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Executive Summary

As many-objective optimisation problems become more prevalent, evolutionary al-
gorithms that are based on Pareto dominance relations are slowly becoming less
popular due to severe limitations that such an approach has for this class of prob-
lems. At the same time decomposition-based methods, which have been employed
traditionally in mathematical programming, are consistently increasing in popular-
ity. These developments have been led by recent research studies that show that
decomposition-based algorithms have very good convergence properties compared to
Pareto-based algorithms.

Decomposition-based methods use a scalarising function to decompose a problem
with multiple objectives into several single objective subproblems. The subproblems
are defined with the help of weighting vectors. The location on the Pareto front
that each subproblem tends to converge, strongly depends on the choice of weight-
ing vectors and the scalarising function. Therefore, the selection of an appropriate
set of weighting vectors to decompose the multi-objective problem, determines the
distribution of the final Pareto set approximation along the Pareto front. Currently
a limiting factor in decomposition-based methods is that the distribution of Pareto
optimal points cannot be directly controlled, at least not to a satisfactory degree.
Generalised Decomposition is introduced in this thesis as a way to optimally solve
this problem and enable the analyst and the decision maker define and obtain the
desired distribution of Pareto optimal solutions.

Furthermore, many algorithms generate a set of Pareto optimal solutions. An in-
teresting question is whether such a set can be used to generate more solutions in
specific locations of the Pareto front. Pareto Estimation - a method introduced in
this thesis - answers this question quite positively. The decision maker, using the
Pareto Estimation method can request a set of solutions in a particular region on
the Pareto front, and although not guaranteed to be generated in the exact location,
it is shown that the spatial accuracy of the produced solutions is very high. Also
the cost of generating these solutions is several orders of magnitude lower compared
with the alternative to restart the optimisation.
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Chapter 1

Introduction

1.1 Motivation

The focus of this work is on optimisation, specifically a subclass of optimisation methods whereby

the quantity that is to be extremised is a vector and the generating mapping does not have

nice properties such as convexity or differentiability. Such problems are usually referred to as

nonlinear, however, this ignores a large class of problems that are nonlinear but are also convex,

therefore their solution can be obtained efficiently and reliably. Therefore, in this work, problems

are classified in to two major categories: (i) convex, and, (ii) nonconvex. A further complication

is met, when the function that is to be extremised, presumably a function that describes in

quantitative terms a real-world problem, is vector valued, namely it has multiple outputs all of

which need to be minimised or maximised simultaneously. These outputs, in this context, are

called objectives and are usually competing and possibly incommensurable. However, from this

information it is unclear why would, such a subclass of optimisation problems, be interesting to

study. The answer to this is that very often real-world problems can be expressed in such a form

naturally, that is - without imposing a particular form onto the problem artificially. The more

complex and large the problem, the more likely it is for the number of objectives to increase.

Both these problems, namely many objectives (more than 3) and nonconvex problems have

been addressed, to some extent, in the literature of multi-objective nonlinear mathematical

programming and evolutionary computation. The motivation to further explore this subject,

stems from the fact that there are still several unresolved issues. One such example, which is

considered in this work, is the selection of weighting vectors in algorithms that employ scalarising

functions. Scalarising functions decompose a multi-objective problem into a set of many single

objective problems. Such methods are called decomposition-methods, and are of interest because
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1.2 Outline

Figure 1.1: Thematic organisation of this thesis.

it has been shown in recent studies [2, 3] that they seem to be superior to their alternatives

[4]. However, current decomposition-based methods cannot directly control the distribution

of solutions across the trade-off surface1 to the extent that is desirable by the analyst or the

decision maker.

1.2 Outline

This work revisits fundamental principles and methods applied in mathematical optimisation

and evolutionary algorithms to deal with many-objective optimisation problems. The two main

threads of research in nonlinear optimisation are metaheuristics and convex optimisation meth-

ods. Each of these optimisation divisions has something to offer in terms of increasing our ability

to answer questions, and, both are found useful in practice. An overview of this thesis can be

seen in Fig. (1.1).

Chapter 2 lays the necessary theoretical foundations for the following chapters. A general

formulation of single and multi-objective problems is given as well as a minimal introduction to

concepts of convex analysis. Additionally the optimisation problem is considered from a broader

view, which is designed to help the reader gain a perspective of what is standard practice and

further illuminate the underlying motivation for exploring nonconvex many-objective problems.

1The term trade-off surface which is equivalent to Pareto front is defined in Section 2.5.2.
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1.2 Outline

Chapter 3 presents an overview of the most prominent population-based algorithms and the

methodologies used to extend them to multiple objective problems. Although not exact in the

mathematical sense, it has long been recognised that population-based multi-objective optimisa-

tion techniques for nonconvex real-world problems are immensely valuable and versatile. These

techniques are usually employed when exact optimisation methods are not easily applicable or

simply when, due to sheer complexity, such techniques could potentially be very costly. Another

advantage is that since a population of decision vectors is considered in each generation these

algorithms are implicitly parallelisable and can generate an approximation of the entire Pareto

front at each iteration. A critique of their capabilities is also provided.

In Chapter 4 a novel concept is presented, namely Generalised Decomposition. It is shown

that using this approach to extend single objective optimisation algorithms, an extremely high

precision can be achieved regarding the distribution of Pareto optimal points on the trade-off

surface. Additionally, it is shown that Generalised Decomposition scales much more gracefully

to many objectives compared with alternative methods. The importance of such a method is

pronounced considering that recent research results show that Pareto-based algorithms cannot

scale to many-objectives well and that their ability to converge to the Pareto front is progressively

diminished in higher dimensions.

Chapter 5 explores the potential and benefits of applying Generalised Decomposition com-

bined with a low-order statistics based estimation of distribution algorithm - the Cross Entropy

method - to tackle many-objective problems. The aim of this chapter is twofold - (i) investigate

strengths and potential weaknesses of Generalised Decomposition, and, (ii) obtain additional ev-

idence regarding the hypothesis that estimation of distribution algorithms, based on low-order

statistics, can have comparable performance with more elaborate algorithms. Furthermore, it is

shown that nonlinear constraints in decision space can be handled gracefully with the proposed

framework.

In Chapter 6 a method is presented that, when applied to a Pareto set approximation

produced by any multi-objective algorithm, can generate more Pareto optimal solutions across

the entire Pareto front or in specific locations. This method is called Pareto Estimation. The

theoretical and empirical basis for Pareto Estimation is the observation that the Pareto set in

decision space can, under certain regularity conditions, be described as a (k − 1)-dimensional

piecewise continuous manifold, where k is the number of objectives. This suggests that the

mapping from objective space to decision space should be identifiable, given that the Pareto
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set approximation is close to Pareto optimal. The Pareto Estimation method is tested against

a set of difficult test problems resulting in an impressive increase in Pareto optimal solutions

across the entire Pareto front. Additionally it is shown how Pareto Estimation can be used to

identify Pareto optimal solutions in specific regions of the Pareto front which is demonstrated

on a 3-objective portfolio optimisation problem.

In Chapter 7 future research perspectives, insight, and potential extensions of the introduced

methods and concepts are discussed and this work is summarised and concluded.

1.3 Contributions

The main contributions of this work are:

• An overview of population-based optimisation methods. The overview considers a broad

class of population-based metaheuristics, including Genetic Algorithms, Evolution Strate-

gies, Differential Evolution, Particle Swarm Optimisation, Artificial Immune Systems and

Estimation of Distribution algorithms. The way such techniques are applied to multi-

objective optimisation problems is explored, and the most prominent methodologies are

described in more depth. Lastly a critique of their performance for different problem

types is discussed and summarised in a comparative matrix. This contribution is based on

Chapter 3 of this thesis and has been submitted to a journal for publication.

• A novel concept has been introduced - Generalised Decomposition. This concept is ap-

plicable to decomposition based algorithms in general, namely to evolutionary algorithms

or the more traditional gradient search methods. Generalised Decomposition provides the

means to calculate the weighting vectors in decomposition methods, so that the distribu-

tion of Pareto optimal solutions is optimal, given a definition of what is considered optimal

for the given context and there exists a metric which can measure the quality of the pro-

duced set according to the aforementioned definition of optimality. This contribution is

based on Chapter 4 of this thesis and has been submitted to an international conference

for publication.

• Generalised Decomposition and Cross Entropy methods for many-objective optimisation.

Another major strength of Generalised Decomposition is that it can maintain its favourable

properties for any number of objectives. This, combined with the fact that currently

employed methods for selecting the weighting vectors in decomposition-based algorithms
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are fundamentally flawed and do not scale well for many objective problems, motivated

the creation of an algorithm based on Generalised Decomposition. The main algorithm

used for this task was the Cross Entropy method (CE). The CE method can be classified

as an estimation of distribution algorithm, a choice that enabled the exploration of a

recently introduced hypothesis, namely, that estimation of distribution algorithms based

on low-order statistics are a viable alternative to algorithms that use elaborate probabilistic

models that may be very expensive to train. The result was the - Many Objective Cross

Entropy with Generalised Decomposition (MACE-gD). The performance of MACE-gD

compared with two other prominent algorithms (RM-MEDA and MOEA/D), is shown

to be competitive. This contribution is based on Chapter 5 of this thesis and has been

submitted to a journal for publication.

• Increasing the density of available Pareto optimal solutions. At the end of a multi-objective

optimisation an approximation of the Pareto optimal set is returned. Given the Pareto

set approximation, the question is: Is there salient information within that set, which

can be used to generate more Pareto optimal solutions, and if so, could the produced

solutions be generated in a particular region of the Pareto front that is of interest to the

decision maker? In this work, a positive answer to this question is presented. Namely,

a method has been developed with which the analyst is enabled to produce more Pareto

optimal solutions in a specific region of interest on the Pareto front, subject to certain

regularity conditions. Lastly, the utility of the proposed method is illustrated on a 3-

objective portfolio optimisation problem. This contribution is based on Chapter 6 and has

been submitted to a journal for publication.

In summary, the two main themes that this thesis explores are:

• The impact of weighting vectors on the distribution of Pareto optimal solutions on the

Pareto front.

• Given an approximation of the Pareto front, as generated by any multi-objective optimi-

sation evolutionary algorithm, does this approximation contain information that can be

utilised to further explore the Pareto front.
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Chapter 2

Theoretical Foundations

2.1 Introduction

A traditional classification of optimisation problems has been their separation into linear and

nonlinear problems [5]. However, this ignores a large body of research in convex programming,

which is a special class of methods that apply to a subclass of nonlinear optimisation problems,

for which a solution can be obtained with relative ease, even for very large problems [6]. There-

fore a more relevant distinction of optimisation problems would be their classification based on

convexity, see Fig. (2.1). This is so because this distinction will radically impact the approach

used in solving such problems and the expected quality of the identified solutions. In the fortu-

nate case that a problem can be expressed in a convex form, then for all practical purposes it

can almost be considered as solved. Furthermore the solution obtained for convex problems is

guaranteed to be optimal, however it is not necessarily unique. Namely, a solution obtained for

a convex program is the global minimum (maximum) for a minimisation (maximisation) prob-

lem. Also such a solution can be obtained quite efficiently [6]. These facts strongly motivate

the additional effort required to attempt to identify whether a problem is convex. However the

process of identifying a convex problem is non-trivial and is further complicated by the fact that

different formulations can be more difficult to solve [6]. A constructive approach introduced in

[7] is to attempt and recreate an equivalent formulation of the original problem. The authors

introduce a set of composition rules. When these are adhered to, only convex problems are

created. So the challenge is to reformulate the original problem using only the advocated set of

rules in [7]. However, if an equivalent convex problem cannot be found, this does not necessarily

mean that the original problem is nonconvex. Therefore this methodology is applicable only to

a subset of all convex problems and depends heavily on the imagination of the user. Although
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2.1 Introduction

Figure 2.1: Overview of optimisation problems. Light grey: The focus of this work, namely
nonconvex and multi-objective problems. Dark grey: Convex optimisation for single-objective
problems is also considered in this work, however, it is used mainly as support to the main
theme.

what is proposed in [7] does not solve all ensuing difficulties in the formulation of a convex

problem, it is a very interesting development which can be of great aid to practitioners and has

the potential to be generalised to a wider family of functions.

For nonconvex problems, guarantees about the obtained solution can only be given when an

exhaustive search is performed. That is, only if the entire domain of definition of the objective

function is explored. Naturally such a task can very easily become unmanageable and is often

impossible to perform. However once the fact that a problem is nonconvex is established, there

are several metaheuristics1 that can be employed to obtain a solution. Although such a solution

will most likely be suboptimal, metaheuristics perform very well in practice. Such methods are

reviewed in Chapter 3 and are an integral part of the tool-set available to the practitioner, since,

as it will become clear, many problems are nonconvex and even convex problems will turn into

nonconvex at the slightest provocation. An example of this phenomenon is seen in machine

learning, where kernel-based learning algorithms that have a shallow architecture, namely a

single layer of kernels for which the weights are to be determined, are linear in the parameters

and produce convex problems. However, such architectures seem to be inefficient for certain

tasks while deep architectures, namely architectures with several layers of kernels, can learn

more complex tasks but, the estimation of their parameters (learning) is nonconvex [8]. Such

examples serve as feedback to practitioners not to become overly dependent on a particular

method, but instead, carefully investigate the nature of the problem so as to select the optimal

approach for its solution, a process that is nonconvex in itself.

Another important classification is the separation of optimisation problems into single ob-

jective, that is problems where the objective function is a mapping of the type f : Rn → R, and,

1An algorithmic framework of heuristic optimisation algorithms. Heuristic is the Greek word for search.
Metaheuristic algorithms commonly have a stochastic (Greek word for random) component.
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multi-objective whereby the objective function mapping has the following form f : Rn → Rk,

see Fig. (2.1). This classification is important because in the latter case, there is no obvious or

unique way to induce a complete ordering, see Appendix A.1.2. Without order a direction of

search cannot be established. This is a well known issue in multi-objective optimisation and has

been addressed to varying degrees of success by several researchers in the field of mathematical

programming [9, 10, 11] and more recently in evolutionary computation [12, 13, 14]. In general

there are two approaches employed to resolve this issue: Pareto-based and decomposition-based

methods. In both methodologies and assuming, the a posteriori preference articulation paradigm

(see Section 2.6), the relative importance of the objectives is considered to be unknown. In the

case that preference information is given by the decision maker (DM), then using a decom-

position method to combine the scalar objective functions can be used, see Section 2.5.3 and

Section 4.3. An alternative is to distill the preference information given by the decision maker

in a utility function [11, pp. 62]. Pareto-based methods use the Pareto-dominance relations [5]

to induce partial ordering in the objective space. These relations initially introduced by Edge-

worth [15] and further expanded by Pareto [16] are similar in nature with element-wise vector

comparison. For example for two vectors a,b ∈ Rn, a binary relation < can be defined to mean,

a < b if all the elements in a are smaller than the corresponding elements in b. This partial

ordering is denoted as a ≺ b, and, in the context of a minimisation problem this expression

is read as: the vector a dominates b. This type of ordering and its implications are further

explored in Section 2.5.2, and basic concepts from set theory are explained in Appendix A.1.2.

Another way to induce partial ordering in multi-objective problems, that is predominantly

used in mathematical programming [5], is by decomposition methods. These methods, use

scalarising functions to decompose a multi-objective problem into several single objective sub-

problems. These subproblems are defined with the help of weighting vectors. The weighting

vectors are k-dimensional vectors with positive components that sum to one. The location on the

Pareto front that each subproblem tends to converge, strongly depends on the choice of weight-

ing vectors (see Chapter 4). Therefore, the selection of an appropriate set of weighting vectors

to decompose the multi-objective problem, determines the distribution of the final Pareto set

approximation along the Pareto front. Although a clear definition of what is considered a good

distribution of Pareto optimal solutions does not exist, there is a consensus about the features

that must be present. First, assuming that a decision maker is not involved prior or during the

optimisation process, the general tendency is to distribute the Pareto set approximation along
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the entire Pareto front. A second implicit requirement is that Pareto optimal solutions are dis-

tributed evenly across the entire front. This emanates from the fact that the preference of the

decision maker towards a particular region of the trade off surface is unspecified or unknown.

Finally, the distance of the Pareto set approximation must be as close as possible to the true

Pareto front. Convergence of the optimization algorithm is measured in terms of that distance.

The remainder of this chapter is organised as follows. In Section 2.2, fundamental concepts

about convex sets and functions are presented. Section 2.3 introduces the epigraph of a function,

which is a link between convex functions and convex sets. These two sections are essential for

Chapters 4 and 5. In Section 2.4 and Section 2.5, single and multi-objective optimisation

problems are defined. Lastly, in Section 2.6 an overview of the multi-objective optimisation

process, from problem formulation to the selection of a single solution is presented.

2.2 Convex Sets and Functions

A set, C ⊆ Rn, is a subspace if it is closed under scalar multiplication and vector addition,

namely if,

for all x,y ∈ C, ax+ by ∈ C with a, b ∈ R. (2.1)

An affine set is a subspace plus a shift, that is, if C is a subspace, then,

V = {x+ b : x ∈ C}, for any b ∈ Rn, (2.2)

is an affine set. Naturally the dimension of the vectors in the set C must be equal to the

dimension of the vector b, that is n. An example of a subspace in R2 and an affine set is shown

in Fig. (2.2). A line through the origin is a one dimensional subspace of R2 this line plus a shift

forms an affine set. A different view of an affine set, one that elucidates the connection of an

affine set with a convex set, is obtained using two points x,y ∈ V , then,

y+ θ(x− y) = θx+ (1− θ)y ∈ V, (2.3)

where θ ∈ R. The description of an affine set in (2.3) can be extended by induction to any

number of points in V and scalars θ1, . . . , θd ∈ R as,

d
∑

i=1

θixi, subject to

d
∑

i=1

θi = 1, (2.4)

9



2.2 Convex Sets and Functions

Figure 2.2: A subspace in R2, C, and an affine set, V . Note that the vector v is by no means
unique, in fact, by subtracting any vector that is in the affine set, V , the original subspace C
will be obtained.

this is referred to as an affine combination. The affine hull of a set V is defined as the set of all

affine combinations,

aff V =

{

d
∑

i=1

θixi : xi ∈ V,
d
∑

i=1

θi = 1, i = 1, . . . , d

}

. (2.5)

A set C ⊆ Rn is convex if for any x,y ∈ C and any θ ∈ [0, 1],

θx+ (1− θ)y ∈ C. (2.6)

By definition an affine set is also a convex set, however a convex set is not necessarily an affine

set. The combination of the points x,y in (2.6), is called a convex combination and can be

extended to multiple points in a similar manner to the extension of affine combinations,

d
∑

i=1

θixi, with

d
∑

i=1

θi = 1, and θi ≥ 0, for all i = 1, . . . , d. (2.7)

Some convex sets are illustrated in Fig. (2.3). The set of all convex combinations of a convex

set C is the convex hull of that set and is defined as,

convC =

{

d
∑

i=1

θixi : xi ∈ C,

d
∑

i=1

θi = 1, θi ≥ 0, i = 1, . . . , d

}

, (2.8)

see Fig. (2.4).

A set C is a cone if θx ∈ C for all x ∈ C and θ ≥ 0. A cone need not necessarily be a

convex set, for instance the cone shown in Fig. (2.5) is nonconvex. To see this, notice that a

10



2.2 Convex Sets and Functions

Figure 2.3: A,B and C are three sets of which only the set A is convex since the set B does
not contain all convex combinations of its points, namely not all points on the line segment
connecting the two points in B are in the set. The set C fails to be convex because part of its
boundary (thick line about the set) is not included in the set.

Figure 2.4: Convex hull of a set of points (top left) and the sets B and C in Fig. (2.3).

Figure 2.5: Left: The set of all points on the rays emanating from the origin is a cone. Right:
The conic hull of the cone depicted in the left figure.

11



2.3 Epigraph

convex combination of a point on the lower ray with a point on the higher ray can produce

infinitely many points that are not within the set, i.e. not on one of the two rays, therefore this

is not a convex set. However if a set C that is a cone, is also a convex set, then the set C is

called a convex cone. A convex cone C contains all the conic combinations in the set. A conic

combination is a nonnegative combination of the elements in the set C. The conic hull of a set

C is all conic combinations of the elements in the set. The conic hull is denoted as, coneC, and

is defined as,

coneC =

{

d
∑

i=1

θixi : xi ∈ C, θi ≥ 0, i = 1, . . . , d

}

. (2.9)

A cone C ⊂ Rn is called a proper cone if it is convex, closed1, pointed and has nonempty

interior. A cone is pointed if it contains no line, for example the cone, C = {(x, f(x)) ∈
R2 : f(x) > 0}, is not pointed since it contains an infinite number of lines: f(x) = c,∀x ∈
R, for any c ∈ R+. An example of a pointed cone is the nonnegative orthant Rn

+, which is also

a proper cone. Proper cones play a significant role in inducing partial ordering and are strongly

related to the concept of Pareto optimality, see Section 2.5.2.

A function f : Rn → R is said to be convex if its domain of definition, dom f , is a convex

set and ∀x,y ∈ dom f and θ ∈ [0, 1] we have,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.10)

A function is strictly convex if the inequality in (2.10) is strict. Accordingly a function is concave

if −f is convex. A more interesting definition of convex and concave functions is formulated

with the aid of the epigraph of a function, see Section 2.3.

2.3 Epigraph

The epigraph of a function f : Rn → R, which is the Greek word for above the graph, is defined

as,

epi f = {(x, t) : x ∈ dom f, t ∈ R, f(x) ≤ t}, (2.11)

consequently epi f ⊂ Rn+1. If the epigraph of a function is a convex set then the function is

convex and vice versa. The hypograph of a function f : Rn → R, meaning below the graph, is

defined as,

hypo f = {(x, t) : x ∈ dom f, t ∈ R, f(x) ≥ t}. (2.12)

1See Appendix A.2 for the definition of a closed set.
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2.3 Epigraph

Figure 2.6: Top left: An affine function f(x), affine functions are both convex and concave.
Bottom left: A concave function h(x). Top right: A convex function g(x). Bottom right:
A nonconvex function p(x).

The epigraph and hypograph allow for the definition of convex functions to be expressed in

terms of convex sets and in the present work are used to define the shapes of the Pareto front,

see Section 2.5.1. If a function is concave, its hypograph is a convex set. In general a function

f : Rn → R with a convex domain of definition is:

• Convex, if and only if epi f is a convex set. If in addition hypo f is nonconvex then, f is

strictly convex.

• Concave, if and only if hypo f is a convex set. If in addition epi f is nonconvex then, f

is strictly concave.

• Convex and concave, if both epi f and hypo f are convex. A concave and convex function

is affine.

• Nonconvex, if both epi f and hypo f are nonconvex.

An illustration of the above definitions is shown in Fig. (2.6). Nonconvex functions can exhibit

one or more of the following pathologies:

• Multi-modal functions have more than one extremum. An example of such a function is

f(x) = sin(x) with domain of definition dom f ∈ [0, 4π]. Multi-modal functions can have

many or infinitely many global extrema. For instance, the following function has infinitely

13



2.4 Single-Objective Optimisation

many global minima,

f(x) =

{

−1 if x ∈
[

π(12k+7)
6 , π(12k+11)

6

]

, k ∈ Z

sin(x) otherwise.
(2.13)

• Discontinuous functions are nonconvex because their domain of definition is nonconvex.

In general there are two types of discontinuities: (i) the left and right limit of the function

about the discontinuity is the same, and (ii) the left and right limits are different. The

latter is called a jump discontinuity.

• Functions that are a combination of convex functions and nonconvex functions. For exam-

ple, a function that is affine everywhere except for a small part of its domain, is nonconvex.

Such functions are usually employed in test problems as they can be deceptive.

The objective functions studied in this work are functions that are defined over an uncountable

set, namely an infinite set.

2.4 Single-Objective Optimisation

2.4.1 Problem Setting

A single objective optimisation problem is defined as,

min
x
f(x)

subject to











gi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , d

x ∈ dom f dom f ⊂ Rn

(2.14)

where m and d are the number of inequality and equality constraints respectively, n is the size of

the decision vector x and dom f is the domain of definition of the objective function. The type

of the functions f, g and h as well as the domain of f , are the key factors that determine the

type of the problem defined by (2.14). For example when the objective function is convex and

is defined over a convex domain, and, the inequality constraints are convex functions while the

equality constraints are affine, then (2.14) is a convex optimisation problem [6]. An optimisation

problem defined by (2.14) is considered to be solved when a decision vector x̃ ∈ dom f is found

that,
f(x̃) ≤ f(x), for all x ∈ dom f,

and

{

gi(x̃) ≤ 0 i = 1, . . . ,m

hi(x̃) = 0 i = 1, . . . , d .

(2.15)
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2.4 Single-Objective Optimisation

Such a decision vector, x̃, is said to be a global minimum. A local minimum is defined as,

f(x̃) ≤ f(x), for all x ∈ {x : ‖x− x̃‖2 ≤ r, r ∈ R+, x̃ ∈ dom f},

and

{

gi(x̃) ≤ 0 i = 1, . . . ,m

hi(x̃) = 0 i = 1, . . . , d ,

(2.16)

and is usually what can be found for nonconvex problems, since, as mentioned in the introduc-

tion, it is usually impracticable to search the entire feasible set so as to ensure that the global

minimum is found.

A problem is called unconstrained if the equality and inequality constraints in (2.14) are

removed. Strictly speaking there remains the constraint that x ∈ dom f but this could be

overlooked since the domain of the objective function can be easily extended to Rn in the

following way,

f̃(x) =

{

f(x) x ∈ dom f,

∞ x /∈ dom f.
(2.17)

The function f̃ is called the extended value function, and is simply defined to be infinite outside

the domain of definition of f . Interestingly, this trick can be applied to (2.14) as well, but this

can make the original problem more difficult to solve since the information about the constraints

is hidden by the extension, therefore, the identification of the problem as convex or not becomes

virtually impossible if the internal description of the extended value function is not available.

Another useful device is the definition of the feasible set in decision space, namely,

S = {x : x ∈ dom f, gi(x̃) ≤ 0, i = 1, . . . ,m, hi(x̃) = 0, i = 1, . . . , d }, (2.18)

which is also called, the feasible region. With the help of (2.18), (2.14) can be rewritten in a

more compact form,
min
x
f(x)

subject to x ∈ S,
(2.19)

which is a convention that is used in the remainder of this thesis.

2.4.2 Optimality Condition - Single Objective Problems

There are several prevalent optimality conditions, for instance the Fritz John type conditions

[5, pp. 37] or the Karush-Kuhn-Tucker condition [5, pp. 39]. Such conditions have extensions

to address non-differentiability and multiple objectives [5, pp. 45]. However, these conditions

are necessary but not sufficient for nonconvex optimisation problems. The optimality condition

that is employed in this work has been selected due to its intuitive geometric interpretation.
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2.4 Single-Objective Optimisation

Figure 2.7: S is the feasible set in decision space and the level sets represent the objective function
values f(x) = c where c is a constant and in this example x ∈ R2, namely f(x) : R2 → R. In
this example the feasible set, S, is convex. A convex feasible set cannot occupy both sides of
the halfspace defined by ∇f(x) and at the same time satisfy (2.20).

However, as it is applicable only to differentiable problems, it is used as an illustration device

rather than an actual test for optimality.

For convex, differentiable and single objective problems, a decision vector, x, is optimal if,

∇f(x)T (y − x) ≥ 0,

∀y ∈ S,
(2.20)

a proof can be found in [6, pp. 139]. This definition of optimality, can be readily extended to

multi-objective optimisation problems, see Section 2.5.4. The statement in (2.20), is that the

inner product of the gradient of the objective function with the vector, (y − x), must be non-

negative, namely their angle must be less than π
2 , see Fig. (2.7). Therefore, since the gradient

vector of a function has the direction of steepest ascent, in function value with respect to the

decision vector, then the last statement simply means that all decision vectors, y ∈ S, lie in the

direction that the value of the function is increasing, hence x is optimal.

For nonconvex differentiable objective functions, the definition can be localised by using a

sufficiently small, ǫ, to a part of the feasible region that is locally convex,

∇f(x)T (y − x) ≥ 0,

∀y = {y : ‖y − x‖ ≤ ǫ,y ∈ S, ǫ ∈ R}.
(2.21)

Although (2.21) is perhaps of limited utility, it shows that, local optima can be identified, and

therefore the geometric interpretation is still valid, albeit in a more restricted form. This concept

can be extended to non-differentiable functions using subdifferentials in a fashion similar to the

way the KKT conditions are extended, see [5, pp. 49].
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2.5 Multi-Objective Optimisation

2.5 Multi-Objective Optimisation

When the objective function is vector valued, that is F : Rn → Rk then the optimisation

problem becomes more complex. This complexity stems from the fact that now there exists the

possibility that there is no single objective function value F(x̃) ≤ F(x) for all x ∈ Rn, as was the

case for single objective problems. Therefore, in all but the most trivial case where all the scalar

objective functions are harmonious, namely when all the objectives are positively correlated

[17], only a partial ordering can be induced without the preference structure of the decision

maker. Some fundamental methods inducing such a partial order are discussed in Section 2.5.2

and Section 2.5.3. However, a complete ordering is required since only one solution can be

usually implemented. For this reason the decision maker plays an integral part in the solution

of a multi-objective optimisation problem. In Section 2.6 the entire optimisation process, from

problem formulation to solution selection is discussed as well as common paradigms of interaction

between the analyst and the decision maker.

2.5.1 Problem Setting

A multi-objective minimisation problem can be defined as follows:

min
x

F(x) = (f1(x), f2(x), . . . , fk(x))

subject to x ∈ S,
(2.22)

where k is the number of objective functions, S, is the feasible set in decision space, x is the

decision vector and, fi(x), are scalar objective functions. Let F : S → Z, namely the forward

image1 of the objective function, then the set, Z, is the feasible set in objective space. The

min
x

F(x) notation is interpreted as: minimise the vector valued function F(x) over all x ∈ S
and should not be confused with the min operator which returns the minimum element of a

set. It should also be noted that this definition could be used to describe a constrained or

unconstrained minimisation problem depending on how S is defined, see (2.19). Further the

fact that minimisation is assumed is not restrictive because the problem of maximising −f is

equivalent to the problem of minimising f and vice versa. In the special case where k = 1,

(2.22) becomes a single objective minimisation problem. It is implicitly assumed that the scalar

objective functions are mutually competing and perhaps are incommensurable while the goal is

to minimise all of them simultaneously. If this is not the case then no special treatment is needed

1See Appendix A.3.
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2.5 Multi-Objective Optimisation

Figure 2.8: A Pareto front which is partially convex, partially concave and discontinuous. Notice
that the frame of reference, which in this case is f1, used to determine the convex and concave
parts is arbitrary, namely the same parts of the Pareto front would be partially convex and
concave, even if f2 was chosen as the reference. However, discontinuities on the PF are not
always visible from all frames of reference, i.e. the projection of the PF on the f2 axis is
continuous, while the projection on the f1 axis is discontinuous.

since minimising one of the scalar objective functions automatically results in minimisation of

the rest.

2.5.2 Partial Ordering - Pareto-Based Approach

The problem that arises in MOPs is that direct comparison of two objective vectors is not

as straightforward as in single objective problems. In single objective problems when both

x, x̃ ∈ S and f(x̃) < f(x) it is clear1 that the decision vector x̃ is superior to x. This is not

the case when two or more objectives are considered simultaneously and there exists no a priori

preference toward a particular objective.

If the relative importance of the objectives is unspecified, one way to partially order the

objective vectors, z ∈ Z, is to use the Pareto2 dominance relations, initially introduced by

Edgeworth [15] and further studied by Pareto [16]. Dominance relations can be defined using

generalised inequalities (≺,�) and the help of a proper cone K, see Section 2.2. A commonly

used cone for this is the non-negative orthant, Rk
+. So, for K = Rk

+ and a,b ∈ Rk, a ≺K b is true

when3 b− a ∈ intK, and, a �K b when b− a ∈ K. However, since the non-negative orthant is

1For a minimisation problem.
2Referred to as Edgeworth-Pareto dominance relations by some authors.
3The notation intK is used to denote the interior of the set K, in this case the cone K. For further details

see Appendix A.2.
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Figure 2.9: Pareto optimal set and weakly Pareto optimal set. Note that the Pareto optimal set
is a subset of the weakly Pareto optimal set.

almost always used to define generalised inequalities the subscript, K, is usually omitted. This

notational convention is adopted in this work, so a subscript in generalised inequalities will be

used only when the proper cone, K, is other than the non-negative orthant or the meaning is

unclear from the context.

Specifically, in a minimisation context, a decision vector x̃ ∈ S is said to be Pareto optimal

if there is no other decision vector x ∈ S such that fi(x) ≤ fi(x̃), for all i, and, fi(x) < fi(x̃)

for at least one i = 1, . . . , k. Namely there exists no other decision vector that maps to a clearly

superior objective vector. Similarly, a decision vector x̃ ∈ S is said to be weakly Pareto

optimal if there is no other decision vector x ∈ S such that fi(x) < fi(x̃) for all i = 1, . . . , k,

see Fig. (2.9). Furthermore, a decision vector x̃ ∈ S is said to Pareto-dominate a decision

vector x iff fi(x̃) ≤ fi(x), ∀i ∈ {1, 2, . . . , k} and fi(x̃) < fi(x), for at least one i ∈ {1, 2, . . . , k}
then x̃ � x. So, in terms of generalised inequalities, if F(x̃) � F(x) and F(x̃) 6= F(x), then

x̃ � x. Also, a decision vector x̃ ∈ S is said to strictly dominate, in the Pareto sense, a

decision vector x iff fi(x̃) < fi(x), ∀i ∈ {1, 2, . . . , k} then x̃ ≺ x. That is, if F(x̃) ≺ F(x),

then x̃ ≺ x. It should be noted at this point, that when ≺,� are used in decision space, their

meaning is mostly symbolic and is used to reflect the dominance relations in the objective space.

For example, let x1 = (0, 0, 0, 0),x2 = (3, 3, 3, 3) and f(x1) = (4, 4), f(x2) = (1, 1). Clearly, for

Ks = R4
+, x1 ≺Ks x2, however according to the above definition of strict dominance it should

be x2 ≺ x1, because F(x2) ≺Kz F(x1) for Kz = R2
+. This can happen because the decision

vectors are implicitly ordered according to their forward image in objective space, where the
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Figure 2.10: Left: Dominance relations defined by a cone K = Rk
+, in this instance K = R2

+.

Right: Dominance relations based on an acute proper cone K = {z :
∑k

i=1 θizi, θi ≥ 0} with zi
forming an acute angle with zj for all i 6= j.

usual partial ordering, induced by the cone Kz is employed. Lastly, the ordering induced by the

binary relations ≺,� is called partial because of the following possibility: x,y ∈ Z but x � y

and y � x, in which case the vectors x,y are said to be incomparable. For example, the

vectors x = (3, 2, 1) and y = (1, 2, 3) are incomparable. Dominance relations induced by two

different proper cones are depicted in Fig. (2.10). Pareto-dominance relations and dominance

relations imposed by the cone1 K = Rn
+ \0 are equivalent [5, pp. 24]. Notice that the 0 element

is removed from K, this means that Pareto-dominance relations are not reflexive, i.e. x �K x

does not hold as, x− x = 0 /∈ K.

Most multi-objective problem solvers attempt to identify a set of Pareto optimal solutions,

this set is a subset of the Pareto optimal set (PS) which is also referred to as Pareto front

(PF). The Pareto optimal set is defined as follows: P = {z : ∄ z̃ � z,∀ z̃ ∈ Z}, namely, it is the

set of objective vectors that are not dominated by any objective vector in the feasible objective

space. The decision vectors that correspond to the set, P, are also called the Pareto set and

are denoted as D, namely F : D → P. The geometry of the Pareto front can significantly

impact the quality of the produced Pareto set approximation and is further studied in Chapters

3-6. In general, the geometry of the PF can be: (i) partially concave, (ii) partially convex,

(iii) discontinuous, and any combination thereof. For instance, the PF shown in Fig. (2.8), is

discontinuous, partially convex and partially concave. Let the Pareto front be represented by a

1Note that according to the definition of a cone, see Section 2.2, the set K is not actually a cone, as it does
not contain the 0 element.
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piecewise continuous function, g : Rk−1 → R, where k is the number of objectives. With the aid

of the function, g, the geometry of the Pareto front is defined as:

• Convex, if epi g is a convex set.

• Concave, if hypo g is a convex set.

• Affine, if both epi g and hypo g are convex.

• Discontinuous, if dom g is nonconvex or g is discontinuous.

• Partially convex, if g is convex over a convex subset of dom g.

• Partially concave, if g is concave over a convex subset of dom g.

• Partially affine, if g is convex and concave over a convex subset of dom g.

• Piecewise convex, if g partially convex over all convex subsets of dom g.

• Piecewise concave, if g partially concave over all convex subsets of dom g.

• Piecewise affine, if g partially affine over all convex subsets of dom g.

In mathematical programming, the Pareto dominance relations are mainly used for theoreti-

cal purposes. However, in evolutionary computation they are heavily used in fitness assignment.

Fitness assignment has a similar function to the negative gradient in gradient search - it indicates

a promising direction of search. In Chapter 3 a more in-depth view of how Pareto dominance

relations have been employed in population-based optimisation methods is presented.

Pareto dominance based methods for fitness assignment have several difficulties to over-

come, for instance a well distributed Pareto front is not guaranteed simply by using dominance

relations. An answer to this problem has been presented in [18], where the authors intro-

duce ε-dominance. In essence, ε-dominance creates a pseudo partial ordering based on the set

Kε = Rk
+ + ε. In fact Kε is not a cone as it does not contain the 0 vector (see the definition of

a cone in Section 2.2). The reason that ε-dominance can only define a pseudo partial ordering

is because it fails all axioms that a binary relation should satisfy to be a partial ordering, see

Appendix A.1.2. For example, for Kε = R2
+ + ε and ε ∈ R2

++, the binary relation �Kε can

be defined. However, �Kε is not reflexive, i.e. x �Kε x does not hold as x − x = 0 /∈ K

and similarly for the other two properties shown in Section 2.2. Nevertheless ε-dominance is
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Figure 2.11: The ideal objective vector, z⋆, and the nadir objective vector, znd.

useful to maintain well distributed Pareto optimal solutions [18], however it cannot escape the

deficiency that Pareto-based methods face in many-objective problems [4]. Another very inter-

esting approach introduced in [19], termed cone ε-dominance, uses the union of an acute proper

cone and the set Kε = Rk
+ + ε to define a relation that is a partial ordering. Namely, they use

ε-dominance in combination with an acute cone, Kα = {z :
∑k

i=1 θizi, θi ≥ 0} with zi forming

an acute angle with zj for all i 6= j. Therefore, cone ε-dominance is defined with the help of

the set Kc = Kε ∪Kα. The partial ordering induced by the acute cone is shown in Fig. (2.10).

The motivation for the introduction of this type of Pareto dominance is that the diversity of

produced Pareto optimal solutions seems to be better. Namely, cone ε-dominance promotes a

good spread of solutions across the entire Pareto front, and, their distribution seems to be more

uniform. However, the problem reported in [4] persists for this type of dominance as well. In

fact, since the regions where solutions become non-comparable are larger in cone ε-dominance

it is expected that the number of non-dominated solutions increase more rapidly, compared to

the Pareto dominance using K = Rk
+, see Fig. (2.10).

