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Abstract

Cardiovascular disease (CVDs) is still the main disease causing many deaths
around the world. According to the World Heart Federation’s 2023 World
Heart Report, approximately 20.5 million deaths in 2021 were attributed
to CVDs, accounting for nearly one-third of global fatalities. Over the past
few decades, deep learning algorithms have increasingly been applied in
magnetic resonance imaging (MRI) in the medical field, and in particular,
have become central to the diagnosis and prediction of CVDs. However,
the dynamic motion of the heart and its complex and changeable anatomy
pose many challenges to the interpretation of cardiac magnetic resonance
(CMR) data. Traditional manual analysis methods are time-consuming and
provide variable results. At the same time, generative models have advanced
medical image analysis, especially for downstream cardiac image analysis
tasks. The aim is to use these synthetic images as viable alternatives to
real data in deep learning model training, providing cutting-edge solutions
in data segmentation, registration, and strain analysis.

This thesis systematically investigated several probabilistic generative
models applied specifically to cardiac image analysis, including multi-channel
variational autoencoders (VAEs), generative adversarial networks (GANs),
and latent di!usion models (LDMs), using cine CMR and tagging CMR
images as primary subjects. Cine CMR provides high-resolution dynamic
sequences to assess cardiac morphology and myocardial function throughout
the cardiac cycle. Tagging CMR enables the quantification of myocardial
deformation by encoding spatial modulation patterns into the myocardium.
The e”cacy of these models is validated through multiple metrics and down-
stream tasks such as cardiac segmentation and myocardial strain analysis.
Initially, we comprehensively reviewed existing deep learning-based image
generation techniques in medical image synthesis. Subsequently, we intro-
duced a sparse multi-channel VAE to learn the joint latent representation of
cine and tagging CMR images. The proposed model can generate tagging
CMR from cine CMR alone, thereby enabling myocardial strain estimation
straight from cine CMR images. This represents a novel approach within
cardiac imaging research and could potentially replace the conventional clin-
ical use of tagging image sequences as a basis for myocardial motion and
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strain analysis. Furthermore, we introduced an innovative framework em-
ploying latent denoising di!usion implicit models (DDIM) to synthesise full-
spatial cine CMR images. We investigated whether these synthetic images
can serve as viable substitutes for real data in downstream cardiac image
analysis tasks. Building upon this, we present a novel spatial-temporal gen-
erative model that leverages latent DDIM conditioned on demographic and
clinical factors, capable of synthesising realistic 4D cardiac cine CMR image
sequences.

Overall, the methodologies presented in this research demonstrate po-
tential for innovation and practical applications. The method introduced
here may potentially revolutionize traditional clinical diagnosis and inter-
vention methods, and introduce new perspectives on applying deep learning
models in medical imaging. These models show promising performance in
the generative field, not only promising insights into cardiac conditions,
but also advancing the development of personalized medical diagnosis and
prediction solutions in the field of cardiology.
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CVDs remains the leading cause of death worldwide. In recent years, the application
of deep learning in medical MRI has promoted the diagnosis and prediction of CVDs.
However, the complex anatomical structure and dynamic motion characteristics of the
heart have brought many challenges to the data analysis of CMR imaging. Traditional
manual analysis methods are time-consuming and have large variability in results, while
deep learning technology, especially generative models, provide a new breakthrough
for medical image analysis. In this chapter, we first introduce the background and
motivation of this research, the contributions of this thesis, and the structure of this
thesis.

1.1 Background and motivation

CVDs remains a leading factor in global mortality [5][6]. According to the 2023 World
Heart Report released by the World Heart Federation (WHF) [7], 20.5 million people
passed away due to CVDs in 2021. This fact reminds us of the critical importance
of exploring and researching heart information. Over the past few decades, the ap-
plication of deep learning algorithms to MRI has become crucial for diagnosing and
predicting of CVDs [8][9]. However, the dynamic motion of the heart and the complex
and varied anatomy of the heart pose many challenges in the interpretation of CMR
data. Traditional manual analysis methods are time-consuming and provide varying
results.

Meanwhile, deep learning technology, particularly generative models, has signific-
antly advanced medical image analysis, especially for downstream cardiac tasks, and has
become a powerful tool in the field. [10]. These synthetic images can be used as viable
surrogates for real data in deep learning model training to assist clinical diagnosis and
treatment planning, potentially revolutionizing the field of medical images and enabling
more accurate and personalized medical care, including synthetic data used to train or
create specific understandable generative models [11][12]. It also provides cutting-edge
solutions in areas such as data segmentation, registration, and strain analysis [13][14].

However, despite the potential, the complexity of cardiac anatomy and motion
makes the interpretability of the generated models challenging. The complexity of car-
diac dynamics and anatomical changes requires models that can robustly capture these
complexities while maintaining interpretability for clinicians. Traditional methods typ-
ically require large volumes of high-quality well-labeled data for training. In cardiac



imaging, there are di”culties in obtaining datasets due to variability in image acquis-
ition protocols and patient populations. Furthermore, models trained on limited or
biased datasets may not generalize well across di!erent clinical settings. Furthermore,
image generation models like generative adversarial networks (GANs) [15] often face
issues such as mode collapse (where the generator produces limited output diversity)
and training instability.

The overall goal of this thesis is to propose and develop novel generative model
framework based on deep learning to achieve more accurate and robust synthetic car-
diac images for cardiac motion modeling and analysis of spatio-temporal MRI data.
The authors aimed to use generative models to generate synthetic data and improve
diagnostic accuracy and enhance cardiac image analysis.

1.2 Contributions

This thesis aims to explore cardiac image based analysis, using generative models that
are reliable, accurate and can be used to assist clinical diagnosis and model train-
ing, with advanced deep learning-based methods. To accomplish this task, we study
cardiac image synthesis between di!erent sequences for myocardial strain calculation;
simultaneous generation of cardiac images and their corresponding masks using latent
di!usion models; and spatio-temporal cardiac image generation incorporating clinical
demographic information conditions. Has the following main contributions:

• A generative model for predicting myocardial strain using cine CMR: This thesis
explores joint latent representations between di!erent cardiac sequences (cine
CMR and tagging CMR), using only cine CMR to synthesise tagging CMR and
estimate myocardial strain. This framework provides a new perspective for tradi-
tional clinical collection of cine images to estimate myocardial motion and strain.
It is not limited to image synthesis and can be extended to generate other channel
sequence information.

• E”cient, high-quality simultaneous synthesis of cine CMR images and their cor-
responding biventricular segmentation masks: This thesis proposes a novel pipeline
for generating synthetic full-spatial cine CMR images via latent denoising di!u-
sion implicit models (DDIM), synthetic images can be used as the viable sur-
rogate for real dataset in deep learning model training for downstream cardiac



image analysis tasks, and can complement real patient datasets and help reduce
the burden of manually annotating images.

• Full spatio-temporal 4D cine CMR images clinical demographic information con-
ditioned generation model: This thesis proposes a conditional latent di!usion
generation model to generate full spatio-temporal 4D cardiac images, which can
capture full spatio-temporal cardiac motion and anatomical changes. Not only
can it be used for the generation of health datasets, but it can also be used to
incorporate disease types and condition-specific cardiac atlases. The generated
images also can be used for downstream task analysis and deep learning model
training data enhancement.

Overall, this thesis improves the accuracy and reliability of generative models for
cardiac image motion and anatomy analysis, and helps improve the robustness of clin-
ical diagnosis, enabling more accurate and personalized medical care. In addition,
synthetic images can be used to expand and replace the training dataset of medical
image analysis models, which can better capture and learn the diversity of data and
improve its generalization ability and accuracy.

1.3 Thesis structure

Chapter 2 explains the clinical background of this study and briefly introduces the
relevant medical imaging concepts. First, the clinical background describes the anatom-
ical structure and motion mechanism of the cardiac, as well as the functional indicators
used to assess cardiac health, with a emphasis on myocardial strain. Next, the med-
ical imaging background section is introduced, focusing on CMR imaging technology,
including its theoretical basis, physical principles, and various sequencing technologies
used in the image acquisition process with focus on cine MRI and tagging MRI.

Chapter 3 presents a literature review from the perspective of technical and meth-
odological principles. Section 3.1 introduces generative models and explains their the-
oretical foundations, with emphasis on variational autoencoders (VAEs) and di!usion
models. Section 3.2 reviews the literature on generative model-based medical image
analysis and diagnosis techniques, mainly exploring machine learning and deep learn-
ing methods, their applications in real-world technologies and cutting-edge research.
Section 3.3 introduces the datasets used in this paper.



Chapter 4 explores the application of generative models in synthesising cardiac
tagging MRI images and estimating myocardial strain. This thesis introduces a sparse
multi-channel variational autoencoder (smcVAE) model for jointly learning the latent
representations of cine CMR and tagging CMR. By taking cardiac cine MRI images
as input, the smcVAE model is able to e!ectively synthesise cardiac tagging MRI
images, which can then be used to quantify myocardial strain. This method e!ectively
overcomes the challenges of limited clinical tagging MRI and achieves reliable and
e!ective myocardial strain analysis using only conventional sequence.

Chapter 5 explores the synthesis of full-spatial cine CMR images and correspond-
ing segmentation masks. This paper proposes a latent DDIM. First, an encoder is
used to map the input into the low-dimensional latent space, and a di!usion process
is performed in the latent space. After back-di!usion to obtain the reconstructed vec-
tor, the decoder is decoded to generate synthetic data that can be used as a viable
alternative to real data in deep learning model training. Multiple evaluation methods
verify that the model can e!ectively and e”ciently generate 3D cine cardiac images
with corresponding segmentation masks.

Chapter 6 extends the basic latent di!usion model and proposes a full spatio-
temporal 4D conditional latent di!usion generative model to explore the relationship
between clinical factors and demographic information with cardiac imaging anatomy.
Non-imaging factors are used as conditions for the generative model to explore their
relationship and influence on the cardiac anatomical structure. The model can generate
full spatial and temporal 4D cardiac image sequences, showing great potential in real
data supplementation and downstream task model training data enhancement.

Chapter 7 concludes this thesis, discusses current limitations, and explores poten-
tial future research directions.
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Clinical Background and Medical Imaging
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This chapter provides a overview of the clinical foundations and imaging techniques
essential for understanding cardiac function and disease diagnosis. Beginning with an
exploration of cardiac anatomy and physiological principles, we discuss key functional
indices used in clinical assessments, such as ejection fraction (EF), stroke volume (SV),
and myocardial strain, highlighting their importance in evaluating cardiac health. The
chapter then delves into the role of CMR, emphasizing its advantages over other ima-
ging modalities and detailing the various MRI sequences used in clinical and research
settings. Special attention is given to cine MRI and tagging MRI, which are crucial for
capturing dynamic cardiac motion and assessing myocardial mechanics. This founda-
tional knowledge sets the stage for the subsequent discussions on generative models for
cardiac image synthesis and analysis.

2.1 Cardiac anatomy and clinical principles

The heart is an vital organ in the human circulatory system [16], responsible for pump-
ing blood throughout the body. It ensures that tissues and organs receive the oxygen
and nutrients they need while removing metabolic waste. As shown in Figure 2.1, the
heart consists of four chambers: left atria, right atria and left ventricles, right vent-
ricles. The right atrium and ventricle collect deoxygenated blood from the systemic
veins and direct it to the lungs. Meanwhile, the left atrium and ventricle take in oxy-
genated blood from the lungs and circulate it through systemic blood vessels, delivering
it throughout the body.

The cardiac cycle encompasses the complete process of heart contraction and relax-
ation. It includes atrial contraction, which directs blood into the ventricles, followed by
ventricular contraction, consisting of the isovolumetric contraction and ejection phases.
During ejection, the aortic and pulmonary valves open, allowing blood to flow into
the aorta and pulmonary artery, respectively. Ventricular diastole includes the isovolu-
metric relaxation period, the rapid filling period, and the slow filling period. During
diastole, the ventricular pressure drops, the tricuspid and mitral valves (atrioventricu-
lar valves) open, and blood pumped into the ventricles, initially rapidly, then gradually
slowing. The Wigger diagram in Figure 2.2 shows the fluctuations in atrial pressure
and volume, as well as in the ventricles and arteries throughout the cardiac cycle.

End-diastolic (ED) and end-systolic (ES) are two key stages in the entire cardiac
cycle. ED refers to the state of the ventricles at the end of ventricular relaxation in a



Figure 2.1: Schematic diagram of the internal anatomy of the heart. The four
chambers of the heart: the left and right ventricles, and the left and right atria, along
with the major blood vessels and heart valves. The image is from DeSaix et al. [1].

cardiac cycle. At this time, the ventricles are filled with blood and reach their maximum
capacity. The ventricular volume is called the end-diastolic volume (EDV). ES refers
to the state of the ventricles at the end of contraction during the cardiac cycle. At
this time, the amount of blood in the ventricles is the least and the ventricles are in
the maximum contraction state. The ventricular volume at this time is called the end-
systolic volume (ESV). These parameters and measurements are clinically important
for the evaluation of cardiac function and various heart diseases, especially heart failure
(HF) and myocardial disease.

2.2 Cardiac functional index

Cardiac function assessment indices [17] are multiple comprehensive indices used in
cardiology to assess the overall performance of the cardiac. Clinically, evaluating the
overall function of the heart helps diagnose and monitor various cardiovascular dis-
eases. In clinical practice, assessing the overall function of the heart can not only help
identify potential pathological changes, but also provide a basis for the formulation of
personalized treatment plans. This section mainly introduces the main indices used to



Figure 2.2: The Wiggers diagram [2] shows the cardiac cycle. The dotted lines
represent di!erent periods and stages of contraction and diastole. The solid traces
show the variations in aortic, atrial, and ventricular pressures, and ventricular volume
throughout the cardiac cycle, along with the electrocardiogram and phonocardiogram.



assess cardiac function and their physiological significance.
Common cardiac function assessment indicators include EDV, which represents the

ventricle’s maximum volume at the end of diastole and reflects its filling state. A
higher EDV may indicate ventricular dilatation, while a lower EDV may indicate in-
su”cient ventricular filling. ESV represents the minimum ventricular volume at the
end of systole, with a normal range of 50-100 mL. A higher ESV may indicate de-
creased myocardial contractility, while a lower ESV may indicate increased myocardial
contractility. SV represents the volume of blood ejected by the LV during each heart-
beat, which can be obtained by SV = EDV ↑ ESV . Changes in SV can reflect the
contractility of the myocardium and the filling state of the ventricle, an increased SV
may indicate increased myocardial contractility, while a decreased SV may indicate
decreased myocardial contractility or insu”cient ventricular filling. EF is a key indic-
ator for evaluating LV function, reflecting the e”ciency of the heart pumping blood
each time it contracts. The normal EF typically ranges from 50% to 70%, a lower
EF usually indicates the presence of HF or cardiomyopathy. The calculation formula
is: EF = ( SV

EDV
) → 100%. Cardiac output (CO) indicates the total amount of blood

pumped by the heart and is an important indicator of its overall pumping function.
The normal range is generally 4-8 L/min. Changes in CO can indicate changes in
heart function, such as a decrease in cardiac output may indicate HF. The calculation
formula is as follows: CO = Heart Rate(HR) → SV. Ventricular mass (VM) reflects the
weight of ventricular muscle, higher ventricular mass indicates ventricular hypertrophy,
which may be related to hypertension, cardiomyopathy, etc. In clinical, evaluating VM
helps to determine the structural changes and pathological development of the heart.

In addition to these global cardiac function assessment indicators, some regional
functional indices are used to assess the function of specific regions or segments of the
heart in cardiology. These indicators help detect local myocardial dysfunction, such
as myocardial infarction, local ischemia, etc. Figure 2.3 shows the cardiac segment
diagram proposed by Cerqueira et al. [18], which divides the heart into 17 segments
based on the basal segment, mid-segment, apical segment and apex, which is the current
general model.

