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Abstract 

 

This thesis presents the development of a portable lab-on-a-chip two-

dimensional gas chromatograph (GCxGC). A planar microfabricated system 

was designed and fitted within a modular built-for-purpose housing unit. The 

lab-on-a-chip device used acid etched borosilicate glass as the working 

substrate. The cost and ease of glass fabrication in this manner is attractive 

when compared to silicon, allowing for the formation of two capillary columns 

separated by channels designed to allow modulation of the eluent from the 

first (primary) column to the secondary. Not only were these channels circular 

in shape, but they also boasted similar dimensions to modern, commercially 

available fused silica GC columns. All working components needed to make 

field volatile organic compound (VOC) measurements, i.e. injector, columns, 

interfaces and detector, were, thus, encapsulated in a single ultra-portable 

microfabricated glass unit. The use of a miniaturised photoionization detector 

(PID) in conjunction with the glass chip is reported.  The overall system had 

an attractive peak capacity and detection limit for VOCs, low power demand 

and an operating temperature range of 0 to 200 °C without cryogens. 

 

The miniaturised instrument, which offers a novel and alternative route to 

enabling microfabricated gas chromatography (GC) systems, is intended to be 

used in the first instance for atmospheric chemistry and air quality 

observations in relation to the work of the Atmospheric Chemistry research 

group at the University of York. It is envisaged that, if produced on a 

commercial scale, it could be used for a range of analyses where a field-

portable but highly sensitive and selective gas chromatograph capable of 

performing high-speed separations is required. 
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Preface 

 

This PhD thesis represents a culmination of experimental work and learning 

that has taken place over a period of almost four years (2008 – 2012). It 

contains the results of research undertaken within the Atmospheric Chemistry 

Research Group at the Department of Chemistry of the University of York. This 

research was funded by the National Physical Laboratory (NPL), the Defence 

Science and Technology Laboratory (DSTL), the Natural Environment 

Research Council (NERC), the Yorkshire Enterprise Fellowship (YEF) Scheme, 

and the Chemical and Biological Knowledge Base Programme of the National 

Measurement Office.  

 

The field of gas chromatography, including column technology, is generally 

considered a mature science. This belief has led to a relatively small amount of 

new and active research being conducted in this area, in comparison to other 

analytical techniques. Instead, work based on the use of commercially 

available products for new applications is much more commonly reported.  

 

This body of work details the development of a miniaturised, planar two-

dimensional (2D) GCxGC of novel design, describing original column coating 

and solvent evaporation processes, innovative software control, and 

presenting the first ever successful 2D plots generated on a glass, 

microfabricated device of its kind. Sections of the work have been published in 

the Journal of Chromatography A under the title “Microfabricated Planar Glass 

Gas Chromatography with Photoionization Detection”[1], and in LCGC Europe 

as “Lab-on-a-Chip GC for Environmental Research”[2]. 

 

The idea of a portable GCxGC device came about as a result of the field-work 

experiences of my PhD supervisor, Professor Alastair Lewis, and colleagues. 

As experts in the field of Atmospheric Chemistry, they often partake in field 

campaigns in environments that can be considered exotic, remote, and largely 

challenging. Transporting bulky, heavy scientific instruments with high power 

consumption to areas of the world where electricity is often limited is fraught 

with logistical infeasibilities. Thus, measurement of atmospheric compounds 

of interest at sites, such as the humid tropical jungles of Borneo or the 

desolate snowy plains of Antarctica, generally first consists of taking a vast 
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number of samples, which are then extracted and/or analysed on return to the 

analytical laboratory. This could be weeks after the initial sampling took place. 

A means of reliable real-time monitoring and on-site, direct and immediate 

analysis would eliminate the issues faced with regards to the homeward 

transport of the collected samples, the potential for leakage and general loss of 

sample, reactions within the sampling vessel, and the disappointment realised 

after hours or even days of laboratory analysis only to find a complete lack of 

the analytes of interest. 

 

The construction of the device manifold, to be described, and the software 

control system was achieved with the help of Dr Christopher Rhodes, whose 

electronic skills and LabVIEW knowledge proved priceless and seemingly 

limitless. The glass chips were manufactured by a small team of experts in the 

field of glass microfluidic devices, led by Philip Homewood, at the Dolomite 

Centre. Further collaborative and concurrent work was conducted with and by 

scientists, including Robin Grenfell, Brian Goody, Alice Harling, Paul Brewer, 

Gergely Vargha and Martin Milton, at NPL. Many other people contributed to 

the overall success of this work, in particular my supervisor, Professor 

Alastair Lewis, Dr Jacqueline Hamilton, Professor Keith Bartle, Dr Samuel 

Edwards, Richard Lidster and Steve Andrews, all of whom proved to be 

invaluable sources of advice, practical help, encouragement, support and 

friendship.  

 

The task of preparing this thesis has, thus, been to extract from these, 

(oftentimes) shared activities a coherent body of work, and one that I can call 

my own. My primary role within the overall project has been focused on the 

areas that affect chromatographic success, i.e. column coating, solvent 

evaporation, modulation to achieve two-dimensional separation, method 

development and general chromatographic optimisation and development 

using the glass devices. On Dr Rhodes’ departing of the research group, my 

role was expanded to include electronic and software related work as well.  

This thesis emulates the above, with the central theme being chromatography 

and the work done to perfect this. 

 

As this project encompassed a number of different and broad areas of science, 

a background to the main subject areas are provided by the first four chapters. 
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The first chapter gives detail on atmospheric chemistry – what it is, why it is 

an essential scientific field, and the overall challenges faced within it. The 

second chapter focuses on the principles of chromatography as an analytical 

technique, with particular focus on gas chromatography. This chapter 

examines the important factors that require careful consideration when 

developing an analytical method and much of what is described here formed 

the basis or the drive of the experimental work. Chapter 3 follows the 

evolution of the established technique of GC to two-dimensional gas 

chromatography, indicating how this comprehensive technique has the 

separating power to resolve hundreds and even thousands of peaks in very 

complex samples, such as air. Finally, in Chapter 4, a thorough literature 

review is provided on instrument and GC miniaturisation, allowing for the 

discernment of where and how the developed device “fits in” within the field. 

The remaining chapters detail and present the experimental thinking, 

processes and results of the lab-on-a-chip GCxGC project. The experimentation 

recounted is not reported in the chronological order in which it was 

conducted, but has rather been written in a fashion to allow an understanding 

of the various steps that took place and the thought processes behind them. 
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1.0 The Atmosphere 

 

1.1 The Composition of the Atmosphere 
The Earth's atmosphere contains several different layers, as illustrated in 

Figure 1. These can be defined according to air temperature as follows: 

1. The troposphere (decreases from ~ 15 °C to -55 °C) 

2. The stratosphere (increases from ~ 55 °C to -5 °C) 

3. The mesosphere (decreases from ~ -5°C to -90 °C) 

4. The thermosphere (increases from ~ -90 °C to 1,500 °C) 

5. The exosphere (day time = 1,500 °C +; night time = absolute zero)[8]. 

 

The earth’s atmosphere is composed of a very thin, well mixed layer of the 

gases listed in Table 1. 

 

1.1.1 The Troposphere 

The troposphere is the lowest portion of Earth's atmosphere, and is the region 

in which we live and into which chemical compounds are generally emitted as 

a result of human activities. It contains approximately 75% of the 

atmosphere's mass and 99% of its water vapour and aerosols[10].  

Figure 1: The Earth's atmosphere 

http://www.physicalgeography.net/physgeoglos/t.html#temperature
http://en.wikipedia.org/wiki/Earth%27s_atmosphere
http://en.wikipedia.org/wiki/Water_vapor
http://en.wikipedia.org/wiki/Particulate
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Table 1: Composition of pure dry air[11] 

Constituent  

Gas 

By Mass  

(%) 

By Volume  

(%) 

Molecular 

Weight 

Nitrogen (N2) 75.51 78.09 28.02 

Oxygen (O2) 23.14 20.95 32.00 

Argon (Ar) 1.3 0.93 39.94 

Carbon Dioxide (CO2) 0.05 0.03 44.01 

Neon (Ne) 1.2 × 10−3 1.8 ×  10−3 20.18 

Helium (He) 8.0 × 10−4 5.2 ×  10−4 4.00 

Krypton (Kr) 2.9 × 10−4 1.0 ×  10−4 83.7 

Hydrogen (H2) 0.35 ×  10−5 5.0 ×  10−5 2.02 

Xenon (X) 3.6 × 10−5 0.8 ×  10−5 131.3 

Ozone (O3) 0.17 ×  10−5 0.1 ×  10−5 48.00 

Radon (Rn) - 6.0 ×  10−18 222.00 

 

 

It is also the layer where the majority of the world's weather takes place. The 

troposphere extends from the Earth’s surface to the tropopause at 10-18 km 

and it is deeper in the tropical regions and shallower near the poles. The 

troposphere is characterised by generally decreasing temperature with 

increasing altitude from an average of 289 K at ground level to 210-215 K at 

the tropopause[9].  Pressure decreases monotonically, with increasing altitude, 

from an average of 1,012 mbar at the Earth’s surface to 140 mbar at the 

tropopause. 

 

The lowest km or so of the troposphere contains the planetary boundary layer 

and inversion layers, with vertical mixing between the boundary and 

inversion layers and the free troposphere above them being hindered.  

 

The transfer of energy between the surface of the Earth and the atmosphere is 

controlled by the processes of conduction, convection and radiation. Ocean 

currents also play a significant role in transferring this heat towards the poles, 

and contribute to the development of many types of weather phenomena. 

 

http://www.ace.mmu.ac.uk/eae/atmosphere/older/Weather.html
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1.1.2 The Stratosphere 

The stratospheric ozone layer is the planet’s natural sunscreen. Unfortunately, 

it has thinned during the past few decades because of the rise in atmospheric 

pollutants, such as chlorofluorocarbons (CFCs). This has allowed more 

ultraviolet (UV) radiation to reach many parts of the planet’s surface since the 

1970’s. However, other forms of pollution have helped to shield Earth from UV 

rays. 

 

Using an atmospheric radiation model, Gunnar Myhre of the University of Oslo 

and colleagues found that since 1750 pollutants such as sulphate, soot 

particles, sulphur dioxide (SO2) and nitrogen dioxide (NO2) have actually 

reduced the amount of UV light reaching some industrialised regions by as 

much as 20%[12]. By scattering or absorbing UV light, such pollution may be 

masking some of the effects of ozone depletion.  

 

Molecular oxygen (O2) and ozone (O3) in the stratosphere absorb UV radiation 

below ≤290 nm, therefore only solar radiation of wavelength ≥290 nm is 

transmitted through the stratospheric ozone layer into the troposphere and 

impacts the Earth’s surface. Any depletion of stratospheric ozone allows 

shorter wavelength radiation to be transmitted through the stratosphere into 

the troposphere leading to increased photodissociation rates in the 

troposphere and not yet fully understood effects on tropospheric chemistry. 

 

Because of the presence of high mixing ratios of O3 in the stratospheric ozone 

layer, with a peak mixing ratio of ~10x10-6, there is net transport of O3 by 

eddy diffusion from the stratosphere into the troposphere[9]. In addition to 

this net downward transport of O3 from the stratosphere, O3 is formed 

photochemically in the troposphere from the interactions of VOCs and 

nitrogen oxides (NOX) in the presence of sunlight. These sources of 

tropospheric O3 are balanced by in situ photochemical destruction and by dry 

deposition at the earth’s surface.  

 

The result of downward transport of stratospheric ozone, in situ formation 

and destruction, and dry deposition at the Earth’s surface is the presence of 

ozone in the “clean” natural troposphere. Ozone mixing ratios at “clean” 
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remote sites at ground level are in the range (10-40) x10-9 and tend to increase 

with increasing altitude[9]. 

 

1.1.3 The Mesosphere 

The mesosphere starts at a height of 50 km above the Earth’s surface and 

extends to approximately 85 km high. It is flanked on either side by the 

mesopause, which is the boundary between the mesosphere and the 

thermosphere above it, and the stratopause below. It is an important area of 

the atmosphere because of the chemistry which occurs there, and the 

ionization of molecular O2 and atomic O causing them to release electrons. 

This ionization is mainly due to incoming solar radiation and only takes place 

during the day. As with the troposphere, the mesosphere is mostly comprised 

of nitrogen and oxygen, as well as some minor gas constituents, such as ozone. 

O3 reaches a maximum of concentration low in the stratosphere, resulting in a 

maximum of solar heating near the stratopause. Due to the low levels of ozone 

in the mesosphere, temperatures in this region of the atmosphere decrease 

significantly with altitude as less heating occurs due to UV absorption. Also, 

trace concentrations of CO2 found in the mesosphere have a cooling effect as it 

radiates any heat into space. The top portion of the mesosphere is the coldest 

part of the Earth’s atmosphere, with temperatures of -90 °C and lower being 

reached[13]. Beyond this atmospheric layer temperatures rise again as a result 

of reduced radiative cooling combined with heating by absorption of short 

wavelength, i.e. < 180 nm, UV radiation by O2, O atoms and N2[14]. A feature of 

the mesosphere is that it exhibits both turbulence and atmospheric waves due 

to the decrease in temperature coupled with the low density of the air. This 

results in important mixing and transport of both biogenic and anthropogenic 

atmospheric chemicals, with rapid migration, often in less than six months, to 

any latitude[15].  
 

1.1.4 The Thermosphere 

The thermosphere extends from the mesopause at about 90 km to 500–1,000 

km above the Earth, where it meets the thermopause. Despite featuring 

extremely low air density, and being the area in which both the space 

shuttle and the International Space Station orbit the Earth, this atmospheric 

layer is considered part of the Earth's atmosphere. As previously mentioned, 

temperatures climb sharply in the thermosphere below altitudes of 

http://www.windows2universe.org/headline_universe/space_missions/stories_2005/shuttle_discovery_pad_jul05_big_jpg_image.html
http://www.windows2universe.org/headline_universe/space_missions/stories_2005/shuttle_discovery_pad_jul05_big_jpg_image.html
http://www.windows2universe.org/space_missions/human_spaceflight/iss.html
http://www.windows2universe.org/earth/Atmosphere/thermosphere_temperature.html
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approximately 300 km. After this point, temperatures plateau, maintaining a 

steady level with increasing altitude. Extreme temperatures ranging from 

about 500 °C up to 2,000 °C or even higher are seen in this layer of the 

atmosphere. Daytime temperatures tend to be about 200 °C – 500 °C hotter 

than at night, depending on solar activity. Collisions occur so infrequently 

between gas particles from the thermosphere and above that they become 

separated based on the types of chemical elements they contain. 

Energetic UV and X-ray photons from the sun also break apart molecules in 

the thermosphere, where atomic oxygen (O), atomic nitrogen (N), and helium 

(He) are the main components of air. 

 

Much of the X-ray and UV radiation from the sun is absorbed in the 

thermosphere. When the sun is very active and emitting more high energy 

radiation, the thermosphere gets hotter and expands. Because of this, the 

height of the thermopause varies. High-energy solar photons also 

tear electrons away from gas particles in the thermosphere, creating 

electrically-charged ions of atoms and molecules. Earth's ionosphere, 

composed of several regions of such ionized particles in the atmosphere, 

overlaps with and shares the same space with the electrically neutral 

thermosphere. Moving ions, dragged along by collisions with the electrically 

neutral gases, produce powerful electrical currents in some parts of the 

thermosphere[16]. Charged particles (electrons, protons, and other ions) from 

space collide with atoms and molecules in the thermosphere at high latitudes, 

exciting them into higher energy states. Those atoms and molecules shed this 

excess energy by emitting photons of light, which we see as colourful auroral 

displays, i.e. the Southern and Northern Lights[17]. 

 

1.1.5 The Exosphere 

The exosphere is wedged between the thermopause below it, also sometimes 

known as the exobase, and the vacuum of outer space above. The air in this 

layer is so thin that there is debate as to whether or not it can be considered a 

part of Earth’s atmosphere, especially as it does not possess a clear upper 

boundary. One definition of the exosphere specifies it to extend to the point 

where radiation pressure from sunlight exerts a stronger force on hydrogen 

atoms than the pull of the Earth’s gravity. This is around 190,000 km or 

approximately halfway to the moon[18].  

http://www.windows2universe.org/earth/Atmosphere/thermosphere_constituents.html
http://www.windows2universe.org/physical_science/element.html
http://www.windows2universe.org/physical_science/magnetism/em_ultraviolet.html
http://www.windows2universe.org/physical_science/magnetism/em_xray.html
http://www.windows2universe.org/physical_science/magnetism/photon.html
http://www.windows2universe.org/physical_science/chemistry/photodissociation.html
http://www.windows2universe.org/physical_science/chemistry/photodissoc_o2.html
http://www.windows2universe.org/physical_science/chemistry/photodissoc_n2.html
http://www.windows2universe.org/physical_science/magnetism/em_xray.html
http://www.windows2universe.org/physical_science/magnetism/em_ultraviolet.html
http://www.windows2universe.org/sun/solar_activity.html
http://www.windows2universe.org/physical_science/physics/atom_particle/electron.html
http://www.windows2universe.org/earth/Atmosphere/ion_solar_effect.html
http://www.windows2universe.org/earth/Atmosphere/ion_solar_effect.html
http://www.windows2universe.org/earth/Atmosphere/ionosphere.html
http://www.windows2universe.org/earth/Atmosphere/ion_regions.html
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1.2 Atmospheric chemistry 
Atmospheric chemistry is a multidisciplinary branch of atmospheric science, 

which studies the composition of the Earth’s atmosphere, as well as other 

planets, changes induced by biogenic and anthropogenic processes, the 

emission, transport and deposition of atmospheric chemical species, the rates 

and mechanisms of chemical reactions taking place in the atmosphere, and the 

effects of atmospheric species on human health, the biosphere and climate. 

Research in this field may include environmental chemistry, physics, 

meteorology, computer modelling, oceanography, geology, volcanology and 

climatology, amongst other disciplines. 

 

There are various reasons as to why the composition and chemistry of the 

atmosphere are important. One of the most significant is the interactions that 

take place between the atmosphere and living organisms. The composition of 

the Earth’s atmosphere changes regularly as a result of natural processes such 

as lightning, volcanic emissions and bombardment by solar particles from 

corona, and also as a result of human activity, much of which is associated 

with our increasing use of fossil fuels as an energy source for things such as 

heating, transportation, and electric power production. These changes alter 

the energy balance of the climate system and are drivers for climate change. 

They affect absorption, scattering and emission of radiation within the 

atmosphere and at the Earth’s surface. Unfortunately, not all of these changes 

produce positive results and many, including acid rain and photochemical 

smog formation, toxic air pollution, ozone depletion, increases in greenhouse 

gases and global warming, can be harmful to human health, crops and 

ecosystems[19, 20]. The resulting positive or negative changes in energy balance 

due to these factors are expressed as radiative forcing (RF), which is used to 

compare warming or cooling influences on global climate. Figure 2 shows the 

global average radiative forcing in 2005 for CO2, CH4, N2O and other important 

agents and mechanisms, along with the current assessed level of scientific 

understanding (LOSU)[6]. 

 

It is the job of the atmospheric chemist to seek to understand the causes of the 

above problems by studying the photochemistry of the molecular constituents 

of air, the formation and properties of airborne particles, cloud processing of 

materials, transport and dispersion of chemical tracers, and biogeochemical 

http://en.wikipedia.org/wiki/Atmospheric_science
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cycles. Through this they are able to obtain a theoretical understanding of the 

atmospheric problems faced and can develop instruments and models for 

studying the atmosphere. This allows for the devising and testing of possible 

solutions, and often results in changes, for the better, to government policy. 

 

1.2.1 The History of Atmospheric Chemistry 

The field of atmospheric chemistry could be considered relatively new, with 

increasing attention being paid to it since the advent of the industrial 

revolution and increase in atmospheric pollution and the various 

environmental problems that has induced. The first scientific studies of 

atmospheric composition began in the 18th century, with Joseph Priestly[21], 

Antoine Lavoisier[22] and Henry Cavendish[23] being the first to make 

Figure 2: Global average radiative forcing in 2005 for CO2, CH4, N2O and other 
important agents and mechanisms, together with the typical geographical extent 
(spatial scale) of the forcing and the assessed level of scientific understanding 
(LOSU)[6] 
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measurements of the composition of the atmosphere. Interest shifted towards 

trace constituents with very small concentrations in the late 19th and early 

20th centuries, with one of the most important discoveries, that of ozone, being 

made by Christian Friedrich Schönbein in 1840[24]. The 20th century saw an 

increase in the consideration of how the concentrations of trace gases in the 

atmosphere have changed over time and the chemical processes which create 

and destroy compounds in the air.  

 

Finally, in 1995, the importance of atmospheric chemistry was acknowledged 

when the atmospheric scientists Paul Crutzen, Mario Molina and Frank 

Sherwood Rowland were awarded the Nobel Prize in Chemistry[25]. 

 

In the 21st century the focus is, yet again shifting. Rather than concentrating on 

atmospheric chemistry in isolation, the focus is now on seeing it as one part of 

a single system with the rest of the atmosphere, biosphere and geosphere. An 

important driver for this is the link between chemistry and climate, such as 

the effects of the changing climate on the recovery of the ozone hole and vice 

versa, and the interaction of the composition of the atmosphere with the 

oceans and terrestrial ecosystems. 

 

1.2.2 Atmospheric Chemistry Methodology 

The central elements in atmospheric chemistry are observation (field 

measurements and remote sensing), atmospheric modelling and laboratory 

studies of gases, aerosols, clouds and precipitation, isotopes, radiation, 

dynamics, biosphere interactions, and hydrosphere interactions. Progress in 

the field is generally driven by interactions between these components, 

allowing them to form an integrated whole.  

 

1.2.2.1 Observations 

Observations of atmospheric chemistry are essential. The need for detailed, 

repeated, and global scale observations of the chemical composition of the 

atmosphere is driven by the quest to increase scientific understanding of the 

multitude of chemical and physical processes in the earth’s atmosphere. Those 

observations having no obvious explanation stimulate new modelling and 

laboratory studies, allowing atmospheric chemists to establish the 

http://en.wikipedia.org/wiki/Paul_Crutzen
http://en.wikipedia.org/wiki/Mario_Molina
http://en.wikipedia.org/wiki/Frank_Sherwood_Rowland
http://en.wikipedia.org/wiki/Frank_Sherwood_Rowland
http://en.wikipedia.org/wiki/Climate
http://en.wikipedia.org/wiki/Ecosystems
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atmosphere’s composition in ever-increasing detail, and hence follow and, 

importantly, understand its changes[26].  

 

Routine observations of chemical composition give an idea of changes in 

atmospheric composition over time. An important example of this is the 

Keeling Curve, which is a series of measurements showing the on-going 

change in concentration of CO2 in the Earth’s atmosphere from 1958 to the 

present day. The graph is based on continuous measurements taken at the 

Mauna Loa Observatory in Hawaii, and showed the first significant evidence of 

rapidly increasing CO2 levels in the atmosphere, a product of fossil fuels 

burning[5]. These very precise measurements resulted in global concern over 

the build-up of CO2 in the atmosphere, eventually leading to the tracking of 

greenhouse gases worldwide. 

 

In order to make observations of, for example, the transport and 

transformation of organic pollutants, detailed field measurements of 

atmospheric composition are first required. Atmospheric chemistry field work 

directly probes the atmosphere, utilising various instruments which could be 

located:  

• In ground-based observatories, such as that on Mauna Loa or at the 

Cape Verde Atmospheric Observatory (CVAO)[27] 

Figure 3:  The Keeling Curve: Atmospheric CO2 concentrations as measured at 
Mauna Loa Observatory[5] 
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• On mobile platforms, such as the UK’s Facility for Airborne 

Atmospheric Measurements (FAAM)[28] and MOZAIC (Measurement of 

OZone and water vapour by AIrbus in-service aircraft)[29]  

• On ships, such as that used during the Stratospheric Ozone: Halogen 

Impacts in a Varying Atmosphere (SHIVA) project[30]. 

 

The term remote sensing is used to describe the science of observing and 

measuring an object without coming into direct contact with it, such as by way 

of: 

• Balloons, such as those used by the Network for the Detection of 

Atmospheric Composition Change (NDACC)[31] and Ozone Sonde 

Observations of Syowa Station[32] 

• Satellites, e.g. the Atmospheric Chemistry Experiment (ACE)[33], the 

Upper Atmosphere Research Satellite (UARS)[34], the Global Ozone 

Monitoring Experiment (GOME)[35] and Measurements of Pollution in 

the Troposphere (MOPITT)[36]  

• Space shuttle platforms, e.g. the Atmospheric Trace Molecule 

Spectroscopy (ATMOS) experiment[37] and CRyogenic Infrared 

Spectrometers and Telescopes for the Atmosphere (CRISTA)[38]. 

 

Instruments used for this kind of work can be divided into two types, i.e. 

passive and active.  

 

Passive instruments detect natural energy that is reflected or emitted from the 

observed scene, thus, the radiation that is sensed is that which has been 

emitted by the object being viewed or reflected by the object from a source 

other than the instrument itself. The most common external source of 

radiation sensed by passive instruments is reflected sunlight. Examples of 

passive remote sensors that are used by scientists include radiometers, 

spectrometers[26], and spectro-radiometers. 

 

Active instruments, on the other hand, provide their own energy, or 

electromagnetic radiation, which is used to illuminate the object or scene 

being observed. A pulse of energy is sent from the sensor to the object. The 

reflected or backscattered radiation is then measured by the instrument. As 

with passive remote sensors, many different types of active remote sensors 

http://www.ace.uwaterloo.ca/
http://en.wikipedia.org/wiki/Upper_Atmosphere_Research_Satellite
http://remus.jpl.nasa.gov/atmos/atmos.html
http://remus.jpl.nasa.gov/atmos/atmos.html
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are used, including radars, scatterometers, Light Detection And Radar 

(LIDAR), and laser altimeters[39, 40]. 
 

1.2.2.2 Atmospheric Modelling 

Computer models are used to synthesise and test theoretical understanding of 

atmospheric chemistry. Numerical models solve the differential equations 

governing the concentrations of chemicals in the atmosphere. Atmospheric 

modelling and analysis scientists are responsible for providing a sound 

scientific and technical basis for regulatory policies to improve ambient air 

quality. Predictive atmospheric models are developed and evaluated on all 

spatial and temporal scales for assessing changes in, for example, air quality 

and air pollutant exposures. Comprehensive Eulerian air quality models are 

used to account for many of the major processes in the atmosphere that are 

considered key in determining the distributions and levels of the atmospheric 

chemical species. This is accomplished through detailed simulation of various 

physical and chemical processes such as horizontal and vertical transport, 

diffusion, emissions, deposition, chemistry, and cloud processes[41-43].  

 

1.2.2.3 Laboratory Studies 

Atmospheric laboratory work covers many different areas, from the 

development of new instruments and improving current techniques, as 

demonstrated in this body of work,  to analysing samples collected on field 

campaigns; from simulating the various reactions of certain atmospheric 

chemicals in smog chambers[42] to predicting products and determining 

thermodynamic data such as Henry’s Law coefficients[44]. 

 

1.3 Atmospheric Pollutants of Concern 
United Kingdom air quality is generally considered as being good. It has 

improved considerably over the last ten or so years. Tighter controls on 

pollutant emissions have resulted in the air over the UK being cleaner today 

than at any time since before the industrial revolution[45]. The UK National 

Atmospheric Emissions Inventory (NAEI)[46] compiles estimates of 

atmospheric emissions from UK pollution sources such as cars, trucks, power 

stations, industry and agricultural activities. The NAEI is continually improved 

and used to produce estimates of UK emissions on an annual basis.  This 

information is reported annually to the European Commission and the United 
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Nations Economic Commission for Europe (UNECE), as required in the 

National Emission Ceilings Directive and the protocols under the Convention 

on Long-range Transboundary Air Pollution (CLRTAP)[47, 48]. While, 

greenhouse gases are most active high in the atmosphere, in terms of air 

quality, the concentration of pollutants closer to the ground is the most 

important factor. Nevertheless, long-range transboundary air pollution is a 

phenomenon that occurs when air pollutants travel long distances. Along the 

way they chemically react in the atmosphere, resulting in the production of 

other pollutants. This effect culminates in air pollution problems, not only in 

the local areas where the pollutants are initially released, but also in areas a 

long way from the source.  

 

Despite the significant reductions achieved, air pollution still causes 

considerable harm to both public health and the natural environment, and 

combative action needs to be ongoing, especially in built-up urban cities. 

Estimates indicate that air pollution reduces life expectancy in the UK by an 

average of six months, with estimated equivalent health costs of up to £20 

billion each year[45].  

 

The main pollutants of concern in the UK include particulate matter (PM10,  

PM2.5 and PM1), oxides of nitrogen (NOx), oxides of sulphur (SOx), ammonia 

(NH3), VOCs, and ground level O3. Besides the damaging effects of short and 

long-term exposure to air pollution, ranging from premature deaths caused by 

heart and lung disease to worsening of asthmatic conditions, emissions of 

sulphur, nitrogen, and ammonia can also be deposited to land and water 

causing either acidification, or nutrient enrichment, i.e. eutrophication. This 

results in damage to biodiversity in both semi-natural environments and 

upland rivers and lakes. Ozone on the other hand, can lead to direct damage to 

crops and vegetation, affecting ecosystem function and resulting in loss of 

crop yields. Emissions of VOCs, NOX, and sulphur compounds lead to a 

complex series of chemical and physical transformations which result in such 

effects as: 

• The formation of O3 in urban and regional areas, as well as in the 

global troposphere 

• Acid deposition 
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• The formation of secondary particulate matter through gas/particle 

partitioning of both emitted chemical compounds and the atmospheric 

reaction products of VOCs, NOX, SO2, and organo-sulphur compounds. 

 

Road transport, large fuel-burning plants such as power stations, and 

agriculture are key sources for many of these pollutants, and often of climate 

change-causing greenhouse gas emissions too. Links between air quality and 

climate change actions are critical, and many of the actions to mitigate against 

climate change will also reduce air pollution in the long term. 

 

1.3.1 Particulate Matter (PM) 

The most dangerous air pollutant in terms of health effects is particulate 

matter (PM). PM is a mixture of solid particles and liquid droplets, and can 

include dust, dirt, soot, and smoke. There are three sizes of particles that cause 

particular concern, i.e. PM10, PM2.5 and PM1. PM10 describes “coarse” particles 

with a diameter of 2.5 – 10 µm. To put this into perspective, PM10 particles are 

one-seventh the width of a human hair[1], as illustrated in Figure 4. These 

particles are composed of aluminosilicate and other oxides of crustal 

elements. Major sources include fugitive dust from roads, industry, 

agriculture, construction and demolition, and fly ash from fossil fuel 

combustion. The lifetime of PM10 is from minutes to hours, and its travel 

distance varies from <1 km to 10 km[49].  

Figure 4: The size of particle pollution[1] 
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Finer particles, those smaller than 2.5 µm in diameter, are designated PM2.5. 

These are the major cause of reduced visibility or haze seen in many parts of 

the country and can be subdivided into two different types, namely primary 

and secondary particles.  

 

Primary particles are those that are emitted directly into the atmosphere from 

combustion processes, i.e. from vehicle exhausts or chimneys, construction 

sites, unpaved roads, and fields. These are generally very small, often less than 

1 µm in diameter (i.e. ultrafine particulate matter or PM1).  

 

Secondary particles are those which are formed in the atmosphere (as shown 

in Figure 5) by complicated reactions between other pollutants, and are 

composed of various combinations of sulphate compounds, nitrate 

compounds, carbon compounds, ammonium, hydrogen ions, organic 

compounds, metals (Pb, Cd, V, Ni, Cu, Zn, Mn, and Fe), and particle bound 

water.  

 

These are generally less than 2.5 µm in diameter, but the size tends to vary 

depending on humidity. Their lifetime is from days to weeks and travel 

distance ranges from 100 km to >1,000 km[50].  

 

Figure 5: Schematic of secondary particulate matter/secondary organic aerosol 
formation 
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Table 2: Components of particulate matter 

Precursors of Primary PM Sources 

Sodium Chloride (NaCl) Sea salt 

Elemental carbon Black carbon (soot) formed during high 

temperature combustion of fossil fuels, e.g. coal, 

natural gas, oil, biomass fuels 

Trace metals Generated by metallurgial processes, such as steel 

making or by impurities in fuels, e.g. lead, 

cadmium, nickel, chromium, zinc, manganese 

Minerals Found in coarse dusts from quarrying, 

construction and demolition work, e.g. aluminium, 

silicon, iron, calcium 

Precursors of Secondary PM Sources 

SO2 Formed by combustion of sulphur-containing 

fuels, e.g. coal 

NOX Formed by combustion of fuels used in power 

generation, domestic heating, traffic 

NH3 Emitted from agricultural sources, livestock waste 

VOCs Aromatic compounds, e.g. benzene and toluene, 

are generated by traffic and solvents 

Monoterpenes are emitted from vegetation, 

especially conifers and heathers 

 

 

The World Health Organization (WHO) advises there is no safe exposure level 

to PM[51]. Adverse effects on cardiorespiratory health leading to 

hospitalization and even premature mortality have been shown to be 

associated with even relatively low particulate levels, although the most 

serious health problems are among those susceptible groups with pre-existing 

lung or heart disease and/or the elderly and children. The detrimental impact 

of particles is most likely due to their small size, which allows them to deeply 

penetrate the lung. PM can also be absorbed into the bloodstream.  

 

Particulate matter levels can vary according to the weather, time of year, and 

location, with exposure most likely to occur in the summer, when the sun and 
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hot temperatures react with pollution to form smog. UK estimates indicate 

that the short-term exposure to the levels of PM10 experienced in 2002 led to 

6,500 deaths and 6,400 hospital admissions being brought forward that 

year[51], although it is not possible to know by what length of time those 

deaths were brought forward.   

 

Measurements of the concentration of particulate matter in air, such as those 

shown in Figure 6, are made by recording the mass of particulate matter in 

one cubic metre of air, using the units micrograms per cubic metre (µg·m–3). 

Size-selective inlets are used to exclude particles greater than 10 µm from any 

analysis conducted as the air quality objectives are framed in terms of the 

concentration of PM10. Any particulate matter is deposited on a filter, which is 

then weighed to determine the mass of particulate matter that was in that 

volume of air. The reference measurement method for the EU is known as the 

Tapered Element Oscillating Microbalance (TEOM) method. Here, a TEOM 

filter is mounted on a constantly vibrating tapered glass tube. Particles collect 

on the filter resulting in a slowing down of the vibration. This change in 

vibration is then very precisely measured without the need to stop sampling, 

thus giving a continuous measurement of the amount of particulate matter 

being collected[51]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: PM10 emissions in kilotonnes in the UK by source from 1970 to 2001[7] 
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1.3.2 Ammonia (NH3) 

Emissions of NH3 are involved in the following processes: 

• Acidification 

• Nitrification 

• Eutrophication 

• Secondary particulate matter formation. 

 

Agriculture, and in particular cattle and other livestock, is the prominent 

source of NH3 emissions, accounting for 89% of ammonia emissions in 2009[3], 

as illustrated by Figure 7. 

 

1.3.3 Sulphur Dioxide (SO2)  

SO2, along with particulate matter, is involved in the formation of winter–time 

smog. Sulphur dioxide also has adverse health effects causing nerve 

stimulation in the lining of the nose and throat, resulting in irritation, 

coughing and chest tightness. Asthma sufferers are particularly sensitive to 

SO2 concentrations[52].  

 

SO2 can result in the formation of sulphuric acid (H2SO4) in the atmosphere, 

which is a major component of aerosols and an important contributor to acid 

deposition. Sources of SO2 to the atmosphere include emission from 

combustion, smelters, volcanoes, and oxidation of oceanic dimethylsulphide 

((CH3)2S) emitted by phytoplankton. About 75% of total sulphur emission to 

Figure 7: Ammonia emissions from 1980 to 2009[3] 



  Chapter 1: The Atmosphere 

Jaydene Halliday                                                                                                47 | P a g e  
 

the atmosphere is anthropogenic[53]. In 2009, fuel combustion accounted for 

more than 92% of UK SO2 emissions, with the largest contribution being from 

power stations, accounting for 40% of the total in 2009[2]. Figure 8 below 

shows the emissions of SO2 from 1970 to 2009. 

 

 

1.3.4 Nitrogen Oxides (NOX) 

Nitrogen oxides consist of nitric oxide (NO) and nitrogen dioxide (NO2), and 

are formed when N2 combines with O2. These compounds are referred to as 

NOX as they are rapidly inter-converted[54]. Their lifespans in the atmosphere 

range from one to seven days. NO is rapidly oxidized to N2O in air. N2O is a 

greenhouse gas that absorbs light and leads to the yellow-brown haze 

sometimes seen hanging over cities. It is one of the important components of 

smog. NOX are corrosive and hazardous to health, with exposure to high 

industrial levels of NO and NO2 resulting in collapse, burning and swelling of 

tissues in the throat and upper respiratory tract, difficulty breathing, throat 

spasms, fluid build-up in the lungs, and even genetic mutations and death[55]. 

NOXs are also one of the precursors for photochemical ozone formation, and 

they contribute to wet and dry deposition of nitrogen in areas both close to 

and remote from sources.  

 

Nitrogen oxides are produced in combustion processes, partly from nitrogen 

compounds in the fuel, but mostly by direct combination of atmospheric 

oxygen and nitrogen in flames. NOXs are produced naturally by lightning, 

Figure 8: Emissions of SO2 from 1970 to 2009[2] 
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which oxidizes atmospheric N2 to NOX, and also, to a small extent, by microbial 

processes in soils, for example, nitrification oxidizes ammonia to NO2 or NO3, 

and biological growth and decay. Biomass burning, as in forest and grassland 

fires, also oxidizes organic nitrogen to produce NOX[56].  

 

Man-made or anthropogenic emissions of nitrogen oxides dominate total 

emissions in Europe, with the UK emitting about 2.2 million tonnes of NO2 

each year. Of this, about 25% is from power stations, 50% from motor 

vehicles, with vehicles travelling at high speeds contributing most, and the 

remaining 25% from other industrial and domestic combustion processes. Of 

the nitrogen oxides emitted, most is nitric oxide, some is nitrous oxide and 

less than 10% is nitrogen dioxide[4]. The amount of nitrogen dioxide emitted 

varies with the temperature of combustion; as temperature increases so does 

the level of nitrogen dioxide.  

