however the underpinning mechanism for this outcome is not the same.  

For all three boxes of turbulence, the separation distance evolution for all three 

morphologies remains smooth over the studied time interval, indicating that in the 

timeframe under investigation the turbulence levels are too low to affect particles of 

this size in a more chaotic way, which would typically be synonymous with particle 

advection due to turbulence. As shown, more nonuniform and chaotic particle motions 

are beginning to be observed in the highest turbulence level box, approximating the 

bulk flow region. This runs in contrast to the general theory associated with turbulent 

particle motion across the channel flow (Mortimer et al., 2019). 

Finally, it was demonstrated in the present simulations that the background turbulence 

field was not strong enough to break agglomerates; however, there is no reason this 

should not be possible under the DLVO potential model. The fluid must supply enough 

energy to allow the particles to escape the potential well, but this is not realised at 

such a low Reynolds number. The inclusion of many particles is the next avenue for 

study, and a tertiary particle collision could also supply enough energy to break an 

agglomerate. 

The overall statistics for agglomeration rate are presented in Table 5.8. The same 

trends are repeated. The spheres and needles are again similar in agglomeration rate: 

this time the spheres have the same agglomeration rate as the needles, despite 

lagging very slightly behind in previous cases. Both agglomeration rates are being 

attenuated by the turbulence compared with lower values of the Taylor-Reynolds 

number. The disks now have less than half the agglomeration rate of the other two 

morphologies. Lastly, the overall agglomeration rate has gone down significantly 

compared to the previous two turbulence levels. 

Table 5.8: Agglomeration results for the highest turbulence level box. 

Result Needle (5:1) Disk (5:1) Sphere Total 

Bounced 60 87 40 187 

Agglomerated 22 13 15 50 

Agglomeration Rate 27% 13% 27% 21% 
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5.9 Influence of Turbulence Characteristics on Particle 
Agglomeration 
A wide study has taken place into the role of fluid turbulence properties on the 

agglomeration and collision behaviours of interacting pairs of spheres, needles and 

disks with an aspect ratio of 5: 1 and particle volume kept fixed. With three turbulence 

boxes and three morphologies, there is a large data set accumulated with a total of 

725 independent simulations taking place. The following subsection aims to analyse 

these results with a focus on the influence of turbulence strength.  

Starting with a direct comparison of the overall data from the three boxes, it was 

observed that the rate of agglomeration reduced as the turbulence strength increased. 

Specifically, as the Taylor-Reynolds number of the box increased from 2.5 to 12.1 to 

22.2, the overall agglomeration rate inclusive of all morphologies reduced from 40% 

to 38% to 21%, respectively. This implies that agglomeration is negatively impacted 

by increasing turbulence levels.  

Whilst this conclusion is true for the present system set-up, there are two key points 

to consider in order to view this result in context. Firstly, collisions are guaranteed in 

the present set-up, whereas in industrial or natural systems, collisions between 

particles are not guaranteed (in the precise sense). In industrial cases or in natural 

flows, increased turbulence can therefore help to promote collisions through increased 

collision frequency which in turn promotes agglomeration, even if the agglomeration 

efficiency is unchanged. In the present system, that frequency-based argument does 

not apply. Secondly, in industrial or natural systems, there is likely an inflection point 

where the turbulence becomes too high so that almost all collisions are energetically 

unfavourable for agglomeration. Similarly, the collision frequency may become so high 

that tertiary particle collisions are repeatedly breaking agglomerates into smaller 

constituents. These kinds of effects can only be studied by moving to multi-particle 

systems, as opposed to binary. What the present results do indicate is that where a 

collision occurs, increased fluid forces are overall disruptive of agglomeration, and 

thus increasing the turbulence level decreases the agglomeration level. There were 

instances where the fluid acted in a direction such that it decelerated the particles 

enough to promote agglomeration, but in general the fluid effects accelerated the 

particles enough to make the interaction energetically unfavourable. Due to the non-
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uniform and turbulent nature of the flow, particles experienced different velocities to 

one another which on average increased the relative velocity magnitude between 

them. The acceleration was also partly down to the initial prescribed velocities of the 

particles being below that of the convergent/mean particle velocity should they have 

been free to move around indefinitely, thus the particles relaxing to the background 

flow conditions was also an acceleratory effect in general.  

Another explanation for the difference in agglomeration outcomes relates to the initial 

separation distance of the particles. This distance was chosen as a matter of necessity 

to ensure that the collisional conditions were similar to those determined in the 

complementary channel simulations. In boxes where 𝑅𝑒𝜆 = 2.5 or 𝑅𝑒𝜆 = 12.1, the 

closing of the initial separation distance (which is facilitated mostly by the initial relative 

velocity of the particles) is not long enough for the fluid to greatly impact the overall 

dynamics as the typical force is not high enough to impart a large acceleration. 

Whereas, once the turbulence level reaches 𝑅𝑒𝜆 = 22.2 the fluid is able to disrupt the 

agglomeration process by transferring momentum to the particles quickly enough to 

prevent agglomeration. In both cases, the fluid is having an effect, however this effect 

is not prolonged enough for the particles to relax away from their initial conditions 

towards the exact conditions of the turbulence field. This is a limitation in the sense 

that the particle dynamics at the moment of collision are not fully representative of the 

turbulence field they lie in; however, this also helps to keep the results in line with the 

complementary channel flow simulations, since the initial conditions contain the 

relevant information about the mean flow they theoretically exist within. The initial 

velocity of the particle-phase is lower in the bulk box, giving a greater window for the 

fluid, which will not act in the direction of the particles’ approach in general, to change 

the direction slightly and sweep the particles apart in some cases.  

It was observed throughout the present simulations that none of the turbulence levels 

possessed the means to separate the particles once an agglomerate had formed. This 

is because once the particles fall into the potential well, the attractive force dominates 

over the fluid force, in a strong separation of scales. The overall statistics indicate that 

the turbulence conditions in the lesser two boxes of turbulence were not different 

enough from one another to greatly change the agglomeration outcomes despite the 

different Taylor-Reynolds numbers. It can therefore be inferred that in these two boxes 
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the orientationally dependent DLVO forces are more influential than the fluid forces in 

determining an interaction outcome.  

Looking at the trajectory data in the previous sections, the disturbance to smooth 

particle motion, which would arise from the background turbulence field, is not visible 

on the timescales studied for these two boxes, whereas noise begins to become more 

visible in the higher turbulence box. Such velocity fluctuations as seen in the highest 

turbulence case may be large enough to disrupt the agglomeration process as it 

happens, as the particles try to reach their computational equilibrium, and thus prevent 

an agglomerate forming, either by imparting enough kinetic energy into the interaction 

to make agglomeration unfavourable, or to move the surfaces away from one another 

before the agglomeration process has enough time to act. The chosen Taylor-

Reynolds numbers were low, with only the bulk box showing the scale separations 

associated with turbulence. It is this scale separation that leads to the noise in the 

velocity plots, as the fluid can affect the particles on multiple length scales. The 

smallest of these scales act on a length scale lower than that of the particles, which 

allows gradients to form between the particles more often, making it more likely for 

them to be swept apart. The lower two turbulence boxes also resolve this effect, but 

to a lesser extent and so they tend to demonstrate similar local flow conditions more 

frequently, in comparison. It is this coherence between the two particles induced 

motion that therefore reduces relative velocity and allows an agglomerate to form. 

Once the agglomerate has formed, a subsequent increase in turbulence can occur to 

unfavourable levels, and the particles still remain connected.   

These smaller and faster fluid motions also create velocity gradients across the 

respective surfaces of the particles, promoting a different kind of motion, wherein they 

rotate about their centre of mass, as opposed to the larger sweeping motions observed 

in the other boxes which more readily affect the translational component of motion with 

less rotation induced. 

Both the lowest 𝑅𝑒𝜆 turbulence boxes started with virtually the same particle-phase 

kinetic energy: this was prescribed through their initial velocities, as given in Table 5.5 

and those velocities were chosen based on results from the reference channel flow 

simulations. With no difference in initial velocity, the 2% reduction in agglomeration 

rate could feasibly be attributed to the changing turbulence level. However, a sample 
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size of 𝑂(100) is small enough to contribute error of a similar order to this computed 

difference, despite the convergence of the PDFs. The reduction in agglomeration is 

seen to be much more significant when contrasting the former two turbulence boxes 

to the highest turbulence level box. This is even though the initial kinetic energy 

condition of the particle-phase was lower in this highest box of turbulence. This 

suggests that the differences in agglomeration between the lower two boxes are 

reflective of turbulence, rather than intrinsic error in the simulations. 

Relating these findings back to the theory of particle agglomeration in channel flows, 

the results are contrary to current understanding, but can be remedied by the following. 

The picture in full-scale particle transport flows is that, in the bulk flow region of a 

channel or pipe, the relative velocities at collision events are low because particles 

share similar trajectories, advected by larger coherent motions than those typically 

observed nearer to the wall. Hence, the relative velocities of the particles are lower on 

average despite their absolute velocities being higher. In a channel, therefore, the 

agglomeration rate (or probability of an agglomeration given a collision) observed in 

the bulk region is highest, with particles colliding at low relative velocity and with low 

collision angles. The collision frequency is also lowest in this region (Mortimer et al., 

2020) because particle paths are not frequently crossing the trajectories of others. This 

outcome is not replicated in the boxes of homogeneous and isotropic turbulence 

discussed presently. Removing the large-scale coherent structures from the flow to 

satisfy the conditions of homogeneity and isotropy means a loss of significant 

information to the behaviour of particles in realistic flows. Rather than particles in the 

bulk region box experiencing lesser flow gradients, they experience higher flow 

gradients because all aspects of the flow are forced to be higher to satisfy the HIT 

requirements. For this reason, it is sensible to not infer anything about specific channel 

flow scenarios from the present results in a one-to-one comparison, but rather 

information can be taken about the interaction between turbulence and particle 

agglomeration.  

Similar to the approach taken throughout Chapter 4, the trajectory data of the particles 

can now be recast in terms of PDFs that describe the overall system behaviour. From 

this, it is possible to further identify general trends with respect to the turbulence level 

in the respective boxes. 
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Figure 5.24: PDFs demonstrating the overall tendencies of the spheres with respect 

to separation distance (top left), relative velocity (top right) and van der Waals force 

(bottom) in the three turbulences boxes. 
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Figure 5.25: PDFs demonstrating the overall tendencies of the needles with respect 

to separation distance (top left), relative velocity (top right) and van der Waals force 

(bottom) in the three turbulences boxes. 
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Figure 5.26: PDFs demonstrating the overall tendencies of the disks with respect to 

separation distance (top left), relative velocity (top right) and van der Waals force 

(bottom) in the three turbulences boxes. 

Figures 5.24 to 5.26 are the PDFs of separation distance, relative velocity and 

maximum achieved van der Waals forces for the spheres, needles and disks, 

respectively. These graphs indicate similar relationships between the plotted metrics, 

and the turbulence box level, consistent across all three morphologies. In particular, 

the viscous box creates the closest mean separations between the particles due to the 

accompanying lower velocity states reached by the particles.  

The variance of the plots also follows the same trend, where the most variance is seen 

in the bulk flow region, followed by the buffer and then viscous sublayer regions. Again, 

this is consistent across morphologies. The increase in variance is due to two main 

factors. Firstly, a wider range of flow scales allows for a wider range of motions to be 

experienced by the particles that separate after collision, giving a wider variability in 

both separation and velocity. Secondly, the greater turbulence level facilitates greater 

maximum velocities and thus the tail of the distribution can span a wider range. 
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The van der Waals force plots show that greater maximum attractive forces were 

achieved in the low turbulence level box, for the two non-spherical shapes. In theory, 

this maximum value should only be dependent on the orientation experienced at the 

point of collision because collisions are guaranteed – collisions imply touching 

surfaces and separations approaching zero. However, to access the very lowest 

possible separations, and thus maximal forces, it is required that the particles 

repeatedly collide and lose relative velocity through the previously described ‘vibration 

effect’ due to the hard-sphere collision scheme. This allows the dynamic collision 

detection distance to relax and closer separations to be achieved. That means the 

distributions of maximum van der Waals forces shown above are reflective of the 

number of agglomeration events in the respective boxes and so only in the box with 

the lowest background turbulence was this effect allowed to predominate such that the 

particles could regularly achieve their maximal forces. This effect could also be 

influenced by the effect of turbulence on particle orientation or alignment, which will 

be investigated in the next section. Relating this back to physical scenarios, even 

though the initial agglomeration process occurs on very short timescales, the 

turbulence of the fluid is able to disrupt the strengthening of the bonds between the 

particles which occurs over a slightly longer period under the present model. 

The spherical van der Waals distributions are bimodal with a peak at near zero force 

and a peak at the maximum achievable force. Due to the lack of orientational effects, 

there is not much variance between simulations and the space in the distribution 

between these peaks is mostly populated as the initial agglomeration process takes 

place.  

5.10  Influence of Morphology on Particle Agglomeration 
in Turbulence 
It is also of interest to analyse the observed effects based upon the morphology of the 

particles, the other key variable in the simulations, to understand the role non-

sphericity has on overall agglomeration propensities and particle alignment.  

In Figure 5.24, for the spheres, the peaks of the relative velocity distributions are very 

similar between the two lowest turbulence level cases (𝑅𝑒𝜆 = 2.5 and 𝑅𝑒𝜆 = 12.1). This 

trend is not replicated by the disk morphology. This indicates that the non-sphericity of 



210 
 

the other two particles gives rise to a set of effects that creates a disparity in relative 

velocities not seen in the spheres. For non-spherical particles, unique motions are 

induced as the flow gradients interact with the anisotropic inertia tensors, which has a 

coupled and dynamic behaviour. Different sized flow structures and flow gradients 

exist in these two boxes as shown in Section 5.3, which could thus create a difference 

that is not seen for the spheres, because only non-spherical particles have access to 

this effect. Secondary to this, the principal radii of the non-spherical particles are of 

course different to the spheres as well as to each other, which means different 

characteristic lengths. Thus, the way the particles experience the turbulent flow from 

a particle response time point of view is different based upon the morphology.     

Below, in Figures 5.27 to 5.29, the data are recast as a morphological comparison, 

now with the symmetry axes included in the third subfigure. These plots further 

demonstrate the tension between the acceleration due to the fluid and the orientational 

attractive forces. Needles were demonstrated in the previous chapter to have the 

highest agglomeration propensity in a quiescent box but increasing the turbulence 

levels means that the dynamic measurements of this propensity, i.e., separation and 

relative velocity, begin to favour spherical particles more and more. In the viscous box, 

the needles retain their agglomeration predominance but as the turbulence increases, 

they are overtaken by the spheres in some measures. Even in this lowest turbulence 

level box, the mean of the relative velocity is higher for the needles despite the 

agglomeration rate also being higher. This is since the tails of the needles’ distribution 

extends further, influenced by the non-agglomerating cases.  

The suggested reason for this disparity is due to the reduced drag on the spherical 

particles. Conversely, the surface area of the disks for the hydrodynamic forces to act 

on is greatest, hence drag on the disk is likely to be stronger. This is supported by the 

disks routinely having the worst agglomeration characteristics, although this cannot be 

decoupled from the disks also showing less agglomeration favourability over their total 

orientational parameter space, as detailed in Chapter 4.  

It is known that non-spherical particles in turbulence will tend to orientate themselves 

locally within the flow in such a way that maximises their drag (van Wachem et al., 

2015). The injection of the particles and their initial orientation has no relation towards 

the local flow, however as the simulations develop, the particles experience this drag-
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related effect, and they align in this way (an effect which is not present in the quiescent 

case). As such, the difference in surface area between the particles shows in the 

results here also.  

Relatedly, as the particles act to orientate themselves in a maximal drag configuration, 

the characteristic length of the particles lying normal to the flow increases. Again, this 

leads to differences in the ratio between the particles’ characteristic length and the 

turbulent length scales, which can influence the types of motion experienced by the 

particles. As the particles agglomerate and form larger structures, this length scale can 

increase again and so the relative effects of the turbulence will change over time, for 

a fixed Reynolds number. 

These differences in experience of the flow are indicated by the symmetry axis plots, 

which show that: in the viscous sublayer box, disks have a higher tendency to be 

aligned; in the buffer layer box needles have greater alignment tendency; and in the 

bulk flow box the alignment is very similar, with disks showing slightly less variance – 

the opposite of that which was observed in the quiescent case. In other words, 

depending upon the local flow scales the extent to which the disks and needles align 

appears to change. A deeper analysis focused on particle alignment could investigate 

how the ratio of the particles’ principal axes to the flow scales alters alignment 

characteristics in HIT. Such an analysis could be compared to the distributions shown 

presently to understand the extent of the attractive forces on particle alignment and 

how they balance with the influence of the turbulence on this same property. The 

surfaces of the particles are also able to introduce shear to the flow, thus introducing 

a mechanism to generate turbulence, and increasing the local energy dissipation. It 

would be of interest to study how the agglomeration process effects this phenomenon. 

