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Abstract

Animals need to make important decisions under uncertainty throughout their

lives relating to their survival, such as finding resources, avoiding predators or

finding safe resting places. Access to social information provides supplementary

information to individuals with incomplete personal information and under

some conditions can ameliorate their decision-making.

Traditionally, social behaviour is modelled as an observed trait. Here, I assume

that social behaviour, i.e. having access to, and utilising social information is

an adapted trait: those who are able to make good use of the available in-

formation and as a result make more successful decisions, are preferred by

evolutionary selection. This piece of work contributes new insight into social

behaviour and provides a more neutral context for understanding the occur-

rence of some commonly observed behaviours.

In chapters 5 and 7 the evolutionary stability of well-mixed groups is explored.

I find that sociality evolves in relation to environmental uncertainty and heuris-

tic decision-making rules, while I also establish a necessary constraint on this

process. Chapter 6 explores the long-term behaviour of groups employing dif-

ferent decision-making rules, using Markov chains. In chapter 8 I explore the

evolution of sociality in relation to the position of an agent in the sequence

for unmixed groups, and explore the dynamics between groups with homoge-

neous behaviour and a single agent with a behaviour different to the collective

one. Finally, chapter 9 summarises this work and proposes some directions for

future research.
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Chapter 1

Introduction

Social animals need to make decisions under uncertainty. The underlying principles and

mechanisms of these decisions are still largely unknown. This is due mostly to a simple

fact: we don’t know what those internal processes actually look like.

One thing we do know, is that there are observable advantages to being social; among

many other advantages, by being in a group animals have access to indirect information

[D. J. T. Sumpter, 2010]. Bees that have spotted a good resource will do a waggle dance

to communicate it to the rest of the colony, making it possible for bees that did not spot

a resource of this quality to take advantage of it [Biesmeijer and Seeley, 2005]; fish that

have failed to spot a predator will learn about it from others in the school that have, thus

gaining access to important information regarding their survival [Magurran et al., 1985]

in a phenomenon commonly referred to as the many-eyes hypothesis [Pulliam, 1973].

The effective use of this social information has been the focus of many studies, since

its effect on decision-making is not straightforward: while it can supplement personal

information and help animals make more accurate decisions, it may also mislead them into

making worst ones [Giraldeau et al., 2002; Wolf et al., 2013]. Similarly, the way animals

appear to use social information is not completely understood; for example several papers

agree on the observation that many animal groups tend to become social to a sub-optimal

level [Torney et al., 2015; Sigalou and Mann, 2023].

A variety of models have been developed in an effort to understand sociality and the

internal mechanisms that make it possible, with many models being heuristic: a rule based

on observations is proposed, which is then examined to determine whether it produces

realistic group behaviour in silico [Vicsek et al., 1995; Couzin et al., 2002].

Additionally, both approaches define social behaviour as an observed trait; this assumption

is necessary in order to understand what: what is this behaviour we are noticing across

many species. Yet this approach is limited when the question becomes how: how do

animals become social, and why in the ways and contexts we observe it at?

To address ‘how’, an approach considering a simple model with few assumptions can

7



1. INTRODUCTION

be used to explore the evolution of a group and establish what conditions lead to the

emergence of different behaviour. Such work has been performed with interesting results,

such as in the case of Preston et al., 2010 where they explore the question of how an

organism should forage given limited available information. A similar approach is taken

in this work to similarly explore how – and under what conditions – sociality evolves.

Social behaviour is hence considered to be an evolved trait rather than a observed one.

The focus then shifts from that described previously, to instead understanding how and

why social behaviour comes to be. While the tendency to be social is considered a given

in this work, animals are not assumed to be social in a specific way a priori; instead, their

level of sociality comes to be via their effort to better adapt to their environment. Social

agents (representing vertebrates) belong in groups along with other conspecifics. They are

able to observe the prior decisions, and have an at least small tendency to be influenced

by their actions. Considering different ways of navigating the environment, I examine how

their sociality (here, following social information) evolves and if and how it stabilises.

This examination is done through a theoretical, abstract model. Having this approach

allows for some new, fairly generalisable conclusions regarding how sociality evolves in

respect to environmental uncertainty and two simple but essential evolutionary mecha-

nisms displayed by many vertebrates: adaptation to the environment and resistance to

invasion (see Chapter 3 for a more detailed account). It also sheds a different light to

some previously observed results (for example, the fact that some social animals tend to

become sub-optimal in their use of social information), as now the adaptive framework

contextualises them differently, and offers plausible explanations for them. The evolution

of social behaviour is addressed in a variety of cases including in relation to environmental

uncertainty, decision-making strategy, group size and group type.

The chosen approach is successful in reproducing two commonly observed traits in groups

using social information: consensus decisions [Conradt and Roper, 2007] and a tendency

to over-sociality [Torney et al., 2015]. In the first part of this project (Chapters 5 and

7) it is made clear that an important factor to the occurrence of both is the employed

decision-making strategy and specifically the way that the available social information is

processed.

The key difference in the strategies is the effect they have on bias: do they amplify it,

and if so how? Social feedback and bias are known to lead to phenomena such as infor-

mation cascades [Bikhchandani et al., 1992]. This motivates a slightly different question:

how do different decision-making strategies affect the long-term behaviour of groups? By

modelling different decision-making strategies using stochastic models, it is possible to

gain some preliminary results regarding the connection between bias amplification and

the occurrence of cascades.
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1.1 Overview

1.1 Overview

This thesis is an analysis of the long-term behaviour of groups of social animals that use

a probabilistic, Bayesian updating rule to make a decision in a binary setting.

The main work is split into two main questions: how does social behaviour evolve given dif-

ferent circumstances, and how do different decision-making rules lead to different long-term

behaviours in groups employing them? The former is addressed through a computational

analysis, and focuses on exploring the relationship between the main parameters of the

model, as well as the evolutionary dynamics of the groups’ sociality. The latter is partly

addressed by the computational work, and further analysed mathematically in a separate

chapter. The full thesis is structured as follows:

Chapter 2 provides a brief overview of the existing work on the subject of social decisions

in groups of cognitive agents. It covers themes such as rationality, the use of the sequential

decision model and social information. Lastly it overviews the main project aims for this

work.

Chapter 3 presents the relevant mathematical concepts and frameworks for this project.

These include both frameworks that are used explicitly for later derivations, and the theory

underlying some concepts that are used implicitly throughout this project.

Chapter 4 introduces the setting and the model that is used throughout this thesis. It

outlines how the chosen version of the model is derived, followed by a description of the

different memoryless decision-making strategies that are considered in this project. Lastly,

the concepts of collective measure and sociality are introduced.

Chapter 5 shows how groups of social agents employing this model evolve their sociality,

under the assumption that they adapt to their environment in the long-term. The rela-

tionship between sociality and environmental uncertainty is discussed, and a constrained

is imposed. Variations of the model are then considered, and it is shown that the existence

of an evolutionary stable strategy depends on group size.

Chapter 6 supplements the computational work of Chapter 5 by providing a mathe-

matical framework to analyse the long-term behaviour of large groups employing versions

of the same decision-making model. It uses Markov Chains to demonstrate that under

the existence of bias, over time large groups are expected to amplify the original social

bias in the system. Furthermore it shows that for large enough bias, social following

can be approximately deterministic, with information cascades occurring for one specific

variation.

Chapter 7 expands the analysis of Chapter 5 to the full version of the chosen sequen-

tial decision-making setting, where previous decisions are assumed to be perceived as an

ordered sequence. Similar to Chapter 5 the evolutionary dynamics of the group are deter-

mined, followed by a comparison between the strategy that considers the ordered sequence,

and the three memoryless strategies.
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1. INTRODUCTION

Chapter 8 builds on the work summarised in the aforementioned chapters by analysing

the evolution of sociality for individual agents within the group. It shows how this does not

coincide with the collective sociality considered thus far, explains how it further depends

on the group’s composition, and examines the relationship between a single invader and

group.

Chapter 9 summarises the main contribution of the thesis presented in Chapters 5, 7, 6,

and 8 and outlines some directions for future work that naturally follow from it.
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Chapter 2

Existing Work & Project Aims

Over just a century ago, collective displays like bird flocking were attributed to supernat-

ural phenomena such as telepathy [Selous, 1931]. While tales of complex mechanisms still

appear in works of fiction, it has been long established that group motion can be explained

by considering the emergent behaviour of simple local interactions.

Aoki, 1982 created a simulation that solely considered the actions of approach, avoidance

and orientation between the individuals, while a few years later Reynolds, 1987 created

the “BOIDS” model, a simulation of a flock of birds inspired by a particle system where

birds behaved as individual actors that demonstrate simple behaviours such as collision

avoidance, velocity matching and flock centering. These two works showed that simple

principles are enough to lead to group behaviour resembling the one observed in nature,

without the need for more complex mechanisms, such as central coordination.

The principle of ‘simple interactions lead to emergent (complex) collective behaviour’ has

since become established in fields such as Complex Systems and Collective Behaviour

where agents lacking individual complexity engage in repeated interactions within their

groups; these equally simple interactions are enough to produce complex patterns at the

collective level [Krause et al., 2002; D. J. T. Sumpter, 2010]. A vast body of literature has

flourished, spanning themes from collective movement and pattern formation, to animal

social networks and collective decisions [D. J. T. Sumpter, 2010].

This thesis belongs broadly in the field of Collective Behaviour, and in particular deals

with the matter of collective decisions. This Chapter provides an outline of literature of

relevant notions: collective behaviour (migration and decision-making), sequential deci-

sions, cooperation and decision-making strategies.
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2.1 Collective Motion

2.1.1 Models Inspired from Physics

Similarly to the BOIDS model [Reynolds, 1987], many models on collective movement

originate from physics. For instance, swarming (which is one of the most studied collective

animal processes) is traditionally described using the Vicsek model, originally motivated

by the study of active matter in physics [Vicsek et al., 1995].

Foraging is another good example of a collective task modelled as simple particle-like inter-

actions; what appears to be a coordinated task between several individuals of potentially

different abilities and needs and without direct channels of communication has been suc-

cessfully modelled by applying simple interaction rules [Couzin et al., 2005]. The simple

agent based model is described by three equations that specify that each individual ani-

mal wants to align her direction of travel with that of her conspecifics while attempting to

maintain a minimum distance from them while avoiding collision. The model is complete

with an additional relation for an informed proportion of individuals.

Additionally to such models being capable of reproducing moving patterns, they have the

capacity to also reproduce of adaptation processes. For instance, Wood and Ackland,

2007 created a simple individual-based model for group formation focused on predation

and foraging that included phenotypes for the individuals.

2.1.2 Beyond Physics: Social Behaviour

Models from physics have been widely used to approach a wide range of collective phe-

nomena –not only collective motion. Conflict resolution [Pinkoviezky et al., 2018], rational

decision-making [Galam, 1997], and opinion dynamics and social spreading [Castellano et

al., 2009]) have been approached as self-organised systems at criticality [Mora and Bialek,

2011; Munoz, 2018; Gómez-Nava et al., 2023]. This is also the case for the focal point

of this thesis: collective decision-making (i.e. the phenomenon where the majority of an

originally undecided group of agents commits to a single option), that has been studied as

symmetry breaking in physics, a phenomenon often studied with spin models [Romanczuk

and Daniels, 2023].

While this body of literature has contributed significant results, thinking of the animals

as actors with agency able to process information has been an important addition; being

able to distinguish between social and non-social interactions has been shown to be im-

portant in understanding interactions during collective movement [Bode et al., 2012]. For

instance, Guttal and Couzin, 2010 incorporated the view of individual animals as ‘infor-

mation processing units’ to a system of individuals that engage in simple interactions with

neighbours, showing that information sharing is essential during collective migration.

It is also important to consider the social network underlying animals groups, since these

are also important factors in the groups’ movements. Bode et al., 2011 for instance, show

how collective motion is also partly due to the preferential interactions within groups,
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where individuals respond differently to animals they are familiar with.

2.2 Collective Decision-making

While cases like bird migration and fish shoaling deal with the problem of collective nav-

igation, there are other cases where the problem is that of collective decision-making.

This too is no easy task: the individuals within a group need to decide which activity to

perform, when and how [Conradt and Roper, 2003].

Activity synchrony for example requires some individuals to pay a cost to achieve this

[Conradt and Roper, 2000]. Since activity synchrony can be costly, this can explain fission-

fusion groups [Conradt and Roper, 2000] as well as sex segregation [Conradt, 1998].

2.2.1 Sequential Decisions

Sequential decision-making refers to a specific type of collective decision-making where

individuals in a group decide one-by-one between two options; each focal individual decides

taking into account the previous decisions. Here, instead of considering a multitude of

parameters and several neighbours, the focus is on the way a single individual utilises social

information. Just like in the case of collective navigation, simple individual interactions

are capable of leading to complex collective behaviour. In this setting, the mechanism is as

such: the actions of previous individuals leave a stimulus, which the following individuals

perceive and use to navigate the environment, overtime leading to a self-organised group

performing a collective task [Grassé, 1959].

Take the example of ant colonies: when a foraging ant discovers a food source, she returns

to the nest leaving a chemical trail which the other ants can detect and follow to the

food source; upon following the trail, they also reinforce it. This reinforcement process

amplifies the signal and increases its accuracy [J. L. Deneubourg et al., 1986]. This simple

interaction through the pheromone trail is enough for a group of ants to self-organise and

successfully navigate between the colony and a food source –with it additionally being

able to discover the shortest path between the two [Goss et al., 1989]. So in general,

ant colonies create pheromone trails that enable their navigation, with the trail becoming

stronger with every new ant taking it. Yet, this process is inherently stochastic: individual

ants can make mistakes, or decide to explore instead of exploiting, especially at the early

stages of the pheromone trail which leads to trails with more than one paths. Any new

ant will choose a path probabilistically, with a probability that is linked to the intensity

of the trail in either path [J.-L. Deneubourg et al., 1989].

So the intensity of the pheromone trail signals to the ants how recently and frequently

it has been taken in the past. This conveys information about the quality of each of the

available options; if one is perceived as ‘best’, then this is the one that will be followed

with a higher chance by this decision-maker. Beckers et al., 1993 considered a scenario

with two available options, one of which being the best, and phrased the choice of the best

one as a quorum response and specifically as a probability dependant on the pheromone
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intensity of the trail:

P (choose left) =
(k + L)n

(k + L)n + (k +R)n
(2.1)

Here, L: number of ants that have taken the left path, R: number of ants that have taken

the right path, and n, k: parameters that control the steepness of the choice function

(fitted experimentally in Beckers et al., 1993) and specifically n: determines the degree of

nonlinearity of the choice, and k: the threshold response to the pheromone.

Perna et al., 2012 provided additional insight into the mechanism behind to the response to

the pheromone concentration: through a novel – at the time –experimental technique, they

determined that the response to the pheromone follows ‘Weber’s Law’, i.e. the relative

difference of concentration between the options. Arganda et al., 2012 further proposed a

unified framework for this decision-making mechanism which incorporates Weber’s Law

among others. This proposed model comprises of three parameters: one for the quality

of non-social information, one for the quality of social information, and one for the social

information itself. Let options x and y where x is best, nx: the number of animals already

chosen option x, ny: the number of animals already chosen option y, a: a measure of

the non-social information, s: a measure of the reliability of the social information and

k: the relative impact between the information provided for the two options. Then the

probability that option x is better that y is defined as such:

P (x is good) =
1

1 + as−(nx−kny)
(2.2)

Building on this, Pérez-Escudero and de Polavieja, 2011 explored the use of social informa-

tion for animals navigating uncertain environments with binary options using probability

matching; in that approach, the probability that individuals choose an option is the prob-

ability that this option has of being the best one. They reinforce the existing result that

the model fits experimental data [Ward et al., 2008], as well as the claim that this model is

capable of incorporating several types of social information. Specifically, they show that it

satisfies the case where the decision-maker observes an aggregated number of the previous

choices (such as the number on one option minus the number on the other) as well as the

case where a dynamic model with dependencies is considered, where the focal decision-

maker now observes an ordered sequence. Arganda et al., 2012 further suggest that this

decision-making model provides a unifying framework for collective decision-making in

animals, as such:

Px =
P (x is good)

P (x is good) + P (y is good)
(2.3)

2.2.2 Uncertainty

J. L. Deneubourg et al., 1986 talked about a reinforced trail’s capability of sustaining a

self-organised, cohesive ant colony. However this process is not always successful: scouting

ants may make mistakes leading the colony into an ant mill [Franks et al., 1991].
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The stochastic nature of the binary sequential decision-making model is in fact vulnerable

to mistakes given the right conditions. There is always the potential for mistakes as there

exists a probability that an animal will choose the least good option which, if followed

strongly, can be amplified misleading the group [Pérez-Escudero and de Polavieja, 2011].

This raises an important point regarding the use of the available social information: this

information comes in the form of cues, which signal what might be happening. But since

animals’ sensory abilities are limited those cues can often be misinterpreted by solitary

animals leading to false positives and false negatives, potentially leading them to falsely

choosing unsafe places or falsely avoiding safe ones [Wolf et al., 2013].

Broadly speaking, there is an established benefit in using social information since personal

information is often insufficient or poor. The low quality of personal information can be

mitigated by observing others’ actions: this provides indirect information about the state

of the environment that supplements the personal information and ameliorates the out-

comes of decisions [Valone and Templeton, 2002; Dall et al., 2005]. This is demonstrated

in a variety of examples throughout taxa, such as in the case of the ‘many eyes’ effect

where the animals benefit from the fact that others around them may spot a predator

(who they would otherwise not see themselves) [Pulliam, 1973; Magurran et al., 1985].

But using social information is not straightforward. Not all social information is relevant

as it may either be false, or may be originating from agents with different goals [Mann,

2020], while even when social information is relevant, it can be misleading [Giraldeau et al.,

2002; Rieucau and Giraldeau, 2009] potentially even leading to poor information cascades

[Bikhchandani et al., 1992]. For that reason, the available social information shouldn’t

always be trusted. So when, and how, is social information to be used?

Intuitively, it might make sense to turn to social information when personal information is

insufficient, as making decisions under reliable social influence while having poor personal

information has been shown to increase collective accuracy [Jayles et al., 2017]. But

as stated above social information isn’t always reliable; in fact in many cases the focal

agent can assume that others before her are subject to the same uncertainty as her when

interpreting ambiguous cues. In settings like the binary decision scenario considered here,

whether relying on social information is optimal or not depends on its quality rather than

the lack of personal information: when the environmental information is poor, it’s better to

rely on personal assessments of the available cues rather than on the social information (as

this social information is equally unreliable), while when the environmental information

is more reliable it’s better to rely on social information [King and Cowlishaw, 2007].

This is in line with theoretical models such as the Condorcet’s jury theorem [Boland,

1989], according to which groups can make more accurate decisions than solitary decision-

makers, provided that they are already accurate enough (specifically, that the individual

probability of being accurate is p > 0.5).
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2.2.3 Conflict and Cooperation

Additionally to information uncertainty, animal groups are also subject to conflicts of

interest. This can make consensus decisions harder to achieve, leading to the group tak-

ing unshared (rather than shared) decisions [Conradt and Roper, 2009]. This research

addresses a crucial point: how to approach dynamics within groups? A wide range of

behaviours can be observed during interactions, ranging from altruism and cooperation,

to selfishness and cheating [West et al., 2007]. Altruism refers to a behaviour exhibited by

a single individual that infers a cost to her, while conferring a benefit to someone else. Co-

operation refers to the act of multiple individuals working together and receiving a shared

benefit. Selfishness refers to a behaviour that is costly to others, but beneficial to the

individual that exhibits it. Cheating refers to the lack of cooperation from an individual,

who nevertheless benefits from others cooperating. Behaviours that benefit others, such

as altruism and cooperation have been explained either by showing they can naturally

evolve under some circumstances, or by being enforced: this translates to a mechanism

that rewards cooperation and punishes cheating [Trivers, 1971; West et al., 2007].

Since Darwin, 1964 many scientists believed that its principle of ‘survival of the fittest’ is

contradictory to the notion of cooperation, leading to the initial dismissal of cooperative

phenomena [Axelrod and Hamilton, 1981]. Cooperation was also disregarded as it clashed

with the predictions made by rational agent models that predicted ‘selfish’ behaviour

[Dawkins, 2016]. However animals behaviour does not align with the predictions made

by these models [Kreps et al., 1982]: instead of opting for optimising their own personal

circumstances, animals tend to cooperate as documented in a plethora of experimental

studies [Andreoni and Miller, 1993; Cooper et al., 1996; Pothos et al., 2011]. To address

this gap between theoretical predictions and experimental results, the theories of kin

selection [Hamilton, 1964] and reciprocation [Trivers, 1971] were developed as extensions

to evolutionary theory.

Kin selection re-frames competition as occurring in the gene level instead of the individual

level; that way, individuals cooperate with other animals they share their genes with as

this will maximise the gene’s fitness even if this means that their personal one will suffer a

blow. Under this theory, an individual will sacrifice herself if this sacrifice allows a relative

(who shares her genes) to survive. This altruistic behaviour is favoured by natural selection

as long as the cost of it on the altruistic individual is lower than the the benefit that the

recipient will receive. While the general idea has been mentioned before (e.g. by Darwin,

1964), it was formalised by Hamilton, 1964 and came to be known as Hamilton’s rule.

On the other hand, reciprocity offers an explanation for altruistic behaviour between

individuals that are not genetically related. Altruistic behaviour can be still naturally

selected, as it is favourable for those performing them in the long-run despite there being

a temporary cost in doing so [Trivers, 1971]. The way reciprocity allows for altruism to

evolve and be maintained in the long-run, is due to the individuals having memory of

previous interactions, and the possibility to meet again; then, being altruistic towards

someone at a certain point can mean that the roles can be reversed at a future interaction.
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This way, the cost of the first interaction will be balanced out by the benefit of the future

one [Axelrod and Hamilton, 1981].

More recently, a different lens of looking at animal behaviour has been suggested: that of

adaptation. Adaptation refers to populations that change over-time to better respond to

their specific environment. Adaptation (along with a few other key processes) is in the

core of species evolution while it additionally provides an explanation for the seemingly

irrational behaviour we observe in animals [Fawcett et al., 2014]. Animals navigate com-

plex and changing environment; the adaptation to these environments lead to behaviours,

including types of decision-making, that make perfect sense in their specific contexts [Hous-

ton and McNamara, 1999; Hutchinson and Gigerenzer, 2005; Todd and Gigerenzer, 2007;

McNamara and Houston, 2009; Fawcett et al., 2013]. The criticism to the rationality

assumption argues that the observed behaviours are the result of an adaptation process

and that they are reasonable responses within the context of the animals’ lives [Fawcett

et al., 2014].

This approach allows for a deeper understanding of animal behaviour and its origins. Take

the example of irregular preferences; rational choice theory holds the axiom that rational

agents should have transitive and regular preferences as this will lead to a maximised

expected benefit [Von Neumann and Morgenstern, 2007] – an axiom that is violated as

demonstrated in a range of studies [Waite, 2001; Bateson et al., 2002; Shafir et al., 2002;

Latty and Beekman, 2011]. This behaviour though can be interpreted as ecologically

rational in repeated choices, as they result from adaptation to heterogeneous environments

[Houston et al., 2007; Trimmer, 2013].

2.2.4 Decision-making Strategies

The work of Pérez-Escudero and de Polavieja, 2011 discusses how simpler versions of the

decision-making model are capable of providing a very good approximation of a more

complete model; in other words, in the context of their model an individual considering

the difference in numbers between the two available options give comparably good results

to her considering the full ordered sequence of prior decisions.

Exactly what strategies animals use is a question that is both interesting and hard to

answer. Many different strategies that make use of this social response function have been

observed experimentally, ranging from ones with a linear relationship [Perna et al., 2012]

to ones with a non-linear one [D. J. Sumpter and Pratt, 2009]. Given that we don’t know

what the individuals’ beliefs about the world are we can only make assumptions based on

the principle that these individuals want to maximise their utility, but re also subjected

to noise and context [Mann, 2018], and potentially differing goals or preferences [Mann,

2020].
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2.3 Project Aims

A substantial body of research has established that relatively simple interactions between

individuals can produce cohesive groups able to perform complex tasks like self-organised

motion [Vicsek et al., 1995; Couzin et al., 2002], group migration [Guttal and Couzin,

2010], conflict resolution [Couzin et al., 2005], or consensus decisions [D. J. Sumpter and

Pratt, 2009]. Substantial effort has been made to identify what these ‘rules of interaction’

are from two perspectives. In one, models are proposed and demonstrated to exhibit

the required collective behaviour [Vicsek et al., 1995; Couzin et al., 2002, 2005; D. J.

Sumpter, 2006; Strömbom, 2011; Bialek et al., 2012; Romanczuk and Schimansky-Geier,

2012; Vicsek and Zafeiris, 2012; Huepe et al., 2015; Herbert-Read, 2016; Lecheval et al.,

2018; Ling et al., 2019]. This fulfils a necessary but not sufficient condition for identifying

the appropriate rules, since other models may also exhibit similar collective behaviour. A

second approach is to collect empirical data on animal movements and behaviours and

use this to directly infer the form of interactions [Herbert-Read et al., 2011; Katz et al.,

2011; Gautrais et al., 2012; Pettit et al., 2013]. Combining these two approaches creates a

powerful framework for identifying the rules governing interactions [D. J. Sumpter et al.,

2012].

However, even if one can specify precisely what interactions occur between individuals, this

leaves an open question: from among the set of plausible interactions, why do animals use

these rules and not others? Although simple interactions between individuals can clearly

lead to functional group behaviours, less is known about their evolution and stability on

an individual level in groups of unrelated individuals who cannot be assumed to behave

according to a single collective goal. Instead, such animals should evolve to make decisions

that serve their own selfish interests such as acquiring food and safety.

Making informed decisions depends on reliable information about the world. That in-

formation comes in the form of cues, which indicate the state of the environment. As

individual sensory abilities are limited, social animals can make use of ‘social informa-

tion’, i.e. information provided by the actions of their conspecifics, as a source of indirect

information about the state of the environment [Valone and Templeton, 2002; Dall et

al., 2005]. But not all social information is relevant or accurate [Giraldeau et al., 2002;

Rieucau and Giraldeau, 2009], and relying too heavily on imitating others can potentially

lead to poor information cascades [Bikhchandani et al., 1992]. Therefore we can expect

that natural selection will drive animals to adopt specific weightings of private and social

information depending on the environment they inhabit so as to maximise the quality of

their decisions.

In the area of collective migration, large-scale evolutionary simulations have explored the

evolution of interaction rules within a model based on social ‘forces’ [Wood and Ackland,

2007; Guttal and Couzin, 2010], with selection on the individual level based on navigational

accuracy. This not only demonstrated the evolution of rules sufficient to keep a group of

agents together as a single ‘flock’, but also showed the emergence of distinct strategies
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within the group, characterised by ‘leaders’ and ‘followers’. Importantly, these strategies

emerged as a result of individual adaptation under natural selection, rather than being

specified in the model itself. Models of collective movement are complex due to the con-

tinuous nature of the observable behaviour (motion) and the iterated interactions between

individuals over time. As such, it is difficult to make reasoned a priori arguments about

how animals ought to interact on the move so as to accomplish individual goals, and even

evolutionary models such as that above generally work within a heuristic framework of

‘social forces’ – assuming that agents exhibit force-like attraction, repulsion and alignment

interactions, and allowing the strength of these forces to be determined by evolution.

A more mathematically tractable area of collective behaviour can be considered in the

form of simple sequential decision-making between discrete options. Recent research has

focused on deriving likely interaction rules in such a scenario by considering the behaviour

of rational agents [Pérez-Escudero and de Polavieja, 2011; Arganda et al., 2012; Mann,

2018]. One such model, developed in Pérez-Escudero and de Polavieja, 2011; Arganda

et al., 2012 has had a considerable influence on empirical work, being used to interpret

the observed collective behaviour of fish [Miller et al., 2013; Pérez-Escudero et al., 2013;

Mann et al., 2014; Kadak and Miller, 2020], birds [Aplin et al., 2014; Farine et al., 2014]

and even humans [Egúıluz et al., 2015; Pérez-Escudero and de Polavieja, 2017]. However,

aspects of this model remain unspecified by theoretical arguments and must in each case

be fitted to the data available. Furthermore, various assumptions made in the model

development allow for the possibility that these rules may be vulnerable to exploitation

by animals employing a different strategy. Establishing whether the strategy derived in

this model is stable is crucial as foundation for the interpretation of the empirical studies

which assume its use by the animals under study.

