
Stochastic Modelling Of Viral Assembly
Efficiency Across Capsid Geometries

Samuel Hill

PhD

University of York
Mathematics

September 2024

Abstract

Viruses are a form of obligate parasite which require the metabolism of a host cell to replicate.
During infection of the host cell, viruses need to efficiently assemble new viral progeny and
have evolved many strategies to achieve this. For icosahedral ssRNA viruses, capsid proteins
and genomic ssRNA co-assemble without the need for subsequent packaging by a terminase.
Two features that are critical for efficient assembly are the capsid’s overall geometry and
the arrangement of possible contacts between the RNA and capsid proteins. Thus, a
natural question is whether there exist pairings of capsid geometries and arrangements of
RNA contacts which result in high assembly efficiency. In this thesis, a mathematical and
computational framework is developed which uses the symmetry of capsids to generate
the adjacencies of all capsomers, based only on the information from one fundamental
domain. This allows the enumeration of all possible icosahedral capsid geometries and
RNA arrangements up to isomorphism, which can be used alongside a combinatorics
program to count the possible RNA paths within a given pairing. This is implemented
alongside a version of Gillespie’s SSA algorithm, which stochastically models the assembly
of a capsid with these geometries and RNA arrangements, generalizing the simulation of
capsid assembly in ssRNA viruses. The first capsid investigated is STNV, a T = 1 virus.
During this investigation, a set of limitations on the RNA arrangement which resulted in
high efficiency assembly and repetition of arrangements was identified, showing similarity
to experimental results. Next, by modelling each of the three T = 3 capsid geometries or
tilings, significant effects on assembly for different RNA arrangements were identified, with
some arrangements leading to higher assembly yields. Finally, disassembly is shown to
have significant differences with assembly in the T = 3 class of capsid geometries, which
has important consequences for understanding the uncoating process during infection.

2

Contents

Abstract 2

Contents 3

List of Tables 6

List of Figures 7

Acknowledgements 10

Author’s Declaration 11

1 Introduction 13

2 Modelling Reaction Kinetics In Biological Systems 16
2.1 ODE Based Models . 16
2.2 Stochastic Based Modelling . 18

2.2.1 Stochastic Simulation Algorithm 18
2.2.2 Inversion Generating Method For Sampling 20
2.2.3 Algorithm For The Direct Method 22
2.2.4 First Reaction Method . 23
2.2.5 Improvements To The Direct Method 24
2.2.6 Tau Leaping . 25

2.3 Virus Assembly Biology . 28

3

4 Contents

3 Models Of Equilibrium And Quasi-Equilibrium In Capsid As-
sembly 33
3.1 Background To Dodecahedral Models 34
3.2 Apparent Rate Of Capsomer-Capsomer Binding In An RNA Assem-

bly Model . 39
3.2.1 KDapp In The Absence Of RNA 41
3.2.2 Mean First Passage Time 42
3.2.3 Calculation Of kapp

f (j) And kapp
b (j) Using MFP Time 44

3.2.4 Calculating KDapp In The Presence Of RNA 47
3.3 Simple Model Of Quasi-Equilibrium 51

3.3.1 Partition Theory . 52
3.3.2 Partitions Of 12 Capsomers 52

4 Generalised Stochastics Models For Simulating Capsid Assembly 60
4.1 Issues With Using ODE Methods 61
4.2 Generalised Tiling Model . 62

4.2.1 Discussion Of RNA Graphs 71
4.3 Simulating Reaction Dynamics . 71

4.3.1 Assembly Reactions . 72
4.3.2 Finding Possible Capsid Reactions 75
4.3.3 Non-Capsid Reactions . 77
4.3.4 Choosing A Reaction . 79

5 Statistical Analysis Of Capsid Assembly Pathways 83
5.1 Combinatorical Analysis Of Hamiltonian Paths For General Capsids 84
5.2 Analysis Of RNA Paths From Stochastic Simulations 85

5.2.1 Comparison Of Completed Paths 86
5.2.2 Analysis Of Intermediate Structures During Assembly 89

5.3 Imaging Of Paths . 92

6 Modelling STNV, A T = 1 Virus 95
6.1 Geometry Of STNV Capsid . 95
6.2 Position Of RNA Contacts Within Capsid Shell 97
6.3 Choice Of RNA Graphs . 99
6.4 Hamiltonian Path Combinatorics In STNV 101
6.5 Optimisation Of STNV Assembly Efficiency 105

Contents 5

6.6 Analysis Of Optimised RNA Results 110
6.6.1 Effect Of Changing The PS Distribution 110
6.6.2 Observed Frequency Of Sampled Paths 112

7 A General Model Of T = 3 Capsids 117
7.1 Assembly In The Absence Of RNA 119

7.1.1 Comparisons Between Different Tilings 120
7.1.2 Considering Non-Uniform Capsomer-Capsomer Interaction

Strengths . 123
7.1.3 Further Non-Uniform Interaction Strength In Rhomb Tilings 130

7.2 Assembly In The Presence Of RNA 132
7.2.1 RNA Graphs For T = 3 Capsids 134
7.2.2 Optimisation Of The PS-Capsomer Affinity Distribution . . 139
7.2.3 Analysis Of Assembly Paths And Intermediates 147
7.2.4 Intermediates Bar Chart . 151
7.2.5 Tree Graphs Of Lowest Energy Pathways 158
7.2.6 ∆Gbond Fitness Tables In Presence Of RNA 164

7.2.6.1 Effects Of Changing Uniform ∆Gbond 164
7.2.6.2 Effects Of Changing Non-Uniform ∆Gbond 165
7.2.6.3 Non-Uniform Variation Of All Three ∆Gbond Values

In The Rhomb Tiling 167
7.3 Conclusion . 171

8 Examining Disassembly Using Stochastic Simulations 173
8.1 Prior Work On Disassembly . 174
8.2 Methods Used To Model Disassembly 175
8.3 Results Of Disassembly Simulations 176

9 Discussion 180
9.1 Limitations and Potential Future Work 182
9.2 Conclusion . 184

A Kite Side Length Proof 186

B Algorithms 188

C Tile File Definitions 200

C.1 How To Create Tile Files . 202
C.2 Tile File Examples . 206

References 209

List of Tables

3.1 Table Of Statistical Factors In A Dodecahedral Capsid’s Assembly . . . 37
3.2 Table Of KDapp For A Range Of ∆Gprot And ∆Grna Values 48
3.3 Table Of ∆Gapp For A Range Of ∆Gprot And ∆Grna Values 49
3.4 A Selection Of The 77 Partitions Of 12 Capsomers 59

6.1 Table Of Permitted Edges In STNV’s RNA Graph 101
6.2 Table Of STNV’s RNA Graphs’ Initial Yield And Total Number Of

Potential Paths . 103
6.3 Ratio Of Npath For Graphs With And Without Edge 1 105
6.4 Assembly Yields For Post-Optimisation RNAs And Comparative RNAs

For Reference . 109

7.1 Table Counting Interactions In A T = 3 Capsid 119
7.2 Table Of All Available T = 3 Connections As Rotations 135
7.3 Table Containing A Numbering Scheme And Isomorphism Groups For

T = 3 RNA Graphs . 136
7.4 Table Of T = 3 Capsid Assembly Yields For A Range Of RNAs 146
7.5 Table Of Yield For Tri And Kite RNA Graphs Using Nucleating And

Uniform RNAs . 153
7.6 Table Containing Scales For Heatmaps 171

6

List of Figures 7

List of Figures

2.1 Examples Of Quasi-Equivalence Theory’s Tilings 29
2.2 Icosahedrons Embedded Into Further Lattices 31

3.1 Example Of RNA Structures . 34
3.2 Examples Of Intermediates’ Capsomer Graph 35
3.3 How To Determine Dodecahedral Capsid’s Statistical Factors 38
3.4 Dodecahedral Capsid’s Markov Chain States 40
3.5 Markov Chain States And Transitions 42
3.6 Line Graph Plotting Yield Against ∆Gprot 50
3.7 The Connectivity Graph For The Partitions Of 12 Capsomers 53
3.8 Line Graph Of The Smallest Eigenvalues Plotted Against ∆G 56
3.9 Graph Showing Populations Of Steady States For A Range of ∆G Values 57

4.1 Connectivity Graph Of All Intermediates In A Dodecahedral Capsid . . 62
4.2 Flow Diagram Summarising Section 4.2 62
4.3 Examples Of Capsid Tilings . 63
4.4 3D Rendering Of Example Capsid Tilings’ Capsomer Graphs 64
4.5 RNA Graph Within A Dodecahedral Capsid 65
4.6 Enumeration Of Fundamental Domains And Axes 67
4.7 Example Of Permutations On A Symmetric Graph 70
4.8 Permissible Reactions Involving PSs 73
4.9 Examples Of Articulation Points . 74
4.10 Flow Diagram Summarising Tarjan’s Articulation Algorithm 74
4.11 Flow Diagram Summarising Section 4.3.2 75
4.12 Example Of An Intermediate And The Available Reactions 78

8 List of Figures

4.13 Flow Diagram Summarising Section 4.3.4 79
4.14 Flow Diagram Summarising Section 4.3.4 80
4.15 Flow Diagram Summarising Section 4.3.4 81
4.16 Example Of A Binary Tree . 81

5.1 Flow Diagram Summarising Section 5.1 83
5.2 Flow Diagram Summarising Section 5.2.1 86
5.3 Demonstration Of Why Numbering Edges Cannot Be Easily Generalised 88
5.4 Flow Diagram Summarising Section 5.2.2 89
5.5 Flow Diagram Summarising Section 5.3 93

6.1 Surface Of STNV . 96
6.2 Net Of The Surface Of STNV . 97
6.3 The Sequence And Form Of The B3 Aptamer 98
6.4 STNV’s Mutual Exclusion Demonstration 99
6.5 Permitted Edges In STNV’s RNA Graph 100
6.6 STNV’s RNA Graphs In 3D . 102
6.7 Example Of A Spanning Subgraph . 104
6.8 Testing The Sampling Of STNV’s Random RNAs 107
6.9 Initial Yields For Random RNA . 108
6.10 Optimised PS Distributions . 109
6.11 Tested Changes To PS Distributions 111
6.12 The Proportion Of Matching Paths From A Stochastic Simulation Of

STNV . 113
6.13 The Optimised Path In STNV . 114

7.1 Planar Representation Of The Three T = 3 Tilings 118
7.2 3D Capsomer Graphs For T = 3 Tilings 119
7.3 Plot Of The Yield For All T = 3 Tilings For A Range Of ∆G Values . 121
7.4 Figure To Indicate The Different Capsomer Interfaces For Kite And Tri

Tilings . 123
7.5 Figure To Indicate The Different Capsomer Interfaces For The Rhomb

Tiling . 124
7.6 Heatmaps Of Assembly Efficiency For A Range Of Interaction Strengths 126
7.7 Heatmaps With And Without A Ramp In The Tri Tiling 127
7.8 cf. from Wei et al [57] . 129

List of Figures 9

7.9 Heatmaps Of Rhomb Assembly With A Fixed Strength For Bond A . . 131
7.10 Heatmaps Of Rhomb Assembly With A Fixed Strength For Bond B . . 133
7.11 The Permitted Edges For The RNA Graph For Each Tiling 134
7.12 Example Of One RNA Graph For The Kite Tiling 137
7.13 Example Of Four Isomorphic RNA Graphs 138
7.14 Assembly Yields During Optimisation 141
7.15 Histograms Of The Initial RNAs’ And The Optimised RNAs’ Yield . . 142
7.16 The PS Distribution For The Three Optimised T = 3 RNAs 143
7.17 The Generic RNAs Used In T = 3 Viruses 145
7.18 Graphs That Describe The Assembly Of The Optimal RNAs 148
7.19 Visualisation Of Other Generic RNAs 152
7.20 Intermediates Bar Chart Of Dodecahedral Assembly 154
7.21 Testing Number Of Paths Needed For A Representative Sample 156
7.22 Intermediates Bar Chart Of T = 3 Assembly 157
7.23 Section Of A Tree Of The Lowest Energy Intermediates 159
7.24 Tree Diagram Of Most Stable Intermediates In A Dodecahedral Capsid 161
7.25 Trees Of Most Stable Assembly Intermediates In Kite And Tri Tilings . 163
7.26 Effect Of Changing ∆Gbond Across A Range Of RNAs And RNA Graphs 166
7.27 Heatmaps Of Assembly Efficiencies With RNA Present 168
7.28 Figure Showing How The Capsomer-Capsomer Interactions Sit In RNA

Graph R14 . 169
7.29 Heatmaps From Changing ∆Gbond Values In A Rhomb Tiling With

Three Different Interfaces . 170

8.1 Disassembly Yield Graphs . 177
8.2 Demonstration Of Hysteresis Between Assembly And Disassembly . . . 179

A.1 A Kite Embedded In An Icosahedral Net 186

C.1 cf. from Figure 4.3 . 203
C.2 cf. from Figure 4.6 . 205

Acknowledgements

I first arrived at the University of York in 2016, excited for my Undergraduate studies.
Once here, I found wonderful communities, interesting areas of research and a lovely
city that all made me want to stay. So I started a PhD and now I’ve spent nearly
eight years as part of the University. It will be a strange feeling to finally leave.

To begin, I wish to thank my supervisors: Eric Dykeman and Reidun Twarock.
You have both used your wealth of knowledge to give me lots of insight and advice
over the course of my PhD, which was invaluable. I especially appreciate you
reviewing this rather extended document! I also want to thank Farzad Fatehi Chenar
and Rich Bingham, for many conversations and discussions.

Thanks also to my family, who have always supported me. I want to thank the
friends who introduced me to (and then spent countless hours with me) playing
both board games (especially that one) and TTRPGs: Sam Crawford, Ross Ratcliffe,
Simon Hart, Berend Visser, Simen Bruinsma and Beth Dixon, amongst many more.
Thanks to the rest of the PhD (and PostDoc) network, for being such a pleasant
community to be a part of. I am also grateful to the many friends I have made in
York’s wonderful Comedy, Theatre and Climbing communities. Lastly but certainly
not least, I thank Ambroise Grau for the wonderful thesis template he has produced.

10

Author’s Declaration

I declare that the work presented in this thesis, except where otherwise stated, is
based on my own research carried out at the University of York and has not been
submitted previously for any degree at this or any other university. Sources are
acknowledged by explicit references.
Some of the work in Chapter 6 was published as [32] and this work has also contributed
to this thesis.

11

1

Introduction

Typically, existing computational models of virus assembly tend to either model
small numbers of smaller viruses using molecular dynamics simulations [57] or model
many reactions occurring simultaneously and just focus on the dynamics of specific
steps in the assembly [4]. Models that do consider each of a virus’ capsomers distinct
and allow many capsids to exist simultaneously tend to only cover small viruses [19].
Over this thesis, models that can model the assembly of many copies of larger viruses,
whilst still considering each capsomer, are developed. Some techniques are new and
others develop on expanding on existing work. Notably, the results presented in
Chapter 6 which were observed by using techniques described in Chapters 4 and 5
were published [32].

Viruses are infectious biological agents. They cannot replicate on their own, so
they infect living organisms and use their host cell’s machinery to replicate. For
each of the biological kingdoms of life, there are viruses that will infect the members
of that kingdom, from bacteria to animals to plants to fungi.

When a virus infects an organism, this often causes disease, with viruses typically
being parasitic. However there are some viruses that form symbiotic relationships
with their hosts, though these are less common. Parasitic viruses can cause issues
for humans when viruses infect our crops, our livestock and even ourselves.

Historical examples of viruses include Measles and Smallpox, which are thought to
have been infecting people since 400BC and 1500 BC respectively [51, 15]. Between
1855 and 2005, measles is believed to have killed ≈ 200 millions people [40]. In the
20th century alone, Smallpox is thought to have killed up to 300 million people prior
to its eradication in 1980 [31]. Some viruses are better known for large outbreaks
in specific years, such as the 1918–1920 Flu Pandemic caused by Influenza shortly

13

14 Chapter 1. Introduction

after the events of WW1, which is estimated to have killed approximately 50 million
people [11]. Another example is the HIV/AIDs pandemic, which began in 1981 and
has killed over 40 million people [55]. Lastly, COVID-19 is another virus that was
discovered in 2019 and resulted in a pandemic that began in 2020 and has caused
over 7 million confirmed deaths, as of the 6th Jun 2024 [38].

In addition to the massive scale of human suffering caused by viruses, they infect
plants and other animals. Modern examples of viral outbreaks with huge impacts
on agriculture include the Papaya Ringspot Virus, which had an outbreak in the
1990s and nearly destroyed the papaya industry in Hawai’i [53]. Also, an outbreak of
Maize Lethal Necrosis Disease (resulting from a co-infection of a few different viruses)
caused a 10% decrease in the yield of maize grown in Kenya in the 2014-15 growing
season [56]. It is not just plants that can get infected, there are also viruses that
infect livestock, for example Foot and Mouth Disease. In the 2007 Foot and Mouth
outbreak in the UK, over 2000 animals were slaughtered to prevent further infections
and there have been many more outbreaks of this disease across many different
continents [10]. On top of outbreaks, viruses have other impacts on humanity, with
some simply reducing crop growth, some making people unwell for periods of time
and many other effects.

Thus, learning about the viral replication cycle is important, to help reduce the
effects of future outbreaks and diseases. The aspect of this cycle that will be covered
during this thesis is assembly, after a virus has infected a cell. During assembly, the
infected cell is forced to produce copies of the virus’ genome and many copies of
the virus’ Coat Proteins (CPs). Then, these proteins will form the capsid, a protein
shell that contains the genome, before these completed virions are released from the
host cell. This step features the genome, released from its protective capsid shell, so
is a time where drugs could be administered, to reduce the efficacy of the virus.

Initially, Chapter 2 will cover some methods that can be used to model chemical
kinetics. There are a number of ways to do this, including using ODE-based methods,
where large concentrations are treated as continuous. It also covers Stochastic
Methods, primarily Gillespie’s SSA algorithm (or improvements to it), where the
number of proteins and capsids present are treated as being discrete. Lastly, this
chapter covers some relevant virus biology, to assist in modelling their assembly.

Next, Chapter 3 will cover methods of modelling virus assembly that use Equilib-
rium and Quasi-Equilibrium Models. One involves calculating effective reaction rates
for two-step reactions via Markov Chains and using this to calculate the equilibrium

15

point of a simple viral system. The other takes a system made up of a small number
of second order differential equations and then uses partition theory to generate a
list of states and adapt the system, so it is made up of many first order differential
equations. Once the differential equations were all first order, it was simple to
identify the quasi-stable states in the system.

Next, Chapter 4 describes a computational model. This provides a method
that allows simple and convenient input of the capsid’s information, which is then
generalised to the entire capsid using the icosahedral symmetry inherent to the
capsid. Whether these are large or small capsids, the input has a similar complexity.
Once generated, the capsid’s information is stored as a pair of graphs. In addition
to this, the chapter specifies how our stochastic simulation works, alongside some
information about the dynamics of the viral assembly process.

Once a method to model the assembly of viral capsids has been described, a
means to analyse the results of these simulations is needed. Chapter 5 initially covers
a combinatoric approach to how the RNA can sit inside the capsid. Then it takes
the output of the stochastic simulations and performs analysis on how the RNA
sits on the interior of the capsid at the end of the simulation. Following from this,
methods to inspect the intermediate structures that the capsid form during assembly
were also developed. Lastly, visualisation techniques are described.

Next, the methods described in the previous two chapters were used. In Chapter
6, a small virus called Satellite Tobacco Necrosis Virus (STNV) is modelled. As
there is a wealth of experimental data available for this virus, these are used to
augment the modelling and test to see if the model is accurate.

After working on STNV, Chapter 7 considers a class of larger viruses. These
viruses have three different tilings, with differently shaped capsomers, so instead
of focusing on any specific viruses, this chapter investigates the effects of changing
geometries on the assembly.

Most of this thesis has focused upon the assembly of viruses. However, it is not
the only step of a virus’ replication cycle that can be modelled using biochemical
reactions. In Chapter 8, the process of disassembly is briefly covered. Then, using
a small modification to the stochastic simulation, virus disassembly methods are
developed.

2

Modelling Reaction Kinetics In Biological
Systems

In this chapter, the background of the mathematical and biological concepts that
are used throughout this thesis will be presented. It will highlight the uses and
restrictions of ODE based models, cover the advantages and disadvantages of using
Stochastic based models and give details of how viral assembly occurs.

2.1 ODE BASED MODELS

Chemical Kinetics is an important field, for both chemical and biological systems. It
allows for modelling of many systems, from factories to test tubes to cells. However
different systems require different modelling techniques at different levels of coarse-
graining (and adapted to distinct expected settings), each giving a different precision.

To get the highest accuracy in these simulations, molecular dynamics simulations
can be used. However, they take a long time to run, even for small systems over
small time periods. All-atom simulations of viruses have been performed for very
short time periods, e.g. the T = 4 virus HBV, which contains 240 proteins and
consists of 5.9 million atoms [44]. Simpler MD models exist, where each protein can
be treated as a separate particle, which allows much faster computation with the
limitation that assumptions must be made regarding how proteins can interact [57].

The main method used for large systems is known as the Rate Reaction Equation
(RRE), where there are sufficiently many molecules that it is not necessary to simulate
each one individually. It requires setting the system up as a series of ODEs and can

16

2.1. ODE Based Models 17

be written as:
dXi

dt
= fi(X1, X2, . . . , XN) i = 1, . . . , N, (2.1)

which represents a system with N different species. Here, Xi is the number of
molecules of species i in the system and fi can be determined using knowledge of
the reactions involved in the system. The equations show the rate of change in the
number of molecules of each species present. For systems that only include first
order reactions, these equations are trivially solvable by creating a matrix of rates A

such that Ẋ = AX. Its solution is given by:

X(t) =
N∑

i=1
Cie

λitx̂i, (2.2)

where λi and x̂i are the eigenvalues and eigenvectors of A, respectively. Ci is a
constant to be determined from the initial conditions. For second order systems,
analytical solutions can sometimes be found. However, this is usually only possible
in the simplest of systems. For more complex ones, ODE solvers such as the classical
Runge-Kutta method are employed. The RRE can also be written to indicate
the probability of a given species’ presence, as an equivalent formulation. The
above equations assume that the system is at a constant temperature and that it is
well mixed. This method is deterministic and continuous, so it neglects individual
reactions and gives an idea of how the system will advance over time. This is accurate
in systems as small as a test tube, as there are sufficiently many particles present in
the system that treating them as continuous is appropriate. The main issue is that
at the start of assembly, the number of reactants is small, so this method will not be
accurate.

Additionally, virus assembly takes many discrete steps from free capsomers to
completed capsids and can follow a large number of different pathways to assembly,
especially compared to the number of particles present in a cell, so there will typically
be few particles in each state, which means letting it be treated as a continuous
system is not appropriate. Viruses also tend to rely on second order reactions during
assembly, so the trivial solution to the RRE model would not be available, even if the
RRE was appropriate to use. Additionally, another issue ODE models have is that
they need each state and each reaction to be predefined, which means that there is
either a very long process to count and compile a huge number of rate equations, or
the model has to neglect a large number of the intermediates that could be formed
during virus assembly. An example of a model, which neglects all but the lowest

18 Chapter 2. Modelling Reaction Kinetics In Biological Systems

energy intermediates for a dodecahedral capsid, that was proposed by Zlotnick [59],
will be covered in Chapter 3. To model larger and more complex viruses’ assembly,
a model where particles are treated as discrete is needed. This leads to a need for
a stochastic formulation, that does not need to rely on all states being predefined.
This is covered in the next section.

2.2 STOCHASTIC BASED MODELLING

This section will discuss many stochastic methods of modelling chemical kinetics,
based off Gillespie’s SSA method, first published in 1976 [27]. It will follow somewhat
the review paper by Gillespie [29].

2.2.1 Stochastic Simulation Algorithm

Here, the Gillespie Stochastic Simulation Algorithm (SSA) is introduced [27]. This
assumes that the system has a constant volume and is at thermal equilibrium. It also
relies on the assumption that most collisions are elastic, which leads to the positions
and velocities of the particles being randomised (which means the system is well
mixed). We begin by assuming that the system contains N chemical species (Si),
which would be chemicals in a chemical reaction or intermediate structures in virus
assembly. These species have M different reactions (Ri) that can occur between
them. If any of these reactions are reversible, then each direction of reaction will be
treated as a separate reaction, therefore the notation → will be used instead of ⇌.
The state is determined by

x(t) = (x1(t), x2(t), . . . , xN(t)), (2.3)

where xi is the number of particles of type Si present. A reaction Ri can be described
by two terms, vi and ai. The first is a vector, such that if reaction Ri occurs, then the
system will change from x to x + vi, where every element of vi will be a positive or
negative integer, depending on how many reactants are used and how many products
are produced in the reaction. The second, ai(x) is a propensity function, which
can be defined that at time t, ai(x)dt is the probability that Ri will occur before
t + dt. The propensity function is also able to depend explicitly on t. However, we
assume here that it depends only on the state of the system (and so only depends
on t implicitly).

2.2. Stochastic Based Modelling 19

The values of ai(x) can be calculated with knowledge of the reactions. If Ri

is a first order reaction (e.g. Sj → . . .), then ai(x) = cixj, as it just depends on
how fast the reaction occurs (the rate constant ci) and the number of particles that
can undergo that reaction. For a second order reaction of two different species (e.g.
Sj + Sk → . . .), then ai(x) = cixjxk, as there are xjxk different combinations of pairs
of particles to react. This second order rate constant (ci) is slightly different to the
previous one, as it is the rate at which these pairs will collide and react together.
When there is a second order reaction between two particles of the same species
(e.g. Sj + Sj → . . .), then ai(x) = ci

2 xj(xj − 1) with the same rate constant as the
other second order reaction and the xj(xj−1)

2 combinations of two reactant particles.
In biological systems, reactions tend to be only first or second order. In general
chemistry, third (or higher) order reactions (i.e. reactions that have three or more
reactants) do exist but tend to have a short-lived intermediate from two reactants
colliding before the third joins and so can be thought of as the result of two (or
more) successive second order reactions.

For a model system of three species, (S1, S2, S3) = (A, B, C) and three reactions,
R1 : A + B → C, R2 : A + A→ B and R3 : C → 3A, we can find vi and ai for each
i. Reaction R1 is second order, with two different reactants, so v1 = (−1,−1, +1)
and a1 = c1x1x2. The second reaction, R2, is also second order, but the reactants are
from the same species, so v2 = (−2, +1, 0) and a2 = c2(x1−1)

2 x1. The last reaction,
R3, is first order, so has v3 = (+3, 0,−1) and a3 = c3x3.

Every ci relates to the reaction rate constant ki from deterministic chemical
kinetics. For first order reactions, ci = ki. For second order reactions that involve
two particles of different species, ci = ki

V
. For second order reactions that involve

two particles of the same species, ci = 2ki

V
. In these equations, V is the volume of

the system.
To simulate a system, the two key pieces of information that are needed are which

reaction is going to happen next and when it will happen. With these two pieces of
information, the entirety of a system’s reactions can be modelled. To do this, we
define p(τ, i|x, t) to be the probability that the next reaction is an Ri reaction that
will occur between time t + τ and t + τ + dτ , given the system is in state x at time
t. This is sometimes called a reaction probability density function for the space of
0 ≤ τ < ∞ and i = 1, 2, . . . , M . We can state this probability as the product of
the probability no reaction will happen in the interval (t, t + τ), defined as p0(τ |x, t)
with the probability that reaction Ri will occur in the interval (t + τ, t + τ + dτ),

20 Chapter 2. Modelling Reaction Kinetics In Biological Systems

which is aidτ . In a time period where no reaction occurs, ai(x) = ai is a constant.
Together this gives:

p(τ, i|x, t) = p0(τ |x, t) · aidτ. (2.4)

Following from this, consider p0(τ ′ + dτ ′|x, t). This is equal to the product of the
probability that no reaction will happen in the interval (t, t + τ ′) and the probability
that no reaction will happen in the interval (t + τ ′, t + τ ′ + dτ ′), so

p0(τ ′ + dτ ′|x, t) = p0(τ ′|x, t) · (1−
M∑

ν=1
aνdτ ′). (2.5)

Rearranging this gives

p0(τ ′ + dτ ′|x, t)− p0(τ ′|x, t)
dτ ′ = −p0(τ ′|x, t)

M∑
ν=1

aν = dp0(τ ′|x, t)
dτ ′ . (2.6)

Defining a0 := ∑M
ν=1 aν , this can be solved to give p0(τ |x, t) = e−a0τ and therefore

p(τ, i|x, t) = ai · e−a0τ . (2.7)

For this to be useful in a simulation, we need to be able to sample p(τ, i|x, t), to
randomly select which reactions will occur and when. This can be done with the
Inversion Generating Method.

2.2.2 Inversion Generating Method For Sampling

Let P : [a, b] → R be a probability density function, P (x), where P (x′)dx′ is the
probability that x is between x′ and x′ + dx′. Thus, we can define

F (x0) =
∫ x0

−∞
P (x′)dx′ (2.8)

as the probability that x ≤ x0. This results in F (−∞) = 0 and we require F (∞) = 1
for P (x) to be a probability density function. As a result, we have 0 ≤ F (x) ≤ 1,
which is also the range of a uniform random number in the unit interval. So, if we
choose x such that F (x) = r, we can use

x = F −1(r) (2.9)

to generate this random value of x.
To prove that this is true, we must calculate the probability that a random value

of x is between x′ and x′ + dx′. This is equal to the probability that r lies between

2.2. Stochastic Based Modelling 21

F (x′) and F (x′ + dx′), which is simply F (x′ + dx′) − F (x′). Using the definition
of a differential, this can be written as F (x′ + dx′)− F (x′) = F ′(x′)dx′. Recalling
Equation 2.8, we can write

F (x′ + dx′)− F (x′) = F ′(x′)dx′ = P (x′)dx′, (2.10)

which is the desired probability, so Equation 2.9 gives us the desired values for x.
A similar argument can be made for discrete functions. We desire integer i, from

probability function P (i), where P (i′) is the probability that i = i′. We choose a
uniform random number 0 ≤ r ≤ 1. Now, let

F (i) =
i∑

i′=−∞
P (i′) (2.11)

be the probability that i ≤ i′. As before, we have F (−∞) = 0 from the definition
and F (∞) = 1 if P (i) is a valid probability function.

We should take i, such that it satisfies

F (i− 1) < r ≤ F (i). (2.12)

This is also satisfied by choosing the smallest i that satisfies F (i− 1) < r. Again,
we need proof that this results in the desired distribution of i. So we inspect the
probability that i = i′, which is the probability that r is between F (i′) and F (i′− 1).
As r is a uniform random number, this is just F (i′)− F (i′ − 1), which rearranges to
give ∑i′

i′′=−∞ P (i′′)−∑i′−1
i′′=−∞ P (i′′) = P (i′). Which was defined as the probability

that i = i′, so Equation 2.12 gives us a method to calculate i.
Now we need to apply these to the probability distribution given in Equation 2.7.

To begin, we want the τ for the next reaction that is likely to happen, not just τ for
a given reaction, so we define

P (τ) =
M∑

i=1
p(τ, i|x, t) = a0 · e−a0τ . (2.13)

Next, this gives us

F (τ0) =
∫ x0

0
a0e

−a0τ ′
dτ ′

= −[e−a0τ ′]τ0
0

= 1− e−a0τ .

22 Chapter 2. Modelling Reaction Kinetics In Biological Systems

Setting this as equal to a random number r, we get r = 1 − e−a0τ , which can be
rearranged to give 1− r = e−a0τ . Taking logarithms of both sides gives ln(1− r) =
−a0τ , so we can solve for τ to give:

τ = 1
a0

ln
(1

r

)
. (2.14)

(substituting 1− r for r, as they give equivalent distributions in the unit interval).
To cover which reaction occurs, we consider all time, so

P (i) =
∫ ∞

0
p(τ, i|x, t)dτ

= ai

∫ ∞

0
e−a0τ dτ

= ai

a0
.

Thus, F (i) = 1
a0

∑i
i′=1 ai′ . So r will be in the interval:

i−1∑
i′=1

ai′ < ra0 ≤
i∑

i′=1
ai′ . (2.15)

2.2.3 Algorithm For The Direct Method

As shown above, the following equations will generate τ and i with the correct
distributions, as given in Equation 2.7.

τ = 1
a0

ln
(1

r1

)
(2.16)

i∑
i′=1

ai′(x) > r2a0, (2.17)

where r1 and r2 are uniform random numbers in the unit interval and i is the smallest
integer that satisfies the above condition.

These give us the SSA Algorithm (Direct Method):
0. Initialise t = t0 and x = x0

1. At state t, x, evaluate all ai(x) and a0

2. Generate τ, i

3. Advance t← t + τ and x← x + vi

4. Repeat from Step 1 until t ≥ tmax

This can be slow, due to the algorithm calculating every reaction. However, this
does ensure that the modelling is accurate. This is called the SSA direct method.

2.2. Stochastic Based Modelling 23

2.2.4 First Reaction Method

One alternative to the Direct Method is called the First Reaction Method [28].
For this method, M uniform random numbers in the unit interval are generated,
r1, r2, . . . , rM . Then, these are used to calculate:

τi′ = 1
ai′

ln
(1

ri′

)
(2.18)

for all i′ = 1, 2, . . . , M . This gives τi′ , the time until the next Ri′ reaction, for all
reactions. Then, τ = min(τi′) and i = i′′, where τi′′ = min(τi′). This procedure is
less efficient than the Direct Method in systems where there are a large number of
reactions but gives a distribution that is equivalent to the Direct Method.

Assuming there are no other reactions in the interval (t, t+τ), then the probability
of reaction Ri in the interval (t + τ, t + τ + dτ) is Pi(τ)dτ = e−aiτ · aidτ as no other
reactions will have affected the quantity of reactants present in the system.

Let P̃ (τ, i)dτ be the probability that the procedure above will result in an Ri

reaction in the interval (t + τ, t + τ + dτ), so

P̃ (τ, i)dτ = Prob{τ < τi < τ + dτ} · Prob{τν > τ, ∀ν ̸= i}, (2.19)

which is the product of the probability that reaction Ri occurs in the interval
(t + τ, t + τ + dτ) and the probability that reaction Ri is the first reaction to occur.
Here,

Prob{τ < τi < τ + dτ} = e−aiτ · aidτ. (2.20)

Next, considering the second probability,

Prob{τν > τ, ∀ν ̸= i} = Prob
{ 1

aν

ln
(1

rν

)
> τ, ∀ν ̸= i

}
= Prob

{
rν < e−aντ , ∀ν ̸= i

}
=

M∏
ν=1,ν ̸=i

Prob{rν < e−aντ}

and recalling that rν is a uniform random number in the unit interval, we can write

Prob{τν > τ, ∀ν ̸= i} =
M∏

ν=1,ν ̸=i

e−aντ . (2.21)

24 Chapter 2. Modelling Reaction Kinetics In Biological Systems

Thus,

P̃ (τ, i)dτ =
M∏

ν=1
e−aντ · aidτ

= aidτe
∑M

ν=1 −aντ

= aidτ · e−a0τ

= P (τ, i)dτ,

which is the original distribution and therefore the methods are equivalent.

2.2.5 Improvements To The Direct Method

The first improvement to the Gillespie algorithm is the Next Reaction method [26].
It is similar to the First Reaction method, as it starts by generating a τi = 1

ai
ln
(

1
ri

)
for each reaction. However, unlike in the First Reaction method, it only requires one
new random number for each step and it uses absolute time. Hence, if τj = min(τi),
then the next reaction will be an Rj reaction at time t = τj. It stores each of the τi

and ai values and only recalculates ai when a reaction that affects ai takes place. It
does this by creating, for each reaction Ri, a list of which ais are affected by said
reaction, during the initialisation.

When ai has been recalculated, τi is adjusted to account for this change. Previ-
ously, we used the function, Fi(τ) =

∫ τ
0 aie

−aiτ
′
dτ ′ to transform a random number

into a time for the reaction to occur. It relied on the fact that no reactions would
occur in the interval (t, t + τ) and so that all ai would be treated as constants. In
the Next Reaction method, this assumption is not used, so we have from Equation
2.8 the probability that, at time t, an Ri reaction would occur by time τ :

Fi(τ) =
∫ τ

t
ai(τ ′)e−ai(τ ′)τ ′

dτ ′. (2.22)

Here, ai(t) is a piecewise function, so the integral can be simplified into a sum of
integrals where ai can be treated as constant, as before. This allows the same random
number to be used for the reaction until the reaction next occurs. The algorithm
does this by changing every τi where the ai it depended upon has changed, so that
τnew

i = aold
i

anew
i

(τ old
i − t) + t, which is the new time that the next Ri reaction is due to

occur. These τi values are stored in a tree, such that each parent is smaller than
either of its children, allowing faster searching for the minimum τi value and allowing

2.2. Stochastic Based Modelling 25

efficient updates. This is more challenging to code than the direct method but does
allow a greater efficiency to the method.

Another improvement to the Direct Method is the Modified Direct Method [8].
This method operates along the same lines as the Direct Method but it includes
an extra step during the initialisation process. It initialises and does a prerun to
compare the relative sizes of all of the values of ai. Then, it re-indexes the reactions
so that reactions with larger ai values during the prerun are given smaller indices,
as this reduces the number of comparisons done for Equation 2.17. This allows the
method to become competitive with the Next Reaction Method. It works best when
there are many reaction channels, which have a wide range of ai values, such as those
often found in biological systems.

The Modified Direct Method has been improved upon with the Sorting Direct
Method [39], where the indices of the reactions are modified dynamically as the
simulation evolves. It does this without a prerun and continues to do this as the
simulation progresses, by exchanging the index of Ri with the index of Ri−1, whenever
an Ri reaction occurs. This allows it to account for values of ai that change over the
course of the simulation and means that the reactions that fire most often will rise
to the top of the list, which will result in fewer comparisons for Equation 2.17.

There are numerous other methods that will improve upon the efficiency of the
Direct Method for SSA but they all follow the same mathematical background as
detailed in Section 2.2.1.

2.2.6 Tau Leaping

The exact SSA methods are very good for giving precise trajectories for chemical
systems, as they only allow single reactions and so are precise. However, these
exact methods have issues with efficiency for larger systems with large quantities of
reactants. Some improvements to efficiency have been given above. However, the
fact that these algorithms all model every reaction means there is a limit to the
maximal efficiency that any algorithm can give. And often, these trajectories contain
an unnecessary excess of detail. Thus, Gillespie suggested an alternate, approximate
method called τ -leaping [30].

This method allows the system to model many reactions occurring simultaneously
in a larger time interval. It works best for systems that have a relatively small
number of species and reaction pathways compared to the number of reactants

26 Chapter 2. Modelling Reaction Kinetics In Biological Systems

present in the system, i.e. each species is well populated.
We define Q(k1, . . . , kM |τ ; x, t) as the probability that a system in state x at

time t will have exactly kj firings of reaction Rj for all j = 1, . . . , M before time
t + τ . We can also write Kj(τ ; x, t) as the number of times the system in state x at
time t will fire reaction Rj before time t + τ . To calculate Q(k1, . . . , kM |τ ; x, t) is
challenging, so a condition is required to simplify the calculation. This condition,
called the Leap Condition, requires the value of τ to be small enough that the
changes in reactant quantities are also small, which means that the values of aj will
not change appreciably during a leap. This means that ajdt will give the probability
that reaction Rj will occur during any interval dt on the interval (t, t + τ). Thus,
the number of firings for a constant probability is a Poisson process and

Kj(τ ; x, t) = P(ajτ) (2.23)

is a Poisson random variable, for j = 1, . . . , M . Note that each Kj(τ ; x, t) must be
independent of every other Kj(τ ; x, t), so it follows that:

Q(k1, . . . , kM |τ ; x, t) =
M∏

j=1
PP(kj; aj, τ). (2.24)

This means that, in simplest terms, we can write each leap as x(t + τ) =
x(t) +∑M

j=1 kjvj, where kj is a sample of Kj. Choosing τ is important, as with a
smaller value, the simulation is more precise but loses efficiency. Larger values of τ

give less precision at a higher speed. When each reactant species is well populated,
the Leap Condition can be satisfied even with a large number of reactions occurring
in each leap. The smallest value of τ that should be taken is τ = 1

a0(x) , as a smaller
value would lead to many leaps not including a single reaction and even at this value,
many leaps would only contain one reaction. This would lead to these leaps being
exact. However, it would take longer to run simulations than running the direct
method. Earlier methods for τ -leaping had issues whereby they would leap too far
and result in negative quantities of reactants, which is not physical, so additional
checks were added to avoid this. These checks slowed down the simulations, so
methods which performed these checks efficiently were created.

An algorithm for how to run a τ -leaping simulations with an efficient step size
selection [7] is as follows:

1 Create a list of all reactant species in the simulation, IRS. Then, find all
critical reactions, which are defined as any reaction Rj, where nc firings of

2.2. Stochastic Based Modelling 27

the reaction would exhaust a reactant (nc is usually set somewhere between
2 and 20) and where the reaction also has a non-zero propensity function aj.
Store the indices for all critical reactions in JCR and all of the indices for all
non-critical reactions in JNCR.

2 Using an error control bound 0 < ϵ≪ 1, we need to calculate τ ′, the largest
allowed leap for non-critical values.

2.1 For each i ∈ IRS, inspect all reactions to find the highest order of a
reaction where species Si is a reactant and store it in an array HOR(i).

2.2 Find gi where:

2.2.1 If HOR(i) = 1, then gi = 1
2.2.2 If HOR(i) = 2, then gi = 2
2.2.3 If HOR(i) = 2 and the reaction is between two Si molecules, then

gi =
(
2 + 1

xi−1

)
2.3 Calculate µ̂i(x) = ∑

j∈JNCR
vijaj for all i ∈ IRS

2.4 Calculate σ̂2
i (x) = ∑

j∈JNCR
v2

ijaj for all i ∈ IRS

2.5 Calculate τ ′ = min
i∈JNCR

{
max{ϵxi/gi,1}

|µ̂i(x)| , max{ϵxi/gi,1}2

σ̂i
2(x)

}
3 If τ ′ ≤ nm

a0
for some small integer nm ≈ 10, then perform some (≈ 100) steps

of the SSA method and then go to Step 1.

4 Compute ac
0 = ∑

j∈JCR
aj and set τ ′′ = 1

ac
0

ln
(

1
r

)
, for some uniform random

number in the unit interval r, as an estimate of the time until the next critical
reaction.

5 Let τ = min{τ ′, τ ′′}

5.1 If τ ′ < τ ′′, then no critical reactions will occur in this leap, so set kj = 0 for
all j ∈ JCR. For non-critical reactions, set kj = P(ajτ) for all j ∈ JNCR.

5.2 If τ ′′ < τ ′, then calculate jc, such that it is the smallest element of JCR

that satisfies
∑

ai′
j′∈JCR, j′<jc

≤ rac
0, for some uniform random number in

the unit interval r. Let kjc = 1 and kj = 0 for all other j ∈ JCR. For
non-critical reactions, set kj = P(ajτ) for all j ∈ JNCR.

6 If any element of x +∑M
j=1 kjvj is less than zero, then set τ ′ = τ ′

2 and go to
Step 3. Otherwise, set t = t + τ and x = x +∑M

j=1 kjvj. If the end time for
the simulation has not been reached, go to Step 1, else stop.

28 Chapter 2. Modelling Reaction Kinetics In Biological Systems

This allows for fast simulation of chemical kinetics in systems when all species are
well populated. Unfortunately, this is usually not the case during virus assembly, as
there is a huge number of potential species compared to the number of intermediates
in the average cell, so τ -leaping will not be used in these simulations.

2.3 VIRUS ASSEMBLY BIOLOGY

Viruses are infectious agents that are not able to replicate on their own. They must
infect a host and use the host cell’s machinery to replicate. Whilst many viruses are
parasitic, some are able to form a symbiotic relationship with their host.

Viruses are typically made up of at least two features: their genetic information
and a shell of proteins that contains the genetic information, called a capsid. Some
viruses have other features but all have these two. The genetic information is stored
as either DNA or RNA, both of which can be either single-stranded (ss) or double-
stranded (ds) [37, 3]. The most common way to store the genetic information is
as ssRNA, which are the viruses focused on in this thesis [3]. There are multiple
different shapes of capsids, including rod shaped helical capsids, icosohedral capsids
and complex viruses. Most viruses have icosahedral capsids, also known as spherical
and these will be the main focus in this thesis [37, 3].

