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Abstract 

Our ability to rapidly process scenes despite the complex and varied visual information they contain 

represents a fundamental contradiction for cognitive science to explain. However, despite their 

great variation, natural scenes contain visual regularities that are highly diagnostic of their identity 

and function. Past research has found the visual system takes advantage of these regularities in 

order to facilitate this efficient processing through the use of internal models, which contain 

representations of typical scene information and act as a referential template for incoming visual 

information. In chapter 2, we use a jumbling paradigm to investigate how global scene structure is 

extracted from scenes, and under which conditions structure impacts categorising accuracy. We 

demonstrate that whilst disruptions to coherent global  structure impacts processing, potential 

vertical biases observed in previous studies may be better explained by regularities in low and mid-

level visual features.  In chapter 3, we developed a novel drawing paradigm to describe the contents 

of internal models of the visual world, in order to investigate how individual differences in 

conceptions of typicality may drive efficient scene processing. Here, we found that drawings could 

be used to produce approximations of internal scene models, and that the strength of the match to 

these internal models was predictive of behavioural categorisation performance. In chapter 4 we 

conducted 2 further experiments to explore the contents of these internal models, by manipulating 

the structure and content of renders based on these drawings. However, we failed to find clear 

evidence for object identity and location being key features of internal models. Taken together, this 

thesis demonstrates how the visual system utilises structural regularities to facilitate scene 

processing and provides evidence for a possible influence of individual differences. We further show 

the ability of drawing paradigms to successfully represent internal models and investigate their 

application.  
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Chapter 1: Literature Review 

1.1  Introduction 

Scenes are the environments that individuals encounter in their daily lives, encompassing a diverse 

array of settings and object arrangements. Whilst scenes are characterised by their inherent 

complexity, including diverse elements like clutter, occlusion, objects, textures and colours, they are 

also highly structured, with global structure stable across categories, and objects frequently placed in 

typical locations (Bar, 2004; Kaiser et al., 2019a; Kaiser & Cichy, 2021; Oliva & Torralba, 2007; Vo et 

al., 2019, Vo, 2021). As such scenes represent one of the most complex and varied sources of visual 

information we experience, and one central to our ability to operate and function within the world 

around us. Despite this complexity, the visual system is incredibly efficient at processing scenes, able 

to accurately gauge category information within as little as 200ms (Dima et al., 2018; Kaiser, Turini, et 

al., 2019; Kaiser et al., 2020a; Lowe et al., 2018).  

This contradiction seemingly defies classical work on visual processing, which  suggests that the visual 

system should struggle to process such information rich stimuli. This contrast is well illustrated in the 

domain of visual search, where it has long been established that distractors greatly inhibit our ability 

to find targets in artificial scenes, made up of abstract shapes, letters, or isolated objects(Pelli et al., 

2009; Pelli & Tillman, 2008; Treisman & Gelade, 1980; Wolfe, 1994). However, research has 

consistently shown that this is not the case in natural scenes.  Thorpe (et al., 1996) conducted a go/no-

go task in which participants were required to identify whether an animal was present in a photograph 

of a natural scene from just 20ms exposure. Despite having no prior knowledge of the target (i.e. what 

the animal was or where it would be in the scene), participants were incredibly efficient at identifying 

the animal, with an average accuracy of 95% and median reaction times of 445ms on correct trials. 

Analysis of event related potential (ERP) trials measured via electroencephalogram (EEG) found that 

the go/ no-go decision could be decoded after only 150ms from the stimulus onset. This efficiency was 

achieved despite the photograph containing a large amount of irrelevant visual information, that may 

have acted as distractors. Functional magnetic resonance imaging (fMRI) research supports this 

conclusion, indicating little effect of distractors when locating objects within natural scenes and a need 

for only very brief exposure to be able to extract relevant content (Peelen et al., 2009; Peelen & 

Kastner, 2011; Seidl et al., 2012). Unlike artificial scenes, visual search in natural scenes is not 

modulated by set size (Wolfe, Alvarez, et al., 2011), nor attentional allocation (Li et al., 2002). This 

suggests that not only are we able to accurately search scenes despite their complexity, but that the 

process is remarkedly quick, indicating that visual search within scenes is an incredibly efficient 

process. 
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What is it about natural scenes that makes them different from artificial scenes, and helps facilitate 

this efficient processing despite their complexity? One possibility is rather than being overwhelmed 

by this complexity, the visual system could exploit statistical regularities within scene information to 

rapidly extract meaning. Whilst scenes can vary greatly, they are organised by predictable rules, often 

governed by physics, context and social norms (Kanan et al., 2009; Torralba et al., 2006). For example, 

gravity dictates that objects must rise from a base or platform, whilst phototropism results in plants 

growing upwards towards light sources. Likewise, certain scene elements are much more likely to be 

found grouped together based on context and meaning, for example we would expect to see 

mountains in a rural environment as opposed to a busy urban centre. Research increasingly seems to 

support this idea, with many studies indicating that typical arrangements of a scenes’ِfeaturesِsuchِasِ

structure (Biederman, 1972; Kaiser et al., 2020a), layout (Kaiser et al., 2020a; Mannion et al., 2015), 

object content (Davenport & Potter, 2004), and surface properties (Epstein & Baker, 2019) all help 

facilitate efficient scene processing (Võ et al., 2019). These, and other regularities may provide scene-

based guidance, allowing the visual system to quickly locate and extract the features encapsulating 

the most prescient scene information (Ehinger et al., 2009; Neider & Zelinsky, 2006; Torralba et al., 

2006). 

One way that the visual system might achieve this is through the use of predictive processing (A. Clark, 

2013; Feldman & Friston, 2010; Keller & Mrsic-Flogel, 2018; Rao & Ballard, 1999). Within predictive 

processing models, visual inputs are compared against internal models, which represent our 

expectations of what a stimulus should look like. For scenes, these models might contain stored 

knowledge based on the regularities we experience in the our everyday visual lives, helping to explain 

the benefit of typical scene information (Kayser et al., 2004). Such an explanation would align with 

research evidencing the use of  predictive processing in visual perception (Bar, 2009; Peelen et al., 

2024) and neural processing of scenes (Kaiser et al., 2019b; Muckli et al., 2015), as well as the control 

of gaze (Henderson, 2017). Internal models might anticipate sensory inputs, transmitting only the 

discrepancies between these predictions and actual inputs. This mechanism would reduce the 

processing load by focusing on unexpected information. Such a mechanism may be particularly 

beneficial in natural scenes where predictability is high, whilst also containing massive amount of 

visual information that cannot be individually processed without compromising on the development 

of a rapid understanding of aِperson’s environment.  

If the visual system does make use of internal models to facilitate scene processing, one important 

question is precisely what information is being predicted? While it seems likely that internal models 

encode regularities in scene information, such as structure and object identity, we currently lack 

direct empirical evidence on their nature. Much of the existing research assumes a single, stable 
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generically “typical”ِsceneِacrossِallِobservers,ِcomparingِtheseِagainstِatypicalِscenesِtoِinferِ

properties of internal models.  However, internal models are thought to develop based on prior 

experiences (Friston, 2010; Köster et al., 2020), reflecting an individual’s personal exposure to the 

environments they encounter and the regularities within them. Consequently, what one person 

considers a typical kitchen—its objects, layout, and organisation—may differ significantly from 

another’s. Evidence for such individual differences can be found in studies suggesting that factors 

such as culture, socioeconomic background and vocation influence scene perception (Barrett, 2020; 

Hartley, 2022; Masuda & Nisbett, 2001; Rooney et al., 2017).  

Furthermore, there is considerable difficulty in directly accessing the contents of internal scene 

models. To fully understand how internal models guide scene perception, we need a method that 

captures these subjective variations without imposing prior assumptions. A more flexible approach 

would involve directly eliciting descriptions from participants, allowing us to characterise their 

unique scene models. This would reveal both shared and idiosyncratic elements of internal models, 

enabling more targeted experiments and refined predictions about scene processing efficiency. If we 

could harness this variability, rather than overlooking it, we may uncover systematic individual 

differences in how internal models shape perception, offering a more nuanced understanding of 

how personal experience influences visual processing. An aim of this thesis is to develop this new 

flexible approach in order to investigate the content of internal scene models, and to investigate 

how regularities in scene structure (such as object placements and global scene structure) help 

facilitate scene processing.   

In the following literature review, we will first discuss how the visual system might make use of 

regularities in scene structure to facilitate scene processing. Next, we review the existing research on 

how regularities in low and mid-level scene properties, object information and global layout help 

facilitate efficient scene perception, and how these regularities might be contained within internal 

scene models. Finally, we outline the need to study individual differences within internal scene 

models, and discuss the use of line drawings as a flexible method of creating descriptors of these 

models.  
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1.2 How do regularities in scene structure facilitate natural vision? 

How might the visual system exploit regularities in scene structure to facilitate vision in real-world 

conditions? In the following section, we will discuss two possible theories outlining how this may 

occur. The first posits that the visual brain has a rigid tuning to visual regularities more broadly, and 

regularities are thus considered during bottom-up processing. The second account, inspired by 

predictive processing theories, posits a more flexible bidirectional mechanism that compares sensory 

inputs to top-down predictions of likely stimulus properties (including the structure of scenes). 

1.2.1 Tuning to typical object statistics 

Given theِvisualِsystem’sِneuralِtuningِforِtypicalِscenes (Davenport & Potter, 2004; Kaiser & Cichy, 

2018), the brain may respond differently to scenes that feature typical compositions of constituent 

objects. This tuning to typical object statistics, in conjunction with tuning to typical distributions of 

low-level visual features could render the processing of typically structured scenes more efficient in 

an entirely bottom-up mediated process. Evidence for such a perspective is primarily derived from 

work showing that object location can be extracted at low levels of visual processing and is apparent 

in early scene representations ( Boettcher et al., 2018; Kaiser & Peelen, 2018; Võ et al., 2019). This is 

well demonstrated in detection tasks using CFS, where rapid flashing causes a stimulus to appear 

invisible, until the visual system is able to break this suppression, and the target identified. Detection 

tasks only require the participant to indicate whether they saw a stimulus or where it appeared, and 

they do not need to conduct any higher-level tasks such as categorisation. This allows the earliest 

representations of scenes and objects to be investigated. In such experiments, when objects are 

placed in typically occurring visual field locations or are organised in meaningful groups, they are 

detected quicker than when they are placed in atypical locations or non-meaningful groups (Kaiser & 

Cichy, 2018; Stein & Peelen, 2015). Such results suggest that object regularities are extracted during 

basic stages of visual processing, indicative of differences in bottom-up visual processing (see Kaiser 

et al., 2019). The representation of typical object positioning at early, presumably feedforward-related 

stages of visual processing is also suggested by EEG work (Kaiser et al., 2018). Here, typical absolute 

locations of objects in the visual field (such as rug in the lower visual field, and a painting in the higher) 

facilitate object representation within 150ms of processing, again indicating a difference in bottom-

up stimulus analysis.  

These findings are further supported by research exploring the organisation of receptive fields (RF) in 

response to the typical organisation of visual features. Research has shown that receptive fields in 

face and place selective cortices show a similar organisation to visual field biases, with face-selective 

regions showing RFs closer to the centre of gaze, mirroring the foveal focus used in face processing 
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(Grill-Spector, 2004; Malach et al., 1995), whilst receptive field organisation in place selective cortices 

show a greater peripheral layout, indicative of the broader spatial processing required for natural 

scenes (Levy et al., 2001; Silson et al., 2016). These studies suggest that receptive fields in high-level 

visual cortex are organised according to stimulus distributions found under real-world processing 

demands (faces often fall in the fovea, scenes often fall into the periphery). Though somewhat 

speculative, similar receptive field tuning may facilitate the processing of objects in their typical real-

world locations (Kaiser, Quek, et al., 2019). 

However, in order for spatial information to be utilised in a strictly bottom-up manner as described, 

the visual system would need to develop a vast number of tunings for the many  valid organisations 

of objects and their placement within scenes. Given the huge variety of different objects, and the 

variety of possible typical spatial arrangement between them, this represents no easy task for the 

brain. Furthermore, a bottom-up explanation also struggles to explain how the visual system 

differentiates between objects that share similar low-level visual properties and typical visual field 

locations but provide very different scene category information. In such scenarios, it is difficult to 

imagine how the brain could determine whether the placement of an object is typical for a scene, and 

to use this information to facilitate rapid scene processing, without first identifying what the object is. 

1.2.2 Predictive processing 

The brain may instead rely upon a process in which visual inputs are compared to predictions based 

on likely stimulus properties. Here, the brain may use stored knowledge about the structure of natural 

environments to actively generate predictions about likely input properties that can be adaptively 

compared to incoming stimuli. Predictive processing theories provide a framework for how such a 

mechanism might work (Clark, 2013a; Friston, 2005; Walsh et al., 2020). Predictive processing posits 

that in order to function efficiently and avoid disorder, the brain must minimise the level of surprise 

it experiences. Thus, in order to avoid surprise, the brain must maximise its ability to make accurate 

predictions. In the case of visual perception, predictive processing models suggest that the brain 

makes use of Bayesian inferences, where sensory information is stored as probability distributions, 

representing the likelihood of certain information being apparent. These probabilistic predictions are 

shaped by prior experiences with a given input (Friston, 2010), thus reflecting the regularities they 

might contain. In the case of scenes, a probability distribution could contain preconceived knowledge 

ofِaِscene’sِtypicalِspatialِlayout and object content, which it could then compare to incoming visual 

information, with the strength of the match facilitating how efficiently a given scene is processed. In 

this way, predictive processing models are able to explain why typicality is so important to scene 

processing-  as it dictates the strength of the match between probability distributions and incoming 

visual information. In the predictive processing framework, such prior information about likely 
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stimulus features is often referred to as anِ“internalِmodel”:ِanِinternalِrepresentationِofِprobable 

world statistics that can guide the generation of adaptive predictions. The concept of an internal 

modelِconceptuallyِresemblesِtheِmoreِclassicalِtermِofِaِmentalِ“schema” (Mandler, 1984; Minsky, 

1974), which was used to refer to a memory representation that houses typical properties of stimuli 

that are used to facilitate the perception or memory storage of visual contents.  

Predictive coding could also help explain the rapid categorisation characteristic of scene processing. 

Neural models of predictive processing suggest that the predictions derived from our internal models 

of what a scene should typically look like, are passed down the processing hierarchy in the top-down 

direction, which then acts to suppress incoming sensory input that matches those predicted by the 

internal model, so that only incongruent sensory information is passed on to higher levels of 

processing (Feldman & Friston, 2010; Rao & Ballard, 1999). This  would minimise the overall amount 

of sensory information being processed, only requiring incongruent sensory information to be passed 

on to higher stages of processing. In the case of scenes, with their high degree regularity, predictive 

processing would greatly reduce the amount of visual information needing to be processed to only 

those features that deviate from what is expected by the internal models.  

1.2.3 Internal scene models 

Although relatively few studies have directly investigated the role of predicative processing in scene 

perception, those that have provide promising support. Early research by Rao and Ballard (1999) 

produced a model that demonstrated how predictive coding might process the structural information 

found in natural scenes. First, a multi-layered neural network was trained on pictures of natural 

scenes. Each layer of the network was then tasked with predicting the activity of the next lowest layer, 

utilising a feedforward mechanism, which made predictions based on error signals from prior 

predictions. When a prediction was incorrect, the model received an error signal from the layer below 

as a form of feedback, allowing the model to adjust itself accordingly and generate more accurate 

predictions with each iteration. After training, the model organised itself into a hierarchy resembling 

the processing stages seen in the human visual system, with lower levels of the model developing 

simple cell like receptive fields sensitive to low level visual features such as orientations, whilst higher 

levels of the model were more sensitive to larger more complex spatial structures, which are more 

likely to deviate from standard scene statistics and thus be harder to predict. The model shows that 

feed-forward processing from higher levels is able to predict the simple orientations found at the 

lower levels, so that higher levels only need to process less predictable elements of scene structure. 

By demonstrating that predictive coding can explain how structure is extracted from scenes within a 

framework matching our hierarchical understanding of visual processing, Rao and Ballard (1999) show 
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that top-down mechanisms, similar to those suggested by predictive processing, are theoretically 

capable of explaining scene processing.  

More recent evidence comes from a series of fMRI studies that investigated the interpolation of 

occluded information in scenes, which suggests missing information is “filledِin”ِviaِpredictiveِtop-

down projections (Morgan et al., 2019; Muckli et al., 2015). These studies exploited the retinotopic 

organisation of the visual cortex to isolate feedback from internal scene models, by comparing the 

neural responses to whole and occluded scenes. To achieve this, participants viewed both whole and 

occluded scenes during fMRI, in which one quarter corner of the scene is occluded. By occluding a 

section of the scene, neurons processing scene information for that section received no visual input, 

meaning that any information encoded during viewing must be derived from feedback from later 

cortical areas. Retinotopic mapping was then used to isolate voxels that responded only to the 

occluded portions of the scenes, and multivoxel pattern analysis (MVPA) conducted to investigate 

what visual information had been encoded. MVPA is a neuroimaging technique in which the activity 

of groups of voxels (typically based on criteria such as proximity, similarity of activity patterns) are 

analysed together, allowing researchers to better decode information related to a specific stimuli or 

task-states (Norman et al., 2006). They found that despite the lack of visual input, superficial layers of 

the primary visual cortex (V1) mapping to the occluded scene sections still contained contextual scene 

information, indicating that V1 receives some level of feedback information from cortical regions 

further along the processing hierarchy (Muckli et al., 2015). This conclusion is based on the established 

mapping between cortical depth and feedforward and feedback projections: neurons in superficial 

cortical layers of V1 (in contrast to neurons in the middle layers) are primarily involved in collecting 

feedback from higher-order cortical regions. In a follow-up study, Morgan, Petro and Muckli (2019) 

used line drawings to investigate what features of the occluded (and thus interpolated) scene 

segments are fed back during this process. To access approximations of the information stored in 

internal models they conducted a drawing task in which participants filled in the occluded scene 

section by drawing what they expected to be behind the white square. All participants drawings were 

then averaged to create an image representative of the average expectation for all participants, which 

were then rated by an independent raters to have a high degree of similarity to the actual scene 

information present within the occluded section. Two key conclusions can be drawn from these data: 

First, cortical feedback that projecting to earlyِvisualِcortexِ“fillsِin”ِprobableِglobalِsceneِstatisticsِ

that are inferred from context. Second, drawings can be used as feasible approximations of the 

content of predictions in the visual system (we shall exploit this strength of drawings later in this 

thesis, as discussed in section 1.6). 
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If the brain relies on internal scene models to enhance scene processing, as suggested by the research 

reviewed above, understanding the nature of these models becomes essential for a deeper insight 

into scene perception. Perhaps most pressingly is to understand more precisely what the content of 

these models are, and how they facilitate the match to our internal models. Furthermore, if these 

internal models reflect our own visual experiences (Friston, 2010), are these differences meaningfully 

represented within internal scene models?  Whilst many studies have demonstrated the visual 

systems sensitivity to the regularities found within natural scenes, suggesting such features may likely 

be represented within these models, we currently lack research investigating the contents of internal 

scene models directly. One reason for this lack of evidence may be the absence of a suitable method 

for assessing the contents of internal models directly. If we developed a method to read out the 

contents of internal models, we could make great progress in understanding these questions, and may 

be able to quantify the extent to which internal models are idiosyncratic, and how such idiosyncrasies 

impinge on scene perception. In the current thesis, we will attempt to develop a drawing method to 

help characterise internal scene models (chapter 3), and to explore their content (chapter 4). 

In the next section we will explore literature investigating how the visual system utilises regularities 

in low-level visual properties to facilitate scene perception. 

1.3 Regularities in low and mid-level scene properties 

Low-level vision refers to the initial stages of visual processing, where the visual system detects and 

analyses basic features of visual input, such as colour, luminance and contrast. This processing occurs 

in early visual areas, including the retina and primary visual cortex, and provides the essential building 

blocks for more complex visual tasks (Groen et al., 2017). Research suggests that regularities in low-

level visual features, such as texture, colour, and spatial distributions, play a crucial role in scene 

processing (Kauffmann et al., 2015; Oliva & Schyns, 2000; Rajimehr et al., 2011). Despite the high inter 

and intra-category variability of scenes, many low-level features remain surprisingly stable across 

scene categories (Geisler, 2008), providing reliable and distinctive regularities that the visual system 

can utilise to interpret and categorise scenes effectively. Much of this evidence comes from 

neuroimaging studies investigating the sensitivity of scene selective areas to low-level visual features 

(Kornblith et al., 2013; Lowe et al., 2017; J. Park & Park, 2017; Watson et al., 2014). These areas include 

the parahippocampal place area (PPA), a region of the posterior parahippocampal gyrus, which has 

been found to respond strongly to images of places or scenes (Aguirre et al., 1998; Epstein & 

Kanwisher, 1998), and is believed to play a vital role in scene processing. Additionally, two other 

cortical areas are strongly associated with scene perception; the retrosplenial complex (RSC) and the 

occipital place area (OPA), found on the lateral surface of the occipital lobe (Dilks et al., 2013). 
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Collectively, we will refer to these areas as scene selective cortical regions. In this section, I will discuss 

examples of how regularities in low-level visual properties, such as spatial frequency, colour and 

texture, aid scene processing, and what mechanisms might facilitate this advantage. 

The stability of low-level visual properties across scenes is well visualised in a study by Torralba and 

Oliva (2003). They averaged the low-level statistics of 100 different objects and scene types (see Figure 

1.1) in order to create protype images, where spatial similarities between local features within the 

stimuli category are represented by how sharply they are displayed. For objects, that have relatively 

stable representations, low level averages produce legible exemplars, with colour, form and contrast 

all being well preserved and communicating clear exemplars of their object type. For scenes, whilst 

perhaps less clear than in objects, it is apparent even from these simple exemplars that some 

important scene characteristics are being preserved. Averaging can still produce recognisable 

exemplars, particularly for the beach and street examples, despite the absence of any recognisable 

high-level information, such as objects, that we might expect to define them.  

 

Figure 1.1. Low level feature averages of different objects and scene categories, produced by 

averaging the low-level visual properties of 100 exemplars of each type. Originally presented in 

Torralba & Oliva (2003). 

Regularities in the distribution of colour across scenes have been found to communicate important 

scene information. Research has shown that we are both better at remembering and categorising 

images in colour (Goffaux et al., 2005; Homa & Viera, 1988; Spence et al., 2006),  indicating that colour 

communicates some level of diagnostic scene information. However, colour alone may not be 

sufficient at facilitating this advantage, with research suggesting this advantage occurs only when 

colours are present in their typical real-world arrangements. Using a go/no-go task in combination 
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with EEG,  Goffaux et al. (2005) found that presenting natural scenes in their typical colours enhances 

rapid categorisation, as indicated by faster reaction times and higher accuracy, with the effect being 

less pronounced for greyscale or non-diagnostic colours. Analysis of ERP data also revealed that colour 

cues influenced neural responses as early as 150ms after stimulus onset, with delayed and weaker 

signals for greyscale and non-diagnostically coloured scenes. Furthermore, similar beneficial effects of 

colour have also been observed in studies utilising classifiers to group scenes based on category, 

where in combination with edge-detection based features, colour could be used to group scenes into 

city vs landscape categories, and  further distinguish between different categories of landscape scenes 

(such as fields vs forests) (Vailaya et al., 1998). Taken together, these findings suggest the role of colour 

in scene perception is contingent upon its natural, real-world distribution. 

Regularities in colour have been extensively observed to enhance scene memory, with colour found 

to aid in directing attention and consolidating memory encoding (Dzulkifli & Mustafar, 2013). For 

instance, studies have demonstrated that participants exhibit reduced recall when scenes are 

presented in colour during learning and later tested in black and white, or vice versa, indicating that 

colour is integral to memory representation (Nijboer et al., 2008; Wichmann et al., 2002). Notably, 

this memory advantage is more pronounced when the colour is consistent with natural scenes; scenes 

with irregular colour representations, such as purple skies and blue fields, do not show this benefit, 

suggesting that the visual system utilises regular colour distributions rather than arbitrary colours. 

While these memory effects help highlight the significance of colour regularities, these effects may be 

influenced by encoding and retrieval processes, and thus while they do not necessarily indicate a 

perceptual advantage, they do highlight further the importance of regularities in colour for extracting 

information from scenes. 

Regularities in texture have similarly been found to benefit scene processing. Within scenes, texture 

often behaves similarly to colour; both are distributed across a broad envelope, able to be broken 

down into distinctive texture patches, and both can be extracted rapidly (Beck, 1972; Bergen & Julesz, 

1983). For example, a beach could be broken down into large patches of sand, water, and rock 

textures, which may be able to invoke a senseِofِaِscene’sِidentity. However, neuroimaging research 

suggests that texture alone are not enough to evoke responses in scene selective neural areas.  

Kornblith et al (2013) found activity in scene selective cortex of macaque monkeys was only sensitive 

to texture when it was combined with other important scene characteristics, such as depth, viewpoint, 

and object identity. Similarly, fMRI has also identified specific areas sensitive to texture patterns in 

the PPA, (Lowe et al., 2017;  Park & Park, 2017) providing evidence for this texture sensitivity in human 

scene selective areas.  
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However, these regions may be particularly sensitive to texture when it is presented in typically 

occurring locations, matching the regularities seen in real world scenes. Park and Park (2017) 

conducted fMRI experiments to explore how the PPA represents texture within scenes. Participants 

viewed computer-generated room outlines with varying wall, ceiling, and floor textures. In the first 

experiment, MVPA indicated that the PPA's representation of texture was consistent regardless of its 

location within the scene, suggesting that the PPA encodes texture information independently of 

spatial context. However, a follow-up experiment using a repetition suppression paradigm revealed 

that scenes with identical textures in different locations elicited distinct neural responses compared 

to those with the same texture and location. This discrepancy implies that while the PPA broadly 

represents texture across neural populations, it also encodes specific combinations of texture and 

location at a more localised level. Taken together, these studies suggest that scene selective areas are 

most sensitive to texture when it is presented in canonical locations, reflecting the regularities we are 

exposed to in our visual diets. 

The importance of colour and texture is further exemplified in a case study of a clinical patient, known 

as D.F, who had a profound from of visual agnosia (Steeves et al., 2004), meaning she could not identify 

objects by shape. However, she retained intact colour and texture perception, and was able to identify 

scenes and objects based on this information (due to representations stored in her long-term 

memory). D.F had lesions in the lateral occipital cortex (LOC) and the medial occipitoparietal regions 

which are associated with object processing (Milner et al., 1991), whilst her primary visual cortex and 

the fusiform gyrus were undamaged (James et al., 2003). ResearchersِtestedِD.F.’sِabilityِtoِclassifyِ

natural and man-made scenes using only colour and texture across five formats: regular, colour-

inverted, greyscale, black-and-white, and 180-degree rotated. Behaviourally, D.F. successfully 

categorised scenes despite her object recognition deficit, showing the fastest reaction times for 

regularly coloured images and more errors for black-and-white, greyscale, or inverted colours—closely 

mirroring neurologically typical subjects (Nijboer et al., 2008). D.F.’sِcase highlights the ability of low-

level visual features to drive scene perception to a degree that allowed D.F to navigate daily life 

effectively, without the need to identify a scenes constituent objects. 

While regularities in colour and texture provide essential cues for scene processing, they do not act in 

isolation. As discussed, these low-level features alone are insufficient to fully support scene 

perception. Instead, the visual system integrates multiple low-level cues, allowing for more reliable 

and efficient scene categorisation (Groen et al., 2017). A central framework for understanding this 

integration is the concept of scene gist, which describes the summation of  global spatial structure 

using regularities in spatial frequency, orientation, and contrast (Oliva, 2005). Gist can communicate 

an impressionِofِtheِscene’sِcategoryِdespiteِ lackingِanyِspecificِhigh-level details, such as object 
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content. For example, a city street might be characterised by high verticality and linear perspective, 

with strong parallel structures suggesting roads and buildings rather than specific objects. Research 

has shown that even when a scene is blurred or filtered to preserve only its spatial envelope, observers 

can still accurately categorise it (Oliva & Torralba, 2001). This suggests that the brain combines low-

level regularities, including colour, texture, contrasts and spatial frequencies into a structured 

intermediate, or mid-level representation,  which can facilitate the rapid and efficient extraction of 

scene information (Brady et al., 2017; Castelhano & Henderson, 2008; Nijboer et al., 2008; Oliva & 

Torralba, 2006). Categorisation can be achieved with this spatial envelop alone, with participants able 

to accurately categorise scene images that have been filtered so only basic spatial frequency and 

orientation information is present, even when display times are very short (Greene & Oliva, 2009b; 

Oliva & Torralba, 2001, 2002; Renninger & Malik, 2004; Torralba & Oliva, 2003). Not only can 

categorical information be extracted, but also more complex scene properties such as naturalness and 

openness can be recognised (Greene & Oliva, 2009b), indicating that specific information about a 

scene can also be extracted from its gist.  

Gist may be particularly important for rapid scene judgements, where the need for speed outweighs 

accuracy. Research exploring memory for scenes by Schyns and Oliva (1994) found that when asked 

to match a sample scene to a target that had either been filtered with a high pass (where the scenes 

outline and thus object identities are preserved), low pass (where only the spatial envelop is 

preserved), or two variations of hybrid scenes (which combined both filtered images but empathised 

either high pass or low pass information), participants were more accurate at matching samples with 

low frequency images when exposure times were brief (30ms), and more accurate matching high 

frequency filtered images when exposure times were longer (150ms). However, whilst this research 

demonstrates the importance of low-level visual information in informing rapid recall, it is important 

to note that this effect was observed for a task relying on visual memory, as opposed to representing 

purely perceptual processes.  As such, whilst it is unclear whether the same reliance on low-level visual 

information would hold for tasks that involve immediate scene perception rather than memory-based 

matching, it indicates differences in high and low-level visual information might be utilised by the 

visual system. 

It may be that the spatial envelope of a scene is specifically useful in instances where such rapid 

judgements are needed, whilst in visual experiences where a longer processing time is available, or 

necessitated by task demands, high level object representations are utilised.  This notion is somewhat 

supported by research showing that attentional allocation is guided more by scene content than by 

scene gist (Koehler & Eckstein, 2017). However, this study did use a somewhat unconventional 

definition of gist, where gist was characterised as scene characteristics that implicitly communicated 
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the scenes category, such as clutter, crowding and object/ background saliency, rather than focusing 

on the spatial envelope being discussed here. Despairingly, research claiming the opposite is equally 

inconclusive, either using a similar definition of gist as Koehler and Eckstein (2017) or utilising display 

times that exceed the extraction of gist, meaning the influence of other higher level scene features 

cannot be excluded (Hillstrom et al., 2012). As such, whilst research exploring how scene gist interacts 

with higher-level scene features to aid scene perception is inconclusive, research does suggest the 

visual system has evolved to take advantage of the broad regularities found in low-level visual 

features, highlighting again its sensitivity to typicality.  

Despite lacking perhaps, the most typifying high-level features of a scene, such as objects or structural 

arrangements, regularities in low-level features provide the visual system with sufficient information 

for rapid scene judgements. Whilst the combination of low-level features is critical for forming these 

quick perceptions of our environments, as evidenced by the rapid categorisation evoked by scene gist, 

the visual system may also rely on object-based information—regularities in the types and spatial 

arrangements of objects—to refine and enhance scene perception. In the next section we discuss how 

regularities in object information contribute to our ability to process scenes.  

1.4 Regularities in object positioning 

Objectsِareِoften iِmplicitlyِconnected tِoِaِscene’sِmeaning,ِeither tِhrough iِts fِunctionِorِasِaِdefiningِ

feature. This creates an intrinsic part-whole relationship between them, where the meaning of a scene 

can be derived from the configuration of its constituent objects, but also the relationship between the 

individual objects can be derived from the function of the scene. For example, a bedroom can be 

defined by its inclusion of a bed, but the bed is also necessary for the room’s function, and so its 

presence in the scene becomes more predictable. Whilst connected, it is important to distinguish 

objects from scenes, as they represent distinct visual phenomena. Here, we distinguish objects from 

scenes based on their visual properties and function: whilst scenes consist of large-scale global 

environments that we act within, objects are smaller scale local entities that are acted upon (Peelen 

et al., 2024; Simoncelli & Olshausen, 2001). Research has found that identities and arrangement of 

objects help the visual system refine scene categorisation (Kaiser, Quek, et al., 2019; Koehler & 

Eckstein, 2017; Lowe et al., 2017; Võ et al., 2019), working in tandem with low and mid-level properties 

to construct a coherent percept. This section examines previous research on the role of object 

regularities in scene processing and how they might inform our internal models. 

 Võ et al (2019) suggest that a scene’s constituent objects, defined as the individual objects that are 

found within a particular scene, contain two main sources of information: semantic and syntactic. 

Semantic refers to the object’s identity, and how in-fitting it is with the room’s category, whilst 
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syntactic refers to the spatial properties of objects found within the scene. Referencing our previous 

example, we can illustrate the presence of semantic and syntactic scene information: a bed is a highly 

typical object to find in a bedroom, and so would have a high semantic consistency with the scene 

category, whilst a bathtub would be a very unusual object to find and thus exhibit low semantic 

consistency. Syntactic information is also highly predictable, for example we would expect to see the 

bed placed on the floor, the right way up, and perhaps with one side placed against a wall (typically 

the headboard). Other scene objects, such as side tables or lamps could be placed around it, without 

blocking or interrupting the function of each constituent object. Such an arrangement would be highly 

typical syntactically. In this way, a scene’s object content becomes analogous to the rules of written 

grammar, where words both have individual meaning and rules that dictate where they should be 

placed in a sentence. As with previously discussed scene properties, both semantic and syntactic 

object information often adhere to strict regularities, which our visual system can take advantage of. 

In this section we will focus on reviewing literature discussing the scenes syntactical rules, the 

regularities in object positioning and location, both within a space and in relation to one another. 

The arrangement of objects within a scene are both highly structured and predictable, depending on 

the purpose or nature of a given scene (Epstein, 2005; Epstein & Baker, 2019).  When objects are 

found in typically occurring locations there is improved performance in numerous scene-based tasks, 

such as object memory (Coco et al., 2016; Konkle et al., 2010; Mandler & Johnson, 1976) and visual 

search (Brockmole & Henderson, 2006; Peelen & Kastner, 2014; Torralba et al., 2006; Wolfe, Alvarez, 

et al., 2011). This advantage is present even when objects appear in isolation, without any contextual 

scene information. Research using continuous flash suppression (CFS) was used to mask objects 

presented at different visual field locations when they either adhered to, or violated, the spatial 

positions they occupy in typical scenes (e.g., placing a lamp in the upper visual field would be atypical, 

as they usually rise from a base in the lower visual field). Objects presented at typical locations would 

break suppression faster than those that were not (Kaiser & Cichy, 2018), indicating that the visual 

system utilises regularities in where an object is typically positioned to aid object processing. These 

findings are supported by neuroimaging studies that have found neural representations of objects are 

more efficiently decoded in object-selective lateral occipital cortex (LOC) when they appear in 

retinotopic locations corresponding with their typical locations found in scenes, with this encoding 

occurring within 140ms  (Kaiser et al., 2018; Kaiser & Cichy, 2018a). This rapid encoding suggests that 

this location-based sensitivity occurs at the early stages of scene processing before feedback from 

other higher level cortical areas can be implemented. Together, this work suggests that the visual 

system is strongly attuned to the absolute retinotopic locations of objects matching those of their 

canonical placement in real world scenes. This sensitivity occurs at early stages of visual processing, 
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indicating that such structural regularities could be utilised by later stages of visual processing, 

highlighting the potential utility of these regularities to the visual system. 

As well as being viewed in typical positions within scenes, objects are also frequently found in 

predictable positions relative to each other. For example, a computer monitor is almost always found 

on top of a desk, with a keyboard in front of it and perhaps speakers either side. As with single objects, 

the visual system becomes accustomed to this typical spatial arrangement and can take advantage of 

this. This has been shown in a number of behavioural tasks, such as in object detection (Stein & Peelen, 

2015), identification (Biederman et al., 1982) and in improving the accuracy of visual memory 

(Draschkow & Võ, 2017; Gronau & Shachar, 2015; Kaiser et al., 2015). Research investigating this effect 

on visual perception specifically has found that viewing typical object pairs relevant to a specific scene 

category in isolation invokes similar patterns of activation in the LOC as viewing that scene directly 

(MacEvoy & Epstein, 2011).  