Lastly, there have been numerous studies on spheroidal particles and their alignment 

with turbulent flow (Voth and Sodati, 2017), an extension of this existing work could 

involve examining the alignment of agglomerated particles with the turbulent flow, 

which will likely be much less stable and predictable, given the intricacies of the shapes 

formed.    
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Figure 5.27: PDFs demonstrating the overall tendencies of the viscous sublayer box 

with respect to separation distance (top left), relative velocity (top right) and van der 

Waals (bottom) for the three morphologies. Vertical lines indicate the statistical 

mean. 
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Figure 5.28: PDFs demonstrating the overall tendencies of the buffer layer box with 

respect to separation distance (top left), relative velocity (top right) and van der 

Waals (bottom) for the three morphologies. Vertical lines indicate the statistical 

mean. 
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Figure 5.29: PDFs demonstrating the overall tendencies of the bulk flow box with 

respect to separation distance (top left), relative velocity (top right) and van der 

Waals (bottom) for the three morphologies. Vertical lines indicate the statistical 

mean. 

In the buffer layer box, the difference between spherical and non-spherical particles 

begins to become much more pronounced in terms of the agglomeration 

characteristics, compared to the viscous sublayer box where small differences were 

present, but the means and distributions occupied similar areas of the parameter 

space. In the highest two turbulence boxes, there is a clear division of spheres and 

non-spheres into two separate and distinct categories. In that, the difference between 

spheres and non-spheres is greater than the difference between the non-spherical 

particles themselves, an effect owing to the increasing turbulence levels. In these two 

boxes, the drag effects clearly begin to dominate over the attraction effects. The 

conclusion therefore is that to create a system where weakly attractive particles remain 

close by, the best choice is spheres due to their optimal drag characteristics, so long 

as the turbulence level is high. As the turbulence level reduces towards 𝑅𝑒𝜆 ∼ 𝑂(1), 

then needles become the preferred choice due to their greater attractive force 
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characteristics over the orientational parameter space. Interestingly, the gap has 

closed between disks and needles in the highest turbulence level box, and in fact this 

is seen sequentially moving up the turbulence levels. Rather than the highest surface 

area shape, the disk, becoming more and more separated from the other two shapes, 

in terms of agglomeration propensity, the results demonstrate needles and disks 

becoming similar in these metrics and distinct from the spheres. Despite this, the 

needles still retained the highest integer number of agglomeration events and this is 

due to the closeness of the separation. The turbulence effects discussed presently, 

seen in the PDFs, are largely accumulated at later simulation times than the moment 

that agglomeration typically occurred, which was very early into the simulation time. 

Since it is not possible to separate the particles widely and still ensure the correct 

collisional conditions, an improvement here would be to have unique initial velocities 

for the different morphologies, more representative of their different behaviours in the 

same turbulence field. 

For both non-spherical morphologies, the alignment of the particle’s symmetry axes 

appears to have shifted to the left, or to more parallel configurations. In the quiescent 

case shown in the previous chapter, the total symmetry axes distributions tended to 

be roughly equally distributed about the 𝜋/4 half-way point; whereas, in turbulence, 

each of the distributions collect slightly to the left of this mark. This indicates that the 

turbulence is promoting alignment between the particles, as well as the DLVO effects. 

It could also be the case that the longer simulation time is giving the DLVO torque 

longer to enact, which also favours parallel alignments.  

In slower moving systems, and with the agglomeration forces allowed to act over a 

significant period, a significant DLVO torque is induced that ultimately acts to align 

particles with one another, as implied by Schiller et al. (2011). In the present model, 

this torque is resolved, but it was observed to be a very small contribution to the overall 

dynamics of the particles, with the turbulence and collision mechanics dominating. Two 

particles agglomerated and allowed to interact for extended periods could change their 

orientation towards the maximal configuration through this torque. The DLVO force is 

calculated at a single point on each surface in the present model, which means that 

there is not a force resolved coming from regions where the van der Waals force is 

higher, pulling the particles into a stronger alignment case. However, it is hypothesised 

here that any perturbations (which naturally arise due to the flow) to the orientational 
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configuration will on average favour the more maximal van der Waals configurations 

which over time should align the particles further.  

Having the DLVO forces acting at a single point per particle surface could be seen as 

a limitation, due to the above. However, since these interaction forces are so close 

range, they can be assumed to be acting very locally, especially on a convex body 

where neighbouring points to the interaction always fall away in distance. This is 

underscored by the Derjaguin approximation described in Chapter 3. 

On the present timescales, agglomerated particles were observed to stick in their initial 

alignment with strong stability. In fact, they were seen to maintain their orientational 

configuration with strict coherence even when the combined agglomerate was still 

moving rapidly and chaotically in the turbulence. For lower fidelity models, this implies 

that it would be a reasonable assumption to agglomerate particles into a fixed 

configuration based upon the initial collisional state. 

Lastly, the increased alignment could also be due to the fact that the particles were 

injected very close to one another: Voth and Soldati (2017) relay that the orientation 

of particles is strongly dependent upon the local velocity gradient tensor. Hence, two 

nearby particles experiencing similar local flow conditions are more likely to become 

aligned with one another.  

   

Figure 5.30: Symmetry axis alignment (left) and collision point location (right) for 

needle interactions in the viscous sublayer box.  
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 Figure 5.31: Symmetry axis alignment (left) and collision point location (right) for 

disk interactions in the viscous sublayer box. 

 

Figure 5.32: Symmetry axis alignment (left) and collision point location (right) for 

needle interactions in the buffer layer box. 

 

Figure 5.33: Symmetry axis alignment (left) and collision point location (right) for disk 

interactions in the buffer layer box. 
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Figure 5.34: Symmetry axis alignment (left) and collision point location (right) for 

needle interactions in the bulk flow box. 

 

Figure 5.35: Symmetry axis alignment (left) and collision point location (right) for disk 

interactions in the bulk flow box. 

To understand further the orientations that lead to agglomeration in turbulence, and 

hence the kind of structures most likely to form, data were again collected on the 

collision points of disks and needles and compared in cases with and without 

agglomeration, these results are presented in tandem with the symmetry axis 

configurations at the point of collision.  

It can be observed from Figure 5.30, which shows particle behaviour in the viscous 

sublayer box, that the particle pairs which agglomerate tended to have their symmetry 

axes aligned for the needles, as was the case in the quiescent system analysed in 

Chapter 4. In comparison to the quiescent box, the influence of the turbulence field, 

and higher particle initial velocity, is that an alignment of the symmetry axes has 

become more pronounced in the case of agglomeration. A first interpretation of these 

results indicated that introducing turbulence meant a stricter requirement on alignment 
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in order to see agglomeration. However, this is not replicated in the increasing 

turbulence level boxes. Instead, it appears that alignment becomes less important, 

implying that the kinetic energy of the particles is the most important metric and 

alignment runs secondary as the turbulence level increases. 

Both distributions, that of the agglomerated particles and the rebounded ones, appear 

to have shifted towards lower relative orientations, indicating that there is a promotion 

of parallel alignment irrespective of agglomeration or rebound. The behaviour reverses 

in the case of the disks in Figure 5.31. The particles that agglomerated are evenly 

distributed across the parameter space, whilst the rebounding particles show a bias 

towards parallel alignment. The ‘agglomerated’ distribution may be anomalous for the 

disks since so few particles agglomerated and hence the sample size is low. In fact, 

that is true of each of the cases for the disks. Since the disks were shown to be more 

susceptible to the forces from the flow field, the local flow dominates the interaction to 

a greater extent, and it is more difficult to extract the DLVO effects in the analysis 

stage.  

This underscores the fact that as the turbulence level increases, the effect of particle 

alignment diminishes in determining agglomeration outcomes, or at least becomes 

less visible in the present PDFs. This is best seen by observing the needles’ PDFs, 

the morphology for which the sample size for both categories of agglomeration and 

bouncing is large enough to support a conclusion. From the viscous sublayer box to 

the buffer layer box, the requirement for alignment appears diminished, but the peak 

of the agglomerated distribution still shows a favouring towards alignment more than 

bouncing events. Moving to the bulk flow box, this requirement is seen to diminish 

almost entirely, with the distributions between agglomerating and bouncing needles 

becoming very similar. Only in the region of perpendicular alignment is there a 

significant difference between the two PDFs. This again shows how the increasing 

turbulence begins to predominate. In other words, the interacting particles are relying 

much more on their lower kinetic energy, having not been advected by a strong fluid 

motion, as opposed to relying on parallel alignment, to facilitate agglomeration. 

It is also possible to repeat the analysis shown in the previous chapter wherein the 

collision points were measured on the particles’ surfaces, allowing understanding to 

be generated on the importance of the particle surface characteristics. The presented 
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results omit the 𝜃 distributions, which were shown to be unimportant. Similarly, the 

absolute value of 𝜙 is taken in order to double the sample size for a given angle, this 

helps when interpreting the PDFs since the turbulence introduces a variability. The 

operation is valid since the interval the angles are defined on is symmetric.  

Now in the case of turbulence, it can be seen from the rightmost plots in Figures 5.30 

to 5.35 that the overall trends are retained, however the extent changes. Over the full 

parameter space, the disks in particular are shown to be less reliant on surface 

collision points when determining agglomeration outcomes. As described in the case 

of symmetry axes, this is due to the increasing reliance on the kinetic energy state as 

determined by the flow experienced rather than specific orientation or surface 

conditions. There is still an overrepresentation of agglomeration observed at collision 

points where the surface interaction is maximised. However, this diminishes for the 

disks and in the high turbulence box the trend reverses, with an overrepresentation of 

off-normal collisions. Here, the sample size is low and so it is not appropriate to draw 

strong conclusions on this particular result. Nevertheless, it is possible that the off-

normal initial collisions actually become preferable for agglomeration when the overall 

system is not favouring agglomeration. This is because of the off-normal collisions 

inducing rotation and leaving the particles nearby in a lower velocity state. In some 

cases, this may lead the particles towards a favourable configuration that ultimately 

facilitates agglomeration on a secondary or tertiary interaction when the kinetic energy 

is lower. However, this mechanism is reliant on the particles remaining close by in the 

state induced by the collision. In many cases, the stronger turbulence will not allow 

this, sweeping the particles apart. So, it is not clear the extent to which this effect is 

present. Lastly, the total distribution of collision points (i.e., not considering 

agglomeration or rebound) has flattened to become a much more uniform distribution, 

which indicates that turbulence in some way prevents disks from colliding on their 

edges, or promotes face-face collisions, much more than observed in quiescent 

conditions. 

For the needles, the peaks have remained in the same position for the collision points 

but the distributions appear to be less coherent away from the peak. Across the three 

boxes, the very stark overrepresentation of agglomeration at the favourable 

configuration is seen, much more so than the equivalent points on the disks. This 

implies that even in turbulence the types of structures that are likely to form will have 
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needles agglomerating along their long edges since it is such a starkly favoured state 

under the present model. Conversely, the disks may take on different shapes but are 

less likely to agglomerate at all based on the assumptions in this model. Naturally, 

there are many effects not captured by binary interactions that will be pertinent to 

larger structures. 

5.11  Conclusions 
The work presented in this chapter represents the successful implementation of a 

stochastic forcing method which was able to resolve both non-dimensional (𝑅𝑒𝜆 =

65, 143) and dimensional (𝑅𝑒𝜆 = 2.5, 12.1, 22.2) homogeneous and isotropic 

turbulence boxes. A validation was performed against two references cases with 

strong agreement demonstrated. Furthermore, the developed agglomeration 

methodology in the previous chapters was successfully coupled to the fully resolved 

turbulent fluid. This is the first time non-spherical immersed boundaries with 

orientationally resolved DLVO forces have been coupled to such a turbulence field, 

highlighting the novelty of the work. 

The results indicated a clear dependency on both turbulence and morphological 

characteristics for agglomeration outcomes, alignment, separation trajectories, and 

relative velocities between particles. It was found that increasing turbulence levels 

reduced the agglomeration rates between all three morphologies and that introducing 

turbulence to the domain promoted alignment between particles. The viscous sublayer 

box exhibited the highest agglomeration rate, followed by the buffer layer and then the 

bulk flow boxes. This finding was contrary to the general theory of wall-bounded flows; 

however, this was understood as a limitation of the HIT approach, given that increasing 

the Taylor-Reynolds number to the measured channel flow value leads to very different 

turbulence conditions to that which is being approximated. Despite this, the results 

gave insight into the relationship between turbulence and agglomeration. The 

increasing turbulence levels were observed to accelerate the particles to relative 

velocities where agglomeration became energetically unfavourable due to the kinetic 

energy possessed by the particles. The net effect of acceleration is due to the fact that 

the pertinent velocity quantity is relative velocity, and the turbulence in general creates 

different flow conditions for the different particles as a result of the scales and thus 
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gradients present in the box. The disparity in flow conditions between particles is an 

increasing function of turbulence level due to the increasing separation of scales.  

The overall reduction in agglomeration rate as a function of turbulence strength is due 

to multiple reasons. The first is the additional energy imparted by the fluid onto the 

particles by the increased turbulence levels. In particular, it was observed that 

increased mean fluid velocity fluctuations, means an increased turbulence kinetic 

energy budget of the fluid and thus more of this is imparted onto the particles. 

Secondly, this increased energy allowed particles to be carried further from one 

another in the same period of time, thus removing the particles more quickly from the 

effective DLVO range and moving the particles to locations in the box where they are 

unlikely to meet again for the rest of the time simulated. Thirdly, increasing turbulence 

levels was found to increase the presence of different flow scales and structures which 

were able to disrupt the agglomeration process via increased noise in particle motion, 

although this noise still remained relatively low for the studied turbulence levels.  

The non-spherical differences in the particles were shown to change the way that they 

interacted with the different sized flow structures, which was hypothesised to be due 

to the different characteristic lengths of the particles in their principal directions. This 

morphological difference also gave rise to differences in the drag effects experienced. 

There is a coupled relationship between the motion of the particles and the turbulence 

field local to them, and this is something that could be investigated further in future 

work, i.e., to what extent do certain collision and agglomeration events create certain 

flow conditions? For example, if two particles collide such that they induce significant 

rotational motion, does this therefore induce a certain kind of vortical structure on 

average – and does this relate to the axes of the particle, since this geometry dictates 

the size of the wakes following the rotating particle? The coupled interaction here will 

lead to interesting changes in the local turbulence field, and the role that collisions and 

agglomeration will have on this turbulence modulation would offer new insight to the 

field.  

There was seen to be a tension between the influence of the turbulence field and the 

influence of relative orientation: as the turbulence level increased, the fluid dominated, 

and orientation became less important to determining interaction outcomes in general, 

which was evidenced by the distributions of particle symmetry axes and collision points 
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compared over increasing turbulence levels. Particles became reliant on having low 

kinetic energy in order to experience agglomeration. Needles were observed to still 

demonstrate a massive overrepresentation towards their maximal configuration, 

whereas the disks were seen to reduce their reliance on maximal configuration. This 

was suggested to be because the reduced sample size of the agglomerated 

distribution in comparison to the bouncing distribution, lowering the confidence of 

overall trends particularly in the higher turbulence level boxes where the effects were 

observed. 

Over the full parameter space, needles were shown to favour agglomeration the most 

followed by spheres and then disks, however the extent of this difference reduced as 

the turbulence level increased. Increasing the turbulence level was seen to allow the 

spheres to take the lead in some measures of agglomeration propensity, this was due 

to their reduced drag keeping the kinetic energy of the particles in low enough regimes 

to sustain agglomeration. In particular, it was shown that in the highest turbulence level 

box, the agglomeration rate of spheres was equal to that of needles, which indicates 

the advantage the spheres had in terms of drag was significant enough to reach an 

inflection point where the strength of the needles’ van der Waals contribution can be 

overtaken. 

Returning the fluid domain to a non-dimensional box of length 2𝜋 could be the next 

step. This would further generalise the results and allow for easier comparison with 

other systems, as well as being a more general framework that can be quickly adapted 

and reproduced. In achieving this aim, however, there is the need to non-

dimensionalise the particle-phase such that the relationship between the particle- and 

fluid-phases remains the same. Another clear next point of study is to introduce many 

particles into the system which will generate insight on the larger scale structures 

formed. This would remove the need to start the particles very close by, which 

ultimately reduced the quality of the results obtained. Nevertheless, a detailed analysis 

was able to draw out some key effects on the relationship between agglomeration and 

turbulence. Throughout this chapter, suggestions were made on effects that could be 

studied in more detail. For example, the effects of agglomerated particles on the 

turbulence field, as compared with particles that remain separated, as well as the 

alteration to the turbulence field as a result of the dynamic collision and agglomeration 

interactions. Also, the alignment and dynamic motion characteristics of agglomerated 
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shapes sitting within a turbulence field could be further investigated and contrasted to 

see how these quantities evolve over time, as agglomerate sizes grow.  
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6 Multi-Particle Soft-Sphere 
Agglomeration and Behavioural 
Modification Effects 
6.1 Introduction 
The start of this chapter continues to build on the story so far, with the goal of bringing 

the thesis to a logical and satisfactory conclusion. This is realised by delivering insight 

to the nuclear systems underpinning the work, in the form of non-spherical behavioural 

modification studies. As such, the present chapter begins with use of the established 

methodology (i.e., binary hard-sphere collisions) but later expands on this, with the 

significant development process and achievements discussed. In particular, the 

second part of the chapter demonstrates the extension of the binary particle models 

to be capable of robustly treating multi-particle agglomeration and collisions in 

turbulence. This is achieved through:  

1. The development and implementation of a non-spherical soft-sphere collision 

scheme; 

2. The extension of the code and algorithms to a multi-particle framework; 

3. MPI parallelisation of the most expensive particle routines within the code; 

4. A variable time-stepping scheme that allows resolution of the van der Waals 

forces without making computational requirements prohibitively high. 

Before this is introduced, the chapter begins by presenting results generated using the 

original immersed boundary-direct numerical simulation framework, which is used 

here to study binary interactions between pairs of spherical and spheroidal particles. 