In this body of work I take the model of Pérez-Escudero and de Polavieja, 2011 as a

starting point for considering collective decision making, based on its widespread use

in interpreting empirical data. Initially I assume well-mixed groups and describe the

conceptual and mathematical basis of this model, highlighting potential vulnerabilities

due to non-rational assumptions. I identify the key parameters of the model that are

left unspecified in theory, and show that these obey necessary relationships under the

assumption that animals make decisions optimally, thus reducing the number of degrees

of freedom in the model. I then specify alternative strategies an animal might employ

using the same conceptual framework, and explore the stability of the baseline model to

invasion by these alternatives.

By considering non-mixed groups, I further analyse the effect of position within the se-

quence – or in other words, the amount of available social information as this is necessarily

altered with the focal decision-maker’s positioning – and the evolution of sociality as a

function of this. I explore how the evolution of sociality and evolutionary pressure varies

with the employed decision-making strategy, and explore the relationship between indi-

vidual agent attempting to personally optimise sociality and the effect on the group’s

collective measure. I find that the qualitative relationship is highly dependent on the
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employed decision-making strategy.

Lastly, a preliminary analytical work is done using a Markov chain analysis. I discover

indicators relating to the occurrence of information cascades and find that this again is

highly dependent on the employed decision-making strategy as this affects the way and

rate at which bias accumulates in the system.
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Chapter 3

Mathematical Background

Throughout this research project, I consider a commonly used setting (such as in Ward et

al., 2008; Pérez-Escudero and de Polavieja, 2011; Arganda et al., 2012; Mann, 2018), where

agents in a group need to decide between two options. One of the options represents the

best decision, be it food, safety, or some other valuable resource. The agents of the group

choose consecutively, so each focal agent is able to observe two things: the environment

and the choices made by the previous agents. The focal agent will then process this

available information and use it to make an informed decision about what choice to make.

The principle underlying decision-making within the concept of my model is Bayesian

Estimating.

As it will be shown later (see Chapter 4), the above individual process leads to certain

outcomes in the level of the group. These decisions that originally relate to individual suc-

cess (for instance, when a food resource is found via this process), by extension also relate

to the overall group’s success too. By using concepts associated with Evolutionary Game

Theory and Stochastic Processes it is possible to investigate the group’s dynamics only

by knowing the individual decision-making rules and making a few careful assumptions

about the group’s relation to its environment.

3.1 Bayesian Updating

Unlike the most commonly used frequentist statistics that represent frequencies, Bayesian

statistics represent beliefs. Initially there is a prior belief about a model, which then

gets updated by incorporating data which in turn lead to a posterior updated belief.

Two elementary concepts in Bayesian statistics are conditional probabilities and the Bayes

theorem.

A conditional probability P (A|B) denotes the probability of event A occurring given that

event B has already occurred. We have that:

P (A|B) =
P (A ∩B)

P (B)
(3.1)
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where P (A ∩ B) = P (B ∩ A) is the probability that event A and event B happen, while

P (B) is the probability of event B.

Naturally for the conditional probability P (B|A) it is the case that:

P (B|A) = P (B ∩A)

P (A)
(3.2)

From Equations 3.1 and 3.2, it follows that:

P (A|B) =
P (B|A)P (A)

P (B)
(3.3)

Equation 3.3 is known as Bayes rule. When Bayes rule is used to update a probability

based on another event affecting it, the process is called Bayesian updating.

3.2 Game Theory

Game Theory studies interactions that in the simplest case are pairwise and involve two

possible behaviours. The interacting individuals make decisions in a specific situation, and

based on the pair of behaviours chosen they each receive a payoff. This interaction can be

summarised in a payoff matrix: a 2x2 matrix containing the payoff of each of the possible

four directions this pairwise interaction can take. A pairwise interaction with a specified

payoff matrix is called a game, and the interacting individuals are called players; each

player has a set of actions as well as preferences over the set of action profiles [Osborne

et al., 2004]. An interaction can be either one-off, meaning that the two players don’t

interact before or after this particular game, or repeated –in which case they interact

again, often with memory from the previous interactions.

Game Theory assumes rational agents: this means that they will make choices that will

benefit them personally. Each available choice has an attributed utility, while the indi-

viduals have utility functions; with this set-up, the individuals are expected to make the

decisions that will increase these utility functions [Von Neumann and Morgenstern, 2007].

Depending on the combination of individual choices, the agents will either be in conflict or

will cooperate; different games have different outcomes, and the outcomes heavily depend

on the setup. In some games, such as the prisoner’s dilemma, the interaction dynamics

are competitive and the expected rational outcome is mutual defection; in others (such

as the stag-hunt game) the interaction dynamics are cooperative and the best outcome

requires mutual cooperation.

3.2.1 One-off games

Take the example of the prisoner’s dilemma: two suspects have committed a crime to-

gether, and are being interrogated separately. If they both cooperate and cover for each-

other and don’t confess they receive a minimal sentence of one year in jail (each), if they
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both defect and betray each other they both get a larger sentence of two years, and if

the first cooperates for the second but the second defects, then the one who cooperated

receives a sentence of three years while the other one walks free (i.e. receives a sentence

of zero years).

So the two people have the set of actions Cooperate (C), Defect (D). They also have

preferences depending on what the outcomes will be for each case: for a focal suspect

the preferred outcome is for her to defect and the other one to cooperate, followed by

both of them cooperating, followed by both defecting, and lastly the least proffered is her

cooperating while the other suspect defects.

There are then four possible interactions:

• they both defect,

• they both cooperate,

• one defects after the other has cooperated,

• one cooperates after the other has defected.

So each decisions comes with a benefit and a cost; the final outcome for each agent will

depend on both which move she chooses, and what move the other agent chooses. The

outcomes are the following: if you are prisoner 1, you may either defect or cooperate. In

the first case, if prisoner 2 has also defected you will receive two years in prison, while

if she has cooperated you only receive one. In the second case, if prisoner 2 has also

cooperated you walk free, but if she has defected you receive three years in prison. This

pairwise interaction can be summarised in the following payoff matrix:

Player 2

C D

Player 1 C (1, 1) (0, 3)

D (3, 0) (2, 2)

In this scenario the two rational prisoners are trying to get the smallest sentence possible

(as this would maximise their utility). Under this assumption, the rational course of

action here is to defect. This results from examining which is the best response to the

other prisoner’s possible strategies; if the other prisoner cooperates, defecting would mean

going free instead of serving one year, while if the other prisoner defects defecting would

mean serving two years instead of three.

3.2.2 Iterated Games

In the one-off Prisoner’s Dilemma, the expected outcome is mutual defection. However,

in the iterated version of the game cooperation is possible.
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Axelrod and Hamilton, 1981 conducted a computer tournament for the prisoner’s dilemma

where different strategies competed against each-other; the interactions were iterated. The

tournament was between a variety of strategies that allowed for defection and cooperation

(like in the one-off prisoner’s dilemma), but with the added capacity of remembering

previous interactions. Out of all the strategies, the one that prevailed was ‘TIT FOR

TAT’: a strategy with memory of only the previous interaction, that always starts with

cooperation and afterwards simply copies the other player’s last move.

Now cooperation is not only possible, but also robust and stable. A key concept that

enables cooperation to arise from the interactions of decision-makers that seek to optimise

their personal gains is that of reciprocity –now possible because of the game being

iterated and the players having memory.

3.2.3 Stability

In the prisoner’s dilemma, mutually defection is not only the expected rational outcome

of the game, but is also an equilibrium point.

The outcomes of each strategy (defect or cooperate) for a prisoner are the following: if

you are prisoner 1, you may either defect of cooperate. In the first case, if prisoner 2 has

also defected you will receive two years in prison, while if she has cooperated you only

receive one. In the second case, if prisoner 2 has also cooperated you walk free, but if she

has defected you receive three years in prison.

So in both cases the best strategy for prisoner 1 is to defect, as regardless of what prisoner

2 is employing it will lead to a better payoff compared to cooperating. The same is the

case for prisoner 2, making mutual defection the expected outcome since no player can

achieve a better payoff by changing strategy. The case where no player can expect to gain

more by employing a different strategy is called a Nash equilibrium.

3.3 Evolutionary Game Theory

Evolution is the change of characteristics of a population over time (measured in gen-

erations). It relies on selection and replication and is driven by the adaptation of the

population in its environment [Darwin, 1964].

Evolutionary Game Theory involves applying some principles from Game Theory to eco-

logical scenarios (involving animals instead of rational agents). The (theoretical) animals

play evolutionary games through the framework of either pairwise interactions, or interac-

tions between one individual and the rest of the population [Smith, 1984]. The individuals

have certain behaviours or strategies that have a certain fitness; in this context behaviour

is defined as possible options for what action one can take, while a strategy is a behavioural

programme, or in other words series of actions which in the simplest case can simply be

one behaviour.
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Unlike traditional Game Theory, who deals with the dynamic between two agents, Evolu-

tionary Game Theory however deals with the entire population of interacting animals, and

explores the spread of the strategies within this population [Hofbauer and Sigmund, 2003].

Individuals with higher fitness reproduce more than those with lower fitness, leading the

next generation to have a higher proportion of individuals with the ‘successful’ traits. For

simplicity, asexual reproduction is often assumed; this will also be the case here. When

considering the interactions between different strategies within a population, one impor-

tant question to address is their evolution as they compete with each-other. Assuming

that each strategy has a certain fitness at any moment, this fitness will determine how it

will be employed in the future [Taylor and Jonker, 1978].

3.3.1 Frequency-dependent Selection

Fitness within a population is not constant, but frequency dependent [Nowak, 2019].

Imagine two strategies A and B, with respective frequencies xA and xB and composition

of the population denoted by vector −→x = (xA, xB), while the fitnesses are denoted by

fA(
−→x ), fB(

−→x ).

Then the average fitness is: ϕ = xAfA + xBfB, and the selection dynamics are:

ẋA = xA[fA(
−→x − ϕ)]

ẋB = xB[fB(
−→x − ϕ)]

(3.4)

Since xA + xB = 1 we can write xA = x, xB = 1− x and hence:

ẋ = x(1− x)[fA(x)− fB(x)] (3.5)

That way, finding the equilibria for this differential equation is straightforward as, by

setting ẋ = 0 we obtain that:

• x = 0

• x = 1

• x ∈ (0, 1) such that fA(x) = fB(x)

with the stability of these equilibria depending on fA(x), fB(x) [Nowak, 2019].

3.3.2 Replicator Dynamics

Replicator dynamics describe how the frequencies of strategies in a population change over

time based on their relative fitness or payoffs [Hofbauer and Sigmund, 2003].

Consider a population of n strategies, with xi being the frequency of strategy i and xj

that of strategy j; the payoff for strategy i when interacting with strategy j is given by
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aij . Let xi denote the frequency of i – the expected payoff of i is then given by:

fi =
n∑

j=1

xjaij (3.6)

and the average payoff by:

ϕ =
n∑

i=1

xifi (3.7)

By equating the payoff with fitness as above, the selection dynamics are in this case:

ẋi = xi(fj − ϕ), i = 1, 2, ..., N (3.8)

which is frequency dependent [Nowak, 2019].

3.3.3 Evolutionary Stable Strategy

An Evolutionary Stable Strategy (ESS) follows in parts from the concept of stability in tra-

ditional Game Theory, and in parts from the work of MacArthur and Hamilton [Hamilton,

1964]. Originally developed to analyse the evolution of phenotypes through pair-wise con-

tests, it later also provided a framework for analysing the competition between individuals

and the whole population [Smith, 1984].

It refers to a strategy that can be employed by a population, which cannot be invaded

by a rare mutant adopting a different strategy [Smith and Price, 1973; Smith and Parker,

1976; Parker, 1978]. An ESS is not the only stable equilibrium that can be reached [Taylor

and Jonker, 1978], it is however the most relevant to this Thesis.

Pairwise Invadability Plots

Pairwise invadability plots are plots analysing the dynamics between a population dom-

inated by one strategy, and a mutant using a different strategy. It considers a range of

cases of between the population and the mutant using the two strategies, and plots their

fitness in the same plot showing whether (and when) the mutant can successfully invade

the population’s strategy [Geritz et al., 1998].

Pairwise invadability plots provide a good tool for exploring the invasion dynamics includ-

ing equilibrium points, however they are subject to certain specific assumptions: reproduc-

tion is asexual, the offsprings’ strategies are identical to that of the parents, mutations are

infrequent so that populations can stabilise before a new mutation occurs and strategies

are protected against extinction.
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3.3.4 Two-player Games

Two-player games in Evolutionary Game Theory follow the traditional Game Theory

approach of pairwise interactions: two players, A and B interact and depending on their

strategies and of the order of the interaction (whether player 1 or player 2 goes first) they

get a payoff as such: if player A meets A they both get a, if B meets B they both get

d, if A meets B then A gets b and B gets c; this is described in a payoff matrix as such

[Nowak, 2019]:

Player 2

A B

Player 1 A a b

B c d

Evolutionary Game Theory assumes a population of A and B that randomly interact, and

equates fitness with the payoffs they accumulate from these interactions. Denote as xA

the frequency of A and xB the frequency of B; these now determine the probability of

interacting with an individual using this strategy. The expected payoffs for each strategy

are:
fA = axA + bxB

fB = cxA + dxB
(3.9)

We can set x = xA and 1− x = xB in order to work with a single variable. The selection

dynamics are:

ẋ = x(1− x)[(a− b− c+ d)x+ b− d] (3.10)

There are five possibilities for the selection dynamics:

• A dominates B: this happens for a > c and b > d in other words it pays more to

play A.

• B dominates A: this happens for a < c and b < d in other words it pays more to

play B.

• A and B are bistable: this happens for a > c and b < d and is the case where each

strategy is the best response to itself.

• A and B coexist stably: this happens for a < c and b > d and is the case where each

strategy out-competes the other one.

• A and B are neutral: this happens for a = c and b = d and is the case where each

strategy has the exact same payoff.
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3.3.5 Games in Infinite Populations

Evolutionary Game Theory also uses games to describe pairwise interactions but instead of

assuming rational agents, it assumes frequency dependant organisms that evolve according

to their payoff matrices.

A population of players with fixed strategies interact in a game. After each encounter

they receive a payoff, which contributes to their fitness. Strategies that do well reproduce

faster, and strategies that do not get out-competed.

Imagine two strategies, A and B. Denote xA the frequency of A and xB the frequency

of B. Also denote fA(
−→x ) the fitness of A and fB(

−→x ) the fitness of B. The selection

dynamics are then described as such:

ẋA = xA[fA(
−→x )− ϕ]

ẋB = xB[fB(
−→x )− ϕ]

(3.11)

where ϕ = xAfA(
−→x ) + xBfB(

−→x ) the average fitness.

Since there are only two types of strategies in the population, xA + xB = 1 and we can

write xA = x, xB = 1 − x in order to work with one variable. In that case the fitness of

A,B respectively is denoted as fA(x), fB(x) and the selection dynamics reduce to:

ẋ = x(1− x)[fA(x)− fB(x)] (3.12)

The differential Equation 3.12 has several equilibrium points corresponding to frequencies

of A for which the dynamics between A and B reach a stable point that remains constant

throughout the selection process. These equilibrium points occur at ẋ = 0; an equilibrium

point ẋ = 0 is not necessarily stable [Nowak, 2019].

Evolutionary Stable Strategy

Imagine a population of A players and a single B mutant where the selection dynamics

are as in 3.10. In that case, the question of interest is when can strategy A be stable

from strategy B – or in other other, when can A not be out-competed by B. When this

happens, then strategy A is an Evolutionary Stable Strategy (ESS).

The above will be the case if the fitness of A is greater than the fitness of B. For an

infinitesimally small fraction of individuals using strategy B, assume that xB = ϵ and

xA = 1− ϵ. Then the fitness of A is greater than that of B if:

a(1− ϵ) + bϵ > c(1− ϵ) + de

⇒ a > c
(3.13)

In the case where a = c, then the fitness of A is greater than that of B when b > d. So
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selection will oppose invasion either when a > c, or when a = c but b > d.

For the case of more than two strategies interacting, we again imagine pairwise interactions

between them at a time. Let Si, Sj be two strategies and E(Si, Sj) be the payoff that

strategy Si receives when playing against strategy Sj [Nowak, 2019]. There are five ways

these interact:

1. E(Sk, Sk) > E(Si, Sk)∀i ̸= k; in this case Sk is a strict Nash equilibrium.

2. E(Sk, Sk) ≥ E(Si, Sk)∀i; in this case Sk is a Nash equilibrium.

3. E(Sk, Sk) > E(Si, Sk)

or

E(Sk, Sk) = E(Si, Sk) and E(Sk, Si) > E(Si, Si)∀i ̸= k; in this case Sk is an ESS.

4. E(Sk, Sk) > E(Si, Sk)

or

E(Sk, Sk) > E(Si, Sk) and E(Sk, Si) ≥ E(Si, Si)∀i ̸= k; in this case Sk is a weak

ESS (i.e. it is stable against invasion).

5. E(Sk, Sk) = E(Si, Sk) and E(Sk, Si) > E(Si, Si)∀i ̸= k; in this case Sk is an unbeat-

able strategy.

3.3.6 Games in Finite Populations

In finite size groups stochasticity has a non-negligible impact on the dynamics. For this

reason, unlike infinite sized groups that are modelled using differential equations, stochas-

tic equations are more appropriate to model groups of finite size [Nowak, 2019].

In groups of finite size, what contributes to the outcome of a game is frequency dependence

and drift. The intensity of selection is also important as it determines the effect (weak or

strong) that the outcome of a game will have on fitness.

In finite games the conditions for evolutionary stability are different compared to those

for infinite groups due to the effect of stochasticity that is now present – and important.

Consider again the game with the following payoff matrix:

Player 2

A B

Player 1 A a b

B c d

for a population of size N . There are i individuals using strategy A and N − i individuals

using strategy B. Each individual can interact with N−1 others: for each individual using

strategy A there are other i − 1 others using the same strategy, and for every individual

using strategy B there are N − i− 1 others using the same strategy.
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So an individual using strategy A interacts with another individual using the same strategy

with probability (i− 1)/(N − 1) and with an individual using strategy B with probability

(N−i)/(N−1). Similarly, an individual using strategy B interacts with another individual

using the same strategy with probability (N − i−1)/(N −1) and with an individual using

strategy A with probability i/(N − 1). Hence the payoffs for A and B respectively are:

Fi =
a(i− 1) + b(N − i)

N − 1

Gi =
ci+ d(N − i− 1)

N − 1

(3.14)

The expected payoff will contribute to fitness with intensity w, where 0 ≤ w ≤ 1; for

w = 0 the payoff will not contribute to fitness and for w = 1 the payoff will determine

fitness completely, while for w → 0 is the case of weak selection. The expected fitness

taking into account the intensity w are:

fi = 1− w + wFi

gi = 1− w + wGi

(3.15)

Consider a Moran process (a discrete-time stochastic process describing the evolution of

two phenotypes in a population of constant size, described in more detail in subsection

3.5.1) between A and B with i individuals using strategy A. The transition probability of

reaching state i+ 1 in one step after i is:

pi,i+1 =
ifi

ifi + (N − i)gi

N − i

N
(3.16)

and the transition probability of reaching state i− 1 in one step after i is:

pi,i−1 =
(N − i)gi

ifi + (N − i)gi

i

N
(3.17)

while the transition probability of reaching state i in one step after i is simply 1− pi,i−1−
pi,i+1. In the absorbing states i = 0 and i = N we have p0,0 = 1 and pN,N = 1. So any

group at state i = 0 or state i = N will remain there, while a group at any state 0 < i < N

will eventually reach one of the two absorbing states.

So now we ask what are the fixation probabilities of strategies A and B. Let the ratio

pi,i−1/pi,i+1 = gi/fi. Using equations from the Moran process the fixation probability for

A is:

ρA =
1

1 +
∑N−1

k=1

∏k
i=1

gi
fi

(3.18)

30



3.3 Evolutionary Game Theory

and the ratio of the fixation probabilities is:

ρA
ρB

=

N−1∏
i=1

gi
fi

(3.19)

At the limit of weak selection w → 0 the fixation probability of A becomes:

ρA ≃ 1

N

1

a− (αN − βw
6 )

(3.20)

where α = a+ 2b− c− 2d and β = 2a+ b+ c− 4d.

Selection favours the fixation of A for ρA > 1/N , or equivalently αN > β. This can be

written as:

a(N − 2) + b(2N − 1) > c(N + 1) + d(2N − 4) (3.21)

Since we are in the case of finite size, the population size is important for the selection

dynamics. For a group of two agents, we get:

N = 2 ⇒ b > c (3.22)

This is the case where the individual using strategy A has payoff b and the one using

strategy B has payoff c, hence for b > c the one using strategy A is more likely to fixate.

For a larger population size we have:

a+ 2b > c+ 2d (3.23)

Consider the game where A and B are both the best replies to themselves, i.e. a >

c and b < d. At the limit of a large population size, if the frequency of A is high then

A has a larger fitness than B (and vice versa). The equilibrium point is when the two

strategies have equal fitness, Fi = Gi. For large N this results in the equilibrium point:

x =
d− b

a− b− c+ d
(3.24)

which denotes the unstable equilibrium between A and B. This leads to the inequality

x < 1/3: it occurs in a large population N at the weak selection limit w → 0 and it leads

to the probability that a mutant A takes over the population being over 1/N .

Now in the case that A dominates B we have a > c and b > d. In this case the inequality

always holds as x < 0: then the fixation of A will be favoured by selection. Yet for

b < c strategy B may still be favoured in a small population; in this case we define Nc:

for N < Nc selection favours the dominated strategy B, otherwise it favours dominating

strategy A.
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Evolutionary Stability

For finite populations of size N , a strategy B is an ESS if:

• selection opposes strategy A opposing strategy B (a single mutant A will have a

lower fitness from the fitness of strategy B)

• selection opposes strategy A replacing strategy B (ρA < 1/N∀w > 0)

These conditions are respectively:

b(N − 1) < c+ d(N − 2)

a(N − 2) + b(2N − 1) < c(N + 1) + d(2N − 4)
(3.25)

For N = 2 both conditions reduce to b < c. For larger N they lead to b < d and

x > 1/3 respectively. For small populations the traditional ESS concept is not necessary

or sufficient; for large populations it is necessary but not sufficient.

3.4 Stochastic Processes

Stochastic (or probabilistic) processes refer to mathematical objects defined on the prob-

abilistic space and evolve over time [Bertsekas and Tsitsiklis, 2008] i.e. processes with

inherent uncertainty, such as the outcome of a die roll or the chances of it raining tomor-

row. For these, we cannot know for sure what the outcome will be; for example, in the

case of a fair die roll we cannot know whether we will roll a 2 or a 5, but we know what

the possible outcomes are and can specify or estimate the probability of each outcome

occurring (for example, 1
6 in the case of rolling a fair die).

If a stochastic process also satisfies the Markov property, then it’s a Markov process

[Norris, 1998; Bertsekas and Tsitsiklis, 2008]. Markov property means memorylessness:

the next state of the system only depends on the current state, and any additional infor-

mation would not affect the predictions made. For example, if you have been gambling for

a while and currently have X amount of money, the amount of money you’ll be left with

after your current bet only depends on how much you have now – not how much you came

into the game with, or how much you won or lost in the previous rounds. Both a player

that initially had 1000 and a player that initially had 10, will have the same probability

of winning or losing if they currently each have 20.

Markov processes are fairly simple, but very versatile models. They can describe cases

ranging from gambling and stock market fluctuations, to chemotaxis. They are also very

powerful, as they can describe the long-term behaviour of a system. The sections below

give an overview of the basic concepts, and of two relevant types of Markov processes for

this project: the two-state Markov Chain and the Random Walk.
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3.4.1 Some Definitions

A stochastic process is defined as a collection of random variables Xt indexed by time:

{X(t) : t ∈ T}. Xt is the random variable representing the value of the process observed

at time t, and T represents the index set (which can be interpreted as time). The random

variables Xt take values in the sample space Ω while the random process X(t) in the state

space S.

Stochastic processes can be defined on discrete or continuous time, depending on the

cardinality of T ; then the have a discrete or continuous state space S respectively. Con-

ventionally, continuous time is indexed by the use of t (Xt) while discrete by the use

of n (Xn) indicating the step. So a collection of discrete random variables can be writ-

ten as X0, X1, X2, ..., while a collection of continuous-time random variables is written as

{Xt}t≥0. This thesis only deals with discrete time.

Take the example of a dice roll; here a stochastic process can be the sum of the dice rolls

X(n) where Xn is the outcome of one dice roll at time n. For a 6-sided fair dice, the

sample space for each Xn is Ω = {1, 2, 3, 4, 5, 6} the state space for the process X(n) is

S = {1, 2, 3, 4, 5, ....}.

3.4.2 Two-state Markov Chains

Markov chains are a collection of discrete-time stochastic processes that have the memory-

less property, i.e. the effect of the past in the future of the process is summarised only by

the current state. Formally, a discrete-time stochastic process X0, X1, X2, ... is a Markov

chain if P(Xn+1 = s|X0, X1, X2, ..., Xn) = P(Xn+1 = s|Xn),∀t ≥ 0,∀s.

A two-state Markov chain is a Markov chain with only two states, say i and j. In its

simplest, easiest form, each state is reachable from itself and from the other state. Take

the following example: i is the event of having a sunny day, and j is the event of having

rain. It’s possible to have a sunny day today and a sunny day tomorrow, or a sunny

day today and a rainy day tomorrow – or all other combinations. So we can transition

from i to i, from j to j, from i to j and from j to i. This example can be formulated as a

Markov chain with the following schematic:

i jpii

pij

pjj

pji

Now it’s clear that there are two states, and two transition probabilities from each state.

The transition probabilities can be summarised in a transition probability matrix. If the

transition probabilities pij : probability of going from state i to state j in one step and the

initial probability vector X0 are known, the Markov chain is fully defined, to the extent

that we can use this information to make predictions about the future.
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For the example shown above, the transition matrix A will be:

A =

[
pii pij

pji pjj

]
(3.26)

Each element of A tells us what is the probability of going from i to j in the next step: so

the probability of going from i to j in n steps is the pijth element of An. So the probability

of starting at state i, and being in j in 7 steps is given by the element at row i and column

j of the matrix A7.

Using the transition matrix, we can also compute the long-term probabilities of finding

the system in one of two states, i.e. the probability of being at either of the two states, if

we look at the Markov Chain in the very far future (for n: large).

3.4.3 Random Walks

Consider the integer line Z, and the following process: we’re originally at 0, and at each

time step n we go up by one (+1) with probability p, and down by one (-1) with probability

q = 1− p.

This process is known as a Random Walk and is formally defined as a stochastic process

Xn with discrete time n = 0, 1, 2, 3, ... = Z+ and discrete state space S = Z. At the origin
0: X0 = 0, and then for n ≥ 0:

Xn =

Xn + 1 with probability p

Xn − 1 with probability q
(3.27)

In its general form, a Random Walk can also be written as follows:

Xn = X0 +

n∑
i=1

Zi (3.28)

where X0 = 0, and Zi are independent random variables with P (Zi = 1) = p, P (Zi =

−1) = q.

The formalisation of Equation 3.28 is more general, as the state space can be other than

S = Z. Furthermore, we can use this structure to calculate the expectation and variance

of a Random Walk.

E(Xn) = E(X0 +

n∑
i=1

Zi)

= E(X0) +

n∑
i=1

E(Zi)

= E(X0) + nE(Z1)

(3.29)

34



3.4 Stochastic Processes

For a Random Walk with origin X0 = 0 ⇒ E(X0) = 0. In that case:

E(Z1) =
∑
z∈Z

zP(Z1 = z) = 1p+ (−1)q = p− q ⇒ E(Xn) = n(p− q) (3.30)

V ar(Xn) = V ar(X0 +

n∑
i=1

Zi))

= V ar(X0) +

n∑
i=1

V ar(Zi)

= V ar(X0) + nV ar(Z1)

(3.31)

For a Random Walk with origin X0 = 0 ⇒ V ar(X0) = 0.