 

Unlike emissions of sulphur dioxide, emissions of nitrogen oxides are only 

falling slowly in the UK, as evidenced by Figure 9, as emission control 

strategies for stationary and mobile sources are offset by increasing numbers 

of road vehicles.  

 

1.3.5 Volatile Organic Compounds (VOCs) 

A vast range of chemicals are emitted and processed in the atmosphere, and 

VOCs are a critical subset. They include: 

Figure 9: Emissions of NOX from 1970 to 2009[4] 
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• Alkanes (or paraffins) 

• Alkenes (or olefins) 

• Saturated and unsaturated alkyl halides 

• Carbonyls 

• Alcohols 

• Aromatic and halogenated aromatic hydrocarbons.  

 

WHO defines VOCs as organic compounds sampled on a solid sorbent and 

having a lower boiling point limit of 50–100 °C and an upper boiling point 

limit of 240–260 °C[57]. The U.S. Environmental Protection Agency (EPA) 

defines them as those C2–C10 substituted and unsubstituted hydrocarbons 

with a vapour pressure greater than 0.1 mm·Hg (0.01 kPa) at 25 °C[57].  

 

VOCs are emitted from either biogenic, or natural, sources or anthropogenic, 

or man-made sources. In the UK it is estimated that less than 5% of the VOCs 

emitted into the atmosphere, i.e. 2.3 million tonnes per year, expressed in 

terms of carbon, are emitted from vegetation. The remainder originates from 

transport and vehicle emissions (both exhaust and evaporative), which have 

been shown to heavily contribute to urban VOC levels, solvent use and other 

industrial processes, such as the manufacture and use of petroleum products, 

biomass burning, landfills, sewage treatment plants[57, 58]. The above 

measurements include only non-methane volatile organic compounds 

(NMVOC). Methane, whilst being a volatile hydrocarbon, is present in the 

atmosphere from natural sources at much larger concentrations than other 

VOCs, and so is generally considered separately. The largest emissions of 

individual VOCs are of the following: 

• Butane 

• Toluene 

• Pentane 

• Propane 

• Ethanol 

• 'White spirit'. 

 

Alkanes account for approximately 50% of gasolines, and 50% of NMVOCs in 

vehicle exhaust and in ambient air in urban areas[59].  

 

Biogenic emissions account for over 90% of total VOCs entering the 

atmosphere[57]. They consist principally of isoprenoids (or terpenoids), 

namely isoprene (a C5 hydrocarbon) and monoterpenes (C10 hydrocarbons 
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such as α-pinene, menthol, and camphor) as well as various aldehydes, 

ketones, organic acids, and alcohols. Because approximately 10% of ozone 

production appears to be due to isoprene chemistry, factors affecting 

emissions of isoprene (e.g. solar radiation, leaf temperature and duration of 

low temperature episodes) have been given particular attention. Algae and 

plankton release a variety of halocarbons found in marine emissions, 

including methyl iodide, methyl bromide, methyl chloride, dibromomethane 

and bromoform. One of the largest sources of chlorine in the stratosphere is 

methyl chloride, thought to arise principally from natural sources. 

  

VOCs have always been the subject of analysis due to their role and 

importance in atmospheric chemistry. However, a clear understanding of the 

role of these compounds in the photo-oxidation mechanism, their distribution, 

variation with time, and health hazards requires long-term monitoring. Short 

term studies provide only limited information about the state of atmosphere 

at a specified time and location. 

 

The monitoring and control of the emission of VOCs into the atmosphere is 

important for a number of reasons. Many VOCs, such as benzene, 1,3-

butadiene, and formaldehyde[60], cause serious health problems in the form of 

toxic, carcinogenic, and mutagenic effects. Studies have shown that VOCs 

contribute to sick building syndrome, and that they may account for 35–55% 

of outdoor air cancer risk. As well as the adverse effects of direct VOC 

emissions, VOCs also heavily contribute to secondary effects, such as the 

formation of ground-level tropospheric photochemical ozone, the 

enhancement of the global greenhouse effect, and the depletion of the 

stratospheric ozone.  

 

Tropospheric ozone is a secondary photochemical pollutant resulting 

primarily from the reaction of VOCs with NOX[43] in the presence of sunlight. It 

is a major component of smog and has adverse effects on human health, 

vegetation and materials.  

 

Different VOCs can produce vastly different amounts of ozone. Ethene (C2H4), 

for example, can produce over 14 times more ozone than ethane (C2H6) under 

the same conditions. While much is known about the general chemical 
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reactions of the most-abundant VOCs in the atmosphere, there is still some 

uncertainty concerning the chemistry of many, less-abundant VOCs, including 

their exact chemical products and subsequent reactions of these products. 

Approximately 87% of the nearly 800 explicit compounds for which 

reactivities are available are estimated as being “uncertain”[42].  

 

1.3.6 Tropospheric Ozone (O3) 

There are two main types of tropospheric ozone, i.e. O3 which occurs naturally 

at ground-level in low concentrations and O3 that is a result of anthropogenic 

activities. The first is formed by biogenic hydrocarbon emissions released by 

plants and soil, and also comprises small amounts of migrated stratospheric 

ozone. Natural ozone formation is of such low levels that it is not considered a 

threat to the health of humans or the environment. 

 

However, the opposite is true for the latter type of ozone. O3 differs from the 

majority of other pollutants in that it is not directly emitted into the 

atmosphere. Rather, tropospheric ozone is formed by the interaction of 

sunlight, particularly ultraviolet light, with hydrocarbons or VOCs and NOx, 

which are emitted as described above. The amount of ozone near the earth's 

surface has more than doubled since 1900, due to human emission of ozone 

precursors, NO, NO2, and VOCs. 

 

The ozone found in the stratosphere shields us from harmful UV radiation, 

however, direct exposure to this irritating, reactive molecule results in 

damage to forests and crops, as well as materials such as nylon, rubber, fibres, 

paints and textile dyes, amongst others. It also destroys living tissue, and so is 

hazardous to human health.  

 

The formation of stratospheric ozone is the result of the photolysis of 

atmospheric oxygen into atomic oxygen in the presence of ultraviolet 

radiation from the sun, as follows: 

 

Equation 1  

O2 + ℎ𝑣 → O(1D) + O(1𝐷)  (λ ≤ 260 nm)[9] 
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O(1D) atoms either react with water vapour to generate OH radicals or are 

deactivated to ground-state oxygen, O(3P) atoms[9]: 

 

Equation 2 

O(1D) + H2O → 2OH 

 
Equation 3 

O(1D) + M → O(3P) + M 
 

Where M = N2 or O2. 

 

O(3P) can then bond with O2 to form ozone: 

 

Equation 4 

O(3P) + O2 + M →  O3 + M 

 
Where M = air. 

 

Ozone can also be formed photochemically by the photolysis of NO2 to give NO 

and an O atom, which then combines with molecular O2 as follows[52]: 

 

Equation 5 

NO2 + ℎ𝑣 → NO + O(3P) (λ ~ 420 nm)[9] 

 
Equation 6 

O(3P) + O2 + M →  O3 + M  (M = air) 

 
This occurs during the day, in the presence of hydrocarbons and UV light. The 

ozone then rapidly reacts with nitric oxide to create nitrogen dioxide and 

oxygen. This process, known as the Chapman Cycle, is illustrated in Figure 10.  

 

Equation 7 

NO + O3  → NO2 + O2 
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This process occurs naturally and means that during daytime hours a 

photoequilibrium (dependent on the amount of sunlight) exists between NO, 

NO2 and O3, with no net formation or loss of O3[9]. Eventually, NO2 is oxidised 

to nitric acid (HNO3) which is either absorbed directly at the ground, is 

converted into nitrate-containing particles, or dissolves in cloud droplets. At 

night, different oxidation processes convert NO2 to nitrates. Upper 

atmospheric sunlight can also split ozone into oxygen atoms and oxygen 

molecules. Excited oxygen atoms can react with other ozone molecules, 

destroying them and creating two new oxygen molecules.  

 

Equation 8 

O3 + ℎ𝑣 →  O2 + O(1D)  (λ ≤ 335 nm)[9] 

 
Equation 9 

O(1D) + O3  →  O2 + O2 

 
Thus, under natural conditions a balance exists between the creation and 

destruction of ozone molecules in the stratosphere. 

NO2 NO 

hv 

O3 

O2 O3 

Figure 10: Schematic of the reactions involved in an NO-to-NO2 conversion and 
O3 formation in an NO-NO2-O3 system in the absence of VOCs[9] 
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1.3.6.1 Formation of Tropospheric Ozone 

In the troposphere, ozone formation is also via the splitting of molecules by 

sunlight, as well as a number of other reaction pathways.  

 

In the presence of VOCs, however, the formation of intermediate 

radicals results. These HO2 and RȮ2 radicals react with NO, converting it 

to NO2: 

 

Equation 10 

HO2 + NO → OH + NO2 

 
Equation 11 

RȮ2 + NO → RȮ + NO2 
 

This then photolyzes to form O3. This overall process results in the net 

formation of ozone, as evidenced by Figure 11. Net photochemical formation 

of tropospheric O3 versus net photochemical loss of O3 is, therefore, 

dependent on the NO concentration, and is determined by the rate of the 

NO2 NO 

hv 

HO2 

R𝐎̇2 

O2 O3 

OH 

R𝐎̇ VOC 

Figure 11: Schematic of the reactions involved in NO-to-NO2 conversion and O3 
formation in an NO-NO2-O3 system in the presence of VOCs[9] 
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reaction of the HO2 and RȮ2 radicals with NO, compared to those for reactions 

of the RȮ2 radical with the HO2 radical: 

 

Equation 12 

RȮ2 + HO2  → ROOH + O2 
 

A general VOC degradation/transformation reaction scheme is illustrated in 

Figure 12.  

 

The simplest VOC degradation scheme is that for methane. The tropospheric 

degradation of methane in the presence of NO leading to first-generation 

products is as follows: 

 

Equation 13 

OH + CH4 →  H2O +  ĊH3 

 
Equation 14 

ĊH3 + O2  
M
→  CH3Ȯ2 

NO2 
R𝐎̇𝟐 

𝐑̇ 

products 

HO2 

OH 

R𝐎̇ 

VOC 

O2 

R𝐎̇ 

ROONO2 

NO 
RONO2 

R𝐎̇𝟐 

ROOH 

Carbonyl 
 + alcohol 

Figure 12: A typical VOC degradation scheme[9] 
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Equation 15 

CH3Ȯ2 + NO → CH3Ȯ + NO2 

 
Equation 16 

CH3Ȯ + O2  → HCHO + HO2 
 

Equation 17 

HO2 + NO → OH + NO2 
 

This gives a net equation of: 

 

Equation 18 

OH + CH4 + 2NO + 202  → OH + HCHO + H2O + 2NO2 
 

Thus, it is clear to see that the only way to reduce ozone is to reduce the 

emissions of its precursors. As such, VOC monitoring and research towards 

the understanding of the degradation and transformation reactions of VOCs 

within the troposphere is vital. This research allows for the ranking of 

individual VOCs by their photochemical ozone creating potential (POCP)[61], 

and enables prioritization of time, money and efforts with regard to the 

analysis of VOCs of importance.  

 

1.4 A Summary 
In order to establish a clear understanding of each of the above detailed 

compounds in terms of their distribution, variation with time, mechanisms, 

and, importantly, the health hazards they pose, a mixture of long and short 

term monitoring of the atmosphere is required. To date, control strategies for 

ozone precursors, NOX, and VOCs have contributed to the reduction in 

emissions of these compounds, and consequently in the overall reduction of 

observed peak ozone concentrations at monitoring sites throughout the UK[62].  

 

The challenge, however, is still to detect trace amounts of VOCs and other 

atmospheric pollutants in complex matrices, such as air, with sufficient 

sensitivity. Generally, pre-concentration of the analytes of interest on a 
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sorbent material is used, followed by the separation and detection of the 

compounds via gas chromatography-flame ionisation detection (GC-FID) or 

gas chromatography-mass spectrometry (GC-MS), after thermal desorption or 

solvent extraction. Gas chromatography is the most widely used 

chromatographic technique for environmental and atmospheric analyses, and 

its use has been reported in countless journal articles across the world, with 

just a select few being referenced here[57-60, 63, 64]. 
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2.0 Chromatography 

 

2.1 The History of Chromatography 
The origin of the term ‘chromatography’ can be traced back to 1906, when the 

Russian botanist Mikhail Tswett first used it to describe the separation that 

occurred when solutions of chlorophylls, xanthophylls, and other plant 

pigments were passed through glass columns of finely divided calcium 

carbonate or alumina using petroleum ether.  The separated species appeared 

as coloured bands on the column, inspiring him to name the technique 

chromatography by fusing the Greek words chroma, meaning ‘colour’, and 

graphein, meaning to ‘write’. However, as Tswett went on to detail in his 

published work, “...it is obvious that the adsorption phenomena described are 

characteristic not only for chlorophyll pigments; it is evident that different 

coloured and colourless compounds follow the same regularities.”[1, 2] 

 

Since the early 20th Century, the applications of chromatography have grown 

explosively, with the two main categories of chromatography being Gas 

Chromatography (GC) and High Performance Liquid Chromatography (HPLC). 

This mammoth growth can be attested to a number of things, including the 

development of several new types of chromatographic techniques, as well as 

the mounting need by scientists for better approaches to characterising 

complex mixtures. Chromatography, as a whole, has evolved into an extremely 

powerful separation tool that finds application to all branches of science. 

 

Chromatography can be characterized in two ways, based upon the following: 

1. The physical means by which the stationary phase and mobile phases 

are brought into contact. An example of this would be column 

chromatography. Here the stationary phase is held in a narrow tube 

through which the mobile phase is forced under pressure. Planar 

chromatography would be a second example. In this instance, the 

stationary phase is supported on a flat plate.  The equilibria upon 

which these two types of chromatography are based are identical and 

the theory developed for column chromatography is readily adapted 

to planar chromatography.   
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2. The types of mobile and stationary phases, and the kinds of equilibria 

involved in the transfer of solutes between phases.  

 

The latter is a more fundamental classification of chromatographic methods, 

and there are three general categories of chromatography within it, i.e.  

• Liquid chromatography (LC) 

• Gas chromatography (GC) 

• Supercritical-fluid chromatography (SFC). 

 

As implied by their names, the mobile phases in the three techniques are 

liquids, gases and supercritical fluids, respectively.  

 

In all chromatographic separations the sample is transported in a mobile 

phase, which is then forced through an immiscible stationary phase fixed in 

place in a column or on a solid surface. The two phases are chosen to enable 

the sample components to distribute themselves between the mobile and 

stationary phase to varying degrees. Slow movement with the flow of mobile 

phase is achieved for those components that are strongly retained by the 

stationary phase, whilst components that are weakly held by the stationary 

phase travel rapidly. The differences in mobility observed result in sample 

components separating into discrete bands or zones that can then be analysed 

qualitatively and/or quantitatively[3]. 

 

2.2 Gas Chromatography 
The invention of GC as an analytical technical was pioneered by A.T. James and 

A.J.P. Martin, who, in 1952, reported the separation of methylamines, and later 

volatile fatty acids, by partition chromatography, using nitrogen gas as the 

mobile phase, silicone oil/stearic acid supported on diatomaceous earth as 

stationary phase, and a test tube containing indicator solution for detection. 

The determination was by discontinuous titration [2, 4, 5]. This work was based 

on a visionary proposal by Martin and his colleague R.L.M. Synge in a 1941 

publication in which he states, "... the mobile phase need not to be a liquid but 

may be a vapour . . . . Very refined separations of volatile substances should 

therefore be possible in a column in which permanent gas is made to flow over 

gel impregnated with a non-volatile solvent"[6]. This same work, which later 

won the authors the 1952 Nobel Prize for Chemistry, also anticipated the 
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separation of chiral compounds and isotopes, as well as predicting HPLC by 

stating the desirability of using very small particles for the stationary phase[7]. 

 

The 1950s saw GC spread into research institutes, academic and university 

laboratories, as well as in heavy industry and public health laboratories[2]. 

 

Table 3: A classification of chromatographic techniques 

General  

Classification 

Specific  

Method 

Stationary  

Phase 
Type of Equilibrium 

Liquid Chromatography 

(LC) (mobile phase: liquid) 

Liquid-liquid, 

or partition 

Liquid adsorbed on 

a solid 

Partition between 

immiscible liquids 

 
Liquid-

bonded phase 

Organic species 

bonded to a solid 

surface 

Partition between 

liquid and bonded 

surface 

 Liquid-solid, 

or adsorption 
Solid Adsorption 

 Ion exchange Ion exchange resin Ion exchange 

 
Size exclusion 

Liquid interstices of 

a polymeric solid 
Partition/sieving 

Gas Chromatography 

(GC) (mobile phase: gas) 
Gas-liquid 

Liquid adsorbed on 

a solid 

Partition between 

gas and liquid 

 
Gas-bonded 

phase 

Organic species 

bonded to a solid 

surface 

Partition between 

liquid and bonded 

surface 

 Gas-solid Solid Adsorption 

Supercritical-Fluid 

Chromatography (SFC) 
(mobile phase: super-

critical fluid) 

 

Organic species 

bonded to a solid 

surface 

Partition between 

supercritical fluid 

and bonded surface 

 

 

Petrochemical labs, facing the challenge of analysing complex hydrocarbon 

mixtures, recognized the importance of GC almost immediately. The analytical 

controls of the time could no longer keep up with the new processes in 

petroleum refining, and gas chromatography provided the essential solution 
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to the problems faced by this industry by providing a simple and sensitive 

method for the analysis of volatile compounds[8, 9].  

 

The next big step in the evolution of GC was the invention of capillary 

columns. Martin first suggested the use of capillary columns at a meeting in 

1956, however, the idea was independently realised and demonstrated by 

Marcel Golay in 1957[10].  Soon after this, Desty and co-workers, who had 

already made major contributions to the development of GC in the UK, 

constructed the first glass capillary drawing machine[11]. Glass proved to be a 

more practical material for the construction of capillary columns in 

comparison to its predecessors, copper, cupronickel, stainless steel, and nylon. 

This was because it resulted in less adsorption of analytes onto the column 

wall. Glass was, however, not without its disadvantages. The most noticeable 

drawback being difficulties in everyday use, as these columns were both 

fragile and inflexible. 20 years of development followed on various methods of 

coating glass capillaries, with a number proving to be quite effective, such as 

etching the surface with acid. 1979 saw the introduction of fused-silica 

capillary columns by Dandeneau and Zerenner[7, 12].  These flexible columns 

were based on fibre optic technology and were coated directly after drawing 

with polymer heat-resistant coatings[13]. The debut of these columns saw the 

start of modern gas chromatography as it is known today. 

 

GC analytes of interest are generally organic compounds which are volatile 

enough to be vaporised at a temperature (usually) below 400 °C, and stable 

enough to not decompose at this temperature. Analytes will thus typically 

have a significant vapour pressure below 250 °C, and a molecular weight 

under 500 Da. Only about 20% of known organic compounds can be analysed 

by gas chromatography without prior treatment[14]. Problem analytes could 

have one or more of the following properties: 

• Thermal lability: These analytes decompose in the hot GC system. 

• High molecular weight: These are subject to discrimination due to 

their lower volatility. 

• Trace concentration: These analytes are difficult to detect, 

particularly in dirty samples. 

• High activity: These can be irreversibly adsorbed or broken down 

within the system.  
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In general, these compounds require more care when choosing and optimising 

the analytical system.  

 

Derivatization to increase volatility is a common pre-step to many GC 

analyses. It involves chemically altering an analyte to impart favourable 

chromatographic behaviour. Low volatility may result from the size of a 

molecule and the resultant large dispersion forces holding it together. Smaller 

molecules may have a low volatility due to the strong intermolecular 

attractions between polar groups. Polar samples tend to adsorb on the active 

surfaces of the column walls and the solid support. By masking or eliminating 

the presence of polar OH, NH, and SH groups, derivatization can yield dramatic 

increases in volatility. The technique can also be used to decrease volatility, 

thus allowing analysis of very low molecular weight compounds, aiding in the 

separation of sample peaks from the solvent peak, increasing the detectability 

of compounds such as steroids and cholesterol, increasing stability to prevent 

thermal decomposition, and enhancing sensitivity for Electron Capture 

Detection (ECD) by introducing halogenated substituents[15, 16]. While, 

derivatization serves to accentuate the differences in the sample compounds 

to facilitate the chromatographic separation, it can be cumbersome and 

introduces the possibility of quantitative errors.  

 

Typical subjects of derivatization include alcohols, phenols, amines, amides, 

and carboxylic acids. Types of derivatization include: 

• Silylation, which readily volatizes the sample, and is the most 

prevalent method used 

• Alkylation, which is generally used as the first step to further 

derivatizations or as a method of protection of certain active 

hydrogens 

• Acylation, which is a method commonly used to add fluorinated 

groups.  

 

2.3 Principles of Chromatography 
There are two approaches that can be taken to explain the separation process 

that occurs within a gas chromatographic column: 
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1. Plate theory: This theory was proposed in 1941 by Martin and 

Synge, and was based on an analogy with distillation and counter 

current extraction. 

2. Rate theory: This was proposed in 1956 by J.J. van Deemter, and 

accounts for the dynamics of a separation. 

 

2.3.1 The Partition Coefficient (K) 

In plate theory, the chromatographic column is treated as though it were a 

static system in equilibrium. Each analyte will exhibit an equilibrium between 

the mobile phase and the stationary phase, such as that shown below for a 

solute species A. 

 

Equation 19 

Amobile  ↔  Astationary 

 

The equilibrium constant (K) for this reaction, also known as the partition 

coefficient, is defined as: 

 

Equation 20 

K =  
CS
CM

 

 
Where: 

• CS = the molar concentration of the solute in the stationary phase 

• CM = its molar concentration in the mobile phase.  

 

Ideally, K is constant over a wide range of solute concentrations. 

 

Figure 13 shows a typical chromatogram for a sample containing a single 

analyte. The time it takes after sample injection for the analyte peak to reach 

the detector is called the retention time (tR). The small peak on the left is for a 

species that is not retained by the column. This could be from either the 

sample or the mobile phase. The dead time (tM) is the time it takes for the 

unretained species to reach the detector.  
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Table 4: Typical GC Applications 

Pharmaceutical Industry

 

• Analysis of residual solvents in raw 

materials and finished products 

• Urine drug screens for barbiturates 

and underivatized drugs 

• Ethylene oxide analysis in sterilized 

products, such as sutures 

Foods/Flavours/Fragrances 

 

• Quality testing 

• Solvents testing 

• Fingerprinting of fragrances for 

characterization 

Petrochemical 

 

• Natural gas analysis 

• Gasoline characterization 

• Fraction quantitation 

• Analysis of aromatics in benzene 

• Mapping of oil reserves 

• Tracing of reservoirs 

Chemical/Industrial 

 

• Determination of product content 

• Determination of purity 

• Monitoring production processes 

• Detection of organic acids, alcohols, 

amines, esters, and solvents. 

Environmental 

 

• Detection of pollutants such as 

pesticides, fungicides, herbicides, 

purgeable aromatics 

• Monitoring of stack and waste 

emissions 

• Monitoring of water discharges 
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The dead time is also equivalent to the time required for an average molecule 

of the mobile phase to pass through the column. 

 

The average linear rate of solute migration (v�) is: 

 

Equation 21 

v� =
L
tR

 

Where: 

• L = the length of the column in metres (m). 

 

Similarly, the average linear rate of movement u�  of the molecules of the mobile 

phase is: 

 

Equation 22 

u� =  
L

tM
 

 

In order to relate the retention time of a solute to its distribution constant, its 

migration rate is expressed as a fraction of the velocity of the mobile phase: 

 

tR 

tM 

Figure 13: A typical chromatogram for a two-component mixture where the small 
peak on the left represents a species that is not retained on the column 
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Equation 23 

v� =  u�  ×  fraction of time solute spends in mobile phase 

 
This fraction, however, also equals the average number of moles of a solute in 

the mobile phase at any instant divided by the total number of moles of that 

solute in the column: 

 

Equation 24 

v� = u�  ×  
moles of solute in mobile phase

total moles of solute  

 

As: 

• moles of solute in mobile phase =  CMVM 

• moles of solute in stationary phase =  CSVS 

 
Therefore: 

 

Equation 25 

v� = u�  ×  
CMVM

CMVM +  CVS
= u�  ×  

1
1 + CSVS/CMVM

 

 

An  expression for the rate of solute migration as a function of its distribution 

constant and as a function of the volumes of the stationary phase and mobile 

phase can then be derived by substitution of Equation 20 into the above 

equation, giving[3]: 

 

Equation 26 

v� = u�  ×  
1

1 + KVs/VM
 

 

2.3.2 The Retention Factor (k’) 

The retention factor, or capacity factor is a means of measuring the retention 

of an analyte on the chromatographic column[17]. For a solute A, the capacity 

factor k’A is defined as: 
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Equation 27 

k′A =  
KAVS

VM
 

 

Where KA is the distribution constant for the species A. Substitution of the 

above equation into Equation 26 yields: 

 

Equation 28 

v� = u�  ×  
1

1 + k′A
 

 

It is possible for k’A to be derived from a chromatogram. This can be done by 

substituting Equation 21 and Equation 22 into Equation 28 to give: 

 

Equation 29 

L
tR

=  
L

tM
 ×  

1
1 + k′A

 

 

This can be rearranged to give: 

 

Equation 30 

k′A =  
tR −  tM

tM
 

 

k’ values of approximately 10 or over are not ideal as the sample is highly 

retained and will spend a significant amount of time interacting with the 

stationary phase. This generally means that elution times are long, and the 

peaks may be broad and over resolved. Thus, increasing retention above a k' 

value of 10 only provides minimal increases in resolution. A low k' value of 1 

or less implies peaks are eluted too rapidly with no time for separation. 

 

The optimum region is 2<k'<10, and the most effective and convenient way to 

alter and control the retention factor of a peak is to adjust the temperature of 

the mobile phase. The retention factor decreases as temperature increases, 

with an inversely proportional relationship: 
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Equation 31 

ln k′ ∝  
1
T 

 

Thus, decreasing the temperature results in a decrease in the relative amount 

of analyte in the mobile phase and an increase in the retention factor and 

retention time. This is described by the Clausius-Clapeyron and Van’t Hoff 

equations shown below:  

 

Equation 32: The Clausius-Clapeyron Equation 

 

log p0 =  
−∆H

2.3 RT + const. 

 

Equation 33: The Van’t Hoff Equation 

 

d ln k
dT =  

∆H
RT2 

 

Where:  

• p0 = analyte vapour pressure at a given absolute temperature, T (K)  

• ∆H = enthalpy of vapourisation at absolute temperature, T (K) 

• R = the gas constant, i.e. 8.314472 J·K-1·mol-1 

xxx 

 
Figure 14: Effect of k' on resolution 
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The Clausius-Clapeyron Equation shows that as temperature decreases, the 

analyte vapour pressure also decreases �−1
𝑇
�. As the analyte vapour pressure 

decreases it partitions more readily into the stationary phase and is retarded 

in the column longer, hence its retention factor and retention time 

increases[18].  

 

The Van’t Hoff Equation indicates that as temperature is increased the natural 

logartithm of the retention factor  increases, which is a direct proportionality 

between retention and temperature[19].  

 

Other variables that affect the retention factor include the chemical nature of 

the stationary phase, which will be discussed in more detail further on, as well 

as the ratio between the amounts of carrier and stationary phase inside the GC 

column, i.e. the phase ratio (β). These parameters, however, involve changing 

the GC column and are, therefore, less convenient than temperature for 

changing retention factor. 

 

2.3.3 Phase Ratio (β) 

The term phase ratio (β) is used to describe the relationship between column 

radius (r), or internal diameter (I.D.), and film thickness (df), as they are 

related to separation efficiency (N). Phase ratio can be calculated using the 

following equation:  

 

Equation 34 

β =  
r

2df
=  

I. D.
4df

 

 

The phase ratio of a column is effectively a measure of the stationary phase to 

mobile phase ratio at any point in the column.   

 

As: 

 

Equation 35 

K =  
CS
CM

= k′β = k′ �
r

2df
� 
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It is clear that increasing the phase ratio will result in decreased analyte 

retention. Inversely, if the phase ratio is decreased, analyte retention will 

increase. The phase ratio can be increased/decreased by increasing/reducing 

the column internal diameter or increasing/decreasing the film thickness 

respectively. Decreasing the phase ratio will also result in an increase in 

column capacity.  

 

The table below shows some common phase ratios for various combinations 

of film thickness and internal diameter: 

 

Table 5: Common phase ratios 

Column I.D. (µm) 
Film Thickness (mm) 

0.10 0.25 0.50 1.0 

0.10 250 100 50 25 

0.25 625 250 125 63 

0.32 800 320 160 80 

0.53 1325 530 265 133 

 

 

It is possible to change column diameter or film thickness to obtain a specific 

effect, such as an increase in efficiency, without changing retention time. This 

can be accomplished by proportionate changes in both column diameter and 

film thickness. Reducing the column internal diameter would lead to increased 

analysis time at constant pressure and temperature. However, reducing the 

stationary phase film thickness would result in the phase ratio remaining 

approximately constant, and the net result of a more efficient separation 

within the same timescale as the original separation. 

 

Generally, for low boiling point compounds a low phase ratio is best, whereas 

for higher boiling point compounds a higher phase ratio is desirable. 

 

2.3.4 The Selectivity Factor (α) 

The selectivity or separation factor (α) defines the ability of the 

chromatographic system to chemically distinguish between sample 

components. It is usually measured as a ratio of the capacity factors of the two 
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peaks in question and can be visualised as the distance between the apexes of 

two peaks.  

 

Equation 36 

∝ =  
k′2
k′1

=  
tR2 −  t0
tR1 −  t0

 

 

Selectivity values between the peak of interest and the proceeding peak are 

quoted. A high α value is indicative of a good separation between the apexes of 

each peak. The selectivity between separated peaks will always be greater 

than 1.0, as being equal to 1.0 would imply that the two peaks are co-eluting. 

The greater the selectivity value, the further apart the apexes of the two peaks. 

An increase of selectivity to above 1.0 results in a substantial improvement of 

Inject 

tR2 

tR1 

t0 

Figure 15: Selectivity factor 
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Figure 16: Resolution as a function of selectivity 
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resolution. Selectivity is dictated by the stationary phase chemistry, the 

column temperature, and the phase ratio. Small changes in selectivity lead to 

large changes in resolution, thus changing the selectivity of a system provides 

an excellent means of optimising the chromatographic resolution. In fact, a 4% 

increase in selectivity results in a resolution increase of over one order of 

magnitude. 

 

Table 6: Parameters capable of altering selectivity 

Parameter Usage 

Oven Temperature 

and Ramp Rate 

• Less predictable than other parameters but 

highly convenient 

Stationary Phase • The most powerful way to alter selectivity 

in GC analysis 

Phase Ratio (β) • Alters the distribution constant of analyte 

molecules, which affects the selectivity of a 

separation 

 

 

2.3.5 The Efficiency Factor (N) 

The column efficiency of a gas chromatography column is gauged by the 

number of theoretical plates (N) it possesses. The concept of a plate was 

derived from an analogy of Martin and Synge who likened column efficiency to 

fractional distillation, where the column is divided into "theoretical plates". 

Each plate is the distance over which the sample components achieve one 

equilibration between the stationary and mobile phase in the column. 

Therefore, the more theoretical plates available within a column, the more 

equilibrations are possible, and the better quality the separation. Efficiency 

may be calculated by determining the ratio of the retention time and the width 

of the peak of interest. 

 

Equation 37 

N =  �
tR
σ �

2
= 16 �

tR
wb

�
2

= 5.54 �
tR
wh

�
2

 

 

The measurement of σ can be made at different heights on the peak. At the 
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base of the peak wb is 4σ, so the numerical constant is 42 or 16. At half height, 

wh is 2.354σ and the constant becomes 5.54. The width at half-height is more 

easily measured than the width at the base, as it overcomes problems 

associated with peak tailing and non-baseline resolved peaks. GC separations 

are primarily driven by the efficiency of the columns used, and columns with 

high plate numbers are considered to be more efficient than columns with a 

lower plate count. This is because they will have a narrower peak at a given 

retention time than a column with a lower N number. This means that less 

peak separation, i.e. lower α, is required to completely resolve narrow peaks. 

The biggest contributor to lower efficiency, and hence band broadening, is 

usually the column itself. The column length, whether it is packed or capillary, 

the film thickness, internal diameter and the quality of either the column 

packing or column coating, all play a part in determining the column 

efficiency. Several other factors also need to be taken into account, including: 

• Injection volume 

• Dead volumes in the injector or detector, especially the column 

couplings  

• Flow rate  

• Type of carrier gas used. 

 

The number of theoretical plates per metre (N·m-1) is often calculated in order 

to compare columns run under the same temperature conditions and with the 

same peak retention. However, results are only valid for isothermal 

temperature conditions, as temperature programs result in highly inflated, 

inaccurate plate numbers. Another condition is that the retention factor of the 

test solute used to calculate the plate number is greater than 5. 

 

A second measure of column efficiency is the height equivalent to a theoretical 

plate (H), calculated using the equation shown below. The shorter each 

theoretical plate, the more plates are contained within any length of column, 

thus the more plates per metre, the higher the column efficiency. 

 

Equation 38 

H =  
L
N 
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Figure 17 demonstrates that an increase in resolution follows an 

approximately straight line as efficiency is increased. Doubling the efficiency 

will only result in an increase of the resolution factor by a factor of √2, i.e. 

1.42, and will also mean a doubling of the analysis time and the cost of the 

column. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.6 Band Broadening 

Band broadening is a phenomenon that reduces the efficiency of a GC 

separation leading to reduced resolution and poor chromatographic 

performance. This is problematic in terms of both the quality of the separation 

obtained and the accuracy with which sample components can be quantified.  

The degree of band broadening naturally increases with the age of the 

chromatography column being used, but strategies exist to slow these 

processes and to optimise column and instrument performance to ensure 

maximum efficiency and, hence, minimum band broadening.  

 

Table 7: Typical column efficiency measures for a standard 30 m 

polydimethylsiloxane column 

Column I.D. (mm) N·m-1 N·columns-1 

0.10 10,000 300,000 

0.20 4,500 135,000 

0.32 3,200 96,000 

0.53 1,500 45,000 
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Figure 17: Resolution as a function of efficiency 
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In 1956, J.J. van Deemter derived an equation that included the main factors 

contributing to column band broadening relevant to packed GC and LC 

columns. He described the individual terms, A, B and C, and also derived a 

composite curve which related plate height (H) to linear velocity (u�) of the 

mobile phase flowing through the column.  

 

2.3.6.1 The van Deemter Equation 

The van Deemter Equation is shown below: 

 

Equation 39 

H = A + 
B
u� + Cu� 

 
Where: 

• A = The Eddy Diffusion term 

• B = The Longitudinal Diffusion term 

• C = The Mass Transfer term 

• u�  = The linear velocity of the mobile phase in mm·sec-1. 

 

Since plate height is inversely proportional to plate number, a small value 

indicates a narrow peak, which is the desirable condition. Thus, each of the 
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Figure 18: A van Deemter plot for a packed column illustrating the 
relationship of A, B, and C with linear velocity, and the corresponding 
effect on H 
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three constants, A, B, and C, should be minimised in order to maximise column 

efficiency. 

 

Eddy Diffusion, A 

The first of the factors relating to band broadening is that of Eddy Diffusion, 

i.e. the A term. The A term accounts for the fact that an analyte molecule 

within a band of analytes can take one of many paths through a packed 

column. These multiple paths arise due to inhomogeneities in column packing 

and the particle size of the packing material. The length of these pathways can 

differ significantly, thus, the residence time in the column will vary for 

molecules of the same species. This multiple path effect tends to make the 

band of analytes broader as it moves through the column. The Eddy Diffusion 

term in the van Deemter equation essentially reflects the quality of column 

packing, and is directly proportional to the diameter of the particles making 

up the packing.  

 

Eddy Diffusion can be minimised by: 

• Selecting tightly packed columns 

• Using smaller stationary phase particles 

• Using particles with a narrow size distribution. 
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Figure 19: A comparison of Eddy Diffusion occurring within a column 
with large packing particles, as well as one with small packing materials 
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Longitudinal Diffusion, B/𝒖� 

A band of analyte molecules contained in a fluid or gaseous mobile phase will 

disperse in every direction due to the concentration gradient at the outer 

edges of the band. This process of the analyte band broadening is referred to 

as Longitudinal Diffusion. Solutes diffuse from the concentrated centre of a 

zone to the more dilute regions ahead and behind the zone centre, i.e. toward 

and away from the direction of flow of the mobile phase.  The diffusion 

process is random in nature, resulting in a concentration curve that is 

Gaussian in form[17]. The extent of the sample plug diffusion is directly related 

to the length of time that the solute band remains in the column, i.e. the longer 

a column, the longer the sample with stay within it and the more diffuse it will 

become. The consequence of this is a broader resulting peak. This time is 

inversely proportional to the mobile phase velocity, indicating that the 

dispersion will also be inversely proportional to the mobile phase velocity.  

 

Longitudinal diffusion also occurs in all areas of the GC system where internal 

volumes are larger than necessary, for example: 

• Injection liners that are too large  

• Non-optimised splitless injection conditions  

• Columns incorrectly installed in the injector and/or the detector. 
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Figure 20: The effect of the A term on the height equivalent to a 
theoretical plate at given linear velocities 
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As longitudinal diffusion has a much larger effect at low mobile phase velocity 

or flow, using high linear velocity, will reduce its band broadening effects.  

Longitudinal diffusion can be minimised by: 

• Using shorter or small I.D. columns 

• Using higher mobile phase flow rates 

• Ensuring the inlet liner and temperature are appropriate 

• Ensuring the column is properly installed into the injector and 

detector 

• Using carrier gas with a low diffusion coefficient. 