Now, an in-depth sensitivity analysis takes place to investigate the relative importance 

of the identified key parameters.  

As introduced and motivated in Chapter 1, the idea behind such sensitivity analyses 

is to understand the ways in which systems of agglomerating particles in turbulence 

can be controlled, with a view to improved process and equipment design. Exploiting 
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the behaviours of the system to achieve a desired flow result is termed a behavioural 

modification and it is one of the primary goals of this section to generate insight in this 

direction. This has great value for the nuclear waste processing industry, where certain 

processes involving turbulent multiphase flows operate with extreme caution due to a 

lack of understanding of the complex interactions therein. It is argued that complete 

understanding of these systems begins at the smallest and most fundamental scales, 

and that is the contribution of the present work. 

6.2 Behavioural Modifications for Binary Particle 
Interactions 
At the University of Leeds, there has been significant investigation into particle-laden 

flows, with a recent emphasis placed on behavioural modifications (Mortimer et al., 

2021; Wolde, 2023), delivering valuable insight for the nuclear industry. This modelling 

work has typically been approached using a particle-unresolved Lagrangian particle 

tracking (LPT) approach for spherical particles, or DNS-IBM calculations between 

spheres. Two key objectives therefore arise from this. The first is to continue to 

generate fundamental insight into the agglomeration process at the finest scale. The 

outputs can be used as detailed information for the development and improvement of 

the macroscopic models inherent to the LPT code – this objective has already been 

partly realised in Chapters 4 and 5, and it is furthered here. The second objective is to 

understand the impact of non-sphericity on the conclusions previously made about 

behavioural modifications. As motivated, the spherical assumption predominates the 

particle-laden flow literature, including the agglomeration literature, and so the findings 

are wider reaching beyond these two objectives. 

To give an overview of the recent findings, Mortimer et al. (2021) reported that the 

coefficient of restitution and the level of turbulence were the most influential areas 

when studying binary spherical interactions with structure-resolved particles in 

turbulence. The Hamaker constant was seen to mildly increase the system’s relative 

velocity, but it was not seen to greatly increase agglomeration despite this parameter 

governing the attractive strength of the interactions.  

In structure-unresolved LPT simulations, with millions of interacting particles in a 

turbulent pipe-flow, Wolde (2023) reported the coefficient of restitution had the most 
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significant influence on agglomeration, noting in particular that the case of 𝑒 = 0.2 was 

the most agglomeration-favouring configuration of those studied. This is consistent 

with the structure-resolved simulations. However, the two studies differed for the case 

of Hamaker constant. The LPT studies were shown to be largely dependent on 

Hamaker constant, with agglomerated clusters of a greater particle number forming 

earlier into the simulations as the Hamaker constant was increased. It will be of interest 

here to try and reconcile this difference through careful investigation of the present 

simulations. The studies of Wolde (2023) also demonstrated a strong reliance on 

Reynolds number, comparable with variations in the level of turbulence as performed 

by Mortimer et al. (2021).  

Table 6.1: Simulation matrix for the behavioural modification studies of Hamaker 

constant 𝐴, Taylor Reynolds number 𝑅𝑒𝜆, and coefficient of restitution 𝑒. Each 

column represents a unique set of ~50 simulations. 

 Collisional Energy Attractive Strength Turbulence Strength 

 Low Mid High Low Mid High Low Mid High 

𝑅𝑒𝜆 2.5 2.5 2.5 2.5 2.5 2.5 2.5 12.1 22.2 

𝐴 (𝑧𝐽) 22.3 22.3 22.3 7.84 22.3 36.37 22.3 22.3 22.3 

𝑒 0.2 0.4 0.6 0.4 0.4 0.4 0.4 0.4 0.4 

 

For this reason, the chosen parameters to vary in the present work are the Hamaker 

constant and the coefficient of restitution, with a brief word also on turbulence level. 

The results aim to bring out the interaction behaviours and dynamics, through 

comparison of the system probability distributions for all three morphologies. This is 

performed in the lowest turbulence level box introduced in Chapter 5 because, 

pragmatically, this reduces the overall influence of the turbulence field and thus makes 

it easier to extract the particle-phase parameter’s effects, reducing the number of 

required simulations. The simulation set-up remains exactly the same as the previous 

chapter (Table 5.5), but the aforementioned parameters are varied. For completeness, 

the turbulence levels of the box are discussed briefly in the context of behavioural 

modification but no further simulations were conducted varying the turbulence levels. 

The simulation parameters varied are shown below in Table 6.1. The chosen values 
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are consistent with Mortimer et al. (2021) for comparative purposes, except for the 

turbulence level. This is because the comparison across turbulence analyses the work 

done in Chapter 5.  

6.2.1 Behavioural Modification I: Collisional Energy   
One way that particle interactions can be effectively mediated is through the amount 

of energy, or momentum, retained post-collision – which Mortimer et al. (2021) and 

Wolde (2023) demonstrated the efficacy of in the context of spheres. In industry, such 

a parameter could be controlled, for example, through the coating of particles to 

decrease the amount of energy retained, through the addition of salt to the fluid 

(Shahidzadeh et al., 1998), through altering the system temperature (Bergström, 

1997) or modifying the viscosity of the carrier fluid, and so it is a viable control option. 

This is controlled in the simulation code through the parameter 𝑒, the coefficient of 

restitution. This indirectly mediates the kinetic energy retained by the pair of colliding 

particles by enforcing that the particles retain a proportion 𝑒 of their pre-collision 

relative velocity. The default value for calcite particles is 𝑒 = 0.4 or 40%, which is 

equivalent to the particles retaining 16% of their kinetic energy post-collision.   

It has been demonstrated in the cited work that collisions are essential in promoting 

agglomeration in the present flows. Further established in Chapter 5, collisions 

between particles generate a much more favourable energy state for agglomeration, 

with particles remaining close by, and with lower velocity. It was shown that off-normal 

and off-centre collisions between non-spherical particles were sometimes effective in 

promoting agglomeration even though the van der Waals forces were not maximised 

in the orientational configurations of the initial collision, since these interactions 

converted much of the total kinetic energy to rotational motion, inadvertently causing 

the particles to stay relatively nearby and thus the likelihood of a secondary and tertiary 

collision is increased at more favourable surface locations. In such scenarios, the 

collisional energy loss can compound. It will be of interest to investigate how this effect 

changes with different values of 𝑒.  

Presented below are the probability density functions for three values of the coefficient 

of restitution, 𝑒 ∈ {0.2, 0.4, 0.6}, or equivalently a 20%, 40% and 60% retention of the 

collisional velocity state. It is worth noting that this is enforced at the direct point of 

collision on both surfaces, which is not the centre of the particle as in spherical LPT 
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codes for example. This allows the transfer of energy from translational to rotational 

motion as described, and offers more detailed insight on the full collisional interplay.  

The results are broken down into the respective morphologies for comparative 

purposes. Firstly, the spheres are presented in Figure 6.1, followed by needles in 

Figure 6.3 and the disks in Figure 6.4. Exactly as with the simulations presented in 

Chapter 5, Monte Carlo sampling takes place over uniformly randomly distributed 

orientations and injection locations of particles in a statistically stationary box of 

homogeneous, isotropic turbulence.  

For the collisional energy study here, the case of 𝑒 = 0.4 was already investigated in 

Chapter 5 and so simulations only needed to be conducted for the higher and lower 

cases either side of this. The same is true of the attractive strength in the second 

behavioural modification study, where 𝐴 = 22.3 𝑧𝐽 was already simulated, leaving the 

other two cases to be investigated. Around 50 simulations were conducted to populate 

the sample space for these cases, for each of the three morphologies, leading to 

around 600 further simulations. Each simulation used 24 processors for approximately 

12 hours. 

I.I: Spheres 

 

Figure 6.1: Probability distributions of separation distance (left) and relative velocity 

(right) between spheres interacting in the viscous sublayer turbulence box, 

contrasted for three values of the coefficient of restitution. 

The results displaying the separation and relative velocity tendencies of the spherical 

particle pairs are shown in Figure 6.1 contrasting the three coefficient of restitution 

values. The spherical system naturally has fewer degrees of freedom and so the trend 
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would be expected to be straightforward compared to the non-sphericals, as long as 

enough instantiations (individual simulations) are taken to fully sample the turbulence 

– which was ensured by waiting for the PDFs to remain smooth and stable under 

addition of new data (approximately 40-50 simulations).  

By observing the location of the peaks of the distributions, it is seen that the expected 

trend is followed. Namely, the lowest coefficient of restitution leads to a peak closest 

to zero separation. This is very closely followed by the moderate coefficient of 

restitution, which has almost identical shape as the lowest case, but with the peak 

shifted slightly. Finally, the higher coefficient case leads to a noticeably shifted 

distribution to the right. The lowest two cases peak much closer to zero, in the region 

of separation that implies agglomeration; whereas, the higher coefficient case has a 

peak away from zero and outside of the van der Waals effective range, implying fewer 

instances of agglomeration.  

The agglomeration outcomes are enumerated in Table 6.2 where the spheres are 

seen to have a very high agglomeration rate for the lowest coefficient of restitution. In 

line with Wolde (2023) and Mortimer et al. (2021), agglomeration outcomes are 

strongly dependent on the retained velocity in the collision. As was described in 

Chapter 4, the agglomeration process tends to be a function of the post-collision 

velocity, with particles only becoming agglomerated, or trapped in the DLVO potential 

well, after experiencing a collision.  

Table 6.2: Agglomeration data for the spherical particles, with varied coefficient of 

restitution. 

Result 𝒆 = 𝟎. 𝟐 𝒆 = 𝟎. 𝟒 𝒆 = 𝟎. 𝟔 

Bounced 19 35 38 

Agglomerated 21 15 12 

Agglomeration Rate 52% 30% 24% 

 

A secondary effect that is visible in the PDFs and should be stated is the following: in 

the hard-sphere model, it was established that agglomerating particles are accelerated 

towards each other at very narrow separations, they then lose that accumulated 

energy in the collision, before regaining some of it from the DLVO contribution – this 
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occurs continually and cyclically. Simply, the particles gain kinetic energy from the 

DLVO potential and then lose it again via a collision.  This was shown to create a very 

small vibrational state of quasi equilibrium where particles became ‘agglomerated’, 

trapped in the potential well, but constantly exchanging energy. In this state of 

agglomeration, the velocity and the separation take on the form of a decaying 

oscillation, and that will be shown again in Section 6.3.4. It can be noted that increasing 

the coefficient of restitution would allow particles to separate their surfaces further, 

before being recaptured by the van der Waals forces. Firstly, this naturally gives them 

much greater chance of escaping agglomeration, which is consistent with the physical 

expectations. But even in cases where particles agglomerate, it will slightly increase 

the mean separation distances observed in the plots. The same argument leads to the 

same outcome in the relative velocity graphs. What this means is that the minimum of 

the energy potential resolved in the simulations, or the mean position that the particles 

sit within that well, could be thought of as shifting based on coefficient of restitution, 

which is a computational effect, not a physical one, but this will have an effect on 

agglomeration resolution. 

The plot for relative velocity tells a very similar story to the separation plot, with the 

two lowest coefficient of restitution (COR) cases gravitating heavily towards zero 

relative velocity, and the higher COR case seeing a peak shifted away from zero, again 

implying less agglomeration in the latter case. These two plots give the impression 

that for a given set of parameters there is a cut-off value of the COR, just as there was 

with velocity, where the system moves from strong agglomeration favourability to the 

alternative. This stands to reason, since it was established in earlier chapters that the 

post-collision velocity is a key metric determining agglomeration. However, it does 

mean that varying COR linearly will not necessarily result in linear changes to 

agglomeration variables like 𝑑𝑥, 𝑑𝑣 or agglomeration rate, as the system at some point 

appears to move from one attractive state to another less attractive state, in a 

somewhat binary way. That is implied by the PDF plots, however the table of results 

does not necessarily support this, since there is a seemingly gradual decrease in 

agglomeration rate. Thus, the cases of needles and disks can be analysed with this 

hypothesis in mind.     
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Figure 6.2 Probability distributions of van der Waals force measured between 

spheres interacting in the viscous sublayer turbulence box, contrasted for three 

values of the coefficient of restitution. 

The graph of van der Waals forces, shown in Figure 6.2, does not depend on the 

coefficient of restitution. Different agglomeration outcomes allow slightly different 

samplings of the two main states but the shape of the distribution remains the same, 

because from the point of view of the full physical system, the van der Waals forces 

are quite binary for spheres. Either particles agglomerate and they experience in-and-

around the maximal force. Or, they rebound and separate, leading to zero van der 

Waals contribution quickly. One conclusion here may be that a binary ‘on-off’ 

agglomeration model may be a good approximation for spheres, but not for non-

spheres. 
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I.II: Needles 

 

 

Figure 6.3: Probability distributions of separation distance (left), relative velocity 

(right) and van der Waals force (bottom), measured between needles interacting in 

the viscous sublayer turbulence box, contrasted for three values of the coefficient of 

restitution. 

The PDFs of the needle interactions shown in Figure 6.3 follow the same trends as 

the spheres; in particular, a very strong agglomeration favourability is seen for the 

lowest COR case, which falls away as COR is increased. The relative velocity graph 

implies a similarity between the two highest COR cases, and this is supported by the 

agglomeration rate data shown in Table 6.3 where the two highest COR cases have 

almost identical agglomeration rates. The lowest COR case separates itself with a 

sharp increase in agglomeration rate, which gives credence to the idea that beyond a 

certain value, the systems become similar. 

Lastly, the graphs of the van der Waals forces experienced remains similar for all 

values, as was the case with the spheres. Noticeably, the graphs for the needles are 

more uniform, without two clear peaks, because there is a wider spectrum of van der 
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Waals forces that can be experienced by needles in an agglomerated state due to the 

orientational considerations in the force model. It would appear this space of possible 

van der Waals forces is sampled quite evenly under uniformly random orientations.  

Table 6.3: Agglomeration data for the needles, with varied coefficient of restitution. 

Result 𝒆 = 𝟎. 𝟐 𝒆 = 𝟎. 𝟒 𝒆 = 𝟎. 𝟔 

Bounced 29 65 33 

Agglomerated 21 32 15 

Agglomeration Rate 42% 33% 32% 

 

I.III: Disks 

 

 

Figure 6.4: Probability distributions of separation distance (left), relative velocity 

(right) and van der Waals force (bottom), measured between disks interacting in the 

viscous sublayer turbulence box, contrasted for three values of the coefficient of 

restitution. 
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Figure 6.4 presents the results for the disks, which do not follow the same obvious 

pattern. The lower two COR cases resolve very similar PDFs of separation and of 

velocity, with the highest COR case showing a mildly reduced peak of both separation 

and velocity, but a similar trend overall is observed. This is backed up by the 

agglomeration results presented in Table 6.4, which do not indicate a strong reliance 

on COR. 

One interesting difference in the relative velocity plot is that different velocity regimes 

are dominated by different COR values. The range 𝑑𝑣 ∈ [0, 5] 𝑚𝑚𝑠−1 is most sampled 

by 𝑒 = 0.2, the range 𝑑𝑣 ∈ [5, 10] 𝑚𝑚𝑠−1 is most sampled by 𝑒 = 0.4, and 𝑒 = 0.6 

predominates well beyond that, implying that the relative velocity dependence breaks 

itself into regimes. In other words, to reliably access the lowest values, one requires a 

low COR and to reliably access the highest velocities in the simulation one requires a 

higher COR. This is to be expected. Strangely, this does not translate particularly well 

to the agglomeration outcomes shown in Table 6.4.  

Table 6.4: Agglomeration data for the disks, with varied coefficient of restitution. 

Result 𝒆 = 𝟎. 𝟐 𝒆 = 𝟎. 𝟒 𝒆 = 𝟎. 𝟔 

Bounced 40 73 49 

Agglomerated 10 23 11 

Agglomeration Rate 20% 23% 19% 

 

To round off the analysis, the relative orientations of the particle symmetry axes were 

again measured for the two non-spherical morphologies, shown in Figure 6.5. Both 

the needles and disks appeared to show very little dependence on COR when it came 

to observing the relative orientations of the particles. The distributions for both 

morphologies seemed to be almost identical for the two lower COR values, and similar 

also for the highest case. In the case of the needles, the highest COR seems to very 

marginally favour parallel alignments compared to the other two COR values, whereas 

the disks appear to show a slight widening of the variability when increasing COR to 

the highest value. A higher coefficient of restitution, as established, allows for more 

energy to be retained post-collision. This also means more rotational kinetic energy 

can be retained post collision (and more can also be induced by the collisions). 
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Therefore, this could facilitate a wider range of orientations being traversed over the 

same simulation period. This can possibly explain the wider variability in the highest 

coefficient of restitution case. Higher energy collisions perhaps create certain 

orientational states more readily than low energy collisions. 

 

Figure 6.5: Probability distributions of relative orientation, measured between 

needles (left) and disks (right) interacting in the viscous sublayer turbulence box, 

contrasted for three values of the coefficient of restitution. 

The statistical breakdowns for the agglomeration efficacy were presented in the tables, 

reflecting roughly what was observed through the PDFs. The key takeaway is that as 

the COR is increased, more energy is retained in the collision and thus, over the 

sampled space, the proportion of agglomeration events is reduced. Between the three 

morphologies there are different disparities when jumping between different values of 

𝑒, which perhaps relates to different cut-off values depending on morphology, beyond 

which the systems move from agglomeration favouring to not favouring.  