Icosahedral viruses take the approximate shape of an icosahedron, a 20-sided
shape made up of equilateral triangles. Their capsids are made up of many copies
of the same capsid (or coat) protein (CP). For small viruses, all of the CPs in the
capsid sit in one of 60 rotationally equivalent positions. They do this due to the
principle of genetic economy, which determines that it is more efficient to code a
small protein once and use many copies of it, than to code for one large protein and
only use it once [33]. This suggests all proteins must sit in rotationally equivalent
positions, which leads to the need for the capsid to emulate one of the five platonic
solids: tetrahedron, cube, octahedron, dodecahedron and icosahedron. However,
the cube and octahedron share a symmetry group, as do the dodecahedron and
icosahedron, so there are only three choices of symmetry group. Viruses tend to
use the icosahedral (or dodecahedral) symmetry as it has the largest number of
rotationally equivalent positions and so allows the largest capsid to be built from
the same sized protein. An example of an icosahedral virus formed from 60 proteins,
STNV, is shown in Figure 2.1a.

2.3. Virus Assembly Biology 29

Figure 2.1: Figure and Caption adapted from [54]. Capsid architecture according
to Caspar and Klug theory. (a) Viruses exhibit the characteristic 5-, 3- and 2-fold
rotational symmetry axes of icosahedral symmetry, indicated here with reference to
the vertices, edges and faces of an icosahedral frame superimposed on the crystal
structure of the T = 1 STNV shell (figure based on PDB-ID 2BUK). (b) Construction
of an icosahedral polyhedron via replacement of hexagons in a hexagonal lattice by
the equivalent of 12 equidistant pentagons (red). Dark grey areas indicate parts
of hexagons in the lattice that do not form part of the surface lattice of the final
polyhedral shape. (c) One of the 20 triangles of the icosahedral frame is shown
superimposed on the hexagonal grid for the four smallest polyhedra that can be
constructed in CK theory. These are shown in increasingly lighter shades of blue:
T (1, 0) = 1, T (1, 1) = 3, T (2, 0) = 4 and T (2, 1) = 7. The corresponding polyhedra
(right) have 20 identical triangular faces corresponding to the triangles (left), one of
which is shown in each case. (d) The CP positions are indicated with reference to the
dual polyhedron, that is, the triangulated structure obtained by connecting midpoints
of adjacent hexagons and pentagons in the surface lattice. CPs are positioned in the
corners of the triangular faces (shown here as dots) and result in clusters (capsomers)
of six (hexamers) and five (pentamers) CPs. The example shown corresponds to a
T = 4 layout, formed from 240 CPs that are organised as 12 pentamers (red) and 30
hexamers.

30 Chapter 2. Modelling Reaction Kinetics In Biological Systems

However, to generate larger viruses, more copies of the CPs needs to be used.
Work by Caspar and Klug [9] determined that the CPs do not need to be rotationally
equivalent, they can sit in quasi-equivalent positions. Two quasi-equivalent positions
are the same shape and size but are not necessarily rotationally equivalent. Icosa-
hedral structures can be made out of pentamers and hexamers, rather than just
pentamers, which allows quasi-equivalent positions for the CPs. This is shown in
Figure 2.1, where an icosahedral net is embedded into a hexagonal lattice, with the
vertices of the icosahedron at the centres of hexagons. By choosing a different number
of steps in each direction (h being horizontal and k being 60◦ above horizontal), a
differently sized icosahedron with a different surface will be formed. These larger
structures can be categorised by the following formula:

T (h, k) = h2 + hk + k2 (2.25)

for integers h and k. This gives a virus its T -Number and viruses have 60T proteins
making up their capsid. Looking at Figure 2.1d, there is a T = 4 capsid, shown to be
made up of 80 triangles where each triangle indicates three protein positions, shown
as dots. The edges of each triangle are the same as each other, contacting another
triangle along their full length but the vertices are different, with some vertices
having 5 triangles attached and some having 6. This is why these new positions are
quasi-equivalent, rather than equivalent.

Due to these structures all exhibiting icosahedral symmetry, another feature of
the icosahedron (or any symmetric object) can be applied to them: the fundamental
domain (sometimes called the asymmetric unit). The entire surface of the icosahedron
can be described by a small section of the surface, using the icosahedral group to
reconstruct the entire surface from it. This small section of the surface that contains
all the information to fully describe the capsid is called the Fundamental Domain
(FD). FDs can be any shape that tessellates the entire icosahedral surface but kites
are often used (as shown in the T = 1 icosahedron in Figure 2.1c).

However, as shown by Twarock and Luque [54], it does not need to be a hexagonal
lattice that an icosahedral surface will be embedded into. Any lattice which contains
a hexagonal sublattice can have an icosahedron embedded into it. Figure 2.2 shows
the four lattices which can have an icosahedron embedded into them. Using this,
viruses that form from more than one different protein (e.g. a major and a minor
protein) can be classified. The figure also shows examples of convenient FDs for

2.3. Virus Assembly Biology 31

Figure 2.2: Figure and Caption adapted from [54]. Design of icosahedral architectures
from Archimedean lattices. (a) The four Archimedean lattices permitting the Caspar-
Klug construction (from left to right): the hexagonal, the trihexagonal, the snub
hexagonal and the rhombitrihexagonal lattice. In each case, the asymmetric unit
(repeat unit of the lattice) is highlighted. Its overlap with the hexagonal sublattice
used for the construction of the icosahedral polyhedra is shown in red. Apart from
the case of the hexagonal lattice, this also includes a third of a triangular surface
(blue) and in addition a triangle or a half square (both shown in green) for two of
the lattices, respectively. (b) Construction of Archimedean solids via replacement
of 12 hexagons by pentagons in analogy to the Caspar-Klug construction (see also
Figure 2.1b). (c) The polyhedral shapes corresponding to the examples shown in b.
They each correspond to the smallest polyhedron in an infinite series of polyhedra for
the given lattice type. (d) The smallest polyhedral shapes (Tt, Ts and Tr, denoting
polyhedra derived from the trihexagonal, snub hexagonal and rhombitrihexagonal
lattices, respectively) are shown organised according to their sizes in context with
the Caspar-Klug polyhedra. As surface areas scale according to Equation 2.26 with
respect to the Caspar-Klug geometries, the new solutions fall into the size gaps
in between polyhedra in the Caspar-Klug series, or provide alternative layouts for
capsids of the same size, as is the case for T (2, 0) = Tt(1, 1) = 4

3T (1, 1) = 4.

32 Chapter 2. Modelling Reaction Kinetics In Biological Systems

these embeddings. Recalling h and k and redefining them to be the number of steps
from one hexagon to another, generalised T -Numbers can be defined as follows:

Tj(h, k) = αj(h2 + hk + k2) = αjT (h, k), (2.26)

where j = t, s, r represents the trihexagonal, snub hexagonal and rhombitrihexagonal
lattices, respectively. A capsid labelled as Tj(h, k) has the same number of hexagons
and pentagons as one labelled T (h, k) but also has additional shapes present. The
variable αj represents the scaling factor due to the difference in surface area that
results, with αt = 4

3 , αs = 7
3 and αr = 4

3 + 2√
3 [54]. Further work has been done by

Fatehi and Twarock [21], to represent capsid architecture by its interaction network.
This approach, which is related to the tiling networks used here, enables wider classes
of capsid architectures to be modelled, even if they cannot be easily represented as
tilings. For example, this is the case if there are large holes in the capsid surface.

For icosahedral ssRNA viruses, the process that forms the capsid is actually a
co-assembly process [13]. Both CPs and the RNA work together to form the capsid
and ensure that the virus’ RNA is specifically packaged into the capsid.

Viruses, their genetic information and their CPs are so small that they cannot
be detected using visible light. To generate images of viruses, techniques such as
Cryo-EM and X-Ray Crystallography must be used [33]. These involve firing either
high energy electron beams or X-Rays at a sample of viruses and observing how the
sample affects these beams. These techniques rely upon the icosahedral structure of
viruses, as they use icosahedral averaging during image reconstruction. This means
that if a capsid structure has a section which has asymmetric features (e.g. the
RNA), then the data on these asymmetric features will be lost.

3

Models Of Equilibrium And
Quasi-Equilibrium In Capsid Assembly

In this chapter, the existing work of Zlotnick [59] on the assembly of a dodecahedral
capsid made of 12 pentameric capsomers in the absence of RNA is presented. Then,
this method is extended, to allow for the presence of RNA in this model. The effect
of both including the RNA and of changing various parameters are explored. After
that, an alternate approach to the problem is developed. This approach alters the
system of differential equations so they are all first-order. Numerical linear algebra
methods are then applied to this system, so that the steady states can be identified
and bifurcations they undertake can be found too.

In Caspar-Klug Theory [9], all viruses are made up of 60T proteins, where T is
the T -Number of a virus. However, this leads to a sufficiently complex system so
that it is not possible to analytically determine equilibrium dynamics for the system.
For small (T = 1) viruses, made up of only 60 proteins, it is reasonable to model a
system where the proteins form into pentamers, which then form a dodecahedral
structure of twelve pentamers. In this chapter, two dodecahedral models of assembly,
based on work done by Zlotnick [59] are discussed. These extend Zlotnik’s model to
include either RNA co-assembly or assembly where multiple intermediates can be
present in the system. The first model looks into how the presence of RNA affects
the kD of viral formation, making it possible to predict a minimum ∆Gprot energy
between proteins that enables stable capsid formation in RNA/Capsid co-assembly
models. In the second model, quasi-equilibrium states and the effect of high ∆Gprot

on kinetic trap formation are investigated.

33

34
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

Figure 3.1: Figure c.f. from [42]. An example of an RNA sequence and the structures
formed by its bases. These are believed to be the first five PSs for STNV, a T = 1
virus.

3.1 BACKGROUND TO DODECAHEDRAL MODELS

In the dodecahedral model of a T = 1 virus, first used by Zlotnick [59], 5 proteins
come together to form pentagonal pentamers, which then bind to each other and
form a dodecahedral capsid. Once there are 12 pentamers in the structure (60
proteins total), the capsid is complete. This is not how all viruses will form but it is
reminiscent of some Picornaviruses, such as Rhinovirus and Poliovirus [59]. These
viruses use a pentamer as the main sub-unit of the assembly, so pentamers will be
referred to as capsomers, as this is the terminology for the smallest assembly unit. In
the original work by Zlotnick, the effects of RNA on the assembly are not considered.

It is important to consider that the RNA may be present during assembly, as it
needs to be packaged inside of the capsid. As will be shown, it can have additional
energetic effects on assembly and kD.

RNA is a sequence made of four bases, A, G, C and U, which are able to pair
with each other according to Watson-Crick base pairing. Viral RNAs form structures,
which can bind to proteins/protein structures (the pentamers here), termed PSs.
An example of an RNA sequence and the structures it forms are shown in Figure
3.1. These are usually understood to assist with the assembly of the capsid and help
ensure that the RNA is packaged inside the capsid.

Following Zlotnick, we assume that the capsomers will be added into the structure
at the position that creates the largest number of capsomer-capsomer bonds, to
ensure we follow only the lowest energy pathway. This assumption can be backed up
by Figure 7.20 in Section 7.2.4, with stochastic simulations of dodecahedral assembly
having over 80% of intermediates of any size (over 95% for many sizes of intermediate)
as the most stable intermediate available. Some of the lowest energy intermediates
(and some examples of higher energy intermediates) are shown in Figure 3.2. We

3.1. Background To Dodecahedral Models 35

Lowest Energy 2-mer Non-lowest Energy 8-mer

Lowest Energy 3-mer Non-lowest Energy 3-mer

Lowest Energy 4-mer Non-lowest Energy 4-mer

Lowest Energy 5-mer Non-lowest Energy 5-mer

Figure 3.2: Examples of both the lowest energy intermediates and some non-lowest
energy intermediates from the assembly of a dodecahedral capsid. Each dot represents
a capsomer and each line represents a contact between adjacent protein capsomers.

36
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

also neglect modelling of pentamer formation as we assume the assembly pathway
consists of pentamer capsomers combining to form larger oligomers and also assume
that the rate of the formation of the pentamer is fast, relative to the rate of formation
of the capsid. These above assumptions are used throughout this chapter.

Before going into detail of the reactions, we need to clarify some notation. We
define (i) to be an intermediate with i capsomers. This will be the lowest energy
intermediate of that size, as we are assuming that only the lowest energy intermediates
are formed. The concentration of the intermediate with i capsomers is written as [i]
and can be measured as either a molar concentration or as the number of particles
in a volume.

We only consider single capsomer addition and removal in each reaction. The
forward reaction, often known as an elongation reaction, is where an extra capsomer
binds to the existing intermediate structure of one or more capsomers, increasing its
size. This can be written as

(1) + (j) ⇌ (j + 1), (3.1)

where (j) is the intermediate with j capsomers. The backwards reaction, also known
as a removal reaction, is where a capsomer leaves the existing protein structure,
decreasing its size. Both reactions are allowed as all of these assembly reactions are
considered reversible reactions.

The rate equation for the concentration of an intermediate formed from j cap-
somers is:

d[j]
dt

= kj
f [1][j − 1] + kj+1

b [j + 1]− kj+1
f [1][j]− kj

b [j], (3.2)

where kj
f is the forward reaction rate for an intermediate of size j − 1 gaining a

capsomer, kj
b is the backwards reaction rate for an intermediate of size j losing a

capsomer and [j] is the concentration of an intermediate of size j.
The values of kj

f and kj
b can be set as follows, using the statistical factors, SP

U (j)
and SP

D(j) given in Table 3.1. These statistical factors arise due to there being
multiple equivalent ways to add or remove a capsomer and result in the same
intermediate formed from a reaction.

kj
f = 5 · SP

U (j) · k (3.3)

kj
b = SP

D(j) · keβ∆Gprotc(j), (3.4)

3.1. Background To Dodecahedral Models 37

n SR
U (n) SR

D(n) SP
U (n) SP

D(n) c(n)
1 - - - - -
2 5 1 5/2 1 1
3 2 1 2 3 2
4 2 1 3 2 2
5 2 1 4 2 2
6 1 1 1 5 3
7 2 1 5 1 2
8 2 1 2 4 3
9 1 1 2 3 3
10 2 1 3 2 3
11 2 1 2 5 4
12 1 1 1 12 5

Table 3.1: A table of the statistical factors in dodecahedral assembly, formed from 12
pentameric capsomers, assuming it follows the path of lowest energy. The variable
n is the number of capsomers present in the structure. SR

U (n) and SP
U (n) are the

number of ways that a capsomer can be added to create the most stable intermediate
with n capsomers when the RNA is present and absent respectively. SR

D(n) and SP
D(n)

are the number of ways that a capsomer can be removed to create the most stable
intermediate with n− 1 capsomers when the RNA is present and absent, respectively.
SR

D(n) is always 1, as only the capsomer at the loose end of the RNA is allowed to
leave the structure. The column c(n) represents the number of capsomer-capsomer
contacts formed when going from the structure with n−1 capsomers to the structure
with n capsomers. The columns with RNA absent are from Zlotnick [59] and the
columns for RNA present were calculated by hand. Some structures are shown in
graph form in Figure 3.2.

where k is a constant which is independent of j, β = 1
RT

and c(j) is the number
of capsomer-capsomer contacts formed when going from the structure with j − 1
capsomers to the structure with j capsomers.

To generate the statistical factors, we look to Figure 3.3. The figure shows the
possible locations that a new capsomer could join the structure, whilst forming the
maximal number of bonds, i.e. following the minimal energy pathway for assembly.
This is only done here for intermediates with 1 (A), 2 (B) or 3 (C)/(D) capsomers
present but can be done for larger intermediates, too. This allows us to calculate
SP

U (j) and SR
U (j), the number of ways that a capsomer can be added to create the

most stable intermediate with j capsomers when the RNA is absent and present
respectively. It also allows us to calculate SP

D(j), the number of ways that a capsomer
can be removed to create the most stable intermediate with j − 1 capsomers when

38
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

Figure 3.3: A planar demonstration of where some of the statistical factors in
Table 3.1 come from. Each pentagon represents an identical capsomer from the
dodecahedral assembly model, with red pentagons representing capsomers already
present in the structure and yellow indicating positions new capsomers could join
the structure whilst still following the lowest energy path. Within each pentagon is
a circle that represents the capsomer as a node and the circle with the white border
represents (when the RNA is present) the current position of the PS adjacent to
the loose RNA. When the RNA is present, the assembly is restricted so that any
capsomer added must be adjacent to the previously added capsomer, so the RNA
traces out a path on the interior of the capsid. Solid lines indicate existing bonds
and dotted lines indicate potential bonds. In the absence of RNA, structures are
considered to be equivalent when one is rotationally equivalent to another. When
the RNA is present, the structures are considered equivalent when structures are
rotationally equivalent, with both free ends of the RNA at the same position. (A)
and (B) represent an intermediate made of 1 or 2 capsomers, respectively and are
equivalent whether the RNA is present or absent. (C) and (D) show the differences
for a intermediate of 3 capsomers based on whether RNA is absent or present,
respectively.

3.2. Apparent Rate Of Capsomer-Capsomer Binding In An RNA Assembly
Model 39

the RNA is absent. During Section 3.2, we will assume that the RNA starts assembly
at one end and only adds/removes proteins at this loose end of the RNA. As a result,
SR

D(j) = 1 for all j, as it will only ever remove the most recently added protein.

In (A), we see that there are 5 different ways to add a capsomer to the one present
(due to the 5-fold rotational symmetry). Due to degeneracy of the structure formed
from two pentameric capsomers, this gives a value of SP

U (2) = 5
2 and SR

U (2) = 5
2 . In

(B), we have two capsomers and two different ways to add a new capsomer whilst
still forming two bonds, which gives SP

U (3) = 2 and SR
U (3) = 2. There is only one

way to break a bond here, so this gives SP
D(2) = 1. In (C) and (D), we have the first

time when SP
U and SR

U differ. For (C), we have three capsomers and there are three
different ways to add a new capsomer and form two bonds, giving SP

U (4) = 3. We
also have three ways to remove a capsomer and get a minimum energy dimer, so
SP

D(3) = 3. For (D), one of the capsomers is not accessible to the free end of the
RNA, so SR

U (4) = 2. A full list of these statistical factors is in Table 3.1.

These reactions are covered, for the case where RNA is present, in more detail in
the next section.

3.2 APPARENT RATE OF CAPSOMER-CAPSOMER BINDING
IN AN RNA ASSEMBLY MODEL

Zlotnicks rates ki
f are capsomer-capsomer binding rates in the RNA-free case. When

RNA is present, there is an additional reaction for the RNA-capsomer binding,
as can be seen in Figure 3.4. However, instead of using 23 reactions: 11 from
Zlotnick and 12 of RNA-capsomer binding, we encompass the RNA binding and
the capsomer-capsomer binding into a single apparent forward and backwards rate:
kapp

f (j) and kapp
b (j). The one unusual reaction is where j = 1, which just represents

a single capsomer being added to a PS on the RNA, with no capsomer-capsomer
binding occurring. Using these rates allows the comparison of the RNA case with
the RNA-free case directly within the Zlotnick Model. Markov Chains are used
to analyse these reactions and to generate these apparent rates. The aim is to
calculate what values of ∆Gprot and ∆Grna are needed for efficient assembly and
how this changes between cases.

40
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

Figure 3.4: Figure of the states involved in the assembly process including RNA.
The states labelled as (1), (2) or (3) are equivalent in this figure. (a) Shows the
transitions between states that can occur and their relative reaction rates (W±(m) for
the states m = 1, 2, 3). (b) The states present in each step of the assembly process.
In each state, any PSs to the left of the displayed RNA section are also bound,
their capsomers make up part of the existing structure and this is connected to the
left PS’s capsomer. Any PSs to the right of the RNA section shown are unbound
and free. In state 1, there is a capsomer bound to the left PS and an unbound PS
adjacent on the displayed section of the RNA. In state 2, both PSs shown are bound
to a capsomer. In state 3, the capsomers bound to the two PSs have now bound to
each other as well, increasing the size of the assembly intermediate. (c) Shows how
the states in (a) overlap and interact to form (part of) the full chain which describes
assembly from just an RNA to a complete capsid.

3.2. Apparent Rate Of Capsomer-Capsomer Binding In An RNA Assembly
Model 41

3.2.1 KDapp In The Absence Of RNA

In Zlotnick’s paper, a quantity called KDapp was determined. This represents the
concentration of proteins needed for the system to have an equal concentration
of protein and capsid, i.e. KDapp = [1] and also KDapp = [12]. It was calculated
analytically as shown below.

First, we consider a system that has been left for long enough that it has reached
chemical equilibrium. The system will only include 12 intermediates and (other than
free capsomers and completed capsids, which only have one) each intermediate has
exactly two reversible reactions that can create an intermediate of size n. One is an
addition reaction to an intermediate of size n− 1 and one is a removal reaction from
an intermediate of size n + 1. This means that for the system to be in equilibrium,
the forward and backwards rates for every reaction must be equal, so the net rate of
reaction is zero. So, for each reaction, (n− 1) + (1) ⇌ (n), at equilibrium we have

kn
b [n] = kn

f [1][n− 1], (3.5)

where kn
f is the forward reaction rate for an intermediate of size n − 1 gaining a

capsomer, kn
b is the backwards reaction rate for an intermediate of size n losing a

capsomer. Rearranging this gives

[n] =
kn

f

kn
b

[n− 1][1]. (3.6)

Applying this recursively, we get

[n] = [1]n
n∏

i=2

ki
f

ki
b

. (3.7)

Inserting n = 12, we get an equation for the concentration of completed capsid:

[12] = [1]12
12∏

i=2

ki
f

ki
b

. (3.8)

For the RNA-free scenario, we can recall from Equation 3.4:

ki
f

ki
b

= 5 · S
P
U (i)

SP
D(i)e−β·c(i)·∆Gprot . (3.9)

42
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

Figure 3.5: Demonstration of the probabilities of transition between states in a
Markov Chain with n states, where state n is absorbing. With W±(i), which is
defined in Equation 3.13, where W±(i) · dt is the probability of transitioning from
state i to state i± 1 before time t + dt.

We simplify this to

12∏
i=2

ki
f

ki
b

=
12∏

i=2
5 · SP

U (i)
SP

D(i)e−β·c(i)·∆Gprot

= 511 · e−β∆Gprot

∑12
i=2 c(i) ·

12∏
i=2

SP
U (i)

SP
D(i)

= 511 · e−30β∆Gprot · 1
60

= 511

12 · e
−30β∆Gprot ,

which altogether gives
[12]
[1]12 = 511

12 · e
−30β∆Gprot . (3.10)

To find KDapp , we set KDapp = [1] = [12] and rearrange to give

KDapp = 11

√
12
511 · e

30β∆Gprot . (3.11)

At a temperature of T = 298K and ∆Gprot = −4.08, this gives KDapp ≈ 1.729nM.

3.2.2 Mean First Passage Time

To construct an apparent capsomer-capsomer binding rate in the presence of RNA,
we need to calculate the mean first passage time for reaction j: τj and estimate
kapp

f (j) = 1
τj

.
A few definitions are needed. In Markov Chains, there are a number of discrete

states whose future depends only on the present. The time in this system is treated
as continuous. The system can only change by jumping either up or down a state.
These jumps each have a probability associated with them. Figure 3.5 shows a

3.2. Apparent Rate Of Capsomer-Capsomer Binding In An RNA Assembly
Model 43

graphical illustration of Markov Chains. We have a(n)dt, which is the probability, at
time t, that state n will jump away before time t + dt. It can also be thought of as
the flux or rate for this reaction. We also have w±(n), the probability that a process
jumping from state n at time t will land in state n± 1. As it can only jump up or
down, we get:

w+(n) + w−(n) = 1. (3.12)

Lastly, we define W±(n)dt as the probability that a process at state n at time t will
jump to state n± 1 before time t + dt. These three probabilities are connected by:

W±(n) = a(n)w±(n). (3.13)

It follows from Equation 3.12 that

W+(n) + W−(n) = a(n). (3.14)

As they are all probabilities, we can say that for all states n:

a(n) ≥ 0 (3.15)

w±(n) ≥ 0 (3.16)

W±(n) ≥ 0. (3.17)

Taken together with Equation 3.12, this leads to:

−a(n) ≤W+(n)−W−(n) ≤ a(n). (3.18)

To find the mean first passage time to go from state n0 → n1, you find the total time
before the first time that reaction completes and the inverse of that is the apparent
rate of the equation. When going from state n0 to n1, the average time spent in the
n1 − 1 state and the average time spent in another state n are given by:

t(n1 − 1; n0 → n1) = 1
W+(n1 − 1) (3.19)

t(n; n0 → n1) = θ(n + 1− n0)
W+(n) + W−(n + 1)

W+(n) t(n + 1; n0 → n1), (3.20)

where we define the unit step function:

θ(x) =

0, if x ≤ 0

1, if x > 0
(3.21)

Thus, the total time to transfer from state n0 to n1 is:

T (n0 → n1) =
n1−1∑
n=0

t(n; n0 → n1). (3.22)

44
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

3.2.3 Calculation Of kapp
f (j) And kapp

b (j) Using MFP Time

We are interested in finding kf and kb for the addition of each protein, for systems
where the RNA is both present and absent. The RNA makes this a two-step process,
so to get the overall rate is a more complicated calculation These rates allow us to
compare the rates of the process when RNA is present or absent. We use mean first
passage for this, to approximate the average time it takes for the system to go from
one state to another one and take the inverse to get the rate.

In this section, we consider the RNA as well as the capsomers. As a result,
the notation will shift slightly, so [1] will no longer be the concentration of free
capsomers, but the concentration of intermediates made up by a single capsomer
bound to an RNA. The notation for the concentration of free capsomers will be [p]
and the concentration of the RNA will be [r].

The system begins as just an RNA, with no capsomers bound to it. The primary
reaction is simple to model as it requires no capsomer-capsomer bond once the
capsomer-PS bond has formed. The rates can be written as:

W−(1) = 0 (3.23)

W+(1) = 5kr
f (1)[p] (3.24)

W−(2) = kr
b(1) (3.25)

W+(2) = 0, (3.26)

where [p] is the concentration of pentameric capsomers in the mixture, kr
f(1) and

kr
b(1) are the on and off rate, respectively, for the 1st PS. In this case, T (1→ 2) =

t(1; 1→ 2) = 1
5kr

f
(1)[p] . This means we have kapp

f (1) = 5kr
f (1) for the first step of the

reaction as kapp
f = 1

T [p] in reactions that depend on concentration of free capsomers
and kapp

b = kr
b(1) as kapp

b = 1
T

when the reaction does not depend on the concentration
of free capsomers.

For further reactions, this can be made more general. As shown in Figure 3.4,
there are 3 states that are present in the reactions to add a new capsomer. There is
state 1, where there is a structure made of n− 1 capsomers and a free PS adjacent to
the structure. State 2 has the same structure of n− 1 capsomers but a new capsomer
has bound to the PS adjacent to the structure. State 3 is where the new capsomer
has joined the structure, so it is now made of n capsomers. We write, for a structure

3.2. Apparent Rate Of Capsomer-Capsomer Binding In An RNA Assembly
Model 45

of n capsomers:

W−(1) = 0 (3.27)

W+(1) = 5kr
f (n)[p] (3.28)

W−(2) = kr
b(n) (3.29)

W+(2) = SR
U (n)kp

f (3.30)

W−(3) = SR
D(n)kp

b (3.31)

W+(3) = 0. (3.32)

Where SR
U (n) and SR

D(n) are statistical factors for the up and down reactions,
given in Table 3.1, due to the symmetry of the dodecahedron. kp

f and kp
b are the on

and off rates for the capsomer bound to the next PS along the RNA to bind to the
structure, respectively. These probabilities give us:

t(2; 1→ 3) = 1
SR

U (n)kp
f

(3.33)

t(1; 1→ 3) = 1
5kr

f (n)[p] + kr
b(n)

5kr
f (n)[p]

1
SR

U (n)kp
f

. (3.34)

Taking the total of these, we get

T (1→ 3) = 1
SR

U (n)kp
f

+ 1
5kr

f (n)[p] + kr
b(n)

5kr
f (n)[p]

1
SR

U (n)kp
f

=
5kr

f (n)[p] + kr
b(n) + SR

U (n)kp
f

5kr
f (n)[p]SR

U (n)kp
f

,

which leads to:
kapp

f (n) =
5SR

U (n)kp
fkr

f (n)
5kr

f (n)[p] + kr
b(n) + SR

U (n)kp
f

(3.35)

being the apparent forward reaction rate that leads to a structure of n capsomers.
We can follow similar working for the reverse:

t(2; 3→ 1) = 1
kr

b(n) (3.36)

t(3; 3→ 1) = 1
SR

D(n)kp
b

+
SR

U (n)kp
f

SR
D(n)kp

b

· 1
kr

b(n) . (3.37)

These sum to give

T (3→ 1) = 1
kr

b(n) + 1
SR

D(n)kp
b

+
SR

U (n)kp
f

SR
D(n)kp

b

· 1
kr

b(n)

=
SR

D(n)kp
b + kr

b(n) + SR
U (n)kp

f

kr
b(n)SR

D(n)kp
b

,

46
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

kapp
b (n) = kr

b(n)SR
D(n)kp

b

SR
D(n)kp

b + kr
b(n) + SR

U (n)kp
f

(3.38)

being the apparent rate at which a structure of n capsomers decays to a structure of
n− 1 capsomers. We now take the following ratio:

kapp
f (n)

kapp
b (n) =

5SR
U (n)kp

fkr
f (n)

SR
D(n)kp

b kr
b(n)

SR
D(n)kp

b + kr
b(n) + SR

U (n)kp
f

5kr
b(n)[p] + kr

b(n) + SR
U (n)kp

f

, (3.39)

which, using kp
f/kp

b = e−βc(n)∆Gprot and kr
f(n)/kr

b(n) = e−β∆Grna(n), where β = 1
RT

,
simplifies to:

kapp
f (n)

kapp
b (n) = 5SR

U (n)
SR

D(n)e−βc(n)∆Gprot · e−β∆Grna(n) · f(n, [p]). (3.40)

Here
f(n, [p]) =

SR
D(n)kp

b + kr
b(n) + SR

U (n)kp
f

5kr
b(n)[p] + kr

b(n) + SR
U (n)kp

f

. (3.41)

Comparing this to the equivalent from Zlotnick, where the RNA was not considered,
gives us:

kf (n)
kb(n) = 5SP

U (n)
SP

D(n)e−βc(n)∆Gprot , (3.42)

which is similar but the RNA version has two extra terms to be multiplied in, due
to the RNA’s presence. One is simply the inclusion of the capsomer-PS bond energy.
However, f(n, [p]) is a term that shows the RNA’s presence does more than simply
lower the necessary energy for the structure to form by the same amount as its bond
strength. It makes it necessary to model the removal of a capsomer as a two-step
process. It therefore reduces the speed at which this can happen, making the capsid
intermediates more stable.

Including RNA in the assembly model imposes restrictions onto the assembly
process. In the absence of RNA, a new capsomer is able to join at any edge of the
intermediate (assuming it is on the lowest energy pathway), whereas in the presence
of RNA, a new capsomer must join adjacent to the capsomer that joined immediately
before it. This restriction means that the values of SU(n) and SD(n) are different
when the RNA is present compared to when it is not. All values can be seen in Table
3.1, for both RNA present and RNA absent.

Considering f(n, [p]), it has three major components:

A = SR
D(n)kp

b (3.43)

B = kr
b(n) + SR

U (n)kp
f (3.44)

C = 5kr
b(n)[p]. (3.45)

3.2. Apparent Rate Of Capsomer-Capsomer Binding In An RNA Assembly
Model 47

Therefore, you can write
f(n, [p]) = A + B

C + B
. (3.46)

The ratios of these three values determine the change caused by this term, due to the
presence of RNA. If A >> B and C << B then the forward reaction will be boosted
by the presence of the RNA. If A << B and C >> B then the backwards reaction
will be stronger due to the presence of the RNA. If both A << B and C << B, or
if A ≈ C, then f(n, [p]) ≈ 1, so the reaction will not be affected.

3.2.4 Calculating KDapp In The Presence Of RNA

In assemblies that include that RNA, before capsomers can join the capsid structure,
they must first bind to a PS and are then able to add to the structure. It is assumed
that the on/off reactions for the capsomer-PS bonds are much faster than the
on/off reactions for the capsomer-capsomer bonds, so that RNA-capsomer contacts
equilibrate prior to capsomer-capsomer contacts. Experimental work has observed
that in many viruses, the RNA-Protein interactions are not part of the rate limiting
step [23], which supports this assumption. Additionally, as this system only
considers one RNA and an infected cell would contain a large number of RNAs,
proteins and capsomers, it is also assumed that the RNA binding to capsomers has
a negligible effect on the concentration of capsomers, which is therefore assumed
constant.

Equation 3.40 allows us to estimate the value of KDapp when the RNA is present.
This is done by defining KDapp = [p] = [12] = [r] as the equilibrium concentration
where all reactants are present in equal concentrations. Then, we use the equilibrium
equation for the first reaction:

[1] =
kapp

f (1)
kapp

b (1)[r][p] (3.47)

and the general form as before:

[n] =
kapp

f (n)
kapp

b (n) [n− 1][p]. (3.48)

Applying this recursively gives

[12] =
(12∏

i=1

kapp
f (n)

kapp
b (n)

)
[p]12[r]. (3.49)

48
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

∆Gprot

0.0 -2.0 -4.0 -6.0 -8.0

∆
G

r
n

a

0.0 1.1 1.2× 10−4 2.7× 10−8 5.9× 10−12 1.3× 10−15

-2.0 2.0× 10−2 4.3× 10−6 9.3× 10−10 2.0× 10−13 4.4× 10−17

-4.0 4.6× 10−4 1.5× 10−7 3.2× 10−11 6.9× 10−15 1.5× 10−18

-6.0 1.5× 10−5 5.0× 10−9 1.1× 10−12 2.4× 10−16 5.1× 10−20

-8.0 5.2× 10−7 1.7× 10−10 3.7× 10−14 8.1× 10−18 1.7× 10−21

RNA-free 2.5× 10−1 2.5× 10−5 2.5× 10−9 2.5× 10−13 2.5× 10−17

Table 3.2: A table containing the values of KDapp for dodecahedral systems that
include RNA with a variety of uniform PS-capsomer bond affinities (in kcal/mol)
and a variety of capsomer-capsomer bonding affinities (in kcal/mol), that can be
compared to the exact values of KDapp calculated using the formula in Equation
3.11 for the RNA-free case. This represents the equilibrium concentration where
KDapp = [p] = [12] = [r]. The row for ∆Grna = 0 models a system where RNA
is present but the bonds it forms are negligible, to show the effect of the RNA’s
presence on the assembly. The values of KDapp are in mol/dm3.

Code was written that would generate KDapp to 1 decimal place, for given ∆Gprot

and ∆Grna values, such that

KDapp −
(12∏

i=1

kapp
f (n)

kapp
b (n)

)
K13

Dapp = 0. (3.50)

The results of this code is stored in Table 3.2 and the values of

∆Gapp = RT ln(KDapp) (3.51)

are stored in Table 3.3 for comparisons to the exact calculations from the equation:

∆Gapp =
30∆Gprot −RT ln(511

12)
11 (3.52)

for the RNA-free case.
Considering Table 3.2, the concentrations in each column are always close to the

concentration provided by Zlotnick’s formula. However, they are usually at slightly
lower concentrations which suggests that the presence of the RNA gives a stabilising
effect, which helps lower the concentration of capsomers needed for [p] = [12].

Looking more closely at Table 3.3, more information can be found. The first row
gives information on what the ∆Gapp value is when the capsid forms alongside an

3.2. Apparent Rate Of Capsomer-Capsomer Binding In An RNA Assembly
Model 49

Table 3.3: A colour-coded table, containing the ∆Gapp values for a range of ∆Grna

and ∆Gprot values. In the colour scheme, red indicates the largest values and green
the smallest, with all others on a spectrum between. These values were calculated
placing values from Table 3.2 into Equation 3.51. The final row represents the exact
calculation given by Zlotnick for a dodecahedral capsid in the absence of RNA. All
∆G values are given in kcal/mol.

RNA that makes negligible bonds to the capsomers. These values are always less
stable than the values for the RNA-free row, suggesting that assembly featuring
the RNA brings extra constraints with it, that limit and reduce the effectiveness
of the assembly. However, this is normally cancelled out by the extra stabilising
energy that the RNA provides via its PS-capsomer bonds. On other rows, where the
PS-capsomer bonds are non-negligible, the ∆Gapp values are (with the exception of
the ∆Gprot = −8.0 and ∆Grna = −2.0 cases) more stable than the RNA-free case.
The larger the values of ∆Gprot and ∆Grna, the larger the resultant values of ∆Gapp.
Increasing ∆Gprot had more effect on increasing ∆Gapp than increasing ∆Grna.

One conclusion of the above calculations is that as you increase one of the
two bond strengths, the amount of completed capsids present in a system would
increase. In Figure 3.6, there is a graph that shows the yield from the assembly of
a dodecahedral capsid, with two different RNAs, with different ∆Grna values and
one RNA-free assembly, where only the capsomer-capsomer binding energy is being
altered. This simulation uses the Gillespie algorithm, covered in Section 2.2, to
model a system with enough capsomers to generate 2000 completed capsids based
on reactions described above. The model used for this figure allows intermediates
other than the lowest energy intermediates (though, as shown in Figure 7.20, most
intermediates that form during the assembly are the lowest energy states). It shows

50
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

Figure 3.6: Graph showing the yield for a variety of ∆Gprot values for different
bond strengths. Two ∆GRNA bond strengths were used as well, to show the effect
of changing these strengths, too. Each data point is based on the results of a
single simulation that contained 2000 RNAs (when present) at temperature 298.15K.
During the simulations, 24000 capsomers were gradually ramped into a volume of
0.7µm3 at a rate of 400s−1 and the simulation ran until t = 2000s. The capsomer-PS
binding rate was kr

f = 1.11× 107M−1s−1, the capsomer-capsomer 1st order rate was
1.0× 106s−1 and the capsomer-capsomer 2nd order rate was 1.0× 106M−1s−1. The
weaker RNA has a uniform ∆Grna of −2.0 kcal M−1 and the stronger RNA has
a uniform ∆Grna of −4.0 kcal M−1. The effect of increasing ∆Grna can be seen,
as the RNA stabilises the capsomers, allowing them to assemble in less favourable
conditions.

3.3. Simple Model Of Quasi-Equilibrium 51

the number of completed capsids at the end of the simulation of 2000s of chemical
reactions, based on the choice of both ∆Gprot and a uniform ∆Grna. This graph
shows how adding RNA will strengthen the stability of the capsid, as predicted above.
It also shows that other complications may occur: lower ∆Grna does not generate
as high a maximum yield within the 2000s time limit as RNA-free assembly. This
could be due in part to differences in SU(n) and SD(n), which are less favourable
in the presence of the RNA and play a major part in the extra term in RNA-based
assembly, which suggests the RNA is generally beneficial. However, viruses need
some minimal ∆Grna to overcome the extra limitations caused by its presence, as is
echoed by Table 3.3. A counter-argument to that would be that in this stochastic
simulation, kinetic traps are available, which are not present in the equilibrium
model presented here, perhaps also accounting for the lower maximal yield. Another
interesting observation is that shifting the strength of the RNA-capsomer bonds
in this simulation does not affect the yield as much as shifting the strength of the
capsomer-capsomer bonds, which agrees with what was shown in the Tables 3.2 and
3.3 above.

3.3 SIMPLE MODEL OF QUASI-EQUILIBRIUM

Normally, in complex systems, trying to find the states that the system tends towards
is important. In the case of virus assembly, all reactions are second order, which
makes identifying stable states much harder, especially as most systems have a very
large number of dimensions (e.g. a dodecahedral model with no RNA, with a 73
dimensional strongly interconnected state space and second order rates only [18]).

To simplify the calculations, we convert all of the equations to first order. The
equations of motion in this case would be of the form X(t) = X0e

Bt for some matrix
B. This will allow identification of the stable states using eigenvalue/eigenvector
methods for a range of different parameter values (including the ∆Gprot between
capsomers).

We first have to consider the assembly of a single capsid, so exactly 12 capsomers in
the system. Later, how to extend this to a larger number of capsomers will be covered.

We will continue using the assumption that if an intermediate of n capsomers
(hereafter an n-mer) forms, that it can only form the most stable intermediates, as

52
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

given in Figure 3.2 and in Zlotnick’s work [59]. With these assumptions in place, the
system can be made first order using Partition Theory.

3.3.1 Partition Theory

Consider for the moment, a system where only 12 capsomers are present (i.e. enough
for exactly one dodecahedral capsid) and only the lowest energy capsid intermediates
are allowed to form. How many ways can the 12 capsomers arrange themselves as a
collection of these intermediates?

To answer this, we look to Partition Theory, a branch of number theory, where
a partition of (integer) n is a way to write n as the sum of a number of positive
integers. Only the quantities, not the order, of these positive integers matter. The
number of partitions for n is written as p(n). As an example, the partitions of 4 are:

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1,

which means that p(4) = 5, as there are 5 different ways to write 4 as the sum of
positive integers.

3.3.2 Partitions Of 12 Capsomers

To apply partition theory to our dodecahedral models, we look at the assembly of a
single capsid. We allow these capsomers to form up to 12 intermediates (including
free capsomers as intermediates), with each n-mer being the most stable structure
for that size. As capsomers can only be added as whole units and all n-mers are
equivalent to other n-mers of the same size, this is effectively a partition of 12
capsomers. As p(12) = 77, we have a system with 77 states. The system is allowed
to move between states only via the addition/removal of single capsomers, creating
a graph of 77 states that the system can traverse through. This graph can be seen
in Figure 3.7.

The transition rates between states in this system can be calculated, as each state
will have a fixed set of transitions and each transition has an associated reaction

3.3. Simple Model Of Quasi-Equilibrium 53

Figure 3.7: This graph shows the partitions of 12 capsomers (with some shown in
Table 3.4), with edges added when a single bond formed/broken would result in a
transition between partitions. For the case where only one intermediate other than
free capsomers was present, the edges were highlighted in red.

rate for it. Through this, we can define a vector x, where xi contains the probability
of the system being in state i, with ∑77

i=1 xi = 1. With this we define:

dx
dt

= Ax, (3.53)

where A is a constant matrix containing the transition rates. Aij, i ̸= j, represent
the rate of the reaction for the transition from state j to state i. We also have
Aii = −∑77

j=1,j ̸=i Aji, i.e. the state’s probability should decrease. The rates depend on
structural factors from Table 3.1 and what reaction is occurring. If it is a nucleation
reaction where two capsomers form a dimer, then (1) + (1)→ (2) gives us a rate of
Aij = [1]·([1]−1)

2 kf , where [n] is the number of an n-mer in the system. For an elongation
equation, where an n-mer bonds to a free capsomer, then (n)+(1)→ (n+1) gives us
a rate of Aij = [1][n]kf

Cfac

V
, where Cfac = 1021

NA
≈ 1.66× 10−3µm3M−1 is a conversion

factor, NA is Avogadro’s Number and V is the volume. This conversion factor is
necessary as we consider the number of units per state, rather than concentration.
It relates the number of molecules per unit volume to moles per unit volume (also
known as molarity). For a removal equation, where a capsomer leaves an n-mer,
then (n)→ (n− 1) + (1) gives us a rate of Aij = [n]SP

D(n)
SP

U (n)e
c(n)kf .

54
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

Equation 3.53 shows us that despite many of the individual reactions at the
protein level being second order, we have a first order system. Using the matrix A,
we can find the eigenvalues, λi and the eigenvectors x̂i, so

Ax̂i = λix̂i. (3.54)

If we have λj = 0, then we get

dx̂j

dt
= Ax̂j = λjx̂j = 0 (3.55)

and so x̂j is a steady state for the system. This would indicate the probability that
each state would form in the system.

For the system dx
dt

= Ax, we can write a general solution:

x(t) =
∑

i

Cie
λitx̂i, (3.56)

with some constant Ci and the eigenvalues and eigenvectors as before. If we have
λi ≤ 0 for all i, then this means all non-zero exponential terms will decay and the
system will tend towards one of its steady states.

Theorem 3.3.2.1. Matrix A (as given in Equation 3.53) must have at least one
eigenvalue equal to zero.