3.4.4 Exact Distribution of the Random Walk

Let Yn be the number of upwards steps over the first n steps of the process. Then Yn ∼
Bin(n, p) follows a Binomial distribution with parameters n, p.

We know that the Binomial distribution has probability:

P(Yn = k) =

(
n

k

)
pkqn−k (3.32)

for k = 0, 1, 2, ..., n, and
(
n
k

)
the Binomial coefficient.

If Yn = k, it means that the process has taken k steps upwards and n−k steps downwards,

so now the process is at position k−(n−k) = 2k−n. For example, say we’re at Y5 = 3: this

denotes that we have taken 3 upwards steps over the first 5 steps. So we have taken Y5 = 3

upwards steps, n− k = 5− 3 downwards steps, and are at position 2k− n = 2 ∗ 3− 5 = 1.

Since we know the exact distribution, we know the exact probability of being in position

2k − n:

P(Xn = 2k − n) = P(Yn = k) =

(
n

k

)
pkqn−k (3.33)

which in this example is P(Y5 = 3) =
(
5
3

)
p3q2.

Note that for a Random Walk starting at X0 = 0, after an odd number of steps we are

at an odd-numbered state, while for an even number of steps we are at an even-numbered

state.

This means that, if the process returns to the origin 0, this can only happen for an even

number of steps. For example, it may follow the path ‘+1, +1, -1, +1, -1, -1’ but not the

path ‘+1, +1, -1, +1, -1’.
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3.4.5 Recurrence & Transience

A state i is called recurrent if the probability of ever returning to it after having already

having visited once, is equal to one. Alternatively, if this probability is smaller than 1

then the state is called transient.

Let (Xn) be a Markov Chain on the state space S. For i ∈ S, let mi be the return

probability to state i:

mi = P(Xn = i for some n ≥ 1|X0 = i) (3.34)

Then if mi = 1 the state i is recurrent: if mi < 1 state i is transient.

When starting at state i, the expected number of times that we will visit i again is given

by:

E(# visits to i|X0 = i) =
∞∑
n=0

P(Xn = i|X0 = i) =
∞∑
n=0

pii(n) (3.35)

where pii(n) denotes the probability of returning to state i after n steps, after starting at

state i. For a Markov Chain with transition matrix P:

• If
∑∞

n=0 pii(n) = ∞ then state i is recurrent

• If
∑∞

n=0 pii(n) < ∞ then state i is transient

Suppose state i is recurrent – i.e. when starting at this state it is the case that mi = 1.

After we return to i once it will be as if the chain restarts at this state again, due to

the Markov property of memorylessness. Imagine that the process returns to the state i

infinite times, with mi each time. Since the number of returns to i is infinite, the expected

number of times that i will be visited again is
∑∞

n=0 pii(n) = ∞.

Suppose now that i is transient – i.e. when starting at this state it is the case that mi < 1.

If we assume that the process returns to i exactly r times, then each of those r times this

has happened with a probability mi. while the first time it does not return this happened

with a probability 1−mi. So the probability of returning to state i exactly r times is:

P(# returns to i = r) = mi
r(1−mi) (3.36)

This follows a geometric distribution Geom(1−mi). For Geom(p): a Geometric distribu-

tion with parameter p we know that the expectation is E = (1 − p)/p, hence in this case
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the expectation will be:

E(#returns to i) =

=
∞∑
n=0

pii(n)

=
1− (1−mi)

1−mi

=
mi

1−mi

(3.37)

and given that mi < 1 by definition, the expectation is finite.

Recurrence & Transience of a Simple Random Walk

Whether a random walk is recurrent or transient depends on whether it’s symmetric or

biased. A symmetric random walk has p = q = 1/2 meaning that mi = 1, and then:

∞∑
n=0

p00(n) =
mi

1−mi
= ∞ (3.38)

meaning that it is recurrent. On the other hand for a symmetric random walk with

p ̸= q ̸= 1/2 we have that mi < 1 and hence it is transient.

The above can also be deduced by considering the fact that a simple Random Walk can

only return to a starting point for an even number of steps. So for pn00: the probability of

returning to 0 after having started at 0 after n steps we equivalently have p2n+1
00 = 0 ∀n,

while p2n00 =
(
2n
n

)
pnqn (since any given sequence of steps of length 2n occurs with probability

pnqn and happens after the process has gone up by n steps, and down by n steps) [Norris,

1998].

To talk about recurrence and transience we need to find what the sum
∑∞

n=0 p00(n) is

equal to. By Stirling’s formula, n!∼
√
2πn(n/e)n as n → ∞. Then we can say [Norris,

1998]:

p2n00 (n) =

(
2n

n

)
pnqn =

(2n! )

(n! )2
(pq)n ∼ (4pq)n√

2πn/2
(3.39)

For a symmetric Random Walk p = q = 1/2. In this case 4pq = 1 and
∑∞

n=0 p
2n
00 (n) =

1
2
√
2π

∑∞
n=0

1√
n
= +∞. So for p = q the Random Walk is recurrent. On the other hand, for

a biased Random Walk p ̸= q ⇒ 4pq < 1. In that case
∑∞

n=0 p
2n
00 (n) =

1
2
√
2π

∑∞
t=0(4pq)

n <

+∞. So for p ̸= q the Random Walk is transient.

3.5 Stochastic Models for Finite Groups

Evolutionary Game Theory provides a framework that describes evolutionary processes

approaching them as deterministic processes [Hofbauer and Sigmund, 2003]. This is ap-

plicable to infinite and finite populations; however, finite groups specifically can also be

modelled using stochastic models as stochasticity is an important factor [Nowak, 2019].
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3.5.1 The Moran Process

Assume a population of constant size N and two types of individuals (type A and type

B) that reproduce at the same rate: at every step, one individual is randomly chosen for

reproduction and one for death ensuring that the population remains of constant size.

The evolution of the two types within the population can be described by a discrete-time

stochastic process; since the population size is constant, it is enough to track one of the

types (say A) since the other one can be easily deduced by deducting the number of

individuals of type A from the total population size N . Let X(n) define the evolution of

the number of type A individuals within the population, and Xn be the number of type

A individuals at time n. Each time-step n in the parameter space T corresponds to a

birth-death event, while the state space S = (1, 2, ..., N) for N : the population size. This

process is called a Moran process [Nowak, 2019].

For a population of size N with i individuals of type A, there are N − i individuals of

type B. In such a case there is a probability of i/N of choosing an individual of type A

and a probability of (N − i)/N of choosing an individual of type B. According to the

reproduction process, there are four possibilities for the next step:

1. An individual of type A is chosen for both reproduction and death. This happens

with a probability of (i/N)2, and as a result Xn+1 = Xn i.e. at the next step is the

same as in the current one.

2. An individual of type B is chosen for both reproduction and death. This happens

with a probability of ((N − i)/N)2, and as a result Xn+1 = Xn.

3. An individual of type A is chosen for reproduction and an individual of type B is

chosen for death. This happens with a probability of (i(N − i)/N2), and as a result

the variable Xn+1 = i+ 1.

4. An individual of type B is chosen for reproduction and an individual of type A is

chosen for death. This happens with a probability of (i(N − i)/N2), and as a result

Xn+1 = i− 1.

In general, by describing the state of the system by the variable Xn = i, the probabilities

of moving from state i to a new state Xn+1 = j (where j is either i+1 or i− 1) are given

by a tridiagonal (N + 1) by (N + 1) transition matrix P with entries:

pi,i−1 =
i(N − i)

N2

pi,i = 1− pi,i−1 − pi,i+1

pi,i+1 =
i(N − i)

N2

(3.40)

and all other entries equal to zero. Moreover, assume that once the population has been
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left with only one type of individual, it has reached an absorbing state:

p0,0 = 1, p0,1 = 0∀i > 0

pN,N = 1, pN,i = 0∀i < N
(3.41)

This means that once only individuals of either type A or type B are left, there is no

probability that at the next step an individual of the other type will be present. All other

states 0 < i < N are transient, meaning that the process remains in them for a limited

amount of time and over-time eventually reaches one of the two absorbing states of only

individuals of type A or only individuals of type B – where it remains forever.

The question to ask then at this point is: for a population starting with i individuals of

type A, what is the probability that eventually only individuals of type A are left (in other

words, that the process has reached the absorbing state N)?

To answer this, let xi: the probability of ending up in state N when starting at state i. In

the case that i = 0, the process is already in the absorbing state where only individuals of

type B exist, from which the state N is unreachable – hence x0 = 0; on the other hand,

in the case that N , the process is already in the absorbing state where only individuals

of type A exist, which is the state we are interested in reaching – hence xN = 1. For all

other states 0 < i < N , the process can reach state N in three different ways:

• The next step will lead to state i−1; from there, the process will reach state N with

probability xi−1.

• The next step will lead to state i; from there, the process will reach state N with

probability xi.

• The next step will lead to state i+1; from there, the process will reach state N with

probability xi+1.

So a population of originally i individuals of type A, will reach state i = N according to

the following recursive process:

x0 = 0

xi = pi,i−1xi−1 + pi,ixi + pi,i+1xi+1

xN = 1

(3.42)

3.5.2 General Birth-Death Processes with Neutral Drift

The Moran process is a special case of a birth-death process. A birth-death process is a

1-dimensional stochastic process on discrete state space S = {0, 1, ..., N}. In each event,

the random variable xi can either increase or decrease by 1.

Imagine again a population of fixed size N , with i individuals of type A and N − i

individuals of type B, with equal reproduction rates for A and B.
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Let αi be the probability of transitioning from state i to state i + 1 in one step, and

let βi be the probability transitioning from state i to state i − 1 in one step; note that

αi + βi ≤ 1 (accounting for the possibility of transition from i to i, which occurs with

probability 1− αi − βi) [Nowak, 2019].

Consider again a process with two absorbing states, i = 0 and i = N , and consequently

α0 = 0, βN = 0. Similarly to the Moran process described above, the probability of ending

up at state N when starting at state i is given by the recursive relation:

x0 = 0

xi = βixi−1 + (1− αi − βi)xi + αixi+1

xN = 1

(3.43)

Consider now the variable yi = xi − xi−1, 0 < i < N and let γi =
βi

αi
. Applying these to

the recursion 3.43 this becomes:

xi = βixi−1 + (1− αi − βi)xi + αixi+1

⇒ yi+1 = γiyi
(3.44)

And from 3.44 we get:

y1 = x1

y2 = γ1y1 = γ1x1

y3 = γ2y2 = γ2γ1x1

.

.

.

(3.45)

where
∑N−1

j=1 yi = 1. and by summing all of the yi terms:

x1 =
1

1 +
∑N−1

j=1

∏j
k=1 γk

(3.46)

and by using xi = x1(1 +
∑i−1

j=1

∏j
k=1 γk):

xi =
1 +

∑i−1
j=1

∏j
k=1 γk

1 +
∑N−1

j=1

∏j
k=1 γk

(3.47)

We can now talk about fixation probabilities, in other words about the probability that

a single type A individual can take over a homogeneous population of type B individuals

(or vice versa).

Let ρA be the fixation probability of a type A individual in a population of type B
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individuals, and let ρB be the fixation probability of a type B individual in a population

of type A individuals. Then ρA = x1 and ρB = 1− xN−1; hence it is the case that:

ρA =
1

1 +
∑N−1

j=1

∏j
k=1 γk

(3.48)

ρB =

∏N−1
k=1 γk

1 +
∑N−1

j=1

∏j
k=1 γk

(3.49)

The ratio of the fixation probabilities is ρB
ρA

=
∏N−1

k=1 γk. If
ρB
ρA

> 1 it is likely that type B

will be fixed over time, while in the case where ρB
ρA

< 1, type A will be fixed over time.

3.5.3 General Birth-Death Processes with Random Drift

In the previous subsection the assumption was that the two types, A,B reproduced at the

same rate – a case described as neutral drift. When the two types reproduce at different

rates, it is known as a case with random drift.

Assume that type A has fitness r and type B has fitness 1. Three cases are possible:

• r = 1: selection does not favour one type over the other neutral drift

• r > 1: selection favours type A

• r < 1: selection favours type B

This fitness difference can be incorporated in the birth-death process by implementing

different probabilities of choosing types A and B for reproduction. Let now the probability

of choosing an individual of type A for reproduction be ri/(ri+N−i) and the probability of

choosing an individual of type B for reproduction be (N−i)/(ri+N−i). The probabilities

that they will be chosen for elimination are equal as before, that is i/N for an individual

of type A and (N − i)/N for an individual of type B.

Now the transition matrix for the case of random drift is:

pi,i−1 =
N − i

ri+N − i

i

N

pi,i = 1− pi,i−1 − pi,i+1

pi,i+1 =
ri

ri+N − i

N − i

N

(3.50)

The proportion parameter is now:

γi =
pi,i−1

pi,i+1
=

1

r
(3.51)
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and the absorption probability in state N is now given by:

xi =
1− 1/ri

1− 1/rN
(3.52)

So finally the fixation probabilities are:

ρA = x1 =
1− 1/r

1− 1/rN

ρB = 1− xN =
1− r

1− rN

(3.53)

The ratio of fixation probabilities is ρB
ρA

= r1−N and in the case of an advantageous mutant

A (r > 1) and N >> 1 this is approximated by ρA = 1− 1/r [Nowak, 2019].

3.6 Discussion

This chapter provided a summary of mathematical concepts and frameworks that are

relevant to this thesis. It presented and provided definitions and some necessary derivations

on stochastic processes, since these are necessary for understanding Chapter 6. It also

briefly defined Bayesian updating, which is relevant to the model presented in Chapter 4

and used as a basis for the analyses shown in Chapters 5, 7 and 8. Lastly, it summarised

Evolutionary Game Theory for groups of both finite and infinite size; while this framework

is not explicitly used in this work, concepts tied to it are referred to throughout (such as

the definitions of an evolutionary stable behaviour), while it is argued in Chapter 9 that

it can be used to conduct a supplementary analysis as part of future work stemming from

this thesis.
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Chapter 4

Model of Sequential

Decision-making

Animals need to decide between distinct options, often in groups. The number of options

may vary but in the simplest case there are only two available ones to choose from. This

setting has been widely employed in works investigating social decision-making [Pérez-

Escudero and de Polavieja, 2011; Arganda et al., 2012; Mann, 2018; Sigalou and Mann,

2023]. While the simplicity of a binary decision is an obvious advantage, recent research

implies that it is reasonable as it is proposing that even when presented with multiple

options, a multi-choice decision is broken into a series of binary ones [Sridhar et al., 2021].

This chapter provided a methodological introduction, necessary for the following four

chapters. It initially describes the model of sequential decision-making as it appears in

Pérez-Escudero and de Polavieja, 2011, by repeating the derivation found in that publica-

tion for the general case and by showing two of the versions that will also be considered

here. It then builds upon this model by introducing two alternative variations for the

model (including showing the derivation of one of them), introducing a metric for measur-

ing the collective outcome and by commenting on the concept of sociality – a key concept

throughout this project. Note that while Pérez-Escudero and de Polavieja, 2011 denote

the available options as X and Y , B and A is used here instead as this notation has been

preferred in more recent literature, such as in Mann, 2018, 2020; Sigalou and Mann, 2023.

The setting is the following: a group of agents is queuing in a crossroad. The agents

sequentially choose between the two available options. The first agent makes a decision

independently, having only the environmental information at hand; all following agents

additionally have social information, i.e. what the previous agents chose (Figure (4.1)).
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Figure 4.1: Setting: a group of agents performing a sequential decision for a binary choice.
The agents have to choose between the options A and B and I assume that A is the best
option out of the two. To make her decision, each focal agent observes the environment
which has a level of uncertainty (denoted by a), as well as the choices of the previous
agents.

Each agent decides individually. After all agents in the group have made their respective

individual decisions, the group has a collective outcome. This chapter introduces the

individual decision-making model (), and explains how the collective outcome is defined

and measured. It also introduces the concept of decision-making strategies and sociality

and their effect in the outcome of decision-making.

4.1 Existing Work

This section outlines the individual sequential decision-making process as it appears in

Pérez-Escudero and de Polavieja, 2011: it starts by defining the problem, showing the

derivation of the generalised version of the rule, and presenting two of the versions that

are considered later in the thesis.

4.1.1 Individual Decision-making

The problem is as such: assume a setting where the available options are A and B, where

A is the best option out of the two. The decision is performed according to a probabilistic
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rule, which in its generalised form is as follows:

PA =
1

1 + aS
(4.1)

where PA is the probability to choose option A when that is the best option [Pérez-

Escudero and de Polavieja, 2011]. In this model a is defined as the non-social parameter

as it depends only on the non-social information while S depends on the actions of other

individuals; in other words, a describes the uncertainty of the environment and S describes

the level of the agents’ sociality.

4.1.2 Derivation of the Generalised Decision Model

Equation 4.1 is a version of the Bayesian estimation model as developed by Pérez-Escudero

and de Polavieja, 2011. The model refers to the above-mentioned setting, and considers

each individual making a Bayesian estimation of the probability that each option is the

best choice.

Each individual estimates the probability that each choice is the best one based on its

non-social information C, and the behaviour of the other individuals I, in order to decide

what behaviour to perform.

Let A,B be the two available options the individuals choose from; then, the probability of

A being the best one is P (A|C, I), and the probability that B is the best one is P (B|C, I) =
1− P (A|C, I). By using Bayes’ theorem, P (A|C, I) is given by:

P (A|C, I) = P (I|A,C)P (A|C)

P (I|B,C)P (B|C) + P (I|A,C)P (A|C)
, (4.2)

which can be expressed in the following simplified form:

P (A|C, I) = 1

1 + aS
(4.3)

where:

a =
P (B|C)

P (A|C)
(4.4)

and

S =
P (I|B,C)

P (I|A,C)
(4.5)

In this model a is defined as the non-social parameter as it depends only on the non-

social information C while S depends on the actions of other individuals; in other words,

a describes the uncertainty of the environment and S describes the level of the agents’

sociality.

By definition both parameters are constrained to be a, S > 0. Increased values of a

correspond to increase in uncertainty as this means that P (B|C) is significantly larger
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than P (A|C) according to Equation 4.4, while increase in the value of S corresponds to

increase in social behaviour. More specifically, a = 1 is the case where none of the two

available options are favoured over the other, a < 1 is the case where option B is favoured

over A when A is the best, and a > 1 is the case where option A is favoured over B

when A is the best. Additionally, S = 1 is the case where the focal agent ignores the

available social information, S < 1 is the case where the focal agent avoids the available

social information, and S > 1 is the case where the focal agent follows the available social

information.

Since in this thesis I am considering the social behaviour of decision-making agents, I will

be considering values of a ∈ (0, 1) as this corresponds to cases where P (B|C) ≤ P (A|C)

(i.e. there is some bias in favour of option B, despite option A being the best one), and

S > 1 as this corresponds to the case where the focal agent actively follows the available

social information.

The value of S depends on the amount of social information available to the decision-maker,

which largely depends on how many agents have chosen before the focal; for a fixed value

of a, the value of PA will be different for each agent within the group depending on where

they are in the sequence. The range of S and the meaning of its values depends on the

decision-making strategy, as S takes different forms in each one.

4.1.3 Decision-making Strategies

A decision-making strategy (or rule) refers to the way the available social information is

processed by the agents. The different rules mainly differ in the amount of information

available: here I consider four different rules: the dependencies rules, the aggregated

rule, the majority rule, and the dynamic rule. In terms of the decision model in Equa-

tion 4.1, different decision-making is translated in different definitions and forms of the

parameter S.

Dependencies Rule

The dependencies rule constitutes the fuller version of the Bayesian decision-making rule

in the sequential decision-making setting described in Pérez-Escudero and de Polavieja,

2011 in their supplementary appendices; it describes the case, where the focal agent is

able to observe the full sequence of ordered decisions before her.

All agents have the same a, but the focal agent assumes that all other agents apart from

her share a different value ã. The decision-making rule for the focal agent is:

PA =
1

1 + aS
, (4.6)

where S is defined as the product of all previous decisions, as calculated by the focal
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assuming that others have ã instead of a:

S =
∏ Pbi,B

Pbi,A
(4.7)

where Pbi,B is the probability that agent i chose option B when B was the best option,

and Pbi,A is the probability that agent i chose option B when A was the best option.

The focal agent’s assumption of a different ã means that she assumes others have better

or worst information than her, leading her to relying on social information more or less

respectively. As this is an assumption about others’ personal information a, the range for

ã is ã ∈(0,1). A value of ã < a means that the focal agent assumes that others have better

information than her, while ã > a means that she assumes others have worst information.

Observing the full sequence of decisions also means that now the decisions themselves,

as well as how old or recent they are, affect their influence on the focal agent’s decision-

making: more recent decisions will bare more weight compared to older ones, as they

contain more recent information about the environment while old ones may be outdated.

Aggregate Rule

As demonstrated above Pérez-Escudero and de Polavieja, 2011 showed that in general

S may depend on the full ordered sequence of previous decisions as described in section

4.1.3. However, in the focal analysis a version of the model is presented which makes the

simplifying assumption that all decisions prior to the focal agent are independent. In this

case, P (I|A,C)/P (I|B,C) reduces to:

S =
P (I|B,C)

P (I|A,C)
= snA−nB , (4.8)

where s is a parameter that indicates the relative probability that each agent chooses

correctly (i.e. s = 2 means that the focal agent assumes each previous decision was twice

as likely to be correct as to be wrong), nA is the number of agents that have chosen A and

nB the number of agents that have chosen B. This independence assumption significantly

simplifies the form of the calculation, but at the cost of introducing a false belief to the

focal agent, which necessarily compromises the optimality of the subsequent decision.

4.2 Novel Work

Building on the work of Pérez-Escudero and de Polavieja, 2011, this section presents

the two additional versions of the model that are considered in this thesis (and shows the

derivation for one of them, since the other one is trivial). Then, it introduces the collective

measure that is being introduced and discusses its properties.
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4.2.1 Majority Rule

In this case the focal agent does not observe the aggregate number of previous decisions in

favour of A and B, but instead only observes (or responds to) the direction of the majority

decision. In this case the appropriate decision rule is:

PA =
1

1 + as−sign(∆n)
(4.9)

I term this the majority decision rule, since the social information is a lower-dimensional

simplification of that in Chapter 5.

4.2.2 Dynamic Rule

The final variation of model 4.1 I consider is the one where an agent observes only the

most recent decision before its own. Here the decision rule is given as:

PA =
1

1 + as−d
(4.10)

where d = 1 if the most recent choice was A and d = −1 if it was B. I term this the

dynamic decision rule in line with similar usage by Mann et al., 2014 which investigated

an analogous model empirically in humbug damselfish.

This rule is motivated by the theoretical findings in the supplementary information of

Pérez-Escudero and de Polavieja, 2011 and in Mann, 2018 that more recent decisions

should be weighted more strongly by an agent able to fully account for the correlations in

previous agents’ choices, and by the empirical results of Mann et al., 2014 and Kadak and

Miller, 2020 which point to both humbug damselfish and zebrafish responding primarily

to the most recent choices of conspecifics.

4.2.3 Derivation of the Dynamic Decision Rule

Earlier I showed how the generalised decision-making model of Equation 4.1 is derived by

Pérez-Escudero and de Polavieja, 2011, and how the aggregate and majority rules follow

from it by consider simplifying assumptions. While the dynamic rule is also considered

as another simplified version of the same generalised model, its main assumption (of only

paying attention to the most recent decision) sets it apart from the other two simplifica-

tions. For this reason, in this part the dynamic rule is derived in a way similar to that of

the generalised model.

Consider a system where agents choose between two choices, A and B, where each individ-

ual estimates the probability that each choice is the best one by considering the non-social

information C and the behaviour of other individuals I. If we take option A to be the last

choice, then the probability of choosing A based on the aforementioned information is:

P (A|C, I) (4.11)
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and since there are only two options, it follows that P (B|C, I) = 1− P (A|C, I). By using

Bayes’ theorem, we can write Equation 4.11 as:

P (A|C, I) = P (I|A,C)P (A|C)

P (I|B,C)P (B|C) + P (I|A,C)P (A|C)
(4.12)

Now let:

a =
P (B|C)

P (A|C)
, (4.13)

S =
P (I|B,C)

P (I|A,C)
. (4.14)

By using Equations 4.13 & 4.14, and P (B|C, I) = 1−P (A|I, C), we can express P (A|I, C)

in the simplified form:

P (A|C, I) = 1

1 + aS
(4.15)

By assuming that each behaviour is independent, and that the probability of a set of

behaviours is the product of the probabilities of the individual behaviours, we can write

that probability as such:

P (I|A,C) =
N∏
j=1

P (ij |A,C) (4.16)

And we can now rewrite Equation 4.14 as:

S =

N∏
j=1

P (ij |B,C)

P (ij |A,C)
(4.17)

For bk: different behaviour classes, we assume that there are no differences between agents

performing the same behaviour, i.e. they all share the same P (bk|B,C) and P (bk|A,C).

Now, for each behaviour bk we can set

sk =
P (bk|B,C)

P (bk|A,C)
(4.18)

and for nk individuals performing ik behaviour we have

nk∏
k=1

P (ik|B,C)

P (ik|A,C)
= (

P (ik|B,C)

P (ik|A,C)
)nk (4.19)

49



4. MODEL OF SEQUENTIAL DECISION-MAKING

Now we can write Equation 4.14 as:

S =

L∏
j=1

sk
nk (4.20)

where L are the different behaviour classes.

Finally, Equation 4.15 becomes

P (A|I, C) = (1 + a
L∏

j=1

sk
nk)−1 (4.21)

Assume now that there are two behaviour classes, ‘choosing A when the previous agent

chose A’ and ‘choosing A when the previous agent chose B’. Every focal agent is considered

to be the only one performing this behaviour class at each time, and the two behaviours

are mutually exclusive. So, for the two agents being considered at the time of the focal

agent’s decision (i.e. the focal herself, and the previous agent), n1 and n2 will be either

n1 = 1 & n2 = 0, or n1 = 0 & n2 = 1, depending on the choice of the previous agent.

We now consider identical sensory information P (i1|B,C) = P (i1|A,C), which in turn

leads to s1 = s2
−1 = s, and the decision making rule for the focal agent in this scenario

can finally be expressed as:

P (A|I, C) = (1 + as1
n1s2

n2)−1 =

 (1 + as+1)−1 if previous chose A

(1 + as−1)−1 if previous chose B
(4.22)

4.2.4 Collective Outcomes

Calculating Individual Outcomes

To obtain the precise probability that an agent in a specific part in the sequence will

choose option A, we need to know the history of the process thus far as this probability is

conditional (so that we can know what ∆n is, as well as what the probability is that these

prior decisions were made instead of alternative ones). For example, imagine a process

with a = 0.3 and s = 2 and a group of N = 3 agents; the probability that the third

agent chooses A is different depending on whether the two prior decisions where AA,

AB, BB or BA. Say that BB is observed; then ∆n = nA − nB = 0− 2 = −2 and hence

according to Equation 4.15 the probability of choosing A from this point is P (Choose A) =
1

1+as−∆n = 1
1+0.3∗2−(−2) = 0.930. Note however that this is not the probability of her being

in A, as we also need to take into account the probability of being at that point, i.e.

the probability that the two prior decisions have been BB. The first decision is made

without social information (i.e. ∆n = 0) and the probability of choosing B for that agent

is 1
1+0.3 = 0.769; the second agent chooses B after the first agent has chosen B with a

probability of 1− P (Choose A) and since the prior decision was B and the second agent

observes ∆n = nA−nB = 0−1 = −1 this probability is 1− 1
1+0.3∗2 = 1−0.625 = 0.375. So
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overall the second agent will choose option B after the first chose B with a total probability

of 0.769 ∗ 0.375 = 0.288, and finally the third agent will choose option A after observing

BB with a final probability of 0.288 ∗ 0.930 = 0.267.