 

Mass Transfer, C𝒖� 

The C term in the van Deemter equation relates to the mass transfer of the 

solute in the mobile phase or the stationary phase. During passage through a 

column, the analyte molecules are constantly and reversibly transferring from 

the mobile phase to the stationary phase. This process, however, is not 

instantaneous, and a certain amount of time is required for the molecules to 
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Figure 21: A schematic illustration of longitudinal diffusion 
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Figure 22: Effect of longitudinal diffusion on height equivalent to a 
theoretical plate at given linear velocities 



  Chapter 2: Chromatography 

Jaydene Halliday                                                                                             84 | P a g e  
 

diffuse through the mobile phase to the interface before entering the 

stationary phase.  

 

On injection into the column, any molecules near the stationary phase will 

enter it immediately. Those molecules some distance away will travel for a 

period of time before encountering the stationary phase. As the mobile phase 

is constantly flowing forward, the molecules that remain in it are quickly 

swept along the column, whilst the molecules that entered the stationary 

phase slowly diffuse through it. When the faster moving molecules finally 

reach the interface, they enter the stationary phase a considerable distance 

ahead of the molecules still within it. This process repeats itself throughout 

the length of the column, with the analyte band in the mobile phase being 

propelled along the column by the mobile phase, and analyte molecules at the 

front of the band partitioning into the stationary phase and those at the rear of 

the band partitioning out. The faster this process happens, the narrower the 

resulting peak width. 

Stationary phase mass transfer can be minimised by:  

• Using thin stationary phase films 

• Using temperature programming to ensure all analytes elute within a 

reasonable time (k’<20) 

 

Mobile phase mass transfer effects can be minimised by: 

• Using small internal diameter columns, thus reducing the mass 

transfer distances.  

Net motion of 
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STATIONARY phase 
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equilibrium at this 
point 

Mobile phase flow 
disturbs equilibrium 
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Figure 23: An illustration of mass transfer 



  Chapter 2: Chromatography 

Jaydene Halliday                                                                                             85 | P a g e  
 

 

2.3.6.2 The Golay Equation 

In 1958, Golay described a similar relationship to deal with capillary gas 

chromatography columns, which contain no packing material and therefore do 

not possess an Eddy Diffusion or A term. The Golay equation contains only 

three functions. One describing dispersion from longitudinal diffusion and two 

describing dispersion from the resistance to mass transfer in the mobile and 

stationary phases, respectively[17, 20].  

 

Equation 40 

H =  B
u�

+  (Cs + Cm)u� 

Linear Velocity, 𝒖� (cm·sec-1) 
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Figure 25: A Golay Plot showing the relationship between CM, CS, and B 
with linear velocity, and the effect these factors have on H, within a 
capillary column 
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Figure 24: The effect of mass transfer on height equivalent to a 
theoretical plate for given linear velocities 
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2.3.7 Chromatographic Resolution 

The most important thing in chromatography is to obtain the optimum 

resolution in the minimum time. The resolution (RS) of a column provides a 

quantitative measure of its ability to separate two analytes. Column resolution 

is defined as: 

 

Equation 41 

𝐑𝐒 =  
∆𝐙

𝐖𝐀
𝟐 + 𝐖𝐁

𝟐  
=  

𝟐∆𝐙
𝐖𝐀 + 𝐖𝐁

=  
𝟐[(𝐭𝐑)𝐁 −  (𝐭𝐑)𝐀]

𝐖𝐀 + 𝐖𝐁
 

 

Baseline resolution usually occurs at an Rs value of 1.5. Values greater than 1.5 

indicate visible baseline between the peaks, whilst a value of less than 1.5 

indicates that there is some degree of co-elution. A resolution value of 1.5 or 

greater ensures that the area or height of each peak may be accurately 

measured. The identification of specific peaks by their retention times 

becomes more certain as resolution increases. 

 

2.3.7.1 The Fundamental Resolution Equation 

A mathematical relationship exists between the resolution of a column (Rs,), 

the retention factor (k’A and k’B) for two solutes, the selectivity factor (α), and 

the number of plates (N). For two solutes A and B having retention times that 

are close enough to one another to assume that: 

 

Equation 42 

𝑊𝐴 =  𝑊𝐵  ≈ 𝑊 
 

Equation 41 then takes the form: 

 

Equation 43 

RS =  
(tR)B −  (tR)A

W  

 
Equation 36 permits the expression of W in terms of (tR) and N, which can 

then be substituted into the above equation to give: 
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Equation 44 

RS =  
(tR)B −  (tR)A

(tR)B
 ×  

√N
4  

 
Substituting Equation 30 and rearranging leads to an expression for RS in 

terms of the retention factors for A and B, i.e.: 

 

Equation 45 

RS =  
k′B −  k′A
1 + k′B

 ×  
√N
4  

tM 

(tR)A R
S
 = 1.5 

R
S
 = 0.75 
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S
 = 1.0 
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Figure 26: Separation at three resolutions 
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As: 

 

Equation 46 

α =  
k′B
k′A

 

 

It is possible to eliminate k’A from Equation 46 by substituting the above 

equation and rearranging to give the following: 

 

Equation 47 

Rs       =        
1
4√N       ×       

∝  −1
∝        ×        

k′B
1 + k′B

 

 

This can be simplified further when this equation is applied to a pair of solutes 

whose distribution constants are similar enough to make their separation 

difficult. Thus, when 𝐾𝐴 ≈  𝐾𝐵, it follows from Equation 9 that 𝑘′𝐴  ≈  𝑘′𝐵 = 𝑘′, 

and from the equation below that α = 1.  

 

Equation 48 

α =  
KB

KA
 

 
This results in the Fundamental Resolution Equation: 

 

Equation 49 

𝐑𝐬       =        
𝟏
𝟒√𝐍        ×       𝛂 − 𝟏       ×        

𝐤′
𝟏 + 𝐤′ 

 

 

 

The above equation highlights how resolution is affected by efficiency, 

selectivity and retention.  

 

 

 

Efficiency Selectivity Retention 
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2.4 The Gas Chromatograph      

Since the technique was first introduced in 1951, GC instrumentation has 

continuously evolved. Most modern commercial GC systems operate in the 

following way:  

1. An inert carrier gas, also known as the mobile phase, is supplied from a 

gas cylinder or gas generator to the GC where the pressure is regulated 

using manual or electronic (pneumatic) pressure controls.  

2. The flow controller provides precise control of the carrier gas into the GC 

system. 

3. The regulated carrier gas is supplied to the inlet and subsequently flows 

through the column and into the detector.  

4. The sample is injected into the injection port, which is usually heated, via 

an autosampler or by manual injection. The sample is then volatilised and 

a representative portion is carried onto the column by the carrier gas.  

5. The sample is separated inside the column by differential partitioning of 

the analytes between the mobile and stationary phases, as described. This 

is based on relative vapour pressure and solubility in the immobilised 

liquid stationary phase.  

6. The column oven controls the GC column temperature. The oven heats 

rapidly to give excellent thermal control, and is cooled using a fan and vent 

arrangement.  

7. On elution from the column, the carrier gas and analytes pass into a 

detector which responds to some physico-chemical property of the analyte 

and generates an electronic signal measuring the amount of analyte 

present.  

Retention 
Selectivity 

Efficiency 

Figure 27: The main factors effecting resolution 
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8. The signal is then amplified and sent to the data system, which converts 

the electrical signals produced by the detector into a chromatogram. The 

data system can also be used to perform various quantitative and 

qualitative operations on the chromatogram[3, 18, 21].  

 

A critical factor in GC analysis is that all components in the flow path of the 

sample, i.e. inlet, column oven, column and detector, are set to an appropriate 

temperature to allow all sample compounds to move through the system in 

the gas phase. 

 

2.4.1 The Carrier Gas Supply 

Modern GCs may require several different gases in order to operate. The 

function of the carrier gas is to transport vaporised sample onto the GC 

column, through the column and into the detector without reacting with the 

analyte molecules. The nature of the gas required is dictated by the type of 

inlet, column and detector system used. The main criteria, however, are that it 

is of high purity, is suitably inert to not react with the stationary phase or the 

sample components, and that it is appropriate for the type of detector used. 

Different carrier gas types are suited to either packed or capillary GC columns 

due to the variation in linear velocity of the carrier through the columns of 

different internal diameter (typically 0.32 mm for capillary columns and 4 mm 

Injector 
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Figure 28: A typical gas chromatograph 
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for packed columns). Three of the most commonly used carrier gases are 

helium (He), nitrogen (N2) and hydrogen (H2).  

 

Helium can be used for either packed or capillary columns, and is the most 

commonly used carrier gas for the latter. Nitrogen, on the other hand, is 

commonly used for packed columns but less frequently used in capillary 

column GC. Hydrogen carrier gas is only used for capillary GC. Despite having 

combustion potential, it is becoming more and more commonly used for a 

number of reasons, which will be looked at in more detail next.  

 

Two main factors determine a carrier gas’ ability to affect the efficiency of a 

chromatographic separation, i.e.: 

1. Diffusivity: This provides a measurement for the diffusion speed of a 

solute vapour in a given gas.  

2. Viscosity: This provides a measurement of the resistance of a liquid or 

gas to flow. 

 

The diffusivities of helium and hydrogen are similar. However, nitrogen has a 

diffusivity value that is approximately four times lower.  

 

Table 8: Relevant characteristics of carrier gases[22] 

Carrier Gas 
Viscosity at 50 °C  

(kg·s-1)·m-1 

Diffusivity  

– butane, 100 °C (m2·s) 

Hydrogen 9.4 6.10x10-6 

Helium 20.8 5.5x10-6 

Nitrogen 18.8 1.5x10-6 

 

The diffusion speed of the solute in the carrier gas determines the speed of 

chromatography. The slower the mobile phase velocity, the more often a 

solute molecule can diffuse from the stationary phase surface into the gas 

stream and back into the stationary phase, and the better the separation[21]. 

However, a slow carrier gas flow rate can result in band broadening through 

longitudinal diffusion. It is for this reason that it is preferable to operate at the 

optimum gas velocity, as at this velocity, the maximum number of contacts are 

made with the stationary phase with a minimum amount of band broadening 

in the gas phase. Since diffusion in hydrogen and helium is much faster than in 
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nitrogen, for both radial and longitudinal diffusion, GC analyses conducted 

with either H2 or He are 2-3 times faster than those conducted with N2 as 

carrier gas.  

 

The second major factor that differentiates the various typical carrier gases is 

viscosity. The viscosity of a gas is determined by its molecular weight and by 

temperature. Increasing either will result in an increase in viscosity.  

 

A carrier gas’ viscosity determines the inlet pressure required for a given 

velocity. High inlet pressures strongly compress the gas in the column inlet, 

which can cause a variety of problems. As indicated by Figure 14, efficiency 

suffers when the gas velocity is below the optimum velocity, as a result of 

excessive longitudinal diffusion. It also worsens again beyond the optimum, as 

a result of insufficient radial diffusion. 

 

As shown in the plot, nitrogen has the lowest height equivalent to a theoretical 

plate value as it is the most viscous of the stationary phases. As its viscosity 

minimises longitudinal diffusion, using nitrogen carrier gas will give the most 

efficient separation of the three gases. However, the minimum point on the 

curve corresponds to a relatively low linear velocity. Whilst this is suitable 

when using packed GC columns with large internal diameter, it results in 

unacceptably long run times for capillary columns. In comparison, hydrogen 

and helium both show optimum efficiencies at higher linear velocities. This 

implies that it is possible to achieve separation efficiency that is comparable to 

that produced by nitrogen, but at a faster flow rate, resulting in desirable 

shorter analysis times.   

 

Hydrogen carrier can be reactive, an example of which being the catalytic 

hydrogenation of unsaturated molecules at high inlet temperatures. However, 

it costs less than helium, with hydrogen generators being used to produce 

very high purity gas. Additionally, hydrogen displays a curve which indicates 

that a range of high linear velocities can be used to achieve chromatographic 

separations, resulting in fast analyses without any compromise in separation 

efficiency. 

 

Another carrier gas, besides nitrogen, that is used with packed columns is 
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argon. This gas is particularly useful in H2 and He analyses. Argon/methane 

carrier gas mixtures have also been used in isothermal ECD applications. Air 

may also be used as a carrier gas under certain conditions, usually with 

portable or on-site chromatographs[23].  

 

The management of a constant supply of gases to a GC is crucial to keep the 

instrument functional. It is particularly important to avoid any interruption in 

carrier gas flow, as if the supply fails whilst the column is heating, it may 

undergo irreparable damage.  

 

Two stage pressure regulators are used with gas cylinders to reduce the 

pressure from the cylinder to a desired line or working pressure. It is essential 

for the carrier gas to be clean in order to prolong the lifetime of the GC 

column. This also allows for a less noisy baseline and good peak shape. 

Detector gases are also susceptible to impurities, and these can lead to 

increased background signal, baseline noise and reduced sensitivity.  

 

Oxygen, moisture and hydrocarbons are three commonly encountered 

contaminants. It is possible for O2 and moisture to enter the gas stream 

through permeation of tubing and fittings. Both of these are known to degrade 

the column stationary phase through oxidation, drastically reducing column 

lifetimes. Oxygen also reduces ECD performance, whilst the performance of 

MS detectors can be affected by the presence of water. Hydrocarbons can 

appear from grease and lubricating oils within tubing, causing ghost peaks, 

increasing baseline noise and, again, reducing detector sensitivity[24].  

 

Gas contamination is reduced by the use of gas purifiers, or traps, fitted along 

the carrier gas transfer lines before they reach the GC instrument.  

 

2.4.2 Preconcentration 

The preconcentrator concentrates analytes of interest before injection onto 

the analytical column. A preconcentrator tube can be used with a pump to 

sample air in the field, or it can be used in-line with sample injection onto the 

GC system. Any VOCs present in the sample will flow through the 

preconcentrator’s adsorbent bed and, subsequently, stick to its particles, 

accumulating over the sampling period as illustrated in Figure 29.  
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If used on location, the tube is manually removed from the pump after 

sampling, its ends are capped to prevent VOC diffusion out of the tube, and the 

trapped sample is transferred back to the laboratory for analysis. Here, it is 

loaded into a thermal desorption unit (TDU) attached to a GC. The TDU 

automatically loads the preconcentrator tube into a preheated block. The 

adsorbents desorb, as shown in Figure 30, and a high flow rate carrier gas is 

flushed through the tube injecting the concentrated sample components onto 

the chromatographic column. A split inlet and a cryofocusing trap are 

generally used to narrow the plug width and sample mass, resulting in a larger 

N value. 

 

Figure 29: An illustration of the adsorption process of a preconcentrator 

Figure 30: An illustration of the thermal desorption process of a 
preconcentrator 
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2.4.3 Flow Control 

In the past, control of the gases required to run a GC was done manually, 

through a combination of on-off valves, forward and back-pressure regulators, 

needle valves and mass-flow-control regulators. Shown below is a typical 

schematic for the manual pressure control of a split/splitless inlet. 

In this instrument there are several gas flow paths that are regulated using 

manual valves as follows: 

• Total flow control: this valve is used to regulate the total amount of 

carrier gas entering the GC from the gas supply line.  

• Septum Purge Control: a valve used to regulate the proportion of the 

total flow allowed to pass through the septum purge line (the flow is 

back pressure regulated as the valve is after the septum). 

• Column head pressure control: a valve that controls the 

backpressure and hence flow of gas through the column. A pressure 

gauge reads the column head pressure.  

• Split flow: the split flow is the difference between the total flow and 

the sum of the column flow and septum purge flow. Once the column 

flow is set, the split flow is adjusted by altering the total flow 

controller[21]. 

 

All flows are measured manually using either a soap bubble flow meter or an 

electronic flow meter at the detector, septum purge vent, or split vent. The 

Total 
Flow 

Control 

Capillary Inlet 
Septum 
Purge 

Control 

Purge 
Control 
Valve 

Column Head 
Pressure 
Control 

To Detector 

Figure 31: A typical manual split/splitless inlet 
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only visible indicator of pressure is the column head pressure gauge. Detector 

gases would be controlled using manual valves in much the same fashion as 

that described for the above inlet. 

 

Today, modern gas chromatographs are fitted with electronic pressure control 

(EPC) systems, where a microprocessor is used to set, monitor and control 

pressures via proportional valves, pressure and flow sensors. EPC allows for a 

constant pressure or a constant flow rate of carrier gas by monitoring the gas 

pressures and flow rates that, in turn, control electronic regulators. With 

Constant Pressure Mode, the head pressure is held constant throughout the GC 

run. When temperature is increased for a column with constant pressure on 

the inlet, the average flow rate in the column will decrease owing to increased 

viscosity of the gas mobile phase in a proportional but nonlinear manner. This 

ultimately results in lower column efficiency and unacceptably long retention 

times for more highly retained analytes. As well as that, when using Mass-

Flow sensitive detectors, such as an FID, nitrogen phosphorous detector 

(NPD) or flame photometric detector (FPD), the reduction in column flow rate 

has the added disadvantage of changing the chromatographic baseline. This 

leads to a steadily rising or falling baseline position, and can make integration 

of the peaks in the chromatogram both difficult and irreproducible[25]. 

 

Constant Flow Mode is preferred as the EPC will ramp carrier gas head 

pressure linearly in-line with the oven temperature program, ensuring that 

the carrier gas flow rate through the GC column is the same regardless of the 

oven temperature[9]. This results in a flatter baseline, better peak shape and 

shorter elution times for more highly retained analytes. With the 

commercialization of flow programming, it is now possible to achieve highly 

reproducible flows[23].  

 

2.4.4 Sample Injection 

The function of the sample inlet is to allow the introduction of a sample into 

the gas chromatograph in an accurate, reproducible manner. The vaporized 

sample should be a true representation of the overall sample and, unless 

specifically desired, should be injected without chemical change as a narrow 

band onto the chromatographic column. Failure to achieve this will 

significantly reduce the separation capability of the GC column. This makes 
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sample introduction one of the most important steps of a GC analysis. General 

requirements for GC inlets are that they: 

• Do not cause more band broadening than the analytical column 

• Allow a representative sample to be injected with good accuracy and 

precision 

• Ensure the composition of the injected sample is representative of the 

original sample 

• Do not allow discrimination to occur, based on differences in boiling 

point, polarity or concentration 

• Do not cause the analyte  to alter through thermal or catalytic 

degradation 

• Are applicable to trace analysis as well as to undiluted samples. 

 

Various inlets are available, including multimode, split/splitless, purged 

packed, cool-on-column (COC), programmed vaporization temperature (PVT), 

and volatiles interface, and often a GC may have more than one inlet. The type 

of analysis being performed, the type of sample being analysed, and the 

column being used all need to be considered when deciding upon which of the 

above inlets to use.    

 

Before being transported onto the column, solid and liquid samples need to 

first be converted to the gas phase. Samples already in the gas phase need to 

be efficiently diverted onto the column, whilst avoiding any potential 

condensation en-route. The primary aim of gas, liquid and solid sampling 

techniques is to ensure that a representative and homogeneous aliquot of the 

sample is delivered to the column. For optimum column efficiency, the sample 

should not be too large, and should be introduced quickly as a ‘plug’ of vapour, 

as slow injection of large samples causes band broadening and loss of 

resolution. 

 

Gas sampling methods generally require the entire sample to be in the gas 

phase at the conditions under which sampling occurs. Gas sampling can 

include the use of canisters, gas tight bags, gas tight syringes, and valves. If 

samples are mixtures of gases and liquids, either heat and/or pressure is 

employed to ensure that the entire sample is in the gaseous form.  
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Liquids are traditionally sampled by syringe. This can either be done 

manually, or in conjunction with an automatic liquid sampler. As the volatile 

liquid is introduced into the heated inlet, the sample is rapidly vapourised, 

transferred into the gas phase and subsequently swept onto the GC column. If 

the liquid is not particularly volatile, it is possible to use special GC inlets such 

as COC or PTV to overcome any volatility issues.   

 

Solid sampling is not as common as gas and liquid sampling. Solid samples are 

generally first dissolved in suitable volatile liquid, before an aliquot of the 

solution is injected into the inlet. For volatile species that are entrained in 

solid matrices, analytes are usually driven out of the solid, often by increasing 

the solid’s surface area by, for example, micronisation, followed by strong 

heating. The sample is then purged with the carrier gas forcing the volatile 

components into the headspace of the vial above the solid sample. Volatile 

components of the sample partition between the gas and sample phases, 

usually reaching equilibrium. A portion of the volatiles in the gas phase is then 

flushed into a sample loop, the contents of which are injected into the GC 

system, or directly into the GC column. Headspace injection is also applicable 

to liquid samples[26].  

 

The major benefit of headspace injection is that caustic and non-volatile 

sample components are eliminated prior to injection. This reduces the 

possibility of damage to the column and/or system inlet. The drawback, 

however, is that analyte sensitivity, particularly for compounds of low 

volatility, tend to be low and peaks are broader than with liquid sample 

injections. The use of a purge and trap system can counteract this by 

concentrating volatile components in the headspace prior to injection into the 

GC system. Here, volatile analytes move from the headspace onto a selective 

sorbent where they are concentrated, while other volatile components of the 

matrix pass through. Analytes are then thermally desorbed and pass into the 

GC column[27]. 

 

The split/splitless inlet is the most commonly used for capillary GC. As the 

name suggests, it can be operated in two modes, either split or splitless. The 

injection principle of the split/splitless inlet is outlined below: 

 



  Chapter 2: Chromatography 

Jaydene Halliday                                                                                             99 | P a g e  
 

• A syringe containing the sample is used to pierce a rubber septum. Septa 

are used to isolate the inlet from atmospheric pressure, and hence 

maintain an increased pressure inside the inlet, whilst the injection is 

made. It is important to ensure that the syringe is deactivated with respect 

to the target analytes and will not absorb sample components. Various 

needle point styles are available for manual and autosampler injection, 

and for use with different septa styles[24].  

• The septum purge gas reduces the number of contaminant compounds 

which are outgassed from the septa at elevated temperatures. It does this 

by flowing across the underside of the septum and flushing the outgassing 

products to waste via the septum purge gas outlet. The septum purge gas 

also helps to prevent contamination of the underside of the septum by 

sample components that may overspill from the inlet liner during 

injection, thus reducing carryover from injection to injection. Typical 

septum purge gas flows are in the region of 2-5 ml·min-1. 

• The sample is rapidly introduced into the metal body of the inlet, which is 

usually surrounded by a radiative heating material into which a heating 

element is placed. A homogeneous heating profile over the whole length of 

the injector body is required to ensure that cold spots are not created, as 

less volatile analytes may condense at these points and foul the inlet liner 

or other components.  

• The sample liquid rapidly volatises to the gaseous form and is constrained 

within a glass liner of fixed volume. There are many varieties of liner for 

particular applications and injection modes, and these will be covered 

shortly. The liner also allows for sample vapour splitting, as well as 

offering an inert surface which can help to reduce the degree of analyte 

degradation or adsorption in the inlet.  

• The split valve, or split line gas outlet, is used to discard some or all of the 

liner contents.  

• The position of the capillary column within the inlet is of vital importance. 

The column tip is the position at which the sample vapour splitting will 

occur. Failure to properly site the column within the liner can lead to 

increased sample discrimination, as well as incorrect and irreproducible 

split ratios. 
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2.4.4.1 Split Injection 

Split injection is conventionally used for analyses where the sample 

concentration is high and the amount of analyte reaching the capillary column 

needs to be reduced. Capillary columns have limited sample capacities and so 

can otherwise be easily overloaded. In split injection the valve is constantly in 

the open position and the gas flow is regulated to determine the fraction of the 

sample vapour that is discarded relative to that which reaches the capillary 

column.  

 

This type of injection ensures that the sample is rapidly volatilised and 

transferred to the capillary column, hence ensuring a narrow analyte band[28]. 

For this reason initial column temperatures for split injection tend to be 

higher than the boiling point of the sample solvent. The ratio of gas flows 

between the capillary column and the split flow line, i.e. the split ratio, gives a 

measure of the volume fraction of the sample vapour that will enter the 

column. The magnitude of the split ratio will depend on the concentration of 

the sample injected and the capacity of the capillary column used. During 

method development and optimisation, the split ratio is usually adjusted 

Needle of Injection Syringe  

Septum Purge Gas Outlet  

Split Line Gas Outlet  

Split Valve  

Heated Injector Body  

Capillary Column  

Retaining Nut 
and Ferrule  

Inlet Liner  

Inlet Gas 
Supply  

Septum  

Figure 32: Typical split/splitless inlet 



  Chapter 2: Chromatography 

Jaydene Halliday                                                                                             101 | P a g e  
 

empirically to obtain a good balance between analytical sensitivity and peak 

shape. If the split ratio is too low peak shape will be broad and may show the 

fronting behaviour associated with overloading. On the other hand, if it is too 

high, too little sample will reach the column and the sensitivity of the analysis 

will decrease as peak areas decrease. Generally, split ratio has an 

approximately linear relationship with analyte peak area. This means that 

halving the split should result in a halving of the resultant peak area.  

 

2.4.4.2 Splitless Injection 

Splitless injection is analogous to split injection in many ways. The hardware 

used for splitless injection is almost identical to the split injector and most 

manufacturers will use the same inlet for both split and splitless injection. Just 

as with split injection, the sample is introduced into a hot inlet using a sample 

syringe where it is rapidly injected and volatilised. Initially, the valve is closed 

to ensure all analyte is transferred to the capillary column. The transfer of the 

sample vapour, diluted with carrier gas, from the inlet is much slower 

compared to split injection. The sample vapours are trapped, or condensed, on 

the head of the analytical column using a low initial oven temperature. This 

keeps chromatographic bands as narrow as possible.  The split line is then 

opened after an optimised period of time in order to discard residual solvent 

and sample vapours from the inlet[29]. 

 

Table 9: A comparison of split and splitless injection 

 Split Injection Splitless Injection 

Advantages 

Narrow solute peaks Narrow analyte peaks 

Suitable for qualitative 

analysis 

Suitable for both qualitative 

and quantitative analysis 

Minimizes the solvent effect  

Disadvantages 

Requires rather high 

concentration of analyte 
Broad solvent peak 

Makes quantitative analysis 

more complex 

Retention times depend on 

solvent evaporation speed 

Not suitable for very 

expensive or toxic compounds 

Solvent affects the shape of the 

peaks 
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2.4.4.3 Liners for Split/Splitless Injection 

Liners are the centrepiece of the inlet system in which the sample is 

evaporated and brought into the gas phase. Choosing the appropriate liner for 

a specific application is an important task, as liners help to direct the volatile 

components of an injected sample onto the column. The liner has many 

functions which include: 

• To constrain the volatilised components of the sample 

• To allow the sample to be split through excess sample and carrier 

escaping from the liner outlet 

• To cause mixing of the sample vapours with the carrier  

• To prevent involatile material from fouling the GC column 

• To avoid analyte thermal degradation 

• To decrease the potential for inlet discrimination. 

 

The three liner characteristics that must be considered for each application 

are: 

• Liner volume 

• Liner treatments or deactivation 

• Any liner design features that might affect carrier gas flow through 

the inlet or sample vaporization[30]. 

 

As discussed, the elevated temperatures used in the inlet vaporize the liquid 

sample to a gas for transfer to the head of the column. This phase transition is 

accompanied by a very significant volume change. The volume of the resulting 

vapour must of the appropriate size to fit within the volume of the liner. If the 

volume is too great for the liner, reproducibility and sensitivity can be 

compromised, due to backflash and loss of the sample into the septum purge 

or split lines. Backflash also frequently results in sample carryover.  

 

Another problem that may be encountered is that of active sites on liners, 

which may adsorb sample components and cause peak tailing, with potential 

loss of sensitivity and reproducibility. Hence, liners are generally made of 

deactivated glass.  

 

There are a variety of liners available, including straight, tapered, packed and 

cup-splitter types. Liners may also contain packing material, such as glass or 
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quartz wool, and beads. These can provide good mixing of the sample within 

the liner, and can act as a filter for contaminants, such as crumbling septa 

pieces. They also provide sites of activity and so care needs to be taken when 

choosing a liner to ensure it is correct for the type of sample you are analysing 

and the functional groups of active compounds within it.  

 

Table 10: A comparison of popular liner types 

Liner Type Advantages Disadvantages 

Straight 

Cost-effective Risk of flash-back 

Easy to clean 
Risk of analyte 

discrimination 

Tapered 
Low analyte activity More expensive 

Low risk of flash-back  

Packed 

Enhanced sample mixing and 

vaporization 

May absorb analytes 

leading to peak 

broadening 

Traps non-volatiles 
May contribute to 

analyte decomposition 

Cup-Splitter 

Low risk of analyte 

discrimination 
Difficult to clean 

Enhanced resolution More expensive 

 

If liners are not changed on a regular basis or if the correct liner is not used, 

one or more of the following issues may arise: 

• Peak shape degradation 

• Solute discrimination 

• Poor reproducibility 

• Sample decomposition 

• Ghost peaks[31]. 

 

2.4.4.4 Injection Volume 

The nature and volume of the sample solvent injected into the split/splitless 

inlet will have a major impact on the accuracy and reproducibility of 

quantitative analysis, as well as on the chromatographic peak shape. As the 

injection is made, the sample solvent rapidly volatilises and expands into the 
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gas phase. The total volume of the gas should be able to be constrained within 

the volume of the inlet liner; otherwise the excess gas will spill over into the 

inlet gas supply and septum purge lines. The temperature in these lines 

rapidly decreases, and the sample solvent vapour can recondense, depositing 

analyte onto the inner walls of the tubing. When the next overloaded injection 

is made, the sample solvent from this injection will again backflash into the 

gas lines. This process results in carry-over and reduced quantitative accuracy 

and reproducibility[21]. 

 

The inlet pressure and temperature govern the expansion volume of the 

sample solvent, as does the natural expansion coefficient of the solvent itself. 

Expansion volumes can be predicted, allowing the volume of solvent that may 

be safely injected into an inlet liner of known volume to be calculated. 

 

2.4.4.5 Sample Discrimination 

Sample discrimination occurs when sample components do not move onto the 

column at the same time. This leads to a non-representative sample entering 

the analytical column compared to the original sample. One of the sources of 

sample discrimination is the residence time of the syringe needle being too 

short for higher boiling and less volatile analytes. This results in the analyte 

condensing on the cold inner and outer surfaces of the needle before it is 

withdrawn from the inlet. Some less volatile analytes may never properly 

volatilise and the sample passes the head of the capillary column as a mixture 

of sample vapour and non-uniform liquid droplets. The consequence of this 

phenomenon is that late eluting peaks, in particular, will be broad and have 

poor resolution and sensitivity. There are, however, several approaches to 

solving the problem, including: 

• Optimising liner geometry and packing materials to promote sample 

mixing and volatilisation 

• Optimising the injection routine (filled needle, hot needle, solvent 

flush, air flush, sandwich method, etc.) 

• Improving instrument design to reduce fluctuations in split flow. 

 

In general, the least amount of discrimination is obtained if the injection is 

performed as rapidly as possible. For this reason, fast autosamplers generally 

give less discrimination than manual injection. 
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2.4.5 Nuts and Ferrules 

The capillary column is held in the lower part of the GC inlet using a fitting 

into which the column nut and ferrule are screwed. The column nut secures 

the GC column to the inlet and the ferrule seals the opening in the nut where 

the column is inserted. It is important that the correct type of ferrule is used, 

of which there are three main types: 

1. Graphite 

2. Vespel 

3. Vespel/Graphite 

 

Table 11: A comparison of ferrule types 

Ferrule Type Advantages Disadvantages 

Graphite 

Easy to use 
Soft, easily deformed or 

destroyed 

Stable seal 
Possible system 

contamination 

Higher temperature 

limit 

Not for use with GC/MS 

transfer lines 

Vespel or 

Vespel/Graphite 

Mechanically robust 
Flows at elevated 

temperature 

Long lifetime 
Must retighten frequently, 

prone to leakage 

 

Polymer bleed problematic 

with some detectors (NPD 

and ECD) 

 

Graphite ferrules are the easiest to use. They are leak-free, universal for most 

systems, and have the highest temperature limits of up to 450 °C. As these 

ferrules are soft, they easily conform to column outside diameters and 

different types of instrument fittings, however, they can flake or fragment 

upon removal, causing particles to lodge in the injector or detector sleeves. 

They also do not hold a seal under vacuum and so are not suited to mass spec 

detection. Vespel/Graphite ferrules (85% vespel, 15% graphite), on the other 

hand, are hard and so must match the column and fitting dimensions closely to 

seal properly. In addition, because they can deform during initial heating, they 
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need to be retightened or leakage will occur.  Vespel/Graphite ferrules do not 

fragment though, and can be reused many times. Vespel is a high-temperature 

polyimide based material which is very hard. While the vespel/graphite 

composites have lower temperature limits than purely graphite ferrules, up to 

350 °C, they are preferred by mass spectroscopists as they give particulate 

free, tight and reliable connection, thus preventing contamination of the ion 

source and maintaining their seal under vacuum. 100% vespel ferrules are 

easy to remove and reuse, but are only used for isothermal GC operation up to 

280 °C[3, 21]. 

 

Using the wrong ferrule or one that is worn-out can result in inconsistent and 

unreliable chromatography, as well as causing leaks. This allows air and other 

contaminants to enter the instrument through the column seal, causing major 

interference with column and detector performance[30]. 

 

2.4.6 GC Columns 

The coiled, tubular gas chromatographic column is located within a 

temperature-controlled oven. Generally, one end of the column is attached to 

the inlet, while the other end is attached to the detector. Columns vary in 

length, diameter, and internal coating.  

 

The column may arguably be considered the key component of a gas 

chromatograph, as it is here that the separation takes place. However, it is 

important to note that the total variance of a separation (σT) will conform to 

principles of error propagation and be a sum of variances from the injector 

(σi), column (σc), detector (σd), and data system (σds), i.e. 

 

Equation 50 

𝜎𝑇 =  ��(𝜎𝑖  +  𝜎𝑐 + 𝜎𝑑 + 𝜎𝑑𝑠)  

 

Thus, each of these components contributes to the overall efficiency of a GC 

separation and merits individual attention[23].  
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Two general types of columns are encountered in gas chromatography, 

packed and open tubular, or capillary. Capillary columns are the more efficient 

of the two types. Their high separating power is primarily due to their longer 

length and thin stationary phase films. There is a trade-off for attaining this 

high separating power. Column capacity, i.e. the mass of individual solutes that 

can be injected into the columns in ng, for every narrow bore 0.18 mm 

capillary column is limited to about 100 ng per component and increases to 

1,000-2,000 ng for megabore (0.53 mm) columns. By comparison, the capacity 

for packed columns is considerably higher, on the order of 10,000 ng.  

 

2.4.6.1 Packed Columns 

Packed GC columns can be either glass or stainless steel. They represent one 

of the original types of GC columns and are typically assembled by the end-

user. Glass columns are favoured when thermally labile materials are being 

separated, such as essential oils and flavour components. Stainless steel 

columns, however, are used as they can easily tolerate the elevated pressures 

necessary for long packed columns, which glass cannot. Before packing, glass 

columns are generally treated with an appropriate silanizing reagent to 

eliminate the surface hydroxyl groups, which can be catalytically active or 

produce asymmetric peaks. Stainless steel columns are usually washed with 

dilute hydrochloric acid, then extensively with water followed by methanol, 

acetone, methylene dichloride and n-hexane. This washing procedure removes 

any corrosion products and traces of lubricating agents used in the tube 

drawing process. Columns are then packed by placing a piece of deactivated 

glass wool at one end of the tube to keep the silica based stationary phase 

within the tubing as it is slowly poured into the opposite end.  The pellicular 

solid particles are typically carbon or diatomaceous earth, and are typically 

between 30/40 mesh and 100/120 mesh. These will previously have been 

coated with the chosen stationary phase. A vacuum is then applied at the end 

of the tubing to remove the solvent that was used to prepare the stationary 

phase gel. Subsequently, the tubing is capped off with a piece of deactivated 

glass wool. The smaller the particle size the higher the column efficiency. A 

typical packed GC column will be between 2 and 4 m in length with an internal 

diameter of between 2 and 4 mm[32].  
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To date, the vast majority of gas chromatography has been carried out on 

packed columns. This situation is, however, changing rapidly, with packed 

columns being replaced by the more efficient and faster capillary columns. 

Packed columns do, however, still have some features that can be 

advantageous in that they can accept high sample loading and can give a 

greater analytical dynamic range.  

 

2.4.6.2 Capillary Columns 

Capillary columns differ from packed columns in that the stationary phase is 

coated on the inner wall, either as a thin film, i.e. wall-coated open tubular 

(WCOT), or impregnated into a porous layer which is then coated on the inner 

wall, i.e. porous layer open tubular (PLOT). PLOT columns act as molecular 

sieves for the retention of room temperature or permanent gases, such as O2, 

CO, CO2, SO2, NO2, and NO. 

As previously mentioned, Dandenau and Zerenner introduced flexible fused 

silica capillary columns using the quartz fibre drawing technique. They found 

that coating the capillary tube with a polyimide polymer immediately after 

drawing prevented moisture coming in contact with the surface and thus 

stabilized the tube and prevented stress corrosion. As with packed columns, 

surface treatment is necessary to reduce adsorption and catalytic activity, as 

well as to make the surface sufficiently wettable to coat with the selected 

stationary phase. The treatment may involve washing with acid, silanization 

and other types of chemical treatment, including the use of surfactants. 

Stationary Phase 

Fused Silica 

Polyimide Coating 

Figure 33: Typical cross-section of a wall coated open tubular (WCOT) 
capillary 
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Deactivation procedures used for commercial columns are kept highly 

proprietary. 

 

Open tubular columns are coated internally with a liquid stationary phase or 

with polymeric materials that can be polymerized to form a relatively rigid, 

internal polymer coating. Column stability depends on the stability of the 

stationary phase film which, in turn depends on the constant nature of the 

surface tension forces that hold it to the column wall. These surface tension 

forces can be reduced by exposure to oxygen, extreme heat or reactive 

chemicals, resulting in the film suddenly breaking up, i.e. stationary phase 

bleed. This shows as a consistent disturbance in chromatogram baseline signal 

resulting from compound elution at elevated temperatures. Stationary phase 

bleed can be overcome by in-situ cross-linking of unsaturated groups in the 

stationary phase molecule by means of free-radical initiators, such as 

peroxides or azo compounds, to yield elastomers[10]. 