2.5.3 Partial Ordering - Decomposition-Based Methods

As mentioned briefly in Section 2.1, decomposition methods employ scalarising functions to

divide a multi-objective problem in to a set a single objective subproblems. The premise of

this approach is that, upon successful optimisation of all the subproblems, a Pareto set will

emerge, formed by the solutions of these subproblems. There are several scalarising functions

that are available to the analyst [20], however in this chapter only the most fundamental method
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Figure 2.12: With the weighted sum, the dashed part of the Pareto front can never be obtained.

is discussed. This topic is further investigated in Section 4.2.1.

One of the simplest and perhaps most intuitive scalarising functions is the weighted sum

method [5]:

min
x

wTF(x)

k
∑

i=1

wi = 1, and wi ≥ 0,
(2.23)

where w = (w1, . . . , wk) is referred to as weighting vector and wi are the weighting coefficients.

The weighting coefficients can be viewed as factors that quantify the relative importance of

the scalar objective functions in F(·). The issue with the weighted sum approach is that its

ability to produce Pareto optimal solutions depends strongly on the convexity of the Pareto

front. For instance, for Pareto fronts of mixed type geometry, that is fronts that are partially

convex and partially concave, this method cannot produce all Pareto optimal solutions [5], see

Fig. (2.12). However the weighted sum method is still employed in practice, because (2.23)

maintains differentiability. That is, if the scalar functions fi(·) are differentiable then the scalar

problem produced by the weighted sum method will also be differentiable.

Another issue with decomposition methods is that the selection of the weighting vectors, w,

is mostly based on ad-hoc methods. However, as it is shown in Chapter 4, the selection of the

weighting vectors is very important as it determines the location of the produced Pareto optimal

solutions and therefore also control the final distribution of the Pareto front approximation.

Lastly, to avoid bias due to difference in scales of the objective functions, fi, the objectives are

usually normalised in the range [0, 1], and this is accomplished with the help of two vectors - the
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2.5 Multi-Objective Optimisation

ideal objective vector and the nadir objective vector. The ideal objective vector, z⋆, is

defined as the vector with elements {inf(f1), . . . , inf(fk)}, while the nadir objective vector, znd,

is the vector with elements {sup(f1), . . . , sup(fk)}, subject to fi be elements of objective vectors

in the Pareto optimal set, P, these vectors are illustrated in Fig. (2.11).

2.5.4 Optimality Condition - Multi-Objective Problems

The optimality condition presented in Section 2.4.2, can be generalised to multi-objective prob-

lems in the following way, with the help of generalised inequalities and for a convex objective

function:
DF(x)(y − x) � 0,

∀y ∈ S,
(2.24)

where DF(x), is the Jacobian of the objective function defined as,

DF(x) =
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Although (2.24) is not as easy to visualise as was the case in Section 2.4.2, there are some

interesting observations to be made. The matrix, DF(x) ∈ Rk×n, which means that its maximum

rank is, min{k, n}1. Also, notice that the number of decision variables is usually much larger

than the number of objectives, i.e. n≫ k, meaning that the maximum rank of DF(x) can be at

most k. Therefore there can be at most k linearly independent vectors in, DF(x), and at least

n− k free variables. And from the fundamental theorem of linear algebra2 the dimension of the

null space will be at least n−k. So there will be an infinite number of vectors that span an n−k
dimensional subspace of Rn that would have absolutely no effect on the value of the objective

function at the Pareto optimal point, x. In other words, the optimality of the decision vector,

x, can depend at most on k number of elements in its neighbourhood where the Jacobian is a

good approximation of the objective function. This fact holds for every Pareto optimal decision

vector, x, however it need not be the case that the independent vectors in, DF(x), be the same

for every Pareto optimal point. However, this observation substantiates the empirical results

presented in [21], where the authors discovered that Pareto optimal solutions in decision space,

under certain regularity conditions can be represented by a (k−1)-dimensional manifold. Based

1See Section A.4.2 for further details.
2See Appendix A.4.2.
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on the argument presented here, this manifold cannot possibly be more than k-dimensional.

This observation is the basis of the Pareto estimation method presented in Chapter 6.

2.6 Multi-Objective Optimisation - A Conceptual Overview

The procedure used to solve a real-world problem is in general comprised of following stages:

• Problem definition and modeling (Analyst and Decision Maker).

• Approach selection and optimisation (Analyst).

• Complete ordering of Pareto optimal solutions and selection of the best solution (Decision

maker).

The last stage could be omitted in the case that the decision maker has a set of preferences

that can be distilled in a utility function [11, pp. 62], in which case a unique solution is output

by the optimisation procedure. However, this description is greatly simplified as the interaction

of the decision maker and the analyst during the optimisation stage need not be as separate

as it is portrayed in the above-mentioned stages. A prevalent classification of the paradigm of

interaction of the decision maker with the analyst is the following [5, pp. 63]:

• The decision maker is satisfied with one, any one, solution as long as it is Pareto optimal.

This is the no preference paradigm.

• The decision maker has no involvement in the optimisation process, it is only after a set

of Pareto optimal solutions have been generated that such a decision maker expresses a

preference. From the resulting set one solution is selected by the decision maker. This is

the a posteriori paradigm of interaction, and, is in predominant use. This is mainly due to

the separation of the decision maker and the analyst, which allows both parties to operate

independently, or nearly so.

• Prior to optimisation procedure, the decision maker, provides the analyst with a complete

set of instructions that would enable him to select a single solution among all alternatives.

Namely, the decision maker must provide the means for a definition of a complete ordering

in the objective space, prior to the solution of the problem. This paradigm is called a

priori.
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2.6 Multi-Objective Optimisation - A Conceptual Overview

• Lastly, there exists a mode of interaction of the decision maker and the analyst whereby

there is exchange of information during the optimisation procedure. That is, the decision

maker is intimately involved in the process and is responsible for steering the search

direction on-the-fly. This paradigm is termed interactive. In essence the preferences of the

decision maker are expressed progressively, which is why such methods are also referred

to as progressive preference articulation methods [22].
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Chapter 3

Overview of Population-Based

Optimisation

3.1 Introduction

This chapter presents an overview of the most prominent population-based multi-objective op-

timisation methodologies, serving as a map or a starting point in the search for a suitable

technique. As in cartography, maps are meant to contain important landmarks but in order

to enhance legibility a vast amount of detail has been abstracted or omitted. In that spirit,

hybrid algorithms, for example memetic algorithms [23], are not considered here, without any

implications for the contribution they make. Additionally, although Genetic Programming (GP)

instigated by Koza [24] is based on the same principles as Genetic Algorithms [25] it is also not

considered here, since in the view of the author, the main focus of GP is not multi-objective

optimisation.

Population-based optimisation techniques (PBOTs) have received much attention in the

past 30 years. This can be attributed to their inherent ability to escape local optima, their

extensibility to multi-objective problems (MOPs) and their ability to incorporate the handling

of linear and nonlinear inequality and equality constraints in a straightforward manner. They are

applicable to a wide set of problems and impose very few constraints on the problem structure.

For example convexity, continuity and differentiability of the objective functions or constraints,

are not required. PBOTs also perform well on NP-hard1 problems where exhaustive search is

impractical or simply impossible. Since there is a population of decision vectors, the Pareto

front (PF) can be approximated (theoretically) to arbitrary precision.

Assuming that the problem under consideration is being solved for practical purposes, that

1Non-deterministic Polynomial time (NP)
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3.1 Introduction

is, it is a real-world problem and a design choice is to be made. Even if multiple competing

objectives are under consideration only one solution can usually be employed. This requires a

human expert or decision maker (DM) to resolve the situation by selecting a small subset of the

solutions presented by the algorithm. So in this scenario, or more formally a posteriori preference

articulation1, the algorithm is endowed with the task of finding a set of alternative solutions.

Subsequently, the DM will evaluate these solutions according to his/her preferences and make

a selection. To facilitate this process the algorithm guides a population of decision vectors

toward a tradeoff surface, be it partially convex, partially concave, or even discontinuous2. This

tradeoff surface should enable the DM to choose a solution that they believe would serve their

purposes well. So it becomes apparent that in MOPs a DM plays an integral role in the solution

procedure. The various paradigms of interaction involving the DM and the solution process are

discussed in Section 2.6, but in the remainder of this work a posteriori preference articulation is

the main focus. For further details on the other types see [5, pp. 61] and the references therein.

This choice is based on the fact that this particular method of interaction with the DM allows a

greater degree of separation between the algorithm and the decision making process. Also this is

invariably the reason as to why this paradigm is usually employed by researchers when developing

new optimisation techniques: it enables the testing process to be conducted independently of

the problem or application and most importantly it need not involve a DM at this stage. It

should also be noted that specific applications are not mentioned in this chapter. The only

exception to this rule is when an application explicitly results in the creation of an algorithm

highly regarded in the community. The reason for this decision is that this approach facilitates

a more concise and conceptual presentation of population-based optimisation techniques for

nonconvex problems.

The remainder of this chapter is structured as follows. In Section 3.2 a historical regression of

important developments in PBOTs is presented. In Section 3.3 an overview of the common char-

acteristics of PBOTs is given and in Sections 3.4 - 3.10, seven of the most prominent algorithm

families are described as well the methods used to extend them to multi-objective problems. In

Section 3.11 a critique of the strengths and weakness of the aforementioned algorithm families

is presented. Lastly, this chapter is summarised in Section 3.12.

1See Section 2.6.
2See Section 2.5.2 for the types of Pareto front geometries.
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3.2 Chronology

3.2 Chronology

The origins of the inspiration to use a population of trial solutions in an optimisation algorithm

can be traced back to Holland [26] as a mixture of automata theory and theoretical genetics.

Since then many algorithms have been developed that utilise a population of decision vectors

and by means of applying variation and exploration operators this population evolves to adapt

to the environment. The environment, represented by an evaluation (or objective) function,

dictates which individuals in the population would be fit to enter the next generation. In 1975

Holland [25] formalised the idea presenting a more concrete framework for optimisation which

he named Genetic Algorithms (GA). The scheme quickly gained acceptance and by 1985 Shaffer

[12] proposed an algorithm, the vector evaluated genetic algorithm (VEGA), based on Holland’s

GA to tackle multiple objectives simultaneously. The following year Farmer and Packard [27]

published a paper describing how knowledge about the human immune system can be used to

create adaptive systems. This Artificial Immune System (AIS) shares many commonalities with

Hollands’ classifier system [25]. Two years later, in 1989, Goldberg [28] introduced a conceptual

algorithm of how Pareto dominance relations could be utilised to implement a multi-objective

GA. This idea is heavily used to this day when extending single objective algorithms to address

MOPs.

Independently, and in parallel with Holland, Rechenberg [29] introduced Evolution Strategies

(ES) in the mid-1960s. The early versions of ES had only two individuals in their population due

to the limited computational resources available at the time. However, in subsequent years multi-

membered versions of ES were introduced by Rechenberg and further developed and formalised

by Schwefel [30] in 1975. During the same period a similar family of algorithms, the so called

Evolutionary Programming, was introduced by Fogel [31].

Another important approach was introduced by Dorigo et al. [32] in 1991 which they called

the Ant System (AS). The AS, inspired by the ability of ants to find the shortest route from

a food source to their nest, was used to solve combinatorial problems and almost a decade

later Dorigo et al. [33] presented a generalisation of the AS which they named Ant Colony

Optimisation (ACO). In the mid 90s Storn and Price [34] brought forward a novel heuristic,

Differential Evolution (DE). Its main characteristic was its conceptual simplicity and its wide

applicability to a variety of problems with continuous decision variables. Later that same year,

Eberhart and Kennedy [35] introduced Particle Swarm Optimisation (PSO), a new family of
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Figure 3.1: PBOT components.

optimisers inspired by the flocking behaviour of pack animals. Almost a full circle is complete

by the latest addition to PBOTs, namely Estimation of Distribution algorithms (EDAs) [36, 37].

A full circle in the sense that concepts derived from nature were employed as inspiration for

more than two decades, helping researchers solve complex problems. EDAs are one of the

first metaheuristic algorithms not to rely on nature inspired mechanisms to drive their search.

Instead, EDAs depend on probabilistic models of better performing individuals in the population

to generate the entire or part of the next generation.

3.3 General Structure

Population-based optimisation metaheuristics, although diverse in their problem solving ap-

proach, share more similarities than differences. In general, they are comprised of five parts,

(see Fig. (3.1)): the main algorithm, an extension to tackle MOPs, an extension to deal with

constrained optimisation problems, a part to maintain promising solutions and a part to halt

the algorithm execution based usually on some notion of convergence. The main algorithm

deals primarily with single objective optimisation, and is comprised of three parts. Those three

parts effectively drive the search combining information within the population (recombination),

randomly perturbing some individuals to enhance search space exploration (mutation) and an

operator to select promising individuals to be part of the new generation (selection). Recombi-

nation is a superset of operators, usually crossover, that utilise two or more decision vectors to

form one or more new decision vectors. All three parts of the main algorithm have some deter-

ministic and stochastic features. If these three operations are chosen correctly the population

X(G+1) will have a better chance being superior, in terms of Pareto optimality, to that of the

previous generation X(G). The population is defined as the set, X = {xi : i = 1, . . . , N}, where
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1 1 0 0 1 1 1 0

Crossover Point

0 1 1 0 1 0 0 1

1 1 1 0 1 0 0 1

0 1 0 0 1 1 1 0

0 1 1 0 1 0 0 1

Mutation Point

0 1 1 0 0 0 0 1

Mutation Point

Figure 3.2: One point crossover and mutation operator in Genetic Algorithms.

xi is the i
th decision vector and N is the number of individuals in the population.

Algorithm 3.1 PBOT Conceptual Algorithm

1: Initialise population
2: Evaluate objective function
3: repeat
4: Evaluate population quality
5: Recombine good individuals
6: Mutate some individuals
7: Evaluate objective function
8: until Termination condition is met

The general algorithm in PBOTs can be seen in Alg. 3.1. The population is usually ini-

tialised within the feasible region, if possible, and uniformly distributed in the absence of prior

information. Most population-based metaheuristics are either, (i) based on empirical knowledge

and techniques that would steer the search toward desirable regions of the decision space, or,

(ii) directly replicate mechanisms found in nature.

3.4 Genetic Algorithms

GAs are a family of stochastic metaheuristic search algorithms with links to cybernetics [13, 26]

and philosophically connected to Darwin’s theory of evolution [38]. Social dynamics are simu-

lated based on the premise that the survival of the fittest paradigm does produce qualitatively

better individuals with the passage of several generations. Individuals are in effect decision

vectors whose fitness is evaluated using the objective function. The representation of decision

vectors in the basic GA is a binary string termed chromosome comprised of genes (decision

variables). Each chromosome is mapped to a phenotype. A phenotype is a representation that

the objective function can directly utilise to evaluate the fitness of an individual. The main op-
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3.4 Genetic Algorithms

Algorithm 3.2 Simple Genetic Algorithm

1: Initialise population
2: repeat
3: Evaluate objective function
4: Apply crossover and mutation
5: Select solutions for next population
6: until Termination Condition is met

erators used in GAs are crossover and mutation. These two operators are combined in a fashion

to balance exploitation and exploration of the search space. Crossover and mutation, shown in

Fig. (3.2), are applied to the chromosomes, thus facilitating the creation of an abstraction layer

with respect to the phenotype. This layer of abstraction insulates the internal implementation

of GAs from the problem structure, specifically the representation type of the decision variables.

The main operators in GAs have been extended to deal directly with continuous decision vari-

ables [39, 40, 41] which is useful when full machine precision is required and all decision variables

are continuous.

3.4.1 Multi-Objective Problems

Since their introduction GAs have been extended in numerous ways to solve MOPs. The first

extension is due to Schaffer in 1985 [12]. Later based on the idea of Pareto dominance, Goldberg

[28] described a conceptual algorithm, however no implementation was presented. Based on

this description several approaches appeared, of which the most prominent1 ones were due to

Fonseca and Fleming [14] in 1993, Srinivas and Deb [42] in 1994 and Horn and Nafpliotis [43]

in 1994. Zitzler and Thiele [44] introduced the so-called strength Pareto evolutionary algorithm

(SPEA) that can be classified as one of the first algorithms to incorporate elitism in a very

efficient manner. Later Zitzler et al. [45] introduced several modifications creating the SPEA2

algorithm. SPEA2 uses a more elaborate fitness assignment scheme. Mating of individuals is

restricted to members of the population that are part of the archive and the archive is allowed

to contain dominated individuals when certain conditions are met [45]. In 2002, Deb et al.

[46] introduced an elitism based algorithm, the so-called non-dominated GA II (NSGA-II). The

main innovative feature in NSGA-II is that the parent and offspring population is combined

and non-dominated sorting is applied to this superset. Then the population is reduced back to

its original size by discarding directly solutions that are part of fronts exceeding N . If the size

1“Prominent” in this context means that these approaches had significant impact on MOEA research. This
is supported by the number of citations and the improvements/extensions of these methods.
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of the population is still larger than the maximum allowed, the remaining population is sorted

by its crowding distance [47, pp. 247] and the lowest ranked individuals are simply discarded.

NSGA-II was very successful and has become a standard comparator in benchmarking. Lastly,

several algorithms based on the hypervolume indicator [44] which was initially introduced as a

Pareto set quality metric have been introduced in the last decade [48, 49, 50] and [51, 52] the

so-called hypervolume estimation algorithm (HypE) which is further discussed in Section 3.4.6.

3.4.2 First Attempt to Extend GA to MOPs

Shaffer [12] was the first to extend GAs to become multi-objective problem solvers. In retrospect,

his approach may appear simple, but for its time it was quite a conceptual leap since VEGA

considered all objectives simultaneously. VEGA, see Alg. 3.3, partitioned the population, X,

into k equally sized randomly selected sub-populations, where k is the number of objectives.

Then each partition is assigned to an objective and individuals are ranked according to their

performance for the corresponding objective and a mating pool is formed using proportionate

selection as described in [28]. Crossover and mutation operate on the entire population in the

Algorithm 3.3 VEGA

1: X(1) ← Initialise
2: G← 1
3: ps← N/k ⊲ Partition size
4: repeat
5: X(G) ← Shufflerows(X

(G))
6: for i← 1, k do ⊲ Partition the population

7: Di ← X
(G)
ps×(i−1)+1→i×ps

8: Ei ← Evaluate(Di)
9: Si ← Proportionate Selection(Ei,Di)

10: end for
11: X̃(G) ← Join(S1,...,k)
12: X̃(G) ← Crossover(X̃(G))
13: X(G+1) ← Mutate(X̃(G))
14: G← G+ 1
15: until G ≤MaxGenerations

hope that linear combinations of the fitness functions would arise thus estimating the entire

PF. This, however, was to some extent problematic since a phenomenon called speciation [12]

did on some occasions occur. For instance, in objective functions with a concave Pareto front

geometry, VEGA fails to approximate the entire PF as parts of the population drift toward the

edges favouring one of the objective functions.
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3.4.3 Fonseca-Fleming Genetic Algorithm

Fonseca and Fleming [14] were the first to use Pareto dominance relations in a multiple objective

genetic algorithm (MOGA), while incorporating progressive preference articulation enabling the

decision maker to guide the search interactively. The dominance relation was used to rank

the individuals in a population in a manner similar to a set of selection methods proposed by

Fourman [53]. Every individual in the population, after evaluation of the objective function, is

ranked using the following relation,

ri = 1 + pi (3.1)

where pi is the number of individuals dominating the decision vector xi. The idea behind this

method of ranking, see Fig. (3.3), is that misrepresented sections of the PF will increase the

selection pressure to that direction of the front. As an example, the objective vector with

rank 3 as seen in Fig. (3.3) is dominated by two individuals while the objective vector with

rank 2 is dominated only by one. Alternatively, this means that within area A there is only

one solution, while in area B there are two, suggesting higher concentration of solutions. This

information is used to induce better spread in the objective vectors that are not part of the

current PF approximation so as to maintain a relatively even supply of objective vectors in all

regions of the PF. For the objective vectors that are part of the PF approximation, Fonseca and

Fleming introduced an adaptive factor, σshare to penalise objective vectors that are less than

σshare apart. Lastly, a facility for progressive preference articulation was embedded in MOGA

providing the means for the DM to narrow down the search to interesting regions of the PF. This

facility is implemented by incorporating a goal attainment method in the ranking procedure.

Let g = (g1, . . . , gk) be the goal vector and z1 = (z1, . . . , zk) and z2 be two objective vectors. A

preference relation can be expressed such that when k− s of the k objectives are met then z1 is

preferable to z2 if and only if,

z(1,1...k−s) � z(2,1...k−s) or

{(z(1,1...k−s) = z(2,1...k−s))∧

[(z(1,k−s+1...k) � z(2,1...k−s+1...k))∨

(z(2,k−s+1...k) 6≤ g(k−s+1...k))]} (3.2)

The rest of the MOGA utilised Gray encoding for the chromosomes, two-point reduced surrogate

crossover and the standard binary mutation.
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Figure 3.3: Ranking method used in MOGA. The numbers above the points represent the rank
of the individual that results in that objective vector. The worst rank possible is N .

3.4.4 Non Dominated Sorting Genetic Algorithm

Another prominent algorithm, the non-dominated sorting GA (NSGA), that utilised the Pareto

dominance relations was proposed by Srinivas and Deb [42]. This method is almost identical

to the non-dominated sorting idea proposed by Goldberg [28]. Non-dominated sorting is very

similar to a well established concept in non-cooperative game theory in which candidates need

to select a winning strategy while considering what their opponents’ strategy might be. This

idea is usually referred to as eliminating dominated strategies which is an iterative process of

deleting dominated strategies that, if chosen, would lead to lower payoffs relative to the strategies

available to the opponents and thus result in unfavourable outcomes. Interested readers are

referred to [54]. Non-dominated sorting, see Fig. (3.4), works as follows:

Step 1 Evaluate the objective function for each individual in the population X.

Step 2 Find the non-dominated individuals in the population, Xnd, and remove them from the

current population Xnew = {x : x ∈ (X ∩Xnd)
c}.

Step 3 Repeat Step 2 until no solutions remain in Xnew.

Each non-dominated set identified by this process is labelled as a front and given a rank according

to the position it has in the iteration. For example, the first identified front would be front 1,
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Figure 3.4: Non-dominated sorting method as used in NSGA.

the second front 2 and so on. Subsequently the individuals of each front are assigned fitness

values using the following procedure starting from the first front,

Step 1 Assign to all the individuals in front 1 a fitness value N , where N is the number of

individuals in the population.

Step 2 Use sharing to penalise clustered solutions in the current front.

Step 3 Assign the lowest fitness minus a small value ǫ to all individuals in the next front and

go to Step 2 until all individuals in all fronts have been assigned a fitness value.

The sharing distance σshare is calculated based on distance in the decision variable space rather

than the objective space and is held fixed throughout the algorithm execution. Finally NSGA

employed the roulette-wheel selection operator [28] and the usual bitwise mutation operator,

see Fig. (3.2). The fact that NSGA uses sharing based on the distance of the decision vectors,

seems counter-intuitive since equally spaced decision vectors do not necessarily map to equally

spaced objective vectors unless the mapping is affine which is usually not the case for most

objective functions. This can potentially mislead the algorithm as to which solutions are densely

clustered and which are not, resulting in exactly the opposite effect. Although, as the authors

state, sharing can be performed based on the objective vectors [42], they do not mention how

σshare would be selected in that case.

36



3.4 Genetic Algorithms

3.4.5 Strength Pareto Evolutionary Algorithm

One problem identified in multi-objective GAs was that good solutions could be lost if they

were not retained using some mechanism and the cost to rediscover them can potentially be pro-

hibitive. This situation is exacerbated when the cost, computational or otherwise, of evaluating

the objective function is high; this is often the case in real-world applications. A solution to this

predicament is the use of elitism, in other words the retention of highly performing individuals

in the population. In 1999 Zitzler and Thiele [44] introduced an algorithm named the strength

pareto evolutionary algorithm (SPEA) that used elitism. Their approach was not the first to

utilise an external archive to retain good performing individuals, however it was certainly one

of the earliest and most elegant attempts.

SPEA, in addition to the current population X, maintains an archive population, X̃, of

maximum size Ñ which is usually smaller than the population size N . Zitzler and Thiele

[44] suggest Ñ = 0.25N . At the start of the algorithm the external archive is empty and

the population is initialised randomly within the decision variable limits or as appropriate to

the problem. After the objective function has been evaluated the population is searched for

non-dominated solutions which are copied to the archive, X̃ = Xnd. This direct assignment

is performed only on the first iteration of the algorithm. In subsequent iterations the archive

updating procedure is different if the total population in the archive exceeds Ñ . When the

archive size becomes larger than Ñ , the superfluous solutions are removed, based on a crowding

algorithm that the authors of SPEA introduced. This crowding algorithm maintains the elite

solutions that have maximal spread along the PF. After the archive size is properly reduced

to its maximum size, the population and the elite individuals are assigned fitness values in the

following way:

Step 1 Assign fitness values, called strength (s), to the population in the archive X̃, using the

following relation, si =
ni

N+1 , where ni is the number of individuals that the ith solution in

the archive dominates in the regular population, X.

Step 2 The regular population, X, is then assigned fitness values according to, fi = 1+
∑

xj�xi

si.

Note that in SPEA lower fitness value is considered to be better. Therefore, if a decision

vector xi is not dominated by any individual in the population X, its fitness, fi, would be

equal to 1.

The way the archive is maintained and used in SPEA ensures that the population is rewarded
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when it approaches the PF. In a way the archive is used as a moving target to which the regular

population aspires. Again, the rest of the algorithm utilises roulette wheel selection and random

bit mutation.

3.4.6 Hypervolume-Based Evolutionary Algorithm

The need for comparative analyses regarding the strengths and weaknesses of different algorithms

led to the introduction of several indicators, see [55], measuring various qualities of the resulting

Pareto optimal set approximation. With the advent of such indicators, some researchers grasped

the opportunity to utilise these within the evolution process, see [48],[56]. One important indica-

tor is a derivative of the Lebesgue measure [57], initially introduced in this context by Zitzler and

Thiele [44]; this indicator is now commonly referred to as the hypervolume indicator [51]. The

most favourable quality of the hypervolume indicator is its monotonicity with regard to Pareto

dominance [51]. This implies that the hypervolume indicator can be used in place of Pareto

dominance relations for fitness assignment. However, this indicator is not without drawbacks

since most known algorithms to calculate the Lebesgue measure are of exponential complexity

with respect to the number of objectives [51]. This is a limitation that imposes a restriction on

the number of objectives that can be considered in an algorithm based on this indicator.

Recently Bader and Zitzler [51, 52] introduced an algorithm based on the hypervolume indi-

cator for many-objective optimisation1. Their idea is that precise calculation of the hypervolume

is not required, per se, to enable a useful ranking of the population. Under this premise they

developed a methodology which uses Monte Carlo sampling to approximately determine the

value of the hypervolume and subsequently use this to assign fitness to the decision vectors.

The results produced were quite favourable for HypE and the authors demonstrated that their

proposed technique can effectively tackle as many as fifty objectives [51].

3.5 Evolution Strategies

The introduction of ES is due to Rechenberg [29] in 1965. This early version of ES was a

two-membered mutation based algorithm the so called (1 + 1)-ES. Although ES share similar

features and inspirational background to GAs, there are two distinct differences. First, ES do

not employ a crossover operator, and second, ES utilise real decision variables as opposed to GAs

that originally employed binary encoded strings. However, these differences have blurred over

1Many meaning more than three in this context.
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time due to developments on both sides. Effectively both methodologies pursued adaptation

and were inspired by the cybernetic movement of that era.

There is a general consensus that both mutation and recombination operators perform an

important role and eventually both were employed to various degrees in these two approaches.

The main argument concerns their effect on the evolving population. Holland, with his famous

building block hypothesis (BBH) [25], promoted the idea that the recombination operator had a

positive influence on the evolving population due to short schemas with good fitness recombining

to form even better individuals. Beyer argued that this was not the case; his suggestion was

that the crossover operator had the effect of genetic repair [58]. Beyers’ hypothesis was that the

features that survive the crossover operator were the ones common to both parents and not the

small schemas with desirable elements.

As previously mentioned, the first version of ES was (1 + 1)-ES. This notation refers to the

fact that there are two members in the population, namely the parent and one offspring and

the selection for the surviving individual is performed among the two. The + sign essentially

refers to the selection mechanism. Some later versions of ES use the comma notation, denoting

that the parent takes no part in the selection process and new individuals are selected only from

the offspring pool. The main search operator in (1 + 1)-ES is the mutation operator defined as

follows,

x(G+1) = x(G) +N (0, σ) (3.3)

where N (0, σ) is a vector of random numbers of size n drawn from the normal distribution with

zero mean and σ standard deviation. Here x(G) represents the parent solution and x(G+1) the

offspring. If f(x(G+1)) ≤ f(x(G)) the offspring is retained and the parent is discarded. Otherwise

the same parent is used in the next generation.

ES were extended to a true population-based optimisation methodology by Schwefel [59].

Schwefel introduced (µ+λ)-ES as well as (µ, λ)-ES. Here, µ is the number of parents producing

λ offspring. The resulting population, after the selection process, is reduced to the number of

parents, µ. Schwefel combined these two variants to enable a parallel implementation of ES as

well as to experiment with adaptation in the control parameters such as σ [60]. For further

details on the (µ + λ)-ES the reader is referred to [59, 60, 61].
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3.5.1 Multi-Objective Problems

The earliest application of ES to MOPs that the author could trace is due to Kursawe [62] in

1991. Kursawe used recessive genes as a way to consider all objectives simultaneously. Sev-

eral years later Binh and Korn [63] introduced an algorithm, multi-objective evolution strategy

(MOBES), that estimated the nadir and ideal vectors1 in order to partition the PF into several

segments. The population was evenly distributed between these segments and selection was

performed based on the relative performance of each individual in the corresponding segment.

In 1998 Laumanns [64] introduced an algorithm inspired by the predator-prey game and showed

how this paradigm can be exploited to aid the population in approaching the PF uniformly.

Subsequently, Knowles and Corne [65] were the first researchers to utilise archiving and dom-

inance relations to extend ES to MOPs; the resulting algorithm is known as Pareto Archived

Evolution Strategy (PAES). In its simplest form, PAES is based on a (1 + 1)-ES, a decision

resulting from the authors’ observation that local search algorithms seemed to perform better

than population-based techniques when applied to telecommunication network design problems.

An attractive feature of PAES is its conceptual simplicity. Later, in 2001, Jin et al. [66] ex-

plored the weighted sum decomposition method [5, pp. 78] along with an archiving strategy to

retain non-dominated individuals. This seemed necessary since the technique without archiving

struggled to maintain Pareto optimal solutions. Several other techniques were introduced since

2001 by various authors, most notably by Igel et al. [67] in 2007 who produced an algorithm

based on the covariance matrix adaptation evolution strategy, MO-CMA-ES. MO-CMA-ES is

invariant to affine transformations applied to the objective function. This quality is deemed

useful, especially for non-separable test problems [67].

3.5.2 First Attempt to Extend ES to MOPs

In a short paper Kursawe [62] illustrated a conceptual framework upon which a multi-objective

ES can be based. Kursawe suggested using the entire population to optimise one objective in each

generation. The choice as to which objective should be optimised in each generation was made

probabilistically. So, in every generation every objective has a chance to be the fitness function

according to which selection is made. The aforementioned probabilities, which are represented

as a probability vector of dimension k, can either be predefined at the start of the algorithm or

be randomly generated every t generations. By dynamically changing the probability vector and

1See Section 2.5.3 for the definition of the ideal and nadir objective vectors.
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by altering the objective in almost every generation, the problem is transformed to a varying

problem. To tackle this issue Kursawe used two independent chromosomes to describe every

individual. These were termed as dominant and recessive genotypes. The individual then

would be represented mainly using the dominant genotype but with a probability of 0.3 the

dominant and recessive genes would be exchanged. However, comparative results with and

without individuals with double genotypes were not presented. A further suggestion by the

author was the use of the symmetric Weibull distribution by the mutation operator in the main

ES algorithm, although a detailed justification is not presented.

3.5.3 Predator-Prey Model

An interesting approach was introduced by Laumanns et al. [64] based on the nature-inspired

predator-prey model. The population of decision vectors assumes the role of the prey being

chased by a number of predator, notionally both situated on the vertices of an undirected graph.

All prey maintain their location on the graph while predators are allowed to move to neighbouring

vertices according to a probabilistic transition rule [64]. Every predator is associated with a

single objective function, hence there are at least k · M predators, where M ∈ N+. When

a predator lands on a vertex, the weakest1 prey in the neighbourhood is deleted from the

population and a new one is created using the mutation operator. It is assumed that no prior

preference information is available hence the search will not be biased toward any objective.

This is achieved by choosing appropriately the structure of the graph so that every vertex has

the same chance of being visited by a predator [64].

The number of predators is a multiple of the dimension of the objective vector since each

predator is associated with a single objective. It should also be noted that, according to the

authors, the use of a recombination operator in this technique produced worse results on the

given problem set [64].

One potential weakness of this technique is that its scalability to more than two objectives

is unclear.

3.6 Artificial Immune Systems

The immune system (IS) is a fine tuned concert of a vast array of cells acting in synchronism in

order to protect the body from pathogens. Pathogens are substances or microorganisms that can

1In this context the term, weakest, refers to the prey with the worst objective function related to that predator.
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Figure 3.5: Antibody schematic diagram.

affect the balance of the body (homeostasis), impairing its normal functioning and even cause

death. The immune system responds, immune response, to such threats creating specialised cells

capable of neutralising pathogens and restoring balance. In order for this procedure to progress

smoothly the immune system must attack the source of the disturbance while minimising the

effect this action has on healthy cells in the body - specificity. Once a particular threat has been

dealt with, the second time the body is exposed to the same pathogen the immune response will

be swifter and stronger to such a degree that the organism might not even realise that it had

been afflicted by a pathogen, so the immune system also exhibits memory.

Pathogens have certain features that the immune system can identify. These features are

called antigens, and their presence in the organism is detected by antibodies. Antibodies are

highly specialised molecules that have the capacity to identify specific antigens. An antibody,

see Fig. (3.5), identifies an antigen by binding on it, thus serving as a beacon signalling other

cells in the immune system to devour the intruder. Although antibodies are highly specialised,

their diversity is enormous thus enabling the immune system to attack a vast variety of antigens.

When a particular antigen is identified the antibody that successfully identified it will proliferate

by cloning via a process termed the clonal selection principle [68, 69]. Once the pathogens have

been eliminated, superfluous antigens are dissolved mainly via the process of apoptosis [70].

However some cells responsible for the proliferation of this particular type of antibodies survive

as memory cells [71], and if the host is infected again by the same pathogen these memory cells

will be activated to produce antibodies much faster compared with the first encounter, primary

response, with this particular antigen.

Although this introduction to the immune system will serve the purpose of illustrating the

parallelism of the biological system with Artificial Immune Systems (AIS), it does not even
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scratch the surface of the delicate intricacies present in the immune system. The interested

reader is referred to [72].

AIS have been employed in various applications, such as intrusion detections systems, virus

detection, anomaly detection fault diagnosis, and pattern recognition [73]. AIS have been used

in place of fitness sharing techniques in GAs to maintain diversity and distribute the population

evenly along the PF [74]. Another interesting use is in time-dependent optimisation problems

where AIS successfully adapt to a changing problem [75]. Despite these applications, direct use

of AIS to optimisation problems prior to 1999 is scarce. This could potentially be attributed to

the complexity involved in implementing an AIS.

3.6.1 Multi-Objective Problems

In 1999 Yoo and Hajela [76] implemented the first direct application of AIS to multi-objective

optimisation when they applied their algorithm on a 2-bar truss and an I-beam structure opti-

misation [76]; this algorithm is described in the next section. Another approach based on the

clonal selection principle was proposed by Coello and Cortés [77] in 2002, in which multiple

objectives are handled using a Pareto dominance based approach. Archiving was also used,

which the authors termed secondary memory, to enhance selection pressure toward the PF and

retain non-dominated individuals. A later development was introduced by the same authors in

2005 [74]; this algorithm is also discussed later. Another algorithm based on the clonal selection

principle was introduced by Zhang [78], utilising several other immune system inspired concepts.

Other similar algorithms have also been proposed by various authors, mostly based on the clonal

selection principle. Lastly, Gong et al. [79] introduced the Nondominated Neighbour Immune

Algorithm (NNIA). NNIA is a Pareto-based algorithm that was shown to be competitive with

several other evolutionary algorithms by its authors [79]. However, since NNIA is based on

more elaborate concepts its implementation complexity is quite high, in comparison to other

population-based algorithms, which is typical of immune based multi-objective algorithms.

3.6.2 First Attempt to Extend AIS to MOPs

The immune system based algorithm proposed by Yoo and Hajela [76] used the weighting method

[5, pp. 27] to account for all the objective functions simultaneously. The weighting method
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aggregates all the objective functions into a single function using the following relation,

min
x

g(x) =

k
∑

i=1

wifi(x)

k
∑

i=1

wi = 1, and, wi ≥ 0, for all i

subject to x ∈ S,

(3.4)

where wi represents weight of the ith objective function. When all of the objective functions

are equally important to the decision maker, the weights can be set to wi =
1
k
, where k is the

number of objective functions. Using the weighting method results in an approximate solution

for one point of the PF. To explore more points, various combinations of the weights have to

be used. Yoo and Hajela randomly generated a set of weight combinations in an attempt to

uniformly sample the PF and then used these different weighting vectors to guide the search.

The procedure they used is as follows:

Step 1 The population X is generated at random (note that the decision vectors are encoded

as binary strings with length M).

Step 2 Create a randomly distributed weighting vector set. A method to generate weighting

vectors in this fashion is described in Section 4.2.2.

Step 3 For all the individuals in the population evaluate the objective function for all the

weight vector sets and select a proportion of the best performing individuals Xbest. Set

Xbest as antigens; the rest of the population in X is treated as antibodies.

Step 4 Select one antigen from Xbest

Step 5 Select a portion of the antibody population. The authors suggest that the size of this

be three times larger than the number of individuals in the antigen population (Xbest).

Step 6 For all the selected antibodies from the previous step use R =
M
∑

i=1
ui, where ui is 1 for a

matching bit and 0 otherwise, to identify similarity strength among antibodies and anti-

gens. Subsequently, using a predefined threshold on similarity strength, select antibodies

that match the selected antigen and store their similarity strength R.

Step 7 Repeat the process from Step 4 (the authors suggest this be repeated three times).
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Step 8 Individuals from the population are selected based on the fitness value of the previous

steps.

Step 9 Apply crossover and mutation operators to the population.

Step 10 Repeat from Step 3 until convergence or some predefined stopping criterion.