Apart from obtaining the above probability, we can also obtain the average probability of

an agent choosing option A for a given place in the sequence. For that, we simply need to

consider all the possible paths –for instance, for the third agent in the above group these

will be AAA, ABA, ABB, BAA, BAB, BBA and BBB– and sum the paths that lead

to A for her (so AAA, ABA, BAA, BBA) since each sequence occurring is independent

of the others meaning that the Total Probability Law can be applied.

Metric of Collective Outcome

When Equation 5.1 is applied sequentially on all group members on a group with N agents,

the group will be divided between the two options and will be in one of N + 1 possible

configurations, corresponding to the number of agents that have chosen A, ranging from

0 to N ; the probability of each possible configuration depends on the values of a and

s. The reasoning behind the collective measure is very similar to calculating the average

probability an agent in place i will choose A. By summing over the final configurations

and their probabilities for a specific set of a and s, I construct a measure for the group’s

collective behaviour, defined as E(nA), that shows the average number of agents that chose

option A:

E(nA) =

N∑
i=1

ipi (4.23)

where i is the number of agents on option A and pi the probability of i agents being on

option A, for agents i = 1, 2, ..., N in the group.

Imagine for example that we want to know the value of E(nA) for a group of N = 3 with

a = 0.3, s = 2. We can calculate all possible trajectories for that group by first calculating

the probabilities that agent i = 0 will choose either option, then the probabilities of agent

i = 1 choosing either option for the two different choices of agent i = 0 e.t.c. When every

agent has made her decision, we will have N +1 different possible outcomes (one for each

case where n = 0, 1, .., N agents have chosen A) whose probabilities we will know, and by

summing the products of each probabilities with the number of agents corresponding to

each we can obtain E(nA).

In the above realisation of the model, the parameters are strictly defined and tied to the

system at hand. While this approach was successful in replicating experimental results, it

isn’t able in its current definition to explain the mechanisms of collective decision-making.
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4.3 Sociality

Social behaviour is a major focal point in this work. The setting being studied is that of

a group of social agents navigating an uncertain environment, and within this context the

term ‘social behaviour’ refers to the use of social information when making a decision, as

a mitigating mechanism to the uncertain environmental information.

The group of agents is assumed to posses a key feature of animal groups: adaptation.

Adaptation means adopting a behaviour that will make their outcomes as best as possible.

In the context of this model (Equation 4.1), that will translate to adapting parameter s,

as parameter a is a fixed property of the environment – and so is ∆n and d (depending

on the strategy) as the focal agent has no control on what has happened previously.

Social behaviour can help with decision-making; especially in cases where personal infor-

mation a is reliable, paying more attention to what others have done can increase the

probability of making the best choice. Yet as all decisions are probabilistic and prone to

mistakes, having a high s value is not optimal. Taken to the infinite limit social behaviour

leads to deterministic following, in similar ways in the three aforementioned strategies.

Let s∆, where s is the social behaviour and ∆ the social information; if ∆ > 0:

lim
s→∞

1

1 + as∆
=

1

∞
= 0 (4.24)

and if ∆ < 0:

lim
s→∞

1

1 + as∆
=

1

1
= 1 (4.25)

This means that the more social an agent is, the less attention is paid to personal/envi-

ronmental information; instead, other agents’ choices are copied. When s → ∞, the value

of a no longer matters; the only thing that matters is whether the previous choices have

biased one side over the other – a trend that is more common for larger values of a, but

still possible for lower ones. So having an unbounded s is problematic as other agents may

make poor choices. We will see later that indeed, both the optimal and evolutionary sta-

ble social behaviours are constrained to allow for personal information to remain relevant.

The necessary constraints on s are discussed in detail in Chapter 5.

For constrained values of s on the other hand, the value of a is impactful on PA. Parameter

a, while fixed, can take several values, but as it describes the bias towards the one option,

it is always a > 0. Moreover, values of a > 1 will not be considered here, as a value

between 0 < a < 1 are the ones that make sense given the context and its definition.

The effect of a and s is more widely demonstrated in Figure 4.2. This shows the value of

PA for different combinations of these parameters; three distinct cases are visible:

1. s < 1: the agents actively avoid social information

2. s > 1 & a < 1: the agents follow reliable information
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3. s > 1 & a > 1: the agents follow unreliable information

In case (1) the agents actively ignore the available social information. Case (2) is the case

where they follow reliable information – here, we see the observation mentioned previously:

up until a point, being more social in the presence of that information increases the prob-

ability of making the best decision, but that after a point an increase in social behaviour

decreases that probability. Case (3) is the case where unreliable social information is being

followed – in that case, in principle, the stronger the information is followed, the lower the

probability of making the best decision – but like in case (2), there exists a point when

being over-social has the opposite effect.

100 101
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0.6

0.7

0.8
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Figure 4.2: Plot showing the value of PA for different combinations of the parameters a
and s for the case of the last agent of a group of N = 8 agents employing the aggregate
strategy.

4.4 Discussion

Systems such as the one studied here are usually modelled as probabilistic; this stochastic-

ity may be attributed either to the agents’ limited perception abilities and the ambiguity

of the environmental cues [Pratt et al., 2002; Couzin et al., 2005; Guttal and Couzin,

2010], or to the observer’s limited perception [Mann, 2018]. Both of these approaches

serve the same goal: to introduce noise into the system.

It’s irrefutable that noise plays an important role in them; it’s exactly that ambiguity of

personal information that leads individual agents to source social information from their

peers [Dussutour et al., 2009; Faria et al., 2009; Torney et al., 2015]. Acknowledging
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this feature, the above model is also inherently stochastic. This is achieved due to the

probabilistic definition of decision-making, and to the existence of parameter a.

Previous work on this setting has worked with specific values for the parameters a and S,

based on experimental data [Pérez-Escudero and de Polavieja, 2011]. While they might

describe what specific animals were doing in a specific experimental setting in a short

period of time, there is no reason to consider these values generally descriptive. The same

animals might result in using different values in a different setting, and other animals

might equally use different values in the same setting. By detaching the parameters from

their original definition, we can broaden the scope of the equation and use it to investigate

the relationship between the parameters and how they can affect collective behaviour.

By doing so I explored how a and S are connected, what their reasonable values for a

specific case of environments is, and how different combinations of them lead to different

behaviours. Our intention here is not to describe a specific system, but to see how a

taxa of vertebrates that follow this collective process respond to their environment by

evolving their sociality. In order to do that, I assume separation of time-scales where a

remains constant while S changes. In other words, the agents navigate an environment

of constant a, and over-time adapt to it by employing the values of S that provides the

best fitness within it. Mapping the relationship between a and S allows us to explore the

most probable routes, as well as the constraints of that evolutionary process. For here on,

I will be considering that a ∈(0,1) and that S > 1: this is the case where the environment

is reliable, and the agents are social.

The final aspect of the model relates this Bayesian estimation to the choice the focal

agent makes. Following Pérez-Escudero and de Polavieja, 2011, I assume that the focal

agent will choose option A with probability P (A|C, I) (that is, with a probability equal

to the probability of that option being the best one), rather than making a threshold

decision. This assumption allows for the observable reality that an animal confronted

with apparently identical conditions and social information may nonetheless make different

decisions on different occasions. However, it also introduces a second deviation from

rationality, since the probability of choosing correctly is maximised by choosing whichever

option has greater than 50% probability of being correct.

Arganda et al., 2012 proposed a unified framework to describe the use of social information

by animals, from which stems a variety of different decision rules observed in animals.

Four such decision-making rules are considered here, each being a different variation of

the same model. Each model variation considers a different way of observing or utilising

the same available social information – with the concepts of ‘observing’ and ‘utilising’

being interchangeable here, since I do not assume to know the internal process of the

agents.

The dependencies rule considers the full ordered sequence of prior decisions. It constitutes

the fuller version of the model in which the focal decision-makers have access to detailed

dependent information. The aggregate rule is the first simplification of the original model,
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as it considers the same social information, only without assuming that the previous de-

cisions are dependent. The aggregate rule is proposed as a reasonable simplification both

by Arganda et al., 2012 and by Pérez-Escudero and de Polavieja, 2011 when introducing

the unified framework for animals decision-making based on previous observations that

some species use Weber’s law, i.e. the relative difference between available options during

decision-making; this is a reasonable rule on the grounds that many agents tend to fol-

low majoritarian decisions [Gómez-Laplaza and Gerlai, 2011; Perna et al., 2012] without

significantly compromising on decision-making accuracy.

The next simplified version is that described by the majority rule; this is reasonable on

two grounds. First, observing the direction of the majority is simpler (especially in large

groups) and therefore faster and more reliable as a source of social information. Second,

if previous agents had chosen independently (as assumed in the derivation of Equation

5.1), then the Condorcet Jury Theorem implies that the probability that the majority is

correct will grow quickly with the number of observed agents. Lastly, the dynamic rule

is also being considered as the final model variation. Mann et al., 2013 proposes this

decision-making rule as an alternative to rules such as the aggregate, as it may convey

more accurate information given that the order of prior choices is an important factor in

decision-making.
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Chapter 5

Collective Optimality &

Evolutionary Stability of Social

Interactions Rules

This chapter analyses a commonly used decision-making model, and investigates several

plausible social interaction rules and their evolutionary stability. The results of this Chap-

ter have been published as a research paper in Physical Biology Sigalou and Mann, 2023.

The rules considered here stem from the assumption that, despite the actual social infor-

mation of a focal agent in such a model being an ordered sequence, in practise she is more

likely to perceive a simplified version of this ordered sequence. Here I consider one of these

plausible versions dealt with by Pérez-Escudero and de Polavieja, 2011 (here referred to

as the aggregate strategy), one dealt with by Mann, 2018 (here referred to as the dynamic

strategy) and one additional simplified version of the aggregate (here referred to as the

majority strategy).

This chapter provides insights on the evolution of sociality for groups using these strategies

under two different regimes, explores the invasion dynamics between the strategies and

the effect of group size in them, and proposes some necessary constraints between the

parameters of the model in order for it to be effectively applied in specific cases.

5.1 Collective Optimality & Evolutionary Stability

5.1.1 Collective Optimality

I consider how animals employing the simpler versions of the decision strategy described

in Chapter 4 will perform in terms of accurately choosing the correct option. I assume

without loss of generality that A is the correct choice – that is, I take the reward for

choosing A to be 1 (in some arbitrary units of utility or fitness) and the utility of B to

be zero. Following the model, each agent chooses either A or B in turn according to the
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following probabilistic rule:

P (Choose A) =
1

1 + as−∆n
(5.1)

where the non-social parameter a defines how reliable the environment is, s how strongly

the social information is followed, and ∆n = nA−nB is the social information, specifically

the number of agents that have chosen option A minus the number of agents that have

chosen option B.

When Equation 5.1 is applied sequentially on all group members of a group with N agents,

the group will be divided between the two options and will be in one out of N +1 possible

configurations, corresponding to the number of agents that have chosen A, ranging from 0

to N ; the probability of each possible configuration depends on the values of a and s. By

summing over the final configurations and their probabilities for a specific set of a and s,

I construct a measure for the group’s collective behaviour, E(nA), that shows the average

number of agents that chose option A:

E(nA) =

N∑
i=1

ipi (5.2)

where i is the number of agents on option A and pi the probability of i agents being on

option A. Conceptually I assume that the order of the agents in the sequence is a random

permutation for any given decision, such that E(nA) represents the expected reward a

randomly chosen agent can expect to receive if all agents apply the same decision-making

rule.

Throughout this paper I consider a (representing the quality of environmental information)

to be a fixed quantity that the agents cannot alter, whereas they may choose a value of

s to apply. For a given value of a, I define the collectively optimal value of s to be that

which maximises the value of E(nA).

5.1.2 Evolutionary Stability

Consider the case of identical agents, all of whom make decisions according to a common

rule (Equation 5.1), with the same values for parameters s and a. Under this condition,

one can identify a collectively optimal strategy that maximises the reward for all agents as

above, by maximising Equation 5.2 with respect to s: this is the strategy that if employed

by all agents of the group, it would lead to the optimal E(nA) for the group. However,

such a strategy is not necessarily evolutionarily stable, since it may be exploited by an

individual who applies a different value of s. To determine an evolutionary stable strategy

(ESS), one must determine a value of s = sESS such that if all agents employ this value,

no agent can gain by changing their value of to s = s′.

Here it is important to be precise in how we calculate the effect of an agent varying s.

In general the expected reward an agent receives for employing a given s will depend on

58



5.2 Decision Rules

its position in the sequence, but I assume throughout that agents do not choose these

positions, but are instead randomly shuffled in each decision. Therefore, in calculating the

expected reward for an agent employing a new value s = s′ I average over all the positions

in the sequence that this agent might find themselves (with equal probability for each).

Consider a population comprised of identical individuals (all using the same value of

s = sgroup), and one average invading agent using s′ = sinv ̸= sgroup. In this case, the

average group member will have an expected probability of making a successful choice of

P (A)group = E(nA)group, as all agents are identical. The average invader has an expected

probability of making a successful choice of P (A)inv: this is calculated by using Equation

5.2 for each possible places within the sequence the invader can be in, and taking their

average. In this case, the evolutionary stable strategy that the group can employ is the

one where no other strategy (i.e. no other value of the parameter s = s′) can out-perform.

The value of s where this is achieved is calculated analytically, by considering a range of

s values, and comparing the rewards for the groups and invader for each one: once these

become equal, the respective value of s this is occurring for is s = sESS. As shown in

Figure 5.2(a), there is one such value of s for the case where both group and invader are

using the probabilistic decision rule of Equation 5.1, and it is an equilibrium point.

5.2 Decision Rules

Above I consider the evolutionary stability of a given parameter value s, assuming that all

agents employ the same underlying decision rule specified in Equation 5.1. However, given

that the derivation of this decision rule includes multiple departures from full rationality,

I anticipate that this could be vulnerable to invasion by alternative decision rules. In

particular, adhering to the basic mathematical form of Equation 5.1, two alternatives

present themselves as natural variations. In the first case the focal agent does not observe

the aggregate number of previous decisions in favour of A and B, but instead only observes

(or responds to) the direction of the majority decision. In this case the appropriate decision

rule is:

P (Choose A) =
1

1 + as−sign(∆n)
(5.3)

I term this the majority decision rule, since the social information is a lower-dimensional

simplification of that in Equation 5.1. This rule is reasonable on two grounds. First,

observing the direction of the majority is simpler (especially in large groups) and therefore

faster and more reliable as a source of social information. Second, if previous agents had

chosen independently (as assumed in the derivation of Equation 5.1), then the Condorcet

Jury Theorem implies that the probability that the majority is correct will grow quickly

with the number of observed agents.

The second variation I consider is that an agent observes only the most recent decision

before its own. Here the decision rule is given as:

P (Choose A) =
1

1 + as−d
(5.4)
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where d = 1 if the most recent choice was A and d = −1 if B. I term this the dynamic

decision rule in line with similar usage by Mann et al., 2014 which investigated an analogous

model empirically in humbug damselfish. This rule is motivated by the theoretical findings

in the supplementary information of Pérez-Escudero and de Polavieja, 2011 and in Mann,

2018 that more recent decisions should be weighted more strongly by an agent able to

fully account for the correlations in previous agents’ choices, and by the empirical results

of Mann et al., 2014 and Kadak and Miller, 2020 which point to both humbug damselfish

and zebrafish responding primarily to the most recent choices of conspecifics.

Similarly to section 5.1, I consider a group of agents, where all the agents are using the

same decision-making strategy but one average invader who is using one of the other two

strategies. Like before, the group and the invader will respectively generate an expected

reward P (A)group = E(nA)group and P (A)inv, only now these rewards will depend both

on the employed value of s and the decision-making strategy, as the strategy determines

whether Equation 5.1, 5.3 or 5.4 will be used to calculated the probabilistic decision which

will in turn generate the values of those probabilities. As before, as long an average invader

is able to reach a value of P (A)inv > P (A)group for any value of s while using a strategy

different to the one used by the group (e.g. the dynamic instead of the aggregate), the

group’s strategy is susceptible to invasion. On the other hand, if an invader is not able to

outperform the group for any value of s while using a strategy other than the one used

by the group, then the group’s strategy is stable against the invaders strategy. Moreover,

if a strategy employed by the group is not susceptible to invasion by any of the other two

strategies for any value of s, then that strategy is evolutionary stable.

5.3 Results

5.3.1 Collectively Optimal Social Behaviour

The performance of a behaviour is measured by the probability of making the correct

decision. This depends on the degree of reliability of the environment’s information (value

of a), and the intensity of following the available social information (value of s). Figure 5.1

shows how variation in the social parameter s changes the probability of different group

outcomes: panel (a) shows the outcome distribution in the case where a = 0.9 and the

social parameter is relatively weak (s = 1.5). In this case agents are more likely to choose

A rather than B, but intermediate outcomes (those with a roughly equal proportion of

agents choosing A and B) are highly plausible. The probability that all agents will choose

B is very low. The expected proportion of agents choosing A is 0.54092. In panel (b)

I show the outcome distribution for the same value of a (implying the same quality of

non-social information) but a greater value of the social parameter (s = 2.3). In this case

we make an interesting observation: although the probability that all agents will choose

A has increased, this has been accompanied by an increase in the probability that all

agents will choose B, with intermediate outcomes being very unlikely. This has decreased

the expected proportion of correct decisions to 0.54029. In panel (c) I show the outcome

distribution for the same value of a (implying the same quality of non-social information)
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Figure 5.1: Plot (a) shows the probabilities of possible final configurations and the value
of E(nA) for a group of n = 8 agents, a < 1 and s = 1.5: this corresponds to a case
where reliable information is not too strongly followed, leading to very high probability
of most agents making a correct decision, and high value of E(nA). Plot (b) for a group
of n = 8 agents, a < 1 (same as in plot (a)) and s = 2.3: this refers to the case where
reliable information is followed strongly, now leading to a decrease in most agents making
a correct decision and increase to the probability of most agents making a wrong one, and
to a slightly lower value of E(nA) compared to when the same information was followed
less strongly. Plot (c) for a group of n = 8 agents, a < 1 (same as in plot (a)) and s = 10:
this refers to the case where reliable information is followed very strongly, now leading
to a further decrease in most agents making a correct decision (with some cases having a
probability 0 of occurring) and further increase to the probability of all agents making a
wrong one, and to an even lower value of E(nA) compared to when the same information
was followed less strongly. This demonstrates that over-reliance on social information
(even when the environment is reliable) can amplify the potentially wrong decisions made
by previous agents. Plot (d) summarises the value of PR for several combinations of a and
s, for a ∈(0,1) and s ∈(1,10): we observe higher values of PA that increase as a decreases,
while we also observe that across a constant a, as s increases PA decreases, as expected
due to the aforementioned cost of over-sociality. For s > 1 and a > 1 (i.e. social behaviour
in unreliable environments) we observe a symmetrically opposite behaviour to being social
in reliable environments (around the value a = 1.)

but a much greater value of the social parameter (s = 10). In this case we notice a further

increase in the probability that the agents will choose A or B, and a further decrease in

the probability of the intermediate outcomes (with most of them having a 0 probability of

occurring). This has decreased the expected proportion of correct decisions to 0.5304. In

other words, being more social has increased the probability of making a bad decision. This

is due to the probabilistic nature of the system: even with reliable non-social information,

the agents early in the sequence may still make a poor decision. If the tendency to follow

social information is very strong, the improbable but still possible poor decision will be

copied by the following agents, resulting in an information cascade, eventually misleading

a large proportion of the group. This demonstrates that there is a limit to how strongly

social information should be followed to maximise collective accuracy.

The effect of a and s is more widely demonstrated in Figure 5.1(d). This shows the value

of E(nA) for different combinations these parameters, for a ∈(0,1) & s ∈(1,10). We see the

observation mentioned previously: being more social in the presence of that information

increases the probability of making the best decision up until a point, after which an

increase in social behaviour decreases that probability. The white line shown on this panel

is the collectively optimal value of s for the corresponding value of a.
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Based on the calculation of E(nA) shown in Figure 5.1(d), it is straightforward to identify

the value of s that is collectively optimal, shown by the white line. It is clear that as a

increases (i.e. non-social information becomes less reliable), the collectively optimal value

of s decreases (agents weight the decisions of others less highly). This makes intuitive sense:

as agents are identical, a lower value of a means that other agents are more likely to have

made the correct decision, and are therefore more reliable sources of social information.

5.3.2 Evolutionary stable strategy

Previous research such as Pérez-Escudero and de Polavieja, 2011 or Farine et al., 2014 has

focused on empirical estimation of a and s in Equation 5.1 (or the extended version of this

model [Arganda et al., 2012]), but estimating both parameters ignores that in a system

under natural selection the values of a and s should be connected so as to optimise the

performance of agents’ decision-making. Here I will determine this necessary connection

between the values of a and s and show that for agents employing Equation 5.1 as a

decision-making rule these should not be considered as independent variables.

Above I showed how the collectively optimal value of s varies with the reliability of non-

social information, a. However, this collectively optimal value of s indicates the value

that would be chosen so as to maximise the success of the group as a whole. As noted

in the previous section, under individual natural selection such an optimal value cannot

be assumed to be stable (resistant to invasion by other strategies). Instead, we must seek

an evolutionarily stable value of s = sESS such that a group of agents employing this

value cannot be outperformed by an individual who changes their value to an alternative

s = s′; in the following sections, we will be evaluating evolutionary stability via pairwise-

invasibility plots [Brännström et al., 2013], i.e. I will be plotting the dynamics between a

group whose members all employ the same strategy, and a single invader that is potentially

using a strategy different that the group, to assess the invader’s invasion success. Figure

5.2 shows the results of this analysis. In panel (a) I show the relative expected rewards

for a group employing s = sgroup and an invader employing s = sinvader (with non-social

parameter a = 0.9) – yellow areas show cases where the invader’s reward is greater than

the rest of the group, and purple vice versa. As the plot shows, there is a single value of

sgroup (indicated by the red line) such that no invader can profit from choosing a different

value. This is therefore the evolutionarily stable value of sESS for the particular value of

a chosen. Performing this analysis with different non-social parameter values we can map

sESS as a function of a. This is shown in panel (b) (orange line), alongside the previously

calculated value of the collectively optimal s (blue line) for comparison. Notably, while

both the collectively optimal and ESS values of s show a similar pattern of variation with

a (increasing as non-social information becomes more reliable, ie as the value of a becomes

smaller), they differ markedly across the range of a values, with the collectively optimal

s always being lower than the ESS value. This shows that agents are selfishly motivated

to effectively ‘use up’ the available social information, creating strong correlations with

other agents that make their own decisions less useful as a source of information to those

that follow them. The collective effect of this is to reduce the average performance of all
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Figure 5.2: Plot (a) shows the dynamics between a homogeneous group and a defector,
for different combinations of sgroup and sinvader and for one value of a < 1: the yellow
areas correspond to the case where the invader has a higher probability of making the
correct decision, the purple areas to the case where the group has a higher probability
of making the correct decision, while the diagonal and the curved line correspond to the
cases where they have equal probabilities of making the correct decision (with the diagonal
being the special case where they actually have the same behaviour, as it is the line where
sgroup = sinvader). The intersection of the two lines meets at the evolutionary stable point
sESS: notice that while the group remains at that value of sgroup = sESS, for all values
of sinvader the outcome is that the group will have a higher probability of making the
correct decision compared to the invader, thus outperforming her. The group reaches
eventually reaches that point due to the existence of invaders: in every other point (for
all sgroup ̸= sESS the group is outperformed, and will eventually adopt the invader’s s as
this is more successful -but once s = sESS is reached, no other attempt to invade can be
successful. Plot (b) shows the values of sESS for the range a ∈ [0, 1], plotted with the
equivalent collectively optimal values sOpt: collectively optimal refers to the value of s
that the group must use in order to maximise the value of E(nA) in the environment it
navigates, in the absence of invaders. Notice how the evolutionary stable behaviour is not
optimal, but over-social. Plot (c) shows how the difference between E(nA) when calculated
using sOpt and using sESS, i.e. the selective pressure the agents in the group our under
due to the invader’s presence. We see that the selective pressure is low when uncertainty
is low, increases as the uncertainty increases until it reaches a maximum point, and then
decreases as uncertainty increases further.

individuals relatively to what they could have achieved had they been able to coordinate on

the collectively optimal value of s. This ‘price of anarchy’ [Koutsoupias and Papadimitriou,

2009] (the difference in E(nA) under the two strategies) is shown in panel (c) as a function

of a, showing a peak at a ≃ 0.4.

5.3.3 Alternative decision rules

Animals may observe and respond to social information in a number of different ways. So

far I have considered only one decision-making rule, that assumes agents respond to social

information in the form ∆n = nA − nB. I now consider the alternative decision-making

rules specified in Chapter 4, in terms of the collective behaviour they induce (and whether

this is compatible with observations of real animal groups) and their relative performance

in decision-making accuracy.

I was able to establish that this framework is compatible with observations, since by using
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Figure 5.3: Probabilities of final states, for a group ofN = 8 agents and different strategies.
Each plot has a different pair of a, s (a = 0.9, s = 3 for panel (a), a = 0.9, s = 12 for panel
(b) and a = 0.9, s = 80 for panel (c)), leading to the same value of E(nA) for all strategies
and a bias towards consensus-reaching where the probability that all of the agents will
make the same choice is high. This demonstrates that we cannot necessarily infer which
strategy is being used by the agents simply by noticing that there is a bias towards
consensus.

it one can recreate a common characteristic of group decisions, which is the tendency

towards consensus decision making, i.e. outcomes in which all agents choose the same

option are the most probable [D. J. Sumpter and Pratt, 2009]. All three decision rules I

have tested are able to replicate this collective pattern, as shown in Figure 5.3, by selection

of appropriate values of a and s. This is prima facie evidence that all three models are

suitable candidates for modelling collective decisions.

In our analysis above we determined the evolutionarily stable value of s for a group in

which agents all employ the decision making rule in Equation 5.1, by analysing whether

an invading strategy with a different value of s could outperform the other members of

the group. We can extend this stability analysis to ask whether an invading strategy with

a different value of s and a different decision making rule can outperform an otherwise

homogeneous group.

In Figure 5.4(a) I consider the dynamics between all possible combinations of strategies

between group and invader for a group like the one consider before. Along the diagonal

are the cases where they both employ the same strategy, while the rest corresponds to the

cases where group and invader employ different decision rules. Each column refers to the

group using the same strategy (aggregate, majority and dynamic starting from the left),
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and every row to the defector using the same strategy (aggregate, majority and dynamic

starting from the top). The yellow areas signal the cases where the invader outperforms

the group, while the purple ones the cases where the group outperforms the invader.

For each decision rule in isolation there exists a single evolutionarily stable value of s.

Groups employing a single decision rule can therefore be assumed to reach this stable point,

where they cannot be outperformed by invaders using different values of s. However, they

may be outperformed by invaders using a different strategy against it. In each column,

the vertical red line signifies the group’s evolutionary stable value of s. If this line falls

within a yellow region for a different decision rule, it signifies that in that case the invader

can employ this different decision rule, with the corresponding values of s that are within

that region, to outperform the group.

For example, consider the left column of Figure 5.4(a): the top plot shows the equilibrium

point for a group employing the aggregate decision rule (Equation 5.1) and the invader’s

failure to out-compete using the same decision rule (since the vertical line falls exclusively

in purple areas). However, if the defector chooses to employ the majority strategy (Equa-

tion 5.3), as shown in the middle plot, the same line passes through yellow areas, meaning

that there are values of s the defector can employ to outperform the rest of the group.

This implies that the aggregate decision rule is not globally stable against invasion by the

majority decision rule (assuming that invasions can arise freely on any alternative rule

and with any value of s, rather than being restricted to local mutations).

This does not imply that the majority decision rule is a stable strategy for the group to

employ. Similar inspection of the results as above shows that this rule can be invaded

by both the aggregate and dynamic rules. Instead, what this analysis shows is that in a

group restricted to employ these three rules, no single decision rule is globally stable. This

may eventually lead to the coexistence of different rules in the group, a cyclical transition

between rules or the adoption of new rules not tested here. Which of these occurs depends

on further assumptions about the evolutionary process beyond the initial invasion, which

I do not consider further here. What we can establish from these results is that the

aggregate decision rule, which has been widely used as a model for interpreting collective

behaviour in real systems, is not stable under the conditions I have described.