 

The majority of columns commercially available have undergone extensive 

crosslinking between the stationary phase and the polymer backbone, i.e. the 

column wall itself. This crosslinking gives extended temperature stability, 

extremely low bleed levels and longer column lifetimes. Whenever a column is 

first installed it will show some bleed due to oxygen exposure. Therefore, it is 

important to condition any column following installation at the maximum 

isothermal temperature to be used until bleed levels stabilize. 

 

Table 12: Comparison of wall-coated capillary, support-coated capillary 
and packed columns 

 
Wall-Coated 

Capillary 

Support-Coated 

Capillary 
Packed 

Length (m) 10 – 100 10 – 50 1 – 5 

Internal diameter 

(mm) 
0.1 – 0.8 0.5 – 0.8 2 – 4 

Liquid film thickness 

(µm) 
0.1 – 1 0.8 – 2 10 

Capacity per peak (ng) <100 50 – 300 10,000 

Resolution High Moderate Low 
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As well as displaying increased separation efficiency in comparison to packed 

columns, capillary columns also work at lower temperatures and achieve 

much better separation in equal times.  

 

Stainless steel clad silica columns can be used for separations that require 

temperatures of over 400 °C. High temperature fused silica columns are also 

available from a number of suppliers. These have special, and proprietary, 

polyimide coatings which give extended high temperature stability without 

the need for using the specialist metal columns mentioned above. 

 

2.4.7 Stationary Phases 

The stationary phase is an organic polymeric liquid that is either coated on or 

covalently bonded to the silica interior surface of the column via silyl-ether 

linkages. The choice of the appropriate column for a given separation depends 

on the chemical nature of the analyte, the sample matrix, the solvent, and 

especially on the nature of the molecular interactions between analyte and 

stationary phase. The first stationary phases for GC were a varied collection of 

hydrocarbon and silicone oils, greases, esters, and polymers. Today the 

majority of GC stationary phases are based on a crosslinked polysiloxane 

backbone with appropriate pendant groups, such as CH3, Ph, CH2–CH2–CH2–

CN, CF3. The pendant group may also be tailored for a steric separation. A 

number of wax, or polyethylene glycol (PEG), phases, as well as cyano phases, 

are also popular. 

 

The selection of the correct stationary phase is one of the most critical 

parameters in the success of any GC method. As the interaction of the analyte 

molecules with the mobile phase is almost negligible, the column temperature 

and the interaction of the analyte with the stationary phase will govern the 

selectivity of the separation [33].  

 

2.4.7.1 Stationary Phase Selectivity 

In choosing an appropriate GC stationary phase it is generally accepted that 

the principle of ‘like dissolves like’ holds well, and that to separate polar 

analytes a polar stationary phase is required, and vice versa.  
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All covalently bonded molecules will share electrons between the bonded 

atoms. The greater the difference in electron affinity, or electronegativity, 

between atoms in a covalent bond the more polar the bond. Thus, a non-polar 

covalent bond will have a uniform distribution of electron charges between 

the atoms. The simplest non-polar covalent bonds exist in homonuclear 

diatomic species such as Cl2 (Figure 34) or H2. In this type of molecule there is 

no permanent localised electrical charge build up, instead electrons are shared 

uniformly within the molecule. 

 

Alternatively, a polar bond displays a non-uniform electron distribution cloud. 

This typically occurs when two non-metal atoms which are more than two 

positions apart in the periodic table, are involved in the bond. A typical 

example of HCl is shown in Figure 35.  

 

The red arrow head shown under the molecule indicates the direction of 

highest negative charge and indicates that the molecule has a dipole moment, 

i.e. it is polarised, with a pair of relatively positive and negative centres[34]. 

 

Electronegativity is an index that relates the relative attraction an element has 

for electrons within a covalent bond. It is possible to predict the presence of a 

Cl Cl 

Electron charge balance point 

Figure 34: Cl2 - non-polar bond. The electron charge cloud is uniformly 
spread in this homonuclear diatomic molecule 

H Cl 

Figure 35: HCl - polar bond. Electrons spend more time drawn towards 
chlorine 

δ+ δ- 
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dipole moment within a molecule by comparing the electronegativity of the 

bonded atoms. For example, when the electronegativity value between two 

atoms differs by more than 0.5 units the bond is likely to be polar, unless a 

high degree of molecular symmetry is present. 

 

The skill of stationary phase selection lies in knowing (or empirically 

discovering), the degree of polarity required to avoid overly long retention 

times whilst still obtaining a satisfactory separation. When separating 

compounds of intermediate polarity or where the analytes are a mixture of 

polar and non-polar compounds, further knowledge of the retentivity and 

selectivity of each phase is required. The three main mechanisms of 

interaction are dispersion, dipole (including dipole - induced dipole), and 

hydrogen bonding. 

 

Table 13: Polarity and its relationship with electronegativity[35] 

Bond 
Electronegativity 

Difference 
Polarity 

C – H 2.5 – 2.1 = 0.4 Non-polar 

C – O 3.2 – 2.5 = 1.0 Polar 

C –F 4.0 – 2.5 = 1.5 

Very polar 

(around the limit at which 

covalent and ionic bonds are 

differentiated) 

C – N 3.0 – 2.5 = 0.5 Polar 

O – H 3.5 – 2.1 = 1.4 Very polar 

C – S 2.5 – 2.5 = 0 Non-Polar 

 

 

 

Figure 36: Non-polar analyte interacting with a non-polar stationary 

phase 
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Dispersive Interactions 

Dispersive interactions are nonpolar and give rise to separations based on 

analyte volatility. Analyte boiling point can be used as an indicator of analyte 

volatility. In general, the more volatile an analyte is, i.e. the lower its boiling 

point, the less retained it will be and the earlier it will elute from a column 

with a predominantly dispersive stationary phase. Dispersive interactions are 

caused by charge fluctuations that occur throughout a molecule, arising from 

electron/nuclei vibrations. The fluctuations are random in nature and are 

essentially a statistical effect. Every molecule has a number of arrangements 

of nuclei and electrons having dipole moments that fluctuate. This results in 

an overall molecular charge of zero. However, at any instant in time, the 

dipoles are capable of interacting with other instantaneous dipoles of other 

molecules. Dispersive forces are ubiquitous and must arise in all molecular 

interactions. They can, themselves, occur in isolation, but are always present 

even when other types of interaction dominate. Examples of interactions that 

are exclusively dispersive are those between hydrocarbons. The lower 

molecular weight hydrocarbons are liquids and not gases due entirely to the 

dispersion forces that act between the hydrocarbon molecules[21, 33].  

Figure 37: Polar analyte interacting with a polar stationary phase 

 
- + - + - + - + -  
+ - + - + 
 

+ - + - + - + - + - + -  
+ - + - + 
 

- + - 

A molecule containing 
randomly produced 

dipoles 
 
- + - + - + - + -  
+ - + - + 
 

+ - + - + - + - + - + -  
+ - + - + 
 

+ - + 

 
- + - + - + - + -  
+ - + - + 
 

+ - + - + - + - + - + -  
+ - + - + 
 

+ - + 

  

  

Dispersive Molecule 1 

Dispersive Molecule 2 

Interaction between 
randomly produced 

dipoles 

Figure 38: Dispersive interactions 
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Dipole Interactions 

There are two distinctive classes of dipole-dipole interaction: 

1. Those between two species containing a permanent dipole, i.e. 

dipole – dipole interactions 

2. Those between a molecule possessing a permanent dipole and a 

polarisable molecule, i.e. dipole - induced dipole interactions. 

 

Dipole-dipole interactions can be very strong and occur between molecules 

with permanent dipoles. Examples of this type of interaction occur between 

alcohols, esters, ethers, amines, amides, and nitriles. As well as the dipole 

interaction, there will also be a contribution to the intermolecular attraction 

from the dispersive interaction; however, the strength of the dipole-dipole 

interaction will far exceed any dispersive interactions that occur[21, 33]. 

 

 

Dipole-induced dipole interactions occur when a molecule containing a 

permanent dipole approaches a molecule that is polarisable. Most commonly 

these molecules would contain pi-electron systems, i.e. aromatic or 

unsaturated compounds. The strength of this interaction lies between 

dispersive and dipole-dipole interactions. Again these interactions will occur 

alongside any purely dispersive interaction that occurs between the 

molecules. 

 

Hydrogen Bonding 

Hydrogen bonding is a special case of a dipole-dipole interaction in which the 

dipoles associated with the hydroxyl groups (usually) of two molecules come 

into close proximity. Hydrogen bonding interactions are very strong 

compared to dispersive interactions and, in the extreme, the dipole-dipole 

interaction energy can approach that of a chemical bond, an example being the 

association of water with methanol[21, 33]. 

 
H Cl 

δ+ δ- 

 
H Cl 

δ+ δ- 

Figure 39: Dipole-dipole interaction between two HCl molecules 
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As with dipole interactions, even when molecules are undergoing hydrogen 

bonding, there is still an underlying weak dispersive interaction occurring 

simultaneously.   

 

 

 

 

 

 

Table 14: Interaction Energies 

Interaction Typical Energy of Interaction (kJ·mol-1) 

Dispersive <<1 

Dipole-Induced Dipole 1 

Dipole-Dipole 3.3 

Hydrogen Bonding 19 

 

 H Cl 

δ+
 δ-

 

Permanent dipole 
(a polar molecule) 

 H Cl 

δ+
 δ-

 

Permanent dipole 
(a polar molecule) 

 

Non-polar molecule 

 

Induced dipole in  
a non-polar molecule 

δ-
 δ+

 

Figure 40: Dipole-induced dipole interaction between permanent dipole 
and induced dipole 

Figure 41: a. Hydrogen bonding interaction between methanol and 
water, and b. between methanol and ammonia 



  Chapter 2: Chromatography 

Jaydene Halliday                                                                                             116 | P a g e  
 

2.4.7.2 Polysiloxane Stationary Phases 

The methyl modified polysiloxane phases are the most commonly used as they 

offer a wide range of selectivity, rapid equilibration and high temperature 

stability. Standard polysiloxanes are characterized by the repeating siloxane 

backbone. Each silicon atom contains two functional groups. The type and 

amount of the groups distinguish each stationary phase and its properties. The 

most basic polysiloxane is the 100% methyl substituted. When other groups 

are present, the amount is indicated as the percent of the total number of 

groups. For example, a 5%-(di)phenyl-95%-(di)methyl polysiloxane contains 

5% phenyl groups and 95% methyl groups. The phenyl-methyl modified 

phases have increasing polar selectivity with higher percentage of phenyl 

groups.  

O Si O Si *

CH3

CH3

O Si *

CH3

CH3

100% n% 100-n%

a) b)

 

Figure 42: a) 100%-Dimethylpolysiloxane; b) Phenyldimethyl-
polysiloxane, where the monomer n typically equals 5%, 35% or 50%. A 
higher percentage of the functional monomer, n, indicates a higher 
degree of interaction 

 

The primary chemical interactions which occur between phenyl modified 

stationary phases and analytes are Van der Waals forces and pi orbital 

stacking. The phenyl groups incorporated into these stationary phases act as 

pi-pi and H-bonding acceptors.  

 

The 100% dimethylpolysiloxane phases are particularly popular for 

applications where separations are solely based on boiling points and 

hydrophobic interactions. The 5%-phenyl phases are the most widely used for 

GC analysis because of their combination of hydrophobic and aromatic 
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selectivities. The higher percentage phenyl columns, i.e. 35% and 50%, are 

generally used where aromatic selectivity is most critical. Compounds 

commonly analysed using phenyl phases include: 

• Alkaloids 

• Phenols 

• Metabolites 

• Pharmaceuticals 

 

There are also 5%-phenyl columns which have an arylene matrix and provide 

slightly different selectivity in comparison to the other 5%-phenyl phases due 

to the difference in its structure.  

 

Table 15: Polysiloxane phases 

Phase 
100% 

Dimethylpolysiloxane 

Phenyl-

dimethylpolysiloxane 

Predominant 

Interactions 

• Dispersive • Dispersive 

• Induced Dipole 

Primary 

Applications 

• Boiling point 

separations 

• Hydrocarbon 

analysis 

• Aromatic/aliphatic 

mixtures 

 

2.4.7.3 Cyano phases 

The cyano phases represent the third major type of GC stationary phase 

functionality. These phases give medium polarity selectivity with increased 

polarity the higher the cyano content. The cyano phases have temperature 

limits comparable to those of the PEG phases. 2 common cyano phases are 

6%-cyanopropylphenyl-94%-dimethylpolysiloxane and 14%-cyanopropyl- 

phenyl-86%-dimethyl-polysiloxane. The naming of this group of phases differs 

to the before-mentioned. For example, 14% cyanopropylphenyl-

dimethylpolysiloxane contains 7% cyanopropyl, 7% phenyl, and 86% methyl. 

As the cyanopropyl and phenyl groups are on the same silicon atom, their 

amounts are summed. Cyano phases give unique selectivities for a wide range 

of compounds due to the combination of hydrophobic, H-bonding, pi orbital 

and dipole interactions. 
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Table 16: "Cyano" Dimethylpolysilxane phases 

Phase Cyanopropylphenyl-dimethylpolysiloxane 

Predominant Interactions 

• Dispersive 

• Dipole 

• Hydrogen bonding 

Primary Applications • Functionalised molecules 

 

 

2.4.7.4 Polyethylene Glycols 

Polyethylene glycols are widely used as stationary phases. These phases 

represent the most polar of the GC phases. PEGs have the ability to interact 

with polar functionalities on compounds via H-bonding and dipole-dipole 

interactions. The thermal stability of PEG phases is much less than that of the 

phenyl modified phases. Examples of compounds commonly analysed by PEG 

phases included: 

• Alcohols 

• Solvents 

• Basic compounds 

• Small organic acids 

• Fatty acids 

 

O Si O Si *

CH3

CH3

CH2

CH2

CH2

CN

100-n%n%

Figure 43: Cyanopropylphenyl-dimethylpolysiloxane, where n typically 
equals 6%, 14% or 50% 
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Figure 44: Polyethylene glycol or wax stationary phase 

 

Also available from a number of column suppliers are PEG or wax phases that 

are 100% aqueous stable. These are made of a lower molecular weight 

polymer that has a liquid character at a lower temperature than the original 

wax phase. The unique bonding of the lower molecular weight PEG polymer 

allows it to be used with 100% aqueous samples without inconsistencies from 

injection to injection, and also gives better selectivity for low boiling point 

compounds.  

 

Acid modified PEG phases (modified with nitroterephthalic acid) are also 

available which give unique selectivities for free fatty acids. The name of most 

PEG phases of this type is FFAP. Base modified polyethylene glycol stationary 

phases are also available for the analysis of basic compounds. Strong acids and 

bases often exhibit peak tailing for standard columns. pH modified stationary 

phases, such as these, may decrease the amount of tailing for strong acids or 

bases. 

 

Table 17: Glycol (wax) phases 

 

Table 18: Stationary phase interaction summary 

Phase Dispersion Dipole H-Bonding 

Methyl (-CH3) Strong None None 

Phenyl (-C6H5) Strong None Weak 

Cyanopropyl (-C3H6CN) Strong Strong Moderate 

PEG (-OCH2CH2O-) Strong Strong Moderate 

 

Phase Polyethylene Glycol 

Predominant Interactions 

• Dispersive 

• Dipole 

• Hydrogen bonding 

Primary Applications • Polar compounds 
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2.4.7.5 PLOT Columns: Gas-Solid Stationary Phase Selection 

PLOT columns are capillaries in the conventional sense but the inner wall of 

the capillary is coated with small, solid porous particles using a binder. The 

sample compounds undergo a gas-solid adsorption/desorption process with 

the stationary phase, and, as the particles are porous, size exclusion and shape 

selectivity processes also occur. 

 

The most common PLOT column stationary phases include various derivatives 

of styrene, aluminium oxides and molecular sieves. These columns are very 

retentive, and are used to obtain separations that are very difficult with 

conventional stationary phases. PLOT columns are used primarily for the 

separation of highly volatile liquids and permanent gases without the need for 

cryogenic or sub-ambient cooling of the GC oven. Separations that would 

require column temperatures well below ambient temperatures, even with 

thick film capillary columns, can be obtained at ambient temperatures or 

above using PLOT column technology[36]. 

 

2.4.7.6 Packed Columns: Stationary Phase Selection 

As previously described, packed GC columns contain a particulate adsorbent 

onto which the stationary phase is coated. Packed columns were for many 

years the most popular, and, for a significant period of time, the only option 

for gas chromatography. This has meant that over 1,000 stationary phases and 

supports have been invented, far too many to be detailed within the confines 

of this work. The main reason for there being so many more stationary phase 

types for packed columns in comparison to capillary, is due to the inherent 

lack of efficiency of packed columns. This makes selectivity of the stationary 

phase extremely important. 

Stationary Phase 

Support Particle 

Figure 45: A typical packed GC column, detailing a solid particle coated 
in stationary phase 
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2.4.8 The Column Oven 

Column temperature is an important variable that must be controlled to a few 

tenths of a degree for precise work. Liquids or solids must be converted to a 

vapour state and then be maintained as a vapour throughout a GC separation. 

Therefore, most gas chromatographs are equipped with ovens to keep the 

column at a temperature suitable for the analysis. Exceptions are those 

chromatographs that are used in separating simple gases such as light 

hydrocarbons or permanent gases. Early gas chromatographs were equipped 

with isothermal ovens. The optimum column temperature depends upon the 

boiling point of the sample and the degree of separation required. Roughly, a 

temperature equal to or slightly above the average boiling point of a sample 

results in a reasonable elution time. For samples with a broad boiling range, it 

is often desirably to employ temperature programming, whereby the column 

temperature is increased either continuously or in steps as the separation 

proceeds. Today, temperature programmed ovens allow separations of 

chemicals spanning a range of vapour pressures in a single analysis. 

 

Conventional ovens consist of a resistive wire coil that radiates into the inner 

volume of the oven. Heat from the resistive wire source is spread, ideally in an 

even manner, throughout the oven volume using a fan attached to an electric 

motor. A thermistor or thermocouple inside the oven is part of regulating the 

oven temperature via the amount of heat released by the heating element. 

This is controlled by the power delivered to the element and a feedback circuit 

to control and program the oven temperature. Efforts to create isothermal 

conditions, i.e. no thermal gradients inside the oven volume, are essential for 

reproducible chromatography[23]. 

 

2.5 GC Detectors 
Detectors identify the presence of compounds as they exit the column. As each 

separated compound enters the detector from the column, an electrical signal 

proportional to the amount of compound detected is generated. This signal is 

generally sent to a data analysis system, such as Agilent’s ChemStation, where 

it shows up as a peak on a chromatogram. 

 

A variety of detectors for gas chromatographs are available. The most widely 

used detectors in GC have been the flame ionization detector (FID), the 
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thermal conductivity detector (TCD), the electron capture detector (ECD), and 

the mass spectrometer (MS). Other common commercially available detectors 

include the photoionization detector, and the nitrogen–phosphorus detector. 

 

The ideal detector for gas chromatography has the following characteristics: 

• Adequate sensitivity 

• Good stability and reproducibility 

• A linear response to solutes that extends over several orders of 

magnitude 

• A temperature range from room temperature to at least 400 °C 

• A short response time that is independent of flow rate 

• High reliability and ease of use 

• Similarity in response to all solutes or, at least, a highly predictable ad 

selective response toward one or more classes of solutes 

• Nondestruction of sample[3]. 

 

2.5.1 The Flame Ionization Detector (FID) 

The FID is the most widely used GC detector. The column effluent exiting the 

column enters the stainless steel jet, which is situated inside a cylindrical 

electrode system and surrounded by a high flow of air to support combustion, 

where it mixes with hydrogen gas and air, i.e. the oxidant. It then moves up to 

the detector head where it burns in an oxy-hydrogen flame producing ions in 

the process. These ions are collected and form a small current that becomes 

the signal. The collector electrode is biased about +300 V relative to the flame 

tip and the collected current is amplified by a high impedance circuit. Since 

water is produced in the combustion process, the detector must be heated to 

at least 125 °C to prevent condensation of water and high boiling samples[14, 

37].  

 

Most FIDs run at 250 °C or hotter. The FID is sensitive to almost all molecules 

that contain hydrogen carbon bonds, including aromatic and chlorinated 

VOCs, petroleum constituents, semi-volatile organic compounds (SVOC) and 

polychlorinated biphenyls (PCBs). Detection is in the low ppb to high ppt 

range. Inorganic compounds are not detectable by FID[13].  
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2.5.2 The Photoionization Detector (PID) 

A PID consists of an ultraviolet lamp, ranging in energy from 9.5 to 11.7 eV, 

mounted on a low-volume flow-through cell.  Each constituent of the sample 

will pass through the cell, where the UV lamp emits suitably high photons to 

energize and ionize sample components that have an ionization potential less 

than or equal its own. Photoionization occurs when an atom or molecule 

absorbs a photon of sufficient energy to release an electron and form a 

positive ion. The resulting ions are collected at positively charged electrodes, 

where the change in current is measured. The type of PID lamp used 

determines the peak photon energy that can be generated: 

• Xenon = 9.6 eV 

• Deuterium = 10.2 eV 

• Krypton = 10.6 eV 

• Argon = 11.7 eV[38].  

 

Argon lamps, thus, can be used to detect the largest range of volatile 

compounds, while Xenon lamps are generally used to increase selectivity.  

 

Capillary 
column carrying 

mobile phase 

Hydrogen 

Air or oxygen 
for combustion 

Flame 

Insulated jet 

Insulated collector 
electrodes 

Exit gases 

Figure 46: The FID sensor 
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The PID is more selective than the FID, and is able to detect certain inorganic 

vapours, as well as aromatic and chlorinated VOCs, and petroleum 

constituents, including benzene, toluene, ethylbenzene and xylene (BTEX). 

Detection levels are in the low ppb to high ppt range. Unlike the FID, the PID is 

a non-destructive detector and can be used in series before other detectors. 

Using multiple detectors extends the range of compounds that can be detected 

in one analysis. Other advantages include that the PID offers very fast 

response, high accuracy, and good sensitivity. It is also the most efficient and 

inexpensive type of gas detector, and is capable of giving instantaneous 

readings and monitoring continuously[39, 40].  

 

Table 19: FID vs PID 

 FID PID 

Advantages 

 

Good sensitivity Non-destructive 

Large linearity Simple 

Ruggedness Does not require extra gases 

Nearly universal in detection Portable 

Disadvantages 

Destructive 
Non-selective among organic vapours 

below ionization potential of lamp 

Complex instrumentation requiring 

hydrogen  
Affected by high humidity 

+ 

- 
V 

Lamp 

Electrode Plate for 
Lamp Illumination 

Signal i 

Gas Molecules 

Insulation 

Window Electrode 

Figure 47: A typical photoionization detector configuration 
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2.5.3 The Electron Capture Detector (ECD) 

The ECD is a selective detector capable of providing very high sensitivity for 

compounds that capture electrons, including halogenated materials such as 

pesticides and polychlorinated biphenyls. For this reason, one of its primary 

uses is in pesticide residue and environmental analysis[14]. Other 

electronegative functional groups include peroxides, quinones, and nitro 

groups. This detector is also an ionization-type detector; however, it varies 

from the before mentioned by detecting samples based on a decrease in the 

level of ionization, rather than an increase. The column effluent is passed over 

over a radioactive 63Ni beta emitter. These negatively charged β particles are 

drawn toward the positive electrode. When they collide with and ionize the 

make up gas more electrons are produced. This results in a constant standing 

current between a pair of electrodes. When an electronegative analyte is 

eluted from the column and enters the detector, it captures some of the free 

electrons. This results in a marked decrease in the standing current, giving a 

negative peak, as the negative ions formed have slower mobilities than the 

free electrons and are, hence not collected by the anode[3]. The major 

drawback of ECD is the necessity to use a radioactive source which may 

require a license or at least regular radiological testing. A newer innovation is 

an ECD operated with a pulsed discharge so that it does not require a 

radioactive source. The ECD is also easily contaminated and prone to 

problems[25]. Detection levels are again in the low ppb to ppt range, and like 

the PID, it is a non-destructive detector. 
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Figure 48: A schematic of an electron capture detector 
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2.5.4 The Thermal Conductivity Detector (TCD) 

The TCD was one of the first detectors used in conjunction with gas 

chromatography, and they remain popular, particularly for packed columns 

and inorganic analytes, such as H2O, CO, CO2, and H2. As the TCD measures the 

thermal conductivity of analytes in the mobile phase in comparison to the 

thermal conductivity of the pure mobile phase, it is classed as a differential 

detector. As a comparison needs to be made at least two cell cavities are 

required, although cells with four cavities are more common. These are drilled 

into a metal block, typically constructed of stainless steel. Each cavity contains 

a high resistance tungsten or a tungsten-rhenium alloy filament, incorporated 

into a Wheatstone Bridge circuit[14]. A temperature differential is created by 

passing a DC current through filaments, heating them above the temperature 

of the cell block, and thus creating a temperature differential. When only the 

pure mobile phase passes over all four of the elements, the bridge circuit is 

balanced with a zero control, however, when an analyte elutes the thermal 

conductivity of the gas mixture in the two sample cavities decreases as their 

filament temperatures increase. This results in a significant increase in the 

resistance of the filaments causing a voltage to develop across opposite 

corners of the bridge making it unbalanced. Subsequently, the voltage is 

Heated wire 

Flow out 

Flow in 

Figure 49: A schematic of a thermal conductivity detector 
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dropped across an attenuator before all or part of it is fed to a recorder, 

integrator, or other data system[3]. The carrier gas used with the TCD must 

have a thermal conductivity that is very different from the samples to be 

analysed, so the most commonly used gases are helium and hydrogen, which 

have the highest thermal conductivity values. Overall, the TCD is a rugged, 

universal detector with moderate sensitivity. Like the PID, it is non-

destructive. It has a limited target analyte list, however, and can only detect 

gaseous compounds in the ppm range. For this reason it is not used for trace 

analysis.  

 

2.5.5 The Nitrogen-Phosphorous Detector (NPD) 

The NPD is a highly sensitive but very specific detector, giving a strong 

response to phosphorous, nitrogen and some halogen containing compounds. 

This detector is similar to the FID, except that the hydrogen gas flow rate is 

reduced and an electrically heated thermionic rubidium or caesium bead 

contained inside a small heater coil is positioned just above the jet orifice to 

receive the column effluent. The bead is heated by passing a current through 

the coil. Analyte molecules exiting the column collide with the hot bead. Any 

nitrogen or phosphorous containing molecules partially combust and are 

adsorbed on the surface of the bead. This adsorbed material reduces the work 

function of the surface and, as a consequence, the emission of electrons is 

increased. The discharged ions are attracted to a collector electrode and an 

electronic amplifier is used to transmit the signal to the data processing 

system. If the detector is to respond to both nitrogen and phosphorus, then a 

minimum hydrogen flow is employed to ensure that the gas does not ignite at 

the jet. In contrast, if the detector is to respond to phosphorus only, a large 

flow of hydrogen can be used and the mixture burned at the jet. Unfortunately, 

the response of the detector seriously deteriorates with time, and the bead 

must be replaced fairly regularly if the detector is in continuous use[13]. 

 

The NPD is destructive and capable of detection in the ppb range. It is typically 

used in analysis for organophosphorus pesticides and herbicides. In addition, 

it may be used in analysis of nitroaromatics, i.e. explosives[41].  
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2.5.6 The Mass Spectrometer (MS) 

The MS detector is, in many cases, the most valuable GC detector type as it is a 

universal detector with the added benefit of being able to distinguish co-

eluting compounds based on differences in their molecular weight or mass to 

charge ratio (m/z)[42]. This makes the mass spectrometer a very powerful, 

useful, and popular detector to use in combination with a gas chromatograph. 

  

As previously described for the before mentioned techniques, analyte 

molecules must first be ionized to enable detection. A number of ionization 

techniques exist for MS. The oldest, most common and most simple is electron 

impact (EI). Here ionization is achieved by impact of a highly energetic (70 eV) 

electron beam. Column effluent passes into a heated ionization source at low 

vacuum. Electrons are drawn out from a tungsten filament by a collector 

voltage of 70 eV. This voltage, which is applied to the filament, defines the 

energy of the electrons. The high energy electrons then strike the neutral 

analyte molecules, usually resulting in a loss of an electron and, thus, 

ionization and fragmentation[43]. This ionization technique produces almost 

exclusively positive ions:  

Figure 50: The Nitrogen Phosphorous Detector 
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Equation 51 

M + e−  → M+ + 2e− 
 

Where M = the mass of the analyte of interest. 

 

Another ionization technique commonly used in GC-MS is chemical ionization 

(CI). In CI, a reagent gas, such as methane, is admitted to the ion chamber 

where it is ionized. This produces a cation which undergoes further reactions 

to produce secondary ions. These secondary ions then serve as a reagent to 

gently ionize the sample. This process generally results in less fragmentation 

and, thus, a simpler mass spectrum. The major MS peaks that normally result 

are: 

• (M + 1) 

• (M) 

• (M – 1) 

• (M + 29)[3, 14]  
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Figure 51: A schematic of a magnetic sector mass spectrometer 
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After ionization, the charged particles are repelled and attracted by charged 

lenses into the mass analyser. Here the ionic species are separated by their 

mass-to-charge ratio by either magnetic or electrical fields. Typical mass 

analyzers for GC-MS are quadrupoles or ion traps. Other analyzers are single-

focusing magnetic sector, double-focusing magnetic sector, and time of flight. 

 

Table 20: Detector Summary[44-46] 

Detector Dynamic Range Dependency 

FID 107 Mass 

PID 106 Concentration 

ECD 104 Concentration 

TCD 105 Concentration 

NPD 104 Mass 

MS 104 – 107 Mass 

 

 

2.6 The Data Acquisition System 
The overall purpose of separation is to allow for the qualification and 

quantitation of the individual components of a mixture. Qualitative analysis 

identifies the solute or solutes present in a mixture, while quantitative 

analysis determines how much of a substance or substances is present in a 

mixture. In order to make sense of the raw information gained from the 

separation and subsequent detection processes, a data acquisition system is 

required.  

 

Such a system is generally comprised of two basic components. The function 

of the first is to amplify and convert the analogue signal from the detector into 

digital data. The second component is typically a computer with a suitable 

software program installed. This receives and stores the digitized signal, and 

allows results to be easily retrieved and replayed. 

 

2.7 Validation and Calibration 
Methods used in analytical chemistry require validation. It is essential for 

these methods to be evaluated and tested to ensure that they produce valid 

results suitable for their intended purpose.  
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Examples of potential purposes include, but are not limited to, the following: 

• Determination of how much of a particular compound or product is 

present in a sample 

• Determination of whether or not a compound or product meets 

specifications 

• Determination of whether or not a compound or product meets 

regulatory requirements  

• Surveillance of an environment to determine the presence and amount 

of a component, contaminant, or a nutrient 

• Identification of a particular compound or product and/or its 

components. 

 

Validation, therefore, is the process of demonstrating or confirming the 

performance characteristics of a method of analysis. Determinations of the 

following set of validation parameters are generally required for qualitative 

methods: 

• Specificity/selectivity 

• Limit of detection (LOD) 

• Precision 

• Stability. 

 

Qualitative methods with a pre-defined threshold concentration for reporting 

of results require the following additional parameters to also be determined: 

• Linearity 

• Accuracy (bias) at the threshold concentration 

• Precision at the threshold concentration. 

 

Quantitative methods, on the other hand, generally entail the determination of 

the following: 

• Specificity/selectivity 

• Limit of detection 

• Precision  

• Linearity and working range 

• Accuracy (bias)  

• Recovery 

• Uncertainty of measurement 

• Stability.

 

Additional parameters which are desirable, but not always essential, include: 
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• Lower limit of quantitation (LOQ) 

• Ruggedness 

• Robustness. 

 

Before a method can be validated, it first must be relatively well developed, 

optimized, and stabilized. Another requirement is that it has been applied to 

some practical test samples with acceptable results. 

 

System validation normally precedes method development. All systems and 

equipment that may affect the efficacy, quality and/or recording of the end 

product/result require the following qualification steps[47]: 

 

1. Design Qualification (DQ): 

This step demonstrates that either a proposed design or an existing 

commercially available design will satisfy all pre-agreed user 

requirements. Before construction or procurement of a design, 

satisfactory execution of the DQ is essential. 

 

2. Component Qualification (CQ): 

The purpose of this step is to ensure that all auxiliary components are 

manufactured to the correct design criteria.  

 

3. Installation Qualification (IQ): 

IQ is necessary to show that the equipment not only meets all 

specifications, but is correctly installed with all required components 

and documentation needed for continued operation in place. 

 

4. Operational Qualification (OQ): 

This step demonstrates the correct operation of all facets of the 

equipment. 

 

5. Performance Qualification (PQ): 

PQ gives an indication that the process or equipment performs as 

intended in a consistent manner over time. 
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Design verification testing (DVT) is performed before the above detailed 

system validation. DVT takes place after prototyping and involves the 

comprehensive testing of all product specifications, interface standards, 

original equipment manufacturer (OEM) requirements, and diagnostic 

commands. Within the overall process of DVT, the following tests are 

performed[48]: 

1. Functional testing (including usability) 

2. Performance testing 

3. Climatic testing 

4. Reliability testing 

5. Environmental testing 

6. Mechanical testing 

7. Mean time between failures (MTBF) prediction 

8. Compliance and regulatory testing 

9. EMC testing and certification 

10. Safety certification 

 

Design refinement is generally performed either following this step or 

concurrently. During this stage of the design process, engineers revise and 

improve the design to meet performance and design requirements and 

specifications[48]. 

 

As well as the above instrument based validation steps, any computer and 

software system developed and used alongside the hardware system would 

also require its own validation process. The overall aim is the development of 

a suitably designed system capable of providing a high degree of assurance 

that every step, process, and change has been thoroughly evaluated before its 

implementation. 

 

2.7.1 Specificity (Selectivity) 
Specificity allows measurement of the ability of a method to identify and 

quantify the analyte of interest in the presence of other interfering substances 

which may be found within the overall sample. Examples of such interferences 

include impurities, degradants and, often, the matrix itself. In order to 

determine the specificity of a method, known standards should be tested in a 

matrix as close to the matrix of the sample itself, with the inclusion of any 
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materials which may be encountered in the sample. Selectivity is 

concentration-dependent and should be determined at the low end of the 

calibration range[49]. The purpose of this validation step is to ensure that the 

effects of impurities, cross-reacting substances, etc., which may be present in 

the matrix are known and accounted for.  

 

2.7.2 Quantitative Analysis – The Calibration Curve 
Quantitative chromatographic analysis generally consists of the preparation of 

a series of standard solutions containing a known amount of the analyte of 

interest. The instrument response for each is measured, with a five-point 

calibration being typical. Measurement of the peak areas or peak heights of 

the resulting chromatograms are then taken and plotted as a function of 

concentration. This then allows for an estimate of the amount of actual analyte 

present in a sample based on comparison of either the sample peak’s height or 

area with that of one of the standards. 

 

A calibration curve can verify the proper functioning of an analytical 

instrument, and gives an indication of the following[50]: 

• Linearity 

• Regression equation 

• Calibration/Working range 

• Limit of Detection  

• Limit of Quantification  

• Correlation efficient R2 

 

2.7.3 Linearity 
The linearity of an analytical procedure is defined as its ability, within a given 

range, to obtain results which are directly proportional to the concentration of 

analyte in the sample[51]. A high correlation coefficient (R2) of 0.99 or greater 

is often recommended as a criterion of linearity. As evidenced in the graphs 

above, all three standard curves had R2 values of over 0.99 indicating good 

linearity. 

 

A linear calibration graph takes the general form: 
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Equation 52 

y = mx + c 
 

Where: 
• c = the intercept of the line with the y-axis 

• m = the slope or tangent. 

 

In an ideal world, the intercept value would be zero, as, in theory, when no 

analyte is present no instrument response is expected. However, this is rarely 

found to be the case in practice. Interactions, interferences, noise, 

contaminations and other sources of bias result in a baseline value above zero. 

Thus, the intercept (c) can be considered as the signal of the blank sample of 

the standard series. 

 

The slope (m) gives an indication of the sensitivity of the overall method, with 

a steeper slope correlating to a more sensitive method[51].  

 

2.7.4 Repeatability and Reproducibility 
Repeatability conditions occur when analyses are performed by the same 

analyst on the same day with the same instrument in the same laboratory. 

Reproducibility conditions are represented by any variation from these 

conditions, such as the analyses taking place on different days, using different 

instruments, or being performed in different laboratories. 

 

Precision and accuracy together determine the total error of the analysis. Both 

require examination under repeatability and reproducibility conditions. 

 

2.7.5 Precision 
Precision is a measure of the closeness of the analytical results obtained from 

a series of replicate measurements of the same measure under the conditions 

of the method. It reflects the random errors which occur in a method. 

 

Precision is usually expressed as the variance, standard deviation or 

coefficient of variation of analytical results obtained from independently 
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prepared quality control standards[51]. As precision is concentration 

dependent, it should be measured at different concentrations within the 

working range. 20% is considered an acceptable precision value at lower 

concentrations; however, a better value is generally expected for higher 

concentrations. 

 

The standard deviation (𝜎) is calculated from the square root of the variance 

(𝜎2) as follows: 

 

Equation 53 

σ =  �
1
N�(xi −  x�)2 =

N

i=1

�σ2 

 

Where: 

• σ = the standard deviation 

• xi = each value of the dataset 

• x� = the arithmetic mean of the data 

• N = the total number of data points. 
 

Under a normal distribution, ± one standard deviation encompasses 68% of 

the measurements and ± two standard deviations encompasses 96% of the 

measurements[52]. 