Commonly used regional function indices include regional strain, which is measured
by Speckle Tracking Echocardiography (STE) [19] or cardiac magnetic resonance ima-
ging (CMR) [20]. Regional strain can quantify the contraction and relaxation function



Figure 2.3: Schematic diagram of the nomenclature of myocardial segments

and cardiac tomography. The heart is divided into 17 segments based on the basal
segment, middle segment, apical segment and apex, and each group includes 4 to 8
subsegments, including the anterior, inferior, septal and lateral directions.

of the myocardium and identify myocardial dysfunction at an early stage. Regional
Ejection Fraction (REF) is the EF of a specific myocardial segment, which can be
used to assess the contractile function of the local myocardium and help identify local
myocardial dysfunction. The Wall Motion Score Index (WMSI) calculates the score
of the myocardial segment according to its motion status (1-4 points), and the total
score is divided by the number of segments assessed. 1 to 4 points represent normal
movement, hypokinesia (mild reduction in movement), akinesia (loss of movement), and
paradoxical movement (abnormal direction of movement). WMSI provides a quantit-
ative assessment of regional myocardial function, with higher values indicating more
severe myocardial damage.

Wall thickness (WT) refers to the thickness of the myocardial wall, which is usually
measured in di!erent segments of the heart, including the thickness of the posterior
wall (PW) and interventricular septum (IVS). Imaging examinations often measure the
thickness during diastole and systole. Increased wall thickness, such as left ventricular
hypertrophy (LVH), is common in hypertension, hypertrophic cardiomyopathy, etc.
Reduced wall thickness may indicate myocardial disease or myocardial atrophy.



Myocardial strain [21] is also an indicator for evaluating myocardial function, which
we will focus on here. Myocardial strain provides more detailed information on the dy-
namic changes of myocardial deformation than traditional cardiac function evaluation
indicators (such as EF). Strain analysis can detect myocardial dysfunction at an early
stage before other evaluation indicators, which is helpful for early diagnosis and in-
terventional management of various heart diseases, especially in the early stages of
cardiomyopathy and myocardial ischemia. Strain represents the change in the length
of the myocardium during contraction and relaxation, usually expressed as a percent-
age. According to the di!erent directions of myocardial fibers, strain can be divided
into longitudinal strain (LS), circumferential strain (CS) and radial strain (RS). Strain
is expressed as the percentage change in myocardial length per unit length. The calcu-
lation formula is given by the Green-Lagrange strain [22] tensor:

E(t) = 1
2

(
↓l(t) + ↓l(t)T + ↓l(t)T ↓l(t)

)
(2.1)

where l(t) represents the displacement of the myocardium from the ED phase to
the systolic phase. RS and CS are the diagonal components of the tensor E calculated
in cylindrical coordinates.

Figure 2.4 shows strain in three di!erent directions and its changes during cardiac
diastole and contraction. LS represents the deformation from base to apex, which is
mainly controlled by myocardial fibers in the endocardial layer and is usually used to
evaluate the overall function of the LV. Normal LS values are -18% to -22%. Reduced LS
indicates decreased myocardial contractility and could be an early indicator of myocar-
dial ischemia, cardiomyopathy, or other heart disease. RS refers to radial myocardial
deformation toward the center of the LV cavity, reflecting changes in myocardial thick-
ness and is mainly controlled by the middle myocardial fibers. Normal RS values are
30% to 50%. Reduced RS indicates myocardial hypertrophy or HF. CS is the cir-
cumferential deformation of the myocardium around the left ventricle, which is mainly
controlled by the myocardial fibers in the epicardial layer. Normal CS values are -20%
to -30%. Reduced CS also indicates decreased myocardial contractility.

Strain imaging techniques include STE and CMR. STE uses the natural speckle
pattern in ultrasound images to track myocardial motion. It does not rely on Doppler
signals [23] and is therefore less a!ected by angle dependence. CMR is a high-resolution
cardiac MRI that can measure myocardial strain very accurately. Notably, myocardial



Figure 2.4: Schematic diagram of myocardial strain. (a) Long axis view shows
myocardial strain in three di!erent directions: radial strain, circumferential strain, and
longitudinal strain. (b) Schematic diagram of the changes of the three strains in diastole
on short axis and long axis views. (c) Schematic diagram of the changes of the three
strains in systole on short axis and long axis views. Cs: systolic circumferential strain,
Ld: diastolic longitudinal strain, Ls: systolic longitudinal strain, Rd: diastolic radial
strain, Rs: systolic radial strain. This figure is adapted from Zhang et al. [3].



tagging MRI [24] is considered the reference standard for measuring myocardial strain
and validating other strain measurement techniques. Tagging MRI uses the charac-
teristics of MRI to generate periodic magnetic markers in the myocardium. These
markers usually appear in the form of lines or grids and deform with the movement of
the myocardium. By analysing the deformation of the markers, the myocardial strain
can be accurately calculated. Strain imaging [25] is very e!ective in assessing the area
and extent of myocardial ischemia and myocardial infarction, and can help monitor the
progression of the disease and the e!ectiveness of treatment in patients with HF.

2.3 Cardiac MRI

MRI [26] is a non-invasive imaging technique that utilizes magnetic fields and radi-
ofrequency waves to produce detailed images of the body’s internal structures. CMR
combines anatomical and functional imaging to provide fine-detailed images of the
myocardium and other cardiac anatomy, and can perform qualitative and quantitative
assessments of cardiac structure and function. Compared with other imaging tech-
niques, MRI has better contrast for soft tissue than CT [27] and echocardiography [28],
and can more clearly distinguish myocardium, fat, blood, and fibrotic tissue without
ionizing radiation exposure. MRI includes a variety of imaging sequences that can
be used to evaluate a variety of pathological and physiological characteristics of the
heart. This section focuses on the various imaging sequences of cardiac MRI, with a
particular focus on cine MRI [29] and tagging MRI. These imaging techniques provide
rich anatomical and functional information for the heart, are used clinically to evaluate
various pathological conditions of the heart, and can be used for early diagnosis and
management of cardiovascular diseases.

2.3.1 Steady-State Free Precession (SSFP) sequence

The SSFP sequence [30] uses balanced gradient echo imaging technology to quickly
acquire magnetic resonance signals under steady-state conditions and generate high-
contrast images. Radio frequency (RF) pulses rapidly and repeatedly excite the SSFP
sequence in short intervals. After each pulse excitation, a gradient magnetic field is
applied to generate echo signals. In one imaging cycle, the net e!ect of all gradient
pulses is zero, so the transverse magnetization vector maintains a consistent steady state



between multiple excitations. When the steady state is reached after repeated multiple
excitations, the length and direction of the magnetization vector remain unchanged,
producing a consistent and high-contrast signal.

The SSFP sequence has high contrast and can clearly distinguish the myocardium,
blood, and other tissues. Because Repetition Time (TR) and Echo Time (TE) are
very short, the SSFP sequence can obtain high-resolution images in a short time and
is suitable for dynamic cardiac imaging. And the signal acquired in the steady state
has a high signal-to-noise ratio (SNR) and superior image quality. However, the SSFP
sequence is sensitive to magnetic field inhomogeneity and requires a long acquisition
time for high-resolution imaging of the complete cardiac cycle. Generally, the SSFP
sequence is crucial for comprehensive evaluation of cardiac anatomy and function due
to its superior temporal and spatial resolution and excellent soft tissue contrast.

The SSFP sequence is extremely widely used in cardiac MRI, and its high temporal
and spatial resolution as well as superior soft tissue contrast rendering it essential for
assessing cardiac anatomy and function.

2.3.2 T1 Weighted Image (T1WI)

T1-weighted imaging uses di!erences in longitudinal relaxation times (T1 relaxation
times) of di!erent tissues to highlight these di!erences through specific pulse sequences,
thereby obtaining images with high contrast. Commonly used pulse sequences include
Inversion Recovery and Fast Spin-Echo (FSE) sequences. T1 relaxation time is shorter
in tissues with high fat and protein content, and the image appears as high signal
(light), while the T1 relaxation time is longer in liquid tissues such as water and blood,
and the image appears as low signal (dark). T1WI is often used in clinical practice to
assess myocardial thickness and identify scar and fibrosis areas.

2.3.3 T2 Weighted Image (T2WI)

T2-weighted imaging uses the di!erences in transverse relaxation times (T2 relaxation
times) of di!erent tissues to highlight these di!erences through specific pulse sequences,
thereby obtaining images with high contrast. Commonly used pulse sequences include
FSE and Single-Shot Spin-Echo (SS-SE) sequences. In the image performance, water,
blood, cerebrospinal fluid, inflammation and edema areas appear as high signals, while
fat, high-protein tissue and hemosiderin deposition areas appear as low signals. T2WI is



often used in clinical practice to evaluate lesions such as myocardial edema, myocardial
inflammation, and cardiac tumors.

2.3.4 cine MRI

Cardiac cine MRI has the characteristics of no ionizing radiation, arbitrary orientation
imaging, good soft tissue contrast, and it can also show the rhythmic contraction and
relaxation process of the cardiac in the form of continuous frames, also often used for
the observation of clinical ventricles and myocardial structures and functional evalu-
ation. The acquisition imaging sequences currently used in clinical practice are mainly
fast gradient echo (FGE) sequences or SSFP sequences. During the scanning process,
electrocardiography (ECG) gating [31] is required, and the patient need holding their
breath multiple times to reduce the impact of heart beats and respiratory movements.
The process triggers image acquisition at the R wave of the ECG signal [32] to ensure
that each frame of the image is acquired at the same phase of the cardiac cycle. The
image at each time point is called a frame, and cardiac cine MRI usually contains 15-50
frames of images, encompassing the full cardiac cycle. After repeated acquisition of
multiple time points at multiple slice positions, a 4D(3D + t) data structure is formed,
and the slice thickness is usually between 6-8 mm.

Cardiac cine MRI o!ers superior temporal and spatial resolution, enabling it to
clearly capture the heart’s rapid movements throughout the entire cardiac cycle. It
provides detailed cardiac anatomy and records heart movements during contraction
and relaxation. Cardiac cine MRI is a powerful tool for evaluating cardiology, it is the
most widely used imaging sequence in clinical and scientific research, and has important
value [33]. It can accurately assess cardiac and valvular function and quantitatively
measure cardiac chamber size and myocardial morphology, which are essential for the
early detection and treatment of cardiovascular disease.

2.3.5 tagging MRI

Cardiac cine MRI is currently the most commonly used imaging technique for clinical
acquisition, allowing for the observation of global myocardial motion and quantitative
measurement of myocardial motion and cardiac structure. However, many cardiovas-
cular diseases may occur before any significant changes in traditional cardiac function
indicators occur, and the physiological state of the myocardium may have already



changed. Compared to a variety of other cardiac imaging methods, such as echocar-
diography, CT, radionuclide single photon emission CT (SPECT) [34] and positron
emission tomography (PET) [35], as well as older projection methods of cardiac an-
giography [36].

Although these methods can assess the tomographic and even 3D motion of the
endocardial and epicardial borders of the heart, and the heart valves. However, none
of these methods can track the motion of discrete material points within the myocar-
dium. Because the heart passes through any imaging plane and rotates in it during
the cardiac cycle, there is a complex relationship between the apparent motion of the
endocardial and epicardial borders in tomographic imaging and the contraction of the
myocardial wall and the resulting intramyocardial motion and deformation. Therefore,
prior to the advent of MRI myocardial tagging, there were no reliable non-invasive
methods to assess true myocardial contraction and relaxation. The practical impact
of these limitations has been to restrict the understanding of normal human myocar-
dial contraction, as well as the understanding of normal cardiac physiology, and the
assessment of myocardial mechanical function, as the relationship between ventricular
dynamics and true intramural contraction is altered in conditions such as hypertrophic
states and ischemic heart disease.

Cardiac tagging MRI [37] is a specialized imaging technique that allows assessment
of regional myocardial function, measuring intramyocardial motion parameters such as
strain [38], strain rate [39], torsion [40], and rotation [41]. These parameters allow
observation of mechanical behavior of the myocardium that may not be captured in
traditional global cardiac function measurements. The principle of cardiac tagging MRI
is the application of a magnetization preparation pulse prior to cine imaging. This pulse
alters the direction and magnitude of the myocardial magnetization vector under the
influence of a spatially varying magnetic field gradient. As a result, the myocardium
is ”tagged” with a spatially defined pattern of markers that are visible in the resulting
MR images. These visual markers, which usually appear as periodic lines or grids,
act as tracers that move as the myocardium deforms during the cardiac cycle. By
tracking the motion of these markers, regional myocardial motion and deformation can
be quantified, providing a direct measure of myocardial function.

In common techniques for generating these markers, such as spatial magnetization
modulation (SPAMM) [42] and complementary SPAMM (CSPAMM) [43], a series of



RF pulses are applied to the myocardium. These RF pulses create a spatially localized,
periodic pattern of magnetization within the myocardium. In the case of SPAMM, the
pattern consists of regularly spaced lines, while CSPAMM improves on SPAMM by en-
hancing the contrast and persistence of the markers, allowing for more reliable tracking.
Marked areas appear darker in MRI images due to saturation of the magnetization in
these areas, while surrounding tissue is una!ected.

Other techniques, such as harmonic phase (HARP) [44], strain encoding (SENC) [45],
and stimulated echo displacement encoding (DENSE) [46], are used to further improve
the quality of the markers and the accuracy of regional motion measurements. For
example, HARP can detect small changes in myocardial deformation, making it partic-
ularly useful for studying strain and torsion. SENC and DENSE o!er improved spatial
resolution and SNR, as well as the ability to capture 3D volumetric motion. These
techniques also reduce the need for long acquisitions and expand the range of anatomy
that can be imaged.

Figure 2.5 illustrates the process of tagging MRI data acquisition, which involves
perturbations of the myocardial magnetization to create visible markers. These markers
move with the tissue, providing a dynamic representation of myocardial motion during
the cardiac cycle. The original concept of myocardial tissue tagging was first proposed
by [47] and has evolved over time to provide increasingly accurate and high-resolution
measurements of myocardial function.

The tagging MRI sequence typically involves two phases: a tagging preparation
phase and an imaging phase. During the tagging preparation phase, RF pulses are ap-
plied perpendicular to the imaging plane, which alters the longitudinal magnetization
of the myocardium in the specific slice that intersects the RF pulse. The surrounding
tissue is una!ected, resulting in a unique spatial pattern of the tagged region. Dur-
ing the imaging phase, the tagged region appears darker than untagged tissue due to
saturation of its magnetization. These markers are intrinsically linked to the tissue
and move with it, allowing detailed tracking of myocardial deformation throughout the
cardiac cycle. By combining tagging with cine MRI, myocardial tagging patterns can
be continuously monitored from ED to ES of the cardiac cycle, providing real-time
observation of regional cardiac mechanics.

Figure 2.5 illustrates the process of labeled MRI data acquisition, which involves
perturbations to the magnetization of the myocardium to create visible markers. These



markers move with the tissue, providing a dynamic representation of myocardial motion
during the cardiac cycle. The original concept of myocardial tissue labeling was first
proposed by Zerhouni et al. [47] and has evolved over time to provide increasingly
accurate and high-resolution measurements of myocardial function.

A tagging MRI sequence typically involves two phases: a tagging preparation phase
and an imaging phase. During the tagging preparation phase, RF pulses are applied
perpendicular to the imaging plane, which alters the longitudinal magnetization of the
myocardium in the specific slice that intersects the RF pulse. The surrounding tissue
is una!ected, resulting in a unique spatial pattern of the tagged region. During the
imaging phase, the tagged region appears darker than untagged tissue due to saturation
of its magnetization. These markers are intrinsically linked to the tissue and move with
it, allowing detailed tracking of myocardial deformation throughout the cardiac cycle.
By combining tagging with cine MRI, myocardial tagging patterns can be continuously
monitored from ED to ES of the cardiac cycle, providing real-time insights into regional
cardiac mechanics.