Some difficulties encountered in the above implementation are that the weighting method is

used and its weaknesses could affect the algorithm in several ways. For instance, evenly spaced

weighting vectors do not necessarily produce an even distribution of points along the PF and

two widely differing weight vectors need not produce significantly different points along the PF

[5]. An additional shortcoming of the weighting method is that it cannot guarantee that all the

Pareto optimal points can be obtained [5, pp. 80].

It is apparent, even in this early application of AIS to MOPs that there is a jump in algorithm

complexity when compared to a GA. This complexity inevitably leads to an increased demand

on computational resources. This cost will have to be justified especially since GAs, as can be

seen in [14], can explicitly deal with constraints as well. However, the computational cost of

most algorithms can often be ignored when compared with the cost of evaluating the objective

function.

3.6.3 Multi-objective Immune System Algorithm

Coello and Cortés introduced another algorithm based on AIS, multi-objective immune system

algorithm (MISA) [74]. MISA was compared in performance with three other algorithms, namely

micro genetic algorithm (microGA) [80], NSGA-II [46] and PAES [65] and was found to perform

similarly and on some occasions better. The MISA algorithm is far too elaborate to describe in

detail here and therefore, only a conceptual overview will be given.

MISA initialises the population randomly, in common with almost every algorithm. There

is an archive, called a secondary population which is initially empty. The algorithm is based on

Pareto dominance relations. Specifically, for unconstrained problems 5% of the non-dominated

individuals in the population are selected and then copied to the secondary population. The

secondary population is cloned, i.e. copied several times. Then a mutation operator is applied to

the resulting population. Prior to application of mutation, the individuals are ranked and non-

dominated individuals, that also satisfy the constraints, are placed on higher rank compared

to non-dominated individuals that fail to meet the constraints. The most fit individuals are
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mutated on fewer bit positions than the less fit and then the population is decreased to its

original size, N , by selecting the best performing individuals. This process is repeated until the

stopping criterion is met.

3.7 Ant Colony Optimisation

Ants come from the same family as wasps and bees [81], namely Hymenoptera Fromicidae. As

individuals, ants’ capabilities are limited. Apart from their extraordinary strength their sight

is very limited and their hearing and sense of smell depend on their antennas. Despite these

facts, ants as a collective exhibit very interesting behaviour patterns [82]. In their search for

food, ants explore their nest surroundings in a random-walk pattern. However, when an ant

discovers food, it returns to the nest releasing pheromones [82] of varying intensity depending

on the quality and quantity of the discovered food source. Other ants close to the pheromone

trail are more likely to follow that path and, if there is still food to be found at the end of

the trail, they release pheromones as well, thus reinforcing the pheromone scent which, in turn,

increases the probability that more ants will follow that path. Alternatively, when an ant reaches

the destination indicated by the pheromone trail and does not discover anything interesting, no

pheromone is released and progressively the path becomes less and less attractive as pheromones

evaporate.

In 1991, Dorigo et al. [83] introduced an algorithm, Ant System (AS), inspired by the emer-

gent behaviour of ants. The AS was tailored to solve combinatorial problems and the travelling

salesman problem (TSP) was used as a test bed, see Fig. (3.6). Almost a decade later Dorigo and

Di Caro [33] formalised the AS and other similar methods in a unified framework, ant colony

optimisation (ACO). ACO is comprised of N individuals called ants. These are distributed

among µ cities and each ant progressively creates a candidate solution for the problem. The

ants decide which city they will next visit based on the pheromone trail (τ) associated with each

edge leading to a particular city and the separating distance of the cities. Assuming that an ant

starts off from city A in Fig. (3.6), it has three options, namely to go to B, C or D. Each of these

edges has a pheromone trail associated with it. The probabilistic transition rules are controlled

by two parameters, namely τ and η. The parameter τ can be initialised using prior information,

if available, or with the same value for all edges. Initially η represented the visibility of the ants

which depended on the distance of a city from the next and was defined as, ηAB = 1
dAB

for the

edge connecting city A with B. The smaller ηAB is, thus the larger the distance dAB is, the less
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likely is that an ant in city A to choose the city B for its next step in the tour, see (3.6). As

ants traverse across the edges constructing different solutions the pheromone across the edges

is updated as,

τi,j = (1− ρ)τij +
N
∑

s=1

∆τ si,j (3.5)

where ρ is defined as the evaporation rate of the pheromones, and ∆τ si,j is the amount of

pheromone added by ant s on the edge connecting the ith and jth node. Therefore, the larger

the deposit of pheromones across an edge i, j the larger τi,j is, hence the probability that more

ants will select this path is increased. The probabilistic transition rule, based on τ and η, that

govern the behaviour of ants is summarised by the following relation,

pi,j =











ταi,jη
β
i,j

µ∑

m=1
ταi,mη

β
i,m

if j is a valid destination

0 if j is not a valid destination,

(3.6)

where a valid destination for an ant is a node that the particular ant is allowed to visit at that

particular stage. The probability that an ant on node i will visit a node j is given by pi,j, and

µ is the number of nodes in the problem. For the TSP problem a node is a valid destination

if a particular ant has not visited that node. Also α and β are real and positive numbers used

to favour either τ or η; if α = β the information gained from τ is considered equally important

with η.

The general ACO algorithm has the following stages,

Step 1 Initialise pheromone values, τ , for all the edges. Usually all the edges receive the

same pheromone value at the start of the algorithm unless prior information is available

indicating that favouring certain edges would increase convergence speed.

Step 2 Construct a solution for each ant, xs.

Step 3 Update the pheromone values for each edge.

Step 4 Go to Step 2 until stopping criteria are met.

The rules for constructing a solution xs for each ant are problem-dependent.

Since 1991, ACO has been successfully applied to various combinatorial problems such as

vehicle routing, sequential ordering, project scheduling, multiple knapsack and protein folding

[83].
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Figure 3.6: Travelling salesman problem with four cities. Although the edges connecting the
cities seem equidistant they need not be. The distance of two cities is represented by d.

3.7.1 Multi-Objective Problems

ACO algorithms have been extended to two or three objectives but a methodology that is scalable

with an increased number of objectives has yet to be presented [84]. The key difficulty is the

way that the pheromone matrix is to be represented for more than two objectives [84]. The

solutions to this issue can, in general, fall into two categories. The first use a single pheromone

matrix (see Iredi et al. [85]), and the second utilise many pheromone matrices (see, for example,

Doerner et al. [86]).

3.7.2 First Attempt to Extend ACO to MOPs

The first extension of ACO to MOPs was introduced by Gambardella et al. [87] in 1999 and

was applied to a vehicle routing problem with two objectives, number of tours and total travel

time; both objectives are to be minimised. The strategy adopted to extend ACO to MOPs

was to use two independent ant groups with different pheromone matrices; the number of tours

objective is considered more important relative to the total travel time, a procedure very similar

to lexicographic minimisation. The algorithm is started using the nearest neighbour heuristic

to create an initial feasible solution, ψ, and subsequently improvements to this solution are

admitted when a new solution is found that decreases the number of vehicles used or utilises

the same number of vehicles as ψ, but the total travel time is smaller.

3.7.3 Bi-Criterion Ant Colony Optimisation

Although Gambardella et al. [87] did successfully apply ACO to a MOP, their methodology

was problem-specific and the decision maker had to order the objectives according to their
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importance. This can often prove problematic if no prior information is available for the problem

or that information is inadequate. Iredi et al. [85] were the first to consider all objectives

simultaneously extending ACO to MOPs in a more general way, utilizing the weighting method

to obtain different regions of the PF, see (3.4). The methodology presented by Iredi et al. had

several alternative approaches. Here, only the one that produced the best results is described.

Iredi et al. used multiple ant colonies to approximate the PF, with all colonies having the

same number of ants, m = N
p
, where p is the number of colonies, and two pheromone matrices

were used, M (1) and M (2), one for each objective. A major point is that only non-dominated

individuals (ants) are allowed to update the pheromone matrices, thus solutions corresponding to

dominated objective vectors progressively lose their attractiveness since their pheromone values

are decreased. To achieve this behaviour the pheromone matrices are updated in two stages. In

the first instance, evaporation is applied to all the pheromone values, and in the second stage, the

only values updated are the ones that correspond to non-dominated individuals. Although there

is no explicit fitness assignment in this algorithm, the described mechanism creates selection

pressure toward better individuals. So all pheromone values are updated using the following,

τi,j = (1− ρ)τi,j (3.7)

where ρ is the evaporation rate, and non-dominated solutions receive an additional update,

τi,j = τi,j +∆ (3.8)

where ∆ is a fixed amount that depends on the number of non-dominated solutions ν i.e., ∆ = 1
ν
.

The different weighting vectors w are generated so that a 50% overlap among ant colonies exists.

This has a similar effect to that of a sharing function in genetic algorithms and helps maintain

an evenly distributed PF. The w values are pre-set using the following expression,

wi,k =
i− 1

p+ 1
+

2(k − 1)

p(p + 1)
(3.9)

where i ∈ [1, p] is the ith colony and k =
[

1, N
p

]

is the weight vector associated with the kth ant

in that colony.

For a population of N ants, the algorithm outlined by Iredi et al. is the following:

Step 1 Generate p ant colonies, where N is the size of the entire ant population.

Step 2 Generate N weights w, for each ant in all colonies.
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Figure 3.7: Illustration of the mutation operator in DE, in this case F = 1 and x
(G+1)
i = v

(G+1)
i

since for this instance f(x
(G+1)
i ) < f(x

(G)
i ), and, dv1 and dv2 stand for decision variable one and

two respectively.

Step 3 Create solutions and evaluate.

Step 4 Find the non-dominated solutions Xnd.

Step 5 Update the pheromone matrices M (1) and M (2) using (3.7), evaporation.

Step 6 Update the pheromone elements corresponding to non-dominated solutions using (3.8).

Step 7 Repeat from Step 3 until termination criteria are met.

This method performs reasonably well for two objectives, however as the authors mention,

it is not easily extensible to more than two objectives.

3.8 Differential Evolution

DE was introduced by Storn and Price [34] as a global search method over real decision vectors,

although later extended versions for integer [88] and binary representations [89] were introduced.

The major strengths of DE are its conceptual simplicity, ease of use and implementation; also

the number of tuning parameters is very small and the same parameter values with no or very

little change are found to be applicable to a wide range of problems.
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For a population of size N and decision vectors of dimension n, the current generation is

x
(G)
i for i = {1, 2, . . . , N}. (3.10)

The basic DE algorithm has three stages in its iteration phase: mutation, crossover and selection.

During the mutation stage all decision vectors in the population are perturbed resulting in a

temporary new population V(G+1) of the same size with X(G). The mutation operator in DE,

shown in Fig. (3.7), is described as,

∀x(G)
i , i = {1, 2, . . . , N},

v
(G+1)
i = x(G)

r1
+ F

(

x(G)
r2
− x(G)

r3

)

,
(3.11)

and if f(v
(G+1)
i ) < f(x

(G)
i ) the newly formed parameter vector v

(G+1)
i is assigned to x

(G+1)
i ,

otherwise x
(G)
i is retained in the next generation. The parameters r1, r2, r3 ∈ {1, 2, . . . , N} are

sampled at random without replacement from the set {1, . . . , N} \ {i} for each individual in the

population. The parameter F ∈ [0, 2] is a scaling factor controlling the variation (x
(G)
r2 − x

(G)
r3 ).

The crossover operator in DE is defined as

u
(G+1)
i =

(

u
(G+1)
i,1 , u

(G+1)
i,2 , . . . , u

(G+1)
i,n

)

,

where

u
(G+1)
i,j =

{

v
(G+1)
i,j U(0, 1) ≤ Cr or j = ridx(i),

x
(G)
i,j U(0, 1) > Cr and j 6= ridx(i),

j = 1, 2, . . . , n ,

(3.12)

and Cr is the crossover rate parameter, bounded in the range [0, 1], ridx(i) is a random index

in the range {1, . . . , n},1 and U(0, 1) is a random number sampled from a uniform distribution

in the domain [0, 1]. Once the new decision vectors u
(G+1)
i have been generated, the selection is

based on the greedy criterion, which can be stated as

x
(G+1)
i =

{

u
(G+1)
i if f(u

(G+1)
i ) < f(x

(G)
i )

x
(G)
i otherwise.

(3.13)

So the DE algorithm progresses exactly as Alg. 3.2 but using the crossover, mutation and

selection operators as defined above. Some general guidelines on tuning DE can be found in

[90].

1As a reminder, n represents the number of decision variables.
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3.8.1 Multi-Objective Problems

One of the early extensions of DE to MOPs was presented by Chang et al. [91] in 1999 in

conjunction with tuning a fuzzy system controlling the operation of a train, using a Pareto

dominance based approach. Two years later in 2001 a couple of new extensions were introduced.

One was due to Abbass et al. [92] which they called Pareto-frontier Differential Evolution

(PDE) where they preserved the greedy selection algorithm in the initial DE algorithm with

the additional requirement that the offspring at least weakly dominate their parents. The

second algorithm introduced in 2001 was due to Lampinen the so-called generalised DE (GDE)

[93]. In 2002 another approach based on Pareto dominance appeared by Madavan [94], Pareto

DE approach (PDEA), that used the non-dominated sorting algorithm in NSGA-II [46]. A

decomposition-based extension of DE to many-objective problems was also presented in 2003 by

Hughes [95], the so called multiple single objective Pareto sampling (MSOPS) and its updated

version introducing a new fitness assignment process (MSOPS-II) was presented in 2007 also by

Hughes [96]. It should be noted that although the problems used in [95] were 2 and 3-objective,

MSOPS scales well for many-objective problems, see for example [56]. In 2004, Parsopoulos et

al. [97] introduced the vector evaluated DE (VEDE) which used a similar approach to VEGA

[12] to extend DE to MOPs. The same year, Kukkonen and Lampinen [98] introduced GDE-2

improving upon the diversity of the Pareto set with respect to the first algorithm. The following

year, the same authors presented GDE-3 [99] further improving its performance. It should be

noted that all the GDE algorithms did consider constraints explicitly in their main algorithm.

Lastly, an approach based on decomposition methods was suggested by Zhang and Li [2]. This

technique is further discussed later.

3.8.2 First Attempt to Extend DE to MOPs

The first algorithm to extend differential evolution to multi-objective problems is due to Chang

et al. [91]. The algorithm was applied to a fuzzy train operation controller with three objectives,

deviation from arrival time, energy consumption and passenger comfort, from which the first

two are minimised and the last is maximised.

The approach adopted by Chang et al. [91] to extend DE to MOPs is divided into two

phases excluding the standard DE operators. In the initial phase, an empty archive is created

to contain non-dominated individuals. This archive is populated with solutions by comparing

every individual in the current population X(G) with the individuals contained in the archive
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A. If the individual is not dominated by any solution in the archive it is added to A and all the

individuals, if any, that are dominated by the new individual are removed from the archive. In

the second phase the objective vectors are scaled, in a process similar to fitness sharing in GAs,

using the following,

Dk(xi) =







fk(xi)∑

j

L(xi,xj)
, ∀i, j if

∑

j

L(xi,xj) 6= 0

fk otherwise ,
(3.14)

where L(xi,xj) is defined as:

L(xi,xj) =

{

1− di,j
σ

if di,j ≤ σ
0 if otherwise ,

(3.15)

di,j is the Euclidean distance of the individual xi from xj in the solution space and σ has the

same effect as σshare in GAs. Although this procedure bears some similarity to the way fitness

sharing is used in GAs there is a significant difference. In GAs, a scalar fitness value is used for

every individual. In this approach Chang et al. [91] used the objective vectors and if the decision

vectors are within σ distance then the entire objective vector is scaled. Scaling is applied to a

newly generated population which is compared with the individuals in the archive, using the

same process as in phase one.

The algorithm presented by Chang et al. [91] is summarised as follows:

Step 1 Initialise the population at random and set the archive to, A = ∅

Step 2 Evaluate the population X using the objective functions.

Step 3 Compare all individuals in the population X with the population in the archive A. Add

non-dominated individuals to the current archive population.

Step 4 Generate and evaluate a temporary population using crossover and mutation operators

and use (3.14) and (3.15) to scale the objective vectors as appropriate. The individuals

that are not dominated by any member of A are added to it and passed to the next

generation; the rest are discarded.

Step 5 Repeat from Step 2 until the termination criteria are met; the authors used a fixed

number of iterations.

One potential difficulty with this algorithm is that since the sharing is performed in the

decision variable space, as in NSGA, the resulting uniformity of the PF might suffer.

53



3.8 Differential Evolution

3.8.3 Generalised Differential Evolution

Another interesting multi-objective extension of DE was presented by Lampinen [93] in 2001.

The advantage of this approach is that GDE was developed to deal with constraints as well.

This renders it very useful for real-world applications, although that is not to say that all other

algorithms cannot be extended to handle constraints. However GDE performance was overly

sensitive to parameter selection [99], also no mechanism was employed to preserve diversity in

the PF. These issues were later both addressed by Kukkonen and Lampinen [98] but these mod-

ifications affected conversely the convergence rate. The latest addition to the GDE algorithm

was presented in 2005 by Kukkonen and Lampinen [99] providing sufficient evidence of improve-

ment over previous versions of GDE and NSGA-II. This new algorithm is referred to as GDE3.

Another interesting feature of GDE is that the main algorithm is clearly delineated from the

part that enables GDE to handle constrained MOPs which can be useful if a modification to

the main algorithm is desirable.

GDE3 has the ability to handle any number of constraints and objectives and in the case

where there is only one objective and no constraints it gracefully falls back to the basic DE

algorithm. The inherent handling of constraints in GDE3 is achieved by means of an augmented

definition of Pareto dominance described as follows.

Definition 1. A decision vector x⋆ is said to constraint-dominate a decision vector x, written

as x⋆ ≺c x, if and only if one or more of the following conditions are true,

• x⋆ ∈ S while x 6∈ S.

• x⋆,x 6∈ S but x⋆ fails to satisfy a smaller number of constraints compared to x.

• x⋆,x ∈ S and x⋆ ≺ x.

The definition for weak-constraint-dominance is as above with the exception that the last

condition requires x⋆ � x. The GDE3 algorithm can be summarised as follows,

Step 1 Initialise the population X, usually randomly or from a predefined feasible set.

Step 2 Apply mutation and crossover operators using the standard DE algorithm or some

alternative and evaluate the objective functions.
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Step 3 Apply the following rule to all the individuals in the population to decide whether

an individual will be accepted or not in the next generation (G + 1), x
(G+1)
i = u

(G)
i if

u
(G)
i �c x

(G)
i , otherwise x

(G+1)
i = x

(G)
i .

Step 4 Expand the population X by adding individuals, u
(G)
i , that satisfy all of the following

conditions,

• u
(G)
i satisfies all constraints,

• the ith individual in the population X is unchanged, and

• x
(G)
i ⊀ u

(G)
i .

Step 5 Based on some crowding measure, reduce the population size back to N .

Step 6 Repeat from Step 2 until the termination criteria are met.

3.8.4 Multi-Objective Evolutionary Algorithm based on Decomposition

As mentioned in Section 3.3, the main algorithm in PBOTs is usually built with single objective

optimisation in mind and as such the extension to multiple-objectives, as will be apparent by

now, requires a number of considerations. For instance, diversity preserving operations and elite-

ness preserving strategies inevitably result in higher computational costs. And for algorithms

utilizing directly the non-dominated sorting strategy, the cost is even higher. Relatively recently

a multi-objective evolutionary algorithm based on decomposition (MOEA/D) was introduced

by Zhang and Li [2] as an alternative way of extending DE and evolutionary algorithms (EAs),

in general, to deal with MOPs. The approach depends on one of several available decomposition

techniques, - weighted sum, Chebyshev [5] and normal boundary intersection [100] decomposi-

tions - with each having its own strengths and weaknesses. The minimisation problem defined

in Section 2.22, when using the Chebyshev decomposition, can be restated as follows,

min
x

g∞(x,ws, z⋆) = max
i=1...k

(ws
i |fi(x)− z⋆i |)

for all s = {1, . . . , N},

subject to x ∈ S,

(3.16)

where ws are N evenly distributed weighting vectors. The idea behind this is that g∞ is

a continuous function of w [2]. The authors’ hypothesis was that for N evenly distributed

weighting vectors the same number of single objective sub-problems is generated and their
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simultaneous solution should result in evenly distributed Pareto optimal points, assuming the

objectives are normalised [2]. Here is a description of the MOEA/D algorithm,

Step 1 Generate N equally spaced ws vectors and create a matrix B containing the nearest

neighbours of each ws.

Step 2 Initialise the ideal vector, z⋆, to some large value.

Step 3 Evaluate the decision vectors using the objective function.

Step 4 Apply genetic operators, crossover and mutation, using individuals in the neighbour-

hood of each solution. The choice of which individuals are to be mated is made at random.

Step 5 Evaluate the decision vectors, if any evaluation results in better value for a particular

objective than in the z⋆ vector then update it.

Step 6 Update all individuals in the population for which the following is true: g∞(xi,new) ≤
g∞(xi,old).

Step 7 Find the non-dominated solutions in the population and store them in the archive.

As can be seen from the above procedure, each individual in the population is assigned a

particular ws value and a sub-problem. Also the ideal vector z⋆ is estimated iteratively at

execution time. A good guess for z⋆ does help but is not a prerequisite. It should be noted that,

as the authors of MOEA/D state, the use of normalised objectives helps the algorithm better

distribute Pareto optimal solutions along the entire PF.

3.9 Particle Swarm Optimisation

PSO, introduced in 1995 by Eberhart and Kennedy [35, 101] was inspired by the flocking be-

haviour of birds and swarm theory. In PSO, as observed in nature, each agent has a rather

limited repertoire of behaviours while the collective exhibits complex expressions. In the initial

PSO algorithm the particles (decision vectors) use a simple update rule to update the velocity

and, consecutively, the position of each particle. An archive is maintained that contains the best

achieved objective function values for each particle

P = {pi : i = 1, . . . , N}, (3.17)
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dv2
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(G)
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i

Figure 3.8: Particle update illustration in particle swarm optimisation. Where, M =

c1U(0, 1)(pi−x
(G)
i )+ c2U(0, 1)(pg −x

(G)
i ) and c1U(0, 1), c2U(0, 1) = 1 for clarity. As before, dv1

and dv2 stand for decision variables 1 and 2 respectively.

so f(pi) ≤ f(x(G)
i ) and if f(pi) > f(x

(G+1)
i ), then pi = x

(G+1)
i and so on. Additionally, a global

best position is maintained pg for which the following condition must hold f(pg) ≤ f(x
(G+1)
i ),

for all i ∈ {1, 2, . . . , N}. If this is not true, pg is updated using the following rule pg = {xi :

min
i
f(xi)}. The velocity update rule is:

v
(G+1)
i = v

(G)
i + c1U(0, 1)

(

pi − x
(G)
i

)

+ c2U(0, 1)
(

pg − x
(G)
i

)

,
(3.18)

where c1 and c2 are positive constants and U(0, 1) is a random number sampled from the uniform

distribution in the range [0, 1]. A suggested value for c1 and c2, for problems when no prior

information is available, is that both are set to 2 [101]. This would effectively result in a

multiplier with a mean value of one, thus balancing in the mean the bias toward the point pg

and pi for each particle [102]. Part of the standard PSO algorithm is illustrated in Fig. (3.8). A

modification to (3.18) was presented by Shi and Eberhart [102] introducing a multiplying factor

w to v
(G)
i , the inertia weight, resulting in the following velocity update relation,

v
(G+1)
i = w · v(G)

i + c1U(0, 1)
(

pi − x
(G)
i

)

+ c2U(0, 1)
(

pg − x
(G)
i

)

,
(3.19)

where w can be constant, a function of the current generation G or even a function of a metric

measuring the convergence of the algorithm. For example, the normalised hypervolume indicator
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could be utilised. A value of 1 for w results in the regular velocity update rule, while a value

below 1 progressively decreases the average velocity of the particles biasing the search to regions

local to the particles. Alternatively, a value above 1 leads to a progressive increase in the

velocity of particles resulting in a more explorative behaviour. Subsequently the position of the

new particles is calculated in the following way,

x
(G+1)
i = x

(G)
i + v

(G+1)
i . (3.20)

PSO does not have an explicit selection operator, although the archive p could qualify as such.

Several variants of the described PSO algorithm have been devised, the interested reader is

referred to [103, 104].

3.9.1 Multi-Objective Problems

The first attempts to extend PSO algorithms were presented in 2002 and at least four researchers

independently suggested various methodologies to extend PSO. However the first extension seems

to be due to Parsopoulos and Vrahatis [105] where the authors elected to use several variants of

the weighting method and an approach similar to Shaffer’s VEGA. Later the same year, Coello

and Lechuga [106] introduced a Pareto-based extension which they subsequently compared with

NSGA-II and PAES with similar results but lower computational cost. Another Pareto-based

approach is due to Fieldsend and Singh [107]. An additional extension in 2002 was presented by

Hu and Eberhart [108], where the personal best value pi for the i
th individual is replaced only

in the case when the new value dominates the previous archived value along with a technique to

maintain diversity in the objective space using the Euclidean distance of objective vectors. The

following year, Hu et al. [109] presented yet another extension to PSO based on the previously

presented version [108] with minor improvements. In 2004 Coello et al. [110] presented a

much more complete and elaborate extension of PSO with similar performance to three other

evolutionary algorithms, namely NSGA-II, microGA and PAES.

Since 2004, several researchers introduced various other methodologies to extend PSO to

handle MOPs but the philosophy of the applied methodologies and techniques to achieve this task

does not vary significantly with respect to the already presented methods. For a comprehensive

survey the reader is referred to [111].
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3.9.2 First Attempt to Extend PSO to MOPs

Parsopoulos and Vrahatis [105] introduced a generalization of PSO to MOPs based on a method-

ology presented by Jin et al. [112] using some variations of the weighting method, see (3.4).

Jin et al. [112] argued that weighting methods, or more specifically the conventional weighting

method, could not approximate a concave PF due to the fact that the surface of a concave PF

is unstable and attracts solutions toward the two extremes1 for which the weights are (0, 1) and

(1, 0) respectively. However, in real-world applications, the PF shape is usually not known a

priori. To deal with this predicament Jin et al. [112] suggested that if the optimiser is run with

weights of one of the two extremities of the PF, that is either (0, 1) or (1, 0) and then gradually

or abruptly the weighting vectors are exchanged the optimiser should be able to traverse the

entire PF. To capture the Pareto optimal solutions Jin et al. suggested an archiving technique

that would, hopefully, result in a good approximation of the entire PF. The problem with this

technique is that the optimiser is effectively segmented in two phases, the first one with the fixed

weighting vectors and the second one where the population is allowed to slide along the PF.

To successfully accomplish this task, a metric is needed to measure the convergence rate of the

first phase so that the second phase is initiated. This task is not trivial because it presupposes

that the minimum is already known. Another potential problem is that if disjoint regions in the

decision variable space map to neighbouring objective values, this approach will have difficulty

approximating the PF.

Despite these difficulties, the aforementioned approach seems to perform reasonably well for

the test problems used in [105] and [112]. The proposed algorithm by Parsopoulos and Vrahatis

[105] using the archiving strategy can be summarised as follows:

Step 1 Initialise the PSO population, X, and an empty archive, A; also set the weight vector

to (0, 1).

Step 2 Update the position of every particle according to (3.19) and (3.20).

Step 3 For each particle, update pi only if the aggregated weight function of the new particle

results in a smaller objective value, similarly for pg.

Step 4 Find the non-dominated particles in the population and add them to the archive sub-

stituting dominated solutions.

1In the case of two objectives.
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Step 5 If a convergence criterion is not met go to Step 2, otherwise proceed.

Step 6 Set the weighting vector to (1, 0), either gradually or abruptly and go to Step 2; in

subsequent runs ignore Step 5.

At the end of the above process the archive A should contain an approximation of the PF. In

a second approach Parsopoulos and Vrahatis [105] used a replication of the method used by

Shaffer [12] in VEGA. The two methodologies compared and the authors concluded that their

performance was very similar with no clear advantages of one over the other.

3.9.3 Multi-Objective PSO

Coello et al. [110] brought forward an improvement of a previously developed multi-objective

PSO algorithm (MOPSO) [106]. The MOPSO algorithm used an archive to store non-dominated

individuals and a mutation operator to enable PSO explore the whole search space; numerous

suggestions are given on various effects the parameters have on the MOPSO algorithm perfor-

mance. Additionally, MOPSO has the ability to handle constrained optimisation problems.

3.10 Estimation of Distribution Algorithms

In 1995, several crossover operators in GAs appeared that used probability distributions, for ex-

ample, simulated binary crossover [39], unimodal normal distribution crossovers [40] and fuzzy

recombination [41], to name but a few. These crossover operators, although they did not recom-

bine more than two or three individuals from the population, did use a probability distribution

that was based on the parent solutions to generate the offspring. Estimation of distribution

algorithms can, in a way, be seen as an extension to the idea behind these crossover operators.

The generalization is straightforward. Instead of using a crossover and mutation operator in the

GA, a probability distribution over the most prominent of solutions can be estimated and then

utilised to produce new individuals in the population [36]. A typical EDA, see Alg. 3.4, proceeds

very similarly to a GA. The difference is that on every generation a subset of the population,

usually the better half of the population, is selected and based on that subset a probabilistic

model is created. Then this model is sampled and the resulting new individuals are merged with

the old population while maintaining the population size constant.

While EDAs have successfully been applied to a diverse problem set, involving real and dis-

crete decision variables, outperforming rival algorithms [113], it is not so trivial to generate the
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Algorithm 3.4 Estimation of Distribution Algorithm

1: Initialise population X(0)

2: Evaluate objective function
3: repeat
4: Select promising solutions Xp from X(G)

5: Create a probabilistic model, P , based on Xp

6: Generate new solutions Xn by sampling P
7: Evaluate the objective function for Xn

8: Combine Xn and X(G) to create X(G+1)

9: until Termination condition is met

required probabilistic model. Also, the model type strongly depends on the decision variable

type, whether or not the decision variables are coupled, to what extent and in what way. Assum-

ing that all decision variables are independent, while in fact there are multiple interdependencies,

would grossly mislead the algorithm [114]. Additionally, these challenges increase in difficulty

when dealing with MOPs [115],[116]. Despite these difficulties, further research in EDAs seems

promising due to their inherent adaptive nature that enables them to scale well compared with

other algorithms for some problems [117]. Another strong point is that prior knowledge can

effectively be exploited by biasing directly the initial population [118] or by biasing the model

creation procedure [119].

3.10.1 Multi-Objective Problems

In 2001 Thierens and Bosman [120] presented a simple multi-objective version of the previously

presented EDA algorithm, the iterated density estimation algorithm (IDEA) [121]. The approach

was simple, yet proved quite effective. The methodology used is further discussed in the next

section. The following year Laumanns and Ocenasek [115], based on the Bayesian optimisation

algorithm (BOA) [122], suggested a multi-objective EDA using a (µ + λ)-strategy. In 2003

Costa and Minisci [123] used the Parzen method, a non-parametric estimation of distribution

algorithm. The rest of the algorithm is very similar to the multi-objective iterated density

estimation algorithm (MIDEA) by Thierens and Bosman [120], apart from the fact that, instead

of a clustering algorithm, Costa and Minisci used the Parzen method to distribute solutions

along the PF. An interesting approach presented in 2004 by Okabe et al. [124] is the Voronoi

based EDA (VEDA). VEDA used Voronoi diagrams with the aid of clustering techniques to

estimate models for disjoint regions in the decision variable space. The approach is fairly similar

to the approach presented by Zhang et al. [125] in 2008 (RM-MEDA), where the authors used

61



3.10 Estimation of Distribution Algorithms

certain regularity assumptions true for continuous MOPs.

3.10.2 First Attempt to Extend EDAs to MOPs

In 2000 Bosman and Thierens [121] introduced a framework, named Iterated Density Estimation

Algorithm (IDEA). Based on the assumption that the problem might contain many high-order

nonlinear interactions, the authors argue that even complex probabilistic models might fail to

capture such behaviour, a view that seems to be gaining support [126]. Instead, a clustering tech-

nique is being used over the decision variable space and subsequently a probability distribution

function is fitted over the cluster, weighted by the performance of the individuals in each cluster.

It should be noted that only a certain percentage, the better performing part, was selected to

participate in the described process. Later in 2001, Thierens and Bosman [120] expanded the

IDEA framework to tackle MOPs, named MIDEA1. The main differences in the newly presented

algorithm were the ranking of the individuals in the population and a clustering method used

to maintain diversity in the PF. For each individual, a count is formed based on number of

individuals that dominate it, so highly fit individuals have a relatively small domination count.

To maintain diversity along the PF, a clustering algorithm is applied in the objective space.

3.10.3 Regularity Model-Based EDA

Another interesting approach was introduced by Zhang et al. [125]. The basis of the proposed

approach is that under certain regularity conditions on the problem, usedK piecewise continuous

(k − 1)-dimensional manifolds to approximate the probability model for decision vectors that

result in the PF.

Zhang et al. [125] used inductively the Karush-Kuhn-Tucker condition [5] for continuous

multi-objective problems, asserting that the PF of a problem with k objectives is defined by a

(k− 1)-dimensional manifold in the decision variable space. This assertion allowed Zhang et al.

[125] to approximate this manifold with K piece continuous manifolds. To accomplish this task

a (k − 1)-dimensional local principal component analysis algorithm was used to partition the

population in K disjoint clusters and then the centroid and its variance were estimated. The

rest of the algorithm procedure is very similar to the one seen in Alg. 3.4.

RM-MEDA was compared, using the ZDT2 test suite [127], with PCX-NSGA-II [128], GDE3

[99] and MIDEA [129] and, on average, outperformed those algorithms although as the authors

1Multi-objective Iterated Density Estimation Algorithm (MIDEA)
2Zitzler, Deb, Thiele (ZDT)
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Algorithm Family

Features GA ES AIS ACO DE PSO EDA

Continuous 5 5 2 1 5 5 4
Discrete 5 1 5 5 2 2 5
Mixed 1 1 - 1 1 1 1
Combinatorial 2 3 3 5 2 2 4
Complexity 4 4 3 2 5 4 1
Cost 4 4 3 3 5 5 1
No of Parameters 2 3 2 3 4 4 5
MOS 5 5 4 2 5 4 4
Prior Information 2 2 3 4 2 2 5

Table 3.1: Relative strengths and weaknesses of algorithm families for MOPs.

note, this performance comes at a much higher computational cost since a local principal com-

ponent analysis algorithm has to be executed in every iteration of RM-MEDA.

3.11 Discussion

There is little doubt that evolutionary algorithms have progressed with great pace over the last

30 years, however there is little advice available to the practitioner faced with the challenge of

choosing a suitable algorithm. In a way this choice is a multi-objective problem in itself, and

quite a challenging one. Nevertheless, the fact that there is an absence of concrete guidelines is

not accidental and can be attributed to several factors. For instance, not all the methodologies

mentioned are easy to study analytically and, thus a rigorous and conclusive comparison is rather

difficult. In this section, as an initial guide to the practitioner, the advantages and disadvantages

of the algorithms are summarised: see Table 3.1.

Although every possible effort has been made to validate the features and their corresponding

ratings in Table 3.1, the ratings presented inevitably have some bias introduced by the author,

especially due to the fact that no experiments were conducted. This fact is ascribed to the

sheer volume of material available relating to population-based multi-objective optimisation

algorithms, rendering an attempt to thoroughly compare the different algorithms extremely

difficult, if not impossible, in such a limited time frame.

The basis for the assigned ratings in Table 3.1 is now addressed. Factors that influenced

these ratings are the following:

• Degree of Support for a Feature

The degree of support for a feature is determined by how well established it is for algorithms
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in a particular family. “Established” means, that the research community consistently

improves upon the feature and that this process, relative to the study interval (the last 30

years), is not entirely novel. For example, AIS have a score of 2 for continuous problems

since this extension is very recent [130, 131] and involves hybridization of the underlying

algorithmic framework. For the same reason, all algorithmic families score poorly for

mixed type decision variables (Table 3.1: Mixed), since systematic studies on this topic

are extremely scarce.

• Reported Performance

Another influencing factor is the reported performance of individual methods. For exam-

ple, there is a clear way to bias the model building process in EDAs so as to encompass

prior information when compared with any of the other algorithm families, hence they are

assigned a top score in Table 3.1: Prior Information. To some extent, this argument is

also true for ACO.

Explanation as to the meaning of the features in Table 3.1 is given below along with justifi-

cation of the relative values attributed to each family of algorithms,

• Continuous - Problems with continuous decision vectors. A “-” indicates that continuous

decision variables are not supported. At the other extreme, a value of 5 indicates excellent

support for continuous decision variables.

AIS-based algorithms have adopted continuous decision variables quite recently [130, 131].

However, the employed methodology resembles EDA algorithms since a Gaussian network

model [130] is created to enable the underlying AIS method deal with this type of decision

variable. This means that the method in [130] is in essence a hybrid of two algorithmic

families, namely AIS and EDA. Admittedly, the reported performance in [131] is compa-

rable with, and in some instances better than, the compared algorithms. For this reason,

AIS score 2 in Table 3.1, since their ability to handle continuous decision variables is much

better than ACO, but research involving AIS with continuous decision variables is quite

sparse. ACO has relatively poor support for this type [132, 133]. EDA is ranked at 4 since

its support for real decision variables is relatively recent [120, 121]. ES has supported this

type since its inception [29], the same is true for PSO [35] and DE [34].

• Discrete - Problems with discrete decision vectors. The values have the same interpretation
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as Continuous.

GAs initially used discrete representation [25] as well as AIS [27], EDAs [134] and ACO

[135]. ES, DE and PSO have been developed for problems with continuous decisions

variables [34, 35], however some extensions exist that extend these classes of algorithms

to tackle problems requiring discrete decision variables, see [136] for DE, [137] for ES and

[138] for PSO.

• Mixed - Problems that require mixed type decision variables, ie continuous and discrete.

Values have the same meaning as Continuous.

Since AIS does not support continuous decision variables it is disqualified from this cate-

gory. Tracking published resources in this category proved challenging. Although, in the

authors’ experience, mixed type decision variables are absolutely necessary for real-world

applications, the literature is very scarce on this topic. This fact is reflected in the rel-

ative rankings, which, for all algorithmic families, are the same. One extension of ACO

to mixed type decision variables is presented in [139], and an application using EDAs

in [140]. Regarding ES there are some studies dealing with mixed-integer decision vari-

ables [141, 142], however the bulk of the research is directed toward real decision variable

problems. Additionally, some examples in DE and PSO are [88, 89] and [143] respectively.

• Combinatorial - This feature represents the ability to deal with combinatorial problems

and how well; 5 indicates highly suited for tackling combinatorial problems and “-” means

absolutely no support.

To some extent all the studied algorithmic families support or have the ability to tackle

combinatorial problems, although ACO has a strong lead in this type of problems [144].

Also ACO papers consistently feature in the top 10 most cited papers on combinatorial

optimisation problems [145]. EDAs are ranked 4 only because there seems to be a smaller

body of research compared with ACO in this category. However EDAs gain ground quite

rapidly [145]. Some exemplars of successful applications can be found in [37, 113, 117].