So far I have considered a fixed group in which the same agents repeatedly make decisions

together; in this case, the assumption is that this group is a population in itself, i.e.

evolutionary processes take place in the context of these interactions. However, many

animal groups in which decisions are made are transitory, being drawn from a larger

population by (for example) fission-fusion dynamics. In such cases the effect of an invader

may be different than in the group considered thus far because each agent in the population

encounters the invader more rarely (since the invader is rarely part of any randomly

selected subgroup), and thus the majority of an agent’s rewards are obtained in interactions

solely with the dominant phenotype. In other words, in the latter case the population is

larger and agents interact not with the whole population at once, but through smaller
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(a) Dynamics in population of fixed size.

2 4 6 8

sgroup

2

4

6

8s
in
va

de
r

Group: aggregate

In
v:

 a
gg

re
ga

te

2 4 6 8

sgroup

2

4

6

8s
in
va

de
r

Group: majority

2 4 6 8

sgroup

2

4

6

8s
in
va

de
r

Group: dynamic

2 4 6 8

sgroup

2

4

6

8s
in
va

de
r

In
v:

 m
aj

or
ity

2 4 6 8

sgroup

2

4

6

8s
in
va

de
r

2 4 6 8

sgroup

2

4

6

8s
in
va

de
r

2 4 6 8

sgroup

2

4

6

8s
in
va

de
r

In
v:

 d
yn

am
ic

2 4 6 8

sgroup

2

4

6

8s
in
va

de
r

2 4 6 8

sgroup

2

4

6

8s
in
va

de
r

(b) Dynamics in population of infinite size.

Figure 5.4: Group-invader dynamics for different combinations of strategies and N = 8,
a = 0.3.
Plot (a) shows the dynamics for a fixed group: the value of sESS for each group’s strategy
(same across each column) is marked with a red line; if the line passes through yellow areas,
the invader’s strategy of that row can invade that of the group. For a fixed group, every
strategy can be invaded. Plot (b) shows the case of a larger group: here the aggregate
strategy cannot be invaded by any other, meaning it is stable.
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subgroups. In very large populations the effect of the invader on other agents will be

negligible, whereas in a single fixed group the invader may severely disrupt other agents’

use of social information across the whole group.

I investigated whether this changed the stability relationships between different decision

rules, assuming that in each decision a group of 8 is drawn randomly from an effectively

infinite population. In this case we observe different dynamics between population and

invader: as shown in Figure 5.4(b), while in this case the simplified and the dynamic strat-

egy can still be invaded from the other two strategies for some values of s, the aggregate

strategy can’t be invaded by either. So in that case, eventually, a larger group will evolve

to use the aggregate strategy as this is evolutionary stable, under the assumption that

only these three decision rules are available.

5.4 Effect of Group Size

So far I have considered a group of size N = 8 in an environment with uncertainty of

a = 0.3. Both group size and uncertainty are important factors in decision-making since

group size affects the amount of available social information, and uncertainty impacts the

reliability of available social information. In this subsection, five additional regimes are

considered to explore the effect that environmental uncertainty a and group size N have

in the those dynamics. Figures 5.5, 5.6 and 5.7 show the dynamics between the three

strategies for an environment with uncertainty of a = 0.3 and increasing group size (of

N = 3, 5, 8 respectively), while Figures 5.8, 5.9 and 5.4 show the dynamics between the

three strategies for a = 0.9 for the same group sizes.

Figure 5.5 shows the dynamics between a group of N = 3 agents in environment of a = 0.3,

and a single invader employing a different strategy/value of s. In the case of a fixed group

all three strategies can be invaded by at least one other strategy but for a very limited

range of s values; specifically the aggregate can be invaded only by the majority, the

majority only by the dynamic, and the dynamic by both the aggregate and the majority.

Hence a fixed group can oscillate between the three strategies. In the case of the infinite

group, the aggregate strategy is the only one that cannot be invaded for any value of s,

while the other two can be invaded in a limited range of s by the aggregate, and in an

extremely small range by each-other.

Figure 5.6 shows the dynamics between a group of N = 5 agents in environment of

a = 0.3 and a single invader employing a different strategy/value of s. In the case of

the fixed group, all strategies can be invaded by at least one more: the aggregate and

the the majority can be invaded by both other ones, and the dynamic can be invaded by

the aggregate meaning that the group will again oscillate between employing each of the

strategies. In the case of an infinite group the aggregate is again the only stable one, while

the two other ones can be invaded: the majority by both other ones, and the dynamic by

the aggregate.

Here, compared to the case of a smaller group in the same environment a = 0.3, we notice
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that in the case of the fixed group we see an increase in the regions that the aggregate

strategy can be invaded. We also notice that the two other strategies can be invaded for

more values of s, but in their case we also notice a qualitative difference: while before

the simplified could be invaded by the dynamic only, now it can also be invaded by the

aggregate. The dynamic, which for N = 3 could be invaded by both other strategies,

now can only be invaded by the aggregate. As for the infinite group, while the aggregate

remains the only stable one, we notice that the simplified can now be invaded for larger

ranges of s by the other two strategies, while the dynamic can now only be invaded by

the aggregate but no longer by the simplified.

Figure 5.7 shows the dynamics between a group of N = 8 agents in environment of a = 0.3

and a single invader employing a different strategy/value of s. In the case of the fixed

group the aggregate and majority strategies can be invaded by both others, while the

dynamic strategy only by the aggregate; this is similar to the N = 5 case, but the invasion

can occur for a wider range of s values. In the case of the infinite group, the aggregate

strategy is evolutionarily stable, the majority strategy can be invaded by both others,

while the dynamic can only be invaded by the aggregate. For the case of N = 8, we have a

further increase of the range of s values for which a strategy can be invaded by compared

to the smaller group sizes, but no qualitative change in the dynamics in terms of which

strategy can invade which.
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Figure 5.5: Group-invader dynamics for different combinations of strategies and N = 3,
a = 0.3.
Plot (a) shows the dynamics for a fixed group: the value of sESS for each group’s strategy
(same across each column) is marked with a red line; if the line passes through yellow areas,
the invader’s strategy of that row can invade that of the group. For a fixed group, every
strategy can be invaded. Plot (b) shows the case of a larger group: here the aggregate
strategy cannot be invaded by any other, meaning it is stable.
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Figure 5.6: dynamics between population and invader, for different combinations of
decision-making strategy use where N = 5, a = 0.3.
Plot (a) shows the dynamics for a fixed group: the value of sESS for each group’s strategy
(same across each column) is marked with a red line; if the line passes through yellow areas,
the invader’s strategy of that row can invade that of the group. For a fixed group, every
strategy can be invaded. Plot (b) shows the case of a larger group: here the aggregate
strategy cannot be invaded by any other, meaning it is stable.
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Figure 5.7: dynamics between population and invader, for different combinations of
decision-making strategy use where N = 8, a = 0.3.
Plot (a) shows the dynamics for a fixed group: the value of sESS for each group’s strategy
(same across each column) is marked with a red line; if the line passes through yellow areas,
the invader’s strategy of that row can invade that of the group. For a fixed group, every
strategy can be invaded. Plot (b) shows the case of a larger group: here the aggregate
strategy cannot be invaded by any other, meaning it is stable.

Figure 5.8 shows the dynamics between a group of N = 3 agents in environment of a = 0.9

and a single invader employing a different strategy/value of s. In the case of a fixed group

all three strategies can be invaded by one other strategy for a limited but larger (compared

to the case with N = 3, a = 0.3 shown in Figure 5.5) range of s values: the aggregate
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can be invaded in a small area by the majority, the majority in a very small area by the

dynamic, and the dynamic in a very small area by the majority and a larger area by

the aggregate. In the case of the infinite group, the aggregate strategy is again the only

evolutionarily stable one, while the other two can be invaded in a limited range of s by

the aggregate, and in an even more limited range by each-other. In the case of N = 3

agents an increase in environmental uncertainty has noticeable impact on the dynamics

in the case of a fixed group, but a negligible one in the case of the infinite group. This is

expected, since in groups considered as infinite (that is, large enough) the impact of the

invader is not as profound as other agents have very low chances of encountering her.

Figure 5.9 shows the dynamics between a group of N = 5 agents in environment of a = 0.9

and a single invader employing a different strategy/value of s. In the case of the fixed

group, all strategies can be invaded by at least one more: the aggregate and the majority

can be invaded by both other ones, and the dynamic can be invaded by the aggregate

similarly to the case of N = 5, a = 0.3 but for different ranges of s. In the case of an

infinite group, the aggregate is again the only evolutionarily stable one, while the two

other ones can be invaded (the majority by both other ones, and the dynamic by the

aggregate) same as case for N = 5, a = 0.3, but now for a larger range of s.

Figure 5.10 shows the dynamics between a group of N = 8 agents in environment of

a = 0.9 and a single invader employing a different strategy/value of s. In the case of

the fixed group, all strategies can be invaded by at least one more: the aggregate and

the majority can be invaded by both other ones, and the dynamic can be invaded by the

aggregate similarly to the case of N = 5, a = 0.9 but for a wider range of s values. In the

case of an infinite group, the aggregate is again the only evolutionarily stable one, while

the two other ones can be invaded (the majority by both other ones, and the dynamic by

the aggregate) same as case for N = 5, a = 0.9, but now for a larger range of s.
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Figure 5.8: dynamics between population and invader, for different combinations of
decision-making strategy use where N = 3, a = 0.9.
Plot (a) shows the dynamics for a fixed group: the value of sESS for each group’s strategy
(same across each column) is marked with a red line; if the line passes through yellow areas,
the invader’s strategy of that row can invade that of the group. For a fixed group, every
strategy can be invaded. Plot (b) shows the case of a larger group: here the aggregate
strategy cannot be invaded by any other, meaning it is stable.
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Figure 5.9: dynamics between population and invader, for different combinations of
decision-making strategy use where N = 5, a = 0.9.
Plot (a) shows the dynamics for a fixed group: the value of sESS for each group’s strategy
(same across each column) is marked with a red line; if the line passes through yellow areas,
the invader’s strategy of that row can invade that of the group. For a fixed group, every
strategy can be invaded. Plot (b) shows the case of a larger group: here the aggregate
strategy cannot be invaded by any other, meaning it is stable.
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Figure 5.10: dynamics between population and invader, for different combinations of
decision-making strategy use where N = 8, a = 0.9.
Plot (a) shows the dynamics for a fixed group: the value of sESS for each group’s strategy
(same across each column) is marked with a red line; if the line passes through yellow areas,
the invader’s strategy of that row can invade that of the group. For a fixed group, every
strategy can be invaded. Plot (b) shows the case of a larger group: here the aggregate
strategy cannot be invaded by any other, meaning it is stable.
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For a fixed value of a, increasing group sizes lead to an increase in the areas (range of values

of s, and in some cases strategies themselves) in which the strategies can be invaded in.

This is due to the fact that larger group sizes allow for the different effect of each strategy

to be observed: a group of N = 3 agents does not have enough agents to accumulate bias

so a comparison with the other strategies does not yield a very noticeable result. Yet for

larger group sizes this effect takes place and now the different strategies lead to different

collective outcomes for the groups using them, with the effect increasing with group size

(leading to the observed increase in ranges of s values where the strategies can be invaded).

The effect of group size is observed in the case of infinite group sizes as well, as in this case

an increase in group size equally increases the range of s values that the simplified and

dynamic strategies can be invaded; it does not however affect the fact that the aggregate

is the only stable strategy among the three. The effect of group size is observed equally for

low (a = 0.3) and high (a = 0.9) value of environmental uncertainty, while it is moreover

observed that an increased environmental uncertainty further increases the range of s for

which a strategy can be invaded.

5.5 Discussion

Collective decision-making emerges from the individuals’ decisions, which in turn are af-

fected by the available personal and social information. Here, I use a probabilistic sequen-

tial decision-making model, to understand how information affects the quality of decision-

making. Since the reliability of social information is tied to the reliability of personal

information (in other words, environmental uncertainty), the effect of social information

on decision-making depends both on the environmental uncertainty, and level of sociality

of the agents.

Then, using the individual decision-making rule I construct a measure that describes the

average group behaviour, and study how social behaviour evolves in groups comprised of

heterogeneous agents, that share the goal of optimising this collective measure rather than

their own probability of choosing the best option.

The probability of an agent making a good decision depends both on the reliability of the

available information, and on how strongly this is followed. While in general a more certain

environment means that following social information is advantageous, the probabilistic

nature and the non-linear form of the decision-making rule mean that an increase in social

following is not always beneficial. This is because even in fairly certain environments wrong

decisions are possible, and an increase in social behaviour will increase the probability of

making a wrong choice, as the agent risks following a misleading cue.

This is also the case for a group made-up from cooperative agents, who do not only try

to maximise their own fitness, but also try to provide reliable information to their peers.

Given the ambiguity of available information, the sociality of the group members is con-

strained by the risk of amplifying unreliable information and creating a poor information

cascade. For that reason, the collectively optimal behaviour is fairly moderate in intensity,
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even in environments with very reliable information.

Yet while being over-social is not optimal, it still occurs as a behaviour and I even find it

to be evolutionary stable. Previous research has characterised this trait as a failure on the

part of the group to behave optimally [Torney et al., 2015], but our evolutionary approach

shows that this is in fact the adaptive behaviour of agents attempting to counter the effect

of defectors.

I also test whether there is such a thing as an evolved decision-making strategy: I find that

this depends on group size. None of the three strategies considered in this paper become

evolutionary stable when the group is of fixed size; rather, the group goes through a loop

between all the available strategies. For larger groups the group does evolve to use a single

strategy, specifically the aggregate. I additionally explore the effect of group size and that

of environmental uncertainty on the dynamics between strategies: I find that across all

of the treatments considered it holds that for finite size groups no strategy is stable in

an environment where the aggregate, the majority and the dynamic are present. In the

case of infinite group sizes, regardless of the group size N only the aggregate strategy can

become stable in cases where it, the simplified and the dynamic are present. Both the

group size and the level of uncertainty are important in determining for what range of

values a strategy can be invaded in.

This research is one of the first to consider the evolution of decision-making strategies.

As such, I have chosen to make some specific simplifications that may have resulted in

simplified results. For example, I find that a small group does not evolve to use one

strategy, while a large enough group does; yet I do not consider an important factor:

costs. In our model there is no additional cost to using a more computationally or time

consuming strategy like the aggregate, instead of a simpler one like the dynamic. I expect

that adding costs to our model will potentially change how group-invader dynamics play

out.

I have also chosen to define group behaviour as the averaged behaviour of the group-

members. While this is informative as it led to insights about behaviour evolution, this

approach ignores the nuance of information within a group: depending on the rank, agents

have access to different information, and it’s sensible to expect this to contribute to differ-

ent behaviours for agents, depending on their place in the group. Furthermore, I expect

this to affect the dynamics between population and invader, since an invader’s success

depends on what place within the group she manages to place herself. I believe that by

including this level of complexity, we will be able to add some insight into the existing lit-

erature that researches dynamics between agents with differing (or even conflicting) goals

within groups[Conradt and Roper, 2003, 2007; Conradt and Roper, 2009]. This research

question is discussed in more depth in Chapter 8.
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Chapter 6

Limiting Behaviour for Large

Groups

The sequential decision-making binary choice process discussed so far, when assumed

to consider independence on the order of previous decisions can be approximated by a

memoryless stochastic process. This is the case for the last three strategies discussed

in Chapter 4, namely the aggregate, the majority and the dynamic strategies. All three

strategies only require a knowledge of the system’s state at the time of the focal agent’s

decision, regardless of how the system arrived there. Additionally, after each focal decision,

the available social information changes incrementally by ±1.

In this chapter, the three aforementioned strategies are modelled as discrete Markov pro-

cesses, and analysed as such to obtain the long-term tendencies of a group employing

each one. Following this formulation, it is explored whether – and to what extent – it is

possible for a group to shift its preference; for example: can a group employing the aggre-

gate strategy, that has been so far favouring A (i.e. maintained a positive and generally

increasing value of ∆n) favour B? The following pages provide a preliminary analysis of

this question.

6.1 Random Walk Analysis of the Aggregate Collective Be-

haviour Model

Consider the aggregate rule: this is the case where the focal agent observes the difference

in numbers of previous choices between the two options. For instance, if 7 agents had

chosen option A so far (nA = 7), and 3 agents have chosen option B (nB = 3), the focal

agent observes ∆n = nA − nB = 7 − 3 = 5. The observed number ∆n is always an

integer. Moreover, as the agents make their decisions it either increases or decreases by 1

(depending on whether each agent chose option A or option B).

At each step, the focal agent chooses A with probability p = 1
1+as−x and B with probability

q = 1 − p = as−x

1+as−x , where x = ∆n. If the focal agents chooses A, the system’s x value
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increases by 1, and if she chooses B x decreases by 1.

This process fits the definition of a Random Walk. Let Xn be the value of ∆n at time n;

then the process evolves as such:

Xn+1 =

Xn + 1 with probability pXn

Xn − 1 with probability qXn

(6.1)

where n is the step of the process and X0 = 0 as the first agent makes a choice without

social information.

As this is a Random Walk, the process is described by the Markov property Xn+1 =

Xn + Zn+1 as per the formulation:

Xn+1 = X0 +
n∑

i=1

Zi (6.2)

where X0 = 0 is the origin (starting point) of the process, denoting the first agent that

makes a decision without social information, and Z1, Z2, ..., Zn are conditionally indepen-

dent random variables with distribution P(Zi = 1) = pXi , P(Zi = −1) = qXi . In other

words, at the time the first agent is making her decision she will choose A with probability
1

1+a ; depending on whether she choose A or B, the second agent will then choose A with

pXi and B with qXi and so forth.

6.1.1 Long-term bias

Over-time, a social group using the aggregate strategy in a biased environment a < 1

is expected to amplify this bias. This is demonstrated in the U-shaped curves shown in

Chapter 5 such as in Figure 5.3, where depending on the value of (a, s) the agents in the

group will be polarised towards one of the choices (instead of having a more even split

between them).

In fact, as a group’s size increases, this phenomenon snowballs, meaning that once this

effect takes over and one choice is favoured, it becomes increasingly difficult for agents to

make the opposite choice. This raises the question of whether and when this may happen:

here I will show that the properties of the Random Walk indicate that agents in groups

using the aggregate strategy tend, at the infinite size limit (i.e. for agents sufficiently back

in the sequence), to not choose against the existing social bias. In other words, if an agent

observes nA = 45 and nB = 2, she will almost certainly choose A.

Following the expression of the process of Equation 6.2, at any given step t, the expected
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value of the process is:

E(Xn) = E(X0 +
n∑

i=1

Zi)

= E(X0) +
n∑

i=1

E(Zi)

=
n∑

i=1

(pXi − qXi)

=
n∑

i=1

(2pXi − 1)

(6.3)

as E(X0) = 0, and E(Zi) = 1pXi + (−1)qXi

So the value we expect to find the system in at step n depends on the relation between

pXi and qXi , and the step t, and specifically on the sign and value of x = ∆n at this step.

If x > 0 (social information favours option A) and px > qx, as x increases then px = 1
1+as−x

increases, approaching 1 as x → ∞. Consequently the sum
∑n

i=1(2pXi − 1) will only take

positive values, that also increase with x. If x > 0 (social information favours option

A) and px < qx, as x increases then px = 1
1+as−x decreases, approaching 0 as x → ∞.

Consequently the sum
∑n

i=1(2pXi − 1) will only take negative values that also decrease

with x.

On the other hand when x < 0 (social information favours option B) and px > qx, as

x decreases then px = 1
1+as−x decreases, approaching 0 as x → −∞. Consequently the

sum
∑n

i=1(2pi−1) will only take negative values, that also increase in absolute value with

x. When x < 0 (social information favours option B) and px < qx, as x decreases then

px = 1
1+as−x increases, approaching 1 as x → −∞. Consequently the sum

∑n
i=1(2pXi − 1)

will only take positive values, that also increase with x. This means that for x ̸= 0, the

agents will over time amplify the pre-existing bias towards one of the options, resulting in

the expected value E(Xn) being increasingly further away from the origin as |x| increases
and social information aggregates.

This means that for agents further back in the sequence, it becomes increasingly difficult

to ‘escape’ the social bias, as over time it intensifies. Once a group has reached a certain

value of |x| – i.e. as the group becomes increasingly polarised towards one of the options

– it becomes increasingly difficult for an agent to make the contrary choice (e.g. choose B

after a long sequence of prior agents choosing A). It also means that it becomes increasingly

difficult for the sign of x to change: so even if a single agent goes against the bias, it’s

increasingly improbable that this will be repeated long or often enough to reverse the bias

towards the non-biased option.

In fact, it is absolutely certain that this will not happen. Imagine a case where a large

string of choices towards option A have been made, meaning that at time n we observe

Xn >> 0: in order for an agent to eventually choose B, Xn needs to become Xn = 0

at a future time. But given that in a biased Random Walk with p ̸= q all states are

transient as shown in section 3 this is by definition impossible. Hence, when agents follow
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the aggregate strategy and it is the case that px ̸= qx, the social information will overtime

remain biased towards one of the options. In the case of the aggregate strategy, it further

is the case that all of the agents of a group can make the same choice, as shown in the

following subsection.

6.1.2 Infinite sequence of same choices

When pn ̸= qn, not only will E(Xn) increase or decrease as t increases, resulting in the

vast majority of agents in the group ultimately choosing the same option, but there is a

non-zero probability that all the agents will choose the same option.

Let px = 1
1+as−x be the probability of choosing A – as this is a Random Walk and has the

Markov property, then px = P (Xn = x + 1|Xn−1 = x) = 1 − P (Xn = x − 1|Xn−1 = x).

Then, for an arbitrary starting state α the probability that all agents choose A is
∏∞

x=α px

for some arbitrary starting point α as the events are disjoint for an arbitrary value of

x = ∆n, and:

log
∞∏

x=α

px =
∞∑

x=α

log px

= −
∞∑

x=α

log (1 + as−x)

(6.4)

By the fundamental logarithmic inequality: 1− 1
x ≤ log x ≤ x− 1, so for Equation 6.4 we

can say that:

log

∞∏
x=α

px = −
∞∑

x=α

log(1 + as−x) ≥ −
∞∑

x=α

as−x = −a

∞∑
x=α

1

s

x

(6.5)

Since only cases where the social information is followed are considered here, it will always

be the case that s > 1 ⇒ −1 ≤ 1
s ≤ 1, and so

∑∞
x=α(

1
s )

x = α 1
s−1 is a geometric series. So

finally from Equation 6.5:

log
∞∏

x=α

px ≥ −a
∞∑

x=α

(
1

s
)x = −a(

1

s
)α

s

s− 1

⇒
∞∏

x=α

px ≥ e−−a( 1
s
)α s

s−1 > 0

(6.6)

Note that
∏∞

x=α px < 1 is also the case. So for a ∈(0,1), s > 1 there is a non-zero, but

lesser than 1 probability that all agents will make the same choice. This means that an

infinite sequence of identical choices can occur in the long-term. This statement is true

regardless of our starting point x = α, so an infinite sequence of same choices can occur at

any time, be it the very first agent of the group or an agent very far along the queue. As

per the Markov memoryless property, this can happen regardless of the history of decisions

thus far.
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6.2 Random Walk Analysis of the Majority Collective Be-

haviour Model

Consider the majority rule: at every step the focal agent observes the sign of ∆n = nA−nB,

i.e. whether there is a majority on A, a minority on A, or no difference between A and B.

The state space here is the same as the one in the case of the aggregate behaviour model,

but the agent observes the sign of x, i.e. an integer equal to either 1,-1 and 0.

More formally, at each step, the focal agent will choose A with probability px = 1
1+as−sign(x)

and B with probability q = 1−p = as−sign(x)

1+as−sign(x) , where x = ∆n. If the focal agents chooses

A, the system’s Xn value increases by 1, and if she chooses B then x decreases by 1. This

translates in two distinct cases occurring: the first is the case where the first agent chooses

option A; once that happens, any subsequent agent will also choose A with probability px

and B with probability 1 − px. On the other hand, if the first agent chooses B then all

following agents will choose B with probability 1− px and A with probability px; in other

words, after the initial decision is made the two distinct cases are symmetric, and unless

the boundary Xn = 0 is crossed it is the case that the process is a simple Random Walk.

By considering then a Random Walk with origin X0 = 0, these probabilities are px = 1
1+as

and qx = 1 − p = as
1+as when the focal agent is on the origin line, px = 1

1+as−1 and

qx = 1 − px = as−1

1+as−1 when the focal agent is on the positive space, and px = 1
1+as and

qx = 1 − px = as
1+as when the focal agent is on the negative space, as ultimately the

absolute value of x has no effect on the focal’s decision – just the sign.

This process fits the definition of a Random Walk, where Xn is the value of ∆n at time n:

Xn+1 = X0 +
n∑

i=1

Zi (6.7)

where X0 = 0 as the first agent makes a choice without social information, and Zi are

independent and identically distributed (IID) random variables with P (Zi = 1) = pXn ,

P (Zi = −1) = qXn .

6.2.1 Long-term bias

Over-time, a group using the aggregate strategy in a biased environment a < 1 is expected

to retain this bias, contrary to the aggregate strategy that amplifies it due to the nature

of the decision-making rule.

So in this case as a group’s size increases, social information does not amplify the pre-

existing bias; for both an agent with i = 2 and an agent with i = 50 the observed social

information if there is a majority in option A is going to be the same, namely x = 1,

despite the actual value of ∆n being vastly different. Furthermore it is easier (compared

to when employing the aggregate strategy) that an agent further down in the sequence

observes no social bias towards either of the sides, making it less difficult for agents to
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make the opposite choice compared to the case where they employ the aggregate strategy.

As this is a Random Walk, the process is described by the Markov property Xn+1 =

Xn+Zn+1, and the expected value of the process at step t is E(Xn) = n(pXn − qXn). The

value we expect to find the system in at step t depends on the step, and on the values of

p, q at this step: if pXn = qXn then E(Xn) = 0 as there is an equal probability that the

focal agent chooses A or B. On the other hand if pXn ̸= qXn , as t increases E(Xn) will

over time increase for pXn > qXn and decrease for p < q. This means that for pXn ̸= qXn ,

even though the agents don’t observe an amplification in bias, the pre-existing bias due

to a that is present in the system will lead to an observed preference towards one of the

options. Hence for agents further back in the sequence, it becomes increasingly difficult

to ‘escape’ the social bias despite it not being amplified (like in the case of the aggregate

strategy). For pXn >> qXn or qXn >> pXn social following becomes almost deterministic

and extreme outcomes can be observed for small groups such as all of the agents choosing

the same option (e.g. as demonstrated for a small group in Figure 5.3), but as shown in

the next section, in the case of the majority strategy information cascades don’t occur in

the long-term for large enough groups.

6.2.2 Finite sequence of same choices

In the case of the majority rule, information propagation is weaker. Regardless of the level

of uncertainty a, and the level of sociality s, there is a zero probability that all agents will

chose the same option.

Let px = 1
1+as−sign(x) the probability of choosing A. As this is a Random Walk and has the

Markov property, then px = P (Xn = x + 1|Xn−1 = x) = 1 − P (Xn = x − 1|Xn−1 = x).

Then the probability that all agents choose A is
∏∞

x=α px and:

log
∞∏

x=α

px =

∞∑
x=α

log px

= −
∞∑

x=α

log (1 + as−sign(x))

(6.8)

By the fundamental logarithmic inequality, 1− 1
x ≤ log x ≤ x− 1, so for Equation 6.4 we

can say that:

log
∞∏

x=α

px = −
∞∑

x=α

log (1 + as−sign(x)) ≥
∞∑

x=α

−as−sign(x) = −a
∞∑

x=α

(
1

s
)sign(x) (6.9)

In the majority rule, x = ∆n, and the sign(x) can only take three values: 1, -1, 0. When

considering the case where everyone is making the same choice, we’re considering that

either all agents observe sign(x) = 1 or sign(x) = −1. Then Equation 6.9 will be either

−a
∑∞

x=α(
1
s ) or −a

∑∞
x=α s.
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In either case, the sum −a
∑∞

x=α(
1
s )

sign(x) = ∞ and hence doesn’t converge, so a statement

of the existence of a non-zero probability of everyone making the same choice cannot be

made for the majority strategy.