However, within these object pairs, some individual objects may be more diagnostic then others. In a 

novel virtual reality paradigm, where participants constructed representations of different scenes, 

participants consistently placed larger objects (such a tables, counters and baths) first, before placing 

smaller objects around them (Draschkow & Võ, 2017). These larger objects may act as anchors, key 

Figure 1.2. Schematic hierarchy of a bathroom scene with three phrases consisting of one anchor 

each (e.g. a shower, a toilet and a sink) that predict the locations of other objects (Võ, Boettcher & 

Draschkow, 2019). 
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points of reference for other objects within a scene. Võ, Boettcher and Draschkow (2019) suggested 

a framework for this relationship, in which anchors act as key frames of references for other objects 

within a scene (see Figure 1.2). As such, smaller separate clusters of objects may be connected to 

different anchors (such as soap, flannels and toothbrushes around a sink) in order to create phrases, 

which in turn are combined to create scenes.  

Whilst there has been little exploration of the role of anchor type objects in guiding scene processing 

specifically, previous experiments have used large anchor like objects (such as cabinets, sinks, and 

shower stalls) as stimuli when demonstrating the effect on typical object placement in facilitating 

efficient scene perception (Kaiser & Peelen, 2018; Linsley & MacEvoy, 2014). If a combination of object 

pairs and anchors can be utilised to characterise a scene, these object relationships might be 

represented within our internal models. If this is true, we might expect that manipulating anchor 

objects within scenes more closely matching our internal models to negatively impact scene 

processing. 

An alternative explanation for the benefit of object pairs occurring in typical relative location is the 

occurrence of reduced inter-object competition within the visual system. Inter-object competition 

occurs when different visual elements of a scene compete for the limited processing resources 

available to the visual system. Kaiser, Stein and Peelen (2014) demonstrated this in an fMRI 

experiment where they measured the activity of the PPA to images of houses when they were 

presented alongside objects placed in either typical or irregular relative positions to one another (for 

example an egg above an egg cup vs an egg cup above an egg). Their rationale posited that the PPA 

would show higher levels of activation when inter-object competition was low, as more resources 

could be allocated to the processing of the preferred element (i.e. the house). They found that PPA 

activation was indeed higher when objects were typically arranged, suggesting the visual system 

exploits the knowledge of these regularly occurring positions to group objects and process them 

together, lessening the perceptual load of a scene and contributing towards efficient scene processing. 

Given the strong representation of the regularities in object positioning, it seems plausible that such 

information is represented within our internal scene models (Bar, 2004; Biederman et al., 1982; Kaiser, 

Quek, et al., 2019). If regularities in object structure do help drive efficient scene processing, the visual 

system would require a reference for this typicality, which could be facilitated by matching content to 

internal models. Scenes featuring more typical object arrangements could be more easily indexed 

against these internal models and thus be perceived more efficiently. How these regularities in object 

arrangements and identities are represented within internal models is a central question that this 

thesis seeks to explore. This will be investigated more directly in chapter 4, where we manipulate 
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sceneِcontentِbasedِonِproxiesِofِparticipants’ِinternalِmodelsِtoِbetterِunderstandِhowِobject-level 

information is stored and utilised within these models. 

1.5 Regularities in global scene structure 

Other studies have taken a different, complementary approach to investigating the spatial regularities 

present in scenes. Instead of manipulating the arrangement of constituent objects, they have 

disrupted the congruence across a whole scene in order to disrupt the global scene structure. Global 

scene structure refers to the overarching organisation and arrangement of elements within a scene, 

encompassing both the spatial configuration of objects and the structural norms.  Scene selective 

regions show a distinct sensitivity to many regularities in global scene structure, such as size (Park et 

al., 2015), openness (Henderson et al., 2011), and geometric dimensions (Dillon et al., 2018; Ferrara 

& Park, 2016; Henderson et al., 2008). The structural information contained within the overall 

geometric structure of a scene seems to be particularly diagnostic, with studies showing that even 

empty scenes, devoid of any constituent objects, can evoke neural activity in scene selective regions, 

(Epstein et al., 1999; Epstein & Kanwisher, 1998; Kamps et al., 2016; Wolbers et al., 2011), suggesting 

a strong sensitivity to geometric structure. 

 

Classical work by Biederman (1972) investigated the effect of global scene structure using  jumbling 

paradigms, in which scenes are divided into segments and then shuffled to disrupt their global spatial 

structure (creating a similar effect as a slide puzzle). The result is an image where segments from 

different parts of a scene are recombined so portions that might typically be found at the top of the 

image could instead be found at the bottom, or from the left to the right etc, with the degree of 

jumbling being modulated by how many segments the original image is divided into. Behavioural 

studies have shown that disruptions to the global scene structure caused by jumbling impair 

immediate scene perception. This impact is evident in tasks requiring rapid scene categorisation 

(Biederman et al., 1974) and object recognition (Biederman, 1972; Biederman et al., 1973), where 

structural inconsistencies interfere with real-time processing. 

 

Jumbling is a coarse manipulation of scene structure, which results in the simultaneous disruption of 

several aspects of scene information. When segments are moved, both the relative object 

positioning across segments (Kaiser, Quek, et al., 2019; Kaiser & Peelen, 2018), and the scene’s 

overall spatial geometry (Dillon et al., 2018; Spelke & Lee, 2012) are disrupted. This high degree of 

spatial disruption is achieved while maintaining categorical and local object information, which 

remains contextualised within the individual segments, with only their absolute locations being 

altered. These properties allow jumbling paradigms to isolate the effect that global spatial structure 
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has on scene perception regardless of contextual and local object information. By preserving these 

scene qualities, the jumbling paradigm provides strong evidence that global spatial structure is 

utilised separately from object placements and relative positioning, representing a distinct source of 

visual information utilised during scene processing. 

Jumbling was used in a series of recent studies investigating the role of intact global structure in 

extracting categorical information from scenes. Kaiser et al (2020b), found that when a scenes 

spatial structure was jumbled, extraction of categorical information was greatly decreased, and that 

intact spatial structure could facilitate the extraction of categorical information as early as 200ms. In 

order to distinguish whether the effect of jumbling on categorisation arose primarily from genuine 

disruptions to the global scene structure, or from disruptions to categorical-level information, Kaiser 

et al (2020a) compared neural activity in participants passively viewing scenes that had either their 

spatial or categorical information disrupted through jumbling. Categorical information was jumbled 

by replacing segments of the target scene image with segments taken from scenes belong to a 

different scene category, but arranged in a spatially consistent manner to preserve their global scene 

structure.  

Using MVPA they found that whilst jumbled scene structure impacted cortical processing in scene 

selective regions, there was no effect for categorical jumbling, indicating that the effects of jumbling 

are not a result of disruptions to categorical information within the scene.  Supporting their previous 

findings, they found the difference between spatially intact and jumbled scenes emerged rapidly, 

within 255ms. Crucially, they also included an inverted condition for both stimulus types, showing 

that the results could not be explained by the formidable disruptions to low level visual features 

present in jumbled stimuli (such as the displacement of large texture and colour patches present in 

typical scene structures representing portions such as sky).  

In a final fMRI experiment Kaiser et al (2021) found that the jumbling scene structure impacted 

scene perception regardless of the task demands. They conducted MVPA on imaging data collected 

while participants completed an object or scene categorisation task, in which targets were displayed 

in either intact or jumbled scenes. Whilst they found stronger neural representations for scenes 

when spatial structure was intact regardless of the task, jumbled structure only weakened 

representation for objects during the object classification task. Taken together, these studies suggest 

that the use of intact global structure in scene perception occurs rapidly, and regardless of task 

demands. The authors suggest that as this rapid extraction of scene structure occurs later than 

typical object content aids scene processing (Draschkow et al., 2018; Ganis & Kutas, 2003; Mudrik et 
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al., 2010; Võ & Wolfe, 2013), that these results could indicate a separate stage of scene analysis 

dedicated to the structural arrangement of scenes holistically. 

If regularities in global scene structure are important for scene perception, then we would expect this 

effect to be modulated by its adherence to the regularities we experience in real world scenes. For 

example, the global scene structure of real-world scenes tends to follow a consistent vertical 

organisation due to gravitational and structural constraints, with almost all natural scenes consisting  

of a base from which objects arise (Vaziri & Connor, 2016). Conversely,  horizontal structure can vary 

significantly more whilst still evoking structurally typical scenes. These structural regularities in natural 

scene structure could be stored within internal models, and might result in  aِ“verticalِbias”ِfor visual 

information arranged along the vertical axis of a scene. Regularities in global scene structure might 

also reflect prominent differences between structural areas of a scene, such as the difference between 

earth and sky found within outdoor scenes. Previous research has found that the horizon, which acts 

as the boundary between these two structural components, can be identified very rapidly based only 

on a scenes low-level visual information (Herdtweck et al., 2010), suggesting that the visual system 

might utilise the horizon to facilitate swift scene processing. In chapter 2 we explore this question, 

investigating whether the advantages of intact global scene structure are reflective of real-world 

structural norms. We do this by comparing the effects of jumbling across different scene axes, in order 

to establish whether a vertical bias exists when extracting global scene structure, reflecting the bias 

for vertically arranged structural information found in real-world scenes.  

Taken together the research reviewed in this section highlights the critical role of global scene 

structure in scene processing, demonstrating that disruptions to this structure—such as through 

jumbling—impair both rapid scene categorisation and object recognition. The ability to rapidly 

extract global scene structure appears to function as a foundational stage of scene processing, 

distinct from object-based recognition mechanisms. Whilst we posit that the advantages of intact 

global scene structure may reflect the regularities observed within real-world scenes, such as a 

stable vertical organisation, we aim to explore this hypothesis more directly in chapter 2. 

Thus far, we have reviewed how regularities in low and mid-level properties, object positioning, and 

global layout aid scene perception, and how this might be reflective of information stored within our 

internal models. However, if internal scene models are shaped by our prior experiences, could the 

information they contain vary on an individual level, reflective of our own individual visual 

experiences? In the next section, we will discuss the importance of investigating these individual 

differences, and methodologies that may help us do so.   
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1.6 Uncovering individual differences in internal models and why we need a 
new approach for studying internal models 

Individual differences are widely neglected in the scene perception literature. Although there is 

consensus that many structural regularities found in natural scenes are utilised during scene 

processing , it is not yet well understood how differences in conceptions of these regularities might 

modulate this effect. This has stemmed from researchers investigating these effects assuming a 

shared concept for what is typical, relying upon either their own intuition (Davenport & Potter, 2004; 

Kaiser, Quek, et al., 2019; Võ et al., 2019; Wolfe, Alvarez, et al., 2011) or panels of raters (Torralbo et 

al., 2013) to determine what represents a typical scene. This results in generically typical scenes, 

assumed to be equally so for all participants, that then acts as a baseline to compare any 

manipulations against (such as changes in object content or structure).  

However, if internal models are shaped by our own individual prior experiences, this classical approach 

(as we will refer to it here on) would miss out on these differences.  A typically generic scene shared 

across participants  may be more or less typical for each individual participant, depending on their 

prior experiences and expectations. This could lead to an underestimation of the effects of typical 

scene statistics on perception, as the manipulations applied to violate the generic scene’s typicality 

would not affect each participant equally. For example, if an individual participant’sِinternalِmodelِofِ

a scene happened to differ greatly with that of the generically typical scene, the effects of such a 

manipulation would be weaker than expected for that participant, if exhibited at all. If instead we 

could create stimuli that reflects each individual participant’s idea of what the most typical instance 

of a scene should look like (and thus reflecting their internal model of the scene), we could construct 

experiments that not only honour individual differences in visual experiences but also allow us to more 

fully explain the variance in scene perception across the population. 

1.6.1 Challenges of the classical approach 

Whilst the assumption of a shared conception of typicality represents a major barrier in identifying 

individual differences within scene processing, several other limitations hold back the classical 

approach. For example,  the classical approach only allows for more rigid manipulations to a scene, in 

order to isolate which manipulations drive any observed effects. A test of all possible  combinations 

of  a scenes features, without insights on which of these statistics most prominently feature in internal 

scene models, is hardly feasible within a single experiment. This makes it hard to quantify which 

factors are more or less important to the internal model: For example, in the internal model of a living 

room, is the position of the sofa more important than the size of the table? By only manipulating a 

single feature at a time, it would be difficult to capture this relationship between scene features, 
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without designing an experiment with an impractical amount of stimulus conditions and 

permutations. 

Another problem of constructing typical and atypical scenes at the discretion of the experimenter is 

that such experiments often expose participants to highly improbable and hence artificial scenes. This 

problem is especially apparent in studies of object-scene consistencies (Chen et al., 2022; Davenport 

& Potter, 2004; Munneke et al., 2013; Võ & Wolfe, 2013), where highly improbable objects are shown 

within a scene (e.g., a priest in a football field) or when using jumbling paradigms (Biederman, 1972; 

Kaiser et al., 2020b), where the jumbled condition is highly artificial and unlike anything people 

encounter in the real world. This may result in observed effects being influenced by the novelty of 

these strange stimuli, instead of the manipulations being applied.  

1.6.2 Line Drawings in psychological research 

Given the limitations of the classical approach it becomes apparent that in order to investigate internal 

models, a new, complimentary approach is needed. Ideally, such a new approach would focus on the 

contents of internal models more directly, rather than inferring them indirectly. Such an approach 

needs to be flexible enough to characterise an iِndividual’s internal model in an unconstrained manner, 

allowing them to express the contents and layout of a scene as closely as possible to their own 

expectations. It also needs to be practical for experimental use, in the sense the quantifications of 

internal models should be obtainable in a short amount of time and in a way that is intuitive for 

participants.  

In order to achieve this, the participant, and not the experimenter, would have to lead in the 

construction of stimuli representative of their own idea of scene typicality, and thus approximating 

their internal model. One promising method that allows for this flexibility is line drawing. Line 

drawings allow participants to communicate scene content with a high degree of freedom, being able 

to include any objects, their properties and layout. Line drawings have changed little over the course 

of human history and may have developed as a stable way for humans to communicate important 

conceptual visual information, including the content and layout of different environments (Cavanagh, 

2005; Sayim & Cavanagh, 2011). They can be seen as functional abstractions of the way in which an 

individualِ perceivesِ theِ world,ِ ableِ toِ “exploitِ theِ underlyingِ neuralِ codesِ ofِ vision”ِ (Sayim & 

Cavanagh, 2011). As such, line drawings may provide a direct and intuitive way of conveying the 

contents of internal models, equipping us with a novel method of accessing the information encoded 

within them. 

Historically the use of line drawings in psychology has primarily been in clinical settings, used as a 

diagnostic tool for neuropsychological conditions. The complexity of drawing, and the range of 
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cognitive skills required to translate mental representations into a sequence of motor commands, 

makes it a useful indicator for dysfunctions in a range of cognitive processes, such as memory, motor 

control and mental imagery (Smith, 2009). Various drawing tasks have been used to  help diagnose 

memory disorders (Pinto & Peters, 2009), dementia (Herrmann et al., 1998), apraxia (Warrington et 

al., 1966), spatial neglect (Agrell & Dehlin, 1998), and in the study of lesions in the parietal lobe 

(Makuuchi et al., 2003). Projective drawings are also used in a number of examinations used to explore 

the psychological state of children and individuals with communication difficulties, in order to assess 

thoughts and emotions they may find difficult to describe or vocalise (Bekhit et al., 2005; Thomas & 

Jolley, 1998; Woolford et al., 2015),. 

Within cognitive research, drawing has historically been used sparingly, with its use primarily in studies 

exploring memory and recall (Bainbridge et al., 2021; Intraub & Bodamer, 1993; Rubin & Kontis, 1983). 

Of particular methodological relevance to the current thesis, Rubin and Kontis (1983) used a drawing 

paradigm to explore memory schemas for coins, in order to understand what information is held in 

mental representations of familiar objects. They asked participants to draw different U.S coins from 

memory, and compared these against the drawings produced by other participants and those of real-

world coins. They found that instead of representing the different types of coins separately, key 

features (such as inscriptions and which president was depicted on the heads side) were shared across 

coins, suggesting that schemas for familiar objects might exist for broad categories, rather than being 

object specific. Whilst this early work shares a similarity in experimental approach with our current 

aims, it is limited by its inability to objectively compare drawing output, instead relying on experiment 

judged scoring systems. Another key difference is that Rubin and Kontis (1983) used drawings to 

describe participants visual memory of an object, while the work in the current thesis aims to explore 

perceptual effects. Whilst overlapping, their underlying neural mechanisms differ, limiting how 

findings in drawing studies on memory can be applied to visual processing. 

1.6.3 Advancements in line drawing methods for cognitive research 

These early drawing experiments relied greatly on experimenter judgement in order to assess drawing 

content, a more subjective and complex measure compared to alternative behavioural measures like 

accuracy and reaction times (Fan et al., 2023). This may have deterred interest in the methodology by 

researchers for some time, stunting the development of the drawing paradigm further. This limitation 

is exemplified in the second experiment of aforementioned Rubin and Kontis (1983). Here participants 

were asked to draw a speculative new denomination of coin (such as a 7 pence coin) from their own 

imagination, in order to investigate what features they would include on such coins, without the 

influence of memory. In order to analyse the drawings, they used their own ratings to compare the 

speculative coin drawings from those produced from memory. Finding little difference between them, 
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they concluded that participants use a generalised coin schema, rather than schemas for specific coin 

denominations. However, the experimenters only compared the coin drawings on a number of pre-

defined characteristics, such as the location and inclusion of key text, dates and denominations, and 

not on more granular details such as the figure included on the heads side, or more intricate design 

features. If the experimenters had been able to access a more objective measure, capable of 

comparing visual features in a less defined way, more nuanced comparisons might have revealed 

differences not immediately obvious to the researchers, yielding a more comprehensive and objective 

data set. 

However, recently there has been a renewed interest in the use of line drawings as a method for 

studying cognition, in part spurred by technological advances that make it easier to collect and analyse 

drawing content. Deep neural networks (DNNs), trainable computer models based on the neural 

architecture of the visual system, allow for images to be analysed on visual characteristics in a manner 

analogous to the ventral visual pathway of primates, allowing for more objective comparisons to be 

made against line drawings (Fan et al., 2018; Jongejan et al., 2016; Yamins et al., 2014). This allows 

experimenters access to a more objective metric to analyse the content of line drawings and compare 

this with other drawings or real-world images, helping remove the requirement for experimenter 

judgement. Further, methodological advances in utilising drawings have also been made in recent 

years, with efforts to help establish more standardised procedures for line drawing experiments. 

Much of this work has been done by the Bainbridge lab at the University of Chicago, who developed 

a framework for capturing mental representations using line drawing and crowd-sourced scoring 

(Bainbridge, 2022), with the aim of highlighting the capabilities of drawings as a research method and 

standardising experimental practises, in order to develop a reliable methodological consensus on best 

practise. This framework not only outlines how drawing experiments can be successfully conducted in 

a typical laboratory setting, but also how drawing tablets can be used to collect additional information 

about the drawing process, such as the order in which features are drawn, allowing for a greater range 

of hypotheses to be tested. 

By using drawings, a small number of modern studies have successfully investigated participant’s 

mental representations without any prior assumptions about their properties. In addition to the 

previously described fMRI work conducted by Morgan, Petro and Muckli (2019), Bainbridge and Baker 

(2019, 2020) have published a series of papers using drawing to investigate scene memory, that 

exemplify the strengths of the methodology. In their first study, Bainbridge and Baker (2019) used 

drawing based visual recall tasks to investigate scene memory. In these experiments participants were 

asked to study photographs of real-world scenes and then draw them from memory after a distraction 

period. They conducted four different versions of this task, in order to investigate whether the recall 
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period (either delayed, immediate or drawn directly from each image) or the category information 

alone, would modulate the nature of the mental representation and subsequent recall. Drawings 

provided a measure for the scene content participants could recall, allowing the experimenters to 

utilise a free-recall technique with complex visual stimuli, in which participants also had complete 

control over which scene elements were included without the influence of the experimenter or other 

visual prompts (see Figure 1.3). The contents of these scene drawings were then quantified by large 

panels of crowd sourced raters to assess the drawings on a number of criteria, including the number, 

type and size of constituent objects and spatial details, so that they could be compared against the 

original scene images, to ascertain which image metrics could predict efficient recall. They found that 

drawings, across all 4 recall conditions were highly diagnostic of the original image. The drawings 

produced after recall contained a greater degree of diagnostic visual information, suggesting that the 

drawings represented a specific recall of the original scene images, and not just a categorical 

representation. Participants were able to construct visually detailed scenes, with few mistakes when 

recalling scene content, suggesting strong recall for the constituent scene objects.  

Of methodological interest, participants were able to produce these detailed images regardless of no 

prior selection criteria for artistic ability, suggesting the method’s suitability is not limited by drawing 

ability. Furthermore, the experimenters noted little difference in mistaken objects between pictures 

drawn from category level descriptions and those from memory, suggesting that participants did not 

take more artistic liberty in one condition over the other. As well as the scene content, they also 

observed the spatial layout of the scenes were accurately represented in images, suggesting that the 

mental representations of these scenes were not simply a visual representation of remembered 

constituent objects, but that the object-by-object spatial relationships were also represented. Taken 

together, this suggests that scene drawings are able to capture both the spatial and object information 

contained within scenes, indicating that these fundamental properties of scenes can be 

communicated accurately through the use of drawing tasks. 



34 
 

 

Figure 1.3. Exemplars of the scene drawings produced in Bainbridge and Baker (2019). Participants 

were instructed to draw scene drawings from a number of different categories across 4 recall 

conditions; delayed recall in which participants drew the images from memory following a distraction 

task, immediate recall where drawings were produced immediately after study, image drawing where 

they could draw the pictures with direct access to the original image and a category drawing where 

they received only a category name for each image type. Figure from Bainbridge and Baker (2019). 

In a subsequent experiment, Bainbridge and Baker (2020) were able to reuse the drawings produced 

in their original study to investigate a new hypothesis. In many of the recall drawings produced, they 

noticed that the participants would often contract the boundaries of the original image. This 

behaviour is at odds with a widely reported scene memory phenomena observed in many experiments 

known as boundary extension, in which observers recall visual information about a scene extending 

outside of the boundaries of the originally observed view (Hubbard et al., 2010). Subsequently, they 

reanalysed the original drawings using online raters and additional experiments to assess boundary 

contraction within the drawings. They found no difference between the proportion of images judged 

as contracting or expanding, prompting them to compare the qualities of their drawing stimuli with a 

scene set used for most boundary extension experiments. They found that compared to participant’s 

drawings, the scenes used in the original boundary extension literature contained objects displayed 

at a low angle, and suggested that the observed effect was instead a result of participants attempting 
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to realign these objects to a more canonical angle, challenging the assumptions of boundary 

extension. This illustrates the utility of the drawing paradigm and the richness of drawings as a source 

of data to challenge previously held assumptions.  

Drawings have the potential to act as both a rich, explorative source of data, and to be used as reliable 

stimuli in more traditional experiments, allowing experimenters to utilise image sets constructed 

without their bias or influence. This is further complimented through technological advances, such as 

the advent of new image processing techniques, that allow for complex visual information to be 

analysed without the use of panels of raters (Fan et al., 2018), When used, crowd sourcing websites 

allow massive panels of raters to be recruited in order to analyse image content, that would be time 

demanding and impractical through traditional recruitment avenues, helping produce more reliable 

measures and reducing rater bias. 

1.6.4 Implications for studying Individual differences in scene perception 

While line drawings have been successfully used to study scene memory, their application to scene 

perception remains largely unexplored. Despite scene perception and memory engaging some 

overlapping neural mechanisms (Dalton & Maguire, 2017; Steel et al., 2021), they remain distinct 

neural mechanisms dissociable from each other (Bartolomeo, 2002; Bartolomeo et al., 1998; 

Behrmann et al., 1994; Epstein & Baker, 2019). As such it is unclear whether drawings can capture 

perceptual processes in the same way they reflect scene memory. However, the research reviewed 

above suggests that drawings provide a functional abstraction of scene content, effectively 

communicating spatial layouts and key visual features (Bainbridge et al., 2019; Bainbridge & Baker, 

2020; Fan et al., 2023; Sayim & Cavanagh, 2011). This suggests that despite the differences between 

perception and memory, drawing techniques may still offer valuable insights into scene perception. 

Drawings couldِallowِexperimentersِ toِobjectivelyِquantifyِkeyِpropertiesِofِparticipants’ِ internalِ

models and then probe these properties in targeted investigations, in order to explore the 

representation of different facets of scene information within them.  As such, we conclude that the 

potential for drawings to reveal perceptual representations for scenes warrants further investigation, 

which will be explored in the current thesis. By doing so, we hope to open a new avenue in the study 

of scene perception, in which we are able to consider the individual differences that may shape our 

internal scene models. 
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1.7  Goals of the current thesis 

The current thesis will aim to address two complementary questions about how scene structure 

impacts perception. First, we will aim to explore how regularities in global scene structure are 

extracted from scenes, and under which conditions it impacts scene perception. To do so, we will 

adopt a more traditional approach to manipulating scene structure, utilising a similar scene jumbling 

method as used in classical work by Biederman (1972). Specifically, we will use the jumbling paradigm 

to investigate how the global organisation of scenes along the horizontal and vertical axes impacts 

perception and how such effects are dependent on the canonical (upright) orientation of scenes.  

In the later chapters, we focus on developing and utilising line drawings to describe the contents of 

internal scene models. In our experiments, we will ask participants to draw what they consider a 

typical instance of a scene (e.g., drawing a typical kitchen). These drawings are then used as 

descriptorsِofِindividualِparticipants’ِinternalِsceneِmodels, allowing us to construct stimuli that are 

typical or atypical for individual participants. In a series of experiments, we test whether individual 

participants are indeed more efficient in categorising scenes that more strongly resemble their own 

internal scene models. We further investigate which properties of the scenes determine such 

performance benefits, and specifically focus on whether the presence of certain diagnostic objects or 

their positioning across the scene impinge more strongly on behavioural performance. 
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Chapter 2:  It’s in the mix – how the composition of outdoor scene 
elements impact perception 

2.1 Introduction 

The visual system is incredibly efficient at extracting information about our environment, able to 

process many attributes of visual scenes within 200ms of them being displayed, despite the rich 

amount of information scenes contain (Dima et al., 2018; Kaiser, Turini, et al., 2019; Kaiser et al., 

2020a; Lowe et al., 2018). This efficiency is unsurprising when considering the relevance of scene 

processing to everyday tasks, many of which require differing conceptualisations and understandings 

of a scene (Malcolm et al., 2016). For example, when trying to find a new building on campus, you 

might need to recognise the building, identify where it is, and then understand how to navigate the 

environment to reach it. The information contained within scenes, whilst varied, often adheres to 

intrinsic rules and regularities (Geisler, 2008), which can convey meaningful information that the visual 

system can take advantage of. One of the main sources of this information is a scene's spatial 

structure, which refers to a scene’s spatial layout and the relative positions of objects and scene 

elements (Kaiser, Quek, et al., 2019; Oliva & Torralba, 2007; Võ et al., 2019; Wolfe, Alvarez, et al., 

2011).  

The spatial regularities we extensively experience in our everyday lives are mirrored in cortical 

sensitivity to scene structure. The PPA, OPA and RSC  have all demonstrated sensitivity to a scenes 

overall geometry, responding strongly to images of empty scenes, even when no objects were present 

(Epstein et al., 1999; Epstein & Kanwisher, 1998; Kamps et al., 2016; Wolbers et al., 2011). FMRI 

studies have shown the PPA may be particularly sensitive to global structural properties , such as size 

(Park et al., 2015), openness (Henderson et al., 2011),ِandِ it’sِgeometricِdimensionsِ (Dillon et al., 

2018; Ferrara & Park, 2016; Henderson et al., 2008). However similar preferences have been found 

for both OPA and RSC, suggesting that all scene selective regions may be sensitive to the fundamental 

structural properties of scenes (Bonner & Epstein, 2017; Dillon et al., 2018; Henriksson et al., 2019). 

This cortical sensitivity to scene structure is also reflected in perceptual efficiency, with classical 

behavioural work by Biederman (et al., 1974) illustrating our reliance on scene structure through the 

use of jumbling paradigms. Here, scenes are divided into segments, and rearranged so that the pieces 

are no longer presented in their typical spatial arrangements (see Figure 2.1). Disrupting scene 

structure in this way has been shown to impair scene categorisation (Biederman et al., 1974), in-scene 

object recognition (Biederman, 1972; Biederman et al., 1973) and detection of subtle visual changes 

within a scene (Alexander Varakin & Levin, 2008; Zimmermann et al., 2010).  Neuroimaging research 

by Kaiser et al (Kaiser et al., 2020a; Kaiser et al., 2020b) employed a similar jumbling paradigm to 
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investigateِtheِeffectِofِjumblingِonِtheِcorticalِprocessingِofِaِscene’sِcategoricalِinformation.ِInِaِ

series of related experiments, participants passively viewed both upright and inverted intact and 

jumbled scene images whilst undergoing fMRI and EGG. Using multivariate decoding they found that 

jumbled scenes were represented differently from intact scenes in both the PPA and OPA, and that 

these areas demonstrated a sensitivity towards intact scene structure. Crucially, they found a reliable 

inversion effect, meaning that when the scene images were shown at inversion, decoding was worse 

than when they were shown upright, indicating that this sensitivity was induced by the jumbling of 

theِ scenes’ِ structuralِ information,ِasِopposedِ toِmanipulationsِ toِ their low- and mid-level visual 

features. 

 

Figure 2.1. Examples of stimuli used in the classical scene jumbling paradigm, taken from Biederman 

(1972). The original image (A) was divided into 6 segments and rearranged so that the scene structure 

is disrupted (B). 

If coherent scene structure is important for the processing of scenes, as previous research suggests, 

one fundamental question arising is whether intact scene structure is equally important across the 

different spatial dimensions of a scene. Chiefly,ِaِscene’sِstructureِcanِbeِdividedِacrossِtwoِaxis: its 

horizontal and vertical axis. These axes can present distinctive information about a scene, for example 

along its horizontal axis a clear horizon might be established, whilst across the vertical axis you might 

experience a shift from the ground plane to sky.  Comparatively, horizontal organization is often more 

arbitrary, and can vary greatly, while vertical structure tends to be more rigid (see Adams et al., 2016). 

For example, scene elements tend to follow a consistent vertical organisation due to gravitational and 

structural constraints. Almost all natural scenes will compose of a base (be it floor or ground), from 

which objects arise, and a skyline. This vertical rigidity is true for many individual scene elements as 

well. For instance, buildings tend to have roofs which are always above walls, and levels that are 
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stacked vertically in a predictable sequence. If this vertical structure is violated, it can produce highly 

unusual or even naturally impossible scenes (such as those where the horizon is above the skyline, or 

where objects would float instead of standing on a base). By contrast, horizontal structure can vary 

significantly whilst still producing highly typical scenes. For example, buildings in an urban scene can 

vary significantly but still be easily identifiable; whether a church is placed to the left or right of a 

bakery it still produces an equally valid exemplar of an urban scene. As a result, the amount and variety 

of objects that can be found along the horizonal axis is far less constrained, and more dependent on 

the scenes semantic identity rather than structural constraints, further increasing the variability of the 

information it contains.  

Given the evidence suggesting our visual system has evolved to take advantage of spatial regularities, 

the stability of vertical scene structure may make it particularly beneficial to predictive processing 

strategies. Predictive processing theories suggest visual inputs are compared against internal models, 

based on our expectations of what the world should look like (Kaiser, Turini, et al., 2019; Keller & 

Mrsic-Flogel, 2018; Muckli et al., 2015). This comparison allows for information that matches the 

internal model to be quickly processed, so more typical information can be downweighed and the 

system can allocate more resources to detecting novel visual features that may be more category 

defining, indicative of a scenes identify or behaviourally relevant. Given the high levels of 

standardisation and predictability of vertical structure, this information may be strongly represented 

within these internal models. As such, the visual system may exhibitِaِ“verticalِbias”ِinِwhichِsceneِ

information along the vertical axis is more easily processed, and where likewise disruptions to vertical 

structure may cause greater disruptions to predictive processing strategies. Conversely less 

predictable horizontal structure may be less easily utilised by predictive processing models, and so the 

visual system may be more tolerant to disruptions along this axis.  

This proposed vertical bias is further supported by evidence from neurophysiological and 

psychophysical research, which demonstrates how the visual system has adapted to the vertical 

spatial regularities present in the natural world. Neurophysiological recordings from macaque 

monkeys provide compelling example of this adaptation. Vaziri and Connor (2016) found that scene-

selective neurons in the ventral visual pathway exhibited a preference for shape arrangements that 

were aligned with gravity in an egocentric reference frame. Subsequent studies in humans have 

likewise found preferences for object arrangements obeying gravitational limitations (Tucciarelli et al., 

2023), with fMRI studies also having identified cortical regions exhibiting a selective activation for 

scenes where physical restrictions are adhered to (Fischer et al., 2016). Taken together, these studies 

suggest that the visual system is optimised for interpreting the gravitational and physical, reflecting 

the stable and predictable nature of vertical scene elements like the ground and sky.  
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Psychophysical studies exploring the role of anisotropy in natural scenes provide indirect support for 

a potential vertical bias mirroring the content of natural scenes. The horizontal effect, as described by 

Essock (et al., 2003), refers to a reduced sensitivity for detecting horizontally orientated scene content 

compared to vertically and oblique orientated content. They define many of these horizontally 

orientatedِfeaturesِasِelementsِtypicallyِlocatedِonِaِscene’sِverticalِaxis,ِsuchِasِhorizonsِandِtreeِ

lines. They suggest that this mechanism may have evolved to tune down the prevalence of horizontal 

content in scenes, thus serving to discount the perceptual salience of the horizon and other 

predominant horizontal content (Hansen & Essock, 2004). This allows visual information with oblique 

and vertical orientations to become more saliant. Such elements are often scene defining or 

behaviourally relevant objects (such as individual trees aligned vertically, or walls of a building), and 

so by highlighting these more novel scene elements, they allow the visual system to prioritize and 

process them more efficiently, potentially enabling more efficient scene processing. Similar to the 

predictive processing theories discussed previously, the horizontal effect highlights how the visual 

system aims to downplay the perceptual salience of predictable scene information typically existing 

on a scenes vertical axis. However, it is important to note that whilst some horizontally orientated 

scene elements correspond with features found along the vertical scene axis (such as the 

aforementioned horizons), due to the wide array of elements found in natural scenes, many will not. 

Work exploring the horizontal effect has not concentrated on the former features uniquely, and 

instead typically employ broad range of orientation information found in scenes. As such, whilst the 

horizontal effect may be indicative of the role of vertical organisation in scene processing more 

generally, it cannot be said to explicitly support a bias in vertical scene structure explicitly.  

If the visual system prioritizes vertical information during scene processing, this bias could influence 

how scenes are encoded, stored, and retrieved from memory. Early work exploring scene memory 

provides some evidence for a potential vertical bias, revealing that individuals are more adept at 

recalling the vertical arrangement of elements in a scene compared to their horizontal placement. 

Mandler and Parker (1976) presented participants with pictures of objects arranged within a scene 

and later asked them to reconstruct the objects' locations. Their findings showed that correlations 

between the original and reconstructed locations were stronger for the vertical dimension than for 

the horizontal dimension, suggesting memory for vertical locations was more accurate than for 

horizontal locations. Likewise, Previc and Intraub (1997) found that when asked to draw scenes from 

memory, participants typically shifted the perspective upward along the vertical axis, demonstrating 

a vertical bias in boundary extension. Whilst these findings suggest a preference for scene information 

arranged along the vertical axis, it is important to acknowledge that memory processes do not 

necessarily reflect perceptual processes. Memory-based biases may emerge from post-perceptual 
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mechanisms, such as strategies employed during encoding or retrieval, rather than from inherent 

properties of visual processing. Thus, while these studies provide valuable insights, they cannot 

definitively establish whether vertical structure is uniquely important to scene perception itself. 

More direct evidence comes from neuroimaging research by Kaiser et al (2019). Kaiser et al (2019) 

investigated the cortical sorting of scene structure by measuring the neural activity of participants 

using both fMRI and EGG, whilst they performed a scene categorisation task on individual scene 

fragments taken from different structural positions of a scene (e.g. scenes were divided into 6 pieces, 

once along the vertical and 3 times along the horizontal axis to create individual scene fragments). 