 

The relative standard deviation (RSD), or coefficient of variance, is used to 

compare the uncertainty between different measurements of varying absolute 

magnitude. The RSD is calculated from the standard deviation (σ), and is 

commonly expressed as a percentage (%): 

 

Equation 54 

% RSD = � 
σ
x��  x 100% 
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2.7.6 Accuracy 
Accuracy is a measure of the extent to which test results generated by the 

method and the true value agree. Any difference seen is due to systematic 

method and laboratory error. It is usually expressed as a percentage. A 

number of techniques exist to determine the accuracy of a method.  

1. Comparison of the method results with results from an established 

reference method. 

2. Comparison of the true value as supplied with a control sample or 

certified reference material (CRM), i.e. a sample of known 

concentration, with the measured value. 

3. Comparison of a blank sample matrix of interest spiked with a known 

concentration with the method determined value[51]. 

 

Absolute error (EA) is calculated by: 

 

Equation 55 

EA = True Value− Indicated Value 
 

This value is then used to determine the relative error (eR) of the system: 

 

Equation 56 

eR =  
EA

True Value 

 
 

This then allows for the calculation of accuracy: 

 

Equation 57 

% Accuracy = (1 −  eR) x 100%  

 
The accuracy of the system and the method was not determined here; 

however, had there been more time available it would have been examined. 
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2.7.7 Limit of Detection (LOD) 
The lowest analyte concentration that can be detected and identified, but not 

necessarily quantitated, with a given degree of certainty is known as the limit 

of detection[51]. The LOD is also the lowest concentration that can be 

distinguished from the background. As with the determination of accuracy, 

more than one technique exists for the determination of the LOD. All methods 

require the analysis and comparison of the signal-to-noise ratio (S:N) of blank 

samples and samples with known low concentrations of analyte. The purpose 

of these examinations is to establish the minimum concentration at which the 

analyte can be reliably detected. A minimum S:N ratio of 3:1 is widely 

accepted for estimating the detection limit[51].   

 

2.7.8 Limit of Quantitation (LOQ) 
An analytical procedure’s LOQ is the lowest amount of analyte in a sample 

which can be quantitatively determined with suitable precision and accuracy. 

Typically a signal-to-noise ratio of 10:1 can be used to estimate this value in 

much the same way as LOD is estimated[51].  
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3.0 Two-Dimensional Gas Chromatography 

 

As evidenced in the previous chapter, gas chromatography is a flexible, 

relatively simple technique with widespread applications. While conventional 

GC, in combination with FID or MS, has been used in many studies to measure 

atmospheric VOCs, it often fails to separate components in particularly 

complex samples, such as air, to a satisfactory degree. This is because most 

atmospheric samples contain such a degree of closely eluting peaks of both 

analytes and matrix components that the peak capacity in only one 

chromatographic dimension (1D) is greatly exceeded. The result can be severe 

peak overlap and/or unresolved regions, leading on to difficulties in 

identification and inaccuracy in quantification[1]. Lewis, et al. (2000)[4], in one 

of the most important applications of GCxGC, illustrated the separation of 

more than 500 chemical species of VOCs from urban air samples in one run. 

The strong difference in abundance between components was shown to 

completely mask numerous air pollutants with relatively lower mixing ratios 

within the apparent baseline noise observed in GC-MS. This effectively 

rendered them invisible on a conventional chromatogram[4, 5]. Many of these 

previously undetected aliphatic, carbonyl and aromatic components proved to 

be very reactive ozone precursors, intermediate products of photochemical 

reactions, and tracers of specific processes. Thus, researchers may have 

previously underestimated the contribution of some of these VOCs to urban 

air pollution, and, despite their individual abundances being low, 

quantification of these species may be of importance for understanding 

atmospheric processes, such as ozone formation. 

 

In comprehensive 2D GC, each peak separated on the first column (the first 

dimension) is sliced and fully transferred for further separation into the 

second column (the second dimension). Usually, the first column contains a 

non-polar stationary phase, and the second column a polar stationary phase. 

This combination allows components to be independently separated, first 

according to their volatility, and then according to their polarity. 

 

3.1 Multidimensional Gas Chromatography (GC-GC) 

Historically, the peak capacity problem in conventional gas chromatography 

was dealt with through the implementation of a technique referred to as 
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“heart-cutting”. Deans illustrated this technique via the so-called “Deans 

switch” fluidic valve in 1968, when he diverted a specific section of a GC 

chromatogram into a second column of different polarity[6]. Schomburg went 

on to demonstrate how this could be achieved for capillary columns[7].  
. 
Heart-cutting or multidimensional GC entails a complex and unresolved 

portion of the main column effluent being collected and subsequently injected 

to a second column, which is coated with a stationary phase of different 

selectivity. This process subjects the analytes of interest to an additional 

separation. The individual fractions need to be small in order to not lose the 

separation already obtained. While this approach does increase the resolution 

of the selection portion of the 1D chromatogram, difficulties are encountered 

when the analytes of interest are scattered throughout the first-dimension 

chromatogram and when discovery of unknowns is the ultimate aim. Overall, 

the technique lacks the power of a comprehensive two-dimensional technique, 

in which the entire sample is subjected to all dimensions of the separation and 

any subsequent separation dimension preserves the separation achieved in all 

previous dimensions.  

 

3.2 Comprehensive Two-Dimensional GC (GCxGC) 

Two-dimensional chromatography was suggested by Martin in 1944[8]. A 

considerable increase in peak capacity is achieved if a mixture to be analysed 

is subjected to two coupled separations with different separation mechanisms.  

Comprehensive two-dimensional gas chromatography is a technique that is 

ideally applied to the separation of complex mixtures of volatile and semi-

volatile compounds. The technique is considered comprehensive as all of the 

analyte mass from the first column is transferred to the second column. Thus, 

all compounds are subjected to two different separation mechanisms. The 

other interesting aspect of a comprehensive, as opposed to a heart-cut 

technique is that the 2D separation is completed in the run time of the first 

separation. In addition, highly structured 2D chromatograms are often 

obtained, which facilitate fingerprinting and allow for provisional 

identification of unknowns.  

 

GCxGC was pioneered by John Phillips in the early 1990s[9]. Since its 

introduction, it has become known as a versatile technique that can be applied 
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to essentially all GC-amenable complex samples and analyte classes for the 

following purposes: 

1. Target-compound analysis. This type of analysis is devoted to a 

limited number of compounds in a complex matrix. 

2. Group type analysis. Here, the goal is to distinguish and analyse 

families of compounds. 

3. Fingerprinting (or exhaustive analysis). The objective here is the 

classification of a sample in a certain group or category, or the 

complete analysis of the entire sample[10]. 

 

Table 21: Selected applications of GCxGC 

Analyte Sample 

Hydrocarbon (group) type 
Gasoline; kerosene; diesel; fire debris; 

C9 olefins 

Biomarkers Crude oil 

Oxygenates Gasoline 

S-containing compounds Diesel; gas oil; kerosene 

Alkylphenols Industrial phenol additive 

Flavours and fragrances 

Tea; lavender; oregano, bergamot; 

ginger; ginseng; tea tree; peppermint; 

brunch extract; sour creams; garlic 

PCBs, toxaphene 
Standards; enantiomers; cod liver; 

technical mixtures 

Pesticides Surface water; fruits; vegetables 

FAMEs Fish; vegetable oils; mussels 

PAHs Soil; sediment; fly ash 

VOCs, aromatics, oxygenates Air 

Racing drugs Horse/dog urine 

Sterols Faeces 

PCBs, dioxins, pesticides Serum; urine 

Wound-induced plant 

volatiles 
Leaves 

Nitrosamines Cigarette smoke 

Polyphenols Wine 
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3.2.1 Principles of GCxGC Separation 

The mechanism of a GC×GC separation involves injection of the sample onto a 

first chromatographic column, termed the primary column for initial 

separation, as with 1D GC. Molecules eluting from this column are then 

trapped or collected by a modulator (also termed an interface), rather than 

traversing to the detector. This modulator periodically samples or injects its 

contents, i.e. the entire collected fraction, onto a second column at a known, 

regular interval, which is typically in the range of 2-6 s. It then collects another 

fraction of the effluent from the first column, while the previous fraction is 

undergoing a very fast and independent separation on the second dimension 

column, before elution to detector, where it is measured. This process of 

effluent collection and injection repeats itself throughout the entire analysis.  
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Figure 52: Schematic representing a raw GCxGC chromatogram indicating 
the positions of individual slices and illustrating how a 3D chromatogram 
is reconstructed from the raw chromatogram 
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GCxGC offers many advantages over conventional 1D GC.  An important 

benefit is the very high separation capacity that can be achieved. As a result of 

the orthogonality, i.e. independent separation mechanisms, of the two 

separating dimensions to which all constituents of a sample are subjected, the 

separation power of the GCxGC system is roughly equal to the product of the 

separation powers of the individual columns. This is what allows for far more 

compounds to be baseline resolved in a 2D separation plane in comparison to 

a conventional 1D chromatographic analysis. Not only does the 

chromatography benefit from enhanced separation of the analytes from each 

other, but another major advantage is the separation of these analytes from a 

large part of the interfering background. 

 

GCxGC also boasts improved analyte detectability. This is due to the focusing 

and compressing effect of the modulator. Since the separation of each 

modulated fraction on the short second column has to be completed before 

the next fraction is injected, the second-dimension separation takes only a few 

seconds. To prevent peak broadening, before injection onto the second 

column, the modulator focuses the first-column eluate fractions into very 

narrow pulses with typical widths of approximately 10 ms. The result of this is 

peak amplitudes that are typically enhanced 20-150 fold, due to the mass 

conservation in all, except valve-based, modulators[11]. It is important to note, 

that such narrow peaks demand very high data acquisition rates of up to 200 

Hz. Noise is also, thus, proportionately more prominent. This means that, 

despite the considerable peak enhancement, improvement of the limits of 

detection (LODs) are generally more modest, i.e. 5–10 fold. 

 

A further advantage of GCxGC is the generation of structured or ordered 

chromatograms. This feature has proven very helpful for identification 

purposes, especially due to the complexity of the majority of GCxGC 

chromatograms. Those compounds having the same basic structure of 

containing the same functional group, i.e. members of the same chemical class, 

have been shown to exhibit a related second-dimension retention time. As a 

consequence, such classes of compounds are exhibited as bands or clusters, 

which can easily be recognised in the 2D GCxGC plane. Compounds are further 

distributed, within each of these clusters, according to their number of carbon 
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atoms and/or the number and length of the alkyl chains attached to the 

functional groups. It has been found that compounds with higher boiling 

points have correspondingly higher first dimension retention times. 

Compounds that are more polar or polarisable, on the other hand, exhibit 

higher second dimension retention times[12]. This structuring facilitates the 

identification of unknown compounds and the comparison of complex 

atmospheric samples.   

 

3.2.2 GCxGC Instrumentation 

The GCxGC instrument itself is very similar to a conventional GC, and most 2D 

GC set-ups are the result of the modification of a conventional gas 

chromatograph. Consequently, the instrumental components utilized in GCxGC 

are mostly the same as in 1D GC. A block diagram of the typical GCxGC set-up 

is illustrated below.  

 

Important components include the injector, the oven, the columns and the 

detector. Typically, a longer column coated with a thicker film of a nonpolar 

stationary phase is installed as the primary column. Its outlet is connected 

through the modulator to the inlet of the second dimension column, which is 

coated with a stationary phase of different selectivity[1].  

 

Primary 
Column 

Modulator 
(Interface) 

Detector 
Injector 

Secondary 
Column 

Figure 53: Schematic of a gas chromatogram set up for GCxGC analysis 
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3.2.2.1 GCxGC Columns 

Different compounds obviously undergo different separation mechanisms. For 

GCxGC analysis any combination of column phase types can be utilised, 

provided orthogonal separation is facilitated. Typically, however, column sets 

include a nonpolar first dimension followed by a polar second dimension, as 

seen in Figure 56 taken from Lewis, et al. (2000)[4]. This type of arrangement 

ensures differing retention mechanisms between the columns. The other 

general requirement is that the second column is shorter and has an internal 

diameter that is equal to or less than the first column. This ensures that the 

second column can operate at the required high speed and, hence, complete 

Figure 54: Comprehensive and one-dimensional separations of VOCs in 
urban air. A. benzene; B. heptane, C. toluene; D. xylenes; E. C3-benzenes; F. 
C4-benzenes; G. C5-benzenes; H. naphthalene. 1. aliphatic band; 2. 
carbonyl band; 3. aromatic band; 4. bi-aromatics[4].  
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the separation of one injected fraction before the separation of the next 

fraction is started.  Usual primary column lengths are in the order of 20-30 m, 

while secondary columns are generally 0.5-1 m in length. 

 

The idea that a narrower column should be used in the second dimension has 

become the conventional wisdom when choosing column sets for GCxGC 

separations. However, it has been found that overloading of the second 

dimension is a common feature of such a set up, even when the primary 

dimension column is not overloaded[13]. Overloading is the result of the 

modulator focusing portions of the effluent from the primary column into the 

very narrow channel of the secondary. This results in reduced peak capacity in 

the second dimension. Since the amount of second dimension separation 

space is highly limited, any losses here, including those due to overloading, 

could seriously impair the performance of the system. Experimentation has 

shown that this can be avoided by having a secondary column I.D. that is equal 

to or larger than the first[13].  

 

On the other hand, narrower columns have significant advantages, most 

important of which is related to separation speed. It is much easier to obtain a 

very fast separation in the second dimension with a narrow column. They also 

provide narrower peaks under conditions of no overload.  

 

When analyzing samples in which the concentrations of the analytes or matrix 

components are unknown and may be high, logic would suggest that it may be 

better to use larger diameter columns in the second dimension, as this will 

lessen the chances and consequences of overloading here. In addition, this 

may lead to better overall resolution in this second dimension. 

Primary dimension separation is generally in the programmed-temperature 

mode, while the separation on the secondary column is extremely fast and so 

tends to be performed under essentially isothermal conditions. 

 

3.2.2.2 Modulators 

The modulator ensures that the separation is both comprehensive, i.e. the 

entire sample is subjected to both separation dimensions, and 

multidimensional, i.e. the separation that is accomplished in one dimension is 

not lost in the other. The component is positioned at the junction of the dual 
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column set. Different mechanisms, depending on the modulator, are applied to 

trap or compress the eluting solutes from the first column and pulse them as 

narrow peaks of about 0.01 s width to the second. When a given pulse is 

analysed via the secondary column, the modulator prevents further elution of 

the solutes at the junction and segments or segregates the solutes into pulsed 

peaks according to the mechanics of the modulator and the phase and 

frequency of modulation. 

 

Without a modulator in place to sample the first dimension periodically, bands 

of analytes separated at the end of the first column, are at risk of recombining 

in the second column and co-elute at the detector. It is also possible that the 

bands could change their elution order when they flow unrestricted from one 

column to the next.  

 

With the addition of a properly configured modulator with an appropriately 

chosen sampling frequency, the primary column separation will be preserved, 

as the material the modulator contains is only periodically allowed to enter 

into the second dimension column thus facilitating GCxGC separation. Each 

peak eluting from the first dimension should be sampled at least three times 

across its width[14].  

 

Numerous modulator designs have been trialled and implemented. The two 

main types of modulation possible are thermal and fluidic or valve-based 

modulation. 

 

Thermal Modulation 

Thermal modulation allows for the trapping of the analyte mass eluting from 

the first column in a short segment of capillary column coated with a thick-

film stationary phase. A heater rotates over the column trap to desorb, 

compress and inject the trapped analyte mass into the second column. 

Different types of thermal modulation have been developed, including ones 

that enable liquid nitrogen[15], carbon dioxide or cooled air (cryogenic-jet type 

modulators) to intermittently blow over a section of the second column to 

trap the primary column effluent. Following cooling, the column section is 

rapidly reheated passively from the circulating hot oven air or directly to 

release the trapped peaks more rapidly. An issue with this type of modulation 
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is that during the heating stage, any new peak material exiting the primary 

column will not be trapped and can enter the secondary column along with 

the already trapped material, resulting in some overlapping and smearing of 

peak bands[16].  

 

To counteract this, a second thermal modulator is generally used. Here, the 

modulators are heated and cooled out of phase with each other. Cooling the 

first modulator traps peaks at this point. The second modulator is then cooled 

whilst the first is heated. Thus, while the first modulator is hot, the trapped 

peaks move to the cooled second modulator zone along with any material that 

leaks through. On recooling of the first modulator again, the two trapping 

zones are effectively isolated from each other. The second modulator is then 

heated, and the trapped peaks are released into the secondary column for 

separation. Any new material eluting from the first column is trapped inside 

the still cool first modulator, and so does not enter the second column until 

the next secondary analysis is ready to start. This scheme effectively isolates 

the two columns from each other for the purposes of GCxGC[17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55: Schematic of duel-jet cryogenic modulation. (B1) Right hand 
side jet traps analytes eluting from first column; (B2) Right hand side jet 
switched off, cold spot heats up rapidly and analyte pulse is released into 
second column; simultaneously, left hand side jet switched on to prevent 
leakage of first-column material; (B3) next modulation cycle is started[3]. 
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Cryogenic modulation offers a rapid and reproducible thermal cycle with a 

resulting high sensitivity through peak sharpening. However, it does have 

some practical drawbacks, including limited trapping of high-volatility species, 

freeze out of water in moist samples, ease of portability, and high consumable 

use if liquid nitrogen is used as coolant.  

 

Valve-Based Modulation 

Valve-based modulators can also be used to make GC×GC measurements[16]. 

Here, a diaphragm valve is typically used as interface between the two 

columns. Numerous configurations of this modulation method have been 

designed, ranging from both columns and the valve being inside the same GC 

oven, to more recent conformations where a second independently controlled 

oven houses the valve and the second column.  While the former was ideal for 

mixtures capable of separation under 175 °C (the maximum manufacturer-

specified operating temperature for the diaphragm valve due to three O-rings 

in the interior of the valve), the latter results in a more versatile system to 

optimize separations on both columns [18, 19].  

 

Valve-based comprehensive two-dimensional gas chromatograph is not only 

compact and robust, but it is also inexpensive. The major drawback of this 

modulation configuration is the diminished detection sensitivity it can 

experience, due to only a portion of the effluent from the first column being 

transferred to the second. However, this loss of sensitivity has now been 

addressed by the development of total-transfer valve-based GC×GC[20, 21]. Here, 

one of the appropriate ports of the high-speed six-port diaphragm valve used 

as the modulator is simply blocked, resulting in 100% mass transfer from the 

primary to the secondary column.  

 

The modulation set up used for this project was based on the differential flow 

modulation first introduced by Seeley et al[2]. This group used a 2-way, 6-port 

diaphragm valve, shown in Figure 58, to connect the two columns via a sample 

loop. Initial designs saw the valve being kept in the sample position for 80% of 

the time during each modulation period. On actuation of the valve, the sample 

loop was rapidly flushed to efficiently pass its contents onto the second 

column.  Seeley then went on to produce a differential flow modulator that 

provided total transfer, resulting in full conservation of material between 
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columns. This was based on a fluidic switching design, similar to the 

modulation used for the purposes of this project, and was constructed using a 

three-way solenoid valve outside the sample path, which controls the 

direction of sample flow, thus allowing 100% transfer from primary to 

secondary column[22]. To eliminate the problems associated with exceeding 

the maximum temperature limit of the component, the valve could be housed 

outside the GC oven. A simplified version of this modulator has been adapted 

by Agilent for commercial use[23].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2.3 GCxGC Detectors 

GCxGC analysis requires detectors with a small internal volume, a short rise 

time and a high data acquisition rate to ensure proper reconstruction of the 

second-dimension chromatograms. The following detectors have been 

determined as suitable for GC×GC: 

• The flame ionization detector, which has small volumes and 

acquisition frequencies of 50–300 Hz  

• The electron capture detector, with an acquisition frequency of 50 Hz  

Figure 56: Configuration of Seeley’s 6-port modulation valve[2] 
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• The atomic emission detector (AED), with a transfer line adaptation to 

eliminate the drawback of a mere 10 Hz frequency 

• The sulphur chemiluminescence detector (SCD) 

• The nitrogen chemiluminescence detector (NCD)[1]. 

 

The above mentioned detectors permit peak recognition, but provide no 

structural information. To achieve this, a time-of-flight mass spectrometer 

(TOF MS), which can be operated at high repetition rates of 5–30 kHz, can 

acquire the fifty or more mass spectra per second which are required for 

quantification. Fast scanning quadrupole mass spectrometers, with 

acquisition rates of 33–50 Hz capable of achieving scan ranges of 50–100 mass 

units, have also recently been shown to perform satisfactorily[24].  

 

3.2.3 GC×GC Data and Plots 

The data produced by GCxGC analysis and the software used to interpret that 

data differs vastly from that associated with conventional GC. The data system 

cuts the data arriving at the detector into individual second-dimension 

chromatograms. It then aligns them into a signal matrix. Two dimensional 

data is plotted using one independent axis for primary column retention and a 

second independent axis for secondary-column retention to give a 

comprehensive two-dimensional chromatogram, which is usually visualised as 

a 2D colour or contour plot and, occasionally, as a 3D plot [17, 25]. 

When a TOF MS detector is coupled to the GC×GC system, an additional 

dimension is added to the data (that of mass-to-charge ratio). Such highly-

structured data are proving to be both incredibly valuable when coupled with 

novel chemometric techniques, and incredibly challenging to manage and 

manipulate. GC×GC-TOF MS data cubes containing on the order of 110 million 

data points per hour for a single sample are not uncommon. Efficient means of 

sifting through these data to extract useful information is one of the current 

challenges facing the technique. 

 

In order to derive quantitative information from the data in a GCxGC analysis, 

the modulated peaks corresponding to the analyte of interest are integrated as 

usual using the raw data file. The areas of all these peaks are then summed.  
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3.2.4 The Future of GCxGC 

Comprehensive 2-dimensional GC is a still a relatively new technique, and 

since its inception there have been continuous developments in this field. Both 

conventional GC and GCxGC are robust, reliable, highly sensitive and 

reproducible tools for environmental and atmospheric gas analysis. 

Unfortunately, however, despite a high degree of current commercial 

instrument sophistication, modern GC systems are bulky, power intensive 

(typically up to 3 kW peak) and require fairly long analysis times. This makes 

the GC a difficult instrument to operate in remote and challenging locations, 

such as the Antarctic and the jungles of Borneo. As a result, analyses in such 

situations are often performed back in the laboratories, far away from the 

emission source and a long time after the sampling. 

 

There is great potential in this area, therefore, for microfabricated GC systems 

that are compact, robust and with low power demands. There is particular 

intrinsic attraction in monolithic GC structures, where all components of the 

device (injector, column, and detector) are formed in a single fabrication step 

with benefits for robustness, lack of interconnections, and a structure 

geometry that is very much easier to heat using planar devices.  
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4.0 GC Miniaturisation 

 

The following chapter gives a detailed literature review of the reported 

attempts and successes at miniaturising gas chromatography 

instrumentation[1]. 

 

Miniaturised and microfabricated GC systems are not a new proposition; the 

first gas chromatograph fabricated in silicon using photolithography and 

chemical etching techniques was reported in 1975 by Terry, et al. at Stanford 

University[6]. The micro-GC consisted of an injection valve and a 1.5 m long 

column with a depth of 40 µm and a width of 200 µm fabricated on a silicon 

wafer, with an internally mounted thermal conductivity detector. The spiral 

column had a rectangular cross-section, and the silicon wafer was 

hermetically sealed to a Pyrex glass cover plate[6]. The resolving power of the 

column was poor in comparison to standard columns of the day. A number of 

factors contributed to this, not least the difficultly in evenly coating 

rectangular channels and that the majority of the other GC components were 

not miniaturized. This resulted in the use of various interconnections between 

the column and these external components, introducing dead volumes and 

cold spots, and decreasing performance.  

 

Since that time there has been a great deal of research undertaken to develop 

silicon fabricated on-chip electrophoresis and liquid chromatography systems, 

but with chip-based gas chromatography receiving only limited attention.  

 

4.1 Miniaturised Capillary GC Instruments  

There are a number of Micro-Electro-Mechanical Systems (MEMS) based GCs 

currently commercially available, which encompass all instrument 

components on a smaller scale. Many of these combine conventional drawn 

capillary narrow bore columns with miniaturised detection and data handling 

technologies.  The Agilent 3000 Micro GC (G2805A: 155 x 364 x 413 mm) 

provides one- to four-channel micro-GCs using a MEMS TCD detector[10]. C2V 

manufacture a handheld micro-GC system (124 x 84 x 60 mm) that, again, uses 

a MEMS micro-TCD as detector, reporting detection sensitivity at ppm 

levels[13]. The shoe-box sized microFAST GC fabricated by ASI Inc. is another 

example. This uses heated columns to analyse volatile and semi-volatile 
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compounds with FID detection[4]. SLS Micro Technology report an instrument 

(GCM 5000) approximately PDA sized with a footprint of 129 x 65 x 24 mm for 

analysing ppm levels of permanent gases, such as CO2, CH4, and O2, as well as 

polar and nonpolar substances. It is equipped with a micro-injector, silicon-

glass etched separation column, and a MEMS TCD detector, all of which are 

integrated with commercial off-the-shelf (COTS) fluidic and electronic 

modules on a printed circuit board[8]. 

 

  

4.2 Microfabricated GC Instruments 

The µChemLab developed by Sandia National Laboratories, is an example of a 

handheld miniaturized GC instrument for VOC measurement that incorporates 

a microfabricated etched column. It comprises a preconcentrator consisting of 

a thin silicon nitride membrane supporting a patterned metal film-heating 

element, a spiral 1 m long 100 x 400 µm high aspect ratio GC column on a 

silicon wafer, and an array of surface acoustic wave (SAW) sensors[3, 15]. 
 

a) b) 

c) 

Figure 57: a) The Agilent 3000 Micro GC[2]; b) The ASI Inc. microFAST 
GC[4]; c) The SLS Micro Technology GCM 5000[8]. 
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Silicon has very much been the favoured substrate to date for microfabricated 

GC columns, generally manufactured via the Dry Reactive Ion Etching (DRIE) 

method, followed by a Pyrex cover sheet being anodically bonded to the wafer 

yielding a sealed GC column. Many silicon examples of micromachined 

columns can be found in the literature[7, 16-22], with nonpolar 

dimethylpolysiloxane and moderately polar trifluoropropylmethyl 

polysiloxane phases giving columns with between 3,500 and 8,200 plates[23, 

24].  

 

Sanchez, et al. reported the development of a hybrid micro-system to be used 

for the detection of volatile organic compounds in air[25]. The rectangular 

silicon etched column was 2 m long, 50 µm wide and 40 µm deep. This used 

synthetic air as carrier gas and coupled the micro-column with a SnO2 gas 

sensor[25]. 

 

Nishino et al. described a micro-GC that also used a high performance spiral 

chip column with rectangular cross-section fabricated on a silicon wafer[21]. In 

this instance, 35,000 theoretical plates were achieved, with the channel being 

8.56 m in length, 200 µm in width and 100 µm in depth. The prototype micro-

GC system developed included a split injector, the micro etched column, 

heater assembly, FID, flow controllers, power circuits and LCD monitor, and 

was operational in both stand-alone and PC controlled mode[21]. 

 

A micro gas chromatograph comprising a micro-preconcentrator and dual-

column pressure- and temperature-programmed separation module, with an 

Figure 58: The µChemLab developed by Sandia National Laboratories[3]. 
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integrated array of nanoparticle-coated chemiresistors acting as detector was 

reported by Zellers, et al[26]. This achieved separation of 30 components in 4 

minutes with a 3 m DRIE silicon/glass column, and separation of 11 

components in 14 seconds with a 25 cm column. Both columns had 

rectangular cross-sections with a width of 150 µm and a depth of 240 µm[26]. 

 

4.2.1 Microfabrication Substrates 

Although silicon dominates the literature as a substrate, columns have been 

made in other materials including anodically bonded glass and silicon[7, 16-18, 20-

22, 25], porous silicon[9], carbon nanotubes[5], parylene[11], metal[12] and 

ceramic[14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

  

 

 

 

 

 

A 

C 

D E 
Figure 59: Columns composed of A. Carbon nanotubes[5]; B. Porous 
silicon[9]; C. Parylene[11]; D. Metal[12]; E. Ceramic[14]. 
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 In addition, a variety of fabrication techniques have been utilised including 

deep reactive ion etching, DRIE polymer vapour deposition, stereolithography, 

silicon bulk micromachining, and Lithographie, Galvano-formung, Abformung 

(LiGA).  

 

Of GC systems made in other materials, some notable examples include that of 

Noh, et al. comprising a parylene gas chromatographic column with an 

embedded heating element[11]. Parylene is a highly anisotropic crystalline 

polymer formed by gas phase deposition which allows it to provide a 

conformal coating to any target structure. Parylene columns are fabricated by 

first coating the polymer onto a deep reactive ion etched wafer and then 

thermally bonding this wafer to a parylene coated Pyrex sheet. The spiral 

column described by this paper had a rectangular cross-section and was 1 m 

in length, 100 µm in width and 350 µm in depth. The columns yielded good 

separation results for light compounds on a variety of stationary phases, 

however, these columns are mainly suited for isothermal operation due to 

their high thermal capacitance and low thermal conductivity, and this limits 

their use[11]. 

 

Bhushan, et al. described the fabrication of high aspect ratio nickel 

microfluidic columns using the LiGA process. The 2 m long, 50 µm wide, 600 

µm deep serpentine columns were the separation component of a handheld 

GC intended for the detection of semi-volatile and volatile compounds. An 

advantage to using metal columns is their higher thermal conductivity in 

comparison to silicon-glass substrates[12, 27]. 

 

A ceramic micro-system consisting of a column and micro-FID was reported 

by Dziurdzia, et al. using photoimageable thick-film technology combined with 

low temperature cofired ceramic (LTCC)[14]. The components were integrated 

onto a single piece of alumina substrate, with the column reported as 4.8 m 

long, 250 μm wide and 80 μm deep[14]. 

 

4.2.2 Channel Shape 

Of the miniaturised devices previously reported, a common feature has been 

the use of square sided channels to form the separating column. The greatest 

difficulty associated with column coating is, therefore, in achieving a 
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uniformly thin layer of the desired thickness right across the cross-section of 

the column, including the corners. A limitation of rectangular designs is 

“pooling” of the stationary phase at the column corners producing an uneven 

thickness of stationary phase. Peak broadening and general degradation of the 

separation performance may result from analytes spending a longer time in 

these areas of thicker coating[28]. 

 

Circular cross-sectional channels are able to perform well over a larger range 

of flow than other reported column shapes, and this increases system design 

flexibility. Limited numbers of circular channelled microfabricated devices 

have been reported, notably by Potkay, et al. who reported columns of 1m 

length and 90 µm diameter with a semi-circular cross-section[7], and Pai et al. 

who detailed the use of circular cross-sectional silicon serpentine columns 

with a 250 µm internal diameter [29].  

 
Figure 60: SEM of a side view of Potkay's µGC column[7]. 
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4.2.3 Miniaturised Detectors 

Various detectors have been reported in conjunction with micro-GC systems. 

TCD is one of the few miniaturized detectors commercially available and has 

been reported in the literature a number of times[6, 8, 10, 13]. Other detectors, 

such as surface acoustic wave devices[3, 15, 30], differential mobility 

spectrometers[18], metal oxide gas sensors[20, 25], nanoparticle coated chemi-

resistors[26], and carbon nanotubes based ionization detectors[31], offer 

promise of miniaturization and integration with columns. Micro-FID has 

shown results comparable to conventional flame photometric and flame 

ionization detectors, thus making it also a potentially useful detector when 

used in combination with a micro-GC system[32-34]. 

 

4.3 Microfabricated GCxGC Systems 
While microfabricated GC systems offer one of the faster growing areas of new 

GC development, microfabrication of GCxGC systems is not, as of yet, as 

popular a research area. This is for obvious reasons, with a major factor being 

the slow acceptance of the technique into general analytical laboratories.  

 

Besides the work detailed in this thesis, two other attempts at developing lab-

on-a-chip microfabricated GCxGC systems have been reported that are worth 

noting. The first, reported by Whiting, et al. at Sandia National Laboratories, 

describes the combination of microfabricated GC columns with pneumatic 

modulation and microfabricated components. Detection was achieved with 

nanoelectromechanical (NEMS) resonator mass sensors coated with a 

chemically-selective polymer to enhance detection of the phosphonate 

compounds of analytical interest[35]. This work is still ongoing. 
 

The second report of note, was by Reidy, et al. who refer to the development of 

a thermally-modulated comprehensive 2D GC system, consisting of a 3 m long 

nonpolar, polydimethylsiloxane coated first dimension column and a 0.50 m 

long polar polyethylene glycol second dimension column. Columns were 

fabricated on 100mm silicon wafers via DRIE. Using a conventional thermal 

modulator resolution of 14,425 and 5,800 theoretical plates were achieved, 

respectively, and a 10-component mixture of alkanes and ketones was 

separated. Replacement of the modulator with a microfabricated device saw 

the separation of heptane and 2-hexanone[36]. 
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4.4 The Potential of Microfabrication 

Microfabricated GC and GCxGC has the potential of achieving superior 

performance over traditional instruments. The benefits include, but are not 

limited to the following: 

 

• Parallel manufacturing for low-cost 

• Low power consumption 

• Field applicability 

• Low solvent requirements 

• Small thermal mass allowing for fast temperature programming 

rates[5]. 

 

Thus, despite the fact that microfabricated columns and GC systems to date 

have generally struggled to perform at levels comparable to commercial 

capillary instruments, there is great potential for this continuously evolving 

technique. 
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5.0 Experimental - Benchtop GC-FID 

 

Reported here is the development of a planar microfabricated GC system that 

uses acid etched borosilicate glass as the working substrate. This device 

features capillary channels that are circular in cross-section and similar in 

dimensions to drawn capillary columns. The cost and ease of glass fabrication 

in this manner is attractive when compared to silicon, allowing two columns 

to be fabricated within a 95 x 95 mm monolith, also comprising a 

preconcentrator and additional channels to allow for multidimensional GC. 

The use of a miniaturised photoionisation detector in conjunction with the 

glass column is detailed.  The overall system displayed an attractive peak 

capacity and detection limit for VOCs, low power demand and an operating 

temperature range of 0 to 200 °C without the use of cryogens.  

 

The following Experimental chapters detail the extensive work conducted to 

bring the lab-on-a-chip GCxGC instrument from an idea and a design drawing 

to a working prototype capable of successful two-dimensional separation. 

 

5.1 Commercial Fused Silica Columns 
In order for any results achieved using the fabricated glass chip to be 

significant, a requirement was for them to be compared to what would be 

expected from a commercial GC system using commercially available GC 

columns. Thus, initial experimental work conducted was to define a “typical” 

chromatogram that could be achieved using an industry manufactured GC 

column of equivalent dimensions to that seen on the microfabricated chip, and 

with a similar stationary phase chemistry, using a “typical” benchtop GC.  

 

For these purposes, an Agilent HP-5 column of dimensions 30 m x 0.32 mm x 

0.25 µm was cut to a length of 7.5 m to match the length of the primary glass 

etched column. This was then used as a reference throughout column coating 

experimentation for comparison of results obtained from in-house coated 

fused silica columns, as well as the coated glass chip column. In addition, the 

commercial column was used as part of the method development process to 

determine optimal GC parameters for separation of the various test mixtures 

used. 
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Figure 61 is a chromatogram illustrating the quality of results with the 

commercial column when separating a headspace mixture composed of equal 

amounts of the following compounds, run on an Agilent 7890A GC: 

1. Cyclohexane   (boiling point = 80.74 °C)  

2. Propyl acetate   (boiling point = 102.0 °C) 

3. Toluene   (boiling point = 110.6 °C) 

 

Figure 62 is the result of a liquid injection of the following mixture in 

isooctane solvent: 

1. Tridecane   (boiling point = 234.0 °C) 

2. Tetradecane   (boiling point = 253.0 °C) 

3. Pentadecane   (boiling point = 270.0 °C) 

4. Hexadecane   (boiling point = 287.0 °C). 

 

Operating conditions for the above analyses were as follows: 

• Inlet mode: Splitless 

• Inlet temperature: 250 °C 

• Carrier gas: Helium 

• Flow rate: 6.5 ml·min-1 

• Oven temperature: 50 °C for 1 min, 50-130 °C at 10 °C·min-1 

• FID temperature: 250 °C 
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Figure 61: The separation of the headspace vapour of a cyclohexane, 
toluene and propyl acetate mixture using an Agilent HP-5 0.32 mm x 0.25 
µm column cut to a length of 7.5 m 
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5.1.1 Peak Shape 

In an ideal world all chromatographic peaks would be symmetrical or 

Gaussian. However, due to the effects of instrument dead-volume, column 

loading, and adsorptive effects of the stationary phase and instrument 

components, peaks often show a fronting or tailing behaviour.  

 

Fronting describes a peak whose front portion (distance A in the Figure 63) is 

wider or more drawn out than its steeper backside or tail (distance B). 

Fronting is most frequently caused by overloading the column with sample, 

and is usually accompanied by a slight shortening of retention time. The more 

frequent phenomenon of tailing, on the other hand, is the reverse of the above, 

with the tail of the column being wider than the front. Tailing is generally as a 

result of strong compound retention by active sites within the 

chromatographic system[1].  

 

 

 

 

 

 

 

 

A B 

As =  
𝐁
𝐀

 

10% peak height 

Figure 63: Measurement of peak symmetry 
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Figure 62: The separation of tridecane, tetradecane, pentadecane and 
hexadecane using the 7.5 m cut-to-size HP-5 column 
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Asymmetrical peaks present a number of problems, including difficulties with 

regard to: 

• Resolution  

• Qualification 

• Integration 

• Quantitation. 

 

As such, limits have been set to define the peak asymmetry beyond which 

chromatography will be deemed unsuitable. Some examples are shown in the 

table below for reference.  

 

A number of other factors can also contribute to poor chromatographic peak 

shape. These include an aging column, dead space in the GC system, and the 

quality of the cut made to a column, especially on the inlet end. Improperly cut 

columns lead to peak tailing and loss of efficiency due to the exposure of large 

amounts of underivatized silanols and the inefficient transfer of analytes from 

the inlet to the column head. In order to prevent these detrimental effects, 

columns should be cut at 90° to the column length and should not be jagged. 