Proof. Preserving mass action requires all of the diagonal elements to satisfy Aii =
−∑77

j=1,j ̸=i Aji. This can be rearranged to give ∑77
j=1 Aji = 0 for each i. Thus, the

columns are not linearly independent and det A = 0. As the determinant can be
written as the product of eigenvalues: det A = ∏77

i=1 λi, at least one λi = 0.

Using code produced during this PhD, along with the LAPACK FORTRAN
package [2], A is generated, the graph in Figure 3.7 is created and the eigenvalues
and eigenvectors are found. As LAPACK is a numerical solver, it returns all results
as a floats, which may be subject to round-off errors. As a result, any eigenvalue
with an absolute value less than 10−12 is treated as zero. From Theorem 3.3.2.1,
we know that there must be at least one eigenvalue equal to zero, so if there are
no sufficiently small eigenvalues, the smallest eigenvalue is treated as a zero with a
larger than normal round-off error. A very small number of eigenvalues were found
to be > 0. However, this was always the eigenvalue with the smallest absolute value.
Also, they all had an absolute value of ≈ 10−12 or less, so they are likely to be zeroes

3.3. Simple Model Of Quasi-Equilibrium 55

with a small positive value due to roundoff errors. All other eigenvalues satisfied
λi ≤ 0. As our system satisfies λi ≤ 0 for all i, it will eventually reach a steady
state (i.e. the eigenvector that corresponds to a zero eigenvalue) that describes the
probability that the system occupies any individual partition.

It is intuitive that this should be the case but no proof will be offered here.
As x must satisfy ∑77

i=1 xi = 1 due to x being a vector of probabilities and x(t) =∑77
i=1 Cix̂ie

λit, we find that if we have a λj > 0, then this eigenvalue’s exponential
term will increase out of control as t increase, unless either Cj = 0 or x̂j = 0.
Otherwise this would lead to x growing large and no longer satisfying the above
condition.

The code generated the eigenvalues for this system for a range of ∆Gprot values,
from 2.0 to 6.0 with a step size of 0.2. Following this, additional eigenvalues were
generated for ∆Gprot = 3.9 and ∆Gprot = 4.1, as this was a region of interest. All
eigenvalues with an absolute value less than 10−3 were collected and they were sorted
based on their eigenvectors to give Figure 3.8, giving a small number of eigenvalues
of interest and four distinct section on the graph.

Of the eigenvectors of interest in the system, two (QSS1 and QSS2) do not
represent probabilities but instead represent flux between two states, as they both
have terms where x̂i > 0 and also terms where x̂i < 0 for non-negligible magnitudes
of x̂i. If all values of x̂i were positive, this could be interpreted as a probability
vector and if all values of x̂i were negative, they could be scaled by −1 to give a
probability vector, as eigenvectors are invariant to scaling. However, due to them
having opposite sign, they cannot be scaled to represent probabilities. Only the zero
eigenvalue states satisfy either x̂i ≥ 0 or x̂i ≤ 0, which leaves three steady states
that the system can exist in, depending on the value of ∆G.

To ensure that the model is giving useful results, we need to know that the system
will not allow the probabilities to become negative. To start, we consider Aij and
note that the only negative terms present are on the diagonal, i.e. Aii. So within
dxi

dt
= ∑77

j=1 Ajixj , the only term with a negative coefficient is Aiixi = −|Aii|xi. Thus,
on the boundary, where xi = 0, there can be no negative term in dxi

dt
and therefore

the value of xi cannot cross xi = 0. So, if xi(t0) ≥ 0 for all i, then xi(t) ≥ 0 for all
t > t0.

The graph in Figure 3.8 has four distinct sections, Section A is where ∆G is
sufficiently small that the most probable state is just free capsomers. In Section C,
∆Gprot has increased sufficiently that the most probable state is a completed capsid.

56
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

Figure 3.8: A graph indicating the relative values (given as log10(abs(eigenvalue))) of
the smallest eigenvalues present in the system, colour coded to indicate their respec-
tive eigenvectors and featuring four sections. The four sections can be summarised as
follows: (A) Unassembled Capsid, (B) Transitory Section, (C) Stable Capsid and (D)
Kinetic Trapping. For a small number of eigenvalues, LAPACK returned precisely
zero, so to ensure that these could be placed on the graph, they were treated as being
10−14. The eigenvalues for 5 significant eigenvectors are shown in the graph. The
Capsid Steady State represents the eigenvector with a 100% probability to occupy
the state where the capsid is complete. The Monomer Steady State represents a
100% probability that the capsomers are all disassembled. The Intermediate Steady
State is interesting, as its eigenvector transitions from the eigenvector for the CSS
to the eigenvector for the MSS, with the probability flowing between the two states
as ∆Gprot increases. Relevant elements of the eigenvalues in this state are shown in
Figure 3.9. The two Quasi-Steady States’ eigenvectors represent flux between two
states, as they contains both positive and negative components and have larger eigen-
values than the steady states. QSS1’s eigenvector represents the flow of probability
needed to transition between the CSS and MSS eigenvectors and it is at its lowest
point (and so its slowest decay time) midway through the transition between the two.
QSS2’s eigenvector represents a flow between completed capsids and two separate
half capsids. It appearing when it does, suggests that with a greater ∆G value, more
states may be able to have a stable existence, especially as, for ∆G = 6.0, two other
eigenvalues (not shown) of size < 10−4 formed, suggesting that other quasi-stable
states similar to QSS2 may appear for larger parameter values.

3.3. Simple Model Of Quasi-Equilibrium 57

Figure 3.9: Bar chart to show key regions of eigenvectors in the transitory section of
Figure 3.8. It shows the ith element of the current steady state eigenvector, x̂i

S for
i ∈ {1, 2, 3, 75, 76, 77}, giving the probability that the system will occupy partition i,
as shown in Table 3.4. All values omitted are less than ≈ 10−4. As ∆Gprot increases,
probability flows from the Monomer Steady State (where x̂77

S = 1) into the Capsid
Steady State (where x̂1

S = 1). The bars for ∆G = 3.8kcalM−1 and ∆G = 4.2kcalM−1

represent the Monomer and Capsid Stable States, respectively.

Next, we consider Section B, which is a transitionary region. In it, eigenvectors
for the monomer steady state transition to become the capsid steady state via
the intermediate steady state, which has a non-zero probability of either partition
representing the system, as shown in Figure 3.9. Additionally, Section D is the region
where kinetic trapping becomes more probable and a second QSS appears, which
may lead to another change to the stable state for sufficiently large ∆Gprot. Notably,
two more states appear in the graph’s range at ∆Gprot = 6.0, which could suggest
even more kinetic trapping to come. Based off the graph, the critical value of ∆Gprot

can be estimated as ∆Gc = 4.0.

This means that for low ∆G values, the system’s most stable state is disassembled.
However, for larger ∆G values, the most stable state is fully assembled and there is
a period of transition between them. This makes sense, as a virus needs to be on the
knife’s edge between assembly and disassembly, so that when it reaches a new host

58
Chapter 3. Models Of Equilibrium And Quasi-Equilibrium In Capsid

Assembly

cell it can release its genetic information and begin reproduction. QSS1 represents
the flux of probability from one state in the system to another. It makes sense that
it is long lived for values of ∆Gprot where the system’s probabilities transition, so a
virus would likely evolve so that it would avoid ∆Gprot values in this transitionary
region, to ensure it reaches a steady state faster. For higher ∆Gprot values, QSS2
becomes longer lived. However, this is still a slow effect as there is not a second
stable state forming. It would make sense for this to be the limit of the validity of
this model, as in a cell, there would be more capsomers to make up a capsid than
are present in this model.

This system could be extended to a system with a larger number of capsomers
by choosing a number N (choosing N as a multiple of 12 is sensible, as this means
there will be a state with N

12 completed capsids) of capsomers to be present, finding
all partitions of N and excluding all partitions with integers > 12. Using these
partitions, another graph of states could be formed (like in Figure 3.7) and a new
matrix A of the rates could be generated. Then, using the same process as for
N = 12, stable states for the larger system can be found.

3.3. Simple Model Of Quasi-Equilibrium 59

Table 3.4: Table indicating a selection of the 77 partitions of 12. When used
for viruses, each column represents the number of n-mers (intermediates with n
capsomers) present in that state. Important partitions are 1 and 77, which represent
the complete capsid and fully disassembled capsomers, respectively.

Partition 1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 1 1
3 1 1
4 2 1
7 3 1
12 4 1
19 5 1
20 2
21 1 1 1
30 6 1
43 7 1
44 3
45 1 1 2
58 8 1
59 4
60 1 1 3
70 9 1
71 6
72 2 5
75 8 2
76 10 1
77 12

4

Generalised Stochastics Models For
Simulating Capsid Assembly

In this chapter, initially the issues with further extending the ODE methods from the
previous chapter are presented. The advantages of using Gillespie methods instead
are then presented. The rest of the chapter discusses a general method that was
developed to create a description of a given capsid’s structure using only a small
selection of its surface. Then, the way that this general method is integrated with
existing methods for modelling virus assembly models is discussed, followed with
ways to improve those methods in this case.

For larger viruses that contain many capsomers, techniques other than ODEs
and equilibrium models must be used to model the assembly of viruses. The reason
for this is covered in more detail in Section 4.1.

This means we need another way to model the assembly. Many issues with ODE
models can be solved by using a stochastic simulation, such as a Gillespie algorithm.
Gillespie algorithms, as covered in Section 2.2, allow the reaction rates for the system
to be calculated on the fly. To do this, the algorithm should know the current state
of each capsid and be able to determine the potential reactions that may occur. For
this purpose, two graphs are needed. One that indicates where capsomers sit relative
to other capsomers, indicating capsid geometry and another graph that determines
where the RNA can sit relative to the capsomers, indicating potential RNA geometry.
However, these two graphs are quite time consuming to generate by hand, so an
algorithm to rapidly generate these graphs from a minimal amount of user friendly
input was developed. Section 4.2 covers how this algorithm works and also how
much information is needed.

60

4.1. Issues With Using ODE Methods 61

In order for the program to identify all potential reactions and to choose one
to fire, we need another algorithm. The potential reactions are identified, then a
Gillespie algorithm is used to determine which will fire. It implements Binary Trees
to increase the speed with which it selects which intermediate will react, to minimise
the number of calculations necessary. Then it chooses which of this capsid’s reactions
will occur using SSA. This process is covered in Section 4.3.

Collectively, this chapter gives a stochastic simulation model of the assembly for
a range of viral models.

4.1 ISSUES WITH USING ODE METHODS

For large viruses, which contain many capsomers, ODE and equilibrium models are
less useful than they were in Chapter 3. To form a set of ODEs, knowledge of all
intermediates and the reactions describing their assembly is needed. For a capsid
assembled from 12 pentameric capsomers (with no RNA), there exist 73 different
intermediate structures and their interaction network is shown in Figure 4.1. When
RNA (with 12 PSs that all bind to a capsomer) is introduced to this system, there
are a total of 85,376 different intermediate structures [18]. With this many states,
is should be obvious that forming a set of ODEs to model a system where RNA
is present would be unfeasible. If viruses made of more than twelve capsomers are
considered, the number of states is even larger. For example, within some proposed
assembly pathways STNV (covered in Chapter 6) has over 1012 potential RNA
arrangements within a completed capsid. This number does not consider the RNA
arrangements within assembly intermediates. Alternatively, a small subsection of
these states could be chosen and modelled (as Zlotnick did for the dodecahedral
model without RNA [59], covered in more detail in Chapter 3). Unfortunately, this
would ignore a significant number of states that could contribute to assembly and it
also requires the assembly pathway to have been chosen in advance. Simulations
of this chosen pathway would not identify kinetic traps that the assembly might
encounter either.

One workaround to this is to use a Gillespie algorithm. This allows the transitions
to be calculated as the simulation goes on, so a smaller number of states need to be
considered. As Gillespie samples the most probable states, the states considered are
likely to be relevant to the assembly process.

62
Chapter 4. Generalised Stochastics Models For Simulating Capsid

Assembly

Figure 4.1: A network that shows all intermediates for a dodecahedral capsid as
nodes and the reactions that can transition between them as edges. The leftmost
node is a free capsomer and the rightmost node represents a fully assembled capsid.
All nodes in one column have the same number of capsomers present and each
reaction only adds/removes one capsomer.

4.2 GENERALISED TILING MODEL

To identify which reactions may occur, the structure of the intermediate must be
known. This means it is necessary to have a graph that contains all of the connections
between capsomers and the free energy (∆Gbond) interactions between them, which
will be called the capsomer graph. This capsomer graph is a form of Adjacency
Matrix, though if it was stored as a matrix, this would be a sparse matrix. It is also
sometimes called the “interaction network” [21] and it describes which capsomers

Figure 4.2: A flow diagram to summarise the code described in Section 4.2.

4.2. Generalised Tiling Model 63

Figure 4.3: Three examples of potential tilings of the capsid, shown as patches of
tilings, to show how little information is needed for tile files. The 5-,3- and 2-fold
axes are represented by black and white pentagons, triangles and ovals, respectively.
Below each patch is an asymmetric unit, with one copy of each distinct capsomer
shown, including ones that sit upon symmetry axes. The algorithm would only need
the information for these capsomers and could then generalise it to the entire capsid,
using icosahedral symmetry. In Example 1, there are multiple capsomers present
in one Fundamental Domain (FD). In Example 2, all capsomers sit on symmetry
axes (specifically the 2-fold and 3-fold axes). Example 3 illustrates how an average
Rhomb T = 3 virus would be tiled, including RNA that can go around the 5-fold
axis and across both nearby 2-fold axes. The navy lines indicate the four edges on
one vertex of a potential RNA graph. These lines could be extended to cover the
whole capsid and thus form the RNA graph for the capsid. In Appendix C, it is
detailed how these become tile files for the algorithm to understand. For simplicity,
consider Examples 1 and 2 without RNA.

64
Chapter 4. Generalised Stochastics Models For Simulating Capsid

Assembly

Figure 4.4: A 3D rendering (produced via the process described in Section 5.3) of the
capsomer graphs produced using tile files for capsids illustrated in Figure 4.3, using
approximately the same colour scheme for each capsid. Part of the tilings from that
same figure have been applied to an icosahedron below the 3D rendering as well. Each
node represents one capsomer and each blue edge represents a capsomer-capsomer
interaction between the two nodes. The RNA graph for Example 3 is not shown here,
for simplicity. This should help visualise how these graphs look and the complexity
of them that leads to this algorithm being necessary.

sit close together. It is used instead of tilings in protein nanotechnology, where
some protein cage structures cannot be modelled as tilings. The interaction network
abstracts from the exact shape of the capsomer and only retains information on
inter-capsomer interactions.

In this thesis’ capsomer graphs, each node’s edges are stored as a list of adjacent
nodes. When RNA is present, we will also need a graph that can be used to map
out the positions between two consecutive PSs on the RNA. Thus, the RNA graph
represents the many paths that the RNA can trace out on the interior of a completed
capsid. An example of what this looks like is shown in Figure 4.5. This is also
stored as a list of adjacent nodes. Both of these graphs are complicated and time
consuming to produce by hand, so a way to generate these computationally is useful.

4.2. Generalised Tiling Model 65

Figure 4.5: (a) The RNA graph for a dodecahedral capsid made of 12 pentamers.
Vertices indicate binding sites for the RNA and edges indicate where a PS, adjacent
(along the RNA) to the PS sat at that vertex, can sit. (b) An example of a
Hamiltonian Path on this RNA graph.

Consider Figure 4.3, which is a 2D net of an icosahedron with three example
tilings of potential viruses on it. Each colour represents one distinct capsomer in
different positions on the capsid. These capsomers may be identical to each other,
they may be made of the same proteins in a different configuration or they may
be made of completely different proteins. Being able to simulate the assembly of a
wide range of proteins such as these is important, to develop an understanding of
viral assembly. These simulations take place in the presence or absence of RNA. So
a method to generalise the input of various assembly dynamics for simulations is
useful.

A program was created that takes an input file with the information for one
Fundamental Domain (FD) of a capsid and will generate a complete map of the
capsid by taking advantage of the icosahedral symmetry of the capsid. Firstly,
consider the symmetry of the icosahedron.

An icosahedron is a platonic solid made up of twenty identical equilateral triangles
and it has 60 rotational symmetries. Viruses use this symmetry to minimise the
number of distinct capsomers that they need to encode, whilst maximising the size of
the capsid, so that it can fit enough genetic information to encode those proteins plus
other components required by the virus (known as the principle of genetic economy).

66
Chapter 4. Generalised Stochastics Models For Simulating Capsid

Assembly

Viruses tend to utilise icosahedral symmetry, rather than tetrahedral or octahedral
symmetry. The corresponding alternative shapes give a smaller internal volume for a
protein of a given size, so icosahedrons are preferred. As a result of the icosahedral
symmetry, the program can take one capsomer as an input and then generate a
graph indicating the relative positions of all other copies of that capsomer.

On a net of an icosahedron, the fundamental domain can take a wide range of
shapes. Within this thesis, we will draw a Fundamental Domain (FD), which we
choose to be kite shaped, sitting with one of its vertices at a 5-fold axis, one at a
3-fold axis and two at 2-fold axes, as is usual in the literature. They cover 1

60
th of

the entire capsid’s surface and contains all the information needed to describe the
capsid. An illustration of a fundamental domain tiling the net of an icosahedron is
shown in Figure 4.6.

For this algorithm to operate, it needs an input of every distinct capsomer and
its neighbours. Here, two capsomers are called distinct if they are not rotationally
equivalent within icosahedral symmetry. Different tile shapes correspond to different
types of biological entities. In addition, identical tile shapes in symmetry-inequivalent
positions can also be realised by different structures. However, typically this would be
different conformers of the same capsomer, rather than different capsomers. Example
3 in Figure 4.3 has two distinct capsomers, with their positions shown in orange and
blue. These two capsomer positions both contain the same capsomer but are not
rotationally equivalent to each other. However, as each orange capsomer position
is rotationally equivalent to all of the others, these only represent one distinct
capsomer. For each capsomer where there are 60 copies of it in the completed
capsid, the algorithm will consider it as sitting within a fundamental domain. The
algorithm considers any capsomer that sits on a symmetry axis as not being within
a fundamental domain, as it will have a reduced number of copies and will exhibit a
reduced number of symmetries, so will be treated slightly differently by the algorithm.

In Figure 4.6, we show the numbering scheme used to identify each fundamental
domain and each symmetry axis in the algorithm. Within the algorithm, fundamental
domains take the numbers 1-60, 2-fold axes take the numbers 61-90, 3-fold axes take
numbers 91-110 and 5-fold axes take 111-122. This leaves every region in the capsid
with a unique fundamental domain/axis number.

For the algorithm to produce the two graphs, it should have an input that will
give all of the information needed whilst also being understandable for a person to
read and generate. Details of the file format can be found in Appendix C.

4.2. Generalised Tiling Model 67

Figure 4.6: Planar nets of the icosahedron, split up so that each fundamental domain
and axis can be numbered. There are 2-fold axes at the midpoint of edges, 3-fold axes
at the centres of the triangles and 5-fold axes at each vertex. Fundamental domains
have been chosen as kite shapes for the purpose of this numbering. (a) Shows the
Fundamental Domains and assigns a number to each of them. (b) Numbers the 5-fold
(red), 3-fold (green) and 2-fold (blue) symmetry axes. When multiple positions have
the same number in the same colour, this just indicates that when the net is folded,
they are in the same position. The two figures line up, so fundamental domain 1
would sit between 5-fold 1, 3-fold 1 and 2-folds 1 and 3.

68
Chapter 4. Generalised Stochastics Models For Simulating Capsid

Assembly

The following information is needed so that the algorithm knows everything
about each FD. It needs to know how many distinct capsomers are present, what
they are made of, how many interactions each of these capsomers make, what these
interactions’ free energy is and where the interactions occur. For simulations with
RNA, it needs to know what interactions the capsomers can have with the RNA,
what paths the RNA can trace out, what extra restrictions on the RNA (e.g. mutual
exclusion, as implemented in Chapter 6) are present and even how many PSs does
the RNA have. The tile file contains this information in an easy to read and produce
format.

Once a tile file has been made, the algorithm needs to interpret this information
into a form it can use for simulations. Instead of using two numbers (FD, the number
given in Figure 4.6 and PN, the protein identification number of a capsomer in an
FD) to refer to each capsomer’s position in the capsid, it would be easier to give a
single number that refers to the capsid positions, so arrays of information can easily
be stored. This numbering must be unique for each capsomer position, should not
have any gaps and should scale to any capsid the program could be given. For the
first step of doing this, we need to define a variable:

protNoMax(i) =

if i = 1 : # of distinct proteins that sit
in a fundamental domain

if i = 2 : # of distinct proteins that sit
on a 2-fold axis

if i = 3 : # of distinct proteins that sit
on a 3-fold axis

if i = 4 : # of distinct proteins that sit
on a 5-fold axis

. (4.1)

This gives the number of distinct capsomers that sit in either a FD or on each of
the three axis types. With this, we can define a map that takes the fundamental
domain (which takes a value in the range 1 ≤ FD ≤ 122) that a capsomer sits in
and the protein capsomer number (PN ∈ N̸=0) for that capsomer and gives a unique
identifier (UI ∈ N̸=0) for that capsomer position.

G : [1 : 122]× N ̸=0 → N̸=0. (4.2)

4.2. Generalised Tiling Model 69

We call this map, getNum(FD,PN), which only relies on its input and the values
of protNoMax, which are fixed for a given capsid. This function is defined in
Algorithm 1. Using the input FD, it identifies if it sits in a FD or which axis the
capsomer sits on. This map numbers each of the protNoMax(1) protein capsomers
that sit within a fundamental domain with numbers from 1 to protNoMax(1) ∗ 60,
each of the protNoMax(2) capsomers that sit on a 2-fold axis with numbers from
1 + protNoMax(1) ∗ 60 to protNoMax(1) ∗ 60 + protNoMax(2) ∗ 30 and so on. This
means that it will always start at 1 and not allow any overlaps in the numbering.

Examples of this numbering can come from Figure 4.3. First, consider Example
1, where there are two capsomers in each FD and one on each 5-fold axis. Thus, the
green capsomers would take the odd numbers from 1-120 and the yellow capsomers
would take the even numbers from 1-120. The red capsomers would take numbers
from 121 to 132. Next, in Example 2 there are two distinct capsomers, the green one
sitting on 3-fold axes and the pink one sitting on 2-fold axes. The pink capsomers
would be numbered from 1 to 30 and the green capsomers from 31 to 50. Lastly, in
Example 3, there are orange capsomers which each sit within a FD, with only one
capsomer per FD and so will take a number from 1-60. It also has blue capsomers
that each sit alone on 2-fold axes and take a number from 61-90.

Algorithm 1 Function to give each capsomer position on a capsid a unique number,
based on the number of capsomers in each fundamental domain.

FD, an integer in [1, 122]
PN, an integer where PN > 0
procedure getNum(FD, PN)

if 0 < FD ≤ 60 then
return ((FD− 1) ∗ protNoMax(1) + PN)

else if 60 < FD ≤ 90 then
return (60 ∗ protNoMax(1) + (FD− 61) ∗ protNoMax(2) + PN)

else if 90 < FD ≤ 110 then
return (60∗protNoMax(1)+30∗protNoMax(2)+(FD−91)∗protNoMax(3)+

PN)
else if 110 < FD ≤ 122 then

return (60 ∗ protNoMax(1) + 30 ∗ protNoMax(2) + 90 ∗ protNoMax(3) +
(FD− 111) ∗ protNoMax(4) + PN)

end if
end procedure

Additionally, we need another function permutations(permNo, FD), which re-

70
Chapter 4. Generalised Stochastics Models For Simulating Capsid

Assembly

Figure 4.7: A graph with triangular symmetry. There are three different rotations
(including the identity) that do not alter the graph. These rotations can each be
represented as permutations of the vertices, as shown. This can be extended to the
capsid, as is done with permutations(permNo, FD).

turns the FD/axis that represents the input FD/axis, FD transformed by permutation
permNo. This can be simply produced in the algorithm as a variable, populated
from reading in a data file that contains all 60 potential permutations (including the
identity) that respect icosahedral symmetry. Figure 4.7 shows how permutations
can represent symmetric rotations, which is extended to the full icosahedron here.
This is key, as the algorithm relies upon icosahedral symmetry to take one capsomer
in one FD (or on one axis) and to populate every other FD (or axis) with equivalent
capsomers. As the positions are stored as just numbers (which represent FDs and
axes), then the various rotations need to be stored as permutations of the integers
that represent each FD or axis. Within the algorithm, the permutations variable
is looped over for every piece of information that is given in the tile file. If the
numbering scheme ever needed to be changed, then that could be achieved by creating
a new planar net diagram and using it (or a printed and folded 3D version) to create
a new permutations file and then using that new planar net to create the new tile
files.

The way that permutations(permNo, FD) is used can be shown in Algorithm 3

4.3. Simulating Reaction Dynamics 71

in Appendix B, which reads in the capsomer-capsomer interactions and populates
the graph with them. It adds every permutation of the input interaction to the
graph. It has a mask, m(a, b) applied to it, so that once an edge is added from a to b,
it will not allow this edge to be added again (which would otherwise occur whenever
a capsomer sits on a symmetry axis). This method is easily adapted to read in RNA
connections and Tile Types however that is not covered here, as these methods are
analogous to the population of the capsomer-capsomer graph.

Algorithm 5 in Appendix B describes how all of the variables, functions and
algorithms come together to produce a set of arrays and variables that store all of
the information on the capsid that is needed to model assembly. For graphs, this
information is typically stored as a 2D array, which stores a list of the edges for each
vertex, rather than as a sparse adjacency matrix. This allows other information to
be stored in similar structures (e.g. the ∆Gbond values for each edge’s respective
interaction) in easily accessible and identifiable ways. Any additional information on
vertices is stored in 1D arrays.

4.2.1 Discussion Of RNA Graphs

Experimentally determining which RNA graph accurately describes the assembly of
a given virus is extremely challenging. Thus, computational simulations are a strong
tool to piece together other insights and identify which RNA graph describes the
assembly process best. This means that many different RNA graphs are identified
and any of them may describe the assembly.

Methods to identify which RNA graphs are most relevant need to be implemented.
One way to do this is to calculate the number of RNA arrangements that could exist
within a completed capsid. This is covered in Section 5.1.

Another way would be to use the stochastic simulation described in this chapter,
to identify the assembly efficiency of each RNA graph. This can be used to select
RNA graphs which have a higher yield and to observe how parameters could be
changed to increase the yield for these RNA graphs further.

4.3 SIMULATING REACTION DYNAMICS

From the previous section, the simulation knows where the RNA and the capsomers
of a capsid can sit but it does not yet know anything about the steps that the

72
Chapter 4. Generalised Stochastics Models For Simulating Capsid

Assembly

capsid goes through to get from free capsomers to assembled capsids. In this section,
the reactions allowed to occur in the simulations are defined, then an algorithm to
identify them within a capsid is described, followed by another algorithm that can
determine which reaction should fire, using a variation of the Gillespie algorithm
covered in Section 2.2. This methodology has been used previously by Dykeman et
al [19, 18].

4.3.1 Assembly Reactions

Assembly is a process that takes a large number of steps, in which a mixture of
free capsomers become fully assembled capsids. To accurately model it, the steps
that the assembly is allowed to take must be defined as a set of assembly rules.
During assembly, the capsomers will form many different intermediate structures,
which can be described as subgraphs of the full capsomer graph. During assembly in
ssRNA viruses, the RNA co-assembles with the capsid shell, which results in the
RNA tracing out a Hamiltonian path, i.e. a path that visits each node in the RNA
graph precisely once. The incomplete path traced out by the RNA in an intermediate
structure will be termed an intermediate path.

For many ssRNA viruses, the RNA has secondary features, called Packaging
Signals (PSs), which can bind to capsomers to aid in the co-assembly process. These
PSs are able to help stabilise the intermediate structures during assembly and their
presence helps to ensure that the RNA is packaged inside the capsid during assembly.
Thus, simulations involving RNA should model PSs. This simulation treats these
PSs as if they are beads on a string, formed with a uniform separation, which allows
the PSs to bind to capsomers. Whilst in real RNA the separation is not necessarily
uniform, we assume that it is here, as this allows all geometric considerations on
the RNA to be contained within the RNA graph. If different separations were
allowed, then each PS would have a different set of edges available on the RNA
graph, based upon the separation between it and its adjacent PSs. This algorithm
could be upgraded to facilitate this but this was not implemented. From an analysis
perspective, this would add another set of dimensions to the parameter space, by
adding the PS-PS length as a parameter for each separation for each RNA graph.

PSs can be made from a wide range of different structures, with different arrange-
ments or different bases present, which means that strength of interactions between
PSs and capsomers can vary too. To simplify this for the model, each PS is given a

4.3. Simulating Reaction Dynamics 73

Figure 4.8: Illustration of the reactions that are allowed to occur for capsomers
that can bind to PSs. The reactions going right show a capsomer binding to a
PS. Downwards, the reactions show two capsomers on adjacent PSs forming an
interaction and making an intermediate structure. These reactions are reversible, so
the figure also shows the reverse of these reactions in the opposite directions. Once
enough of these reactions happen, then the capsid will gain enough capsomers to
finish assembly and become a complete capsid. Capsomers that are not bound to
a PS are allowed to join the capsid. The red arrow indicate examples where these
capsomers bind to the existing intermediate structure.

single parameter value that determines the strength of the bond it can form with
a capsomer. However, not all capsomers need to bind to PSs, even in simulations
that include the RNA. An example of this is MS2, whose capsomers use the Rhomb
tiling shown in Example 3 of Figure 4.3 (but not necessarily the RNA graph). Its
capsomer has two different conformers: the AB dimer and the CC dimer, represented
by the orange and blue rhombuses, respectively. During assembly, the AB dimers
bind to the RNA and the CC dimers do not.

During assembly, the capsomers are able to bind to the PSs. After the capsomers
are bound to PSs, they can join the intermediate structure. If a capsomer is bound
to a PS, it is only allowed to join the intermediate structure when one of its adjacent
PSs is bound to a capsomer that is part of the intermediate capsid structure. These
reactions are shown in Figure 4.8 on a small section of RNA.

Capsomers that do not bind to PSs are able to join the structure without being
bound to a PS, if they attach to the current intermediate structure, indicated in
Figure 4.8 by red arrows. Each of the reactions in the figure are able to reverse,
where capsomers leave the intermediate structure. One restriction that has been

74
Chapter 4. Generalised Stochastics Models For Simulating Capsid

Assembly

Figure 4.9: This figure shows three example of connected graphs. If some of the
vertices in these graphs were removed, the remaining graph would be disconnected.
These vertices are called articulation points. The articulation points in these graphs
are green and non-articulation points are orange.

placed on this simulation is that no capsomer is allowed to leave if it will cleave the
capsid into two parts (not counting the capsomer that leaves). An example of what
this would look like is shown in Figure 4.9, where some nodes cannot be removed
without disconnecting the graph. Another restriction is that when a capsomer bound
to a PS leaves the intermediate structure, this capsomer must be bound at one end
of the RNA or the other - none of the PSs in the middle of the RNA’s intermediate
path can have their capsomers leave the intermediate structure. For example, if there
is a path which starts at the first PS and ends at the fifth, then the only PS-bound
capsomers that can disassociate from the capsid would be bound to the first and fifth
PS: the capsomers bound to the second, third and fourth PS would not be allowed
to leave.

Figure 4.10: A flow diagram to summarise the code described in Tarjan’s Paper [50].

4.3. Simulating Reaction Dynamics 75

4.3.2 Finding Possible Capsid Reactions

Now that the capsid reactions have been defined, the algorithm needs to be able
to identify which reactions may occur and to calculate their propensities. The
algorithm uses a modified version of the SSA algorithm that groups the reactions
(each capsid’s reactions are one group) and stores the total propensity for each capsid
separately. These totals are only recalculated after that capsid reacts [19, 26, 1].
Various methods of grouping reactions are described in more detail in Section 2.2.5.

Unfortunately, a number of reactions depend on the concentration of the cap-
somers in the system, which changes after every reaction. A workaround for this
relies upon the fact that all allowed reactions only depend on one capsomer joining
or leaving per reaction, so the propensity for each reaction will at most depend
on the concentration of one type of free capsomers. As ∑i Pi[n] = [n]∑i Pi, where
[n] is the concentration of the nth free capsomer and Pi is the propensity of the ith

possible reaction, these families of reactions can be divided further. If there are
m types of capsomer tiles in a capsid, then the reactions for this capsid can be
further subdivided into m + 1 different subgroups. One subgroup will not depend
on the concentration of any capsomer and the other m families will each depend
on the concentration of one capsomer type. The reactions where a free capsomer
of a given type binds to the RNA or joins the capsid intermediate will all depend
on the concentration of that capsomer type. The propensities that depend upon
concentrations can be stored without multiplying them by the concentration and
they will remain accurate until a reaction in the capsid fires. The product of these
propensities and the concentration can be calculated later, when the full propensity
is needed. This means that an extra binary tree is needed for each different capsomer
type.

Figure 4.11: A flow diagram to summarise the code described in Section 4.3.2.

76
Chapter 4. Generalised Stochastics Models For Simulating Capsid

Assembly

During a simulation, the algorithm should store some information about each
capsid, including:

1. which capsomer positions on the capsid are occupied

2. which PSs have capsomers bound to them

3. points on the capsid that each PS is bound to (if bound)

4. the strength of each PSs’ bond with its CP
Using this information and pre-existing knowledge about the capsid (RNA graph,

capsomer graph), it can identify which reactions are allowed to happen and calculate
their propensities. Before any reactions can occur, the algorithm should mark some
capsomers and positions to prevent them from reacting. The RNA has two ends,
the 5′ end and the 3′ end. When RNA is produced in vivo, it is synthesised from
the 5′ end to the 3′ end. This is the same direction that the RNA encodes its
genetic information in. As the RNA traces out an intermediate path in the capsid
intermediate, only the capsomer furthest in the 3′ or 5′ direction is allowed to leave.
Due to this, any capsomers mid-path are marked so they are not allowed to dissociate.
This can be attributed to many reasons. The first is that the combination of RNA-
capsomer and capsomer-capsomer interactions gives a stabilising effect, so that it
would be more difficult for capsomers to dissociate in this region of the intermediate.
Another would be that the RNA has a finite flexibility and if the adjacent two PSs
are still bound to the intermediate structure, the central PS will have a limited
distance that it can move away from its neighbours.

Also, when a capsid includes capsomers that can associate to and dissociate from
the structure without being bound to PSs, then allowing any capsomer of this type to
leave could result in the intermediate being cleaved in two, which would complicate
the model significantly. Therefore Tarjan’s Articulation Point algorithm [50] has
been implemented, to mark any capsomer where this is the case and we implement
the rule that it cannot dissociate.

The simplest reactions are capsomers joining/leaving a PS. If a PS is bound to
a capsomer and this capsomer is not part of the intermediate structure, then this
capsomer is allowed to leave. If a PS is unbound, a capsomer may bind to it. The
algorithm should search across the RNA to calculate which of these reactions can
occur and add them to the relevant propensity total.

When there is no existing intermediate structure, the algorithm should be able
to identify when there are two adjacent PSs that are both bound to a capsomer,

4.3. Simulating Reaction Dynamics 77

as these capsomers can form the first intermediate structure, with them placed in
positions that are adjacent in both the RNA and capsomer graph. These reactions
rates should be added to the propensity total.

Mid-assembly, the RNA will have a series of its PSs form an intermediate path.
At both ends of this path, if the next PS has a capsomer bound to it, then this
capsomer may join the intermediate structure. The capsomer at either end of the
path is also allowed to leave the structure. Both ends of the RNA should be checked
for these reactions and the propensity added to the total.

Lastly, the code should check capsomer positions that do not bind to the RNA
(e.g. the CC dimer in MS2). If a capsomer can join the structure in one of these
positions, its propensity should be added to the total. If one of these positions had
a capsomer present and is unmarked, then it is allowed to leave the structure and
the propensity should be added to the total too.

Once these reaction propensities have been calculated and summed, they can be
stored until they’re needed. And each intermediate’s propensities will only require
an update if a reaction occurs that involves it. An example of an intermediate with
these reactions is shown in Figure 4.12.

4.3.3 Non-Capsid Reactions

There is one more reaction that may need to be modelled: the production of a
capsomer. In larger viruses, this would be production of proteins, followed by these
proteins reacting to form capsomers, though this extra step is neglected in this
algorithm. As it is the number of capsomers in the mixture, this must be modelled
at a systems level, rather than the capsid level like most reactions listed previously.
There are two types of viral assembly scenarios that are considered in this model.
The first is in vitro, where the protein capsomers and the RNA will be mixed
together and allowed to reach equilibrium, with all proteins present at the start of
the assembly. The other is in vivo, where a virus infects a cell and the cell then
gradually produces RNA and proteins, which react to make the assembly capsomers.
For in vitro simulations, the full number of capsomers and RNA are present at the
beginning of the simulation, so this reaction is unnecessary. For in vivo simulations,
the capsomers will be added gradually over time. Within this simulation, only the
capsomers are added gradually and the RNAs are all added at the start of the
simulation. The addition of the capsomers is treated as another reaction, with a rate

78
Chapter 4. Generalised Stochastics Models For Simulating Capsid

Assembly

Figure 4.12: An example capsid intermediate using a Rhomb tiling, to demonstrate
potential reactions that may occur. Each rhombus is a position that a capsomer may
sit, with capsomers that sit on 2-fold axes not being bound to a PS. The RNA graph
is shown on the left of the diagram. The table at the top details a small section of
the RNA’s PSs showing whether they are bound to a CP, with colouring indicating
potential reactions. The line with nodes labelled 10-13 indicates where these PS sit
on the structure. Green and white shapes indicate that capsomers are not present
there, whereas red and yellow shapes have a capsomer present. Green rhombuses and
squares indicate places where a capsomer can be added to the intermediate, whether
on the RNA or the capsid structure. Green rhombuses with dots are capsomers where
a PS-bound capsomer would join. Red rhombuses and squares indicate places where
a capsomer can disassociate from the intermediate structure. Yellow rhombuses and
squares indicate places where a capsomer is present and is not allowed to leave the
intermediate structure. Capsomers can only join/leave the RNA at PSs 9 or 14
respectively (of the PSs shown), as the others are part of the intermediate structure.
The dotless green capsomers are capsomers that sit on 2-fold axes that can join the
structure. The dotted green capsomers are positions where the capsomer bound to
PS 14 could join the structure. There are no dotted green capsomers near to PS 10’s
capsomer, as PS 9 is not bound to a capsomer. The capsomers bound to PSs 11 and
12 are not able to leave the structure, as they are in the middle of the RNA path.
The remaining yellow capsomer is an articulation point, so it is not allowed to leave
and cleave the capsid. The capsomers bound to PSs 10 and 13 are able to leave the
structure, as they are at the end of the RNA path. The remaining red capsomer is
not bound to a PS and so can leave.

4.3. Simulating Reaction Dynamics 79

Figure 4.13: A flow diagram to summarise the first step of the code described in
Section 4.3.4.

that is input alongside other physical quantities. The algorithm has a limit to the
number of capsomers that can be created. This limit is normally set to the number
of capsomers needed for all RNAs in the system to form completed capsids. When
simulations were ran with a larger limit, this did not make a significant change to
the yield of the simulations.

This algorithm could be extended to include reactions that change the conforma-
tion of a given capsomer as well. An example of this is MS2, where the AB dimer
and CC dimer are both made of the same proteins, siting in different conformations.
The two dimers can switch between conformations, so a more accurate model would
include this reaction. Currently, AB and CC dimers are treated as just being the
same capsomer in this model.

4.3.4 Choosing A Reaction

As the algorithm identifies the reactions, it partitions them as the reactions for each
individual capsid. There needs to be a way to select which capsid’s reactions should
be next to fire. As described previously, the algorithm first calculates the total
propensities of the reactions for each capsid.

Instead of using the direct method of SSA, other methods give improvements,
to more efficiently identify which reaction should be next to fire. The reactions
are all allocated into groups (one group per capsid), so that recalculating the total
propensity takes fewer steps [19, 18, 20, 17]. In these simulations the total number
of RNAs or capsids is usually both large (2000 RNAs when it is present, or up to
60,000 intermediates when the RNA is not present) and fixed, so partial sum tables
can be used to store reaction propensities, to help determine which capsid is likely
to react next more efficiently.

The queue structure that was used for these simulations is a partial sum table,
stored using a binary tree. A binary tree structure is used to store the partial sums

80
Chapter 4. Generalised Stochastics Models For Simulating Capsid

Assembly

of each capsids’ propensities, to allow faster searching. Identification of the next
capsid to react will now take O(log2 n) rather than O(n). Storing the partial sums in
a tree can be done by allowing each node to be the sum of its children nodes. When
using Gillespie’s Direct Method, the next reaction is usually chosen by finding the
smallest value of i such that ∑i

i′=1 ai′ > ra0, where r is a uniform random number in
the unit interval and a0 = ∑

i′ ai′ , with reaction j having propensity aj. With this
method, the algorithm searches through each potential reaction in turn. However,
when partial sums are stored in a binary tree, half of the potential reactions can be
ruled out at each level of the tree.

Once a capsid has undergone a reaction, the propensities of the potential reactions
need to be recalculated, as some will no longer be viable and new ones may now
be possible. This means one capsid’s total propensity has changed, which leads to
a need to recalculate the values of the partial sum tree. The only elements on the
tree that need to be updated are the node for the capsid that reacted and all of its
parent nodes, which speeds up this update.

To determine which capsid should react, Algorithm 2 can be used. It uses the tree
structure to efficiently select which capsid should react next and uses partial sums
to implement the SSA formulation described by Li and Petzold [36]. This allows the
simulation to swiftly determine which reaction happens next and to update only the
propensities that have changed.

Within a capsid, the number of potential reactions that could occur changes
significantly based upon the current structure of the capsid intermediate. Due to
this, it would be challenging to set up a sophisticated structure, such as a tree, to
determine which reaction is due to fire next. As a result, the next reaction that
fires within a capsid is calculated using the SSA direct method. The number of
reactions that could occur in a capsid are typically much smaller than the number
of RNAs/capsids in a simulation, so this queue being less efficient is less impactful.

Figure 4.14: A flow diagram to summarise the second step of the code described in
Section 4.3.4.

4.3. Simulating Reaction Dynamics 81

Figure 4.15: A flow diagram to summarise the third step of the code described in
Section 4.3.4.

Figure 4.16: An example of a binary tree which can be used to store the partial sums
for the system. Each internal node has a parent and two children. For a binary tree
that stores partial sums, the parent’s value is the sum of the two children’s values,
e.g. N8 = N4 + N12 = ∑15

odd i Ni, N4 = N2 + N6 = ∑7
odd i Ni, N2 = N1 + N3 and N1

is the sum of reaction 1 and 2’s propensities. This can be used as an example of a
Gillespie algorithm based on precisely 16 reactions. The tree allows faster searching
for the next reaction in a stochastic simulation, as is used in [18].

Once this reaction fires, the capsid’s propensity is recalculated and then the
partial sum tree is updated. Then the next reaction is selected and the cycle begins
again, until the simulation reaches a pre-defined end point.

82
Chapter 4. Generalised Stochastics Models For Simulating Capsid

Assembly

Algorithm 2 A method to search through a binary tree, to determine which capsid
will react next in the simulation

Variables:
b_tree[i] contains the sum of the propensities of capsids i and i + 1 for odd i and
is a perfect binary tree, using a numbering matching the example in Figure 4.16.
Each even element is the sum of its two children
nsum← the number of nodes in the tree +1
Current node is set to root node, with index nsum

2
procedure

r ← a uniform random number in unit interval
at ← b_tree[nsum/2] ∗ r ▷ The total propensity multiplied by r
while the current node has children do

sI ← the index of the smaller indexed child of current node
if b_tree[sI] < at then

Current node is set to the smaller indexed child of current node
else

at ← at − b_tree[sI]
Current node is set to the larger indexed child of current node

end if
end while
cI ← the index of the current node
if the cI th capsid’s propensity > at then

Capsid cI reacts
else

at ← at− the cI th capsid’s propensity
Capsid cI + 1 reacts

end if
end procedure

5

Statistical Analysis Of Capsid Assembly
Pathways

Following from the model introduced in the previous section, this chapter will
introduce a range of different methods used to analyse the results generated through
that modelling. This primarily focuses on how the RNA may sit on the inside
of the capsid. Initially a simple combinatorics approach was used, giving a sense
of the scale of the space of RNA arrangements. Then, tools to analyse the data
from the stochastic simulations of assembly described in the previous chapter are
presented, which test for any patterns in the arrangements of the RNA inside the
capsid. Initially, this is done using a simple approach but when the capsids got
larger, more sophisticated analysis tools were developed. Finally, one more tool that
was developed is presented. This tool is used to generate informative figures which
describe how the RNA may sits inside the capsid at the end of the simulations.