The non-existence of infinite sequences of the same choice can be explained by the weak

reinforcement occurring during the majority rule: imagine a large group of agents that

have all chosen A. An agent in place i = 10 observes the same information as an agent

in i = 2, as they both observe sign(x) = 1. While in the same scenario the agents would

become increasingly likely to choose A in the case of the aggregate rule, in this case they

are always equally likely to choose A regardless of how strongly it has been favoured thus

far. Switching between regions can thus happen in the long-term for the majority rule.

6.3 Markov Chain Analysis of the Dynamic Collective Be-

haviour Model

Consider the dynamic rule: at every step the focal agent observes only the most recent

decision. Excluding the very first decision which is made in absence of social information,

at every step the system can be in one of two possible states: the previous agent chose A,

the previous agent chose B.

From each state, the focal agent can choose either A or B, with complementary probabil-

ities. Then this process is well approximated by a two state Markov Chain (MC) as seen

below:

A B1− q

q

1− p

p

This Markov Chain has transition probabilities pAA = 1 − q, pAB = q, pBB = 1 − p,

pBA = p with p = (1 + as)−1 and q = (1 + a−1s)−1; the transition probabilities can be

summarised in the transition matrix T:

T =

[
1− q p

q 1− p

]
(6.10)

6.3.1 Diagonalisation

To facilitate further analysis, consider the diagonilised expression T = Q−1DQ. The

transition matrix T has eigenvalues λ1 = 1 and λ2 = 1 − p − q. The eigenvalues can be

determined by taking the determinant of T, det(T − λI):

det(T − λI) = det

[
1− q − λ p

q 1− p− λ

]
= 0

⇒(1− q − λ)(1− p− λ)− pq = 0

(6.11)
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or

(k − λ)(1− λ) = 0 (6.12)

where k = 1− p− q

Thus the eigenvalues for T are: λ1 = 1 and λ2 = k, and we can now proceed with

determining the eigenvectors.

Note that in the event that p, q << 1, transitions between choosing A and choosing

B are very rare, as the focal agent makes the same choice as the previous one almost

deterministically. In that case, λ2 ≈ 1.

The transition matrix T has eigenvectors v =

[
1
q
p

]
, u =

[
1

−1

]
For λ1, the eigenvector v is found through (T− λ1I)v = 0:[

1− q − 1 p

q 1− p− 1

]
v = 0

⇒ v =

[
1
q
p

] (6.13)

For λ2, the eigenvector u is (T− λ2I)u = 0:[
1− q − k p

q 1− p− k

]
u = 0

⇒ u =

[
1

−1

] (6.14)

So the transition matrix can be written in the diagonal form T = Q−1DQ, where:

D =

[
λ1 0

0 λ2

]
=

[
1 0

0 1− p− q

]
(6.15)

Q =
[
u,v

]
=

[
1 1
q
p −1

]
(6.16)
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And it can be further simplified as T = p
p+qQDQ, since:

Q−1 =
1

−1− q
p

[
−1 −1

− q
p 1

]

=
1

1 + q
p

[
1 1
q
p −1

]
=

p

p+ q
Q

(6.17)

6.3.2 Long-term behaviour

When employing the dynamic strategy, the focal agent may only observe the most recent

agent but she indirectly has access to older decisions since they are included in the most

recent one: the focal agent i observes agent i− 1, who in turn observed agent i− 2 and so

forth.

Following this, the further ‘back’ the focal agent is, the more informed she is going to be.

Provided that we know the initial probability of the two states A and B, say π1, we can

find the k-step transition probabilities of agent k.

By the definition of the Markov process, the transition probabilities of the next state only

depend on these of the current state:

πi+1 = Tπi (6.18)

Here πi define probabilities of choosing either options at time t = i: πi = [p(Xi =

A), p(Xi = B)]T . Knowing π1, the k-step transition probabilities can be written as πk =

Tk−1π1.

π2 = Tπ1

π3 = Tπ2 = TTπ1 = T2π1

π4 = Tπ3 = TT2π1 = T3π1

.

.

.

πk = Tk−1π1

(6.19)

The k-step probability can also be written as πk = p
p+qQDk−1Qπ1, by replacing T with

its diagonal form.
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Tk−1 =
∏
k−1

Q−1DQ

= Q−1Dk−1Q

= Q−1

[
1 0

0 (1− p− q)k−1

]
Q

=
p

p+ q
Q

[
1 0

0 (1− p− q)k−1

]
Q

(6.20)

6.3.3 Steady-state probabilities

Since this Markov Chain is aperiodic and consists of a single class of recurrent states, the

transition probabilities converge to a steady state.

Consider the transition probabilities of the first agent, who makes a decision in absence of

any social information: these probabilities then should be π1 =

[
1

1+a
a

1+a

]
= 1

1+a

[
1

a

]
. For πi

the i-step transition probabilities, consider the sum
∑n

i=1 πi.

The sum
∑n

i=1 πi denotes the average time spent in the two states up to time n. Using

the matrix notation, the sum becomes:

n∑
i=1

πi = π1 +Tπ1 +T2π1 +T3π1 + ...+Tn−1π1

= (I+T+T2 + ...+Tn−1)π1

= (I+Q−1DQ+Q−1D2Q+ ...+Q−1Dn−1Q)π1

= Q−1(I+D+D2 + ...+Dn−1)Qπ1

= Q−1

[
n 0

0 βn

]
Qπ1

=
p

p+ q

[
n+ βn

q
p n− βn

q
p(n− βn) n q

p + βn

]
1

1 + a

[
1

a

]
(6.21)

where λ2 = 1− p− q, βn =
1−λn

2
1−λ2

.

Let ΛA and ΛB be the average time spent in A and B up to time t respectively, then these

are:

ΛA =
p

p+ q
(n+

βn
1 + a

(
q

p
− a)) (6.22)

ΛB =
p

p+ q
(n

q

p
+

βn
1 + a

(a− q

p
)) (6.23)

Then the proportion of time spent in each state will respectively be:
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ΛA

n
=

p

p+ q
(1 +

1

n

βn
1 + a

(
q

p
− a)) (6.24)

ΛB

n
=

p

p+ q
(
q

p
+

1

n

βn
1 + a

(a− q

p
)) (6.25)

The steady state transition probabilities are the values of 6.24 and 6.25 at the infinite

limit t → ∞. As n → ∞, βn

n → 0, so these probabilities are:

lim
n→∞

ΛA

n
=

p

p+ q
(6.26)

lim
n→∞

ΛB

n
=

q

p+ q
(6.27)

The steady state transition probabilities – i.e. the probability of an agent further down

the sequence choosing A or B – depends on the values of p and q. This is also the case for

the observed pattern of choices: whether there will be long strings of identical decisions,

or frequent switches between choosing A and B depends on the values of p, q. Since p and

q depend on the values of a and s, they are constrained to be of similar magnitude; for

instance they will either both be very small (that is, p, q << 1) or both big rather than p

being large and q being small.

This means, that in order for the system to be at an optimal state where option A will

mostly be chosen, p > q needs to be the case for a small value of a. This is the case

because the environmental uncertainty is low making choosing option A more probable,

while switching from A to B is more probable than the opposite – and so A will be chosen

with a higher probability, switches from A to B will happen with low probability and

switches from B to A with a high probability, meaning that we will observe choices on A

for the most part, with infrequent brief choices on B.

This result produces an interesting implication. If a is small, the difference between p

and q intensifies as s becomes larger – in other words, the optimal value of s tends to

infinity. This is contradictory to the result of Chapter 5, according to which the value of

s is constrained for a ∈(0,1).

6.4 Discussion

The three models considered in this chapter (the aggregate, the majority and the dynamic)

are all memoryless versions of the complete model. As such, they are well approximated

and analysed as Markov processes. The benefit of this type of analysis lays in the existence

of a steady state behaviour: knowing the system and the initial conditions, we know what

to expect in the long-run.
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I know for example, that in the case of the dynamic model and given an initial non-social

decision with PA = p = 1
1+a and PB = q = a

1+a , the probabilities of choosing either

side in the long-run are simply p
p+q and q

p+q . The amount of time needed for the steady

state behaviour to take effect depends by definition on the group size, but the values of

these probabilities only depend on the combination of a and s (since p = (1 + as)−1 and

q = (1+a−1s)−1). The first decision is in favour of A with a probability of (1+a)−1; that

means that for small values of a, choosing A is more probable and for larger values of a

choosing B is more probable.

Yet since the values of p and q depend on both a and s it is still possible for p >> q

even for large values of a, in which case eventually most of the agents will choose option

A, so regardless of what the first agent’s decision will be given enough time we expect to

see a choice in favour of A with probability p/(p + q). Yet this implies a behaviour for

s that appears contradictory to the result of Chapter 5, according to which its value is

constrained, since now in order for the optimal outcome to be reached s needs to tend

to infinity. This contradiction can be attributed to group size and is further discussed in

Chapter 9.

Determining steady state probabilities is not possible for the aggregate and majority strate-

gies given their properties, but it is still possible to predict long-term trends for groups

employing them. Additionally, modelling them using the same framework (that of a Ran-

dom Walk) allows for some direct comparisons between the two.

Focal agents using the aggregate model quickly amplify the existing bias due to x = ∆n,

while those using the majority model simply retain it without reinforcing it down the

line since x = sign∆n. We notice then some important differences: the aggregate model

leads to information cascades, as demonstrated by the existence of a non-zero probability of

everyone choosing the same option
∏∞

x=α px – a trait that does not occur with the majority

strategy as this probability cannot be defined since Equation 6.9 doesn’t converge. This

means that when using the majority model the agents of the group will never over-amplify

poor information, but will equally never over-amplify good information. This difference in

the impact of bias between the two strategies results in a key difference: the aggregate rule

is high-risk, high-reward as it favours extreme outcomes (as all or none of the agents may

choose the best option), while the majority model has a fail-safe against poor information

cascades but with a catch, as in the long-run it is not possible for all agents to choose the

best option.

The analysis here was focused on exploring the progression of decisions for the clear-cut

case where the agents were observing information in regions of either x > 0 or x < 0. This

has provided insight into the behaviour of a group under a stable social bias (i.e. social

bias indicating only option A or option B), while the deviation from this that was explored

was that of the first return to the origin x = 0 after having spent time in x ̸= 0. What

is not addressed is the behaviour of a group that is transitioning between the regions of

x > 0 and x < 0.
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6.4 Discussion

Overall, the preliminary analysis outlined in this chapter provides a basis for a further

analysis on the matter; while it strongly indicates that bias amplification leads to infor-

mation cascades while a lack of it prevents them, what is presented here does not constitute

a robust proof. More work is necessary to establish that the presence and amplification

of bias is a necessary condition for the existence of information cascades, as well as to

understand any potential nuances between the connection between bias and cascades.
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Chapter 7

Analysis of the Effect of

Dependent Social Information

Pérez-Escudero and de Polavieja, 2011 make a simplifying assumption: the observed prior

decisions of a focal individual are uncorrelated. This was assumed as their objective

was to seek “a model based on probabilistic estimation that can simultaneously give [us]

insight into social decision-making and fit experimental data”, which they justify since

their comparison between the simplified and the complete version shows that the former

gives a very good approximation of the latter. It also aligns with the idea that complex

collective behaviours can be the result of simple individual rules [Hinz and De Polavieja,

2017; Kadak and Miller, 2020] attributed to one simple common principle [Arganda et al.,

2012].

Following this reasoning, Chapter 5 only considers versions of the decision rule that assume

uncorrelated decisions. This choice is further justified by considering the fact that many

animals, and in many cases, either do not have access to the complete sequence of ordered

prior decisions or lack the tools to process them [Mann, 2021].

The idea is that simpler versions of the model are able to well approximate the full version,

while being less computationally demanding. This chapter examines this claim to confirm

that this is still the case following the necessary constraint imposed in Chapter 5.

7.1 Collective Optimality

I consider how animals employing the full version of the decision strategy of Chapter 4

will perform in terms of accurately choosing the correct option. I assume without loss of

generality that A is the correct choice – that is, I take the reward for choosing A to be 1

(in some arbitrary units of utility or fitness) and the utility of B to be zero. Following the

model, each agent chooses either A or B in turn according to the following probabilistic

rule:

P (Choose A) =
1

1 + aS
(7.1)

93



7. ANALYSIS OF THE EFFECT OF DEPENDENT SOCIAL
INFORMATION

where the non-social parameter a defines how reliable the environment is, and S is the

product of all prior decisions assuming other agents have personal information ã:

S =
N−1∏
i=0

Pbi,B

Pbi,A
(7.2)

Note that when parameter S is calculated via Equation 7.2, the focal agent who has

personal information a assumed that all previous agents have different social information

ã ̸= a – in other words, she assumes that everyone else in the group has different infor-

mation from here (better in the case of ã < a and worst in the case of ã > a). This is a

similar notion to the parameter s in the case of the three other aforementioned strategies

(aggregate, majority and dynamic), since a value of ã < a will mean that the focal agent

will trust the social information more and a value of ã > a will mean that she will trust

it less. These two cases are respectively the equivalent of a high and low value of s.

When Equation 7.1 is applied sequentially on all group members on a group with N agents,

the group will be divided between the two options and will be in one out of N +1 possible

configurations, corresponding to the number of agents that have chosen A, ranging from 0

to N ; the probability of each possible configuration depends on the values of a and s. By

summing over the final configurations and their probabilities for a specific set of a and S,

I construct a measure for the group’s collective behaviour, E(nA), that shows the average

number of agents that chose option A:

E(nA) =

N∑
i=0

ipi (7.3)

where i is the number of agents on option A and pi the probability of i agents being on

option A. Conceptually I assume that the order of the agents in the sequence is a random

permutation for any given decision, such that E(nA) represents the expected reward a

randomly chosen agent can expect to receive if all agents apply the same decision-making

rule.

Throughout this chapter I consider a (representing the quality of environmental informa-

tion) to be a fixed quantity that the agents cannot alter, whereas they may choose a value

of ã to apply. For a given value of a, I define the collectively optimal value of ã to be that

which maximises the value of E(nA).

7.2 Evolutionary Stability

Consider the case of identical agents, all of whom make decisions according to a common

rule (Equation 7.1), with the same values for parameters ã and a –that is, every focal

agent has personal information a and assumes that everyone else has personal information

ã. Under this condition, one can identify a collectively optimal strategy that maximises the

reward for all agents as above, by maximising Equation 7.3 with respect to ã: this is the
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strategy that if employed by all agents of the group, it would lead to the optimal E(nA)

for the group. However, such a strategy is not necessarily evolutionarily stable, since it

may be exploited by an individual who applies a different value of ã. To determine an

evolutionary stable strategy (ESS), one must determine a value of ã = ãESS such that if

all agents employ this value, no agent can gain by changing their value of to ã = ã′.

Here it is important to be precise in how we calculate the effect of an agent varying ã.

In general the expected reward an agent receives for employing a given ã will depend on

her position in the sequence, but I assume throughout that agents do not choose these

positions, but are instead randomly shuffled in each decision. Therefore, in calculating the

expected reward for an agent employing a new value ã = ã′ I average over all the positions

in the sequence that this agent might find themselves (with equal probability for each).

Consider a population comprised of identical individuals (all using the same value of

ã = ãgroup), and one average invading agent using ã′ = ãinv ̸= ãgroup. In this case, the

average group member will have an expected probability of making a successful choice of

P (A)group = E(nA)group, as all agents are identical. The average invader has an expected

probability of making a successful choice of P (A)inv: this is calculated by using Equation

7.3 for each possible places within the sequence the invader can be in, and taking their

average. In this case, the evolutionary stable strategy that the group can employ is the

one where no other strategy (i.e. no other value of the parameter ã = ã′) can out-perform.

The value of ã where this is achieved is calculated exact numerically, by considering a

range of ã values, and comparing the rewards for the groups and invader for each one:

once these become equal, the respective value of ã this is occurring for is ã = ãESS. As

shown in Figure 7.2(a), there is one such value of ã for the case where both group and

invader are using the probabilistic decision rule of Equation 7.1, and it is an equilibrium

point.

7.3 Results

7.3.1 Collectively Optimal Social Behaviour

The performance of a behaviour is measured by the probability of making the correct

decision. This depends on the degree of reliability of the environment’s information (value

of a), and the assumptions of others’ personal information ã. Figure 7.1 shows how varia-

tion in the social parameter ã changes the probability of different group outcomes: panel

(a) shows the outcome distribution in the case where a = 0.5 and the social parameter

assumes better information (ã = 0.25). The probability that all agents will choose B is

very low. The expected proportion of agents choosing A is 0.7442 (or 5.95359 agents).

In panel (b) I show the outcome distribution for the same value of a (implying the same

quality of non-social information) and the assumption that others have the same personal

information ã = a. This has decreased the expected proportion of correct decisions to

0.75004 (or 6.0003 agents).
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In panel (c) I show the outcome distribution for the same value of a (implying the same

quality of non-social information) and the assumption that others have worst personal

information (ã = 0.75). This has decreased the expected proportion of correct decisions

to 0.72163 (or 5.77307 agents).

In other words, being more social has increased the probability of making a bad decision.

This is due to the probabilistic nature of the system: even with good non-social infor-

mation, the agents early in the sequence may still make a bad decision. If the tendency

to follow social information is very strong, the improbable but still possible bad decision

will be copied by the following agents, resulting in an information cascade, eventually

misleading a large proportion of the group. This demonstrates that there is a limit to how

strongly social information should be followed to maximise collective accuracy.
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Figure 7.1: Plot (a) shows the probabilities of possible final configurations and the value
of E(nA) for a group of n = 8 agents and ã = 0.5; this corresponds to a case where others’
information is assumed better than the focal’s own a: Plot (b) for a group of n = 8 agents
and ã = 0.5: this corresponds to a case where others’ information is assumed equal to than
of the focal’s own a: Plot (c) for a group of n = 8 agents and ã = 0.75: this corresponds
to a case where others’ information is assumed worst than the focal’s own a: . Plot (d)
summarises the value of PA for several combinations of a and ã, for a, ã ∈[0,1]: the white
line shows the evolutionary stable value ãESS for the corresponding value of a.

The effect of a and ã is more widely demonstrated in Figure 7.1(d). This shows the value

of E(nA) for different combinations of these parameters, for a, ã ∈[0,1]. We notice how for

low values of a, it’s evolutionary stable to assume others have worst information ã > a as

this minimises the occurrence of poor information loops, while for higher values of a it’s

stable to assume others have better information ã < a, as this mitigates against the poor

personal information.

Based on the calculation of E(nA) shown in Figure 7.1(d), it is straightforward to identify

the value of ã that is collectively optimal, shown by the white line. It is clear that as a

increases (i.e. non-social information becomes less reliable), the collectively optimal value

of ã also increases (agents assume others have better information than them, and follow

them with larger intensity). This makes intuitive sense: as uncertainty increases, agents

tend to rely more on social information [Pérez-Escudero and de Polavieja, 2017].
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7.3.2 Evolutionary Stable Behaviour

Above I showed how the collectively optimal value of ã varies with the reliability of non-

social information a. However, this collectively optimal value of ã indicates the value that

would be chosen so as to maximise the success of the group as a whole.

Under individual natural selection, such an optimal value cannot be assumed to be stable

(i.e. resistant to invasion by other strategies), as an agent employing a different value of

ã′ ̸= ãgroup can outperform the group. One must then seek an evolutionarily stable value

of ã = ẼSS such that a group of agents employing this value cannot be outperformed by

an individual who changes their value to an alternative ã = ã′; in the following sections, I

will be evaluating evolutionary stability via pairwise-invasibility plots [Brännström et al.,

2013], i.e. I will be plotting the dynamics between a group whose members all employ the

same strategy, and a single invader that is using a strategy different that the group, to

assess the invader’s invasion success.

Figure 7.2 shows the results of this analysis. In panel (a) I show the relative expected

rewards for a group employing ã = ãgroup and an invader employing ã = ãinvader (with

non-social parameter a = 0.9): yellow areas denote the cases where the invader’s reward

is greater than the rest of the group’s, and purple vice versa. As the plot shows, there is

a single value of ãgroup (indicated by the red line) such that no invader can profit from

choosing a different value. This is therefore the evolutionarily stable value of ãESS.
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Figure 7.2: Plot (a) shows the dynamics between a homogeneous group and a defector,
for different combinations of ãgroup and ãinvader and for one value of a < 1: the yellow
areas correspond to the case where the invader has a higher probability of making the
correct decision, the purple areas to the case where the group has a higher probability
of making the correct decision, while the diagonal and the curved line correspond to the
cases where they have equal probabilities of making the correct decision (with the diagonal
being the special case where they actually have the same behaviour, as it is the line where
ãgroup = ainvader). The intersection of the two lines meets at the evolutionary stable point
ãESS, denoted by a red vertical line; notice that while the group remains at that value of
ãgroup = ãESS, for all values of ãinvader the outcome is that the group will have a higher
probability of making the correct decision compared to the invader, thus outperforming
her. The group eventually reaches that point due to the existence of invaders; in every
other point (for all ãgroup ̸= ãESS the group is outperformed, and will eventually adopt
the invader’s ã as this is more successful – but once ã = ãESS is reached, no other attempt
to invade can be successful. Plot (b) shows the values of ãESS for the range a ∈ (0, 1),
plotted with the equivalent collectively optimal values ãOpt: collectively optimal refers to
the value of ã that the group must use in order to maximise the value of E(nA) in the
environment it navigates, in the absence of invaders. Notice how the evolutionary stable
behaviour is not optimal, but over-social.

Performing this analysis with different non-social parameter values allows a mapping of

ãESS as a function of a. This is shown in panel (b) (orange line), alongside the previously

calculated value of the collectively optimal ã (blue line) for comparison. Notably, while

both the collectively optimal and ESS values of ã show a similar pattern of variation with

a (increasing as non-social information becomes less reliable), they differ markedly across

the range of a values, with the collectively optimal ã always being higher than the ESS

value.

This shows that agents are selfishly motivated to effectively ‘use up’ the available social

information, creating strong correlations with other agents that make their own decisions

less useful as a source of information to those that follow them. The collective effect of

this is to reduce the average performance of all individuals relatively to what they could
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have achieved had they been able to coordinate on the collectively optimal value of s.

7.4 Comparison with Other Strategies

While the dependencies strategy is the most complete approach to sequential decision-

making, simpler rules are most often used in research as adequate approximations. This is

partly done because those rules are simpler to model and analyse; additionally, there is the

assumption that a rule such as the dependencies one is too complicated or time-consuming

for animals to actually employ.

Here I will compare the dependencies rule against the three other rules considered in

this work: the aggregate rule, the majority rule and the dynamic rule. While all rules –

including the dependencies one – are considered fairly reasonable in terms of behaviour,

an important factor in their plausibility is their efficacy.

All four rules effectively try to reach the best goal: choose the best out of the two available

options. They are increasingly complicated as such: dynamic < majority < aggregate <

dependencies. The more complex rules are arguably more informed compared to the

simpler ones, but they are also more costly (either as they require better sensory organs

leading to bigger size and metabolic costs, or because they require more time in order

to consider the more detailed information) – so more information-rich is not necessarily

better.

Figure 7.3 summarises the comparison between the four rules in the same scenario for a

group of 8 agents. Sub-figures (a) and (b) show the comparison between these rules when

they are at their collectively optimal state for a = 0.2 and a = 0.7 respectively; in both

cases the dynamic rule under-performs compared to all other rules in terms of the metric

E(nA), while the E(nA) for all other rules coincide. Good environmental information

(a = 0.2) favours several agents choosing the best option, with the dependencies and the

aggregate rules leading to higher probabilities of all agents choosing the best option, and

the two rules favouring cases where 5, 6 or 7 (out of 8 total) choose the best option and

hence a lower probability that all 8 agents will choose it. Poor environmental information

(a = 0.7) has a slightly different trend; for the dependencies and the aggregate rule, there is

an increase in none or few of the agents choosing the best option, a still higher probability

of all or many reaching the best, and intermediate probabilities for the intermediate cases.

On the other hand, the simplified and the dynamic rule spike in the intermediate cases,

have a lower probability of all (or almost all) of the agents choosing the best option, low

probabilities for very few agents choosing it, and zero probability that no agent will choose

it. A similar qualitative behaviour is observed for the case where the groups are in their

evolutionary stable state, with the only important difference being that the value of E(nA)

for the simplified rule is between that of the dynamic’s and the other two rules.
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(a) Comparison between the collectively optimal
behaviour of the four rules for a = 0.2.
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(b) Comparison between the collectively optimal
behaviour of the four rules for a = 0.7.
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(c) Comparison between the evolutionary stable
behaviour of the four rules for a = 0.2.
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(d) Comparison between the evolutionary stable
behaviour of the four rules for a = 0.7.

Figure 7.3: The final state probabilities for the optimal social behaviour of each strategy,
along with their corresponding E(nA).

Above, the four different rules were compared in two ways: on how they affect the collective

measure E(nA), and on how they affect the final state probabilities distribution.

Effectively, there is no difference between the dependencies, aggregate and majority strat-

egy in regards to E(nA): it follows that the necessary chunk of information needed for

E(nA) to be maximised is whether an option has been majoritarian so far – regardless of

to what degree it was favoured over the alternative one, or to whether it was favoured

recently or further back in time. There is a more significant difference when comparing

for final state distributions, with two ‘classes’ of rules: 1) those who favour the extreme

cases, and 2) those who favour the intermediate cases.

The dependencies and the aggregate rules favour the extremes: under reliable information

a, the most likely outcome is for all the agents to choose the best option while no-one

choosing it is improbable. As the non-social information a becomes less reliable, the

extreme case where everyone choose the best option remains the highest overall, but no-

one choosing the best option becomes increasingly probable as the information becomes

less reliable.

The simplified and the dynamic rules favour the intermediate cases: under reliable infor-
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mation a, the most likely outcome is for all the agents to choose the best option while

no-one choosing it is improbable; but the extreme case is less probable for these rules

compared to the other two ones, while the other cases are more probable compared to

the other two rules. As the information a becomes less reliable, the probability that all

agents choose the best option ceases to be the most probable and it replaced by more

intermediate cases (with the exact case depending on the value of a): in that case, the

probability that no-one chooses the best option remains equal to zero.

Overall, it doesn’t follow from the above comparison that the dependencies rule leads to

uniquely better outcomes from all of the other strategies. It does follow though that there

are differences in result when considering different levels of detail of social information.

7.5 Discussion

The dependencies rule constitutes the complete version of the Bayesian estimation binary

choice decision rule presented in Equation 4.1, and it is the most information-dense out of

all the models discussed here as it allows the focal agent to observe the exact sequence of

previous decisions; so the focal agent knows both what the most popular option is overall,

whether there was a sudden shift in preference and how recently, who went against their

most recent information e.t.c.

In this version of the model, the baseline assumption about the agents’ behaviour is that

each agent assumes that all other agents before her have different personal information

from her – but the same amongst them. For well-mixed groups employing this rule, that

seek to optimise the collective reward E(nA) (i.e. the number of agents that choose the best

option), there is one collectively optimal value of ã that closely depends on the value of a

in a way similar to the connection between s and a described in Chapter 5. Furthermore,

for well-mixed groups with the above-mentioned collective intention that are infiltrated

by an invader who seeks to optimise her own personal outcome (i.e. the probability that

she will make the best decision), there is only one evolutionary stable value of ã they

can employ so that they cannot be outperformed by any ã′ ̸= ã; this evolutionary stable

behaviour is, like the collectively optimal one, closely dependent on a.

The evolutionary stable behaviour of a group is always sub-optimal, and specifically over-

social. As mentioned previously due to the probabilistic nature of the decision-making

model, mistakes are always possible – this is the intuitive explanation behind the con-

strained values of the collectively optimal behaviour ãopt. The instability of ãopt means

that groups develop the tendency to over-rely on social information, making them prone

to falling into poor information loops.