Regarding the rest of the families and considering the fact that most are employed in

combinatorial problems in a hybrid form with local search techniques [146, 147], ES and

AIS are given a slight advantage due to their increased use [145]. However this point is

debatable since it has been shown [2], that a framework based on decomposition, which
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can utilise GAs or DEs as its main search algorithm, does perform admirably on multi-

objective knapsack problems.

• Complexity - This refers to how complex it is to implement the main algorithm. The values

are relative, with 1 meaning very difficult to implement and 5 a fairly straightforward

implementation.

By far the easiest techniques to implement are DE [34] and PSO [35] followed by ES [29],

GAs and AIS. ACO is given a complexity of 2 due to the fact that the practitioner usually

has to adapt the algorithmic process significantly to solve a particular problem [84] and

EDAs are deemed to be the most complex to implement since quite elaborate techniques

are required [113]. It should be noted that these ratings apply to the main algorithm and

not to extensions to MOPs since the total complexity would be greatly affected by the

selected methodology.

• Cost - This refers to the relative computational cost of the main algorithm, per iteration.

This is intended to provide information on how easy, i.e. fast, it would be to test the

algorithm and obtain some results quickly. Again, this is a comparative rating, 1 means

very costly and 5 indicates an extremely low computational overhead. This does not refer

to the computational time complexity of the algorithms, which is still an open issue for all

but the simplest versions of the aforementioned algorithms [148, 149].

This more or less mirrors the implementation complexity which is fairly reasonable. Al-

though it should be stated that EDAs have much lower memory requirements [113], their

computational cost per iteration is higher in comparison with the other of the algorithm

families. This is especially true when more elaborate probabilistic models are created,

which is the case for hierarchical-BOA [150] and RM-MEDA [125]. DE and PSO have

the highest score, since their updating rules do not require elaborate calculations as can

be seen in Section 3.8 and Section 3.9. Following these are ESs and GAs, which are still

relatively not very demanding. For example, ES use normal distributions which are more

expensive to calculate compared with the small number of addition and multiplication op-

erations in DE and PSO, and GAs have some crossover operators that can slightly increase

their cost, for example [39].

• Number of parameters - Indicates the relative number of parameters the algorithm requires
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to be set by the user. A value of 1 translates to a high number of parameters need to be

set, while a value of 5 indicates the exact opposite.

It should be emphasised that the main algorithms are assessed and not their many ex-

tensions to MOPs, with or without constraints. Here DE [34], EDAs [113] and ES [29]

score highest due to their inherent adaptive nature. EDAs are awarded the top score since

most of their updating rules are calculated during the algorithm execution based on some

measure of optimality, and such measures can be found in abundance in statistics. For

example, optimal updating rules can be formulated using the Kullback-Leibler divergence

as is the case for the cross-entropy method [151]. Therefore, since there are ways to op-

timally update the direction of search, the need for controlling parameters is, relative to

other families, less significant.

• MOS - Multi-Objective scalability - This is a measure of how easy it is, relative to other

methodologies, to extend the main algorithm to tackle multiple objective optimisation

problems.

In this category, ACO is ranked 2 since it seems that extending ACO to more than 2 or

3 objectives is extremely difficult [84] or at least no attempts have been brought forward

so far1. This is also supported by the fact that articles for multi-objective optimisation

algorithms based on ACO do not appear in the top 20 cited papers [145]. For the rest, a

rank of 4 was given if the methodologies to extend a particular family have been relatively

recently addressed; such is the case for EDAs, PSO and AIS. It seems natural that GAs and

ES score highly here since their techniques have the longest history. Additionally, regarding

EDAs, the problem is that the method used to extend this family to MO problems affects

the complexity of the probabilistic model. For instance, if a Bayesian network is used as in

[152], it is not very easy to envisage how this will be directly extended to many objectives.

However, since EDA literature is quite rich and the community is active, problems of this

kind are relatively quickly addressed.

• Prior information - This is the ability to incorporate prior information at the start of the

optimisation process and how well that information is utilised. A value of 5 signifies that

the general methodology can, in principle, use prior information or expert knowledge very

effectively while a value of 1 signifies the contrary.

1To the authors’ best knowledge.
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The highest scores for this feature are assigned to ACO and EDA-based algorithms. For

EDAs this is due to the ease with which prior information can be incorporated [113].

This type of bias can be induced by altering the initial parameters of the probabilistic

model [113]. ACO also has probabilistic transitional rules, hence to bias them towards

promising regions is relatively straightforward and is common practice when the problem

is formulated , for example, see [84]. In the remainder of the reviewed algorithm families,

prior information about a problem has to be embedded, usually on an ad-hoc basis. For

example, a GA/DE based algorithm MOEA/D [2], required significant changes in order

to be applied to the multi-objective 0-1 knapsack problem.

3.12 Summary

Although the seven algorithmic families reviewed in this chapter have been considered as sep-

arate entities, it should be noted that clear boundaries cannot be explicitly drawn. For this

reason, researchers start naming algorithms that fall into these categories, Evolutionary Algo-

rithms. This choice is further justified in Section 3.3. Diffusion of information between the

studied methodologies is quite rapid and common. For instance, ES have come to bear a great

resemblance to GAs. Both techniques employ mutation, recombination and selection and the

methods for extending GAs to multiple objective problems have successfully been applied in ES

as well as in EDAs, AIS, DE and PSO. Some recombination operators in GAs have similar fea-

tures to the recombination operator in DE. ACO uses probabilistic transition rules in a similar

fashion to EDAs, especially when ACO has continuous decision variables.

It is also evident that more and more researchers lean towards the development of algorithmic

processes that exhibit strong adaptive behaviour and provide more information than just the

PF approximation at the end of the optimisation procedure. This is partly due to the fact that

computational resources have become cheaper and more accessible and partly due to the ever

increasing complexity of systems requiring more elaborate, effective and informative techniques.

Additionally, as MOEA research moves toward many objectives, i.e. problems with more than

three objectives, research is moving away from Pareto-based algorithms. This is mostly due

to the difficulty that is posed in many dimensions for methods employing this ranking scheme

[153, 154]. However there are still a number of issues with decomposition-based algorithms. For

instance, as the number of dimensions increases the distance of the weighting vectors effectively

increases, and recombination of neighbouring solutions become problematic as a result. Due
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to this problem, many solutions that are potentially Pareto-optimal can be lost or remain un-

utilised. A suitable solution to this problem has not yet emerged and is a very interesting

direction for future research. Several other approaches that seem promising have emerged, for

example cone ε-dominance [19] and δ-ball dominance [155]. However these methods are quite

novel and have not yet been tested for more than three objectives; further investigations are

required to reveal their potential merit. Another promising research direction is that of many-

objective optimisation in the presence of noise, extending to time-varying problems and real-time

optimisation.

Arising from this overview, it becomes apparent that the current trend in population-based

multi-objective algorithms is toward estimation of distribution algorithms and indicator-based

algorithms. It is the authors’ view that a combination of these two methodologies could produce

interesting and innovative approaches for many-objective problems. Additionally, more atten-

tion from the research community should be ascribed to problems with mixed-type decision

variables due to their frequent presence in real world problems. Another somewhat not fully

developed aspect is notation, especially with regard to Pareto dominance relations, where there

is no coherence in this field. Finally a unified mathematical framework seems possible and its

development would be highly beneficial; some steps toward this direction can be seen in [156]

and [157].
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Chapter 4

Generalised Decomposition

4.1 Introduction

Decomposition-based methods have been used traditionally in mathematical programming to

solve multi-objective problems [5]. These methods use scalarising functions to decompose a

multi-objective problem into several single objective subproblems. These subproblems are de-

fined with the help of weighting vectors. Weighting vectors are k-dimensional vectors with

positive components that sum to one. The location on the Pareto front to which each sub-

problem tends to converge, strongly depends on the choice of weighting vectors. Therefore, the

selection of an appropriate set of weighting vectors to decompose the multi-objective problem de-

termines the distribution of the final Pareto set approximation along the Pareto front. Although

a rigorous definition of what is considered a good distribution of Pareto optimal solutions does

not exist, there is a consensus about the features that must be present. First, assuming that

a decision maker is not involved prior or during the optimisation process, the general tendency

is to distribute the Pareto approximation along the entire Pareto front. A second implicit re-

quirement is that Pareto optimal solutions are distributed evenly across the entire front. This

emanates from the fact that the preferences of the decision maker towards a particular region of

the trade off, surface is unspecified or unknown. Finally, the distance of the Pareto set approx-

imation must be as close as possible to the true Pareto front. Convergence of the optimisation

algorithm is measured in terms of that distance.

In decomposition-based multi-objective algorithms, the first two properties, mentioned above,

are directly controlled by the choice of weighting vectors. So, naturally there have been several

suggestions as to their selection. However, this problem is not independent of the scalarising

method used to decompose the multi-objective problem. Furthermore, this problem is nonlinear
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in itself, so in most instances there is no guarantee that a unique solution can be found. In this

chapter, it is shown that for a particular class of scalarising functions the weighting vectors can

be optimally calculated, given that a clear definition of what is meant by well distributed Pareto

optimal solutions is given. Also, knowledge of the Pareto front geometry can greatly increase

the accuracy of the generated solutions, as will be explained later.

In contrast with mathematical programming, evolutionary algorithms employ mostly, al-

though this trend seems to be slowly changing lately, Pareto-based methods to deal with multi-

objective problems. However, recent studies strongly indicate that such methods become im-

practical when solving problems with more than three objectives. The reason for this is that as

the dimensionality of the problem is increased, the ability of Pareto-based methods to discrim-

inate solutions into inferior and superior becomes increasingly more difficult. This difficulty

stems from the fact that Pareto dominance relations, the basis of Pareto-based methods, in-

duce only a partial ordering. This means that two objective vectors can be either identical,

superior or inferior with respect to the other or incomparable. In higher dimensions, the num-

ber of incomparable objective vectors increases to such levels that any meaningful selection is

simply impossible [4]. An additional difficulty that Pareto-based algorithms are facing for many-

objective problems is that the closer the Pareto set approximation is to the Pareto optimal front,

the probability that a superior solution is generated decreases with the distance to the front [3].

These problems encountered with Pareto-based algorithms have led some researchers to

more carefully investigate traditional methods, such as scalarising functions, to extend opti-

misation algorithms to multi-objective problems. Some examples of promising applications of

decomposition-based methods for multi-objective problems are due to Jaszkiewicz [158], Hughes

[95] and Zhang and Li [2]. However, a more careful inspection of the effect of the weighting

vectors on the distribution of Pareto optimal solutions is considered in [95]. Most other meth-

ods either employ the paradigm presented by Das [100], that is, to evenly space the weighting

vectors, or by Jaszkiewicz [158] where the weighting vectors are generated at random. What is

shown in the present work is that neither approach has the capacity to yield satisfactory results

according to the implicit requirements stated above.

4.2 Decomposition Methods

In the same way as Pareto-based methods, decomposition methods can be classified according

to the necessary interaction with the decision maker. In this chapter the focus is a posteriori
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methods, see Section 2.6. Therefore the aim is to generate a Pareto set approximation that

portrays as faithfully as possible the entire Pareto front. As a reminder, a posteriori preference

articulation methods operate under the assumption that the decision maker has no particular

preference towards any region of the Pareto front, or if he has this information it is unknown

prior to the optimisation process. Therefore a reasonable course of action is to produce solutions

across the entire front, if possible. Furthermore, this assumption can be used to infer a good

distribution of solutions across the front. For instance, some researchers assume that uniformly

distributed solutions are preferable [158], while others advocate evenly distributed solutions [2].

However, a clear resolution of this matter is impossible as it depends on the decision maker,

although it is apparent that the ability to change this distribution at will is potentially very

helpful.

4.2.1 Scalarising Functions

So far only the weighted sum method has been introduced, see Section 2.5.3. The weighted sum

method has several interesting properties, for instance if the objective function is differentiable,

then so will be the scalar subproblem. However, not all Pareto optimal points can be obtained

by the weighted sum method, as shown in Fig. (2.12). Furthermore, if the optimisation problem

is nonconvex, there are no guarantees that the produced solutions will be Pareto optimal [5,

pp. 98].

Another family of scalarising functions is based on the weighted metrics method [20]:

min
x

(

k
∑

i=1

wi|fi(x)− z⋆i |p
)

1
p

. (4.1)

Here as in (2.23), the weighting coefficients must be wi ≥ 0 and
∑k

i=1 wi = 1, also p ∈ [1,∞).

However, p is usually a positive integer or equal to ∞. The expression (4.1) can be read as,

minimise the weighted distance of the objective functions fi, where the meaning of the term -

distance - depends on the chosen norm. An equivalent formulation of (4.1) is,

min
x

k
∑

i=1

wi|fi(x)− z⋆i |p, (4.2)

which is commonly used since it easier to calculate [11, pp. 144] and is separable [6, pp. 294].

A potential drawback of weighted metrics based scalarising functions is that the ideal vector,

z⋆, has to be known a priori. However this vector can be estimated adaptively during the
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process of optimisation [2]. Also the weighted metrics scalarising functions cannot guarantee

Pareto optimal solutions for nonconvex problems [5, pp. 98], as is the case for the weighted sum

method. For p =∞ the Chebyshev scalarising function is obtained:

min
x
‖w ◦ |F(x)− z⋆| ‖∞. (4.3)

The ◦ operator denotes the Hadamard product which is element-wise multiplication of vectors or

matrices of the same size. The key result that makes (4.3) very interesting is that for every Pareto

optimal solution there exists a weighting vector with coefficients wi > 0, for all i = 1, . . . , k [5].

This means that all Pareto optimal solutions can be obtained using (4.3). This result is quite

promising, although the choice of weighting vectors is made primarily using ad hoc methods,

see Section 4.2.2. Therefore direct control of the distribution of solutions on the Pareto front is

very limited.

Concluding, the normal boundary intersection method (NBI) introduced by Das [100], presents

another formulation of a scalarising function. The idea in NBI is that by maximising the dis-

tance of a vector normal to the simplex with vertices {vi : ei ◦ znd}, where ei is a zero vector

with the ith component equal to 1, a solution that is likely1 to be Pareto optimal is obtained.

Using NBI the distribution of solutions on the Pareto front are directly related to the distribu-

tion of weighting vectors on the probability simplex2, thus providing the analyst a clear path in

distributing solutions on the Pareto front according to the needs of the decision maker, if these

are known. The NBI method is stated as follows:

min
x
gnbi(x;w, z

⋆) = d

subject to z⋆ − d ·w = F(x).
(4.4)

The equality constraint in the formulation of the NBI method in (4.4) has to be satisfied in

some way; a method proposed by Zhang and Li [2] is the use of a penalty function approach.

Therefore (4.4) is reduced to the solution of the following:

min
x
gnbi(x;w

i, z⋆) = d1 + pd2

d1 =
‖(z⋆ − F(x))Twi‖2

‖wi‖2
,

d2 = ‖F(x) − (z⋆ − d1wi)‖2,

(4.5)

where p is a tunable parameter which controls the relative importance of convergence, d1, and

position, d2, in the penalty function. Unfortunately, (4.5) has three significant drawbacks.

1NBI does not have a guarantee of producing Pareto optimal solutions [100].
2The simplex with vertices ei for all i = 1, . . . , k, is commonly known as the probability simplex.
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First, the normal-boundary intersection method does not guarantee that the solutions to the

subproblems will be Pareto optimal [100]. Second, NBI has to be solved using a penalty method

which introduces one more parameter that has to be tuned for every problem separately. Lastly,

it is unclear how this decomposition method can be scaled for problems with many objectives.

4.2.2 Methods for Generating Weighting Vectors

To solve multi-objective problems using a decomposition method apart from the scalarising func-

tion, a set of weighting vectors has to be selected based on the criteria explained in Section 4.2,

or perhaps other considerations pertaining to a particular problem. However the real interest is

not actually in the weighting vectors but the Pareto optimal solutions that will result by solving

the corresponding subproblems generated by the set of weighting vectors. So the question is,

how to select the weighting vectors in such a way that the desired distribution of Pareto opti-

mal solutions is generated. Surprisingly, this important question, appears to have mainly two

answers.

The first, is to generate a set of weighting vectors that are evenly spaced. This is achieved by

discretising every dimension of the objective space so that every weighting coefficient is allowed

to assume any value within the set,

{

0

H
,
1

H
, . . . ,

H

H

}

, (4.6)

while ensuring that
∑k

i=1 wi = 1. This approach, first seen in [11, pp. 234], has been adopted

by Das [100] for use in NBI where a method to generate weighting vectors for an arbitrary

number of objectives is also presented. So for a two objective problem and for H = 2 the set

of weighting vectors is, {(0, 1), (0.5, 0.5), (0, 1)}. Although this method seems effective when

combined with a normal boundary intersection scalarising function and perhaps others, its use

with the Chebyshev scalarising function does not produce Pareto optimal solutions that are

evenly spaced nor uniformly distributed. This can be seen in [2], and is further explored in

Section 4.3.3. An alternative, based on uniform design, is proposed in [159]. The aim is still to

generate evenly distributed weighting vectors, however using the method in [159], an arbitrary

number of weighting vectors can be generated.

The second approach in generating a set of weighting vectors is due to Jaszkiewicz [158].

The idea is to generate a set of weighting vectors that are uniformly distributed on the prob-

ability simplex. The assumption is that for a uniformly distributed set of weighting vectors,
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the corresponding solutions of the associated subproblems will be uniformly distributed on the

Pareto front. To generate a set of weighting vectors according to the suggestions in [158], the

following equation can be used:

w = {w1, . . . , wk},

wi = 1−
i−1
∑

m=1

wm − (U(0, 1))i−k , for all i = 1, . . . , k ,
(4.7)

as many times as the required size of the weighting vector set. Here, U(0, 1) is a sample from

the uniform distribution in the domain [0, 1].

An interesting adaptive method to select the set of weighting vectors is presented in [160, 161].

The main idea is to identify the Pareto front geometry and then distribute a set of points on that

surface in such a way so as to maximise the hypervolume indicator [44]. Subsequently, using

the points from the previous step, find the weighting vectors that, upon minimisation of the

resulting subproblems, would result in these points on the Pareto front. The idea seems hopeful,

however, there are three major difficulties with this approach. First, the authors assume that

the Pareto front can be parameterised using the following,

fp11 + fp22 = 1, (4.8)

where, pi ∈ R++ and the fact that (4.8) equals to one means that the objective functions

are normalised in the range, [0, 1]. The problem is that (4.8) is nonconvex but the authors

of [160, 161] ignored this issue and used the Newton method to solve for the pi parameters.

Therefore, for Pareto front geometries where, pi 6= pj, i 6= j, this method will fail. This can

be seen in [161] whereby a front described by: f21 + f2 = 1 is generated and the estimate

using the Newton method is: f1.4451 + f1.4452 = 1. Therefore, the first part of the suggested

method can mislead the entire procedure in [160, 161]. A solution to this problem is suggested

in Section 7.4.3, however this issue is left for future research. The second problem, is that the

weighting vectors that correspond to points on the identified Pareto front are formulated in a

similar fashion to (4.8), hence the issue of nonconvexity of the problem formulation emerges

again and the resulting weighting vectors will not produce subproblems that converge to the

reference points. Lastly, the hypervolume indicator [44], which is used to ascertain the quality

of the reference points on the PF, has exponential complexity in the number of objectives,

which limits the method to approximately 4-objective problems, since the hypervolume must be

calculated several times on every iteration of the algorithm. For these reasons, this method is

not employed in the tests presented in Section 4.3.3.
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4.3 Generalised Decomposition

As mentioned in Section 4.2, decomposition methods have two key components, first, the scalar-

ising function and, second, a set of weighting vectors. The argument in the present work is that

the choice of weighting vectors is very important with respect to the three main objectives of

multi-objective optimisation. Namely, convergence to the Pareto front, coverage of the entire

front and a well distributed Pareto optimal set. All these aspects are directly controlled by the

choice of the set of weighting vectors that is used to decompose a multi-objective problem to a

set of single objective subproblems. A method, which is referred to as generalised decomposition,

is presented that provides an exact solution to the choice of this set of weighting vectors. The

version presented here, is based on the Chebyshev scalarising function, due to its guarantee of

producing a Pareto optimal solution for every weighting vector [5].

4.3.1 Optimal Selection of the Weighting Vector Set

First, it must clarified what is meant by optimal selection of the weighting vector set. The

meaning of the term optimal in the present context is that, given a clear mathematical definition

of what a well distributed Pareto optimal set is, and a way to measure the quality of a candidate

set against this definition, then, by using generalised decomposition this quality measure can be

maximised. This is subject to some prior information as is explained later.

As an example, starting with the Chebyshev scalarising function as defined in (4.3) and given

a set of weighting vectors, a multi-objective optimisation problem can be decomposed in to N

subproblems as:
min
x

g∞(x,ws, z⋆) = ‖ws ◦ |F(x)− z⋆| ‖∞

∀ s = {1, . . . , N},

subject to x ∈ S,

(4.9)

with wi > 0 for all i = 1, . . . , k and
∑k

i=1 wi = 1, for all ws. For simplicity, let us assume that

the ideal vector is z⋆ = (0, . . . , 0) and that the scalar objective functions are normalised in the

range [0, 1]. This normalization implies that the nadir vector, znd, is known. Then the question

that needs to be answered for a Pareto optimal decision vector x̃, is whether a weighting vector

w̃ exists, for which the following condition holds,

‖w̃ ◦ F(x̃)‖∞ ≤ ‖w ◦F(x̃)‖∞

w̃,w ∈ W, F(x̃) ∈ P,
(4.10)
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Figure 4.1: A reference Pareto front with affine geometry (top left) and the corresponding
optimal weighting vector set (top right). A concave Pareto front (middle left) and the corre-
sponding optimal weighting vectors (middle right). A convex Pareto front (bottom left) and
the corresponding optimal weighting vectors (bottom right).
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where W is the convex set defined by the vertices {ei : i = 1, . . . , k}. If such a solution exists,

it can be obtained by the solution of the following mathematical program,

min
w
‖w ◦ F(x)‖∞,

subject to

k
∑

i=1

wi = 1,

and wi ≥ 0, ∀ i ∈ {1, . . . , k},F(x) ≥ 0.

(4.11)

Notice that in (4.11), the optimisation is with respect tow. In this setting, F(x) is simply a linear

transformation of the vector w, which means that since the weighting vector is convex, then

the transformed vector is also part of a convex set. Additionally, all norms preserve convexity,

hence the problem stated in (4.11) is convex. Subsequently there is a guarantee that a solution

w̃ exists [6], hence, this solution will satisfy (4.10). A decomposition method that selects the

weighting vector set using (4.11), falls within the generalised decomposition framework. Note

that the optimal weighting vectors can be obtained for the weighted metrics scalarising function

for p other than infinity by using the appropriate norm in (4.11). Therefore to obtain the optimal

weighting vectors for any member of the family of scalarising functions based on the weighted

metrics the following problem is to be solved,

min
w

(

k
∑

i=1

wi|fi(x)− z⋆i |p
)

1
p

. (4.12)

In general, for any scalarising function that is convex with respect to the weighting vector

w, g(·), and any objective function whose feasible set of objective vectors is in Rk
+ generalised

decomposition can be used to obtain the optimal set of weighting vectors by solving the following

mathematical program,

min
w

g(w;F(x)). (4.13)

Although there are analytical solutions for some scalarising functions, for example for the Cheby-

shev [95] and a point in objective space z = (z1, . . . , zk) the optimal weighting vector is obtained

by,

w =

(

1

z1
, . . . ,

1

zk

)

. (4.14)

However, the importance of (4.13) is accentuated given the breadth of available scalarising

functions designed to produce only Pareto optimal solutions and avoid weakly Pareto optimal

solutions and the fact that generalised decomposition can be applied to any scalarising function

that is convex with respect to w. Two notable scalarising functions that guarantee to produce
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Figure 4.2: A reference Pareto front with affine geometry (left) and the corresponding optimal
weighting vector set (right).

only Pareto optimal solutions are the augmented Chebyshev metric [162] and the modified

Chebyshev metric [163] which is employed in Section 4.3.2 and the remainder of this chapter.

Continuing the example for the Chebyshev scalarising function, the assumption in (4.11) is,

that there exists a reference Pareto set, Pr, that exhibits the desired properties described in

Section 4.2. Next, the mathematical program in (4.11) is solved for every vector in the set Pr,
thus obtaining the optimal weighting vector set. This weighting vector set can then be used

with any optimisation algorithm, in order that a Pareto front with the desired properties to

be obtained. An example of the application of generalised decomposition to a reference Pareto

front is shown in Fig. (4.1). Any convex optimisation problem solver can be used for (4.11),

however in the present work CVXGEN [1] is used as it is several orders of magnitude faster than

any other solver. Some alternatives can be found in [164].

4.3.2 Practical Considerations

The problem that becomes evident with generalised decomposition is that solutions at the ex-

tremities of the Pareto front, that is Pareto optimal points where one of the objective functions

is very close to 0, seem to be difficult to obtain. Although this situation is rare in practice,

namely it is unusual that one of the scalar objectives in the objective vectors is reduced to zero,

nevertheless it is important that the reasons behind this behaviour are understood. The cause

of this behaviour is linked to the fact that a scalarising function is used and that the weighting

vectors that represent solutions with one 0 component is unavoidably a weighting vector with

zero components everywhere except at the location of the 0. For example, in Fig. (4.2), the left

graph illustrates an affine Pareto front. The solutions that lie on the f1 f2-plane have zero f3
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component, so they are of the form (a, b, 0). Consequently, in this scenario, the mathematical

program described in (4.11), will yield a weighting vector w = (0, 0, 1) for all solutions of the

form (a, b, 0). The same reasoning applies for solutions on the f1f3-plane and f2f3-plane. This

behaviour is also present for problems with many objectives. This means that for all the solu-

tions that lie on these planes the weighting vector that represents them is only one. In practical

terms this prevents generalised decomposition from obtaining solutions of this type. This is

directly linked to the fact that using the Chebyshev scalarising function, although there is a

guarantee that all Pareto optimal solutions are obtainable for some weighting vector, there is

no guarantee that these solutions will not be weakly Pareto optimal [5, pp. 99].

A solution to this is to modify the Chebyshev scalarising function and in extension generalised

decomposition. Therefore the problem in (4.9) can be restated as [163],[5, pp. 101]:

min
x

g∞(x,ws, z⋆) = ‖ws ◦ (|F(x) − (z⋆ − ǫ)|+ ρ
k
∑

i=1

|fi(x)− (z⋆i − ǫ)|) ‖∞

∀ s = {1, . . . , N},

subject to x ∈ S,

(4.15)

where ρ and ǫ are sufficiently small scalars. Assuming that the scalar objective functions fi

are normalised in the range [0, 1], the extra term in (4.15) will be almost a constant for all

solutions in the case of a linear Pareto front geometry. For different Pareto front geometries it

will vary within bounds, even if all objectives are normalised. However, the use of (4.15) will

have a distorting effect on the resulting solutions, namely the obtained Pareto front will not be

identical to the reference Pareto front. To avoid this, thereby preserving the desired distribution

properties present in the reference front, generalised decomposition is restated as follows:

min
w
‖w ◦ (F(x) + ρ · C(k))‖∞,

subject to

k
∑

i=1

wi = 1,

and wi ≥ 0, ∀ i ∈ {1, . . . , k},F(x) ≥ 0,

(4.16)

where ρ is a small scalar, as in (4.15), and C(k) is a linear function of the number of objectives

k. Intuitively the effect of the ρ · C(k) term is that it shifts the reference Pareto front slightly.

This in extension eradicates solutions that have identically zero components and preserves the

relative position of solutions in the reference Pareto front. The penalty for this modification

is that all resulting solutions using the weighting vector set produced by (4.16) will be slightly
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Figure 4.3: The log10 energy ratio of Pareto optimal solutions obtained according to the three
methods for generating weighting vectors.

closer to one another. This effect is directly controlled by ρ and C(k), and can be as small as

the machine precision allows for.

An alternative to the modification of generalised decomposition seen in (4.16), is to simply

remove the solutions in the reference Pareto front that have one zero component. This way

the original definition, seen in (4.11), can be used. This alternative approach requires fewer

parameters for its operation as ρ and C(k) become unnecessary.

4.3.3 The Effect of Weighting Vector Choice in Many Objective Problems

In Section 4.3 it is stated that the choice of the weighting vector set is very important, and

that this set directly controls the distribution of produced Pareto optimal points by a multi-

objective optimisation algorithm. To test this hypothesis, first a definition and a measure of well

distributed Pareto optimal solutions is required. A measure that is in common use for evenly

distributed points on k-dimensional manifolds, is the Riesz kernel or s-energy [165], defined as:

E(Z; s) =
∑

1≤i≤j≤N

‖zi − zj‖−s, s > 0

z ∈ Rk, and, Z = {zi : i = 1, . . . , N}.
(4.17)

It has been shown that for a k-dimensional manifold the s-energy is minimised when the dis-

tribution of points on that manifold is even, if s ≥ k [165]. Therefore since the Pareto front
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Table 4.1: The number of objective vectors, N , for constant H used in the experiment seen in
Fig. (4.3).

Obj. # 2 3 4 5 6 7 8 9 10 11

s 1 2 3 4 5 6 7 8 9 10
H 8 8 8 8 8 8 8 8 8 8
N 8 36 120 330 792 1716 3432 6435 11440 19448

ρ · C(k) 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

of a k-objective problem is a (k − 1)-dimensional manifold [2], the s parameter in the s-energy

metric used for the following experiment is set to k − 1, see Table 4.1. Generalised decompo-

sition is compared with the methods suggested by [100], and later used by [2], that is, evenly

distributed weighting vectors and the method suggested by Jaszkiewicz [158], namely the selec-

tion of a weighting vector set generated according to (4.7). The results, Fig. (4.3), are obtained

according to the following procedure:

Step 1 A Pareto front with affine geometry has been selected for all test instances. This is

mainly due to the fact that it is straightforward to generate a Pareto front of this geometry

with the optimal distribution of solutions, so that these can be used as a reference. The way

that these reference fronts have been generated is identical to the generation of weighting

vectors, described in Section 4.2.2. For an example of a Pareto front with this geometry

in 3 dimensions, see Fig. (4.1). Also, this enables a fair comparison with the scheme

employed by Zhang and Li [2]. The number of solutions, N , generated in every dimension,

is controlled by the H parameter (see Section 4.2.2. Since this parameter can be seen as

the number of subdivisions per dimension, it has been kept constant, see Table 4.1, for all

dimensions. The reason for this setting is to isolate only the effect that the dimensional

increase has on the s-energy, and by extension the distribution of solutions on the Pareto

front.

Step 2 For every dimension, a set of weighting vectors is generated according to the suggestions

in [158] and [2]. Since the method suggested by Jaszkiewicz [158] is generating weighting

vectors according to the uniform distribution, the s-energy calculated as described in the

next step, is averaged over 50 independent weighting vector sets of size N and for every

dimension. The weighting vector set for generalised decomposition is generated according

to (4.16), with ρ · C(k) set as seen in Table 4.1. The reference Pareto front used is the

affine front. As this is not always the case a default Pareto front to generate the weighting

vectors can be a useful starting point. For details regarding this issue, see Section 4.3.4.
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Step 3 Another benefit of using an affine Pareto front geometry, is that the solutions that will

minimise the subproblems defined by the weighting vector set can be directly calculated,

by solving the following mathematical program:

min
F(x)
‖F(x) ◦ w̃‖∞,

subject to
k
∑

i=1

fi = 1,

and fi ≥ 0 ,∀ i ∈ {1, . . . , k}.

(4.18)

Note that (4.18) is a convex problem for the same reasons described in Section 4.3.1.

Therefore, using (4.18) and a set of weighting vectors, the s-energy can be calculated for

the resulting Pareto set. Also, a baseline energy using the actual Pareto front, Eb, is

calculated for every problem instance.

Step 4 Concluding, the log10 ratio of the obtained s-energy according to every method and

the base energy Eb is calculated for all objectives. The only exception is for the method

proposed by Jaszkiewicz [158], where the expected energy, E(Ej) is used. The reason for

this is explained in Step 2.

From the results seen in Fig. (4.3), it is apparent that generalised decomposition can follow very

closely the desired distribution of solutions in the Pareto set. Additionally, the difference with

alternative methods is striking, namely in the range of several orders of magnitude for problems

with 3 or more objectives. These results refute the hypothesis of Zhang and Li [2] that by

selecting an evenly distributed set of weighting vectors a well1 distributed Pareto front can be

obtained. Furthermore, it is shown that the method proposed by Jaszkiewicz [158], performs

consistently better compared with evenly distributed weighting vectors.

The increasing ratio of the s-energy produced by solutions selected using evenly distributed

weighting vectors can provide an explanation for the reason that MOEA/D [2] and derivative

algorithms seem to perform well in many-objective problems. Namely, for an increasing number

of objectives MOEA/D-based algorithms find solutions that are more clustered. This means

that, relative to the entire Pareto front area, such algorithms only focus on a very small part of

the front.

1Although the authors of [2] do not explain what they mean by well distributed Pareto optimal points, their
selection scheme for the weighting vectors does not result in well distributed Pareto optimal solutions by any
commonly used convention.
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4.3.4 Reference Pareto Front

A limitation of generalised decomposition seems to be that, since a reference Pareto set is

needed to generate the optimal weighting vectors, if that reference is unavailable due to lack of

information about the Pareto front geometry, then the method cannot be employed. However,

this is not entirely true. In the presence of a reference Pareto optimal set, the precision that

can be achieved, regarding the desired distribution is exceptional. Although, even if an affine

Pareto front is used to generate the weighting vectors, very good results can still be obtained.

Good in the sense that the distribution of solutions on the Pareto front is close to even. This

is because the affine Pareto front geometry seems to be in the middle ground, with respect to

the shift in location of the weighting vectors, of concave and convex geometries. Although this

hypothesis seems intuitive, it is still untested. Further investigation of that matter is left for

future research.

To test whether a good distribution of solutions can be obtained using an affine Pareto front

geometry as a reference for generalised decomposition, the implemented algorithm is primarily

based on the description of MOEA/D [2]. The main differences are that the neighbourhood

distance is measured in objective space, instead of the weighting space as is the case in MOEA/D.

Additionally, the generation of weighting vectors is as follows:

• Generate N evenly distributed points on the probability simplex according to the method

described in [100]. Subsequently use generalised decomposition, (4.11) or (4.16), to gen-

erate the weighting vector set. The evenly distributed points are used as the reference

Pareto front.

This algorithm is referred to as a many-objective evolutionary algorithm based on generalised

decomposition (MAEA-gD). This is because, as demonstrated in Section 4.3.3, generalised de-

composition scales very well to many objectives. The results are seen in Fig. (4.4) for the

3-objective instances of the test problems DTLZ1 and DTLZ2 [166]. The results shown in

Fig. (4.4) are indicative, but not conclusive. In the next chapter, thorough tests are performed.

4.4 Summary

A new concept has been presented, namely generalised decomposition (gD). Using gD the op-

timal distribution of solutions across the Pareto front can be achieved, given the geometry of
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Figure 4.4: Attained Pareto optimal front for the DTLZ1 and DTLZ2 3-objective problems by
MADE-gD and MOEA/D.

the front is known a priori and that the selected scalarising function is convex with respect to

the weighting vector set. Furthermore, the obtained results suggest that the method maintains

its favourable qualities even for many objectives. In contrast, the available methods perform

substantially worse, in the sense that they are unable to produce evenly distributed Pareto op-

timal solutions even for 3 objectives. This is supported by the fact that the alternative methods

have several orders of magnitude larger s-energy. Also, gD is not limited to producing evenly

distributed solutions. Given a definition and a measure of what is meant by a well distributed

Pareto set, generalised decomposition can produce optimal results according to that definition.

However the assumption that knowledge of the Pareto front geometry is available is to an

extent restrictive. For this reason, it is suggested that the weighting vector set be produced using

an affine Pareto front geometry as the reference front for generalised decomposition. Following

this a modified version of the MOEA/D algorithm was created producing clearly superior results

85



4.4 Summary

for the given test set, when compared with the original version of MOEA/D.
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Chapter 5

Generalised Decomposition for

Many-Objective Optimisation

5.1 Introduction

Pareto-based methods are of limited utility when the number of dimensions is increased [153].

This is primarily because the number of non-dominated solutions increases as the dimensionality

of the problem increases, and for dimensions greater than approximately 10 almost all the

solutions are non-dominated [4]. Hence this type of partial ordering becomes of limited use in

high dimensions since, if all the generated solutions are non-dominated, the EA has no objective

measure on which to base its selection process. An alternative is the use of decomposition-

based methods, see Chapter 4. Arguably, decomposition methods have not been explored in

sufficient depth in relation to MAPs. For example, most researchers, with a few exceptions

such as [66, 95, 96], have assumed that an even or uniform distribution of weighting vectors will

result in an even distribution of Pareto optimal points, which is shown in Section 4.3.3 to be

false. Therefore, the primary objective of this chapter is to explore the benefits and potential

difficulties that a generalised decomposition algorithm may have for many-objective problems.

Evolutionary algorithms (EAs) have found numerous applications in MAPs [4]. This is

because most EAs are population-based, in the sense that at each iteration an entire population

of solutions is evaluated. This feature is quintessential to MAPs since, in a posteriori preference

articulation, an entire family of solutions is required to describe the entire trade-off surface. This

trade-off surface in objective space is also called Pareto front (PF). Another important reason

for EA applicability is that they impose almost no constraints on the problem structure, for

example continuity and differentiability are not required for EA operation. Due to these factors,

MAP research is vibrant in the EA community, something that can be attested by the number
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of EAs available for MAPs [2, 4, 52]. Specifically, EAs are comprised of a number of algorithm

families, such as genetic algorithms (GAs) [25] and evolution strategies (ES) [30], as well as

differential evolution (DE) [35] and others. Most of the aforementioned algorithm families are

inspired by some naturally occurring process, such as DNA recombination and mutation [25].

However this presents certain difficulties, for example, it is very hard to analyse the behaviour

of MOEAs analytically, thus their performance on a problem cannot be guaranteed prior to

application. This is why EAs are usually evaluated experimentally using some test problem set

[127, 166, 167].

More recently, a new family of algorithms has emerged, namely estimation of distribution

algorithms (EDAs). EDAs stand in the middle ground between Monte-Carlo simulation and

EAs. In EDAs a probabilistic model is built based on elite individuals, which subsequently

is sampled producing a new population of better1 individuals. From the EA point of view,

EDAs can be traced back to recombination operators based on density estimators that use good

performing individuals in the population as a sample [36]. The positive aspects of EDAs are

that it is straightforward to integrate prior information into the optimisation procedure, thus

reducing the time to convergence if such information is available. Also, the amount of heuristics,

compared to other EAs, is reduced, easing the task of mathematical analysis of these algorithms.

This is an important aspect which has been overlooked, due to inherent difficulties, in most

heuristics for optimisation. Studies of this kind are usually applied to algorithms that are not

used in practice [148, 149], therefore the practical value of such studies is limited. However EDAs

are not a panacea since they heavily depend on the quality and complexity of the underlying

probabilistic model [113]. For instance a simple EDA based on low order statistics, i.e. an EDA

that does not account for variable dependencies, can be easily misled if, in fact, such dependencies

exist in the underlying problem. To overcome such difficulties researchers proposed ever more

elaborate models [113], which, of course, increase the complexity of the algorithm and, in some

instances, the identification of the optimal model is of comparable complexity to that of the

optimisation problem necessitating the use of heuristics in the model identification and training

[168]. Acknowledging this problem has led some researchers to suggest hybridization of EDAs

based on simple probabilistic models with some form of clustering [126]; this course is further

supported by more recent studies [169].