Although tagging MRI can provide important information about myocardial func-
tion, the additional RF pulses required to create the tagging limit its clinical use. The
need for multiple RF pulses increases acquisition time and reduces the e”ciency of
the imaging process, which is particularly problematic in clinical settings where rapid
imaging is often required. Despite these challenges, tagging MRI remains an important
sequence for studying myocardial motion, and current research is focused on improving
its e”ciency and applicability in clinical practice.



Figure 2.5: Schematic diagram of tagging data acquisition. (a) shows the two
stages of the acquisition process: tagging preparation and imaging. Each tagged plane
requires a slice-selective RF pulse during the tagging stage, immediately followed by
the imaging sequence. (b) the relationship between tagging planes and imaging slices.
This figure is adapted from Ibrahim et al. [4].
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This chapter reviews the existing literature and theoretical foundations related to deep
learning and generative models in medical imaging. It first provides an overview of
generative models, including autoencoder (AE), variational autoencoder (VAE), gener-
ative adversarial network (GAN), and di!usion model, and introduces their algorithmic
foundations, applications in medical image analysis, advantages, and limitations. This
chapter further explores some recent studies in cardiac image synthesis, segmentation,
registration and dynamic analysis, and introduces their applications in cardiac imaging.
In addition, the dataset used in this thesis are introduced.

3.1 Deep learning and generative models

Deep generative models [48], a key category of deep learning, have garnered growing at-
tention and significant research interest. In recent years, many di!erent deep generative
models have been proposed, establishing them as a leading research area in artificial
intelligence [49][50]. Generative models model data distribution through probability
density functions, which helps to understand the generation mechanism of complex
data and learn high-level feature expressions. Therefore, they are widely used in tasks
such as image generation and restoration, data augmentation, medical diagnosis, and
virtual reality.

Boltzmann machines [51] and restricted Boltzmann machines (RBMs) [52] were the
earliest generative models. RBMs have been employed in dimensionality reduction,
classification, and feature learning, and have also proven e!ective as the initial stage
of deep neural networks [53]. However, RBMs face significant challenges, such as dif-
ficulties in training due to the vanishing gradient problem and the need for extensive
computational resources. Then in the 1990s, Helmholtz machines [54] and sigmoid be-
lief networks (SBNs) appeared [55]. Helmholtz machines introduced a framework for
unsupervised learning of latent variable models, but their complex training algorithms
and computational ine”ciency limited their practical applications. SBNs, while in-
novative, struggled with issues related to slow convergence and di”culty in scaling to
larger datasets. In 2006, Hinton introduced deep belief networks (DBNs) [56], among
the earliest non-convolutional models to be e!ectively trained within deep architec-
tures. DBNs demonstrated impressive performance, outperforming kernelized support
vector machines (SVMs) on the MNIST dataset. Despite their early success, DBNs
have mostly lost favor in recent years, largely due to the rise of more e”cient and scal-



able models like convolutional neural networks (CNNs) and VAEs. DBNs also su!er
from challenges such as slow training times and di”culties in fine-tuning deep layers.
While DBNs and other early generative models have been overshadowed by more ad-
vanced techniques, their contributions to the development of deep learning should not
be underestimated. They laid the groundwork for the evolution of more sophisticated
models and highlighted the potential of deep architectures, despite their limitations
and the emergence of more e!ective algorithms. In summary, although these model
have their own limitations, such as training di”culties, computational ine”ciency, and
scaling issues, their historical significance in the field of deep learning remains pivotal.
These early models provided essential insights and techniques that have influenced the
design and optimization of modern generative models.

Goodfellow et al. [57] proposed GAN, marking an important progress in generative
models. Since then, numerous advancements in GANs have emerged, such as Wasser-
stein GAN (WGAN) [58], which enhances training stability by using the Earth-Mover
distance rather than the Jensen-Shannon (JS) divergence to quantify the di!erence
between generated and real data distributions. However, WGAN is sensitive to the
choice of its hyperparameters, and its training can be unstable if not properly tuned.
Least Squares GAN (LSGAN) [59], which improves image quality and accelerates con-
vergence by minimizing the least squares error between generated images and real im-
ages instead of the traditional cross entropy loss. Despite these improvements, LSGAN
may still su!er from mode collapse, causing the generator to produce a narrow range
of outputs. Progressive GAN (PGGAN) [60], which improves the quality of generated
images by gradually increasing the network depth of the generator and discriminator
to gradually generate higher resolution images. This method, however, requires consid-
erable computational resources and training time, making it less practical for real-time
or resource-constrained applications. StyleGAN [61] introduces style transfer techno-
logy, which generates more diverse and higher quality images by controlling di!erent
layers of generated images. Although StyleGAN delivers state-of-the-art image quality,
it is computationally intensive and requires extensive hyperparameter tuning to achieve
optimal performance. CycleGAN [62] achieves image-to-image translation tasks by in-
troducing cycle consistency loss, eliminating the need for paired datasets. Although
CycleGAN is highly e!ective for tasks where paired data is scarce, it may struggle with
generating high-fidelity images in cases where the domain shift between source and



target images is significant.
These improvements improve the performance and stability of GANs, and make

important contributions to the quality and diversity of generated images. However,
each method also introduces its own set of challenges, such as increased computational
requirements, sensitivity to hyperparameters, and potential for mode collapse.

At the same time, the expansion of AE into generative models has also begun to
attract widespread attention and in-depth research. ε-VAE [63] introduces a hyper-
parameter ε to balance the trade-o! between image reconstruction and latent variable
distribution, enhancing decoupling and interpretability. However, the introduction of
ε can lead to challenges in balancing reconstruction quality and disentanglement, po-
tentially resulting in poorer reconstructions if not tuned properly. Conditional VAE
(CVAE) [64] introduces conditional variables into VAE, enabling the model to generate
specific types of images or data based on conditional information, thereby improving
the controllability and diversity of generated data. Despite these benefits, CVAE’s per-
formance heavily relies on the availability and quality of the conditional information,
which may not always be accessible or easy to define. Denoising VAE (DVAE) [65]
introduces the idea of denoising autoencoder, allowing the model to learn data repres-
entations in the presence of noise, thus enhancing the robustness of generated images.
However, while DVAE enhances robustness, it can sometimes struggle with retaining
fine details in the generated images due to the added noise during training. Hier-
archical VAE (HVAE) [66] introduces a hierarchical latent variable structure, which
enables the model to capture the complex characteristics of data at di!erent levels,
thus enhancing the quality of generated images and the model’s expressiveness. The
complexity of HVAE, however, can lead to increased computational costs and training
di”culties, making it challenging to scale and optimize. Vector Quantized VAE (VQ-
VAE) [67] introduces vector quantization technology, which discretizes the continuous
latent space and combines it with convolutional neural networks to achieve the gener-
ation of high-quality images and sequence data. VQ-VAE avoids the complexity of KL
divergence and can capture the discrete structural characteristics of data. Neverthe-
less, the discretization process can introduce quantization errors, which may a!ect the
overall quality of the generated data.

In summary, while these advancements in VAE variants enhance the capabilities
of generative models, each method has its limitations. Balancing reconstruction qual-



ity and interpretability, managing conditional dependencies, maintaining robustness
without losing detail, handling computational complexity, and mitigating quantization
errors are ongoing challenges that require further research and optimization.

In 2015, Jascha et al. proposed the di!usion model [68] as a generative model,
which greatly improved the generation e!ect. Since then, the di!usion model has
also become one of the hot topics in the field of generative model research. Denois-
ing Di!usion Probabilistic Models (DDPM) [69] applies the di!usion process to the
data generation task, generates data by gradually adding and removing noise to learn
the data distribution, and improves the quality and diversity of generated data. Im-
proved DDPM [70] improves DDPM, improving the quality and sampling e”ciency
of generated images through better noise scheduling and loss function design. Latent
Di!usion Models (LDM) [71] greatly reduces the computational cost while maintaining
high-quality data generation by applying the di!usion process in latent space rather
than data space. Guided Di!usion Models [72] introduces guidance signals (such as
labels or other conditions) to guide the di!usion process, thereby achieving conditional
generation and improving the controllability and diversity of generated data.

Although these improvements have greatly improved the generation e!ect, each
method still has some shortcomings. DDPM could improves the quality and diversity of
generated data, but its sampling process is slow and requires more computing resources.
While the improved DDPM [70] partially addresses this issue, it still encounters bottle-
necks when generating extremely high-resolution images. LDM lowers computational
costs by applying the di!usion process in latent space, but this method relies heavily
on model pre-training and the choice of latent space, which may limit its e!ect in some
application scenarios. Guided Di!usion Models achieve conditional generation by in-
troducing guidance signals, but it is still a challenge to design e!ective guidance signals
and model structures when high-precision control of the generation results is required.
In addition, although these methods perform well in various generation tasks, they still
face di”culties in dealing with ultra-large-scale datasets and real-time applications.

In general, although di!usion models have made significant progress in generation
tasks, further research is still needed to address their limitations and explore more
e”cient and accurate generation methods.

In this section, several widely used generative model principles are introduced in
detail.



3.1.1 Autoencoders (AEs)

In deep learning, AEs are unsupervised neural network models used for representation
learning [73]. The typical AEs are composed of the encoder and the decoder. The
encoder transforms the input x to the hidden representation z, while the decoder re-
constructs z back into the original data space, producing the output x̂. The encoding
and decoding processes can be mathematically represented as:

z = fω(x) (3.1)

x̂ = gε(z) (3.2)

Therefore, AEs are often used for data denoising, dimensionality reduction, and
feature extraction. The training goal of the AEs is to reduce the di!erence between
the input x and its reconstruction. Common loss functions include mean square error
(MSE):

L(x, x̂) = ||x ↑ x̂||2 = ||x ↑ gε(fω(x))||2 (3.3)

Specifically, we hope to minimize the following loss function by adjusting the para-
meters ϑ and ϖ of the encoder and decoder:

Lϑ, ϖ) = 1
n

n∑

i=1
||xi ↑ gε(fω(xi))||2 (3.4)

where n represents the number of training samples, and xi denotes the i-th sample.
To enhance the model’s generalization ability, regularizing the AEs is often re-

quired. Common regularization methods include adding sparsity constraints, such as
L1 regularization terms:

Lϑ, ϖ) = 1
n

n∑

i=1
||xi ↑ gε(fω(xi))||2 + ϱ||z||1 (3.5)

ϱ is the regularization parameter.
Some regularization methods introduce noise to the input data and train the AEs

to denoise it.

x̃ = x + n (3.6)



Here, n represents the noise vector, then loss function becomes:

L(ϑ, ϖ) = 1
n

n∑

i=1
||xi ↑ gε(fω(x̃i))||2 (3.7)

Due to its potential in compression and feature extraction, AEs have been extens-
ively applied across various areas of medical image analysis. From data preprocessing
to high-level disease diagnosis and anomaly detection, AEs provide powerful tools and
methods for the medical imaging field. Jan et al. [74] introduced various applications
of AEs in medical image analysis, including image denoising, reconstruction, modality
conversion, classification, segmentation, and anomaly detection. They also emphasized
the flexibility and adaptability of these models in dealing with complex medical image
data. Amina et al. [75] explored a medical image compression method based on deep
convolutional AEs. By improving the accuracy of image compression and reconstruc-
tion, the method showed advantages in a variety of medical image applications. Bing
et al. [76] introduced a multimodal collaborative learning method based on AEs, which
demonstrated the power of AEs when dealing with multimodal medical image data.

However, AEs are deterministic, with training primarily aimed at minimizing re-
construction errors and encoding data into latent representations in a fixed manner,
which restricts the model’s generative capabilities.

As an extension of the AEs, the VAEs integrate deep learning with Bayesian statist-
ical inference [77], aiming to learn a robust probabilistic model that explains the data
under analysis. This is described in detail in the next subsection.

3.1.2 Variational autoencoders (VAEs)

The objective of the VAEs is to learn a generative model by mapping input data to
a latent space and then reconstructing it. Unlike traditional AEs, VAEs encode input
data as a probabilistic distribution in the latent space, rather than a fixed code. This
enables VAEs to generate new samples by drawing from the latent space distribution.

Encoder

In the VAEs, the encoder maps the input x to the parameters of a probability
distribution in latent space, specifically producing two vectors: the mean vector µ and
the logarithmic variance vector logς2, as follows:

µ = fµ(x; ϑ) (3.8)



log ς2 = flog ϑ2(x; ϑ) (3.9)

where fµ and flogϑ2 are neural networks parameterized by ϑ.
Latent Variable Sampling

Once the mean and variance vectors are obtained, a point z can be drawn from
this distribution. The reparameterization trick [78] is introduced to make this process
di!erentiable, allowing backpropagation during training. The sampled latent variable
z is subsequently calculated as:

z = µ + ς ↔ ω, ω ↗ N(0, I) (3.10)

↔ represents element-wise multiplication, and ω is drawn from a standard normal
distribution.

In VAEs, the latent variable z is assumed to follow a standard normal prior distribu-
tion p(z). This prior allows the model to cover diverse data distributions and generate
varied samples through learning. Additionally, the probability density function of the
standard normal distribution is simple, making it easy to compute and derive.

Posterior Distribution

The posterior distribution qε(z|x) represents the latent variable z given observation
data x. According to the Bayesian theorem, the posterior distribution is expressed as:

qε(z|x) ↘ p(z|x) = p(x|z)p(z)
p(x) (3.11)

Here, p(x|z) is the likelihood function, which represents the probability of observing
x conditioned on the latent variable z. p(z) is the prior distribution of z, and p(x) is
the marginal likelihood, or evidence, representing the total probability of data x.

Variational Inference

In actual calculations, it is di”cult to directly solve the posterior distribution be-
cause it is usually not feasible to calculate the marginal likelihood p(x). To over-
come this problem, VAEs use the variational inference method to approximate the true
posterior distribution p(z|x) through a parameterized distribution qε(z|x). The goal
of variational inference is to approximate qε(z|x) that is as close as possible to the
true posterior distribution p(z|x). Specifically, VAEs achieve this goal by reducing the
Kullback-Leibler (KL) divergence:



DKL(qε(z|x)||p(z|x)) (3.12)

Since it is not feasible to directly minimize this KL divergence, VAEs introduce the
Evidence Lower Bound (ELBO) for model optimization:

L(ϑ, ϖ) = Eqω(z|x)[logpω(x|z)] ↑ DKL(qε(z|x)||p(z)) (3.13)

The optimization goal becomes to maximize ELBO, thereby indirectly minimizing
the KL divergence.

Decoder

The decoder pω(x|z) transforms the latent variable z back to the input data space,
producing the reconstructed data x̂.

In VAEs, the loss function plays a critical role and consists of two components:
reconstruction loss and regularization loss, as illustrated in equation 3.13. The term
Eqω(z|x)[logpω(x|z)] represents the reconstruction loss, which is the expected log prob-
ability of generating the input x from the latent variable z. The regularization loss,
DKL(qε(z|x)||p(z)), captures the KL divergence between the posterior qε(z|x) and the
prior p(z). The reconstruction loss measures how closely the generated data matches
the original, typically quantified by the negative log-likelihood (NLL):

Eqω(z|x)[log pω(x|z)] = 1
N

N∑

i=1
log pω(x(i)|z(i)) (3.14)

where N is the batch size, x(i) represents the i-th input data sample, and z(i) is the
latent variable drawn from the posterior distribution qε(z|x).