Pérez-Escudero and de Polavieja, 2011 argue that simpler versions should be favoured over

the complete model, and proposed that in those versions the model parameters a, s are

decoupled. In Chapter 5 it is shown that this cannot be the case given the assumptions

of the system, as the level of sociality is bound to the environmental uncertainty. Still,

there is a basis for considering models that assume weaker dependence on the previous
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decisions, as this could mitigate against information cascades in the case of poor available

information – like the simplified model, which by design does not support infinite identical

choices, as demonstrated in Chapter 6.

It follows from the above analysis that simpler models can be reasonably favoured over

the complete one, even when taking into account the constraint suggested by Sigalou and

Mann, 2023. Despite the dependencies model being the most informative one, it is not

necessarily the one leading to the most accurate collective decisions. One reason this might

be happening is information overflow: the amount and level of detail it provides cannot be

processed by the agents, as their perception tools are limited. Note that although costs are

not considered in this project, it makes intuitive sense that this may also be an important

factor: complicated strategies are more costly, either because they require more processing

time or more advanced cognitive capabilities, so there needs to be a considerable benefit

in using them over simpler ones.

From the analysis performed above, there is no evidence to support that. As seen in 7.4,

both the average group behaviour as well as they final state distribution are extremely

similar for a group employing the dependencies, and the aggregate model, showing no

advantage in using the dependencies one over the simpler aggregate model. When looking

only at the average group metric, it can be noticed that there is no advantage of using

either the dependencies or the aggregate rule instead of the majority one, as they provide

an almost identical outcome.
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Chapter 8

Evolution of Personally Optimal

Behaviour

In Sigalou and Mann, 2023 (presented in chapter 5) we consider a well-mixed population:

all agents in the group were homogeneous in their sociality, meaning that they evolved

to follow social information with the same intensity – i.e. they all shared the same value

of s that was either sopt or sESS , depending on the regime. This enabled determining

the evolution of sociality during simple processes such as environmental adaptation and

the existence of small perturbations in the group, into collectively optimal (sopt) and

evolutionary stable (sESS) levels respectively.

This assumptions means that the agents have the same utility function, and also have

a common goal (optimising E(nA)). Such conditions are frequently assumed: Pérez-

Escudero and de Polavieja, 2011 assumes that the best decision is shared for all agents,

and Mann, 2018 assumes that all agents have an identical utility function This leads to

a simpler and more solvable model compared to the case where there is such a difference

between the agents, however it is limited as differing preferences [Mann, 2020] and con-

flicts of interest [Conradt and Roper, 2009] are widely spread. The existence of conflicts of

interest is of special interest, as they are often framed as obstacles in obtaining cooperative

behaviour.

Here the aims are two: 1) to explore the limits of the evolutionary stability as described in

Sigalou and Mann, 2023 (also shown in Chapter 5), and 2) to explore under what circum-

stances cooperation can emerge as a result of an evolutionary process in heterogeneous

groups.

8.1 Unmixed Groups

When a group isn’t well-mixed, the agents assume a fixed position within it rendering the

concept of an ‘average group member’ irrelevant. Instead of an agent being potentially in

all possible positions in the queue and hence receiving averaged-out rewards in the long-
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run, they are now in a fixed position. Given the different available social information for

each position in the queue, if all agents in a group share the same level of sociality s, each

agent now has a different probability of choosing the best option PAi .

For example, for a well-mixed group of 5 agents in an environment of a = 0.4 using the

aggregate strategy, the collectively optimal level of sociality is scol = 2.18529, and on

average, each agent i has a probability of P (A)i = E(nA)=0.78215 of choosing A over B.

For a non-mixed group of 5 agents though, if they continue to employ s = 2.18529, then

depending on their position, the average probability that each agent i will choose option

A is going to be as follows:

i P (A)i

0 0.71429

1 0.75622

2 0.79073

3 0.81619

4 0.83333

Table 8.1: Average probability of choosing option A, for agent in position i.

Note that each entry of this table is the overall probability of choosing A for each agent.

Since this is a probabilistic process, there is more than one possible path available for

all agents for i > 0; for instance, for a group of N = 2 we can either have the following

sequences: AA, AB, BA, BB –so agent i=1 will choose A either via the path AA or BA. For

path AA agent i=0 has already chosen option A, which happens with probability pA = 1
1+a ;

from that point on agent i=1 will choose option A with a probability pAA = 1
1+as−1 .

On the other hand, for path BA agent i=0 has chosen option B, which happens with

probability pB = a
1+a , and from that point agent i=1 will choose option A with probability

pBA = 1
1+as1

. So in the end, the overall probability that agent i=1 chooses option A is

the weighted sum pApAA + pBpBA; for the case of a = 0.4 and s = scol = 2.18529 these

values are pA = 0.71429, pB = 0.28571, pAA = 0.84528 and pBA = 0.53358 and so

pApAA + pBpBA = 0.152453 + 0.60377 = 0.75622.

So now, instead of all agents expecting the same long-term outcome of 0.78215, each agent

has a position-specific outcome with some under-performing compared to the collective

value of E(nA), and some performing better. Note that ‘average probability for agent i’ is

the arithmetic average of all the possible ways agent i can choose A.

This chapter deals with the evolution of sociality of agents in unmixed groups, where

agents optimise their individual outcomes P (A)i instead of the collective measure E(nA).

It explores the evolution of personal sociality, and the evolutionary pressure on the agents

depending on their position. It also explores the effect that non-cooperators in specifics

positions have on the resulting collective measure E(nA). The aggregate strategy is being

analysed as a baseline, following a supplementary analysis of the majority and dynamic

strategies.

104



8.2 Individual Optimality in Collectively Optimal Groups

8.2 Individual Optimality in Collectively Optimal Groups

Being in different positions in the sequence means having access to different social informa-

tion: the very first agent has no social information, the second agent has social information

provided by the first agent, the sixth agent has information from the 5 previous agents

e.t.c.

While in well-mixed groups all agents will over time assume every position in the queue

(meaning that on average they also personally benefit from the collective sopt), this isn’t

the case for groups that are not well-mixed. In that case, the individual agents have a

fixed position i.e. access to a fixed amount of social information.

If we imagine an unmixed group in an environment with fixed a, then each agent i within

this group can overtime evolve a personally optimal behaviour si, i.e. a level of sociality

that maximises their personal probability P (A)i of choosing option A for their specific

position.

8.2.1 Being uncooperative when everyone else is cooperative; defector

in group

As seen in Chapter 5, the values of sopt are fairly constrained as a result of the probabilistic

nature of the system: if sociality is too high, then possible mistakes will be over-amplified

so even in environments with low uncertainty (low values of a) the evolutionary stable

value of s is constrained. As sopt is defined on the basis of optimising average behaviour,

one important function is to mitigate against information cascades hence minimising the

risk of a large portion of the group choosing the worst option. In a well-mixed group, this

is a common concern as agents can assume all positions within the ordered sequence and

subsequently need this sort of mechanism.

But when assuming non-mixed groups, this is not the case. The first few agents will never

risk receiving over-amplified poor information as they will never be in a position of having

access to it; on the other hand, agents in the back of the queue always face this risk. So

in an unmixed group, not only do the agents have access to different social information,

but also benefit from different levels of sociality. Consider a group of 5 agents, with fixed

positions and using the aggregate strategy: agent 0 is the first agent (without access

to social information). If agent i = 1, ..., 5 is allowed to adapt her si value in order to

optimise her P (A)i instead of using the collective sopt, she will eventually reach a value of

si ̸= sopt ̸= sj , for j ̸= i, as shown in Figure 8.1. Note that when we consider agent i to

be adapting for her personal si, we assume that all other agents are still using sopt.
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Figure 8.1: Collectively optimal s, and individually optimal si for all agents in group
of n = 5 using the aggregate strategy. The first agent (agent 0) has no available social
information, hence her si is irrelevant and set as equal to 1. All subsequent agents have
access to social information provided by agents that are optimising E(nA).

Figure 8.1 demonstrates how the collectively optimal behaviour sopt is not personally

optimal for any agent with fixed position within the group for the case of the aggregate

strategy. For the case of the very first agent (agent i=0) who has no access to social

information, the value of s is irrelevant and is manually set as equal to 1. In terms of

the effect of position on si for agents in places i > 0, si takes lower values as i increases

for fixed value of a < 0.18. This is due to the fact that the aggregate strategy amplifies

bias, and hence more social information also means more bias leading to the benefit of

over-sociality to decrease with group position. In more detail: agent i=1 has access to

only one unbiased decision, and hence benefits from a higher value of si > scol. Agent i=2

has access to two decisions: one independent and one social, hence providing additional

but biased information and so her si is slightly lower than that of agent i=1 for a < 0.18.

Agent i=3 now has information from one independent and two social decisions, so agent

i=3 is subject to biased social information, so a lower sociality s3 < s2 will help mitigate

against a potential poor information. All agents afterwards are subject to the same issue

due to the nature of the aggregate strategy (where bias is amplified fast), meaning that

in order to mitigate against accumulated bias as i increases, si needs to decrease.

However for values of a > 0.18, there is one significant difference: s2 > s1. This is a highly

interesting results, as it is counter-intuitive as the value of a is still very low to provide

an obvious explanation to this reversal of the trend. However this could be explained by
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considering that agent i=1 only has access to the social information provided by agent i=0

(the agent with no social information, who hence makes a decision purely based on the

local value of a), making the social information provided to agent i=2 not too informative

compared to her personal information. Hence, agent i=2 evolves to be more social than

agent 1 due to this access to more reliable social information.

It follows that for the aggregate strategy, since the agents are now optimising for P (A)i

instead of E(nA) they are relying more on social information compared to the case where

they were using sopt. This leads to the social information provided to the following agents

being more amplified, so for higher ranks i the agents are more susceptible to poor infor-

mation cascades.

i P (A)i

0 0.71429

1 0.76023

2 0.79511

3 0.81831

4 0.83392

Table 8.2: Average probability of choosing option A, for agent in position i using si.

It also follows from Figure 8.1 that depending on their position in the queue, different

agents are required to compromise to a different degree when optimising for E(nA) instead

of their own si. In the case considered above, the first two agents with access to social

information (1 and 2) are the ones whose curves are the furthest away from the collective

curve, with that difference decreasing the further along an agent i is in the queue. This

creates different evolutionary pressure for each agent driving specifics agents to be more

uncooperative than others, compared to agents with smaller distances to the collective

curve (Figure 8.2).
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Figure 8.2: The difference between P (A)i for agent i using si, minus her P (A)i using
sopt, for all i positions in a group of 8 agents with a = 0.3 (aggregate strategy). When
said difference is positive, it’s more profitable for agent i to use si instead of sopt. Higher
positive values indicate a stronger pressure to do so, while lower values a lower one.

8.2.2 Defector in specific position

When considering unmixed groups employing the aggregate strategy, a conflict may arise

between the agents: the first ones in the queue have an incentive to employ a higher value

of si which would provide the non-cooperative agents with a better P (A)i compared to

when employing sopt. This would consequently provide the following agents with biased

information, meaning they would now obtain a lower value of PAi compared to the case

where the previous agents were using lower values of si. On the other hand, the ones in

the back may employ higher values of si if the ones further in the front were to have lower

sociality si. If instead the agents all employ the same level of sociality, still the level of

‘sacrifice’ is different depending on their places in the sequence.

But a conflict may also arise between the potential selfish agent, and the rest of the group.

Imagine the same group of 5 agents from before, that employs sopt. If an agent instead

uses si, this will not only affect her own outcome, but the final E(nA) for this group.

The impact of this effect depends on the uncooperator’s position i, with the exception

of agent i=0 who has no social information. Figure 8.3 shows the P (A)i and E(nA) of a

group of 5 agents, for the case where agent i is cooperative (uses sopt) and the case where

she is selfish (uses si); plot (a) is for a case of low uncertainty a = 0.4, while plot (b) is for

a case of high uncertainty a = 0.7. In both cases, the same trend observed in tables 8.3
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and 8.2 is repeated: the agents have a higher P (A)i when using si instead of sopt. In terms

of how an uncooperative agent impacts the groups, this also depends on her position i:

when she is one the first few agents with social information, the impact on the group is

negative, but otherwise it’s non-existent. This happens because the further forward she is

in the sequence, the more agents she can impact, while the further back, the fewer agents

she can impact.
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Figure 8.3: Comparing the P (A)i of a cooperative and uncooperative agent in place i.
The uncooperative agent over-performs the cooperative agent, with this effect being more
noticeable in early positions within the sequence. A group with an uncooperative agent
in early positions is negatively impacted: when the uncooperative agents is further back,
the group is impacted increasingly less.

This is more clearly demonstrated in Figure 8.4, with the added effect of uncertainty a.

Plot (a) is the difference between P (A)i of the uncooperative agent, minus that of a coop-

erative agent in the same position i; positive difference means that not being cooperative
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is more beneficial for that position under that value of uncertainty a; note how in the case

of the aggregate strategy, for all positions i and values of a it is either more beneficial to be

uncooperative, or leads to the exact same P (A)i (for cases of low uncertainty a and agents

further back in the sequence). Plot (b) is the difference between a group’s E(nA) with an

uncooperative agent in position i, minus that of a group with a cooperative agent in that

same position; negative values mean that the group on average is negatively impacted by

having a selfish agent in position i for that a. Note that for the case of the aggregate

strategy, the presence of an uncooperative agent does not lead to a positive outcome for

the group, as it either leads to lower values of E(nA) or to a value of E(nA) that is equal

to that of a group with no uncooperative agents.
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Figure 8.4: Comparison of individual and group success when an uncooperative agent is
present in position i (aggregate strategy). (a): difference between uncooperative agent in place
d, and cooperative agent in place d for d∈[0,8], in a range of a ∈(0,1). The plotted value is the
uncooperative agent’s p(A)i minus the cooperative agent’s p(A)i in the same position; zero means
it makes no difference to be uncooperative, positive means it pays more to be so.
(b): difference between group with an uncooperative agent in place d for d∈[0,8] and group with
only cooperative agents, for a range of a ∈(0,1). The plotted value is the E(nA) of the group
with an uncooperative agent in position i, minus the E(nA) of the group without an uncooperative
agent in that position; zero means it makes no difference whether there is an uncooperative agent,
and negative means it’s worse for the group to have an uncooperative agent in that position.
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Essentially, Figure 8.4 demonstrates how much more beneficial it is for an agent in position

i to employ si instead of sopt (8.4 (a)), and how much worst it is for the group’s E(nA)

when this happens (8.4 (b)). An agent being uncooperative when at the final few positions

has no significant effect in neither the agent or the group. On the other hand, an agent

being uncooperative in early positions has an impact on both.

As shown in Figure 8.4(a), the very first agent with access to social information has the

highest selective pressure to be uncooperative when the uncertainty (value of a) is very low;

for increasing values of a the second agent with access to social information is the one with

the highest selective pressure to be uncooperative. As discussed earlier in this chapter,

this can be explained if we consider that generally the very first agent with access to social

information can only observe the decision of the agent without social information; except

for the case of very low uncertainty (a < 0.2) this decision is not very informative as the

first agent with social information can observe the environment in the same way as agent

i=0. Hence for a > 0.2, due to this lack of informative social information for agent i=1,

it is rather agent i=2 that has access to reliable social information worth following with

increased intensity. For subsequent agents, the social information incorporates enough

bias to lead to lower benefits in being uncooperative.

The impact that an uncooperative agent has on the group’s E(nA) is almost complimentary

to what we observe in Figure 8.4(a): the positions with the highest selective pressure for an

agent to be uncooperative in, are leading the group’s value of E(nA) to decrease. However,

the position and uncertainty regime that lead to the highest difference in P (A)i between

uncooperative and cooperative agent (that is, the agent in position i=1 for a < 0.2) does

not coincide with the position and regime (that is, agent in position i=2 for 0.2 < a < 0.8)

that has the most effect on the group’s E(nA), as demonstrated in Figure 8.4(b).

8.2.3 Other strategies

Due to the different nature of the three strategies considered across this work, the above

results regarding the individual optimality of the agents are not generalisable across them.

While the aggregate strategy leads to a swift accumulation of bias due to its formulation

(where the social information is ∆n), this is not the case for the simplified and the dynamic

strategies. The different formulation of the simplified and the dynamic strategies not only

leads to different trends in the values of si as i increases, but also in differences in the

evolutionary pressure of the agents, as well as in the effect an uncooperative agent has on

the group’s resulting E(nA).

Majority Strategy

Contrary to the aggregate, the majority strategy does not accumulate bias, but retains

the bias as the agents now only observe the sign of the difference (sign(∆n)) between

sides. This means that agents far along the sequence do not encounter over-amplified

information, and can be more trusting of it compared to the case of the aggregate one. As a

consequence, it is beneficial for agents to increasingly trust the available social information,
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as demonstrated in Figure 8.5, where agents evolve to larger values of si compared to the

case of the aggregate strategy.
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Figure 8.5: Collectively optimal s, and individually optimal si for all agents in group
of n = 5 using the simplified strategy. The first agent (agent 0) has no available social
information, hence her s is irrelevant. For all the other agents, they all have values of si
larger than sopt.

Figure 8.5 demonstrates how the collectively optimal behaviour sopt is not personally

optimal for any agent with fixed position within the group for the case of the simplified

strategy. In terms of the effect of position on si for agents in places i ≥ 1, the value of

si takes alternating higher and lower values; so agent 2 has a higher value than agent 1,

agent 3 has a slightly lower value than agent 2 but higher than agent 1, agent 4 has a

higher value than agents 2 and 3.

For the case of the very first agent (agent 0) who has no access to social information,

the value of s is irrelevant and is manually set to 1. For the case of the first agent with

social information (agent i=1) who now has access to some limited social information, si

takes a value lower than the collectively optimal value of sopt. Agent i=2 has access to

social information from two separate agents, one of whom is independent hence it makes

sense to follow them strongly with s2 > s1. Agent i=3 has access to some additional

(reliable) social information from agent i=2. However, an agent in this position is more

prone to observing biased information compared to the previous agent (agent i=2) who

may potentially observe a tie (sign(∆n) = 0); for this reason, s3 is lower compared to

s2. Agent i=4 has now access to even more (reliable) social information, and similarly to

agent i=2 is likely to observe a tie (in other words, to observe at least seemingly unbiased
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information), hence s4 > s2.

In the case of the majority strategy, the further back in the sequence an agent is, the higher

the evolutionary pressure to be uncooperative (Figure 8.6). This trend is not linear, as

agents that cannot observe a tie sign(∆n) = 0 have a lightly lower evolutionary pressure

compared to their exactly previous agent who may observe a tie – a trend similar to the

one observed for their personally optimal values si demonstrated in Figure 8.5. So overall,

the further back an agent is in the sequence, the more beneficial it will be for her PAi to

be uncooperative.
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Figure 8.6: The difference between P (A)i for agent i using si, minus her P (A)i using sopt,
for all i positions in a group of 8 agents with a = 0.4 (simplified strategy). Higher positive
values may indicate a stronger pressure to do so, while lower values a lower one.

In the previous section, it was demonstrated in Figure 8.4 that the presence of an unco-

operative agent in a group of agents employing the aggregate strategy can potentially be

harmful for the group as it may lead to a lower value of E(nA); it was also clear that the

presence of an uncooperative agent in such a group will not lead to a higher value of E(nA)

for the group. Moreover, the conditions (environmental uncertainty a and position in the

sequence i of the uncooperative agent) that led to the highest benefit for her in terms of

maximising her P (A)i were the ones that led the group to the lowest values of E(nA).

This is not the case for groups of agents employing the majority strategy. As shown

in Figure 8.7(b), there are several conditions (values of environmental uncertainty a and

position of the uncooperative agent i) for which the resulting E(nA) of the groups is higher

when an uncooperative agent is present, compared to when not; for example, this is the
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case for all values of a when the uncooperative agent is is position i = 1, 4, 5, 6, 7 and not

the case only for values of a > 0.2 when the uncooperative agent is in positions i = 2, 3.

Moreover, as seen by comparing Figures 8.7(a) and 8.7(b), the conditions for which it

is most beneficial for an agent to be uncooperative coincide with those that lead to the

highest values of E(nA) for a group with an uncooperative agent in that position.
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Figure 8.7: Comparison of individual and group success when a selfish agent is present in position
i (simplified strategy). (a): difference between cooperative agent in place d, and defector in place d
for d∈[0,8], in a range of a ∈(0,1). The plotted value is the cooperator’s p(A)i minus the defector’s
p(A)i in the same position; zero means it makes no difference to defect, positive means it pays
more to be selfish.
(b): difference between group with only cooperative agents, and group with defector in place d
for d∈(0,8), in a range of a ∈(0,1). The plotted value is the clean group’s E(nA) minus the group
with defector at place d E(nA); zero means it makes no difference whether there is a defector, and
negative means it’s worse for the group to have a selfish agent in that position.
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Dynamic Strategy

Similarly to the aggregate strategy, the dynamic strategy also accumulates bias but as

only the most recent agent is considered now, the bias is more discrete compared to the

case of the aggregate strategy. This means that similar to the case of the majority strategy

above, agents far along the sequence do not encounter over-amplified information, and can

be more trusting of it compared to the case of the aggregate one. As a consequence, it is

beneficial for agents to increasingly trust the available social information, as demonstrated

in Figure 8.8, where agents evolve to increasingly larger values of si as their position i in

the sequence increases.
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Figure 8.8: Collectively optimal s, and individually optimal si for all agents in group
of n = 5 using the dynamic strategy. The first agent (agent 0) has no available social
information, hence her s is irrelevant. For all the other agents, they all have values of si
larger than sopt with agent number 1 having the lowest one, and then increasing values of
si as rank increases.

Figure 8.8 demonstrates how the collectively optimal behaviour sopt is not personally

optimal for any agent with fixed position within the group for the case of the dynamic

strategy. In terms of the effect of position on si for agents in places i ≥ 2, the value of

si takes increasingly higher values. This is because the social information here is only

provided by one agent (the most recent one), who is assumed to have assessed it enough

herself, making it fairly trustworthy. Agent i=0 is the case of the agent without social

information (for which the concept of sociality is nonsensical) and the case of the first

agent (agent i=1) with social information, who can only observe a decision made entirely

based of her conspecifics’ personal information a, which she also shares: in her case,
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relying on social information doesn’t provide significant additional insight for decision-

making. But agent i=2 will now have access to two decisions, one of which social (hence

providing updated information) leading to a higher value of si. For all other agents after

her, the available social information is sufficiently weighted by the previous agent, making

it reliable. So due to the nature of the dynamic decision-making strategy, for agents

further back in the sequence the available social information is increasingly useful, leading

to increasing values of si.

Despite the values of si increasing with i, the same is not the case for the evolutionary

pressure on the agents. The very first agent with access to social information has the high-

est evolutionary pressure to be uncooperative, as she has access to unbiased information

from agent i=0. Agent i=2 has significantly lower evolutionary pressure, as now she is

confronted with biased social information, and so is agent i=3: in both those cases, the

previous agents are assumed to make very dependent decisions, making them not very

informative. In the case of agent i=4 however, the evolutionary pressure is higher com-

pared to the one on agent i=3 as now enough decisions have been made before her for the

available social information to become more reliable. The reliability of social information

increases for agents part this point, hence the evolutionary pressure on them increasing

henceforth.
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Figure 8.9: The difference between P (A)i for agent i using si, minus her PAi using sopt,
for all i positions in a group of 8 agents with a = 0.4 (dynamic strategy). Higher positive
values may indicate a stronger pressure to do so, while lower values a lower one.

In the two previous sections, it was demonstrated in Figures 8.4 and 8.7 that whether

the presence of a uncooperative agent will be harmful to the group or not (in terms of
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lowering or increasing its collective measure E(nA)) depends on the strategy: in the case

of the aggregate strategy, where the observed information by the focal decision-makers

is the difference of prior decisions ∆n = nA − nB – in other words, when the available

social information heavily propagates bias – the presence of an uncooperative agent has

the potential to be harmful. In this case, when the agents comply to using sopt, the result

is a shared level of sociality that is fairly constrained in intensity (as discussed in depth in

Chapter 5) which helps mitigate against propagation of mistakes; this results in individual

values of P (A)i to also be fairly constrained. Hence when an individual agents employs a

personally optimal sociality of si to maximise her personal P (A)i, she has a negative effect

to this mitigating process. On the other hand, in the case of the majority strategy where

the agents observe the sign of this difference (sign(∆n)) the impact of an uncooperative

agent can be positive for many cases which can be attributed to the fact that agents using

the majority strategy do not need to mitigate against bias propagation and as such the

presence of an uncooperative agent is not as impactful.

In the case of the dynamic strategy, the presence of an uncooperative agent is not negative

for any condition (value of environmental uncertainty a and position of the uncooperative

agent i) as shown in in Figure 8.10(b). The highest E(nA) is observed when the uncooper-

ative agent is in position i=1 – coinciding with the position with the highest evolutionary

pressure for the agent. Directly following that, the benefit for the group in terms of E(nA)

is significantly lower when the uncooperative agent is in position i=2, and non-existent

when she is in position i=3. From position i=4 onwards, the benefit for the groups is

mostly positive (as opposed to none) and increasing. This coincides with the personal

benefit of being uncooperative for the agent in that position.
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Figure 8.10: (a): difference between cooperative agent in place d, and defector in place d for
d∈[0,8], in a range of a ∈[0,1]. The plotted value is the cooperator’s p(A)i minus the defector’s
p(A)i in the same position: zero means it makes no difference to defect, positive means it pays
more to be selfish.
(b): difference between group with only cooperative agents, and group with defector in place d
for d∈[0,8], in a range of a ∈(0,1). The plotted value is the clean group’s E(nA) minus the group
with defector at place d E(nA): zero means it makes no difference whether there is a defector, and
negative means it’s worse for the group to have a selfish agent in that position.
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8.3 Individual Optimality in Evolutionary Stable Groups

Above we looked at what happens when one agent is optimising her P (A)i within a group

that is collectively optimal (i.e. uses sopt, which optimises E(nA)). We saw how there is

always a distance between those two, yet this is to be expected, since as demonstrated

in Sigalou and Mann, 2023 the collectively optimal group behaviour is never evolutionary

stable. Here we repeat this analysis, to observe how the personally optimal behaviour of

specific agents evolves, in groups that are evolutionary stable.

In evolutionary stable groups, we observe a similar pattern in the case of non-mixed groups:

for a well-mixed group of 5 agents in an environment of a = 0.4 using the aggregate

strategy, the evolutionary stable value of sociality is sESS = 2.76, and on average each

agent i has a probability of P (A)i = E(nA)=0.7792 of choosing A over B (note that for sopt

we have P (A)i = E(A) = 0.78215 < 0.7792, which is expected given that the evolutionary

stable strategy is sub-optimal). For an unmixed group of 5 agents if they continue to

employ s = 2.76 though, depending on their position the average probability that each

agent i will choose option A is going to be as follows:

i P (A)i

0 0.71429

1 0.75967

2 0.79137

3 0.81031

4 0.82038

Table 8.3: Average probability of choosing option A, for agent in position i.

So now, instead of all agents expecting the same long-term outcome, each agent has a

position-specific outcome – with some under-performing compared to the collective value

of E(nA), and some performing better. Note that ‘average probability for agent i’ is the

arithmetic average of all the possible ways agent i can choose A. Note that for the first

agent with access to social information, P (A)1 = 0.75967 > 0.75622, i.e. the P (A)1 in the

case of a collectively optimal group; for all following agents, their P (A)i values are lower in

the case of an evolutionary stable group, compared to a collectively optimal group. Note

that this is for a specific case of a, s and strategy.