 

Table 22: Acceptable and unacceptable peak symmetry values 

As = 1.0 – 1.5 As = 1.2 

As = 2 As = 4 
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5.2 Coating of Deactivated Fused Silica Capillaries 
The separation column in a gas chromatograph is often described as the heart 

of the system. Therefore, successful coating of the column with a suitable 

stationary phase can be considered one of the most important and difficult 

tasks in the creation of a lab-on-a-chip GC.  

 

Two primary procedures for the coating of stationary phase as a surface film 

on capillary columns exist, i.e. dynamic and static coating. 

 

5.2.1 Dynamic Column Coating 

To achieve coating via this method, a plug of the stationary phase dissolved in 

an appropriate solvent is introduced into the opening section of a capillary 

column sufficient to fill approximately 10% of the column length. The strength 

of the solution, as well as the physical properties of the surface, the solvent, 

and the stationary phase itself, all determine the thickness of the final coated 

film. Pressure is then applied to the front of the column to force the plug 

through the column at a constant speed of about 2-4 mm per second. 

Achieving a constant speed is critical to the uniformity of the column coating. 

When the plug has finally passed through the column, the gas flow is 

continued for at least a further hour, before being increased to allow the 

column to be stripped of solvent. Increasing the gas flow before this point can 

result in forward displacement of the stationary phase solution on the walls of 

the tube in the form of ripples, and, consequently, a very uneven film. The next 

Gas Flow 

Stationary phase 
coating on internal 

column wall 

Stationary phase plug 

10% of column length 

Uncoated internal 
column surface 

Figure 64: Dynamic capillary column coating 
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step is to heat the column above the solvent’s boiling point, whilst maintaining 

an increased gas flow, to remove the final traces of solvent[2].  

 

5.2.2 Static Column Coating 

Static coating is the method generally used by industry as it results in a more 

reproducible and uniform coating of stationary phase. It is achieved by filling 

the entire length of column with the solution of stationary phase in solvent. 

One end of the column is then sealed and a vacuum is applied to the other. As 

the solvent evaporates, the front slowly retreats down the column leaving a 

coating on the channel walls[3, 4]. 

5.2.3 Experimental Column Coating Procedure 
Neither of the above described procedures can be considered easy, and 

considerable experience is required to evenly coat capillary columns with a 

desired stationary phase film thickness. Modern day commercial column 

manufacturers keep the exact details of column coating highly confidential for 

obvious reasons. This means that any non-industrial attempts at coating 

stationary phase onto capillary columns is almost entirely experimental in 

nature and achieved through trial and error. 

 

OV-101 stationary phase was chosen for these initial coating experiments as 

this non-polar 100%-dimethylpolysiloxane phase was to be used to coat the 

primary column of the glass lab-on-a-chip GCxGC. 

 

Figure 65: Static capillary coating 
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5.2.3.1 Stationary Phase Preparation for Coating of Fused Silica Columns 

A number of stationary phase solutions of varying concentration were 

prepared for column coating.  

 

For dynamic coating, the % v/v solution required to give a film thickness df 

can be calculated from the Fairbrother-Stubbs equation shown below[5, 6]: 

 

Equation 58 

df =  
cr

200
�

u�η
γ  

 

Where: 

• df =  film thickness (µm) 

• c  =  concentration (% v/v conc.) 

• r  =  inner capillary radius (µm) 

• u�  =  velocity of the coating plug (cm·s-1) 

• η = viscosity of the coating solution (mPa·s) 

• γ = surface tension of the coating solution (mN·m-1) 

 

The viscosity of stationary phase solution can be measured using an 

automated viscometer or via the Ubbelohde suspended level variation on the 

U-tube flow method[7]. Surface tension determinations can be made by 

measuring the distance the stationary phase solution rises up a length of clean 

and untreated fused silica tubing with the end immersed in a vial of the 

solution[8].  

 

The Fairbrother-Stubbs equation involves the square root of γ. This allows for 

approximation of the surface tension of the solution to that of the pure solvent 

without the introduction of significant error. The η values of common 

stationary phases are widely documented, and so these values were used for 

film thickness determinations. 

 

For static coating, the % v/v solution required to give a film thickness df is 

determined by a much simpler equation[3]: 
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Equation 59 

c =  
2(100)df

r   

 
Table 23: The surface tension and viscosity of common solvents and 

stationary phases used to coat the columns described in this body of 

work 

Solvent Surface Tension, γ (mN·m-1) 

Pentane 15.48[9] 

Cyclohexane 24.95[10] 

Toluene 28.40[10] 

Dichloromethane 26.50[10] 

Stationary Phase Viscosity, η (mPa·s) 

OV-101 1,500[11] 

OV-17 1,300[11] 

 

Once the % v/v has been calculated, this value is multiplied by the stationary 

phase density (e.g. 0.98 g·cm-3 for OV-101) to give the % w/v.  

 

5.2.3.2 Column Stationary Phase Loading 

A number of 0.32 mm I.D. deactivated fused silica capillary columns were 

dynamically and statically coated to a film thickness of 1 µm in order to 

determine the ideal conditions for coating of the on-chip column. It was found 

to be very difficult to keep track of the coating process, due to the lack of 

visibility caused by the coloured polyimide exterior sheathing the columns. As 

such, Sudan Blue II dye was mixed into some of the prepared stationary phase 

solutions to aid in the visualization of the process. It was hoped that the use of 

this dye would also be able to give an indication of the stationary phase 

distribution throughout the coated column; however, it was found that the 
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majority of the dye is removed with the solvent at the evaporation stage, 

leaving too little dye interacting with the stationary phase itself to allow this.  

 

The apparatus used for column coating was set up as illustrated in the Figure 

66. A needle valve controlled the flow of compressed air into the column 

washing reservoir which was filled with the prepared stationary phase 

solution. When opened, compressed air filled the reservoir creating a build-up 

of pressure which in turn pushed the coating solution through the column. 

A vial placed at the end of the column collected any waste solution. The 

coating process was conducted at a slow and controlled pace, and, once the 

column was entirely filled, a stopper was placed at the end. Initially a septum 

was used for this purpose; however, a secure Valco fitting was found to be 

more efficient.  

 

5.2.3.3 Solvent Evaporation 

Various techniques of solvent evaporation and removal were trialled in order 

to determine the most effective for static coating.  

 

Evaporation experimentation included placing the filled column into a vacuum 

desiccator, with one end securely sealed, for an appropriate length of time to 

ensure complete solvent removal. Another method allowed the direct 

Coating 
Reservoir 

Gas Control 
Valve 

Compressed 
Air Supply 

7.5 m 
Deactivated 
Fused Silica 

Column 

Waste Collection 
Vial 

Figure 66: Fused silica column coating setup 
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attachment of the open column end to a vacuum pump. However, for both of 

these methods, it was not possible to achieve sufficient control of the 

evaporation speed, which is an important parameter[12]. It proved very 

difficult to find the correct catch point that permitted only the evaporated 

solvent to be drawn through and out of the column, and not the entire 

stationary phase solution.   

 

A different attempt involved both ends of the column being attached directly 

to the vacuum, rather than leaving one end sealed. In this instance, the 

vacuum proved uneven resulting in solvent evaporation in only one direction 

and not via both ends moving towards the centre of the column as expected. 

This method also resulted in evaporation that was far too fast; with evidence 

of the pentane solvent actually boiling in the column in the form of visible 

bubbling. 

 

Another, less aggressive method entailed inserting the column into a heated 

water bath with no vacuum applied. This process proved to be the least 

successful with no evidence of any evaporation whatsoever taking place, 

despite a range of increasing temperatures being used over a 30 hour period.  

 

It soon became obvious that the slower the solvent evaporation the better the 

overall coating. As such, a needle valve was fitted to the vacuum line allowing 

slow, steady, and controlled solvent removal via either of the first two 

methods explained.  

 

5.2.4 Removal of Stationary Phase Coating 

Not only was the stationary phase coating of the fused silica columns 

important, but it was also critical to devise a reliable method of removing the 

coated stationary phase, thus ensuring the reversibility of any coating errors.    

 

It was experimentally determined that removal of stationary phase coating 

from the columns could be achieved by washing the column with solvent via 

the same method as column coating. The volume of the column was calculated 

to be 0.6 ml. 
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Thus, 6 mls of the solvent, i.e. 10 times the volume of the column, was used to 

flush the capillary and strip it of coating. The residual solvent was then 

evaporated by passing air through the column. The complete removal of 

stationary phase coating could be checked by installation of the column into a 

GC, followed by the running of a test standard, with a broad, unresolved, 

unretained peak being the expected result. 

 

Below is an example of one of the “blanked” columns. Only one peak is visible, 

proving that no retention or resolution of cyclohexane, propyl acetate and 

toluene took place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.5 Performance Testing of Coated Fused Silica Columns 

These initial experiments saw columns coated with an OV-101 stationary 

phase film thickness of approximately 1 µm. OV-101 is a 100%-

dimethylpolysiloxane phase, and was dissolved in pentane to create the 

coating solution. In order to evaluate the performance of the resulting coated 

columns, they were set up in an Agilent 7890A GC. The in-house prepared test 

mixtures previously run on the commercial column were reanalysed on these 

capillaries in order to establish some sort of comparison. All conditions and 

parameters were kept the same.  

 

Successful separation of the components was achieved, although peak 

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5

Si
gn

al
 (p

A)
 

Time (mins) 

Figure 67: The lack of separation seen between cyclohexane, propyl 
acetate and toluene when run on a column which has undergone 
stationary phase removal 
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retention times had noticeably shifted. This, however, was not unexpected as 

chromatographic comparisons were being made between results achieved 

with two different phases (a 100%-dimethylpolysiloxane phase and a 5%-

phenyl-95%-dimethylpolysiloxane).  

  

Ideally, a commercial HP-1 column would have been used for these 

comparisons. However, in terms of phase chemistry, an HP-1, which has a 

polarity scale value of 5, and an HP-5, which has a polarity value of 8, are not 

so different as to prevent a basic comparison for the purposes of coating 

quality determinations. 

 

5.2.6 Stationary Phase – Solvent Solubility Testing 

The following solvents were tested in order to determine which was the most 

suited for use in the stationary phase solution: 

• Pentane   

• Dichloromethane 

• Cyclohexane 

• Toluene.
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Figure 68: Separation of cyclohexane, toluene and propyl acetate using a 
7.5 m x 0.32 mm deactivated fused silica column coated with OV-101 (in 
pentane) to a film thickness of 1 µm 
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Pentane not only has the lowest boiling point, thus allowing for the quickest 

and easiest solvent evaporation, but columns coated using OV-101 dissolved 

in pentane were found to give better peak shape, retention and separation as 

illustrated in Figure 69.  

 

Finally, the same 4 component mixture was run on a 7.5 m x 0.32 mm 

uncoated deactivated fused silica capillary, to prove that the separation seen 

on the in-house coated columns was, in fact, due to the successful coating of 
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Figure 69: Separation using a 7.5 m x 0.32 mm fused silica column coated 
to a thickness of 1 µm with OV-101 in a) dichloromethane; and b) 
pentane 
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the columns, and not due to the natural activity of the exposed fused silica 

walls.  

 

Table 24: A comparison of the commercially sourced HP-5 column and 

the coated OV-101 fused silica column 

Parameter Retention Time, tR (mins) Number of Theoretical Plates, N 

Peak 
Figure 61 

Commercial HP-5 

Figure 68 

Coated OV-101 

Figure 61 

Commercial HP-5 

Figure  

Coated OV-101 

Cyclohexane 0.3 0.1 1,418.2 88.6 

Propyl Acetate 0.7 0.2 1,794.9 319.9 

Toluene 1.7 0.3 3,518.1 510.6 

Parameter Retention Time, tR (mins) Number of Theoretical Plates, N 

Peak 
Figure 62 

Commercial HP-5 

Figure 69 

Coated OV-101 

Figure 62 

Commercial HP-5 

Figure 69 

Coated OV-101 

Tridecane 1.4 0.5 11,218.5 640.1 

Tetradecane 1.98 0.9 21,295.8 8,420.6 

Pentadecane 2.5 1.4 34,575.1 4,986.0 

Hexadecane 3.1 1.8 51,056.6 16,142.3 

 

As is evidenced by the table above, calculated efficiency for some species is 

acceptable in comparison to the commercial column, whereas, for other 

species N is significantly less. The implication here is that columns of only 
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Figure 70: The unresolved, unretained peak achieved using an uncoated 
7.5 m x 0.32 mm deactivated fused silica column 
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moderate coating quality were produed. For the purposes of gaining coating 

experience and determining the feasibility of “DIY” coating, however, this was 

deemed to be sufficient. 
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6.0 Experimental – The Glass Lab-on-a-Chip Devices 

 

A number of different glass chip designs were evaluated during the course of 

this project, each having their own benefits, as well as drawbacks. Glass was 

chosen as substrate for the microfluidic lab-on-a-chip (LOC) GCxGC for a 

number of reasons, including that it is: 

• Rigid 

• Dimensionally stable 

• Readily and conveniently available in an appropriate flat form 

• Typically cut into rectangular slides. 

 

The biggest advantage of glass over the other potential microchannel 

substrates previously described is that it allows for the creation of circular 

channels through the process of isotropic wet etching. Chemical wet etching is 

popular in MEMS because it can provide a very high etch rate and selectivity.  

 

The borosilicate glass used here is a form of amorphous silicon dioxide (SiO2), 

as is the fused silica typically used for commercial GC columns. The major 

drawback of glass is that it can be brittle. However, the shape and thickness of 

the glass used for this project gave it significant strength, and, once secured 

within a suitable reinforced and padded housing, any issue of the fragility of 

the glass should not be of concern.  

 

6.1 Fabrication of the Glass Chips 
The glass chips were fabricated by the Dolomite Centre, UK, a specialised 

manufacturer of micro-scaled glass devices. The backbone of all designs 

evaluated consisted of two 0.5 mm and 2.5 mm thick Schott B270 glass wafers 

with etched channels bonded together to form a single chip. The chemical 

etching involved the surface of each half of the glass chip being covered with a 

chrome and then a photoresist layer. Exposure of the photoresist layer to UV 

light through a mask outlining the channels causes it to become soluble to the 

photoresist developer in comparison to the unexposed photoresist which 

remains insoluble. On removal of the exposed photoresist, an engraved 

pattern of the channels remains which is subsequently used to etch the 
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chrome layer. Finally, the glass is wet etched with hydrofluoric acid (HF) 

solution along these preformed channels.  

 

The HF etching process is controlled to ensure symmetrical, hemi-spherical 

channels. The reaction that takes place is as follows: 

 

Equation 60 

SiO2 + 6HF →  H2 + SiF6 + 2H2O 
 

When etching glass with hydrofluoric acid, the resulting shape of the side 

walls depends on different parameters, i.e.: 

• The adhesion between the masking layer and the glass 

• The pH of the etch solution 

• The temperature of the etch solution 

• The amount and type of stirring or agitation[1].  

 

Agitation is one of the most important parts of the overall process, and is 

necessary to remove the hydrogen bubbles formed during the reaction, which 

would otherwise become trapped, creating blockage of the etchant. Figure 71 

illustrates the profile of the etch using an isotopic wet etchant with and 

without stirring of the etchant solution[2]. 

Without stirring 

With stirring 

Figure 71: Illustration of the etch profile, with and without stirring, 
using an isotropic wet chemical etchant 
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After the photoresist and chrome layers are fully removed the two halves are 

brought into contact with the channels aligned. The flatness of the glass 

surfaces results in strong bonding through van der Waals forces. No heating is 

required and chips fabricated using this process can withstand pressures up 

to 50 bar.  

 

Figure 73 a) and b) show the cross-section of a portion of one of the glass 

chips. Images were obtained using an Alicona G4 Infinite Focus microscope 

and Wild Heerbrugg M400 microscope. Both figures clearly show the 

uniformity of the column, the accurate alignment of the two halves of glass 

and that the profile is very close to circular. Measurements of three bores from 

Figure 73 a) gave internal column diameters of 242, 250 and 248 µm in a chip 

with a target internal diameter of 250 µm. Figure 73 b) shows how the use of 

an asymmetric pair of glass thicknesses places the GC channels within a few 

hundred microns of one surface of the device for direct heating.  

Figure 72: The glass microfluidic lab-on-a-chip GCxGC fabrication process 
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Figure 74 shows a magnification of the column spiral, as well as the end 

section of the etched injection unit, which is 1 mm wide and 0.32 mm deep. 

This was coupled to the column via a restricting pinch at the injector outlet. 

 

6.2 Chip Designs 
As discussed, a number of chip designs were investigated during the course of 

this project. They shall be referred to henceforth as follows: 

 

6.2.1 LOC 1  

This chip was the simplest of all designs investigated. As can be seen in the 

image below, the two columns were completely separate from each other with 

Figure 74: A) Close up image of column turns; B) close up image of 
injector region coupled to 7.5 m column via a 50 µm restrictor region 

Figure 73: Cross sectional views of a portion of the glass GC chip 

a) b) 
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no in-built connection. Thus, to achieve sample introduction and subsequent 

transfer from the 7.5 m x 0.32 mm primary to either the 1.4 m x 0.32 mm 

secondary column and/or the detector, uncoated deactivated fused silica 

capillaries were bonded to the chip’s various drilled inlet and outlet holes, and 

attached to the inlet and detector ports of the benchtop GC instrument as 

appropriate. This modular approach resulted in easier column coating; 

however significant difficulties were experienced in terms of interfacing the 

various segments together.  

 

6.2.2 LOC 2 

Improvements designed into LOC 2 included a peek edge connector, which 

provided an easy means of sample introduction and gas pressure modulation 

in a single connector unit. As well as that, connection of the channels between 

the primary and secondary columns, modulator and detector allowed for two-

Primary 
column 

Secondary 
column 

Unconnected 
channels 

Figure 75: An image of LOC 1 clearly showing both the size of the glass 
chip in comparison to a regular 50 p coin, and the lack of 
interconnecting microfluidic channels between the primary and 
secondary columns 
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dimensional separation to be achieved. Primary and secondary columns 

remained 7.5 m and 1.4 m in length, respectively. However, column internal 

diameter was reduced to 0.25 mm. The modulator collector channel was 120 

mm long, 0.5 mm wide and 0.25 mm deep. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.3 LOC 3 

In this design, two separate chips were fitted per 95 x 95 mm glass wafer by 

removing the preconcentrator and by reducing the internal diameter of both 

the primary and secondary columns to 100 µm. Not only did this reduce the 

Figure 76: LOC 2, which had a preconcentrating trap, modulator, and 
inter-connecting channels, as well as an edge connector for easy sample 
introduction 

Primary 
column 

Secondary column 

Connected channels 

Figure 77: The operation of the edge connector 
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cost of manufacture by creating two GCs on one chip wafer, which were then 

divided into two, but it also reduced the likelihood of chip breakage by moving 

the preconcentrator off the chip. The primary column was 8.6 m long and 

remained spiral. The secondary column was condensed to 110 cm in length, 

and was changed to a serpentine layout. Finally, the modulator section was 

changed to 10 cm long, 300 µm wide and 100 µm deep.  

 

 

 

 

 

 

 

 

 

 

 

 

   

6.2.4 LOC 4 

Changes applied to this final chip design included that the entire modulator 

section was moved into the first quarter of the chip, leaving a full quarter for 

the secondary column to occupy. The extra space this provided and the 

changing of the column from spiral to serpentine increased this column’s 

length from 1.4 m to 4 m. The internal diameter was also reduced to 180 µm. 

The primary column remained at a length of 7.5 m with an I.D. of 250 µm. The 

preconcentrator was completely removed from the chip and the collector 

length was almost doubled to 200 mm. The two modulator legs were made to 

be of equal length and internal diameter, the result of which being that either 

column could be used as primary or secondary.  

 

In the work reported here, the shorter, narrower bore 4 m column was used 

as primary and the longer, wider bore 7.5 m column as secondary. Finally the 

detector port or outlet of the secondary column was moved to the edge 

connector.  

 

Figure 78: A photo of the reduced LOC 3 chip 

Primary column 

Secondary column 
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6.3 Commercial GC-FID with LOC Column 
The coated chips were tested using the fan oven, temperature control, 

injection and flow control systems of the laboratory gas chromatograph to 

enable the separation capabilities of the coated glass primary column to be 

characterised with an established FID. 

 

6.3.1 Chip Connections 

Securely bonding the fused silica capillaries to the planar chip in a gas tight 

fashion was no simple task. Initially epoxy adhesive was used to secure 

capillaries in place on a spare glass chip. However, this was found to be 

entirely unsuitable, as it was an irreversible process, thus any capillaries that 

were accidentally broken could not be easily removed from the glass devices. 

Hot melt adhesive and Shellac, which is a resin secreted by the female lac bug, 

were next evaluated for chip bonding potential. Here, the actual process of 

sealing the capillaries in place was found to be simple and reversible, and the 

resulting adhesive bonds were able to withstand pressures over 60 psi at low 

temperatures. However, both had relatively low melting points for GC 

Figure 79: LOC 4 showing the 4 m serpentine primary column, the spiral 
7.5 m secondary column, and the relocated and resized modulator 
channels 

Primary column 

Secondary column 

http://en.wikipedia.org/wiki/Resin
http://en.wikipedia.org/wiki/Kerria_lacca
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analyses, i.e. 100-150°C. This resulted in drooping, shifting capillaries and a 

substantial threat of channel blockage, again rendering these bonding agents 

as unsuitable for purpose. 

As an alternative, high temperature silicone sealant was tested. This sealant 

was capable of withstanding temperatures of up to 260 °C for continuous 

operation and 315 °C for intermittent exposure. Again, sealing was 

unproblematic, and pressure at high rates was sustainable. On heating to 160 

°C in the GC oven no issues were encountered. With all the transfer lines 

connected except the line to the detector a flow could be measured, however, 

on connecting the outlet line to the FID a pressure build-up occurred within 

the chip that prevented flow, and consequently shut down the instrument. 

This suggested that the seal produced by the silicone sealant was so efficient 

in comparison to the  aforementioned adhesives that pressures over a certain 

low threshold were too excessive. This, unfortunately, also ruled out the use of 

this sealant for connection of capillary columns to the glass microfluidic 

devices.  

 

At first, the peek edge connector, designed by the Dolomite Centre for use with 

the chips, seemed the solution to the problem. The major issue experienced 

with the edge connector, however, was leakage of carrier gas and sample. 

Being composed of peek, the connector had a continuous use temperature of 

100°C. With the chip in the oven of the commercial GC, the peek edge 

Figure 80: Shellac flakes. These were melted and then used to secure 
transfer lines to the glass chips during evaluations of bonding agents 
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connector was subjected to frequent and sequential heating to 160 °C 
followed by cooling to 30°C. This constant heating and cooling resulted in a 

warping of the peek connector, and, when subjected to pressures of 60 psi and 

higher, meant that it was unable to hold pressure and subsequently leaked. 

The simplest means of correcting this was to remove the edge connector 

entirely from the chip, before reinstallation with a thin wedge of tin foil placed 

between it and the bottom of the glass chip. This resulted in a retightening of 

the seal, which would last for a number of temperature gradient runs, before 

the process would need to be repeated. During one of these adjustments it was 

noticed that a number of the different edge connectors supplied by the 

Dolomite Centre came with varying screw lengths. On experimentation, it was 

determined that the longer screws provided a stronger gas tight seal, and 

resulted in the edge connector having to be adjusted significantly less 

frequently than before. Despite the edge connector’s limitations, it still 

provided the best connection between chip and transfer lines. 

 

 

6.3.2 LOC 1 

LOC 1 was the first glass device to be designed and manufactured for this 

project. The impracticality posed by the lack of interconnecting channels was 

soon realised, and LOC 2 was manufactured for comparable interlaboratory 

evaluation. The majority of the work conducted on LOC 1 took place at the 

National Physical Laboratory in Teddington by analysts there in conjunction 

Figure 81: Dismantled view of one of many peek edge connectors used 
and examples of the varying screw lengths that were observed  
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with the author. All other experimentation described in this body of work was 

conducted within the Atmospheric Chemistry Laboratories at the University of 

York by the author and team. Thus, the methods and tools defined in this 

section vary considerably in comparison to those later detailed. 

 

6.3.2.1 Stationary Phase Coating of LOC 1 Primary Column 

The primary column of LOC 1 was statically coated with a 3.8% v/v solution of 

OV-101 in pentane. The coating process was preceded by a wash step which 

involved the chip undergoing a number of solvent flushes.  Residual solvent 

was evaporated in a high vacuum, high temperature oven, before the purged 

chip was allowed to passively cool. It was then weighed on 5 decimal place 

balance. Coating was performed with a syringe filled with the coating solution. 

The needle was pushed through a septum, which aided in providing a seal 

around the inlet. Once coated, the chip was placed inside a vacuum oven with 

digital temperature control and a vacuum monitor for solvent evaporation. 

The glass column was left in the oven at room temperature (± 21 °C) for two 

days with the pressure being maintained between 10 and 40 kPa below 

atmospheric pressure. The temperature was then increased to 50 °C with a 

decrease in pressure to 100 kPa below atmospheric. Using this method 

solvent evaporation was achieved in four days, and was monitored by periodic 

weighing of the column with a laboratory balance.  

 

Six open vials of pentane were used as a pressure buffer during this solvent 

evaporation process, and were laid out as shown in the figure below. The 

saturated vapour of the pentane restricted the vacuum at the start of the 

process, and served to cool the column. The vials also allowed the vacuum to 

be maintained at a low enough level to ensure that boiling of the solvent 

within the column did not take place, as indicated by the absence of boiling in 

the pentane. 

 

A final weighing confirmed the mass of stationary phase deposited. This gave 

an accurate indication of how much stationary phase was actually deposited 

onto the channel walls; however, it unfortunately could not provide an 

indication of the overall uniformity of the coating. It was calculated that a 

mass of 11 mg of stationary phase was deposited onto the channel walls, out 
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of an expected 13.7 mg, which would be equivalent to a uniform layer of 2 µm 

in thickness.  

 

6.3.2.2 Performance Testing of LOC 1 Primary Column 

As this chip design lacked an edge connector for introduction and exit of the 

sample, Shellac was used to bond transfer capillaries and split lines into the 

glass column ports. Using high purity helium as carrier gas, a standard BTEX 

mixture containing 10 µmol·mol-1 (molar ppm) of the following compounds 

was injected via a 500 µl gas sample loop: 

• Benzene 

• Toluene 

• M-xylene 

• P-xylene 

• O-xylene  

 

A second ppm gas mixture of nonane, α-pinene and 3-carene was injected 

separately onto the Varian 3800 GC system. Automated valve changes were 

used. The oven was programmed to run at 30 °C for 0.2 min, then ramp at 20 

°C·min-1 to 100 °C. The switching valve was heated to 170 °C. The results 

achieved are shown below, with good separation between all of the injected 

components, symmetrical peak shape and elution in 4 minutes. Peak skew is 

less than 1.8 for all peaks (the majority less than 1.3) and the chromatogram 

indicates around 2,000 theoretical plates as measured for toluene. 

Primary 
Column 

Pentane 
Buffer 

Secondary 
Column 

Figure 82: On-chip solvent evaporation using 6 pentane pressure buffer 
vials 
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6.3.3 LOC 2  
Before the primary column on LOC 2 could be coated, the path of flow that 

would be adopted by the stationary phase solution needed to be determined 

as this chip had a number of interconnected channels and open ports rather 

than a single channel with one inlet and one outlet. 

 

6.3.3.1 Flow Path Determinations 

In order to determine the best path of flow for coating this on-chip primary 

column, a number of experiments took place each of which involved 

introducing dyed pentane onto the column and either drawing it through the 

column by vacuum or pushing it through using compressed air or a gas-tight 

syringe.  

 

6.3.3.2 Stationary Phase Coating of LOC 2 Primary Column 

Several coating methods were evaluated. The method that gave minimal 

problems involved blocking the peek tubing transfer lines from the first and 

fourth drilled chip holes, as well as the preconcentrator and detector holes 

themselves, before forcing the stationary phase solution through the second 

peek inlet, onto the column and out towards the third opening. This allowed 

the primary column to be successfully coated whilst bypassing the 

preconcentrator and secondary column.  

Figure 83: Response of FID (Varian) to injection of the BTEX standard 
mixture (blue) and a mixture of 2 ppm nonane, alpha-pinene and 3-
carene (red) with a 0.5 ml sample loop 
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A number of problems were encountered during this coating process, 

including that both the preconcentrator at the start of the column and the T-

junction positioned after the primary column were “firing” air bubbles into the 

stationary phase plug. These air pockets could potentially affect the coating 

quality by leaving gaps in the stationary phase film where exposed OH groups 

on the surface of the glass could interact with sample.  

 

An attempt to discourage this from occurring involved filling the 

preconcentrator with pentane, thus allowing small plugs of pentane rather 

than air to be fired into the plug. This diluted the stationary phase solution 

slightly but, overall, resulted in less of a problem.  

 

Column coating was conducted statically, as previously described, as well as 

dynamically, using compressed air to push a plug of the stationary phase 

solution through the 7.5 m x 0.25 mm primary channel of the glass chip via the 

flow path method detailed above.  

 

Inlets/Outlets 
1-4 Preconcentrator 

Packing Hole Column Coating: 
In through 2nd 

peek tube 

Column Coating: 
Out through 3rd 

peek tube 

Detector Port 

Figure 84: The flow path of the coating solution for LOC  
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Statically coated columns required solvent evaporation, and it was found that 

it was best achieved by placing the glass device in a vacuum desiccator, set to 

a constant temperature of 40 °C and with the minimum amount of vacuum 

applied. This allowed evaporation over a period of ±36 hours. Alternatively, if 

available, the vacuum oven set up previously described for the coating of LOC 

1 was used.  

 

6.3.3.3 Effect of External Connections on Column Performance 

The GC set-up was modified to allow direct attachment of the chip so that the 

performance of the coated columns could be evaluated. Modification involved 

using approximate 10 cm lengths of HP-5 commercial column connected from 

both the injector and detector ports to the peek tubing emerging from the chip 

(in the 2nd hole and out the 3rd hole, while the 1st and 4th holes were blocked). 

 

 

Figure 85: Glass chip column coating set up 
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Before the chip itself was analysed, an experiment was conducted in order to 

determine whether the lengths of commercial column present in the set-up 

would affect the chromatography, i.e. would the 10 cm lengths contribute 

significantly to the chromatographic separation. This was tested by connecting 

a short length of peek tubing to both the inlet section of the commercial 

column and the detector section, and by injecting 50 µl of a headspace mixture 

containing cyclohexane, propyl acetate and toluene onto the GC. Figure 86 

resulted, which shows no retention or resolution of the three compounds. 

 

Figure 86: GC set-up to allow direct attachment of glass chip 
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Figure 87: The lack of separation of cyclohexane, propyl acetate and 
toluene using two 10 cm lengths of HP-5 commercial column and a short 
length of peek tubing 
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This, thus, inferred that the lengths of commercial column present in the set-

up would not affect the experimental results obtained when using the chip 

itself. 

 

Next, an experiment was conducted in order to determine whether or not the 

peek tubing would have a detrimental effect on chromatography. Two 

separate pieces of peek tubing were connected to the inlet and detector 

lengths of commercial column, as shown in Figure 88, and the 7.5 m HP-5 

commercial column was then connected to these. Again, the above mentioned 

Figure 88: Experimental set-up to determine the effect of the peek tubing 
on chromatography 
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Figure 89: Separation of cyclohexane, toluene and propyl acetate using a 
7.5 m x 0.32 mm x 0.25 µm HP-5 column connected to two lengths of peek 
tubing 
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mixture was run and the result is shown below. Separation was achieved 

successfully, indicating that the effect of the peek tubing interconnections on 

chromatography can be considered negligible.  

 

6.3.3.4 Dynamic Coating of Glass Chip Primary Columns  

Figure 90 shows the result of the primary column dynamically coated with a 

2% v/v solution of OV-101 in pentane, which equates to an approximate 1 µm 

film thickness. 

 

The same chromatographic result was achieved on analysis of a blank 

uncoated on-chip column, indicating that a 2% v/v solution is too dilute for 

adequate coating of the chips. As such, higher concentration stationary phase 

solutions of 10% and 20% v/v were prepared and used for coating. These 

resulted in better component separation as illustrated in Figure 91 b) and c). 

However, despite the use of these higher concentrations, the desired 

separation was still not being achieved. 

 

6.3.3.5 Static Coating of Glass Chip Primary Columns  

It was found that a 2% v/v solution of OV-101 in pentane statically coated 

onto the chip column gave similar but slightly better chromatographic results 
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Figure 90: Separation of cyclohexane, propyl acetate and toluene using 
the 7.5 m x 0.25 mm on-chip primary column coated with a 2% v/v 
solution of OV-101 in pentane 
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to those obtained by dynamically coating the chip with a 20% v/v solution of 

OV-101. This is evidenced by Figure 91 d). 

 

6.3.3.6 Effect of Stationary Phase Over-Concentration  

The glass column was also statically coated with a 20% v/v solution of OV-101 

in pentane for comparison purposes. While Figure 92 shows successful 

separation and retention, it is clear that there is too much stationary phase 

present on the column. The excess coating resulted in the formation of pockets 

or droplets of stationary phase being sporadically positioned throughout the 

column.  

 

As the sample components came into contact with each of these pockets the 

flow rate was reduced, resulting in the “jagged” peaks seen in the 
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Figure 91: Pentane and 2-pentanone. Primary column coated dynamically 
with a a) 2% v/v solution of OV-101 in pentane; b) 10% v/v OV-101 in 
pentane; c) 20% v/v OV-101 in pentane; and d) the separation achieved 
on a column coated statically with a 2% v/v solution of OV-101 in pentane 
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chromatogram. The microscopic evidence of these “bubbles” is shown in 

Figure 93. 

 

 

 

 

 

 

 

 

 

 

6.3.3.7 Dynamic vs. Static Coating  

The above work confirmed that static coating is the preferred method of 

stationary phase film deposition. Not only does static coating allow for a more 

accurate estimation of film thickness, but, according to available literature, it 

also generates thinner, more uniform films in comparison to dynamic coating 

due to the lack of axial motion of the stationary phase during deposition[3]. In 

terms of the experimental work conducted here, not only did static coating 

Figure 93: Microscopic evidence of liquid droplets of stationary phase 
present in microcolumn 

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12

Acetone 

Pentane 
Hexane 

Benzene 
Toluene 

O-Xylene 

Si
gn

al
 (p

A)
 

Time (mins) 

Figure 92: Acetone, pentane, hexane, benzene, toluene and o-xylene. 
Primary column statically coated with a 20% v/v solution of OV-101 in 
pentane 
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provide better resolution and peak shape, but it was also found that a less 

concentrated stationary phase solution was required. This was important as 

extreme column bleed was experienced with the use of more highly 

concentrated silicone stationary phase films. Leached coating material is 

known to combust in FIDs, resulting in the formation of white silica powder. 

This then deposits on the surfaces within the detector causing noisy 

chromatograms, random spikes and poor detector sensitivity. As well as the 

above, a significant amount of down time is experienced for detector cleaning 

and conditioning between runs.  

 

Figures 94 and 95 allow comparison of the separation of a more complex 7 

component mixture achieved using a column coated dynamically with a 20% 

v/v solution of OV-101 in pentane, and a statically coated 2% v/v solution of 

OV-101 in pentane. 
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Figure 94: Acetone, pentane, hexane, benzene, toluene, o-xylene and 
dodecane using the 7.5 m x 0.25 mm on-chip glass column dynamically 
coated with a 20% v/v solution of OV-101 in pentane 



                                  Chapter 6: Experimental – The Glass Lab-on-a-Chip Devices 

Jaydene Halliday                                                                                             208 | P a g e  
 

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12

Acetone & Pentane 

Hexane 

Benzene 

Toluene 

O-Xylene 

Dodecane 

Time (mins) 

Si
gn

al
 (p

A)
 

 

6.4 References 
1. Evander, M., et al., Acoustophoresis in wet-etched glass chips. Analytical 

Chemistry, 2008. 80(13): p. 5178-5185. 

2. Fabricating MEMS and Nanotechnology. 2011 01/06/2011 [cited 2011 

15/12/2011]; Available from: https://www.mems-exchange.org/ 

MEMS/fabrication.html. 

3. Reidy, S., et al., High-performance, static-coated silicon microfabricated 

columns for gas chromatography. Analytical Chemistry, 2006. 78(8): p. 

2623-2630. 

 

 

Figure 95: Separation of the same mixture using a column coated 
statically with a 2% v/v solution of OV-101 in pentane 
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7.0 Fabrication of the Lab-on-a-Chip GC Manifold 

 

As the overall purpose of creating the glass microfluidic devices was to 

assemble a fully portable, field operable gas chromatography system, a 

housing manifold for the chip containing all necessary components for GC 

operation was fabricated. The individual components making up this manifold 

are described in this chapter.  

 

7.1 The Preconcentrator 
For the lab-on-a-chip device described in this body of work, the complex 

process of sample preconcentration and thermal desorption previously 

described would not be appropriate. As such, LOC 2 was designed with a 

preconcentrator channel acid-etched in-line with the sample introduction 

port. A small hole allowed for adsorbent packing. Literature searches have 

unearthed entire theses dedicated to the development of micro-

preconcentrator units for similar µGC devices[1]. The amount of work required 

to fully develop a µ-preconcentrator capable of replacing the TDU without a 

loss of functionality was, unfortunately, beyond the scope of this project. 

However, the preliminary work conducted with this project’s on-chip µ-

preconcentrator will be detailed next.  

 

Thermoelectric devices or Peltiers were used to cool the preconcentrator to 

allow sample trapping, and a halogen bulb was used to rapidly heat the 

Figure 96: CAD model of the preconcentrator stage (provided by Dr 
Christopher Rhodes) 
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packing material to allow thermal desorption of the trapped analytes of 

interest. Ideally, a gold reflector, as shown in Figure 96, would have been used 

to minimise heat loss as it is a better reflector of IR light. However, due to 

difficulty in sourcing gold paint, the 12 V/10 W halogen bulb was instead 

painted 180° with silver dag.  