Figure 5.1: A flow diagram to summarise the code described in Section 5.1.

83

84 Chapter 5. Statistical Analysis Of Capsid Assembly Pathways

5.1 COMBINATORICAL ANALYSIS OF HAMILTONIAN PATHS
FOR GENERAL CAPSIDS

Chapter 4 defines a stochastic simulation to model the assembly of capsids via a
Gillespie algorithm, including the way that the RNA sits within the capsid. The
available RNA arrangements are defined by the choice of RNA graph, which indicates
how two adjacent PSs on the RNA can sit relative to the capsid. Each virus has a
large number of available RNA graphs. However, these stochastic algorithms can be
slow to run and are unlikely to sample the entire space of possible RNA arrangements
(it will only sample the most probable arrangements). Knowing the size of the space
that is being sampled from would augment the insight given by the sampling. Thus,
a new method was devised, to calculate the number of paths that the RNA can trace
out within a given capsid. These paths are usually represented by a Hamiltonian
Path.

A Hamiltonian Path is defined as a path on a graph which visits every vertex
precisely once. These can be applied to a virus and its RNA, as each PS on the
RNA will need to be bound to a capsomer and each capsomer can only be bound
to one PS at once. Thus, within a completed capsid, the RNA will have all of its
PSs bound to capsomers on the inside of the capsid and will trace out a path on the
RNA graph. So the RNA traces out a Hamiltonian path on the capsid’s RNA graph.

An algorithm was developed that combinatorically counts all of the Hamiltonian
Paths that exist for a given RNA graph. These are read in using the same tile file
that was defined in Section 4.2, though it only focuses on the RNA. This process is
detailed in Algorithm 6 in Appendix B, which uses recursion to examine the tree of
potential paths that could be traced out. This algorithm starts at one end of the
RNA (which has nps PSs) at one position and builds a path by testing each of the
neighbours to this initial position. If they are not disallowed (e.g. RNA has already
visited it or due to mutual exclusion), they are added to the path and the process
starts again with this new, longer path and recurses until the path visits nps vertices
or there are no available neighbours at the current position.

As the RNA will not necessarily begin its paths at one end of the RNA, ideally
the algorithm would not assume this. Equally, it would add a huge computational
complexity to test all RNA paths when the path is allowed to go in multiple directions
on the RNA and to calculate this starting from every PS along the RNA, then exclude

5.2. Analysis Of RNA Paths From Stochastic Simulations 85

duplicates. Additionally, allowing the paths to remove capsomers, as would be allowed
during the stochastic simulations and which could result in structures that would
not be possible otherwise, would exacerbate this issue further. Thus, the algorithm
starts its search at one end of the RNA and completely neglects the capsomer-
capsomer binding and allows paths to include disconnected capsomer graphs during
the combinatorics. Once all PSs are bound (and so the path is completed), the virus
likely has all of its npro capsomers present (or will if npro = nps), so the capsomer
graph should not be disconnected at this point. This means all potential paths are
counted but that sometimes paths which are valid in the RNA graph but could not
occur during the stochastic simulations will also be counted.

This method worked well for smaller values of nps but took too much time
computationally to run for larger values. This is due to the upper bound on the
number of paths being ≈ Nnps for an RNA graph with N edges on each vertex.
As an example, for a graph with N = 5, this upper bound goes from ≈ 1021 with
nps = 30 to ≈ 1042 when nps = 60, a significant increase.

This algorithm could be improved so that it can deal with these larger paths. In
its current form, this algorithm does not do any parallel processing and has efficient
memory usage. One method of scaling this would be to run the algorithm so that
it will generate all of the intermediate paths of some length pathLen and output
them all. Then, these paths could be partitioned and a second algorithm would read
them in and then continue generating paths from there, allowing many parts of the
algorithm to run in parallel. This would still take up a very large computational
load but might be feasible.

5.2 ANALYSIS OF RNA PATHS FROM STOCHASTIC SIMULA-
TIONS

For bacteriophage MS2, experimentalists have been able to use cryo-EM to determine
roughly where the RNA sits on the inside of the capsid [52]. Due to the techniques
they use, this has been averaged over icosahedral symmetry, so it shows where the
RNA may sit near the capsid but not the full path. This is effectively an RNA graph,
from which all Hamiltonian Paths can be deduced, which was done by Dykeman
et al [16, 25]. With a small set of rules, they took approximately 40,500 potential
paths and narrowed it down to 66 that were consistent with what is known about

86 Chapter 5. Statistical Analysis Of Capsid Assembly Pathways

the assembly of MS2 and then found the 3 most energetically favourable paths. This
allowed comparison with further experimental data, which suggested that the RNA
always traces out a specific one of these favourable paths.

From this, there is the suggestion that viruses may tend towards having one path
that is highly efficient at assembly and neglect assembly via other pathways. If this
is the case, it is necessary to be able to test the stochastic model, to see whether the
same effect occurs during assembly simulations where the parameters are tuned for
efficient assembly. Analysing the paths, to see how often each path is sampled using
the stochastic models may also give insight into why certain RNA graphs will give
higher yields than others. If certain RNA graphs give a higher yield and also reliably
give the same path, then this is a useful insight and would agree with the prior work
on Hamiltonian Paths above. This is valuable to determine computationally, as it
is exceedingly hard to get an image of the layout of the asymmetric RNA within a
capsid using experimental methods.

As most icosahedral ssRNA viruses use co-assembly processes to ensure the RNA
is packaged within the capsid, knowledge of how the RNA achieves this is key to
understanding how these viruses assemble. Thus, two methods used to analyse
the RNA within completed capsids and the intermediates formed during assembly
simulations are described.

5.2.1 Comparison Of Completed Paths

When capsids are fully formed, the surface will be made up of the full number of
capsomers for that capsid, in the same positions, so the protein structure of two
complete capsids cannot be meaningfully compared. One part of the virus that is
not guaranteed to be the same is the path the RNA traces out on the inside of a
completed capsid.

In a completed capsid, the RNA traces out a path on the inner surface of the
capsid. This path can be labelled from the 5′ end to the 3′ end by which capsomers
are contacted. This is not necessarily the order that capsomers were added into the

Figure 5.2: A flow diagram to summarise the code described in Section 5.2.1.

5.2. Analysis Of RNA Paths From Stochastic Simulations 87

capsid, as the assembly could begin anywhere along the length of the RNA. However,
if two capsids have the same RNA arrangement, then it is likely that the two of
them will have had similar assemblies, so this tells us something about the assembly
if one path is more common. Initially, analysis focused upon the paths that were
traced out in completed capsids. Only paths generated from stochastic simulations
were considered. These paths were stored as a series of positions that the PSs were
bound to.

An intuitive way to analyse these paths would be to assign each RNA connection
a different number (e.g. anticlockwise about a 5-fold axis is 1, clockwise is 2, etc...)
and to store the path as a series of these numbers. This works well for viruses that
have capsomers that exclusively sit within FDs, such as the example shown in Figure
5.3a, as you can always uniquely define each connection via rotations about nearby
symmetry axis, due to the asymmetry of the FD. Unfortunately, this is not the case
in capsids where capsomers sit on symmetry axes, such as the one shown in Figure
5.3b. As these capsomers sit on symmetry axes, then the RNA connections cannot
be uniquely defined based off their nearby symmetry axes, as there are multiple axes
that are indistinguishable due to the symmetry. One workaround for this would
be to define a new map to define each move for each position, based on where has
been visited most recently by the RNA, as shown in Figure 5.3c. This could be
generalised so that it works alongside the tools already presented which produce a
map of the capsid. However, it would be challenging to produce requiring knowledge
of which rotation about which axis is represented by each of the permutations and
also additional user input to generate this map for every capsid, which is what the
tool was designed to avoid, so this method was not pursued.

Thus, another method is proposed. It reads in each of the n paths sampled
by the stochastic simulation and creates an array containing the 60n paths and
permutations of these paths, as is described in Algorithm 8 in Appendix B. These
permutations represent each of the 60 rotations that leave a capsid invariant and so
gives all possible perspectives on how the path traced out by the RNA could sit.

Then, the algorithm takes the first sampled path and compares each following
sampled path and all of their permutations to see if they match. When the current
path matches a new path or permuted path, a counter is incremented and then the
new path and its permutations are marked, so they will not be counted again.

Once this is complete for the first path, it is repeated for the next non-marked
path. This is repeated until all paths are marked, with up to n different paths and a

88 Chapter 5. Statistical Analysis Of Capsid Assembly Pathways

Figure 5.3: Sections of a planar net of (a) an icosahedron and (b),(c) a dodecahedron.
They can be used to indicate why generalising a numbering scheme for the edges
of an RNA graph can be challenging. Each capsomer is in the shape of (a) a kite
or (b),(c) a pentagon, with the purple capsomer representing a capsomer that is
bound to a PS and nearby capsomers that adjacent PSs along the RNA could bind
to are given identifiers. The red pentagons, triangle and ovals represent 5-fold, 3-fold
and 2-fold axes on the structure. In (a), the capsomers each sit within their own
FD and any other position (with the eight represented by rotations about an axis
that overlaps with the purple FD labelled here) can be uniquely described, relative
to the current capsomer by rotations about a nearby axis. In (b), a capsomer that
sits on a 5-fold symmetry axis is centred. Due to it sitting on an axis, it is not
possible to describe the nearby capsomers uniquely by rotations, as was possible in
(a), because all neighbouring axes are rotationally equivalent to each other. For (c),
a potential workaround to the issue in (b) is shown. By orienting the path using
the previous edge in the path, the nearby capsomers can be uniquely described by
rotations, as the previous edge breaks the symmetry. This would require knowledge
of which permutation represents which rotation about which axis, which would be
time consuming to identify.

total number of times each path was sampled. These paths are sorted based on their
totals and every path that occurs at least c times for a chosen value of c is output to
be investigated. This is covered in Algorithm 9 in Appendix B.

By using the whole path and its permutations instead of assigning labels to each
RNA connection, the algorithm is guaranteed to be able to work. As the simulated
capsids are generated using these permutations, then the permutations can always
be applied to paths/positions within the capsid, regardless of whether capsomers sit
in FDs or or on symmetry axes. It also requires no additional user input other than
the tile file to do this analysis.

This method requires more comparisons and is less efficient than the previously
proposed method but was sufficiently fast when applied to collections of n ≈ 10, 000
paths sampled using stochastic assembly. This method does result in outputs that

5.2. Analysis Of RNA Paths From Stochastic Simulations 89

are harder to interpret without visualisation techniques, when compared to the
previous method. However, it makes it easier to produce imaging tools, to view the
paths in 3D (covered in Section 5.3).

This method was most useful for STNV (discussed in Chapter 6), where there
was a large degree of similarity between paths but it can also be used on paths made
from any tile. For larger viruses, this similarity between paths was not observed, so
other analysis was necessary to see how the simulations were running.

Initially, to try and get more insight into larger viruses, this analysis was performed
for smaller sections of the completed paths (e.g. testing how often in the paths does
the RNA visit all 5 positions about a 5-fold axis in clockwise order). This initially
appeared to give new insights but it relied upon viewing these sections in isolation
from the other capsomers present in the completed structure due to other sections
of the RNA and this would often lead to these sections being disconnected on the
capsomer graph. The simulations that resulted in these paths had gone through every
step necessary to form these capsids and the intermediates were always connected
on the capsomer graph. However, this analysis was viewing one screenshot of the
completed capsid and only viewing small sections of its RNA. Therefore it did not
give useful insights. These limitations lead to the method covered in the next section.

5.2.2 Analysis Of Intermediate Structures During Assembly

Looking only at the final path that the RNA traced out gave some insight into the
assembly of STNV. However, it was less appropriate for larger capsids. Being able
to identify key moments during the assembly of a capsid is important to understand
the processes that lead to efficient assembly. This leads to the conclusion that data
needed to be generated that records the reactions a capsid takes during assembly,

Figure 5.4: A flow diagram to summarise the changes to the code from Chapter 4
that are described in Section 5.2.2, with the additional output labelled in red.

90 Chapter 5. Statistical Analysis Of Capsid Assembly Pathways

rather than just the end state of the capsid. If efficient assembly of one virus
has markers that can be sought out in other viruses, then this would improve our
understanding of the assembly process.

The stochastic simulation was modified so that it would store certain information
about the capsid for each RNA during its assembly. This information had to be
fairly simple, as if it was too large, storing it would impact the simulations speed
and use too much memory but also needed to be complex enough to give insight into
the capsid’s assembly. The following information was gathered:

1. The total number of reactions that occurred, where a reaction is defined as
any event where a capsomer joins/leaves the existing intermediate structure
and where at least one capsomer-capsomer interaction is formed. Capsomers
binding/unbinding from a PS are not included

2. What order the capsomers were added/removed in

3. Which PSs on the RNA were bound to the first two capsomers that made a
capsomer-capsomer interaction

4. Which direction along the RNA (3′ or 5′) was a capsomer added/removed from

5. How many capsomers are present post-reaction

6. How many capsomer-capsomer interactions were formed/broken

After this was implemented, a cap was added, so that the algorithm would only
record the first 3000 reactions that occurred for each RNA, as simulations typically
involved capsids that had < 100 capsomers and it was assumed this would be
sufficiently many reactions for capsids to complete assembly. Unfortunately, almost
every simulation ran at that point had most of the RNAs involved in over 3000
reactions before completion. From inspecting the data, most of these were due to a
capsomer joining the structure and then immediately leaving the structure as the
next reaction (or leaving then rejoining). These are two sequential reactions with
no net change to the capsid, which can happen very quickly, giving an excess of
unhelpful data. This is not unexpected, as it is modelled using a Gillespie algorithm,
which are prone to this but a fix was needed. As a result, a filter was added to the
algorithm so that if two subsequent reactions were the addition/removal of the same
capsomer at the same end of the RNA, it would be removed from the record. This
filter does not remove all sequences which give no net result. For example it does
not cover a sequence of 4 reactions, two on each end of the RNA, whilst alternating

5.2. Analysis Of RNA Paths From Stochastic Simulations 91

which end reacts. In theory, it could be worked around by using a marker for each
end of the RNA and looking back further. However, this could lead to the data
appearing inconsistent. For example, in a capsid where some capsomer A is added
at the 5′ end, then some capsomer B joins on the 3′ end adjacent to A and then
capsomer A leaves, removing the two reactions including A would lead to the number
of capsomers jumping by 2 during the reaction that added B (which is not allowed
in the stochastic simulations). The number of interactions formed in this way would
appear inconsistent as the removal will have reduced the number by 1 more than
when it was formed and the rest of the data would be impacted in ways it would be
challenging to fix.

For viruses where every capsomer joins whilst bound to a PS, this simple filter
was enough to ensure that the number of reactions stored was more manageable.
When viruses allow capsomers to join the structure without being bound to a PS,
this filter is not enough, as many different weakly interacting capsomers are able
to join in any order and so the number of reactions was not reduced by as much
(though there was still some effect). No further filters were applied.

This information can be used in two different ways. The simplest method is
just to graph them, which can show many intuitive results, for example that it is
much more common for a reaction to break 1 interaction than 2. Or less intuitive
ones, such that the capsid intermediate can often get stuck for a while at a small
size, doing many forward and backwards reactions but after the capsid intermediate
reaches a certain minimal size, it almost immediately proceeds to completion, which
is consistent with nucleation theory.

The other way to use this information relies upon the fact that it can be used
to track the exact series of reactions that each capsid underwent to go from free
capsomers to assembled capsid. Unfortunately, trying to get a conclusion from such
a large dataset would be challenging, so a smaller section of it was sectioned out and
analysed. Using the steps that occurred, an algorithm was developed that followed
the instructions and recorded the latest intermediate of n capsomers for n ∈ [2, npro]
for each RNA, where npro is the number of capsomers in one complete capsid. So,
for every completed capsid, there would be npro− 1 latest structures. The latest
structure was chosen as it is the last time the intermediate is that size. If there are a
lot of forwards and backwards reactions, then the intermediate which reacts forwards
without going backwards after, is the structure that is interesting to look at and
compare to other RNAs, as this is the one that proceeds towards a stable capsid.

92 Chapter 5. Statistical Analysis Of Capsid Assembly Pathways

Once these structures were obtained, it was necessary to compare them to each
other to see if there was any correlations in the structures formed. Initially, three
criteria were chosen to indicate whether two structures were the same:

1. The same (or rotationally equivalent) capsomers are present in both structures

2. The RNA traces out the same path along the capsomers in both structures

3. The same PSs are bound to the same position in the path in both structures

These were chosen to find any similarities between the assemblies, with the third
criterion being focused on identifying how often the same nucleation sites are used.
However, this turned out to be too strict and so was dropped shortly after.

The second criterion was also useful but unfortunately, for larger capsids, the
space of possible paths is very large, so this criteria needed to be neglected too in many
cases. Which leaves the information on where capsomers are added, which can show a
lot about what the capsid is doing, as this depends on both the capsid structure and
also the RNA graph used in that simulation. So the algorithm eventually generates
a tally of how many times each structure is the most recent structure of a given
size for that RNA from a simulation. This is done using a similar method to the
one discussed in Section 5.2.1, where each permutation is applied to the structures
followed by comparison to the other alternative structures for each intermediate size.

There is the caveat that this method only generates useful results when npro =
nps due to capsomers that are not bound to PSs being prone to join/leave the capsid
structure more frequently than those bound to PSs (covered in more detail in Section
3.2). As a result, the latest intermediate is more likely to be due to fluctuations than
significant steps in the assembly.

5.3 IMAGING OF PATHS

Being able to view the RNA paths generated by the stochastic simulations is a useful
way to compare them and to see how the capsid assembles. Additionally, it can also
be useful to view the capsomer and RNA graphs, to compare across capsids. Thus, a
process is needed to generate 3D images of the graphs that make up the capsid. This
is done in tandem with the makemap algorithm from Algorithm 5 in Appendix B.

It uses the same tile file used previously and one new file with the coordinates of
each distinct capsomer’s binding site (in the case of RNA paths) or each distinct

5.3. Imaging Of Paths 93

capsomer’s centre of mass, alongside their PN and FD. The rotations are applied by
knowing a series of rotations which transform the initial FD/axis into the desired
FD/axis. Due to this, the input FD must be 1, 61, 91 or 111, rather than any FD
being allowed, like in the tile file. These coordinates do not need to be normalised,
so if a specific virus is being modelled, then the coordinates of its binding sites can
be used and the output file can be viewed alongside the PDB file for the virus and
so indicate interesting features on the capsid with this.

The algorithm takes these inputs then, using a predefined series of rotations
about some of the nearest symmetry axes, generates the coordinates for each copy
of these input capsomers. These series of rotations are stored as anti/clockwise
rotations about the 5-fold and 3-fold axes that sit closest to FD 1. The normalised
axes’ coordinates are defined as: ax5 = 1

2+ϕ
(0, 1, ϕ) and ax3 = 1√

3(1, 1, 1), where
ϕ = 1+

√
5

2 , the golden ratio. The region of FD 1 can be defined as the kite on the
surface of the unit sphere with vertices ax5, ax2, ax3 and ax2′ and any vector (when
normalised) that sits in this space is within FD 1. The positions of the 2-fold axes
are: ax2 = 1

2(1, 1
ϕ
, ϕ), which represents 2-fold axis 1 and ax2′ = 1

2(1
ϕ
, ϕ, 1), which

represents 2-fold axis 3, both shown in Figure 4.6.

For a general axis u = (ux, uy, uz), the general rotation can be written as:

R(u, θ) =

a b c

d e f

g h k

 (5.1)

Figure 5.5: A flow diagram to summarise the code described in Section 5.3.

94 Chapter 5. Statistical Analysis Of Capsid Assembly Pathways

where

a = cosθ + u2
x(1− cosθ) (5.2a)

b = uxuy(1− cosθ)− uzsinθ (5.2b)

c = uxuz(1− cosθ) + uysinθ (5.2c)

d = uyux(1− cosθ) + uzsinθ (5.2d)

e = cosθ + u2
y(1− cosθ) (5.2e)

f = uyuz(1− cosθ)− uxsinθ (5.2f)

g = uzux(1− cosθ)− uysinθ (5.2g)

h = uzuy(1− cosθ) + uxsinθ (5.2h)

k = cosθ + u2
z(1− cosθ). (5.2i)

So the rotation of a vector v about axis u by angle θ is represented by:

vrot = R(u, θ) v. (5.3)

A function to perform this rotation is given in Algorithm 10 in Appendix B, which
allows 4 combinations of θ and u to be applied to input v.

This function is used alongside the set of rotations the algorithm reads in within
Algorithm 11 in Appendix B. This algorithm uses the list of rotations that can
map 1 7→ [1, 60], 61 7→ [61, 90], 91 7→ [91, 110] or 111 7→ [111, 122] to take the
input coordinates, then take them through all necessary rotations and produce the
coordinates for all positions within the capsid.

There are two useful ways to output these positions. The first is to use it alongside
the capsomer and RNA graphs, as defined in Section 4.2, to generate a 3D projection
of the capsomer graph or the RNA graph. The way to do this is shown in Algorithm
12 in Appendix B, so that these graphs can be produced and compared. Also, it can
be useful as a backdrop for the second way to output these positions. This is to
use a path that has been generated during stochastic assembly (typically one that
is frequently found during assembly) and to make a graph that traces out a path
between all the points on the inside of the capsid that the RNA binds to. These are
all done as straight lines between binding sites, so do not represent exactly where
the RNA sits, as it is more flexible than that but it does give a sense of the sequence
of binding sites visited along the linear genomic sequence. The images produced by
these techniques will be seen in later chapters.

6

Modelling STNV, A T = 1 Virus

This chapter covers the results from modelling STNV using methods presented in
previous chapters. Some of these results are presented in a paper which was published
during this PhD [32].

The Satellite Tobacco Necrosis Virus (STNV) is a small, T = 1 satellite plant
virus, which means that its capsid shell is made up of only 60 proteins. As a satellite
virus, its genome is so small that it does not encode all of the necessary instructions
for it to replicate and thus relies upon a helper virus, in this case Tobacco Necrosis
Virus (TNV), to co-infect the cell for it to be able to replicate. Its genome is
made up from only 1239 nucleotides and is stored as single stranded RNA (ssRNA).
STNV infects plants, including tobacco, so has economic importance. Additionally,
it is a good model system, as it only consists of ssRNA and proteins and has been
researched well using experimental techniques [34, 35, 42, 43, 6, 22].

6.1 GEOMETRY OF STNV CAPSID

As detailed in Chapter 4, to model STNV both a capsomer graph (which gives
information on which capsomers are adjacent to each other) and RNA graphs (which
gives information on where the RNA can sit inside the capsid) need to be made. To
construct the capsomer interaction graph, experimental date was used: cryo-EM
data on the protein shell of STNV that has been imaged to a resolution of 1.45Å, as
shown in Figure 6.1 [34], in addition to some data on how the RNA might sit inside.
This can be used to generate a 2D net of where each of the proteins sit relative to
each other, as is given in Figure 6.2.

95

96 Chapter 6. Modelling STNV, A T = 1 Virus

Figure 6.1: An image of the external surface of STNV, produced using ViperDB’s
imaging tool (PDB ID: 4V4M [41]). Each protein capsomer is given a different
colour, to indicate where each protein ends. At the centre of this figure is a 5-fold
axis (indicated by a pentagon), with 5 proteins sitting around it, which have a large
contact area between proteins that sit about that axis. There are five 3-fold axes
visible (shown with triangles), with low contact area between proteins in this area.
There are also five 2-fold axes (labelled with ovals) present, with a more noteworthy
contact area across neighbouring proteins beside this axis.

Each protein has a large contact area with the adjacent proteins about the 5-fold
and 2-fold axes and a small contact area with the proteins about the 3-fold axis.
One feature worthy of note is the N-terminal alpha-helices that are near to the
3-fold axis on each protein, shown as dots within the CP in Figure 6.2. These
are positively charged (due to lysine and arginine) and so apply a repulsive force
to the other alpha-helices from other proteins located around the three-fold. The
negatively charged RNA is believed to make contact with the alpha-helices and thus
reduces this repulsive interaction, enabling the proteins to form a capsid [22]. This
interaction means that it is harder for the capsid to assemble in the absence of the
RNA. So, in the simulation, the proteins are considered to make 3 CP-CP bonds and

6.2. Position Of RNA Contacts Within Capsid Shell 97

Figure 6.2: A 2D net that represents the CPs (shown as rhomboids) from an exterior
view of the capsid of STNV, numbered using the scheme described in Section 4.2
(adapted from [24]). Each 5-fold axis is labelled, to indicate where overlaps occur in
the net. The dot in each CP represents the alpha-helix’s position in that CP.

the 3-fold axis is considered to contribute no energy with these interactions. This
is an appropriate simplification, because any binding energy in this area would be
small, compared with the repulsive interaction of the alpha-helices and can thus be
neglected.

6.2 POSITION OF RNA CONTACTS WITHIN CAPSID SHELL

As discussed in Chapter 4, the layout of the RNA’s PSs and the edges available on
the RNA graph will have a substantive effect on capsid assembly.

We next consider the RNA. Experimentalists used SELEX to identify potential
PSs in STNV’s genome. One example found was the B3 hairpin, which triggered
reassembly of STNV VLPs when present [6]. The B3 hairpin is shown in Figure
6.3. Capsids assembled in presence of many copies of just the B3 hairpin were then
imaged. After the icosahedral averaging of the imaging was applied, the B3 hairpin
was observed in 60 positions across the capsid, however Lane et al noted that the
electron density was consistent with only 30 hairpins [35].

When the positioning of the RNA helix is observed, the helix occupies a space
leading from the N-terminal alpha helix on the CP to the 2-fold axis of the capsid.

98 Chapter 6. Modelling STNV, A T = 1 Virus

Figure 6.3: The B3 Aptamer, which is an example of a PS for STNV. (a) The
sequence of bases that forms the aptamer. (b) The structure of the B3 aptamer.

Figure 6.4, shows how close two of these helices bound to the interior of the capsid
sit and it has been postulated [6, 22] that the apical loops would sit in a way that
would cause steric clashes.

These postulated steric clashes suggest that the RNA would be unable to bind
to both of these CPs in the capsid. This is supported by the experimental evidence
suggesting only half of the CPs had RNA bound to them in the above experiment.
Using both of these observations, as shown in Figure 6.4, only one of the two purple
CPs are able to bind to the RNA. In other words, RNA binding both of these sites
is mutually exclusive. Thus, during assembly simulations, the RNA is only able to
be bound to one of them at any point. Whenever the RNA binds to a given node,
the mutually exclusive partner node is marked so that the RNA cannot bind to it.
This marking also allows unbound proteins to join the intermediate structure at this
node too during the simulations. Only allowing a free capsomer to join at a position
after its mutually exclusive partner is bound to a PS can be justified in two ways.
One is that in some viruses, the capsomer-capsomer interactions may be too weak to
allow the unbound capsomer to join the structure and the RNA sitting on the nearby
2-fold axis will provide a stabilising interaction. Another more practical reason is
that capsomers not bound to a PS tend to be less stable than capsomers that are
bound to a PS, so including all of the reactions initially would cause a larger number
of binding/unbinding reactions that will slow down the assembly of the capsid, so it
is excluded.

6.3. Choice Of RNA Graphs 99

Figure 6.4: (a) Interior surface of the structure of the STNV capsid in complex with
the B3 Aptamer. The position of the bound aptamer is shown for the two purple
CPs. Not shown is the apical loop, which is theorised to sit in a position that would
clash with the other aptamer. The 5-fold, 3-fold and 2-fold axes are labelled with
pentagons, triangles and ovals. (b) A planar representation of the mutual exclusion
rule, viewed from the inside, where the two purple CPs are mutually exclusive and
only one can be bound to a PS. The purple CPs correspond to the purple CPs in
(a). This mutual exclusion can be mapped onto the whole capsid, so that each CP
has a mutually exclusive partner.

6.3 CHOICE OF RNA GRAPHS

At this point, we have the capsomer graph, which determines where STNV’s CPs
sit relative to each other. Next, the graph that indicates where the RNA can sit is
needed. It is hard to fully experimentally determine where the RNA that connects
between adjacent PSs might sit on the interior of the capsid. So a set of potential
connections between adjacent PSs, which will be the edges in the RNA graph with
vertices representing PS-CP contacts, must be proposed and tested. The proposed
edges for STNV’s RNA graph each connect Figure 6.5’s node 0 to one of the other 9
nodes that can be reached by rotations about the nearest symmetry axes. These
edges determine in which directions the RNA can move and how it can trace out a
path on the interior of the capsid. These connections are subject to the rotational
symmetries of the capsid that are shown in Figure 6.5, resulting in Table 6.1. They
have been assigned numbers to indicate which edges (the edge connecting 0 to i for
i ∈ [1, 9] is labelled as edge i) are present in the RNA graph by listing the edges that

100 Chapter 6. Modelling STNV, A T = 1 Virus

Figure 6.5: The 9 permitted vertex connections for STNV’s RNA graph, as viewed
from the interior, adapted from predictions in James Garaetts’ PhD Thesis [24]. If
the RNA has a PS bound to the purple protein, then these edges ([0, i] for i ∈ [1, 9])
represent the protein positions that a PS adjacent on the RNA could be bound to.
Embedding a selection of these edges onto Figure 6.2 and drawing edges between the
alpha helices will result in the RNA graph for that assembly scenario. The nearest
axes are labelled with a pentagon, triangle and oval representing the 5-fold, 3-fold
and 2-fold axes respectively. For convenience, the mutually exclusive partner to the
purple protein is shown in teal and labelled as "ME". For the capsomer graph, the
purple CP is considered to be adjacent to proteins 1, 3 and 4.

are present.
The RNA graphs for STNV are generated by using a subset of these 9 edges, with

examples drawn in Figure 6.6. Within this RNA graph, all edges are bidirectional.
An example of this is edges 3 and 4, which can be represented as rotations by 2π

5

about the nearest 5-fold axis in the clockwise and anti-clockwise directions. When
considering these edges as rotations, the edges are paired with their inverse. So, edge
2 is paired with 5, 6 with 7 and 8 with 9. As it is across a 2-fold symmetry axis and
thus self-inverse, edge 1 does not have a partner, so can be included on its own.

Thus, RNA graphs will have degrees between 4 and 9, corresponding to a subset
of these 9 edges being allowed as connections. Subsets with 3 or fewer edges are not
able to assemble, thus were neglected.

Choices of edges will be listed with the edges present within curly brackets, e.g.
{2345}. This will contain the edges that lead from protein 0 to each of the 4 listed

6.4. Hamiltonian Path Combinatorics In STNV 101

Edge Rotation
0→ 1 Rotation by π about nearest 2-fold axis
0→ 2 Clockwise rotation by 2π

3 about nearest 3-fold axis
0→ 3 Anti-clockwise rotation by 2π

5 about nearest 5-fold axis
0→ 4 Clockwise rotation by 2π

5 about nearest 5-fold axis
0→ 5 Anti-clockwise rotation by 2π

3 about nearest 3-fold axis
0→ 6 Anti-clockwise rotation by 2π

3 about second nearest 3-fold axis
0→ 7 Clockwise rotation by 2π

3 about second nearest 3-fold axis
0→ 8 Clockwise rotation by 4π

5 about nearest 5-fold axis
0→ 9 Anti-clockwise rotation by 4π

5 about nearest 5-fold axis

Table 6.1: The edges, represented as vertex pairs, from Figure 6.5, describe rotations
from the purple protein to the protein that is connected via this edge. Each edge
has an inverse edge, i.e. an edge whose rotation corresponds to the inverse of the
initial edge’s rotation, pairing 1 with itself, 2 with 5, 3 with 4, 6 with 7 and 8 with 9.

vertices, as shown in Figure 6.5. A visualisation of this RNA graph is given in Figure
6.6a. A full list of potential choices can be found in Table 6.2, which also includes
the number of edges per vertex alongside stochastic and combinatorical data. One
choice of edges that is absent from this table is {3489}, which only contains edges
that go about the 5-fold axis, so it would not be able to form a completed path and
has thus been excluded.

6.4 HAMILTONIAN PATH COMBINATORICS IN STNV

There are three key questions to consider regarding the assembly of STNV’s capsid.
What is the assembly path that the virus takes? What is the organisation of the RNA
packaged inside of the capsid? Does the packaged RNA have a single organisation
or does it have many?

One way to categorise the way that a capsid assembles is to observe the paths
traced out by the RNA within a completed capsid. These can be sampled using
stochastic simulations, but knowledge of the size of the space being sampled is also
useful.

As covered in Section 5.1, a depth first search algorithm can be implemented to
find the number of Hamiltonian paths that can exist on the RNA graph. Normally,
a virus would have the RNA trace out a Hamiltonian path, where each vertex on its
RNA graph is visited exactly once but this is not possible in STNV, as only 30 out

102 Chapter 6. Modelling STNV, A T = 1 Virus

Figure 6.6: A visualisation of four RNA graphs for STNV: (a) {2345}, (b) {12345},
(c) {234589} and (d) {123456789}. Each node represents a binding site and each
edge represents the potential paths that an RNA can traverse along.

6.4. Hamiltonian Path Combinatorics In STNV 103

N RNA Graph Ncap Npath Yield
4 {2345} 760 64 38.0 %
4 {2567} 0 1342 0.0 %
4 {2589} 0 12582 0.0 %
4 {3467} <10 826 <0.5 %
4 {6789} 0 7242 0.0 %
5 {12345} <10 120086 <0.5 %
5 {12567} 40 12937410 2.0 %
5 {12589} 20 26672730 1.0 %
5 {13467} 80 2240200 4.0 %
5 {13489} <10 3510708 <0.5 %
5 {16789} 30 12965858 1.5 %
6 {234567} 160 2959693816 8.0 %
6 {234589} 640 2117037620 32.0 %
6 {256789} 0 4399719160 0.0 %
6 {346789} 10 2501657142 0.5 %
7 {1234567} 260 279417463096 13.0 %
7 {1234589} 110 362090241596 5.5 %
7 {1256789} 180 856244868982 9.0 %
7 {1346789} 360 524658774154 18.0 %
8 {23456789} 300 * 15.0 %
9 {123456789} 730 * 36.5 %

Table 6.2: Table containing all potential RNA graphs for STNV’s capsid, alongside
the degree of all vertices, N , of each node in the RNA graph. The Table contains
the initial yield, Ncap from a stochastic simulation of the assembly of 2000 copies
of an RNA with 30 PSs that had ∆Grna = 9 kcal M−1 for each PS. Assembly yield
was rounded to the nearest 10, with small but non-zero yields being labelled as
< 10. It also contains the number of unique pseudo-Hamiltonian paths that the
RNA can trace out on the interior of the capsid, Npath, generated using the method
described in Section 5.1. The Yield column stores the values of Ncap as a percentage
of potentially assembled capsids. ∗ indicates that the values for Npath were not found
for the two RNA graphs with the largest degree, due to the large computational
complexity to calculate these values.

of 60 CPs are visited due to mutual exclusion. Thus, RNA traces what will be called
a pseudo-Hamiltonian path, whereby the RNA traces out a path where it visits one
of the nodes from each mutually exclusive pair exactly once and never visits the
other node from the pair. Thus, our depth first search algorithm was adapted to
also count these pseudo-Hamiltonian paths and the results are given in Table 6.2 as
Npath.

104 Chapter 6. Modelling STNV, A T = 1 Virus

Figure 6.7: This figure features two graphs, where (A) is a spanning subgraph of (B).
Consider the Hamiltonian paths (i.e. paths where each vertex is visited precisely
once) of (A) and (B). As (A) is a spanning subgraph of (B), all paths available to
(A) are also available to (B), so (B) will have at least as many Hamiltonian paths
as (A), as some will overlap. This is the same for pseudo-Hamiltonian paths on the
RNA graphs of STNV.

This table includes all pseudo-Hamiltonian paths that can be generated. Consider
the concept of a spanning subgraph, which is a subgraph that contains all of the
nodes present in its parent subgraph. As illustrated by Figure 6.7, if there are two
graphs (e.g. {2345} and {12345}) and one is a spanning subgraph of the other, then
all paths available to the spanning subgraph will also be available to the parent
graph, thus N graph

path ≥ N subgraph
path .

Some parts of this table are intuitive: the RNA graphs with more edges also have
more pseudo-Hamiltonian paths. As is shown in Table 6.3, the effect of adding an
extra edge to the graph is more impactful when there are fewer edges in total. This
shows that the size of pseudo-Hamiltonian paths is large, so if sampling the space
using stochastic methods generates the same paths with any regularity, then this
suggests that this pseudo-Hamiltonian path’s assembly follows a more stable pathway
than others. Even small changes to the RNA graph can have very large effects on the
potential assembly of STNV, for example the yields of {2345} and {12345}, where
adding edge 1 lowers the yield, despite the number of pseudo-Hamiltonian paths
increasing.

There are a couple of interesting cases, for example the introduction of edge 1 to
RNA graph {2567} gives a much greater effect than adding it to other RNA graphs
with the same degree. Also, RNA graph {2345} has far fewer paths than the other
RNA graphs with the same degree.

6.5. Optimisation Of STNV Assembly Efficiency 105

Even Vertex Degree Odd Vertex Degree Ratio of NOdd
path

NEven
pathRNA graph Npath RNA graph Npath

{2345} 64 {12345} 120086 1876
{2567} 1342 {12567} 12937410 9640
{2589} 12582 {12589} 26672730 2120
{3467} 826 {13467} 2240200 2712
{6789} 7242 {16789} 12965858 1790

{234567} 2959693816 {1234567} 279417463096 94
{234589} 2117037620 {1234589} 362090241596 171
{256789} 4399719160 {1256789} 856244868982 195
{346789} 2501657142 {1346789} 524658774154 210

Table 6.3: A table illustrating the effect that adding a single extra edge (edge 1) to
RNA graphs has on the number of pseudo-Hamiltonian paths. The ratio of Npath for
the RNA graph that includes edge 1 over the RNA graph that does not include it is
given to the nearest whole number. Typically, adding extra edges is more impactful
for RNA graphs with smaller degrees. The order of magnitude of this ratio is mostly
consistent within a given vertex degree. The one exceptional case is with {2567},
where the effect of the addition of edge 1 to obtain {12567} is significantly higher
than for other graphs with the same degree.

6.5 OPTIMISATION OF STNV ASSEMBLY EFFICIENCY

Initially, there is a collection of 21 different RNA graphs that could feasibly represent
the assembly mechanism that STNV uses to assemble. Some are likely to be more
efficient than others at generating completed capsids, so stochastic simulations were
used to model the assembly. Initially, this was a simulation of 2000 uniform RNAs,
where ∆Grna(n) = 9 kcal M−1 for all n. Here, ∆Grna(n) represents the interaction
free energy between the nth PS on the RNA and a CP. The number of capsids formed
during this simulations is shown as Ncap in Table 6.2 and the percentage yield is also
shown in the final column. Some RNA graphs are more effective than others and
some did not result in any completed capsids at the end of the simulation.

The three most effective RNA graphs are: {2345}, {234589} and {123456789},
generating a yield of > 30%. This is still a lower yield than is to be expected for
a virus, so one might expect that there are parameters in the simulation that can
be altered to increase the yield of this further. As has been shown by Dykeman
et al [19], RNAs with uniform ∆Grna(n) values tend not to give the largest yields
in stochastic simulations of viruses. Thus, altering the values of ∆Grna(n) is one
possible way to optimise the number of capsids assembled. This optimisation is a

106 Chapter 6. Modelling STNV, A T = 1 Virus

time consuming process, so it is not feasible to optimise all of the different RNA
graphs and therefore the three RNA graphs that generated the largest yields ({2345},
{234589} and {123456789}) were chosen. Additionally, {12345} was also chosen, in
order to observe the effect of adding 1 edge to {2345}, as adding an edge would not
be expected to have such a detrimental effect on the initial yield as was observed in
Table 6.2. Lastly, due to it having an above average yield and also not containing
edges 2 and 5, that each of the others did, {1346789} was also chosen, to see how
the removal of this pair of edges affected the optimisation.

In order to optimise the PS distribution (i.e. the distribution of ∆Grna(n) values)
of RNAs to increase yield, a genetic algorithm was used. Initially, a set of 1024
randomly generated RNAs containing 30 randomly generated ∆Grna ∈ {4..11} were
used. These were produced by generating a random integer in the interval {4..11},
where every integer had an even probability and setting ∆Grna(n) to this value for
each n. Once the PSs have mutated, the range of ∆Grna(n) is allowed to be {4..12},
so RNA can evolve the strongest PSs, rather than just start with them. This will
generate one distinct RNA and the process was continued until a set of 1024 random
RNAs was generated. The parameter space of the PSs is 30-dimensional, so it is
unlikely that these simulations have sampled the entire space. However, there are
some tests that can be done to demonstrate that it sampled a range of different
distributions. To do this, all RNA PSs with ∆Grna ∈ {4..7} are labelled as low
PSs and all ∆Grna ∈ {8..11} are labelled as high PSs. Each PS has its ∆Grna(n)
values stored to the nearest 0.1 kcal M−1 and whilst they are initially all integers,
once optimisation occurs, they may take on non-integer values. Then, the randomly
generated PSs are analysed to see how many of the 1024 RNAs had a low PS in
each of its positions. The median value of this was 512 and the values were all in
the region close to this, suggesting that each position in the RNA had a fair chance
at being both a low and a high PS. Next, the total number of weakly bonding PSs
present in each RNA was calculated. These results approximately show a binomial
distribution, centred at 15 low PSs, so the space of PS distributions, where many of
the PSs are strongly binding or many are weakly binding, is not as well explored as
when their numbers are more even. This data is presented in Figure 6.8.

To allow each of the RNA graph to be optimised, a separate simulation was
ran for each of the random RNAs, where 2000 copies of the RNA were allowed to
assemble in a volume (0.7µm3) representative of a small bacterial cell or cellular
compartment. In Figure 6.9, the initial yield from the first set of randomly generated

6.5. Optimisation Of STNV Assembly Efficiency 107

Figure 6.8: Every PS on each of the 1024 randomly generated RNAs was labelled as
either weakly binding (if ∆Grna(n) < 8.0) or strongly bonding (if ∆Grna(n) ≥ 8.0).
This data was analysed to see how well the parameter space of PSs was sampled. (A)
The number of times a strong binding PS was observed at each of the 30 positions
across the RNA was tallied. This box and whisker chart shows the range of values
that this count achieved, with the median value at 512.5. This means that each
PS took both large and small values of ∆Grna(n), suggesting this was sampled well.
(B) The number of strongly binding PSs on each RNA was tallied. This bar chart
shows the number of RNAs that had a given number of strongly binding PSs. It
resembles a binomial distribution, centred about 15 high PSs in an RNA. This means
that RNAs with small numbers of strongly binding PSs or large numbers of strongly
binding PSs was not well sampled, though RNAs with a mix of strongly binding and
weakly binding RNAs was.

RNAs is shown, for four of the choices of RNA graph. For each RNA graph, once the
simulations were completed, the 256 RNAs with the top yield were identified and
collected. These RNAs were mutated, to generate 768 new RNAs and the simulations
were restarted for this new collection of 1024 RNAs. During these mutations, the
values of ∆Grna(n) were always limited to the range of 4 kcal M−1 to 12 kcal M−1.
Each PS had a 4% chance of changing to any value in the range [4.0,12.0] (to 1
decimal place) and a 40% chance of a mutation, where it would change value by
±0.1 kcal M−1 or ±0.2 kcal M−1.

This was repeated many times and after 20-30 generations, the top 20 RNAs all
had similar yields of completed capsids and no new RNAs were joining the top 20. A
cursory inspection of the top RNAs showed that they were all highly similar to each
other. For each RNA graph, extra simulations of the top RNA were ran, to generate
a more accurate yield of the assembly process for this RNA. The percentage yield is
stored in Table 6.4, alongside the yield from other RNAs. The PS distribution of
the optimised RNAs for each RNA graph is shown in Figure 6.10.