8.3.1 Aggregate

Below (Figure 8.11) are the plots for agents personally optimising in an evolutionary stable

group, when both are using the aggregate strategy. All values of si ̸= sESS with some

being lower and some higher that it, with the tendency being to lower the si value as i

increases (with only the first few agents with social information being more social than is

evolutionary stable). This is different compared to the case of a collectively optimal group

(shown previously in Figure 8.1) where all values of si were higher than sopt.
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Figure 8.11: Evolutionary stable s, and individually optimal si for all agents in group of
n = 5 using the aggregate strategy and having evolutionary stable sociality. The first
agent (agent 0) has no available social information, hence her s is irrelevant and set as
equal to 1. All subsequent agents have access to social information provided by agents
that are optimising E(nA).
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Figure 8.12: The difference between P (A)i for agent i using si, minus her P (A)i using
sESS , for all i positions in a group of 8 agents with a = 0.3 (aggregate strategy). When
said difference is positive, it’s more profitable for agent i to use si instead of sESS . Higher
positive values may indicate a stronger pressure to do so, while lower values a lower one.

The evolutionary pressure also looks different, with an initial dip after the first agent with

social information, and a subsequent increase after a few agents (Figure 8.12). This is

very dissimilar to the evolutionary pressure for a group with same a, s and size that is

collectively optimal, where after a peak in evolutionary pressure for the first two agents

with social information, the evolutionary pressure decreased as position in sequence i

increased, eventually reaching zero. This can be explained by considering each agent being

deviating separately: agent i=1 has access to some unbiased social information from agent

i=0, and hence makes sense that being more social pays off. Agent i=2 has access to the

unbiased information from agent i=0 and the biased information from agent i=1, and

hence while still paying off to be social she needs to be a little less to mitigate against

potential bias amplification (which the aggregate strategy is prone to). Agent i=3 has

access to more biased information compared to unbiased, and hence gets no benefit from

being more social that the rest of the group –which is already over-social. Yet starting

from agent i=4, there is an increase in evolutionary pressure. We are still in the aggregate

strategy, ie prone to bias amplification, but now surprisingly it is beneficial to be even

more over-social.

This is a general trend for all values of a, as shown in Figure 8.13(a). The phenomenon

is less pronounced for extreme values of a and more pronounced to medium-to-high, but

overall it is more beneficial for agents further down the line to be non-cooperative and
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optimise personally rather than retain the group’s behaviour. Unlike the case of the

collectively optimal group (Figure 8.4), for the evolutionary stable group we notice that

the positions i where it is more favourable for an agent to be non-cooperative as not the

positions where a deviator would negatively impact the group; rather, the most impactful

position for a defector to be in is i = 1 which is a position a fairly constrained benefit

compared to future ones. On the other hand, the position that is more beneficial for

the individual agent has a low positive effect for the group. The most beneficial defector

positions for the group have fairly low evolutionary pressure.
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Figure 8.13: Comparison of individual and group success when an uncooperative agent
is present in position i (aggregate strategy). (a): difference between uncooperative agent in
place d, and cooperative agent in place d for d∈[0,8], in a range of a ∈(0,1). The plotted value
is the uncooperative agent’s p(A)i minus the cooperative agent’s p(A)i in the same position; zero
means it makes no difference to be uncooperative, positive means it pays more to be so.
(b): difference between group with an uncooperative agent in place d for d∈[0,8] and group with
only cooperative agents, for a range of a ∈(0,1). The plotted value is the E(nA) of the group
with an uncooperative agent in position i, minus the E(nA) of the group without an uncooperative
agent in that position; zero means it makes no difference whether there is an uncooperative agent,
and negative means it’s worse for the group to have an uncooperative agent in that position.
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Overall, by comparing Figures 8.13(a) and 8.13(b) we notice that it is most likely that a

defector will have a negligible or positive impact for the group: the highest evolutionary

pressure is for agent i=8 at a value of 0.4 < a < 0.6, which will not affect the value of

E(nA); the most impactful case for the group would be that of agent i=1 ‘defecting’, which

is a case with quite low evolutionary pressure.

8.3.2 Majority

Below are the plots for agents personally optimising in an evolutionary stable group, when

both are using the majority strategy. All values of si ̸= sESS with some being lower and

some higher that it compared to the case of a collectively optimal group where all values of

si were higher (Figure 8.5), with the tendency being to increase the si value as i increases

(but not in a ‘linear’ as, as a pattern similar to that of the collectively optimal group

occurring.
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Figure 8.14: Evolutionary stable s, and individually optimal si for all agents in group
of n = 5 using the simplified strategy. The first agent (agent 0) has no available social
information, hence her s is irrelevant. For all the other agents, they all have values of si
larger than sESS .
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Figure 8.15: The difference between P (A)i for agent i using si, minus her P (A)i using
sESS , for all i positions in a group of 8 agents with a = 0.4 (simplified strategy). Higher
positive values may indicate a stronger pressure to do so, while lower values a lower one.

Again, in the case of the evolutionary stable group the evolutionary pressure also looks

different to the one from the case of the collectively optimal group (Figure 8.15). Now

the first agent with social information has the highest evolutionary pressure out of all

agents in the group; this is followed by no evolutionary pressure for the second agent with

social information, and following that all subsequent agents have a slightly increasing

evolutionary pressure.

This makes sense if we consider each agent being the deviating one at a time: agent i=1

has access to some unbiased social information from agent i=0, and hence makes sense that

being more social pays off. Agent i=2 has access to the unbiased information from agent

i=0 and the biased information from agent i=1; in this case being more social than the

group does not contribute a higher benefit, as the decision of agent i=1 is not informative

enough. Agent i=3 has access to the unbiased information from agents i=0 and i=2,

and hence gets some benefit from being more social that the rest of the group. Since the

majority strategy does not amplify bias down the line, from this point forward it makes

sense for each agent to be increasingly more social (since all agents from i=3 onwards

have enough social information without bias amplification). This is a general trend for all

values of a, as shown in Figure 8.16(a).
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Figure 8.16: Comparison of individual and group success when a selfish agent is present in position
i (simplified strategy). (a): difference between cooperative agent in place d, and defector in place d
for d∈[0,8], in a range of a ∈(0,1). The plotted value is the cooperator’s p(A)i minus the defector’s
p(A)i in the same position; zero means it makes no difference to defect, positive means it pays
more to be selfish.
(b): difference between group with only cooperative agents, and group with defector in place d
for d∈(0,8), in a range of a ∈(0,1). The plotted value is the clean group’s E(nA) minus the group
with defector at place d E(nA); zero means it makes no difference whether there is a defector, and
negative means it’s worse for the group to have a selfish agent in that position.
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Overall, by comparing Figures 8.16(a) and 8.16(b) we notice that agent i=1 has the highest

evolutionary pressure to personally optimise, which corresponds to a case that will be the

most beneficial for the group overall as it translates to a higher value of E(nA). All other

agents have a negligible evolutionary pressure, and the effect of the group would be equally

negligible or non-existent.

8.3.3 Dynamic

Below are the plots for agents personally optimising in an evolutionary stable group, when

both are using the dynamic strategy. All values of si ̸= sESS with some values of si being

lower and some higher than sESS (Figure 8.17), with the tendency being to increase the

si value as i increases (in a pattern similar to that of the collectively optimal group –see

Figure 8.8).
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Figure 8.17: Evolutionary stable s, and individually optimal si for all agents in group
of n = 5 using the dynamic strategy. The first agent (agent 0) has no available social
information, hence her s is irrelevant. For all the other agents, they all have values of si
larger than sESS with agent number 1 having the lowest one, and then increasing values
of si as rank increases.
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Figure 8.18: The difference between P (A)i for agent i using si, minus her PAi using sESS ,
for all i positions in a group of 8 agents with a = 0.4 (dynamic strategy). Higher positive
values may indicate a stronger pressure to do so, while lower values a lower one.

Again, in the case of the evolutionary stable group the evolutionary pressure also looks

different to the one from the case of the collectively optimal group (Figure 8.18). Now

the first agent with social information has the highest evolutionary pressure out of all

agents in the group; this is followed by no evolutionary pressure for the second agent with

social information, and following that all subsequent agents have a slightly increasing

evolutionary pressure.

This makes sense if we consider each agent being the deviating one at a time: agent i=1

has access to some unbiased social information from agent i=0, and hence makes sense

that being more social pays off. Agent i=2 has access to the unbiased information from

agent i=0 and the biased information from agent i=1; since this is the case of the dynamic

strategy, the assumption is that agent i=1’s choice incorporates the information from agent

i=0 and hence is more informative from the information she would be providing if using

one of the static strategies (ie the aggregate or the majority) and so it makes sense for

agent i=2 to be more social than the group, but less social than agent i=1 since the social

information she has access to is more biased. Agent i=3 has now access to more biased

than unbiased information and hence gets no benefit from being more social that the rest

of the group. From that point onwards (ie from agent i=4 on), there is enough trustworthy

social information (which is not amplifying bias, as this is not a property of the dynamic

strategy) and hence there is an increased benefit to being more social than the rest of the

group. This is a general trend for all values of a, as shown in Figure 8.19(a).
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Figure 8.19: (a): difference between cooperative agent in place d, and defector in place d for
d∈[0,8], in a range of a ∈[0,1]. The plotted value is the cooperator’s p(A)i minus the defector’s
p(A)i in the same position; zero means it makes no difference to defect, positive means it pays
more to be selfish.
(b): difference between group with only cooperative agents, and group with defector in place d
for d∈[0,8], in a range of a ∈(0,1). The plotted value is the clean group’s E(nA) minus the group
with defector at place d E(nA); zero means it makes no difference whether there is a defector, and
negative means it’s worse for the group to have a selfish agent in that position.

Overall, by comparing Figures 8.19(a) and 8.19(b) we notice that agent i=1 has the highest
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evolutionary pressure to personally optimise, which corresponds to a case that will be the

most beneficial for the group overall as it translates to a higher value of E(nA). All other

agents have a negligible evolutionary pressure, and the effect of the group would be equally

negligible or non-existent.

8.4 Effect of Group Size

The collectively optimal and evolutionary stable values of s depend on group size, with

a tendency to decrease as group size increases. This is due to the fact that they are

calculated as the best strategy on average for an agent assuming all possible positions

within a group: hence for larger groups, bias propagation must be taken into account

since it can negatively impact later positions, thus driving these values down (Figure

8.20).
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(d) sESS , a = 0.7

Figure 8.20: Dependence of sopt and sESS on group size for the aggregate strategy.

The majority strategy on the other hand don’t face the same issue with bias amplification.

For that reason the values of both sopt and sESS is higher compared to the corresponding

values for the aggregate one, with sESS additionally having an increasing (rather than

decreasing) trend (Figure 8.21).
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Figure 8.21: Dependence of sopt and sESS on group size for the majority strategy.

Either way, both for the aggregate and the majority strategies it appears that the values

of sopt and sESS ‘slow down’ as group size increases, possibly indicating a plateau. Since

these results are preliminary, this is simply a direction for future research rather and

should not –at this point– be taken at face value.

8.5 Discussion

This chapter explores the evolution of sociality of individual agents within a group, when

assuming unmixed groups. In unmixed groups, each agent is fixed in one position, therefore

it no longer makes sense to consider the average behaviour over time as now the agents’

performance during decision-making is linked to their position i inside the sequence.

I assume groups with agents in fixed positions, where every agent but one (whom I call

uncooperative) is employing the collectively optimal level of sociality sopt. In that case

the uncooperative agent, by deviating from the commonly used sopt is able to achieve a

higher value of P (A)i compared to when abiding to sopt. I found that regardless of the

uncooperative agent’s position i in the sequence, and regardless of the strategy employed

by the group, the uncooperative agent benefits most by employing a personally optimal

value si that is different from sopt. This is to be expected, since the collectively optimal

value of s is not evolutionary stable and as such vulnerable to deviators (shown in more

detail in Chapter 5). While it is clear that si ̸= scoli, the exact way is not linear; there

is a variety depending on the strategy (for instance, the trend is quite different for the

aggregate and the majority strategy), while specifically for the aggregate strategy there

is an overlap for si for very low values of a (see Figure 8.1). Further work is require to
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provide a deeper understanding of these.

A similar behaviour is observed when considering agents personally optimising within an

evolutionary stable group: in this case, agents adopting si ̸= sESS are able to achieve a

higher value of P (A)i for all positions and strategies considered. Unlike in the case of the

collectively optimal group, this is not as obvious as not the group’s value of s = sESS

in evolutionary stable, meaning that there is no value of s ̸= sESS able to outperform

sESS . For this reason, we expect that the uncooperative agents do not remain in these

for long. In other words, imagine s6 being the most successful strategy in a group with

originally sESS ̸= s6 and s6 eventually becoming dominant. I expect that such a group

would then be susceptible to invasion by other s′ ̸= s6 and will eventually return to the

original group’s sESS .

The effect of an uncooperative agent in position i was also explored. Agents early on in

the sequence have the potential to be more impactful for the overall group performance as

their decisions affect a large proportion of the group. The impact an uncooperative agent

has on the group’s resulting collective measure E(nA) depends on that agent’s position i,

and whether the group is at a collectively optimal or evolutionary stable condition. For

the case of a collectively optimal group, when the decision-making strategy allows for bias

propagation then the effect of an uncooperative agent can either be harmful or neutral

for the overall group (depending on her place in the sequence), but if not then her effect

can lead to a higher E(nA). For the case of an evolutionary stable group, in the case of

the aggregate strategy it is possible for the uncooperative agent’s effect to be negative

for the group, but in a different way compared to a collectively optimal group as now

the evolutionary pressure for each position is vastly different; for the case of the majority

and the dynamic strategy however, the impact of an uncooperative agents can either be

beneficial of neutral.

To a large degree, whether the presence of an uncooperative agent will be negative towards

E(nA) or not – as well as by how much – depends on the quality (reliability) of social

information she is transmitting. When the decision-making strategy is prone to over-

amplifying bias, then it is mostly negative: in this case, the relationship between group

and individual agents takes the form of a competition, additionally so because of the

coincidence between the position with the highest evolutionary pressure being the most

harmful one for the group. On the other hand, when the employed strategy does not lead

to an intense propagation of bias the presence of an uncooperative agent can often times

have a positive effect for the rest of the group. In these cases there is no longer a conflict

of interest between agent and group; in some cases, it can even be equally beneficial for

the agent in the position under the most evolutionary pressure to employ si, and to the

group she is in.

A clear effect of environmental uncertainty in evolutionary pressure & effect of uncooper-

ative agent is also demonstrated in the above analysis. Environments of low uncertainty

(low values of a) mean that regardless of place in the sequence or employed strategy, the
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agents have more reliable personal information; this also means that the available social

information will be equally more reliable compared to cases of higher values of a, as it

results in prior decisions being more accurate. This results in generally lower evolutionary

pressure to be uncooperative for lower values of environmental uncertainty compared to

higher values, as in this case they already obtain high enough values of PAi and an increase

in sociality wouldn’t increase it as mush as it would for more uncertain environments. To

this there is one exception, that of the first agent with access to social information em-

ploying the aggregate strategy, due to the nature of this strategy. On the other hand

environments with high uncertainty (high values of a) result in poor personal information,

and subsequently less reliable social information, as now the previous decisions are more

prone to mistakes. This results in lower evolutionary pressure compared to lower values

of a, as in that case the agents only have access to very unreliable social information, to

which there is no benefit in over-trusting as that would result in poorer values of PAi .

This chapter provides some insight into the evolutionary dynamics of individual agents in

groups, as well as into the relationship between agent and group and its dependence on

several factors. It is worth to note at this point, two elements missing from this analysis

that are the logical next steps for future research. The effect of group size has not been

explored enough here. Group size is an important factor in social groups; in this case

it is especially important as the group size N determines what Sopt is, so it also affects

the values si, and as shown in the preliminary results there might be a limit for its value

as group size increases. Different group consistencies are also not considered here, and

notably groups where everyone has evolved to be personally optimal.

For unmixed groups, a reasonable assumption is that the agents will individually adapt to

their specific positions. So in a group where everyone has evolved to be uncooperative (i.e.

optimise their PAi instead of E(nA)), the focal decision-maker j has a different problem:

she now has access to increasingly dependent social information. Since the agents now care

solely about the information they consume (and not about the information they provide)

they follow more strongly, hence not utilising their own personal information. So agents

further back in line will no longer have access to an added layer of information, like in the

previous case. The expectation is that in this case, the agents will evolve to a different

value of personally optimal behaviour s′i ̸= si.
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Chapter 9

Conclusions

The work presented in the chapters above (and especially in Chapters 5, 7, 6 and 8

that present the original work conducted during this PhD) used a binary decision-making

model to explore some fundamental aspects of social decision-making. This final chapter

summarises the main contributions of this work, and outlines some directions for future

work that naturally follow from it.

9.1 Main Contributions

9.1.1 Evolutionary Stability

Rather than viewing sociality (in this case, following social information during decision-

making) as just an observed trait, this thesis considers it an evolved one in the principle

that ‘nothing in biology makes sense except in the light of evolution’ [Dobzhansky, 2013]

and as such observed behaviours of animals (and groups of animals) should always been

taken as evolutionarily rational instead of plainly rational. This approach allows for the

study of the evolution of sociality in groups navigating uncertain environments, with its

main contribution being the analysis of the long-term effects this has on groups obeying

an intuitive adaptation process.

This added attribute is a simple yet important one. While sequential binary decision-

making has a variety of appropriate applications, some considering only short time-scales,

both it and the chosen model have been used in contexts where this adaptation process is

important. By adding this assumption, I was able to determine a necessary constraint on

the level of sociality of agents tied to the environmental uncertainty, which was not pre-

viously considered. By doing so, I have provided an important guideline for experimental

researchers attempting to apply their data to this model.

Moreover, by considering a purely theoretical model I was able to gain generalisable insight

into adaptive behaviours that have previously been characterised as ‘irrational’, such as

the tendency of animal groups to become over-social (instead of evolving to be optimal).

By generating the long-term evolutionary tendencies of groups without predisposing them
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to behave in an expected way, I was able to contextualise this over-sociality as an adaptive

behaviour rather than a mystery.

9.1.2 Use of Social Information

An important theme throughout this work is the use of social information provided by

conspecifics, during sequential binary decisions. This work analysed the effect that differ-

ent decision-making rules have on the evolution of sociality of heterogeneous groups, as

well as the role of group size in the existence of an evolutionary stable strategy among the

ones considered here. Lastly it observes the existence of such a strategy in the case of very

large groups, where the effect of small perturbations (in the form of a single agent employ-

ing a different strategy) is less significant for the overall group. Additionally Chapters 5

and 6 explored the effect of different decision-making strategies in the final probabilities

of different configurations between the available options; it was shown computationally in

Chapter 5 and analytically in Chapter 6 that strategies that allow for the accumulation

of bias over time (and hence for the emergence of consensus decisions, such as all agents

of the group choosing the same option) are also the ones that are prone to cascades.

The final contribution of this work is in regards to the relationship between agents in

a group. By considering unmixed groups where the agents remained in fixed positions

within the sequence it was possible to consider the variance in personal sociality between

the different positions; since each position has access to more (or fewer) prior decisions,

this directly translates to the reliability of this social information. Due to this effect, the

evolutionary pressure for agents to personally optimise their sociality instead of the one

of the group (as it is the case in well-mixed groups) differs between positions within the

group, and so does the effect of a deviating agent for all the following decisions and the

resulting collective group outcome. By exploring this effect for the three decision-making

rules considered throughout this work (the aggregate, the majority and the dynamic) I

showed that whether the deviating agent compromises the rest of the group (i.e. whether

her impact is negative for the resulting collective outcome compared to the case where

she employs the collectively employed level of sociality) depends on the decision-making

strategy. Specifically I found that this is only the case for the aggregate rule, where social

bias has an important and increasing effect, while in the case of the other two rules the

effect of a deviating agent can even have a positive effect on the group. This result is

important as it challenges the notion of direct competition between group and individual,

as well as the notion that there is an inherent conflict in goals between the two. This result,

stemming from an evolutionary analysis with very minimal initial conditions provides a

wider framework to understand these dynamics.

9.2 Directions for Future Work

In this work I assume groups of identical agents. These agents navigate an environment

with uncertainty a and have an adaptable trait described by the parameter s. The evo-

lution of trait s is driven by the fitness of the decision-making rule being used: in this
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context, fitness refers to the value of parameter s that results in the highest value of choos-

ing the best option. This value is calculated computationally using python’s ‘optimize’

function. The concept of a rare mutant taking over the population is applied following

the above. The mutant will have a relatively better fitness if her value of s grants a higher

probability for choosing the best option, compared to if she employs the strategy of the

group. Starting from this model, we can formulate several naturally occurring questions,

here separated by theme.

9.2.1 Group Composition

Only homogeneous groups were considered here, yet many groups in nature are heteroge-

neous with many operating on a distinction of ‘leaders’ and ‘followers’, where the former is

investing in acquiring information and making decisions, and the latter in social behaviour

(i.e. following the social cues provided by the leaders) [Guttal and Couzin, 2010]. Re-

search done on the matter usually work with theoretical models build on observations or

actual data, and aim at understanding the effect of heterogeneity in the groups, and how

this contributes to these groups demonstrating collective behaviour [Aplin et al., 2014].

The framework I propose here can contribute to our understanding of heterogeneity in

groups: one direction is to create groups where agents have different personal information

a and investigate how this affects the collectively optimal and evolutionary stable values

of sociality (sopt and sES respectively) in the case of a well mixed group, as well as the

personally optimal si for unmixed groups.

Additionally, this framework can be used to investigate the emergence and maintenance

of heterogeneous groups. Heterogeneity can lead to weaker social cohesion and eventual

group fission [Conradt and Roper, 2000], while sourcing information from agents with

different preferences can be non-informative [Mann, 2020]; nevertheless heterogeneous

groups are observed in nature. Using the approach outlined in this thesis, one can explore

heterogeneity as the result of balancing personal and collective optimality, for instance

by finding a case where the agents of a group increase the collective measure E(nA) as a

result of optimising their personal P (A)i.

9.2.2 Cost

Additionally I only considered cases where there was no cost in employing different

decision-making rules, yet in nature there is usually a trade-off between more or bet-

ter information and cost (in the form of an increase in the required processing time, or a

larger body size and caloric needs). Extensions to this model may additional investigate

reasonable cost functions as an added feature to the decision-making strategies and study

the differences in outcome between both the analysis of the distinct strategies, as well as

the dynamics between them. For example, it is reasonable to expect that the aggregate

strategy – which has so far been the evolutionary stable one for infinite sized groups –

may cease to be it as intuitively it should be more costly to employ compared to both the

majority and the dynamic. We expect a difference in the dynamics between the strategies
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in the case of finite groups as well; assuming that the costs are proportional to complexity,

there may be a clearer pattern in terms of which other strategies can invade each.

9.2.3 Evolutionary Dynamics

This work was primarily computational and based on a specific model, however many of the

concepts used for the assumptions stem from a different framework: that of evolutionary

game theory. Evolutionary game theory provides a blueprint for studying the evolution of

interactions in groups, where they are framed as pairwise interactions and analysed using

either differential (in the case of infinite groups) or stochastic equations (in the case of

finite groups).

By abiding to the formal formulations of Evolutionary Game Theory, more generalisable

analytical results can be obtained regarding the main themes of this study: invasion and

evolutionary stability. For instance, Chapters 5 and 7 examine the invasion of a single

invader in an otherwise homogeneous groups and found the existence of an equilibrium for

this process. A more complete analytical approach, such as using a fitness equation such

as Equation 3.12 the existence of more equilibrium points can be explored between two

strategies in the case of an infinite size group.

The computational nature of the present analysis also left some blind spots such as the

amount of ‘time’ needed for said equilibrium to be reached. This can be complemented if

the analysis is instead performed by using a Moran process (presented in a fair amount

of detail in Chapter 3). In that way, by determining different payoffs and simulating the

games we can obtain results that will additionally include the amount of time needed to

reach the equilibria. Using a Moran process additionally allows to consider more complex

interactions. Costs, which are absent from the model analysed in this thesis, can be

included an the effect they have on the evolutionary stability of the different decision rules

can be extracted and compared to the results of the present work. Variations of neutral

and random drift can also be considered to phrase strategies with different fitness, and a

more robust comparison can be made between them.

The influence of group size can also be explored in a more consistent way. Evolutionary

game theory provides separate frameworks for working with infinite and finite groups,

based on the principle that in the latter stochasticity has a significant effect which in the

case of infinite groups is negligible and may be ignored. A qualitative difference between

the evolutionary dynamics of decision-making rules was observed in the work presented

in Chapter 5 between finite and infinite groups, which can be interpreted to reflect this

important distinction. By modeling the same pairwise strategy interactions for the two

cases (i.e. finite and infinite groups) we can derive more robust results as well as explore

the existence of a limit group size where a transition between the two kinds of dynamics

are observed.

140



9.2 Directions for Future Work

9.2.4 Bias Propagation

The preliminary analysis shown in Chapter 6 indicates that different decision-making rules

lead to different long-term traits in the infinite group limit. It specifically demonstrates

that the aggregate decision-making rule that leads do bias accumulation over time allows

for the formation of information cascades (an event that occurs with a positive probability),

while the simplified rule that does not accumulate bias in the same straightforward way

will not lead to cascades.

The analysis here was focused on exploring the progression of decisions for the clear-cut

case where the agents were observing information in regions of either x > 0 or x < 0. This

has provided insight into the behaviour of a group under a stable social bias (i.e. social

bias indicating only option A or option B), while the deviation from this that was explored

was that of the first return to the origin x = 0 after having spent time in x ̸= 0. What

is not addressed is the behaviour of a group that is transitioning between the regions of

x > 0 and x < 0.

Overall, additional work is required for this to be robustly shown analytically since at

this moment this result is weak. One specific future direction at this stage, is exploring

the contradiction that arises from the long-term behaviour of the dynamic rule; while in

Chapter 5 it is proposed that the value of s of a group needs to be constrained for a group

of finite size, in Chapter 6 it follows that in order to reach the optimal outcome (A being

chosen more frequently), the value of s → ∞ as the group size gets larger. It is interesting

to further examine this point, to better determine the relationship between group size and

value of s.

Lastly, while it was possible to observe a connection between bias propagation and consen-

sus decisions for the simplified versions of the model (namely the aggregate, the majority

and the dynamic strategies), this was not done for the dependencies strategy. An equally

simple model cannot be used for this strategy, given its more complex nature that does

not permit the use of Markov chains as the decision-making is not memoryless; as a con-

sequence finding long-term tendencies was not attempted outside of Chapter 4 where the

strategy was explored using computational tools. It would however be interesting to ex-

plore a more analytical framework to describe the long-term tendencies of the dependencies

strategy, and observe whether this is different or similar to any of the simplified version at

the infinite size limit. Such an analysis may also show whether the dependencies strategy

collapses to one of the simplified cases considered here, and if so under what conditions.

9.2.5 Optimisation

The work presented in Chapter 8 shows how sociality evolves in relation to an agent’s

place in the sequence (along with a and strategy), and how this is always different to the

collectively optimal one. A baseline case was explored here: the one where all other agents

are employing the collectively optimal value of sociality sopt which is known from Chapter

5 to be unstable. This means that although the results of Chapter 8 are still informative

141



9. CONCLUSIONS

and provide novel insight into those dynamics, some aspects of them were – to some extent

– expected. Future work can explore the results of this study but for the case where all

other agents in the group employ the evolutionary stable value of sociality sES instead.

Additionally, as seen in Chapter 8, depending on i each agent has a different distance from

sopt. This raises the question of whether there is a more complex strategy, that would still

allow agents to use si ̸= scol while at the same time keeping the optimal E(nA) – or at

least have it be close to its ‘ideal’ value. This question can be explored both for the cases

where the group employs sopt and sESS .
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Gómez-Nava, L., Lange, R. T., Klamser, P. P., Lukas, J., Arias-Rodriguez, L., Bierbach,

D., Krause, J., Sprekeler, H., & Romanczuk, P. (2023). Fish shoals resemble a

stochastic excitable system driven by environmental perturbations. Nature Physics,

1–7.

145

https://doi.org/10.1016/j.tics.2013.12.012
https://doi.org/10.1098/rstb.2002.1065


REFERENCES

Goss, S., Aron, S., Deneubourg, J.-L., & Pasteels, J. M. (1989). Self-organized shortcuts

in the argentine ant. Naturwissenschaften, 76 (12), 579–581.
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