At a low COR, i.e., 0.2, the spheres agglomerate at a very significant rate, despite 

being immersed in turbulence, and the needles also showed a strong favourability 

towards this value. This implies a strongly agglomeration-favouring system for both 

morphologies. The trend was not repeated for the disks, which exhibited similar 

agglomeration outcomes over the full range of COR values. Perhaps because the 

agglomeration rate is lower for the disks in general, the differences are not quite so 

pronounced.  

6.2.2 Behavioural Modification II: Strength of Attraction   
The second parameter under investigation is the Hamaker constant, which mediates 

the strength of the attractive van der Waals contribution. Wolde (2023) showed this to 
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be the most influential parameter within the LPT framework adopted in that thesis. The 

work of Mortimer et al. (2021), which was the starting point for the present work, was 

inconclusive on this, and so it is of interest to investigate the parameter further.  

There is a wide array of parameters that can be varied within the DLVO framework, 

particularly for the many parameters that make up the electric double layer 

contribution, but those were shown to be less significant in previous works. Particularly 

given the baseline parameters used here, the electric double layer contribution is 

negligible compared to the van der Waals contribution so it is sensible that the 

Hamaker constant should be the most influential parameter in the DLVO model, and it 

would be expected to mediate agglomeration outcomes. Practically, modifying the 

ionic strength of the carrier fluid can be used to affect changes in the van der Waals 

forces, e.g., the addition of salt reduces such forces.  

As with the collisional energy, three values are chosen in accordance with Mortimer et 

al. (2021), which includes the base case stemming from the viscous sublayer results 

in Chapter 5. The values investigated are 𝐴 = {7.84, 22.3, 36.37} 𝑧𝐽.  

II.I Spheres 

Figure 6.6 shows the effect of varying the Hamaker constant on the resolved 

separations, velocities and van der Waals forces. Clearly, observing the bottom plot in 

Figure 6.6, the van der Waals forces resolved in the simulation are strongly dependent 

on the varied parameter, as would be expected. The peaks of the van der Waals 

distributions follow the changes in Hamaker constant in a relatively simple and linear 

way. 

The distributions of separation and relative velocity follow a similar pattern to one 

another, for the spherical case. The highest Hamaker constant scenario, 𝐴 = 36.76 𝑧𝐽, 

separates itself from the lower value of Hamaker constant, 𝐴 = 7.84 𝑧𝐽, and the 

moderate value of 𝐴 = 22.3 𝑧𝐽. The lowest two cases are very similar, peaking at the 

same value of separation distance and almost lying on top of one another. However, 

the highest Hamaker constant scenario has a greater concentration of low velocities 

and of low separation distances, indicating a greater agglomeration propensity.  
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Figure 6.6: Probability distributions of separation distance (left), relative velocity 

(right) and van der Waals force (bottom), measured between spheres interacting in 

the viscous sublayer turbulence box, contrasted for three values of the Hamaker 

constant. 

This implies again that there may be a threshold value beyond which agglomeration 

propensity sharply increases, as the lower two cases seem to fit into a category 

separate from the higher case, as shown by the results in Table 6.5. This stands to 

reason, as the spheres are prescribed the same initial velocity in all simulations, and 

there is a cut-off value for velocity (as shown in Chapter 4) beyond which 

agglomeration no longer occurs. As the Hamaker constant changes, this cut-off value 

would be expected to change due to the DLVO potential changing (more kinetic energy 

is required to escape the well). The turbulence alters the particle velocity at collision 

somewhat and so there is a distribution of collisional velocities about the initial value. 

However, given the present set-up, it still centres on a value strongly related to the 

initial velocity given to the particles. Therefore, if the Hamaker constant is to change 

enough between two cases, such that the initial velocities go above or below a 



239 
 

threshold cut-off velocity, then it would be expected to see a drastic change in 

simulation tendencies from one case to another.     

Table 6.5: Agglomeration data for the spheres, with varied Hamaker constant. 

Result 𝑨 = 𝟕. 𝟖𝟒 𝒛𝑱 𝑨 = 𝟐𝟐. 𝟑 𝒛𝑱 𝑨 = 𝟑𝟔. 𝟕𝟔 𝒛𝑱 

Bounced 30 35 26 

Agglomerated 12 15 22 

Agglomeration Rate 29% 30% 46% 

 

II.II Needles 

 

 

Figure 6.7: Probability distributions of separation distance (left), relative velocity 

(right) and van der Waals force (bottom), measured between needles interacting in 

the viscous sublayer turbulence box, contrasted for three values of the Hamaker 

constant. 

The separation and relative velocity distributions shown in Figure 6.7 again 

demonstrate a binary split in the behaviour of the respective cases. The higher two 
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Hamaker cases strongly favour agglomeration whilst the lower case lags behind 

slightly. In Table 6.6, the agglomeration outcomes show a fairly consistent increase in 

agglomeration rate with Hamaker constant, rather than the binary nature suggested 

by the plots. 

Table 6.6: Agglomeration data for the needles, with varied Hamaker constant. 

Result 𝑨 = 𝟕. 𝟖𝟒 𝒛𝑱 𝑨 = 𝟐𝟐. 𝟑 𝒛𝑱 𝑨 = 𝟑𝟔. 𝟕𝟔 𝒛𝑱 

Bounced 36 65 28 

Agglomerated 12 32 20 

Agglomeration Rate 25% 33% 42% 

 

II.III Disks 

 

 

Figure 6.8: Probability distributions of separation distance (left), relative velocity 

(right) and van der Waals force (bottom), measured between disks interacting in the 

viscous sublayer turbulence box, contrasted for three values of the Hamaker 

constant. 
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The separation of the disks follows a very similar pattern for all three values of the 

Hamaker constant, as displayed in the left graph of Figure 6.8. In the other two plots, 

relative velocity and van der Waals force, comparatively little agglomeration propensity 

is shown for the lowest value of the Hamaker constant. The sampling of non-zero van 

der Waals forces is particular low compared to both the needles and the spheres. In 

the lower plot of Figure 6.8, displaying the van der Waals forces for the disks, the 

distributions no longer follow the same shape as the needles. Rather, the distribution 

appears more bimodal, particularly for the lowest Hamaker case. This implies that 

agglomeration is being achieved only by a narrow band of van der Waals force cases, 

which will correspond to the maximal configurations. In the other cases, very little van 

der Waals interaction takes place. The peak is greater at the lower end of the force 

distribution for 𝐴 = 7.84𝑧𝐽 since fewer agglomeration events can be achieved and thus 

the state of van der Waals attraction remains low throughout. This is supported by the 

lower agglomeration rate reported in Table 6.7. In these lower Hamaker systems, the 

effect of DLVO forces is very much reduced, and the system is moving towards one 

where exclusion of such forces may be a reasonable modelling assumption. Notably, 

this was not the case for the spheres or needles at the same values of attractive 

strength. 

Table 6.7: Agglomeration data for the disks, with varied Hamaker constant. 

Result 𝑨 = 𝟕. 𝟖𝟒 𝒛𝑱 𝑨 = 𝟐𝟐. 𝟑 𝒛𝑱 𝑨 = 𝟑𝟔. 𝟕𝟔 𝒛𝑱 

Bounced 42 73 38 

Agglomerated 6 23 12 

Agglomeration Rate 12.5% 23% 24% 

 

Finally, the relative orientations of the particle symmetry axes are compared for the 

needles and disks in Figure 6.9. The needles (left) are shown not to change their 

preferred relative orientation based on the system’s Hamaker constant. In contrast, 

the disks (right) appear to increase their variability as Hamaker constant is reduced. A 

similar argument can be made here as with the coefficient of restitution study where a 

similar trend was observed: the lower Hamaker constant will generally equate to more 

kinetic energy retained post-collision, which means more rotational kinetic energy and 



242 
 

a wider sampling of the rotational sample space in a given simulation. Why this would 

only affect disks to this extent is not clear. 

There is an interesting distinction drawn here between disks and needles, where the 

relative orientations of the disks appears to be more sensitive to the system 

parameters in general than the relative orientations of the needles. 

 

Figure 6.9: Probability distributions of relative orientation, measured between 

needles (left) and disks (right) interacting in the viscous sublayer turbulence box, 

contrasted for three values of the Hamaker constant. 

6.2.3 Behavioural Modification III: Strength of Turbulence   
For completeness, turbulence level should be commented on in the context of 

behavioural modification, since it was clearly shown to be influential in the previous 

chapter, and the work of Mortimer et al. (2021) and of Wolde (2023) highlighted this 

variable as having strong influence. The turbulence level relates quite straightforwardly 

to system control as well, since it can be controlled directly through the pumping force, 

or choice of pipe geometry, for the specific application of waste processing, for 

example.  

The previous chapter highlighted that the separation and velocity tendencies of the 

disks, needles, and spheres were directly correlated to the turbulence level. Lower 

levels of turbulence led to lower particle kinetic energy and thus agglomeration 

favourability. The way this changed with morphology was quite stark. In particular, the 

spheres were able to handle the increasing turbulence much better than the non-

spherical particles, retaining similar agglomeration levels as turbulence increased. 

This was said to be because of the reduced drag characteristics of a sphere, reducing 

acceleration due to the flow. This is supported by the results of Table 6.8 where the 
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overall agglomeration rate is seen to be relatively independent of the turbulence. A 

similar trend is seen for the needles, although the full PDFs indicated that the needles 

were generally experiencing less agglomeration-favouring conditions in contrast to the 

spheres. Lastly, the disks are seen to reduce their agglomeration rate significantly as 

a function of turbulence. Thus, from the point of view of process design, understanding 

the morphology of the typical particle shape (through characterisation) can help to 

inform what choices to make on pumping/extraction conditions. 

Table 6.8: Collated data showing the agglomeration rate for the three morphologies 

against increasing turbulence level. 

Result Needle Disk Sphere 

𝑅𝒆𝝀 = 𝟐.𝟓  Agglomeration Rate 32% 23% 30% 

𝑹𝒆𝝀 = 𝟏𝟐. 𝟏 Agglomeration Rate 34% 18% 32% 

𝑅𝑒𝜆=22.2 Agglomeration Rate 27% 13% 27% 

 

6.2.4 Behavioural Modification Summary   
In summary, the system was seen to be dependent on coefficient of restitution for all 

three morphologies, which could be addressed in industry through the coating of 

particles or modifying the viscosity of the carrier fluid. The effects were less 

pronounced for the disks. The resolved van der Waals forces were seen to be 

independent of COR and so it was the collisional energy exchange that caused particle 

agglomeration to increase for reduced COR. In particular, particles were able to remain 

close by for longer, giving the DLVO interaction more opportunity to form an 

agglomerate.  

The Hamaker constant was also found to be influential on the system, particularly in 

terms of the van der Waals forces experienced over the simulation, as would be 

expected. Agglomeration rate increased with Hamaker constant for all three 

morphologies, but each system displayed a binary behaviour where two of the three 

cases would have similar values of agglomeration rate, and the other case would 

separate itself on this metric. A wider sampling of the different values of Hamaker 

constant could help understand if this binary nature is a trend over the full span of 

values.  
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Confirmation of the dependence on Hamaker constant is consistent with Wolde (2023) 

and builds upon the work of Mortimer et al. (2021) where the findings were 

inconclusive. In particular, the Taylor-Reynolds number studied in the base case 

(𝑅𝑒𝜆 = 2.5) here is much lower than the latter mentioned work. Hence, the conditions 

in the vicinity of the particle interaction are less chaotic and perhaps lead to longer 

more stable interactions such that the Hamaker constant can have a greater effect – 

which also feeds back into the discussion on turbulence. 

Applying this insight to industrial considerations, the system is clearly sensitive to the 

Hamaker constant and so experimental measurements of the industrial system should 

be geared towards characterising this parameter to get a prediction of the system 

behaviour. If it could be confirmed that there is a cut-off value across which the 

agglomeration propensity of the system changes widely, as indicated by the present 

results, this could be a useful finding for understanding the likely behaviour of the 

system.  

For both mentioned parameters, the distributions of relative orientations of the disks 

appeared to increase their variance for the cases that implied reduced energy loss, an 

effect which was not present for the needles. 

Lastly, turbulence was discussed as influential but its relative effect was seen to be 

strongly dependent on morphology, with disks exhibiting the greatest dependence on 

this parameter. This is in contrast to the other two behavioural modifications, upon 

which disks were seen to have the least dependence. This was attributed to the disks 

overall having lower agglomeration rates, thus trends were more difficult to extract.   

6.3 Development of a Multi-Particle Agglomeration 
Framework for Non-Spherical Particles 

6.3.1 Background and Motivation 
Throughout the thesis, the story has been developing towards the notion that more 

particles are needed to be studied at once to further expand on previous conclusions. 

Detailed insight has been gained on the pair interactions of non-spherical particles, 

which has established the vocabulary and the lens through which to assess systems 

of many particle-particle and particle-fluid interactions, but to extrapolate findings to a 

larger scale system there needs to be the multitude of simultaneous competing forces 
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whose coupled interactions will undoubtably give rise to interesting and unexpected 

non-linear phenomena. Emergent behaviours can be observed for example in the 

fluidisation of particles (Gan et al., 2016a), the flow’s changing deposition or 

sedimentation characteristics (Wolde, 2023), or the formation of crystal-like structures 

in the flow (Ochsenbein et al., 2015). Moving to a multi-particle framework is not as 

simple as just changing the number of particles, however, and there is a myriad of 

challenges to overcome. A few are outlined below. 

The general observation can be made that by introducing agglomeration effects into 

the multiphase model, one naturally increases the particle loading in localised regions 

of the flow. So, even with what might be termed a ‘dilute’ suspension, there may still 

be many locations where many multiples of particles interact at once, if the suspension 

is self-attracting. It is well documented within the literature that soft-sphere collision 

models are better able to deal with the type of physical scenario (Ma et al., 2022) that 

involves high particle loading where collisions are much more frequent. This is 

because soft-sphere models can handle multiple colliding particles at once, where 

hard-sphere models struggle. Multiple collisions involving the same particle means 

that the way the velocity is updated breaks down for the standard hard-sphere 

implementation, where collisions necessarily are assumed binary and infinitesimal. 

The present simulation code, as with many discrete element method (DEM) and LPT 

solvers, visits particle pairs sequentially, meaning there is an implicit assumption 

around the ordering of collisions, which may be untrue and erroneously alter the 

physics. A similar limitation is true of methods that visit particle pairs through more 

complex frameworks like tree searches or multigrid searches (which are used to 

reduce the compute time for high particle numbers). Such an assumption may even 

prevent some particles colliding, as the velocity vectors are updated by a former 

collision. This was observed in the development process herein, where the first 

attempt at multi-particle interactions was made using a hard-sphere approach. 

There are ways to order the collision pairs to circumvent this. One example would be 

working out the order of collisions based on velocity and looping through the pertaining 

list. Alternatively, one could design an algorithm that iteratively reduces the particle 

timestep separately from the fluid timestep until no two collision partners meet the 

collision condition in the same step. Such workarounds exist but can become unviable 

when the number of interacting particles is high. There, the edge case being treated 
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becomes the norm. There is the possibility that the simulation timestep eventually 

needs to be reduced to below the collision duration, at which point the model 

assumptions are weakened. It is typical in the literature to ensure a collision lasts for 

at least 𝑂(10) timesteps (Costa et al., 2015) such that the application of the force is 

smooth, ensuring the correct energy transfer.  

Arguably more important than the above is the strict no overlap condition that is placed 

on the simulation to ensure stability. If there is no means to compute overlap depth, 

then the slightest overlap can cause problems in the simulation, and this was also 

observed first-hand. To reiterate a previously described problem, the collision 

detection (common normal) implementation strictly requires that surfaces do not 

overlap, otherwise the in-built assumption about the convexity between interacting 

non-spherical surfaces is no longer true, and the optimisation algorithm cannot 

converge. There is no longer one unique point on the respective surfaces where the 

‘common normal’ criteria is satisfied. When this happens, the closest distance vector 

is not uniquely defined and so the DLVO and collisional algorithms present unphysical 

and sometimes seemingly random values, and in some instances diverge when not 

treated.  

It was shown in the previous chapter that even for two particles this poses a problem 

when one also considers attractive forces like those arising from the DLVO potentials 

because the attractive forces lead to many repeated collisions in a narrow band of 

timesteps, and small numerical errors were able to overcome the collision detection 

distance in rare instances, compromising the robustness of the solver. This is 

worsened because the minimum of the DLVO potential (Chapter 3.15) lies at zero 

separation, or in other words the interparticle forces want to make the surfaces touch, 

and the collisional implementation must act in opposition to ensure they never do. One 

can imagine then that a small perturbation to this balance can lead to overlap in rare 

cases when particles are agglomerated and are thus ‘colliding’ hundreds of times. As 

mentioned, this was observed in rare instances in the binary particle case, and it was 

further observed with high particle loading in the first efforts at a multi-particle 

framework.  

Everything described up to this point in the thesis, in terms of the methodology, is 

theoretically applicable to a multi-particle framework; however, when the particle 
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number increased, the non-overlap problem led to a soft-sphere approach being 

sought. The other consideration here is that the advantage of the hard-sphere method 

in reducing the number of computations (as it is an instantaneous model) is almost 

made redundant in the case of agglomeration, where collisions become so frequent 

that they need to be computed every timestep anyway.  