The regularization loss term DKL(qε(z|x)||p(z)), measures the KL divergence between
the posterior and prior distributions. In VAEs, the prior p(z) is typically assumed to
follow a standard normal distribution N(0, I), while the posterior is modeled as a Gaus-
sian distribution N(µ, ς2). The KL divergence can be expressed as:

DKL(qε(z|x)||p(z)) = 1
2

d∑

j=1

(
1 + log

(
ς2

j

)
↑ µ2

j ↑ ς2
j

)
(3.15)

Here d represents the dimensionality of the latent variable z, with µj and ς2
j

denoting
the mean and variance of the j-th dimension, respectively.



By combining these two loss terms, the VAEs loss function (the objective to be
minimized) is expressed as:

L(ϑ, ϖ) = 1
N

N∑

i=1

(
↑ log pω(x(i)|z(i))

)
+ 1

2

d∑

j=1

(
1 + log

(
ς2

j

)
↑ µ2

j ↑ ς2
j

)
(3.16)

VAEs have found widespread application in medical image analysis. Attri-VAE[79]
creates interpretable medical image representations by disentangling di!erent attributes
in the latent space. It uses attribute-based regularization to encode specific attributes
along specified dimensions of the latent space, thereby enhancing the interpretability
and usefulness of the generated images for tasks such as volume estimation and gener-
ating attention maps for specific features in medical images. Mahmoud et al.[80] used
VAE to generate synthetic eye tracking data that can be used to enhance limited data-
sets in medical research. This approach demonstrated the potential of VAE to generate
reasonable outputs from small datasets and can be used as a data augmentation mech-
anism to improve performance on classification tasks. Qingyu et al.[81] applied the
VAE model to brain aging analysis, aiming to learn the latent space of neuroimaging
data and perform supervised regression. The disentanglement in the latent represent-
ation can intuitively explain the structural developmental patterns of the brain, which
makes it a powerful tool for analysing complex medical images and understanding the
latent patterns associated with aging.

VAEs have multiple advantages in generating data and learning latent representa-
tions, but they also have some limitations. First, because VAEs use a Gaussian distri-
bution to model the latent space, the resulting image is the average of several possible
outputs, resulting in a lack of clarity and detail, resulting in generated images often
appearing blurry. And due to the need to strike a balance between reconstruction loss
and KL divergence, training VAEs can be unstable and may result in poor performance
in reconstructing input data or generating realistic samples from the latent space.

3.1.3 Generative Adversarial Networks (GANs)

GANs address the limitations of VAEs and are renowned for producing clearer and
more realistic images. GANs do not impose a specific distribution on the latent space.
Instead, the generator learns to map simple distributions (such as uniform distributions



or Gaussian distributions) to complex data distributions, which is able to capture more
complex structures in the data.

GAN was proposed by Goodfellow et al. [57]. It generates data through a con-
frontation process between two neural networks. GAN consists of two networks: the
generator and the discriminator. The generator aims to create realistic data, while the
discriminator’s role is to di!erentiate between real and generated data. Through con-
tinuous confrontation, the two networks improve each other’s performance, ultimately
enabling the generator to produce samples nearly indistinguishable from real data.

The goal of GAN training is to shape the generator’s distribution so that it closely
matches the real data distribution. Let G represent the generator and D represent
the discriminator. The generator G takes a random noise vector z (typically sampled
from a simple distribution, such as Gaussian or uniform) and generates data G(z). The
discriminator D receives a data sample (either real data x or generated data G(z)) and
outputs a probability D(x) or D(G(z)), indicating how likely the sample is real.

The discriminator D aims to maximize the probability of correctly distinguishing
between real and generated data. The objective function is:

max
D

V (D, G) = Ex→pdata(x)[log D(x)] + Ez→pz(z)[log(1 ↑ D(G(z)))] (3.17)

Here, Ex→pdata(x)[.] denotes the expectation over the true data distribution pdata(x),
while Ez→pz(z)[.] denotes the expectation over the noise distribution pz(z). The gener-
ator G aims to minimize the discriminator’s accuracy in recognizing generated data,
thereby maximizing D(G(z)):

min
G

V (D, G) = Ez→pz(z)[log(1 ↑ D(G(z)))] (3.18)

A more commonly used objective for the generator is to maximize log(D(G(z))
rather than as it provides better gradient behavior during the initial stages of training.
The final objective function can be expressed as:

min
G

max
D

V (D, G) = Ex→pdata(x)[log D(x)] + Ez→pz(z)[log(1 ↑ D(G(z)))] (3.19)

The objective functions for both the discriminator and generator follow the form of
cross-entropy loss. The discriminator aims to minimize the cross-entropy of classifica-
tion errors, while the generator seeks to maximize the cross-entropy, encouraging the
generated data to be identified as real.



The GANs optimization process can be regarded as minimizing the JS divergence
between the real and generated data distributions. Specifically, the combined objective
function of the discriminator and generator is expressed as:

V (D, G) = ↑ log 4 + 2 · JSD(pdata≃pg) (3.20)

where pdata denotes the true data distribution, pg represents the generator’s distri-
bution, and JSD(pdata≃pg) represents the JS divergence.

GANs are widely used to generate high-quality medical images to enhance the di-
versity of training datasets. Maayan et al. [82] used GAN-based synthetic images for
data augmentation to improve the performance of CNNs in liver lesion classification.
Zhang et al. [83] proposed SkrGAN for sketch rendering generation of medical images,
aiming to augment datasets and enhance model training. This approach demonstrated
improved performance in medical image segmentation. Jin et al. [84] used 3D condi-
tional GAN to simulate real lung nodules on CT to expand the dataset and achieve
enhanced segmentation of lung images. GANs have also made significant progress in
medical image segmentation. Rezaei et al. [85] employed conditional adversarial train-
ing for brain tumor semantic segmentation, achieving promising results. Liu et al. [86]
applied conditional GAN for automatic cartilage and meniscus segmentation of knee
MRI, demonstrating the potential of GANs in complex medical image segmentation
tasks.

Although GAN has achieved remarkable success in many fields, it also has some sig-
nificant shortcomings and challenges. GAN training is often unstable, and adversarial
learning between the generator and the discriminator can result in mode collapse, where
the generator produces variations of a limited subset of samples rather than covering
the full data distribution, reducing the diversity of generated outputs. Therefore, the
training process requires careful adjustment of the hyperparameters and selection of
the architecture.e architecture. Currently, the evaluation of GAN is usually subjective
and lacks a unified objective evaluation standard. Therefore, assessing both the quality
and diversity of the generated images remains a challenge.

3.1.4 Di!usion models

The di!usion models are recently widely used generative models that generate high-
quality samples by simulating data distribution to gradually ”di!use” from noise. Some



Figure 3.1: Schematic diagram of the Markov chain in the forward di!usion

process.

studies have shown that di!usion models beat GANs in image synthesis and can achieve
better sample quality than state-of-the-art GANs [72][87]. It includes two stages: the
forward di!usion process and the reverse di!usion process. In the forward di!usion
process, noise is incrementally added to the real data until it becomes pure Gaussian
noise. This process can be expressed as a series of Markov chains, in which Gaussian
noise is introduced at each step to obtain an approximate posterior q(x1:T |xo). The
forward di!usion process is formulated as:

q(xt|xt↑1) = N(xt;
√

1 ↑ εtxt↑1, εtI) (3.21)

where εt is a small positive value, indicating the noise intensity introduced at each
step. Figure 3.1 shows the embodiment of the Markov chain in the cardiac image data
during the process.

The reverse di!usion process gradually removes noise by learning the reverse process
and recovers from pure noise to the original data. The training goal is to train a
parameterized model that approximates the reverse process. The reverse di!usion
process is expressed as:

pω(xt↑1|xt) = N(xt↑1; µω(xt, t), #ω(xt, t)) (3.22)

Here, µω and #ω are parameters need to be learned.
Figure 3.2 shows the directed graphical model of the reverse di!usion process. The

time-dependent parameters of the Gaussian transitions are learnable, and the distribu-
tion for each reverse di!usion step depends only on the previous or next time step.

The training aims to find the inverse Markov transitions that maximize the likeli-
hood of the data, which is equivalent to minimizing the variational upper bound of the
NLL.



Figure 3.2: Schematic diagram of the directed graphical model of the reverse

di!usion process.

E[↑ log pω(x0)] ⇐ Eq[↑ log pω(x0:T )
q(x1:T |x0) ] =: Lvlb (3.23)

KL divergence, an asymmetric statistical distance metric, measures the di!erence
between a probability distribution P and a reference distribution Q. The transition
distribution in the Markov chain is a Gaussian distribution, and the variational lower
bound LV LB is rewritten using the KL divergence:

Lvlb = L0 + L1 + ... + LT ↑1 + LT (3.24)

where L0 = ↑ log pω(x0|x1), Lt↑1 = DKL(q(xt↑1|xt, x0)||pω(xt↑1|xt)), LT =
DKL(q(xT |xo)||p(xT ))).

In the forward process, the variance schedule needs to be defined, which is often set
to a time-dependent constant, such as a linear schedule from ε1 = 10↑4 to εT = 0.2.

The overall training objective function is:

Lsimple(ϑ) := Et,x0,ϖ

[
≃ω ↑ ωω(

⇒
φ̄tx0 +

⇒
1 ↑ φ̄tω, t)≃2

]
(3.25)

Here, ω is Gaussian noise, ω ↗ N(0, I). ωω is a noise estimator parameterized by the
model. φt represents the weight coe”cient at time step t, while

⇒
1 ↑ φ̄t adjusts the

noise proportion at the same time step.
The training and sampling algorithm for the di!usion models could be concisely

expressed as:
As the emerging generative models, the di!usion models have achieved remarkable

success in many fields in recent years [70][88]. In terms of image synthesis, the di!usion
models can generate high-quality and diverse images [89][71]. It is also used in image
restoration [90][91], such as denoising and filling in missing parts, and image super-
resolution [92][93], converting low-resolution images to high-resolution images. The
di!usion models can also be applied to video generation [94][95], where high-quality



Algorithm 1 Training
1: repeat

2: x0 ↗ q(x0)
3: t ↗ Uniform({1, . . . , T})
4: ω ↗ N(0, I)
5: Take gradient descent step on ↓ω≃ω ↑ ωω(

⇒
φ̄tx0 +

⇒
1 ↑ φ̄tω, t)≃2

6: until converged

Algorithm 2 Sampling
1: xT ↗ N(0, I)
2: for t = T, . . . , 1 do

3: z ↗ N(0, I) if t > 1, else z = 0
4: xt↑1 = 1↓

ϱt

(
xt ↑ 1↑ϱt↓

1↑ϱ̄t

ωω(xt, t)
)

+ ςtz

5: end for

6: return x0

video content can be generated by generating continuous frames from noise. This
application has broad application prospects in fields such as filmmaking, animation
generation, and virtual reality. In the domain of natural language processing (NLP),
the di!usion models are used for text generation tasks, including text completion and
dialogue generation [96][97]. By learning the distribution of text data, the di!usion
models can generate coherent, semantically meaningful text.

In medical image analysis and generation, di!usion models also show great poten-
tial and application value. Rguibi et al. [98] proposed a Medical Variation Di!usion
Model (Medical VDM) that generates smooth medical images that could retain import-
ant features (such as edges) through a variational di!usion model, thereby improving
the accuracy and reliability of medical images. These generated images are useful for
medical education, training, and to assist clinical diagnosis and treatment planning.
Pinaya et al. [99] used LDM to generate 3D brain MRI images by mapping brain im-
ages to latent representations and generating synthetic images from noise, the model
conditioned on covariates such as age, gender, and brain structure volume. The results
showed that conditional variables can e!ectively control data generation, and synthetic
data can supplement datasets and become a promising alternative. In addition, the dif-
fusion model has demonstrated outstanding performance in medical image restoration,



super-resolution, and multimodal generation [100][101].
Although di!usion models have shown great potential, there are still some signific-

ant defects. Since multiple iterations are required to gradually denoise and generate
images, the training and sampling process of di!usion models typically require signi-
ficant computational resources and time. In addition, the architecture and training
process of di!usion models are relatively complex, involving multiple steps and para-
meter tuning. This makes the implementation and maintenance of the model di”cult.
Especially in clinical applications, a high level of technical support and prior knowledge
are required. Di!usion models rely heavily on large-scale and high-quality datasets. In
the medical field, it is challenging to obtain su”cient labeled data, especially for data
on rare diseases or specific medical conditions.

3.2 Literature review on cardiac image analysis

Cardiac image analysis includes a series of key tasks that collectively aim to quant-
itatively analyse cardiac images, elucidate the morphology and function of cardiac
physiology, and perform dynamic image analysis [102]. This includes, but is not
limited to, image acquisition and preprocessing, such as generating images for im-
age augmentation [103][104]. Segmentation of the image, segmenting the cardiac and
its di!erent parts [105][106]. Image registration, aligning cardiac images from di!er-
ent time points or di!erent imaging modalities for dynamic analysis or multimodal
fusion [107][108][109]. Cardiac morphology and function analysis, quantifying the mor-
phological characteristics of cardiac structures, such as cardiac wall thickness, chamber
and ventricle volume, and evaluating cardiac function, including systolic function (such
as EF), diastolic function, myocardial motion [110][111]. Dynamic image analysis, ana-
lysing dynamic image sequences to evaluate the motion and changes of the cardiac
within a cardiac cycle [112][113]. Then calculate dynamic parameters, such as the
change curve of cardiac ventricular volume and myocardial strain during the cardiac
cycle [114][115].

In recent years, deep learning and artificial intelligence technologies have been ap-
plied to automated cardiac image analysis, feature extraction, and disease diagnosis and
prediction, providing e!ective reference and assistance for clinical diagnosis, treatment
planning, and surgical assistance [116][117][118]. The following chapters will explore
the literature review of the main cardiac image analysis, including image synthesis,



segmentation, registration, dynamic analysis, and the application of deep learning.

3.2.1 Cardiac image synthesis

The generation of cardiac images generates high-quality synthetic cardiac images by
learning the features of a large number of real cardiac images, which are used to assist
medical research and clinical applications [119][120]. Generated images are of great
significance in training data augmentation, model verification, and medical diagnosis,
treatment, and research. Medical imaging datasets are usually limited, and synthetic
images can be used for dataset augmentation, which is very important for deep learn-
ing model training and can improve the generalization and robustness of the model.
Synthesised cardiac images can reduce the reliance on expensive and invasive imaging
technologies (such as MRI and CT), reduce medical costs, and can be used for various
clinical trials and studies without involving actual patients to explore new treatments
and diagnostic techniques. It helps to accelerate the progress of medical research and
promote new medical discoveries [121][122].

Compared with traditional image synthesis methods, generative models using deep
learning-based methods have demonstrated excellent performance in synthetic image
generation. These models are primarily based on architectures like GAN, VAE, and
di!usion models. Amirrajab et al. [123] combined VAE with GAN, first synthesising
cardiac labels through VAE, and then implementing the label-to-image translation task
through label-conditional GAN. This study quantitatively evaluated the usability of
generated virtual subjects for training cardiac MRI segmentation models in data aug-
mentation, proving that data augmentation improves model generalization and robust-
ness to multi-center data. Skandarani et al. [105] also combined VAE and GAN to
generate highly realistic MRI and its pixel-accurate ground truth, which can be used
for cardiac segmentation of cine MR images. VAE is used to learn the potential repres-
entation of the cardiac shape, while GAN generates MRI images that match the given
anatomical map. Chartsias et al. [124] used CycleGAN to demonstrate the potential
of cross-modal synthesis, synthesising MRI images from CT, and used synthetic data
to train the segmentation network to obtain better results, proving the practicality of
synthetic data. Zhang et al. [125] proposed a lesion-focused di!usion model, which
simplified the model learning process and enhanced the controllability of the synthetic
output by redesigning the di!usion learning objective to concentrate on the lesion area,



while retaining the background information during forward di!usion. Verification of
the cardiac lesion segmentation dataset proved that synthetic data can e!ectively en-
hance the existing model. Abbasi et al. [120] proposed a hybrid controllable method
for generating anatomically relevant 3D+t-labeled CMR images, and the generated
images performed well in data augmentation and style transfer. Pan et al. [126] pro-
posed a Swin-transformer-based DDPM, trained on datasets including chest X-rays,
cardiac MRI, pelvic CT, and abdominal CT, and demonstrated the e!ectiveness of
synthetic datasets through classification tasks, demonstrating the potential of this syn-
thetic framework to synthesise high-quality medical images.