 

To avoid the risk of blocking the channels of the actual glass chip, a small 

section of the glass device, with only the preconcentrator etched onto it, was 

obtained from the Dolomite Centre for performance testing. 

 

Carbopak B 60/80 mesh was used to hand-pack the trap with the aid of a 

microscope (Figure 97). Carbopack B is known to provide a convenient 

balance of adsorption capacity and desorption efficiency over a wide range of 

volatilities and chemical functionality, however, it has a limited range of 

volatile analytes that are adequately trapped on each graphitized carbon. It 

was later decided that packing micro-glass beads either side of the Carbopak B 

would allow the halogen bulb to be concentrated on an area away from the 

weak packing hole (Figure 98).  

Figure 98: Microscopic image of preconcentrator packed with micro-
glass beads on either end and Carbopak B 60/80 mesh inbetween 

Figure 97: Microscopic image of preconcentrator packed with Carbopak 
B 60/80 mesh 
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7.1.1 Preconcentrator Performance Testing  

Performance testing of the packed preconcentrator was conducted as 

illustrated in Figure 99. A manual gas sampling valve with a 5 µl loop injected 

sample into the packed preconcentrator, which was then heated. The 

desorbed analyte was subsequently detected by the PID. It should be noted 

that the temperature of the trap during halogen heating was unknown, with 

only the resulting desorption effect being monitored. 

 

Initial experimentation saw pentane being drawn through the 

preconcentrator and PID from the sample loop using a miniature diaphragm 

pump. No heating was applied to the glass section. This resulted in a 

significant restriction to the flow in the downstream-pumped system. A broad 

peak was subsequently recorded for pentane, as shown in Figure 100 a) as it 

had trouble desorbing from the trap. 

 

Next, pentane vapour was propelled through the trap using nitrogen gas, 

rather than being drawn through with the use of a pump. Adsorption was 

achieved at 10 °C, followed by desorption by halogen heating for a period of 

30 seconds at 770 seconds. Using a positive flow of carrier gas rather than a 

pump to introduce the sample onto the adsorbent bed proved to be the better 

method, as illustrated by  peak 1 of Figure 100 b), although, as can be seen,  

Figure 99: Set-up for trap section testing 
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5 µl of pentane gas was enough to saturate the detector. Peak 2 shows the 

desorbed pentane peak when heating was applied. The immediate presence of 

the large peak 1 indicates that the preconcentrator was not efficiently 

trapping the sample, with most of it flowing straight through the adsorbent 

packing. However, the appearance of peak 2 on heating indicates that some 

trapping of pentane by the Carbopak B was achieved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above was also conducted with isoprene. Here, the compound was 

adsorbed onto the trap at 0 °C followed by desorption by halogen heating at 

770 seconds. As seen in Figure 100 c), no desorption effect was observed. It is 

possible, however, that desorption did take place but was masked by the 

chromatogram’s unresolved  baseline. Further experimentation in this area is 

required in order to determine the most appropriate packing material, or 

whether a mixture of packings would be better suited.  
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Figure 100: Desorption of a) pentane drawn through the preconcentrator 
by a pump at ambient temperature; b) pentane propelled through the 
preconcentrator with N2 carrier at 10 °C before thermal desorption for 
30 s; c) isoprene propelled through the preconcentrator with N2 carrier 
at 10 °C before thermal desorption for 30 s 
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A factor that severely limited development was condensation of water and 

formation of ice on the exposed glass preconcentrator surface. This was found 

to occur at temperatures below 10 °C, with evaporation of the water film 

affecting the radiant heating effect from the halogen lamp. The trap, or the 

entire chip itself, would need to be placed inside a sealed chamber with a dry 

air purge to compensate for this. 

 

Figure 101: Views of a) the packing in the trap section; b) the lamp; c) the 
trap installed for testing; d) condensation of water on the exposed 
surface of the trap 
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7.2 Temperature Control 
Uniform heating of a GC column is central to its performance, requiring 

accurate and reproducible column temperatures with minimal spatial 

temperature gradients.  

 

For the device reported here, a combination of direct heating approaches was 

investigated. These included the direct heating of the glass wafer with metal 

heating elements placed above and below the device, and a more complex 

arrangement as shown in Figure 102. An aluminium heat sink was used for 

forced air cooling, equipped with a centrifugal blower for rapid cooling of the 

metal fins. The heater consisted of thin film resistive heating elements (etched 

foil embedded in a self-adhesive glass fibre matrix) positioned above Peltiers. 

Thermal interface material was used to fill any air gaps between the heating 

and cooling stages and the glass chip.  

 

Since glass is a relatively poor heat conductor, the separation of the zones of 

the device allows the differential heating of the injector from the columns and 

other regions. This was tested using three different control thermal stacks and 

temperature zones as shown in Figure 103. Temperature monitoring of the 

stack was achieved using a PT100 polyimide encapsulated sensor placed 

between the heater and the glass chip. A configurable CompactRIO module 

supplied by National Instruments running LabVIEW Real-Time operating 

system was used to control the temperature of the stack. The temperature 

profile across the chip was determined using a matrix of sixteen thick film 

Figure 102: Side view showing the layout of components in the 
temperature controlled stack used for heating and cooling the glass GC 
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platinum resistance temperature sensor s (Labfacility DM503), which were 

attached across the chip surface in an X pattern using thermally conductive 

epoxy adhesive.  

 

The temperature data collected was displayed in the form of a colour map 

overlaid on a two dimensional image of the glass chip using LabVIEW 

software. Figure 104 a) shows the reproducible temperature profile across the 

Figure 103: Plan view layout of the temperature controlled stacks. 
Stack 1 is under the primary 7.5 m long column. Stacks 2 and 3 are 
positioned under the secondary 1.4 m column and the injection region, 
respectively 

xxx 

Figure 104: Measured temperature profile with a) stack 1 (under the 7.5 
m column) heated to 100 °C, all other stacks left at ambient; b) stack 1 
cooled to 10 °C whilst holding the temperature of stack 2 (the 1.4 m 
column) at 100 °C. The temperature remained uniform (±2 °C) over 
stack 1 and the unheated stack 3 remained at ambient temperature 

a) b) 
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surface of the chip when stack 1 (7.5 m column) is heated to 100 °C and all 

other stacks are left at ambient, while Figure 104 b) shows the measured 

temperature profile when stack 1 is cooled to 10 °C, with stack 2 (1.4 m 

column) held at 100 °C and the unheated stack 3 (preconcentrator) remaining 

at ambient temperature. The 2D images reveal that the divided thermal stack 

arrangement is capable of independently controlling the temperature of at 

least three discrete regions of the glass GC device.  

 

The column temperature range achieved was between 0-200 °C, with linear 

ramp rates of between 5 and 20 °C·min-1. Typical power consumption was 25 

W mean or 30 kJ per analysis, which is two orders of magnitude less than 

conventional turbulent fan ovens. 

 

7.3 The Modulator 
In order to achieve a 2-dimensional separation, LOC 2, LOC 3 and LOC 4 were 

designed so that the primary column was coupled to the secondary via a 

differential flow modulator in a manner illustrated in the diagram below. The 

acid-etched, on-chip, in-line fluidic modulator was based on work developed 

and reported by Seeley et al. in 2006[2], as detailed in Chapter 4.  

 

Helium carrier and modulator gases initially follow the paths indicated in 

Figure 106 a). The three-way modulator solenoid valve then changes its 

direction for a few seconds. The flow in the first gas transfer line stops while 

Figure 105: CAD model of the thermal control unit (provided by Dr 
Christopher Rhodes) 
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the flow in the second line commences at a lower flow rate. The lower flow is 

the result of the second transfer line having a higher flow impedance than the 

first. This enables the elution and analysis of sample compounds in the second 

column, while the sample which elutes from the first analytical column is 

stored in the storage transfer line or collector channel. The short, high flow 

rate pulse not only flushes the sample from the collector into the second 

column, but also creates a higher pressure at the first T connector which 

simultaneously stops the elution of sample compounds from the first column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 106: A schematic illustrating the layout of the on-chip modulator, 
as well as showing gas flow direction when in a) load; b) inject position 

 

 

 

 

a) 

b) 
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The on-chip modulation valve was tested with gas phase samples and narrow 

peaks were obtained by fine tuning the carrier and modulator gas pressures.  

 

7.4 The Detector 
As previously discussed, PIDs are similar to FIDs in many ways.  The biggest 

difference between the two forms of detection is that FIDs are bulky in 

comparison, more expensive and require a hydrogen source. This greatly 

limits FIDs as a viable alternative in portable VOC monitoring. 

 

 

A commercially available, low cost, and low power photoionization detector, 

sourced from Alphasense, was used for on-chip detection. This PID, which was 

designed for VOC monitoring in ambient air, weighed just 8.0 g, had a lamp 

with an ionization potential of 10.6 eV, and had a 100 mW nominal power 

consumption at 3.0 V. Further PID specifications are detailed in Table 26. For 

most portable instruments, the 10.6 eV lamp is most widely used because it 

detects most volatile organic compounds, and the lamp is easy to clean. 
 

7.4.1 Detector Performance Testing 

The PTFE particulate filter present on the detector was removed to allow gas 

to flow across the electrode stack. A holder was designed to fit around the PID 

to provide a gas tight seal and to allow connection to a capillary. A miniature 

diaphragm pump was used on the outlet capillary to draw sample into the 

detector. Very low noise power to the detector was provided by a hybrid 

Figure 107: The photoionization detector sourced from Alphasense 

Xenon lamp 

PID electrode stack with PTFE filter 
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supply, and output was monitored via a differential input to prevent 

interference from ground connection. 

 

Table 25: PID specifications[3] 

Target Gases VOCs with ionisation potentials < 10.6 eV 

Linear Dynamic range 5 ppb to 50 ppm (Isobutylene) 

Power Consumption 110 mW typical (at 3.3 V) 

Supply voltage 3.0 to 3.6 VDC (ideally regulated  to 0.01 V) 

On-board filter To remove liquids and particulates 

Working temperature range -40 °C to +40 °C 

Signal temperature 

dependence 

0 °C to 40 °C: 

99% of signal at 25 °C-20 °C 

97% of signal at 25 °C 

Response time < 3 seconds, diffusion mode 

Relative Humidity range 0 to 95% RH, non-condensing 

 

Figure 108 illustrates the detector’s signal response in both ambient air and 

when exposed to pentane vapour. Varying concentrations of pentane vapour 

were pumped into the detector in order to determine its speed of response. As 

 Figure 108: PID response to ambient air and varying concentrations of 
pentane vapour. FWHM = Full Width at Half Maximum 
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previously discussed, it was also determined that 5 µl of pentane gas is enough 

to saturate the detector. 

 

7.5 Real-Time Control and Data Acquisition 
A Windows operating system was not particularly suited for the real-time 

control and data acquisition applications of this project, as, for example, 

temperature control required a fast system response to prevent overshoot 

and offsets. As well as this, detector signal must be acquired at > 50 data 

points·s-1 to allow for a 2D GC analysis. As such, a real-time processor and 

interface was acquired from National Instruments. This was built into the 

overall manifold frame to provide control and acquisition for the LOC GCxGC 

in a relatively portable unit, and with the capability of being battery power 

operated. A USB data acquisition (DAQ) device with Digital I/O was used for 

interfacing the overall device to the LabVIEW software. This allowed digital 

multichannel temperature control and monitoring of the installed chip, and, 

obviously, digital data collection. 

 

The system used IP addressing to allow data to be downloaded to a PC, but 

was also able to run in stand-alone mode with built in solid state memory for 

data storage. It could also be connected to a Wi-Fi or a land connection 

network. The implication here is that a separate computer (a lab-based one, 

perhaps) could be used to access data generated by the LOC GCxGC, which 

could be located anywhere in the world, on the site of sampling. 

 

An important development in terms of software was the ability to generate 

two-dimensional GC plots in real-time using LabVIEW. Typically, visualisation 

of 2D data is performed post-process by matrix conversion of the 1D signal 

data before being displayed using software packages, such as Transform 

(Research Systems) or Zoex GC image (Zoex). Using the in-house developed 

software meant that, as a run progressed, the success of 2-dimensional 

separation or lack thereof could be monitored concurrently. This proved to be 

a significant time-saver. 
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8.0 Experimental –Stand Alone One-Dimensional GC 

 

Following the characterisation of the separation power of the glass first 

dimensional columns in a commercial GC instrument, their separation 

capabilities were next established in the in-house manufactured GC manifolds. 

 

8.1 LOC 1 
LOC 1 was tested in a simpler temperature control enclosure than the one 

previously described, using manual injections and the miniaturised 

photoionization detector. 

 

Figures 109 and 110 show the set-up of the testing conducted. The chip was 

fixed between two metal heating plates and the temperature of the unit was 

electronically controlled. Cooling to ambient temperature was achieved with 

two fans fixed to the back of the unit. A two-stage regulator was used to 

provide constant head pressure and was connected to a 6-port valve which 

was operated manually. A 0.2 ml sample loop, made from treated stainless 

steel, was fitted to the valve in a configuration to allow sample filling in one 

position and sample injection in the other. During sample filling, the standard 

gas mixture flowed through the valve and the sample loop for a minimum of 

five minutes. During injection, the carrier gas flowed through the sample loop 

Figure 109: Photo (provided by NPL) of the heating and data acquisition 
set-up applied for performance testing of the primary column of LOC 1 
with the miniaturised PID 

µl 
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for a short time to direct the sample onto the chromatographic column. The 

duration of the injection was selected to ensure all gas in the loop was flushed 

onto the column, but was limited to prevent peak tailing from compound 

desorption from metal surfaces. The 6-port valve was connected to the inlet of 

the chip by an approximate 10 cm length of 1/16” Silcosteel tube and an 

approximate 20 cm length of 0.32 mm inner diameter fused silica capillary 

connected by a reducing union.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The eluent from the 7.5 m long primary column was connected to the PID by 

0.32 mm I.D. uncoated fused silica capillary. The detector was integrated into 

the unit and to a data acquisition system. The carrier gas head pressure was 

set to 3 bar providing a column flow of 12 ml·min−1. The value deviates from 

theoretical calculations due to the presence of the 50 µm pinch point regions 

before and after the etched injector. A 1:5 split was introduced at the column 

outlet in order to prevent detector saturation. As a consequence, the flow rate 

arriving at the PID was measured to be 1.8 ml·min−1. 

 

The 10 ppm BTEX standard gas mixture previously run on the chip in the 

Agilent GC was injected onto the column at a starting temperature of 10 °C 

using the manual gas sampling valve. A temperature ramp of 20 °C·min-1 up to 

100 °C was applied. Chromatographic separation was sufficient to resolve o-

xylene in approximately 225 s. The high PID response of aromatic compounds 

a) b) 

Figure 110: a) The side view and b) the over-head view of the testing set-up 
for LOC 1 
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ensured a good signal to noise ratio. The chromatogram generated (Figure 

111) shows good peak shapes and height from the injection of approximately 

1.5 ng of each compound. The detection limit with the PID was estimated to be 

~ 100 pg for benzene.  

 

8.2 LOC 2 
The method detailed for LOC 1 was the initial one applied to LOC 2 to see if a 

similar separation of BTEX could be achieved with the more complicated chip 

containing interconnected channels. This was done using the heating set-up 

described above. The resulting Figure 112 is shown below. This was the first 

and only time LOC 2 was used on this set-up, and all other experimentation 

was conducted using the in-house built GC manifold described in the previous 

chapter. Figure 113 is an example of the result achieved after some method 

optimisation. 

 

Method development determined that increasing the flow rate resulted in 

enhanced chromatograms, as seen in Figure 114 a) - c), which show results 

achieved with a 0.25 ml sample loop, a temperature program of 30-100 °C 

ramping at 20 °C·min-1 and a) a flow rate of 1.5 ml·min-1, b) a flow rate of 10 

Figure 111: Response of PID to injection of the BTEX standard mixture 
with a 0.2 ml sample loop, run on LOC 1 
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ml·min-1 and c) a flow rate of 15 ml·min-1. Figure 114 c) shows a very fast 

separation, with all compounds eluting in about 120 seconds. 

 

 

 

Figure 112: The separation of BTEX on LOC 2 achieved using the method 
detailed for LOC 1 but in the in-house built GC manifold with 
photoionization detection 

Figure 113: The separation of BTEX, achieved using LOC 2 in the in-house 
built GC manifold with photoionization detection. A 0.25 ml sample loop 
was used, helium carrier gas, a flow rate of 1.5 ml·min-1, and a 
temperature program of 20-100 °C at 20 °C·min-1 



 Chapter 8: Experimental – Stand-Alone One-Dimensional GC 

Jaydene Halliday                                                                                             226 | P a g e  
 

 

Figure 114: The separation of a 10 ppm BTEX gas mixture on the in-
house built GC manifold, achieved using a 0.25 ml sample loop and a 
temperature program of 30-100 °C ramping at 20 °C·min-1, with a flow 
rate of a) 1.5 ml·min-1, b) 10 ml·min-1, and c) 15 ml·min-1 



 Chapter 8: Experimental – Stand-Alone One-Dimensional GC 

Jaydene Halliday                                                                                             227 | P a g e  
 

Improvement in resolution and analysis time were also seen when the starting 

temperature was lowered, as illustrated in Figure 115 a), b) and c) which 

shows the separation of petrol in helium carrier gas, with a ramp of 10 °C· 

min-1 and a starting temperature of a) 30 °C, b) 10 °C, and c) 3 °C. The lower 

temperatures resulted in enhanced separation of the highly volatile C5 – C8 

fraction of the complex hydrocarbon sample.  

 

 

Experimentation using hydrogen and air as carrier gas were also conducted, 

and the results are shown in Figure 116. The first two chromatograms are of 

petrol in 116 a) hydrogen carrier gas at 12 psi, with a temperature program 

starting at 3 °C, ramping at 10 °C·min-1, and 116 b) air carrier at a pressure of 

22 psi, with a starting temperature of 30 °C, ramping at 10 °C·min-1. Figure 

117 is of a BTEX gas sample in air carrier gas at 22 psi, starting at 10 °C and 

ramping at 10 °C·min-1.  

a) b) 

c) 

Figure 115: The separation of petrol on the stand-alone LOC system with 
a temperature ramp of 10 °C·min-1 and a starting temperature of a) 30 °C, 
b) 10 °C, and c) 3 °C 
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While hydrogen carrier gas produced improved chromatograms as expected, 

chromatograms produced using air as carrier gas were nowhere near as 

resolved or separated as those achieved using either helium or hydrogen, but 

basic separation was still accomplished. Air was evaluated as carrier gas for 

the reasons outlined previously, with the major benefit being the elimination 

of the need for tanks of compressed gas, thus reducing the size and weight of 

the final portable instrument.  

 

 

 

Xylenes 

Trimethylbenzenes 

Figure 116: The separation of petrol in a) hydrogen carrier gas at 12 
psi, with a temperature program starting at 3 °C, ramping at 10 °C·min-1 

and b) air carrier at a pressure of 22 psi, with a starting temperature of 
30 °C, ramping at 10 °C·min-1 

C5 – C8 Hydrocarbons 

Xylenes 

Trimethylbenzenes 
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Figure 117: The separation of a BTEX gas sample in air carrier gas at 
22 psi, starting at 10 °C and ramping at 10 °C·min-1 



 Chapter 9: Experimental – Two-Dimensional GCxGC 

Jaydene Halliday                                                                                             230 | P a g e  
 

9.0 Experimental –Two-Dimensional GCxGC 

 

Based on the success of the one-dimensional experimentation, it was decided 

to coat the secondary column of the glass chips and work towards the 

optimisation of lab-on-a-chip two-dimensional GCxGC. 

 

9.1 Initial Attempts at Stand-Alone GCxGC-PID 
Previously LOC 2 had only the primary 7.5 m long column coated with a 1.25 

μm thick film of non-polar 100%-dimethylpolysiloxane stationary phase (OV-

101). The secondary 1.4 m long column had no coating applied. In order to 

achieve 2-dimensional separation the secondary column was coated as 

described below. 

 

9.1.1 Dynamic Coating of Secondary Column 

Initial coating of the secondary column was via the faster, easier dynamic 

method with a 20% v/v solution of OV-17 (50%-phenyl-50%-

methylpolysiloxane). Subsequently, the chip was installed in the GC manifold 

and was used to achieve a 2-dimensional separation via the on-chip fluidic 
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Figure 118: An example of the initial “2D" separation achieved with the 
fully coated LOC chip in the in-house-built manifold and the PID. 
Individual peaks have been rescaled to give common peak maxima 
intensity 
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differential flow modulator. A 6-port automatic injection valve was used fitted, 

with a 0.25 ml sample loop made from treated stainless steel. The valve was 

connected to the chip’s edge connector by a short length of peek tubing. The 

eluent emerging from the 1.4 m secondary column was connected to the PID 

by a 0.25 mm inner diameter uncoated fused silica capillary. The carrier and 

modulator gas pressures were set to 15 psi and 14.5 psi respectively. The 

modulation period was set to 2 seconds, with filling set to 1.5 and flushing set 

to 0.5 seconds.  

  

9.1.2 Two-Dimensional Performance Testing of LOC 2 

A gas mixture, comprising pentane, cyclohexane, toluene, p- and o-xylene, and 

nonane, was injected onto the column at a starting temperature of 30 °C. A 

temperature ramp of 20 °C·min-1 up to 100 °C was applied. Figure 118 shows 

the result of the early experiment attempting 2D separation on the glass chip. 

Figure 119 shows the result of a slightly more complicated mixture.  

 

9.1.3 Static Coating of Both Columns 
Due to the lack of separation in the second dimension, it was decided to 

statically coat both the primary and secondary columns of a blank LOC 2 chip 

with a 2% v/v solution of OV-101 in pentane and OV-17, respectively.  
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Figure 119: An 8 component 2D separation achieved with the stand-
alone LOC GCxGC system 
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The secondary column was coated by blocking the preconcentrator packing 

hole, as well as the first, second and third inlet holes. The detector port hole 

was left open and the stationary phase solution was introduced through the 

fourth inlet hole. Once filled, the detector port was blocked, as was the 

preconcentrator hole and the first and fourth inlet holes. A 2 %v/v solution of 

OV-101 in pentane was then injected onto the primary column through the 

second inlet, with the third inlet being left open. This method resulted in there 

being no overlap or mixing of stationary phases on either of the columns.  

 

Once the stationary phase solutions had been introduced into the columns, the 

preconcentrator, modulator legs and collector were all washed out a number 

of times to ensure that no stationary phase remained in these sections. The 

chip was then placed inside the heated vacuum desiccator for solvent 

evaporation, before testing with gas mixes. 

 

The temperature program was set to 20-120 °C at 10 °C·min-1, with the 

secondary column temperature being set to 20 °C more than the primary. The 

carrier gas was set to 14.0 psi, and the modulator gas was set to 13.5 psi, with 

5 second modulation. Unfortunately, while the PID was capable of giving good 

results, it was found to be prone to problems and detector response varied 

between the different PIDs used, making it difficult to replicate results.  The 
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Figure 120: The separation of a 10 component oxygenated VOC mix on 
the stand-alone system using the LOC 2 chip with both columns statically 
coated 
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chromatograms shown below, for example, both of pentane, were achieved 

under the same conditions but with different PIDs.   

 

9.1.4 Introduction of Make-Up Gas 

In order to determine if the presence of a make-up gas would improve or 

degrade chromatography, a 5 m x 0.25 mm deactivated fused silica capillary 

was superglued to the bottom of the PID, as shown in Figure 122. This was 

then connected to the make-up gas line. The length of the capillary was 

Figure 122: A schematic showing the set-up for PID make-up gas testing, 
and one of the resulting blank chromatograms 

Figure 121: The modulated response of pentane using two different PIDs, 
but otherwise identical conditions 
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progressively shortened to adjust flow; however, it was found that with make-

up gas flowing over the grid of the PID a blank chromatogram was achieved.  

 

9.1.5 Improving PID Performance 
Initially, the PID was positioned hovering just above the detector hole. A 

number of capillary-PID insertion methods were evaluated in an attempt to 

find the best set-up for PID detection, including an entirely sealed PID unit. 

This had the chip outlet capillary entering the PID through a small drilled hole 

behind the now sealed grid rather than through it, as illustratedin Figure 123. 

However, it was determined that simply having a short length of capillary 

sealed into the detector hole and inserted into the PID grid focused the eluting 

sample into the PID for detection. 

 

9.2 Stand-Alone GCxGC-Commercial FID 
To determine how much of a limiting role the PID played, the glass lab-on-a-

chip GC in its manifold was connected to the commercial FID of the Agilent 

7890A GC system by means of an approximately 50 cm long unheated transfer 

line. A heated transfer line was first attempted by feeding the capillary 

through a length of stainless steel tubing and coiling heating tape around it, 

however, this resulted in the line being too heavy causing the capillary to 

break. A deactivated fused silica column was also connected from the Agilent 

GC’s injector to the automatic injection valve of the lab-on-a-chip GC system 

allowing the Agilent GC to control the helium carrier gas. A number of gas 

Figure 123: One of the many methods evaluated of transferring the 
eluate emerging from the secondary column into the PID 
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mixtures were run. The results of two are shown below. The FID 

chromatograms indicate improved detector response and peak widths. This 

suggest that the PID was a significant problem, and one that was limiting 

further progress in achieving 2D separation on the glass chip.  

Figure 124: Separation of an 8 component mixture via the glass chip in 
the GC manifold with the FID of a commercial Agilent FID 
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Figure 125: The results of the separation of a 10 component mixture via 
the glass chip in the GC manifold with the FID of a commercial Agilent 
FID 
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9.3 Benchtop GCxGC-FID 
The final chip designed used for this project was LOC 4. The variable I.D. 

column dimensions of this chip were chosen based on the reasons outlined in 

Chapter 3. To summarise: flow modulated GCxGC conducted with a primary 

column I.D. that is larger than or equal to the secondary column I.D. can result 

in overloading of the second column. The result of this is reduced peak 

capacity in the second dimension. Since the amount of second dimension 

separation space is highly limited, any losses here (including those due to 

overloading) can seriously impair the performance of the system. 

 

9.3.1 Static Coating of Both Columns 

Static column coating was carried out as described for LOC 2, however, this 

time the shorter column with narrower I.D. (4 m x 0.18 mm) was coated with 

OV-101, while the longer, wider bore column (7.5 m x 0.25 mm) was coated 

with the more polar OV-17 phase. As before, the modulator, inlet and outlet 

channels were washed thoroughly before the chip was installed in the GC.  

 

9.3.2 Two-Dimensional Performance Testing of LOC 4 

To establish this chip’s capabilities, it was first tested within the commercial 

Agilent 7890A GC instrument, and results were, again, obtained using 

Chemstation and 2D imaging software. Modulation was achieved using a 

diaphragm valve, which operates in a similar manner to the differential flow 

channels built into the chip, i.e. flow from the primary column is diverted to 

the secondary at regular intervals using the fast switching valve, with no 

sample being vented to waste. 

 

The pressure parameters chosen for initial experimentation were those 

suggested by the concurrent work on LOC 2 in the stand-alone manifold at the 

time. Thus, high pressures of 75 psi and 70 psi for the primary and secondary 

columns, respectively, were used as a starting point for 2D optimisation. On 

running the following 12 component mixture, the result shown in Figure 126 

was achieved: 

1. Pentane 

2. 2-Methylpentane 

3. Isobutyraldehyde 

4. Hexane 

5. Propan-2-ol 

6. 2-Methylbutyraldehyde 

7. 2-Pentanone 

8. Toluene 
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9. Ethylbenzene 

10. 3-Methyloctane 

11. Ethyltoluene 

12. Nonane.

Operating conditions were as follows: 

• Injection volume: 2 µl 

• Inlet mode: Split (50:1) 

• Inlet temperature: 250°C 

• FID temperature: 300°C 

 

 

 

 

Figure 126: The separation of a 12 component mixture run on LOC 4 
within a commercial GC with FID detection 
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Lavender oil was also run with approximately 10 peaks out of the 27 

components that make the mixture up being visible.  

 

 

Next, a mix of isobutyraldehyde, hexane, 2-pentanone, and nonane was 

prepared as a simple mixture to be run for the purposes of method 

development. This process involved evaluation and adjustment of the 

following parameters: 

• Split ratio 

• Pressure and pressure ratio 

• Temperature ramp 

• Start and final temperatures 

• Hold times 

• Modulation time 

• Modulation ratio. 

 

Figure 127: The separation of lavender oil by LOC 4 in a commercial GC 
with FID detection 
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9.3.2.1 Pressure Determinations 

The aim was to lower the operating pressures of the column to minimise 

leaks, and it was experimentally found that a pressure difference of -15 and 

+10 psi gave the best results, with a primary column pressure of 75 psi and a 

secondary column pressure of 60 psi (Figure 128) and a primary column 

pressure of 25 psi and a secondary column pressure of 35 psi (Figure 129) 

performing best. As achieving lower pressures was the aim, it was decided to 

continue method development with the latter set of pressures. 

 

 

 

Figure 128: The separation of isobutyraldehyde, hexane, 2-pentanone, 
and nonane with a primary column pressure of 75 psi and a secondary 
column pressure of 60 psi 
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9.3.2.2 Temperature Determinations 

Starting temperature was next evaluated, with a starting temperature of 30 °C 

found to be ideal. Whilst, a start at 25 °C did produce slightly better looking 

chromatograms, the length of time it took for the GC oven to cool to that 

temperature did not make the improvement achieved worthwhile.  

 

Subsequently, the temperature ramp was examined, running with ramps of 1, 

2, 5, 10, 15, 20, 25 and 30 °C·min-1, all with an initial hold time of 1 minute. 

Experimentally, it was concluded that a ramp of 5 °C gave the better result. 

 

 
xxx Figure 129: The separation of isobutyraldehyde, hexane, 2-pentanone, 

and nonane with a primary column pressure of 25 psi and a secondary 
column pressure of 35 psi 
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9.3.2.3 Starting Hold Time Determinations 

Starting hold times were next looked into, with runs starting at 30 °C with 

initial hold times of 0.2 min, 0.5 min, 1.0 min, and 2.0 min. An isothermal run 

at 30 °C was also performed, as was a gradient run with no initial hold time. 

Overall, it was decided that a hold of 1.0 min was preferential.  

 

9.3.2.4 Split Ratio Determinations 

The split ratio was the next parameter to be adjusted. The above 

chromatograms were achieved with a 50:1 split. It was not possible to 

increase the split above a ratio of 240:1 as the GC would report that the front 

inlet flow was limited. As such, it was experimentally found that the best 

result that could be attained within the limited available split range was 220:1. 

 

Thus, at this point, the overall method had a starting temperature of 30 °C, 

holding for 1 minute before ramping at a rate of 5 °C·min-1 to 160 °C. The 

primary column pressure was 25 psi, whilst the secondary column pressure 

was set at 35 psi. A split of 220:1 was used.  

 

9.3.2.5 Modulation Time Determinations 

Modulation was the final parameter to be developed, with runs taking place 

with overall modulation times ranging from 1 to 11 seconds, and differing 

modulation ratios between filling and flushing. The above chromatograms 

were achieved with a modulation ratio of 3:2 seconds filling:flushing time. It 

Figure 130: The separation achieved with a 220:1 split ratio 
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was found experimentally that a number of different ratios resulted in what 

can be considered good separation, with ratios of 2.5:2.5, 3.0:2.0, and 4.0:5.0 

being selected as best. Overall, the modulation ratio of 4.0:5.0 provided the 

most separation/selectivity between isobutyraldehyde and hexane and so was 

selected for the final method. 

 

 

 

 

9.3.2.6 Complex Mixtures 

The following 7 component mixture was then prepared and run on the system, 

with the result being shown in Figure 132: 

1. Pentane  

2. 2-Butanone 

3. Hexane 

4. 3-Methylbutyraldehyde 

5. 2-Methylbutyraldehyde 

6. Ethylbenzene 

7. Nonane.

 

Figure 131: Separation achieved with a modulation ratio of a) 2.5:2.5; b) 
3.0:2.0; c) 4.0:5.0; d) 4.5:4.5; and e) 5.0:1.0 
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This was followed by separation of a 9 component mixture of: 

1. 2-Methylpentane  
2. Hexane 
3. Propan-2-ol 
4. 2-Methylbutyraldehyde 
5. 2-Pentanone 

6. Ethylbenzene 
7. 3-Methyloctane 
8. Nonane 
9. 3-Ethyltoluene. 

 

Each component was added one at a time starting with 3-ethyltoluene, which 

has the highest boiling point. This technique initially worked well to allow for 

peak identification, with the peaks from 3-ethyltoluene to 2-methylbutyr-

aldehyde being seen in Figure 133 a). However, with the addition of propan-2-

ol, two peaks instead of one were seen, and no further peaks were visible 

despite the addition of hexane and 2-methylpentane. 

 

Numerous repeat runs at the same and varying parameters did not alter this. 

Soon afterwards, an FID interconnect failure was experienced. This lead to the 

replacement of the part. The same 14 component mixture was rerun under the 

1. Pentane 
2. 2-Butanone 
3. Hexane 
4. 3-Methylbutyraldehyde 
5. 2-Methyl-butyraldehyde 
6. Ethylbenzene 
7. Nonane 

Figure 132: a) The separation of a 7 component mixture using the final 
method developed as described above; and b) Magnification to better 
show the two-dimensional separation achieved 
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same conditions as before. The results suggested that the deteriorating 

interconnect had been affecting the chromatography for some time. 

9.3.3 New FID Interconnect 

The installation of the new interconnect brought with it a significant 

improvement in chromatographic performance – or rather an improvement in 

the reporting of the chromatographic performance of the coated glass chip.   

b) 

c) 

a) 
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10. 2-Methylpentane 
11. Hexane 
12. Propan-2-ol 
13. 2-Methylbutyraldehyde 
14. 2-Pentanone 
15. Ethylbenzene 
16. 3-Methyloctane 
17. Nonane 
18. 3-Ethyltoluene 

Figure 133: a) The separation of 3-ethyltoluene to 2-methylbuty-
raldehyde ; b) the addition of propan-2-ol resulting in two peaks; c) No 
further peaks seen despite the addition of hexane and 2-
methylpentane  

xxx 
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This time, to prevent any over complication of experimentation, it was decided 

to start GCxGC method development using just one early eluting compound. 

Pentane was chosen. The following work was performed with a split ratio of 

220:1 (1,151.7 ml·min-1) and a modulation ratio of 3:2 s, with the GC oven 

operating isothermally at 30 °C. 

 

9.3.3.1 Pressure and Modulation Ratio Method Development 

Pressure was the first parameter to be tackled during this 2D GC method 

development process. As previously it had been noted that reasonable 

separation could be achieved with a “low” pressure ratio of 25:35 psi, 

development took place to see if these pressures could be reduced even 

further. A very comprehensive look at  pressure and primary:secondary 

column pressure ratio was conducted, with small changes of both plus and 

Figure 134: A modulated pentane peak. a) Pressure ratio = 11.0:19.6, 
Modulation ratio = 3.0:2.0; b) Pressure ratio = 10.5:20.0, Modulation ratio 
= 3.0:2.0; c) Pressure ratio = 16.4:30.0, Modulation ratio = 3.0:2.0; d) 
Pressure ratio = 10.5:20.0, Modulation ratio = 4.0:2.0 

a) b) 

c) d) 

xxx 
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minus 0.5 psi being made. It was noted that a pressure build up within the 

chip would occur if the primary column ratio was above a pressure of 35 psi, 

and no peaks would be seen at all. The three best pressure ratios discovered 

were then further broken down into 0.1 psi increments to get the best 

possible results.  

 

The primary:secondary column pressure combinations that resulted in the 

most improvement were determined to be 11.0:19.6 psi, 10.5:20.0 psi, and 

16.4:30.0 psi. 

 

Next, modulation ratio was examined in closer detail, looking at ratios where 

the flush time was either plus or minus 1 second that of the fill time over a 

range of 1-10 seconds total modulation time. This was done at each of the 

above three best pressures. The 3.0:2.0 s fill:flush ratio was found to give the 

best modulation. 

 

9.3.3.2 Complex Mixtures 

Next diesel, kerosene and lavender oil were injected onto the system. Primary 

column pressure was set at 16.4 psi, secondary column pressure was at 30 psi, 

the modulation ratio was 3:2, and the split ratio was 220:1. A starting 

temperature of 30 °C was used, with a 1 min hold time before ramping at a 

rate of 5 °C per minute to 160 °C. The results of each analysis are shown in 

Figure 135.  

 

A 1 µl injection of the 12 component mixture previously used to generate 

Figure 128 was then run on the system, to evaluate the effect of the different 

primary and secondary column pressures deemed best during the pentane 

tests. 

 

Again the split ratio was set to 220:1, and a temperature program of 30-160  

°C was used, with 1 min hold time and a 5 °C·min-1 ramp rate. Figure 136 a), 

b), and c) show the best results achieved. In comparison to Figure 128, all 3 

chromatograms boast improved separation in the second dimension. 
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b) 

a) 

c) 

Figure 135: The separation of a) diesel; b) kerosene; c) lavender oil 
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Figure 136: 1. pentane, 2. 2-methylpentane, 3. isobutyraldehyde, 4. 
hexane, 5. propan-2-ol, 6. 2-methylbutyraldehyde, 7. 2-pentanone, 8. 
toluene, 9. ethylbenzene, 10. 3-methyloctane, 11. ethyltoluene, 12. nonane. 
a) Pressure ratio = 10.5:20 psi, Modulation ratio = 3:2 s; b) Pressure ratio 
= 10.5:20 psi, Modulation ratio = 4:2 s; c) Pressure ratio = 16.4:30, 
Modulation ratio = 3:2 
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The coated chip was then tested with the following 16 component mixture, 

again at varying pressure ratios: 

1. Pentane 

2. 2-butanone  

3. Isobutyraldehyde 

4. Hexane 

5. Butanal 

6. Ethyl acetate  

7. Cyclohexane 

8. Propan-2-ol  

9. 2-methylbutyraldehyde 

10. Propyl acetate  

11. 3-Methyl-3-buten-2-one  

12. 2-Butenal 

13. 2-pentanone  

14. Ethylbenzene 

15. 3-methyloctane 

16. Nonane. 

 

Figure 137 shows the best separation achieved for this mixture, which was, 

again, run with a 220:1 split ratio and a 5 °C·min-1 ramp from 30 °C to 160 °C.  