An alternative to the soft-sphere approach not pursued here is the potential to identify 

agglomeration as a change of state (from a simulation perspective, not in terms of 

matter) and to fix the agglomerating particle meshes together for the remainder of the 

simulation, or until enough energy is supplied to allow their separation. This would take 

place once the first hard-sphere-DLVO exchange has completed, and resulted in an 

agglomeration event. This would rely on a dependable way of determining an 

agglomerated particle pair, which the results of Chapter 5 lay a strong foundation for 

achieving. This idea is similar to that of the types of models discussed extensively by 

Almohammed (2018) where particles either agglomerate or not upon collision, 

instantaneously, but here the geometry of the agglomerates would also be resolved, 

as would the initial time-dependent DLVO interaction that leads to agglomeration.   

This previous discussion motivates the undertaking of the work in this chapter, where 

the overlap problem is successfully addressed. In fact, the depth of overlap is used to 

define the strength of the penalty force incurred and this acts as a robust way of 

treating particle collisions. This is the essence of the soft-sphere approach introduced 

in Chapter 3: Section 2.10. A spring model which is a function of the overlap depth 𝛿, 

acts to separate particles over time, whilst the energy loss is achieved as before 

through a coefficient of restitution, which is implemented through a dashpot model, 

operating as a function of relative velocity 𝑑𝑣. This forms the spring-dashpot 

implementation.  

Tuning the model coefficients (Equation (3.67)) correctly can be a fine art, as this will 

affect whether the correct dissipation of energy is resolved, as well as whether particle 

forces remain stable and realistic. The main parameter to control is 𝑁𝑐, the number of 

timesteps per collision, but this needs to be weighed against the characteristic 

velocities of the particles and the simulation timestep to ensure collisions are being 

resolved appropriately.        
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The literature on non-spherical soft-sphere algorithms and theories is sparse in the 

context of multiphase systems, and thus an area where there is scope for contribution. 

Most implementations opt to convert or reduce the problem to a spherical one, which 

is done in a variety of ways (Ardekani et al., 2016). As outlined in the literature review, 

the spherical case allows for much simpler implementations, so trying to convert the 

problem to a spherical one is a sensible approach. Some efforts use a multi-sphere 

method (van Wachem et al., 2015), where the algorithm fills non-spherical particles 

with an inscribed number of spheres which roughly define the surface to compute 

collisions. This removes the need to complexify the mathematics; instead, the 

computational time increases, with multiple theoretical spherical particles now 

approximating one non-spherical particle. Ardekani et al.’s (2016) approach detects 

the collision through ‘moving balls’ and uses ghost spheres with a scaled radius based 

on the local curvature to approximate the collision physics. Wynn (2008) published a 

useful paper that attempts to make some of the non-spherical treatments of such local 

curvature scaling robust, as did Zheng et al. (2013) who utilised full simulations of 

structural finite elements to give credence to their proposals.  

As highlighted in Chapter 2, some more detailed approaches are also seen in the 

literature that use a geometric potential algorithm (Dziugys and Peters, 2001). This is 

sometimes done in DEM frameworks, which provides a means to locate the colliding 

surface points by utilising a potential function. The physical accuracy of this model is 

contested, since it does not satisfy a common normal constraint and is known to 

deviate from common normal approaches (Ma et al., 2022). 

The key problem that arises in non-spherical soft-sphere models is that a relatively 

simple set of assumptions can become complex quite quickly due to the many degrees 

of freedom involved in defining the overlap problem continuously and rigorously for 

arbitrary orientations. For example, a reasonable assumption for computing the force 

at a single point (using a single point is a standard in-built assumption) would be to 

say that the deepest points of overlap (of the penetrating particle past the opposing 

surface) are the requisite points for defining the strength of the collisional force. 

Defining the ‘deepest’ overlap points is not especially rigorous for complex shapes, 

and once one converges on those points by some chosen definition, one is left with a 

pair of arbitrary points on the respective surfaces that must then be used to define a 

single shared ‘collision point’ or ‘contact point’, somewhere between these two surface 
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points. Again, there are a multitude of ways to do this, and different implementations 

for each. One option is to select the midpoint between the surface points. This provides 

a simple means to define a contact point but for two particles of very different sizes 

and shape in the vicinity of the contact point, it is questionable how accurate this 

treatment is. It could be more appropriate to use the centre of mass of the overlapping 

region, employing a calculation based on the shared overlap volume (which is difficult 

to calculate precisely and quickly). Then there is the problem of defining the shared 

normal vector along which the forces act. This can be approximated by surface normal 

vectors computed at the collision point, or by forming a vector between the two 

colliding surface points on the non-spherical bodies, but again there is more than one 

approach, with different connections to the overall physics of the problem. 

It could also be appropriate to return to the initial assumptions. Recall, the idea of the 

soft-sphere model is partly to approximate the time dependent loss of energy through 

the surface deformation of colliding particles. In terms of the physics, when two 

arbitrarily orientated ellipsoids present themselves, the collision points on the 

respective surfaces will also mediate the amount of deformation of the body, i.e. the 

stiffness will be a function of the surface curvature that presents itself in the collision, 

which is a function of orientation, and will be different on the respective bodies in 

general. This was addressed in Equation (3.67a). 

There is a further complication that simply having an algorithm that finds the deepest 

overlap points does not fully address the problem: a test is also required to confirm 

overlap, as it is important in a dynamic simulation to have a metric that tracks the 

overlap state of each collision partner. Depending on the mathematical formulation it 

is possible to get both results at once (Dziugys and Peters, 2001), i.e., overlap state 

and overlap depth, or to not (Podlozhnyuk et al., 2017). If one does not, there is an 

associated computational cost, possibly of solving a high-order polynomial (Gan et al., 

2016a) to determine the overlap state. This will be calculated prior to conducting an 

algorithm for defining the collision point, so as to reduce the overall computational 

requirements of the simulation, as this step will be less costly than solving the entire 

problem to determine overlap state. 

As evidenced then, there is no single accepted solution to the problem and it is an 

area still requiring much investigation, with many open questions, perhaps more than 
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it would seem on the surface. The presently available approaches each have their 

limitations, and the challenges outlined in detail above are done so because the same 

considerations and limitations were met during the development process of a soft-

sphere framework for the present code. It is the first goal of this section to propose a 

novel approach to the problem that could circumvent some of the computational cost 

whilst still offering a robust framework for computing particle collisions. Ultimately, two 

ideas were put forward and tested and the results are discussed here. Upon later 

finding a robust solution in the literature, this was implemented further to the two 

proposed models, contrasted with the novel approaches, and ultimately taken forward 

for the final presented results as a matter of pragmatism.  

6.3.2 Development of an Overlap Depth Calculation Scheme 
Both novel ideas were introduced in Chapter 3: Section 2.9. They try to make use of 

the available tools within the code, namely the common normal algorithm and rigid-

body framework, paired with assumptions or reformulations that provide a means to 

the calculation of overlap depth. The first approach, Method 1, involved detecting the 

closest distance points up until the previous definition of a contact, and rather than 

calculating the hard-sphere collision physics upon detection, the colliding points on the 

surface were stored in a separate vector 𝑻0. The coordinates 𝑻0 are updated 

independently, which effectively tracks the specific location on the surface of the 

particles that first collided. This relies on the assumption that the initial contact points 

remain the deepest points of overlap throughout the collision which is a significant 

assumption but is theoretically well suited to collisions involving small overlaps and 

convex shapes like present. In simple testing and development, this was observed to 

be a satisfactory assumption for a wide range of trialled normal collisions. This 

facilitated a computation of overlap and allowed a soft-sphere force to be implemented 

for two particles which accurately resolved the collision physics. The first result of this 

was demonstrated in Figure 3.18. 

There were two limitations observed with this approach. The first is that the deepest 

overlap point assumption becomes less valid when significant torques are induced 

over the collision period or when the fluid is able to appreciably deflect the orientational 

configuration between particles as they interact – as both effects disrupted the location 

of the true deepest overlap points, in relation to the assumed ones. Thus, it can be 

said that this model is more suited to systems where the collisional timescale is 
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significantly less than the fluid timescale (which is most multiphase systems studied 

using CFD-DEM approaches). The quality of the assumption is also a function of the 

curvature of the body close to the collision point, since for certain configurations, small 

perturbations to orientation can have a more significant effect on the error.  

As motivated, the key objective was to allow for multiple particle collisions to be 

computed simultaneously. Adding many simultaneous collisions to the simulations 

unfortunately further reduced the strength of the above assumption, as multiple 

competing directional granular forces complicate the evolution of the overlaps, which 

in turn reduces the strength of the idea. Overall, it can be expected that this method 

works well for binary particle interactions and small overlaps and can be used as a 

simple approach in dilute systems or to quickly set up a framework for studying soft-

sphere interactions and agglomeration events.  

On the plus side, this is an extremely computationally efficient way of calculating 

overlap in comparison to existing methods. The collision points 𝑻0 are converged upon 

by the optimisation algorithm (any suitable algorithm can be used), and once 

calculated they never have to be calculated again for the remainder of the soft-sphere 

collision, meaning that computational resource is reduced for overlapping particles. 

The updating of the 𝑻0 vectors can be slotted into the existing implementation for 

updating positions and orientations, which is already a computationally 

inconsequential procedure in comparison to the various algorithms that must converge 

for particle interactions.  

Because of this very small cost, this could also be an effective way to generate the 

initial guesses for other algorithms that use a trial solution to begin their search or 

optimisation scheme. This could be preferable over other initial guess approaches 

(e.g., starting with the points intersected by the line joining particle centroids) because 

it is based in a form of physical reality – at least initially. In codes where the overlap 

computation dominates the computational load, then this may offer a speed up as a 

supplementary calculation rather than the main computation of overlap depth.    

Further to this approach, there is the second proposed idea, Method 2, where the 

particle surfaces are iteratively shrunk until the common normal algorithm converges, 

thus satisfying a relaxed version of the common normal constraint. This method is at 

the opposite end of the spectrum. In theory, it should offer a similar accuracy to the 
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geometric potential method described earlier and is no less precise of a solution than 

other typically used methods. However, it requires multiple iterations of an optimisation 

scheme, so there is the potential for a high computational cost penalty, the deeper the 

allowed overlap, which will also scale with particle number as more particles generally 

means deeper overlap – as well as this, particle interactions scale like 𝑂(𝑁𝑝
2) using a 

sequential ordering of pairs, so it is of importance to not have overly costly routines for 

calculating particle interactions. There were also concerns raised in the testing 

surrounding robustness, given the lack of a complementary criteria to identify overlap 

in situations where the common normal algorithm erroneously converges. This edge 

case requires special treatment.   

Lastly, there is a third described approach, Method 3, which takes an existing method 

of Podlozhnyuk et al. (2017) and adapts it to the special case of spheroids. Given initial 

testing, all methods showed promise but it was Method 3 that was taken forward as a 

matter of pragmatism, given the time constraints on this final piece of work: method 3 

has already been proven to be robust. Results comparing all three methods are now 

presented, illustrating the described findings. 

6.3.3 Comparative Study of Soft-Sphere Collisions 
Results are presented contrasting the performance of the different soft-sphere 

schemes for two configurations of aspect ratio 5:1 needle particles, shown below in 

Figure 6.10. The simulation set-ups were very basic, with the particles directed at each 

other with a velocity of 1 𝑚𝑚𝑠−1, and all other forces turned off. This allowed a 

timestep of 𝑑𝑡 = 1 × 10−3 𝑠 to be used. The first configuration is the standard long 

edge-to-long edge needle configuration, used many times up to this point, and the 

second configuration is an arbitrary case achieved by setting the first particle’s Euler 

angles to be 𝒆𝜃 = (
𝜋

4
,
𝜋

4
,
𝜋

4
) and translating it 0.25𝑟 in the 𝑧-direction. The approach 

vectors for the initial velocity prescription remained unchanged, indicated by the 

orange arrows. This ensures an off-normal and off-centre collision is also studied, such 

that the curvature scaling in the spring constant, and the particle torques, can have a 

dynamic effect on the interaction.   
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Figure 6.10: The two orientational configurations used for the illustrative studies. 

 

 

Figure 6.11: Distance and overlap calculation between particles colliding in 

configuration 1. (Top left: Method 1; top right: Method 2; bottom left: Method 3.) The 

non-zero metrics are then combined and compared for the three methods in the 

bottom right. 

As can be seen in Figure 6.11, the three methods result in very similar predictions of 

the separation evolution between surfaces for the first configuration, and all proposed 
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methods are seen to be capable of handling a soft-sphere collision. Methods 2 and 3 

perform virtually identically but there is a small discrepancy with the first method, 

where once again the transfer between the distance detection scheme and the overlap 

scheme is not perfect. This was also highlighted in Chapter 3 Figure 3.18. 

  

Figure 6.12: Comparison of the overlap computation normalised by 𝑟 (left) and the 

resulting relative velocity evolution normalised by initial velocity (right), for 

configuration 1. 

In Figure 6.12, the results of the first configuration are further interrogated and 

contrasted. A simulation has been conducted using the hard-sphere method as a basis 

for comparison also. As already indicated by Figure 6.11, the predictions of Methods 

2 and 3 are identical: confirmed by Figure 6.12, the overlap depth lines lie directly atop 

one another, leading to the same evolution of velocity. The discrepancy with the first 

method is further seen, both when transferring to the overlap regime and when exiting 

it. This leads to the initial reduction in the velocity happening sooner, as well as an 

overall deviation in the velocities that appears to compound over time. The hard-

sphere method precisely retards the velocity to the specified amount at the collision 

points, whereas the soft-sphere schemes each underpredict the post-collision velocity. 

This underscores the strong advantage of the hard-sphere scheme in dilute 

suspensions and binary particle interactions, justifying its use in previous chapters. It 

allows tighter control over the conservation of energy of the system which is generally 

a considerable benefit to any physical modelling. In contrast, Method 1 does not offer 

this same level of control. 
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Figure 6.13: Comparison of the overlap computation normalised by 𝑟 (left) and the 

resulting relative velocity evolution normalised by initial velocity (right), for 

configuration 2. 

The same plots are generated for configuration 2. Again, Methods 2 and 3 are very 

similar, with the lines almost lying atop one another again. However, the resolved post-

collision velocity now differs between the two methods. Method 2 overpredicts the 

post-collision velocity very slightly but is the closest of the three. Method 3 

underpredicts slightly, consistent with its performance in the previous configuration, 

and Method 1 largely overpredicts the resolved velocity.  

The overprediction by Method 1 can be related to the overlap depth prediction, where 

a very unsmooth transition back to non-overlap is seen. Towards the end of the overlap 

evolution, Method 1 begins to deviate from the two more accurate methods, until the 

overlap check algorithm abruptly realises the 𝑻0 points are no longer in a state of 

overlap, terminating the application of the soft-sphere forces. However, this means 

that the final bit of energy left to be dissipated by the dashpot element of the model is 

unable to act and so the particle interaction finishes with the particles in a higher 

energy state than the model intends to enforce theoretically – this has the potential to 

destabilise simulations.   

The implication of this study is that Methods 2 and 3 offer the most promise. For the 

more complicated configuration, Method 2 offered the closest prediction to the desired 

restitution coefficient, however it did so at significantly more computational cost. 

Method 3 took around 60 iterations to converge on average, where Method 2 took 

around 500 for the deepest penetrations and 100 for the smallest (the required 

iterations varies as a function of overlap depth). This was done using very small 
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convergence tolerances, i.e., 𝜀 ~ 𝑂(10−9), so this could be relaxed. Meanwhile, 

Method 1 requires zero iterations to converge on a solution after the initial collision 

points have been identified, which is a significant advantage, but perhaps not enough 

to overcome the accuracy concerns.  

If there was a means to recalibrate the tracked points mid-collision, this could be a 

promising way forward. Perhaps, there is the possibility of combining Method 1 with 

either Method 2 or 3, so that the precise points do not have to be converged upon 

every timestep through a complicated optimisation scheme, but rather the detailed 

scheme (Method 2 or 3) is run every few timesteps to recalibrate the collision location, 

and these points are advected using the framework of Method 1 in the time period 

where no optimisation scheme is run. Like a means of interpolation through time. This 

could be a good way to offset some of the computational costs whilst maintaining 

accuracy, however it was beyond the time constraints of the present work to implement 

this idea.     

6.3.4 Demonstration of Agglomeration Capability 
To demonstrate the capability of the three approaches in achieving agglomeration 

between non-spherical particles, Figure 6.14 highlights the same simulation case for 

the three approaches with the DLVO force model reintroduced. The orientation was 

the same as Configuration 1 in the last study. The simulation timestep was reduced to 

𝑑𝑡 = 2 × 10−7 𝑠 and the particle velocities were set to 0.5 𝑚𝑚𝑠−1 as this value was 

shown to facilitate agglomeration for this configuration in Chapter 4. 

As can be seen from Figure 6.14, all three methods are capable of resolving 

agglomeration. Interestingly, agglomeration is achieved in much the same way as the 

hard-sphere model, which was not expected. That is, the particles repeatedly collide 

with one another to successively reduce velocity. The reason this happens is because 

the van der Waals forces are turned off during overlap and thus the two forces are 

never acting simultaneously, preventing them smoothly reaching a stationary 

equilibrium. This is demonstrated explicitly below in Figure 6.15. The same decaying 

oscillation is seen as the particles move towards a quasi-equilibrium state as with the 

hard-sphere calculations. Interestingly, the three methods predict slightly different 

frequencies of oscillation as the interactions evolve. Methods 1 and 3 predict longer 

slower transfers between overlap and DLVO, whilst Method 2 operates at a slightly 
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higher frequency. It is not known why this is the case. Methods 2 and 3 predict 

smoother transitions than Method 1 which has small spikes in its separation.  