Using representational similarity analysis to reconstruct the cortical representations of these scene 

fragments,ِ theyِ foundِ aِ sceneِ fragment’sِ vertical,ِ butِ notِ horizontal,ِ locationِ predictedِ itsِ

representation in the OPA. Furthermore, they found that a fragments vertical location was not 

predicted neural representations in V1 and PPA, suggest that the highlights coding was not the result 

of analysis of simple low-level  visual features. These results were supported by a subsequent 

experiment, where participants conducted the same scene categorisation task whilst undergoing EEG. 

The sorting was found to occur at the early stages of scene processing, within the first 200ms, 

suggesting that downstream, higher level cognitive and motor systems would have access to this 

structural information for use in relevant real-world tasks (such as navigation).  

However,  whilst Kaiser et al (2019) findings contribute valuable insights into a potential vertical bias, 

certain methodological limitations warrant consideration. Notably, the study utilised a limited set of 

only six scenes, each representing a distinct category. This narrow selection may have impacted the 

generalisability of the results, as a broader range of scenes might yield different outcomes. 

Additionally, the jumbling manipulation was applied more extensively along the vertical axis than the 

horizontal axis, potentially introducing an imbalance that could influence the observed vertical bias. 

The study also relied on neuroimaging techniques, leaving a gap in understanding as to whether these 

vertical biases can be detected through behavioural measures; if a vertical bias in scene processing 

does occur rapidly and at early stages of processing, we might also expect to observe it in experiment 

scene categorisation. 

Given the evidence discussed, there is a prominent indication that vertical scene structure plays a 

crucial role in scene perception. However, many of the studies discussed focus on broader scene 

processing mechanisms or memory effects, without specifically isolating the role of vertical structure 

in perceptual processing. The present experiment aims to address this gap by directly investigating 

whether a vertical bias exists in scene perception, and whether disruptions to vertical structure cause 

greater perceptual disturbances than horizontal disruptions. By exploring this question, we can 
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deepen our understanding of how the visual system adapts to the predictable structure of natural 

scenes, ultimately informing models of scene perception and prediction.  

In the current study we aimed to investigate how scene structure across different axes influences 

scene processing by systematically manipulating spatial arrangement using a jumbling paradigm.  

Specifically, we had three key objectives. First, we aimed to replicate previous findings demonstrating 

that scene jumbling impairs scene categorisation (Biederman et al., 1974; Kaiser et al., 2020a; 2020b), 

in order to examine whether this impairment occurs due to disrupted spatial organisation or a more 

general difficulty in processing the individual components of a scene when their typical spatial 

relationships are altered. Secondly,  to explore whether a vertical bias exists in scene processing—

where disrupting vertical structure has a greater impact on categorisation than disrupting horizontal 

structure (Kaiser et al., 2019). This would allow us to both understand whether vertical scene structure 

plays a unique role in scene processing and provide further insights into how the visual system is 

adapted to real-world norms (as vertical structure tends to be more stable and predictable compared 

to horizontal structure). Thirdly, to assess whether the effect of scene structure on categorisation 

differs between upright and rotated scenes (180° and 90°), as observed in Kaiser et al (2020a; 2020b), 

in order to deduce whether this effectِisِtheِresultِofِdisruptingِtheِscene’sِstructuralِorganisation, 

rather than simply shuffling low- and mid-level visual features.  

To address these aims, we conducted two experiments using a scene jumbling paradigm Scenes were 

manipulated across four conditions: (1) intact, (2) vertically intact but horizontally jumbled, (3) 

horizontally intact but vertically jumbled, and (4) fully jumbled. Performance on a scene categorisation 

task was compared across these conditions to test for evidence of a vertical bias. We utilise a scene 

categorisation task in order to investigate how structure influences the perception of global scene 

information. If a vertical bias exists, we expected categorisation performance to be more impaired in 

the vertically jumbled condition than in the horizontally jumbled condition, consistent with prior 

research (Kaiser et al., 2019a). To assess whether these effects are driven by structural information 

rather than low-level visual features, we tested scene categorisation at different orientations (180° in 

Experiment 1 and 90° in Experiment 2). Additionally, we carried out analysis comparing whether the 

degree of rotation effected scene categorisation, in order to explore whether our results could be 

explained by mental rotation. 

Accompanying these aims we had 3 hypotheses. First, we hypothesised that scene categorisation 

accuracy would be lower in the jumbled conditions compared to intact scenes, in line with previous 

research suggesting that structure is important for scene processing (Biederman et al., 1974). Second,  

that this categorisation impairment would be less pronounced for upright scenes than for inverted 
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scenes. Thirdly, that categorisation accuracy would be significantly worse for vertically jumbled  

scenes compared to horizontally scrambled scenes, indicating a vertical bias in scene processing as 

suggested by  Kaiser et al (2019).  

By investigating these key questions, we hope to clarify the role of vertical and horizontal scene 

structureِinِvisualِprocessingِandِcontributeِtoِourِunderstandingِofِtheِbrain’sِpredictiveِstrategiesِ

when interpreting natural  scenes. 

2.2 Experiment 1: 180-degree rotation 

2.2.1 Methods 

Participants 

Experiment 1 was approved by the University of York ethics committee. Participants were recruited 

primarily through the use of an online recruitment website (https://www.prolific.com), in addition to 

the University of York's recruitment pool. All participants reported having normal or corrected to 

normal vision. They were paid for their participation and provided informed consent before taking 

part in the study. In experiment 1 we recruited 47 participants (18 female, mean age 25.27 years, SD 

8.14, range 18–62 years). 

We aimed for a sample of between 40-50 participants to reflect the sample sizes utilised in previous 

studies (Biederman, 1972; Biederman et al., 1973; Kaiser et al 2019b; 2020c) whilst accounting for any 

potential loss of experimental power due to conducting the experiment online. Whilst similar studies 

typically utilised sample sizes of approximately 30 participants, as our experiment was hosted online, 

and in an environment outside of the experimenter’s control, we utilised a slightly larger sample size. 

This would allow us to compensate for any experimental power that may have been lost due to 

participants’ِhardware/softwareِchoices, and external distractors that may ad random noise into the 

results.  that can largely be mitigated by larger sample sizes. 

Stimuli 

Stimuli consisted of photographs of outdoor scenes from 4 categories: mountains, deserts, beaches 

and fields. Images were taken from the "Massive memory" scene category stimulus set on the Konkle 

Lab website (Konkle et al., 2012), with additional scenes being sourced through online image searches.  

We chose to use images of outdoor scenes as these categories would be familiar to most people, and 

feature relatively rigid structural norms. Outdoor scenes typically have strong global features, such as 

a clear horizon and large regions of uniform textures (such as large areas of grass or water), whilst 

indoor scenes may include more visual clutter, and objects with ambiguous spatial locations. 

Additionally, as the experiment was conducted online, and could thus be completed by participants 



44 
 

globally, we excluded images of indoor scenes as these may contain more cultural and socio-economic 

norms that might influence participants ability to categorise scenes more effectively, thus effecting 

their baseline categorisation. 25 photographs were selected for each scene category, leading to a total 

of 100 unique photographs. In addition to the full scenes, we also presented scenes where the 

structure had been jumbled in 3 ways: fully jumbled, vertically jumbled and horizontally jumbled.  

In order to achieve this, each photograph was split along its horizontal and vertical axis, yielding 4 

position specific fragments of equal size. These fragments were rearranged to produce the scene 

images jumbled along the previously mentioned dimensions. The fully jumbled scenes were achieved 

by rearranging the scenes in 3 ways, either switching the top left piece with the bottom right piece, 

switching the top right piece with the bottom left piece, or by switching both top pieces with their 

diagonal opposites.   

Horizontally jumbled scenes were produced by either switching both of the top two fragments with 

the bottom two fragments (switching the top half of the image with the bottom half) or by switching 

the top left and right fragments. Similarly, the vertically jumbled condition was produced by switching 

both the top left and bottom left fragments with their right-side equivalents, or by switching the top 

left and top right scene fragments. Participants were not shown the full scene images prior to the 

experiment. All conditions were also shown at 180-degree inversion (here on referred to as inversion). 

This resulted in a total of 16 different versions of each scene image being used in each experiment 

(see Figure 2.2, Appendix A for further examples).  

As the experiment was conducted by participants on their own personal computers, viewing 

conditions varied between participants. However, they were instructed to complete the experiment 

on a desktop computer, in a quiet environment away from distractions. In experiment 1, we collected 

information about the participants display size and instructed them to sit 60cm away from the screen, 

so that we could work out the display size of the stimulus in visual degrees. The quality of information 

provided on display size varied, and the answers of 3 participants were removed due to providing 

spurious estimates. The average display size used in experiment 1 was 28.6cm by 41 cm (height range 

37.8-5.57, width range 45.3-2.61). Stimuli were displayed at 480 by 480 pixels, however due to 

differing display sizes the actual size of the stimulus the participants viewed varied.  
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Figure 2.2. Design and Stimulus examples. Example of the trial structure. Participants first saw a white 

fixation cross for 250ms followed by the stimulus. The stimulus was displayed until participants gave 

a response. Examples of the conditions and manipulations to the scenes carried out in experiment 1 

and 2. The experiment had four conditions, intact, fully jumbled, horizontally intact and vertically 

jumbled and vertically jumbled and horizontally intact. The intact condition consisted of the full un-

manipulated scene image. The fully jumbled condition consisted of scenes which were manipulated 

in 3 ways, either switching the top left piece with the bottom right piece, switching the top right piece 

with the bottom left piece, or by switching both top pieces with their diagonal opposites. The vertically 

intact and horizontally jumbled condition consisted of scenes that either switched both of the top two 

fragments with the bottom two fragments (switching the top half of the image with the bottom half) 

or by the top left and right fragments. Similarly, the horizontally intact and vertically jumbled condition 

was produced by switching both the top left and bottom left fragments with their right-side 

equivalents, or by switching the top left and top right scene fragments.  

Experimental Paradigm 

The experiment was conducted online and was built and hosted on the online experiment building 

platform Gorilla (Anwyl-Irvine et al., 2020).  

Participants were tasked with classifying scenes into four categories (fields, mountains, deserts and 

beaches) by pressing a corresponding key on their keyboard. They were instructed to respond as 
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quickly as possible. Each trial began with a fixation cross displayed for 250ms, followed by the stimulus 

scene image, which was displayed until the participant provided an answer.  

Participants first completed a practise block of 64 trials, which used a unique set of 8 scene 

photographs (2 for each scene category) that had been manipulated in the same way as the images 

used in the rest of the experiment. Participants then completed 4 experimental blocks.  Each block 

comprised of 280 trials, with the displayed stimulus drawn from a random selection of the stimulus 

images. Each stimulus was shown only once during the experiment, in addition to being shown at a 

180-degree rotation. Key prompts were displayed underneath the stimulus, so that participants had a 

constant reminder of the corresponding keys for each scene (in order to minimise errors).  

Data Cleaning 

Trials in which incorrect answers were given, or reaction times were faster than 200ms or slower than 

5000ms were excluded from the analysis. Trials faster than 200ms were excluded to best ensure that 

responses were to the visual stimuli, instead of anticipatory responses or instances where participants 

might attempt to complete the experiment as quickly as possible (this was especially important as the 

experiment was conducted online, without experimenter supervision). Trails slower than 5000ms 

were also excluded for similar reasons: as the experiment was conducted online and without 

experimenter supervision, we aimed to exclude trials where distractions or technical issues may have 

caused non-task related delays to answers. We chose 5000ms as a maximum cut-off point as the 

experimenters felt this gave ample time to complete each trial, whilst providing a conservative cut off 

point for excluding any trials where participants may have been influenced by external distractions.  

Of the 52684 trials collected, 1887 were removed for being faster than 200ms, and 1084 were 

removed for being over 5000ms. Of the remaining 49713, 3180 were incorrect and subsequently 

removed. The remaining 46533 trials were used in the analysis. Approximately equal numbers of each 

condition were included in these trials, with the largest discrepancy being between upright intact and 

the inverted vertically jumbled condition, with a difference of 134 trials. Likewise, all scene categories 

were approximately equally represented, with the largest discrepancy being between mountains and 

beaches, with a difference of 205 trials, See Appendix G for tables of trials included in the final analysis 

by condition and scene category. 
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2.2.2 Results 

The focus of our analysis was to investigate the effect of jumbling scene structure on scene 

categorisation, as well as exploring the role of inversion. Further, we also wanted to compare the 

difference between horizontal and vertical jumbling, in order to understand whether a bias exists for 

either axes. ,  

A two-way repeated measures ANOVA was run to determine the effect of jumbling over orientation 

on reaction times in the scene categorisation task. This ANOVA had two factors, orientation with 2 

levels (upright, inverted) and jumbling with 4 levels (intact, horizontally jumbled, vertically jumbled 

and fully jumbled.) Mauchly's test of sphericity indicated that the assumption of sphericity was met 

for the two-way interaction between orientation and jumbling, χ2 (5) = 5.45, p = .360. 

There was a statistically significant two-way interaction between orientation and jumbling on reaction 

times,  F (3, 138) = 2.83, p = .041, ηp² = .06 (indicating a medium effect size). This suggests that the 

impact of jumbling is dependent on the orientation of the scene. Mean reaction times are shown in 

figure 2.3. To explore the simple main effects, we conducted 2 separate one-way repeated measures 

ANOVA to examine jumbling within each orientation, and 4 repeated measures t-tests to examine the 

effect of jumbling between orientation (as described below).  

First, we examined the effect of jumbling within each orientation. To achieve this, we conducted two 

one-way repeated measures ANOVA examining the effect of jumbling within both the upright and 

inverted scenes. Both ANOVA used a single factor, jumbling, that consisted of all of the jumbling 

conditions from the upright and inverted scenes. This meant that the levels for the upright ANOVA 

were upright intact, upright horizontally jumbled, upright horizontally jumbled and upright fully 

jumbled, whilst the levels for the inverted ANOVA were inverted intact, inverted horizontally jumbled, 

inverted vertically jumbled and inverted fully jumbled. To account for multiple comparisons, alpha 

values were adjusted using a Bonferroni correction, resulting in an adjusted significance threshold of 

p < .025 (.05/2). 

The one-way repeated measures ANOVA examining the effect of jumbling within the upright 

orientationِviolatedِtheِassumptionِofِsphericity,ِasِindicatedِbyِMauchley’sِtest,ِχ²(5)ِ=ِ13.44, p = 

.02. Therefore, degrees of freedom were corrected using the Greenhouse-Geisserِestimateِ(εِ=ِ8.27). 

The analysis revealed a significant simple main effect of jumbling in the upright scenes, F(2.48, 114.08) 

= 12.99, p < .001,ِη²ₚ = .22 (indicating a large effect size).  

Bonferroni-adjusted pairwise comparisons (with an adjusted significance threshold of p < 0.008 

(0.05/6 comparisons) found that reaction times for intact scenes were significantly lower than for 
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vertically scrambled scenes (M = -55.17, SE = 14.54, p < .001, 95% CI [-95.25, -15.10]) withِCohen’sِdِ

of d = .54 indicating a medium effect size, and fully jumbled scenes (M = -76.63, SE = 14.30, p <.001, 

95% CI [-116.05, -37.21]) withِ Cohen’s d of d = 0.78 indicating a medium effect size, but not for 

horizontally scrambled scenes (M = -35.56, SE = 10.76, p = .011, 95% CI [-65.22, -5.90]), which had 

Cohen’sِdِ=ِ.48. This suggests that whilst vertically and fully jumbled scenes were more difficult to 

categorise, there was no effect of horizontal scrambling. This contradicts our first hypothesis that 

jumbled scenes would be more difficult to categorise as a whole, and instead suggests that only when 

vertical structure is absent (as in the vertically and fully jumbled conditions) does a disruption occur. 

However, contrary to our third hypothesis, we found no significant difference between horizontally 

and vertically scrambled scenes (M = -19.61, SE = 12.35, p = .715, 95% CI [-53.66, 14.43]) with a small 

effectِsizeِofِCohen’sِdِ=ِ0.23, which suggested that there was no preference for intact vertical scene 

structure over horizontal structure. We also found that reaction times for the fully jumbled condition 

were not significantly higher compared to the horizontally scrambled (M = 41.07, SE = 13.46, p = .023, 

95% CI [-53.66, 14.43]) with a smallِeffectِsizeِofِCohen’sِd = .44, or vertically scrambled scenes (M = 

21.4, SE = 10.61, p = .295, 95% CI [-7.81, 50.71]) withِaِsmallِeffectِsizeِofِCohen’sِdِ=ِ.29. This may 

indicate that whilst fully scrambling scene structure causes a greater disruption to the scene 

categorisation, it may be comparable to the disruption caused by removing intact vertical scene 

structure alone. 

Next, we used a one-way repeated measures ANOVA to examine the effect of jumbling within the 

inverted orientations. Again, the assumption of sphericity was violated,ِasِindicatedِbyِMauchley’sِ

test,ِχ²(5)ِ=ِ13.83, p = .017, and degrees of freedom were corrected using the Greenhouse-Geisser 

estimateِ(εِ=ِ8.34). As in the upright scenes,  we found a significant effect of jumbling in the inverted 

scenes, F(2.50, 115.08) = 16.73, p < .001,ِη²ₚ = .27.  

Bonferroni-adjusted pairwise comparisons (with an adjusted significance threshold of p < .0083 (.05/6 

comparisons) found that as in the upright scenes, reaction times for inverted intact scenes were 

significantly faster than those for vertically scrambled (M = -81.92, SE = 15.21, p < .001, 95% CI [-

123.85, -39.19]) withِaِstrongِeffectِsizeِofِCohen’sِdِ=ِ0.78, and fully jumbled scenes (M = -60.82, SE 

= 13.01, p <.001, 95% CI [-96.69, -24.95]) withِaِstrongِeffectِsizeِofِCohen’sِdِ= 0.89, and again that 

there was no significant difference between reaction times for the intact scenes and the horizontally 

scrambled scenes (M = -7.92, SE = 11.42, p = 1.000, 95% CI [-39.40, 23.57]) withِCohen’sِdِ=ِ.1. This 

may indicate that the effects of vertical and fully jumbling observed in the upright conditions could be 

influenced by disruptions to the scenes low-level visual characteristics, and not uniquely to the scene’s 

structural information, whilst inversion does little to modulate the effect of horizontal jumbling. 
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Unlike in the upright scenes we found that reaction times were significantly higher for the inverted 

fully jumbled scenes compared to the horizontally jumbled scenes (M = -52.91, SE = 10.55, p < .001, 

95% CI [-81.91, -23.82]) with a medium effect size of Cohen’s d = .73, whilst reaction times were not 

significantly different compared to the inverted vertically jumbled condition (M = 21.101, SE = 15.60, 

p = .116, 95% CI [-21.88, 64.09]) withِCohen’sِdِ=ِ.19.  However, unlike in the upright condition we 

also found that reaction times were significantly higher for the inverted vertically jumbled scenes 

compared to the inverted horizontally jumbled scenes (M = 74.01, SE = 16.17, p < .001, 95% CI [-29.4, 

118.61,]) withِ aِmediumِ effectِ sizeِ ofِ Cohen’sِ dِ =ِ .67. As both the vertically and fully jumbled 

conditions lack intact vertical structure, it could suggest that it is specifically manipulations to the 

scene content along this axis that results in the impact of inversion in jumbled scenes. As we only 

observed the difference between vertical and horizontal jumbling in the inverted scenes, it may 

suggest that it is specifically manipulations to the low-level visual properties along this axis that causes 

the disruption.  

To explore the interaction between jumbling and orientation further, we conducted four repeated  

measures t-tests examining the effect of orientation within each jumbling condition. For each, we 

compared the jumbling type (either intact, horizontally jumbled, vertically jumbled or fully) for the 

upright and inverted scenes. To account for multiple comparisons, alpha values were adjusted using a 

Bonferroni correction, resulting in an adjusted significance threshold of p < .012 (.05/4).  

For intact scenes, we found reaction times were significantly higher when inverted compared to 

upright (t(46) = 3.86, p < .001),ِwithِCohen’sِd = .56 indicating a medium effect size. This result is 

unsurprising considering many previous studies have demonstrated that inversion causes disruptions 

to categorisation (Kelley et al., 2003; Lauer et al., 2020). However, into itself this finding tells us little 

about what factors cause this disruption. 

For horizontally jumbled scenes we found no significant difference when scenes were displayed 

inverted or upright (t(46) = 1.49, p = .143),ِwithِCohen’sِdِ=ِ.21, suggesting that jumbling horizontal 

structure had a similar effect in both upright and inverted scenes. As we found that horizontal jumbling 

did not cause significantly higher reaction times compared to intact scenes in both upright and 

inverted conditions, this could suggest that neither manipulations to horizontal scene structure or 

low-level visual characteristics along the horizontal axis disrupt scene categorisation. 

Conversely, for vertically jumbled scenes we found reaction times were significantly higher for 

inverted compared to the upright scenes (t(46) = 4.83, p < .001), with a medium effect size of Cohen’sِ

d = .71, indicating that inversion modulated the effect of vertical jumbling. This could suggest that the 
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disruption caused by jumbling the vertical scenes is a result of disrupting low-level visual 

characteristics along the scenes vertical axis, as opposed to the structure itself.  

When exploring the fully jumbled condition we found no significant difference between the upright 

and inverted conditions, (t(46) = 2.05, p = .23),ِwithِaِsmallِeffectِsizeِofِCohen’sِdِ=ِ.29, indicating 

that inversion had no effect when all intact spatial structure was removed from a scene. We suggest 

two possible interpretations for this finding; either that the increase in reactions times for the fully 

jumbled condition is primarily the result of manipulations to the scenes structure, as opposed to 

disruptions in low level visual characteristics, or that the jumbling present in the upright scenes 

disrupts the low-level visual characteristics of the scene to such an extent that inversion no longer 

impacts categorisation. As we observed that reactions times were significantly greater for jumbled 

compared to intact conditions in both upright and inverted conditions (where the inverted scenes 

similarly had their low level visual properties disrupted), this could suggest that our results support 

the former explanation, aligning with previous work showing the impact of jumbling scene content 

(Biederman et al., 1973; Kaiser, Turini, et al., 2019). 

 

 



51 
 

 

Figure 2.3. Mean reaction times (in milliseconds) across all conditions in experiment 1. Error bars 

represent standard errors of the mean. * Indicates p < .05, ** indicates p < .01, *** indicates p < .001. 

2.2.3 Summary 

In experiment 1, we found that only fully and vertically jumbled scenes significantly impacted scene 

categorisation for both upright and inverted scenes. This suggests that jumbling scene content only 

had a negative effect on scene categorisation, when vertical scene structure was absent. However, 

whilst we observed an effect of inversion, unlike previous research (Kaiser et al., 2020a, 2020b) we 

did not find that jumbling had a stronger effect on upright compared to inverted scenes, contrasting 

with our second hypothesis. Instead, we found  inversion produced higher reaction times for  intact 

and vertically jumbled scenes, whilst having no effect on the horizontally and fully jumbled scenes. 

This effect was particularly pronounced in the vertically jumbled condition, where reaction times were 

higher for the inverted than for upright vertically scrambled condition and comparable to the inverted 

fully jumbled condition.  
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In both upright and inverted conditions, we found that reaction times for the fully jumbled scenes 

were not statistically different to those of the vertically jumbled scenes. This may indicate that 

disrupting vertical scene structure impacts scene processing as much as removing coherent structure 

entirely, which may suggest   that intact visual information arranged along a scene’s vertical axes is 

uniquely important for scene processing. However, only in the inverted conditions did we find a 

difference between horizontal and vertical scrambling, which could indicate that it is manipulations 

to low-level visual characteristics arranged along this axis, as opposed to the structural information, 

that aids scene categorisation. 

As such, whilst the results of experiment 1 do not provide direct evidence for a vertical bias resulting 

from scene structure, it provides tentative evidence for a bias resulting from low-level visual 

characteristics arranged along the vertical axis.   

This interpretation relies on the assumption that inversion effects all jumbling conditions equally: that 

it removes meaningful coherent structural information. However,  when inverting jumbled scenes, the 

inversion may have complex effects on the relative and absolute positions of the segments. For 

example, when an intact scene is inverted, it retains the relative positioning of its segments, but when 

a vertically jumbled scene is inverted, segments lose their relative positioning but may in return gain 

an intact absolute positioning (e.g., a piece of sky would be in the upper part of an inverted jumbled 

scene, which is where it belongs). This effect may have limited the inversion effect evoked in 

experiment 1, by retaining some intact vertical scene structure within the vertically jumbled condition, 

whilst the horizontally jumbled condition represented a true disruption to horizontal scene 

information. We initially explored a full 180-degree inversion in order to try to replicate the classical 

inversion effect witnessed in previous studies, but subsequently may have failed to adequately 

account for the difference in jumbling. 

Whilst we did not find a statistically significant difference between vertical and horizontal jumbling in 

the upright condition, as we had predicted in our third hypothesis, there was some tentative emerging 

evidence for more severe disruptions being caused by vertical jumbling. Non-significant, reaction 

times for vertically jumbled scenes were nominally higher than the horizontally jumbled scenes, 

indicating a possible trend in the data. However, it is important to note that this nominal difference is 

only small (with a mean difference of only 19.6ms between upright vertically and horizontally 

scrambled scenes), and where significant differences were found between jumbling conditions the 

effect sizes were only weak.  Further,  whilst we found upright and inverted vertically jumbled scenes 

had significantly lower reaction times compared to the intact scenes, we found no effect of 

horizontally jumbling, , which as discussed may indicate some additional importance of vertical 
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structure. In conjunction with the potential differential effects of inversion on horizontal and vertical 

scenes, these contradictions  make it difficult to draw conclusive interpretations from the current 

experiment, and call for further clarification.     

As such, in order to clarify the results of experiment 1, we conducted a second experiment in which 

scenes were rotated at 90-degrees instead of 180-degrees. By displaying scenes at 90-degree rotation, 

it would ensure that both horizontally and vertically jumbled scenes would be positioned outside both 

their relative and absolute positions, ensuring that the effect of rotation would manipulate the 

structural content of each scene equally. 

2.3 Experiment2: 90-degree rotation 

2.3.1 Methods 

Participants 

Experiment 2 was approved by the University of York ethics committee. Participants were again 

recruited primary through the use of an online recruitment website (https://www.prolific.com), in 

addition to the University of York's recruitment pool. All participants reported having normal or 

corrected to normal vision. They were paid for their participation and provided informed consent 

before taking part in the study.  

Due to an error in our online script, where the software used to host the experiment recruited more 

participants than we had originally intended, we collected responses from 99 participants. Although 

we had originally intended to collect responses from 50 participants (in line with the strategy used in 

experiment 1), we decided to analyse the full sample that we had collected. We had two main reasons 

for this decision; Firstly, as experiment 1 was conducted online and not in experimental conditions, 

the variability in the data was inevitably higher due to uncontrolled environmental factors. This may 

have resulted in the weaker effect sizes found in experiment 1, and a lack of power resulting in 

potential type 2 errors.  This could have been particularly detrimental to our experimental design, as 

the small differences between reaction times may have been lost due to distractions or differences in 

device settings, such as internet lag, processing power or screen size. As many of the significant 

differences observed in experiment 1 were only very small in nominal terms (such as the mean 

difference between the intact and fully jumbled conditions only being 76.25ms), we felt these effects 

may have been undetectable without sufficient experimental power under the current experimental 

conditions. In experiment 1, we had attempted to address this weakness by increasing the sample size 

from those typically used in lab settings, but this increase may not have been enough to offset these 

differences. Secondly, we felt that arbitrarily removing participants post-hoc may raise concerns about 
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selection bias, as we had no pre-registered criteria on how to remove participants (Open Science 

Collaboration, 2015; Simmons et al., 2011). It is acknowledged that the ideal solution to this issue 

would have been to base our initial sample size on a power analysis, as opposed to the sample size of 

previous studies, and establish pre-registered exclusion criteria, as suggested by Nosek (et al., 2018). 

However, as we were not able to take these precautions after the fact, we have taken the current 

approach to both mitigate further sampling issues caused by attempting to rectify this mistake and 

based on the principle of experimental transparency. Ultimately, whilst we decided to include these 

participants in our final analysis, it is important to interpret the results in consideration of this 

sampling error, and the subsequent increase in sample size.  

Thus in experiment 2 our sample consisted of  99 participants (44 female, mean age 26.34 years, SD 

9.9, range 18–60 years).  

Stimuli 

The same scene images were used as in experiment 1, and these were manipulated in the same ways 

to create the 4 conditions (intact, fully jumbled, vertically intact and horizontally jumbled and 

horizontally intact and vertically jumbled). However, in experiment 2 scenes were also shown rotated 

at 90-degrees clockwise, as opposed to a full 180-degree inversion. See Appendix B for stimuli 

examples. 

Participants were given the same viewing instructions as in experiment 1. 

Experimental Paradigm 

Experiment 2 used the same paradigm as experiment 1. The experiment was conducted online and 

was built and hosted on the online experiment building platform Gorilla (Anwyl-Irvine et al., 2020).  

Participants were tasked with classifying scenes into four categories (fields, mountains, deserts and 

beaches) by pressing a corresponding key on their keyboard. Each trial began with a fixation cross 

displayed for 250ms, followed by the stimulus scene image, which was displayed until the participant 

provided an answer. Participants first completed a practise block of 64 trials, which used a unique set 

of 8 scene photographs (2 for each scene category) that had been manipulated in the same way as the 

images used in the rest of the experiment. Participants then completed 4 experimental blocks.  Each 

block comprised of 280 trials, with the displayed stimulus drawn from a random selection of the 

stimulus images. Each stimulus was shown only once during the experiment, in addition to being 

shown at a 90-degree rotation.  Key prompts were displayed underneath the stimulus, so that 

participants had a constant reminder of the corresponding keys for each scene (in order to minimise 

errors).  
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Data Cleaning 

As in experiment 1, trials in which incorrect answers were given, or reaction times were faster than 

200ms or slower than 5000ms were excluded from the analysis. Of the 110223 trials collected, 4358 

were removed for being faster than 200ms, and 1518 were removed for being over 5000ms. Of the 

remaining 104345, 7027 were incorrect and subsequently removed. The remaining 97318 trials were 

used in the analysis.  

Approximately equal numbers of each condition were included in the remaining trials, with the largest 

discrepancy being between upright whole and the rotated whole condition, with a difference of 392 

trials. Likewise, all scene categories were approximately equally represented, with the largest 

discrepancy being between field and desert, with a difference of 2737 trials. See Appendix H for tables 

of trials included in the final analysis by condition and scene category. 

2.3.2 Results 

As in experiment 1, the focus of our analysis was to investigate the effect of jumbling scene structure 

on scene categorisation, and to explore the role of rotation. We again wanted to compare the 

difference between horizontal and vertical jumbling. 

As in experiment 1, a two-way repeated measures ANOVA was used to determine the effect of 

jumbling over orientation on reaction times in the scene categorisation task. This ANOVA had two 

factors, orientation with 2 levels (upright, rotated) and jumbling with 4 levels (intact, horizontally 

jumbled, vertically jumbled and fully jumbled.) Mauchly's test of sphericity indicated that the 

assumption of sphericity had been violated for the two-way interaction between orientation and 

jumbling,ِχ2(2) = 8.54, p = .128, so degrees of freedom were corrected using the Greenhouse-Geisser 

estimateِ(εِ= .96).  . 

As in experiment 1, there was a statistically significant two-way interaction between orientation and 

jumbling on reaction times,  F (2.88, 282.37) = 2.69, p = .048, η²ₚ = 0.02. This suggests that the impact 

of jumbling is dependent on the orientation of the scene. Mean reaction times are shown in figure 

2.4. To explore the simple main effects, we conducted 2 separate one-way repeated measures ANOVA 

to examine jumbling within each orientation, and 4 repeated measures t-tests to examine the effect 

of jumbling between orientation (as described below). following the same analysis as conducted in 

experiment 1. 

To examine the effect of jumbling within each orientation we conducted two one-way repeated 

measures ANOVA, with jumbling as the factor, consisting of all of the jumbling conditions (intact, 

horizontally jumbled, vertically jumbled and fully jumbled) for both the upright and inverted scenes. 
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To account for multiple comparisons, alpha values were adjusted using a Bonferroni correction, 

resulting in an adjusted significance threshold of p < .025 (.05/2). 

The one-way repeated measures ANOVA examining the effect of jumbling within the upright 

orientationِviolatedِtheِassumptionِofِsphericity,ِasِindicatedِbyِMauchley’sِtest,ِχ²(5)ِ=ِ12.12, p = 

.033. Therefore, degrees of freedom were corrected using the Greenhouse-Geisserِestimate (ِεِ=ِ0.93). 

The analysis revealed a significant simple main effect of jumbling in the upright scenes, F(2.79, 272.31) 

= 43.21, p < .001,ِη²ₚ = .31.  

Bonferroni-adjusted pairwise comparisons (with an adjusted significance threshold of p < .0083 (.05/6 

comparisons) found that reaction times for intact scenes were significantly lower than for all other 

jumbling conditions: horizontally scrambled (M = -36.04, SE = 9.19, p  < .001, 95% CI [-60.54, -11.54]) 

with a small effect size of Cohen’sِdِ=ِ.39, vertically scrambled (M = -84.68, SE = 9.58, p < .001, 95% CI 

[-110.51, -58.91]) with a largeِeffectِsizeِofِCohen’sِdِ=ِ.88,ِand fully jumbled scenes (M = -98.66, SE 

= 10.57, p < .001, 95% CI [-127.12, -70.21]) withِaِlargeِeffectِsizeِofِCohen’sِdِ=ِ.93. These results 

contrast with those of experiment 1, and indicate that all types of scene jumbling madeِscene’s more 

difficult to categorise, supporting our first hypothesis. 

However, unlike in experiment 1, we also found that reaction times were significantly lower for 

horizontally scrambled scenes compared to vertically scrambled scenes (M = -19.61, SE = 12.35, p = 

1.000, 95% CI [-53.66, 14.43]) withِaِCohen’sِdِ=ِ58 indicating a moderate effect size, supporting our 

third hypothesis that there is a preferential effect for intact vertical scene structure. However, it is 

important to consider the sampling errors made during experiment 2, and the resulting increased 

sample size utilised. Whilst this may indicate that experiment 1 lacked the experimental power to find 

this effect, especially considering that the study was conducted online, it is also possible that this result 

represents a type 1 error resulting from the sampling error. This will be discussed further in the 

discussion section.  

Further, we also found that reaction times for the fully jumbled condition were significantly higher 

compared to the horizontally scrambled condition (M = 62.62, SE = 9.53, p < .001, 95% CI [36.94, 

88.29]) withِaِCohen’sِdِ=ِ.66 indicating a moderate effect size, but unlike in experiment 1 they were 

not significantly so when compared to the vertically scrambled condition (M = 13.97, SE = 11.15, p = 

1.000, 95% CI [-16.06, 44.01]),ِwithِaِCohen’sِdِ=ِ .12. This may indicate that fully jumbling scene 

structure causes a comparable degree of disruption as jumbling vertical scene structure alone. 

Next, we examined the effect of jumbling within the rotated orientation, again using a one-way 

repeated measures ANOVA. Mauchly's test of sphericity indicated that the assumption of sphericity 
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was not violated (χ²(5)ِ=ِ7.87, p = 0.163), allowing for the interpretation of the standard repeated 

measures ANOVA results. As in the upright scenes,  we found a significant effect of jumbling in the 

inverted scenes, F(3, 294) = 68.56, p < .001, with a medium effect size of η²ₚ = 0.41. 

Bonferroni-adjusted pairwise comparisons (with an adjusted significance threshold of p < .008 (.05/6 

comparisons) found that as in the upright scenes, reaction times for rotated intact scenes were 

significantly lower than those for vertically scrambled (M = -91.69, SE = 7.52, p < .001, 95% CI [-111.96, 

-71.42]) withِaِCohen’sِd=ِ1.24ِindicatingِaِlargeِeffectِsize,ِand fully jumbled scenes (M = -76.31, SE 

= 8.25, p < .001, 95% CI [-98.51, -54.11]) with a Cohens d = 93, but that there was no significant 

difference between reaction times for the horizontally scrambled scenes (M = -21.91, SE = 7.48, p = 

.022, 95% CI [-41.77, -2.05]) withِaِCohen’sِdِ=ِ.29. This suggests the effects of vertical, horizontal and 

fully jumbling observed in the upright conditions could be influenced by disruptions to the scenes low-

level visual characteristics. 