The one exception to this process was RNA graph {12345}, for which an optimised

108 Chapter 6. Modelling STNV, A T = 1 Virus

Figure 6.9: A histogram containing the yields from the first set of simulations using
the 1024 random RNAs, with RNA graphs (a) {2345}, (b) {234589}, (c) {1346789}
and (d) {123456789}. Due to its highest yield being < 1%, the histogram for {12345}
was not produced, though optimisation did improve upon this. Each simulation
contained 2000 copies of its RNA and enough proteins to make 2000 completed
capsids. None of these initial RNAs got more than 60% of the potential capsids
produced. This shows that usually there was a spread in the yields for these capsids,
dependent on the RNA and there was always a tail of both higher and lower efficiency
RNAs. The post-optimisation yield for each RNA graph is shown in the top right of
each histogram.

6.5. Optimisation Of STNV Assembly Efficiency 109

RNA Graph 4 8 10 Optimised Knockout Nuc Only
{2345} 30.72% 35.68% 34.93% 95.20% 3.88% 93.43%
{12345} 2.28% 0.08% 0.15% 6.69% 0.26% 4.23%
{234589} 22.14% 32.88% 31.62% 93.33% 9.62% 65.73%
{1346789} 12.00% 17.57% 17.86% 30.77% 21.26% 14.38%

{123456789} 28.24% 34.04% 35.17% 52.06% 37.86% 30.62%

Table 6.4: Table containing the assembly yields for the five optimised RNA graphs,
using a variety of RNAs. The first three are uniform PS distributions, where
∆Grna(n) = 4, 8, 10 kcal M−1 for all n, respectively. Next is the yield from the
optimised RNA generated using the genetic algorithm described in Section 6.5. For
the final two RNAs, more explanation is needed. Each optimised RNA (shown in
Figure 6.10) had a series of strongly binding sites adjacent to each other, believed
to represent the sites where the capsid nucleates from. Knockout is used to model
the removal of the nucleation site, which is done by setting ∆Grna(n) = 4 kcal M−1

for all PSs in the series of strongly binding PSs. Lastly, there is Nuc Only, which
represents the RNA where the optimised RNAs’ nucleation site is preserved but all
other ∆Grna(n) values are set to 4 kcal M−1. This tests the impact of having the
nucleation site present, when compared to the other optimised PS binding strengths.
As an example, all of the RNAs used for {2345} are shown in Figure 6.11.

Figure 6.10: Once the optimisation process was completed, the best RNAs for each
RNA graph were gathered. The PSs are shown here as a series of beads, where
red represents a strongly binding PS (9.0 kcal M−1 ≤ ∆Grna(n) ≤ 12.0 kcal M−1),
purple PSs bind with a medium strength (6.0 kcal M−1 ≤ ∆Grna(n) < 9.0 kcal M−1)
and green PSs are weakly binding (4.0 kcal M−1 ≤ ∆Grna(n) < 6.0 kcal M−1). The
values of ∆Grna(n) are shown beneath each bead. It also features the yield, generated
from the average yield across five simulations of 2000 RNAs and sufficient proteins
to fully assemble a capsid on each RNA.

110 Chapter 6. Modelling STNV, A T = 1 Virus

RNA with low yield was generated via the method above. During later analysis, a
better PS distribution was generated by reducing all but 4 strongly bonding PSs’
∆Grna(n) to 4 kcal M−1. Thus, the genetic algorithm was applied to this RNA to see
if it could be further improved, which led to a small increase in yield and the RNA
presented here. This does suggest that there is a large space of PS distributions that
has not been sampled, so there may be better PS distributions out there. It could
also be a result of the low initial yield of {12345}, as the genetic algorithm is more
susceptible to small fluctuations when the top yield from a random RNA was less
than 20 capsids out of 2000.

6.6 ANALYSIS OF OPTIMISED RNA RESULTS

6.6.1 Effect Of Changing The PS Distribution

As can be seen in Table 6.4, the end result of the optimisation has a significant
difference on yield depending on the RNA graph. The top two RNA graphs are
{2345} and {234589}, which both generated a yield above 90%.

Looking at the uniform RNA’s yield, most RNA graphs have their lowest yield
in Uniform 4, as shown in Figure 6.11. The only exception is {12345}, which has its
best yield at this value. This could suggest that this RNA graph is prone to getting
stuck in kinetic traps. This is believable as it does have a very low yield, compared
to other RNA graphs. Uniform 8 and 10 are both very similar in efficiency, differing
by approximately 1 percentage point across all RNA graphs.

Considering the PS distributions shown in Figure 6.10, it is noticeable that each
of the optimised RNAs have a small section of 2-4 consecutive strongly binding PSs.
Strongly binding PSs are usually the part of the RNA that the capsid nucleates
from [19, 43]. To examine if this is always the case, knockout simulations were
performed. These simulations take inspiration from work by Patel et al [42]. In
this work, they showed that by reducing the binding strength of the PSs where the
assembly usually begins (i.e. the nucleation site), the assembly efficiency of the
capsid was significantly reduced. Thus, the optimised RNAs for each RNA graph
were modified, setting all of the 2-4 strongly binding PSs to be weakly binding. An
example of how {2345}’s RNA changes is shown in Figure 6.11. The assembly of
these knockout RNAs was simulated and the results were shown in Table 6.4. The
results show that the changes to these PSs significantly impacted the yield for RNA

6.6. Analysis Of Optimised RNA Results 111

Figure 6.11: Table 6.4 shows the yield for simulations involving a variety of RNA
graphs using a few different RNAs. This figure contains all of the RNAs used for
RNA graph {2345}, including the uniform RNAs, that were common across all RNA
graphs. It also features the optimised RNA, that was produced using a genetic
algorithm (and is unique to each RNA graph) and two variants: Knockout and Nuc
Only. Knockout is generated by taking the cluster of 2-4 adjacent strongly binding
PSs that features in all optimised RNAs and reducing their ∆Grna(n) to 4 kcal M−1.
Nuc Only is generated by taking the optimised RNA and changing the ∆Grna(n) of
all PSs except the strongly binding cluster to 4 kcal M−1.

graphs {2345}, {12345} and {234589}, but less so for the other RNA graphs. The
three that were most affected were the three with the most clearly defined nucleation
site, as {1346789} and {123456789} both had a cluster of mid-strength PSs near
the removed nucleation site. Considering the Nuc Only RNA, the opposite effect is
observed. Nuc Only RNA is where the optimised RNA has had all of the binding
sites other than the 2-4 strongly binding PSs set to be weakly binding (an example
is shown for {2345} in Figure 6.11). RNA graphs {2345}, {12345} and {234589} are
impacted much less than in knockout, with {2345} still getting over 90% yield. Both
{1346789} and {123456789} had a larger decrease to their yields than the others,
suggesting that the mid-strength PSs are important to their assembly.

Additionally, comparisons can be applied to the PS distributions more closely.
Comparing the right half of {2345} and {234589}, both bear a strong resemblance
to each other, with only 2 of the rightmost 12 PSs not sitting within the same

112 Chapter 6. Modelling STNV, A T = 1 Virus

weak/mid/strong strength bond grouping. These two RNA graphs are similar to
each other in terms of which edges are present in the graph, as only two extra edges
(8 and 9) are added to {2345} to make {234589}. Also, the optimised yield of both
RNA graphs is similar. Note that, {1346789} and {123456789} also bear similarities
to each other, with only 8 of the 30 PSs not sitting within the same weak/mid/strong
strength bond grouping, as defined in Figure 6.10.

Looking at Figure 6.9, the spread of yields for the initial, randomly generated
RNAs is shown. For RNA graphs {1346789} and {123456789}, the optimised yield
is not much greater than the top initial yield, which is not the case for {2345}
and {234589}. This suggests that despite the optimised yield being higher than
the uniform yields, the optimisation did not manage to generate the same level of
improvement for RNA graphs {1346789} and {123456789} as it did for the others.
Their histograms had much smaller tails than those of {2345} and {234589}. These
larger tails meant that the sampled set of RNAs contained a small number of RNAs
that were effective at assembling either {2345} and {234589}, which allowed the
genetic algorithm to take the effective RNAs and improve on them until they were
efficient at assembling.

Overall, this suggests that RNA graphs with greater vertex degrees have more
flexibility, so are more able to assemble regardless of the RNA but that a smaller
vertex degree assists with generating the highest yields, potentially due to the more
confined path choices.

6.6.2 Observed Frequency Of Sampled Paths

To assess if there is a preferred RNA organisation and assembly pathway, further
tests were done. One form of analysis was looking at the paths traced out on the
RNA graph, which indicate the layout of RNA on the interior of the capsid. This
analysis was completed using the techniques described in Section 5.2.1, to compare
and see if any paths are more common in the output from the optimised RNA’s yield
on each RNA graph. The results were interesting and can be seen in Figure 6.12 ,
where some RNA graphs have a strong bias towards a small subset of the potential
paths. This was most noticeable in RNA graph {2345} but was also present in both
{12345} and {234589}. Interestingly, the similar paths assembled by {2345} and
{234589} were highly similar to each other, with only 4 of the 29 edges in the path
differing. These were the edges that traversed each point about a 5-fold axis, where

6.6. Analysis Of Optimised RNA Results 113

Figure 6.12: For each RNA graph, five simulations including 2000 copies of its
optimised RNAs was run. The results were analysed to test for any repetition in
the paths the RNA traced out on the interior of assembled capsids. This lead to a
sample of 9520 paths for {2345}, 669 paths for {12345}, 9333 paths for {234589},
3077 paths for {1346789} and 5206 paths for {123456789}. The chart shows the
frequency certain paths were assembled during these simulations. Any path that
occurred 10 or fewer times has been clustered into the box labelled by $. RNA graph
{2345} showed a strong frequency of two highly similar paths, labelled as P and P*,
out of the space of 64 different paths it could have assembled with. P and P* only
differ by whether they went clockwise or anticlockwise about the first 5-fold axis in
the path, the rest of the path is identical. RNA graph {234589} also showed a high
frequency of paths that were similar to P and P*, with additional initial paths about
the initial 5-fold axis but outside of the initial 5-fold, the paths all matched P. This
is within a much larger space of 2117037620 potential paths, so the correlation is
significant. In its small number of paths, {12345} also shows a noteworthy amount
of similarity between the paths it sampled, of 120086 potential paths, though these
similar paths were different to those from {2345}. This figure is reproduced from
Hill et al [32].

it is thought to have nucleated. After this, the path generated by the assembly was
identical. The most frequently occurring version of this path (labelled P in Figure
6.12) is shown in Figure 6.13.

That this path is found exclusively in the two RNA graphs, that are also the
graphs that have the highest yield is unlikely to be coincidence, due to the large space

114 Chapter 6. Modelling STNV, A T = 1 Virus

Figure 6.13: During assembly simulations of RNA graphs {2345} and {234589},
the RNA reliably traced out paths that were highly similar. These similar paths
consisted of over 99% of the paths assembled for {2345} and over 90% of those for
{234589}. This figure shows the most frequently assembled path, labelled as P in
Figure 6.12. The only difference between P, P* (the second most frequent) and
similar paths was how it traversed the initial 5-fold axis, which it nucleated around.
(a) The path traced out on the inside of an STNV capsid corresponds to the shortest
path between CP binding sites and this is an idealised mathematical approximation
of the more complex molecule in nature. The initial 5-fold axis is shown at the top.
(b) The path traced out on a net of the external surface of the capsid. The initial
5-fold is labelled as 11 on this net.

of paths identified combinatorically. This suggests that this path’s intermediates are
more stable than for other available paths and that this path has a resistance to
kinetic traps which can stifle assembly. Interestingly, this path connects opposite
5-fold vertices in a spiral winding around the inside of the capsid (Figure 6.13.

The paths from the knockout simulations for {2345} were analysed, to contrast to
the optimised RNA’s simulated paths. These showed a strong degree of similarity in
the generated paths, with 388 capsids assembled using only 6 paths. One path made
up 78.9% of the assembled paths and two other paths (which were highly similar
to each other) made up 10.3% and 8.8%. These paths seem to have nucleated in
the middle of the RNA, rather than at one end, as the optimised RNA did. None of
these paths matched the path that the optimised RNA preferentially chose during
assembly, so not only did knocking out the strong PSs dramatically reduce the yield,
it also fundamentally changed the assembly of the capsid.

Manual analysis of the path within {2345} was performed, starting with the first
pentamer formed about a 5-fold axis. It was assumed that after the RNA visits a

6.6. Analysis Of Optimised RNA Results 115

node, as soon as that node’s mutually exclusive partner can join the structure, it will
immediately do so. The analysis then checked, step by step, what deviations from P
were able to form. This analysis showed that, once the first pentamer was formed,
then there was no choices for the RNA to assemble into any other arrangement than
P. There are a few reasons that lead to this. The first is that the RNA graph only has
4 edges per node and that to form a path, it needs to enter and leave each node, so
there are at most 3 choices at each node. Next, the mutual exclusion removes a large
number of potential nodes that could be visited, so there are fewer choices in total.
Lastly, the factor that was not considered in the initial combinatoric analysis is that
the RNA can only visit a node (add a capsomer bound to a PS to the structure) if
that node corresponds to a capsomer adjacent to the existing intermediate structure.
Along the assembly of P, there are only 6 possible deviations from P that are allowed
on the RNA graph and none of these would be consistent with the CP positions
occupied in the intermediate structure as encoded by the capsomer graph.

Similar analysis of the path within {234589} was also performed and it gave
similar results. Once the pentamer was formed, there were 6 potential deviations
from P that were allowed by both the RNA graph and the capsomer graph. Each of
these relied upon at least one protein that was not bound to the RNA joining the
structure (and only forming one bond) and staying in the structure long enough that
a PS-bound protein could attach to it. During the simulations unbound proteins
with only one neighbouring protein tended to be quite short lived, so these deviations
are possible but thermodynamically unfavourable, hence were not observed regularly.

This analysis suggests that with the right start, it is highly likely that these two
RNA graphs will assemble into capsids where this path is traced out. It also shows
why the knockout simulations showed so much more of an impact to these two RNA
graphs than Nuc Only: all the RNA needs to do to begin assembly of capsids with
this path is form a pentamer and then there are a very limited number of kinetic
traps that need to be avoided. Other paths were observed in both RNA graph’s
assembly, so it is not the only path that could occur, just the most effective path to
assemble along.

Note also that after the RNA graph has a degree of 7 or more, despite the
optimisation, no paths appear to be repeated, most likely due to the complexity
generated by the number of choices of edge at each node. By contrast, the RNA
graphs with smaller vertex degrees all show path preference to some extent. Whilst
{2345} and {234589} are both efficient assemblers, {12345} is not, so the repeated

116 Chapter 6. Modelling STNV, A T = 1 Virus

paths cannot be attributed solely to the efficiency, suggesting that the degree of the
vertices is a contributing factor as well. This could be interpreted as RNA graphs
with too large a space of paths are less able to develop a PS distribution that can
guide the assembly down one specific path and so cannot achieve the same efficiency
that RNA graphs with smaller degrees can achieve.

Overall, the simulations that generate the highest assembly yield and the simula-
tions which align closest to experimental results, are those with either RNA graph
{2345} or {234589}. From this, it may be inferred that these RNA graphs represent
the way that the RNA is organised on the inside of STNV’s capsid during assembly.
This is a conclusion that would be difficult to determine using experimental work
alone, highlighting the importance of mathematical modelling in this area.

7

A General Model Of T = 3 Capsids

The previous chapter covered the assembly of STNV, a T = 1 virus. Following from
this, it makes sense to try to apply those same novel techniques to a larger virus.
After T = 1, the next largest viral capsids within Caspar-Klug classification are

T = 3 viruses. There are a large number of T = 3 viruses, including STNV’s helper
virus TNV (as a satellite virus, STNV cannot assemble unless it co-infects a cell
alongside its helper virus). So studying T = 3 viruses is the logical next step in
developing our model of assembly.

This means that each capsid will be made up from 180 copies of the coat protein.
According to Viral Tiling Theory (covered in Section 2.3), there exist three different
tilings that tile the T = 3 capsid, which are the Kite, Tri and Rhombic tilings. This
is due to the capsids being made of 180 CPs that obey icosahedral symmetry via
quasi-equivalence [14]. These tilings can be seen in Figure 7.1 on planar nets. For the
Kite and Tri tilings, we assume that the capsomers the capsid assembles from are kite
and triangular trimers (i.e. capsomers made of three CPs). For the Rhombic tiling,
we assume these capsomers are rhombic dimers (i.e. capsomers made of two CPs).
Each of these tilings differ from each other in the number of capsomer-capsomer
interactions per capsomer, the number of capsomers per capsid and also the total
number of capsomer-capsomer interactions per capsid, which are shown in Table 7.1.
These differences in the tiling’s geometry lead to differences during the assembly
of viruses with these geometries. During this chapter, many different simulations
will explore how these differences in geometry affect the assembly. As a result, this
chapter will consider hypothetical viruses that fit these tilings, rather than any
specific virus. Examples of viruses that fit the three tilings are: MS2 uses the Rhomb
tiling, Tobacco Ringspot Virus uses the Kite tiling and Pariacoto Virus used the Tri

117

118 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.1: Three planar icosahedra that all show a different tiling of the capsid.
The tilings are called the (a) Kite, (b) Rhomb and (c) Tri tilings. On the left of each
tiling, the symmetry axes are shown as a pentagon, triangle and oval for 5-fold, 3-fold
and 2-fold symmetry axes, respectively. On the right hand side are approximate
positions of where proteins in this tiling might sit (green).

7.1. Assembly In The Absence Of RNA 119

Tiling Interactions/Capsomer Capsomers/Capsid Interactions/Capsid
Tri 3 60 180

Kite 4 60 240
Rhombus 4 90 360

Table 7.1: Table listing the number of capsomer-capsomer interactions in a complete
capsid for each T = 3 tiling.

Figure 7.2: The capsomer graphs are shown, for each of the T = 3 tilings. These
tilings are shown in planar form in Figure 7.1. These tilings are named the (a) Kite,
(b) Rhomb and (c) Tri tilings. To produce these capsomer graphs, each capsomer (i.e.
each trimer in the Kite or Tri tilings and each dimer in the Rhomb tiling) is assigned
a node in the space, placed roughly at the centre of where the capsomer would sit in
3D. Then, every capsomer-capsomer contact is encoded as an edge between these
nodes.

tiling. There are other examples of viruses that use these tilings but none of the
virus-specific aspects of assembly (such as STNV’s mutual exclusion, used in the
previous chapter) from any of them will be applied to this model in this chapter.

Another important change that will also be covered in this chapter is the dif-
ferences between assembly simulations in the presence and absence of RNA. RNA
binds to capsomers and can help stabilise the structure of intermediate capsids but
it can also restrict the ways in which the capsid can assemble. So analysis of both
the presence and absence can give different insights into viral assembly.

7.1 ASSEMBLY IN THE ABSENCE OF RNA

Initially, work on the assembly of T = 3 viruses was in the absence of RNA. This
meant that any results from the simulations would be exclusively due to the geometry

120 Chapter 7. A General Model Of T = 3 Capsids

of each capsomer and the associated adjacencies, contained within its capsomer graph.
Due to this, a value of ∆Gbond must be found for each tiling, to ensure that they are
all on a level playing field when the RNA is present. Figure 7.2 shows the capsomer
graphs, generated from the three T = 3 tilings, as shown in Figure 7.1. Results for
the capsomer graphs will be used as a baseline for later work in the presence of RNA.

7.1.1 Comparisons Between Different Tilings

In the initial simulations, it was assumed that the ∆Gbond value of each capsomer-
capsomer interaction was equivalent to all others. This means the relative stability
of an intermediate can be found just by counting the total number of capsomer-
capsomer interactions. In the absence of RNA, ∆Gbond can easily be optimised to
find the value that gives the best yield for a given tiling.

The simulations investigated two different assembly scenarios: the first was where
the full amount of capsomers were present at the beginning of the simulation and
the second being where the capsomers are produced gradually as the simulation ran.
These will be referred to as simulations without a ramp and simulations with a ramp,
as the total number of capsomers present in a simulation is ramped up when the
capsomers are produced gradually. These can give insight into in vitro and in vivo
processes respectively, as earlier in vitro experiments start with proteins being mixed
together into a solution whereas in vivo experiments have the cells gradually produce
capsomers over a longer period of time, a scenario that is now also mimicked by
many in vitro experiments. The rate at which capsomers were produced was initially
400s−1 but when the rate was reduced to 200s−1, the yield did not noticeably change,
suggesting that the details of the ramp are not important for the outcome. In both
simulations, there were enough capsomers present in the solution at the end of the
simulation that it could have formed up to 2000 completed capsids.

The results of these simulations can be seen in Figure 7.3 for Kite, Rhomb and
Tri tilings. The percentage yield after the simulation was assumed to have reached
equilibrium, is shown against the strength of the capsomer-capsomer interactions
(∆Gbond) in the structure for both ramped and non ramped simulations. It is worth
noting that, for lower ∆Gbond values, the two simulations give very similar results.
However, if ∆Gbond continues to increase, then the simulations with a ramp will
plateau and the simulations without one will have their yield sharply decrease. This
is due to the capsomers being more easily able to nucleate, thus forming more than

7.1. Assembly In The Absence Of RNA 121

Figure 7.3: Graphs showing the percentage yield from a simulation of 2000 capsid’s
worth of capsomer, in the absence of RNA, for a variety of ∆G values, starting at
∆Gbond = 2.0 (3.0 for Tri) and increasing by steps of 0.2. The ramp, where capsomers
slowly accumulate to mimic production from mRNA in a cell by the ribosome,
produced capsomers at a rate of 400/s. Without a ramp, the capsomers were all
produced instantaneously at the beginning of the simulation. The ∆Gbond values at
which the ramped simulations achieved their maximal (which was approximately
100%) values (directly from the data, not this graph) were: ∆GKite

bond = 4.4 (kcal/mol),
∆GRhomb

bond = 4.8 (kcal/mol), ∆GT ri
bond = 6.0 (kcal/mol). The ∆Gbond values for which the

ramped simulations found 50% assembly were: ∆GKite
bond = 2.7 (kcal/mol), ∆GRhomb

bond

= 2.6 (kcal/mol), ∆GT ri
bond = 3.6 (kcal/mol).

122 Chapter 7. A General Model Of T = 3 Capsids

2000 nucleated structures, meaning there are too few capsomers available to complete
all of the intermediates. As these excess intermediates increase in size, or as their
number of them increases, even fewer capsids are able to complete assembly, so the
yield decreases.- This is not observed in the simulations where the capsomers are
ramped in. This is perhaps due to the production of capsomers being slow compared
to the formation of capsomer-capsomer interactions, so that any capsomers produced
ended up as part of an existing structure, rather than trying to nucleate into another
intermediate, due to the higher stability of pre-existing intermediates.

As can be seen in Figure 7.3, each tiling produces a sigmoidal graph but with a
different value for ∆Gbond when the assembly becomes efficient. The figures are each
labelled with the ∆Gbond value where the yield (for the ramped assembly) reached its
maximum and also the value where the percentage yield was 50%. The ∆Gbond values
with the maximal yield were: ∆GKite

bond = 4.4 (kcal/mol), ∆GRhomb
bond = 4.8 (kcal/mol),

∆GT ri
bond = 6.0 (kcal/mol). The ∆Gbond values where 50% assembly was observed were:

∆GKite
bond = 2.7 (kcal/mol), ∆GRhomb

bond = 2.6 (kcal/mol), ∆GT ri
bond = 3.6 (kcal/mol).

The Kite tiling’s yield reaches its maximum with the lowest ∆Gbond value, closely
followed by the Rhomb tiling, with the Tri tiling having a much higher ∆Gbond

value to reach its maximum. Looking at Table 7.1, this is not the order that
would be expected. The Tri tiling has the smallest number of capsomer-capsomer
interactions/capsid, so it makes sense that this needs the largest value for ∆Gbond

however the Rhomb tiling has more interactions than the Kite and yet the Kite can
assemble with a lower ∆Gbond value (and so with a lower total energy value for the
capsid). This suggests that counting the number of interactions is not enough to
determine the assembly dynamics. This follows from Chapter 3, which showed how
entropic contributions also affect these dynamics.

These maximal yield ∆Gbond values are where the three tilings have equivalent
assembly outcomes in the absence of RNA. In Section 7.2, these values will be used
as an even playing field for the introduction of RNA, so that differences in assembly
yield can be attributed to the capsomer-RNA interactions and not just to the number
of interactions formed in the capsid intermediate structure.

7.1. Assembly In The Absence Of RNA 123

Figure 7.4: The pentagons, triangles and ovals in this figure represent 5-fold, 3-fold
and 2-fold axes, respectively. (a) Illustration of the contacts made between a Kite
trimer and its neighbouring trimers. Yellow represents the contact around the 5-fold
axis (Bond A) and green represents the contact around the 3-fold axis (Bond B).
The yellow contact has a larger area than the green contact. (b) Illustration of the
contacts made between a Tri trimer and its neighbouring trimers. Yellow represents
the contact around the 5-fold axis (Bond A) and green represents the contact around
the 2-fold axis (Bond B).

7.1.2 Considering Non-Uniform Capsomer-Capsomer Interaction
Strengths

In Section 7.1.1, simulations operated using the assumption that the ∆Gbond values
of all capsomer-capsomer interactions were the same. This made computation much
easier and gave an insight into the approximate values that those parameters should
be set to, to ensure an even playing field. However, in a biological context, this is
not necessarily a valid assumption. For hydrophobic interactions, the strength of
interactions between capsomers is mostly dependent on the buried surface area of
the contact. Additionally, when these interactions are dominated by electrostatic
interactions, these will not necessarily be uniform across different contact surfaces.
For example, looking at the Kite (e.g. in Figure 7.4a), the contact area of the
interaction about the 5-fold axis is visibly much larger than the contact area of the
interaction around the 3-fold axis, suggesting that the interaction about the 5-fold
axis should be stronger than the interaction about the 3-fold axis. In Appendix A,
this ratio is shown to be ≈ 1.73.

Another example in disfavour of this assumption is MS2, a bacteriophage with a

124 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.5: (a) Illustration of part of the Rhombic tiling to indicate where the
three different boundaries sit between each of the dimers. The boundary about the
5-fold axis (Bond A) is coloured yellow, one of the C-C dimer’s boundaries is green
(Bond B) and the second (Bond C) is pink. The pentagons, triangles and ovals
represent 5-fold, 3-fold and 2-fold axes, respectively. (b) An image of Bacteriophage
MS2’s C-C dimer, which sits across the 2-fold axis. It is rotationally symmetric
but not reflectionally symmetric, so there are two pairs of matching edges, which
suggests that any contacts made at these edges will not necessarily have the same
interaction strengths. The figure is based on data from ViperDB (ID: 1ZDH) [41].
The boundaries are shown in the same colouring as in (a), to indicate the different
boundaries.

Rhombic tiling. It is made of two sets of dimers, where both dimers are made of
two copies of the same capsomer but the dimers occur in different conformations.
These are called A-B dimers and C-C dimers. An A-B dimer has one protein near a
5-fold axis and the other near a 3-fold axis. A C-C dimer will sit on a 2-fold axis
and has both proteins near to 3-fold axes. In drawings of Rhombic tilings (e.g. in
Figure 7.5a), one would assume that the C-C dimer should have both rotational
and reflective symmetries. However, in real viruses they only have the rotational
symmetry, as shown by the C-C dimer in Figure 7.5b. Due to this, the C-C dimer
will have two pairs of boundaries, where each pair can have different interaction
strengths, due to differences in protein structure. In addition to this, there is another
boundary that goes around the 5-fold axis, so there are a total of three distinct
boundaries, which means three different interaction strengths to vary in this virus.

7.1. Assembly In The Absence Of RNA 125

These are illustrated in Figure 7.5a with each boundary being a different colour.
As a result of these observations, new simulations were run, where the interaction

strength was non-uniform. In these simulations, each boundary was given a ∆Gbond

value and every boundary of that type is set to the same ∆Gbond value. During
these simulations, the capsomers were added as a ramped process, to mimic in vivo
assembly. For the Kite and Tri tiling, there are only two different boundaries, so the
parameter space is two-dimensional. In the Rhomb tiling, it was initially assumed
that all interactions including the C-C dimer were equivalent, so it could be more
easily compared to the other tilings. Then, simulations were run, where sufficient
capsomers to form 2000 capsids were produced at a rate of 400 capsomers/second
and then the simulation was given enough time to reach a stable state. The result
of these simulations can be seen in Figure 7.6. In Section 7.1.3, the case without
this assumption was investigated, to identify the differences when the C-C dimer’s
interactions had two different ∆Gbond values. Similar simulations were also done in
the presence of RNA, covered in Section 7.2.6.

Each tiling has (at least) two distinct capsomer-capsomer interactions, one of
which is about the 5-fold axis and the other about another axis. The interaction
about the 5-fold axis will be called Bond A and the other interaction will be called
Bond B. When considering cases with more than two distinct interactions, these will
be clearly defined at the time. Considering Figure 7.6, none of the three heatmaps
have symmetry across the line where Bond A and Bond B are equal. The higher
yields are found more densely in the regions where one interaction is stronger than
the other. All tilings seem to have a preference for Bond B being stronger, to ensure
a large yield. Each heatmap has a large plateau, suggesting that whilst the rough
values of the interaction strengths are important, they can shift a little without too
major an effect on the yield. The Rhomb has the smallest plateau but its plateau
has a gentle slope around it, where the efficiency gradually drops away from the
plateau. The Kite and the Tri both have larger plateaus but for strengths adjacent
to these plateaus, the efficiency drops off very quickly.

During assembly, the nucleation stages tend to be the most unstable, so are likely
to follow the path that has the most stable intermediates. For each tiling, making
one of the interactions stronger than the other has a positive impact on the assembly
yield. When one interaction is stronger, this means that intermediates featuring that
interaction will be more favourable. This would favour certain assembly pathways
that utilise these more stable intermediates, which seems to lead to a more effective

126 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.6: Heatmaps showing the relative assembly efficiencies of the three tilings
under variation of ∆Gbond (measured in kcal/mol) for each boundary, shown for the
(a) Kite, (b) Rhomb and (c) Tri tilings. The line indicates where ∆GA

bond = ∆GB
bond

and the black dots indicate the maximal values. The scale for all of the heatmaps is
given by (d), alongside a diagrammatic representation of the bonds in each tiling.
Yellow indicates Bond A, Green indicates Bond B and Pink indicates Bond C, which
was set as equal to Bond B in this figure’s simulations. In each tiling, Bond A is the
interaction about the 5-fold axis. Bond B is the interaction about the 3-fold axis
in the Kite tiling, all interactions including a C-C dimer in the Rhomb tiling and
the interaction about the 2-fold axis for the Tri tiling. In each heatmap, there is
a noticeable plateau (though it is rather small in the Rhomb) that surrounds the
values corresponding to maximal yield. In each tiling, varying Bond A and Bond B
has different effects on yield, demonstrating that these bonds play different roles in
assembly.

7.1. Assembly In The Absence Of RNA 127

Figure 7.7: Heatmaps showing the relative efficiencies of the Tri tiling under variation
of ∆Gbond (measured in kcal/mol) for different boundaries. (a) and (b) correspond
to simulations with and without a ramp, i.e. where proteins are added gradually or
all at once, respectively. There is a line indicating where ∆GA

bond = ∆GB
bond. In both

heatmaps, there is a noticeable plateau that surrounds the maximal yield and every
point on the plateau has at least 99% yield. The highest points of the heatmap are
shown with a black dot. This shows the effect of ramping in the capsomers, where
more values of ∆GA

bond and ∆GB
bond are effective than when the capsomers are added

all at once.

assembly process. Thus, the Kite tiling will likely maximise the number of times it
forms Bond B (about the 3-fold axis), suggesting it initially nucleates using trimers.
The Tri tiling favours a stronger interaction about the 2-fold axis (Bond B), so it
is likely that dimers play a part in the initial nucleation process for the tiling. It
is worth noting however that the capsid has twice as many copies of Bond A than
Bond B, which could also play a part. The Rhomb tiling favours the interactions
that involve C-C dimers. By favouring Bond B, the assembly would likely begin
by forming a hexameric nucleus. This could be as a result of there being twice as
many copies of Bond B than there are copies of Bond A but it could also suggest
that making sure that C-C dimers are able to easily join the structure is important
to the nucleation of the assembly.

To test the effect of ramping in the capsomers, additional simulations generated

128 Chapter 7. A General Model Of T = 3 Capsids

the yields when all of the proteins were added at once, rather than gradually. This
is shown in Figure 7.7. This makes assembly unfeasible for larger values of ∆GA

bond,
potentially, due to an excess of unfinished intermediates that withhold the capsomers
needed for other intermediates to complete. Additionally, a lack of ramping seems to
make the boundary between the efficient plateau and unassembled capsids sharper.
Lastly, the change in shape shown in this range of ∆Gbond values suggests that
without a ramp, the plateau will be smaller, due to the edges being closer at the
boundary of this plot.

Similar work has been done by Wei et al [57]. Within this, they approached this
problem from two different angles. One was using DNA origami to produce rigid
capsomers that are similar to capsomers from a T = 3 virus using a Tri tiling, which
assemble into an icosahedral structure from 60 capsomers. These rigid capsomers
formed attractive interactions via a lock-and-key mechanism. Within these locks
and keys, they placed base stacking pairs which formed into “sticky ends”, which
were responsible for the capsomer-capsomer interactions. By changing the number of
these sticky ends, they obtained fine control over the strength of interactions at each
boundary between these rigid capsomers. In addition to this, they used a molecular
dynamics computational approach to simulate the same system in silico. Within
both approaches, they ran similar experiments, where they changed the strength
of each interaction independently and measured the yield of these assemblies. The
graphs of this yield are shown in Figure 7.8 (adapted from their paper [57]). The
yield is shown to increase when the two different interaction strengths are different
and worsen when they are similar.

This differs from the results that have been shown in this thesis for the Tri tiling.
This thesis’ assembly efficiencies were higher than theirs, both in their computational
and their experimental results. Additionally, the shape of our heatmap of effective
assemblies and the shape of their heatmaps were different. Both of their heatmaps
had quite narrow values of interaction strength that resulted in effective assembly
whereas mine had a larger range of effective interaction strengths that allowed
assembly. Their assemblies added all of the capsomers at the start of the assembly
and mine used a ramp to add all of the capsomers. Adding capsomers all at once has
often reduced the effectiveness of assembly in other simulations. However, Figure
7.7 shows that the effects of a ramp on the assembly is not enough to justify these
differences, though some effects (sharper boundaries and inefficient assembly if one
∆Gbond is too large) do make the simulations more similar. An unknown factor is the

7.1. Assembly In The Absence Of RNA 129

Figure 7.8: Comparison with assembly results by Wei et al [57]. Experimental and
computational studies of triangular T = 3 capsids assemblies. (A,B) feature the yield
from their experimental work. These experimental results were obtained using DNA
origami to form triangular capsomers and letting them assemble. (C,D) feature the
yield from their computational simulations. These computational results are from
molecular dynamics simulations of triangular capsomers assembling. Figure adapted
from Wei et al [57].

130 Chapter 7. A General Model Of T = 3 Capsids

volumes used in their simulations and experiments, which could affect the dynamics,
so an exact comparison of parameter values with this thesis’ work is not feasible.
Another difference is that their computational simulation used molecular dynamics,
which looks at fewer capsids in each simulation but looks at them more closely. This
means it does not rely upon the capsomer graphs that this thesis’ model does, so
their simulations are able to model defects during assembly, e.g. if a capsomer joins
the structure at the wrong angle, this could block a capsid’s assembly. When the
interactions are stronger, these defects are harder to undo, which could justify the
difference between the two models when both interactions are strong.

7.1.3 Further Non-Uniform Interaction Strength In Rhomb Tilings

As mentioned in Section 7.1.2 and shown with Figure 7.5, in Rhomb tilings the C-C
dimers have two pairs of distinct interactions which do not necessarily have the same
strength as each other. As before, Bond A will be the interaction about a 5-fold
axis (shown in yellow in Figure 7.5). Bond B is shown in Figure 7.5, as the green
boundary and Bond C is shown as the pink boundary.

Therefore, there are three different boundaries in the tiling, meaning an extra
dimension to add to the exploration of the parameter space. In Figures 7.9 and 7.10,
some heatmaps are shown, where one of the three interaction strengths has been
fixed and the other two are allowed to vary.

Initially, we shall consider Figure 7.9, where there are heatmaps comparing Bonds
B and C for three fixed values of ∆GA

bond. Data for all values of Bond A from
∆GA

bond = 1.0 to ∆GA
bond = 7.5 in steps of 0.5 was generated. The figure shows three

heatmaps, which were chosen due to the trends they show. For ∆GA
bond = 1.0, Bonds

B and C need to be quite strong for the capsid to assemble, forming a plateau where
both are strong. As we gradually increase ∆GA

bond, this plateau both narrows and
also moves both downwards and leftwards until ∆GA

bond = 6.0, when the plateau
and the motion changes. Also, after ∆GA

bond = 6.0, the plateau’s behaviour reverses,
suggesting it has passed the optimal point for ∆GA

bond and that increasing it further
worsens the yield. After ∆GA

bond = 6.0, the plateau begins to split into two separate
plateaus. This suggests that the capsid needs to have a reaction that is easily
reversed, to help prevent kinetic traps.

During this whole analysis, the heatmap has been symmetric about the line where
∆GB

bond = ∆GC
bond, meaning that changing one interaction’s strength has a similar

7.1. Assembly In The Absence Of RNA 131

Figure 7.9: Outcomes of assembly simulations for a range of ∆Gbond values (measured
in kcal/mol) for each of the three distinct boundaries in a Rhombic tiling. The
results for three fixed values of ∆GA

bond (i.e. (a) 1.0, (c) 6.0 and (d) 7.5) are shown
here as heatmaps, where the scale is shown in (b). The values of ∆GB

bond and ∆GC
bond

are shown across the vertical and horizontal axes respectively. Each block shown is
the average of three data points generated by modelling a system where up to 2000
capsids could assemble. The black lines indicate where ∆GB

bond = ∆GC
bond and the

yields are approximately symmetric about this line.

132 Chapter 7. A General Model Of T = 3 Capsids

outcome to changing the other. In these graphs, this makes sense, as there is no
enforced asymmetry between Bonds B and C and they are reflections of each other.
This is not the case in other heatmaps, as Bond A is not equivalent to either Bond B
or C. Later, we will see that when RNA is included, this can add in an asymmetry
between Bonds B and C, which skews the heatmap, as would be expected.

Next, we consider the heatmaps in Figure 7.10, where it shows three fixed values
of ∆GB

bond and variable values of ∆GA
bond and ∆GC

bond. To show differences when
compared to Figure 7.9, we will use ∆GB

bond = 1.0, 6.0, 7.5. Unlike in Figure 7.9, there
is no branching point in Figure 7.10. The heatmaps show a trend that continues
throughout the collected data values for ∆GB

bond, from 1.0 to 7.5. Like in the previous
Figure, as the value of ∆GB

bond increases, the plateau with the top yield moves
downwards and leftwards.

7.2 ASSEMBLY IN THE PRESENCE OF RNA

Now that assembly of T = 3 capsids in the absence of RNA has been modelled, the
next step to determine the effect of ∆Gbond on assembly is to introduce RNA into
these systems. This will show how the presence of RNA impacts on the assembly
of the three different geometries and the effects of using similar RNA graphs on
different tilings.

One important parameter to consider in these comparisons is the value of ∆Gbond,
the interaction strength between different capsomers. Initially, choosing this so
that each tiling had the same total energy in a completed capsid was considered.
Unfortunately, this lead to the Rhombic tiling having too weak an interaction strength
to assemble and the Tri tiling having a sufficiently strong interaction strength that
most reactions were effectively irreversible, leading to a low yield and only the Kite
giving useful insights. Thus, Figure 7.3 was used to determine the value of ∆Gbond

which gave the highest yield. This resulted in the following values to be used in
this chapter, so that this parameter’s effects are minimised: ∆GKite

bond = 4.4 kcal/mol,
∆GT ri

bond = 6.0 kcal/mol, ∆GRhomb
bond = 4.8 kcal/mol.

The RNAs are assumed to have 60 PSs in each tiling. In the Rhomb tiling, it is
assumed that the capsomers which sit on the 2-fold axes do not bind to the RNA
and only join the intermediate structure through capsomer-capsomer interactions,
as is the case for MS2, a T = 3 virus that assembles from Rhombic capsomers.

7.2. Assembly In The Presence Of RNA 133

Figure 7.10: Outcomes of assembly simulations for different values of ∆Gbond (mea-
sured in kcal/mol) for each of the three different boundaries in a Rhombic tiling.
The results for three fixed values of ∆GB

bond (i.e. (a) 1.0, (c) 6.0 and (d) 7.5) are
shown here as heatmaps, where the scale is shown in (b). The values of ∆GA

bond and
∆GC

bond are shown across the vertical and horizontal axes, respectively. Each block
shown is the average of three data points generated by modelling a system where up
to 2000 capsids could assemble. The black lines indicate where ∆GA

bond = ∆GC
bond.

134 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.11: Figure indicating the edges on the capsomer graphs and all of the
available edges for the RNA graph when using the (a) Kite, (b) Rhomb or (c) Tri
tilings. Each (a) kite, (b) rhomb or (c) triangle represents a single capsomer, as
shown in Figure 7.1. Red capsomers indicate that these capsomers are adjacent to
the purple capsomer in the capsomer graph. Green capsomers are second nearest
neighbours. The purple capsomer, labelled 0, is the one the RNA is currently in
contact with. When a PS is bound to the purple capsomer, then the capsomers
labelled with Greek letters are potential capsomers that an adjacent PS can bind
to (i.e. 0→ P are edges on the RNA graph from 0 to a point, P). The symmetry
axes closest to the purple capsomer are labelled as a pentagon/triangle/oval for
5-/3-/2-fold axes, respectively. In (b), the capsomers that sit on a 2-fold axis are
given a paler colour. These capsomers are assumed not to bind to the RNA. To make
it simpler to maintain symmetry, the connections that are represented by the same
rotation in the opposite direction are labelled with the same letter. These rotations
are listed in Table 7.2. Embedding a selection of these edges into Figure 7.1 and
drawing edges between capsomers will result in the RNA graph for that assembly
scenario. An example of this is in Figure 7.12.

Simulations of the Rhomb tiling where the RNA had 90 PSs were done but these
gave very poor yields, so were disregarded.

7.2.1 RNA Graphs For T = 3 Capsids

There are three T = 3 capsid tilings: Kite, Rhomb and Tri. A range of different
RNA graphs can be constructed for each tiling, based on the symmetry axes near
each capsomer. Figure 7.11 shows the available edges for the RNA graphs within
each of the three tilings. They are described using rotations in Table 7.2. These
edges can be overlaid onto Figure 7.1, to give the full RNA graphs. The edges that
can be described as clockwise/anticlockwise rotations by the same angle about the
same axis are always paired together and so are given the same label in the T = 3
capsids.

7.2. Assembly In The Presence Of RNA 135

Vertex (Kite/Rhomb) Rotations
α Rotation about nearest 5-fold axis by 2π

5
β Rotation about nearest 5-fold axis by 4π

5
γ Rotation about nearest 3-fold axis by 2π

3
δ Rotation about one nearby 2-fold axis by π
ϵ Rotation about the other nearby 2-fold axis by π

Vertex (Tri) Rotations
α Rotation about nearest 5-fold axis by 2π

5
β Rotation about nearest 5-fold axis by 4π

5
γ Rotation about one nearby 3-fold axis by 2π

3
δ Rotation about the other nearby 3-fold axis by 2π

3
ϵ Rotation about the nearby 2-fold axis by π

Table 7.2: A table containing all of the available RNA graph edges, shown in Figure
7.11, expressed as rotations about nearby symmetry axes. Each edge is paired with
its inverse, so α represents the rotation in both the clockwise and anticlockwise
direction. The Kite and Rhomb tilings both share their nearest symmetry axes, so
have been paired here.