 

 

Figure 6.14: Separation distance evolution between particles agglomerating in 

configuration 1. (Top left: Method 1; top right: Method 2; and bottom: Method 3.) 

On the left of Figure 6.15, the normalised velocity evolution is also shown for the case 

of Method 3. Since the needles are in the maximal configuration, a very significant 

acceleration is experienced momentarily before collision as a result of van der Waals 

attraction, but this is dissipated by the collision, and a similar exchange occurs 

successively as the velocity and kinetic energy decay towards zero.  

Outlined earlier by Figure 6.11, there is a hybrid approach to determining distance 

metrics in the solver. The separation distance is tracked by a separate algorithm to the 

overlap depth. There is the same distinction drawn in the application of the forces, 

which is seen in the right-hand plot in Figure 6.15: the van der Waals force is only non-

zero when the soft-sphere force is zero, and vice versa. Perhaps a smoother transition 

to agglomeration between particles could be achieved by allowing some, possibly 

reduced, component of the van der Waals force to stay active during overlap. This was 
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not recommended in the literature, in particular by Mihajlovic et al. (2020), due to an 

overprediction of agglomeration observed in DEM simulations. However, it may be 

appropriate to reintroduce this attractive overlap force in the context of turbulence, 

which will be further commented upon in Section 6.6. It should be noted the relative 

time that the two force schemes are active for as the agglomerate forms as this will be 

commented on and prove crucial to findings in the turbulent box.  

 

Figure 6.15: Relative velocity evolution (left) and force interaction (right) between 

particles agglomerating in Configuration 1 under Method 3. 

Overall, in the present state of all three methods, Methods 2 and 3 present strong 

approaches to the problem. The results of the previous investigations indicate either 

could be chosen, but given the uncertainty around Method 2, given its novel and 

untested nature, Method 3 was taken forward when weighed against the time 

limitations of the project. As future work, the other two methods could be combined to 

create a strong approach to the problem as discussed. 

6.4 Validation Against Hard-Sphere Agglomeration 
Results  
As a means of validating the implementation for the purposes of agglomeration, and 

comparing the previous hard-sphere to the proposed soft-sphere method, key results 

from Chapter 4.3 were recreated, wherein needle particles were collided in their 

minimal and maximal configurations at a fixed range of velocities to determine the so-

called cut-off point for agglomeration.  
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The spherical case is first compared as a baseline, which validates the soft-sphere 

model before non-spherical effects are included; however, the non-spherical distance 

metrics are active for the computation of forces. After this, the minimal and maximal 

cases for needles are compared.  

I. Spherical Case 

 

Figure 6.16: Separation distance (left) and relative velocity (right) time evolution for 

colliding spheres under the soft-sphere model. Distinct lines are colour-coded by 

initial velocity and highlighted in the figure legend. 

The spherical case, depicted in Figure 6.16, overall displays a very similar result to the 

use of a hard-sphere collision method. The cut-off velocity is seen to change very 

marginally. In particular, for the 0.700 𝑚𝑚𝑠−1 velocity case, an agglomerate is not 

formed, and the particles rebound. In the hard-sphere case, shown in Figure 4.2 (c), 

the particles were observed to nearly escape the potential well, but ultimately be 

recaptured by the attractive forces, leading to agglomeration. This represented the 

very edge case of cut-off given how far the particles were able to separate before this 

took place. In the soft-sphere case, the particles are just able to escape, which implies 

they retained very slightly more energy post-collision as compared with the hard-

sphere. This small difference can be attributed to the imperfection of the overlap 

distance which is not perfectly accurate due to the assumptions of the model. 

II. Maximal and Minimal Needle Configurations  

The same validation was performed for the needle configurations, with the separation 

evolutions shown in Figure 6.16. The minimal force inducing configuration has a cut-

off velocity of 0.350𝑠−1 and the maximal configuration 1.225 𝑚𝑚𝑠−1. These are the 
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same two values resolved by the hard-sphere model, demonstrating consistency in 

the resolved agglomeration outcomes and implying that the new model will be 

consistent with the findings of the previous chapters. 

  

Figure 6.16: Separation distance evolutions for colliding needles under the soft-

sphere model, demonstrating the cut-off initial velocity for agglomeration in the case 

of minimal configuration (left) and maximal configuration (right) needles.  

6.5 Multi-Particle Collisions and Agglomeration  

6.5.1 Simulation Initial Conditions and Challenges 
To test the robustness of the particle interaction solver, a test-case needed to be 

created which would place the numerical models under significant stress. This aided 

the development process and allowed problems to be found sooner.  

The chosen case was injection into a quiescent box of fluid at random locations 

throughout the domain. The particles were given an initial velocity proportional to their 

normalised coordinate location in the box, which ensured every particle’s velocity 

vector pointed at the box centre. This was done typically with a proportionality constant 

of 𝐶 = −𝑢𝐵, where 𝑢𝐵 = 0.875𝑚𝑚𝑠−1 is half of the measured average collision velocity 

in the bulk flow region from the complementary channel flow work (Mortimer et al., 

2020). However, many values were experimented with during the development 

process to test a range of conditions.  

This initial condition meant that the particles travelled back towards the centre of the 

box, due to the symmetry of the domain. The centres of the particles would all meet 

back at the origin after the same number of steps, if not for the non-sphericity of the 
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shapes and their finite size, as well as the crossing of their trajectories – which all lead 

to the particles also colliding en route, but mostly in the vicinity of the origin.  

Further to this, a slight variability was given to the initial velocities to begin to introduce 

the variability that would be present in a physical system and to try and maintain a 

continuous stream of collisions over a wider span of time for testing purposes. The 

exact definition of this was to scale the velocity magnitude by a factor that allowed a 

small degree of uniform variability to enter, i.e., 

𝐶𝑖 = −𝑢𝐵 ⋅ (1.0 + 0.25 ⋅ (1 − 2 ⋅ 𝑋𝑖)) (6.1) 

for particle 𝑖, where 𝑋𝑖 ∼ 𝑈(0, 1), which equates to varying the velocity above and 

below the mean by at most 25%. For the purposes of testing, this value could be 

decreased to try to increase the stress on solver at a localised point in time, or 

increased to ensure a continual stream of binary collisions for the purpose of 

recreating edge cases more quickly. 

By injecting the particles uniformly randomly into the domain it was found that often 

overlaps would be present at the zeroth timestep which introduced numerical 

problems. The first reason for this was that the initial overlap depth may have been 

large, leading to a large repulsive penalty force, quickly increasing the kinetic energy 

above the amount prescribed by the initial conditions. To circumvent this, the soft-

sphere force was capped through the overlap depth, 𝛿 = min (𝛿, 𝑏/3) for minimal 

principal axis 𝑏, which also treats other such edge cases. In a robust framework, the 

physics in the collision model would ensure that overlap depths do not reach anywhere 

near the order of the particle size – this is the idea behind the penalty component 

opposing overlap – but the allowable depth can be controlled by the user/developer 

depending on the ‘softness’ of the collisions, using 𝑁𝑐. However, there are two frequent 

cases that can overcome this treatment. The first is the injection of the particles as 

described. The second is when there are many interacting, and thus overlapping, 

particles creating a granular force effect that overcomes the soft-sphere penalty for 

some particle pairs in the matrix and allows further penetration than typical. Both must 

be considered.    

A second reason compounded the instabilities first observed, which is the fact that the 

relationship between the velocity state and the overlap depth are not defined by any 
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physical process at the point of injection – in the model these two quantities need to 

be related as they are coupled.  

The biggest issues were observed when particles are overlapping to an extent 

whereby the deepest point penetrates beyond one of the semi-axes of the particle, i.e. 

it goes over half-way. This happened in injection but was also seen to occur when the 

collisions were too ‘soft’ or multiple interactions pushed an overlap too far. This leads 

to confusion in the spring-dashpot model because there is a relative sign change 

between the overlap depth and the relative velocity defined at the contact point. 

Instead of dissipating energy, the particles were observed to accelerate via the 

dashpot component, and this led to large spikes in the kinetic energy of the system 

and a violation of conservation of energy (effectively a coefficient of restitution greater 

than unity is erroneously implemented). Correct tuning of the soft-sphere parameters 

counteracts this issue, which involves making sure 𝑁𝑐 is low enough to resolve the 

collision properly (based on the velocity of the colliding particles) as well as choosing 

sensible values for the parameters outlined in Equation (3.67).  

The described mathematical effects caused a problem in the injection step but it was 

also partly why the first methods had to be discarded – when many particles are 

involved, the definition of the contact point has to be highly robust. This requirement 

increases with aspect ratio of the particles since the distance to travel to pass the 

smallest semi-axis decreases. It can be noted here that ‘robust’ does not necessarily 

mean the most physically precise. There just needs to be a consistent mathematical 

rule that is followed to define the contact point, which also can be converged upon 

over the full range of orientational and thus geometrically overlapping degrees of 

freedom.  

6.5.2 Particle Injection Algorithm  
To avoid the injection issue, an algorithm was developed for the injection step, which 

ensured no initial overlap could be achieved. Firstly, the cubic domain is broken down 

into smaller cubic sub-domains. The length of these domains is defined by the extent 

of the longest axis of the spheroid, so that the spheroids could be lined up tip-to-tip 

without breaching the boundaries of the domain, nor the boundaries of the 

subdomains. Since the domain is a cube, this can be simplified to one dimension: the 

number of subdomains in each direction is the length of the box divided by the longest 
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edge of the spheroid, but naturally this will not give an integer in general and so a 

small buffer is left at the edges of the domain where no particles will be injected.  

Now in three dimensions, the algorithm calculates the midpoint of each of these 

subdomains and this forms a candidate location where a spheroid centre can be 

injected, whilst also ascribing a unique integer ID in 𝑚 to each location. The number 

of allowable subdomains is thus an integer 𝑀 (for this to work, the number of particles 

must be lower than 𝑀). The injection algorithm generates an integer at random, 𝑚𝑖 ∈

{1,… ,𝑀}, and removes 𝑚𝑖 from the set of allowable integers. By construction of the 

array of midpoints, the chosen integer corresponds to a unique volume within the box 

for a particle to be injected. This was seen to work quickly and well. 

     

 

Figure 6.17: Demonstration of random injection (left) and the main collisions at the 

centre of the domain (right).    

Figure 6.17 demonstrates the injection step and the timestep at which the particles 

theoretically reach the origin based on 𝑢𝑏𝑢𝑙𝑘. It can be seen that the particles are nicely 

spread throughout the domain at random and that they subsequently collide at a 

similar time, as required.   

6.5.3 Initial Results 
Initially this was a useful test case for understanding the limitations of the collision 

implementations, but taking measurements of the system was also able to give some 

physical insight.  
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Figure 6.18: Cumulative system separation between particles (left) and cumulative 

relative velocity (right), measured over time. 

 

Figure 6.19: Kinetic energy of the particle phase (left) and cumulative soft-sphere 

force (right), measured over time. 

 

Figure 6.20: Mean coordination number of the particles over time.  
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The results of this test simulation are shown in Figures 6.18 to 6.20. The quantities on 

display are the interparticle surface separation, relative velocity, kinetic energy, soft-

sphere force and mean coordination number. These quantities are total quantities, 

measured pairwise between particles and then appended to a cumulative sum to give 

a rough metric on the overall system behaviour at each timestep.    

The separation of the particles decreases linearly as the particles move towards the 

centre of the box, representing their constant velocity, the system separation then 

reaches a minimum whilst the collisions take place. This separation quantity does not 

reach zero because, even when all surfaces are touching, particles at opposite sides 

of the congestion remain a significant distance apart. The minimum value obtained, 

which seems somewhat arbitrary, does actually give insight into the system as it 

roughly represents the density of the structure formed when all particles are 

interacting. Lastly, the separation between the particles begins to increase again as 

the collisions complete, but the gradient of the line is seen to be reduced, representing 

a decrease in overall velocity state and a loss of energy, in much the same way that 

binary particle interactions were observed to behave; in fact, the graphs are noticeably 

very similar.  

The relative velocity plot in Figure 6.18 tells a similar story to the tracking of the kinetic 

energy shown in Figure 6.19, which is that the collisions are dissipative. Robustness 

is demonstrated by these lines monotonically decreasing, ensuring that conservation 

of energy is not violated. There can be very small increases in the relative velocity 

because this value is a magnitude and particles will temporarily reach zero relative 

velocity magnitude after deceleration has occurred in the collision, before they are 

again accelerated outside of one another.   

Lastly, Figure 6.20 shows the mean coordination number of the system which is 

defined here as the number of particle pairs that are undergoing a soft-sphere collision 

divided by the total number of particles. This places a metric on how many collision 

partners the average particle has. Naturally, every step change in this graph is by a 

fixed amount (1/𝑁𝑝) and so the graph is not especially smooth. The coordination 

number starts at zero and ends at zero, indicating that all collisions were successful in 

separating particle surfaces, giving indication to the robustness of the method. As 



266 
 

more particles collide, the coordination number grows, indicating multiple interacting 

particles, with certain particles having multiple collision partners. 

6.5.4 Application to Behavioural Modifications 
In the spirit of the first part of the chapter, it seemed relevant to assess the system in 

terms of a behavioural modification and so the coefficient of restitution was varied 

through the same three values as earlier, 𝑒 ∈ {0.2, 0.4, 0.6}. The results are shown 

below in Figures 6.21 to 6.22. 

 

Figure 6.21: Cumulative system separation between particles (left) and cumulative 

relative velocity (right), measured over time for three values of the coefficient of 

restitution. 

 

Figure 6.22: Particle-phase kinetic energy (left) and coordination number (right), 

measured over time for three values of the coefficient of restitution 

Interestingly, the difference in the two key metrics, i.e., separation and relative velocity, 

is not as large as would maybe be expected, shown in Figure 6.21. The systems with 

the lower two CORs behave very similarly in terms of the amount of energy lost. This 
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may be due to the limitations of the dashpot model when there are many interacting 

collision pairs with competing forces. In such cases, the spring-dashpot model no 

longer has the same level of control over overlap depth as the interaction progresses 

– there are other competing forces. Thus the assumption that a fixed amount of energy 

will be dissipated is not always met with full accuracy, as the overlap evolution has 

moved away from the ideal scenario in which the model constants were derived. 

Therefore, a recommendation is made here that a combination of the hard- and soft-

sphere models could be employed where the hard-sphere model is used as the 

default, thus allowing the correct dissipation of energy to be ensured in simple binary 

collision cases, and the soft-sphere model is used as a back-up model whenever the 

limitations of the hard-sphere model are encountered or agglomerates begin to form 

(as will be the case when DLVO forces are re-introduced). 

The coordination number is significantly higher for the lowest coefficient of restitution 

case, meaning that the average particle has more collision partners. Therefore, a lower 

coefficient of restitution has the potential to make the simulation less accurate from a 

energy dissipation standpoint. 

6.6 Reintroduction of Turbulence and DLVO Forces     

 

Figure 6.23: Cumulative system separation between particles (left) and cumulative 

relative velocity (right), measured over time. 

Optimistically, the highest turbulence box (𝑅𝑒 = 22.2) was first chosen to study multi-

particle agglomeration. The same initial conditions were used as the previous study, 

for 24 particles, however the turbulence was quickly able to overcome the initial 

conditions as seen in the relative velocity plot of Figure 6.23. The chaos of the 
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turbulence field can be seen in the separation of the particles. It is noted that sharp 

spikes are not indicative of instabilities, but just represent discontinuities in the 

separation between particles as the particles pass through the periodic boundaries 

and are injected at the opposite side. There is not currently a treatment to make this 

calculation continuous in the code and can also lead to agglomerates breaking as one 

particle passes through the boundary first. 

  

Figure 6.24: Coordination number (left) and force magnitude (right), measured over 

time. 

The coordination number is plotted again on the left of Figure 6.24, and this time it is 

the absolute value shown rather than being scaled by the number of particles. In 

retrospect this gives a clearer picture of what is going on: a value of 2.0 means that 

two soft-sphere interactions are taking place at once, and so on. Over the simulation 

period plotted, a few interactions take place, climbing towards a maximum value of 

four simultaneous interactions. For this application, the coordination number should 

ideally also take into account the number of particles in the DLVO potential, to give an 

impression of the number of formed agglomerates. This should be addressed in future 

work.  

The right plot of Figure 6.24 displays the van der Waals and soft-sphere competition 

for the multi-particle case. As expected, the two forces seem to counter one another. 

The soft-sphere forces reach a maximum whilst the van der Waals forces are not 

active. Agglomeration would be seen where the van der Waals forces are active and 

the soft-sphere forces are very minimal, because the magnitude of the force is a 

function of overlap depth. As the particle agglomerates, the successive overlap depths 
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reduce, and so the soft-sphere force reduces also, as was shown in Figure 6.15. This 

was not really observed in the present simulation. 

Under close inspection of the simulations, an effect is observed where for particles 

that ought to agglomerate, they spend a lot of their interaction time in the state of 

overlap, for which there is no attractive force resolved between them. This gives a 

window for other competing forces to act to accelerate the particles apart with no reply 

from the van der Waals force. By the time the van der Waals forces reactivate, the 

particles may have already been accelerated to a degree that allows them to escape. 

This actually creates a scenario where agglomerated particles are too easy to break 

apart. This is in direct contrast to the findings relating to the hard-sphere model in 

Chapter 5, where agglomerates were unable to be broken by the turbulence field. 