The Cross Entropy method (CE) seems to be a good candidate as the main algorithm in

1Or more precisely, individuals that are more likely to be better than their predecessors.
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the presented generalised decomposition based framework. The CE-method was introduced by

Rubinstein [170], initially as a rare event estimation technique and subsequently as an algorithm

for combinatorial and continuous optimisation problems. The most alluring feature of CE is that

for a certain family of instrumental densities the updating rules can be calculated analytically,

and are thus extremely efficient and fast. Also the theoretical background of CE is enabling

theoretical studies of this method which can provide sound guidelines about the applicability of

this algorithm to problem types.

5.2 Cross Entropy Method

The cross entropy method (CE) was introduced by Rubinstein [170], for single objective continu-

ous and discrete optimisation problems. In its original form, CE was based on Kullback-Leibler

cross-entropy, importance sampling and the Boltzmann distribution for continuous problems,

while Markov chains are employed in the discrete case. It is interesting to note that in this form

CE is similar, in principle, to probability collectives (PC), a method introduced by Wolpert et

al. [171] for distributed control and optimisation.

In CE, the optimisation problem is cast as a rare event estimation and subsequently an

adaptive technique, with the aid of importance sampling, is applied to update the parameters of

an instrumental density. The derived problem is called the associated stochastic problem (ASP).

The method then uses the ASP to implicitly solve the original optimisation problem. Generally

speaking there are two steps involved in this iterative procedure:

• Generate a population1 based on a prior distribution, g. The distribution g is uniquely

defined by a parameter vector v. In the initial iterations of the algorithm it is usually the

uniform distribution that is used, unless prior knowledge suggests otherwise.

• Update the parameter vector, v, to create the posterior distribution using an elite subset,

E , of the previous population.

Since its introduction, several studies expanding on the initial methodology have been pre-

sented. Most notably, the minimum cross-entropy (MCE) method [172], where a non-parametric

instrumental distribution is used. Albeit, MCE is computationally more demanding compared

with CE. Another interesting approach to extend CE is presented by Botev [173], termed gen-

eralised cross entropy (GCE). In GCE, quite elegantly, the ASP is transformed to a convex

1Note that the terms population and samples are used interchangeably in this work; unless stated otherwise.
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program with the help of the χ2 directed divergence. GCE overcomes the specification bias by

using non-parametric density estimation. However, the computational cost of GCE is prohibitive

when used in an optimisation setting.

Let us assume that the optimisation problem has a single objective which is to be minimised,

min
x
f(x) (5.1)

where x is the decision variable vector and f(x⋆) = γ⋆ is the minimum. Assuming x⋆ is rare

in S, (5.1) can be interpreted in a different way, i.e. as a rare event estimation. Rare in this

context means that for, C = {x : ‖x⋆ − x‖2 ≤ ε, ε > 0} and ε small, then the probability,

P(x ∈ C) =
∫

C
u(x)dx ≪ 1, where, u, is a density function. Therefore (5.1) can be restated as

follows,

EuIf(X )≤γ = Pu(f(X ) ≤ γ) = ℓ, (5.2)

ℓ is the probability of the rare event, I is the indicator function and Eu is the expectation of a

quantity distributed according to the density g(·;u) and Pu(f(X ) ≤ γ) is the probability for the

function f(·) to have a smaller value than γ when the random variable vector X is distributed

according to the density g(·;u). The random variable vector, X , is associated with the decision

variable vector x. For notational compactness, H(X ; γ) ≡ If(X )≤γ is defined as,

H(X ; γ) =
{

1 f(X ) ≤ γ
0 f(X ) > γ.

(5.3)

Now, to estimate ℓ for some γ̃ such that ‖γ̃−γ⋆‖ ≤ ǫ, with ǫ small, Pu(H(X ; γ̃)) must be solved,

which is non-trivial if the initial assumption is true, i.e. that the probability Pu(H(X ; γ̃)) is

small when X ∼ g(·;u). In the trivial case that the aforementioned assumption is not true ℓ

can be estimated using the crude Monte Carlo (CMC) estimator,

ℓ̂ =
1

N

N
∑

i=1

H(X ; γ). (5.4)

If, however, the prior assumption holds, then the indicator function If(X )≤ρ in (5.4) will most

likely be identically 0 for all Xi, so a different approach is necessary. An alternative to CMC is

the importance sampling (IS) [174] estimator which is defined as follows,

ℓ̂ =
1

N

N
∑

i=1

W (Xi;u,v)H(X ; γ), (5.5)
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where W (X ;u,v) = g(·;u)
g(·;v) is the likelihood ratio (LR). Now the problem is to find the IS density

g(·;v) that would minimise the variance of the estimator; theoretically the zero variance density

is:

g⋆(x) =
f(x;u)H(X ; γ)

ℓ
. (5.6)

However (5.6) involves the quantity which we are trying to estimate (ℓ), hence its practical value

is limited. Although it is possible, up to a multiplicative constant, to attempt to minimise the

“distance” of g(·;v) with g⋆(·). And for this purpose, a convenient measure of “distance” is the

Kullback-Leibler distance (KL), defined as:

D(g, h) =
∫

g(x) ln

(

g(x)

h(x)

)

dx (5.7)

and upon expansion,

D(g, h) =
∫

g(x) ln g(x) dx

−
∫

g(x) ln h(x) dx.

(5.8)

Since the first term in (5.8) is constant, we only need to minimise the second term which is

equivalent to maximising
∫

g(x) ln h(x) dx. Therefore the optimal parameter vector v⋆, in the

minimum variance sense, is obtained by the solution of the following program:

v⋆ = max
v

EṽH(X ; γ)W (X ;u, ṽ) ln g(X ;v), (5.9)

where X is independent and identically distributed (i.i.d) according to g(·; ṽ). However Pu(H(X ; γ))
is still a rare event; in CE this is overcome by substitution of γ with γ̄ ≥ γ equal to the ρ-quantile

of f(X ) under v. The program in (5.9) is solved for decreasing levels of γ̄ until γ̄ ≤ γ. So (5.9),

in the CE-method, becomes:

vt = max
v

Evt−1
H(X ; γt−1)W (X ;u,vt−1) ln g(X ;v), (5.10)

whose stochastic counterpart is,

vt = max
v

1

N

N
∑

i=1

H(Xi; γt−1)W (Xi;u,vt−1) ln g(Xi;v), (5.11)

X1, . . . ,XN are drawn from g(·;vt−1). Typically (5.11) is convex and if the instrumental densities

g(·; ·) are chosen from the natural exponential family (NEF) [151] then (5.11) can be solved

analytically [172] by solving the following system of equations:

max
v

1

N

N
∑

i=1

H(Xi)W (Xi;u,vt−1)∇v ln g(Xi;v) = 0 (5.12)
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This is a major strength in CE, the fact that the updating rules for the instrumental densities

can be obtained analytically translates to a much lower computational overhead. Briefly, some

distributions in the NEF family are the Gaussian, Poisson and the gamma distributions [175].

The procedure described by (5.10)-(5.12) will generate a sequence of γ values: (γt > γt+1 >

· · · > γt+m) with the corresponding instrumental densities converging to the optimal parameter

v for which the event Pu(H(X ; γ̃)) is increasingly easier to estimate, i.e. it becomes more likely

under the density g(·;v).

5.2.1 CE-Method for Continuous Optimisation

The procedure described so far is directly applicable to optimisation problems with the only

difference being that the level γ is either the a priori minimum of the objective function f(·)
or if this information is not available it is allowed to decrease ad infinitum. In practice, for

bounded problems, the sequence {γt, γt+1, . . . } converges to a value close to the minimum,

hence the stopping criterion can be set to |γt − γt−1| ≤ δ for some small δ.

A good candidate for the instrumental densities is the normal distribution,

g(x;µ, σ) =
1√
2πσ

exp

(

−(x− µ)2
2σ2

)

(5.13)

and its truncated equivalent for problems with boundary constraints. It should be mentioned

that the updating rules derived using (5.12) are identical for the regular and truncated Gaussian

[173].

It is suggested in [172] that for the optimisation case IS is not very useful since the initial

parameter u in the density g(·;u) is actually arbitrary, under the assumption that no information

is available about the location of the optimum. However, such information may be available,

hence maintaining the IS estimator allows prior information to be exploited. This can be achieved

by setting the parameters u according to the information available, which should in turn help

steer the search near optimal solutions faster. On the down side, if the prior information is not

correct, this biasing can lead the optimisation procedure astray.

The CE-method for single objective problems can be summarised as follows:

Step 1 Initialise v0 to the uniform distribution and set t = 1.

Step 2 Sample the distribution g(·;vt−1) to generate a random sample of size N and evaluate

the objective function f(·).
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Step 3 Select the top ρN performing samples and use them to estimate vt. Solving (5.12) the

updating rules are obtained for the normal distribution vt = {µt, σt}:

µ̂t =

∑ρN
i=1W (Xi;u,vt−1)Xi
∑ρN

i=1W (Xi;u,vt−1)
, (5.14)

σ̂t =

(

∑ρN
i=1W (Xi;u,vt−1)(Xi − µ̂)2
∑ρN

i=1W (Xi;u,vt−1)

) 1
2

, (5.15)

where ρ is some small value, e.g. 0.1. The updating rules in (5.14) and (5.15) could lead

to premature convergence [172] so a smoothed version is usually employed:

µt = αµ̂t + (1− α)µt−1

σt = βtσ̂t + (1− βt)σt−1,
(5.16)

where α and βt are smoothing parameters with α ∈ (0.7, 1) and βt is calculated as:

βt = β − β
(

1− 1

t

)q

β ∈ (0.7, 1)

q ∈ (5, 9).

(5.17)

Step 4 If the stopping condition is not met go to Step 2, otherwise output the current µt as

the estimate of the location of the optimum.

5.3 Generalised Decomposition-Based Many Objective

Cross-Entropy

The proposed algorithm is based on the CE-method, see Section 5.2, and the newly introduced

concept of generalised decomposition as described in Section 4.3. However, two versions have

been introduced, namely many objective CE (MACE) and MACE based on generalised decom-

position (MACE-gD). The difference is that the weighting vectors w in MACE are generated

according to the suggestions in [2] to enable a clearer comparison with the MOEA/D framework

and to evaluate the benefits and potential shortcomings of generalised decomposition. Therefore

MACE employs a set of evenly spaced weighting vectors to further test validity of the hypothesis

that this scheme does not result in an even distribution of Pareto optimal solutions on the PF,

see Section 4.3.3. It is shown how such issues can be overcome using MACE-gD and present

a method that can prove invaluable when the optimisation problem has many objectives. The

general idea is that a set of weighting vectors can be generated near regions that are of interest,
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thus avoiding waste of resources in search of Pareto optimal solutions away from such regions.

The main algorithm in MACE and MACE-gD is the CE-method for continuous optimisation

problems as described in Section 5.2.1. An overview of MACE-gD can be seen in Alg. 5.1. In

Algorithm 5.1 MACE-gD

1: w← gD(PF Shape) ⊲ Initialise the weighting vectors using generalised decomposition.
2: M(1) ← minx+U(0, 1)(max x−minx) ⊲ If possible, initialise the means in the feasible set.
3: S(1) ← C(maxx−minx)
4: x(1) ← N (M,S)
5: E← F(x(1))
6: z⋆ ← min{Ef1 , . . . ,Efk}
7: t← 1
8: repeat
9: for i← 1, N do

10: V(t) ← g(x(t),wi, z
⋆) ⊲ g(·) is a convex scalarising function with respect to w.

11: Q← Sort(V(t))
12: E ← Q1,...,ρN

13: M(t)
i ← αµ̂t + (1− α)µ̂t−1

14: S(t)i ← βtσ̂t + (1− βt)σ̂t−1

15: x̂
(t)
i ← N (M(t)

i ,S(t)i )

16: V̂
(t)
i ← g(x̂

(t)
i ,wi, z

⋆)

17: if V̂
(t)
i ≤ V

(t)
i then

18: V
(t+1)
i ← V̂

(t)
i

19: x
(t+1)
i ← x̂

(t)
i

20: z⋆ ← min
(

z⋆,F
(

x
(t)
i

))

21: end if
22: end for
23: t← t+ 1
24: until t ≤MaxGenerations
25: x←M(t)

line 1, the optimal weighting vectors are obtained according to prior information about the shape

of the PF and the desired distribution of Pareto optimal solutions. This procedure is comprised

of two steps, namely:

Step 1 Generate a set of solutions according to the PF shape of the given problem, for example

for a concave PF, this reference front could be the one depicted in Fig. (4.1). The genera-

tion of this target front is mostly a matter of preference. To insulate the DM from different

objective function scales, it is advisable that the objective functions are normalised in the

range [0, 1]. This can be achieved if the ideal vector z⋆ is known a priori or an adaptive

method is used during the optimisation, such as in [2]. Note that this method can be
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used only for bounded objective functions, since, generalised decomposition in its current

formulation, only applies to such functions.

Step 2 Solve (4.11) for every point in the reference PF generated in Step 1 to obtain the

optimal weighting vectors w.

The reference PF used in this work for the WFG4–9 test problems in Section 5.5.3 is a uniformly

distributed set on a concave front using the method described in Appendix B.1. For the test

problem WFG3, since the front is a line in any number of dimensions, an evenly spaced set

of points were selected along this line and lastly for the WFG2 problem the optimal weighting

vectors are evaluated using a random sample from the true PF. Next in lines 2–5 the starting

population x(1) is initialised by sampling the almost uniform distribution N (M,S). In this

work, for notational compactness, N (M,S) has the following meaning:







N (µ1,1, σ1,1) · · · N (µ1,n, σ1,n)
...

. . .
...

N (µN,1, σN,1) · · · N (µN,n, σN,n)






(5.18)

where n is the number of decision variables and N the size of the population, which is the

same as the number of subproblems and N is the truncated normal distribution in the domain

of definition of the corresponding decision variables. The matrix, M(t) contains the current

estimate of the decision variables and in S(t) are the standard deviation parameters. TheM(t)

matrix is initialised at random within the decision variables’ domain of definition or using some

alternative method, for example, Latin hypercube sampling. The S(t) matrix is initialised to

some sufficiently large value so that the truncated normal distributions to be approximately

equal to the uniform distribution at the first iteration, given no prior information is available.

For this reason C is set to 10, see line 3. Next the objective function, F(·) is evaluated for the

initial population x(1) and the ideal vector z⋆ is estimated using the minimum of the individual

objectives in E. The main loop of the MACE-gD algorithm is in lines 8–24. At each iteration and

for every subproblem, wi, the entire population is evaluated using the Chebyshev decomposition.

The population performance, V(t) is sorted in ascending order1 and the solutions in the ρ-

percentile, E are used to update the instrumental density parameters of the ith subproblem,

M(t)
i and S(t)i . Following a new solution, x̂

(t)
i , is sampled from the parametric density using

the updated parameters. This solution is evaluated and if its performance is superior to the

1For maximisation problems V(t) is sorted in descending order.
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previous one it is retained. The algorithm terminates once the maximum function evaluations

are reached. Finally the PF approximation set is the matrixM(t).

MACE and MACE-gD have similarities with MOEA/D [2] and derivatives [176, 177]. How-

ever there are fundamental differences which have been motivated by the results in Section 4.3.3.

Namely, MACE and MACE-gD do not have a mating restriction, and there is no neighbourhood

in weighting vector space. In fact only the top performing individuals for every subproblem are

used, irrespective of their origin (see Alg. 5.1), namely the distribution that generated them.

In contrast to that, MOEA/D derivatives insist on using a neighbourhood based on the dis-

tance of the weighting vectors. This choice seems reasonable when the relative location of the

Pareto optimal solutions resulting from the set of subproblems is unknown. However, even if the

Pareto front geometry is unknown a priori, this information can be extracted using generalized

decomposition. For example, assuming an affine Pareto front geometry the neighbourhood can

be calculated in objective space. The weighting vectors can be calculated using (4.11) and the

neighbourhood structure can be as calculated for the above Pareto front. Here the assumption

of an affine Pareto front is only limiting if the real Pareto front is discontinuous. However, this

is also problematic for MOEA/D as defined in [2]. In any other case, the relative distance of

the Pareto optimal solutions will be correct.

5.4 Algorithms Selected For Comparison

5.4.1 Multi-Objective Evolutionary Algorithm based on Decomposition

As already mentioned in Section 5.1 decomposition methods were usually applied in conjunc-

tion with gradient search methods, although there are examples of EAs based on this type of

fitness assignment. One notable framework based on decomposition was introduced by Zhang

et al. [2] the so called MOEA/D. The original version of MOEA/D was a decomposition-based

algorithm with mating restriction and an archive preserving the best-so-far solution for every

subproblem. The benefit of using scalarizing functions to extend an EA to MAPs is that consid-

erations such as diversity preserving operators and elite preserving strategies become, to a great

degree, redundant if the choice of weighting vectors and decomposition method is suitable for

the problem in question. An additional benefit is that the computational cost tends to be lower

compared to Pareto based algorithms [2]. MOEA/D depends on one of several available de-

composition techniques, - weighted sum, Chebyshev [5] and normal boundary intersection [100]

decompositions - with each having its own strengths and weaknesses. The minimisation problem
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from Section 2.22, when using the Chebyshev decomposition is restated according to (4.9). In

MOEA/D the vectors wi are N evenly distributed weighting vectors. An MAP is decomposed

to N number of sub-problems using wi. Each individual in the population is assigned to a single

sub-problem, so N is also the size of the population. For example, for a 2 objective problem,

the weighting vectors are defined as:

wi
1 =

i

H
, wi

2 = 1− wi
1, i ∈ {0, . . . ,H}, (5.19)

where the H parameter controls the number of subdivisions per dimension and wi = {wi
1, w

i
2}.

The argument is that since gtce is a continuous function of w, N evenly distributed weighting

vectors should result in N evenly distributed Pareto optimal solutions, assuming that the ob-

jectives are normalised [2]. However this argument is only valid in the case that a boundary

intersection (BI) approach is used, for instance the normal boundary intersection method (NBI)

[100]. In NBI the following program is to be solved:

min
x
gnbi(x;w

i, z⋆) = d

s.t. z⋆ − F(x) = d ·wi,
(5.20)

where Zhang et al. [2] suggest a penalty approach to handle the equality constraint. Thus (5.20)

is transformed to:

min
x
gnbi(x;w

i, z⋆) = d1 + pd2

d1 =
‖(z⋆ − F(x))Twi‖2

‖wi‖2
d2 = ‖F(x)− (z⋆ − d1wi)‖2,

(5.21)

where p is a penalty parameter. It was shown that MOEA/D using (5.21) has the potential to

produce truly evenly distributed Pareto optimal solutions [2]. Unfortunately (5.21) has three

significant drawbacks. First, the normal-boundary intersection method does not guarantee that

the solutions to the sub-problems will be Pareto optimal [100]. Second, NBI has to be solved

using a penalty method which introduces one more parameter that has to be tuned for every

test problem separately, and lastly it is unclear how this decomposition method can be scaled

for MAPs. A description of the MOEA/D algorithm is now given:

Step 1 GenerateN equally spacedwi vectors according to (5.19). Create a matrix B containing

the nearest neighbours of each wi and initialise the ideal weighting vector z⋆ to a large

value.
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Step 2 Evaluate the decision variable vectors x using the objective function F(x).

Step 3 Update the ideal vector z⋆ = min(z⋆,F(x)).

Step 4 For each individual i ∈ {1, . . . , N} execute the following procedure:

Step 4.1 Apply genetic operators, crossover and mutation, using individuals in the neighbour-

hood of each solution. The choice of individuals is random among neighbouring solutions.

Step 4.2 Evaluate the newly generated solution using (4.9).

Step 4.3 Update the ideal vector z⋆.

Step 4.4 If the new solution is superior to the previous in the archive then swap the old solution

to the ith sub-problem with the new solution. Otherwise, retain the old solution.

Step 4.5 Check if the new solution is better for any of the neighbouring subproblems and

substitute if that is the case.

Step 5 If the termination criteria are met output the non-dominated solutions, otherwise pro-

ceed to Step 4.

In this work the MATLAB code provided by the authors of MOEA/D is used [2].

5.4.2 Regularity model-based EDA

The second algorithm that is employed in this comparison study, see Section 5.5, is the regular-

ity model-based multi-objective estimation of distribution algorithm (RM-MEDA) proposed by

Zhang et al. [125]. The main idea in RM-MEDA is that, for continuous MAPs, the Pareto set

can be viewed as a (k − 1)-dimensional piecewise continuous manifold. So for two dimensions,

the PF can be described with line segments, for three dimensions with planes etc.

Zhang et al. [125] used inductively the Karush-Kuhn-Tucker condition [5] for continuous

multi-objective problems, asserting that the PF of a problem with k objectives is a (k − 1)-

dimensional manifold in the decision variable space. This assertion allowed Zhang et al. [125]

to approximate this (k − 1)-dimensional manifold with K piecewise continuous manifolds. To

accomplish this task a (k − 1)-dimensional local principal component analysis algorithm was

used to partition the population in K disjoint clusters and then the centroid and its variance

were estimated. The problem with this approach is that there is no objective measure to support
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the choice of the number of clusters K for an unknown problem. Hence the practitioner must

heavily depend on the smoothness of the objective function in the decision space. Alternatively,

if it is known a priori that the MAP fulfills the smoothness criteria then RM-MEDA will be able

to exploit that structure thus converge much faster.

In [125] RM-MEDA was evaluated against PCX-NSGA-II [128], GDE3 [99] and MIDEA

[129], and on average outperformed the aforementioned algorithms on variants of the ZDT1 test

problems [127]. However the performance of RM-MEDA comes at the expense of increased

computational cost due to the necessity of computing a local principal component analysis on

each iteration. The implementation of RM-MEDA that is employed in this work is the publicly

available version in MATLAB code provided by the authors [125].

5.4.3 Random Search

Random search is regarded as the absolute baseline algorithm in MOEAs. In random search

absolutely no prior assumptions are made about the problem and during the optimisation the

search is not affected by the fitness of the previous samples. Random search with memory,

that is an algorithm that samples uniformly the decision variable space but does not revisit

solutions previously sampled, enjoys asymptotical convergence [178]. However, since there is no

mechanism to steer the search; the time to convergence is analogous to the problem complexity.

Conversely, due to its simplicity and inability to learn it cannot be misled by the problem. The

random search algorithm employed in the current work is in its most basic form. The objective

function is evaluated for 25 000 uniformly sampled decision variable combinations, then the non-

dominated solutions are extracted and a randomly selected subset is chosen for evaluation using

the methodology described in Section 5.5.

5.5 Comparative Studies

5.5.1 Performance Indicator

The main performance metric for the comparative studies in this work is the generational dis-

tance (GD) indicator, see (5.22). This metric has been chosen since the main interest is in the

convergence properties of the studied algorithms. Generational distance (GD), introduced in

1Zitzler, Deb, Thiele (ZDT)
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Table 5.1: Value of the H parameter in MOEA/D and MACE and the corresponding population
size N . The population size is the same for all algorithms. |P⋆| is the size of the Pareto front
reference set, solutions in this set are uniformly distributed along the PF.

Obj. # 2 3 4 5 6 7 8 9 10 11

H 101 20 10 7 6 5 5 5 5 5
N 101 210 220 210 252 210 330 495 715 1001
|P⋆| 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

[179] is given by,

D(A,P⋆) =

∑

s∈A
min{‖P⋆

1 − s‖2, . . . , ‖P⋆
N − s‖2}

|A| (5.22)

where |A| is the cardinality of the set A. The GD metric measures the distance of the elements

in the set A from the nearest of the reference PF. A is an approximation of the true Pareto front

and P⋆ is the reference Pareto optimal set.

5.5.2 Experiment Description

The goal of the comparative studies in this work is not to proclaim a best algorithm among

variants of MACE and the aforementioned frameworks. The main aim is to explore the potential

of generalised decomposition versus what is considered to be standard practice in many present

day decomposition-based MOEAs. The additional benefit is that the generalised decomposition

framework seems very suitable for the extension of EDAs to MAPs, something that enables us

to evaluate whether the performance of the CE-method is comparable with established MOEAs.

Therefore the selection of MOEA/D is only natural since this algorithm framework has become

a baseline for comparison of decomposition-based MOEAs. Also, the good performance of RM-

MEDA against other EDAs makes it a suitable candidate to evaluate the main EDA in MACE

and MACE-gD algorithms.

In Section 4.3, it was illustrated that the three objectives that MOEAs have to achieve -

namely convergence, diversity and PF coverage - can be reduced to only one, convergence, in

the generalised decomposition framework. Therefore a quantity measuring convergence to the

PF becomes very important, which is the reason that the GD metric is used, see (5.22).

The selected problem set for the experiments is the WFG toolkit [167], specifically problems

WFG2–WFG9, since it contains several challenging problems, it is scalable and the PF is known

a priori. For all test instances 32 decision variables were used and the k parameter is calculated

as: k = 4 + 2 · (M − 1), the only exception being for the 2 objective instances of the test

problems where it is set to 4; M is the number of objectives. Also the neighbourhood size T in
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Table 5.2: Settings for MACE and MACE-gD.

ρ α β q

0.1 0.9 0.9 7

MOEA/D was selected to be 10% of the population size N , since, according to [4], this appears

to be a setting that produces good results for MAPs. The population size was the same for all

the algorithms, see Table 5.1. The parameters of the CE-method are the same in MACE and

MACE-gD and have been selected according to the suggestions in [172], see Table 5.2. Lastly,

the reference Pareto fronts used in MACE-gD to produce the optimal weighting vectors for the

test instances WFG2 and WFG3 were generated by a random sample of the true Pareto set

and for the problems WFG4–WFG9, the method described in Appendix B.1 was employed for

generating a concave Pareto optimal set. In practice, such information is usually not available

before the application of the optimisation algorithm. This problem can be averted using an

identification method to determine the PF shape during the optimisation; this methodology is

left for future research. Lastly, as is probably evident from the selection of the reference PS for

the generation of the weighting vectors in MACE-gD, it is assumed that the DM is interested

in a PF that is uniformly distributed on that front. This is due to several considerations: first,

if the method that is usually applied in MOEA benchmarking for generating the reference PF

of concave geometry is followed, say for 3 dimensions, i.e. generate a set of evenly distributed

weighting vectors and then project onto the first octant of the unit sphere, then for higher

dimensions, due to the curvature of the hypersphere this will induce a large bias in the reference

set. Namely, the density of Pareto optimal solutions will be higher near the edges of the PF

compared to the density near the centre. Conversely, to produce a truly even distribution of

Pareto optimal solutions in high dimensions is still an unresolved issue for an arbitrary number

of points, even for PFs that have simple geometry, see [180, 181].

5.5.3 Experiment Results

A summary of the GD-metric performance of the algorithms is presented in Tables 5.3–5.10.

The values in bold indicate the best performing algorithm for the particular instance of a test

problem. The Kruskal-Wallis test is used at the 95% confidence level to verify if the mean

performance of the studied algorithms is different. Furthermore, for each algorithm and for

each problem instance the Wilcoxon two-sided rank sum test was employed with α = 0.05 (95%

confidence level). Every time an algorithm outperforms another in the test group, for a test
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Table 5.3: GD-metric performance of the studied algorithms on the WFG2 problem for 2–11
objectives.

WFG2

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0816 (3) 0.1027 (4) 0.0656 (2) 0.0279 (1) 0.1687 (5)
3 0.0353 (1) 0.0386 (2) 0.0444 (3) 0.0794 (4) 0.1929 (5)
4 0.0712 (2) 0.0485 (1) 0.1283 (4) 0.1274 (3) 0.1998 (5)
5 0.0718 (2) 0.0471 (1) 0.1717 (4) 0.1674 (3) 0.2125 (5)
6 0.0573 (2) 0.0423 (1) 0.1489 (3) 0.1979 (4) 0.2228 (5)
7 0.0650 (2) 0.0487 (1) 0.1081 (3) 0.2152 (4) 0.2335 (5)
8 0.0525 (2) 0.0379 (1) 0.0806 (3) 0.2434 (4) 0.2649 (5)
9 0.0471 (2) 0.0286 (1) 0.0791 (3) 0.2563 (4) 0.2638 (5)
10 0.0495 (2) 0.0168 (1) 0.0658 (3) 0.2694 (4) 0.2785 (5)
11 0.0453 (2) 0.0108 (1) 0.0814 (3) 0.2793 (4) 0.2867 (5)

instance, a 1 was added to its rank. Therefore since 5 algorithms are considered, the maximum

rank for an algorithm is 4. A rank of 4 means that the algorithm in question performs better

than all other algorithms for that particular test instance. In the case that no algorithm is clearly

better, this is marked as a tie thus both algorithms are displayed in bold in Tables 5.3–5.10. An

algorithm with a rank of 4 is denoted with a (1), one with a rank of 3 with a (2) and so forth,

with (1) denoting the best performing algorithm and (5) the worst performer. These values are

recorded to the right of the GD-metric performance in Tables 5.3–5.10.

Table 5.3 presents the results of the algorithms for 2–11 objective instances of the WFG2

test problem. WFG2 has the following features – it is non-separable, unimodal with respect to

all objectives except the last which is multi-modal; there is no bias in the parameters and the

PF geometry is piecewise convex1. In this problem MACE-gD performance is far better than all

algorithms for more than 4 objectives. This performance is attributed to the fact that for PFs

that have a convex geometry the optimal weighting vector set, see Fig. (4.1), is clustered near

the centre region. So, using an even distribution of weighting vectors, the effective number of

Pareto optimal solutions for which these vectors are optimal is reduced. This is especially true

in higher dimensions, since the features seen in Fig. (4.1) are only accentuated. However, the

MACE algorithm that utilised the same weighting vector selection as MOEA/D, outperforms

the latter algorithm for all the instances except the 2-objective case. This in combination to the

fact that MOEA/D consistently outperforms RM-MEDA, except for the 2-objective instance,

leads to the hypothesis that Pareto-based algorithms potentially are not very well suited for

problems with convex PF geometries in high dimensions. This hypothesis is further supported

by the fact that RM-MEDA uses a variant of non-dominated sorting [125]. So in high dimensions

1See Section 2.5.1 for a definition of piecewise convex when referring to a Pareto front.
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Figure 5.1: MACE-gD, MOEA/D and RM-MEDA Pareto front for 3 objective instances of the
WFG2–WFG5 test problems.
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Table 5.4: GD-metric performance of the studied algorithms on the WFG3 problem for 2–11
objectives.

WFG3

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0133 (1) 0.0194 (3) 0.0190 (3) 0.0215 (4) 0.2108 (5)
3 0.0699 (2) 0.0231 (1) 0.1553 (3) 0.2419 (4) 0.2899 (5)
4 0.0841 (2) 0.0338 (1) 0.2422 (3) 0.3474 (5) 0.3204 (4)
5 0.1023 (2) 0.0230 (1) 0.3137 (3) 0.3885 (5) 0.3311 (4)
6 0.1146 (2) 0.0209 (1) 0.2701 (3) 0.4091 (5) 0.3312 (4)
7 0.1033 (2) 0.0340 (1) 0.2122 (3) 0.4346 (5) 0.3321 (4)
8 0.0921 (2) 0.0290 (1) 0.1912 (3) 0.4356 (5) 0.3350 (4)
9 0.0848 (2) 0.0237 (1) 0.1728 (3) 0.4342 (5) 0.3364 (4)
10 0.0760 (2) 0.0135 (1) 0.1512 (3) 0.4314 (5) 0.3371 (4)
11 0.0702 (2) 0.0117 (1) 0.1317 (3) 0.4283 (5) 0.3379 (4)

the closer the estimated PF is to the true PF, the fewer the solutions that are part of the first

and second non-dominated fronts, which means that the availability of good solutions to the

model creation process is reduced in RM-MEDA. Therefore, the closer the algorithm is to the

actual PF, the more difficult it becomes for further progress to be achieved.

The results for the WFG3 instances are seen in Table 5.4. The WFG3 problem is non-

separable, unimodal with no bias in the parameters and its PF geometry is affine degenerate,

i.e. the front is always a line for any number of dimensions. In this problem as well, the

MACE-gD algorithm has far superior performance, except for the 2-objective instance, where

the performance of all algorithms is comparable. However MACE has statistically better per-

formance for 2 objectives. MACE-gD outperforms other approaches on the WFG3 problems

mainly due to its geometry. Since its geometry is affine, the optimal weighting vectors direct

the algorithm towards the correct location on the PF, while other algorithms are exploring the

entire objective space assuming that the front is some hypersurface which is to be populated

with solutions. This focus illustrates what can be the advantages of generalised decomposition.

It is also encouraging that MACE performs very well, which means that if the information

about the geometry of the PF is not very accurate the algorithm can still achieve acceptable

results. Additionally, the results of RM-MEDA on WFG3 further support the hypothesis about

its selection scheme; notably its performance is much degraded compared to WFG2. Lastly a

curiosity is that for increasing number of dimensions, MACE-gD is not only better compared

with other algorithms but the GD metric becomes smaller, something that is counter-intuitive.

However the explanation for that is rather simple, namely since the Pareto front in WFG3 is a

line in any number of dimensions, the necessity of employing a larger population is diminished.

Since the population size is increased, and the optimal weighting vectors are known, the density
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Table 5.5: GD-metric performance of the studied algorithms on the WFG4 problem for 2–11
objectives.

WFG4

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0345 (3) 0.0344 (3) 0.0211 (1) 0.0392 (4) 0.1161 (5)
3 0.0617 (3) 0.0522 (2) 0.0316 (1) 0.0939 (4) 0.1302 (5)
4 0.0749 (3) 0.0740 (2) 0.0655 (1) 0.1336 (4) 0.1358 (5)
5 0.1438 (3) 0.1048 (1) 0.1653 (5) 0.1464 (4) 0.1407 (2)
6 0.1358 (1) 0.1414 (2) 0.1959 (5) 0.1668 (4) 0.1549 (3)
7 0.2349 (4) 0.1997 (3) 0.2739 (5) 0.1898 (2) 0.1770 (1)
8 0.3176 (4) 0.2351 (3) 0.3371 (5) 0.2172 (2) 0.2025 (1)
9 0.3995 (5) 0.3028 (3) 0.3958 (4) 0.2495 (1) 0.2568 (2)
10 0.3791 (4) 0.3265 (3) 0.4001 (5) 0.2718 (2) 0.2577 (1)
11 0.4839 (5) 0.3875 (3) 0.4644 (4) 0.3162 (1) 0.3540 (2)

Table 5.6: GD-metric performance of the studied algorithms on the WFG5 problem for 2–11
objectives.

WFG5

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0393 (2) 0.0523 (4) 0.0276 (1) 0.0433 (3) 0.1947 (5)
3 0.1052 (3) 0.0962 (2) 0.0321 (1) 0.2168 (5) 0.2114 (4)
4 0.1533 (2) 0.1845 (3) 0.0655 (1) 0.2652 (5) 0.2268 (4)
5 0.1537 (2) 0.2221 (3) 0.1540 (2) 0.2604 (5) 0.2307 (4)
6 0.1579 (2) 0.2313 (3) 0.1558 (1) 0.2556 (5) 0.2346 (4)
7 0.1872 (1) 0.2286 (2) 0.2455 (4) 0.2588 (5) 0.2372 (3)
8 0.2620 (3) 0.2340 (1) 0.3262 (5) 0.2646 (4) 0.2441 (2)
9 0.3357 (4) 0.2685 (2) 0.4007 (5) 0.2748 (3) 0.2598 (1)
10 0.3497 (4) 0.2789 (2) 0.3813 (5) 0.2911 (3) 0.2706 (1)
11 0.4479 (4) 0.3203 (3) 0.4792 (5) 0.3096 (2) 0.3036 (1)

of solutions along the WFG3 PF is effectively increased, hence the GD metric value decreases.

In Table 5.5 the results for the WFG4 problem are presented. WFG4 is a separable problem,

multi-modal with no bias and its PF geometry is concave. In this problem the major influence

in algorithm performance seems to be the fact that this problem is multimodal. From the

MACE and MACE-gD perspective, the fact that the instrumental densities used are Gaussian

appears to have a significant effect. Namely, the multi-modal nature of the problem is misleading

to all the algorithms. However, the more elaborate model employed in RM-MEDA helps the

algorithm scale much better compared to the rest. This conclusion is based on the performance

of random search on this problem and the fact that RM-MEDA follows this much more smoothly

relative to all other algorithms. For example, for the 11 objective instance, while random search

achieves a mean value for the GD-metric of 0.3540, MACE-gD, MOEA/D and MACE have much

worse performance, although the positive effect of generalised decomposition is clearly visible

when comparing MACE-gD to MACE. For instances with 2–4 objectives MOEA/D exhibits the

best performance, however it is closely followed by MACE-gD and MACE. This leads to the

hypothesis that a more elaborate EDA coupled with generalised decomposition could potentially
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Figure 5.2: MACE-gD, MOEA/D and RM-MEDA Pareto front for 3 objective instances of the
WFG6–WFG9 test problems.
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Table 5.7: GD-metric performance of the studied algorithms on the WFG6 problem for 2–11
objectives.

WFG6

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0162 (2) 0.0226 (3) 0.0293 (4) 0.0164 (2) 0.2465 (5)
3 0.0489 (2) 0.0499 (3) 0.0318 (1) 0.1417 (4) 0.2666 (5)
4 0.0782 (2) 0.0836 (3) 0.0624 (1) 0.2441 (4) 0.2865 (5)
5 0.1459 (2) 0.1182 (1) 0.1644 (3) 0.2532 (4) 0.2940 (5)
6 0.1960 (3) 0.1491 (1) 0.1962 (3) 0.2574 (4) 0.2936 (5)
7 0.2531 (3) 0.1897 (1) 0.2506 (2) 0.2608 (4) 0.2881 (5)
8 0.3094 (4) 0.2215 (1) 0.3234 (5) 0.2759 (2) 0.2885 (3)
9 0.3890 (5) 0.2716 (1) 0.3520 (4) 0.2888 (2) 0.2951 (3)
10 0.3762 (5) 0.3004 (1) 0.3758 (5) 0.3078 (3) 0.3032 (2)
11 0.4632 (5) 0.3577 (3) 0.4233 (4) 0.3257 (2) 0.3201 (1)

Table 5.8: GD-metric performance of the studied algorithms on the WFG7 problem for 2–11
objectives.