 

9.4 Benchtop GC-FID 
As the primary column of this chip was both shorter and had a narrower bore 

in comparison to the other chip designs investigated, the GC set-up was 

altered to allow for one-dimensional separation. The purpose of this 

experiment was to get an idea if the one-dimensional capabilities of LOC 4 in 

comparison to the previously evaluated chip designs. The following results 

were obtained: 

Figure 137: The separation of a 16 component mixture, with a pressure 
ratio of 16.4:30 psi and a modulation ratio of 3:2 s 
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Figure 138: The separation of pentane, 2-methylpentane, 
isobutyraldehyde, hexane, propan-2-ol, 2-methylbutyraldehyde, 2-
pentanone, toluene, ethylbenzene, 3-methyloctane, ethyltoluene, and 
nonane 
 

Figure 139: The one dimensional separation of diesel,  achieved using 
only the 4 m x 1.8 mm primary column of the glass chip, with a split ratio 
of 220:1 and a temperature program of 30 °C to 160 °C at 5 °C·min-1 
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It’s clear to see that the separation achieved lacks efficiency, selectivity and 

resolution in comparison to that attained using the longer, wider bore primary 

columns. As well as that, the one dimensional peaks obtained on LOC 4 

showed evidence of overloading in the form of fronting peaks.  

Figure 140: The one-dimensional separation of lavender oil using the 
before mentioned conditions on the primary column of LOC 4 
 

Figure 141: The separation of pentane, 2-butanone, isobutyraldehyde, 
hexane, butanal, ethyl acetate, cyclohexane, propan-2-ol, 2-methylbutyr-
aldehyde, propyl acetate, 3-methyl-3-buten-2-one, 2-butenal, 2-
pentanone, ethylbenzene, 3-methyloctane, nonane 
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This indicates that, while relatively good 2-dimensional separation was 

achieved using LOC 4 in comparison to the previous chip designs; overall 

separation could potentially be even better by increasing the length of the 

primary column to one that exceeds the secondary.  

 

9.4.1 Validation and Calibration: LOC 4 GCxGC-FID 

The proposed analytes of interest for the lab-on-a-chip GCxGC were VOCs in 

air. While, the use of standard cylinders containing known concentrations of 

NMHCs is a regular feature in atmospheric chemistry, such a standard was not 

available for use in this project. An alternative method of calibration was 

reported by J. Hopkins, et al[1]. Here, a permeation tube method was used as 

the calibration system. Liquid samples were contained in small sections of thin 

wall 1/8” Teflon tubing which was then capped at each end using standard 

Swagelok fittings. The devices were then placed in a glass impinger within an 

aluminium block. This solid metal block was held at a constant known 

temperature and the impinger was flushed continuously with nitrogen at a 

reported flow rate of 100 ml·min-1. The mass loss of the device over a known 

period of time was used to calculate the concentration of each VOC within the 

nitrogen gas. It was found that to produce a range of concentrations, the flow 

rate of nitrogen over the permeation devices could be altered, with a nitrogen 

flow of 100 ml·min-1 producing concentrations in the order of 100 ppb. 

 

While the recreation of the above method was considered for use in this work, 

it ultimately was decided that the determination of specificity should be 

suspended until a reliable gas standard could be obtained.  

 

9.4.1.1 Quantitative Analysis – The Calibration Curve 

Quantitative chromatographic analysis generally consists of the preparation of 

a series of standard solutions containing a known amount of the analyte of 

interest. The instrument response for each is measured, with a five-point 

calibration being typical. Measurement of the peak areas or peak heights of 

the resulting chromatograms are then taken and plotted as a function of 

concentration. This then allows for an estimate of the amount of actual analyte 

present in a sample based on comparison of either the sample peak’s height or 

area with that of one of the standards. 
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A calibration curve can verify the proper functioning of an analytical 

instrument, and gives an indication of the following[2]: 

• Linearity 

• Regression equation 

• Calibration/Working range 

• Limit of Detection  

• Limit of Quantification  

• Correlation efficient R2 

 

Three VOCs commonly emitted and found in the atmosphere, namely 2-

butanone, pentane and ethyl acetate, were chosen as standards for calibration. 

As discussed, the chosen standards were not available in the preferred matrix. 

Instead each was injected onto the LOC GCxGC system in an appropriate non-

interfering solvent, i.e. 2-butanone in ethylbenzene, pentane in cyclohexanone, 

and ethyl acetate in ethylbenzene. Thus, the method detection limits (MDLs) 

achieved with these standards can be described as "best case limits". It is 

important to note that MDLs found achievable in these clean samples are 

generally not analytically achievable in other matrices. Nonetheless, such a 

method is still often used for comparison of detection limits among different 

laboratories[3]. All chromatographic separations up to this point had been of 

similar clean laboratory-prepared standards, thus, attainment of these best 

case limits was appropriate.  

 

A 2,000 ppm (2 g·L-1) stock solution of each standard compound was 

prepared, and four dilutions were made, resulting in five standard 

concentrations of 500 ppm, 800 ppm, 1,200 ppm, 1,600 ppm and 2,000 ppm. 

Each of these standard concentrations was then run on the GCxGC-FID system 

using LOC 4. Five repeats of each were performed. 

 

The sum of total peak areas of all the pulsed or modulated peaks of the 

individual compounds were measured to give an overall peak area value.  An 

average peak area value for each concentration of a particular standard was 

then calculated. The tables below show the peak area values attained for each 

of the three standards. 
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Table 26: Average peak area and height per concentration of 2-butanone 

in ethylbenzene 

2-Butanone in Ethylbenzene 

Concentration  

(ppm) 

Average Peak Area 

(mV·s) 

Average Peak Height 

(mV) 

500 413.44 189.39 

800 518.74 272.51 

1200 634.45 331.28 

1600 733.43 420.43 

2000 839.72 548.32 

 

 

Table 27: Average peak area and height per concentration of pentane in 

cyclohexanone 

Pentane in Cyclohexanone 

Concentration  

(ppm) 

Average Peak Area  

(mV·s) 

Average Peak Height 

(mV) 

500 263.4 366.92 

800 288.47 528.07 

1200 497.31 906.69 

1600 590.96 1108.81 

2000 768.69 1469.25 

 

 

Table 28: Average peak area and height per concentration of ethyl 

acetate in ethylbenzene 

Ethyl Acetate in Ethylbenzene 

Concentration  

(ppm) 

Average Peak Area 

(mV s) 

Average Peak Height 

(mV) 

500 360.67 156.57 

800 406.73 231.09 

1200 479.88 297.24 

1600 575.43 370.61 

2000 637.61 418.84 
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Peak height measurements were also taken; however, chromatographic 

quantitation is generally carried out on the basis of the more reliable peak 

area. Peak area is preferred as it is less sensitive to the influence of peak 

broadening or dispersion mechanisms. Thus, while peaks may become 

shorter, broader, and less symmetrical due to these effects, the total area 

under the peak remains proportional to the total quantity of substance 

passing into the detector[4].  

 

The averaged peak areas determined were then plotted against their 

respective concentrations. Figures 142, 143, and 144 show the calibration 

curves formed for each. 

 

 

 

 

 

 

Figure 142: Calibration curve generated for 2- butanone in ethylbenzene 
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Figure 143: Calibration curve generated for pentane in cyclohexanone 

Figure 144: Calibration curve generated for ethyl acetate in ethylbenzene 
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9.4.1.2 Precision 

The % RSD for each concentration of each standard is detailed in the Table 29 

below. 

 

Table 29: Calculated % RSD for the varying concentrations of each 

standard 

Standard 2-Butanone Pentane Ethyl Acetate 

Concentration (ppm) % RSD 

500 4.90 7.59 4.01 

800 5.53 2.39 11.98 

1200 4.08 6.80 10.61 

1600 14.11 1.43 7.11 

2000 19.32 4.07 9.28 

 

 

9.4.1.3 Limit of Detection (LOD) 

Blank values were obtained by examination of the baseline of a blank. It was 

found that the mean noise or baseline height was 42.12 mV for 2-butanone, 

42.00 mV for pentane, and 40.32 mV for ethyl acetate. A detector output of 

Figure 145: Calibration curve generated for 2-butanone by plotting 
measured peak height against concentration 
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±10.00 mV is typically seen for baselines of commercially available columns in 

benchtop instruments. The high output seen with LOC 4 is more than likely 

due to column bleed issues.  

 

The average peak height of each of the three standards was plotted against 

their respective concentrations. The resulting graphs are shown in Figures 

145, 146 and 147. Despite the expected peak broadening and dispersion 

effects, the linearity for all three peak height generated calibration curves 

proved to be good.  

 

 

 

 

 

 

 

 

Figure 146: Calibration curve generated for pentane by plotting measured 

peak height against concentration 
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Table 30: Estimated limits of detection for each standard calibration 

curve 

Standard LOD (ppm) 

2-Butanone 237.7 

Pentane 172.1 

Ethyl Acetate 202.5 

 

Limits of detection were determined by multiplying the signal or peak height 

measured for the blank by 3 to get the value y of the equation of the line. This 

was then used to calculate the concentration x. Table 30 details the LODs 

Figure 147: Calibration curve generated for ethyl acetate by plotting 

measured peak height against concentration 
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estimated via this method for the analysis of 2-butanone, pentane and ethyl 

acetate. 

 

9.4.1.4 Limit of Quantitation (LOQ) 

An analytical procedure’s LOQ is the lowest amount of analyte in a sample 

which can be quantitatively determined with suitable precision and accuracy. 

Typically a signal-to-noise ratio of 10:1 can be used to estimate this value in 

much the same way as LOD is estimated[3].  

 

Thus, using the calibration curves above and their generated linear equations, 

the method’s LOQs for each of the three standards were calculated. The results 

are detailed in Table 31.  

 

Table 31: Estimated limits of quantitation for each standard calibration 

curve 

 

 

 

 

 

 

 

 

The high values calculated gave an indication of the system and method 

limitations. High baseline noise made peak integration difficult. This provides 

evidence towards the importance of a stable coating of stationary phase to the 

overall chromatography achieved. It would be interesting to see the above 

experiments repeated with a chip whose coating had been cross-linked or 

otherwise bonded to the glass channel walls.  

 

9.4.1.5 Qualitative Analysis – Retention Time 

As temperature, flow rate, column length, and all other variables, besides 

concentration, were kept constant, the retention time of each compound 

should also have remained consistent. To determine whether this was the 

case, the average retention time observed at each concentration of standard 

Standard LOQ (ppm) 

2-Butanone 1,518.6 

Pentane 570.8 

Ethyl Acetate 1,954.3 
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was calculated and used to determine the % RSD, as previously described. The 

results per concentration are detailed in Tables 32, 33, and 34. 

 

Table 32: Retention time repeatability at different concentrations of 2-

butanone 

Concentration (ppm) % RSD 

500 0.99 

800 1.91 

1200 2.27 

1600 2.32 

2000 0.12 

 

Table 33: Retention time repeatability at different concentrations of 

pentane 

Concentration (ppm) % RSD 

500 4.09 

800 5.33 

1200 4.48 

1600 7.54 

2000 4.45 

 

Table 34: Retention time repeatability at different concentrations of 

ethyl acetate 

Concentration (ppm) % RSD 

500 2.91 

800 0.52 

1200 1.88 

1600 3.14 

2000 2.64 

 

 

Overall, the retention time repeatability over the range of concentrations for 

each compound was calculated to be as follows: 
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• 2-Butanone = 2.05% 

• Pentane = 0.83% 

• Ethyl acetate = 0.73%. 
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10.0 Experimental – Stand-Alone LOC GCxGC-PID 

 

As with the commercial GC instrument, when LOC 4 was installed into the 

stand-alone in-house built system, initial experimentation involved 

optimisation of headspace injections of pentane. Next method development 

and optimisation was carried out in order to successfully separate out a 

simple mixture of pentane, hexane and heptane. The set-up of the chip within 

the manifold was as previously described. The following parameters were 

changed systematically in an effort to determine the optimum separation 

method using the miniaturised PID for detection: 

• Carrier gas and modulator gas pressure ratio (psi) 

• Modulation and modulation period ratio (s)  

• Starting temperature (°C) 

• Hold time/ramp delay (s) 

• Temperature ramp rate (°C) 

• Temperature offset between columns (°C) 

Figure 148: Images illustrating the chip within its housing. Input and 
output transfer lines are clearly visible. Connection to the PID was by a 
small 5 cm length of capillary 
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10.1 Pressure Determinations 
Variation of the carrier and modulator gas pressures gave initial indications 

that the optimum pressure for both was 62 psi. Next, the modulation period 

and modulation ratio were adjusted. Examples of the effect of changing the 

modulation period are shown below, with Figure 149 a) having a modulation 

period of 3 s, b) 5 s, c) 7 s, and d) 9 s, all with a 1 s collector flushing time. 

Figure 149 e) also has a 9 s modulation period, but a 0.5 s flushing time, and 

illustrates, when compared to d), the effect of changing the modulation 

flushing and filling time ratio.  
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Figure 149: The 2D separation of pentane, hexane and heptane. Carrier 
gas and modulator gas pressure = 62 psi, temperature difference 
between primary and secondary column = 10 °C, temperature ramp = 
25-60 °C at 10 °C·min-1, ramp delay = 20 s. a) Modulation ratio = 3:1 s; b) 
Modulation ratio = 5:1 s; c) Modulation ratio = 7:1 s; d) Modulation ratio 
= 9:1 s; e) Modulation ratio = 9:0.5 s. Due to operation parameters 
injections were not 100% reproducible. 
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Based on the results of the above adjustments, it was decided that a 

modulation period of 9 s with a 1 s flushing time provided the best 

chromatogram. 

 

10.2 Temperature Program Determinations 
Next, the ramp rate was adjusted. It was determined that a ramp of 10 °C· 

min-1, as was initially being used, gave the optimal result. The ramp delay was 

subsequently examined and a delay of 60 s produced the improved 

chromatogram shown in Figure 150.  

 

Finally, the temperature offset between the primary and secondary column 

was varied. It was found that a difference of 80 °C gave narrower, sharper 

peaks. 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

  
 

 

 

 

 

Figure 150: Pentane, hexane and heptane. Modulation ratio = 9:1 s, 
carrier and modulator gas pressures = 62 psi, temperature difference 
between columns = 10 °C, temperature program = 25-60 °C at 10 °C· 
min-1, ramp delay = 60 s 

Figure 151: Pentane, hexane and heptane. Modulation ratio = 9:1 s, 
carrier and modulator gas pressures = 62 psi, temperature program = 
25-60 °C at 10 °C·min-1, ramp delay = 60 s, and temperature difference 
between columns = 50 °C 
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10.3 Commercial FID and Heated Transfer Line 
As it was known that the PID had a derogatory effect on the separation results, 

it was decided to connect just the detector port of the chip in its LOC stand-

alone manifold to the FID of the commercial Agilent GC. Chromatography 

initially proved to be worse, with very broad 2D peaks being produced. The 

set up was then altered so as to allow for a heated transfer line from the chip 

outlet to the Agilent’s FID. This greatly improved the shape of the peaks, as 

illustrated in Figure 153.  

 

The following 6 component mixture, containing aliphatic, carbonyl and 

aromatic compounds, was prepared: 
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Figure 152: Pentane, hexane and heptane. Modulation ratio = 9:1 s, 
carrier and modulator gas pressures = 62 psi, temperature program = 
25-60 °C at 10 °C·min-1, ramp delay = 60 s, and temperature difference 
between columns = 80 °C 

Figure 153: Pentane, hexane and heptane using a commercial FID for 
detection. Modulation ratio = 9:1 s, carrier and modulator gas pressures 
= 62 psi, temperature difference between columns = 20 °C, temperature 
program = 25-60 °C at 10 °C·min-1, ramp delay = 60 s 
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1. Pentane 

2. Hexane 

3. 2-Butanone 

4. 2-Methylbutanal 

5. Toluene 

6. Ethylbenzene.  

 

A schematic of the two-dimensional chromatogram that would be expected for 

such a separation is illustrated by Figure 154. 

 

The actual chromatogram is shown in Figure 155. As can be seen, the peak 

positions were as expected, indicating successful two-dimensional separation 

of the mixture. 

 

Figure 154: A schematic of the expected 2-dimensional plot that would 
result from the GCxGC separation of pentane, hexane, 2-butanone, 2-
methylbutanal, toluene and ethylbenzene 
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Figure 155: Separation of a 6 component mixture using a commercial FID 
for detection. Modulation ratio = 9:1 s, carrier and modulator gas 
pressures = 62 psi, temperature difference between columns = 20 °C, 
temperature program = 25-120 °C at 5 °C·min-1, ramp delay = 120 s 
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Subsequently, heptane and nonane, two more aliphatics, were added to the 

mix. While separation was not fully optimised, the compounds did generally 

keep to the expected aliphatic, carbonyl and aromatic banding. 

 

 

10.4 Optimisation of PID 
A miniaturised FID would be ideal for the purposes of the project reported 

here; however, it was not possible for one to be sourced. Thus, in order to 

achieve a field portable, miniaturised GCxGC instrument, all further 

development was conducted using the PID.  As illustrated by Chromatogram 

53, resolution, efficiency and retention are not as good as that seen with the 

FID. 

 

As separation of relatively low molecular weight compounds was achievable 

using the coated LOC 4 in the GC manifold, it was decided to determine the 

chip’s separation capabilities with regard to a higher molecular weight 

mixture. Initially, headspace injections of lavender oil and tea tree oil were 

attempted with the sample loop in place.  

 

 

Figure 156: Separation of an 8 component mixture using a commercial 
FID for detection. Modulation ratio = 9:1 s, carrier and modulator gas 
pressure = 62 psi, temperature difference between columns = 20 °C, 
temperature program = 25-120 °C at 5 °C·min-1, ramp delay = 120 s 
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The boiling points of lavender oil components range from 100 °C to 

approximately 280 °C, as evidenced in Table 35, and tea tree oil components 

from 155 °C to 219 °C (Table 36). With the manifold providing no means of 

heating the inlet, it was only possible to see a limited number of peaks due to 

discrimination taking place within the cold injector. The chromatogram below 

is the result of the separation of lavender oil via this set-up.  

 

Time (mins) 

pe
nt

an
e 

he
xa

ne
 

2-
bu

ta
no

ne
 

he
pt

an
e 

2-
m

et
hy

lb
ut

an
al

 

to
lu

en
e 

no
na

ne
 

et
hy

lb
en

ze
ne

 

9.0  

6.0  

3.0  

0.0  

Ti
m

e 
(s

) 

Figure 157: Separation of an 8 component mixture using the PID for 
detection. Modulation ratio = 9:1 s, carrier and modulator gas pressure = 
62 psi, temperature difference between columns = 20 °C, temperature 
program = 25-120 °C at 5 °C·min-1, ramp delay = 120 s 
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Figure 158: The separation of lavender oil. Modulation ratio = 9:1 s, 
carrier gas pressure = 65 psi, modulator gas pressure = 64 psi, 
temperature difference between columns = 10 °C, temperature program 
= 20-120 °C at 5 °C·min-1, ramp delay = 120 s 
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Table 35: The composition of lavender oil 
 

Composition Boiling Point (°C) Molecular Weight (g·mol-1) 

E-β-ocimene 100 136.23 

Z-β-ocimene 100 136.23 

α-humulene 106 204.36 

α-pinene 155 136.23 

Camphene 159 136.23 

β-pinene 164 136.23 

Myrcene 167 136.23 

Octanone-3 168 128.21 

β-phellandrene 171 136.23 

Eucalyptol (1,8-cineol) 176 154.25 

Octene-3-yl acetate 189 196.29 

Linalool 198 154.25 

Camphor 204 152.23 

Cryptone 108 138.21 

Terpin-4-ol 212 154.25 

Borneol 213 154.25 

α-terpineol 219 154.25 

γ-terpineol 219 154.25 

Linalyl acetate 220 196.29 

Nerol 224 154.25 

Lavandulyl acetate 228 196.29 

Lavandulol 229 154.29 

Geranyl acetate 245 196.29 

Neryl acetate 247 196.29 

β-farnesene 261 204.36 

β-caryophyllene 263 204.36 

Germacrene 279 204.36 

 
 

 



 Chapter 10: Experimental – Stand-Alone LOC GCxGC-PID 

Jaydene Halliday                                                                                             272 | P a g e  
  

Table 36: The composition of tea tree oil 

Composition Boiling Point (°C) Molecular Weight (g·mol-1) 

α-pinene 155 136.23 

α-terpinene 174 136.24 

1,8-cineole 176 154.25 

p-cymene 177 134.21 

γ-terpinene 183 136.24 

α-terpinolene 185 136.24 

Terpinen-4-ol 212 154.25 

α-terpineol 219 154.25 

 

 

10.5 Heating the Inlet 
It was clear that the inlet required heating. As a preliminary test, a Swagelok 

union tee was connected in line with the carrier gas just before its 

introduction to the first glass column. This metal fitting was then heated with 

a heat gun set at 300 °C, before liquid lavender oil was injected through the 

tee’s plug (fitted with a septum) and into the heated path of the carrier gas for 

volatilisation. Unfortunately, this did not produce the desired effect, with the 

resulting chromatogram being shown below.  
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Figure 159: The separation of lavender oil as previously described. 
However, this time a heated metal fitting was used as inlet 
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A commercially manufactured split/splitless inlet, capable of heating, was 

sourced and adapted to fit the manifold (Figure 161). The inlet was fitted with 

a valve to allow switching between split and splitless mode, and was operated 

in split mode for the analyses to be described. Before testing, an appropriate 

liner was fitted, as was a new O-ring and gold-plated base seal.  

 

The split ratio could not be accurately controlled, although it could be 

measured, and back calculated by using the following equation: 

 

Equation 61 

Split ratio =  
Fc

(Fs + Fc) 

Figure 160: The commercial inlet coupled to LOC 4 within the in-house 
built GC manifold 
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Where Fc is the column flow and Fs is the split exit flow. 

 
Instead, the ideal split flow was determined on a trial and error basis. It’s 

important to note here, that as the manifold lacked an electronics pneumatics 

control, which would generally be found on a commercial GC, parameters, 

such as the inlet flush time and flush flow were not automatically calculated 

and applied. With regard to split injection, it is important to ensure good 

mixing of the vapourised sample with the carrier gas. Fast mixing is required 

for consistent results.  

 

The flow through the liner (Fl) is calculated as follows: 

 

Equation 62 

Fl =  Fc +  Fs 

 
Thus, if the column flow is 1 ml·min-1 and the split flow is 9 ml·min-1, the flow 

through the liner is 10 ml·min-1. If the liner volume is 1 ml, it will take 1/10 

minutes (6 seconds) for the liner to flush once. If the split ratio is 100:1 it will 

take 1/100 minutes (0.6 seconds) to flush. Generally, two flushes are 

recommended for complete transfer. 

 

A simple mix of pentane, hexane, and heptane was run to optimise usage of the 

inlet, before moving on to more complex solutions. However, with the set up 
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Figure 161: Pentane, hexane and heptane. Modulation ratio = 9:1 s, 
carrier and modulator gas pressure = 62 psi, temperature difference 
between columns = 20 °C, temperature program = 25-100 °C at 10 
°C·min-1, ramp delay = 60 s, a) without the extra heating applied to the 
inlet; b) with the extra heating applied 
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as it was, the maximum temperature that the inlet was capable of reaching 

was 135 °C. This value was much lower than the typical operating 

temperature of 250 °C of a commercial GC inlet. In an attempt to increase the 

temperature, heating tape was wrapped around the unit, bringing the 

resultant temperature up by approximately 15-20 °C. The chromatograms 

achieved with the additional heating to the inlet displayed improved peak 

shape, as illustrated by Figure 162, which shows the three separated 

compounds a) before the extra heating and b) after. 

 

The 8 component mixture previously used, consisting of pentane, hexane, 

heptane, 2-butanone, 2-methylbutanal, toluene, ethylbenzene, and nonane 

was run using this new configuration, with the result shown in Figure 163. 

 

On comparison of this chromatogram to previous ones, there does not seem to 

be evidence of significant improvement with the introduction of the 

commercial inlet. If anything, chromatography has degraded somewhat. This 

could be due to stationary phase leaching from the chip over time with use; 

however, a major factor will also be the addition of the inlet to the manifold. 

The inlet brought an unknown number of variables into the overall equation. 
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Figure 162: The separation of an 8 component mixture. Modulation ratio 
= 9:1 s, carrier and modulator gas pressure = 62 psi, temperature 
difference between columns = 20 °C, temperature program = 25-100 °C 
at 10 °C·min-1, ramp delay = 60 s, with the extra heating applied to the 
inlet 
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Thus, to achieve a fully functional and sufficiently heated inlet further work 

was required outside the scope of this project. 

 

Lavender oil was also run on the system using the heated inlet, and the 

chromatogram is shown in Figure 163. This result initially seemed quite poor. 

However, on adjusting the intensity settings of the 2D plot and recording the 

visible peaks at each intensity level before compiling them in Figure 164, it’s 

possible to see that, despite the inefficient heating provided by the inlet, a 

substantial number of lavender oil components were actually resolved.  

 

Numerous problems were experienced with regard to the inlet, with leaks 

being a key issue. Leak areas included the capped purge vent, the plugged 

column connection, the septum and/or septum nut, the zone where the gas 

lines were plumbed to the inlet, the O-ring and/or O-ring nut, and the inlet 

base seal. All required checking and, when necessary, tightening at various 

intervals throughout testing. As the inlet was one that had been found in the 

lab with no indication as to why it had been removed from its original 

instrument, it is possible that it may have been experiencing problems when 

originally in use and, hence, been replaced and discarded. Inlet discrimination 

was also still being experienced due to insufficient heating.  
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Figure 163: Lavender oil separated on LOC 4. Modulation ratio = 9:1 s, 
carrier gas pressure = 65 psi, modulator gas pressure = 64 psi, 
temperature difference between columns = 10 °C, temperature program 
= 20-120 °C at 2 °C·min-1, ramp delay = 20 s 
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10.6 Manifold Deterioration 
In addition to the above, progress was also hindered further by component 

failure within the briefcase-sized manifold. Temperature control was one of 

the first areas where mechanical problems were encountered.  The primary 

column heating was found to slow down and lag considerably when ramped. 

Thus, when, for example, a 10 °C temperature difference between primary and 

secondary columns was set, this difference would increase by as much as 40-

50 °C over the course of a run. The Thermofoil heating pads were replaced, 

and while this did result in more efficient heating, it did not solve the 

temperature drift issue.  

 

Weight was also applied to the insulation above the chip, forcing it to achieve 

better contact with the heating pad below. However, this was to no effect, and 

contact, or lack thereof, was obviously not an influence. 

 

The cooling fans, Peltiers, and sensors, amongst other components, would also 

fail at varying points throughout runs. In an attempt to offset these issues, 

many of the manifold connections were rewired, whilst the remaining 

connections were checked and tightened. This would indicate that the 

xxx 

6.0  

9.0  

3.0  

0.0  

Ti
m

e 
(s

) 

Figure 164: A compilation of lavender oil component peaks seen at 
varying intensities 
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components in the final product would need to be secured tightly in place to 

prevent loosening over time and with transport and use.  

 

Unfortunately, there was no real way to determine how and to what extent the 

faulty workings of the above mentioned components may have affected the 

chromatography of previous runs. It does, however, suggest an explanation as 

to why so much variation of results existed from run to run, even when the 

exact same parameters were used, and why such a notable degradation of 

chromatography occurred whenever the manifold was transported. 
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11.0 Conclusion 

 

11.1 A Summary 
The aim of this PhD project was to develop a novel microfabricated lab-on-a-

chip two-dimensional gas chromatograph capable of achieving on-site VOC 

analysis. This thesis presented the steps taken over a period of nearly four 

years to reach the successful accomplishment of this goal. 

 

Essentially, the prototype lab-on-a-chip 2D GC reported here gives an 

indication of what the future of GC could be, and provides an illustration of 

what is currently achievable within the world of micro-GC. Miniaturisation of 

analytical instruments is the next logical step in the progress and evolution of 

the separation sciences. There was a time when bigger was deemed to be 

better, but society has moved away from this idea, and the term “modern” is 

nowadays more often associated with phrases such as “compact” and 

“portable”. GC miniaturisation offers many benefits, not least those associated 

with savings in space, solvent consumption, waste disposal, time and, as a 

consequence of the former, costs. 

 

Confucius said that one should “study the past if you would define the future”. 

As such, the preliminary Chapters 1 – 4 of this body of work provide an in 

depth introduction and history to the various disciplines that formed the basis 

of and drove forward the innovation of the developed miniaturised 

instrument.  

 

Chapter 1 outlined the challenges faced by the atmospheric chemist and 

emphasised the vital need for analytical instruments capable of qualification 

and quantitation of the hundreds and even thousands of components present 

in complex atmospheric air samples. Without a comprehensive understanding 

of the Earth’s atmosphere and the reactions, transformations and 

transportations occurring within it our crops, ecosystems, and even our health 

is at risk. However, by studying the photochemistry of the molecular 

constituents of air, scientists are able to devise and test possible solutions to 

problems such as ozone depletion, acid rain, photochemical smog formation, 

toxic air pollution, increases in greenhouse gases and global warming. 
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In order to achieve this, field measurements are of crucial importance. The 

major challenge here is the incompatibility of commercial GC instruments for 

this purpose. The longer sample holding time and transportation handling 

associated with off-site laboratory analysis can produce a lower detected VOC 

concentration when compared to duplicate samples analysed on-site. 

 

Chapter 2 reiterated that, despite its portability and power consumption 

limitations with regards to on-site usage, GC is the most suited and well used 

analytical tool within atmospheric chemistry. The fundamental principles of 

chromatography were described in detail as they are the “rules” to which the 

developed lab-on-a-chip GC must adhere. Resolution is the ultimate aim of 

chromatography, and the theoretical and practical considerations relevant to 

this objective were thoroughly deliberated.  

 

While conventional GC has widespread applications, it often fails to provide 

the necessary resolution for particularly complex samples, such as air. In 

recent years, GCxGC, the principles of which were detailed in Chapter 3, has 

emerged as the solution to this restricting problem. This technique is still 

relatively new and is constantly evolving, with the planar two-dimensional GC 

chip fabricated here being a representative example of this.  

 

Chapter 4 highlighted the reported attempts at miniaturising both one-

dimensional and, on a lesser scale, two-dimensional gas chromatographs. It 

was shown that the vast majority of portably sized GCs comprise 

commercially available capillary columns, which generally have been wound 

tighter than what would be considered the norm, and housed within small 

units that contain all the usual components but on a smaller scale. In terms of 

microfabrication, the majority of reported GC attempts have been using silicon 

as substrate. Etching of silicon results in rectangular or square channels. 

These allow pooling of stationary phase in the column corners on coating, and 

chromatograms generated via these chips suffer from peak broadening and 

general degradation of separation performance. Circular channels, such as 

those achieved for the glass chips reported here, are the ideal as they function 

in much the same way as traditional capillary columns. While micro-GCxGCs 

have been reported, separations to the scale of that demonstrated in this 

thesis have not yet been achieved.  
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Ultimately, the result of this work has been the microfabrication, stationary 

phase coating, system development, and chromatographic optimisation of a 

planar two-dimensional glass GC chip. Relatively long column lengths and 

standard internal diameters have been achieved. Low-power direct resistive 

heating and cooling of the glass chip produced a uniform heating profile 

across the columns when held at both above and below ambient 

temperatures, and multiple temperature zones have been achieved within the 

same chip. The ability to directly cool this device using the Peltier effect may 

offer substantial advantages for the analysis of very volatile species over 

typical cryogenic cooling of drawn capillaries in standard GC ovens. 

 

A successful coating method was experimentally determined by initially 

coating a number of deactivated fused silica capillary columns with OV-101, 

before progressing to coating the primary and secondary columns of the glass 

device. Static coating was determined to be the best coating method for the 

purpose of this project.  

  

The one-dimensional performance of the device was proven using a standard 

GC oven for injection, heating and FID detection. Coupling of the directly 

heated column to a low-cost, low-power PID showed reasonable separation of 

a simple BTEX mixture in 230s with sub ng sensitivity.  

 

Two-dimensional separation has shown promising results from the separation 

of ppm gas mixtures of up to 16 VOCs. The miniaturised GC system as a whole, 

with built-for-purpose heating, cooling and control, was found capable of 

comprehensive separation with photoionization detection. When equipped 

with appropriately sized gas cylinders and battery power, this instrument 

offers substantial potential as a field portable GC, overcoming some of the 

portability limitations associated with drawn capillary columns and turbulent 

fan GC ovens. 

 

A limited validation study was conducted that showed the LOC system to be 

both precise and linear, with good repeatability. Estimated limits of detection 

and quantitation were high, however, as the system itself has not yet been 

validated, this is not entirely unexpected or unexplained.  
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The results of this study are significant and provide original contributions to 

the fields of chromatography, instrument miniaturisation and atmospheric 

chemistry. If produced on a commercial scale this instrument would find 

application for a wide range of other subject areas.  

 

11.2 Limitations and Problems Experienced 
As discussed, the durability of the housing unit was a problem. If issues were 

encountered within the controlled environment of the development 

laboratory, the system would not be capable of handling adverse conditions, 

such as the high humidity of the Bornean jungles, or the low ambient 

temperature of the Antarctic. 

 

The miniaturised PID from Alphasense was another limitation, with variable, 

unreliable response. A more appropriate and capable detector would need to 

be sourced. 

 

Column, or stationary phase, bleed was a major issue experienced throughout 

experimentation. Bleed is a result of the elution of stationary phase 

degradation products. On leaving the column, bleed not only causes high 

background signal, but ultimately fouls the detector as well. While all columns 

produce bleed products, column exposure to oxygen in air can accelerate this 

process. As there was no real way to cap the glass chip channels, they were 

open to air on a constant basis.  

Figure 165: A close-up of the spiral primary column of LOC 1 
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The second significant limitation of the chips was that no cross-linking or 

bonding of the stationary phase to the channel walls took place. Bonding 

occurs through covalent linking of the stationary phase to the solid support of 

the channel wall.  Cross-linking involves covalently linking the individual 

polymer chains of the stationary phase.  These techniques provide enhanced 

thermal and solvent stability. 

 

Generally, columns should also be deactivated before coating. A deactivation 

program for silica and soft glass columns that is suitable for most applications 

would first entail an acid wash by filling with 10% w/w hydrochloric acid, 

sealing the ends and heating the column to 100 ˚C for 1 hour.  This procedure 

is believed to remove traces of heavy metal ions that can cause adsorption 

effects. The column is then filled with a solution of hexamethyldisilazane 

contained in a suitable solvent, sealed, and again heated to the boiling point of 

the solvent for 1 hour[1]. This blocks any hydroxyl groups that were formed on 

the surface during the acid wash.  

 

As with bonding or cross-linking, a deactivation step was not included in the 

coating process for the glass chip columns. This was purposefully omitted so 

as to allow for chip recycling. However, had there been more time, these steps 

would definitely have been a part of the continued development of the LOC 

GCxGC system. 

 

The project, as a whole, was challenged by the constraints of time, finance, 

suitable testing facilities and equipment, as well as the lack of an appropriate 

team of engineers and chemists with pertinent expertise in the relevant areas. 

If time was not a factor, one person alone potentially could see the 

development through from start to finish. Unfortunately, within the restraints 

of a PhD timeframe it was not possible to produce and present a fully 

designed, developed, and validated gas chromatographic system with fully 

developed, optimised and validated methods. However, enough data and 

chromatographic evidence has been collected within this time to realise the 

very real potential of this lab-on-a-chip GCxGC-PID, and, considering the 

limitations detailed, the results achieved are excellent. 
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11.3 Future Work 
While a significant body of work has been presented here, additional research 

is both foreseen and required in order to bring the prototype developed to 

market.  

 

Ultimately, a light, portable, battery-powered device capable of performing 

automatic injections is desired. Future work would include the evaluation of 

gas cylinder size requirements. As well as this, an important consideration 

would be the minimisation of power requirements for battery powered 

operation. In order for the instrument to be truly portable it would need to be 

self-contained with no exterior power source.  

 

Very little work was done on sample injection and preconcentration. Trapping 

material evaluation is required in order to determine the best suited packing, 

or mixture of packings, for VOC analysis. Investigations into sample delivery 

options would be another interesting step to determine the feasibility of 

supporting a variety of sampling techniques, such as loop and syringe 

injection, sampling by probe, or even SPME. 

 

Ideally, the final miniaturised instrument will have been pre-loaded with 

analysis methods and documentation specific to the methods required.  Thus, 

studies into ensuring the ease of operation for unskilled operators would be a 

priority.  

 

Determining the instruments detection limits and dynamic range, and testing 

with real samples would be a significant step in the instrument’s development, 

as would actual field testing.  

 

Limitations were identified with regard to detection, thus, finding a suitable 

replacement detector would be important. The portability of an instrument 

depends on the volume and weight of each component. While micro-FIDs have 

been reported, this detector would not be suitable for portable GC as it 

requires at least two gas sources. TCD and ECD need one gas source and so 

could hold potential if a PID with a better and more reliable response could 

not be sourced. 
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Only very preliminary evaluation of LOC 3 took place – such a small amount 

that it was not deemed worthwhile to even mention in this thesis. This smaller 

chip, however, offers potential, as does the possibility of other chip designs. If 

further funding and time were available, extensive evaluation of LOC 3 would 

take place, followed by comparison of the achieved results with those of LOC 

4. 

 

Finally, working with a selected subcontractor on the design of the casing for 

the final product would be required, before formulating a plan of marketing.  

 

11.4 Final Words 
Gas chromatography as a technique is well established. It is one of the most 

demanded and informative analytical methods available. However, the 

evolution of this technique has not yet reached completion, as evidenced by 

the work reported in this thesis, as well as that seen in the current literature.  

 

While a substantial and significant amount of work was accomplished over the 

duration of this project, there is much scope for future studies. As Albert 

Einstein once said, “Science is not, and will never be a completed book. Any new 

success brings up new questions. Any evolution uncovers new difficulties”.  
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