However, generative models usually use or fuse complex model structures, and
the training process is computationally intensive, especially when processing high-
resolution 3D images, which demands significant computational resources and time.
The results of combined label research rely on accurate anatomical image labels, which
may require a lot of prior knowledge and manual intervention in practical applications.
When generating time series images, there may be a problem of temporal consistency,
that is, the continuity and consistency of the generated images in the time series are
insu”cient.

3.2.2 Cardiac image segmentation

Cardiac image segmentation involves precisely isolating and identifying various anatom-
ical structures, such as the left ventricle (LV), right ventricle (RV), and myocardium,
in cardiac images. It is one of the core tasks based on medical image analysis, which
is achieved through image processing and semantic segmentation, a basic task of com-
puter vision. Cardiac image segmentation can be applied to 2D and 3D images, and
has important applications in processing static and dynamic cardiac images. Accurate
cardiac image segmentation is crucial for downstream cardiac analysis tasks, such as
3D shape reconstruction and estimation of cardiac clinical indicators. Segmenting the
ventricles and atria allows for quantitative measurement of their volumes and enables
evaluation of cardiac functions, such as myocardial mass, wall thickness, ventricular
volumes, and EF. Monitoring of these clinical indicators can detect and diagnose car-
diac lesions earlier and more accurately.

Advancements in deep learning technology have greatly enhanced the accuracy and
e”ciency of cardiac image segmentation, providing a solid technical foundation for per-



sonalized medicine. Numerous studies have extensively reviewed deep learning-based
methods in medical image segmentation. Chen et al. [127] and Petitjean et al. [128]
detailed the wide application of deep learning methods in cardiac image segmenta-
tion. Tran et al. [129] first applied fully convolutional networks (FCNs) to short axis
(SAX) CMR image segmentation, proposing an end-to-end model that outperformed
traditional methods in both speed and accuracy, demonstrating strong competitiveness.
Subsequently, a number of FCN-based studies emerged to further improve segmentation
performance. The focus of the research is on refining network architectures to improve
feature extraction, such as the dense U-net developed by Khened et al. [130], and on
refining loss functions (e.g., weighted cross entropy, weighted Dice loss, deep supervi-
sion loss, and focal loss) to enhance segmentation accuracy [131][132][133]. Due to the
low through-plane resolution and motion artifacts in CMR scans, these studies have
concentrated on 2D networks over 3D networks. However, 2D networks for cardiac seg-
mentation cannot exploit inter-slice dependencies, making it challenging to accurately
segment the heart on di”cult slices, such as apical and basal slices. To address this,
many studies have introduced additional contextual information to guide 2D FCNs,
including shape priors learned from labels or multi-view images [134][135], and spatial
information from neighboring slices [136]. Techniques such as recurrent units (RNNs)
and multi-slice (2.5D) networks have been used to assist segmentation [137][138]. In
addition, these networks also utilize information from multiple time frames through-
out the cardiac cycle to enhance the spatial and temporal consistency of segmentation
outcomes [139][140]. Recent research has focused on achieving anatomically accurate
and robust segmentation in various challenging CMR scenarios. To further improve
the performance of FCN-based ventricular segmentation, multi-task learning has also
been explored [141][142][143]. By performing related auxiliary tasks (such as motion
estimation, cardiac function estimation, ventricular size classification, and image re-
construction) to regularize the training process, multi-task learning encourages the
network to extract features useful for each task, thereby improving learning e”ciency
and prediction accuracy.

Although these methods have made significant progress, some challenges still exist.
The shortcomings of existing methods include unstable performance when processing
images with large anatomical variability and pathological changes, and insu”cient spa-
tial and temporal consistency between slices. In addition, although multi-task learning



methods can improve feature extraction capabilities, they may also lead to complex
network structures, increase training di”culty and computational costs. Therefore,
developing more e”cient network structures, exploring more advanced context inform-
ation fusion methods, and combining the latest artificial intelligence technologies may
bring breakthroughs to cardiac MR image segmentation. These improvements are ex-
pected to improve the accuracy and reliability of clinical applications, o!ering stronger
support for diagnosing and treating cardiovascular diseases.

3.2.3 Cardiac image registration

Advancements in computing power, along with increased algorithmic capabilities and
complexity, have led to significant progress in the field of image registration. This
technology is widely used in various clinical scenarios, including disease diagnosis and
monitoring, image-guided treatment, and postoperative evaluation. As the spatial res-
olution of medical images often varies, image registration is also widely used as a tool for
data preprocessing in order to perform subsequent tasks such as object detection, seg-
mentation, or classification. The performance of these subsequent tasks depends largely
on the quality of the image registration algorithm. Image registration algorithms a!ect
the e!ectiveness of subsequent processing by aligning images to a common coordinate
system, unifying their size and resolution.

In the field of biomedical research, cardiac image registration has always received
widespread attention [144][107]. It aligns and matches cardiac images acquired at dif-
ferent times or in di!erent modalities to facilitate subsequent medical image analysis.
It includes associating clinical features of images of di!erent cardiac modalities, respir-
atory motion correction, facilitating the cardiac segmentation process, supplementary
information for image fusion, and image guidance for clinical intervention treatment.
Numerous studies have extensively reviewed deep learning-based approaches for med-
ical image registration. Chen et al. [145] and Khalil et al. [146] detailed the wide
application of deep learning methods in cardiac image registration.

In cardiac image registration, the LV has received the most attention [147][148][149].
This is because the geometry of the LV is relatively simple and the myocardial wall is
thick, making automatic segmentation more feasible. In addition, LV function/dysfunction
is associated with most cardiovascular diseases. Rohe et al. [150] used CNN to pre-
dict image registration parameters, focusing on deformable image registration through



shape matching. They performed well in the registration task of cardiac images and
outperformed optimization-based algorithms. De Vos et al. [151] first proposed a CNN-
based unsupervised deformable image registration method for registering 2D cine CMR
images. The model does not require labeled data and achieves end-to-end training by
optimizing the similarity metric between image pairs, reducing the cost and complexity
of data annotation. Balakrishnan et al. [152] introduced VoxelMorph, a fast, unsu-
pervised learning-based framework for paired medical image registration. It defines
registration as a parameterized function that maps a pair of input images to a deform-
ation field so that these images are aligned. VoxelMorph has been applied in multiple
medical image registration tasks [153][154][155], including brain MRI, cardiac MRI, etc.

After VoxelMorph, deep learning-based cardiac image registration has advanced
and has been applied to the analysis of various cardiac sequences. Upendra et al. [156]
proposed a hybrid CNN and Vision Transformer (ViT) model for deformable image
registration of 3D cine CMR images to achieve consistent cardiac motion estimation.
The registration results were shown to be superior to the VoxelMorph CNN model and
traditional non-rigid image registration algorithms. Chen et al. [157] proposed a joint
motion estimation and segmentation method for undersampled CMR images, which
combines the VoxelMorph framework and improves the accuracy of registration and
segmentation through joint optimization. The model is able to predict results close to
fully sampled data without the usual image reconstruction stage. Lu et al. [154] pro-
posed a bidirectional registration CNN for cardiac motion tracking. The bidirectional
recurrent neural network (RNN) models temporal relationships and can automatically
learn spatio-temporal information from multiple images with fewer parameters.

Although deep learning-based image registration models perform well in many as-
pects, their deterministic framework limits their capacity to produce synthetic motions.
Therefore, probabilistic models [158] have been proposed and applied to medical image
registration problems. Dalca et al. [159] proposed a probabilistic generative model
based on unsupervised learning, modeling the potential velocity field as a multivariate
Gaussian distribution and regularizing it using a standard Gaussian prior. This frame-
work not only achieves competitive registration results but also provides di!erential
homeomorphism guarantees. Krebs et al. [160] proposed a model for learning probabil-
istic motion models from a series of images for spatio-temporal registration, which uses
a latent motion matrix to encode motion in a low-dimensional space, thereby achieving



motion simulation and interpolation. The Gaussian process in the low-dimensional lat-
ent space captures temporal dependencies but increases the complexity of the model,
and also does not specify a pixel-by-pixel explicit probability distribution of deforma-
tion.

Another advantage of the probabilistic view over other learning-based approaches
is the analytical uncertainty estimates. However, they are di”cult to evaluate in high-
dimensional complex models. In summary, although the field of cardiac image registra-
tion has made significant progress through deep learning-based methods, it still faces
great challenges. These challenges include the need to more e!ectively handle tem-
poral dependencies, data dependencies, better modeling of pixel-level uncertainties,
and cross-modality registration in the presence of large di!erences in imaging features.

3.2.4 Cardiac image dynamic analysis

The strength and direction of myocardial contraction largely control the heartbeat.
When the heart is abnormal, it often leads to an abnormal heartbeat [161]. There-
fore, tracking myocardial motion, accurately capturing the details of myocardial move-
ment, and quantitatively describing the degree of myocardial tissue deformation is of
great significance for evaluating cardiac function and diagnosing cardiovascular dis-
eases. Myocardial deformation assessment follows the basic principles of most deform-
ation imaging techniques: identifying specific patterns or features in the image and
finding the best correspondence between these patterns or features over time in sub-
sequent image frames to achieve tracking. By repeating this process throughout the
time series, the deformation of local tissues can be estimated.

Myocardial strain analysis is a common method of measuring cardiac dynamic ana-
lysis. It derives the displacement gradient field from the dense displacement field and
obtains the strain tensor that reflects the details of myocardial deformation. Accord-
ing to the geometric characteristics of the LV, the strain tensor can be divided into
radial, circumferential and longitudinal strain components. As a routine sequence in
clinical data acquisition, strain analysis in cine CMR is an important tool for evaluating
myocardial deformation. Feature tracking (FT) is an important method for strain ana-
lysis in cine MRI. It tracks natural myocardial characteristics throughout the cardiac
cycle, providing strain measurements in all directions (longitudinal, circumferential,
and radial). FT-based strain analysis can detect subtle changes in myocardial function



earlier than traditional methods such as EF.
In recent years, many studies have attempted to calculate myocardial strain from

cine CMR images [162][163]. Onishi et al. [164] used an FT method to evaluate the
longitudinal changes in cardiac function and myocardial strain values in a myocardial
disease model and verified the practicality of myocardial strain analysis using cine
CMR. Truong et al. [165] used CMR FT to calculate the normal range of LA strain
and strain rate and compared them with 2D STE.

Tagging CMR marks specific areas of the myocardium in MRI as markers dur-
ing contraction. Tagging CMR-based strain analysis provides a pioneering approach
to describing myocardial markers and is regarded as the reference standard for strain
assessment [166]. Tracking marker deformation enables direct evaluation of myocar-
dial strain and demonstrates great reproducibility. Myocardial tagging technology has
been used in many clinical and research applications. Valet et al. [167] compared the
changes in tag contrast over time in tagging images acquired at di!erent field intens-
ities and analysed the images for systolic and diastolic strain measurements. Studies
have shown that high-field imaging has significant benefits in terms of the durability of
myocardial tagging throughout the cardiac cycle. Ennis et al. [168] used tagging MRI
to compare regional LV function during systole and diastole in subjects with familial
hypertrophic cardiomyopathy (FHC) and normal subjects, demonstrated a reduction
in early diastolic strain rate across all regions in the FHC group, highlighting regional
di!erences in systolic and diastolic dysfunction in FHC patients. Denney et al. [169]
proposed an unsupervised tag extraction and cardiac strain reconstruction algorithm to
quantify the 3D myocardial strain on tagging CMR images. The results demonstrated
that the algorithm is capable of measuring disease-induced wall motion abnormalities
and has the potential to overcome the limitations of routine clinical use of tagging
CMR. Herrezuelo et al. [170] introduced the application of variational methods in car-
diac motion estimation and proposed a new method for motion estimation of tagging
CMR sequences based on variational techniques. Validation results in synthetic and
real sequences demonstrated the accuracy of the algorithm for motion estimation.

There are also some strain assessment techniques for variations of tagging, such as
DENSE and SENC. DENSE [46] was developed in the late 1990s, and provides superior
spatial resolution and relatively straightforward post-processing. SENC, originally de-
veloped by Osman et al. [171], enables faster acquisition, more e”cient post-processing,



and demonstrates excellent reproducibility. However, both techniques face limitations,
including the need for additional acquisition, low SNR, lack of standardization, and
intensive post-processing, which restrict their use as primary research tools.

In recent years, many studies have applied deep learning to cardiac strain analysis.
Ye et al. [172] introduced an unsupervised deep learning-based motion tracking model
for tagging CMR images. They used a bidirectional generative di!eomorphic registra-
tion neural network to compute the motion field across consecutive time frames. They
further estimated the Lagrangian motion field from the reference frame to other frames
through a di!erentiable combination layer. The results show that this method out-
performs traditional motion tracking methods in tag tracking accuracy and inference
e”ciency. Morales et al. [173] proposed an e”cient, fully autonomous deep learning
pipeline integrating segmentation and motion estimation CNNs to derive volume met-
rics and strain values from cine CMR. This end-to-end learning pipeline fully automates
the analysis of cine MRI data for quantitative characterization of cardiac mechanics
in healthy and cardiovascular disease subjects. Ferdian et al. [174] introduced a fully
automated deep learning framework for estimating myocardial strain from SAX tag-
ging CMR. This approach facilitates unbiased strain assessment within a high-e”ciency
workflow and demonstrates comparable e!ectiveness in distinguishing disease-related
injuries.

In summary, although the field of cardiac dynamic analysis has made significant
progress through machine learning and deep learning-based methods, major challenges
still exist. These challenges include the need to more e!ectively handle data depend-
encies, enhance model generalization, and standardization issues.

3.3 Datasets

UK Biobank [175] is a prospective cohort study that integrates a large sample size with
extensive phenotypic and genotypic data to enhance the prevention, diagnosis and
treatment of diseases in middle-aged and elderly people, particularly cardiovascular
conditions like heart disease and stroke. Its goal is to improve public health by deeply
analysing these data to find e!ective prevention, diagnosis and treatment methods.
From 2006 to 2010, UK Biobank recruited 500,000 subjects aged 40 to 69 from 22
assessment centers across England, Wales, and Scotland. At these centers, subjects
were given electronically signed consent forms, responded to touchscreen and verbal



interview questions, and questions about sociodemographic, lifestyle, environmental,
and health-related factors, underwent a series of physical measurements, and given
blood, urine, and saliva samples. With recruitment in full swing, the content of the
assessment visit has been further enhanced to include eye measurements, heel bone
ultrasound, electrocardiogram tests, pulse wave velocity and hearing tests for most
participants.

The collection of baseline data covers multiple aspects directly related to cardiovas-
cular health, including self-reported data on medications, health conditions, cardiovas-
cular disease family history, arterial sti!ness, blood pressure, cardiorespiratory fitness,
as well as body size and fat. While these data do not reflect the general population and
thus unsuitable for estimating disease prevalence or incidence, the large sample size
enables reliable detection of relationships between most baseline characteristics and
health outcomes.

UK Biobank data have unprecedented depth and breadth, providing a valuable
opportunity to study questions concerning cardiovascular health outcomes. These data
include MRI, dual-energy X-ray absorptiometry (DXA), and CT scans of the brain,
heart, bones, and abdomen.