Following the pattern observed in the upright scenes we found that reaction times were significantly 

higher for the rotated fully jumbled scenes compared to the horizontally jumbled scenes (M = 54.39, 

SE = 6.45, p < .001, 95% CI [36.92, 71.86]) with a strongِeffectِsizeِindicatedِbyِCohen’sِdِ=ِ.83, but 

not when compared to the rotated vertically jumbled condition (M = -15.38, SE = 7.67, p = .286, 95% 

CI [-36.03, 5.27]) withِaِCohen’sِdِ=ِ .21.  We also observed that reaction times were significantly 

higher for the rotated vertically jumbled scenes compared to the rotated horizontally jumbled scenes 

(M = 69.78, SE = 7.23, p < .001, 95% CI [50.31, 89.25]) withِaِstrongِeffectِsizeِindicatedِbyِCohen’sِdِ

= .97, similar to the effect of inversion observed in experiment 1. 

Next, we conducted four repeated measures t-tests examining the effect of orientation within each 

jumbling condition. For each, the jumbling type (either intact, horizontally jumbled, vertically jumbled 

or fully) was compared between the upright and rotated version of each scene. To account for multiple 

comparisons, alpha values were adjusted using a Bonferroni correction, resulting in an adjusted 

significance threshold of p < .012 (.05/4). 

Reaction times for the rotated intact scene were significantly higher for those of the upright intact 

scene (t(98) = 4.14, p < .001) withِCohen’sِdِ= .ِ41 indicating a small effect size, suggesting that rotation 

negatively impacts scene categorisation. This result was similar to that observed of inversion in 

experiment 1. 

We found no significant difference between the upright and rotated horizontal conditions, (t(98) = 

1.84, p = .077) withِCohen’sِdِ=ِ.18, suggesting that jumbling horizontal structure had a similar effect 

in both upright and rotated scenes. These results suggest that manipulations to horizontal scene 
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structure, as opposed to jumbling low-level characteristics along the horizontal axis, result in the 

higher reaction times for the horizontally jumbled conditions compared to the intact condition.  

As in experiment 1, we found reaction times were higher for inverted vertically jumbled scenes 

compared to upright, (t(98) = 3.53, p < .001) withِCohen’sِdِ=ِ.35, indicating that rotation modulated 

the effect of vertical jumbling. Again, this finding supports those observed in experiment, further 

suggesting that the disruption caused by jumbling vertical scenes is a result of disrupting low-level 

visual characteristics along the scenes vertical axis, as opposed to the structure itself.  

We found no significant difference between the upright and rotated fully jumbled conditions, (t(98) = 

6.62, p = .267) withِ Cohen’sِ dِ=ِ .12, suggesting that as observed with inversion in experiment 1, 

rotation had no effect on reaction times when all intact structure was removed.  
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Figure 2.4. Mean reaction times (in milliseconds) across all condition in experiment 2. Error bars 

represent standard errors of the mean. * Indicates p < .05, ** indicates p < .01, *** indicates p < .001. 

2.3.3 Summary 

The results of experiment 2 suggest that reaction times were greater for all upright jumbling 

conditions compared to intact scenes, suggesting that disrupting scene structure reduces 

categorisation efficiency. This finding varied from those observed in experiment 1, that found that 

only vertical and fully jumbling scene content resulted in increased reaction times. As such, the results 

of experiment 1 support hypothesis 1; that jumbling would negatively affect scene categorisation. 

Unlike in experiment 1 we also found that reaction times for the fully jumbled scenes were significantly 

higher for the horizontal condition, but not for the vertically jumbled scenes. This difference may be 

the result of the larger sample size used increasing the ability to detect this difference between the 

horizontally and fully jumbled conditions. Additionally, we found that reaction times were also 

significantly higher for upright vertically jumbled scenes compared to horizontally jumbled scenes. 

Taken together, these results could indicate a possible bias for vertical scene structure, in support of 

our third hypothesis. 

However, we found that rotation had a similar effect as inversion did in experiment 1, and found 

higher reaction times for rotated intact and vertically jumbled scenes compared to their upright 

equivalents. Rotation likewise had a particularly strong effect on vertically jumbled scenes, and caused 

reaction times to be comparable to those of the fully jumble condition (with no statistically significant 

difference between the conditions).  As such, whilst we did observe that disruptions caused a greater 

disruption to scene categorisation than horizontal structure, the prevalence of this effect in rotated 

scenes suggests this bias may result from a sensitivity to mid or low-level visual characteristics 

arranged along the vertical axis, as opposed to structural information specifically. 

The effect of rotation found in experiment 2 also suggests that the inversion effect evoked in 

experiment 1 was not caused by the retention of intact vertical scene structure within the vertically 

jumbled condition, and instead that it represented a true disruption to the scenes vertical and 

horizontal scene structure.  

2.4 Comparison between inversion (180°) and rotation (90°) 

2.4.1 Rationale 

Across both Experiments 1 and 2, we did not find the expected effect of inversion. That is, instead of 

finding a greater impact of scene jumbling in upright scenes, we found that inversion had no effect 
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on  scene categorisation for horizontally and fully jumbled scenes, and caused even greater 

disruptions for vertical jumbled scenes. One possible explanation is that participants attempted to 

mentally rotate the scenes to their canonical upright orientation. This strategy may have been more 

or less effective depending on the type of jumbling: for horizontally jumbled scenes, mental rotation 

may have been highly successful, whereas for vertically jumbled scenes, it may have been less 

effective, amplifying the effects of jumbling. In fully jumbled scenes, the absence of a coherent 

structure may have discouraged participants from using mental rotation, resulting in minimal impact 

of this strategy. 

To further investigate this explanation, we combined data from experiments 1 and 2 to examine 

whether the degree of rotation (180 degrees in Experiment 1 vs. 90 degrees in Experiment 2) 

affected reaction times. If mental rotation underlies our findings, we expect a greater impact of 

jumbling on scenes rotated 180 degrees compared to 90 degrees, as the larger degree of rotation 

would require more processing effort (Dalecki et al., 2012; Shepard & Metzler, 1971). 

2.4.2 Results 

In order to compare the difference between inversion (180°, as collected in experiment 1) and rotation 

(90°, as collected in experiment 2), we combined data from experiment 1 and 2 and conducted a two-

way mixed ANOVA. This ANOVA had 2 factors, 1 between and 1 within. The between factor was 

orientation with 2 levels (inversion and rotation), whilst the within factor was jumbling with 4 levels 

(intact, horizontally jumbled, vertically jumbled and fully jumbled.)  We did not include the upright 

orientation in this analysis because it was present in both Experiment 1 and Experiment 2 as a within-

subjects condition. Since the 90° and 180° orientations were unique to their respective experiments 

(with different participants), rotation could only be analysed as a between-subjects factor. Including 

upright would violate the independence assumption of a between-subjects ANOVA, as all participants 

completed this condition, making it non-independent across experiments. 

Mauchly's test of sphericity indicated that the assumption of sphericity was not violated for the two-

way interaction (χ²(5)ِ=ِ7.87, p = .168). Here we found a statistically significant interaction between 

orientation and jumbling on reaction times, F(3, 432) = 33.71, p <ِ .001,ِ η2 = 0.19. To explore this 

further, we conducted four independent samples t-tests to compare the effect of orientation (180° 

inversion or 90° rotation) between each jumbling condition (intact, vertically jumbled, horizontally 

jumbled and fully jumbled). In order to account for multiple comparisons, we applied Bonferroni 

corrections to alpha levels, resulting in an adjusted significance threshold of p < .012 (.05/4).  
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For the vertically jumbled conditions, reaction times were significantly higher in the 180° inverted 

compared to the 90° rotated condition, (t(144) = 2.39, p < .018) with a moderate effect size as 

indicated by a Cohen’sِdِ=ِ .66. This suggests that the degree of rotation modulated the effect of 

vertical scene jumbling.  

However, there were no other statistically significant differences between orientation and jumbling 

condition (intact: t(144) = 2.39, p < .001 withِCohen’sِdِ= .42, horizontally jumbled: t(144) = 0.76, p < 

.936 withِCohen’sِdِ= .03, and fully jumbled: t(144) = 1.87f, p < .072 withِCohen’sِdِ=ِ.32), indicating 

the degree of rotation had no effect on reaction times for these conditions.  

2.4.3 Summary 

From our analysis comparing the effects of inversion and rotation we found that the degree of 

rotation modulated the effect of vertical scene jumbling, but that it had no effect on intact, 

horizontally and fully jumbled scenes. As reaction times were higher when scenes were inverted, 

than when they were rotated, this could suggest that the more a vertically jumbled scene was 

rotated the more difficult categorisation becomes. This could indicate that participants attempted to 

utilise mental rotation when trying to categorise vertically jumbled scenes, but this strategy 

negatively impacted their performance. These findings may support our proposal that the increased 

effect of inversion and rotation for vertically jumbled scenes observed in experiment 1 and 2 are the 

result of participants adopting a maladaptive strategy of mental rotation when trying to categorise 

these scenes.  

However, we only observed a difference between degrees of rotation in the vertically jumbled 

scenes, suggesting that this was the only condition in which participants attempted to utilise this 

strategy. This interpretation is challenging, as it is not clear why participants would utilise differing 

strategies for categorising stimuli when the task demand remains constant. A possible explanation is 

that the intact horizontal structure within these scenes encouraged this strategy, but if so, it is 

unclear why it would not also be used for intact scenes (which likewise contain intact horizontal 

structure). It may be that inverted and rotated intact scenes did not require mental rotation to 

categorise, or that the unrestricted stimulus display time made the strategy unnecessary, but there 

is little evidence to support this assumption. Furthermore, it remains unclear how participants would 

be able to selectively apply this strategy given the studies design. Conditions were randomised, and 

participants were required to rapidly categorise each scene. If the increased reaction times for the 

inverted and rotated vertically jumbled scenes resulted from participants attempting to utilise 

mental rotation, and failing to do so (thus increasing their reaction times) it is not clear why this 
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additional cognitive load would not be apparent in other conditions where they would likewise need 

to consider whether or not to mentally rotate the image.  

An alternative explanation for the degree of rotation modulating the effect of vertical jumbling could 

instead be the result of greater manipulation to the scenes low-level visual characteristics. If 

participants primarily utilise regularities in a scenes low-level visual characteristic when categorising 

vertically jumbled scenes, as our results suggest, these may be disrupted further when fully inverted 

compared to rotated.  

2.5 General Discussion 

In the current study we aimed to investigate how structural regularities  across different scenes axes 

influences scene processing by systematically manipulating spatial structure using a jumbling 

paradigm. To achieve this, we aimed to replicate previous findings demonstrating that jumbling 

impairs scene categorisation (Kaiser et al., 2020a; 2020b), explore whether a vertical bias exists in 

scene processing (Kaiser et al., 2019) and to assess whether the effect of scene structure on 

categorisation differs between upright and inverted scenes (180° and 90°). Whilst both experiments 

found evidence for the effect of vertical and fully jumbling scene structure on categorisation, as well 

as a detrimental effect of inversion and tentative evidence for a vertical bias, there were several 

inconsistencies between the results  that raise important questions about the underlying 

mechanisms driving the observed effects and suggest that additional factors may have influenced 

our findings. 

In experiment 1 we found that only vertical and fully jumbling structure impacted scene 

categorisation, whilst in experiment 2 we found an additional effect of horizontal jumbling. Whilst the 

results of both experiments suggest that vertical and fully jumbling scene structure impacts 

categorisation, partially supporting our first hypothesis (that jumbling would impact categorisation), 

only the results of experiment 2 found horizontal scrambling impacts categorisation. However, whilst 

we failed to demonstrate the effect of jumbling for all of our jumbling types, we did consistently find 

an impact of fully jumbling scene content. This manipulation most closely resembled the jumbling 

utilised in previous research (Biederman, 1974; Kaiser et al., 2020a; 2020b.  As such, whilst the current 

study found that jumbling scene structure impacts categorisation, the failure to replicate the effect of 

horizontal structure across experiments may suggest that further research is required to clarify 

whether horizontal structure truly impacts categorisation. This discrepancy is particularly important 

when assessing whether there is a differential effect of jumbling across the two structural axes, as the 

absence of an effect of horizontal jumbling in conjunction with the observed impact of vertical 

jumbling could support the notion of  a vertical bias.  
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Across both experiments we found tentative evidence supporting our third hypothesis; that vertical 

scene jumbling would be more detrimental to scene categorisation than horizontal jumbling. Whilst 

we did not show a statistically significant difference between vertical jumbling in experiment 1, we 

did in experiment 2, which used the same paradigm but with a greater number of participants. 

Furthermore, in both experiments we found that whilst fully jumbling scene structure caused a greater 

disruption to categorisation than horizontal jumbling, there was no difference between the impacts 

of fully and vertical jumbling. This could imply that the impact of vertical jumbling was as severe as 

removing all coherent structure entirely, providing tentative evidence of a potential vertical bias. 

However, crucially we did not find the expected effect of inversion observed in previous studies  

(Kaiser et al., 2020a, 2020b). We initially predicted that the effect of jumbling would be stronger in 

upright scenes, where some coherent local structural information is maintained within the individual 

segments, indicating that the jumbling resulted in manipulations to the scenes structure, as opposed 

to mid and low-level visual characteristics. Contrary to these predictions, in both experiments we 

found that the effect of vertical jumbling was stronger when the scenes were inverted or rotated. 

Furthermore, we found that the differences between the jumbling conditions found in the upright 

scenes were also present during inversion and rotation. The only exception to this was the effect of 

horizontal jumbling found in experiment 2, which was only present in the upright condition. However, 

we did not find any statistical difference for horizontal jumbling when displayed upright or at 

inversion, again failing to replicate the expected inversion effect and making it difficult to determine 

whether this effect was a result of manipulations to the scenes structural information, or the effect of 

rotating other mid-level properties such as the edges, contour  structures and textures (Oliva & 

Torralba, 2001). As such, our results contradict our first hypothesis, and instead suggest that the 

observed effects of vertical and fully jumbling were the result of manipulations to the scenes mid and 

low-level visual characteristics, as opposed to the scene structure. 

What mid or low-level visual characteristics could be responsible for the increased reaction times 

observed for vertically jumbled scenes in the current study? As the impact of vertical jumbling is 

amplified in the inverted condition, where these characteristics are further disrupted, this could 

suggest that the effect of vertical jumbling found in the upright scenes is a result of manipulating low 

level visual characteristics along the vertical axis. When jumbling vertical structure, segments taken 

from the upper half of the scene are swapped with those from lower segments. As we used outdoor 

scenes, these upper segments typically contained portions of sky, whilst lower segments those of the 

ground. In outdoor scenes, the upper portion (sky) and lower portion (ground) often contain distinct 

low-level visual features. For example, the sky typically consists of low spatial frequency information, 

characterized by smooth gradients and large, uniform areas (Julesz, 1981), while the ground is rich in 
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high spatial frequency content, with sharp edges and complex textures (Thorpe et al., 1996). Swapping 

these segments during vertical scrambling may have disrupted the visual system's ability to utilise the 

regularities found in these low-level features. Conversely, when switching segments along the 

horizontal axis, many of the low-level visual features remain in a typical arrangement, as the left and 

right halves of a scene often contain similar spatial properties. For example, natural outdoor scenes 

tend to exhibit horizontal symmetry, where visual elements such as trees, buildings, or landscape 

features are often balanced on either side of the scene (Torralba & Oliva, 2003). This means that when 

horizontally jumbling an image, the general distribution of spatial frequencies and textures remains 

relatively intact, making it less disruptive to scene recognition compared to vertical scrambling. Thus, 

while vertical scrambling may disrupt key low-level scene statistics by swapping sky and ground 

components, horizontalِscramblingِpreservesِmuchِofِtheِscene’sِstructuralِ integrity,ِallowingِtheِ

visual system to maintain familiar global relationships. This may help to explain our failure to replicate 

the effect of inversion observed in Kaiser et al (2020a, 2020b), which utilised a wider variety of scene 

types, including both urban and natural indoor and outdoor scenes. The inclusion of indoor scenes 

may have limited the influence of jumbling these low-level features, thus allowing for the effect of 

structure to emerge. As such, in order to clarify these results future studies are needed that utilise a 

greater variety of scenes, especially those of indoor and outdoor places. Additionally, such studies 

could aim to test this explanation by comparing the effect of different jumbling types between indoor 

and outdoor scenes. 

However, such an explanation does not fully explain why we observed worse categorisation in the 

inverted and rotated vertically jumbled conditions compared to when they were displayed upright.  If 

the jumbling of low-level visual features can fully explain the effect of scene jumbling, we would 

expect to have seen similar levels of disruption across both upright and inverted scenes. This 

interaction between jumbling and rotation could be the result of these conditions representing the 

greatest possible permutation of the intact scenes, with not only global scene properties (such as 

structure) disrupted by the coarse jumbling of the scene segments but the local and mid-level visual 

properties being disrupted by rotation. This interpretation may be supported by the highest levels of 

disruption occurring in scenes which were both inverted and contained no intact vertical structure. As 

such, an important consideration for future research is to control for these low- and mid-level visual 

characteristics through filtering, and the inclusion of scene images that do not have such a stark divide 

in visual features between the two vertical segments. The latter could easily be achieved through the 

inclusion of interior scene images where the horizon is higher in the scene images. 

Alternatively, a potential explanation is that participants tried to partly solve the task by mentally 

rotating the scenes to their canonical upright orientation. This process may be less efficient for 
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jumbled scenes, causing the effects of jumbling to become greater in the inverted and rotated 

conditions. We tested this by comparing the impact of inversion and rotation, but found that the 

degree of rotation only impacted vertically jumbled scenes. Whilst this could suggest that participants 

only attempted to utilise mental rotation when categorising vertically jumbled scenes, it is difficult to 

explain why they would utilise differing strategies for categorising stimuli when the task demand 

remains constant between conditions.  

The difference between the orientations could alternatively represent the  effect of even greater 

manipulations to the scenes low-level visual characteristics. Such an interpretation would align with 

the idea that the inverted vertically jumbled condition represented the greatest possible permutation 

of the intact scene, and so reducing the degree of rotation reduces the level of disruption by bringing 

it closer to its canonical upright orientation. However, it is important to note that the analysis 

comparing the degree of rotation was conducted post-hoc, and the study was not designed with this 

analysis in consideration. As such, the design of our study limited the accuracy of the comparisons 

that we could draw, especially by necessitating the exclusion of the upright orientation, as this was 

used in both studies and subsequently was not comparable to the inverted and rotated conditions 

(which were viewed by different groups of participants). Furthermore, our analysis also compared two 

groups of considerably different sample sizes. Whilst mixed ANOVA are robust, the presence of a 

larger sample for the rotated condition may have caused it to dominate the interaction effect, making 

it harder to interpret the true interaction between orientation and jumbling condition (Schmider et 

al., 2010). As such, these results require further clarification in order to account for any possible role 

of mental rotation. This could be achieved in future experiments by utilising brief stimulus 

presentation times, where mental rotation is not an adaptive strategy for solving the task. Future 

studies could also aim to test scenes rotated at multiple angles within subjects, so that a more reliable 

comparison can be made accounting for potential individual differences, which could be especially 

prevalent when conducting experiments online (due to the added factors of hardware, software and 

environmental effects). 

Our studies failure to replicate the expected vertical bias may also be the result of several key 

methodological differenced with previous research. Firstly, Kaiser et al (2019) detected the effect 

utilising a combination of EEG and fMRI. Our inability to isolate its effect utilising a behavioural 

measure may suggest that the influence of vertical structure could be quite subtle, and require a more 

controlled design to detect. Additionally, if there is a further influence of low-level characteristics 

locatedِalongِtheِscene’sِverticalِaxis,ِasِourِexperimentِsuggests,ِtheِroleِofِstructureِmayِbecomeِ

further obfuscated. As such, the effects observed in previous behavioural experiments demonstrating 

a bias for information presented along a scene vertically axes (Mandler & Parker, 1976;  Previc & 
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Intraub, 1997;Essock et al., 2003) may have been influenced by a combination of differing underlying 

mechanismsِthatِutiliseِvariousِsourceِofِinformationِlocatedِalongِaِscene’sِverticalِaxis,ِandِnotِ

just structure. Secondly, the stimuli used in Kaiser et al (2019) differed considerably from those used 

in the current study, utilising a smaller number of scenes and a different method of dividing scene 

structure. Whilst in the current experiment, we divided scenes into 4 segments, Kaiser et al (2019) 

divided scenes once along the horizontal axis and 3 times along the vertical. By dividing the scenes in 

this way, vertical scene structure may have been more greatly disrupted than horizontal information, 

which was only split twice, leading to an unequal comparison between the manipulations. In the 

current study, by dividing the scene into 4 equal segments, both vertical and horizontal scene 

information was equally disrupted. Additionally, as only a single scene was used for 6 distinct 

categories, the observed effect may have reflected the organisation of spatial structure unique to the 

restricted stimulus set used. For example, one of the outdoor scenes used was of an alley way, where 

vertical structure may have been more diagnostic of scene type due to the edges of the surrounding 

buildings. The use of both indoor and outdoor scenes in Kaiser et al (2019) may have also caused the 

differences in our results; as previously discussed, it is possible that the nature of vertical structure 

may vary considerably between indoor and outdoor scenes, and this could have biased the results of 

the current study.  

As such an important question remains whether these results would apply to other types of scenes, 

particular indoor scenes. In the current study we focused on outdoor scenes due to supposed high 

levels of general familiarity, their relatively rigid structural norms and strong global features. However, 

it is arguable that many indoor scene categories share similarly rigid structural norms, and are also  

highly familiar to most people, and as such it is plausible that the results of these experiments may 

replicate for indoor scenes. However, one important difference to consider is the lack of skyline in 

indoor scenes. As discussed previously, the jumbling of portions of sky, which often have drastically 

different low level visual properties compared to other scene segments, may explain the current 

results. With these sky segments being absent in indoor scenes, results may have differed. Specifically, 

if the observed disruption was the result of manipulations to low level visual properties caused by 

swapping the sky segments, we would not expect to see these same disruptions in indoor scenes.  

Additionally, the differences between the typical spatial structures of indoor and outdoor scenes may 

also change how structural information is used, and whether an axis-based preference is utilised. 

Neural processing for indoor scenes elicits stronger activity in areas associated with object 

recognition, such as the lateral occipital cortex, due to the prevalence of discrete, identifiable objects, 

whilst outdoor scenes activate regions tied to navigation and environmental context, reflecting the 

evolutionary importance of recognizing landscapes for survival (Epstein & Kanwisher, 1998; Greene & 
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Oliva, 2009). As such, the extraction of vertical scene structure may be more relevant to navigational 

and environmental context, which may be less beneficial in extracting relevant structural information 

from indoor scenes, where objects provide more pertinent structural scene information. Whilst these 

ideas are only speculative, they highlight the challenges of applying these results to indoor scenes. 

Another outstanding question is whether we would expect scene jumbling to cause similar patterns 

of disruption if alternative experimental tasks were used? In the current experiment, we chose to use 

a categorisation task, prioritising fast response times, as we predicted that the extraction of coherent 

scene structure would occur early within visual analysis, with previous EEG research showing that 

structural information is extracted from as early as 200ms (Kaiser et al 2020a; 2020b; 2020c). As such, 

if a bias for vertical scene structure does exist, we would have expected that it would manifest at the 

early stages of visual processing, and might subsequently impact other tasks that rely on information 

extracted at later stages of processing. This could result in any potential vertical bias being particularly 

detectable in tasks that rely upon understanding scene information or context. Visual search tasks, 

where the structure of a scene is more directly relevant to the task (it is easy to imagine how jumbling 

scene structure could disrupt search strategies invoked in such tasks i.e. looking for keys on a table is 

more difficult if the table is in a segment of a scene one would not normally expect to find it), scene 

categorisation has no implicit task driven reliance on structure. This could suggest that any disruption 

to categorisation caused by the absents of vertical structure might reflect a more general disruption 

to scene processing directly, which could create a more general effect observable in other tasks. 

Consequently, we might also expect that disrupting scene structure might affect other tasks that are 

similarly less implicitly reliant on structure, such as those reliant on scene memory. This idea is 

somewhat supported by research showing that more distinctive scenes are both more easily 

categorised, and also more easily remembered (Greene & Oliva, 2009b; Konkle et al., 2010). As such 

if intact scene structure aids with scene categorised, it may also make it more easily recalled or 

remembered. Whilst previous research has found that jumbling impacts memory related tasks, such 

as recognition (Velisavljevićِ&ِ Elder,ِ 2008) and change detection (Zimmermann et al., 2010), it is 

unclear whether any axes based bias would also impact these tasks. If and how a potential vertical 

bias in scene structure would generalise to other tasks remains an open question, and one necessary 

to understand whether this bias exists for scene processing more generally or is unique to scene 

categorisation.  Future research could explore this by systematically manipulating the axis of jumbling 

as in the current experiment, whilst utilising a range of different experimental tasks to explore how 

any potential bias may operate across cognitive domains. 

What mechanisms could be responsible for a sensitivity to low level visual information arranged along 

aِscene’sِverticalِaxis? As previously discussed, the observed effect of vertical jumbling in both upright 
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and inverted scenes may be reflective of jumbling segments from the sky and ground, disrupting the 

scenes typical low-level visual characteristics. One possibility as to why this effect is particularly 

prominent along the vertical axis, is because it may disrupt the prominent horizon found within 

outdoor scenes. The horizon may represent an important structural feature for outdoor scenes, as it 

defines the relative physical constraints of a scene, such as establishing the base from which objects 

should arise from. If the visual system has adapted to make use of structural regularities within scenes, 

as suggested by previous research (Kaiser, Quek, et al., 2019; Oliva & Torralba, 2007; Võ et al., 2019; 

Wolfe, Alvarez, et al., 2011), it may be particularly sensitive to disruptions to information that is used 

to quickly identify the horizon. Previous research has found that the horizon can be identified very 

rapidly based only on a scenes low-level visual information. Herdtweck et al (2010) investigated 

horizon estimates after a brief (150ms) masked presentation of outdoor scenes and found that 

participants’ِ judgmentsِwereِconsistentِandِalignedِwellِwithِannotatedِhorizonِdata,ِevenِwhenِ

images were blurred, suggesting that global, low-frequency information plays a key role in horizon 

perception. Additionally, computational modelling revealed that human performance was best 

predicted by a simple gradient change across the scene, further supporting the idea that the visual 

system relies on low-level visual cues to rapidly determine the horizon. Of particular interest, they also 

found that when scenes were inverted, estimates of horizon became significantly worse, suggesting 

that orientation may be particularly important for identifying the horizon.   As such it may be possible 

that regularities in low-level features organised along a scenes vertical axes provide important cues to 

identify the horizon, and that the manipulation caused by both jumbling and inversion disrupt this 

process specifically.  

In conclusion, the current study provides evidence that vertical and fully jumbled scene structures 

impact categorisation, with tentative support for a vertical bias. However, inconsistencies between 

results in experiment 1 and 2, particularly regarding horizontal jumbling, highlight the need for 

further research. The findings suggest that low level visual characteristics along the vertical axis may 

play an important role in scene processing, particularly through disruptions to sky-ground 

segmentation that may be reflective of important cues used to identify the horizon in outdoor 

scenes. In order to clarify the results of the current study, future research should explore the effect 

of jumbling along different axes with a broader range of scene categories, particularly including 

indoor scenes, and consider alternative experimental tasks to determine the generalisability of a 

potential vertical bias.  
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Chapter 3: Individual differences in internal models 
explain idiosyncrasies in scene perception1 

3.1 Introduction 

Scene perception is not only achieved through a passive analysis of sensory input. Instead, the brain 

actively creates predictions about the world that are compared against current inputs (Clark, 2013a; 

Friston, 2005, 2010). In cognitive science, this idea was first highlighted by schema theory, which 

postulated that inputs are referenced against internal models (schemata) stored in memory, which 

reflect the structure of the world (Bartlett, 1932; Minsky, 1974; Rumelhart, 1980; Wagoner, 2013). 

Schema theory was influential in early research on human memory (Brewer & Treyens, 1981; Mandler 

& Parker, 1976) and perception (Biederman, 1972; Biederman et al., 1982). More recently, the 

importance of internal models has been highlighted by theories of Bayesian inference (Kayser et al., 

2004; Yuille & Kersten, 2006) and predictive processing (Clark, 2013a; Keller & Mrsic-Flogel, 2018). 

These theories assume that during visual processing, inputs are constantly matched against internally 

generated predictions of the world. Such predictions are derived from our own internal models of 

what we think the world should look like. How can we characterize the contents and individual 

differences of these internal models? 

In the context of scene perception, internal models can be conceptualized as a collection of typical 

features of a scene (or scene category) that are learned from extensive real-life experience and guide 

the analysis of matching visual inputs. The contents of internal models are mainly inferred from 

carefully manipulating the structure of the visual input and observing the resulting changes in 

perceptual performance and neural representation. Using this approach, researchers could 

successfully infer key features of internal scene models, such as the typical spatial distributions of 

objects (Bar, 2004; Biederman et al., 1982; Kaiser, Quek, et al., 2019), semantic relationships between 

objects and scenes (Davenport & Potter, 2004; Evans & Wolfe, 2022; Oliva & Torralba, 2007; Võ et al., 

2019; Wolfe, Võ, et al., 2011), or the spatial layout of whole scenes (Biederman, 1972; Kaiser et al., 

2020a; Kaiser & Cichy, 2021).  

However, this approach only reveals the contents of internal models that are shared across people – 

although there is mounting evidence for individual variability in visual perception and neural 

representation (Charest et al., 2014; de Haas et al., 2019; Gauthier, 2018; Mollon et al., 2017; Tulver 

et al., 2019; R. Wang et al., 2012). Given that we all differ in our visual experience with scenes across 

 
 

1 Parts of this chapter have been published in Cognition (Wang*, Foxwell*, et al., 2024). 
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our lifetime (Coutrot et al., 2022; Hartley, 2022) and in our neural architecture for visual analysis (Kanai 

& Rees, 2011; Llera et al., 2019; Moutsiana et al., 2016), it is likely that internal models for scenes are 

sculpted in different ways across people. If we could harness this individual variability, we would be 

able to predict and explain characteristic differences in the way each of us perceives the world. 

Here, we developed a novel approach that focuses on distilling out key properties of internal models 

in individual participants. We achieved this through drawing, enabling participants to provide 

unconstrained descriptions of typical scenes both quickly and without prior training (Fan et al., 2023). 

Using these drawings as descriptors for internal scene models, we then tested whether individual 

participants’ِ sceneِ perceptionِ canِ beِ explainedِ throughِ similaritiesِ withِ theirِ personalِ internalِ

models.  

Our participants first drew typical exemplars of natural scenes categories, as well as copies of 

photographs of the same categories (which served as a control for familiarity acquired during 

drawing). They then performed a scene categorisation task, in which they viewed carefully 

constructed scene renders that were created based on the drawings. Participants were more accurate 

inِcategorizingِrendersِbasedِonِtheirِownِdrawings,ِcomparedِtoِrendersِbasedِonِotherِpeople’sِ

drawings and renders based specific scenes they copied. Our results provide evidence that individual 

differences in internal models explain individual differences in scene categorisation. 

3.2 Methods 

The experiment consisted of 2 parts. In an initial drawing session, participants took part in a drawing 

task where they constructed scenes representative of typical exemplars of kitchens and living rooms, 

in order to create approximations of their internal scene representations. Their drawings were then 

converted into controlled 3D renders. Next, participants completed an online scene categorisation 

task,ِwhereِweِinvestigatedِwhetherِscenesِmoreِrepresentativeِofِparticipants’ِpersonalِ internalِ

models are more efficiently categorised.  

Participants 

The experiment was approved by the University of York ethics committee. Participants were recruited 

using the University of York's recruitment pool, Sona-systems (https://www.sona-systems.com). All 

participants reported having normal or corrected to normal vision. All participants were English 

speaking and with an average age of 22.6 ± 4.3 years ± SD. 6 participants identified as male, and 29 

participants identified as female. They were paid for their participation and provided informed 

consent before taking part in the study. 43 participants took part in the drawing session. 39 of the 

participants returned for part 2, whilst 4 participants were excluded because their performance did 

not exceed guessing performance (based on binomial tests against chance level), leaving us with a 

https://www.sona-systems.com/
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final sample of 35 participants. Sample size was based on convenience sampling, with the target to 

exceed 80% statistical power for a hypothesised medium effect of d = 0.5 in a two-sided t-test. For 

this target, at least 34 participants are required. 

Drawing session 

Toِobtainِdescriptorsِofِparticipants’ِ internalِsceneِmodels,ِtheyِ firstِ tookِpartِ inِaِdrawingِtask,ِ

where they were instructed to draw typical examples of different scenes. Here, participants were 

tasked with drawing scenes from 2 different categories: living rooms and kitchens. Critically, they were 

instructed to draw their interpretation of the most typical example of that scene type. The definition 

of typical was given as the most generic and ordinary example they could think of. They were also 

instructed not to draw a scene that they thought looked particularly interesting or attractive, nor an 

exact copy of a scene they knew from real life (such as simply producing a copy of their own kitchen 

or living room). They were given 1 minute to plan and think about what their most typical scene should 

look like.  They then had 3 minutes and 30 seconds to draw the scene, using a pencil, rubber and ruler. 

Scene sketches were drawn into a perspective grid, to allow participants to more easily draw in 3D as 

well as to standardise the participants viewpoint across all scenes. See Appendix D for examples of 

participant drawings. 

Perspective grids were either drawn or printed by the participant on A4 paper and consisted of a large 

central rectangle (7.1cm by 16.5cm) and 4 diagonal lines going from each corner of the rectangle to 

the corners of the page. The rectangle was drawn slightly raised from the vertical centre on the page, 

with the bottom length 8.5cm from the bottom of the page and top length 5.4cm from the top of the 

page. Both sides of the rectangle were drawn 5.4cm away from the sides of the page. Grids thereby 

created the outline of a room, with the large central rectangle acting as the back wall, the top and 

bottom segments the ceiling and floor, and side segments as the side walls (see Appendix C).  

Participants were reminded how much time they had left at the halfway point, and when they had a 

minute remaining. They first drew a practise scene of a bedroom, to get them used to the timings and 

drawing on the perspective grid. This also allowed the experimenter to check that they understood 

the task instructions. The order in which they drew the other scenes was balanced across participants. 

After completing each drawing, participants also drew a coarse birds-eye view of the scene, in which 

they labelledِallِtheِobjectsِinِtheِscene.ِThisِwasِdoneِtoِhelpِclarifyِtheِroom’sِintendedِ3Dِlayoutِ

and to confirm the identity of any ambiguously drawn objects, providing additional information for 

generating accurate 3D renders of the drawings. 



72 
 

In addition to drawing their most typical versions of living rooms and kitchens, participants drew 

copies of a given photograph of a living room and kitchen. These copies were drawn under the same 

time constraints as the sketches, and participants were instructed to capture a similar amount of detail 

as they used in their own drawings. They were given 1 minute to study the photo, followed by 3.5 

minutes to sketch it, and had access to the photograph throughout their drawing time. These copies 

acted as a control for memory effects in the subsequent scene categorisation experiments: 

Participants will have seen and drawn these scenes, just like their typical versions of living rooms and 

kitchens, but they will not adhere to their internal models of what living rooms and kitchens typically 

look like.  

Stimuli 

Toِproduceِstimuliِspecificallyِtailoredِtoِparticipants’ِinternalِmodels,ِweِcreatedِaِsetِofِ3Dِrendersِ

thatِ optimallyِ capturedِ theِ propertiesِ ofِ participants’ِ sceneِ sketchesِ producedِ inِ theِ drawingِ

session. We used renders instead of the original line sketches as they allowed us to standardize the 

stimulus set in several ways: Firstly, renders allowed us to equalise differences in drawing ability, 

whilstِaccuratelyِmaintainingِkeyِaspectsِofِtheِscenes’ِcontentِandِstructure.ِSecondly,ِ low-level 

visual features can be readily standardized in the 3D renders. Finally, the object content of the 3D 

renders can be manipulated in precisely controlled ways.  