There, the van der Waals forces are always active, and this underscores the difference 

in compatibility between models. For future work, it is recommended to implement 

some consideration of agglomerative force when the particles are in a state of overlap, 

such that agglomerate structures are more stable in the flow – and more 

representative of the physical reality.  

Since the van der Waals forces are so short range, they tend appear sharp, but they 

are resolved over a number of timesteps and ‘zooming in’ on those spikes reveals a 

smooth application of force. It is this requirement that massively restricts the simulation 

time. Just to simulate this simple interaction took two days of compute time on 48 

cores. Since there is no splitting of the timesteps between particles and the fluid, a 

significant chunk of this compute time is taken redundantly calculating a high-order 

accuracy velocity field which has changed imperceptibly between steps.   

To try and achieve agglomeration without changing the code, higher and higher 

numbers of particles were assessed, however turbulence at this level (𝑅𝑒𝜆 = 22.2) was 

mostly found to separate the particles and disperse them quite evenly as shown in 

Figure 6.25 below which represents the final state of a simulation with the same 

simulation conditions as previous, but with 50 particles included. The final timestep is 

shown here with no sustained agglomerates formed. Again, this is probably also a 

function of the particle collision and DLVO interaction between one another leading to 

agglomerates which are overly susceptible to breakage. 
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Figure 6.25: Final state of the particles after a turbulent simulation with 𝑁𝑝 = 50. 

In all of the studied cases there was a significant limitation resulting from the low 

timestep requirements of the DLVO forces. Either the initial velocities, or the 

turbulence strength were set high, thus allowing many interactions to take place, but 

almost always too strong for agglomerates to form; or, the velocities and turbulence 

strength were set low, but the simulation time to allow for many interactions was so 

prohibitively high that few interactions could be studied, even though agglomeration 

was observed. It was possible to reduce the maximal strength of the attractive forces 

and thus reduce the simulation timestep without fear of divergence, but then 

agglomeration similarly became unlikely because the forces are reduced. There is also 

very fine resolution required in the particle motion, such that the amount particles move 

relative to one another gives the chance for the separation distances to enter the 

potential well of the DLVO effects, giving them enough chance to contribute to the 

pair’s motion. If the movement of the particles in a single step is too large, the particles 

can easily bypass the potential well, even if they collided.  

 

6.7 Solver Improvements: Parallelisation, Time-
Stepping and Speed-Up     
As described, long compute times were required in each of the simulations presented 

in Section 6.6, even though particle numbers of 24 and 50 are relatively low. As such, 

there was a clear need to speed the simulations up for this methodology to be 
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practically viable on a larger scale. To bring real-world applicability would involve being 

able to resolve a much larger simulation time period, which means far more time-steps. 

The challenge here is the vastly different timescales of the fluid and the DLVO forces. 

The boxes of turbulence require 𝑑𝑡 ∼ 𝑂(10−3 − 10−5) 𝑠 depending on the resolved 

Taylor Reynolds number, whereas the DLVO forces are requiring 𝑑𝑡 ∼ 𝑂(10−6 −

10−7) 𝑠 depending on morphology. For particles to move with realistic velocities based 

on the channel-flow analogue (or nuclear waste systems in general) and to fully 

sample the related turbulence field as well as interact sufficiently with each other, an 

inordinate number of timesteps is required (hundreds of millions) even in millimetre 

domains. However, since there is such a separation of scales, it is a reasonable 

assumption to allow the update of interparticle forces to decouple from the bulk fluid 

motion at the time-level. The main source of particle motion is the background fluid 

and naturally the time-stepping involved in this coupling needs to be on the order of 

said fluid, but for very close range interactions it is possible to vastly reduce the 

timestep of just the particle phase, such that there are a number of internal time loops 

run within one global timestep for just the calculation of the particle motion.  

The first element of speed up was achieved by creating a subloop for the advection of 

the particles due to DLVO forces. In the main simulation loop a check is applied that 

identifies particle interactions that are found to be entering into a DLVO potential well. 

This is presently identified as interparticle separations falling below two microns, 

consistent with Chapter 5. These particle interactions are flagged and then placed into 

a subloop of their own which takes place before the main particle advection loop and 

gives sufficient resolution to just the particle pairs that require it. A reduced timestep is 

applied, 𝑑𝑡𝑣𝑑𝑊 = 𝑑𝑡/100, over which the force calculation and consequent particle 

advection is calculated for particles experiencing agglomeration. If particle surfaces 

are found to overlap then their flag is removed and they are exited early from this 

subloop awaiting overlap attention in the next iteration of the soft-sphere forces (the 

next timestep). This allowed the overall simulation timestep to be increased by two 

orders of magnitude, giving incredible speed ups, and allowing simulations that were 

previously taking many days to complete, to now complete in hours. This meant a 

much fuller/longer turbulent agglomeration interaction could feasibly be simulated.  

The second speed up was achieved by distributing particle interactions over the 

multiple cores used by the fluid solver. Nek5000 uses an MPI parallelisation technique, 
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and within this framework the user has access to the node ID that a calculation is 

taking place on. Thus, a simple computation takes place at the start of the simulation 

to identify the available number of processors, and any particle loops that are 

independent of one another (i.e., the particle interactions, which are computed 

pairwise) are evenly distributed across the available cores, which also significantly 

sped up the code. This is done by looping over an integer range that is defined locally 

each timestep according to the identified local node ID.  

One nice factor here was that the main bottleneck is the DLVO forces, and since the 

expensive subloop only contains particles that are undergoing considerable DLVO 

forces, there are no redundant calculations taking place within this framework. All of 

this allowed the results presented in the next section.    

   

6.8 Soft-Sphere Agglomeration in Turbulence  

A method has now been developed which gives the real possibility of studying non-

spherical agglomeration in turbulence at a very fine level of detail, for the case of many 

particles interacting for extended periods of time. Unfortunately, as this was achieved, 

the remaining time on the project was short so the presented results outline a capability 

but fall short of delivering new insight into the topic, which is now certainly possible.  

 

Figure 6.26: Three simultaneous binary particle interactions (highlighted in red, blue, 

and green) take place, advected by a homogeneous and isotropic turbulence field 

(𝑅𝑒𝜆 = 2.5). The pictures are separated by 0.01𝑚𝑠 and the blue arrow indicates 

direction of time. 
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To demonstrate the capability, three pair interaction cases are shown in the turbulent 

multiphase system in Figure 6.26. To aid the agglomeration process, the higher 

turbulence level was replaced by the lower turbulence level box.  

In the interaction that takes place between the particles highlighted in blue, at the first 

snapshot the particles begin to collide in an almost long-edge to long-edge 

configuration. In the second snapshot, the first soft-sphere collision has completed 

and the particles are seen to have reorientated themselves into the precise maximal 

force configuration. This was helped by the natural torques induced by the collision, 

but was held in place by the attraction towards this particular configuration which is 

favoured by the DLVO forces. In this case, the absolute velocity of the particles is quite 

low in comparison to most of the rest of the particles shown and the relative velocity 

between the particles is also relatively low. At the same time, the needles had this 

perfect configuration, where the van der Waals forces were shown to be increased in 

Chapter 4, compared to a spherical interaction. These favourable conditions lead to 

an agglomerate forming which was seen to last for the remainder of the simulation. In 

the third snapshot this is demonstrated as the particles are advected away as a 

coherent pair. This demonstrates the capability of the methodology to facilitate soft-

sphere agglomeration events in turbulence. 

In the particle interaction highlighted in green, the two particles possess considerably 

more kinetic energy. The particle that starts to the left in the first snapshot has 

considerable energy in the form of rotational kinetic energy, and even though this 

particle pair moves through the same maximal attractive state as the blue particle pair, 

which occurs in the second snapshot, this higher energy ensures that the particles do 

not agglomerate. By the third snapshot, the particles are swept apart by the local 

velocity gradients and the interaction is much shorter overall.  

In the third case, where the particles are highlighted in red, an unusually lengthy 

interaction was seen to take place due to a region where the background turbulence 

field happens to be relatively calm. This allows two particles to undergo a soft-sphere 

collision that results in an agglomerate forming for a short while, this is seen to last for 

the full time shown by the snapshots. However, as was shown in previous chapters 

the configuration where needles are connected by their extremities is not particularly 
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strong and this agglomerate was seen to break up as soon as their local flow became 

stronger.         

6.9 Agglomerate Structures Formed by Interacting Non-
Spherical Particles  
Finally, an avenue for investigation and validation of the solver and subsequent 

findings is outlined. Ochsenbein et al. (2015) studied a system of interacting and 

agglomerating needles of a similar aspect ratio to present (5:1). Needle particles 

became agglomerated in a reactor of monosodium salt water through a stirring 

mechanism. Considerable measurements were taken which can be compared to, as 

a means of validation of the types of structures formed by agglomerating non-spherical 

particles. Some examples of the formed structures are displayed below in Figure 6.27, 

which have similarity to those observed in the final simulations conducted as part of 

the thesis. 

 

Figure 6.27: [Taken from Ochsenbein et al. (2015)] image recognition technique 

used to characterise needle agglomerates of a ~5:1 aspect ratio. 
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Figure 6.28: Comparison with Ochsenbein et al. (2015) (left) shows a similar triplet 

needle agglomerate formed in the flow with the present methodology (right). 

Figure 6.28 shows a typical agglomerate formed between needles of a 5:1 aspect ratio 

in the reference material. Like that which was typically observed in the present 

simulations, both the experiment (left) and the simulation (right) show clustering 

around a central point for multi-particle agglomerates. This is shown in most examples 

above in Figure 6.27, which was also seen in present simulations when triplet 

agglomerates formed. Further analysis should look to conduct many simulations and 

attempt to quantify this effect over a statistically significant sample, whilst also 

comparing to experiment.  

6.10   Conclusions 
In conclusion, the final chapter has covered wide ground. To begin, a comprehensive 

behavioural modification study took place to analyse the relative importance of 

Hamaker constant and coefficient of restitution across morphologies. It was found that 

both parameters played a significant role in agglomeration, building upon the work of 

Mortimer et al. (2021) and Wolde (2023), confirming hypotheses presented therein 

and extending those ideas to non-spherical particles. In general, this extension 

showed similar conclusions across morphologies, although interesting behaviours 

were seen with the disks. The disks seemed to be more independent of the Hamaker 

constant and COR, compared to the other morphologies in terms of the resolved 

agglomeration rate, and also exhibited interesting alignment tendencies for both 

mentioned behavioural modifications. The needles and spheres were found to 

consistently agglomerate at higher rates than the disks and they showed more 
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sensitivity to the behavioural modifications of COR and Hamaker constant, whereas 

they showed higher sensitivity to turbulence level. 

Further to this, an extensive developmental journey was outlined for the simulation of 

multi-particle agglomerates arising due to a turbulence field. This is the first time this 

has been attempted for structure resolved non-spherical particles, with all competing 

forces modelled explicitly, and the full process was outlined with consideration given 

to the challenges and solutions. Overall, a powerful simulation methodology has now 

been developed that facilitates a multitude of competing physical phenomena, with 

wide applicability – not least to the nuclear industry and the challenges faced by 

Sellafield Ltd. 

The recommendations from this final piece of work are quite wide since there are so 

many potential avenues to go next. The novel overlap detection schemes could be 

made robust and compared to the findings of other schemes in the literature. The 

newly developed methodology should be applied at scale to investigate the 

agglomerate structures formed in turbulence by non-spherical particles. This in and of 

itself is a very wide topic and it is unchartered territory in the literature, especially at 

this level of fidelity. The application of the described methodology can offer insight into 

a lot of different multiphase systems, and represents the cutting-edge. It would be 

interesting to compare the types of structures formed by different flow conditions, and 

this can be controlled through the prescribed turbulence conditions of the box.  
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7 Conclusions and Suggestions 

for Further Work 

7.1 Summary of Main Developments and Findings 
Over the course of this project, significant ground has been covered with novel 

contributions to the general understanding of turbulent multiphase flows, non-spherical 

colloidal particle pair interactions, and a wide range of computational modelling 

techniques and methods. It is the goal of this final chapter to highlight these key 

achievements of the project and give suggestions for future work. 

The thesis began with an introduction that motivated the work undertaken, both in 

terms of its general significance to developing scientific understanding, as well as its 

particular importance to the nuclear industry and Sellafield Ltd. To concretise this, a 

series of ambitious but realistic objectives for the project were outlined. Each of these 

stated goals were ultimately met, which will be demonstrated throughout this section, 

highlighting how the attainment of these goals directly contributes to, and moves 

forward, the understanding and capability surrounding the relevant systems.  

In support of this, the literature review covered a breadth of fields, underscoring the 

wide array of physics that feed into this modelling problem. After introducing the key 

background literature and concepts relating to turbulent flows, computational fluid 

dynamics, and particle modelling, the current state-of-the-art was relayed in terms of 

the more specific areas of particle-laden flows, non-spherical modelling techniques, 

and particle agglomeration in turbulent systems. Stemming from this, there were 

several key areas identified where there was scope for novel contribution. In particular, 

it was highlighted that very few studies exist that combine particle-resolved multiphase 

fluid dynamics with agglomeration effects, and no existing studies were found where 

particle non-sphericity was explicitly captured in this context. Moreover, there were no 

studies identified that delve into the effect of turbulent fluid dynamics on the 

agglomeration process between non-spherical particles.  
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The multiphase agglomeration literature itself was seen to be quite sparse, despite 

this being shown to be a key emergent physical process that can dominate the overall 

behaviour of particle-laden systems, which appear in a wide range of situations, from 

the nuclear industry to environmental flows. This means that a complete picture of the 

process of agglomeration in turbulence is still to be developed, and there is significant 

room to develop theoretical understanding. At the macroscopic level, it was shown that 

there are studies in the multiphase flow literature that address spherical particle 

agglomeration, and similar studies were found addressing fluidisation. Separate to 

this, it was shown that there are robust physical theories about particle interactions at 

the microscopic scale and there are successful efforts to extend this to non-spherical 

particles under a theoretical framework. However, there are very few attempts to 

bridge the gap between these two scales to understand the interplay in full detail, 

explicitly capturing the emergent behaviours as they take place – this is where the 

present simulations fit in.  

There are reasons for the lack of study in the stated areas in the literature, but two key 

points are as follows. Firstly, there is the difficulty of including non-sphericity into four-

way coupled flows, due to the challenge of robustly treating collisions and accurately 

capturing orientationally-dependent forces – this poses a strong mathematical 

challenge, with many separate treatments and models that must be devised and 

developed of a significantly higher complexity than the equivalent spherical models. 

Notably, there are attempts to overcome the specific challenges associated with non-

spherical collision modelling, but the different approaches do not necessarily align with 

one another and thus this is an active and evolving area of research. Beyond this, 

there are very few attempts to include agglomerative forces into the models, and none 

that consider non-spherical particles due to the orientationally-dependent 

complications this brings. Secondly, there is the much-discussed challenge associated 

with the vast range of scales present in these flows. There are typically two to three 

orders of magnitude separating the scales associated with the turbulence field which 

drives the bulk particle motion, and the DLVO effects which lead to particle 

agglomeration events. As such, it is typically unfeasible to capture the physics at both 

scales simultaneously. By restricting the scale of investigation, the present work was 

able to capture both effects at a very high level of detail to inform the typical simulations 

of large-scale systems that cannot realistically model both.    



279 
 

Before any results were generated, a significant development process first needed to 

take place to address the above challenges. In pursuit of this, a multiscale and 

multiphysics solver was developed to address the problem of particle agglomeration 

in turbulent flows for systems of non-spherical particles. The project started with an 

inherited methodology (Mortimer, 2019) which laid the foundations for the work 

undertaken in this thesis. The inherited code had successfully incorporated DLVO 

forces between pairs of spherical immersed boundaries but was not yet seen to 

reliably resolve agglomeration. One of the key features of this code was its ability to 

read particle meshes into a data structure that could then be used to accurately couple 

the particle-phase to the fluid-phase, such that fluid forces could be interpolated 

directly from the high-fidelity fluid calculation in situ. This proved to be useful in the 

process of extending to non-spherical particles as the mesh reader could handle any 

kind of icosphere mesh and the treatment for particle advection due to the fluid was 

second-order accurate. Building upon this, extensive adaptations, refinements and 

model developments took place during the present work such that agglomeration 

became robust, and that this could be achieved also between non-spherical particles. 

In particular, models were either identified in the literature or developed from first 

principles to address the problems of: particle injection, boundary conditions, forces 

and torques, rotation and tracking, robust distance metrics between surfaces, 

orientationally-dependent forces derived from the local surface curvature, collision 

detection and physically-accurate treatment, and robust turbulence forcing. This 

methodology represents the state-of-the-art and there are no other known codes that 

combine all of these models into a high-fidelity fluid simulation capable of direct 

numerical simulation (DNS) of all fluid time and length scales, which was achieved 

using Nek5000 throughout. This methodology was used to generate the results 

presented in Chapters 4, 5 and 6.  