A full list of available RNA graphs (produced using every combination of edges
listed above) is given in Table 7.3, which gives a numbering scheme indicating both
which tiling the graph uses and it can also be used as a reference to which edges are
available in that graph. They are labelled using a letter and a number. The letter
represents the tiling (K for Kite, T for Tri, R for Rhomb) and the number represents
which RNA graph from that tiling is used, as given in the table. To compare two
tilings, the table should be referenced - e.g. T4 and K4 do not have the same edges
but T4 and K6 do. An example of the edges in RNA graph K14 is shown in Figure
7.12 alongside a planar representation of the RNA graph laid onto the Kite tiling.
Some RNA graphs are topologically equivalent to other RNA graphs, as can be seen
in Figure 7.13. Due to this, all RNA graphs are given an isomorphism type (iso type
in the table) and RNA graphs with the same isomorphism type are isomorphic to
each other. Thus, differences in assembly within an isomorphism type are due to
the differences in the capsomer graph. The table also indicates the mean number of
capsids that assembled across three initial assembly simulations of the RNA graphs,
featuring 2000 uniform RNAs with ∆Grna = 4 kcal/mol.

Considering the yield from this table, a few interesting observations can be made.
Typically, the RNA graphs with low vertex degrees have more RNA graphs with
a zero yield, i.e. no completed capsids form in this simulation. Additionally, as

136 Chapter 7. A General Model Of T = 3 Capsids

Vertex
D

egree
R

hom
b

T
iling

TriT
iling

K
ite

T
iling

R
N

A
G

raph
M

oves
U

sed
N

um
ber

A
ssem

bled
Iso

Type
R

N
A

G
raph

M
oves

U
sed

N
um

ber
A

ssem
bled

Iso
Type

R
N

A
G

raph
M

oves
U

sed
N

um
ber

A
ssem

bled
Iso

Type
3

R
1

α
,δ

20
±

4
A

T
1

α
,ϵ

185
±

12
A

K
1

α
,δ

8
±

4
A

3
R

2
β

,δ
0
±

0
B

T
2

β
,ϵ

0
±

0
B

K
2

β
,δ

0
±

0
B

3
R

3
γ

,δ
0
±

0
C

T
3

γ
,ϵ

0
±

0
C

K
3

γ
,δ

0
±

0
C

3
R

4
α

,ϵ
25
±

4
A

T
4

δ,ϵ
0
±

0
C

K
4

α
,ϵ

5
±

3
A

3
R

5
β

,ϵ
0
±

0
B

-
-

-
-

K
5

β
,ϵ

0
±

0
B

3
R

6
γ

,ϵ
0
±

0
C

-
-

-
-

K
6

γ
,ϵ

0
±

0
C

4
R

7
α

,β
0
±

0
D

T
5

α
,β

0
±

0
D

K
7

α
,β

0
±

0
D

4
R

8
α

,γ
157
±

14
E

T
6

α
,γ

22
±

8
E

K
8

α
,γ

74
±

10
E

4
R

9
β

,γ
0
±

0
F

T
7

α
,δ

21
±

7
E

K
9

β
,γ

0
±

0
F

4
R

10
α

,δ,ϵ
199
±

9
G

T
8

β
,γ

0±
0

F
K

10
α

,δ,ϵ
16
±

5
G

4
R

11
β

,δ,ϵ
0
±

0
H

T
9

β
,δ

0
±

0
F

K
11

β
,δ,ϵ

0
±

0
H

4
R

12
γ

,δ,ϵ
0
±

0
I

T
10

γ
,δ

0
±

0
J

K
12

γ
,δ,ϵ

0
±

0
I

5
R

13
α

,β
,δ

29
±

5
K

T
11

α
,β

,ϵ
223
±

10
K

K
13

α
,β

,δ
8
±

6
K

5
R

14
α

,γ
,δ

235
±

20
L

T
12

α
,γ

,ϵ
388
±

24
L

K
14

α
,γ

,δ
295
±

14
L

5
R

15
β

,γ
,δ

0
±

0
M

T
13

α
,δ,ϵ

387
±

12
L

K
15

β
,γ

,δ
0
±

0
M

5
R

16
α

,β
,ϵ

29
±

3
K

T
14

β
,γ

,ϵ
10
±

2
M

K
16

α
,β

,ϵ
7
±

3
K

5
R

17
α

,γ
,ϵ

227
±

22
L

T
15

β
,δ,ϵ

8
±

1
M

K
17

α
,γ

,ϵ
301
±

14
L

5
R

18
β

,γ
,ϵ

0
±

0
M

T
16

γ
,δ,ϵ

230
±

2
N

K
18

β
,γ

,ϵ
0
±

0
M

6
R

19
α

,β
,γ

122
±

10
O

T
17

α
,β

,γ
295
±

19
O

K
19

α
,β

,γ
133
±

11
O

6
R

20
α

,β
,δ,ϵ

334
±

14
P

T
18

α
,β

,δ
308
±

11
O

K
20

α
,β

,δ,ϵ
89
±

14
P

6
R

21
α

,γ
,δ,ϵ

413
±

10
Q

T
19

α
,γ

,δ
325
±

6
R

K
21

α
,γ

,δ,ϵ
532
±

14
Q

6
R

22
β

,γ
,δ,ϵ

0
±

0
S

T
20

β
,γ

,δ
0
±

0
T

K
22

β
,γ

,δ,ϵ
0
±

0
S

7
R

23
α

,β
,γ

,δ
316
±

23
U

T
21

α
,β

,γ
,ϵ

668
±

3
U

K
23

α
,β

,γ
,δ

482
±

17
U

7
R

24
α

,β
,γ

,ϵ
329
±

8
U

T
22

α
,β

,δ,ϵ
656
±

11
U

K
24

α
,β

,γ
,ϵ

481
±

15
U

7
-

-
-

-
T

23
α

,γ
,δ,ϵ

879
±

8
V

-
-

-
-

7
-

-
-

-
T

24
β

,γ
,δ,ϵ

554
±

11
W

-
-

-
-

8
R

25
α

,β
,γ

,δ,ϵ
578
±

21
X

T
25

α
,β

,γ
,δ

876
±

25
Y

K
25

α
,β

,γ
,δ,ϵ

888
±

6
X

9
-

-
-

-
T

26
α

,β
,γ

,δ,ϵ
1295

±
11

Z
-

-
-

-

Table
7.3:

T
he

num
bering

schem
e

used
to

describe
w

hich
edges

were
present

in
each

R
N

A
graph.

T
he

three
tile

types
are

separated
by

double
verticallines.

K
ite

tilings
are

denoted
by

a
K

,R
hom

b
by

an
R

and
Triby

a
T

,followed
by

a
num

ber.
T

he
letters

(α
,β

,γ
,δ,ϵ)

are
from

Figure
7.11

and
represent

the
subsequent

positions
that

adjacent
PSs

on
the

R
N

A
can

bind
to.

Som
e

R
N

A
graphs

are
isom

orphic
to

others,so
there

is
a

colum
n

to
show

this.
Ifthe

R
N

A
graph

for
a

particular
tile

has
isom

orphism
type

n,the
R

N
A

graph
is

isom
orphic

to
allother

graphs
w

ith
isom

orphism
type

n.
A

dditionally,
the

assem
bly

yield
based

off
three

initialsim
ulations

ofthe
assem

bly
of2000

R
N

A
s

per
R

N
A

graph,using
uniform

PS
distributions

w
ith

∆
G

r
n

a =
4.0

kcal/m
ol,is

indicated
as

num
ber

ofcapsids
assem

bled.

7.2. Assembly In The Presence Of RNA 137

Figure 7.12: (a) Shows RNA graph K14 (detailed in Table 7.3) as a planar net, with
the kite shaped capsomers in red and the edges of the RNA graph shown in green.
(b) Shows all available edges for Kite tiling’s RNA graph, cf. from Figure 7.11a. It
also indicates the 5 edges chosen for K14, labelled as α, γ and δ, which are shown in
blue.

the vertex degree increases, the yield of the assemblies that result in capsids also
increases.

The Kite and Rhombic tilings are highly similar in their available edges, such that
every RNA graph in one tiling has an equivalent in the other. Thus, this can show
interesting differences across a range of the RNA graphs. One initial observation is
that Rhombic tilings tend to have a greater yield when the vertex degree is smaller
and the Kite tiling generates a larger yield when the vertex degree is higher. The
crossover point is where the vertex degree is 6, when K21 is more efficient than R21,
R20 is more efficient than K20 and R19 and K19 have similar efficiencies. This
supports the notion that vertex degree is not the only factor in the efficiencies and
that the geometry of the RNA graph plays an important role, too. This is supported
by work by Brunk and Twarock, who also demonstrated the impact of geometry on
stability of a capsid [5].

Taking a closer look within certain isomorphism groups, other interesting ob-
servations can be found. Whenever comparing two RNA graphs which share an
isomorphism group and a tiling, the number assembled is very similar, which is to
be expected as the geometries of their capsomer graph and their RNA graph are
effectively the same. The only difference between the RNA graphs is them having a
different handedness, as shown in Figure 7.13a/b. Typically, the Tri tiling generates
a higher yield than the others for isomorphic RNA graphs (with the exception being
K8 and R8 both outperforming T6 and T7). Also, the fact that some RNA graphs
do not assemble in one tiling does not mean that it will not assemble in other tilings,

138 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.13: A 3D visualisation of four isomorphic RNA graphs. In each case, the
nodes (which represent binding sites) are placed approximately at the centre of the
capsomer. They represent (a) K13, (b) K16, (c) T11 and (d) R16. These graphs can
all be transformed into each other without changing connectivity, via movement of
the nodes only. This means that they share an isomorphism group, alongside R13
which is not shown here. The graphs in (a) and (b) are both from the Kite tiling,
but show RNA graphs with different handedness.

7.2. Assembly In The Presence Of RNA 139

as shown by K15 and R15 which do not assemble sharing an isomorphism group
with T14 and T15 which are able to assemble (albeit somewhat inefficiently).

7.2.2 Optimisation Of The PS-Capsomer Affinity Distribution

In this section, three RNA graphs are chosen to undergo an optimisation procedure,
described below, to generate RNAs which assemble with the highest yield. Only
three RNA graphs are chosen (one from each tiling), due to the computational time
necessary to do this process. These RNA graphs are chosen to test the effects of
different capsomer graphs, i.e. different tilings, rather than to choose the ones most
likely to generate the highest yield. Thus, one RNA graph was chosen within each
tiling and all RNA graphs were chosen to be of the same isomorphism type. The
three RNA graphs chosen were K14, R14 and T12. During Sections 7.2.2 and 7.2.3, if
a Kite/Rhomb/Tri tiling is mentioned, it will refer to this RNA graph as well. These
graphs have a better yield than most other RNA graphs with the same vertex degree.
The Kite tiling is more effective than the Rhombic tiling, which is not normally the
case with smaller vertex degrees, so it is interesting to see if this continues through
the optimisation.

The RNA optimisation procedure used here is the same as the one used to
optimise the RNA for STNV in Section 6.5. This means 1024 random RNAs are
generated, with 60 PSs each (rather than 30, as in STNV). Then the assembly of
capsids around these RNAs is simulated. The highest efficiency RNAs were collected
and mutated, then the simulations are repeated with these mutated RNAs. This is
done until the yield plateaus.

The initial random RNAs were analysed, to test how representative the sampled
RNA is, as with STNV. The PSs were binned into high (8.0 ≤ ∆Grna ≤ 12.0) PSs
and low (4.0 ≤ ∆Grna < 8.0) PSs. The number of high or low PSs in each RNA
was counted, resulting in a binary distribution. Each PS position was observed to
have had equivalent opportunities to be low or high too, with the median number of
high PSs in each position across RNAs being approximately 512 and all values being
within ±30 of this median.

Midway through the optimisation, we began recording the yield for each RNA
at each step in the optimisation procedure. It was estimated that approximately
ten optimisation steps had occurred before this. A graphical representation of the
5 best RNAs’ efficiency in each step is shown in Figure 7.14. The graph shows

140 Chapter 7. A General Model Of T = 3 Capsids

the mean number of assembled capsids and the range of this number for all three
tilings. It is based on simulations where 2000 RNAs were present and therefore up
to 2000 capsids were able to form. As more optimisation steps were completed, the
range of this data got smaller, suggesting that improvements to the top RNAs were
stagnating. Additionally, the overall trend became more flat over the final 5 steps
for Tri and Kite. The Rhomb tiling showed much smaller improvements than the
other two tilings. It also took a lot longer to simulate the assembly and perform
optimisation steps, resulting in fewer steps being performed, though it appeared to
have started to plateau when its optimisation ended.

To demonstrate the effects on assembly of the optimisation, consider Figure 7.15.
This shows a histogram of yields for the initial 1024 RNAs (blue) in comparison with
the yield for the 1024 RNAs generated in the final round of optimisation (orange).
There is no overlap in the curves for the Kite and the Tri tilings and only minimal
overlap for the Rhomb tiling. The initial yield section shows a similar trend in all
three tilings: there are a few ineffective RNAs and a few RNAs noticeably more
effective than the others but most RNAs sit in the middle of this region. The yield
for the RNAs post-optimisation shows skew towards higher yields, which is especially
visible in the Kite and Tri tilings but is also visible in the Rhomb tiling.

To finalise the results from the optimisation, the 5 RNAs with the highest yields
were identified and their PS distribution was compared to each other. The best RNA
generated for each tiling in this RNA graph is shown in Figure 7.16. Each tiling’s
top RNA was compared to the other top RNAs from that tiling. Each PS position
had the mean value of ∆Grna calculated and for Kite and Tri. Over 75% of positions
had all of their values across all 5 RNAs within ±1.0 kcal/mol of this mean. For the
ones that did not meet this metric, this was usually due to only one RNA showing
a large difference in that position, rather than that position having a large spread
of ∆Grna values. This suggests that the optimisation process had concluded and
that there were a range of very similar RNAs that gave similar yields, with a low
likelihood that any large improvements would be found by continuing to mutate
these RNAs. For the Rhomb tiling, there were many more differences between the
top 5 RNAs. Only 30% of the positions had all of their ∆Grna values across all 5
RNAs within ±1.0 kcal/mol of this mean and upon inspection, the values were more
widely spread than was observed for the other tilings. This could either mean that
more steps of optimisation should have been done, or that the presence of RNA had
a lesser effect upon the assembly process.

7.2. Assembly In The Presence Of RNA 141

Figure 7.14: After approximately 10 rounds of optimisation, the yields at each step
were recorded, to show when the procedure had finished optimising. This can be
seen for the Kite and Tri RNA graphs that were being optimised in (a) and it can be
seen for the Rhomb RNA graph that was being optimised in (b). These graphs show
(for each step in the optimisation process) the mean and the range of the yields of
the 5 RNAs with the current highest yield. For the Rhomb, fewer optimisation steps
were done, due in part to the longer times needed for each step of the optimisation
compared to the other two but also (initially seen before recordings began) the very
limited improvements in the yield after each step, which was taken to mean the
optimisation was completed.

142 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.15: After optimisation, the yields from the initial 1024 RNAs and the 1024
RNAs produced in the final step of the optimisation were generated for (a) K14, (b)
R14 and (c) T12. In each of these simulations,there were 2000 copies of an RNA and
enough capsomers to assemble 2000 capsids. The yields were recorded as number of
capsids formed. This data is presented as a histogram, with the initial RNA’s yield
in blue and the optimised RNA’s yield in orange, showing the effect of optimisation
on the yield.

7.2. Assembly In The Presence Of RNA 143

Figure 7.16: At the end of the optimisation, the best RNA for each tiling was
recorded and is shown here, where 4 ≤ ∆Grna(n) ≤ 12 kcal/mol for all n ∈ {1, .., 60}.
The colour boundaries used in Chapter 6 are shown as coloured regions, with red
being strongly bonding PSs, purple being medium and green being weak. The top 5
Kite RNAs were highly similar to each other. The top 5 Tri RNAs were also highly
similar to each other. Considering Kite and Tri RNAs separately, the mean value
for each PS was calculated and the PSs were compared to this mean. Over 75% of
PSs had a binding affinity within ±1 kcal/mol of the mean across all 5 RNAs. The
Rhomb tiling did not show this same trend, as only ≈ 30% of PSs fell within this
range.

144 Chapter 7. A General Model Of T = 3 Capsids

Considering PS distributions of the optimised RNAs in Figure 7.16, there is a
certain degree of similarity between the Tri and Kite tilings. Both have a cluster of
strongly binding PSs at one end of the RNA, both feature a more weakly binding PS
within this cluster. The rest of these RNAs did not feature many strongly binding
PSs and had oscillations between weakly binding PSs and medium strength PSs. The
Rhombic RNA also showed a lot of oscillations in PS strength but these oscillations
had a much greater variance between adjacent ∆Grna values than for the other
optimised RNAs. Additionally, there was no clear site where the Rhomb RNA was
more likely to nucleate than others.

Some alternative RNAs were tested too and the results can be seen in Table
7.4. These alternative RNAs include a few uniform RNAs (called “XUni”, with
∆Grna = X kcal/mol for all PSs) with a variety of different ∆Grna values and the
same uniform RNAs with a nucleation site added at one end (called “XNuc”, with
∆Grna = X kcal/mol in the uniform section and 5 PSs with ∆Grna = 12 kcal/mol).

Generally, if the values of ∆Grna are too high, then this will stop assembly, as
shown in the column with a uniform distribution ∆Grna = 12 kcal/mol, where all of
the tilings generate less than 1% yield, likely due to kinetic traps and inconsistent
nucleation sites. When compared with the equivalent uniform RNA, the yield of
RNAs with nucleation sites were always higher, supporting the evidence found in
Chapter 6 that a nucleation site is important for effective assembly in this model.

In the AvgNuc column, each tiling has an RNA which uses the average ∆Grna

value of the optimised RNA for all of the non-nucleation site PSs. In the Kite and
Tri tilings, this had almost no effect on the yield of the assembly compared to the
optimised RNAs and it only had a minor effect on the Rhomb tiling. However,
the AvgUni column showed a noticeably lower yield for all tilings. Together, this
suggests that the sum of the values of ∆Grna across an RNA is less important than
the RNA having a nucleation site. In Kite and Tri, AvgUni still had a higher yield
than any of the other uniform RNAs, so the total value of ∆Grna across the RNA is
still significant.

In these simulations, 4Nuc always had a higher yield than 8Nuc, which suggests
that having a lower ∆Grna across an RNA helps assist with assembly, perhaps
allowing it to avoid kinetic traps once the capsid has nucleated. In addition to that,
4Nuc’s yield ranged from slightly lower than the optimised RNAs’ yield to having a
higher yield, which suggests this PS distribution is highly effective. When comparing
4Uni and 8Uni, this preference for lower ∆Grna values does not continue. Whilst

7.2. Assembly In The Presence Of RNA 145

Figure 7.17: The generic RNAs presented in Table 7.4. The “XNuc” RNAs all have a
binding site of 5 PSs with ∆Grna = 12 kcal/mol at one end of the RNA. The “XUni”
RNAs all have the same ∆Grna value across all PSs. For each tiling, the average
values of optimised RNAs’ PSs’ ∆Grna (as shown in Figure 7.16) was calculated.
This gave values of ∆Gavg

rna = 6.6 kcal/mol for the Kite tiling, ∆Gavg
rna = 6.1 kcal/mol

for the Tri tiling and ∆Gavg
rna = 7.2 kcal/mol for the Rhomb tiling. The RNAs shown

are (a) 4Nuc, (b) 4Uni, (c) 8Nuc, (d) 8Uni, (e) AvgNuc and (f) AvgUni.

146 Chapter 7. A General Model Of T = 3 Capsids

Kite
Optimised 4Nuc 8Nuc AvgNuc 4Uni 8Uni AvgUni 12Uni

37.8% 36.2% 32.9% 37.7% 15.0% 17.9% 20.7% 0.1%

Rhomb
Optimised 4Nuc 8Nuc AvgNuc 4Uni 8Uni AvgUni 12Uni

10.8% 20.7% 9.9% 9.6% 11.8% 6.3% 6.0% 0.6%

Tri
Optimised 4Nuc 8Nuc AvgNuc 4Uni 8Uni AvgUni 12Uni

45.0% 54.6% 39.3% 44.8% 18.1% 22.6% 23.6% 0.3%

Table 7.4: Once the optimisation was complete, the RNAs with the best yield for
each tiling were identified. Then, simulations of a range of similar RNAs were
performed for each tiling, using the same RNA graphs as the optimised RNA. These
similar RNAs are shown in Figure 7.17. When these RNAs have uniform ∆Grna

values, these will be called “XUni”, where ∆Grna = X kcal/mol. The RNAs with
non-uniform ∆Grna in this table are called “XNuc” and all have a nucleation site,
with 5 PSs with ∆Grna = 12 kcal/mol at one end of the RNA and the rest of the
PSs have uniform ∆Grna = X kcal/mol across the rest of the RNA. Lastly, each
tiling had two RNAs unique to them, where the average value of ∆Grna across the
length of its optimised RNA was calculated. This was used to make two RNAs, one
uniform, with each PS taking this value of ∆Grna and the other being that same
uniform RNA with a nucleation site of 5 PSs with ∆Grna = 12 kcal/mol at one end.
This data was generated from one simulation of 2000 RNAs, presented to 1 decimal
place.

Rhomb is more effective with 4Uni, Kite and Tri are more effective with 8Uni.

When looking at specific tilings, other noteworthy results can be seen. In the
Rhomb table, it shows evidence that the optimisation was not particularly effective
for this tiling. Here, two of the generic PS distributions assemble more efficiently
than the optimised RNA, with one being almost twice as effective. For Tri, the
optimised RNA was better than most of the other RNAs tested but was still beaten
by 4Nuc. This shows that an effective RNA was generated by the optimisation
procedure but that the whole 60-dimensional parameter space was not fully sampled
and that better RNAs may still be out there. For the Kite layout, its optimisation
was more successful, giving a higher yield than any other RNA tested here. However,
we cannot rule out that there may be more effective PS distributions, due to the
size of the parameter space.

7.2. Assembly In The Presence Of RNA 147

7.2.3 Analysis Of Assembly Paths And Intermediates

Once the optimisation was completed, the paths formed during assembly by the
optimised RNA were analysed. Initially, this involved the process from 5.2.1, where
the paths the RNA traces out on the inside of the capsid were collated and sorted, to
tally the frequency of each path. A sample of ≈ 10, 000 paths were generated for each
tiling (10022 for Kite, 10130 for Tri and 9393 for Rhomb). When modelling STNV,
the capsid assembled with the RNA tracing out the same path in most completed
capsids. Repetition of paths was not observed in the Kite, Tri or Rhomb tiling’s
assemblies with any noteworthy frequency (a small number of paths were observed
twice, representing ≈ 0.02% of the sample).

Further investigation into the assembly steps identified interesting features of
their assemblies. The methodology is described in Section 5.2.2, where the simulation
outputs each reaction that occurs during assembly, so that the assembly intermediates
can be identified. A few ways to analyse this were implemented. It is worthy of
note (covered in more detail in Section 5.2.2) that due to the simulations running on
a Gillespie algorithm, there are a large number of forwards reactions immediately
followed by a backwards reactions (or vice-versa), where the net result is no change
to the capsid. A filter was put on these reaction, so they were not recorded, as there
were usually over 3000 reactions on each RNA when these were included. This will
affect some of the data as follows. As so many of these excluded reactions occur, it
can be assumed that they are fast reactions and therefore likely to only form/break
one bond. In Figure 7.18 (iv), there is a count of how many times a reaction occurs
where N bonds are formed or broken, which will be impacted by removing some
reactions. Additionally, (iii) in that same figure shows a trajectory of assemblies,
which would stagnate more if these reactions were included too.

We start with some basic analysis, as shown in Figure 7.18, presented with
comparison with data for STNV. The figure is based on a comparative analysis of
the optimised RNAs from Chapter 6. It shows a range of information but the first
covered will be from graph (i), which is a histogram containing how many reactions
took place to assemble each capsid in that tiling. The Kite tiling has a small tail,
in contrast to the Tri tiling. The three T = 3 tilings all have a strong skew to the
left on these steps but STNV has less skew, with its largest bar being the central
one. STNV has a smaller ∆Gbond between its capsomers, which could result in more
forwards and backwards reactions occurring, perhaps reducing the skew observed in

148 Chapter 7. A General Model Of T = 3 Capsids

Figure
7.18:

G
raphs

depicting
a

variety
ofdifferent

features
ofthe

assem
bly

for
the

(a)
K

ite,(b)
R

hom
b

and
(c)

Tritilings
alongside

the
sam

e
inform

ation
for

(d)
ST

N
V

’s
R

N
A

graph
2345.

(i)
A

histogram
show

ing
the

num
ber

ofreactions
before

each
capsid

was
fully

assem
bled.

(ii)
B

ar
chart

illustrating
how

often
the

capsid
nucleated

at
each

PS.(iii)
A

line
graph

showing
how

the
num

ber
ofcapsom

ers
present

within
each

R
N

A
’s

interm
ediate

structure
changes

during
assem

bly.
(iv)

A
bar

chart
indicating

how
often

reactions
w

hich
cause

a
net

change
in

the
totalnum

ber
ofcapsom

er-capsom
er

contacts
occur.

Positive
num

bers
indicate

these
contacts

form
ing

and
negative

indicates
these

contacts
breaking.

T
hese

graphs
were

generated
using

data
from

approxim
ately

10,000
assem

bled
capsids

for
each

tiling.

7.2. Assembly In The Presence Of RNA 149

the T = 3 capsids.
In (ii), the sites that each tiling nucleates at most frequently are shown. This

means that there are two adjacent PSs, each with a capsomer bound to it and
then these two capsomers associate with to each other, thus starting formation of
the intermediate structure. As is expected, the most common nucleation sites are
the strongly binding PSs at one end of the RNA. The Rhomb tiling’s optimised
RNA does not have a clear nucleation site, as it nucleated in a wider range of
positions. However, it still seems to preferentially assemble from one end of the RNA
or the other, instead of starting the assembly mid-way along the RNA, which is an
interesting observation.

Graph (iii) shows how many capsomers were in each RNA’s intermediate structure
after a given number of reactions. This roughly represents how an intermediate’s
size changes over time, though the time axis would not be linear. Vertical lines
indicate that the reactions are either consistently forwards or consistently backwards
(typically just forwards). Horizontal lines indicate that there are a large number
of forwards/backwards reactions in sequence, suggesting that the assembly has
stagnated at this position or is potentially stuck in a kinetic trap (though not an
effective one as all trajectories shown here are for capsids that completed assembly,
so it will have escaped). This graph has its axes match the graph above it, which
indicates where most of the lines end. In the T = 3 viruses, most of the trajectories
are nearly vertical, so the assembly proceeds swiftly to an assembled capsid. There
is a limited amount of horizontal lines, which were predominantly observed with
smaller sized intermediates, showing that once these T = 3 tilings had a certain
threshold amount of capsomers present, their assembly did not stagnate. STNV
had a lot more horizontal lines visible and showed a lot more backwards reactions
than the others. This is potentially due to capsomers that do not bind to the RNA
joining its capsid, as without the stabilising effect of the RNA, they can leave the
structure easily. However, if this was the only reasons, then the Rhomb trajectories
should also show this effect, so another explanation is needed. Another reason is
that STNV has a lower ∆Gbond than any of the T = 3 capsids, so the intermediates
were less stable.

Finally, graph (iv) shows the relative frequencies of reactions that formed or broke
a given number of capsomer-capsomer interactions. This will be skewed away from the
true value, as a number of forwards/backwards reactions were filtered out (specifically,
when the net result of two consecutive reactions was no change, these reactions

150 Chapter 7. A General Model Of T = 3 Capsids

were not recorded). However, due to the frequency of these reactions, they are
likely the faster reactions, forming/breaking smaller numbers of capsomer-capsomer
interactions. None of the T = 3 capsids have any visible reactions that break
three or more capsomer-capsomer interactions, meaning that these occur extremely
infrequently, if at all. The vast majority of reactions counted are either breaking one
interaction, or forming either one or two interactions. As these simulations all result
in assembled capsids and begin with free capsomers, there is obviously going to be
a skew towards formation of these interactions, rather than breaking them. STNV
does involve reactions where three interactions are broken but this is again likely
due to the lower ∆Gbond value when compared with the T = 3 capsids.

Following this, code (as described in detail in Section 5.2.2), utilised the data in
Figure 7.18 to create a list of the last intermediate of each size for a given RNA’s
capsid assembly. Two scenarios were considered: one where two intermediates match
if their capsomer and RNA graphs’ occupancies are equivalent, modulo rotational
symmetry. The results for this variant will be discussed here. The second variant
only looked at the capsomer level, so considered two intermediates equivalent if only
the same capsomer structure was present; the results from this analysis are covered
in Section 7.2.4.

Throughout searches of smaller intermediates, to identify any similarities of RNA
paths, no significant alignment (≥ 1% of intermediates match) was found for inter-
mediates including 15 or more capsomers. When considering smaller intermediates,
such as those including 5 capsomers, there was some correlation in the RNA paths.
However, this was at most 10% per path for the most common intermediates. Using
RNA graphs with 5 edges per vertex and intermediates with 5 capsomers, there
are 4 edges in this path, leading to a maximum of 5 ∗ (5 − 1)3 = 320 different
paths the RNA could take. This is without even considering the necessary capsomer
interactions, so some overlap is both expected and likely. For paths that include 60
capsomers, the maximal number of paths is much larger, so repetition would only
occur if there was a thermodynamic advantage to it. No repetition of a path more
than twice over ≈ 10, 000 sampled paths was observed. This suggests that for the
RNA graphs chosen within the three T = 3 tilings, there was no thermodynamic
advantage for choosing a single path and optimising the RNA so that this path would
always form. An alternative argument would be that as more PSs are added to the
RNA, the space of potential paths increases exponentially. Due to the huge space of
potential paths, it is noteworthy that any path is observed multiple times, as it has

7.2. Assembly In The Presence Of RNA 151

numerous alternative options. As a result, this might suggest that this method of
simulating viral assembly, as a series of biochemical reactions on graphs with RNAs
that have a fixed number of PSs, has limited effectiveness within larger viruses.

An alternative argument would be that, as demonstrated for STNV, not all RNA
graphs will show repetition of paths after optimisation is run. From this, it could be
concluded that the RNA graph choices made here were simply not RNA graphs that
would result in paths being repeated and that were the optimisation procedure to be
repeated with more RNA graphs, repeated paths may be observed.

7.2.4 Intermediates Bar Chart

As the optimisation procedure did not result in PS distributions which assembled
with the RNA tracing out the same path within the capsid, a focus was placed
on the shape of the intermediates and where the capsomers sat within a range of
intermediates. The code defined in Section 5.2.2 was implemented and the latest
intermediates of each size for each RNA were identified. Then, they were grouped to
see how often each intermediate was present within these simulations. This section
will cover this data, considering all RNA graphs defined in Table 7.3 and two different
choices of RNA used for each RNA graph. Due to the capsomers that can join
the capsid without being bound to RNA being less stable and their more frequent
addition/removal interfering with the results for the Rhomb tiling, this analysis was
only applied to the Kite and Tri tilings. To begin, how these RNAs were chosen is
described.

As is shown in Sections 7.2.2 and 6.5, the optimisation of RNA typically ended up
generating a site on the RNA (often at one end) that has a series of strongly binding
PSs. As in this section we will be reviewing a range of RNA graphs, two RNAs were
used for each RNA graph. One RNA was a uniform RNA with ∆Grna = 4 kcal/mol
and the other was mostly uniform (∆Grna = 4 kcal/mol) with a cluster of 5 stronger
PSs (∆Grna = 12 kcal/mol) at one end. These two RNAs are shown in Figure 7.19,
termed uniform RNAs and nucleating RNAs, respectively. Typically, the nucleating
RNA results in a better yield, as is shown in Table 7.5, so the sample size for the
nucleating RNAs’ graphs will be slightly larger.

Table 7.5 shows the RNA graphs that were analysed and how many capsids
assembled during a single simulation of 2000 RNAs for each of the RNAs. As
was observed above, adding a nucleation site onto the uniform RNA significantly

152 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.19: Figure indicating the ∆Grna values for the two generic RNAs used in
assembly simulations in Section 7.2.4. One has the same ∆Grna value for all of its
PSs, so is termed the Uniform RNA. The other is the same with a nucleation site
added to one end, so is termed the Nucleating RNA. The colouring scheme is the
same as in Figures 6.10 and 7.16.

7.2. Assembly In The Presence Of RNA 153
Ve

rt
ex

D
eg

re
e

Tr
iT

ili
ng

K
ite

T
ili

ng
R

N
A

G
ra

ph
Is

o
Ty

pe
U

ni
fo

rm
Y

ie
ld

N
uc

le
at

in
g

Y
ie

ld
R

N
A

G
ra

ph
Is

o
Ty

pe
U

ni
fo

rm
Y

ie
ld

N
uc

le
at

in
g

Y
ie

ld
3

T
1

A
34

0
10

63
K

1
A

16
12

9
3

T
2

B
0

0
K

2
B

0
0

3
T

3
C

0
0

K
3

C
0

0
3

T
4

C
0

0
K

4
A

8
12

9
3

-
-

-
-

K
5

B
0

0
3

-
-

-
-

K
6

C
0

0
4

T
5

D
0

0
K

7
D

0
0

4
T

6
E

39
30

K
8

E
11

2
43

9
4

T
7

E
31

24
K

9
F

0
0

4
T

8
F

0
0

K
10

G
18

10
4

T
9

F
0

0
K

11
H

0
0

4
T

10
J

0
0

K
12

I
0

0
5

T
11

K
42

9
87

5
K

13
K

7
4

5
T

12
L

62
4

14
85

K
14

L
36

6
10

71
5

T
13

L
58

4
15

14
K

15
M

0
0

5
T

14
M

38
27

K
16

K
7

4
5

T
15

M
35

15
K

17
L

34
4

10
46

5
T

16
N

31
4

65
6

K
18

M
0

0
6

T
17

O
44

3
87

0
K

19
O

18
8

77
1

6
T

18
O

42
4

90
1

K
20

P
94

75
6

T
19

R
52

3
57

2
K

21
Q

62
7

15
11

6
T

20
T

0
0

K
22

S
0

0
7

T
21

U
99

4
17

65
K

23
U

57
5

13
55

7
T

22
U

10
47

17
67

K
24

U
56

2
12

99
7

T
23

V
12

28
17

59
-

-
-

-
7

T
24

W
72

9
10

42
-

-
-

-
8

T
25

Y
11

96
14

05
K

25
X

93
6

17
35

9
T

26
Z

15
98

19
65

-
-

-
-

Ta
bl

e
7.

5:
Ta

bl
e

sh
ow

in
g

th
e

nu
m

be
r

of
ca

ps
id

s
as

se
m

bl
ed

fo
r

ea
ch

R
N

A
gr

ap
h,

w
hi

ch
re

pr
es

en
ts

th
e

sa
m

pl
e

siz
e

of
th

e
da

ta
us

ed
in

Se
ct

io
n

7.
2.

4’
sa

na
ly

sis
.

Th
es

e
sim

ul
at

io
ns

in
clu

de
20

00
R

N
A

s,
so

co
ul

d
fo

rm
up

to
th

at
m

an
y

ca
ps

id
sa

nd
ar

e
pe

rfo
rm

ed
fo

r
tw

o
R

N
A

s.
O

ne
w

ith
a

un
ifo

rm
PS

di
st

rib
ut

io
n

w
he

re
∆

G
r
n

a
=

4
kc

al
/m

ol
fo

r
al

lP
Ss

an
d

an
ot

he
r

w
ith

a
nu

cle
at

io
n

sit
e

of
5

PS
sw

ith
∆

G
r
n

a
=

12
kc

al
/m

ol
at

on
e

en
d

(s
ee

Fi
gu

re
7.

19
).

Th
e

iso
m

or
ph

ism
ty

pe
sf

ro
m

Ta
bl

e
7.

3
ar

e
al

so
gi

ve
n.

A
s

th
is

an
al

ys
is

wa
s

no
t

ap
pl

ie
d

to
th

e
R

ho
m

bi
c

til
in

g,
it

is
no

t
fe

at
ur

ed
he

re
.

154 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.20: Assembly of a dodecahedral capsid, made from 12 pentameric capsomers,
using the optimal RNA defined in work by Dykeman et al [19]. As described in
Section 5.2.2, the latest intermediate of each size was recorded and then these
intermediates were grouped together and counted. Each column of bars shows a
separate intermediate size and each bar shows a different intermediate and the
percentage of the latest intermediates that form it. The bars are sorted so that
the most common intermediates are the lowest bars. They are colour coded, with
the legend showing the difference in the number of capsomer-capsomer interactions
between the intermediate with the largest number of capsomer-capsomer interactions
and that bar. This shows that most of the intermediates occurring in the simulations
are the most stable intermediates available.

increased the total number of assembled capsids. In a small number of cases, it did
not improve the yield. However all of these cases had a yield of less than 100 capsids,
regardless of whether there was a nucleation site or not.

Before looking in detail at bar charts for T = 3 capsids, a smaller example will
first be examined. Figure 7.20 shows a bar chart including the stabilities of the
intermediates formed during the assembly of a dodecahedral capsid, made up from
12 pentameric capsomers. Each column represents the intermediates featuring a
given number of capsomers present. Each bar represents the frequency of assemblies
that feature a given intermediate. The bars are colour coded to indicate the stability
of the intermediate, with blue being the most stable observed intermediates (i.e. the
ones with the largest number of capsomer-capsomer interactions) and a sliding scale
for the intermediates with fewer and fewer interactions.

7.2. Assembly In The Presence Of RNA 155

In this example, most columns have only one bar, suggesting that most inter-
mediates correspond to the most stable intermediate. Even the column with the
smallest blue area has approximately 90% of the observed intermediates being blue.
There are no green bars shown, so no intermediates occur with 2 fewer interactions
than the best. This validates some of the assumptions used in Chapter 3, as these
stochastic simulations of dodecahedral capsids predominantly use the most stable
intermediates available.

Some of the sample sizes in Table 7.5 are quite small, which leads to the question
of how large should the sample be to get a representative result. Thus, Figure 7.21
was derived. A simulation of RNA graph K14 using 2000 copies of its optimised
RNA generated 936 sampled capsids. Using this data, various sample sizes were
taken (a× 10b, for a ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} and b ∈ {1, 2}, alongside one featuring
all of the data). Then the graphs for these samples were formed and they were
compared to the graph for the full sample. To some degree, all of the graphs had
some resemblance to the full sample’s graph but the smallest sample size that showed
a significant similarity was 50 capsids (Figure 7.21a), in contrast with the graph for
the full sample (Figure 7.21b).

The first similarity to note here is the general shape of the non-blue section of
the chart, with peaks and troughs at the same positions. Looking more closely, with
both smaller and larger intermediates, there are spikes of orange (intermediates with
one fewer capsomer-capsomer interactions than the most stable bars in each column)
at the same positions in the chart. Next, there are five columns where there is a
significant amount of green bars present (which contain fewer capsomer-capsomer
interactions than orange bars), typically in regions where less of the column was
taken up by blue bars. These green areas are at the same positions in both charts
and have orange areas nearby. There are some cases where they are not equivalent,
such as the extra orange bar in the middle of blue in the smaller sample and another
column of mostly green bars in column 17, that is not well reflected in the larger
sample’s graph. This is likely due to fluctuations resulting from the smaller sample
size. The black region at the top of the second graph is due to a large density of
very thin bars, so only the lines between them can still be made out. In this region,
the smaller sample has many bars that are based on just one intermediate, so the
two graphs are consistent here.

To conclude, the chart with a smaller sample is not exactly the same as the chart
with the larger sample, so obtaining a larger sample is still necessary to get the

156 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.21: The latest intermediates of each size during simulations were recorded
for a simulation of RNA graph K14 using its optimised RNA. The colour scale
indicates the difference between the number of interactions formed in an assembled
intermediate structure and the number formed in the most stable structure of that
size, with the key shown on the right. Then, different subsets of these intermediates
were analysed, to see how large the sample of intermediates needs to be to reflect a
large sample size. The full sample generated included over 900 intermediates but
even a sample as small as 50 will give an output which shows similar trends to the
full samples. These two graphs show a sample of (a) 50 capsids and (b) 936 capsids.

7.2. Assembly In The Presence Of RNA 157

Figure 7.22: Bar chart indicating the frequency that the latest intermediates of a
given size occur during the assembly of a capsid using RNA graph (a,b) K8, (c,d) K24
or (e,f) T22. This was done for (a,c,e) uniform RNAs and (b,d,f) nucleating RNAs,
with PS distributions shown in Figure 7.19. These graphs were formed using all RNA
graphs for both RNAs but these are chosen for display here to illustrate observations.
Typically, the nucleating RNAs have a larger proportion of the intermediates in
states that have a larger number of capsomer-capsomer interactions. This sample is
taken from one simulation of 2000 RNAs. The key, shown at the bottom, represents
the difference between the number of interactions formed in a structure and the
number formed in the most stable structure of that size.

most precise results. However, in this section the graphs are being considered in a
qualitative sense, so as long as the shape is approximately correct, the sample size is
large enough. As shown by this test, the sample size will be large enough, even for
quite small samples.

Now, six examples of these charts for T = 3 viruses are shown in Figure 7.22. The
left column are all charts made for uniform RNA and the right column for nucleating
RNA. Each row represents a different RNA graph, with the first row being K8, the

158 Chapter 7. A General Model Of T = 3 Capsids

second being K24 and the last being T22. Of these, K24 and T22 are isomorphic
to each other, yet have vastly different charts here, showing again the effect that
the geometry of the capsomers has on the assembly. Comparing K8 and K24 to
each other, there are some differences, especially in the heights of the blue columns
however the rough shape persists. Some differences are that the chart for K8 seems
to show more frequent red and purple bars, with a slightly increased amount of green,
suggesting that K24 pushed the assembly along a more stable assembly pathway.

General comparisons can be made upon the effect of adding the nucleation site
onto the RNA, shown by the differences between the two columns. There are a lot
of cases where the introduction of the nucleation site has increased the size of the
blue areas and so overall the stability of the intermediates is improved. However,
there are also a few cases (e.g. the start/middle sections of K8) where the nucleating
site has also increased the size of the orange/green sections of this graph. These
nucleating RNAs have generated a higher yield, so whilst this nucleation site leads
to more efficient assembly, it does not necessarily lead to all intermediates taking
the most stable options during assembly. When simulating STNV in Chapter 6 and
removing the nucleation site from the optimised RNA, the assembly of the capsid
was dramatically altered, whereas here the changes seem to be less dramatic.

Another interesting observation of these graphs, especially when compared to the
example from Figure 7.20 is that the T = 3 capsids assemble via intermediates that
form fewer capsomer-capsomer interactions than was observed for the dodecahedral
capsid. However, the RNA graph which generated the highest yield shown here also
has the charts with the fewest green bars, which could still support the conclusion of
assembly occurring more efficiently via more stable intermediates.

7.2.5 Tree Graphs Of Lowest Energy Pathways

This section describes another method used to analyse the various RNA graphs.
This method is a more sophisticated form of the combinatoric procedure discussed
in Section 5.1. This method assumes assembly nucleates at one end of the RNA
and grows the structure from there. Whenever this new method would add a new
capsomer onto the structure, it tests whether adding this capsomer would result in
a connected capsomer graph or not, i.e. whether it joins the current intermediate
structure or not. Instead of looking at all possible intermediates and the exact RNA
paths that could assemble, this process finds the three most stable (measured by

7.2. Assembly In The Presence Of RNA 159

Figure 7.23: A snapshot of a tree diagram as used in this section. Lines between nodes
show transitions between nodes due to the addition or removal of a single capsomer.
This tree is for a Kite tiling. This example only considers intermediates with up to
three capsomers present. The intermediates which form the most interactions are
drawn in red, as in the tree diagrams. These diagrams are set up so that they draw
only the three intermediates with the most interactions formed. In the third column,
there are six different intermediates shown. This is due to a five-way tie. Without
foreknowledge of later intermediates, there is no good way to select which of these
tied intermediates should be kept and which excluded from further analysis, so all
were retained.

160 Chapter 7. A General Model Of T = 3 Capsids

the number of capsomer-capsomer interactions in the intermediate) intermediates
of a given size. An intermediate here is described only by the capsomers present,
rather than considering the RNA layout. Rotationally equivalent intermediates are
considered to be equivalent but reflection symmetry is not applied.

When there are ties (meaning that more than 3 intermediates are found which
are stable enough to make the top 3, e.g. as shown in Figure 7.23), all states that are
stable enough are included. As this process assumes that the assembly will nucleate
at one end of the RNA and assemble along the RNA from there, it is unable to add
in capsomers not bound to a PS, so only Kite and Tri tilings were modelled using
this technique. Whilst this process did rely upon the RNA graphs, it did not store
all of the paths that could exist for each intermediate. Instead, it only records where
the free end of the RNA can sit and where the next PS’s capsomer can bind as a
result. Additionally, due to how this code runs, it can identify which intermediates
can transition to which other intermediates via addition of other capsomers during
assembly.