In order to create the 3D renders weِusedِtheِvideoِgameِ“TheِSims 4”ِ(The Sims4, 2014). The Sims 4 

is a social simulation game, that allows the user to create and design different characters and houses, 

and then to play out different social scenarios and objectives. The game includes a comprehensive, 

highly detailed and easy to use design software that allows the user to create a range of 3D 

environments by placing walls and objects onto a grid-likeِ systemِ (knownِ inِ theِ gameِ asِ “Buildِ

Mode”).ِ Theِ useِ ofِ theِ Simsِ 4ِ allowedِ usِ accessِ toِ aِ largeِ libraryِ ofِ thousands of 3D modelled 

candidate objects for building the renders: We could thereby choose from a comprehensive and 

diverse set of exemplars for any objects we required.    

When constructing the 3D renders, first an empty room was built to replicate the view and 

approximate dimensions of the perspective grid. This room was approximately 6 x 6 cm in size and 

used wall pieces approximately 3m high, with the outward facing wall was removed (see Figure 3.1). 

This created an empty room structure that approximately resembled the perspective grids the scene 

sketches were drawn in, which acted as the starting point for building other 3D renders. The scenes 

were then populated with objects by referencing both the scene sketch and birds-eye view plans the 

participants constructed in the drawing session. The amount of detail a given individual object was 

drawn in varied greatly; the closest matching 3D object was chosen to represent it in the render, but 
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when objects were drawn in very little detail, a highly generic version of that object was used (at the 

experimenter’sِdiscretion).ِOnceِaِsceneِrenderِwasِcompleted,ِscreenِshotsِwereِtakenِusingِtheِ

Xbox live app for Windows (Xbox App for Windows, 2009). Screen shots were taken from the same 

distance and angle for every scene render, cropped so that only the room was visible, and resized to 

820 x 390 pixels. In order to control for low-level visual differences between the resulting images, all 

images were grayscaled and their mean luminance and contrast were matched using the SHINE 

toolbox for MATLAB (Willenbockel et al., 2010). See Appendix E for further examples of the stimuli. 

 

Figure 3.1. Examples of the scene drawings and 3D renders. Participants first sketched the scene inside 

theِperspectiveِgrid.ِTheseِwereِthenِconvertedِintoِ3Dِrendersِusingِtheِdesignِtoolِinِ“TheِSimsِ4”ِ

build mode. They were then cropped, grayscaled and standardized in their low-level features. 

Procedure 

Participants took part in an online scene categorisation task where they were asked to indicate 

whether a briefly presented scene was either a living room or a kitchen as accurately as they could 

(see figure 3). The experiment was created and hosted using the Gorilla online experiment builder 

(Anwyl-Irvine et al., 2020). Before the experiment, they were instructed to maximise their browser 

window and sit approximately 60 cm away from the screen. After reading the instructions, participants 

were shown 2 examples of each scene category (these were not included in the experiment). 

During the experiment, participants viewed 3D renders based on their own drawing of a typical scene 

(“own”ِcondition),ِbasedِonِotherِparticipant’sِdrawingsِofِtypicalِscenesِ(“other”ِcondition),ِandِ
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basedِ onِ theirِ copiedِ scenesِ (“control”ِ condition;ِ theِ controlِ rendersِ wereِ identicalِ forِ allِ

participants). In total, 88 renders were shown in the experiment, 2 of which corresponded to each 

participants’ِ ownِ drawings,ِ 2ِ ofِ whichِ correspondedِ toِ theِ copied scenes, and the other 82 

correspondedِ toِ theِ otherِ participants’ِ drawings.ِ Theِ stimuliِ wereِ thusِ initiallyِ basedِ onِ theِ

drawings of 43 participants, but 5 of them did not return for the experiment after the drawing session. 

Each scene render was repeated 10 times, for a total of 880 trials. Trial order was randomized. The 

experiment was split into four blocks. After each block, participants were given a 1-and-a-half-minute 

break.  

Stimuli were displayed on a grey screen. Trials began with a blank screen, followed by a central fixation 

cross for 1000ms. Next, the scene render was flashed for 83ms, followed by a mask presented for 

150ms. Masks consisted of a random arrangement of squares, diamonds, and circles. On each trial 

one of 43 unique masks was chosen randomly. A blank screen was then displayed until the participants 

respondedِbyِeitherِpressingِ“K”ِorِ“L”ِonِtheirِkeyboardِ(toِindicateِwhetherِaِsceneِwasِaِkitchenِ

or living room). There was no time limit for participants to give their answer. After the participants 

gave their response there was a 100ms delay before the fixation cross was shown again and the next 

trial started (see Figure 3.2). 

 

Figure 3.2. The trial structure for experiment 1 session 2. First a fixation cross was shown for 1000ms, 

followed by the stimulus for 83ms and a mask for 150ms. Participants than gave their answers by 

pressingِeitherِ“K”ِorِ“L”ِonِtheirِkeyboardِ(toِindicateِwhetherِa scene was a kitchen or living room). 
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Statistical Analysis 

To compare categorisation accuracies across conditions, we used one-way repeated-measured 

ANOVAs and paired-samples t-tests. 

To investigate whether a graded similarity to the participants own scene images predicted processing 

efficiency, we used a deep neural network (DNN) to measure how similar each scene render based on 

otherِparticipants’ِ typicalِdrawingsِ (hereinafter:ِ candidate scenes) is to the renders based on the 

currentِ participant’sِ drawingsِ (hereinafter:ِ referenceِ scenes),ِ andِ thenِ correlatedِ theِ resultingِ

similarityِscoreِwithِtheِparticipants’ِcategorisation accuracy for these scene renders (see Figure 3.3). 

For all candidate and reference scenes, we first extracted activation vectors from the convolutional 

layers and the final fully-connected layer of GoogLenet deep convolutional neural network (Szegedy 

et al., 2015), which was either pre-trained on scene categorisation using 1.8 million scene images from 

the Places365 data set (B. Zhou et al., 2018) or objects trained on the ImageNet dataset (Deng et al., 

2009). Activation in hierarchical DNN layers were used as approximations for the hierarchical stages 

of visual processing, with earlier layers of the DNN being more representative of lower-level 

processing (such as shapes, forms and colours) and higher levels representative of higher level visual 

processingِ(suchِasِtheِscene’sِobjectِcontent)(Cichy & Kaiser, 2019; Kriegeskorte, 2015).   
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Figure 3.3. We extracted activation patters for all scene renders in Experiment 1 from GoogLenet 

DNNs trained on scene or object classification. To approximate the processing of complex, high-level 

visual features, we extracted activation patterns from the last inception module of the DNN. To 

quantify similarity to the internal model, we correlated the activation pattern for each other scene to 

the own scene of the same category (within-category correlation) and each own scene of the other 

category (between-category correlation), separately for each participant. By subtracting the within- 

and between-category correlations, we obtained a graded similarity measure, which we correlated 

with the behavioural categorisation accuracy across all candidate images. This analysis was repeated 

with all possible other scenes or the control scenes as the reference images. 

By systematically correlating these activation vectors, we obtained two similarity relations: (1) within-

category similarities, capturing how similar of candidate scenes is to the reference scene of the same 

category, and (2) between-category similarities, how similar of candidate scenes is to the reference 

scene of the opposite category. By subtracting the between-correlation from the within-correlation, 

weِcreated “ِsimilarityِscore”,ِwhichِcapturedِhowِsimilarِeachِsceneِrenderِwas tِo tِhe iِnternalِmodelِ
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of the same category, relative to the internal model of the opposite category. The aggregated 

correlations were Fisher-transformed, and subjected one-sided t-tests across participants, where 

correlations greater than zero indicated that higher DNN similarity scores indeed predict higher 

categorisation accuracy. The resulting p-values were FDR-corrected across the DNN blocks. Notably, 

each time one of the other scenes was the reference, one scene less was available for computing the 

correlations. For the analyses in which the own or control scenes were the reference, we thus 

iteratively removed one of the other scenes before computing the results and then averaged across 

iterations.  

3.3 Results 

Scenes tailored to participants’ internal models are processed more efficiently 

We first analysed participants categorisation performance (kitchen versus living room) across the own, 

other and control conditions (see Figure 3.4.a). The three conditions yielded significantly different 

accuracies (t(2,68) = 4.15, p = .020): Participants were significantly more accurate for scenes that were 

tailored to their own drawingsِofِtypicalِscenesِthanِforِsceneِtailoredِtoِothers’ِdrawingsِ(t(34) = 

2.18, p = .036)  and scenes they had copied before (t(34) = 2.26, p = .031). We found no statistically 

significant difference in accuracy between the other and control conditions (t(34) = 1.11, p = .280). 

Theseِresultsِsuggestِthatِscenesِresemblingِindividualِparticipants’ِinternalِsceneِmodelِareِmoreِ

efficientlyِprocessedِthanِthoseِresemblingِotherِpeople’sِinternalِmodels.ِTheِlowerِaccuracyِinِtheِ

copy condition suggests that the benefit for scenes tailoredِtoِparticipants’ِownِinternalِmodelsِcouldِ

not be explained by familiarity to the scenes acquired during the drawing session. Together, this 

finding suggests that variations in scene perception are indeed explained by our own personal priors 

of what the world should look like.  
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Figure 3.4. a) Mean reaction times for renders based on either participants’ own, other and control 

scenes. We found that participants were significantly more accurate at categorising scenes based off 

their own drawings than those produced by other participants or a copied scene control. b) Graded 

similarity analysis for DNN trained on scenes. c) Graded similarity analysis for DNN trained on objects.  

In both DNNs, graded similarity to the own scene predicted categorisation better than graded 

similarityِtoِtheِotherِorِcontrolِscenes,ِsuggestingِthatِsimilarityِtoِparticipants’ِpersonalِinternalِ

models predicts behavioural categorisation across the range of images used in the experiment. Error 

bars represent standard errors of the mean. * Indicates p < .05, ** indicates p < .01, *** indicates p < 

.001. 
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Graded similarity to internal representations predicts categorisation accuracy 

The results from Experiment 1 suggest that scenes specifically engineered to match participants 

internal models are preferentially categorised. However, if internal models indeed function as 

templates for categorisation, we should also see a graded benefit of similarity to the internal model: 

The more similar any scene is to participants internal model, the better categorisation performance 

should be. To investigate whether graded similarity to internal scene models could predict scene 

classification, we used a deep neural network (DNN) model to compute the similarity of all scene 

renders that were generated to match other participants’ِdrawingsِ(henceforth: candidate scenes) to 

theِ rendersِ thatِwereِ generatedِ toِmatchِ theِ participants’ِ ownِdrawingsِ (henceforth: reference 

scenes). In order to quantify the similarity between these scene renders, we first processed both the 

candidate and reference scenes through two GoogLenet DNN models trained on scene or object 

categorisation and extracted activation vectors from deep layers of the DNN (see statistical analysis 

for details), analogous of high-level visual processing. We then correlated the activation vectors for 

each candidate scene with those for the two target scenes (kitchen and living room). For each 

candidate scenes we then subtracted the similarity to the reference scene of the same category from 

theِsimilarityِtoِtheِreferenceِsceneِofِtheِoppositeِcategory.ِThisِyieldedِaِ“similarityِscore”ِwhichِ

wasِhigherِ ifِ theِ imageِwasِmoreِsimilarِ toِ theِparticipants’ِ internalِmodel of the corresponding 

category or more dissimilar to the internal model of the opposite condition.  

For each participant, we then correlated the similarity scores for each candidate scene with their 

accuracy in the scene categorisation task, allowing us to infer how well similarity predicted 

categorisation. We found that in both object and scene trained DNNs, across participants, there was 

a positive correlation between similarity score and categorisation accuracy for both own and other 

scenes (t(34) = 7.37, p < .001). Graded similarity to the control scenes was a weaker predictor of 

categorisation, both in the object-trained (t(34) = 1.96, p = .058), and scene-trained DNNs (t(34) = 2.34, 

p = .025) (see Figure 3.4.b and Figure 3.4.c). Comparing predictions between the own, other, and 

control scenes as references, we found a significant difference between conditions in both networks 

(both F(2,68) > 13.3, p < .001). Critically, graded similarity to the own scenes between predicted 

behavioural performance better than graded similarity to the other scenes for both the object trained 

DNN (t(34) = 3.31, p = .002) and scene trained DNN (t(34) = 2.26, p = .030), and better than graded 

similarity to the control scenes (object trained DNN:  t(34) = 4.04, p < .001, scene trained  DNN: t(34) 

= 4.65, p < .001).ِ Thisِ confirmedِ ourِ predictionِ thatِ gradedِ similarityِ toِ participants’ِ individualِ

internal models determines categorisation performance. 
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3.4 Discussion 

Together, our findings provide new insights on individual differences in naturalistic vision. We show 

that participants are better at categorizing scenes that resemble a typical drawing they had produced 

prior to the experiment, compared to scenes that resembleِotherِpeople’sِtypicalِdrawings,ِorِscenesِ

that resemble scene copies they had produced earlier. Using a DNN as a measure of graded similarity, 

we further show that categorisation variesِ asِ aِ functionِ ofِ theِ similarityِ betweenِ participants’ِ

drawings and the scene that they are asked to categorize. We interpret these findings to reflect 

differencesِ inِ participants’ِ internalِmodelsِ ofِ theِ worldِ thatِ areِ capturedِ byِ theirِ typicalِ scene 

drawings. These differences in internal models may in turn drive idiosyncrasies in scene 

categorisation.    

The more accurate categorisation ofِscenesِthatِareِsimilarِtoِdescriptionsِofِparticipants’ِ internalِ

models can be explained by the rapid formation of accurate predictions that guide the analysis of the 

sensory input (Bar, 2004; Friston, 2005). It has been suggested that such predictions are generated 

through the activation of candidate prototypes from rapid and coarse stimulus analysis (Bar, 2004; 

Bar et al., 2006). This idea is consistent with previous studies reporting that participants – on the group 

level – show enhanced detection, categorisation, and more diagnostic neural responses for more 

typical scene exemplars (Caddigan et al., 2017; Torralbo et al., 2013). Here, we show that the 

activation of such categorical prototypes occurs in an idiosyncratic way, where each individual 

activates their own internal models of a scene. This reinforces the idea that internal representations 

of the world are only fully understood if we take the differential experience of individual observers 

with their real-world environments into account (Hartley, 2022). This assertion does not imply that 

perception is fully unique, or even radically different, between observers. We still found a fair 

reliability of categorisation performance across observers, with a modest split half-reliability of r = 

0.72. What our results do suggest is that on top of this coarse stability in performance, there is 

interesting additional variance that is systematic across observers and can be captured by our 

drawing-based method. 

We demonstrate that a single drawing of a typical scene is able to capture essential properties of the 

individually specific internal model that gives rise to these predictions. This highlights the potential of 

our approach: A simple drawing composed in just a few minutes is enough to capture characteristic 

properties of the internal models in individual participants. While a single drawing thus seems 

sufficient to uncover individual differences, our approach is somewhat simplistic, as it assumes that 

(1) the internal model is a single point in the space of possible scenes and (2) the internal model is 

stable across time. Moving forward, it would be interesting to see how internal models vary when 

probed with multiple drawings and across time. Such studies could reveal that internal models, rather 
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than providing a single monolithic reference point, are perhaps defined by a probability distribution 

in representational space.  

Our findings further suggest that familiarity acquired during drawing is insufficient to explain 

categorisation benefits for stimuli that are similar to it. Renders created from the scenes that people 

copied, and that they also acquired familiarity with during drawing, did not yield the same 

performance benefit as renders that were created from drawings that reflectِparticipants’ِownِtypicalِ

scenes. This shows that the generation of a drawing per se – the copy drawings were produced under 

the exact same constraints as the typical drawings – does not produce performance benefits in a 

subsequent task. Another concern relates to the mental construction of a scene, which is more 

demanding for the typical scene where the scene contents need to be thought up without a direct 

visual reference. Mental generation has indeed been linked to subsequent memory benefits in the 

memory literature, referred to as the generation effect (Clark, 1995; Slamecka & Graf, 1978). Though 

generation effects in memory are mostly probed on purely semantic contents and under long 

presentation regimes (Bertsch et al., 2007), generation may in principle lead to more pronounced 

familiarity in the subsequent categorisation task. Our graded similarity analysis argues against our 

effects being driven solely by a preferential recognition of renders constructed from the typical 

drawings that participants had mentally generated before: Categorisation also varied in a systematic 

wayِacrossِrendersِbasedِonِotherِparticipants’ِdrawings,ِasِaِfunctionِofِhowِsimilarِtheyِwereِtoِ

the render based on their own typical drawing. 

Our results may still be related to familiarity with scenes acquired throughout our lifetimes: The scenes 

we encounter during everyday experience ultimately eventually led to the formation of our internal 

models for scene categories. Previous studies indeed suggest that familiarity modulates scene 

processing (Bainbridge, 2022; Epstein et al., 2007; Klink et al., 2023). In our study, we explicitly 

instructed our participants to not draw individual scenes from their immediate real-life experience but 

to draw the most typical scenes they could think of (with the idea that typical scenes reflect a weighted 

mix of features encountered in scenes across life). Thoroughly disentangling effects of typicality and 

familiarity in creating the reported effects will nonetheless require further studies. To 

comprehensively address this issue, studies need to either track participants longitudinally, 

monitoring how their internal models change as they learn about new types of environments, or 

constructِdetailedِdescriptorsِofِparticipants’ِvisualِexperience,ِfor iِnstanceِbyِcollectingِdescriptionsِ

and images from their everyday environments. 
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Our study further prompts questions that provide new avenues for future research. First, we currently 

do not know why internal models systematically differ across participants. Future studies could relate 

variations in internal models to idiosyncrasies in cortical representation (Charest et al., 2014; J. Lee & 

Geng, 2017) and visual exploration behaviour (de Haas et al., 2019; Henderson & Luke, 2014), as well 

as to individual differences in brain anatomy (Kanai & Rees, 2011; Llera et al., 2019; Moutsiana et al., 

2016). Second, we do not know exactly how visual inputs are matched against the internal models. 

There is a variety of dimensions along which this match could be computed, such as the objects 

included in a scene as well as their spatial distribution (Kaiser, Quek, et al., 2019; Oliva & Torralba, 

2007; Võ et al., 2019; Wolfe, Võ, et al., 2011)the global geometry of the scene (Epstein & Baker, 2019; 

Kaiser & Cichy, 2021; Oliva & Torralba, 2006), or low- and mid-level features correlated with the 

content of a scene (Geisler, 2008; Groen et al., 2017; Watson et al., 2014). By object-related features, 

we refer to scene information that pertain to the identity, position, and spatial relationships of 

constituent objects. Object identity refers to recognising an item as belonging to a certain category 

(e.g., a chair, a tree), while object position and spatial relationships capture how objects are arranged 

relative to each other within a scene (Kaiser et al., 2018; Epstein, 2008). These features are critical for 

scene understanding and are processed across multiple brain regions, including the LOC for object 

recognition and the PPA for spatial configurations (Grill-Spector & Weiner, 2014; Konen & Kastner, 

2008; Epstein & Baker, 2019).  

Our DNN-based analysis of graded similarity indeed suggests that high-level features are important, 

given that graded similarity in a deep layer of a scene-trained DNN predicted categorisation 

performance. We define high-level visual features as the complex properties of a scene that go beyond 

basic low-level and mid-level visual attributes (such as edges, contrast, or luminance). High-level 

features include object identity, spatial layout, and global scene properties, all of which contribute to 

semantic scene understanding (Kravitz et al., 2011; Oliva & Torralba, 2007). These features may be 

processed in higher-level visual areas, such as the inferotemporal cortex for object recognition and 

the parahippocampal cortex for scene categorisation (Grill-Spector & Weiner, 2014; Epstein, 2008). 

The observation that predictions were enabled by both object- and scene-trained DNNs suggests that 

the features useful for prediction are not uniquely critical for either object or scene recognition. 

However, our scene renders were carefully matched for low-level features, and this matching may 

have obscured a possible contribution of low-level features that are relevant under more naturalistic 

conditions. To chart relevant visual features more comprehensively, future studies could 

systematically manipulate inputs to deviate from the internal model in targeted ways. 

More generally, our study highlights the potential of drawing for quantifying internal representations 

(Fan et al., 2023). Drawings indeed received renewed attention recently, in studies of scene memory 
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(Bainbridge et al., 2019; Bainbridge & Baker, 2020) and perception (Fan et al., 2018; Matthews & 

Adams, 2008; Morgan et al., 2019; Ostrofsky et al., 2017; Singer et al., 2023). Our study suggests that 

drawings also yield the potential to advance our understanding of the internal models that guide the 

visual representation of objects, faces, or actions. Furthermore, our drawing method may prove useful 

for studying the maturation of internal models across development (see Long et al., 2024) or their 

alterations in disorders of prediction like autism (Pellicano & Burr, 2012). 

In sum, our work provides two critical advances for studying vision on the individual level. First, our 

findings offer a new interpretation of individual differences in perception. They suggest that humans 

categorize real-world environments in different ways because we all have different internal models of 

the world. Second, our work provides researchers with a new drawing-based method for unveiling the 

contents of internal models in individual participants. This method has the potential to be widely 

applied to derive explicit predictions about individual differences in vision. 
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Chapter 4: Investigating the object and spatial content of internal 
scene models 

4.1 Introduction 

Understanding how humans perceive and interpret scenes is fundamental to vision science. Scene 

processing has been theorised to utilise internal scene models—mental representations that guide 

recognition and processing (Morgan et al., 2019; Muckli et al., 2015; Peelen et al., 2024). While 

internal models are thought to guide scene perception, it remains unclear what specific types of 

information they contain and how this may influence scene perception. Previous studies have shown 

that scene perception relies on semantic and syntactic object information (Võ et al., 2019; Võ & Wolfe, 

2013), yet it is unknown whether this information is explicitly represented within internal models. In 

chapter 3, we show how drawings can be used to probe the contents of internal scene models, 

showing that participants categorised scenes more efficiently when they were based on their own 

drawings rather than those of others. In a control condition, we also found that this effect was not 

just a result of familiarity with the stimulus itself, as participants showed no such improved accuracy 

for renders based on drawings of photographed scenes produced at the same time. These findings 

suggest that drawings are a reliable readout of internal scene models, and that similarity to these 

models can predict the efficiency of scene processing. However, a critical question remains: What 

types of information within an internal model drive this effect? 

One possible source of this information are the objects found within a scene. Whilst scenes contain a 

wealth of visual information, they are inherently defined by their constituent objects. Võ (et al., 2019) 

proposed that objects in scenes contain two primary sources of information: semantic and syntactic. 

Semantic information pertains to an object's identity and its alignment with the room category, while 

syntactic information relates to the spatial properties of objects within the scene. In a bedroom, a bed 

would exhibit high semantic consistency with the scene category, whereas a bathtub would be 

unusual and thus show low semantic consistency. Syntactic information is also highly predictable; for 

instance, we expect the bed to be placed on the floor, upright, and against a wall. Both syntactic and 

semantic scene information has been shown to be distinguishable from each other within the visual 

system. Võ & Wolfe (2013) conducted an EEG experiment in which participants were exposed to 

semantically and syntactically inconsistent scenes. They found that semantic inconsistencies produced 

a negative deflection in the N300/N400, whist syntactic inconsistencies elicited a late positivity 

resembling the P600. This finding mirrored differences in neural processing for syntactic and semantic 

information found outside of scene perception, with activation of N400 found for semantic violations 

of verbal (Holcomb, 1993; Kutas & Hillyard, 1980) and pictorial information (Kutas & Federmeier, 
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2011), and P600 activations associated with intact syntactic information in language processing 

(Hagoort et al., 1993; Kutas et al., 2006). 

Both typical semantic and syntactic scene content has been shown to aid efficient scene processing, 

and as such may be represented within internal scene models. Davenport and Potter (2004) found 

that when placing objects within either semantically consistent or inconsistent scenes (such as a 

football on a football pitch vs a shark in a desert) and asking participants to identify the objects and 

background scene as quickly as possible, not only did they find that semantic consistency facilitated 

object recognition, but also that the presence of semantically consistent objects aided in scene 

recognition. This benefit has been found to be very robust, with Evans and Wolfe (2022) finding that 

participants were unable to separate objects from their backgrounds, even when these were 

detrimental to task performance or semantically inconsistent, indicating the strong role of context in 

object processing.  

Similarly to Davenport and Potter (2004), Brandman and Peelen (2019) conducted a study 

investigating how objects facilitate scene processing when other scene information is obscured, 

rendering the scene category ambiguous. They blurred indoor and outdoor scene photographs, 

making the scene category challenging to discern, but this difficulty was mitigated by the inclusion of 

semantically consistent objects. Testing classifiers trained on un-blurred indoor and outdoor scenes, 

they discerned response patterns in scene-selective brain regions, finding more accurate classification 

in left PPA and the OPA for scenes containing semantically consistent objects compared to those 

without, suggesting that typical objects positioned in typical scene locations aids in scene 

categorisation. If typical syntactic and semantic scene information facilitates efficient scene 

processing, the visual system would require a way to gauge what information is indeed typical. This 

typicality could be inferred by referencing aِscene’s object content against an internal model for that 

scene category. Scenes featuring typical object types and arrangements may be more easily indexed 

against prototypical category level semantic and syntactic object information contained in the internal 

model and thus be perceived more efficiently. 

While previous studies have demonstrated that typical semantic and syntactic scene content aids 

recognition (Davenport & Potter, 2004; Brandman & Peelen, 2019), these studies assume a shared, 

universal representation of scene structure. However, our findings from Chapter 3 suggest that 

internal models vary across individuals, raising the question as to whether individual differences in 

semantic and syntactic scene representations within internal models shape scene perception? If 

semantic and syntactic information are contained in individually specific internal models, then we 

might expect to observe a greater sensitivity to manipulations of semantic and syntactic information 
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in scenes that more closely resembles that individual’s internal model, whilst violations to scenes 

further from their internal model would be less likely to cause disruptions, as the content already 

differs from that observed within the internal model (see Figure 4.1). Alternatively, semantic and 

syntactic information might be representative of broader rules of scene grammar, shared across 

individuals. This information could be acquired through exposure to broadly shared rules found within 

scene content that are almost universally shared. In the case of semantic information, this might 

represent a sensitivity to violations in key defining objects almost always present within specific 

exemplars of that scene category, such as beds in bedrooms, whilst broad syntactic rules might reflect 

equally universal rules of object placement, such as the physical confounds dictated by forces such as 

gravity or in objects interjecting within each other (Võ et al., 2019; Võ & Henderson, 2009; Võ & Wolfe, 

2013). Given that many studies have found that shared conception of typical object information helps 

facilitate efficient scene processing,  it is perhaps most likely that internal models could contain a 

combination of typical semantic and syntactic information derived from  both personal exposure, and 

those  more universally. However, no study has explicitly examined individual differences in the use 

of semantic and syntactic information during scene processing. 

 

 

Figure 4.1. In chapter 3 we demonstrated that the benefit of scene typicality may be dictated by the 

strength of the match between the incoming scene information and an internal model of the scene. 

When scene content is manipulated (exemplified with the toy example of adding a water slide to a 
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house) in a scene more closely resembling the internal model, this manipulation may cause a greater 

relative disruption in processing compared to scenes that are already a poor match to the internal 

model, and thus appear more atypical. Manipulating the content within less typical scenes may only 

change scene information that is already a poor match to the internal model, rather than changing 

more diagnostic scene information found in more typical scene exemplars.   

Our drawing paradigm provides an opportune method for investigating individual differences in the 

representation of semantic and syntactic information in internal scene models. Here, participants 

produce line drawings based on their own judgement of what a typical scene in a given category looks 

like, acting as a proxy for the content of their own internal model. These line drawings are then used 

to produce 3D scene renders, representing the same objects and locations as the original drawing. 

Crucially, the objects within the scene renders can be easily manipulated, without necessarily causing 

inconsistencies in the representation of the original scene image. This means, that unlike manipulating 

a line drawing, objects can be moved, replaced, or otherwise manipulated without causing disruptions 

to the scene (such as terminating lines or creating artificial object placements in a drawing) that may 

cause the changes to be artificially more noticeable. Furthermore, changing objects within 

computerised renders does not require the style of the original drawer to be replicated, meaning that 

changes to the scene are not made more obvious by the success of the imitation. The intensity of the 

manipulation can easily be modulated by increasing the number of objects within the scene that are 

changed, allowing us to investigate the sensitivity of the perceptual outcome to these changes. 

Together, these qualities allow both object identity and location to be easily changed, manipulating 

elements of scene grammar without disrupting the overall style or coherency of the image.  

In the current study we had 3 aims; 1) to investigate whether object related information is stored 

within internal scene models, 2) and how robustly, and 3) to replicate the results of chapter 3, in order 

to provide further evidence for the ability of line drawing to access information about our internal 

scene models. To achieve this, we use our previously established drawing paradigm to investigate the 

role of semantic and syntactic object information stored within internal scene models, by 

manipulating both the identity and location of constituent objects within scene renders based on a 

participant own drawing of typical scenes, drawings produced by other participants or copies of 

existing scenes. If scene renders are able to represent the content of an individual’s internal scene 

model, as the results of chapter 3 suggest, then we would expect manipulating objects within renders 

based on a participants own drawing would disrupt their ability to successfully categorise renders, as 

these manipulations reduce their semblance to a participants’ own internal model. Conversely, we 

would not expect any impact of categorisation of renders based on drawings produced by other 
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participants or based on existing scenes, as there is equal chance that  any changes made would make 

these renders an any better or worse match to a participants own internal model.  

We further investigated whether any effects were modulated by the severity of the manipulation (i.e., 

whether one or two objects were manipulated), to test how robustly this object information is 

encoded within internal models. If object information does help facilitate the comparison of internal 

models to external scenes, we would expect scenes containing object information more closely 

matching that of the internal model to be categorised more accurately than those that deviate further. 

As such, if representations of object content are more rigid, we would expect more severe 

manipulations to cause a greater impact on categorisation compared to less severe manipulations. 

Alternatively, if the representation of object content is more flexible, then we would expect to see 

little difference between the severity of the manipulations applied, indicating that internal models 

either rely little on object information or that the matching process is robust enough for such 

manipulations to have little effect.  

Two experiments were conducted: in experiment 1 we compared scene categorisation between 

renders based on either participant own drawings, those basedِonِotherِpeople’sِdrawingsِor based 

of copies of existing scenes when constituent objects were manipulated by either replacing 

(manipulating semantic information) or swapping (manipulating syntactic information but preserving 

semantic information), at two different levels of severity. In the second experiment, we aimed to 

confirm our results by only testing the more severe manipulations, due to concerns that displaying 

both manipulations may have biased our finding.  

We hypothesised that manipulating both object identity and location would have a greater impact on 

categorisation performance for scenes based on a participant’s own drawings, acting as proxies for 

their own internal models, than for scenes basedِonِotherِparticipants’ِdrawings or copies of existing 

scenes. We further hypothesised that the severity of the manipulation would modulate this effect, 

with more severe manipulations causing the scene render to become an even weaker match to the 

participants  internal model. As such, we would only expect the severity of the manipulation to impact 

rendersِbasedِonِaِparticipant’sِownِdrawing,ِandِnot tِhoseِof tِheِbased of other’s drawings or copies 

of pre-existing scenes. Finally, we also hypothesised that as in chapter 3, we would find scenes based 

on a participant’s own drawings were more accurately categorised compared to those based on other 

people’sِ drawingsِor copies of pre-existing scenes. By investigating these questions, we hope to 

further our understanding of how the brain utilises internal models to help facilitate scene 

categorisation.  
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4.2 Experiment 1 

4.2.1 Methods 

Participants 

This study was exploratory in terms of sample size as there was little prior research with directly 

comparable methodologies; therefore, we did not have a strong empirical basis for conducting a 

formal power analysis. Instead, we aimed to approximately match the sample size used in Chapter 3, 

expecting similar effect sizes. This approach allowed for consistency across studies and an initial 

examination of potential effects.  In total 38 participants took part in experiment 1, 7 participants 

identified as male, 30 identified as female and 1 as another gender, with an average age of 24.76 years 

± SD. 6.11 . Of these 15 participants had also taken part in our previous drawing experiment (as 

outlined in chapter 3). This allowed us to take advantage of the already existing scene drawings and 

renders, meaning that the scene drawing session did not need to be repeated for these participants. 

Procedures were approved by the ethics committee of the Department of Psychology, University of 

York, and adhered to the Declaration of Helsinki. Experiment 1 was conducted online, and participants 

provided informed consent through an online form. 

Whilst returning participants may have been more experienced with the paradigm, and already had 

some exposure to the renders designed to match their drawings, we did not expect that this would 

affect the experiment systematically. This was based on the results of chapter 3 where we included a 

control condition for memory effects and found prior familiarity with scene drawings could not explain 

the improved recognition we observed. In addition, if any undetected memory effects did exist, these 

would be mitigated by the design, as we compare the relative ability of participants to recognise 

scenes within individual participants, as opposed to between them. Returning participant also 

produced their scene drawings at the same time as the controls, so any memory effects would affect 

both stimuli equally. In addition, for new participants who had to complete the drawing task, at least 

1 week would elapse between the drawing task and the scene categorisation experiment, meaning all 

participants would experience a significant gap between these tasks. 

Participants were randomly assigned into groups of 3. Participants in each batch only viewed the 

renders based on their own and the two other participants drawings, as well as the renders based on 

the control scenes. This was done to achieve a viable length to the experiment, as participants were 

required to view multiple versions of each image, and including more sets would greatly increase the 

length of the experiment, leading to possible fatigue effects.  
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Stimuli 

Scene renders 

Stimuli consisted of intact and manipulated 3D renders of scenes. The intact scene was produced using 

the same method as in chapter 3. These were basedِonِparticipants’ِownِdrawingsِofِtypicalِ living 

rooms and kitchen scenes,ِotherِpeople’sِdrawingsِofِthese scenes, and copied control scenes. These 

drawings always consisted of living rooms and kitchens due to participants’ِ familiarityِwithِ theseِ

scene categories, and variability of the items associated with these categories.  

Each render (own, other and control) was displayed as either intact or manipulated. Two 

manipulations were applied to each scene; either swapping the location of two objects within the 

scene or replacing one object with a similar scene-appropriate object. For both manipulations, we 

additionally created two levels of intensity, by either swapping one or two object pairs or replacing 

one or two objects, respectively. This created a further 4 conditions in which either one object was 

replaced (replace 1), two objects replaced (replace 2), 1 object swapped (swap 1) or two objects 

swapped (swap2) (see Figure 4.2). 

 

  

Figure 4.2. Experimental conditions included in experiment 1. Renders were based on either 

participants’ِownِdrawingsِofِtypicalِlivingِroomِandِkitchenِscenes,ِotherِpeople’sِdrawingsِofِtheseِ

scenes, or copied control scenes, and displayed as either intact or manipulated. Two types of 

manipulations were applied to were scenes, either swapping or replacing their content. These 

manipulations were further divided into less (where 1 object was manipulated) and more (where 2 

objects were manipulated) severe conditions. 

Conditions with 1 manipulation (swap 1 and replace 1) were subsets of the conditions with 2 

manipulations (swap 2 and replace 2). This meant that to create the 2-object manipulation image, we 

 Intact 
Manipulated 

Swapped Replaced 

Own 1x Own Intact 2x Swap 1 1x Swap 2 
2x Replace 

1 
1x 

Replace 2 

Other 
1 x Other 

Intact 
2x Swap 1 1x Swap 2 

2x Replace 
1 

1x 
Replace 2 

Control 1 x Control 2x Swap 1 1x Swap 2 
2x Replace 

1 
1x 

Replace 2 
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took both single object manipulations and applied them to the same image, so that the 2-object 

manipulated image comprised of both. For example, if for one image in the first replace 1 

manipulation we replaced a sofa with a coffee table, and in the second we replaced a TV with a 

bookshelf, the replace 2 condition for that image would have both the sofa replaced with the coffee 

table and the TV replaced with a book shelf (see Figure 4.3, and Appendix F for further examples).  

When selecting which objects to manipulate we attempted to match the original object with an object 

of similar size and shape. For example, we would avoid replacing a bookcase (a large rectangular 

object) with a house plant (a smaller narrow object), and instead choose a more similar object, such 

as a large TV on a stand. We did this so the objects that were replaced would have similar coarse visual 

properties where possible. We also prioritised manipulating objects that appeared in a relatively 

central part of the scene and were clearly categorically consistent. For example, when replacing an 

object in a kitchen such as a stove, we would replace it with another object you might likely find in a 

kitchen (such as a dish washer).  