On top of this, the findings of the mentioned chapters made clear what the next 

developments to the solver needed to be, and as such a second stage of 

developmental work took place to devise algorithms for multi-particle agglomeration in 

turbulence, with the extensions to the code being non-trivial. In particular, two novel 

methods were presented addressing the challenge of soft-sphere collisions and 

agglomeration between non-spherical particles, and a further method was also 

implemented which ultimately allowed the final goal to be achieved, demonstrated at 
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the end of Chapter 6. Further adaptations to the code, namely a new proposed 

technique for the variable timestepping of DLVO forces and parallelisation of the 

particle module, led to very significant speed-ups which made a new kind of simulation 

possible wherein multi-particle agglomeration could be captured in its full detail, over 

comparatively significant lengths of time. This is a significant achievement and gives 

the University of Leeds a powerful and unique simulation technique for investigating 

turbulent agglomeration between non-spherical particles. After the first stage of the 

methodology gave detailed insight into the pair interactions between particles, this new 

described framework has that which is required to take the next step, vastly increasing 

the scope of the simulations in terms of the length and time scales that can be studied, 

which will allow detailed study of multiparticle agglomeration into crystal-like 

structures.                 

Utilising the described techniques, several studies were designed and undertaken to 

probe the systems of interest. By systematically investigating the interactions between 

particle agglomeration events and turbulent fluid dynamics, several novel insights 

have been gained that offer theoretical and practical application, particularly in 

industrial contexts such as nuclear waste management. 

Chapter 4 was the first results chapter of the thesis, which first centred on 

demonstrating the robust modelling of spherical and non-spherical colloidal particles 

interacting under the influence of van der Waals and electric double layer forces within 

the DLVO framework. Such were the chosen system parameters, the electric double 

layer repulsion was seen to have very little influence in comparison to the van der 

Waals effect, meaning that the DLVO interaction was dominated by the attractive van 

der Waals forces for the entire set of simulations investigated throughout the thesis. 

The parameters were chosen in line with calcite particles in water, a realistic nuclear 

waste analogue. 

One of the first findings was the identification of a ‘cut-off velocity’ for spherical particles 

– approximately 0.7 𝑚𝑚𝑠−1 under the present conditions – which marked the threshold 

for particle agglomeration. As described, this result was arrived at through fundamental 

models that capture the microscale effects, and thus provided a validation to previous 

studies operating at a coarser level of modelling (Mortimer et al., 2020), which used 
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an energy-based deterministic (‘on/off’) method. This result was able to confirm the 

validity of the chosen value in those simulations. 

Further, the behaviours and dynamics of non-spherical particles, specifically of disks 

and needles with a 5:1 aspect ratio, were explored in detail. The cut-off velocities for 

either morphology was seen to vary dramatically as a function of relative orientation, 

a result which pairs with later studies over the orientational parameter space to 

underscore the importance of considering particle morphology on any study that 

attempts to model agglomeration in multiphase systems. Notably, the disks when 

orientated face-to-face continued to agglomerate at much higher velocities, with 

maximal van der Waals forces three times those observed in needle configurations. 

Needles, conversely, demonstrated the lowest possible attractive forces at their 

endpoints, and therefore agglomeration was unable to occur in all but one studied 

velocity case in this configuration. This set of simulations also provided a means to 

understand the timestep requirements of the solver, with the stable values being 𝑑𝑡 =

1 × 10−6 𝑠 for spheres and 𝑑𝑡 = 2 × 10−7 𝑠 for the most extreme disk configurations, 

and similar for the needles, which was thus taken forward for all subsequent non-

spherical studies.  

The next study looked to investigate the role of orientation in determining 

agglomeration outcomes, which was achieved through uniform sampling of the 

orientational parameter space and a Monte Carlo approach. Orientation was 

consequently seen to be a crucial variable, alongside the energy of the particles, in 

determining interaction outcomes. Surprisingly, despite having the capacity for the 

highest available DLVO forces, disks were seen to agglomerate in far few instances 

than needles. To understand this result, both the relative orientations between the non-

spherical particles symmetry axes and the points on the surface that experienced the 

collision were interrogated. This demonstrated an interesting result: the distributions 

of collision points over the surface of the shapes is different between the two 

morphologies under uniform sampling of the initial orientations. This was understood 

through a number of described geometric effects and highlighted as an interesting 

area for further study. The relationship between this result and the distribution of 

surface curvature (which mediates the strength of the DLVO interaction) in 

combination gave a detailed picture of the precise mechanism that alters the 

agglomeration propensity as particle morphology is changed. It was the distribution of 



282 
 

the curvature across the shape which was seen to be the most important factor, due 

to the fact the two spheroidal shapes had the same ‘total curvature’, defined in the 

mathematical sense. More specifically, the analysis of collision point distributions was 

able to be related back to the particle geometry which emphasised that while disks 

tended to collide at their edge regions (with higher curvature and weaker attractive 

forces), needles more frequently collided in areas away from their curvature maxima, 

which facilitated stronger interactions over the generated sample space. Overall, the 

study concluded that agglomeration in non-spherical particles is highly sensitive to 

particle morphology, and orientation, and the spatial distribution of surface curvature 

was highlighted as the factor that drives the differences between morphologies.  

Extrapolating from these findings to a physical hypothesis: needles with their stronger 

interactions over the full orientational parameter space and thus higher agglomeration 

rates could be expected to experience more agglomeration and thus faster 

sedimentation compared to systems of disks; however, this hypothesis needs to be 

tested in a multi particle system to capture the full range of relevant effects. It could be 

expected that systems of disk-like particles remain more stable (i.e., separated and 

resistant to aggregation) compared to needle-like suspensions under the same flow 

conditions. It is not clear to what extent uniform sampling of orientation is the 

appropriate analogue to physical systems, since the flow conditions will naturally 

influence the typical relative orientation at the moment of collision, however it is a good 

first probing of the system that has generated an unexpected result of value. Placing 

the particles in turbulence will help to more naturally bias their configurations.   

Chapter 5 therefore looked to expand the study of particle agglomeration by 

introducing turbulent fluid dynamics. Firstly, to achieve this, the successful 

implementation of a robust stochastic turbulence forcing field, coupled to the flow 

solver Nek5000 through a source term, was demonstrated – with the validation 

showing strong agreement with the reference cases studied. Using adjacent channel 

flow calculations performed at a macroscopic scale, the turbulence boxes’ parameters 

were matched to specific regions of the channel flow. The attempt to match turbulence 

conditions in this way was ultimately shown to be problematic due to the limitations of 

the idealised case of homogeneous isotropic turbulence (HIT) which forces turbulence 

differently from that observed in channel flows. Matching the velocity fluctuations of 

the flow between the channel and the HIT boxes allowed representative fluid forces to 
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be imparted on the particles, which mediated the agglomeration process at the correct 

level of magnitude as desired, but ultimately it led to overall flow conditions different 

to those experienced by particles in a channel, even when considering only the 

reference frame of the collision (thus theoretically avoiding mean flow effects). Despite 

this, the altered levels of turbulence between the boxes ensured that the results were 

meaningful and contributed to the understanding of the interplay between turbulence 

and agglomeration. 

Key findings from this chapter included the observation that increasing turbulence in 

general reduced agglomeration rates across morphologies. Over all simulations, 

needles were seen to favour agglomeration the most, followed by spheres and then 

by disks. This was in keeping with the findings of Chapter 4. In turbulent environments, 

particles became more energetically agitated through increases to their relative 

velocities, making agglomeration increasingly energetically unfavourable as the 

turbulence level was raised. However, this effect was more pronounced for disks due 

to their greater surface area for the fluid forces to act upon, as well as their tendency 

to align with the flow in such a way that maximised their drag. To a lesser extent, this 

also affected the needles, and ultimately the spheres were able to overtake the 

needles on some agglomeration metrics in the box with the highest levels of 

turbulence, which was attributed to the reduced drag experienced by spheres, despite 

their lesser DLVO attraction. This highlighted a crucial interplay between turbulence 

and morphology as it relates to agglomeration. It is not the case that one morphology 

agglomerates more than another for all systems, but rather the relative strength of 

certain system parameters will favour some morphologies over others, an idea which 

is further investigated in Chapter 6.  

The highest level of turbulence was seen to most closely resemble classical 

turbulence, whereas the lower two turbulence boxes were of such low Taylor-Reynolds 

numbers that they could be thought of more readily as ‘chaotic flows’, since they did 

not display the same separation of scales of classical turbulence. Even so, the flow 

scales were different in the three boxes, and this contributed to the alignment statistics 

of the particles. There was no clear morphology that aligned more than the other 

across all three studied boxes, however. In fact, the candidate morphology favouring 

alignment seemed to change between boxes. This was hypothesised to be due to the 

different principal lengths of the particles, which will thus experience the flow in unique 



284 
 

ways, having a different characteristic length compared to the average flow scales. As 

those flow scales change between boxes, different motions will be induced by the 

different shapes. This is something that could be looked into in further detail. 

In summary, this chapter highlighted that turbulence generally reduced agglomeration 

rates and confirmed that the findings of the quiescent case were roughly transferrable 

to the more complicated system. As before, particle morphology was a key 

determinant of the observed agglomeration statistics, but an added variable of surface 

area became important due to its significant influence over particle acceleration and 

the overall dynamics.  

The final results chapter, Chapter 6, delved into the importance of key parameters in 

determining particle agglomeration, extending previous spherical studies to non-

spherical particles, aiming to understand the difference when introducing differing 

morphologies and aiming to validate macroscale studies performed within the 

research group. Both parameters studied, the Hamaker constant and the coefficient 

of restitution (COR), were found to have a significant impact on agglomeration, with 

needles and spheres showing a higher sensitivity to both of these behavioural 

modification parameters when compared to disks, which appeared relatively 

independent of these factors in terms of their resolved agglomeration rate. Disks 

however exhibited notable alignment tendencies under varying conditions of COR and 

Hamaker constant, which contrasted with the behaviours observed for needles and 

spheres. The disks were also shown to be most affected by the turbulence strength as 

was noticed in Chapter 5. This indicated that different behavioural modification 

techniques were more suitable for certain morphologies, and thus the morphological 

characteristics of a suspension should be characterised before applying any such 

modifications. 

In addition, the simulation of multi-particle agglomerates in a turbulence field was 

explored for the first time with structure-resolved non-spherical particles. This 

approach, which accounted for all competing forces in a direct way, marked a 

significant step forward in agglomeration modelling and places the research group in 

a position to generate significant understanding of the structures formed by 

agglomerating non-spherical particles in turbulence, which will be of significance to 

many areas of research. The method was successfully applied to simulate the 
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dynamics of agglomerate formation and provided a robust framework for future studies 

of use to the nuclear industry, particularly for applications such as waste treatment at 

Sellafield. To reach this point, three methods were compared for overlap detection, 

two of which were novel, however the finally chosen method was a pre-existing 

technique chosen as a matter of pragmatism. The method was shown to be capable 

of resolving agglomerates between many binary particles at once, and was thus far 

observed to resolve triplet agglomerates in the present turbulent conditions. The 

interplay between the soft-sphere scheme and the DLVO force model was seen to be 

capable of resolving agglomeration, but agglomerated particles were seen to spend 

much more simulation time in the state of mild overlap, which meant that the DLVO 

forces were often not active, allowing a significant window for tertiary forces to disrupt 

the state of agglomeration. It was suggested that both force models should be active 

to increase the stability of the formed agglomerates and thus allow the coordination 

number of the agglomerate structures to increase, to the expected levels.   

7.2 Suggestions for Further Work 
There has been significant progress achieved, attacking what is a difficult modelling 

problem, but there remain several exciting avenues for further exploration, particularly 

given the tools developed. First and foremost, however, whilst the simulations 

presented here offer theoretical insights, experimental validation would strengthen 

confidence in the findings. In particular, experiments with non-spherical particles in 

turbulent flow could provide valuable benchmarks for further refining these models. 

Experimental investigators face the same problems as computational modellers for 

these systems due to the difficulty in assessing all scales, of which there are many. 

The most practical way to cross-check modelling predictions would therefore be 

through comparison to bulk flow measurements. The capability to measure these 

turbulent agglomerating systems is presently being developed at the University of 

Leeds’ MULTIForm facility and so steps are underway to achieve this. This would 

provide validation at the macroscopic level and could be assessed in terms of 

agglomeration rate, sedimentation rate, or by qualitative and quantitative comparison 

of the structures formed in the flow.  

Equally as important would be increased understanding at a microscopic level, without 

necessarily considering the fluid dynamics, to further calibrate the DLVO models used 
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in the present work. There is uncertainty throughout the literature into the correct 

values to set certain parameters, such as the cut-off separation for the van der Waals 

force (given its mathematical representation is a 1/𝑟2 law it thus diverges, so an 

arbitrary value must be chosen to limit the force). Throughout the agglomeration 

literature, this parameter is chosen as a way of making simulations stable rather than 

being directly tied to a physical effect but it has significant implications for the maximal 

allowed interaction strength. Further investigation into this would be of great benefit to 

the DLVO-induced agglomeration literature, allowing greater consistency between 

studies if a physical and consistent way of determining this parameter was developed.  

Stemming from the work in the quiescent conditions, a potentially rich mathematical 

problem was identified where it would appear there are a number of interesting and 

complicated effects occurring between the geometric nature of the particles and the 

resultant interaction behaviours under random sampling. Spheroidal particles are 

created either by ‘stretching’ or ‘squashing’ a sphere with volume kept fixed, and yet 

these two similar shapes have very different properties when analysing the regions of 

the surface that accumulate collisions under uniform sampling, which then has 

importance for the magnitudes and distributions of the forces in pair interactions.  

The random initial conditions for the orientations of the two bodies can each be defined 

in terms of a single unit vector which is randomly uniformly distributed on the surface 

of the sphere in ℝ3. The dot product of these two independent random vectors forms 

a new probability distribution which can provide insight into the underlying distribution 

formed between two randomly orientated particles – which will not necessarily lead to 

a uniform random sampling of relative orientation, which needs to be understood to 

analytically understand the results of Chapter 4 in full detail, as well as to generate 

fundamental understanding of interaction modelling. Beyond this, when moving from 

a unit vector to a three-dimensional shape, the way that the distribution of the surface 

curvature then affects the sampling of collision points creates a very complicated 

multiparameter probability distribution which would be extremely difficult to quantify 

analytically. At this stage, an approach like machine learning may be able to drive 

towards the underlying model. If fed enough training data on the interaction outcomes 

obtained at this high level of detail for pair interactions, then a trained model could 

potentially characterise all of the interesting behaviours into something that could be 

applied at a macroscopic level saving significant time and resources. In a macroscale 
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situation, the model could be given parameters like the relative orientation and kinetic 

energy to quickly determine the agglomeration state post-collision for pairs of non-

spherical particles, without having to explicitly model the small-scale phenomena that 

places a stress on compute time. Such a model could be applied to point particle 

Lagrangian particle tracking simulations. The analysis framework developed 

throughout Chapters 4 and 5 showed that it was possible through these types of 

simulations to get a sense of which collisional conditions, particularly in terms of 

orientation and energy, lead to agglomerates – a machine learning approach could 

potentially get to a suitable model much quicker.  

This still leaves the problem of knowing the correct shape to replace agglomerating 

particles in the point particle scenario, and this becomes even more complicated for 

non-spherical particles. Thankfully, the capability has now been developed to explicitly 

resolve the structures formed as particles interact in turbulence. So, a main 

recommendation for future work involves utilising the multi-particle soft-sphere 

technique to gain insight into this area. The different types of structures that form will 

lead to particles of unique shapes, which will have interesting drag characteristics and 

interactions with the turbulence field. Fortunately, the capability is there to study this 

motion in a turbulence field, and machine learning could perhaps even be applied to 

the problem of identifying the correct drag relationships to be used in point particle 

models given the agglomeration conditions of the particles that formed the 

agglomerate.  

Beyond just improving point particle modelling approaches, quantifying the structures 

formed by agglomerating non-spherical particles is of direct relevance to the 

rheological challenges faced in the nuclear industry as complex shapes interact to 

form sludges, which are poorly characterised and understood due to the safety risks 

with assessing waste material directly. Further still, agglomerated shapes will have an 

interesting and coupled relationship with the turbulence field and will likely result in 

different levels of turbulence modulation based upon the type of structure formed and 

the number of constituent particles, which in turn can develop new insight into the 

relationship between particles and turbulence. Characterising these effects would 

begin to shed light on the relationship between agglomeration and turbulence, from 

the point of view of the fluid, i.e., how do certain collision and agglomeration events 

create certain flow conditions – and what kind of vortical structures are formed by 
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agglomerates in the flow, and how does this changing turbulence field further influence 

the particle dynamics and thus alter the agglomerates formed later in the flow. It would 

similarly be of interest to understand whether these complex agglomerates are able to 

stabilise and align with the flow, or whether their complex shape prohibits this as well 

as at what point they deposit out of the flow and how this changes with structure, as 

opposed to just considering mass or volume to predict deposition.  

Now that significant computational improvements have been made, perhaps there is 

the scope to return the developed models to a larger-scale and more realistic physical 

scenario, such as a channel or a pipe, to begin to model agglomeration in these 

scenarios and contrast those results with those obtained in the idealised flow 

scenarios. In pursuit of this, there are further adaptations that could be made to the 

code to speed it up: the immersed boundary solver could be further parallelised, and 

the particle interaction code could incorporate a search mechanism that is faster than 

a sequential visiting of pairs. For this new soft-sphere multi-particle technique, the 

proposed overlap detection methods could be taken further to see whether they can 

be made as robust as the presently implemented method, and there were suggestions 

made in Chapter 6 surrounding the ways the models could be combined to 

theoretically obtain speed-ups. The so called ‘Method 2’ showed real promise, and 

perhaps offered a strong mathematical solution to the problem given that it satisfies a 

relaxed version of the common normal constraint, which is the ideal way of defining 

distance metrics between convex particles.  
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