WFG7

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0075 (2) 0.0144 (3) 0.0040 (1) 0.0158 (4) 0.1707 (5)
3 0.0363 (3) 0.0309 (2) 0.0261 (1) 0.1159 (4) 0.1889 (5)
4 0.0819 (3) 0.0740 (2) 0.0732 (1) 0.1742 (4) 0.1998 (5)
5 0.1374 (2) 0.1086 (1) 0.1760 (3) 0.1915 (4) 0.2013 (5)
6 0.1541 (2) 0.1434 (1) 0.2150 (5) 0.2050 (4) 0.2046 (4)
7 0.2587 (4) 0.1889 (1) 0.2839 (5) 0.2191 (3) 0.2142 (2)
8 0.3269 (4) 0.2282 (2) 0.3704 (5) 0.2432 (3) 0.2270 (1)
9 0.3954 (4) 0.2838 (3) 0.4359 (5) 0.2632 (2) 0.2508 (1)
10 0.3803 (4) 0.3092 (3) 0.4052 (5) 0.2844 (2) 0.2633 (1)
11 0.4812 (4) 0.3704 (3) 0.4875 (5) 0.3115 (1) 0.3153 (2)

overcome the difficulties present in problems similar to WFG4.

Table 5.6 presents the results for the WFG5 problem. WFG5 is a unimodal, separable and

deceptive problem with no bias and concave PF. It is most interesting that for this test prob-

lem, contrary to what was anticipated, RM-MEDA performs consistently worse compared with

random search, the only exception being the 2-objective test instance. However for more than 9

objectives random search dominates in all other algorithms in performance. Also when compared

to RM-MEDA, both MACE and MACE-gD perform significantly better for all instances with

2–10 objectives, a fact that supports the theory presented in [126] that EDAs using low-order

statistics with some form of clustering have potential. Of course clustering is not used in the

presented versions of the MACE algorithm which is left for future research. Another important

feature is that MOEA/D strongly outperforms all algorithms on this test problem for 2–6 objec-

tives although its performance is heavily degraded for higher numbers of objectives performing

much worse than random search. However this rapid relative degradation in performance is

not seen in MACE. This phenomenon is very likely to be related in some way with the control
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Table 5.9: GD-metric performance of the studied algorithms on the WFG8 problem for 2–11
objectives.

WFG8

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0598 (2) 0.0697 (3) 0.0582 (1) 0.0875 (4) 0.2043 (5)
3 0.0857 (3) 0.0797 (2) 0.0562 (1) 0.1671 (4) 0.2147 (5)
4 0.1201 (3) 0.1165 (2) 0.0790 (1) 0.2596 (5) 0.2436 (4)
5 0.1453 (2) 0.1349 (1) 0.1966 (3) 0.2982 (5) 0.2635 (4)
6 0.1835 (2) 0.1528 (1) 0.1961 (3) 0.3005 (5) 0.2657 (4)
7 0.2524 (2) 0.1888 (1) 0.2804 (4) 0.3002 (5) 0.2652 (3)
8 0.3214 (4) 0.2237 (1) 0.3594 (5) 0.3134 (3) 0.2703 (2)
9 0.3762 (4) 0.2706 (1) 0.3929 (5) 0.3246 (3) 0.2852 (2)
10 0.3698 (4) 0.2995 (2) 0.4050 (5) 0.3401 (3) 0.2912 (1)
11 0.4669 (5) 0.3601 (3) 0.4658 (4) 0.3560 (2) 0.3254 (1)

parameters in MOEA/D, leading to the conclusion that MACE, MACE-gD and RM-MEDA are

more robust with respect to their controlling parameters. This is in accord with recent studies

that show that the sweet spot of configuration parameters shrinks with the dimensional increase

of the problem [182].

Table 5.7 presents the results of the GD-metric performance for the WFG6 test problem.

WFG6 is a non-separable, unimodal problem with no bias and concave PF geometry. These

results further strengthen the hypothesis that the CE method performs very well on unimodal

problems. Generally, the performance over all test problems that are unimodal, for MACE and

MACE-gD is similar, see Tables 5.6-5.9. The exception to this are the results for the WFG3

problem (see Table 5.4), however the geometry of WFG3 is influencing the performance of the

algorithms greatly, so that a MACE-gD that has prior information of the correct direction of

search can massively exploit this feature. In WFG6, RM-MEDA performs worse than random

search for all instances except the 2-objective. This must be due to the fact that this problem is

non-separable, as is the case for WFG2–3 and WFG8–9, see Tables 5.3–5.4 and Tables 5.9–5.10.

For 2–3 objectives MOEA/D has superior performance to all algorithms and for 4–10 objectives

MACE-gD is the top performer. It is interesting to note that in that range of objectives MACE

and MOEA/D have similar performance, which further suggests that the decomposition method

has a strong influence on algorithm performance.

Table 5.8 and Table 5.9 correspond to the mean GD-metric value of the compared algorithms

for the problems WFG7 and WFG8. The demonstrated performance is similar to the results

reported in Tables 5.3–5.7.

Lastly Table 5.10 presents the results for the WFG9 test problem which is non-separable,

multi-modal and deceptive. WFG9 has also parameter dependent bias and its PF geometry is
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Table 5.10: GD-metric performance of the studied algorithms on the WFG9 problem for 2–11
objectives.

WFG9

Obj. # MACE MACE-gD MOEA/D RM-MEDA RAND

2 0.0223 (2) 0.0259 (3) 0.0286 (4) 0.0179 (1) 0.1925 (5)
3 0.0390 (3) 0.0366 (2) 0.0365 (2) 0.0657 (4) 0.2410 (5)
4 0.0653 (3) 0.0592 (1) 0.0607 (2) 0.1636 (4) 0.2764 (5)
5 0.1494 (3) 0.0987 (1) 0.1468 (2) 0.2442 (4) 0.2982 (5)
6 0.1441 (3) 0.1349 (1) 0.1369 (2) 0.2655 (4) 0.3073 (5)
7 0.2193 (2) 0.1843 (1) 0.2270 (3) 0.2769 (4) 0.3070 (5)
8 0.3055 (4) 0.2223 (1) 0.3122 (5) 0.2889 (2) 0.3058 (4)
9 0.3657 (4) 0.2742 (1) 0.3685 (5) 0.3039 (2) 0.3110 (3)
10 0.3514 (4) 0.2999 (1) 0.3547 (5) 0.3214 (3) 0.3199 (2)
11 0.4473 (4) 0.3488 (3) 0.4506 (5) 0.3416 (2) 0.3346 (1)

concave. The results in Table 5.10 seem contradictory with the results for the WFG4 problem

(Table 5.5), which is also multimodal. The expectation was that, since WFG9 is multimodal

and deceptive, the more elaborate algorithm (RM-MEDA) to be the superior performer [125].

Instead, for more than ∼ 6 objectives the performance of RM-MEDA is very close to that of

random search and worse in the last two instances, i.e. for 10 and 11 objectives. In contrast, for 3-

7 objectives MACE, MACE-gD and MOEA/D have relatively similar performance - with MACE-

gD in the lead. For 8–10 objectives this lead is significantly increased and this is attributed to

generalised decomposition, since the performance of the CE method for multimodal problems is

moderate, or so it would seem.

5.5.4 Sensitivity of MACE and MACE-gD to the ρ Parameter

Although a complete sensitivity analysis of algorithm performance with respect to all control

parameters in the MACE and MACE-gD algorithms is beyond the scope of this work, it is

important to investigate how convergence is affected by the ρ parameter. This parameter controls

the percentage of the individuals in the previous generation that are used in the updating process

of the µ and σ parameters of the instrumental densities in the CE method. Intuitively, since

every instrumental density is sampled only once for every subproblem, this parameter controls

the amount of information sharing between different subproblems. In that context it is similar

to the T parameter in MOEA/D. However the neighbourhood for the MACE algorithms does not

depend on the closeness of weighting vectors but depends only on the similarity of performance

of different subproblems. Hence, it is not fixed as it is in MOEA/D.

To test how the GD metric performance of MACE and MACE-gD is affected for various

values of ρ, 50 independent trials were performed for ρ = {0.1, 0.2, . . . , 0.9} on the WFG9
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Figure 5.3: Mean GD-metric performance of studied algorithms over WFG2–9 for 2–11 objec-
tives.

problem. All other parameters are identical to those employed in Section 5.5.3. The results can

be seen in Fig. (5.4) – Fig. (5.6). In Fig. (5.4) and Fig. (5.5) the mean performance of the two

algorithms over 2–11 objectives for different values of the ρ parameter is illustrated. The fact that

the mean performance of MACE-gD, see Fig. (5.5), is better compared to MACE, see Fig. (5.4),

is expected given the results in Table 5.10. MACE and MACE-gD exhibit similar variation in

terms of their GD metric performance for the selected range of ρ. Namely the absolute value of

the difference of the best performance less the worse one as seen in Fig. (5.4) and Fig. (5.5) is

2.79×10−3 and 2.96×10−3 for MACE and MACE-gD respectively. A comparison of these values

with the absolute performance of the above algorithms shown in Fig. (5.6), suggests that MACE

and MACE-gD are relatively robust to variations in the ρ parameter. Specifically, the mean

performance over all objectives of MACE and MACE-gD for the WFG9 problem is 0.2109 and

0.1685 respectively which means that for ρ ∈ {0.1, . . . , 0.9} the variation in performance with

respect to the GD metric of MACE and MACE-gD is 1.32% and 1.75% respectively. However

their behaviour is qualitatively different.

MACE performs relatively better for all values of ρ > 0.2 with no consistent degradation

or improvement past this threshold. Therefore any value for ρ that is greater than 0.2 should

produce acceptable results. In contrast to MACE, the performance of MACE-gD varies in a

much more coherent manner for different values of ρ, and, in general for ρ < 0.5 it performs

consistently better than for ρ > 0.5. The lack of coherency in the improvement (or degradation)

in GD performance for MACE could suggest that the algorithm is not affected as much as
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Figure 5.4: Mean GD-metric performance of MACE, over all objectives for the WFG9 test
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MACE-gD, by the ρ parameter. The question is: why is MACE less susceptible to variations in

ρ? The hypothesis is that, since the weighting vectors in MACE are selected in the same fashion

as in MOEA/D, subproblems are aggregated in a very small region of the PF, therefore sharing

information with neighbouring solutions is less disruptive, for instance, see Fig. (4.1). Conversely,

the weighting vectors in MACE-gD are distributed according to a uniformly distributed Pareto

front, so that, as we increase ρ, the less likely it is to obtain local information from faraway

solutions. Hence the convergence rate of the algorithm is somewhat inhibited for large ρ.

Additionally the GD-performance of MACE-gD appears to be a quasi-convex function of

ρ, see Fig. (5.5). Namely there are two competing trends in MACE-gD, first, the larger ρ is,

the more samples are used in the updating rules in (5.14) and (5.15), hence better estimates

are obtained. However, exceeding a certain value for ρ which in this instance appears to be

somewhere between (0.5, 0.6), the GD-metric performance starts to degrade and this is due to

the second trend, i.e. for large ρ samples obtained by disparate subproblems are used in the

updating process, hence convergence to the PF becomes slower. This is consistent with the

hypothesis that generalised decomposition successfully captures the density of the PF reference

set used to generate the optimal weighting vectors.

In Fig. (5.6) the mean GD performance is illustrated over all ρ values for increasing numbers

of objectives. Again this result is consistent with the experiments in Section 5.5.3. Additionally

it seems that the linear scaling of performance of the MACE-gD algorithm as seen in Fig. (5.3), is
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Figure 5.5: Mean GD-metric performance of MACE-gD, over all objectives for the WFG9 test
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persistent for a range of ρ values. This behaviour can be attributed to the fact that the Pareto

optimal solutions are well distributed in MACE-gD while in MACE and MOEA/D, Pareto

optimal solutions are clustered in a region that is getting smaller, relative to the dimension of

the problem and not in absolute terms, with increasing number of dimensions. This has the

effect that neighbouring solutions in MACE and especially in MOEA/D are virtually becoming

duplicates of one another which leads to a relatively degraded performance for an increasing

number of dimensions as shown in Fig. (5.3) and Fig. (5.6). This is further supported by the

results in Chapter 4 and particularly Fig. (4.3).

5.6 Preference Articulation

Apart from convergence in MOEA algorithms, which is a relatively well defined concept, there

can be no consensus on the meaning of a well distributed Pareto set. Apart from the theoretical

difficulties, a proper definition of well distributed PF cannot be given mainly because it is

contingent on the preferences of the decision maker (DM). Of what use would it be a Pareto

optimal set if the solutions that are of interest to the DM are sparsely sampled if at all.

Generalised decomposition can be employed very effectively to resolve this problem, given

that some information is available a priori about the general shape of the PF. To illustrate

this 3-objective instances of WFG2-9 were used, with an evenly distributed reference PF for

the generation of weighting vectors in MACE-gD, see Fig. (5.1) and Fig. (5.2). As it can be
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seen the solutions produced by MACE-gD are far better distributed compared to MOEA/D or

RM-MEDA. It should be noted that, apart from a different reference PF for the generation of

weighting vectors, all algorithm parameters are identical with the ones used in Section 5.5.3.

Furthermore, a 3-objective DTLZ2 instance was also employed, a test problem with a concave

PF, and a set of regions on an artificially generated PF selected manually, see Fig. (5.7). These

regions represent the desired parts of the PF, potentially because other parts are of no interest

to the DM. The set of points seen in the left figure in Fig. (5.7) is the set,

C = C1 ∪ C2 ∪ C3 ∪ C4,

and the sets C1, C2, C3, C4 are defined as follows,

C1 = {z : (z1 − c1)2 + (z2 − c2)2 + (z3 − c3)2 ≥ r2},

r2 = 0.65, c = (0.33, 0.33, 0.33),

C2 = {z : (z1 − c1)2 + (z2 − c2)2 + (z3 − c3)2 ≤ r2},

r2 = 0.15, c = (0.53, 0.23, 0.8),

C3 = {z : (z1 − c1)2 + (z2 − c2)2 + (z3 − c3)2 ≤ r2},

r2 = 0.1, c = (0.23, 0.53, 0.8),

and,
C4 = Ca ∩ Cb,

Ca = {z : (z1 − c1)2 + (z2 − c2)2 + (z3 − c3)2 ≥ r2a},

Cb = {z : (z1 − c1)2 + (z2 − c2)2 + (z3 − c3)2 ≤ r2b},

r2a = 0.2, r2b = 0.27, c = (0.63, 0.63, 0.38).

Subsequently, (4.11) is solved to obtain the weighting vectors corresponding to these regions

and using these weighting vectors MACE-gD was able to generate a PF that highly resembles

the initially chosen regions, see Fig. (5.7). This concept extends directly to MAPs as it utilises

generalised decomposition which is shown to perform very well for many-objectives (see Sec-

tion 4.3.3), however the results are much more difficult to visualise. It is worth mentioning that

such functionality can be conceptually incorporated using a different paradigm, for instance

MSOPS [95] in combination with the vector angle distance scaling (VADS) metric, locates the

objective front and therefore allows areas of the Pareto front that may be discontinuous to be

identified. This information allows the decision maker to steer the MSOPS algorithm search

away from discontinuities and if also desired, towards areas of designer preference. MSOPS-

II [96] also provides identification of the objective front and allows designer choice of where
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to perform the search, but additionally is able to generate the set of objective space search

vectors automatically and adaptively to cover the objective front, allowing the Pareto front to

be identified more efficiently when no a-priori knowledge of the objective surface structure is

available.

Lastly, although it is useful to know the geometry of the PF, it is sufficient if its general

shape is known. The boundary for which the weighting vectors radically change position is the

transition from concave geometry to convex geometry, see Fig. (4.1).

5.7 Summary

In this chapter, generalised decomposition, a new concept introduced in Chapter 4, was used

in combination with the cross entropy method, creating MACE-gD, an algorithm for many-

objective problems. Using gD it is illustrated how the weighting vectors can be selected optimally

to satisfy specific requirements in the distribution of the Pareto optimal solutions along the

Pareto front. Also this approach allows decomposition-based MOEAs to focus on only one

performance objective, that of convergence to the PF. This can be a significant advantage over

other MOEAs that have to tackle 3 performance objectives simultaneously, i.e. PF coverage,

even distribution of Pareto optimal solutions on the PF and convergence. Based on gD and the

CE-method, a many-objective optimisation framework was presented, whose performance with

respect to the GD-metric is competitive to that of MOEA/D and RM-MEDA, for the selected

problem set. Additionally, it is shown how decision maker preferences can be articulated with

the help of the presented framework.

Further, promising future directions of research have been identified. One of these research

directions is to further test the hypothesis presented in [126], that EDAs based on low order

statistics and clustering can be used as an alternative to complex probabilistic models. The

obtained results in Section 5.5.3 further support this hypothesis. Finally an adaptive scheme

to identify the PF shape for problems for which such information is not available would greatly

increase the application range of gD. This seems feasible since, for most problems, the shape of

the PF is well formed before the algorithm has fully converged.
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Chapter 6

Increasing the Pareto Front Density

6.1 Introduction

As mentioned in Section 2.6, in a posteriori preference articulation, the aim is to generate a

representative approximation of the Pareto front. This objective is common to Pareto-based

[14, 42, 45, 46], and decomposition-based algorithms [2, 154, 183]. However, if the decision

maker (DM) is not completely satisfied with the obtained Pareto front, he/she can recourse

to, either, a different algorithm, or, restart the preferred algorithm with different parameters

in the hope that the new PF will more closely satisfy the requirements. Progressive-preference

articulation algorithms [5, 14], offer an alternative approach - however the drawback is that the

DM must be in-the-loop for the algorithm execution [14] and this can be rather demanding.

Pareto estimation, the proposed method in this chapter, alleviates these difficulties for con-

tinuous MOPs by producing more and, usually, better distributed Pareto optimal solutions along

the entire Pareto front (PF). Additionally, an important feature that may be helpful to both the

analyst and the decision maker is that if there is a specific region of interest on the PF, the gen-

eration of solutions can be focused on that region. This can be helpful in situations where there

is a set of solutions about a part of the PF that the DM is interested in, but no solution is found

by the algorithm in that region. The proposed method achieves this result by estimating the

mapping of a convex set to the decision vectors corresponding to the Pareto optimal solutions

obtained on the final iteration of a multi-objective optimisation algorithm. This convex set is

used in lieu of the objective vectors for reasons that are clarified in Section 6.2 and Section 6.3.

This mapping, identified here using a radial basis function neural network (RBFNN), is then

used to generate estimates of decision vectors that would lead to Pareto optimal solutions in

the neighbourhood of the original solutions. It should be noted that a RBFNN is chosen mainly
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because it is computationally efficient to train and the produced results are reasonable for the

selected test problems. However this choice is not restrictive and does not characterise the pre-

sented methodology, as any modelling or metamodelling method can be used instead, should

the situation require it.

The idea that supports the Pareto estimation method, is that, for continuous MOPs, it

can be deduced from the Karush-Kuhn-Tucker optimality conditions that the PS is piecewise

continuous in the decision variables, as previously noted in [125]. This fact, combined with a

reasonable approximation of the PS, can be used constructively to infer the mapping of the

above-mentioned convex set to decision variables that produces Pareto-optimal solutions.

The main contributions of this chapter can be summarised as follows:

• A method, which is referred to as Pareto Estimation (PE), is presented. Given a Pareto

set approximation, PE can be used to increase the number of Pareto optimal solutions,

for 2 and 3-objective problems. This can be useful in a situation where the evolutionary

algorithm has not produced a solution close enough to the desired location on the PF.

Furthermore, the Pareto estimation method does not necessitate any alteration to the

optimization algorithm that is used to produce the Pareto set and is dependent on it only

as far as the quality of the PS is concerned.

• The effectiveness of PE is validated using a set of test problems, commonly used in the

MOEA community, for 2 and 3-objectives. It is shown that PE can produce more Pareto

optimal solutions across the entire PF with a much lower cost compared to the alternative

of restarting the optimization or using an alternative algorithm to solve the MOP. Also,

it is much more flexible compared with progressive preference articulation methods [14].

Although this is not the main purpose of the PE method, if it can produce more solutions

on the entire PF then it should be able to increase the number of solutions in specific

regions as well. Increasing the number of solutions in specific regions of the PF is the

main utility of PE.

• A real-world problem, namely a 3-objective portfolio optimization problem is addressed,

whereby, an increased number of Pareto optimal solutions is produced along the entire PF

as well as in specific regions,with the help of the Pareto estimation method.

The remainder of this chapter is organised as follows. Related concepts and motivating ideas

for the proposed method are discussed in Section 6.2. In Section 6.3 the Pareto estimation
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method is described for Pareto and decomposition-based algorithms. The method is tested

against a set of multi-objective optimization problems and these tests are reported in Section 6.4

and in Section 6.5 PE is applied to a 3-objective portfolio optimization problem. Lastly, in

Section 6.6 difficulties, potential solutions and ideas related to the PE method are discussed and

in Section 6.7 the chapter is summarised and concluded.

6.2 Related Work

Multi-objective evolutionary algorithms have had tremendous success in solving real-world prob-

lems. They have been applied in control systems [184, 185, 186], economics, finance [187, 188,

189, 190] and aerospace systems [191, 192]. This can be attributed to the fact that evolutionary

algorithms (EAs) perform well for a wide range of problems for which classical methods, such as

convex optimization [6], are inapplicable. However the robustness of EAs does not come for free.

For example, in contrast to convex optimization, there is no guarantee of global optimality for

solutions produced by evolutionary algorithms. In practice, however, there is strong evidence

that very good approximations of Pareto optimal solutions are generated.

6.2.1 Metamodelling Methods in Multi-Objective Optimisation

An additional challenge that MOEAs face is that the cost in objective function evaluations for

a single Pareto optimal solution to be found is relatively high. This, coupled with objective

functions that can take hours or days to evaluate, is a severe limitation which is widely acknowl-

edged in the MOEA community [193, 194, 195, 196]. A prevalent methodology employed by

researchers to tackle this issue is the use of metamodelling methods in optimisation. The insight

is that, if a surrogate model of the actual objective function can be created with relatively few

samples, then this surrogate model can be used instead of the objective function in the optimi-

sation process. The assumption is that the surrogate model is representative of the process and

since it is relatively easy to compute, it can be used repeatedly in the optimisation process at a

reduced cost compared to a more accurate model of the process.

Since the purpose of the surrogate model is to relieve the EA from evaluating an expensive

objective function as much as possible, the primary selection criteria for a surrogate model

are adapted accordingly. Namely, the suitability of a modelling method is judged according

to: (i) the ease with which the model parameters can be identified and, (ii) the cost of one

evaluation of the surrogate model which must be much smaller than that of the actual objective
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Figure 6.1: Metamodelling methods in EAs gradually refine a surrogate model and then use
it to find a better Pareto set approximation. Innovization methods use the final Pareto set
approximation to identify design rules, namely decision vector relations that map to Pareto
optimal solutions. Pareto Estimation, proposed in this Chapter, proceeds in the reverse direction
by mapping a surrogate set, P̃ , of a Pareto front approximation, P, to the decision vector set
that maps to P.

function. Therefore, for a metamodelling method that satisfies the above criteria, a large number

of objective function evaluations can be substituted with calls to the surrogate model, hence

reducing the total cost of the optimisation. Another criterion that is definitive in the success

of the aforementioned procedure is the model precision. Model precision is important because

if the surrogate model cannot capture important features of the objective function the search

will be grossly misled, although caution should be exercised not to overcomplicate the surrogate

model to a degree that its cost becomes comparable to the original objective function. In a way,

a surrogate model function can viewed as a low-pass filter, hopefully separating the noise from

the important features of the objective function, which are its minima (or maxima). This is why

such methods have been employed in noisy optimisation problems as well [197].

The general approach when substituting the real objective function with a surrogate model

for use in an EA, has the following structure:

Step 1 Sample the real objective function.

Step 2 Using the obtained samples create a surrogate model.

Step 3 Use the surrogate model in the optimisation.
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Step 4 If the convergence criteria are met, evaluate the solutions with the real objective function

to verify their optimality and then stop; if not, go to Step 1.

An illustration of this iterative procedure can be seen in Fig. (6.1), where an ever more accu-

rate mapping of the decision space, S, to the objective space Z, is created in every iteration,

{F̂0, F̂1, . . . }. This approach was initially limited to serial implementations [198, 199], however

later advances in metamodelling-based EAs employed local models [200], thus reinstating a key

strength of EAs, their potential to be executed in parallel.

Box and Wilson [201] first used surrogate models in lieu of the true model of a process

when they employed polynomial basis functions to create a model from data. This approach is

commonly referred to in the literature as the response surface method (RSM). Other examples

of modelling methods used in combination with an evolutionary algorithm are neural networks

[195, 202, 203] (multi-layer perceptrons as well as radial basis function networks), Kriging or

Gaussian processes generalised response surface methods [204], as well as Bayesian regression

[205].

6.2.2 Innovization Methods

Another issue that has not yet been satisfactorily addressed, especially for many-objective prob-

lems1, concerns the fact that the final Pareto set contains information that can be used to infer

relationships in decision space that result in Pareto optimal solutions. A method that attempts

to answer this question was presented by [206], which the authors call innovization. The authors

argue that by identifying a set of design rules the multi-objective problem will not have to be

solved again. Although this premise seems intriguing, to generate such design rules requires

great effort on the behalf of the analyst, and thus is limited to very low dimensional problems

in decision and objective space [207]. Another difficulty with this method is that the optimisa-

tion algorithm has to be specifically tailored to the process [206, 207, 208]. To deal with this

shortcoming, further work presented in [207] attempts to resolve this by partially automating

the procedure. The objective in such methods is to identify a mapping from decision space

to objective space that, will guarantee that the resulting solutions will be Pareto optimal, see

Fig. (6.1). This amounts to identifying a set of constraints/relationships in decision space that,

if adhered to, will produce the desired results. However in these methods there is not a clear way

to obtain Pareto optimal solutions in a specific region on the Pareto front, except by manually

1Problems with more than three objectives.
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constructing different relationships on different parts of the front, something that can easily

become unmanageable for even the smallest problems. This fact can be attested by the size of

the problems selected in [206, 207] which never exceed 2− 5 decision variables and 2 objectives.

6.2.3 Pareto Estimation Method - Motivation

Multi-objective optimisation algorithms, in the a posteriori preference articulation paradigm,

attempt to find a good approximation of the Pareto optimal set. The reason for finding this set

can be due to several reasons, two of which are, (i) the decision maker does not have a clear idea

of what solutions he or she prefers, and, (ii) even if preference information is available it is not

guaranteed that a feasible solution exists that can satisfy the decision maker. Furthermore, there

is no clear way in obtaining a specific solution on the Pareto front, even if the above-mentioned

information is available.

In this chapter, a question that seems to be ignored by the literature1 is brought forward and

resolved, to some extent. Namely given an approximation of the Pareto front by any MOEA,

is there a way to obtain solutions, in specific parts of the PF, that are not present in the given

set, and if the answer is positive, how can this be achieved?

However, to appreciate the importance of this question, let us embark on a thought experi-

ment. Assume that there exists a function,

G(z) =

{

x if and only if F (x) = z, and z ∈ P
0 otherwise.

(6.1)

The function, G, returns the corresponding Pareto optimal decision vector if a Pareto optimal

solution, z, is used and 0 otherwise. If the analyst had no information about the shape and

location of the Pareto front, the function, G, would be of limited use. The function, G, is a

special indicator function with domain of definition the Pareto optimal set, P, and range the

Pareto optimal decision vectors, D. Therefore given such a function and the information about

the exact location of the Pareto front, it would be simply a matter of evaluating (6.1) in order to

obtain the decision vector that would result in a Pareto optimal solution. Such a description of

the Pareto front geometry can be given by a parametric or non-parametric model if the problem

has already been successfully solved by some method. A potential issue with such an approach is

that a different description of the PF will be required for different problems. Although this seems

troubling, there is nothing to preclude the existence of a function with a convenient domain of

1To the authors’ best knowledge.
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definition, that would map to the Pareto front of any given problem. Naturally such a function

must depend, and adapt to, the Pareto optimal set or some approximation of it, and hopefully

a procedure can be found to map the former to the latter. Strictly speaking, such a function

would perform the following task:

Π(w) = z, z ∈ P. (6.2)

Additionally, it would be even more convenient if the mapping, Π, was predictable in the sense

that, for a given w, the location on the PF of the resulting z is not very hard to predict, as

this would ease the complexity of using the function (6.2). A natural candidate for such a task

would be an affine function, that is, a linear function plus an offset.

The final piece of this puzzle lies in the domain of definition of the function described in (6.2).

The requirements on such a domain would be: (i) that points within the domain of definition

of the function, Π, should be easy to obtain and, (ii) any convex combination of the points in

the set must still be in the set, that is to say, the set must be convex. By adhering to these

requirements, and if relations similar to (6.1) and (6.2) could be identified, then by the following

procedure, a Pareto optimal solution could be obtained at any desired location on the PF:

• Choose a w that would produce the desired z. This is verified by (6.2), if the resulting

z is not the intended one; it would be sufficient to change w a little. In this step the

predictability of the mapping, Π, is exploited.

• Use the obtained z in (6.1) to obtain the decision vector, x, that would produce the

objective vector z.

• Evaluate the actual objective function, F , using the obtained x to verify that F (x) = z.

Strictly speaking, should the mappings described in (6.1) and (6.2) be exact, this step is

redundant.

So, if such a procedure was available in practice, there would be a way to obtain the decision

vector that satisfies the requirements of the decision maker exactly, instead of repeatedly solving

a multi-objective optimisation problem, in the hope of obtaining a solution that closely satisfies

the aforementioned requirements.
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Figure 6.2: Illustration of the Π−1 mapping for a hypothetical Pareto set P.

6.3 Pareto Estimation Method

6.3.1 Overview

The question posed in Section 6.2.3, is interesting because depending on how well it can be

answered, the information that is in the analysts’ possession increases dramatically, thus allowing

the analyst to cater to more specific requests from the decision maker. This is so because given

absolute knowledge of the aforementioned functions, (6.1) and (6.2), a multi-objective problem is

virtually solved, as any solution on the Pareto front could be obtained with very little additional

expense and yielding high precision. Obtaining the entire Pareto optimal set may be infeasible in

practice, however, this is the predominant definition of what it means to solve a multi-objective

optimisation problem [5, pp. 61].

However, such a relationship is usually unknown for real-world problems and sometimes it is

unknown even for test problems. Most multi-objective optimisation algorithms strive to generate

a PS which possesses two key properties; first, it should produce objective vectors as close as

possible to the true PF and, second, these objective vectors should be evenly spread across the PF

hyper-surface. Under the assumption that the optimisation algorithm of choice has succeeded,

to a reasonable degree, in producing a PS that possesses the aforementioned properties, then the

mapping, FP , of Pareto optimal objective vectors, P, onto their corresponding decision variables

D,
FP : P → D , (6.3)
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can be identified using a modelling method [204]. A theoretical argument based on the Karush-

Kuhn-Tucker (KKT) optimality conditions, which further fosters the idea that the mapping in

(6.3) should be identifiable, was proposed in [125] and is further supported by [21, 209]. The

authors stated that for continuous multi-objective problems the Pareto optimal set is piecewise

continuous in decision space. This point is revisited in Section 6.6. In the present work, a radial

basis function neural network (RBFNN) is used for this purpose, since it is both robust and

accurate for a wide set of problems [210]. The structure and further details regarding the way

this type of neural network is employed is discussed in Section 6.3.2.

However, even if the mapping, FP , was explicitly known, it is still unclear how the desired

Pareto optimal objective vectors should be generated in order to obtain their corresponding

decision variables, using FP . This problem is related to the issue encountered in Section 6.2.3

with the function G. For example, assume that the exact mapping FP for a multi-objective

problem is given, with the only restriction being that the exact coordinates of Pareto optimal

points have to be provided. This information can only be provided if the exact shape of the PF

is known, meaning a mathematical description of the PF hyper-surface must be available for

all potential problems. If such information is available for the given problem, then all decision

variables corresponding to the PF could be obtained using FP . This point becomes clearer if

the mapping FP is seen as the inverse of the objective function F−1(·) = FP (·), which leads to,

FP (F(x)) = x. (6.4)

Even if the function, F(·), is not one-to-one, a mapping G : P → D can still be obtained but

can no longer be called the inverse image of F; however for practical purposes its function would

be the same. Therefore it is relatively safe to ignore for the moment the fact that the objective

function F(·) may be many-to-one; this issue is further discussed in Section 6.6.

Now, assume that the set P can be transformed to a set P̃ , with the only difference being

that the elements of the new set are very easy to obtain and manipulate and that any element

in P̃ is mapped exactly to one element in the Pareto optimal set P. Namely, it is required that

the mapping Π−1 : P → P̃ is one-to-one. In which case the inverse transform Π : P̃ → P is

obtained, and,

FP(Π(P̃)) = D, (6.5)

would enable the DM to generate any required solution. One way to produce such a mapping
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Figure 6.3: Illustration of the Π−1 mapping for a Pareto set P with 3 objectives. The points on
the outer grid are in P, while the transformed P̃ set is within the hashed regions.

is to initially normalise the objective vectors in P according to,

f̃i =
fi − z⋆i
zndi − z⋆i

, (6.6)

where z⋆ and znd are estimated from the set P. This normalisation scales the objectives in the

range [0, 1]. The Π−1 mapping is illustrated in Fig. (6.2). After the normalisation the resulting

objective vectors are projected onto EHI ; for problems with two objectives this is the same as

CHI . Subsequently the mapping F̃P ,

F̃P : P̃ → D (6.7)

is identified using a RBFNN, as shown in Fig. (6.1). This model in essence subsumes the

composition of the mapping FP and Π in (6.5).

Π−1 effectively takes a set of vectors in Rk, P, and creates its corresponding set in EHI ,

P̃ . For two dimensions, vectors in P̃ will be part of the convex set CHI and this set will be

identical to EHI , see Fig. (6.2). For more than two dimensions, both EHI and CHI are still

convex sets, but a more elaborate procedure will be required to obtain points on the EHI due

to its geometry, see Fig. (6.3).

For example, consider a concave Pareto front such as the one shown in Fig. (6.3). This front

is the first octant of a sphere centred at the origin with radius 1.2. If the Π−1 transform is

applied to this Pareto optimal set, the resulting P̃ set will be on the union of the striped areas

in Fig. (6.3), i.e. EHI . The part of P̃ in CHI is the set within the triangle with vertices e1, e2
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and e3. The remaining points in P̃ are part of1 EHI ∩ CHc
I , and, since the edges of the EHI

set are curved, it is no longer straightforward to generate points within this set that are evenly

distributed. Therefore the desired property of the function, Π, discussed in Section 6.2.3, that

is the ability to easily generate points within its domain, would be restricted. A partial solution

to this is simply to bound the domain of definitions of the Π mapping to the CHI artificially.

This would maintain the aforementioned desirable property but such a restriction would limit

the method in producing solutions that their projection is within the CHI . The solutions in

EHI ∩CHc
I correspond to extreme Pareto optimal points which are, potentially, of low interest

[100]. However, if this assumption is not true and the decision maker requires solutions within

these regions, the method described in Section 6.5.2 could be employed to obtain estimates from

the PE method. This can be achieved as the entire set, P̃, is used in the model creation process

(see Section 6.3.2).

Finally, to generate the estimated Pareto optimal solutions, a set of evenly spaced convex

combinations of the set C = {e1, . . . , ek} is created, this set is referred to as, E . Subsequently

this set can be used as an input to a model of F̃P . The resulting decision vectors may then be

used in the objective function to verify that they correspond to Pareto optimal objective vectors.

An alternative is to create E for a specific region of interest in the PF, for example using points

that are within the convC.

6.3.2 Radial Basis Function Neural Networks

Neural networks, or more precisely artificial neural networks2, are widely used in an array

of different disciplines [211, 212, 213]. They are well known for their universal approximator

property [214]. Furthermore, a subclass of NNs, namely radial basis function neural networks

(RBFNNs), have been shown to be robust and accurate predictors when compared to Kriging,

multivariate adaptive splines and polynomial regression methods [210]. RBFNNs have a single

hidden layer and an output layer. Their output layer is often comprised of linear functions since

this guarantees a unique solution to their weights w [215] without the need to resort to the

renowned back-propagation algorithm [216].

RBFNNs usually employ basis functions that are radially symmetric about their centres µ,

for the chosen norm, and decreasing as x drifts away from µ. A commonly used basis function

1CHc
I is the complement of the set CHI .

2Artificial neural networks are simply referred to as neural networks or NNs for convenience.
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is the Gaussian [215], given in its general form by,

φi(x) = exp

(‖x− µi‖2
2σ2i

)

, (6.8)

where the norm ‖ · ‖ is often the Euclidean (ℓ2-norm). Perhaps, at this point a difficulty

associated with RBFNNs is evident, namely that, although the output layer is comprised of

linear functions, the hidden layer is highly non-linear in the parameters µ and σ, which can

prove a challenge in the selection of their optimal values. Various techniques are suggested in

the literature addressing this problem [215]. As the number of Pareto optimal points produced

in evolutionary algorithms is usually relatively low (≪ 10 000), all the available Pareto optimal

points are used as centres for the radial basis functions, φi. Therefore the number of basis

functions is equal to the number of training vectors used. Additionally, a uniform value for

the parameter, σ, is used for all basis functions, and it is set to 5 · d̄µ, where d̄µ is the mean

distance of solutions in P̃ to their nearest neighbour. This value for σ was chosen experimentally.

Intuitively, this guarantees that the basis functions have a significant overlap, thus minimising

the number of regions in the interior of the set P̃ for which no basis function is active. Therefore

(6.8) becomes,

φi(x) = exp

(

‖x− P̃i‖22
2(5d̄µ)2

)

. (6.9)

Arguably, this is the simplest way to choose the parameters of the basis functions and was

used to retain focus on the proposed methodology. For a more elaborate and comprehensive

methodology on selection of the parameters of RBFNNs, the reader is referred to [217].

The output of a RBFNN is a linear combination of the basis functions φi(·),

ym(x) =

|P̃|
∑

i=0

wm,iφi(x), (6.10)

where φ0(·) = 1 is the output layer bias term and m ∈ {1, . . . , n}, where n is the number of

outputs, i.e. the number of decision variables.

To validate the created neural network (n−1)-cross validation was used as suggested in [193].

Namely, for a Pareto set of size N , N NNs where created using (N − 1) samples for the training

set and the remaining sample was used to estimate the generalisation error. This procedure is

repeated until all the solutions in the Pareto set have been used as a test sample and then the

mean square error is calculated. After estimating the NN expected generalisation error using

cross validation, the final NN is generated using the entire Pareto set.
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6.3.3 Pareto Dominance-Based Algorithms

The method described in Section 6.3.1 introduced the general procedure of the proposed tech-

nique, however certain details were abstracted. Optimisation algorithms based on Pareto domi-

nance for fitness assignment have several control parameters. One of these parameters is the size

of the population to be used in the optimisation process. This parameter effectively provides

an upper bound on the resulting number of Pareto optimal solutions in the final set P. One

requirement for the methodology to function correctly for the entire PF is that there be a suf-

ficient number of non-dominated solutions in the final population. An additional requirement,

that is evident from experiments, is that the non-dominated set produced by the algorithm is

well spread across the PF, i.e. the solutions are diverse and the mean distance from their neigh-

bours has small variance. This simply states that the performance of the proposed method is

dependent on the performance of the algorithm used to solve the MOP.