We also aimed to match the orientation of the existing object as closely as possible, whilst still creating 

a plausible scene: avoiding placing objects in ways that would violate how they might be experienced 

in real life. This meant that some objects were rotated to fit into their new locations, or to maintain a 

viewpoint in which they could be identified. This was done to avoid producing any manipulated scenes 

that looked artificial, so that they still resembled a scene that could exist and would not stand out due 

to being overly artificial or implausible (such as placing a washing machine on a kitchen table.)  
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Figure 4.3. Examples of the manipulations applied to scenes in experiment 2. Participants were shown 

the intact scene (green box), 2 scenes where one object was replaced and 1 where 2 objects were 

replaced (blue box), and 2 scenes where one object was switched and one where 2 object were 

switched (red box).  

Procedure 

Scene drawing task 

Participants first drew scenes from 2 categories (living rooms and kitchens) that matched their 

interpretation of the most typical exemplar of each scene type. The definition of typical was given as 

the most generic and ordinary example they could think of. They were also instructed not to draw a 

scene that they thought looked particularly interesting or attractive, nor an exact copy of a scene they 

knew from real life. They were given 1 minute to plan the scene, and then 3 minutes and 30 seconds 

to draw the scene. Scene sketches were drawn into a perspective grid, to allow participants to 

represent their scenes more easily in a 3D space, without having to employ any specific drawing 

techniques.  It also standardised the participants viewpoint across all scenes. The perspective grids 
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used are described in more detail in the methods section of chapter 3 (see Appendix C for an example 

of the perspective grids used).  

Participants were reminded how much time they had left at the halfway point, and when they had a 

minute remaining. They first drew a practise scene of a bedroom, to get them used to the timings and 

drawing on the perspective grid. The order in which they drew the other scenes was balanced across 

participants. After completing each drawing, participants also drew a rough birds-eye view of the 

scene,ِ inِwhichِtheyِ labelledِallِ theِobjectsِ inِtheِscene.ِThisِwasِdoneِtoِhelpِclarifyِtheِroom’sِ

intended 3D layout and to confirm the identity of any ambiguously drawn objects, providing additional 

information for generating accurate 3D renders of the drawings. 

In addition to drawing their most typical versions of living rooms and kitchens, participants drew 

copies of a given photograph of a living room and kitchen. These were the same photographs as used 

in chapter 3. These copies were drawn under the same time constraints as the typical drawings, and 

participants were instructed to capture a similar amount of detail as they used in their own drawings. 

They were given 1 minute to study the photo, followed by 3.5 minutes to sketch it, and had access to 

the photograph throughout their drawing time.  

By employing the same drawing task between experiments, we were able to continue to use scene 

renders and participants from our previous experiment and compare the results of both with greater 

parity. 

Scene Categorisation experiment 

Participants completed a similar scene categorisation task as in chapter 3. Participants were asked to 

indicate whether a briefly presented scene was either a living room or a kitchen as accurately as they 

could. Before the experiment, they were instructed to full screen the web page and sit approximately 

60 cm away from the screen. After reading the instructions, participants were shown 2 examples of 

each scene category (these were not included in the experiment). 

During the experiment, participants viewed 3D renders based on either their own, the other 2 

members of their group, or the control drawings of typical scenes. These were displayed as either 

intact or manipulated.  

Within each group there were 8 intact scene renders; 2 based on a participants own typical living room 

and kitchen drawings, 4 based on those of other participants and 2 based on the control scenes. Each 

of these intact scenes were displayed in the 6 different manipulations (2x replace 1, 1x replace 2, 2x 

swap 1, and 1x swap 2), for 48 manipulated scenes total. Together, this yielded 12 conditions, 

comprised of 56 unique scene renders per group. Each scene was repeated 16 times, for a total of 896 
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trials. Trials were divided into 4 blocks of 224 trials, in which conditions were balanced, so that each 

stimulus was repeated 4 times. Blocks were separated by a 90 second break. 

Stimuli were displayed on a grey screen. Trials began with a blank screen, followed by a central fixation 

cross for 1000ms. Next, the scene render was flashed for 83ms, followed by a mask presented for 

150ms. Masks consisted of a random arrangement of squares, diamonds, and circles. For each trial 

one of 43 unique masks were randomly chosen. A blank screen was then displayed until the 

participantsِrespondedِbyِeitherِpressingِ“K”ِorِ“L”ِonِtheirِkeyboardِ(toِindicateِwhetherِaِsceneِ

was a kitchen or living room). There was no time limit for participants to give their answer. After the 

participants gave their response there was a 100ms delay before the fixation cross was shown again 

and the next trial started. 

We chose a brief stimulus presentation time and mask duration based on the hypothesis that rapid, 

coarse analysis is sufficient for individuals to activate their internal scene models, guiding 

categorisation decisions. This was supported by the findings of chapter 3, where we were able to 

find an influence of individual differences on scene perception with the same low display times. This 

approach further aligns with theories of prediction and prototype activation (Bar, 2004; Friston, 

2005), suggesting that individuals generate predictions through a fast, initial processing of scene 

features. Previous research has shown that typical scene exemplars elicit more accurate detection 

and categorisation responses (Caddigan et al., 2017; Csathó et al., 2015; Torralbo et al., 2013), which 

supports the notion that brief exposures allow for the rapid engagement of internal representations. 

Thus, the short exposure time and mask duration were intended to investigate this rapid predictive 

processing mechanism whilst  minimising the influence of post-perceptual factors (such as stimulus 

novelty or preference). 

 

Statistical Analysis 

To compare categorisation accuracies across conditions, we used repeated-measured ANOVAs and 

post-hoc paired-samples t-tests. We chose to conduct post hoc tests over priori contrasts despite 

having a specific directional hypothesis aimed at replicating previous findings. This decision was 

influenced by the implementation of a newly developed drawing paradigm, which in combination with 

the effect of manipulating scene content, introduced the potential for unforeseen interactions. 

Utilising post hoc tests allowed us to comprehensively explore all possible comparisons, thereby 

minimising the risk of selectively focusing on certain interactions and ensuring a thorough analysis of 

the data.  
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4.2.2 Results  

Scenes based on participants' typical drawings are more accurately categorised than those based 

on other participants’ drawings, but not of copied scenes 

In order to test whether we could replicate the findings of the original scene drawing experiment 

(chapter 3), we first investigated whether scenes that were specifically tailored to participants' 

personal internal models are more accurately categorised. We used a one-way repeated measures 

ANOVA to compare categorisation accuracy between renders based on each participant's own 

drawingِ (“own”ِ condition),ِ otherِ participants'ِ drawingsِ (“other”ِ condition),ِ orِ theِ copiedِ scenesِ

(“control”ِcondition). The ANOVA had one factor (drawer), with 3 levels (own, other and control).  The 

one-way repeated measures ANOVA violated the assumption of sphericity,ِas iِndicatedِbyِMauchley’sِ

test,ِχ²(2) = 3.611, p = 0.164. Therefore, degrees of freedom were corrected using the Greenhouse-

Geisserِestimateِ(εِ=ِ0.91).. As in our chapter 3, we found a significant differences in categorisation 

accuracy between drawers (F(1.82,67.55) = 5.53, p = .007), with a medium effect size of η²ₚ = 0.13 .  

A Bonferroni-adjusted pairwise t-tests (with an adjusted significance threshold of p < 0.017 (0.05/3 

comparisons) were then used to explore the results further by comparing categorisation accuracy 

between drawers Here we found that accuracy for the own condition was only significantly higher) 

than the other condition (t(37) = 2.64, p = .012,ِwithِCohen’sِdِofِdِ= 0.42 indicating a small to medium 

effect size , but not the control condition (t(37) = 0.16, p = .875). We also found a significant difference 

between the other and control conditions (t(37) = 3.29, p = .002), with a medium effect size of d=0.53. 

This deviated from the original experiment, where accuracy was significantly greater for the own 

condition compared to both the other and control conditions, and there was no significant difference 

between the control and other conditions. As such, experiment 1 only provided a partial replication 

of the original scene drawing experiment. 

 

The intensity of the manipulations to object content does not modulate scene categorisation for 

scenes based on participants' personal internal models 

To investigate the effects of manipulating scene content on categorisation accuracy for the own, other 

and control scenes, we conducted two 3x3 repeated measures ANOVAs, with the factor’s drawer 

(own, other, control) and manipulation (intact, replace and swap), separately for the less and more 

severe manipulations. To account for multiple comparisons, alpha values were adjusted using a 

Bonferroni correction, resulting in an adjusted significance threshold of p < 0.025 (0.05/2). 
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The 3x3 repeated measures ANOVA investigating the less severe manipulations violated the 

assumptionِofِsphericity,ِas iِndicatedِbyِMauchley’sِtest,ِχ²(9) = 13.973, p = 0.124. Therefore, degrees 

of freedom were corrected using the Greenhouse-Geisserِestimateِ(εِ=ِ0.85).We found no significant 

interaction between manipulation and drawer for the less severe manipulations (F(3.4, 126.06) = 0.89, 

p = .461), indicating that the less severe manipulations to scene content did not disrupt scene 

categorisation differently regardless of which drawing a render was based on. We found a main effect 

of drawer (F(1.73, 64) = 6.62, p = .004), with a large effect size of η²ₚ = 0.15, driven by the difference 

between the own and control condition against the other condition, as reported above. 

For the more severe manipulations, we again failed to find a  significant interaction effect between 

drawer and manipulation (F(3.12, 115.74) = 2.17, p = .093). Similar to the less severe manipulations, 

we also found a significant main effect of drawer (F(1.65, 61.23) = 3.69, p = .038), with a medium effect 

size of η²ₚ = 0.09,.  
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Figure 4.4. a). In order to test whether experiment 1 replicated our original drawing experiment, we 

compared mean accuracies for the intact own, other and control condition in the scene categorisation 

task. Here, we found that whilst participants were significantly more accuracte at classifying scenes 

based on their own renders compared to those produced by others, they were not more so than those 

in the control condition. b) The mean cateogrisation accuracies for the less severe manipulations 

(where only a single object was either swapped or replaced) compared to the intact conditions 

between drawers (own, other and control). Here, we found no effect of manipulating scene content. 

c) The mean cateogrisation accuracies for the more severe manipulations (where 2 objects were either 

swapped or manipulated) compared to the intact conditions between drawers (own, other and 
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control).Again, we found no signficnat effect of manipualting scene content. ** indicates p < .01, *** 

indicates p < .001. 

4.2.3 Summary 

In experiment 1 we found no significant interaction effect between drawer and manipulation for both 

the less or more severe conditions. However, observing the trends in the data, the effect of 

manipulation was greater where participants categorised renders based on their own scenes, 

compared to the other and control conditions. Additionally, the greatest impact was caused by 

replacing objects  which could suggest that internal models contain more information about object 

identitiesِ typicallyِ foundِ inِ aِ sceneِ thanِ theseِ objects’ِ locationsِ withinِ theِ scene. Whilst these 

differences were not statistically significantly different, and so do not be represent real effects, they 

may be indicative of a possible trend that the current experiment was unable to detect. 

By including both less and more severe manipulations in the same task we may have limited our ability 

to detect a stronger effect from the more severe manipulations. The less severe manipulations were 

a subset of the more severe manipulations. While the less severe manipulations may not have been 

strong enough to be detected during the brief display time for the images, they may have acted to 

adjust participants ability to judge the scene, by providing a middle point between the intact and more 

severe manipulation conditions, limiting the overall effect. Due to the low stimulus variety, 

participants may have passively learnt to recognise the images throughout the experiment, mitigating 

some of the disruption from the manipulations. As such, in experiment 2 we proceeded with only 

testing the more severe manipulations, to investigate this effect more directly. 

In experiment 1 we produced a partial replication of our drawing experiment in chapter 3, finding 

participants were more efficient at scenes based on their own renders compared to those of others. 

However, unlike in chapter 3,ِweِfoundِnoِdifferenceِbetweenِaِparticipant’sِownِrendersِandِthoseِ

of the control condition. Furthermore, participants were also better at categorising the control 

condition than those produced by others. This could suggest that the observed effect is a result of 

familiarity with the stimulus, contrary to the findings of chapter 3. In chapter 3, a far greater variety 

of unique scenes were shown (45 compared to 4 in the current experiment), which could have made 

it more difficult for the scenes to be recognised, especially considering the rapid display time. 

However, in the current experiment, if one was to consider the manipulated scenes as distinctive from 

the intact originals, this experiment would have a greater variety of unique stimuli (at 56 unique 

scenes). It is difficult to determine the extent to which these scenes could be considered truly unique, 

especially in comparison to the variety found in the original experiment.  



99 
 

Alternatively, the difference could be attributed to the content of the control condition. As the control 

condition was constructed from a copy of a real-world photograph, the level of detail produced in the 

images was generally greater than those produced by participants in their own sketches. This resulted 

in the control scene containing a greater number of objects than the drawings produced by the 

participants, and subsequently both the own and other scenes. This may have resulted in the scene 

containing more scene information that the visual system could use to categorise the image more 

efficiently. Furthermore, this could affect the manipulations applied to the control scene, as the 

changes in content may have been harder to detect within the greater scene clutter. This effect might 

have only become apparent in the current experiment again due to the lower variety of scenes used 

for each participant.  

4.3 Experiment 2 

The aim of experiment 2 was to confirm the results of experiment 1. Experiment 2 utilised the same 

methodology as experiment 1 with two changes. First, only the more severe conditions were used for 

the manipulated scenes (replace 2 and swap 2), as nominal trends in the data  in experiment 1 

suggested only the more severe manipulations may be able to disrupt scene categorisation. Further, 

by reducing the number of manipulations, we are able to increase the number of repetitions for each 

image, increasing the reliability of the categorisation data. Second, we reduced the number of objects 

used to design the control renders. This was done for two reasons: to make the overall number of 

objects within the scene more comparable to those in the own and other conditions, and to reduce 

visual clutter, so that the effect of manipulations might be more easily detectable (in-line with the 

own and other scenes).  

4.3.1 Methods 

Participants 

As in experiment 1, we aimed to achieve a similar sample size as used in chapter 3. In total 33 

participants took part in the experiment. This was 2 less than took part in chapter 3, and was a result 

of participants not returning to take part in the scene categorisation experiment after they had 

completed the drawing session. 17 participants identified as male and 16 identified as female, with an 

average age of 28.12 years ± SD. 9.10. Of these all participants had also taken part in experiment 1, 

and 13 in our original scene drawing experiment (as outlined in chapter 3). All participants reported 

having normal or corrected to normal vision and were English speaking. 

Stimuli 
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The stimuli in experiment 2 comprised of scene renders constructed using the same method as 

experiment 1. Both intact and manipulated scene renders were used, but only the more severe 

manipulation conditions (replace 2 and swapped 2) were included. This resulted in 9 conditions (see 

Figure 4.5).  

 Intact 
Manipulated 

Swapped Replaced 

Own 1x Own Intact 1x Swap 2 1x Replace 2 

Other 1 x Other Intact 1x Swap 2 1x Replace 2 

Control 1 x Control 1x Swap 2 1x Replace 2 

Figure 4.5. Experimental conditions included in experiment 2. As in experiment 1 renders were based 

onِ eitherِ participants’ِ ownِ drawingsِ ofِ typicalِ livingِ roomِ andِ kitchenِ scenes,ِ otherِ people’sِ

drawings of these scenes, or copied control scenes, and displayed as either intact or manipulated (with 

constituent objects either being swapped or replaced). However, unlike in experiment 1 only more 

severe manipulations were utilised. 

The control condition for experiment 2 was also remade, so that it was more comparable to the scene 

renders based on participants’ typical drawings. This was done so that manipulations to the control 

scene caused a similar degree of change as to those in the own and other conditions, and thus make 

the condition more comparable. In the new control renders we retained the main typifying objects, 

such as large pieces of furniture, but removed smaller objects that added a greater level of detail and 

clutter than in other scene renders (such as many of the decorative vases found in the control living 

room scene). We also changed the 3d models used to depict some furniture items (such as the sofa, 

chair, and coffee table) to models utilised in other scene renders. This was because most scene renders 

shared 3D models for these objects, but the control scene utilised unique models not found in other 

renders. By changing these to more commonly used model, the control scene became more analogous 

with the renders used in other conditions, whilst remaining a unique scene exemplar and a strong 

representation of the control image (see Figure 4.6). 
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Figure 4.6. The control condition used in experiment 1 compared with the control condition used in 

experiment 2. Many smaller decorative objects (such as vases) have been removed to reduce the 

visual clutter and create a scene with a comparable amount of individual objects and visual clutter as 

the scene renders produced by participants. 

Procedure 

Drawing Task 

As all participants had participated in drawing sessions before, no new drawing sessions were 

conducted for this experiment. 

Scene categorisation experiment 

The same scene categorisation experiment was used as in experiment 1, with all instructions and 

experimental parameters being identical. As in experiment 1 participants were grouped into batches 

of 3, viewing the same stimulus sets as each other. Participants remained in the same batch as they 

were allocated in experiment 1. The only difference in procedure for experiment 2 was that only the 

more severe manipulations were utilised (replace 2 and swapped 2) alongside the intact scene 

renders. 

Within each group there were 8 intact scene renders; 2 based on a participants own typical scene 

drawings (1 of a living room and 1 of a kitchen scene), 4 based on those of other participants and 2 

based on the control scenes.  2 manipulations (replace 2 and swap 2) were applied to each of these 

scenes, totalling 16 manipulated scenes. This yielded 24 unique scene renders per group. Each trial 

was repeated 30 times, for a total of 720 trials. These trials were divided into 4 blocks, with 8 

repetitions being included in blocks 1, 2 and 3 (consisting of 192 trials) and 6 repetitions in block 4 

(consisting of 144). Block 4 contained less trials as a result of dividing the total trial numbers across 

the four blocks (to match the previous experiment). Each block was separated by a 90 second break, 

in order to allow participants to rest their eyes and reduce any effects of after images. 
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4.3.2 Results  

Scenes based on participants' personal internal models were more accurately categorised 

than those based on other participants’ internal models, but not of copied scenes. 

We conducted the same analysis as used in experiment 1 in order to investigate whether scenes that 

were specifically tailored to participants' personal internal models are more accurately categorised, in 

order to establish whether we had replicated the findings of chapter 3.  

We compared categorisation accuracy between renders based on each participant's own drawing 

(“own”ِcondition),ِotherِparticipants'ِdrawingsِ(“other”ِcondition),ِorِtheِcopiedِscenesِ(“control”ِ

condition) using a one-way ANOVA. The ANOVA had one factor (drawer), with 3 levels (own, other 

and control).  The one-way repeated measures ANOVA violated the assumption of sphericity, as 

indicatedِbyِMauchley’sِtest,ِχ²(2) = 0.29, p = 0.865. Therefore, degrees of freedom were corrected 

using the Greenhouse-Geisserِestimateِ(εِ=ِ0.99).  

As in our chapter 3, we found a significant differences in categorisation accuracy between drawers 

(F(1.98,63.41)= 3.40, p= .040), with a medium effect size of η²ₚ = 0.09 . Bonferroni-adjusted pairwise 

t-tests (with an adjusted significance threshold of p < 0.017 (0.05/3 comparisons) were then used to 

explore the results further by comparing categorisation accuracy between drawers. We found that 

renders in the own condition were more accurately categorised than those in the other condition 

(t(32) = 2.54, p = .016) (see fig 11.a). Theِeffectِsize,ِasِmeasuredِbyِCohen’sِd,ِwasِdِ=ِ0.44, indicating 

a small to medium effect size. As in experiment 1, we found no significant difference between own 

and control scenes (t(32) = 1.29, p = .208). However, unlike experiment 1 there was also no significant 

difference found between the other and control conditions (t(32) = 1.36, p = .184). Overall, the 

pattern qualitatively matches the pattern observed in chapter 3 better than experiment 1, although 

the effects did not replicate fully. 

Manipulations to scene content may not disrupt scene categorisation for scenes based on 

participants' personal internal models  

In order to investigate the effect of manipulating the scene content, we compared categorisation 

accuracy between the own, other and controls conditions, when they were displayed as either intact, 

or manipulated by either replacing 2 objects with new ones (the replace condition) or swapping the 

location of 2 sets of objects (the swap condition).  

We conducted a 3x3 repeated measures ANOVA, with 2 factors (drawer and manipulation) each with 

3 levels (drawer: own, other, control; manipulation: intact, replace, swap.) The interaction effect 
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between drawer and manipulation met the assumptionِofِsphericity,ِasِindicatedِbyِMauchley’sِtest,ِ

χ²(9) = 19.1, p = 0.025.  

 We found no significant interaction between drawer and manipulation (F(3.12, 99.83) = 0.96, p = 

.416), indicating no significant differences in the effect of the manipulation across drawers  (see fig 

11.b). Although the trends in the data were similar to experiment 1, this effect was not supported by 

a significant interaction effect, as initially hypothesized. 

 

 

Figure 4.7. a). As in experiment 1 we tested whether our results replicated our original drawing 

experiment, by comparing the mean accuracies for the intact own, other and control condition in the 

scene categorisation task. As in experiment 1 we found that participants were significantly more 

accuracte at classifying scenes based on their own renders compared to those produced by others, 

but no longer found that accuracy was significantly higher in the control condition.  b) The mean 

cateogrisation accuracies for the intact, swapped or replaced conditions between drawers (own, other 

and control).. * Indicates p < .05, ** indicates p < .01. 

4.3.3 Summary 

Experiment 2 confirmed the same effect of scene manipulation as observed in experiment 1. We again 

found no interaction effect between manipulation and drawer. When examining the trends in the data 

we again observed little effect of switching object locations within these same scenes. Whilst this may 

tentatively indicate the identity of objects within internal models are more important than their 

position, due to the lack of interaction effect we cannot make this assumption from the current study. 
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Instead, based on our results we conclude that manipulating scene content had no impact on scene 

categorisation, regardless of which drawing the renders were based on. 

As in experiment 1 we only produced a partial replication of the findings of our original scene study 

(see chapter 3), with the own condition only yielding significantly higher categorisation accuracy than 

the other condition. However, unlike in experiment 1 the control condition did not yield significantly 

higher performance than the other condition. Whilst this does not allow us to disregard familiarity 

with the scene as an influencing factor in the increased scene categorisation accuracy observed for 

the scenes based of participants own drawing, it does suggest that familiarity is not the sole factor 

driving the increased accuracy.  

Reducing the visual clutter in the control scene lowered categorisation accuracy (M = 81.83%, SE = 

2.3%), compared to experiment 1 (M = 84%, SE = 2.5%). This may suggest that the increased 

categorisation accuracy for the control scenes observed in experiment 1 was the result of the scene 

containing distinctly more objects than the scenes used in the own and other conditions. However, 

this same control scene was used in chapter 3, but scene categorisation accuracy was lower, and 

importantly lower than in the own condition. This may further evidence that the difference in the 

experimental design used in current experiments was responsible for our inability to replicate our 

original findings.  

In this context, however, it is worth noting that the difference in categorisation performance between 

the own and control conditions also emerged in another independent replication (experiment 2; Wang 

et al., 2024), in which the stimuli were also shown in batches. The reasons for the discrepancies 

observed in these experiments are currently unclear, although they may relate to a difference in online 

and laboratory testing (as in experiment 2, Wang et al., 2024). 

4.4 General Discussion 

Together, across both experiments, we found no significant difference between manipulating scene 

content regardless of whether the scene was basedِonِaِparticipant’sِownِjudgementِofِtypicalityِorِ

not. If semantic and syntactic information were represented in internal models for scenes, we would 

expect to have observed a greater disruption of categorisation in the scenes approximating a 

participant’s internal model, as the strength of the match is reduced when introducing object 

manipulations. Scenes based on the control and other participants’ scene drawings would already be 

less of a match to the internal model, so further manipulations would not necessarily make them less 

of a match to the participant’sِown model (the manipulations may even bring them closer to the 

participant’sِ internalِ model). Furthermore, we were unable to fully replicate the findings of our 
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original drawing experiment, as although we found that accuracy was higher for scenes based on 

participants own renders when compared to those based on others, accuracy was not higher than our 

control condition in either experiment, suggesting a possible effect of familiarity.  Below, we will first 

provide an interpretation of the current results, before moving on to discuss how methodological 

weaknesses and potential flaws in our earlier assumptions based on the findings of chapter 3, might 

provide possible explanations for the  discrepancies with our expected results.  

Across both experiments we were only able to partially replicate the idiosyncratic effect on 

categorisation accuracy observed in chapter 3. Whilst we found that drawings based on participants 

own scenes were more efficiently categorised compared to those produced by others, performance 

was not significantly greater than the control condition. In addition, in experiment 1 we also found 

scene categorisation was also significantly better for control scenes compared to those produced by 

other participants. This would suggest that the improved categorisation accuracy for renders based 

on participants own scene drawings was a result of familiarity with the stimulus, as both the 

participant’sِownِscenesِandِcontrolsِwereِproducedِatِtheِsameِtime. Previous research has found 

that participants are better at categorising familiar scenes (Bainbridge, 2022; Epstein et al., 2007; Klink 

et al., 2023), which may have led to the improved accuracy we observed.  If familiarity can explain 

these effects, this may suggest that the lack of object manipulation we observed could have resulted 

from render’sِbeingِcategorisedِbasedِonِfamiliarity, and this effect masking any effects of matching 

scenes to internal models.  

This further makes it difficult to infer what the impacts of manipulating object content in the current 

study can tell us about their representation in internal scene models.  The findings of the current study 

conflict with those found in chapter 3, which suggested that constituent scene objects and their 

placements were the main drivers of individual differences we observed. Across our drawing 

experiments, the differences between the renders based on participants’ own internal models and 

those based on other participants were primarily resulted from differences in the objects included and 

their locations, with other factors such as viewpoint, colour and size of the scene being controlled for. 

The identity of individual objects was also somewhat controlled for, as participant drawings often did 

not contain much detail for single objects, and due to limitations of the software used to produce the 

renders, often the closest match to a limited set of pre-existing models was used, meaning similar 

commonly occurring objects (such as ovens, chairs and TVs) were used across renders. As such, our 

original drawing study would suggest that it was differences in the object type and location that 

produced the  improved categorisation accuracy we observed.  
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Subsequently, if the lack of significant disruption caused by manipulating object content reflects a 

similar process within internal models, than our results would challenges the idea that idiosyncratic 

object and location-based information are represented within internal scene models. Instead, they 

would suggest that representations of typical object information is represented similarly across 

participants. Whilst we manipulated object content, we aimed to do this in such a way that the 

manipulated scenes still represented a plausible exemplar of that category. As such, no scene type 

would be any less typical than another for its category, meaning that shared representations of scene 

regularities may not have been violated in the manipulated scene conditions, which could account for 

why we did not observe any effect of object manipulation. Such an interpretation is coherent with 

previous research that has shown beneficial effects of shared conceptions of typical object identities 

and placements  across participants (Davenport & Potter, 2004; Faivre et al., 2019; Mudrik et al., 2010, 

2011; Võ & Wolfe, 2013; Kaiser et al., 2018; Kaiser & Cichy, 2018a, 2018b). 

This notion would align with the idea that internal models provide coarse representations of scene 

information that would match their expected use in natural vision (Brandman & Peelen, 2019). For 

internal models to be able to facilitate rapid scene processing, they would need to be applicable to a 

broad range of scenes. If minor deviations in object identity or placement could meaningfully disrupt 

this process, then we would expect internal models to only be useful at recognising a narrow range of 

scenes based closely around the contents of the internal model itself. This could lead to us having very 

narrow and individualised conceptions of scene categories. Instead, what we see is the opposite – 

people have little difficulty identifying a broad range of different arrangements of object types as an 

example of a given scene type. For example, living rooms can vary in design, with a broad range of 

possible constituent  objects, but they are still easily identifiable as a living room.  

However, whilst the current results may suggest that internal scene models do not contain 

idiosyncratic representations of scene specific semantic and syntactic object-level information, it is 

possible that they may instead contain a relatively coarse, or broad, representation of these features. 

As mentioned, in the current study the manipulations we applied still produced plausible exemplars 

of their scene category, thus representing relatively subtle changes to the scenes semantic and 

syntactic information. If internal models contain a coarser representation of this information, such 

manipulations may not have been sufficient at disrupting the match to the internal models. In the 

current experiment, we only changed one or two objects at a time, and only either the semantic or 

syntactic information separately. Not only could these manipulations not have been severe enough to 

disrupt the match to the contents of the internal model, but it may be the remaining intact source of 

object information was sufficient to successfully facilitate the match. For example, when the syntactic 

information was disrupted, the intact semantic information could have been enough to facilitate the 
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match to the internal model, and vice versa. Previous studies have found that object information is 

most efficient at facilitating scene processing when both semantic and syntactic object information is 

intact, supporting the notion that internal models might contain a more holistic representation of 

object information (Kaiser et al., 2014, 2015). In order to explore this further, future studies could 

utilise parametric manipulations to both semantic and syntactic scene information simultaneously, in 

order to disrupt both concurrently and thereby disrupt any possible integration. Whilst proximity to 

an individual level internal model may help facilitate this match, the need for robust internal models 

may make it difficult to detect this benefit by only manipulating one or two objects within a scene. 

Alternatively, the current study may have lacked the experimental power to properly detect the 

influence of manipulating object content of scene categorisation. Whilst we did not observes any 

significant effects of object manipulation on categorisation accuracy, across both experiments we did 

observe a nominal trend in the data showing a greater difference between the intact and manipulated 

scenes based on participants own drawings, compared to those drawn by other participants and the 

control. This difference is particularly apparent in experiment 1, where the difference between the 

intact and manipulated scenes produced by other participants and the control was less than 1% 

accuracy, whilst the difference between the intact and manipulated scenes for the own condition was 

4% for the more serve manipulations. This could suggest that future studies employing an 

experimental design more sensitive to object level information may observe an effect of manipulating 

object content in future studies. Whilst the data of the current experiments do not provide evidence 

for this relationship, this inference may be a useful indicator for future experiments seeking to clarify 

the representation of semantic and syntactic information within internal models. We will discuss how 

future studies could be improved to better investigate these effects in the sections below, and 

highlight what can be learnt from the limitations of the current study.  

Taken together, the results of experiment 1 and 2 failed to meet our expected pattern of results. 

Whilst nominal trends in the data partially aligned with our expectations, as discussed above, we 

found no evidence of the hypothesised effect of manipulating object identity and location within 

renders based on aِ participant’sِ ownِ drawings, nor that the severity of these manipulations 

modulated these effects. Further, we were unable to fully replicate the findings of chapter 3, 

suggesting that the current results might be better explained by the influence of familiarity with the 

scenes, rather than being driven by a match to a participants own internal models.  Alternatively, these 

results may be better explained by several methodological weaknesses inherit to the current study, 

that may have considerably influenced our findings. Next, we will discuss these limitations, and how 

they might have affected our results.  
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4.4.1 Challenges in Detecting Effects of Semantic and Syntactic Manipulations 

If internal scene models are constructed from broader-level scene information, it may be that our 

current measure was not fine enough to detect the effect the relatively minor disruptions to semantic 

and syntactic information had on scene processing. In both our current and original study, we found 

that scene categorisation performance was high for all scenes, indicating the relative ease of the task. 

The ability to categorise scenes quickly and accurately has been long established, even when scene 

information is disrupted or the image blurred (Joubert et al., 2007; Li et al., 2002; Trouilloud et al., 

2020; Wiesmann & Võ, 2022), highlighting the relative ease of the task. Further, in chapter 3 we found 

that the differences by idiosyncratic scene representations were only very slight, further suggesting 

that these effects may be fragile, and easily masked by competing influences on scene categorisation.  

As such it may be necessary to apply more severe manipulations to object content to detect an 

idiosyncratic effect. In the current study, our manipulations still produced plausible exemplars of 

scenes from their category, with much of the scene information remaining intact, and thus potentially 

matching participants own internal models. In previous experiments that have shown effects for  

semantically typical objects on scene processing, the manipulations applied often disrupt the category 

level information of that object (Davenport & Potter, 2004; Faivre et al., 2019; Mudrik et al., 2010, 

2011; Võ & Wolfe, 2013), creating stronger disruption to the scenes semantic content. As such, it may 

be valuable for future research to try and establish whether similarly stark category level semantic 

disruptions differentially impact scenes approximating participants internal scene models. If such 

disruptions effect processing more for scenes based on participants own internal models, than this 

could suggest that semantic information is represented more holistically. Similarly, it may be that 

greater manipulations may also need to be applied to syntactic object information. Whilst this might 

be achievable by simply manipulating more objects, it may be more pertinent to consider the 

relationships between objects. Whilst research has shown that typical positioning for single objects 

can help scene processing (Kaiser et al., 2018; Kaiser & Cichy, 2018a, 2018b), there is growing evidence 

to suggest that the relative locations of objects to each other may have an even greater impact (Bilalićِ

et al., 2019; Kaiser et al., 2014; Kaiser & Peelen, 2018; Stein & Peelen, 2015; Peelen et al, 2024). Recent 

research has demonstrated that clusters of objects forming typical arrangements provide a strong 

representation of scene information. If semantic scene information is more holistically represented in 

internal modes, it may be these relative relationships that are more important than the placement of 

individual objects, as explored in the current study. 

However, in situations where participants produce drawings with few constituent objects, it may be 

difficult to manipulate syntactic object information further. Such scenarios were common in the 

current experiment and may represent a potential limitation of the drawing method. It may be 
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possible that providing participants with more time to draw their scenes, or an alternative means of 

constructing them (such as the use of simple computer aided design program software) would 

encourage participants to include more objects that could be manipulated. 

A further potential limitation of our current study was the use of experimenter judgements when 

deciding which objects were manipulated. Objects were selected on a preestablished set of criteria, 

which featured manipulating large, scene-defining objects as a priority. This was based on previous 

research that found when constructing representations of different scene categories participants 

consistently placed larger objects (such a tables, counters, baths) first, before placing smaller objects 

around them (Boettcher et al., 2018). These larger objects are hypothesised to act as anchors, and key 

points of reference for other objects within a scene, and as such most likely to cause disruptions in 

schema matching. However, the application of these rules was basedِ onِ theِ experimenter’sِ

assumption about what objects would be most meaningful to change. In some instances where such 

objects were limited, this choice would be more obvious, but when multiple candidate objects are 

available, it relies on more subjective experimenter judgements. Which object the experimenter chose 

to manipulate may have been less meaningful to the drawer, and thus failed to consider the individual 

differences the experimenters aimed to investigate. 

Instead, the experiment could have been improved by collecting the participants judgement of which 

objects they judged as being the most diagnostic for their own scene drawings. This could have been 

achieved by asking participants to rank the importance of objects in the scene, and subsequently 

manipulating the objects rated the highest. However, asking for participant judgements may have 

introduced additional confounding variables associated with self-report methods. For example, 

participants may have chosen a prominent scene feature they felt wouldِmatchِtheِexperimenters’ِ

expectations, rather than their own. Such demand characteristics would be particularly undesirable, 

as they would diminish the individual differences trying to be captured. Alternatively, drawing order 

could have been used to establish which objects were more prominently represented within internal 

models. However, whilst the order in which objects are drawn has been suggested to be diagnostic of 

how well they were recalled during experiments investigating scene memory (Bainbridge, 2022; 

Bainbridge et al., 2019), it is unclear whether this would translate to how strongly they are 

represented in internal scene models. Kinematic drawing data can be achieved on drawing tablets, 

where pen strokes can be monitored quickly and accurately, so the order of the objects was drawn in 

could be more easily collected. This was, unfortunately, not easily possible, as our experiments were 

conducted online. 
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Our failure to find an effect of manipulating scene content may have resulted from our choice of 

experimental paradigm. Here, we utilised a rapid scene categorisation task, with brief stimulus 

presentation times, as we hypothesised that a rapid coarse analysis would be sufficient for 

individuals to activate their internal scene models. This decision was based on the findings of 

chapter 3 that utilised a similar categorisation task, and previous studies suggesting that typical 

scene content helps facilitate rapid scene categorisation (Caddigan et al., 2017; Csathó et al., 2015; 

Torralbo et al., 2013). However, our inability to detect an effect of manipulating scene content on 

categorisation may not necessarily indicate that object-related information is absent from internal 

scene models completely. Instead, it might suggest that object information has less relevance for 

rapid scene categorisation, where course matching could be applied without the need to identify 

object information.  