Focusing on CMR data, Petersen et al. [176] manually analysed CMRs of 5,065
consecutive UK Biobank participants. The researchers manually segmented all slices of
each 3D CMR scan at ED and ES. Annotation and evaluation were performed by two
core laboratories in London and Oxford. In collaboration with CISTIB, the research
team accessed approximately 5,000 CMR samples and manually outlined the LV and
RV anatomical structures.

50 SAX stacks were collected under b-SSFP during each patient’s cardiac cycle, each
containing 8 to 13 slices with the matrix size of 208 → 162. Ground truth annotations
of the LV endocardium, epicardium, and RV were available at both ED and ES, with
ED being time frame 0 and ES varying between frames 21 and 26, depending on the
patient. For the tagging sequence, 20 SAX stacks were collected, covering the entire
cardiac cycle, each containing apical, middle, and basal slices with a matrix size of
200 → 256. These detailed imaging data provide researchers with valuable resources to
help them gain a deeper understanding of changes in cardiac structure and function,
thereby advancing the study and management of cardiovascular diseases.
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Myocardial strain is an important indicator for evaluating cardiac function, which
quantitatively characterizes myocardial motion throughout the cardiac cycle. Notably,
myocardial strain can detect abnormal changes in myocardial strain in patients even
when EF and/or other ventricular volume indices remain within normal or healthy
ranges. This allows us to detect cardiac dysfunction early based on quantitative ana-
lysis of abnormal cardiac motion patterns. Tagging CMR is regarded as the reference
standard for quantifying myocardial strain, and its e!ectiveness has been demonstrated
in di!erent patient populations. However, the clinical application of tagging CMR has
been limited by the lack of automated and powerful myocardial strain computational
analysis tools and the prolonged image acquisition time compared to cine CMR alone.
In this chapter, we employ a sparse multi-channel variational autoencoder (smcVAE) to
jointly learn the latent representations of cine CMR images and tagging CMR images.
During inference, tagging CMR images can be synthesised from cine CMR images as
input, enabling the quantification of myocardial strain from these synthesised images.
The results show that our framework can e!ectively synthesise tagging CMR from cine
CMR, and providing valid estimates of myocardial strain.

4.1 Introduction

Strain [39] measures the degree of deformation or change in shape experienced by an
object when subjected to external forces or loads. It quantifies how an object’s shape
or size has been altered due to applied forces. Myocardial strain [21][25] refers to
the measurement of deformation in the myocardium (muscular tissue in the heart)
as a result of the contraction and relaxation of the cardiac across the cardiac cycle.
It provides quantitative information about the motion of the heart muscle, allowing
for a more comprehensive evaluation of cardiac function. Cardiac motion from ED
(maximum dilation) to ES (maximum compression) during the cardiac cycle leads to
alterations in myocardial strain along di!erent directions. Under healthy/normal con-
ditions, myocardial strain is within a specific range and the changes are coordinated and
orderly. Previous studies have found that myocardial longitudinal, radial, and circum-
ferential strains decrease with age, accompanied by relative thickening of the ventricular
wall and increase in volume mass [177]. Regional changes to myocardial strain have
been used as a biomarker to identify cardiac dysfunction resulting from several cardiac
diseases (e.g. ischemic heart disease, hypertrophic cardiomyopathy, etc.) [178, 179].



CMR [180] has emerged as the standard for noninvasive assessment of cardiac func-
tion, owing to its large field of view, high tissue resolution, absence of radiation, and
excellent repeatability. By combining various technologies, MRI can conduct a ‘one-
stop’ inspection of both the structure and function of the heart. At present, various MRI
quantitative imaging techniques are developing rapidly, o!ering valuable insights for the
diagnosis and characterization of cardiovascular diseases [181][182]. Cine CMR [183]
uses cardiac segment acquisition technology or real-time imaging technology to con-
tinuously acquire images of multiple phases at the same level within one cardiac cycle,
and is a MRI technology that shows the rhythmic contraction and relaxation of the
heart. Tagging CMR [24] utilizes tissue magnetization as a tissue property. A locally
magnetically saturated grid of dark-lined tissue markers, called tag, is induced onto the
myocardium by applying radio frequency pulses in an orthogonal plane. These marker
lines deform with the myocardial tissue during systole, allowing the ‘marker’ grid can
be used to track and evaluate the displacement of the myocardial tissue, serving as the
basis for calculating cardiac strain.

Myocardial tagging is considered the reference for quantifying local myocardial mo-
tion and strain, allowing for quantitative assessment of myocardial deformation with
good reproducibility within and between patient groups. Previous tag-tracking meth-
ods can be broadly categorized into three groups: (i) methods that detect and track
tag lines in images, such as Findtags [184] and InTag (Creatis, Lyon, France), etc. [185]
[186]; (ii) methods based on optical flow which estimate the motion of objects within
images by evaluating spatio-temporal variations of image intensity [187][139][188]; and
(iii) methods based on HARP analysis [189, 190], which calculate the spatial phase of
each pixel in the marked pattern. The phase can be used to calculate the deformation
by tracking the cardiac cycle points or by calculating the di!erence between the spa-
tial frequency of the tagged image area and the undeformed frequency. However, the
widespread clinical application of tagging MRI is limited by several factors, including
additional sequences will extend acquisition time, reliance on labor-intensive manual or
not fully automatic post processing algorithms to estimate strain, and insu”cient val-
idation. Therefore, tagging CMR has not been used as widely as other methods, such
as cine CMR in the clinical setting due to the absence of rapid and e”cient analytical
methods.

Motivated by the application of deep learning-based generative models in image



synthesis [191] [192], this study proposes an automatic framework for synthesising tag-
ging CMR from cine CMR and quantifying myocardial strain from the former. This will
help to avoid the increased scan time associated with acquiring additional sequences,
enabling the quantification of strain directly from cine CMR. The image synthesis prob-
lem is probabilistically formulated as the learning of a joint latent representation for
two types of image sequences from a subject. We utilize a smcVAE to learn a shared
latent space that captures the distinct information channels represented by tagging and
cine images for each subject. The latent representations obtained by the smcVAE are
then able to generate tagging CMR images for new or unseen objects during inference,
simply by taking their cine CMR images as input. We use the fully automatic cardiac
motion tag tracking network trained by Ferdian et al. [174] to perform tag tracking
on tagging images and estimate myocardial strain. To verify the performance of the
model, the generated cine images are segmented and compared against the segmenta-
tion results from the original cine.

Our method is evaluated on the public dataset from the UK Biobank via five-fold
cross-validation, and experimental results using a variety of metrics show that, tagging
CMR images synthesised from cine CMR images can be used to quantify myocardial
strain, and strains calculated on the tagging images are in good agreement with previous
studies [172][193].

Section 4.2 details the framework for image synthesis and strain analysis. In Section
4.3, we present the dataset, image acquisition protocol, and preprocessing procedures.
And then present the experiments and results that validate the e!ectiveness of the
model. Section 4.4 provides an in-depth discussion of the methods and results. Finally,
Section 4.5 is the conclusion of this chapter.

4.2 Methodology

Figure 4.1 shows an overview of the framework’s workflow. In the training process,
the smcVAE model is trained on cine and tagging images, the learned latent space
enabling the reconstruction of channel information for each image sequence. In the
testing process, the smcVAE model is utilized to synthesise tagging from test cine, and
conversely, to generate cine from test tagging for model validation. During the strain
analysis process, cardiac motion in the synthetic tagging CMR images is estimated using
a combined RNN and CNN model, which was also validated on the UKBB dataset.



Predicted landmarks are extracted for strain analysis, allowing for the calculation of
both radial and circumferential strains. For synthetic cine CMR images, the trained
model is employed for segmentation and motion estimation.

4.2.1 Sparse Multi-channel Variational Autoencoder (smcVAE)

Our method leverages a multi-variate approach derived from smcVAE [194], which can
projects observations from diverse sources into a unified latent space for comprehens-
ive data analysis and enables the generation of new observations by sampling from
these learned latent representations. The smcVAE framework simultaneously trains
two encoder-decoder pairs, with cine CMR and tagging CMR image sequences serving
as input channels for each pair. A shared latent space, jointly learned by both encoder-
decoder pairs, facilitates the integration of these distinct modalities into a coherent
latent representation. This network architecture, depicted in Figure 4.2, comprises an
encoder for each channel with seven convolutional layers and a fully connected layer,
while the decoder reconstructs the cine CMR and tagging CMR images using seven
transposed convolutional layers and Tanh activation. Notably, each convolutional layer
employs depthwise separable convolutions [195] instead of conventional convolutions,
incorporating both Depthwise (DW) and Pointwise (PW) convolutions. This design,
akin to conventional convolution in structure, reduces the computational complexity
and the number of parameters. In DW convolution, each channel is processed by an
individual convolution kernel, unlike conventional convolution where each kernel pro-
cesses the entire input. Meanwhile, the PW convolution e!ectively captures spatial
features across channels, similar to traditional convolution operations.

To introduce smcVAE, first, we introduce the multi-channel variational autoencoder
(mcVAE) [196]. Suppose the mcVAE has c channels of input data, each observation
channel xc is a d↑dimensional vector, and s is an l↑dimensional vector across all chan-
nels xc. During the generation process, xc ↗ p(xc | s, ϑc), c = 1, ..., C, which is the
likelihood distribution of observations conditioned on the latent variable. The infer-
ence process derives the posterior p(s | xc, ϖc) from the joint latent space s from each
channel to generate observations and provide information about the latent variable dis-
tribution. Variational inference is employed to approximate the posterior distribution
q(s | xc, ϖc), under the assumption that each data channel is conditionally independent
of the others. Because each channel provides a di!erent approximation, KL divergence



Figure 4.1: Schematic illustration of our proposed smcVAE framework.



Figure 4.2: Schematic illustration of the network structure of the smcVAE

model.

constraint [197] is imposed to enforce that each posterior distribution closely aligns with
the target prior distribution p(s). The optimization problem can then be expressed as
follows:

L(ϑ, ↼, x) = Ec

[
Eq(s|xc,εc)

C∑

i=1
ln p(xi|s, ϑi) ↑ DKL(q(s|xc, ϖc)≃p(s))

]
, (4.1)

Ec represents the average computed across all channels. After the mcVAE has learned
a common latent space, it can reconstruct all other channels from the latent repres-
entation by cross-channel decoding, or multiple channels by only encoding information
from one channel.

In smcVAE, the di!erence from mcVAE is that sparsity constraints are imposed
on s to automatically infer the dimensions of latent variables. Specifically, choose a
dropout posterior for the latent code of s, define the approximate posterior probabil-
ity as q(s | xc, ϖc), and parameterize them as q(s | xc, ϖc) = N(µc; diag((

⇒
φ ↔ µc)2),

where µc = ϖcxc. The sparse s in smcVAE facilitates the computation of the optimiza-
tion, thereby enhancing the model’s interpretability by reducing the complexity of the
relationships that need to be considered.

4.2.2 Myocardial Strain Estimation for Tagging

To calculate the strain for tagging CMR, it is necessary first to perform tag tracking
for cardiac MRI to monitor cardiac motion within the images. In this work, we reim-
plemented a fully automatic method based on the approach detailed in [174] for tag



tracking on cardiac tagging MRI. This approach utilizes a combination of CNN and
RNN for detecting and tracking myocardial landmarks throughout each image time
sequence. Strains are then calculated according to the movements of these landmarks.
Strain is subsequently calculated based on the movement of these landmarks, using
the Green-Lagrangian strain formula as detailed in equation 4.2. This landmark track-
ing network (combined with CNN and RNN) is trained and validated on dataset from
the UK BioBank. Within this framework, the CNN extracts spatial features, while
the RNN integrates the temporal relationship between frames, with both components
trained end-to-end.

The strain is calculated using:

ω(t) = 1
2

(L2
t ↑ L2

0
L2

0

)
(4.2)

where Lt denotes in the given frame t, the segment length, and L0 is the length at the
beginning.

To further validate the e!ectiveness of the smcVAE model, we segment the generated
cine images using a fully automated deep learning workflow trained by Morales et
al. [173], which can perform segmentation and motion estimation of the cine images.
The segmentation network is used to generate cardiac tissue labels, while the motion
estimation network is used to estimate myocardial motion. The networks all consist
of encoder-decoder architecture composed of convolutional layers, batch normalization
layers [198], and PReLU activations [199] with residual connections [200] to enhance
performance.

4.3 Experiments and Results

4.3.1 Dataset

The dataset is sourced from the UK Biobank, a large long-term research dataset of
biological samples in the UK. There are two modality sequences: cine CMR and tagging
CMR (Access Application No. 11350). Details of data examinations are given in [201].
Cine CMR and tagging CMR were acquired using a 1.5T clinical wide-aperture MRI.
Tagging CMR was obtained in basal, middle, and apical three SAX slices with the
following acquisition parameters: repetition time = 41.05 ms; echo time = 3.9 ms; flip
angle = 12; FOV (field of view) = 350mm → 241mm; voxel size = 1.4 → 1.4 → 1.0mm;



tag grid spacing = 6 mm; trigger time = 41 ms; and approximately 20 reconstructed
frames. Cine CMR images were acquired with the following parameters: repetition
time = 31.56 ms; echo time = 1.1 ms; flip angle= 55; FOV = 370mm → 296mm; slice
thickness = 8 mm, pixel size = 1.83→1.83mm2. All participants gave written informed
consent.

4.3.2 Data Preprocessing

Preprocessing of cine CMR images was carried out through a series of steps, including
ROI clipping, interpolation, resampling, and intensity normalization. Initially, a CNN
model [136] was employed to automatically delineate the ROI surrounding the heart.
The image stacks were then resampled to 20 slices. Each slice was subsequently resized
to 128 → 128 pixels. And the image intensities were normalized from 0 to 1.

For preprocessing of tagging, the selection of ROIs involves transforming the ROI
coordinates derived from cine CMR images. After this, the tagging images undergo pre-
processing steps similar to those applied to cine images, including spatial resampling
and intensity normalization. Figure 4.3 illustrates the coordinate transformation pro-
cedure. A crucial aspect of this process is that the 3D patient coordinates remain
consistent between the two imaging sequences, ensuring accurate ROI determination in
the tagging images. This coordinate transformation was systematically applied to all
subjects in the experiment.

4.3.3 Experimental Setting

In our experiments, we train a smcVAE generative model to jointly learn from cine
CMR and tagging CMR. This model is capable of generating tagging CMR images
directly from cine CMR and allows to estimate of myocardial strain, including both
circumferential and radial strain, during the inference stage. From the public dataset
from the UKBB, 535 subjects (10700 slice pairs) were used, containing two sequences
(cine CMR and tagging CMR), in experiments, 60% of the dataset is selected for
training, 20% for validation, and 20% for testing. Before model input, the images were
resized to a 128→128 matrix, with each CMR sequence fixed at 20 frames per slice. For
tagging CMR, including 60 slices have all slice images from apical, middle and basal.
The generative model neural network was developed using Pytorch 1.7.0 [202] and
Python, and trained on NVIDIA Tesla M60 with 16 GB RAM. The Adam optimizer



Figure 4.3: Schematic illustration of the coordinate transformation process.

Top left: 2D cine image ROI; Top right: 3D cine image ROI; Bottom left: 3D tagging
image ROI; Bottom right: 2D tagging image ROI.
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Figure 4.4: Examples comparing generated and original CMR images from di!erent
subjects, including both input cine and tagging images to reconstruct cine and tagging
images, and test results for synthesising tagging images using only cine images and
synthesising cine images using only tagging images.

was employed for training, with a learning rate of 5→10↑4, and a weight decay of 10↑5.
The final outputs of the testing process of this framework are reconstructed cine and
tagging CMR images.