This data was stored in a series of trees, with the first example being Figure
7.23. This shows the intermediates that occur and the possible intermediates that
could be formed by adding a capsomer to small a intermediate. Each column lists
the intermediates of a given size, with those forming the most capsomer-capsomer
interactions drawn in red, to indicate that they are the most stable intermediates.
In the following tree diagrams, a larger form of this concept is shown, which includes
all sizes of intermediates and does not indicate their shapes. In them, the stability
of the intermediates is indicated by a colour scale from red, for the most stable, to
black, for the least stable.

Firstly, to give a more digestible example of these trees, the tree for a dodecahedral
capsid made up of 12 pentameric capsomers is shown in Figure 7.24. ‘it demonstrates
that there is a choice of assembly path that features all of the possible most stable
intermediates. Also, there are some sub-optimal choices but these can almost
always go straight back to the optimal choices by adding another capsomer. The
graph shows 39 different intermediates, whereas for the full system there are 73
potential intermediates, demonstrating that when assembly favours the more stable
intermediates, then the system is somewhat less complicated than pure combinatorics
would suggest. This reduction in available states would likely be even stronger when
considering larger capsids, which can have a much larger number of intermediates,
thus simplifying the available assembly paths.

7.2. Assembly In The Presence Of RNA 161

Figure 7.24: Graph of the intermediates with the most capsomer-capsomer interac-
tions during assembly of a dodecahedral capsid formed from 12 pentameric capsomers
in the presence of RNA. Limiting the assembly to these intermediates would reduce
the number of intermediates in that system from 73 to 39. The nodes are labelled
with the number of capsomers present, followed by an identifier. The nodes are colour-
coded, where red indicates that it has the largest number of capsomer-capsomer
interactions, maroon second most and black means it has, of the intermediates shown,
the fewest.

162 Chapter 7. A General Model Of T = 3 Capsids

Now, observe Figure 7.25, which shows four tree diagrams for T = 3 capsids for
a few RNA graphs. Sections (a) and (b) represent RNA graphs T6 and K8, which
are isomorphic RNA graphs on different tilings. T6’s graph has a flatter and thinner
shape than K8’s graph, suggesting that the different tilings change the shape of the
trees (the same was observed in other isomorphic RNA graphs’ trees). The K8 graph
had more black columns (where there was a large number of less stable intermediates)
than T6, suggesting it presents a larger number of sub-optimal choices.

In (c) and (d), the Figure shows a zoomed in view of the first few sizes of
intermediate in the tree. From this, the structures of the tree can be more closely
considered. The T6 tree has a larger number of connections than K8, suggesting
that there is more flexibility during its assembly, whilst still remaining within stable
intermediates. Both show what appear to be dead ends. These are not necessarily
dead ends or kinetic traps. They are just states where the assembly cannot add
more capsomers without forming intermediates that are insufficiently stable to be
present on the tree. This means they are likely less effective pathways but may still
be able to assemble.

Next, consider (e) and (f), which represent RNA graphs T22 and K24, respectively.
These RNA graphs have a much larger number of edges than T6 and K8, so have a
much larger density of different intermediates. As with (a) and (b), these two RNA
graphs are isomorphic to each other but also have very different trees here. This is
more evidence that the tiling has major effects on assembly, which was observed in
many more of these trees that were generated but are not shown here.

Another interesting thing to do is compare the trees within one tiling. To start,
(a) and (e), both RNA graphs with Tri tilings, will be compared. In the section
that represents smaller intermediates, there is a period where the columns oscillate
between there being one most stable state and many less stable states, followed by a
smaller number of states but all of them are the most stable options. In the section
of the tree representing larger intermediates, the trees are also fairly flat in both
cases.

The next pair to consider is (b) and (f), which are both Kite tilings. These
two show an even stronger visual similarity than the other two trees. The leftmost
section starts gradually increasing in height, followed by a dip and then a sudden
increase. Then, the height slowly decreases before a second spike, which forms a
plateau with a large number of less stable states. Following the plateau, the height
decreases and briefly remains at a low level, with occasional spikes (though these are

7.2. Assembly In The Presence Of RNA 163

Figure 7.25: A series of trees (similar to Figure 7.24) that feature the intermediates
forming the largest number of capsomer-capsomer interactions for a range of RNA
graphs and tilings: (a) T6, (b) K8, (e) T22, (f) K24. These RNA graphs are described
in Table 7.3. A zoomed in view of (a) and (b) are shown in (c) and (d) respectively.
Each column in a graph represents the intermediates with a fixed number of capsomers
present. Red nodes have the most capsomer-capsomer interactions and black have
the least.

164 Chapter 7. A General Model Of T = 3 Capsids

more shallow in (b)). Then, there is a large increase in height before a sudden fall
and a few small oscillations to finish the tree.

Within both Kite and Tri tilings, many of these features show up in all of the
other trees, though not all of them at all times. The trees for the Kite tilings are
much more similar to other Kite tiling’s trees than to Tri tilings’ trees (and vice
versa). Another piece of evidence of how important the tilings are for assembly.

Lastly, the trees in this section can be compared with the bar charts from Section
7.2.4. Figure 7.25e and Figures 7.22e/f all represent the assembly of RNA graph T22.
One is using combinatoric analysis and the other is using stochastic simulations.
The bar chart shows a lot of spikes where less stable intermediates were used during
assembly. Within the tree diagram (though it can be hard to tell without zooming
in), these spikes are always within intermediate sizes where there are very few most
stable states available, which highlights how well these tree diagrams represent the
assembly. On top of that, the bar charts also show evidence that assembly usually
only uses the most stable intermediates available (in most cases, intermediates that
form have at most one capsomer-capsomer interaction fewer than the most stable
intermediates), which supports these trees being of interest.

7.2.6 ∆Gbond Fitness Tables In Presence Of RNA

Lastly, there is one more parameter that can be altered, to see the effects of changing it
upon the assembly. This parameter is the strength of interactions between capsomers,
∆Gbond. Changes to this parameter were covered for the RNA-free case in Section
7.1.2 and now this will be altered whilst the RNA is present. This will be applied
to the RNA graphs which had their RNA optimised, i.e. K14, R14 and T12. This
helps to indicate how well this optimisation works and whether other improvements
are available.

7.2.6.1 Effects Of Changing Uniform ∆Gbond

Initially, the values of ∆Gbond is assumed to be constant across all capsomer-capsomer
interactions. This allows a simpler view of the parameter space whilst also altering
a few other parameters, to give an idea of the areas of interest.

Initially, a range of different values of ∆Gbond and a range of different RNAs were
investigated, across all three RNA graphs. For each data point, one simulation of

7.2. Assembly In The Presence Of RNA 165

2000 RNAs was implemented and the number of assembled capsids at the end was
recorded, as shown in Figure 7.26.

There is a range of important observations here. The first is that if the optimisa-
tion had been solely to generate the highest possible assembly yield (rather than
trying to indicate differences of assembly across tilings), then the values of ∆Gbond

could have been altered and the assemblies would have generated a higher yield.
The Kite and Tri tilings would have preferred a lower ∆Gbond but the Rhomb tiling
would have generated a greater yield with either a higher or a lower value of ∆Gbond.

The RNAs in the Kite and Tri assemblies can easily be categorised into two
distinct groups: the high yield and the low yield (and the unassembled, which only
includes 12Uni). These groups also correlate with the presence and absence of a
nucleating site at one end of the RNA. Note that RNA 8Nuc drops in efficiency
when it has sufficiently low ∆Gbond. However, it typically occupies the efficiency of
the more effective group.

Another noteworthy RNA is 4Nuc, which has a nucleation site, (i.e. 5 strongly
binding PSs) and then all other PSs are weakly binding. In Rhomb, this is significantly
more effective than any other RNA explored and in Tri it is still more effective
than the alternatives. In the Kite, it is usually the most effective (competing with
AvgNuc). However, for the value of ∆Gbond where the RNA was optimised, the most
effective RNA was the optimised RNA, though not by much. This suggests that the
parameter space of PS distributions was not sufficiently sampled to obtain the best
available RNA, as for two RNA graphs, a better RNA was obtained arbitrarily.

From the graphs, it can be concluded that the K14 is the most dependent on
∆Gbond of the three RNA graphs, as it has the largest peak of the three. It can
also be observed that graph R14 is the most dependent on its PS distribution, with
the value of ∆Gbond being less significant here. Additionally, T12 is not affected
as strongly by RNA choice or ∆Gbond, as the graphs are fairly flat and a range of
different RNAs resulted in similar yields.

7.2.6.2 Effects Of Changing Non-Uniform ∆Gbond

Section 7.1.2 introduced the concept of different strengths of ∆Gbond for different
capsomer-capsomer boundaries and explored this for assemblies in the absence of
RNA. Each capsomer for the three T = 3 tilings can form at least two different
capsomer-capsomer interactions. This is developed here for the case where RNA is
present. As before, Bond A is the capsomer-capsomer interaction about the 5-fold

166 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.26: Graphs indicating the number of assembled capsids for RNA graphs (a)
K14, (b) R14 and (c) T12, when assembling with a variety of different RNAs and at
a range of values of ∆Gbond. The ∆Gbond used during the optimisation is given as
a red dashed line, as this was the value determined in Section 7.1 to give an even
playing field. The optimised RNA is the one that was found using the optimisation
procedure given above. The “XUni” RNAs have a uniform ∆Grna = X kcal/mol.
The “XNuc” RNAs are the same as the “XUni” RNAs with a nucleation site of
5 PSs with ∆Grna = 12 kcal/mol at one end of the RNA. For “Avg X” RNAs the
values of ∆Grna is set to the average value of all ∆Grnas across the optimised RNA.
The data for ∆Gbond for the optimised RNAs, is shown for (a) up to 4.5 kcal/mol,
(b) between 2.25 and 4.75 kcal/mol or (c) from 3.0 kcal/mol.

7.2. Assembly In The Presence Of RNA 167

axis and Bond B is the other capsomer-capsomer interaction that forms. Within this
section, all of the Rhomb tiling’s interactions that involve the capsomer that sits
across the 2-fold axis are assumed to be equivalent.

Figure 7.27 shows three heatmaps from simulations where the strength of these
interactions was varied. Each of these heatmaps shows a skew, which favours one
capsomer-capsomer interface over the other. The Kite has a greater yield when
Bond B is stronger, i.e. interactions about the 3-fold axis, which are thus more
significant to the assembly dynamics. The Tri has a slight preference for Bond B,
which stretches over the 2-fold axis, though it still needs a certain minimal strength
for Bond A. This could be due to that contact being the only option to build a capsid
after a 5-fold axis is complete. The Rhomb is extremely skewed to favour Bond B,
still assembling with comparably high yield to the rest of the heatmap when Bond A
is at the lowest value tested. This is likely due to two factors. The first is that there
are twice as many Bond B’s in the Rhomb capsid than Bond A’s. The other reason
is that Bond B always includes one of the capsomers that sit over the 2-fold axis,
which do not bind to the RNA. These capsomers will therefore not be stabilised by
the RNA, whereas the other capsomers rely on a mix of A and B, in addition to the
stabilisation due to RNA contacts.

Figure 7.27 can be compared with the RNA-free case in Figure 7.6. The first
observation is that the shape of the heatmap has changed, which is due to the
presence of the RNA and hence reflects the choice of RNA graph. Different choices
of RNA graphs would likely result in differently shaped heatmaps. Even though
Figure 7.27 shows a smaller range of ∆Gbond values, it still appears to contain most
of the plateaus, suggesting that effective assembly around the RNA will occur for a
narrower range of parameter values. Another important observation is that assembly
still occurs for much smaller values of ∆GA

bond and ∆GB
bond, even if both are small.

Using the range of values of ∆GA
bond and ∆GB

bond shown, both the Kite and Tri tiling
always assemble some completed capsids. This demonstrates the stabilising effect of
the RNA upon the assembly.

7.2.6.3 Non-Uniform Variation Of All Three ∆Gbond Values In The Rhomb
Tiling

Lastly, as covered in Section 7.1.3 and Figure 7.5, the Rhomb tiling actually has three
distinct capsomer interactions, not just two. In this section, the effect of changing
the strength of these interactions is covered. Figure 7.28 shows the relative positions

168 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.27: Heatmaps showing the assembly efficiencies of the optimised RNAs
when different values of ∆GA

bond and ∆GB
bond are used. They contain the results for

(a) Kite, (b) Rhomb and (c) Tri tilings. There is a scale for all of the heatmaps
in (d), alongside a diagrammatic representation of the bonds in each tiling. Yellow
indicates Bond A, Green indicates Bond B and Pink indicates Bond C, which was
set as equal to Bond B here. Graphs are based on the average over three simulations
of 2000 RNAs. The range of the heatmap for Kite is [337, 1785], for the Rhomb
[0, 452] and for the Tri [162, 1634].

7.2. Assembly In The Presence Of RNA 169

Figure 7.28: Figure illustrating how the three different capsomer-capsomer interfaces
sit within the RNA graph. A small patch of the Rhombic tiling is shown, where
the three different capsomer interfaces are superimposed in different colours. Yellow
edges represent Bond A, green edges represent Bond B and pink edges represent
Bond C. On top of this, the RNA graph for the R14 tiling is shown as blue lines.
The pentagons, triangles and ovals represent the 5-, 3- and 2-fold symmetry axes of
the capsid.

of the three different boundaries. This shows that for the R14 RNA graph, Bond B
is important to enable the RNA to use edge δ, which reaches across the capsomers
that sit on the 2-fold axis. This means that in the heatmaps there is likely to be
a skew, which was not present during the heatmaps in Section 7.1.3 which shows
another effect of the RNA on the assembly.

Figure 7.29 shows heatmaps for the assembly of the Rhombic tiling, where each

170 Chapter 7. A General Model Of T = 3 Capsids

Figure 7.29: Heatmaps showing the assembly efficiencies of the optimised RNA for
RNA graph R14, when different values of ∆GA

bond, ∆GB
bond and ∆GC

bond are used. They
were generated using the average result from three simulations of 2000 RNAs for
each square. White squares indicate that the simulations took too long to complete.
Typically the less effective the assembly, the slower the simulations ran. So, observing
where these white squares sit suggests these would all have very low yields. These
heatmaps all have independent scales where green has the largest number of capsids
formed and red is the smallest number of capsids formed. The largest and smallest
values for each heatmap are recorded in Table 7.6.

of the three capsomer-capsomer interaction strengths was altered independently.

Initially, consider the first row, where ∆GA
bond is fixed within each heatmap and

increases from left to right. When ∆GA
bond is small, there is a clear skew where a

larger value of ∆GB
bond leads to a higher number of assembled capsids. As ∆GA

bond

increases, this skew reduces until the final heatmap, where is it almost symmetric.
This is different to Figure 7.9, where the equivalent data is shown for the RNA free

7.3. Conclusion 171

Fixed Bond
Fixed ∆Gbond

1.0 2.5 5.5
Max Min Max Min Max Min

A 351 0 451 0 284 0
B 149 0 284 1 453 49
C 217 0 384 2 452 35

Table 7.6: Figure 7.28 has nine heatmaps. This table contains the maximal and
minimal numerical values for capsids assembled in each scenario.

version and is symmetric. It makes sense that Bond B is the favoured interface as
when a capsomer joins at this interface then another edge is available for the RNA,
to go across, as shown in Figure 7.28 with a green edge.

Looking at the other two rows, there is a strong skew, which suggests that Bonds
B and C are both more important than Bond A, as the efficiency below the line is
higher than above in all cases. This could be due to Bond A being present only on
capsomers which bind to the RNA and the RNA will cause an additional stabilising
effect.

Another conclusion that can be made is that there appears to be a strict minimum
value for ∆GB

bond or ∆GC
bond. Observing the lower two heatmaps show that if both are

small, regardless of how strong ∆GA
bond is, the capsid will not assemble. Even if one

is increased, if the other is still low then it will still not assemble, as shown in the
second column. Comparing the lower two heatmaps in the third column, B is again
favoured, where capsid structures with high ∆GB

bond and low ∆GC
bond still assembling

but the inverse being less effective. Lastly, the first row also has a diagonal line
where if ∆GB

bond and ∆GC
bond are both low, then it is incapable of assembling.

7.3 CONCLUSION

In conclusion, there are a large number of variables that will affect the efficiency of
the assembly of viral capsids. Some give smaller effects, for example whether the
capsomers are ramped in or the simulation begins with them already present, which
can affect the efficiency for larger values of ∆Gbond but is minor otherwise. Others
are more significant, such as choosing a tiling, as this determines the shape of the
capsomer, which in turn determines the adjacencies of the capsomer graph. And
changing the capsomer graph was shown to have significant impact on the assembly

172 Chapter 7. A General Model Of T = 3 Capsids

of the capsids, whether RNA was present or absent. Additionally, changing the
values of ∆GA

bond, ∆GB
bond and ∆GC

bond (when appropriate) was also an impactful
change that affected the capsid’s assembly. Each tiling typically had one bond it
favoured over the others and making this bond bind significantly more strongly than
the other would lead to more efficient assembly, whether the RNA was present or
not.

The RNA’s presence was also an important factor, as it allowed efficient assembly
with smaller values of ∆Gbond. However, considering the RNA leads to more choices,
one being which RNA graphs to use. For each tiling presented, there are over 20
different valid RNA graphs and it is challenging to determine which best reflects
the actual biology. Another set of parameters that can be changed are the values of
∆Grna along the length of the RNA. In this chapter, there have been 60 PSs along
the RNA, so there are 60 different values for this parameter that can be altered.
However, the exact values of each ∆Grna are not as important as the shape of the
distribution. For example, having a nucleation site is much more effective than
having a uniform distribution. The RNA also affects how changing ∆GA

bond, ∆GB
bond

and ∆GC
bond (when appropriate) impacts assembly. In the Rhomb assemblies, adding

RNA with some RNA graphs will introduce an asymmetry between Bonds B and C
that was not observed when the RNA was not present.

The paths that the RNA traced out within T = 3 capsids was not observed to
have any similarities across capsids, so the intermediates formed during assembly
were investigated. This showed that most of the time, the assembly favoured the
more stable intermediate structures, with the vast majority of intermediates analysed
only having either the maximal possible number of capsomer-capsomer interactions
or only one fewer. Using sophisticated combinatorics, there was shown to still be a
large number of intermediate structures that satisfied this condition.

8

Examining Disassembly Using Stochastic
Simulations

So far, the focus has mainly been on the assembly of viruses. Assembly is an
important process during the replication cycle of viruses but it is not the only one.
The basic steps of the replication cycle shared by most viruses can broadly be
summarised as follows:

1. Virus enters host cell

2. Virus disassembles to release genetic information into the host cell

3. Host cell replicates virus’ genetic information and produces coat proteins

4. Coat proteins assemble into a completed capsid containing genetic information

5. Host cell releases assembled capsids to the environment

6. Virus finds new host cell and the cycle begins anew.

This chapter will focus on the disassembly step of this cycle. This is the process by
which fully assembled capsids can release their genetic information into a cell, by
breaking apart. It is an important part of the viral replication cycle and can also
have applications within nanotechnology, as virus-like particles have potential usage
in drug delivery. In addition, disassembly can be modelled using similar techniques
to assembly and this is a natural extension of earlier chapters. The techniques
developed during this thesis which model viral assembly are repurposed during this
chapter, to model disassembly instead.

173

174 Chapter 8. Examining Disassembly Using Stochastic Simulations

8.1 PRIOR WORK ON DISASSEMBLY

Three papers shall be briefly discussed and used to compare with the work presented
in this thesis.

The first paper is Observed Hysteresis of Virus Capsid Disassembly Is Implicit
in Kinetic Models of Assembly by Sushmita Singh and Adam Zlotnick [48]. In this
paper, they consider HBV, a T = 4 virus composed of 120 dimers. It featured
both experimental results and computational models. The computational models
were done by assuming that only the most stable intermediates form, defining rate
equations and then using numerical integration, similar to other work by Zlotnick
[59].

In this work, they made a number of observations. The first was that is took a
long time for the system to reach equilibrium, longer than in assembly simulations.
Another was that they found that experimentally there was a higher presence of
intermediates during disassembly experiments than was seen in their assembly data.
They found hysteresis would mask changes in contact energies (caused by altering
the salt concentration in their experimental system) between capsomers, in all but
extreme cases. One suggestion was that viral capsids may need a triggering event to
initialise the disassembly process.

The next paper is How to Disassemble a Virus Capsid, a Computational Approach
by Claudio Alexandre Piedade, António E. N. Ferreira and Carlos Cordeiro [46].
They focus on a range of T = 1 viruses. For each virus, they used the atomic
coordinates of a structure and formed a capsomer graph, where each edge indicated
that the two proteins are able to interact. Then, they counted the number of bonds
that each protein made to each of its neighbours. This was based on contributions
from hydrogen bonds, salt bridges and hydrophobic contacts. During their analysis,
they used different weightings for each of these bond types.

To model the disassembly, they allowed one protein per reaction to leave the
structure. If a removal meant the capsid was cleaved into two, then the larger
intermediate was kept. They formed a tree of disassembly paths that allowed them
to find the most probable intermediates, by assuming the most stable intermediate
would be the one to form.

This allowed them to find plausible pathways for the removal of up to 5 proteins.
One conclusion from this is that many viruses (especially closely related viruses) are
likely to begin disassembly with highly similar paths, for example most viruses lose

8.2. Methods Used To Model Disassembly 175

capsomers in a trimer interaction first.
The last paper to be presented is Percolation Theory Reveals Biophysical Prop-

erties of Virus-like Particles by Nicholas E. Brunk and Reidun Twarock [5]. This
begins with the statement that for T = 3 viruses, there are only three topologically
distinct tilings made up of identical capsomers: kite, triangular and rhombic tiles.

For each tiling, an interaction network, i.e. a graph containing the capsomer
interactions, was generated and then the graph underwent tests. The first test was to
randomly remove one node at a time until the capsid cleaved into two disconnected
graphs and counted how many nodes had been removed. The number of capsomers
out of the total removed when the capsid dissociated into two disjoint parts was
used as a metric for when the capsid had fallen apart. This test was repeated 10,000
times for each graph to ensure the results were representative and the number of
nodes removed was stored as a fraction of the number of nodes removed divided by
the total number of nodes in the original graph, to allow comparison between graphs
with differing numbers of nodes. The probability that the graph was still connected
with a given fraction of nodes remaining was calculated.

The other test performed was to remove edges from the graph, rather than nodes.
Apart from this, the rest of the test was the same. The fraction of edges removed
was stored and was used to give the probability that a graph was still connected
after a given fraction of its edges had been removed.

The result of both these calculations were in agreement, demonstrating that the
interaction network is sufficient to capture essential features of capsid disassembly.
Whether nodes or edges were removed, the most stable tiling was the Kite tiling,
followed by the Rhomb tiling and then the Tri tiling. This was continued for Rhomb
and Tri tilings for larger T -Numbers, as Kite tilings have only been observed for
T = 3 tilings. The trend was that Tri tilings continued to be less stable than Rhomb
tilings. Additionally, as the T -Number increased, the overall stability of the tilings
decreased.

8.2 METHODS USED TO MODEL DISASSEMBLY

Assembly and disassembly are both processes that are based upon the same reactions,
where at any point, a capsomer may join or leave a capsid’s current intermediate
structure. Thus, with only small adjustments to the original assembly code, it can

176 Chapter 8. Examining Disassembly Using Stochastic Simulations

be adapted to model disassembly, too. This is done by setting the initial state of
the system to be a given number of complete capsids in the absence of any free
capsomers. One limitation to this is that the internal arrangement of the RNA is
unknown, so highly detailed knowledge regarding where the RNA sits on the interior
of a completed capsid is needed to model capsid disassembly in the presence of
RNA. As a result, only RNA-free disassembly is modelled in this chapter. Then,
once the initial state is set up, simulations are run in the same way as for the
assembly simulations detailed in Chapter 4, by giving the simulation information on
the capsid’s capsomer graph and interaction strengths, then sampling reactions.

8.3 RESULTS OF DISASSEMBLY SIMULATIONS

A series of both assembly and disassembly simulations were implemented, using a
range of different tile types to represent capsomers, with different values for capsomer-
capsomer interaction energies (∆Gbond). Effects of different time limits (10s, 100s,
1000s and 10,000s) on the simulations was also explored, in order to investigate how
timeframes impact the ability to reach equilibrium. In the assembly simulations,
capsomers were ramped in, emulating in vivo conditions, to avoid the yield dropping
off at higher values of ∆Gbond, as shown in Section 7.1.1.

The results of this are shown in Figure 8.1, which shows the number of fully
formed capsids after both assembly and disassembly simulations were run, across
multiple timescales, using each tiling and with a range of values of ∆Gbond from
2.0 kcal/mol to 5.0 kcal/mol in steps of 0.2 kcal/mol. The low yield after shorter
simulations show that full assembly requires significantly longer time than they
took place over. One caveat is that this could be due to the ramp not having
produced enough capsomers, which has lowered the yield but it is not the sole reason.
In the 100s simulations, there will be approximately enough capsomers generated
to form 667 (33%) capsids in the Kite/Tri or 444 (22%) in the Rhomb, but the
100s simulations never generated this many capsids, even if their 1000s simulations
assemble the maximal number of 2000 capsids.

The disassembly simulations do not show such a stark difference in number of
capsids remaining. One reason for this could be due to the measurement criteria,
where in both cases a capsid is considered complete (either it is assembled or it is not
disassembled) if it has all its capsids and incomplete (either it is not assembled or it

8.3. Results Of Disassembly Simulations 177

Figure 8.1: Graphs containing the yield of (a,c,e) assembly simulations and (b,d,f)
disassembly simulations in (a,b) Kite, (c,d) Tri and (e,f) Rhomb tilings for a range
of values of ∆Gbond. The assembly simulations had enough capsomers to generate
up to 2000 completed capsids. However, the capsomers were ramped in, so they
were not all present until (a,c) 300s or (e) 450s into the simulation. The disassembly
simulations began with 2000 completed capsids. Due to the extremely long simulation
times, some data for the simulations over 10,000s (usually at lower ∆Gbond values) is
missing.

178 Chapter 8. Examining Disassembly Using Stochastic Simulations

is disassembled). This means that when a capsid undergoes a reaction where it loses
a capsomer, it is no longer a complete capsid. However, a free capsomer needs to go
through 60 reactions to become a complete capsid, so it makes sense that it needs
more time for assembly than disassembly. In addition, there is the potential for
kinetic traps during the assembly simulations, which is not an issue in disassembly
simulations. Piedade et al’s work showed different shapes of capsomers with different
interaction strengths can have clear differences in their disassembly [46]. This can be
seen as the tilings all give different assembly and disassembly efficiencies for different
values of ∆Gbond and different time spans.

The graphs all take a sigmoidal shape, so they have a stable plateau for both low
and high ∆Gbond values and a relatively steep curve between them. The position
of these curves differ by tiling, as expected from work by Brunk and Twarock [5]
and change depending on whether it is an assembly or disassembly simulation.
However, regardless of whether it is an assembly or disassembly simulation, the
relative positions of these curves are consistent. Rhomb and Kite tilings have their
curves very close together and were both able to assemble with much smaller ∆Gbond

values than the Tri tiling.
Now, considering Figure 8.2, the hysteresis of these simulations is shown. As

the simulations are given a longer time limit, the number of capsids at the end
becomes more similar, indicating that they may have approached a state closer
to equilibrium. This is shown to take a long time, as letting the simulation run
for 10 times the initial time frame still does not cause the two lines to meet. As
mentioned earlier, this could also be due to kinetic traps that can prevent some of
the assembling capsids from ever fully assembling. However, the graphs do show
a clear sign of hysteresis, which was predicted by Singh and Zlotnick [48]. They
also predicted that a trigger of some kind is likely to assist with disassembly. This
would make sense with these observations, as the initial reaction needed to start
disassembly in this model is also the slowest as it would need to break three (Tri)
or four (Kite/Rhomb) capsomer-capsomer interactions. If a trigger reduced the
strength of these interactions, then the behaviour of the capsid would transition to
the other side of the sigmoidal curve and have much reduced stabilities.

8.3. Results Of Disassembly Simulations 179

Figure 8.2: Superimposition of the data from Figure 8.1 in a more concise way. This
reveals the hysteresis of assembly and disassembly, as there are far more completed
capsids in the disassembly simulations than in the assembly simulations. As the
simulation time is increased, the two lines move closer to each other, albeit slowly.

9

Discussion

In this thesis, different stochastic methods and approaches to modelling virus assembly
and disassembly were presented. Here, some of the observations and results from
this text are briefly summarised.

Chapter 2 covered both ODE and Stochastic models, alongside some virus biology
and mathematical models of virus architecture. Through this, the choice of Stochastic
Modelling, specifically Gillespie algorithms, were given as the preferred choice of
technique to model virus assembly, due to them treating each capsomer and capsid
as discrete elements.

However, before going into depth with stochastic models, two examples of ODE
models were presented in Chapter 3. These models both considered viruses made
up of twelve pentameric capsomers. The first model showed the stabilising effect of
including the RNA in viral assembly via an equilibrium model. Including the RNA
lowered the necessary strength of capsomer-capsomer interactions for assembly to
occur and identified the minimal necessary strength of these interactions needed for
assembly. This developed on the work of Zlotnik, who applied the equilibrium model
to the RNA-free case [59]. The second model showed that the value of ∆Gbond in
this system determines whether the capsomers form completed capsids or remain
unassembled at equilibrium, though it may take a long time to reach this equilibrium
state.

Then the computational techniques used to produce a stochastic simulation of
viral assembly is described in Chapter 4, followed by Chapter 5, where methods to
analyse the results of the stochastic simulations are described. These techniques
were used within the three following chapters. These chapters improve upon previous
work, which included a similar model that worked on a smaller range of viruses [19].

180

181

Chapter 6 covers models of assembly for STNV, a T = 1 virus. In this chapter,
an RNA graph and a PS distribution were identified that lead to > 95% assembly
efficiency. Assembly using this RNA graph and PS distribution combination produced
a large amount of repetition of the RNA paths formed within the capsid, which was
partially due to the limited number of available paths. It was also shown that every
edge that was included or excluded in the RNA graph is important, as adding an
extra edge to the most efficient RNA graph leads to a much reduced yield. Also,
RNA graphs with a larger vertex degree did not necessarily have a higher yield.
STNV is well studied by experimental techniques [34, 35, 42, 43, 6, 22] but has
limited papers investigating it computationally.

Chapter 7 covered the assembly of each of the T = 3 tilings. This chapter showed
how changing the geometry of both the RNA graph and the capsomer graph can
affect the assembly of the capsid. It showed that different tilings need different
values of ∆Gbond to assemble effectively and that letting different capsomer-capsomer
boundaries have different ∆Gbond values also increases assembly efficiency. It helped
develop the idea that assembly strongly favours the most stable intermediates
available. In addition, it validates the prior observation that assembly efficiency is
increased by having a nucleation site on the RNA. It also showed some limitations of
the model. When the ∆Gbond is too high, this model does not consider defects, which
would occur in the biology. Also, with a larger virus comes more PSs, which leads to
a larger space of paths that the RNA can take within the capsid. With more options
for paths, the assembly was less likely to specialise into a single, highly effective path,
which was necessary for STNV to obtain a high assembly efficiency. In cells, larger
viruses are able to assemble effectively but this model did not demonstrate this.
Pre-existing research of T=3 virus assembly using stochastic state based methods
typically modelled them in the absence of RNA and allowed far fewer capsids to
form [49].

In both of the previous two chapters, it was shown that the PS distributions of
the RNA is significant. The specific binding affinity values of each PS are not as
important as the presence of a series of adjacent, strongly binding sites, which the
structure nucleates from. Ideally these binding sites are positioned at one end of the
RNA. Most of the other sites should be more weakly binding, to help avoid kinetic
traps.

Lastly, Chapter 8 covers the dynamics of RNA-free disassembly, to compare it
to RNA-free assembly. When comparing assembly and disassembly, hysteresis was

182 Chapter 9. Discussion

observed, likely for a range of different reasons. So, two systems using the same
parameter values but different starting points will take a long time to reach the
same state. This develops on previous work where this was demonstrated using
equilibrium based models, by showing it is also true in stochastic models [48].

9.1 LIMITATIONS AND POTENTIAL FUTURE WORK

Now, the text will outline a few limitations of this work and suggestions of how
it could be further developed, to more accurately model assembly and disassembly
dynamics. Some are concepts that were left unexplored and others include directions
in which the simulations could be improved.

When considering dodecahedral capsids made of 12 pentameric capsomers, there
are limited examples of viruses that form from so few capsomers. The formation
of the capsomers from individual proteins ideally would not be dismissed too. In
the pseudo-equilibrium formulation, a volume containing only 12 capsomers was
modelled. Viruses will often form thousands of complete capsids in each cell, which
means that there will be tens of thousands of capsomers during assembly [12]. As
a result, it would be rare to have a volume where no new capsomers could enter
or leave, so increasing the number in this model formulation would improve the
analysis of the system. It would give the opportunity to model whether other stable
structures might form rather than extra capsids.

An area to investigate would be the effects of crowding, by changing reaction
parameters to simulate more packed areas of a cell and more sparse areas, such
as those described by Smith et al [49]. In their work, most of the parameters
necessary to run simulations was provided. The methods described in this thesis
allow simulations which model a larger number of capsomers. This means that the
assembly of more capsids can be modelled, giving a more representative model of a
cell.

One issue is that when increasing the size of the capsid, the number of PSs on
the RNA also needed to increase. This led to a large amount of complexity in the
number of paths that the RNA could form on the interior of the capsid and a large
number of potential kinetic traps that are harder to avoid. This lead simulations to
give less efficient assembly that is found in nature, suggesting there is an issue with
the model.

9.1. Limitations and Potential Future Work 183

In the text, only a very limited number of RNA graphs (in both STNV and
the T = 3 viruses) had PS distributions optimised, so only a very limited space in
a very large parameter space was observed. Due to this, another improvement
would be to optimise the RNA for a larger range of T = 3 capsids’ RNA graphs,
aiming to generate the highest possible yield, rather than demonstrating the role
of geometry in assembly. There were many RNA graphs that in the initial tests
performed more strongly than the ones which had their PS distribution optimised.
These RNA graphs could likely have had their PS distributions optimised to give
greater yields than those found during this thesis.

In the RNA graphs, each edge is considered to either be in the graph (and so
available for the RNA) or not in the graph (and so not available), when the RNA will
not necessarily follow such strict rules between each of its PSs. One improvement to
the code would be to replace the fixed RNA graph for a capsid, then let each edge on
the graph have an associated length and each PS-PS section of the RNA also have
an associated length. If the section of the RNA is long enough to reach between
these two nodes, then it would be allowed to form a path there. The lengths may
need to be altered, if a specific edge is particularly unfavourable (e.g. if internal
features of the capsid would block the RNA).

Another potential improvement is related to how strictly the RNA graph is
used. Some viruses do not have a neat fraction or multiple of 60 PSs bound to the
capsomers. For example, some experiments on MS2 have only identified 54 binding
sites [47], suggesting that not all of the 90 capsomers must be bound to PSs, in fact
not even all of the AB dimers could be bound. Other viruses will likely follow this
pattern, which would allow some unbound PSs to remain unbound, which would
increase the range of positions the next bound PS could sit, which would reduce
the effect of kinetic traps during assembly. This is not something that the methods
described here are capable of modelling, but could potentially have an impact on
the results.

During the simulations in this thesis, it is always assumed that two capsomers
will bond to each other correctly, in the right orientation, which is not always the
case in viral assembly. Altering the code so that defects can form would improve this
model. These would likely need a simple, extra state to be added, that occurs with
a given probability, where the capsomer can join the intermediate structure with
the wrong alignment. This reaction would be reversible but would also impact other
capsomers that try to join the structure near to this defect capsomer. As discussed

184 Chapter 9. Discussion

in Chapter 7, models that can consider defects give results that align better with
experimental results [57].

The next suggested improvement involves the RNA. In viral assembly, the RNA
is usually produced alongside the CPs, so a system where 2000 fully formed RNAs
are present without any CPs is somewhat unrealistic [45]. Whilst the RNA is being
formed, it will fold, producing its PSs, so some PSs will be available for capsomers to
bind to earlier than others. Allowing the system to model the formation and folding
of the RNAs during the assembly simulation would be another way to improve these
simulations.

As discussed during Chapter 8, defining all capsids with less than the maximum
number of capsomers present in its structure as not assembled is quite a limited metric.
This means that two intermediates, for example one with 2

60 capsomers present and
another with 59

60 , are treated as being exactly the same, which is clearly not true. A
better way to investigate disassembly would be to include a new definition of when a
capsid is disassembled, e.g. after a certain percentage of the capsid’s capsomers have
been removed and then test the effects of altering this percentage. This could result
in data similar to other work in this area [5]. Use the same percentage to determine
when an assembling capsid is completed too, to see if this affects the hysteresis
observed. This would give a more representative idea of the relative stabilities of the
structures formed by assembly and disassembly.

In all of the Disassembly simulations, it was assumed that each capsomer-capsomer
interaction had the same interaction strength. The RNA was not included in these
simulations either. Both of these were shown to have a large effect on the assembly
process, so it is likely that they will have large effects on disassembly too. Observing
either the effects of non-uniform capsomer-capsomer interaction strengths or the
effect of including RNA upon disassembly simulations, would be interesting areas of
study. For these, the above criterion for when a capsid can be considered disassembled
would be useful. Including RNA in these simulations would need to rely upon using
paths for the RNA that were commonly sampled within assembly simulations, such
as the one proposed by Wroblewski et al [58].

9.2 CONCLUSION

Overall, this thesis describes many ways to model virus assembly and the lim-

9.2. Conclusion 185

itations of these models, in addition to potential improvements that could be im-
plemented. Virus assembly (and assembly of VLPs) is an important and hugely
complex topic which will undoubtedly be the focus of research for years to come.

Earlier sections demonstrated the importance of viruses being able to occupy
the parameter space close to the tipping point between assembly and disassembly.
The inclusion of RNA allows these tipping points to have stability even when the
capsomer-capsomer bonds are relatively weak, due to the RNAs stabilising effects.
These sections covered the equilibrium states which can take a very long time to be
reached, so further work was needed in stochastic simulations, which focused upon
the dynamics of approaching this equilibrium state.

Later sections covered larger viruses and investigated how different aspects of
the assembly change the yield. The most general result showed that to achieve the
highest yields observed, the capsomer-PS binding affinity distribution must have
a strong nucleation site, preferably at one end of the RNA. The strength of the
interactions between two capsomers also had an impact: too strong and kinetic traps
were encountered, too weak and the capsid assembly couldn’t get past the nucleation
stage. Whether these interactions were uniform or specific to the boundary also
impacted the assembly, with some asymmetry across all tilings. The shapes of the
capsomers also made a huge impact. Even if they had isomorphic RNA graphs,
different tilings always gave different yields. The choice of which edges were present
in an RNA graph is more important than how many are present. Some RNA graphs
worked better with some tilings than others.

Lastly, when considering disassembly compared to assembly, hysteresis was
observed. This demonstrated that reaching equilibrium takes a long time but that
viruses will approach it.

A

Kite Side Length Proof

When working with T=3 Kite viruses, as mentioned in Section 7.1.2, it is important
to know the ratio of side lengths for the kites. In Figure A.1, the two sides have
been labelled as α and β, and we want to know the ratio α

β
.

To find this ratio, we start with an equilateral triangle and then we draw a line
from the midpoint of each of the triangle’s lines to the centre of the triangle. The
three initial angles were all 60◦, the angles at the bisected points are all 90◦ and the

Figure A.1: In T=3 Kite viruses, each triangle on the icosahedron is split into three
kite shaped trimers. One such triangle is shown on the left, on the right is one kite,
which is bisected (line drawn in blue) along its length.

186

187

three central angles are all 120◦. Focusing on just one Kite (on the right of Figure
A.1), we can bisect the kite along it’s length to give a right angled triangle. Using
trigonometry, we can then conclude that:

α

β
= tan(60◦) ≈ 1.73 (A.1)

to give us the ratio we require.

B

Algorithms

This appendix is here to compile the various algorithms that are used within Chapter
4 and 5. They are as follows:

188

189

Algorithm 3 An algorithm that fills in mapnn with all adjacent positions. This
is done by taking each connection that was input and adding every permutation of
it to the map. An analogous method could be done to fill in maphp, mapexc and
maptt, the maps that contain the RNA connections, the mutual exclusion and the
tile types for each capsomer position, so they will not be covered.

Variables:
npro, the number of capsomers in a complete capsid
nMaxNeigh, the maximum number of neighbours for each position
inNeighbours[5, :], stores the inputs, as a list of (FD1, PN1, FD2, PN2, dG_bond)
connectMap[npro, npro], a map of which connections have been added
mapnn[nMaxNeigh, npro], a map of which capsomer positions are connected to
which other capsomer positions
gb[nMaxNeigh, npro], stores the ∆Gbond for each capsomer-capsomer interaction
neighbourPointer[npro], stores the next position to add a neighbour to mapnn
for each position
permutations[60, 122], stores the permutations that leave the capsid invariant

procedure addNeighbours
connectMap[:] ← 0
mapnn[:,:] ← 0
neighbourPointer[:] ← 1
for list in inNeighbours do ▷ Loops over all read in neighbours

for i in 1, 60 do ▷ Loop over all of the permutations
newBase ← getNum(permutations[i,list[1]],list[2])
newConnect ← getNum(permutations[i,list[3]],list[4])
if connectMap[newBase,newConnect] == 0 then

mapnn[neighbourPointer[newBase],newBase] ← newConnect
gb[neighbourPointer[newBase],newBase] ← list[5]
neighbourPointer[newBase] ← neighbourPointer[newBase] + 1
connectMap[newBase,newConnect] ← 1 ▷ Prevents duplicates

end if
end for

end for
end procedure

190 Appendix B. Algorithms

Algorithm 4 Algorithm to generate a list of every capsomer’s fundamental do-
main. An analogous method will generate a list of protein capsomer numbers
protNum[npro], by swapping what i and j loop over and then swapping each
getNum(i,j) with getNum(j,i).

Variables:
npro, the number of capsomers needed for one capsid
protNoMax, stores the values of Equation 4.1
FDs[npro], a list containing the FD for each position

Functions:
getNum(FD,PN), returns a unique number for each position in the capsid, as
detailed in Algorithm 1

procedure setFDs
for i = 1, 60 do

for j=1, protNoMax(1) do
FD[getNum(i,j)] ← i

end for
end for
for i = 61, 90 do

for j=1, protNoMax(2) do
FD[getNum(i,j)] ← i

end for
end for
for i = 91, 110 do

for j=1, protNoMax(3) do
FD[getNum(i,j)] ← i

end for
end for
for i = 111, 122 do

for j=1, protNoMax(4) do
FD[getNum(i,j)] ← i

end for
end for

end procedure

191

Algorithm 5 A summary of how all of the other algorithms, equations and functions
come together to form the module used to initialise all of the graphs that are used
during the stochastic simulations of the assembly process.

Maps of the Capsid:
mapnn, a map of which positions are adjacent to each position
maphp, a map of the paths that the RNA can trace a path along
mapexc, a map of mutually exclusive positions for each position
maptt, a map of the tile types for each position

Other Variables:
protNoMax, stores the values of Equation 4.1
permutations, stores the permutations
npro, the number of capsomers needed for one capsid
nps, the number of PSs on one RNA
npro_dist, the number of distinct capsomers present
mutExcNum, the number of mutually exclusive pairs to read in

procedure makeMap
Read permutations from file
Read in information from tile file
Allocate arrays based on information from tile file
Set up protNoMax from tile file info (as defined in Equation 4.1)
npro← 60∗ protNoMax(1) + 30∗ protNoMax(2) + 20∗ protNoMax(3) + 12∗

protNoMax(4)
Using Algorithm 3, set up mapnn
Using a similar method to Algorithm 3, set up maptt
if RNA is used then

Using a similar method to Algorithm 3, set up maphp
if Mutual Exclusion is present then

Using a similar method to Algorithm 3, set up mapexc
end if

end if
end procedure

192 Appendix B. Algorithms

Algorithm 6 The program that calculates the number of paths on the RNA graph
that visit nps vertices and follows all mutual exclusion rules.