As such, in order to explore whether object related information is stored within internal scene 

models,  it may be necessary to utilise a task where object level information is  more directly 

behaviourally relevant. This could be achieved through the use of visual search tasks, where  

participants are required to actively scan a scene for a specific target (such as an object). Visual 

search has successfully been used to demonstrate the role of typical semantic and syntactic  scene 

information for guiding search in natural scenes (Biederman et al., 1973; Malcolm & Henderson, 

2010; Neider & Zelinsky, 2006). If individual differences are present within these conceptions of 

typicality, then we might expect that manipulating scene content to adhere to, or violate, these 

individual conceptions to modulate search efficiency, in a similar manner as hypothesised in the 

current study. Such an experiment could consist of asking participants to locate a category neutral 

object (such as luggage) within scenes based on their own and others renders, when the object 

location and identity are manipulated. This approach could help clarify the role of individual 

differences in object-related information in scene perception, and is a clear direction for future 

research. 

However, combining visual search with the current drawing paradigm may make it difficult to isolate  

the mechanisms responsible for the preference for renders based on participants own scenes 

comparedِtoِthoseِbasedِonِothers’ِdrawings.ِInِtheِcurrentِstudy we were unable to fully replicate 

the findings of chapter 3, particularly the categorisation difference between participants own and 

the control scenes, which may suggest that familiarity with the render could drive the observed 

effect. Whilst this discrepancy may result from methodological differences (as discussed below), it 

remains an important question to understand whether line drawings truly reflect the content of 

internal scenes, or rather represent a closer proximity to specific scenes participants are familiar 

with.  As visual search is theorised to rely on a combination of regularities in a scenes content and 
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structure, as well memory for specific scenes (Wolfe, Võ, et al., 2011), it may be difficult to attribute 

which mechanism drives this effect, or in what combination, and to further ascertain how much of 

the effect may be driven by familiarity. Whilst this does not discount the utility of combing visual 

search with the line drawing method, it highlights further the need to clarify the role of familiarity in 

driving this effect before further exploration can be conducted. 

Additionally, the use of rapid presentation times may have been particularly inappropriate for a 

study conducted online. Due to differences in hardware and the stability of participants internet 

connections, this may have caused issues with displaying the stimuli that could have resulted in 

participants having less exposure to the stimuli, or some scenes not being displayed at all. Studies 

comparing the effects of these factors on stimulus display found that when using Gorilla (the 

software used to host our experiment) stimuli could be displayed for approximately 10ms longer or 

shorter than expected, even when operating at optimal conditions, and that these effects were 

further compounded by even greater delays caused by differences between operating systems and 

browsers (Bridges et al., 2020). Given our short stimulus display time of only 83ms, such variations 

could have altered stimulus presentation times considerably. Any impact of stimuli not being 

displayed may have further been exasperated by the requirement for participants to provide an 

answer before trials continued. This may have resulted in participants guessing in instances where 

stimuli were not appropriately displayed.  

Even if all stimuli were displayed correctly, the online setting may have impacted participant 

performance. Crump et al. (2013) found that participants were more likely to lose attention, and 

begin utilising inefficient strategies for online experiments that were long and repetitive, which 

could fairly describe the scene categorisation experiments used in the current study. Such strategies 

may have added further extraneous variability to our data, diminishing differences between 

conditions. As the expected results only represented relatively small differences in accuracy, and in 

combination with the high base accuracy for the task (regardless of condition), this may have had a 

considerable effect on the current data set., As such, in order to help clarify the results of the 

current study, it may be necessary to conduct a replication under laboratory conditions, in order to 

discount these potential extraneous technical and behavioural variables caused by conducting the 

experiment online.  

4.4.2 The role of visual clutter and familiarity on scene categorisation 

The discrepancy between the current results and those of chapter 3 were surprising, as we had 

expected to find a similar categorisation preference for participants own scenes compared to the 
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control. The failure to replicate this result challenged the findings of our original drawing experiment, 

and suggested a greater influence of familiarity on the effect we observed.  

To explore this discrepancy, we investigated if the higher levels of visual clutter found in the control 

scene may contribute to this discrepancy. Visual clutter has been theorised to be an integral part of 

scene complexity, alongside other scene characteristics such as openness and object organisation 

(Kyle-Davidson et al., 2022; Olivia et al., 2004). When reducing the visual clutter from the control 

scene, we primarily removed smaller objects that were replicated many times. For the living room 

scene, this primarily involved removing small decorative statues found on the bookshelves, whilst in 

the kitchen, this involved removing plates from cupboards and other small decorative objects. These 

objects were not frequently represented in drawings produced by participants and added a greater 

level of comparative detail to the control scenes. Other aspects associated with scene complexity were 

preserved; with no changes to the layout of more diagnostic constituent objects (such as chairs, tables 

and other furniture) preserving object organisation and openness.  

Experiments using 3D virtual environments have found that after training visual clutter can improve 

performance on tasks such as visual search, navigation, and spatial judgements (Bacim et al., 2013; 

Handali et al., 2021; Ragan et al., 2015). Meijer (et al., 2009) found that navigation was improved in 

virtual environments that included a greater degree of detail for constituent objects, finding a 

preference for navigating a virtual supermarket environment when shelves contained detailed models 

of products. This is similar to the type of visual clutter that was removed from the control scenes in 

experiment 2, with both representing smaller objects incorporated into a larger scene feature. Whilst 

these experiments utilise different tasks and drastically different display times, it may suggest that 

visual clutter improves our ability to process scene information by increasing the realism of a scene 

and strengthening its representation. As such, the additional clutter in the control scene in experiment 

1 may have aided participants in developing and learning more efficient strategies for recognising the 

control scenes, compared to the less detailed scenes based on participant drawings. However, 

comparison with studies using 3D virtual environments should only be made tentatively, as the 

exposure to the scene information differed from those of the current study. During the current study, 

participants were only briefly exposed to the scene information, whilst in the virtual reality 

environments they were able to the freely explore the scene for several minutes, which may modulate 

the role of visual clutter.  

As discussed, the brief exposure to the stimuli in the current study may have only allowed participants 

access to the gist of the scene (Oliva & Torralba, 2001). Here, the role of visual clutter is less clear. 

Clutter has been shown to be an essential element in judging scene complexity (Kyle-Davidson et al., 
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2023; Oliva & Torralba, 2001), however it is less clear how this would impact scene categorisation. It 

might be expected that additional clutter may make recognition of individual scene objects more 

difficult (Edquist & Johnston, 2008; Meyers et al., 2010), impacting scene recognition by decreasing 

the diagnostic ability of constituent objects. By decreasing the clutter, and subsequently the 

complexity, we may have also impacted how memorable the control scenes were. Research has shown 

a complicated relationship between scene complexity and memorability, with both high and low level 

complexity aiding in memorability, whilst medium-level complexity scenes are more forgettable (Kyle-

Davidson & Evans, 2023). If the increased clutter in the controls used for experiment 1 helped make 

the scenes more memorable, this may have further aided participants in developing more efficient 

strategies in the categorisation task not available for the renders based on participant drawings. 

Alternatively, the higher levels of visual clutter may have changed the scenes’ low-level scene 

characteristics, by causing them to appear as more dense texture patches in the brief exposure time. 

This could have aided in participants learning more efficient strategies for classifying the control 

scenes that did not rely on recognising its categorical information. For example, participants may have 

initially identified the scene in earlier trials, and through the course of the experiment learnt to classify 

it more quickly based on its more unique low-level features. To investigate this possibility, future 

experiments could compare participants’ ability to categorise the more or less cluttered control scenes 

utilising scene inversion. Scene inversion has been shown to disrupt low level visual information whilst 

disrupting the semantic meaning of a scene. If the difference in scene categorisation observed 

between the cluttered and uncluttered control scene is the result of changes in low-level visual 

information, we would expect inversion to diminish this advantage, whilst if it was the result of the 

object information found in the scene, we would not expect inversion to impact scene categorisation 

to diminish this advantage. 

Alternatively, the failure to replicate the results of chapter 3 may have been caused by differences in 

the experimental design. In chapter 3, participants were exposed to a greater variety of individual 

scenes, as they were shown renders based on drawings produced by all other participants (88 

individual intact scenes) whilst in the current study they were only shown 8 intact scenes. Further, 

these stimuli were repeated more time in the current experiment, with 16 repeats in experiment 1 

and 30 in experiment 2 compared to only 10 in chapter 3. The lower stimulus variety and greater 

number of repeats may have made it easier for participants to develop more efficient strategies to 

recognise the individual stimuli, and this learning effect could have diminished the effect size and 

weakened the experimental power. The higher accuracies in both experiment 1 (M = 82.33%) and 2 

(M = 81.72%) compared to chapter 3 (M = 80.6%) may support this conclusion, although these 

differences are admittedly only very slight. 
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This issue may have been further compounded by the inclusion of the same participants in both 

experiment 1 and 2, as well as returning participants from our original drawing study in chapter 3. As 

participants would see the same stimuli for the own and other condition in both experiments, and 

only a slightly modified control stimuli (with elements believed to add extraneous visual clutter being 

removed in experiment 2), this may have resulted a greater familiarity with the stimuli, potentially 

amplifying any learning effects caused by the low stimulus variety. Familiarity has consistently been 

demonstrated to aid visual processing across various stimulus categories (Dosher & Lu, 2017; Sagi, 

2011), including scenes (Epstein et al., 2007; Klink et al., 2023; Lee & Quessy, 2002), where fMRI 

studies have reported differential responses in scene-selective cortical regions to familiar and 

unfamiliar scenes  (Bainbridge & Baker, 2022; Epstein, Higgins, et al., 2007; Epstein, Parker, et al., 

2007). In addition to the low stimulus variety, research has shown that participants are more efficient 

at recognising familiar scenes when the viewpoint remains stable (Christou & Bülthoff, 1999), as in the 

current study. Given the combination of the relative ease of the task, and the conditions encouraging 

the recognition of familiar scenes, these factors may have resulted in a potential ceiling effect, where 

differences between the conditions could no longer be observed.  

This issue may have been further amplified by many participants having also taken part in our original 

drawing experiment (chapter 3), with 15 taking part in experiment 1, and 11 in experiment 2.  This 

may have resulted in increased familiarity with the participants own and control scenes, as these 

remained constant across the current study and our original drawing experiment. This familiarity could 

explain the increased accuracy for the renders based on participants own drawings and the controls  

found experiment 1 and 2. However, returning participants may have also had prior exposure to the 

stimuli in the other condition, as in our original drawing experiment participants viewed all of the 

renders produced by all other participants. This means that if a participant was placed into a batch 

with another returning participant, they would have been both previously exposed to the renders 

basedِonِeachِother’sِdrawingِ(comprising part of the other condition). Subsequently, it is difficult to 

ascertain how much familiarity could have affected the differences between the own, other and 

control conditions, as the degree of familiarity to the other condition may not be equal between all 

returning participants. As such, the use of non-naïve participants represents a further confound in the 

current study.  

Could this familiarity have additionally modulated the impact of manipulating scene content, 

potentially diminishing its impact? Prior research investigating familiarity for objects, faces and letter 

arrangements found that familiarity can lead to a more holistic processing approach, potentially 

causing observes to rely more on broad category level visual information and to overlook specific 

details within familiar stimuli (Barenholtz et al., 2016; Garcia-Marques & Mackie, 2007; Huang, 2011; 
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Tovey & Herdman, 2014, 2014; Q. Wang et al., 1994). If such an effect is present within familiar scenes, 

than this may have reduced the impact of manipulating content within renders participants were more 

familiar with, such as the own and control scenes. It may have also contributed to our ability to detect 

these changes in experiment 2, where participants had already been exposed to all stimuli. However, 

evidence suggests that this effect may not be present within scenes, and instead that familiarity may 

cause even greater attentional allocation to scene content. Early work by Teitelbaum (et al., 1978) 

found that prior visual exposure to a scene facilitated faster detection of incongruities, suggesting that 

familiarity instead enhances sensitivity to scene detail. More recent research by Cohen (et al., 2024) 

supports this conclusion. Here they found that participants were better at detecting changes within 

more familiar scenes, and that familiarity may expand the bandwidth of perceptual awareness. As 

such, the role of familiarity within the current study may be complex, and not easily predicted with 

the current data. This complexity again suggests the necessity for the current experiments to be 

repeated with naïve participants, and for more work to be conducted exploring the role of familiarity 

in driving the effect observed in chapter 3. 

 

4.4.3 Conclusion 

Taken together, whilst experiments 1 and 2 suggest that semantic and syntactic object information is 

not represented within internal scene models, it is difficult to distinguish whether the results we 

observed truly reflected an investigation of the object content of internal models, or whether such 

effects were masked by experimental confounds such as increased stimulus familiarity. A tentative 

interpretation of our results suggests that whilst internal models may not contain specific object level 

representations, they could contain a broader representation of semantic and syntactic scene 

information, that is robust enough to tolerate the relatively minor object-level manipulations applied 

in the current experiments. This may be reflective of the role of internal models in natural vision, 

where in order to help facilitate the rapid processing of scene information, they need to be able to be 

matched to a wide range of different scene exemplars, regardless of the intra-category differences in 

the layout and identity of theِscene’sِconstituent objects. However, whilst our study provides a useful 

initial exploration of the content of internal models, weaknesses in the experimental design limit the 

applicability of these findings. First, the use of non-naïve participants and a small subset of stimuli may 

have increased participants familiarity with the stimuli, causing potential ceiling effects and limiting 

our ability to detect differences between conditions. This problem is further compounded by our 

failure to replicate the findings of chapter 3, where we instead found no difference between render’sِ

based on a participant’s own drawings and those of a control scene, further suggesting that familiarity 

with the stimulus may have influenced our results. Secondly, which objects were manipulated relied 
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upon experimenter judgement, which may have meant that the most saliant objects for a given 

participants own internal model were not altered, limiting the effects of the manipulations applied. 

Finally, the choice of paradigm relied on the assumption that matching scene information to internal 

models would occur rapidly. However, as previously discussed rapid scene categorisation may rely on 

mechanisms that do not require analysis of object level information. This may have limited our ability 

to detect any individual differences that might occur at later processing stages, or that might be more 

task dependent.   

As such, in order to clarify the results of the current study, future research needs to be conducted that 

addresses these limitations, in order to better isolate the factors contributing to the observed effects. 

This may be best achieved through the use of a visual search paradigm, in which participants locate 

category neutral objects within renders based on their own, other and control scene drawings, where 

the constituent objects are manipulated based on the participants ratings of which objects in their 

own scenes were the most defining. In addition, whilst a replication of the results of chapter 3was a 

secondary objective for the current study (as the results were already successfully replicated in our 

manuscript, see experiment 2 in Wang & Foxwell et al., 2024), the results of the current study suggest 

that further investigation is required, particularly to better understand the influence of familiarity. 

One potential approach could involve comparing participants' scene drawings to photographs of their 

real-world equivalents (e.g., their own living room), in order to clarify to what degree drawings, reflect 

internal models or are influenced by familiarity with specific locations. Although it is important to 

consider that the failure to replicate these findings may be due to the changes made to the 

experimental design in order to prioritise the current studies aims, greater clarity of the original effect 

would allow for future research to use the drawing paradigm with a greater understanding of the 

factors that drive the observed effects.    
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Chapter 5: Discussion 

5.1 Results Summary 

In the current thesis we aimed to explore how typical scene structure influences scene perception, by 

investigating two complimentary research questions: how is global scene structure extracted and 

utilised during scene processing, and how individual differences in internal scene models shape 

categorisation performance. Across three studies, we examined these questions, first using a more 

traditional scene jumbling method, and then by developing a new drawing-based method to assess 

internal scene models directly. 

In chapter 2, we investigated how global scene structure impacts perception using a jumbling 

paradigm. Whilst we found that disruptions to scene structure impair categorisation, we were 

specifically interested in investigating whether disruption along a scenes vertical axis would cause  a 

greater disruption to scene processing, reflecting the rigid vertical structure found in natural scenes. 

Whilst we observed a strong disruption when structure was manipulated along the vertical axis, our 

results suggest that this may be driven more by disruptions to low or mid-level visual properties rather 

than to a sensitivity in vertical structure. This difference may reflect the importance of low and mid-

level features in communicating natural sky-ground segmentation cues, indicative of  a horizon. 

However, inconsistencies between experiments, particularly regarding the interplay between 

horizontal jumbling and inversion, indicate that further research is needed to clarify the robustness of 

these effects. Whilst future work is needed to explore whether these findings generalise across a 

broader range of scene categories and tasks, particularly to better understand whether the same 

effects can be observed in indoor scenes (where a less prominent sky-ground segmentation occurs), 

it provides insights into how the visual system may be adapted to real world regularities observed in 

natural scenes.  

In chapter 3 we explored the use of line drawings as a tool to quantify internal scene models.  

Participants created drawings representing a typical exemplar of a given scene category, which were 

then used to assess whether individual differences in internal representations influence categorisation 

performance. We found that renders based on participants own drawings were more preferentially 

categorised compared to renders based on other participants drawings and a control scene, drawn at 

the same time, indicating this effect was not the result of familiarity with the stimulus. The results 

suggest that these drawings can approximate internal scene models, and that scene categorisation 

performance is, to some extent, influenced by the degree to which a scene matches an individual's 

internal model. This supports predictive processing theories that suggest that internal models are used  
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to facilitate scene perception, and provides evidence for the influence of individual differences in 

scene processing.  

However, the results of chapter 4 raise some doubts about these initial findings. Here, we aimed to 

further investigate the content of internal scene models, testing whether object identity and location 

were important features. We did not find a significant effect of manipulating object identity or 

location, regardless of the severity of these manipulations, which could suggest that internal models 

may encode scene representations in a more holistic manner, rather than being strictly dependent on 

object-level features. However, we failed to fully replicate the effects observed in chapter 3, finding 

that whilst participants were more accurate at processing scenes based on their own drawings 

compared to those of other participants, they were not significantly better at doing so compared to 

the control scenes, suggesting that the effect may in part reflect a familiarity with the stimulus. Whilst 

the experimental designs utilised in chapters 3 and 4 varied, reflecting differences in the studies aims, 

this result was surprising, as it was expected that our findings would replicate given the similar 

paradigms used. Several methodological differences may have contributed to these results, including 

the use of a small stimulus set, familiarity with the stimuli resulting from the use of non-naïve 

participants, and the possibility that object-level manipulations may not have been observable with a 

scene categorisation task, which might have better been detected using an alternative experimental 

paradigm that relied on participants attending to a scenes constituent objects, such as visual search. 

Taken together, whilst these findings provide some evidence that scene perception is guided by 

internal models that mirror real-world scene regularities, the inconsistencies observed in chapter 4 

highlight key limitations in our ability to fully support this claim. In the following sections, we will 

discuss the key findings of each chapter in relation to each other, and their implication to existing 

theories of scene perception, followed by a discussion of the drawing method developed in the current 

thesis and its implications for the study of scene perception and internal models more broadly. 

5.2 Parsing structural regularities in scene perception: vertical bias effects 
may be attributable to low- and mid-level visual features  

In chapter 2, we investigated how global scene structure facilitates scene processing, utilising a similar 

jumbling paradigm to the one originally used in classical work by Biederman et al (1974), in which 

scenes are divided into rectangular segments, and rearranged so that they are no longer presented in 

their typical spatial configuration. In order to explore whether there were further axes-based 

differences between vertical and horizontal structure, we rearranged segments so that they were 

either fully jumbled, vertically jumbled, or horizontally jumbled.  
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We found that fully jumbling scene structure caused categorisation accuracy to decrease, indicating 

that coherent global scene structure helps facilitate efficient scene processing. This result replicated 

previous experiments that utilised jumbling to demonstrate the importance of coherent global scene 

structure (Biederman et al., 1974; Kaiser, Häberle, et al., 2020b, 2020a; Kaiser, Inciuraite, et al., 2020). 

Importantly, this effect was not influenced by inversion, suggesting that it was the disruption caused 

to the scene’sِglobalِstructure, as opposed to the low or mid-level visual characteristics, that drove 

this effect.  

However, when examining the effects of jumbling across different scene axes, whilst we were able to 

find a significant impact of vertical jumbling, categorisation became increasingly worse when scenes 

were displayed at inversion and rotation. This finding contradicts previous research that found 

inversion reduced the impact vertical jumbling had on scene categorisation, that suggested the effect 

could be attributed to disrupting the scenes’ vertical global structure (Kaiser, Turini, et al., 2019), as 

opposed to low and mid-level scene characteristics also disrupted by the course manipulations applied 

during scene jumbling. Instead, our results found the opposite, suggesting that the effect of vertical 

jumbling we observed may be the result of disruptions caused to the scene’s low and mid-level 

characteristics. This challenges the idea of a vertical bias within global scene structure, and instead 

suggests that previously observed benefits to the organisation of vertical structure within scenes 

(Fischer et al., 2016; Hansen & Essock, 2004; Previc & Intraub, 1997; Tucciarelli et al., 2023) may be 

better explained by the influence of low or mid-level visual features.   

What low or mid-level visual features could benefit from intact vertical organisation? One possibility 

is that this effect is driven by the more rigid organisation of low-level visual features across a scene’s 

vertical axes. An analysis of the amplitude spectrum of 1,017 natural scenes, reflective of the low-level 

visual information, found the greatest variety across the horizontal axis, with variation in vertical scene 

information primarily being derived from flora (such as the difference between the trunk and canopy 

of trees) (Hansen et al., 2008). This greater variation in visual information across the horizontal axis 

may evidence fewer universal commonalities in horizontal information across different scenes. 

Conversely, the more rigid low-level characteristics along the vertical axis may provide stronger visual 

regularities that can be utilised to help facilitate scene processing.  

As discussed in chapter 2, this vertical rigidity may be the result of the distinct low-level characteristics 

of sky and ground sections present in many outdoor scenes, with the sky typically composed of 

smooth, low-frequency gradients, and the ground consisting of high-frequency textures and sharp 

edges (Julesz, 1981; Thorpe et al., 1996). These features are maintained within the individual 

segments, and may be important indicators for identifying the horizon within outdoor scenes,  which 
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might be important for quickly assessing the spatial structure of a scene. Such an explanation may 

help to explain why the observed effect of vertical jumbling differed to those observed in Kaiser et al 

(2019) which also utilised indoor scenes where horizons are less prevalent. This difference might not 

strictly represent a distinction between indoor and outdoor scenes however, but instead scenes where 

horizons are key defining features. Whilst the outdoor scenes used in the current study all consisted 

of clear horizons, many outdoor scenes have far less prevalent horizons (such as forests) and 

subsequently might be invariant to any disruptions along the vertical axes. Such an interpretation 

could align with predictive processing theories, as the visual system may have adapted to make use of 

the horizon as it acts as a constant and predictable feature for many outdoor scenes, and an important 

indicator of a scenes structure and overall organisation. Low-level visual characteristics may be 

important in identifying this horizon, and subsequently, disrupting this information may have resulted 

in the impaired categorisation. This effect could have been made worse when scenes were shown at 

inversion, where these low-level horizon indicators were disrupted further. 

The disruption caused by manipulating low and mid-level visual features along the vertical axis could 

also have disrupted the scene’s spatial envelope, impairing gist extraction and subsequently delaying 

scene categorisation. Research has shown that the horizon can be identified in as little as 153ms in 

outdoor scenes, from the gist of the scene alone  (Herdtweck & Wallraven, 2013), which could suggest 

it’sِ importanceِ inِ establishingِ aِ holistic representation of a scene’s spatial envelope. Whilst the 

current study provided participants with long viewing times, meaning that the task did not explicitly 

rely on gist extraction, if initial gist extraction was disrupted this could have resulted in delayed 

reaction times. 

However, it is impossible to fully understand what features could drive the observed effect of vertical 

jumbling from the current study alone, as although the effect of inversion suggests the influence of 

low and mid-level features, we cannot parse which of these features drove this effect. Regularities in 

various low level visual features have been found to help categorise outdoor scenes, such as colour, 

(Ganesan & Balasubramanian, 2019), edge alignment (Payne & Singh, 2005) and contrast (Stürzl & 

Zeil, 2007), all of which are disrupted during the vertical jumbling condition. In addition, previous 

research investigating the influence of low-level visual features on scene jumbling have found that the 

influence of factors such as colour and spatial frequency on the extraction of global scene structure 

vary on a category level (Vogel et al., 2007). This may add additional complications when trying to 

parse the causes of these effects, as they may vary by scene category, which was not explored in the 

current thesis. 
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Whilst we posit that disruptions to low-level features along the vertical axis may align with meaningful 

structural scene elements (such as the horizon), further work is required to understand whether such 

an effect is truly present, and which low or mid-level features might drive it. This could be achieved 

by systematically controlling for these low and mid-level visual features whilst jumbling scenes across 

different axes, to assess their individual and combined effects on scene categorisation. Additionally, 

in order to investigate whether the horizon might drive this effect, future studies could compare the 

effects of vertical jumbling in scenes where horizons are more or less prevalent. Such experiments 

may help us better understand how coherent visual information presented along a scenes vertical axis 

may help facilitate efficient scene processing. 

As such, whilst the replication of previous studies showing the importance of intact global scene 

structure reinforces the notion that the visual system utilises regularities in global scene structure to 

help facilitate efficient scene processing, our results do not indicate that this extends to an axes level 

bias reflective of the organisation of real-world scenes. This could indicate that the benefits of intact 

global-scene structure represent a more holistic representationِofِaِscene’sِlayout.ِAdditionally,ِtheِ

identification of a possible sensitivity to low and mid-level level features organised along a scene’s 

vertical axis could suggest that local features drive a potential vertical bias for the arrangement of 

scene information. Whilst we suggest that such features might be important at establishing a horizon 

within outdoor scenes, ultimately, the methodological limitations of the chapter 2 necessitate further 

experimentation in order to identify what features might drive the observed effect of vertical 

jumbling,  

5.3 Internal models, familiarity, and scene processing efficiency 

A key objective of the current thesis was to explore the contribution of internal models to scene 

perception, in order to better understand how predictive processing mechanisms might underpin the 

visualِsystem’sِabilityِtoِanticipateِandِ interpretِnatural scenes. To achieve this chapter’s 3 and 4 

aimed to develop and test a new drawing paradigm that would allow us to characterise the contents 

of a participant’sِownِ internal model, so that we could investigate whether individual differences 

within these models could explain idiosyncratic differences in scene processing.  

In chapter 3 we found that participants were more efficient at categorising scenes based on their own 

drawings of typical scenes, compared to those based on drawings produced by other participants or 

copied during a control condition. Crucially, utilising a DNN we found that categorisation accuracy for 

all scenes correlated with how similar they were to the participants own scene drawing. This improved 

accuracy could suggest that the generation of accurate predictions, derived from the participants own 

internal scene models, directs the processing of incoming visual input. The strength of this match 
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would in turn modulate how efficiently a scene is processed, with scenes closely adhering to the 

predictions being more efficiently processed, whilst those deviating require further analysis to extract 

their meaning (Bar, 2004; Friston, 2005). Whilst such effects have previously been observed on the 

group level, with participants demonstrating improved accuracy and stronger neural responses to 

highly typical scenes (Caddigan et al., 2017; Torralbo et al., 2013), these results suggest that individual 

differences between participants own conceptions of typicality may influence scene processing, 

supporting the notion that internal scene models reflect the different visual experiences of observers 

(Hartley, 2022).  

However, the results of chapter 4 were less conclusive. Here, we were unable to fully replicate the 

results of chapter 3, finding instead that although categorisation accuracy was higher for renders 

based on participants' own drawings compared to those of others, it was not significantly higher than 

the control condition. This could suggest that the improved accuracy observed for participant own 

scenes may have been influenced by the increased familiarity with the stimuli. Familiarity has been 

found to evoke  differential response in scene selective brain regions and to help facilitate more 

efficient scene categorisation (Epstein, Higgins, et al., 2007; Epstein, Parker, et al., 2007; Noad et al., 

2024). Recent EEG work has also found that personally similar scenes evoke distinct decodable neural 

activity (Klink et al., 2023), indicating that individual differences found in the current study could 

instead stem from idiosyncratic differences in familiarity. These conflicting results challenge the 

assertion that the improved accuracy observed in chapter 3 relied upon the strong match of scene 

renders to internal scene models, and suggest that familiarity may have influenced the observed 

effect. 

As such, a crucial question for the current thesis is to understand to what degree familiarity can explain 

the increased categorisation accuracy for participants own scene renders, and to whether these 

effects were present in the experiments conducted in both chapters. Several methodological factors 

of the experiments conducted in chapter 4 may have resulted in an increased familiarity with the 

stimuli compared to chapter 3; including the use of a smaller subset of stimuli, with each individual 

scene (and manipulated version) being repeated considerably more times than in chapter 3. Chapter 

4 also utilised many non-naïve participants that had previously taken part in chapter 3, meaning they 

had previously been exposed to their own and the control scenes, which may have increased their 

familiarity further. These factors may suggest that the effect of familiarity could be unique to chapter 

4, driven by methodological changes implemented to test a different experimental hypothesis. 

Alternatively, these conditions could have increased the chances of us detecting the influence of 

familiarity within our paradigm, not initially detected within chapter 3.  
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If familiarity accounts for the discrepancy observed in our results, it is important to consider the nature 

of that familiarity. Was it driven by familiarity with the scene content depicted in the stimuli, or by a 

more general familiarity with the stimuli as visual artefact? For example, were participants familiar 

with the scene being depicted in the renders, or simply with the specific images themselves? Whilst 

in chapter 3 participants had no prior exposure to the renders, only the drawings they had produced, 

in chapter 4 many participants had seen the specific renders used previously. This may have counter 

acted one of the perceived advantages of using the renders instead of the participant’s drawings 

directly; whilst the renders would maintain the identities and layout of constituent objects, the 

participants would not be biased by a familiarity with their own drawing style or prior exposure to the 

drawings presented. This could suggest that the familiarity observed in chapter 4 was a result of a 

more general familiarity with the renders, and was not present in chapter 3 as participants had no 

prior familiarity with the stimuli themselves.  

As such, the effect of familiarity in chapter 4 could represent the influence of a more general familiarity 

with the stimuli, as opposed to the scene information they represent. Given the relative ease of the 

task, and possible training effects resulting from non-naïve participants having previously completed 

a similar experiment with similar stimuli, this familiarity could have produced a ceiling effect, making 

it difficult to detect any additional advantage caused by a similarity to a participants own internal 

scene model. Conversely, participants in chapter 3 had no such prior exposures, and thus would not 

have been influenced by a more general familiarity with the stimuli. As such, the influence of 

familiarity represents a difficult question for the current experiment to answer, that may necessitate 

future research to disentangle. One way that this might have been achieved is through showing scene 

renders from different viewpoints; if the familiarity results from the scene information, we might 

expect it to persist even when scenes are shown from new viewpoints, whilst if it derives from a 

specific familiarity with the stimuli, it might be more dependent on a fixed recognisable perspective 

(Epstein, Higgins, et al., 2007).  

The results of the DNN graded similarity analysis may further suggest that familiarity might have had 

less of an influence on the results of chapter 3. Here we found that categorisation varied systematically 

across renders as a function of how similar they were to the render based on their own typical drawing. 

As participants had no prior exposure to the renders based on other participants drawings, this 

similarity could not be driven by familiarity. Importantly, we did not find that a graded similarity to 

the control scene correlated with categorisation accuracy, which would be expected if these results 

were driven by a familiarity to the scenes.  
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However, this does not fully discount the influence of familiarity entirely. The graded similarity may 

have been modulated by the degree of familiarity, with participants not being familiar enough with 

the control scene to evoke this effect. If this familiarity derives from the scene content, then it is 

plausible that participants may have been more familiar with their own scene drawings than those of 

the control. Although instructed not to draw a specific scene they were familiar with, if internal models 

are derived from the regularities we experience in our personal visual experience, than it is possible 

these scenes would share many features with those that they are most familiar with. Recent studies 

utilising MVPA have found that scene selective regions differentially process scenes that are personally 

familiar, such as showing a preferences for a person’s own office compared to a generic office, (Epstein 

& Morgan, 2012; Sugiura et al., 2005; Wiese et al., 2023), indicating that the degree of personal 

familiarity can modulate processing efficiency.  In the current studies, this could have been better 

controlled for by asking participants to rate all of the scene renders produced based on familiarity, 

and seeing if a graded familiarity score could better predict categorisation, and whether this in turn 

correlated with how well similarity to a participants own drawing predicted categorisation accuracy. 

Alternatively, the  difference between the own and control condition might stem from the differing 

cognitive processes involved when  composing an original scene, compared to copying a picture of a 

scene. Differences in neural activation patterns during drawing tasks suggest that composing an 

original scene and copying an existing picture engage distinct cognitive processes. Research has found 

that copying primarily involves the intraparietal sulcus, which facilitates the direct transformation of 

visual input into corresponding motor actions, whilst in contrast, creating a novel drawing activates 

the anterior cingulate cortex, reflecting the engagement of higher-order functions such as planning, 

decision-making, and creative integration (Ferber et al., 2007; Ogawa & Inui, 2009). This distinction 

implies that the cognitive demands of generating original content are more complex, requiring 

additional neural resources beyond those utilised in mere replication.  

Could the differences within the cognitive demands for copying and constructing scenes help explain 

the different effects of control scene in chapter 3 and 4? One possibility is copying and drawing original 

scenes may have differential effects on the visual memory benefits of drawing (Fernandes et al., 2018; 

Peynırcıoğlu,ِ1989;ِWammesِetِal.,ِ2016;ِZhou et al., 2025). Recent research by Wammes, Jonker and 

Fernades (2019) sought to explore what aspects of drawing account for improved memory evoked by 

drawing, by comparing different types of drawing tasks (tracing, viewing, imagining, and drawing 

without seeing the output). Whilst they found that memory effects decreased for tasks lacking the 

visual and motor components of natural drawing behaviours, the greatest impact was caused by 

elaborative component of drawing. They defined the  elaborative component as the generative 

processes used to imagine an internal representation of visual and semantic features. Whilst they did 
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not include a copying task specifically, copying distinctively lacks this elaborative element, and thus 

may produce a weaker benefit to copying a scene.  

However, whilst an increased effect of personal familiarity with one’s own scene renders, or 

differences in memory caused by drawing vs copying, might explain why the DNN found a graded 

similarity for the own scenes but not the control, it is unclear why such effects would not be detectable 

in the categorisation accuracies measured in chapter 4 (where we found no increased accuracy 

between the own scene vs the control). One possibility is that this difference might be explained by a 

decrease in the potency of these effects over time, as several months passed between the 

experiments conducted in chapter 3 and 4. However, the benefits of familiarity have been found to 

be relatively stable over time (de Chastelaine et al., 2017; Friedman et al., 2010; Koen & Yonelinas, 

2016), suggesting that it might be unlikely they fade within this time frame. Whether the potential 

benefits familiarity has on drawing could be impacted by time remains underexplored, as currently no 

studies have investigated how long these benefits last over extended periods. As such, it remains 

difficult to understand how these factors may have influenced our findings, necessitating further 

research.  

Whilst the difficulty of isolating the effects of individual differences in familiarity from those of internal 

models reflects a broader conceptual challenge, it is possible that familiarity does not operate as a 

distinct influence. Instead, familiarity might interact with internal models—potentially enhancing the 

accessibility or precision of predictions, and in turn improving processing for scenes that are both 

highly typical and familiar. In their recent review paper, Servajean and Wiese (2024) outlined how 

familiarity might act as an important indicator of the precision of estimates derived from internal 

models, suggesting that familiar stimuli may help to reduce uncertainty in predictive processing 

mechanisms. They propose that familiarity forms an important element of a fluency heuristic, which 

reflects how easily a stimulus is processed compared to how easily internal models expect it to be 

processed. When this difference is large, it may signal a need for structural changes in internal models, 

thus helping to expand our predictive capacity. This implies that the brain may weigh sensory input 

more heavily when it aligns with both a familiar context and strong internal expectations, thereby 

facilitating more efficient and accurate perception. Whilst little work has explored how familiarity 

might modulate predictive processing mechanisms in scenes specifically, research into the learning of 

familiar faces has found that familiarity helps to modulate predictive processing mechanisms when 

leaning new facial identities (Apps & Tsakiris, 2013). Given recent research suggesting that familiarity 

plays a similar role in scene processing as face perception (Klink et al., 2023), this could suggest that 

familiarity may likewise help facilitate the predictive processing mechanisms in scene processing. 