Once the execution of a multi-objective evolutionary algorithm (MOEA) has come to an

end, the non-dominated solutions of the resulting set, constitute the set P, with corresponding

decision variables D. Then each objective in P is normalised according to (6.6) in the range

[0, 1] and the ideal and nadir vectors are estimated from the set P as follows,

z⋆ = (min{f1}, . . . ,min{fk}) , (6.11)

znd = (max{f1}, . . . ,max{fk}) , (6.12)

where fi is the ith objective function and its corresponding values for different solutions are

found in the ith column of P. Note that since the produced Pareto set approximation has finite

size, the inf and sup operators are replaced by the min and max operators, which return the

minimum and maximum element of a set respectively. Next, the normalised set is projected

onto the hyperplane E defined by {e1, . . . , ek−1} where ei is a vector of zeros and a one in the

ith position. This is achieved by initially projecting onto the subspace1 parallel to E and then

shifting the result by 1
k
J|P|,k, where J|P|,k is the |P| × k unit matrix. To obtain the projection

matrix, k−1 linearly independent vectors in the E plane are required. These vectors are obtained

in the following way:

H =

(

e1 −
1

k
1 · · · ek−1 −

1

k
1

)

, (6.13)

1The parallel plane to E that goes through the 0 vector.
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where H is a k × (k − 1) matrix. Subsequently the projection matrix PE is obtained by,

PE = H(HTH)−1HT , (6.14)

where PE is a k × k matrix with rank k − 1. The transformed Pareto set P̃ is,

P̃ = PP T
E +

1

k
J|P|,k. (6.15)

Finally, the neural network used to identify the mapping F̃P , is created as described in Sec-

tion 6.3.2, using P̃ and D as the training inputs and outputs respectively.

Once the neural network is trained it can be used to create additional solutions for a new

set of convex combinations E . However, this set has to be generated by the DM according to

his/her preference in a particular region of the PF; alternatively, a more densely and evenly

spaced convex set spanning the entire PF could be created. The first option is likely to be

preferred when the cost of evaluating the objective function is considerable or there is a clear

preference towards a particular region of the PF.

The described procedure is summarised as follows:

Step 1 Obtain the non-dominated individuals from the final population of a Pareto-based

MOEA, P, and its corresponding decision variables D.

Step 2 Normalise P according to (6.6).

Step 3 Project the normalised P onto the k − 1 hyperplane going through {e1, . . . , ek−1} ac-
cording to (6.13), (6.14) and (6.15), to produce P̃. For 2 objectives this is the line through

(0, 1)T and (1, 0)T , and for 3 objectives, it is the plane through (1, 0, 0)T , (0, 1, 0)T and

(0, 0, 1)T .

Step 4 Identify the mapping F̃P using P̃ and D as inputs and outputs, respectively, to train a

RBFNN as described in Section 6.3.2.

Step 5 Create the set E ; in this case this is a set of evenly spaced convex vectors.

Step 6 Use the set E as inputs to the NN created in Step 5, to obtain estimates of decision

vectors DE .

Step 7 The set DE can be used with the objective function F(·) to verify that the produced

solutions are acceptable.
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6.3.4 Decomposition-Based Algorithms

The multi-objective optimisation problem (2.22) is restated in the following way with the aid of

the Chebyshev decomposition,

min
x

g∞(x,ws, z⋆) = ‖ws ◦ |F(x)− z⋆| ‖∞,

∀s = 1, . . . , N ,

s.t. x ∈ S,

(6.16)

where ws are N evenly distributed weighting vectors and N is the population size and g∞ is the

scalar objective function. The ◦ operator denotes the Hadamard product which is element-wise

multiplication of vectors or matrices. The intuition behind this is that since g∞ is a continuous

function of w [2], N evenly distributed weighting vectors should produce a well-distributed set

of Pareto optimal solutions.

Consequently, since decomposition-based algorithms already have a set of convex combina-

tions, namely the weighting vectors w, and the correspondence of weighting vectors to objective

vectors is clear, the set P̃ can be substituted with the weighting vectors w that produce Pareto

optimal solutions. This has the potential to greatly simplify the described procedure in Sec-

tion 6.3.3. However, although this simplifies the algorithm, the choice of input vectors, wE , by

the DM is more difficult because of its indirect nature compared to the general method described

in Section 6.3.3, and this problem becomes increasingly more difficult for increased number of

objectives.

Therefore, although the method described for Pareto-based algorithms can be applied di-

rectly to decomposition-based algorithms, it is interesting to explore what would be the effect,

if weighting vectors w are used instead of creating the set P̃ ,

F̃P : w → D. (6.17)

Thus, a simplification to the Pareto estimation method is available when the MOEA used is

based on decomposition, and is summarised as follows:

Step 1 Obtain the weighting vectors, w, corresponding to non-dominated solutions.

Step 2 Identify the mapping F̃P using w and D as inputs and outputs, respectively, to train a

RBFNN.

Step 3 Generate a new set of weighting vectors wE in the PF region of interest, or using one

of the methods discussed so far.
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Step 4 Use the set wE as inputs to the neural network created in Step 2, to obtain estimates

of decision vectors Dw.

Step 5 The set Dw can be used with the objective function F(·) to verify that the produced

solutions are acceptable.

6.4 Experiment Results

To test the merits of the proposed method, the Pareto-based algorithm was chosen to be NSGA-

II [46] and the decomposition-based algorithm was chosen to be MOEA/D [2]. The algorithms

were run 50 times, using a different seed for the random number generator on every run, for six

MOPs with two and three objectives. The population size used for both algorithms was set to

101 for the two objective problems and to 276 for the three objective problems, as these values

are commonly employed in benchmarks [2]. Additionally, the algorithms were allowed to run for

300 generations for the WFG problems and for 500 generations for the DTLZ problems. The

DTLZ test problems are, DTLZ1 and DTLZ2 for two and three objectives. For completeness a

definition of the DTLZ1–2 test problems is given:

• DTLZ1, see [166]

f1(x) = (1 + g(x))x1x2,

f2(x) = (1 + g(x))x1(1− x2),

f3(x) = (1 + g(x))(1 − x1),

g(x) = 100(n − 2)+

100

n
∑

i=3

(

(xi − 0.5)2 − cos(20π(xi − 0.5))
)

,

where n is the number of decision variables, here n = 10. The two dimensional problem is

F (x) = (f1(x), f2(x))
T .

• DTLZ2, see [166]

f1(x) = (1 + g(x)) cos
(x1π

2

)

cos
(x2π

2

)

,

f2(x) = (1 + g(x)) cos
(x1π

2

)

sin
(x2π

2

)

,

f3(x) = (1 + g(x)) sin
(x1π

2

)

,

g(x) =
n
∑

i=3

x2i ,
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with n = 10.

Additionally, the test problems WFG2-3 and WFG6-7 from the WFG toolkit [167] were used.

The settings used for these test problems can be seen in Table 6.1. The parameters k and l in

Table 6.1 are the position and distance related parameters respectively as defined in [167]. This

Table 6.1: Test problem settings summary.

2-Obective Problem Instances

# Generations N n k l

WFG 300 101 24 4 20
DTLZ1 500 101 10 - -
DTLZ2 500 101 10 -

3-Objective Problem Instances

# Generations N n k l

WFG 300 276 24 4 20
DTLZ1 500 276 10 - -
DTLZ2 500 276 10 - -

particular collection of test problems was chosen with several considerations in mind. First,

the problem set had to be broadly used and recognised by the MOEA community. Second, the

problems should be challenging and diverse. It is hoped that future research will provide further

validation of the proposed methodology through experiments on more test problems as well as

real-world problems. More specifically, DTLZ1 and DTLZ2 [166] have been used in numerous

studies [218],[219],[2], something that is also true for the WFG toolkit [218],[219]. Furthermore,

each of these problems pose a different challenge. For instance, WFG2 has a discontinuous

Pareto front and is non-separable. WFG3 is also non-separable and its Pareto front is linear

for two dimensions and degenerate for three or more. WFG6 has a concave Pareto front and is

non-separable and unimodal; and, lastly, WFG7 is separable with a concave Pareto front and

has parameter dependent bias [167]. The settings for the two algorithms were chosen in a similar

fashion.

The hypothesis is that, by using the Pareto estimation methodology the number of Pareto

optimal solutions available to the DM can be increased significantly and, despite the fact that

on many test instances the estimated Pareto set actually turns out to be superior to the initial

set this is not the intended purpose of the method and can be treated as a positive side effect.

For performance assessment purposes, the ratio of the following indices is used as the main

focus is the relative quality of the Pareto set, produced by MOEA/D and NSGA-II, before
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the application of the proposed method and after, and not the performance of the employed

algorithms in absolute terms:

• Inverted Generational Distance (IGD), introduced in [179],

D(A,P⋆) =

∑

s∈P⋆

min{‖A1 − s‖2, . . . , ‖AN − s‖2}

|P⋆| , (6.18)

where |P⋆| is the cardinality of the set P⋆ and A is an approximation of the PF. The IGD

metric measures the distance of the elements in the set A from the nearest point of the

actual PF. The ratio of this metric was used as,

DR(A,B) =
D(A,P⋆)

D(B,P⋆)
, (6.19)

where B is another PF approximation set. Here B is the estimated PF using the Pareto

estimation methodology.

• Mean Distance to Nearest Neighbour,

S(A) =

|A|
∑

i=1
di

|A| , (6.20)

where di is,

di = min
j
{‖f1(xi)− f1(xj)‖2 + · · ·+ ‖fk(xi)− fk(xj)‖2}.

This metric can serve as a measure of the density of solutions. Again, the ratio of this

metric is used as,

SR(A,B) =
S(A)

S(B)
. (6.21)

The coverage metric, described below, was used exactly as defined in [44],

• Coverage Metric (C-Metric)

C(A,B) =
|{u ∈ B|∃v ∈ A : v � u}|

|B| , (6.22)

C(A,B) = 0 is interpreted as: there is no solution in A that dominates any solution in

B. And C(A,B) = 1 is interpreted as the exact opposite, i.e. all the solutions in B are

dominated by at least one solution in A.
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Figure 6.4: Boxplots of the experiment results of the Pareto estimation method using Pareto
set approximations generated by MOEA/D and NSGA-II. The labels have the following format
Problem family:Problem number:Algorithm used, where W refers to the WFG problem set and
D to the DTLZ problem set. Also the postfix D means that the Pareto set used was produced
by MOEA/D, while N by NSGA-II. For example the label W6N refers to results obtained for
the WFG6 test problems using NSGA-II. The horizontal line in the top 4 plots marks the value
1.
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Figure 6.5: Top row: The number of valid solutions produced by the RBFNN in the Pareto
estimation method for 2 and 3-objective problems instances, normalised to the [0, 1] interval.
So a value of 1 means that all produced solutions are valid, and a value of 0 that no valid
solution was produced. Middle row: Number of Pareto optimal solutions generated by the
RBFNN in the PE method, here too the values are normalised to the [0, 1] interval. Bottom
row: The mean square error (MSE) of the RBFNN. Note that all outputs of the NN have been
normalised to the [0, 1] interval before calculating the MSE. The labels on the x-axis have the
same interpretation as in Fig. (6.4).
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6.4.1 Pareto Dominance Based Algorithms

For every run of NSGA-II, with settings as explained in Section 6.4, the proposed method was

applied using an evenly spaced convex set E of size ∼10 times greater than the initial population

used in the optimisation algorithm. The set E was used as input to the identified mapping F̃P

resulting in the estimated decision vectors DE . Subsequently DE was used with the objective

function generating the objective vectors PE .
Specifically, for the 2-objective test problems, the size of the set PE was set to 1 000 and for the

3-objective problems the size of the set PE was set to 3 003. The original Pareto optimal solutions

used in the estimation process can be seen in Fig. (6.6) and Fig. (6.8), and the corresponding

estimates PE are shown in Fig. (6.7) and Fig. (6.9). It should also be noted, as is perhaps

apparent from the figures, that the entire estimated population, PE , is presented and not a

non-dominated subset. The same procedure was performed for all 50 runs of NSGA-II for all

test problems for two and three objectives and the results are summarised in Tables 6.2-6.5

and their non-parametric counterparts are presented in Fig. (6.4). Furthermore, the number

of valid solutions produced by the RBFNN, the number of Pareto optimal solutions and the

RBFNN estimated generalisation error using cross validation (see Section 6.3.2), are presented

in Fig. (6.5).

Table 6.2 presents the ratio of the IGD index DR(P,PE ), and the mean distance to the

nearest neighbour SR(P,PE ) for problems with 2 objectives. The IGD index, in principle,

attains smaller values the closer the set under testing is to the known PF. Additionally, if

the set does not cover certain regions of the PF, this will cause the value of the IGD index

to increase, signifying a degraded performance. Therefore, for this problem set, the proposed

methodology is consistent in producing solutions that are at least of the same distance from the

actual PF. Values of DR(P,PE ) > 1 mean that the set PE produce better values for the IGD

index compared to the original set P, and for DR(P,PE ) < 1 the converse is true. Regarding

the mean nearest neighbour distance ratio SR(P,PE ), values of SR(P,PE ) > 1 mean that the

mean distance from a solution to its nearest neighbour is smaller in PE compared to P, and for

SR(P,PE ) < 1 the converse is true. In all cases the mean distance of neighbouring solutions

in PE is much smaller. This fact combined with the results for DR(P,PE ) strongly indicates

that the density of the available Pareto optimal solutions has significantly increased using the

proposed method.
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Figure 6.6: Pareto front solutions found by NSGA-II for the 2-objective problem set.
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Figure 6.7: Estimated solutions PE (|PE | = 1000) from the non-dominated solutions found by
NSGA-II for the 2-objective problem set. The dominated solutions, for the WFG2 problem, are
drawn in gray.

137



6.4 Experiment Results

Table 6.2: DR(P,PE ) and SR(P,PE ) values of the solutions found by NSGA-II, P, and the
estimated set PE , for the 2-objective problem set.

DR(P,PE ) SR(P,PE )
Problem min mean std min mean std

WFG2 0.9879 1.0370 0.0174 2.3355 2.7844 0.2177
WFG3 1.0488 1.0589 0.0046 7.3917 7.8959 0.2286
WFG6 0.2834 0.7504 0.2730 5.0093 7.0383 0.6354
WFG7 0.7962 2.2765 0.5875 6.6541 7.6369 0.3695
DTLZ1 1.0772 4.0822 8.6262 7.3109 7.9676 0.2790
DTLZ2 11.3970 12.3377 0.3990 7.2193 8.0198 0.3061

Table 6.3: C-Metric values of the solutions found by NSGA-II, P, and the estimated set PE , for
the 2-objective instances of the selected problem set.

C(P,PE ) C(PE ,P)
Problem min mean std min mean std

WFG2 0.6244 0.6789 0.0153 0.1959 0.3154 0.0756
WFG3 0.0080 0.0253 0.0096 0.4796 0.6306 0.0761
WFG6 0.0170 0.6046 0.3884 0.0000 0.1778 0.2115
WFG7 0.0305 0.0726 0.0185 0.3000 0.4150 0.0551
DTLZ1 0.0020 0.0192 0.0139 0.0316 0.3222 0.1814
DTLZ2 0.0080 0.0122 0.0020 0.5102 0.6108 0.0494
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Figure 6.8: Pareto front solutions found by NSGA-II for the 3-objective problem set.
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Figure 6.9: Estimated solutions PE (|PE | = 3003) from the non-dominated solutions found
by NSGA-II for the 3-objective problem set. The non-dominated solutions in the WFG2 test
problem are the represented by the darker points on the plot.

Table 6.4: DR(P,PE ) and SR(P,PE ) values of the solutions found by NSGA-II, P, and the
estimated set PE , for the 3-objective problem set.

DR(P,PE ) SR(P,PE )
Problem min mean std min mean std

WFG2 1.4909 2.8047 0.4878 2.6249 3.1172 0.2306
WFG3 0.5846 0.8013 0.1292 0.5519 0.7331 0.1036
WFG6 0.4242 0.8790 0.1679 3.7070 4.2835 0.7461
WFG7 1.0079 1.1950 0.0720 3.3899 3.7008 0.1752
DTLZ1 1.8795 6.6262 1.2512 2.9125 3.0811 0.1057
DTLZ2 1.1649 1.2655 0.0587 3.5877 3.8767 0.1289

Table 6.5: C-Metric values of the solutions found by NSGA-II, P, and the estimated set PE , for
the 3-objective instances of the selected problem set.

C(P,PE ) C(PE ,P)
Problem min mean std min mean std

WFG2 0.5253 0.5753 0.0197 0.5738 0.6342 0.0348
WFG3 0.2026 0.3773 0.1153 0.1141 0.1739 0.0262
WFG6 0.0043 0.2137 0.1768 0.0000 0.2417 0.1887
WFG7 0.0002 0.0035 0.0019 0.4733 0.5360 0.0280
DTLZ1 0.0000 0.0003 0.0004 0.0000 0.0463 0.0468
DTLZ2 0.0011 0.0027 0.0012 0.4482 0.4952 0.0264
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In Table 6.3 the results for the C-metric are given for C(P,PE ) and C(PE ,P) for the 2-

objective test problems. This metric was employed to further verify the consistency of the

method. And as can be seen for all problems, except WFG2 and WFG6, the results are

favourable. However it is interesting to explore the potential reasons for the less impressive

performance in these two problems. Regarding WFG2, since the entire set PE was used, the

identified PF is, as can be seen in Fig. (6.7), an oscillating function which includes dominated

solutions; this is exactly the PF directly obtained from the WFG2 problem. Therefore, in a way,

the method did actually perform rather well in identifying the front. A remedy to avoid such a

behaviour would be that the requested solutions E are reasonably close to the transformed set P̃
of the original Pareto optimal solutions P; more elaborate methods are left for future research.

And regarding the test problem WFG6, combined with the same moderate results in Table 6.2,

it seems that Pareto estimation has consistent difficulties with this particular problem instance.

A potential cause for these difficulties is perhaps the simplicity of the modelling technique.

Table 6.4 presentsDR(P,PE ) and SR(P,PE ) indices for the 3-objective case. AgainDR(P,PE )
has acceptable values, meaning that there is no significant sign of degradation of the IGD index.

SR(P,PE ) shows that the mean neighbour distance is consistently lower for PE . One noticeable

feature for the values of SR(P,PE ) is that they are almost half of their counterparts for the

2-objective case, as seen in Table 6.2. This can partly be attributed to the curse of dimen-

sionality, in the sense that to obtain similar results to Table 6.2, approximately O(n2) order of
solutions more than in the 2-objective case would have to be produced. This is not the case for

the 3-objective instances of WFG2 and WFG3, which is mainly due to their PF geometry.

In Table 6.5 the results for the C-metric are given for C(P,PE ) and C(PE ,P) for the 3-

objective problems. Again the results are consistent, with the observed performance for the

WFG2 problem that is rather moderate for the same reasons as for the 2-objective case. The

surprising fact is that for the 3-objective WFG6 problem Pareto estimation performs extremely

well.

6.4.2 Decomposition-Based Algorithms

The same experimental procedure as in Section 6.4.1 is applied for the decomposition-based

version of the MOEA. As previously mentioned, for this test case MOEA/D [2] was used with

the same population size as NSGA-II. Instead of a set E , an evenly distributed set of weighting

vectors wE was used, as described in Section 6.3.4. In all other respects the experimental setup
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is identical. The original Pareto optimal solutions used in the estimation process can be seen in

Fig. (6.10) and Fig. (6.12), and the corresponding estimates PE in Fig. (6.11) and Fig. (6.13).

As before, the entire estimated population PE is presented and used for the calculation of the

statistical results. Also the results are summarised in Fig. (6.4) and Fig. (6.5).

Table 6.6 presents the ratio of the IGD indexDR(P,PE ), and the mean distance to the nearest

neighbour SR(P,PE ) for problems with 2 objectives. A distinctive pattern, when compared with

the corresponding values in Table 6.2, is that when the DR(P,PE ) index is very close to 1 the

mean value for SR(P,PE ) is very close to 10, which is almost equal to the scaling factor that

was used to increase the size of the set PE relative to the initial set P. One possible reason

for this behaviour, which no doubt is desirable, is that the solutions produced by MOEA/D

are very well distributed across the PF. If the 2-dimensional PF is seen as a function, the fact

that solutions are well distributed can be seen as sampling the function at regular intervals,

hence their mean distance has low variance. This enables the employed modelling technique

to better estimate the mapping, since a uniform σ value was chosen for all the basis functions,

see Section 6.3.2. Another interesting fact is that, although the minimum value of DR(P,PE )
for the problem WFG2, is less than 1, the mean value is 1.0341 and the standard deviation is

relatively small. This indicates that, in general, the method is producing good results with low

deviations, for this problem instance.

In Table 6.7 the results for the C-metric are given for C(P,PE ) and C(PE ,P) for the 2-

objective test problems. The results are very consistent, for all problems except WFG2 which

is to be expected due to the shape of its PF. C(P,PE ) is very close to 0, signifying that a very

small number of the solutions in PE are dominated by solutions in the original Pareto set P.
Table 6.8 presents DR(P,PE ) and SR(P,PE ) indices for the 3-objective case. In line with

the results in Table 6.6 the DR(P,PE ) index is satisfactory. However, for problems WFG3 and

WFG6 it seems to be somewhat low. This is to a certain extent also reflected in the SR(P,PE )
index. This behaviour, regarding problem WFG3, can be attributed to the fact that the real

PF was not successfully identified by the algorithm, which for WFG3 is a line in 3-dimensions.

This conclusion is further supported by the fact that the corresponding values for C(P,PE ) in
Table 6.9 are very close to 0 attesting to the fact that the produced estimated Pareto set PE ,
does in fact model the given set rather well. Therefore this behaviour could be remedied by

choosing the non-dominated solutions in the set PE . However in this instance this option was

avoided since this would mask such deficiencies, thus disallowing further insight for possible
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Figure 6.10: Pareto front solutions found by MOEA/D for the 2-objective problem set.

Table 6.6: DR(P,PE ) and SR(P,PE ) values of the solutions found by MOEA/D, P, and the
estimated set PE , for the 2-objective problem set.

DR(P,PE ) SR(P,PE )
Problem min mean std min mean std

WFG2 0.7984 1.0341 0.0742 3.4859 6.1070 1.6286
WFG3 1.0037 1.0401 0.0216 9.1222 9.9152 0.1197
WFG6 0.7774 1.0288 0.0514 8.2379 9.5327 0.5143
WFG7 0.1164 2.3724 2.5573 7.8871 8.7620 0.3967
DTLZ1 1.0000 1.0000 0.0000 9.9820 9.9932 0.0049
DTLZ2 8.6618 9.8542 0.6573 9.8320 9.8454 0.0062

improvements of the proposed methodology.

In Table 6.9 the results for the C-metric are given for C(P,PE ) and C(PE ,P) for the 3-

objective problems.

6.5 Pareto Estimation Applied to Portfolio Optimisation

The seminal work of Markowitz [220] changed drastically the way that managers and investors

decide on what portfolio of securities is appropriate for a given tolerance of risk. The main idea

is that given a portfolio composition, there are two main objectives to be considered. First, the

expected return is to be maximised and second, the variance of the expected return is to be

minimised. Variance of a portfolio allocation is essentially a metric of risk. What was shown

by Markowitz is that these two objectives are competing, namely if an investor wants extremely
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Figure 6.11: Estimated solutions PE (|PE | = 1000) from the non-dominated solutions found by
MOEA/D for the 2-objective problem set. The parts of the PF, for the WFG2 problem, drawn
in gray represent dominated solutions.

Table 6.7: C-Metric values of the solutions found by MOEA/D, P, and the estimated set PE,
for the 2-objective instances of the selected problem set.

C(P,PE ) C(PE ,P)
Problem min mean std min mean std

WFG2 0.4675 0.6101 0.0787 0.0000 0.1174 0.1405
WFG3 0.0000 0.0003 0.0009 0.5941 0.7430 0.0591
WFG6 0.0000 0.0323 0.1474 0.0000 0.1289 0.0745
WFG7 0.0000 0.0001 0.0003 0.0000 0.0362 0.0209
DTLZ1 0.0000 0.0441 0.1414 0.0000 0.2875 0.3366
DTLZ2 0.0000 0.0000 0.0000 0.0099 0.0196 0.0014
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Figure 6.12: Pareto front solutions found by MOEA/D for the 3-objective problem set.
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Figure 6.13: Estimated solutions PE (|PE | = 3003) from the non-dominated solutions found
by MOEA/D for the 3-objective problem set. The non-dominated solutions in the WFG2 test
problem are the represented by the darker points on the plot.

Table 6.8: DR(P,PE ) and SR(P,PE ) values of the solutions found by MOEA/D, P, and the
estimated set PE , for the 3-objective problem set.

DR(P,PE ) SR(P,PE )
Problem min mean std min mean std

WFG2 6.5869 8.8543 0.8840 2.0372 2.3451 0.1331
WFG3 0.3963 0.4957 0.0709 1.6416 1.8425 0.1406
WFG6 0.2327 1.4326 0.8999 0.3148 4.3185 1.2262
WFG7 2.6739 3.5314 0.4975 4.7421 4.9538 0.0914
DTLZ1 1.0003 1.0983 0.6850 4.8150 5.4396 0.5015
DTLZ2 3.4609 5.3924 0.5535 3.9083 4.3850 0.2362

Table 6.9: C-Metric values of the solutions found by MOEA/D, P, and the estimated set PE,
for the 3-objective instances of the selected problem set.

C(P,PE ) C(PE ,P)
Problem min mean std min mean std

WFG2 0.4675 0.6101 0.0787 0.0000 0.1174 0.1405
WFG3 0.0000 0.0003 0.0009 0.5941 0.7430 0.0591
WFG6 0.0000 0.0323 0.1474 0.0000 0.1289 0.0745
WFG7 0.0000 0.0001 0.0003 0.0000 0.0362 0.0209
DTLZ1 0.0000 0.0441 0.1414 0.0000 0.2875 0.3366
DTLZ2 0.0000 0.0000 0.0000 0.0099 0.0196 0.0014
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6.5 Pareto Estimation Applied to Portfolio Optimisation

high expected returns, then he or she must concede a high level of risk which could mean

that the chance for the entire portfolio to be diminished is increased. Although not without

its critics, Markowitz portfolio theory has taken the financial markets by storm and is today

employed virtually by every investor. However, a criticism of this approach in selecting an

optimal allocation of a portfolio of stocks is that the measure of risk, namely the variance of the

portfolio, is not entirely realistic due to the assumption that the expected returns are normally

distributed. This assumption is usually not entirely true, and as can be seen by the recent

market crash, can often prove to be devastatingly flawed.

6.5.1 Portfolio Optimisation - Problem Definition

Even in the initial formulation of the portfolio optimisation problem by Markowitz [220], where

the problem is actually convex, and hence it can be solved efficiently, to obtain one solution may

require approximately 20 − 301 objective function evaluations. Therefore, to obtain 200 Pareto

optimal solutions, 4 000 − 6 000 function evaluations will be necessary, on average. The Pareto

estimation method, can be used to significantly decrease this number, if the decision maker

has preference at a specific region of the Pareto front. However, as mentioned in Section 6.5,

this simple formulation is insufficient to capture the risk adequately, so an extended portfolio

optimisation is used.

The classical portfolio optimisation problem extended with an additional measure of risk as

a third objective, namely the value-at-risk (VaR), can be defined as,

min
x

F(x) = (R(x), V (x),M(x)) ,

subject to

n
∑

i=1

xi = 1, and xi ≥ 0, i = 1, . . . , n,
(6.23)

where the decision vector x represents the allocation of capital on n securities. The constraint

imposed on the decision vector in (6.23) means that no gearing2is allowed as the maximum allo-

cation must be equal to the available capital and the non-negativity constraint in the allocation

(decision vector components) means that short positions are not allowed. A short position is

one in which the investor borrows a security and sells it, in the hope that he can later buy it at

a lower price, repay the loan by returning the security to the lender and makes a profit from the

difference. Furthermore, the scalar objective functions in (6.23) are the negative of the expected

return, R(x), the portfolio variance, V (x), and the value at risk calculated from historical data,

1This is an approximate number obtained by the authors.
2Gearing or leveraging is when securities are purchased on credit.
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M(x). The problem defined in (6.23) closely follows the formulation used in [189]. However,

contrary to the work in [189], a non-parametric method to calculate the portfolio VaR is em-

ployed, instead of using the simplified VaR. Specifically these objectives are defined as follows,

R(x) = − 1

N − 1

N−1
∑

i=1

ln

(

xT ri+1

xT ri

)

,

ri = (ris1 , . . . , r
i
sn),

(6.24)

where risn is the return of the security sn at time i. The expression in (6.24) represents the neg-

ative of the expected compounded return. The second objective, namely the portfolio variance,

is defined as:

V (x) = xTΣx, (6.25)

where, Σ, is the covariance matrix of the underlying securities. The covariance matrix is calcu-

lated using historic data, as is the case for the value-at-risk, see Section 6.5.3. Lastly, the third

objective is the value-at-risk calculated by a non-parametric method via historic simulation, see

for example [221, 222],

M(x) = V aRt+1
α ,

V aRt+1
α = −inf

y

{

y ∈ R : P

(

ln

(

xT rt+1

xT rt

)

≤ y
)

≥ α
}

,

if V aRt+1
α < 0, then M(x) = 0,

α ∈ (0, 1),

(6.26)

where α is the probability of a return smaller than y. In essence, VaR quantifies the potential

loss in a portfolio with probability, α. Also if M(x) becomes negative, this translates to positive

returns (y > 0) in the worst case scenario, which means there is no risk in the investment, as far

as VaR is concerned, so M(x) is assigned to 0. A negative value could be assigned, however this

has the potential to reduce the portfolio diversification which is generally undesirable [222]. For

example, if a security has never had extreme variations in its price, then it would appear that

it is safe, so if M(x) is allowed to be negative (i.e. guaranteed positive returns), then a clear

strategy would be to allocate a large proportion of the capital to this security. However, this will

reduce the portfolio diversification and increase its sensitivity to the aforementioned security.

So, should this security exhibit a large negative swing, the entire portfolio would follow. An

even more conservative approach would be to assign a lower bound on VaR for securities whose

historic price has never exhibited extreme variations. Since VaR can fail to account for risk due
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6.5 Pareto Estimation Applied to Portfolio Optimisation

to lack of portfolio diversification [222] and the variance of the portfolio is insensitive to extreme

events, the two objectives V (x) and M(x) complement each other well.

6.5.2 Decision Making Procedure

Given a Pareto set approximation, P, and using the Pareto estimation method, the decision

maker has the opportunity to request a solution that is not present in the original Pareto set

approximation. To illustrate this, consider the following scenario. Let us assume that the

decision maker is interested in a solution, z̃ 6∈ P, that is within the convex hull of the following

solutions, z1, z2, z3 ∈ P. Without the PE method, a solution to this would be to re-start the

optimisation process, use another optimisation algorithm or involve the decision maker in the

optimisation procedure using some preference articulation method, for instance [14]. All these

alternatives have a high cost in function evaluations and are not guaranteed to produce the

desired results. However, while the PE method cannot guarantee positive results either, it does

enable the analyst to try and satisfy the DM’s request at a much lower cost. A way to leverage

the Pareto estimation method could be the following:

• Request, the decision maker to specify the regions of interest by selecting points from the

obtained Pareto set.

• For each region select 3 points z1, z2, z3 ∈ P that fully enclose the preferred region on the

Pareto front. For 2-objective problems, 2 points would suffice.

• Project the points on to CHI . Let these points be w1,w2,w3.

• Generate points within the conv {w1,w2,w3}, namely the convex hull of the set of points

{w1,w2,w3}. A way to achieve this is to create a set of evenly spaced weighting vectors,

as described in [2]. Let W be an N × k matrix of N evenly spaced weighting vectors and

k = 3 in this example, then:

W̃ =W ·





z1
z2
z3



 , (6.27)

where the resulting matrix, W̃ , will be comprised of points within the conv {w1,w2,w3}
by definition [223].

• Use the general version of the Pareto estimation method (see Section 6.3.3) to identify the

mapping F̃P .
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Portfolio Optimisation - Pareto Estimation Results
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Figure 6.14: VEPF: Number of valid solutions generated by the PE method when considering
the entire Pareto front. VRA: Number of valid solutions generated by the PE method for
region A. VRB: Number of valid solutions generated by the PE method for region B. PEPF:
Number of Pareto optimal solutions generated by the PE method when considering the entire
Pareto front. PRA: Number of Pareto optimal solutions generated by the PE method for region
A. PRB: Number of Pareto optimal solutions generated by the PE method for region B. ERR:
Neural network generalisation error calculated using cross validation.

• Use the points in W̃ as input to the identified mapping, F̃P , to obtain a set of decision

vectors, DE , that will generate Pareto optimal points in the convex hull of the region

enclosed by z1, z2, z3.

• Finally, using the objective function verify that the set, DE , does indeed produce Pareto

optimal solutions.

Following this procedure any region of interest on the Pareto front can be further explored

without incurring the high cost of restarting the optimisation algorithm.

6.5.3 Portfolio Optimisation Experiments

To evaluate the Pareto estimation method on the portfolio optimisation problem defined in

(6.5.1), NSGA-II was used with N = 300 for 350 generations, totaling 105 000 function evalua-

tions. This procedure was performed for 50 independent runs. Furthermore, the dimension of

the decision vector was set to n = 20, and was comprised of 20 randomly selected securities.

The historic data used for the calculation of the objective function are daily opening prices for

the past 3 000 trading days and were obtained from Yahoo! Finance [224]. Subsequently the PE

method was used to obtain more Pareto optimal solutions for the entire Pareto front using the

method described in Section 6.3.3 and two pre-specified regions using the procedure described
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Portfolio Optimisation - Relative Density
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Figure 6.15: Mean distance to nearest neighbour ratio of: (i) SR(P,PE ) entire Pareto front
approximation produced by NSGA-II, P, divided by the set obtained by the PE method, PE ,
for the entire PF, (ii) SR(PA,PE,A) the Pareto optimal solutions in the neighbourhood of region
A, PA, divided by the set of solutions obtained by the PE method in region A, PP,A, (iii)
SR(PB ,PE,B) the Pareto optimal solutions in the neighbourhood of region B, PB , divided by
the set of solutions obtained by the PE method in region B, PP,B.

in Section 6.5.2. The number of requested solutions for the entire Pareto front were 3 003 and

for regions A and B 300 additional points were generated within the aforementioned regions.

These results are shown in Fig. (6.16).

In Fig. (6.14) the statistics of the output of the PE method are shown. Notice that for all

regions, namely the entire Pareto front and the regions A and B, all generated solutions are

valid. Furthermore, the ratio of Pareto optimal solutions to dominated solutions for the case

of the entire Pareto front seems to be lower when compared to regions A and B. However

its median is approximately 0.41, which translates to 4 Pareto optimal solutions for every 10

generated solutions. This seems to be a fairly good ratio, since for only 3 003 function evaluations

an additional 1231 Pareto optimal solutions are generated. Also, notice that for regions A and

B (see Fig. (6.16)) this ratio is significantly higher. This is potentially due to the size of the

requested region and the quality of the model in these parts of the PF. However the important

benefit of the PE method is seen from the accuracy in location of the generated solutions in the

above-mentioned regions. So, for a cost of 300 extra objective function evaluations the decision

maker has obtained more than 160 additional Pareto optimal solutions in regions A and B,

which greatly increase the chance that a specific solution would satisfy his or her preferences

assuming that the regions were selected according to Section 6.5.2. Furthermore, the mean

nearest neighbour distance in the entire Pareto front as well as for the regions A and B is shown
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in Fig. (6.15), and, although the increase in density of Pareto optimal solutions for the entire

Pareto front is modest (1.8 to 2.7 times larger density), the increase in density in regions A and

B is phenomenal. In real terms, and given the fact that the solutions are very well distributed

within the above regions (see Fig. (6.16)), this increase in the density of Pareto optimal solutions

means that for any desired solutions within these regions the DM will be able to find one that

is 4 to 6 and 9 to 15 times1 closer to the exact location of the preferred Pareto optimal solution

within region A and B respectively.

6.6 Discussion

This study has shown that the question posed in Section 6.2.3 is far from impossible to answer.

In fact it can be answered with relative precision, as is strongly indicated by the results for

the selected test problems, shown in Fig. (6.4), Fig. (6.5) and even more so for the portfolio

optimisation problem, whose results are shown in Fig. (6.14) and Fig. (6.15). However, the

Pareto estimation method is not without its problems. For instance, since the quality of the

produced solutions depends on the employed modelling method, which in turn depends on the

quality of the produced Pareto set approximation, it is to be expected that when both these

factors are satisfied to a higher degree, better results are to follow. This is related to the

observation in [21], about the connectedness of the Pareto optimal set in decision space for

continuous multi-objective problems. Namely, if the Pareto set approximation is not close to

the true Pareto set, this argument need not necessarily hold. For instance, such a Pareto set

approximation need not necessarily be piecewise continuous, in decision space, as the Karush-

Kuhn-Tucker condition would not obtain for the aforementioned PS.

As mentioned in Section 6.2.1, there are many alternative methods for identifying the map-

pings used in the Pareto estimation method, however since the cost of more elaborate methods

renders them prohibitive for repetitive testing it is difficult to quantify the benefits of using

more sophisticated identification methods and even more difficult to discern whether the results

are due to the affinity of the modelling method to the particular problem set. However, when

applying the Pareto estimation method to a specific real-world problem, the analyst has several

options on how to proceed to identify the required mappings used in PE. An excellent work

that addresses modelling issues and proposes a comprehensive approach based on neural net-

works is [217], wherein the entire procedure is systematised for producing high-quality models.

1These numbers refer to the 25th to 75th percentile in Fig. (6.15).
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Figure 6.16: Top left: Portfolio optimisation Pareto front and the two regions of interest. Top
right: The Pareto estimation method applied to identify more solutions in region A and B, the
correspondence of points on the CHI to the generated Pareto optimal solutions is marked by
the shaded regions. Bottom left: A closer view of the generated Pareto optimal solutions for
region A. Bottom right: A closer view of the generated Pareto optimal solutions for region
B. Note that for illustration purposes, in the bottom and top right figures the Pareto front has
been shifted by 0.1 in all dimensions.
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6.7 Summary

Although it should be noted that, based on the results in this chapter, the radial basis function

neural network proposed in Section 6.3.2, has a more than acceptable performance given the

small amount of data that is usually available in a Pareto set approximation, therefore it is an

excellent starting point.

Another aspect that has become evident, especially when comparing the results produced

using the Pareto sets produced by NSGA-II and MOEA/D is that the distribution of the Pareto

optimal solutions on the Pareto front, disregarding their convergence, seems to be an important

factor determining the quality of the model. So, it would appear that if some active learning

method such as that in [225] could be used, the results could potentially be improved. However,

the problem of direct control of the distribution of Pareto optimal points in the PS is a very

difficult one.