Variables:
npro, the number of capsomers in a complete capsid
nps, the number of PSs on one RNA
mapexc[npro], the map of mutual exclusive pairs
mask[nps, npro], a mask that ensures rules on the RNA are applied
path[nps, nps], array that stores the jth position in a path of length i in path[i, j]
pathLen, a global store of the length of paths that are desired
counter, a global store of the number of paths of length pathLen that exist

Subroutines
nextStep(mask, path, i), as described in Algorithm 7

procedure countPaths
Input pathLen ▷ Read in length of paths to be counted
path[:, :]← 0
path[1, 1]← 1 ▷ Paths start at position 1
mask[:, :]← False
mask[1, 1]← True ▷ Paths cannot revisit the first position
if mapexc[1] ̸= 0 then

mask[1, mapexc[1]]← True
end if ▷ When mutual exclusion is used, exclude them from paths
counter ← 0
Call nextStep(mask, path, 1) ▷ Start recursive subroutine that sets counter
Output counter

end procedure

193

Algorithm 7 Describes the recursive subroutine nextStep(mask,path,i) that counts
all possible pseudo/Hamiltonian paths on a given RNA graph

Variables:
npro, the number of capsomers in a complete capsid
nps, the number of PSs on one RNA
nnps, a list of how many edges each node on the RNA graph has has
maphp, stores the edges of the RNA graph for each position
mapexc[npro], the map of mutual exclusive pairs
mask[nps, npro], a mask that ensures rules on the RNA are applied
path[nps, nps], array that stores the jth position in a path of length i in path[i, j]
pathLen, a global store of the length of paths that are desired
counter, a global store of the number of paths of length pathLen that exist

procedure nextStep(mask, path, i)
if i = pathLen then ▷ Test if the path is long enough and tally it if so

counter ← counter + 1
else

for k = 1, nnps[path[i, i]] do ▷ Loop over all current neighbours
mask[i + 1, :] = False
path[i + 1, :] = 0
nextPoint← maphp[k, path[i, i]]
if NOT mask[i, nextPoint] then ▷ Use mask to stop invalid paths

for l = 1, i do ▷ Update next step’s variables
path[i + 1, l]← path[i, l]

end for
mask[i + 1, :]← mask[i, :]
mask[i + 1, nextPoint]← True
if mapexc[nextPoint] ̸= 0 then

mask[i + 1, mapexc[nextPoint]]← True
end if
path[i + 1, i + 1]← nextPoint
CALL nextStep[mask, path, i + 1] ▷ Recurse until paths are done

end if
end for

end if
end procedure

194 Appendix B. Algorithms

Algorithm 8 A method to read RNA paths from a file and to permute them to
allow easier analysis of the paths.

Variables:
filelength, the number of paths to be input in the algorithm
npro, the number of capsomers in a complete capsid
nps, the number of PSs on one RNA
permutations[60, 122], stores the permutations that leave the capsid invariant
pathPerms[nps, 60 ∗ filelength], list of the permutated paths to be used later
FDs[npro], list of the FDs that each capsomer sits in
protNum[npro], list of the protein number for each capsomer

Functions:
getNum(FD,PN), returns a unique number for each position in the capsid, as
detailed in Algorithm 1

procedure permutePaths
for i = 1, filelength do ▷ loop over all lines

Read line from file into inPath[1 : nps]
for j = 1, 60 do ▷ Loops over all permutations

for k = 1, nps do ▷ Loops over all PSs
if inPath[k] ≤ 0 then

pathPerms[k, 60(i− 1) + j]← 0
CYCLE ▷ Allows analysis of incomplete capsids if desired

end if
p← inPath[k] ▷ p is current position in path
permFD ← permutations[j, FDs[p]] ▷ permute p’s FD
pathPerms[k, 60(i− 1) + j]← getNum(permFD, protNum[p])

end for
end for

end for
end procedure

195

Algorithm 9 A method that takes the output of Algorithm 8 and produces a tally
of which RNA paths are most common.

Variables:
nps, the number of PSs on one RNA
filelength, the number of paths that were input
c, the minimum number of times a path must occur for it to be recorded
pathPerms[nps, 60 ∗ filelength], a list of the input paths and their permutations
nRepeats, the number of paths that are repeated at least c times
repPaths[nps, FLOOR(filelength/c)], a list of the paths with at least c repeats
pathCount[FLOOR(filelength/c)], a list of the number of times that the corre-
sponding path in repPaths has been repeated
marker[60 ∗ filelength], a mask so that paths are only counted once

procedure pathTally
marker[:]← 0 ▷ Set variables to initial values
repPaths[:, :]← 0
pathCount[:]← 0
nRepeats← 1
for i = 1, 60(filelength− 1), 60 do ▷ Consider first permutation of each path

if marker[i] == 1 then CYCLE ▷ Skip if it’s already been counted
tally = 1
for j = i + 60, 60 ∗ filelength do ▷ Check permutations of all later paths

if marker[60 ∗ FLOOR(j−1
60) + 1] == 1 then CYCLE

match = 1
for k = 1, nps do

if pathPerms[k, i] ̸= pathPerms[k, j] then
match← 0
EXIT loop

end if ▷ Skip rest of path if anything doesn’t match
end for
if match == 1 then ▷ Increment tally if the paths match

tally ← tally + 1
marker[60 ∗ FLOOR(j−1

60) + 1]← 1 ▷ Mark counted path
end if

end for
if tally ≥ c then ▷ Only record path if it’s repeated enough

repPaths[:, nRepeats]← pathPerms[:, i]
pathCount[nRepeats]← tally
nRepeats← nRepeats + 1

end if
Perform Insertion Sort on lists using the values of pathCount

end for
end procedure ▷ Results in sorted list of most common paths

196 Appendix B. Algorithms

Algorithm 10 Function that is given coordinates and a rotation instruction, which
outputs the rotated coordinates

Variables:
rot, the instruction for what rotation should be done
iCoord[3], input coordinates
gr = 1+

√
5

2 , the golden ratio
k = 1√

3 , a normalisation factor
ax_5[:] = 1√

2+gr
(0, 1, gr), the 5-fold axis’ coordinates

ax_3[:] = k(1, 1, 1), the 3-fold axis’ coordinates
theta, the angle that the coordinates are rotated by
axis[3], the axis that the coordinates are rotated about
RM [3, 3] an array, as defined by the Matrix in Equation 5.1
oCoord[3], output coordinates

procedure MProduct(rot, iCoord)
if rot = 1 then ▷ Clockwise about 5-fold axis

theta← −2π
5

axis[:]← ax_5[:]
else if rot = 2 then ▷ Anti-clockwise about 5-fold axis

theta← 2π
5

axis[:]← ax_5[:]
else if rot = 3 then ▷ Clockwise about 3-fold axis

theta← −2π
3

axis[:]← ax_3[:]
else if rot = 4 then ▷ Anti-clockwise about 3-fold axis

theta← 2π
3

axis[:]← ax_3[:]
end if
Setup RM from Equation 5.1 using axis and theta
oCoord[1]← RM [1, 1]∗iCoord[1]+RM [1, 2]∗iCoord[2]+RM [1, 3]∗iCoord[3]
oCoord[2]← RM [2, 1]∗iCoord[1]+RM [2, 2]∗iCoord[2]+RM [2, 3]∗iCoord[3]
oCoord[3]← RM [3, 1]∗iCoord[1]+RM [3, 2]∗iCoord[2]+RM [3, 3]∗iCoord[3]
Return oCoord ▷ Gives result of rotation back

end procedure

197

Algorithm 11 Reads in the coordinates and the rotations that are used to generate
the coordinates for each capsomer position.

Variables:
npro, the number of capsomers in a complete capsid
FDs[npro], a list containing the FD for each position
protNo[npro], a list containing the protein number for each position
coords[3, npro], the coordinates for each position
lineLength, the maximum number of rotational instructions
instr[lineLength, 122], stores the rotation instructions for each FD/axis

Functions:
getNum(FD, PN), defined in Algorithm 1
MProduct(rot, iCoord), defined in Algorithm 10

procedure
Read in the FD, PN and coordinates for each distinct protein from file
Store all of those coordinates in coords[getNum(FD, PN), :]
Read in instructions from file to instr[:, :]
for i = 1, npro do ▷ Finds coords for all of the positions

if FDs[i] < 61 then
originalNo← getNum(1, protNo[i])

else if FDs[i] < 91 then
originalNo← getNum(61, protNo[i])

else if FDs[i] < 111 then
originalNo← getNum(91, protNo[i])

else
originalNo← getNum(111, protNo[i])

end if
coords[:, i]← coords[:, originalNo] ▷ Sets coords to the non-rotated value
for j = 1, lineLength do ▷ Completes all rotations so coords is correct

if instr[j, FDs[i]] ̸= 0 then
coords[:, i]←MProduct(instr[j, FDs[i]], coords[:, i])

else
Exit loop

end if
end for

end for
end procedure

198 Appendix B. Algorithms

Algorithm 12 This algorithm describes how the code loops through the graphs
that represent the capsid and outputs them in a 3D representation. It creates a .bild
file and within these files, the main useful elements of these files are either cylinders
or spheres, which can be used to represent edges and vertices respectively.

Variables:
npro, the number of capsomers in a complete capsid
coords[3, npro], the coordinates for each position
nnps[npro], stores the number of edges for each vertex in the RNA graph
maphp, stores the edges for each vertex in the RNA graph
nncp[npro], stores the number of edges for each vertex in the capsomer graph
mapnn, stores the edges for each vertex in the capsomer graph

procedure
for i = 1, npro do ▷ Loops over all positions

Output a sphere at coords[:, i]
end for
for i = 1, npro do

for j = 1, nnps[i] do ▷ Loops over all RNA edges for all positions
if i < maphp[j, i] then ▷ Prevents duplicates

Output cylinder from coords[:, i] to coords[:, maphp[j, i]]
end if

end for
for j = 1, nncp[i] do ▷ Loops over all capsomer interactions for all

positions
if i < mapnn[j, i] then ▷ Prevents duplicates

Output cylinder from coords[:, i] to coords[:, mapnn[j, i]]
end if

end for
end for

end procedure

199

Algorithm 13 This algorithm describes how the code loops through a path and
outputs a 3D image of the path the RNA traces out. It creates a .bild file and within
these files, the main useful elements of these files are either cylinders or spheres,
which can be used to represent edges and vertices respectively.

Variables:
nps, the number of PSs on one RNA
coords[3, npro], the coordinates for each position
path[nps], stores the path as a series of integer positions

procedure
Read in path[:] from file
for j = 1, nps− 1 do ▷ Loops over all pairs of consecutive positions

if path[j] ≤ 0 then CYCLE ▷ Skips any missing positions
Output sphere at coords[:, path[j]]
if path[j + 1] ≤ 0 then CYCLE ▷ Stops before end
Output cylinder from coords[:, path[j]] to coords[:, path[j + 1]]

end for
if path[nps] > 0 then Output sphere at coords[:, path[j + 1]]

end procedure

C

Tile File Definitions

In Section 4.2, the text mentions a file that is used for inputting the information on
the capsid that is needed to simulate it. In this appendix, this file will be defined
and a few examples of how they can be generated is provided.

These files are intended to both have the necessary information for the algorithm
but also be easily readable and generated by a person. This means that a small
number of lines are reserved for labels that will show separation between sections
and make it easier for people to read. Earlier lines will define the number of lines
that the algorithm needs to read in too. The format used for these tile file is defined
as follows:

1 #DP, #PS, #ME

The number of distinct protein capsomers in the capsid, the number of packaging
signals along the length of the RNA and the number of mutually exclusive
position pairs to be read in for the RNA

2 #NB[1:#DP]

A list containing the number of Neighbour Interactions for each of the distinct
protein capsomers

3 #RC[1:#DP]

A list containing the number of RNA Connections for each distinct protein
capsomer. Set as 0 if the RNA is not able to bind to a capsomer.

4 “TILE INFO AND BONDS”

Label for reading

5 “FD1 / PN1 / FD2 / PN2 / DELTA G”

200

201

Column headings for reading

6-... FD1, PN1, FD2, PN2, dG

A series of ∑#DP
i=1 (#NB[i]) lines which each provide a neighbour interaction for

the capsid, as the fundamental domain and protein number for each capsomer
involved in the interaction, followed by the strength of the interaction they form
together

1’ “TILE TYPES FOR ASSEMBLY”

Label for reading

2’ “FD / PN / TYPE”

Column headings for reading

3’-... FD, PN, PT

A series of #DP lines, each of which define the tile type of a given protein
capsomer, defined via its fundamental domain and protein number, followed by
which type of tile the capsomer is

1” “RNA PATH MOVES”

Label for reading

2” “FD / PN / FD / PN”

Column headings for reading

3”-... FD, PN, FD, PN

A series of ∑#P S
i=1 (#RC[i]) lines which each provide an RNA connections, i.e.

the capsomer’s where the adjacent PSs on the RNA can sit if one PS is bound
to the initial capsomer. Listed as a fundamental domain and protein number
for the first capsomer and then again for the second.

1”’ “Mutual Exclusive Pairs”

Label for reading

2”’ “FD / PN / FD / PN”

Column headings for reading

3”’-... FD, PN, FD, PN

202 Appendix C. Tile File Definitions

A series of #ME lines which each provide a mutually exclusive pair of capsomers,
so if a PS is bound to one capsomer of a pair, its partner cannot be bound to a
PS. Listed as a fundamental domain and protein number for the first capsomer
and then again for the second.

Those were a list of all the lines in the tile file and states what they should
contain, alongside the reason why they are used. Next, the way to produce these
files is covered.

C.1 HOW TO CREATE TILE FILES

To demonstrate how tile files are produced and what the resultant graphs from
running this algorithm look like, a few examples are provided below. They are laid
out on an icosahedral net in Figure C.1 (cf from Figure 4.3), the key lines of the tile
files follow in Appendix C.2. The numbering from Figure C.2 (cf from Figure 4.6) is
used to label the positions that the capsomers sit in.

Consider Figure C.1’s Example 1. There are three distinct capsomers, shown in
red, yellow and green. None of them bind to RNA and so cannot have any mutual
exclusion.We arbitrarily choose that green represents the first capsomer that sits
in each FD and yellow the second. Red represents the pentagonal capsomer that
sits on the 5-fold axis. Green and yellow capsomers have 4 interactions each and
red ones have 10 interactions each.Cross referencing Figures C.1 and C.2 gives the
fundamental domains and protein capsomer numbers for each interaction, which is
paired with the interaction strength dG of that interaction. Each interaction needs
to be written from the perspective of each capsomer. This means some care is needed
to ensure both are present in the tile file but this makes it easier to count how many
interactions are present for each distinct capsomer. When the algorithm reads that
there is a interaction between A and B, it only adds this edge to the list of edges
for vertex A, so this will not result in double counting (also, the algorithm checks
the current edges before adding new ones, so it avoids duplicates there too). The
algorithm can handle any FDs being used for each interaction (it doesn’t always need
to be in FD 1) though it is sensible to do each interaction for a distinct capsomer from
the perspective of one specific capsomer to prevent accidental duplicates/missing
interactions. The ∆Gbond value does not need to be the same for every interaction,
though it should be symmetric (i.e. if capsomer 1 binds to capsomer 2 with strength

C.1. How To Create Tile Files 203

Figure C.1: cf. from Figure 4.3. Three examples of potential tilings of the capsid,
shown as patches of tilings, to show how little information is needed for tile files.
Below each patch is an asymmetric unit, with one copy of each distinct capsomer
shown, including ones that sit upon symmetry axes. The algorithm would only need
the information for these capsomers and could then generalise it to the entire capsid,
using icosahedral symmetry. Example 1 is an example where there are multiple
capsomers present in one FD. Example 2 shows an example where all capsomers sit
on symmetry axes (specifically the 2-fold and 3-fold axes). Example 3 illustrates how
an average rhombic T = 3 virus would be tiled, including RNA that can go around
the 5-fold axis and across both nearby 2-fold axes. The navy lines indicate the four
edges on one vertex of a potential RNA graph. These lines could be extended to
cover the whole capsid and thus form the RNA graph for the capsid. In Appendix C,
it is detailed how these become tile files for the algorithm to understand. We shall
assume that Examples 1 and 2 do not include RNA.

204 Appendix C. Tile File Definitions

dG, then capsomer 2 should bind to capsomer 1 with strength dG). The effects on
assembly of changing interaction strengths independently was covered in Sections
7.1.2 and 7.2.6. For Example 1, let the three distinct capsomers be made of different
tile types (this should normally be decided upon by using experimental data but as
this is not a real virus, none exists so we follow this assumption, which is reasonable
as they are all different shapes), which is also input via the tile file. The numbers
used for tile types must all be integers beginning at 1 and ending at the number of
different tile types present in the capsid however the order is arbitrary.

Next, consider Example 2, which is also an RNA-free assembly. It features two
capsomers, green and magenta, that each form a different number of interactions.
In this case, every interaction is rotationally equivalent to every other interaction,
so the values of ∆Gbond must be the same for this example. This example shows
that there is no need for there to be a capsomer in a FD for this to work. The two
distinct capsomers are different shapes so they get different tile types. The Tile File
for this is given in Appendix C.

Finally, consider Example 3. Here there are two distinct capsomers, orange and
cyan. The RNA is able to visit 60 capsomers and there is no mutual exclusion
(covered in more detail in Section 6.2). Both capsomers will form four interactions
but only one is able to bind to RNA. Then, the interactions are generated, as before
in part (a). As the capsomers are all rhombic shapes, they may (and for this example,
we assume they will) be made of the same tile type, so they are given the same
number in lines 3’ and 4’.

Finally, there are the edges for the RNA graph, input similarly to the capsomer-
capsomer contacts, only without the interaction strengths. Often, the capsomer
graph and the RNA graph will have some matching edges but this is not required
and usually not all of them do, as in this example. The Tile Files for these three
examples are also given in Appendix C.2.

With these tile files, the algorithm generates both a capsomer and an RNA graph
(when RNA is present) to represent the capsid. They are stored as 2D arrays which,
for each vertex, store a list of the vertices that are adjacent to the current vertex.
This means that the neighbours can be found quickly, without needing to search
through a sparse matrix.

C.1. How To Create Tile Files 205

Figure C.2: cf. from Figure 4.6. Planar nets of the icosahedron, split up so that
each fundamental domain and axis can be numbered. There are 2-fold axes at the
midpoint of edges, 3-fold axes at the centre of the triangles and 5-fold axes at each
vertex. Fundamental domains have been chosen as kite shapes for the purpose of
this numbering. (a) Shows the Fundamental Domains and assigns a number to each
of them. (b) Numbers the 5-fold (red), 3-fold (green) and 2-fold (blue) symmetry
axes. When multiple positions have the same number in the same colour, this just
indicates that when the net is folded, they are in the same position. The two figures
line up, so fundamental domain 1 would sit between 5-fold 1, 3-fold 1 and 2-folds 1
and 3.

206 Appendix C. Tile File Definitions

C.2 TILE FILE EXAMPLES

In Section C.1, how to generate tile files was covered. Below are the key lines on the
files for the three examples discussed in that Section. The two relevant figures (4.6,
4.3) have been copied into this Appendix as Figures C.2 and C.1 for convenience. The
positions of the capsomers in the second figure correlate directly to the numbering
given in the first figure, which should make it easier to follow the method used.

First, for Example 1 the file is:
1) 3, 0, 0

2) 4, 4, 10

3) 0, 0, 0

...

6) 23, 1, 23, 2, ∆Gbond

7) 23, 1, 3, 2, ∆Gbond

8) 23, 1, 113, 1, ∆Gbond

9) 23, 1, 24, 1, ∆Gbond

10) 23, 2, 23, 1, ∆Gbond

11) 23, 2, 25, 1, ∆Gbond

12) 23, 2, 113, 1, ∆Gbond

13) 23, 2, 24, 2, ∆Gbond

14) 113, 1, 3, 1, ∆Gbond

15) 113, 1, 3, 2, ∆Gbond

16) 113, 1, 5, 1, ∆Gbond

17) 113, 1, 5,2, ∆Gbond

18) 113, 1, 30, 1, ∆Gbond

19) 113, 1, 30,2, ∆Gbond

20) 113, 1, 25, 1, ∆Gbond

21) 113, 1, 25, 2, ∆Gbond

22) 113, 1, 23, 1, ∆Gbond

23) 113, 1, 23, 2, ∆Gbond

C.2. Tile File Examples 207

...

3’) 23, 1, 1

4’) 23, 2, 2

5’) 113, 1, 3
Next, for Example 2 the file is:

1) 2, 0, 0

2) 3, 2

3) 0, 0

...

6) 102, 1, 66, 1, ∆Gbond

7) 102, 1, 80, 1, ∆Gbond

8) 102, 1, 81, 1, ∆Gbond

9) 66, 1, 93, 1, ∆Gbond

10) 66, 1, 102, 1, ∆Gbond

...

3’) 102, 1, 1

4’) 66, 1, 2
Last, for Example 3 the file is:

1) 2, 60, 0

2) 4, 4

3) 4, 0

...

6) 16, 1, 20, 1, ∆Gbond

7) 16, 1, 45, 1, ∆Gbond

8) 16, 1, 71, 1, ∆Gbond

9) 16, 1, 72, 1, ∆Gbond

10) 71, 1, 16, 1, ∆Gbond

11) 71, 1, 18, 1, ∆Gbond

208 Appendix C. Tile File Definitions

12) 71, 1, 43, 1, ∆Gbond

13) 71, 1, 45, 1, ∆Gbond

...

3’) 16, 1, 1

4’) 71, 1, 1

...

3”) 16, 1, 20, 1

4”) 16, 1, 45, 1

5”) 16, 1, 19, 1

6”) 16, 1, 43, 1

References

[1] D. F. Anderson. “A modified next reaction method for simulating chemical
systems with time dependent propensities and delays”. In: The Journal of
Chemical Physics 127.21 (Dec. 2007), p. 214107. issn: 0021-9606. eprint: https:
/ / pubs . aip . org / aip / jcp / article - pdf / doi / 10 . 1063 / 1 . 2799998 /
15406018/214107_1_online.pdf.

[2] E. Anderson et al. LAPACK Users’ Guide. Third. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 1999. isbn: 0-89871-447-8 (paperback).

[3] e. Baron S. Medical Microbiology, 4th Edition. Galveston (TX): University of
Texas Medical Branch at Galveston, 1996. eprint: https://www.ncbi.nlm.
nih.gov/books/NBK7627/.

[4] A. P. Biela, A. Naskalska, F. Fatehi, R. Twarock, and J. G. Heddle. “Pro-
grammable polymorphism of a virus-like particle”. In: Communications Mate-
rials 3.1 (Feb. 2022), p. 7. issn: 2662-4443.

[5] N. E. Brunk and R. Twarock. “Percolation Theory Reveals Biophysical Prop-
erties of Virus-like Particles”. In: ACS Nano 15.8 (2021). PMID: 34296852,
pp. 12988–12995. eprint: https://doi.org/10.1021/acsnano.1c01882.

[6] D. H. Bunka, S. W. Lane, C. L. Lane, E. C. Dykeman, R. J. Ford, A. M. Barker,
R. Twarock, S. E. Phillips, and P. G. Stockley. “Degenerate RNA Packaging
Signals in the Genome of Satellite Tobacco Necrosis Virus: Implications for the
Assembly of a T=1 Capsid”. In: Journal of Molecular Biology 413.1 (2011),
pp. 51–65. issn: 0022-2836.

209

https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.2799998/15406018/214107_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.2799998/15406018/214107_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.2799998/15406018/214107_1_online.pdf
https://www.ncbi.nlm.nih.gov/books/NBK7627/
https://www.ncbi.nlm.nih.gov/books/NBK7627/
https://doi.org/10.1021/acsnano.1c01882

210 References

[7] Y. Cao, D. T. Gillespie, and L. R. Petzold. “Efficient step size selection for the
tau-leaping simulation method”. In: The Journal of Chemical Physics 124.4
(Jan. 2006), p. 044109. issn: 0021-9606. eprint: https://pubs.aip.org/
aip/jcp/article-pdf/doi/10.1063/1.2159468/15382239/044109_1\
_online.pdf.

[8] Y. Cao, H. Li, and L. Petzold. “Efficient formulation of the stochastic simulation
algorithm for chemically reacting systems”. In: The Journal of Chemical Physics
121.9 (Sept. 2004), pp. 4059–4067. issn: 0021-9606. eprint: https://pubs.aip.
org/aip/jcp/article-pdf/121/9/4059/19310270/4059_1_online.pdf.

[9] D. L. D. Caspar and A. Klug. “Physical Principles in the Construction of
Regular Viruses”. In: Cold Spring Harbor Symposia on Quantitative Biology
27.0 (Jan. 1962), pp. 1–24.

[10] C. D. I. A. CBE. Foot and Mouth Disease 2007: A Review. url: https://
assets.publishing.service.gov.uk/media/5a7c7289e5274a5255bceb57/
0312.pdf. (accessed: 04/07/2024).

[11] CDC. The Deadliest Flu: The Complete Story of the Discovery and Recon-
struction of the 1918 Pandemic Virus. url: https://archive.cdc.gov/
/ details ? url = https : / / www . cdc . gov / flu / pandemic - resources /
reconstruction-1918-virus.html. (accessed: 03/06/2024).

[12] H. Y. Chen, M. D. Mascio, A. S. Perelson, D. D. Ho, and L. Zhang. “Determi-
nation of virus burst size <i>in vivo</i> using a single-cycle SIV in rhesus
macaques”. In: Proceedings of the National Academy of Sciences 104.48 (2007),
pp. 19079–19084. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.
0707449104.

[13] X. Dai, Z. Li, M. Lai, S. Shu, Y. Du, H. Zhou, and R. Sun. “In situ structures
of the genome and genome-delivery apparatus in a single-stranded RNA virus”.
In: Nature 541 (Dec. 2016).

[14] K. Damodaran, V. S. Reddy, J. E. Johnson, and C. L. Brooks. “A General
Method to Quantify Quasi-equivalence in Icosahedral Viruses”. In: Journal of
Molecular Biology 324.4 (2002), pp. 723–737. issn: 0022-2836.

[15] A. Düx et al. “The history of measles: from a 1912 genome to an antique
origin”. In: bioRxiv (2019). eprint: https://www.biorxiv.org/content/
early/2019/12/30/2019.12.29.889667.full.pdf.

https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.2159468/15382239/044109_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.2159468/15382239/044109_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.2159468/15382239/044109_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/121/9/4059/19310270/4059_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/121/9/4059/19310270/4059_1_online.pdf
https://assets.publishing.service.gov.uk/media/5a7c7289e5274a5255bceb57/0312.pdf
https://assets.publishing.service.gov.uk/media/5a7c7289e5274a5255bceb57/0312.pdf
https://assets.publishing.service.gov.uk/media/5a7c7289e5274a5255bceb57/0312.pdf
https://archive.cdc.gov/#/details?url=https://www.cdc.gov/flu/pandemic-resources/reconstruction-1918-virus.html
https://archive.cdc.gov/#/details?url=https://www.cdc.gov/flu/pandemic-resources/reconstruction-1918-virus.html
https://archive.cdc.gov/#/details?url=https://www.cdc.gov/flu/pandemic-resources/reconstruction-1918-virus.html
https://www.pnas.org/doi/pdf/10.1073/pnas.0707449104
https://www.pnas.org/doi/pdf/10.1073/pnas.0707449104
https://www.biorxiv.org/content/early/2019/12/30/2019.12.29.889667.full.pdf
https://www.biorxiv.org/content/early/2019/12/30/2019.12.29.889667.full.pdf

References 211

[16] E. Dykeman, N. Grayson, K. Toropova, N. Ranson, P. Stockley, and R. Twarock.
“Simple Rules for Efficient Assembly Predict the Layout of a Packaged Viral
RNA”. In: Journal of Molecular Biology 408.3 (2011), pp. 399–407. issn:
0022-2836.

[17] E. C. Dykeman. “Modelling ribosome kinetics and translational control on
dynamic mRNA”. In: PLOS Computational Biology 19.1 (Jan. 2023), pp. 1–20.

[18] E. C. Dykeman, P. G. Stockley, and R. Twarock. “Building a viral capsid in
the presence of genomic RNA”. In: Phys. Rev. E 87 (2 Feb. 2013), p. 022717.

[19] E. C. Dykeman, P. G. Stockley, and R. Twarock. “Solving a Levinthal’s paradox
for virus assembly identifies a unique antiviral strategy”. In: Proceedings of the
National Academy of Sciences 111.14 (2014), pp. 5361–5366. eprint: https:
//www.pnas.org/doi/pdf/10.1073/pnas.1319479111.

[20] E. C. Dykeman. “A stochastic model for simulating ribosome kinetics in vivo”.
In: PLOS Computational Biology 16.2 (Feb. 2020), pp. 1–20.

[21] F. Fatehi and R. Twarock. “An interaction network approach predicts protein
cage architectures in bionanotechnology”. In: Proceedings of the National
Academy of Sciences 120.50 (2023), e2303580120. eprint: https://www.pnas.
org/doi/pdf/10.1073/pnas.2303580120.

[22] R. Ford, A. Barker, S. Bakker, R. Coutts, N. Ranson, S. Phillips, A. Pearson,
and P. Stockley. “Sequence-Specific, RNA–Protein Interactions Overcome
Electrostatic Barriers Preventing Assembly of Satellite Tobacco Necrosis Virus
Coat Protein”. In: Journal of molecular biology 425 (Jan. 2013).

[23] R. F. Garmann, A. M. Goldfain, C. R. Tanimoto, C. E. Beren, F. F. Vasquez,
D. A. Villarreal, C. M. Knobler, W. M. Gelbart, and V. N. Manoharan. “Single-
particle studies of the effects of RNA–protein interactions on the self-assembly
of RNA virus particles”. In: Proceedings of the National Academy of Sciences
119.39 (2022), e2206292119. eprint: https://www.pnas.org/doi/pdf/10.
1073/pnas.2206292119.

[24] J. A. Geraets. “Self-assembling nanoscale systems”. Sept. 2015.

[25] J. A. Geraets, E. C. Dykeman, P. G. Stockley, N. A. Ranson, and R. Twarock.
“Asymmetric Genome Organization in an RNA Virus Revealed via Graph-
Theoretical Analysis of Tomographic Data”. In: PLOS Computational Biology
11.3 (Mar. 2015), pp. 1–16.

https://www.pnas.org/doi/pdf/10.1073/pnas.1319479111
https://www.pnas.org/doi/pdf/10.1073/pnas.1319479111
https://www.pnas.org/doi/pdf/10.1073/pnas.2303580120
https://www.pnas.org/doi/pdf/10.1073/pnas.2303580120
https://www.pnas.org/doi/pdf/10.1073/pnas.2206292119
https://www.pnas.org/doi/pdf/10.1073/pnas.2206292119

212 References

[26] M. A. Gibson and J. Bruck. “Efficient Exact Stochastic Simulation of Chemical
Systems with Many Species and Many Channels”. In: The Journal of Physical
Chemistry A 104.9 (2000), pp. 1876–1889. eprint: https://doi.org/10.1021/
jp993732q.

[27] D. T. Gillespie. “A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions”. In: Journal of Computational
Physics 22.4 (1976), pp. 403–434. issn: 0021-9991.

[28] D. T. Gillespie. “Exact stochastic simulation of coupled chemical reactions”.
In: The Journal of Physical Chemistry 81.25 (1977), pp. 2340–2361. eprint:
https://doi.org/10.1021/j100540a008.

[29] D. T. Gillespie. “Stochastic Simulation of Chemical Kinetics”. In: Annual
Review of Physical Chemistry 58.1 (2007). PMID: 17037977, pp. 35–55. eprint:
https://doi.org/10.1146/annurev.physchem.58.032806.104637.

[30] D. T. Gillespie and L. R. Petzold. “Improved leap-size selection for accelerated
stochastic simulation”. In: The Journal of Chemical Physics 119.16 (Oct. 2003),
pp. 8229–8234. issn: 0021-9606. eprint: https://pubs.aip.org/aip/jcp/
article-pdf/119/16/8229/10850811/8229_1_online.pdf.

[31] D. A. Henderson. “The eradication of smallpox – An overview of the past,
present, and future”. In: Vaccine 29 (2011). Smallpox Eradication after 30
Years: Lessons, Legacies and Innovations, pp. D7–D9. issn: 0264-410X.

[32] S. R. Hill, R. Twarock, and E. C. Dykeman. “The impact of local assembly rules
on RNA packaging in a T = 1 satellite plant virus”. In: PLOS Computational
Biology 17.8 (Aug. 2021), pp. 1–18.

[33] A. Klug and D. Caspar. “The Structure of Small Viruses”. In: ed. by K. M.
Smith and M. A. Lauffer. Vol. 7. Advances in Virus Research. Academic Press,
1961, pp. 225–325.

[34] S. W. Lane, C. A. Dennis, C. L. Lane, C. H. Trinh, P. J. Rizkallah, P. G. Stock-
ley, and S. E. Phillips. “Construction and Crystal Structure of Recombinant
STNV Capsids”. In: Journal of Molecular Biology 413.1 (2011), pp. 41–50.
issn: 0022-2836.

https://doi.org/10.1021/jp993732q
https://doi.org/10.1021/jp993732q
https://doi.org/10.1021/j100540a008
https://doi.org/10.1146/annurev.physchem.58.032806.104637
https://pubs.aip.org/aip/jcp/article-pdf/119/16/8229/10850811/8229_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/119/16/8229/10850811/8229_1_online.pdf

References 213

[35] S. W. Lane, C. A. Dennis, C. L. Lane, C. H. Trinh, P. J. Rizkallah, P. G. Stock-
ley, and S. E. Phillips. “Construction and Crystal Structure of Recombinant
STNV Capsids”. In: Journal of Molecular Biology 413.1 (2011), pp. 41–50.
issn: 0022-2836.

[36] H. Li and L. Petzold. “Logarithmic direct method for discrete stochastic
simulation of chemically reacting systems”. In: Journal of Chemical Physics
(Aug. 2006).

[37] J. Louten. “Chapter 2 - Virus Structure and Classification”. In: Essential
Human Virology. Ed. by J. Louten. Boston: Academic Press, 2016, pp. 19–29.
isbn: 978-0-12-800947-5.

[38] E. Mathieu et al. “Coronavirus Pandemic (COVID-19)”. In: Our World in
Data (2020). https://ourworldindata.org/coronavirus.

[39] J. M. McCollum, G. D. Peterson, C. D. Cox, M. L. Simpson, and N. F.
Samatova. “The sorting direct method for stochastic simulation of biochemical
systems with varying reaction execution behavior”. In: Computational Biology
and Chemistry 30.1 (2006), pp. 39–49. issn: 1476-9271.

[40] W. H. McNeill. Plagues and Peoples. url: https://web.archive.org/web/
20091003164005/http://www.birdflubook.com/a.php?id=40. (accessed:
09/10/2009).

[41] D. Montiel-Garcia, N. Santoyo-Rivera, P. Ho, M. Carrillo-Tripp, C. L. B. III,
J. E. Johnson, and V. S. Reddy. “VIPERdb v3.0: a structure-based data
analytics platform for viral capsids”. In: Nucleic Acids Research 49.D1 (Dec.
2020), pp. D809–D816. issn: 0305-1048. eprint: https://academic.oup.com/
nar/article-pdf/49/D1/D809/35364004/gkaa1096.pdf.

[42] N. Patel, E. C. Dykeman, R. H. A. Coutts, G. P. Lomonossoff, D. J. Rowlands,
S. E. V. Phillips, N. Ranson, R. Twarock, R. Tuma, and P. G. Stockley.
“Revealing the density of encoded functions in a viral RNA”. In: Proceedings
of the National Academy of Sciences 112.7 (2015), pp. 2227–2232. eprint:
https://www.pnas.org/doi/pdf/10.1073/pnas.1420812112.

[43] N. Patel, E. Wroblewski, G. Leonov, S. E. V. Phillips, R. Tuma, R. Twarock,
and P. G. Stockley. “Rewriting nature’s assembly manual for a ssRNA virus”.
In: Proceedings of the National Academy of Sciences 114.46 (2017), pp. 12255–
12260. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.1706951114.

https://web.archive.org/web/20091003164005/http://www.birdflubook.com/a.php?id=40
https://web.archive.org/web/20091003164005/http://www.birdflubook.com/a.php?id=40
https://academic.oup.com/nar/article-pdf/49/D1/D809/35364004/gkaa1096.pdf
https://academic.oup.com/nar/article-pdf/49/D1/D809/35364004/gkaa1096.pdf
https://www.pnas.org/doi/pdf/10.1073/pnas.1420812112
https://www.pnas.org/doi/pdf/10.1073/pnas.1706951114

214 References

[44] C. Pérez-Segura, B. C. Goh, and J. A. Hadden-Perilla. “All-Atom MD Sim-
ulations of the HBV Capsid Complexed with AT130 Reveal Secondary and
Tertiary Structural Changes and Mechanisms of Allostery”. In: Viruses 13.4
(2021). issn: 1999-4915.

[45] E. D. I. M. O. R. N. P. R. B. A. B. E. W. R. C.-B. E. U. W. N. A. R. R. T.
Peter G. Stockley; Simon J. White and R. Twarock. “Bacteriophage MS2
genomic RNA encodes an assembly instruction manual for its capsid”. In:
Bacteriophage 6.1 (2016). PMID: 27144089, e1157666. eprint: https://doi.
org/10.1080/21597081.2016.1157666.

[46] C. A. Piedade, A. E. N. Ferreira, and C. Cordeiro. “How to disassemble a virus
capsid a computational approach”. In: vol. 3. Cited by: 1; All Open Access,
Green Open Access, Hybrid Gold Open Access. 2017, pp. 217–222.

[47] Ó. Rolfsson et al. “Direct Evidence for Packaging Signal-Mediated Assembly
of Bacteriophage MS2”. In: Journal of Molecular Biology 428.2, Part B (2016),
pp. 431–448. issn: 0022-2836.

[48] S. Singh and A. Zlotnick. “Observed Hysteresis of Virus Capsid Disassembly Is
Implicit in Kinetic Models of Assembly*”. In: Journal of Biological Chemistry
278.20 (2003), pp. 18249–18255. issn: 0021-9258.

[49] G. R. Smith, L. Xie, B. Lee, and R. Schwartz. “Applying Molecular Crowding
Models to Simulations of Virus Capsid Assembly In Vitro”.
In: Biophysical Journal 106.1 (Jan. 2014), pp. 310–320. issn: 0006-3495.

[50] R. Tarjan. “Depth-First Search and Linear Graph Algorithms”. In: SIAM
Journal on Computing 1.2 (1972), pp. 146–160. eprint: https://doi.org/10.
1137/0201010.

[51] C. Thèves, E. Crubézy, and P. Biagini. “History of Smallpox and Its Spread
in Human Populations”. In: Microbiology Spectrum 4.4 (2016). eprint: https:
//journals.asm.org/doi/pdf/10.1128/microbiolspec.poh-0004-2014.

[52] K. Toropova, P. G. Stockley, and N. A. Ranson. “Visualising a Viral RNA
Genome Poised for Release from Its Receptor Complex”. In: Journal of Molec-
ular Biology 408.3 (2011), pp. 408–419. issn: 0022-2836.

https://doi.org/10.1080/21597081.2016.1157666
https://doi.org/10.1080/21597081.2016.1157666
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://journals.asm.org/doi/pdf/10.1128/microbiolspec.poh-0004-2014
https://journals.asm.org/doi/pdf/10.1128/microbiolspec.poh-0004-2014

References 215

[53] S. TRIPATHI, J. Y. SUZUKI, S. A. FERREIRA, and D. GONSALVES.
“Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability
and control”. In: Molecular Plant Pathology 9.3 (2008), pp. 269–280. eprint:
https://bsppjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.
1364-3703.2008.00467.x.

[54] R. Twarock and A. Luque. “Structural puzzles in virology solved with an
overarching icosahedral design principle”. In: Nature Communications 10.1
(Sept. 2019), p. 4414. issn: 2041-1723.

[55] UNAIDs. Global HIV & AIDS statistics — Fact sheet 2023. url: https:
//www.unaids.org/en/resources/fact-sheet. (accessed: 03/06/2024).

[56] E. A. B. Week. Kenya: Disease Hits Kenya Maize Expectations. url: https:
//allafrica.com/stories/201503101043.html. (accessed: 04/07/2024).

[57] W.-S. Wei, A. Trubiano, C. Sigl, S. Paquay, H. Dietz, M. Hagan, and S. Fraden.
“Hierarchical assembly is more robust than egalitarian assembly in synthetic
capsids”. In: Proceedings of the National Academy of Sciences of the United
States of America 121 (Feb. 2024), e2312775121.

[58] E. Wroblewski et al. “Visualizing Viral RNA Packaging Signals in Action”. In:
Journal of Molecular Biology 436.22 (2024), p. 168765. issn: 0022-2836.

[59] A. Zlotnick. “To Build a Virus Capsid: An Equilibrium Model of the Self
Assembly of Polyhedral Protein Complexes”. In: Journal of Molecular Biology
241.1 (1994), pp. 59–67. issn: 0022-2836.

https://bsppjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1364-3703.2008.00467.x
https://bsppjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1364-3703.2008.00467.x
https://www.unaids.org/en/resources/fact-sheet
https://www.unaids.org/en/resources/fact-sheet
https://allafrica.com/stories/201503101043.html
https://allafrica.com/stories/201503101043.html

	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Author's Declaration
	Introduction
	Modelling Reaction Kinetics In Biological Systems
	ODE Based Models
	Stochastic Based Modelling
	Stochastic Simulation Algorithm
	Inversion Generating Method For Sampling
	Algorithm For The Direct Method
	First Reaction Method
	Improvements To The Direct Method
	Tau Leaping

	Virus Assembly Biology

	Models Of Equilibrium And Quasi-Equilibrium In Capsid Assembly
	Background To Dodecahedral Models
	Apparent Rate Of Capsomer-Capsomer Binding In An RNA Assembly Model
	KDapp In The Absence Of RNA
	Mean First Passage Time
	Calculation Of kfapp(j) And kbapp(j) Using MFP Time
	Calculating KDapp In The Presence Of RNA

	Simple Model Of Quasi-Equilibrium
	Partition Theory
	Partitions Of 12 Capsomers

	Generalised Stochastics Models For Simulating Capsid Assembly
	Issues With Using ODE Methods
	Generalised Tiling Model
	Discussion Of RNA Graphs

	Simulating Reaction Dynamics
	Assembly Reactions
	Finding Possible Capsid Reactions
	Non-Capsid Reactions
	Choosing A Reaction

	Statistical Analysis Of Capsid Assembly Pathways
	Combinatorical Analysis Of Hamiltonian Paths For General Capsids
	Analysis Of RNA Paths From Stochastic Simulations
	Comparison Of Completed Paths
	Analysis Of Intermediate Structures During Assembly

	Imaging Of Paths

	Modelling STNV, A T=1 Virus
	Geometry Of STNV Capsid
	Position Of RNA Contacts Within Capsid Shell
	Choice Of RNA Graphs
	Hamiltonian Path Combinatorics In STNV
	Optimisation Of STNV Assembly Efficiency
	Analysis Of Optimised RNA Results
	Effect Of Changing The PS Distribution
	Observed Frequency Of Sampled Paths

	A General Model Of T=3 Capsids
	Assembly In The Absence Of RNA
	Comparisons Between Different Tilings
	Considering Non-Uniform Capsomer-Capsomer Interaction Strengths
	Further Non-Uniform Interaction Strength In Rhomb Tilings

	Assembly In The Presence Of RNA
	RNA Graphs For T=3 Capsids
	Optimisation Of The PS-Capsomer Affinity Distribution
	Analysis Of Assembly Paths And Intermediates
	Intermediates Bar Chart
	Tree Graphs Of Lowest Energy Pathways
	Gbond Fitness Tables In Presence Of RNA
	Effects Of Changing Uniform Gbond
	Effects Of Changing Non-Uniform Gbond
	Non-Uniform Variation Of All Three Gbond Values In The Rhomb Tiling

	Conclusion

	Examining Disassembly Using Stochastic Simulations
	Prior Work On Disassembly
	Methods Used To Model Disassembly
	Results Of Disassembly Simulations

	Discussion
	Limitations and Potential Future Work
	Conclusion

	Kite Side Length Proof
	Algorithms
	Tile File Definitions
	How To Create Tile Files
	Tile File Examples

	References