Whilst the current thesis did not aim to explore how familiarity could influence predictive processing 
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mechanisms, and subsequently cannot attest to how the two may interact, our findings do highlight 

the importance of considering the interplay between these factors in future research 

It remains a consideration for future research to continue to investigate how individual familiarity and 

typicality interact to shape the efficiency of scene processing. Disentangling these effects completely 

may prove challenging, as internal models are likely to be developed as the sum experience of our 

exposure to our environments, and subsequently resemble those that we are more familiar with. 

Futureِstudiesِcouldِtakeِtwoِpossibleِapproaches.ِFirstly,ِtheyِcouldِcompareِparticipants’ِdrawingsِ

when they are instructed to either draw the most typical scene exemplars, to when they are instructed 

to draw the most familiar. Whilst this would allow for a more direct comparison between conceptions 

of typical and familiar scene content, it is unclear whether participants would be able to accurately 

draw a familiar scene, and how much their internal model would influence their ability to mentally 

reconstruct this environment (and thus one task instruction tainting the other one). Alternatively, 

participants’ِownِdrawingsِof tِypicalِscenesِcouldِbeِcomparedِagainstِphotographsِofِtheirِeverydayِ

environments, and categorisation couldِ beِ predictedِ separatelyِ fromِ eachِ scene’sِ similarityِ toِ

participants’ِ scene drawings, as well as photos of their current living environments, allowing the 

effects to be better differentiated. Another approach could be to utilise tasks that have been shown 

to be unaffected by familiarity. Whilst previous research indicates a beneficial effect of familiarity in 

scene categorisation tasks (Bainbridge, 2022; Epstein et al., 2007; Klink et al., 2023), it has been shown 

to provide less of a  benefit when searching for objects within scenes (Võ & Wolfe, 2012). If similarity 

to internal models indeed facilitates efficient scene processing, we might expect visual search to be 

improved in scenes more closely approximating internal models, helping to further differentiate the 

influence of familiarity versus typicality on the individual level. 

Our findings highlight the complex interplay between familiarity and typicality in shaping scene 

perception, raising important questions about how internal models are formed and utilised. While 

previous research has demonstrated group-level advantages for processing highly typical scenes 

(Caddigan et al., 2017; Torralbo et al., 2013), the current work suggests that there may also be 

individual differences in these advantages, potentially reflecting the idiosyncratic visual experiences 

that shape an individual's internal scene model (Hartley, 2022). This assertion does not imply that 

perception is fully unique, or even radically different, between observers. We still found a fair 

reliability of categorisation performance across observers, with a modest split half-reliability of r = 

0.72. What our results do suggest is that on top of this coarse stability in performance, there may be 

interesting additional variance that is systematic across observers and can be captured by our 

drawing-based method. However, the current thesis also highlights the importance of disentangling 

effects driven by typicality from those rooted in familiarity (Epstein et al., 2007; Klink et al., 2023). This 
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complicates the interpretation of results and underscores the need for future research that directly 

compares these influences or employs tasks less susceptible to familiarity-driven effects (Võ & Wolfe, 

2012). Overall, the results of chapter 3 and 4 contributes to the growing body of work on scene 

perception by providing tentative evidence for the individual nature of internal models and by 

identifying familiarity as a key factor that must be carefully controlled in future research. 

5.4 The representation of object information in internal scene models 

An important question we sought to answer in the current thesis was what features define internal 

scene models. Initially, we hypothesised that internal scene models would store information about 

typical objects and their placements, in line with previous research suggesting typicality in the 

identity (Davenport & Potter, 2004; Faivre et al., 2019; Mudrik et al., 2010, 2011; Võ & Wolfe, 2013), 

positioning (Kaiser et al., 2018; Kaiser & Cichy, 2018a, 2018b), and relative spatial relationships 

(Bilalićِetِal., 2019; Kaiser et al., 2014; Kaiser & Peelen, 2018; Stein & Peelen, 2015) of constituent 

objects helps to facilitate efficient scene processing  However, whilst the results of chapter 3 

provided some support for our hypothesis, this is contrasted by the findings of chapter 4, where the 

content of internal scene models were more directly investigated. Below we will discuss what our 

results could suggest about the content of internal scene models, and how methodological 

constraints may have limited our ability to detect object level manipulations. 

In our drawing paradigm participants primarily constructed their scenes by deciding what objects 

they would include and where they would be placed, with other aspects of the scenes being 

somewhat standardised, including the viewpoint, approximate shape of the room, and the 

representation of specific objects (due to a limited amount of 3D models being used). This suggests 

that it was the participants choice of objects, and their placement,  that characterised their 

drawings, and subsequently drove the improved categorisation accuracy we observed in chapter 3. 

The importance of the object content in driving this effect was  supported by the findings of our DNN 

analysis, where models trained on both scenes and objects expressed a graded similarity in 

categorisation accuracy, indicating that scenes with similar object content were more accurately 

categorised. Whilst both models found graded similarity could predict categorisation accuracy, the 

models trained on objects yielded more accurate predictions. This analysis also found that graded 

similarity was best expressed in later convolutional layers of the Googlenet model, which 

approximate the later stages of visual processing and simulate the processing of high-level features 

such as object-related information, further evidencing the importance of object representations. 

However, contrary to these results, in chapter 4 where we sought to specifically investigate the 

representation of object information within internal models, we found no significant effect of 
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manipulating the scene content of renders, regardless of whether the drawings more or less closely 

resembled aِparticipant’sِown drawing. If high-level object-related features were represented in 

internal models, we would expect that changing this content would disrupt the matching process to 

the internal model, with further changes in object information reducing the match even more. 

Below we explore two possible interpretations of  these null results; that either  object level 

information may not be represented within internal scene models, or that internal models could 

contain a  broader and more “holistic” representation of object content, resistant to the 

manipulations we applied. We also explore the possibility that that this discrepancy may stem from 

methodological limitations  of chapter 4, and what these might indicate about the role of internal 

models in scene processing.   

This first interpretation raises the possibility that individual object information may not be necessary 

to facilitate rapid scene categorisation as previous research implies (Davenport & Potter, 2004; Võ & 

Wolfe, 2013; Kaiser et al., 2018), and instead may rely more heavily upon the combination of other 

visual features. Subsequently, this could challenge the assumptions of predictive processing, and 

suggest that instead of making predictions based on the statistical regularities in the object content 

in a top-down process, our results could potentially be explained by a bottom-up scene-first 

explanation of visual processing. Scene-first theories suggest that instead of analysing specific object 

level information, scenes are processed on a global to local level (Hochstein & Ahissar, 2002; Oliva & 

Torralba, 2006; Schyns & Oliva, 1994), where low spatial frequency information can rapidly extract 

the gist of a scene, which in turn helps provide contextual information to facilitate object processing 

(Oliva & Torralba, 2006; Wu et al., 2018). Such a view aligns with the arguments put forth by Groen 

(et al., 2017), who argue that even in the absence of object information, low and mid-level visual 

characteristics can  facilitate the extraction of the visual information needed for many scene related 

tasks, such as categorisation and navigation (Greene & Oliva, 2009a, 2009b). They further suggest 

that instead of necessitating hierarchical  processing, low and mid-level features are instead 

combined with high-level object information in a more integrated framework. Supporting this idea, 

they cite research exploring the temporal dynamics of how these features are represented during 

scene processing showing that whilst low, mid and high-level features can be decoded separately 

(Bieniek et al., 2013; Hansen & Hess, 2007; Thorpe et al., 1996), the time course of when each 

feature is most strongly represented does not follow a straightforward low to high level progression, 

and instead overlap and intermix (Martin Cichy et al., 2017; Ramkumar et al., 2016; Wardle et al., 

2016), suggesting further than scene categorisation is not reliant on object information. 

It is unclear from the current results which low and mid-level characteristics could explain the 

individual differences we observed in chapter 3. Here we controlled for several low-level visual 
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features, such as colour, luminance and contrast, suggesting these features were unlikely to account 

for this variance. However other properties such as depth, spaciousness and navigability, could not be 

controlled for, as these are somewhat defined by the scenes content. One possibility is that improved 

gist extraction might be facilitated by participants’ own scene drawings representing an optimal 

arrangement of the category specific scene statistics learnt by that participant. This could be evoked 

by the spatial statistics defined by the edge boundaries and surface properties of the overall 

arrangement of constituent objects represented in the renders based on participant’s own drawings. 

Previous research has found that the presence of highly typical constituent objects placed in typical 

locations biased encoding of a scenes spatial properties in PPA towards the average representation 

for that category, with MVPA finding that this was driven by the objects modulating the perceived 

spaciousness of the scene (Linsley & MacEvoy, 2015). If the categorical information communicated by 

a scenes spatial statistics are modulated by the presence of typically occurring objects, then this may 

be further controlled by adherence to an individual’sِown conception of typicality, thus evoking the 

idiosyncratic categorisation effects observed in chapter 3. 

Such an explanation may be challenged when considering some of the proposed properties of gist 

extraction. Whilst gist extraction is believed to be reliant on the learning of statistical regularities 

through repeated exposure to stimuli (Brady & Oliva, 2008; Groen et al., 2013; Loschky et al., 2015; 

Raat et al., 2022), research has found this process may already operate at peak performance for scenes 

(Fabre-Thorpe et al., 2001), indicating it may be unlikely to be sensitive to individually learnt 

regularities that would produce idiosyncratic differences. Further, the primary strengths of scene gist 

is its ability to accurately categorise scenes irrespective of the many inter-category differences, such 

as specific object representations or viewpoints (Greene & Oliva, 2009a). Conversely, evidence 

suggests that gist may be less efficient at detecting inter-category differences, where it has been 

shown that gist extraction is less efficient at identifying subordinate scene categories, such as 

distinguishing between a diner and a fine dining restaurant (Malcolm et al., 2012). Another issue with 

this explanation is that if the holistic arrangement of objects does communicate an optimal 

arrangement of a scene’s spatial statistics, we might predict that the manipulations to the location of 

objects, as applied in the swap condition in chapter 4, to redefine the edge boundaries and surface 

properties of the overall arrangement, and subsequently impact any categorisation advantage. As 

such, given the strength of scene gist at effectively capturing the general statistical regularities of a 

scene, it seems unlikely that the idiosyncratic differences we observed could reflect similar individual 

differences derived from gist level descriptors. In order to explore this possibility, future research 

could investigate if the spatial envelope of participants own scenes can evoke similar idiosyncratic 

differences in categorisation accuracy as observed in chapter 3. This might be achieved by blurring the 
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scene renders, to obscure object identities, or by displaying them for briefer intervals so that only gist 

can be extracted, and investigating whether these idiosyncratic effects remain.   

Alternatively, the results of chapter 4 may suggest that internal scene models represent a more 

holistic, broad level interpretation of a scene’s object content. Instead of containing information 

about the identity and location of single objects, internal models might make predictions based on 

the sum of this information across the entire scene. As such, a more holistic representation might be 

best represented by the meaningful relationships between all of the constituent objects within a 

scene, which we did not consider and subsequently may have failed to disrupt in chapter 4. This 

would suggest that whilst the drawings produced by participants represented theِmostِ“typical”ِ

arrangement of objects, they may be robust to relatively specific changes, and able to facilitate a 

more accurate match to a greater number of scenes that share a broadly similar arrangement of 

objects. For example, a participant’s internal model of a kitchen might contain a table near some 

chairs, with a fridge, oven and sink on a countertop. It may be that other scenes that do not include 

a fridge, or with the table placed in a different location would still produce a very close match to that 

internal model, as the content still closely aligns to the predictions driven by that model. This would 

match the relatively small idiosyncratic effects we observed, suggesting that the predictions derived 

from internal models are relatively robust. 

This could suggest that instead of the distinctive separation of semantic and syntactic object 

information suggested by Draschkow & Võ (2017), object information may not be as rigidly 

differentiated within internal models. Instead, the relative relationships between objects might be 

particularly important to internal scene models. In their recent review paper Peelen et al (2024) 

makes a similar argument, suggesting that predictive processing mechanisms might make use of the 

typical spatial configuration of semantically consistent object, which they refer to as object 

constellations. The notion of object constellations is supported by CFS research showing that when 

objects are displayed together in typical configurations, they break suppression more quickly (Stein 

et al., 2015). Crucially, this effect is reliant at showing objects in canonical upright perspectives, 

suggesting that this grouping is not reliant on low or mid-level visual information. Similar benefits of 

object clusters have also been observed in neuroimaging studies, where the benefit of grouping 

objects together with meaningful spatial relationships produces a stronger representation in LOC 

than showing objects displayed without a coherent spatial arrangement (MacEvoy & Epstein, 2009).  

Subsequently if object constellations are represented within internal scene models, and thus drove 

the idiosyncratic categorisation accuracy observed in chapter 3, the manipulations we applied might 

not have been severe enough to disrupt this more holistic representation of object information. One 
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possibility is that whilst we manipulated semantic and syntactic object information separately, we 

did not disrupt both during any trials, which may have preserved enough of the information about 

the meaningful relationships within the object clusters to allow for efficient matching to internal 

scene models.  

How might predictive processing mechanisms make use of a more holistic representation of object 

information? Peelen et al (2024) suggest that in line with models of Bayesian inference, internal 

models can produce more accurate predictions by different sources of information weighed by their 

uncertainty. As high-level perception is less ambiguous than low level information, predictions 

derived from more holistic representation can help disambiguate the information derived from 

lower-level visual features. For example, the broad spatial envelope of a scene may be able to 

identify a scenes broad category (i.e. this is a restaurant), whilst the arrangement of objects could 

help differentiate more sub-ordinate category information (i.e. this is a fancy restaurant). This 

possibility could align with recent research showing that object information can help disambiguate 

scene category during gist extraction (Joubert et al., 2007; Malcolm et al., 2012; Wiesmann & Võ, 

2022). Such a benefit is well evidenced in a recent study by Furtak (et al., 2022) found that 

semantically coherent foreground objects aided the categorisation of background scenes even when 

they were only displayed very briefly, allowing for only the gist to be extracted, suggesting coherent 

object content can be utilised in conjunction with low and mid-level scene information to help aid 

scene processing. Given range of valid meaningful arrangements of constituent object information 

within a single scene category, a more holistic representation of object information may provide 

internal scene models with a more flexible criteria from which to derive predications, thus allowing 

them to more accurately predict information about a  broader range of different scenes within a 

category. For example, if internal models contained possible information about the relative 

positioning and identity of multiple categorically consistent objects within a scene, the absence or 

irregular placement of some of these objects may be compensated for by accurate predictions that 

doِmatchِtheِmodels’ِexpectations.ِ 

However, future research is needed to clarify the contents of internal models and whether they 

might contain a more holistic scene representation of object content. In doing so, it may be 

pertinent to attempt to disrupt the possible relationships between groups of objects, rather than 

targeting the influence of individual objects. Achieving this may be challenging, as it is difficult to 

discern what relationships may be stored in internal models (if any). One possibility is that these 

holistic representations contain a combination of both semantic and syntactic object information. In 

chapter 4, we manipulated these factors separately, and so it is possible that the source of object 

information that remained intact was sufficient at facilitating an efficient match to internal scene 
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models. By applying more targeted manipulations, this may help future research to better 

understand the representation of object content within internal scene models.  

Whilst the previous interpretations provide possible explanations of what the null results of chapter 

4 might tell us about the content of internal models, it is important to consider that methodological 

limitations in the experiment may have limited our ability to detect the effects of any object level 

manipulations. Although we did not find any significant effects of object manipulation in chapter 4, 

we did observe a nominal non-significant trend in the data,  suggesting a stronger impact of 

manipulating object identity on the categorisation of renders based on participants’ own scene 

drawings . This trend may not have reached significance due to several methodological weaknesses 

present in the study. As discussed in the previous section, the combination of  non-naïve participants 

and the greater number of repeats of a considerably smaller stimulus set could have increased the 

influence of familiarity on categorisation accuracy. Given the relatively small effect sizes observed, 

the effect of familiarity may have masked any benefits derived from matching stimuli to internal 

scene models. This may explain why  manipulating the content of participants’ own scenes had no 

differential effect compared to manipulating the content of other scene drawings. However, 

research exploring the effect of familiarity on the processing of individual features is mixed. Whereas 

work on object, face and letter arrangements suggests that familiarity causes individual features to 

be represented more holistically, potentially limiting the impact of manipulating individual elements 

(Barenholtz et al., 2016; Garcia-Marques & Mackie, 2007; Huang, 2011; Tovey & Herdman, 2014, 

2014; Q. Wang et al., 1994), research on scenes suggests that familiarity may instead increase 

attentional allocation to individual objects (Teitelbaum et al., 1978; Cohen et al., 2024), from which 

we might have expected object manipulations to have caused a greater impact. As such, the role of 

familiarity within chapter 4 remains a consistent confound, and necessitates further research to fully 

understand its influence. 

Another important methodological factor that may have influenced our results was the  choice of 

paradigm. We used a rapid scene categorisation task as we originally hypothesised  that the benefits 

of matching input to internal scene models would occur at early stages of visual processing, based on 

the findings of chapter 3 and previous studies showing that typical object content helps facilitate rapid 

scene categorisation (Caddigan et al., 2017; Csathó et al., 2015; Torralbo et al., 2013). However, as 

previous research has shown rapid scene categorisation can be achieved in the absence of object 

information (Greene & Oliva, 2009a), it may be that matching object information to internal scene 

models was unnecessary for achieving scene categorisation, and thus gone undetected. This could 

suggest that predictions derived from more specific object level information could emerge in tasks 

that require a greater adherence to the object content. To explore this possibility further, future 
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studies could explore the impact of manipulating the object level information in renders based on 

participants’ own drawings  on performance in visual search tasks (Biederman et al., 1973; Malcolm & 

Henderson, 2010; Neider & Zelinsky, 2006), potentially revealing effects that were not detectable 

using rapid categorisation. By contrasting the impact of object manipulation between these tasks, it 

may help us develop a better understanding of how individual differences in internal scene models 

influence scene processing.  

5.5 Drawing as a flexible method for assessing individual differences in 
internal scenes models  

Developing a flexible method to describe and investigate internal scene models was an important goal 

of the current thesis. The current thesis developed and applied a new method of studying the 

individual differences between conceptions of typical scene content. In chapters 3 and 4, we used the 

method to successfully study the content of internal models for everyday scene categories, 

demonstrating the viability of this method. Whilst scene construction and drawing experiments have 

been used previously to study both scene memory (Bainbridge et al., 2019; Bainbridge & Baker, 2020) 

and perception (Fan et al., 2018; Matthews & Adams, 2008; Morgan et al., 2019; Ostrofsky et al., 2017; 

Singer et al., 2023), our method has built upon the success of these techniques, by not only analysing 

the content of the images produced, but its variation across participants.  

An important methodological advancement in our drawing method was the process of converting 

scene drawings into 3D renders. This was done to both control for drawing ability and to allow the 

scenes to be manipulated without creating visual distortions (for example it is difficult to replace an 

object whilst matching the drawers style). A potential limitation in the process of converting the 

scenes to renders was the difficulty in accurately representing each object participants included within 

their drawings exactly as participants drew them, and instead the closest possible 3D model to the 

object was chosen. However, the objects drawn within scenes were typically simple, lacking specific 

detail. This was likely facilitated by both the task instructions, which encouraged participants not to 

allocate too much of their drawing time to individual objects, and instead focus on the scenes content 

and layout. A practical consideration for future research utilising this technique is to decide how 

important the representation of individual objects is for their research question, and ensure the 

software used for constructing the renders has ample 3D models available to choose from. In our 

experiments,ِweِutilisedِtheِpopularِvideoِgameِ“TheِSims 4”ِtoِproduceِtheseِrenders,ِdueِtoِtheِ

massive representation of objects available in the game, as well as the ability to easily include 

additional fan made content available online. Whilst we did not encounter a scenario where we were 
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unable to find an object included in a participants scene drawing, future studies could utilise more 

flexible 3D design software, that would allow an even greater choice of objects available.  

The use of renders to control for participant’s drawing ability allowed for standardising the 

representation of scenes across participants. This meant that participants ability to categorise scenes 

was based on the content and layout of the scene itself, as opposed to how well they could interpret 

other participants drawings. This was particularly beneficial to the within-groups design of our scene 

categorisation experiments, as it meant that we could discount the improved categorisation of 

participants own scenes being a result of a greater ability to interpret the content of their own 

drawings, or other metacognitive judgements they might form around their own drawings. Previous 

research exploring the judgment of participants own drawings compared to others in adults is limited, 

but research in children suggest considerable differences between judgements of correctness, as well 

as overall quality, between participants own drawings and those produced by others (Bonoti & 

Metallidou, 2010), which may bias experimentsِthatِuseِtheِparticipants’ِdrawingsِasِstimuli.  

However, although the use of renders limited the influence of drawing ability on the scene 

categorisation, it may influence how participants constructed their drawings. Although participants 

were instructed not to concern themselves about the overall drawing quality, their confidence and 

experience drawing may have influenced which objects they chose to represent in the scene and 

where. To try and mitigate this, participants were granted time to plan out their scenes before drawing 

them, so that they did not feel rushed when constructing their scenes. However, across our 

experiments, although drawing ability varied greatly, the drawings produced provided sufficient detail 

to evoke idiosyncratic differences in scene categorisation, suggesting that the impact of drawing 

ability was minimal. However, contrary to these observations, recent fMRI research has found that 

increased observational drawing ability correlates with functional changes in brain areas involved in 

attention, decision making, motor control, visual information processing, and working memory (Katz 

et al., 2021). Such functional changes could indicate the participants with increased drawing ability 

may be more efficient at not only representing their internal models graphically, but in recalling their 

contents. In particular, improvements in decisions about light sources, tonal values, line variation and 

linear perspective drove these changes. It may be possible that due to the simple nature of the 

drawing task we employed, asking participants to draw simple line sketches in a limited time window, 

that any effect of individual differences in these more advanced drawing skills was somewhat 

mitigated.  

Drawing ability may also act as a potential limitation for what sources of scene information can be 

investigated using the current method. The focus of our research was to explore typicality in a scenes’ 
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high-level visual content, which may have been easier for participants to represent in their drawings. 

However, typicality in mid-level features such as geometry (Bertamini et al., 2018; Hill & Bruce, 1993; 

Kanizsa & Gerbino, 1976; Mamassian & Landy, 1998) or depth (Kersten, 1997; Mamassian & Landy, 

1998) have also been found to benefit scene processing as well, and investigating individual 

differences within these features may be more challenging for participants to represent within their 

drawings. Likewise, it may be more difficult to utilise this technique to explore internal models of more 

complex scene categories, in particular those that are less constrained by spatial boundaries. In the 

current drawing task, participants were provided with a template of a rectangular empty room (the 

perspective grid). This was in part to help them more easily construct the scene, as they did not need 

to think about the spatial dimensions, but also helped them represent their drawings in 3D, allowing 

us to measure the spatial arrangement of the objects and not just their identity. For indoor scenes, 

these restrictions were deemed as acceptable, as most indoor rooms consist of a rectangular space, 

however such restrictions may be less appropriate for outdoor scenes, such as landscapes, which are 

not confined to these limitations.  

A potential limitation of the drawing paradigm for studying internal models is the confound of 

familiarity. As we have discussed, differentiating between whether the observed effects resulted from 

a representation of participants internal scene models or a sense of familiarity was a challenge, and 

limited the application of our results. Whilst our control condition allowed us to monitor the effects 

of stimulus familiarity based on when the images were drawn, differences between the cognitive loads 

of drawing vs copying a scene may have made these conditions less comparable than initially expected 

(Ferber et al., 2007). Further, whilst we initially expected that transforming drawings into renders 

would reduce the impact of familiarity, as participants were not shown their actual scene drawing or 

a stimulus they had previously been exposed to, the discrepancy between chapter 3 and 4 may suggest 

that repeated exposure to the renders may increase the influence of familiarity further.  As such, a 

key learning from this thesis is the need to develop a better control task for this paradigm to account 

for familiarity and differential effects of constructing scenes. The former could be achieved through 

asking participants to provide photographs of scenes they are personally familiar with, and comparing 

these to the drawings they produce. However, this could be more difficult when investigating scene 

categories participants might be less personally familiar with (such as outdoor or communal spaces). 

Alternatively, both of these factors could be controlled for by instructing participants to also draw a 

scene they are most familiar with (such as their own lounge or kitchen), in addition to one that they 

find most typical. Whilst this would rely on participants ability to differentiate these two concepts 

sufficiently, and be able to represent this via drawing.  
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An encouraging finding from our research was that drawings could be used to characterise scenes 

even outside of laboratory conditions. Due to Covid-19 lockdown restrictions imposed on in-person 

testing, our drawing sessions were conducted online over video call. Whilst efforts were made to 

control this environment, it was less controlled than a lab setting, with occasional distractions caused 

by extraneous background activity. Regardless of these non-laboratory conditions, the images 

produced were able to act as useful approximations of participants’ internal models that could in turn 

predict behavioural performance in scene categorisation. Combined with the relative ease of the task 

and low resource costs, drawing methods are an ideal option for collecting descriptors of internal 

representations amongst populations that cannot easily be studied in a laboratory environment. This 

could include studying patients with disorders affecting their ability to accurately predict information 

like autism (Pellicano & Burr, 2012) or semantic dementia (Lambon Ralph & Patterson, 2008), without 

causing disruption to their care by removing them from their regular environments.  

This may also be useful in studying how cultural or environmental differences effect the formation 

and content of internal models, by allowing us to study participants world-wide and across very 

different cultures. Previous research has provided compelling evidence for the impact of 

environmental norms on perceptions of typical scene content (Medin et al., 1997; Miyamoto et al., 

2006; Rogers & McClelland, 2004), however, these studies have focused on studying largely urban 

environments in western and eastern populations. These developed urban populations are likely to 

have access to media that at least partially exposes them to a broad range of environments from 

across different cultures, potentially effecting their perception of typical scene content. By studying 

the formation of internal scene models in more remote communities, these extraneous variables 

could be avoided. Comparisons to remote communities exposed to different visual environments have 

been utilised to successfully investigate the environmental influence on other aspects of visual 

processing, such as colour perception (Roberson et al., 2006), visual attention (de Fockert et al., 2011), 

depth perception (Hudson, 1960) and the experience of visual illusions (de Fockert et al., 2007; Segall 

et al., 1963). Whilst we might reasonably assume the contents of internal models developed in remote 

cultures to vary greatly compared to those of more globalised cultures, differences in how sources of 

scene information are represented within internal models could help us understand how much our 

internal models reflect learnt environmental information and how much they reflect the functionality 

of their neural correlates. 

The drawing method may also be useful in investigating how our knowledge and understanding of 

scenes develop over time. Previously, Öhlschläger and Võ (2020) have used scene construction 

techniques to study the early development of scene knowledge by instructing children to arrange the 

furniture in toy doll houses. Such laboratory-based experiments necessitate greater commitment from 
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participants, which could increase dropouts, and greater logistical demands on the lab, potentially 

limiting the scope of experimental designs.  By using an online drawing task, it may be easier to collect 

data from participants as they would no longer have to visit a laboratory setting. Further, by allowing 

infants to take part in experiments from home, this may help reduce potential extraneous impacts 

caused by the novelty of the laboratory setting (Allen & Bickhard, 2013; Kominsky et al., 2022; Lamm 

et al., 2014). Such practical advantages could allow for longitudinal studies with larger samples 

investigating the development of scene knowledge to be more easily conducted. 

The drawing method may also be useful at studying the development of internal scene models more 

specifically. If we do utilise internal scene models, one pressing question is to understand whether the 

representations in these models are learnt at a young age and remain relatively stable, or if they are 

constantly being updated to reflect our new visual experiences.  Whilst longitudinal studies could be 

used to explore how internal models develop over time and in response to changes in our 

environments, it may be difficult to control for the variety of environments people experience, and 

impractical to conduct over a long period of time. Instead, future studies could explore the 

development of internal models by comparing drawings of typical scenes to those produced by people 

who have previously and currently shared living environments. If typical drawings were found to more 

closely resemble those of people that shared living spaces early in life, such as siblings, it could suggest 

that the content is shaped by early exposure to real world environments, whilst if they more closely 

resembled pictures produced by those they currently share their lived space with, such as their 

spouses or flat mates, it could suggest the content of internal models updates to reflect new scene 

information.  

Beyond helping to develop our understanding of visual processes, the drawing paradigm may help 

designers and architects create more inclusive and functional environments, by improving our 

understanding of how individual differences shape our engagement and use of spaces. The concept 

of place attachment within the field of environmental psychology describes how individuals and 

groups develop affective bonds to the spaces they inhabit, which encourages people to use spaces 

and develop a sense of ownership and belonging towards them (Altman & Low, 2012). Whilst place 

attachment is evoked when built environments reflect the expectations and norms of the people and 

groups using those spaces, conversely when spaces feel like they are designed for other groups or are 

highly unfamiliar, this discourages people from using these spaces (Lewicka, 2011; Williams & Vaske, 

2003). Such effects have been found in various groups, such as dissuading elderly people from using 

public spaces- contributing to feelings of isolation and loneliness (Phillips et al., 2011), and in 

discouraging students from lower socio-economic backgrounds from utilising publics spaces when 

attending university (Trawalter et al., 2021). These effects have also been found to help enforce the 
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economic and class divides caused by the gentrification of urban areas, where redevelopments often 

adopt modern architectural styles more familiar with wealthy, affluent groups, whilst changing the 

local vernacular and subsequently reducing the feeling of ownership of lower socioeconomic people 

(Bullock, 2017; Song & Levine, 2024; Ujang & Zakariya, 2015). Whilst the current thesis did not focus 

on these group differences, the drawing paradigm developed may provide a way to better understand 

and visualise the expectations different groups have of their environments, so that these can be better 

reflected and incorporated into the designs of the spaces that we share.   

5.6 Conclusion 

The current thesis adds to the existing literature demonstrating how regularities in scene information 

help to facilitate efficient processing. Whilst it provides evidence supporting the role of coherent 

global structure on scene processing, it suggests that potential vertical biases observed in previous 

studies may be better explained by regularities in low and mid-level visual features. We suggest that 

this effect may reflect the stark divide between colours and textures in scenes segments containing 

portions of the sky and ground, and might be indicative of the importance of these features in 

establishing a scenes horizon. It also provides an exploration of potential individual differences within 

internal scene models, and puts forward an updated drawing paradigm to attempt to characterise 

their contents. The results provide insight into the complex nature of these models, suggesting that in 

addition to influence of shared regularities found in previous studies, there may be some effect of 

additional variance between individuals. However, whilst our drawing paradigm was initially able to 

describe these internal scene models, we were less successful at exploring their content directly. 

Whilst our results suggest that semantic and syntactic information about individual objects may be 

less important at characterising internal scene models, methodological limitations restrict the 

interpretation of these results. Specifically, the use of non-naïve participants and numerous 

repetitions of a small stimulus set may have increased the influence of familiarity, making it difficult 

to discern whether the effects of manipulating object content truly reflected an impact on predictive 

processing mechanisms. This confound of familiarity highlights the need for future research to 

continue to explore the contents of internal models and what factors might shape these potential 

individual differences. We suggest that the absence of an effect of manipulating semantic and 

syntactic object information separately, could suggest the idiosyncratic differences we originally 

observed are  reflective of internal scene models containing a more holistic representation of relative 

object relationships, and highlight this as a possible direction for future experiments to explore. The 

drawing paradigm developed in this thesis may provide a useful tool for future studies to not only 

explore internal scene models, but other differences in how individuals and groups understand their 

environments, potentially helping architects and designers to develop more inclusive spaces. Overall, 
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the thesis contributes to the growing body of work providing evidence for the role of regularities in 

scenes processing, and identifies familiarity as a key factor that must be carefully controlled in future 

research exploring potential individual differences. 
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Appendices 

Appendix A: Further examples of the stimuli used in chapter 1 experiment 1 

Whole upright  

 

Whole inverted 

 

Fully scrambled: Full criss-cross upright 

 

Fully scrambled: Fully criss-cross inverted 
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Fully scrambled: Top left/ bottom right upright 

 

Fully scrambled: Top left/ bottom right inverted 

 

Fully scrambled: Top right/ bottom left upright 

 

Fully scrambled: Top right/ bottom left inverted 
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Vertically intact/ horizontally scrambled: Horizontally scrambled upright 

 

Vertically intact/ horizontally scrambled: Horizontally scrambled inverted 

 

Vertically intact/ horizontally scrambled: Horizontal pieces upright 

 

Vertically intact/ horizontally scrambled: Horizontal pieces inverted 
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Horizontally intact/ vertically scrambled: Vertically scrambled upright 

 

Horizontally intact/ vertically scrambled: Vertically scrambled inverted 

 

Horizontally intact/ vertically scrambled: Vertical pieces upright 

 

Horizontally intact/ vertically scrambled: Vertical pieces inverted 
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Appendix B: Further examples of stimuli used in chapter 1 experiments 2 

Whole rotated 

 

Fully scrambled: Fully criss-cross rotated 

 

Fully scrambled: Top left/ bottom right rotated 

 

Fully scrambled: Top right/ bottom left rotated 
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Vertically intact/ horizontally scrambled: Horizontally scrambled rotated 

 

Vertically intact/ horizontally scrambled: Horizontal pieces rotated 

 

Horizontally intact/ vertically scrambled: Vertically scrambled rotated 

 

Horizontally intact/ vertically scrambled: Vertical pieces rotated 
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Appendix C: Perspective grids used in the drawing task utilised in chapter 3 experiment 1 

and chapter 4 experiment 1 and 2 

Examples of the layout of the perspective grids and the guidance on how to draw them. A. The 

measurements of the perspective grid used to draw indoor scenes (bedroom, kitchen and living room). 

B. The layout of the perspective grid. The back rectangle comprised the back wall of the room, the 

larger bottom segment the floor, and the side segments the left and right walls. The top section made 

up the rooms ceiling. 
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Appendix D: Further examples of scene drawings produced in chapter 3 and chapter 4  

Participants own kitchen drawings 
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Participants own living room drawings 
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Participants copied kitchen drawings 
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Participants copied living room drawings 
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Appendix E: Further examples of the stimuli used in chapter 3 

Kitchen 
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Living room 
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Control kitchen 

 

Control living room 
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Appendix F: Further examples of the stimuli used in chapter 4, experiment 1 and experiment 

2 

Kitchen: Whole  

 

Kitchen: Swap 1  

 

Kitchen: Swap 2 
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Kitchen: Replace 1 

 

Kitchen: Replace 2 

 

Living room: Whole 
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Living room: Swap 1 

 

Living room: Swap 2 

 

Living room: Replace 1 

 

 



158 
 

Living room: Replace 2 

 

 

Appendix G: Table showing the conditions and scene categories of the trials included in the 

analysis for chapter 2 experiment 1 after exclusions 

 
Beach Desert Field Mountain Total 

Whole, Upright 1504 1360 1500 1528 5892 

Whole, Inverted 1400 1385 1478 1507 5770 

Vertically Jumbled, Upright 1476 1383 1492 1507 5858 

Vertically Jumbled, Inverted 1449 1329 1484 1496 5758 

Horizontally Jumbled, Upright 1504 1347 1484 1504 5839 

Horizontally jumbled, 

Inverted 

1480 1354 1480 1494 5808 

Fully Jumbled, Upright 1489 1332 1488 1500 5809 

Fully Jumbled, Inverted 1519 1306 1484 1490 5799 

Total 11821 10796 11890 12026 46533 
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Appendix H: Table showing the conditions and scene categories of the trials included in the 

analysis for chapter 2 experiment 2 after exclusions  

 
Beach Desert Field Mountain Total 

Whole, Upright 2934 2788 3133 3138 11993 

Whole, Rotated 3343 2786 3111 3145 12385 

Vertically Jumbled, Upright 3132 2814 3133 3125 12204 

Vertically Jumbled, Rotated 3075 2783 3144 3118 12120 

Horizontally Jumbled, Upright 3170 2780 3128 3154 12232 

Horizontally jumbled, Rotated 3115 2772 3116 3121 12124 

Fully Jumbled, Upright 3129 2807 3139 3104 12179 

Fully Jumbled, Rotated 3074 2763 3126 3118 12081 

Total 24972 22293 25030 25023 97318 
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