4.3.4 Qualitative Evaluations

The results of our framework are presented in Figure 4.4, demonstrating its ability to
successfully synthesise images that closely align with the ground truth tagging CMR.
The synthesised results exhibit strong consistency with the real images and are visually
appealing. However, when using only cine to reconstruct tagging or only tagging to
reconstruct cine, the results tend to be relatively blurred. In contrast, when both cine
and tagging images are used simultaneously to reconstruct each other, the outputs are
more accurate, although some edges of the structures still appear slightly blurred and
deformed.

4.3.5 Quantitative Evaluations

Synthetic images should exhibit realistic textures and maintain structural consistency
with their corresponding real images. The evaluation of the results is not limited to
qualitative evaluation, but quantitative evaluation is also required. For quantitative
evaluation, we employ widely recognized image similarity metrics: Root Mean Square



Error (RMSE) [203], Peak Signal-to-Noise Ratio (PSNR) [204], Structural Similarity
Index Measure (SSIM) [205], and Mean Absolute Error (MAE) [206]. RMSE quantifies
the di!erence between variables, serving as an objective evaluation metric based on
pixel error. When measuring the deviation from the reference image, a lower RMSE
indicates higher quality in the synthesised image.

RMSE =

√√√√ 1
M → N

M∑

i=1

N∑

j=1
(f →(i, j) ↑ f(i, j))2 (4.3)

where f
→(i, j) and f(i, j) represent the gray values of the synthesised image and ori-

ginal image, M and N denote the pixel’s number along the image’s length and width,
respectively.

MAE is the mean absolute error, which is also one of the indicators to measure the
image quality. It is calculated by taking the sum of the absolute intensity di!erences
between the evaluation image and the original image and dividing it by the total number
of pixels. A lower MAE value indicates a smaller deviation from the original image,
reflecting better performance of the generative model. The formula is as follows:

MAE = 1
M → N

M∑

i=1

N∑

j=1
|f(i, j) ↑ f ↔(i, j)| (4.4)

SSIM evaluates image similarity by comparing brightness, contrast, and anatomical
structures between images. The SSIM value ranges from 0 to 1, the higher values
indicating greater similarity between the images.

SSIM = (2µxµy + c1)(2ςxy + c2)
(µ2

x + µ2
y + c1)(ς2

x + ς2
y + c2) , (4.5)

Here, µx and µy represent the mean values of images x and y, while ς2
x and ς2

y denote the
variances of x and y. Indicates the deviation/fluctuation range of the image brightness
from the gray average value, so it can be used to describe the strength of the contrast.
If the variance is large, the image contrast is high. ςxy represents the covariance of
x and y, which captures structural di!erences between the images. If the covariance
is relatively small, it means that the structural di!erence between the two pictures is
small. And c1 and c2 are two constants to avoid division by zero.

PSNR measures the ratio of a signal’s peak energy to the average energy of the
noise and is a widely used metric for assessing image reconstruction quality. A higher



PSNR value indicates superior reconstruction quality.

PSNR = 10 · log10

(
MAX2

MSE

)

(4.6)

MAX2
I

represents the maximum possible pixel value of the image, which is typically
255 for uint8 data. MSE refers to the mean square error.

MSE = 1
M → N

M∑

i=1

N∑

j=1

(
f(i, j) ↑ f ↔(i, j)

)2 (4.7)

Table 4.1 lists the quantitative evaluation results, including a numerical comparison
of the test dataset outcomes for synthesised cine and tagging generated from both two
sequence inputs, as well as reconstructed tagging generated using only cine inputs
and reconstructed cine generated using only tagging inputs. As expected, the results
indicate that generation performance with single-channel input is not as strong as with
two-channel input. And the result of generating cine from tagging is the worst, which
may be because the rich grayscale changes of cine images cannot be fully inferred
from the tagging texture information. In addition, the generation quality of the three
regions of apical, middle and basal is di!erent, but overall the SSIM and PSNR of
the middle region are the highest, which may indicate that the image information in
the middle region is more stable and easy to reconstruct, while the apical and basal
regions may increase the di”culty of model prediction due to changes in cardiac motion
or anatomical structure. The results show that in the single-channel generation task,
the best results of generating image SSIM, PSNR, RMSE and MAE are 0.86 ± 0.04,
28.13 ± 4.85, 0.10 ± 0.01, and 154.86 ± 27.43 respectively.

4.3.6 Motion Tag Tracking

The tag tracking method for tagging images utilizes a neural network model based
on RNN and CNN, trained on the UK BioBank dataset [174]. This approach has
demonstrated accuracy in tracking myocardial motion in tagging MRI. The network
outputs the landmarks at each time point for each slice. Figure 4.5 shows examples
of generated tagging images in ED and ES for tag detection and tracking in the two
di!erent subjects.



Figure 4.5: Examples of tag tracking estimated during ED (top row) and ES (bottom
row) in three di!erent subjects.



Table 4.1: Quantitative numerical comparison of the results generated by a test process.
(Boldface denotes best performance).

Reconstruction/generation scenarios Region SSIM PSNR RMSE MAE

Reconstruction tagging

Apical 0.86 ± 0.04 26.99 ± 2.70 0.10 ± 0.01 158.61 ± 44.61
Mid 0.84 ± 0.21 28.13 ± 4.85 0.14 ± 0.01 159.24 ± 39.54

Basal 0.82 ± 0.04 26.14 ± 2.27 0.11 ± 0.03 159.73 ± 65.15

Reconstruction cine

Apical 0.78 ± 0.05 23.94 ± 1.79 0.18 ± 0.07 154.86 ± 27.43
Mid 0.69 ± 0.27 23.91 ± 6.68 0.21 ± 0.04 166.95 ± 35.91

Basal 0.79 ± 0.03 24.41 ± 2.46 0.18 ± 0.08 159.46 ± 29.65

Only cine to tagging

Apical 0.72 ± 0.24 24.62 ± 2.53 0.14 ± 0.07 160.56 ± 39.54
Mid 0.86 ± 0.05 24.57 ± 5.84 0.17 ± 0.02 165.77 ± 35.65

Basal 0.79 ± 0.03 26.62 ± 2.46 0.16 ± 0.03 163.85 ± 37.56

Only tagging to cine

Apical 0.72 ± 0.18 23.76 ± 4.56 0.27 ± 0.08 155.67 ± 45.73
Mid 0.65 ± 0.29 20.44 ± 7.51 0.31 ± 0.10 170.60 ± 38.65

Basal 0.70 ± 0.21 21.23 ± 6.36 0.28 ± 0.07 161.67 ± 47.15

Figure 4.6: Example visualization of anatomical region segmentation results in cine
cardiac images. Segmented areas include Myo., LV, and RV.

4.3.7 Myocardial Segmentation for cine CMR

Myocardial segmentation for cine is performed using a fully automated deep learning
workflow [173], which incorporates CNNs for both segmentation and motion estimation.
The segmentation network for cardiac generates tissue labels RV, LVM, and LV, and
the cardiac motion estimation network generates myocardial displacement. Figure 4.6
shows an example of myocardial segmentation results for the original sample, from left
to right is at ED, intermediate time frame between ED and ES, ES, respectively.

The performance of the validation of the model reconstructed cine CMR uses Haus-
dor! distance (HD) and dice similarity coe”cient (DSC) evaluation indicators. HD
and DSC are commonly used to evaluate medical image segmentation. We measure the



similarity between the segmentation results from the original cine CMR images and the
synthesised counterpart data. HD is a measure that describes the similarity between
two point sets. The formula for HD is as follows:

HD(O, G) = max
{

max
SO↗S(O)

d(SO, S(G)), max
SG↗S(G)

d(SG, S(O))


(4.8)

where O represents the original CMR image segmentation result, while G represents
the generated CMR image segmentation result, and SO and SG are the elements in the
two sets respectively. d represents the Euclidean distance.

The formula of DSC is as follows:

Dice(O, G) = 2|O ⇑ G|
|O| + |G| (4.9)

The Dice score ranges between 0 and 1. Our results show that the DSC score
of the reconstructed cine CMR segmentation result is 0.825 ± 0.0196, and the HD is
6.411 ± 1.196.

Figure 4.7 shows examples of cine CMR original images and generated image seg-
mentation results. The segmentation of the generated images exhibits some missing
areas compared to that of the original images, highlighting regions of image blur that
are challenging to discern with the naked eye.

4.3.8 Strain Analysis

All statistical analyses were performed using the open-source Python library SciPy Stat-
istics [207]. Tagging CMR strains were calculated separately for the basal, middle, and
apical slices, providing results specific to each slice. The error between the original and
generated images is expressed as the mean di!erence ± standard deviation. To quantify
agreement, Bland-Altman analysis [208] was employed, plotting the di!erence between
the means of the two measurements. Additionally, violin plots were used to visualize
the distributional di!erences in strain values. Table 4.2 presents the results of the
di!erences between strain values calculated from the tagging generated from cine and
those derived from the original tagging images for all subjects in the test set, including
both circumferential strain Ec and radial strains Er. The results show that the strain
di!erence between generated tagging and original tagging in all regions (basal, middle
and apical) is between about 0.01 and 0.02, and is within the reported standard devi-
ation. This shows a high consistency between the two, which highlights that the results



Figure 4.7: Examples of cine CMR original images segmentation results and generated
image segmentation results. Segmented areas include Myo.(green area), LV (blue area),
and RV (red area).



of generated tagging are very close to the strain results from original tagging. The av-
erage deviation of strain results is small and statistically insignificant, which indicates
that the di!erences introduced by generated tagging are negligible in real practice, so
the tagging generated based on cine images can reliably estimate strain values. There-
fore, the generated tagging can be considered as a viable alternative, especially when
the original tagging data is not available or cannot be obtained. However, the results
also show that the circumferential strain Ec values of generated tagging are slightly
underestimated compared with original tagging in all regions. This suggests that the
generated tagging may slightly bias the circumferential strain towards smaller negative
values. The radial strain Er value of the generated tagging is slightly overestimated
compared to the original tagging. This indicates that there is a slight upward bias
in Er. Figure 4.8 displays the Bland-Altman plot, comparing the di!erence between
strain values from tagging generated solely from cine images and the original tagging
strain values. The plot indicates that the average di!erences for Ec and Er are close to
zero, with the majority of cases falling in the 95% limits of agreement. Although some
outliers with large errors are observed, overall, there is a strong agreement between the
strain calculated from tagging images generated from cine and those from the original
tagging dataset. At the apical slice, the average di!erence in circumferential strain is
the smallest, and the average di!erence between the radial strain on the basal slice is
the smallest. 95% confidence range of the two measuring methods di!erences are all
within ↑0.1 ↗ 0.1.

The violin plot in Figure 4.9 illustrates the distribution and comparison of strain
values across di!erent slices between the original and generated tagging images. The
horizontal median (represented by the white dot within the violin plot) and the in-
terquartile range (indicated by the black bar in the center) are similar across all tasks,
indicating a consistent overall data distribution. The similar widths of the violin plots
for the original and generated further reflect close approximation of the strain value
distributions between the two sets of observations.

Figure 4.10 presents the circumferential and radial strain calculations, along with
error bands, for both the original tagging and the cine-generated tagging throughout
the entire dynamic cardiac cycle across all time frames. The curve shows the group’s
average result (real line) and the standard deviation (shadow areas). Beyond the ob-
servation of consistency, we can find that when tag labels have faded after the diastolic



Figure 4.8: Bland-Altman plot of ES LV strain. The strain values obtained from

the tagging images generated from the cine images are compared to the strain values

obtained from the original tagging images. The first row shows the circumferential

strain for three di!erent SAX slices; the second row shows the radial strain. Solid

lines represent mean di!erences; dashed lines represent 95% limits of agreement (mean

di!erence ± 1.96 → standard deviation of di!erences).



Table 4.2: Quantitative numerical comparison of the results generated on the test pro-

cess, comparing the strain values obtained from the tagging images generated from the

cine images and the strain values obtained from the original tagging images, including

circumferential strain Ec and radial strains Er on the three slices (basal, middle and

apical).

Region Strain Original tagging Generated tagging

Basal
Ec ↑0.2057 ± 0.030 ↑0.1897 ± 0.029

Er 0.2043 ± 0.026 0.2112 ± 0.028

Middle
Ec ↑0.2057 ± 0.031 ↑0.1936 ± 0.024

Er 0.1898 ± 0.033 0.1926 ± 0.032

Apical
Ec ↑0.2116 ± 0.031 ↑0.2017 ± 0.030

Er 0.1716 ± 0.037 0.1744 ± 0.035

period, the errors of the two often increase at the end of the cine sequence.
To further assess the validity of our findings, we conducted a comparison with

the reference values reported by Ferdian et al. [174], using identical subjects from the
UKBB. We employ Bland-Altman analysis to measure consistency. It is worth noting
that the estimates of the corresponding strain values of the two adopt the same method.
This approach integrates the detection and tracking of myocardial landmarks via an
RNN and CNN, followed by strain calculation based on the motion of these landmarks.
Given that the reference values exclusively include circumferential strain, we focused
our comparison on the consistency of circumferential strain across three slices (apical,
middle, and basal). The results are shown in Figure 4.11, showing that most data points
are within the 95% consistency limit. This indicates that our results are close to the
reference values in [174] and consistent with the range of myocardial circumferential
strain, and the results are of good consistency. It can be observed that the mean
di!erence (bias) in the three SAX slices (apical, middle, and basal) is close to zero,
indicating that the systematic bias of the two in di!erent SAX slices is very small.
For data points with higher or lower strain, the distribution of the di!erence does
not show an obvious trend, indicating that the consistency of the two methods is not
significantly a!ected by the strain value. The results prove the feasibility of the cine-



Figure 4.9: Comparative violin plots displaying the di!erence in distribution between

the strain values obtained from the tagging images generated from the cine images and

those obtained from the original tagging images.

Figure 4.10: Circumferential strain Ec (top row) and radial strain Er (bottom row)

of the original and generated tagging images from the cine CMR images in the test

dataset are presented across time with error bands for all time frames in the apical,

middle, and basal slices.



Figure 4.11: Bland-Altman plot of ES LV circumferential strains. Circumferential

strain values obtained from tagging images generated from cine images for the same

subjects were compared to those returned reference from the UK BioBank. Three

di!erent SAX slices are shown from left to right; Solid lines represent mean di!erences;

dashed lines represent 95% limits of agreement (mean ± 1.96 → standard deviation).

generated tagging strain estimation method and provide a stable measurement basis
for subsequent research, indicating that this method can be used as an alternative
reference.

4.3.9 Ablation study

In this study, we performed an ablation analysis of the proposed methods, focusing
on investigating latent space dimensions, because it is an important parameter in our
smcVAE model. We have changed the size of the latent space D based on a set of
values {128, 256, 512, 1024, 2048}, and compared their impact on the image quality on
the test set. The results, presented in Table 4.3, include both the average and standard
deviation for each metric. As D increases, there is a noticeable enhancement in the
quality of the generated tagging results, attributable to the richer data representation.
Table 4.3 shows that for PSNR and SSIM metrics, D = 1024 yielded the highest results,
while for RMSE, D = 2048 achieved the best performance. This suggests that D = 1024



is the preferable choice here.

Latent Dimension (D) PSNR (dB) SSIM RMSE

128d 23.96 ± 4.5 0.71 ± 0.18 0.17 ± 0.09
256d 25.24 ± 4.7 0.74 ± 0.16 0.17 ± 0.08
512d 25.17 ± 4.6 0.76 ± 0.12 0.16 ± 0.06
1024d 26.62 ± 4.6 0.79 ± 0.11 0.16 ± 0.06
2048d 25.94 ± 4.4 0.77 ± 0.13 0.16 ± 0.04

Table 4.3: Ablation study results on the e!ects of the latent space dimension D, with

comparisons in terms of PSNR, SSIM, and RMSE (mean ± standard deviation).