Lastly, the modelling employed in the Pareto estimation method operates under the assump-

tion that the mapping from objective to decision space is a bijection, which seems to be limiting

if in fact the objective function, F, is many-to-one. However, careful consideration of this issue

shows that this is not limiting to the Pareto estimation method. On the contrary, it can be

rather helpful. This is based on the fact that a many-to-one objective function is viewed from

the objective space to the decision space, for every objective vector there are one or more decision

vectors to be found. This means that the probability of finding one decision vector for a specific

objective vector is increased, which is to the benefit of the modelling method as there are many

alternatives. Also, given the way multi-objective evolutionary algorithms operate, that is, they

distribute Pareto optimal solutions across the entire Pareto front, this one-to-many relationship

would be impossible to discern, as MOEAs do not preserve solutions that result in identical

objective vectors. So it would be highly unlikely for a Pareto set approximation to have such

alternatives as this in clash with MOEA objectives.

6.7 Summary

Multi-objective optimisation problem solvers seek to generate a satisfactory set of Pareto-optimal

solutions to enable a decision-maker to select suitable solution. Here, a novel methodology

that increases the density of available Pareto optimal solutions has been described. Using this

method, the number of available solutions along the trade-off surface is increased, thereby greatly

enhancing the ability of the DM to identify a suitable solution with accuracy.

This is accomplished by identifying the mapping of a transformed set, derived from an
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6.7 Summary

approximation of the Pareto optimal set, to the corresponding decision vectors. This mapping

was identified with the aid of a radial basis function neural network which was subsequently

used to infer a number of Pareto optimal solutions PE . The proposed method was presented in

two forms. The first is a general formulation that is widely applicable to any multi-objective

optimisation algorithm. This formulation was applied to a Pareto-based algorithm, NSGA-II,

with a ten-fold increase in Pareto optimal solutions. The second form of the proposed method

applies to decomposition-based algorithms. This form is motivated by the fact that by using

the weighting vectors w in place of P̃ the operations required to generate the latter are avoided.

Both versions of the proposed method were experimentally tested against a set of well-known

test problems and the results strongly indicate that the suggested methodology shows great

promise.

Furthermore, the results in Section 6.4.1 and Section 6.4.2, suggest that the choice of weight-

ing vectors in MOEA/D is not optimal, i.e. an even distribution of Pareto optimal points is

not produced by the algorithm. An even distribution of Pareto optimal points is one which

minimises the s-energy. The s-energy has has been shown to solve the best packing problem

for a sphere, see [165, 226] for further details. This effect is transferred to the results of the

proposed method that used an approximation of the PF produced by MOEA/D, see Fig. (6.12)

and Fig. (6.13). In contrast with MOEA/D, the Pareto-based method produced much more

uniform results, see Fig. (6.9). However, there are obvious edge effects, which are explained by

the fact that solutions are generated only within the CHI , see Section 6.3.1 and Fig. (6.3). This

can be averted if Pareto estimation is used for specific regions, as is seen in Section 6.5.2.

Finally, although the concepts presented in this chapter can be further developed, it is the

author’s belief that they can alter the definition of what is currently considered to be a well

distributed approximation of the PF. This is primarily due the fact that, if an inverse mapping

can be identified, then the main issue becomes that of the optimal allocation of Pareto optimal

solutions on the PF such that the process of identifying a suitable solution is facilitated. An

optimal allocation would be an approximation set of the PF that provides the most information

about the underlying PF. This, still unknown distribution, need not necessarily be an even

distribution of Pareto optimal solutions. This issue is deferred to future research along with

the exploration of the applicability of the presented method for many-objective optimisation

problems.
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Chapter 7

Conclusions and Further Research

7.1 Population-Based Multi-Objective Optimisation

A very interesting paper appeared in 1997 by Wolpert and Macready titled “No Free Lunch

Theorems for Optimization” [178]. The impact of this work on the research direction of the

evolutionary computation community was certainly significant, but in the authors’ view, this

work has been systematically misinterpreted. What Wolpert and Macready stated was that in

the space of all functions, namely optimisation problems, there is no single algorithm that is

consistently better when compared to all other optimisation algorithms. In a way, this statement

seems to have a parallel in finance, specifically with respect to the Efficient Markets hypothesis

popularised by Eugene Fama [227]. The essence of this hypothesis is that markets encompass all

available information and that this is directly reflected in the price of the security, which means

that there is no arbitrage opportunity. Namely, there exist no potential for profit due to under-

priced or over-priced securities. This however is in contradiction to observed performance of

many investors, although admittedly is in accord to the performance of many more. To abridge

this parallel the investors can be represented as the optimisation algorithms and the market

as the set of all optimisation problems. So the question is: why is it that some optimisation

algorithms perform extremely well for a certain class of problems? The answer seems to be in

both cases (algorithms and investors) the same - information. At least in the optimisation case,

there is nothing to prevent a practitioner from using an algorithm that seems to outperform

all others in a specific problem. Following this practice, namely applying the best algorithm

for a specific problem, would result in a systematic increase of performance for all optimisation

problems. Still, this does not mean there is a free lunch (or arbitrage) opportunity, it simply

means that research effort needs to be spent towards identifying the best (algorithm,problem
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type) pair, instead of trying to create a single algorithm that will be able to tackle all problems.

In line with this perspective, the information presented in Chapter 3, is a step towards this

direction. Namely, it is an attempt to capture the strengths and weaknesses of certain algorithm

families when applied to a specific problem class. A lack of such a broad study seems almost

justified, since the number of available algorithms, even in a single family, is extremely high.

The seven algorithmic families discussed in Chapter 3, capture the main body of research in

evolutionary computation. However, as the progress of evolutionary algorithms has been quite

rapid over the past 30 years, it would be impossible to closely examine all the presented ideas.

Furthermore this pace in progress, has created a void of available advice to a practitioner seeking

to solve a particular problem, in the sense that the amount of information available is such, that

makes any sifting process very difficult and lengthy. The accomplishment of Chapter 3 is that the

general concepts of evolutionary algorithms are distilled, and an evaluation of the performance of

every algorithm family for specific problem types is presented, see Section 3.11 and Table 3.1. As

mentioned in Section 3.11 the results presented in Table 3.1 are based on reported performance,

frequency that a particular family is used for a specific problem and the amount of research that

is conducted for a specific class of problems. Also, part of this work is admittedly subjective

and most likely to be outdated given the rapid pace of EA research. However, this is merely

a device to enable practitioners gain a fair understanding of fundamental concepts in EAs and

provide practical guidance.

In order to further systematise such studies, a different approach in introducing novel ideas

and concepts in evolutionary computation is required. Namely, it is currently very common for

researchers to introduce new algorithms and compare their performance with other methods.

However this lacks depth and rigour, as it is not always clear what is the component of the

new method that makes it superior for the selected problem set. Interestingly, this idea has

been proposed in the past in [182, 228], however it would seem that it has not been taken up

by the EA community; perhaps the recent work of Michalewicz [229] can provide an additional

incentive towards this direction.
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7.2 Generalised Decomposition Many-Objective Problems

High dimensional multi-objective nonconvex problems in decision as well as in objective space

are becoming more common. Evolutionary algorithms have traditionally been employed in the

solution of nonconvex problems, and with considerable success. However, perhaps due to histor-

ical reasons, most EAs utilise Pareto-based methods as the means to extend the main algorithm

to multi-objective problems, see Chapter 3. Such methods have been shown that lack the ability

to scale gracefully for an increasing number of objectives. As shown in [4], problems begin to

manifest themselves for as few as 3-4 objectives and for more than 10 objectives almost all gener-

ated solutions are incomparable. Therefore, fitness assignment becomes nearly impossible using

the classical paradigm and different methods must be employed. Although, several attempts

have been proposed to amend the Pareto dominance based approach, for example ε-dominance

[18] and cone ε-dominance [19], the difficulties seem to persist for many-objective problems.

An alternative is found in decomposition-based methods, which use scalarising functions.

Interestingly, decomposition methods have been used in nonlinear mathematical programming

for more than 60 years [9]. Regardless of this fact, decomposition-based methods in evolutionary

computation have started to gain more attention only in the past decade [66, 95, 96, 112, 158, 230]

and, arguably due to the work of Zhang and Li [2] which rekindled the interest of the evolu-

tionary computation community in decomposition-based methods and especially the Chebyshev

scalarising function which has very interesting properties, see Section 4.2.1 and [5, pp. 98].

This seemingly disregarding attitude towards decomposition methods was not entirely unjusti-

fied. For example Das and Dennis [100] made a courageous attempt by introducing the normal

boundary intersection method (NBI). NBI despite its inability to guarantee that the defined

subproblems would result in Pareto optimal solutions, laid the foundation for understanding

what are exactly the shortcomings of these methods. The work of Das and Dennis [100] demon-

strated that there is significant difficulty in controlling the distribution of the generated Pareto

front. It would seem that there was no straightforward way in selecting the weighting vectors for

the classic scalarising functions, for example the weighted sum and weighted metrics methods.

The understanding was that it was an issue with the scalarising functions that prevented the

generation of a uniform Pareto front. However, in this work it has been shown that this is

not entirely true, namely the distribution of Pareto optimal solutions across the Pareto front

depends on the selected set of weighting vectors as well as the scalarising function. Addition-
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ally, given a measure and a scalarising function that is convex in the weights, w, then a set of

weighting vectors that produce Pareto optimal solutions which are optimal with respect to the

aforementioned measure can be found, see Chapter 4 and Chapter 5. Fortunately commonly

used scalarising functions such as the weighted sum and weighted metrics for all norms including

the ℓ∞-norm which results in the Chebyshev scalarising function, are all convex. This was the

key observation that led to the development of generalised decomposition, a method introduced

in this work that can be used to identify a set of optimal weighting vectors. It should also be

noted that generalised decomposition unifies and extends approaches that have appeared in the

literature that provide a solution only for one or two scalarising functions, for example Hughes

[95] presents a solution for the simple Chebyshev scalarising function. Another example is the

recent work of Gu et al. [231] where the authors present a solution for the weighting sum and

the Chebyshev function whose approach is very similar to [95]. Additionally it is shown in

Giagkiozis and Fleming [232] that the selection of the norm in the weighted metrics scalarising

function can have a profound effect on the convergence of the algorithm, thus must be selected

with care. Furthermore the results in [232] show that the use of the Chebyshev scalarising func-

tion results in convergence rates, under certain assumptions, that are identical to Pareto-based

algorithms. This result seems contradictory with reported performance of decomposition-based

methods when compared to Pareto-based methods, see for example [4, 218, 233].

However, a more careful inspection of the aforementioned results reveals that while the

relative performance difference of decomposition-based algorithms (often a comparison of the

Chebyshev scalarising function, with Pareto-based algorithms) is in favour of decomposition-

based algorithms, this performance difference is not especially significant. This small advantage

might be attributed to the fact that decomposition-based algorithms employ a set of weighting

vectors, which is not changing constantly, hence the problem remains fixed throughout the opti-

misation procedure, while in Pareto-based methods such clear direction does not exist. However,

generalised decomposition in combination with the results in [232] can be used to increase the

advantage of decomposition-based algorithms, subject to the provision of some prior information.

The ability to find the optimal set of weighting vectors, for a given definition of optimality

and the majority of scalarising functions, can be advantageous for many-objective problems. For

example, this enables theoretical studies of the effect of commonly used methods in selecting

the weighting vector set for high dimensional problems in objective space (Section 4.2.2). A

result from such a study performed on a weighting vector set that is evenly distributed, showed
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that such a set results in subproblems that, once solved, will produce Pareto optimal points

that are far from uniformly or evenly distributed, see Fig. (4.3) and Section 4.3.3. The results

in Fig. (4.3) suggest that the produced Pareto optimal points are tightly clustered, and are not

spread across the entire front.

Another interesting application of generalised decomposition is that for problems with known

Pareto front geometry, and, a measure of optimality of well distributed solutions across the

PF, the set of weighting vectors used to decompose the problem in a set of single objective

subproblems can be calculated exactly. To demonstrate this an algorithm is created, many-

objective cross entropy with generalised decomposition (MACE-gD), that is shown to perform

very well for many-objective problems. However, the geometry of the Pareto front must be

known prior to the optimisation process which can be limiting, as this information is usually

not available for real-world problems. Until a better solution to this issue is found, an affine

Pareto front geometry can be assumed to calculate the set of weighting vectors which results in

satisfactory performance, for instance see Fig. (4.4). A solution to this would be the identification

of the Pareto front geometry during the optimisation, and a promising idea that could lead to

the resolution of this problem in generalised decomposition is discussed in Section 7.4.3.

7.3 Pareto Estimation

An interesting question that seems not to have been posed before is the following. Given a

Pareto set approximation, is there a way to generate more Pareto optimal solutions in specific

regions of the Pareto front? If such a question can be answered, then the Pareto front could be

explored after the optimisation process, which is quite convenient and as shown in Chapter 6

much more efficient than restarting the optimisation algorithm until a solution that satisfies the

decision maker is found. Of course at this point this question is only rhetorical, since it has

been demonstrated that an answer can be found even for difficult test problems such as the

WFG toolkit [167]. However, the fact that this question can be answered has several interesting

implications.

One implication is that the hypothesis, first brought forward by Jin and Sendhoff [21], that

the Pareto set in decision space is a (k−1)-dimensional piecewise continuous manifold, is further

supported by the results in Chapter 6. This means that the forward or inverse mapping, such

as the one presented in Section 6.3, of the Pareto optimal set can be identified. A requirement

for such an identification is that the Pareto set approximation is close to the real Pareto set, as
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the results in [21] and Section 2.5.4 are not necessarily valid for a set of solutions that fails this

requirement.

Another implication is that even for problems that are expensive, in terms of the cost of

one objective function evaluation, if a Pareto set is identified, then the decision maker and the

analyst can collaborate much more easily if the Pareto estimation method is employed. Namely,

by using Pareto estimation the decision maker can explore the Pareto front of the problem in

question much more efficiently. However, as the mapping identified in the Pareto estimation

method is not exact, once a desirable set of solutions is identified, it must be verified using the

true objective function. However, even with that extra cost the Pareto estimation method is

more efficient compared to the alternatives.

7.4 Future Perspectives

7.4.1 Disciplined Evolutionary Optimisation

It is advocated in Section 7.1 that there is a need for a more systematic approach in the de-

velopment and presentation of new ideas and concepts in evolutionary optimisation. The main

issue is that there is a tendency in this field to create methods that are pertinent to only a

very small number of problems. This can be attributed to the fact that the domain of problems

that EAs attempt to address is much wider, compared for instance with convex optimisation.

However, there seems to be no active effort in identifying the problem features that impact the

performance of the algorithm. That is to say, that there should be a systematic way to identify

problem structures that can be used to identify the most appropriate method for the task. This

information is important, as it can enable the automation of the entire procedure of algorithm

selection and tuning, for a particular problem. In turn, once such automation is in place, the

user will be much less burdened by the details of the solver and will have more time to properly

formulate the problem and explore the resulting set of solutions. This subtle improvement can

have a very distinct impact in the way that EAs are used and applied, and, the user will no

longer have to be an expert in this field. Admittedly, this ideal is far from straightforward to

achieve, as it requires a very clear overview of a wide variety of problems and algorithms in

order for this matching to take place.
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7.4.2 Estimation of Distribution Algorithms

An apparent issue with EDAs is that the probabilistic model, which is in the core of the main

algorithm, tends to rival in complexity the actual problem [126]. In essence the solution process,

namely the algorithm, becomes more difficult to address than the problem. Acknowledging this

issue Emmendorfer and Pozo [126] suggested that an EDA based on low-order statistics and

clustering can have comparable performance to high-order statistics based EDAs. Although

the main topic of this work has not been estimation of distribution algorithms, it was very

tempting to try and incorporate a test that would either support or reject the premise. This was

achieved by using the CE method in Chapter 5 as the main algorithm of MACE and MACE-gD.

Interestingly the results of MACE were competitive compared to RM-MEDA, an algorithm that

is considered state-of-the-art in estimation of distribution algorithms. The evidence suggests

that the way that the problem is decomposed to single objective problems (weighting vectors)

is as important as the main algorithm used in the search. However since no clustering was used,

the only conclusion that can be drawn is that an increase in model complexity in EDAs is not

the only way to achieve performance improvements.

7.4.3 Generalised Decomposition

A problem associated with generalised decomposition is that, in its present formulation, the

geometry of the Pareto front is required to be known prior to the optimisation procedure.

Although, as is mentioned in Section 4.3.4, a reference Pareto front with affine geometry seems

to produce better results than the alternative of selecting a evenly distributed set of weighting

vectors. However, this is not utilising generalised decomposition to its full potential. Therefore it

is important that an adaptive method is developed to identify the Pareto front geometry during

an optimisation run. This seems to be feasible, since the geometry of the Pareto front, at least

for connected fronts, is imprinted in the Pareto set approximation well before the algorithm has

had the chance to converge. Therefore, if the geometry could be expressed in parametric form

and converted to a convex problem, then, it would be trivial to identify the parameters, hence

the geometry of the front. A parametrisation that is commonly used is the following:

zp1 + · · ·+ zpk = C, (7.1)

and usually, C = 1 when all the objectives are normalised in the range [0, 1], see for example

[160, 161]. However (7.1) is a nonconvex problem, a fact that the authors of [161] failed to notice
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as they attempted to solve (7.1) using the simplex method. This is reflected in the resulting

solution which fails to identify models that have, pi 6= pj, for i 6= j. A way to sidestep this

issue, is by transforming (7.1) to an infinite dimensional problem. For instance every factor, zp1 ,

could be represented by a set of basis functions Cp1 = {zp : p ∈ [a, b]}. If the interval, p = [a, b],

is discretised as, pd = {a+ i
N
b : i = 1, . . . , N}, then the problem in (7.1) can be expressed as,

a1z
p1,1 + · · ·+ aNzp1,N + · · ·+ z1z

pk,1 + · · · + zNzpk,N = C, (7.2)

which is linear in the parameters, a1, . . . , aN , . . . , z1, . . . , zN , therefore it can be expressed in

the standard min
x
‖Ax− b‖p form, and solved using least squares if, p = 2, or in general, using

convex optimisation for any, p ≥ 1. Namely,

Ax− b =
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, (7.3)

where M is the number of Pareto optimal solutions available. A problem that may arise, is that

the solution of (7.3) depends on the quality of the selected basis. That is, if the true pi, are

not part of the bases then the solution to (7.3) will not be sparse. Which is quite intuitive as

it will try and recreate a pi using the available bases functions. Therefore, nonsparse solutions

give the information that different bases are required, and, some adaptive scheme can be used

to approximate the true {p1, . . . , pk} as well as possible.

7.4.4 Pareto Set Distributions and Notions of Optimality

The two main contributions of this work, namely Pareto estimation and generalised decom-

position, can be used to complement each other in an interesting fashion. It is mentioned in

Section 6.6 that an active learning method such as the one proposed in [225] could be instru-

mental to increase the effectiveness of the Pareto estimation method. The idea is that if the

distribution of Pareto optimal solutions can be adapted to a distribution that results in a set of

points that are maximally informative about the manifold of Pareto optimal solutions, then the

estimated model would be better. So, if there was a way to identify this unknown distribution,

that perhaps is different for every problem, generalised decomposition could be employed to gen-
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erate this distribution of solutions, hence increasing the effectiveness of the Pareto estimation

method.

Concluding Remarks

The transition from single objective convex problems to many-objective nonconvex problems is

similar to the transition from linear dynamical systems to nonlinear systems. However when

practitioners seek solution to a nonconvex problem they usually resort to a heuristic often

without first considering whether there is a way to reformulate it in a form that exact solutions

can be found. In the author’s view this is a oversight that can be very costly. Therefore, prior

to the use of a metaheuristic, a solid foundation in classic optimisation methods such as convex

optimisation is necessary.
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Appendix A

Mathematical Background

The purpose of this appendix is to provide a convenient and concise summary of the necessary

mathematical background. The Sections A.1.1, A.1.2 and A.3 are from Rudin [234], Kolmogorov

and Fomin [235] and some definitions in Section A.1 are from Shen and Vereshchagin [236].

Section A.2 is from Boyd and Vanderberghe [6]. Lastly, the definitions in Section A.4.2 are from

[237].

A.1 Set Theory

A.1.1 Set Notation and Operations

A set is a collection of elements. Sets in the present work are denoted with capital letters, for

example A,C,D. The notation C = {a, b, c, . . . }, means that the set, C, is comprised of the

elements a, b, c, . . . , p. The empty set, namely the set that contains no elements is denoted as

C = ∅. An element, a, that is part of the set, C, is denoted by a ∈ C, similarly, a /∈ C signifies

that the element, a, is not part of the set C. Another way to define a set, apart from listing

all its elements, is with the help of expressions, for instance the following expression defines a

set, C = {x : x ∈ R+}, which is read as: the set C is comprised of all elements x for which

the following condition is true: x ∈ R+. Furthermore, given two sets A,B, we say that A ⊆ B,

that is, A is a subset of B, meaning that every element of A is also an element of B but not

necessarily all elements of B are elements of A, note that A = B is a possibility. An equivalent

expression is to say that B is a superset of A. A proper subset is denoted as A ⊂ B, and is

defined as A ⊆ B and A 6= B. Two sets are said to be equal, A = B, if they are comprised of

exactly the same elements, otherwise they are denoted as A 6= B.

For any two sets A,B ⊆ R, the following operations are defined:
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i. Set intersection,

A ∩B = {x : x ∈ A and x ∈ B}. (A.1)

ii. Set union,

A ∪B = {x : x ∈ A or x ∈ B}. (A.2)

iii. Set difference,

A \B = {x : x ∈ A and x /∈ B}. (A.3)

iv. Symmetric difference,

A △ B = (A \B) ∪ (B \ A). (A.4)

v. Set complement,

Ac = A \ Rn. (A.5)

A.1.2 Ordered Sets

A binary relation1 R (≤,�) on a set C is said to be a partial ordering if,

i. R is reflexive: xRx for every x ∈ C.

ii. R is transitive: if xRy and yRz =⇒ xRz.

iii. R is antisymmetric, namely if xRy and yRx =⇒ x = y.

If a partial ordering is defined on a set C, then it is said to be partially ordered or poset.

For a partially ordered set, it may happen that the relation R does not hold for all elements of

the set, so the binary relation ≤ the following is a possibility: for x, y ∈ C, x � y and x � y,

in which case the elements x, y are incomparable - this is exactly the reason why the relation

is called partial ordering for the set C. For example one way to extend the ≤ relation from R

to R2 is to define it as the application of the common ≤ relation to the elements of the vectors

in R2, namely, (x1, x2) ≤ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≤ y2. Then this relation is a partial

ordering for the set C = R2, that is for x = (2, 2), y = (3, 4), z = (6, 5), x ≤ x, also since x ≤ y

and y ≤ z =⇒ (2, 2) ≤ (6, 5) = x ≤ z.
If there are no incomparable elements in the set under the binary relation R, then C is said

to be ordered (equivalently, linearly or completely or simply ordered) and R is said to be

a complete ordering on the set C, or equivalently linear or simple ordering.

1See Section A.3.
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A.2 Analysis

An element x ∈ C ⊆ Rn is called an interior point of C if there exists ǫ > 0 for which,

{y : ‖y − x‖2 ≤ ǫ} ⊆ C, (A.6)

i.e., there exists a ball centred at x that lies entirely in C. The set of all points interior to C is

called interior of C and is denoted intC. A set C is open if intC = C, namely, every point

in C is an interior point. A set C ⊆ Rn is closed if its complement Rn \ C = {x ∈ Rn : x /∈ C}
is open.

The closure of a set C is defined as,

clC = Rn \ int (Rn \ C),

i.e., the complement of the interior of the complement of C. A point x is in the closure of C if

for every ǫ > 0, there is a y ∈ C with ‖x− y‖2 ≤ ǫ.
The boundary of the set C is defined as,

bdC = clC \ intC.

A boundary point x ( x ∈ bdC ) satisfies the follwoing property: For all ǫ > 0, there exist

y ∈ C and z /∈ C with

‖y − x‖2 ≤ ǫ, ‖z − x‖2 ≤ ǫ,

i.e., there exist arbitrarily close points in C, and also arbitrarily close points not in C. We can

characterise closed and open sets in terms of the boundary operation: C is closed if it contains

its boundary, i.e., bdC ⊆ C. It is open if it contains no boundary points, i.e., C ∩ bdC = ∅.

A.3 Functions

The Cartesian product of any two sets, A,B, is defined as:

A×B = {(x, y) : x ∈ A, and y ∈ B}, (A.7)

also, any subset R ⊂ A ×B is called a binary relation. For example, let the set A = R2 and

B = R then their Cartesian product is,

A×B = {((x, y), z) : (x, y) ∈ A and z ∈ B}.
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A relation f ⊂ A × B is called a partial function (or a partial mapping) from A to B,

if f does not contain two pairs (x, y1) and (x, y2) with y1 6= y2. Namely, f is a partial function

from A to B if for any x ∈ A there exists at most one element y ∈ B such that (x, y) ∈ f . If f
is defined on all elements of A, we write f : A→ B and say that f is a total function, or more

commonly function or mapping.

The domain of definition, or simply domain of the function f , denoted as dom f , is the set

of all x ∈ A, for which a y ∈ B exists and the range of the function f is the set of all y ∈ B.

This can also be expressed in set notation for a total function, as: f : A → B, whereby in this

context the set B is the image (or forward image) of the set A under the mapping f , and,

the set A is the preimage (or inverse image) of the set B under the mapping f−1, denoted

as f−1(B). A function is said to be an into mapping if, f(A) ⊂ B, and, an onto mapping

if, f(A) = B. An onto mapping, f , is said to be one-to-one or a bijection, if every element

y ∈ B has a unique preimage x ∈ A, in which case the mapping, f−1, is said to be the inverse

of the mapping, f . Notice however, that a mapping f−1 usually exists, however, it is qualified

as the inverse of f only if the mapping f is onto and one-to-one.

A.4 Linear Algebra

A.4.1 Notation

The notational convention that is followed in this work, in relation to matrices and vectors is

quite standard. However, as the standard depends on background it is worthwhile to simply

define the notation to promote clarity.

A vector is denoted with a bold type lower case letter, x = (x1, x2, . . . , xn), and is defined

to mean a column vector, namely:

x = (x1, x2, . . . , xn) =











x1
x2
...
xn











.

The symbol T , as a superscript to a vector or a matrix, means the transpose. For example the

transpose of the vector x is,

xT = (x1, x2, . . . , xn)
T =

[

x1 x2 · · · xn
]

,

which is a row vector. A matrix is denoted with an upper case bold type letter, just to avoid

confusion with the set notation, for example A,B,D. An m × n matrix A, is a matrix that
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has m rows and n columns, and when necessary its size is specified as Am×n. For example the

matrix, A5×3, is a matrix with 5 rows and 3 columns. A matrix is comprised of entries, each of

which is at a specific position in the matrix,

A =







a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n






,

so the subscript to the entries identifies the location of that entry within the matrix A, for

instance the entry a4,6, is located in row 4, column 6 of the matrix. A single subscript to a

vector, xi, identifies an entire column, or, row if it is a transposed vector, of a matrix. Therefore

a matrix can be defined as,

A =
[

x1 x2 · · · xn

]

,

or using row vectors as follows,

A =











xT
1

xT
2
...
xT
n











.

A.4.2 Fundamentals

Let a matrix, A ∈ Rm×n, then the column space (or range) of A, denoted C(A) is defined

as,

C(A) = {Ax : x ∈ Rn}. (A.8)

The null space (or kernel) of A, denoted N(A), is defined as,

N(A) = {x : Ax = 0}. (A.9)

The row space, denoted as C(AT ), is defined as,

C(AT ) = {ATy : y ∈ Rm}. (A.10)

Lastly, the left null space, denoted as N(AT ), is defined as,

N(AT ) = {y : ATy = 0}. (A.11)

These are the four fundamental subspaces in linear algebra. The rank of a matrix is defined

as the number of pivots in the reduced row echelon form, R, of the matrix A. The rank of the

matrix is denoted as rankA. The matrix R is obtained using Gauss-Jordan elimination [237].

The fundamental theorem of linear algebra states that:
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1. The dimension of the column space, C(A), is equal to the rank of the matrix, rankA.

2. The dimension of the null space, N(A), is equal to: n− rankA.

3. The dimension of the row space, C(AT ), is equal to the dimension of the columns space,

namely, rankAT = rankA.

4. The dimension of the left null space, N(AT ), is equal to, m− rankA.

Furthermore, the maximum rank of a matrix is, min{m,n}, in which case the matrix, A, is said

to have full rank. For example, the rank of a matrix A ∈ R6×2, can be at most 2.
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Appendix B

B.1 Generating an n-dimensional Uniformly Distributed Con-

cave or Convex Pareto Front

A moderately efficient method, but highly convenient, for generating uniformly distributed

points on the unit hypersphere of arbitrary dimension is presented by Marsaglia [238]. Let

n be the number of dimension of the hypersphere, then the method can be summarised as

follows:

• Generate X1,X2, . . . ,Xn independent random deviates distributed according to N (0, 1).

N (0, 1) is the normal distribution with mean 0 and variance 1.

• Calculate S = X 2
1 +X 2

2 + · · ·+ X 2
n , the point defined as:

U =

( X1√
S
,
X2√
S
, . . . ,

Xn√
S

)

(B.1)

is uniformly distributed on the n-dimensional hypersphere [238].

With this method we can sample points on the unit hypersphere that are uniformly distributed,

however these points are not Pareto optimal. To obtain a concave Pareto front with uniformly

distributed points all that is necessary is to select the points that all their components are

positive. If we select the points U that all their components are negative and add the vector 1,

we can obtain a Pareto front with convex geometry.

However there is a limitation to the described method. Namely since we’re selecting a

subset of the generated solutions U , for higher dimensions in order to obtain the same number

of Pareto optimal points it required that the number of uniformly distributed solutions in U is

constantly increased. The required number of points in U so that a specific number of Pareto

optimal solutions is obtained can be derived from the following relation that follows directly

from geometric considerations,

|P| ≈ 1

2k
|U |, (B.2)
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B.1 Generating an n-dimensional Uniformly Distributed Concave or Convex
Pareto Front

where ≈ becomes an equality in the limit as |U | → ∞. For example if we require approximately

100 uniformly distributed solutions for a concave PF in 11 dimensions, then we would need

204 800 uniformly distributed vectors U on the 11 dimensional unit hypersphere, which translates

to ∼ 2.2× 106 samples from the normal distribution N (0, 1). So this method can easily become

impractical for dimensions greater than ∼ 11.
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[219] R. Purshouse, C. Jalbă, and P. Fleming, “Preference-Driven Co-Evolutionary Algorithms
Show Promise for Many-Objective Optimisation,” in Evolutionary Multi-Criterion Opti-
mization. Springer, 2011, pp. 136–150.

[220] H. Markowitz, “Portfolio Selection,” The Journal of Finance, vol. 7, no. 1, pp. 77–91,
mar. 1952. [Online]. Available: http://www.jstor.org/stable/2975974

[221] J. Danielsson and C. G. D. Vries, “Value-at-Risk and Extreme Returns,” Annals of Eco-
nomics and Statistics, no. 60, pp. 239–270, dec. 2000.

[222] K. Kuester, S. Mittnik, and M. S. Paolella, “Value-at-Risk Prediction: A Comparison of
Alternative Strategies,” Journal of Financial Econometrics, vol. 4, no. 1, pp. 53–89, 2006.

[223] R. Rockafellar, Convex Analysis. Princeton University Press, 1970, vol. 28.

[224] “Yahoo! Finance,” http://uk.finance.yahoo.com/, aug. 2012.

[225] D. Cohn, L. Atlas, and R. Ladner, “Improving Generalization with Active Learning,”
Machine Learning, vol. 15, pp. 201–221, 1994.

[226] A. Katanforoush and M. Shahshahani, “Distributing Points on the Sphere, I,” Experimen-
tal Mathematics, vol. 12, no. 2, pp. 199–210, 2003.

[227] E. Fama, “Efficient Capital Markets: A Review of Theory and Empirical Work,” The
Journal of Finance, vol. 25, no. 2, pp. 383–417, 1970.

[228] R. Purshouse and P. Fleming, “Why use Elitism and Sharing in a Multi-Objective Genetic
Algorithm,” in Proceedings of the Genetic and Evolutionary Computation Conference,
2002, pp. 520–527.

[229] Z. Michalewicz, “Quo vadis, evolutionary computation?” Advances in Computational In-
telligence, pp. 98–121, 2012.

183

http://www.jstor.org/stable/2975974
http://uk.finance.yahoo.com/


REFERENCES

[230] I. Kim and O. De Weck, “Adaptive Weighted Sum Method for Multiobjective Optimiza-
tion: A New Method for Pareto Front Generation,” Structural and Multidisciplinary Op-
timization, vol. 31, no. 2, pp. 105–116, 2006.

[231] F. Gu, H. Liu, and K. Tan, “A Multiobjective Evolutionary Algorithm Using Dynamic
Weight Method,” International Journal of innovative Computing, Information and Con-
trol, vol. 8, no. 5B, pp. 3677–3688, may 2012.

[232] I. Giagkiozis and P. Fleming, “Methods for many-objective optimization: An analysis,”
Research Report No. 1030, November 2012.

[233] H. Ishibuchi, N. Akedo, H. Ohyanagi, and Y. Nojima, “Behavior of EMO Algorithms on
Many-Objective Optimization Problems with Correlated Objectives,” in IEEE Congress
on Evolutionary Computation, june 2011, pp. 1465 –1472.

[234] W. Rudin, Principles of Mathematical Analysis. McGraw-Hill New York, 1976, vol. 3.

[235] A. Kolmogorov and S. Fomin, Introductory Real Analysis. Dover Publications, 1975.

[236] N. Vereshchagin and A. Shen, Basic Set Theory. American Mathematical Society, 2002,
vol. 17.

[237] G. Strang, Introduction to Linear Algebra. Wellesley Cambridge Press, 2003.

[238] G. Marsaglia, “Choosing a Point from the Surface of a Sphere,” The Annals of Mathemat-
ical Statistics, vol. 43, pp. 645–646, 1972.

184


	Executive Summary
	Acknowledgments
	Statement of Originality
	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Outline
	1.3 Contributions

	2 Theoretical Foundations
	2.1 Introduction
	2.2 Convex Sets and Functions
	2.3 Epigraph
	2.4 Single-Objective Optimisation
	2.4.1 Problem Setting
	2.4.2 Optimality Condition - Single Objective Problems

	2.5 Multi-Objective Optimisation
	2.5.1 Problem Setting
	2.5.2 Partial Ordering - Pareto-Based Approach
	2.5.3 Partial Ordering - Decomposition-Based Methods
	2.5.4 Optimality Condition - Multi-Objective Problems

	2.6 Multi-Objective Optimisation - A Conceptual Overview

	3 Overview of Population-Based Optimisation
	3.1 Introduction
	3.2 Chronology
	3.3 General Structure
	3.4 Genetic Algorithms
	3.4.1 Multi-Objective Problems
	3.4.2 First Attempt to Extend GA to MOPs
	3.4.3 Fonseca-Fleming Genetic Algorithm
	3.4.4 Non Dominated Sorting Genetic Algorithm
	3.4.5 Strength Pareto Evolutionary Algorithm
	3.4.6 Hypervolume-Based Evolutionary Algorithm

	3.5 Evolution Strategies
	3.5.1 Multi-Objective Problems
	3.5.2 First Attempt to Extend ES to MOPs
	3.5.3 Predator-Prey Model

	3.6 Artificial Immune Systems
	3.6.1 Multi-Objective Problems
	3.6.2 First Attempt to Extend AIS to MOPs
	3.6.3 Multi-objective Immune System Algorithm

	3.7 Ant Colony Optimisation
	3.7.1 Multi-Objective Problems
	3.7.2 First Attempt to Extend ACO to MOPs
	3.7.3 Bi-Criterion Ant Colony Optimisation

	3.8 Differential Evolution
	3.8.1 Multi-Objective Problems
	3.8.2 First Attempt to Extend DE to MOPs
	3.8.3 Generalised Differential Evolution
	3.8.4 Multi-Objective Evolutionary Algorithm based on Decomposition

	3.9 Particle Swarm Optimisation
	3.9.1 Multi-Objective Problems
	3.9.2 First Attempt to Extend PSO to MOPs
	3.9.3 Multi-Objective PSO

	3.10 Estimation of Distribution Algorithms
	3.10.1 Multi-Objective Problems
	3.10.2 First Attempt to Extend EDAs to MOPs
	3.10.3 Regularity Model-Based EDA

	3.11 Discussion
	3.12 Summary

	4 Generalised Decomposition
	4.1 Introduction
	4.2 Decomposition Methods
	4.2.1 Scalarising Functions
	4.2.2 Methods for Generating Weighting Vectors

	4.3 Generalised Decomposition
	4.3.1 Optimal Selection of the Weighting Vector Set
	4.3.2 Practical Considerations
	4.3.3 The Effect of Weighting Vector Choice in Many Objective Problems
	4.3.4 Reference Pareto Front

	4.4 Summary

	5 Generalised Decomposition for Many-Objective Optimisation
	5.1 Introduction
	5.2 Cross Entropy Method
	5.2.1 CE-Method for Continuous Optimisation

	5.3 Generalised Decomposition-Based Many Objective  Cross-Entropy
	5.4 Algorithms Selected For Comparison
	5.4.1 Multi-Objective Evolutionary Algorithm based on Decomposition
	5.4.2 Regularity model-based EDA
	5.4.3 Random Search

	5.5 Comparative Studies
	5.5.1 Performance Indicator
	5.5.2 Experiment Description
	5.5.3 Experiment Results
	5.5.4 Sensitivity of MACE and MACE-gD to the  Parameter

	5.6 Preference Articulation
	5.7 Summary

	6 Increasing the Pareto Front Density
	6.1 Introduction
	6.2 Related Work
	6.2.1 Metamodelling Methods in Multi-Objective Optimisation
	6.2.2 Innovization Methods
	6.2.3 Pareto Estimation Method - Motivation

	6.3 Pareto Estimation Method
	6.3.1 Overview
	6.3.2 Radial Basis Function Neural Networks
	6.3.3 Pareto Dominance-Based Algorithms
	6.3.4 Decomposition-Based Algorithms

	6.4 Experiment Results
	6.4.1 Pareto Dominance Based Algorithms
	6.4.2 Decomposition-Based Algorithms

	6.5 Pareto Estimation Applied to Portfolio Optimisation
	6.5.1 Portfolio Optimisation - Problem Definition
	6.5.2 Decision Making Procedure
	6.5.3 Portfolio Optimisation Experiments

	6.6 Discussion
	6.7 Summary

	7 Conclusions and Further Research
	7.1 Population-Based Multi-Objective Optimisation
	7.2 Generalised Decomposition Many-Objective Problems
	7.3 Pareto Estimation
	7.4 Future Perspectives
	7.4.1 Disciplined Evolutionary Optimisation
	7.4.2 Estimation of Distribution Algorithms
	7.4.3 Generalised Decomposition
	7.4.4 Pareto Set Distributions and Notions of Optimality


	Appendices
	Appendix A Mathematical Background
	A.1 Set Theory
	A.1.1 Set Notation and Operations
	A.1.2 Ordered Sets

	A.2 Analysis
	A.3 Functions
	A.4 Linear Algebra
	A.4.1 Notation
	A.4.2 Fundamentals


	Appendix B 
	B.1 Generating an n-dimensional Uniformly Distributed Concave or Convex Pareto Front

	References