In addition, we have assessed the influence of convolutional layers on the perform-
ance of the smcVAE model. By varying the number of convolutional layers, we explored
the contribution of network depth to model performance, helping to identify the optimal
architecture while also gaining insight into how convolutional layer complexity a!ects
di!erent evaluation metrics. Di!erent numbers of convolutional layers L, {5, 6, 7, 8},
were considered and their impact is investigated on the model performance on the test
data. The outcomes, depicted in Table 4.4, include the mean and standard deviation
for each configuration. The results indicate that the number of convolutional layers L

could a!ects the quality of the generated tagging results. As shown in Table 4.4, for
PSNR and SSIM metrics, L = 7 yields the highest results, while for RMSE, L = 5
achieves the best performance, suggesting L = 7 as the optimal choice in our model.

Convolutional Layers (L) PSNR (dB) SSIM RMSE

5 25.56 ± 4.5 0.71 ± 0.15 0.16 ± 0.04

6 24.16 ± 4.8 0.69 ± 0.14 0.18 ± 0.07
7 26.62 ± 4.6 0.79 ± 0.11 0.17 ± 0.06
8 26.21 ± 4.6 0.76 ± 0.11 0.17 ± 0.07

Table 4.4: Ablation study results on the e!ects of the convolutional layers L, with

comparisons in terms of PSNR, SSIM, and RMSE (mean ± standard deviation).



4.4 Discussions

Strain estimation from tagging images of cardiovascular MRI has been a challenging
problem. In this study, we introduce a deep learning framework for estimating regional
myocardial strain through cine-to-tagging CMR image synthesis. The testing results
prove that the method is feasible. Our findings indicate that the proposed framework
could generate high-quality tagging images for accurately estimating local myocardial
strain, and the reverse is also true. This method holds potential as a reference and eval-
uation tool in practical applications, particularly when conventional cardiac imaging
sequences are used for strain analysis.

Qualitative evaluation verification has obtained visually satisfactory results, while
quantitative evaluations reveal that multi-channel input outperforms single-channel
input. This suggests that the joint input model of original channel information is better
than single-channel missing reconstruction. Even if no original channel information is
provided to the model, our model can recover the data’s joint trajectory learned in the
latent space to reconstruct the missing channel, which cannot be achieved in single-
channel models.

As far as we are aware, this study is the first to synthesise tagging images from
cine CMR and apply them to strain analysis. The smcVAE model can be extended
to generate other more channel sequence information, not just cine and tagging im-
ages. Furthermore, the study is not limited to image synthesis. It demonstrates the
value of synthetic tagging CMR images for quantifying myocardial strain. The model
was trained and validated using data from the UK BioBank database, which o!ers a
homogeneous imaging protocol and primarily consists of healthy participants. This
is a limitation in this current work, as additional heterogeneous datasets would en-
hance the robustness of the model, for example, adding data from di!erent imaging
protocols. Another limitation of our current work is the fixed time frames in the tag-
ging channel (n = 20). After obtaining the generated results, the models perform 2D
myocardial motion and tag tracking, with myocardial deformation constrained to a
2D plane. However, accurately simulating cardiac motion necessitates considering the
three-dimensional cardiac structure and the alignment of cardiac fibers to fully capture
the heart’s true motion. This limitation stems from the availability of clinically ac-
quired imaging data, which primarily consists of 2D acquisitions of tagging CMR with
only three slices. For future work, we plan to extend this research by integrating three



di!erent slices of tagging images to enable 3D analysis. This will involve transitioning
from a 2D convolutional network structure to a 3D convolutional network to account
for more accurate and intricate cardiac motion. Extending this work to 3D may present
challenges, such as heightened computational demands involved in processing 3D data
and implementing 3D networks.

In this work, we have proven that the method is capable of generating tagging CMR
solely from cine CMR, enabling myocardial motion tracking and strain calculations.
Di!erent from the existing tagging image strain estimation method, the method we
proposed e!ectively solved the problem of extensive clinical applications that need to
be obtained by obtaining additional sequences. Currently, myocardial strain estimation
primarily focuses on calculating mean global strain values. In the future, we aim to
extend our method to estimate myocardial segmental strain by assigning segmental
labels to each landmark, following the standardized guidelines of the American Heart
Association [209].

The smcVAE used in the model has great potential for joint analysis of the combined
analysis of the heterogeneous data. It is not limited to image data of di!erent sequences,
but also can be used in clinical population data. This is also our future research
direction. Additionally, the smcVAE model in this work was trained using general
baseline parameters. Future investigations will explore the potential for performance
enhancement through finer-grained parameter tuning strategies.

4.5 Conclusion

In this work, we introduced a deep learning framework designed to jointly learn from
cine CMR and tagging CMR data, enabling the generation of tagging CMR images
solely from cine CMR sequences and the subsequent estimation of myocardial strain.
The purpose of this work is to use only conventional clinical acquisition of cine image
sequences to estimate myocardial motion and estimate the radial and circumferential
strain for the whole cardiac frames in the heart, the strain results should be similar to
the strain results of the quantification of the original tagging CMR. Our experimental
results confirm the e!ectiveness of this approach. This study represents a pioneering
concept in the field, opening a new avenue for research in myocardial strain calculation.



Chapter 5

Synthesising 3D cine CMR images and
corresponding segmentation masks using a latent
di!usion model
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In this chapter, we propose a novel pipeline for the generation of synthetic full spatial
cine CMR images via a latent Denoising DDIM. These synthetic images can be used as
viable alternatives to real data in deep learning model training for downstream cardiac
image analysis tasks such as cardiac segmentation. To demonstrate the e!ectiveness
of this approach, we generated synthetic CMR images along with their corresponding
segmentation masks. We evaluated model performance using a variety of methods,
including generated image fidelity, diversity and calculated the volumes of the gen-
erated segmentation masks and compare it with the real segmentation masks. The
proposed pipeline has the potential to be widely applied to other tasks in various med-
ical imaging modalities. E!ective and e”cient generation of 3D cine cardiac images
with corresponding segmentation masks can supplement real patient datasets and help
reduce the burden of manually annotating images.

5.1 Introduction

Cine CMR [110] is currently considered the gold standard for assessing cardiac func-
tion. However, the widespread use of this imaging technology is limited by the high
operational costs of the image acquisition process. In order to fully realize the utility
of cine CMR in the clinic, it is critical to address challenges related to data collection
and patient factors. In recent years, deep learning has shown great potential in medical
image analysis [210]. However, deep learning also faces some challenges, especially the
need for large datasets during model training. Specifically, the e!ective training of
deep learning models relies on rich and diverse datasets, these datasets need to contain
di!erent physiological or pathological conditions of various patients to ensure that the
models have wide applicability and high accuracy. In addition, the high quality of data
and the accuracy of annotations are also key factors in model performance. Therefore,
in order to fully utilize deep learning technology to improve the clinical utility of cine
CMR, many studies have focused on data collection, model optimization, and other
aspects.

Previous solutions to the limited availability of annotated training data by per-
forming data augmentation using spatial and/or intensity transformations, and using
generative models (e.g., GAN [211] and VAE [212]) to create synthetic data alongside
their annotations. Data augmentation techniques generate diverse training samples by



applying various transformations to existing images, such as rotation, translation, scal-
ing, and adjusting contrast. These transformations can e!ectively increase the amount
and diversity of training data, thereby improving the generalization ability of the model.
GAN and VAE are two major generative models used to generate synthetic data. GAN
can generate high-quality images, but they often su!er from instability issues during
training, which can lead to inconsistent quality of generated synthetic data. In con-
trast, VAE generates synthetic data by mapping data into a continuous latent space and
reconstructing images from it. Although VAE is relatively stable during training, its
main drawback is that it cannot capture complex multimodal data distributions. This
often results in blurry generated images that lack fine-grained anatomical details vis-
ible in real medical images. This ambiguity limits the application of VAE in generating
high-fidelity medical images.

Recently, di!usion models [72] have overcome many of the shortcomings of pre-
vious generative models and have been proposed as the state-of-the-art approach for
generating synthetic data. Di!usion models learn a noise inversion process and then
recover images from randomly sampled noise. This approach has been applied in the
medical field, including brain neuroimaging [213] and histopathology [214]. Although
di!usion models have shown great potential in medical image generation, research on
medical images is still relatively limited. In this paper, we propose a latent DDIM
[215] for synthesising 3D cine CMR and corresponding segmentation masks. In our
opinion, this is an innovative approach which has not been explored in previous stud-
ies. The advantage of DDIM is that it can generate high-quality 3D cine CMR images
and generate corresponding segmentation masks at the same time. These synthesised
images and segmentation masks can be used for model training for various downstream
tasks, such as cardiac structure analysis and functional assessment. By using DDIM,
we can expand the training dataset and solve the problem of limited annotated data,
and improve the performance and generalization ability of deep learning models.

5.2 Methodology

Figure 5.1 shows a schematic diagram of the overall approach, which includes a pre-
trained VAE and a DDIM. The core idea of the approach is to compress high-dimensional
3D cine CMR and its corresponding segmentation mask data into a low-dimensional



Figure 5.1: Schematic diagram of the latent di!usion framework. z0: latent

features of the VAE, zT : standard Gaussian, t: time step, ωω: noise added to observed

data.

latent space, and to capture and generate high-level semantic information in the latent
space. First, the VAE is pre-trained to learn a low-dimensional latent embedding of
the cine CMR images and their corresponding segmentation masks. The encoder of the
VAE maps the high-dimensional 3D cine CMR images and segmentation masks into a
low-dimensional latent space, thereby achieving data compression and feature extrac-
tion. The decoder can reconstruct the original high-dimensional data from the latent
space. This process can e!ectively represent complex 3D image data, and preserve im-
portant anatomical and functional information. After completing the steps of training
the VAE, the DDIM captures high-level semantic information by modeling the data
distribution in the latent space. The working principle of DDIM is to start with ran-
dom noise and gradually reduce the noise through multiple steps of iteration to recover
the samples in the latent space. This process is similar to the back-di!usion process
and aims to generate realistic low-dimensional latent representations. These latent
representations are then converted back to high-dimensional 3D cine CMR images and
corresponding segmentation masks through the VAE decoder.



5.2.1 Latent di!usion model (LDM)

The LDM consists of two parts: the first part is a VAE, which compresses the high-
dimensional data of 3D cine CMR images and their corresponding segmentation masks
into a low-dimensional latent space. The second part is a DDIM, which uses a 3D deep
neural network to learn the back-di!usion process. In the first part VAE, the encoder
is responsible for mapping the high-dimensional 3D cine CMR images and segment-
ation masks into a low-dimensional latent space. This process e!ectively compresses
the data, allowing the complex 3D image data to be represented in a lower dimension
and retaining important structural information. The decoder of VAE is responsible
for reconstructing the high-dimensional original data from the low-dimensional latent
space, thereby achieving data compression and restoration. The second part DDIM, fo-
cuses on generating high-quality image data and its corresponding segmentation masks
through the back-di!usion process. The forward di!usion process is a process of gradu-
ally adding Gaussian random noise until the original data is completely transformed
into pure Gaussian noise. The back-di!usion process is a process of gradually reducing
noise, and recovering the original image and segmentation mask from the noise. DDIM
uses a 3D deep neural network in this process, gradually reducing noise through multi-
step iterations, and finally generating realistic image data. Unlike traditional di!usion
models, a notable feature of DDIM is that its di!usion process does not have to strictly
follow the Markov chain [216]. This means that DDIM can improve the e”ciency of
image generation by reducing the sampling steps and can flexibly adjust the execution
time step of the model. This improvement speeds up the image generation process and
improves the quality and detail fidelity of the generated images.

As the first part of the model, VAE is responsible for perceptual compression and
adopts a network structure of 3D convolution and 3D attention layers. During training,
the loss function of VAE includes the reconstruction L1 loss of the image channel,
the sparse cross entropy loss of the segmentation mask channel, and the Kullback-
Leibler (KL) regularization loss. The L1 loss is used to measure the di!erence between
the original image and the reconstructed image, ensuring that VAE can accurately
reconstruct the input 3D cine CMR image. The sparse cross entropy loss is used to
evaluate the reconstruction quality of the segmentation mask. This part of the loss can
better handle the sparse label problem in the classification task and ensure the accuracy
of the segmentation mask. The KL loss is used to minimize the di!erence between the



latent space and the standard normal distribution. This part of the loss helps VAE learn
a continuous and structured latent space, making the generation process more stable
and controllable. The latent space dimension used is 16 → 16 → 1 → 4. This choice takes
into account the compactness and information content of the latent space, ensuring
that key features are not lost while compressing the data. The hyperparameters for
VAE training are set as follows: epochs = 300, KL weight is 1e↑4, batch size is 2, and
learning rate is 1e↑4. During training, we select the best model based on the minimum
validation loss on the validation set.

DDIM

The di!usion process gradually transforms the original data into pure Gaussian
noise by gradually adding noise. This process can be described by the following formula:

q(xt | xt↑1) = N(xt;
⇒

φtxt↑1, (1 ↑ φt)I) (5.1)

where xt represents the data at the t step, φt is a scaling factor less than 1, I is the
unit matrix.

The reverse di!usion process starts from the noise and restores the original data
by gradually removing noise. The traditional di!usion model uses Markov chain for
denoising, while DDIM improves e”ciency by simplifying this process. The reverse
process can be described by the following formula:

pω(xt↑1 | xt) = N(xt↑1; µω(xt, t), ς2
t I) (5.2)

where µω(xt, t) is the predicted mean based on the current data and time step, and
ςt is the standard deviation of the noise.

DDIM proposes a non-Markov chain denoising method to generate samples through
a deterministic denoising process. The formula is as follows:

xt↑1 = ⇒
φt↑1

(
xt ↑

⇒
1 ↑ φtωω(xt, t)

⇒
φt

)

+
√

1 ↑ φt↑1ωω(xt, t) (5.3)

where ωω(xt, t) is the output of the noise prediction network, which represents the
noise component in the current data xt at the time step t.

The latent space representation of VAE (once trained) is used as the input for
training the DDIM. The noise prediction network in the DDIM uses a 3D U-net with



self-attention mechanism and is trained by minimising a reconstruction L1 loss, evalu-
ated as,

LDDIM := Ez0,t,ϖ→N(0,1)[≃ ω ↑ ωω(zt, t) ≃1] (5.4)

where zt is the result of applying the forward di!usion process to the latent space
obtained from the pre-trained VAE. The forward di!usion process gradually transforms
the initial latent representation into pure Gaussian noise by gradually adding noise.
In the backward di!usion process, the goal is to start with pure Gaussian noise and
gradually denoise it to recover the initial latent representation z0. The output of the
backward di!usion process z0 is generated by a 3D U-net noise prediction network,
which predicts the noise present in the current data and denoises it accordingly. The
denoised latent representation z0 forms the input of the VAE decoder to reconstruct
the original high-dimensional data. The bottom of Figure 5.1 shows this process, where
the prediction network and the decoder are jointly trained to simulate the backward
di!usion process. The backward di!usion process is trained with batch size of 32,
di!usion time step of 1000, learning rate of 1e↑5, beta of the ADAM optimizer of (0.9,
0.99), and total of 10,000 training iterations.

The VAE decoder converts the denoised latent representation z0 back into a high-
dimensional 3D image and segmentation mask, thereby achieving high-fidelity recon-
struction of the original data. After training, the back-di!usion process is sampled
to generate the new latent representation. The latent representation is processed by
the VAE decoder to generate the synthetic 3D cine CMR image and its correspond-
ing segmentation mask. This process generates high-quality image data, and provides
accurate segmentation information at the same time, which helps model training and
performance improvement of various downstream tasks.

5.3 Experiments and Results

5.3.1 Dataset and Data Preprocessing

The experimental data comes from 927 SAX cine CMR image sequences from the UK
Biobank, including 731 paired images and segmentation masks for training, and 196
segmentation masks for testing. The segmentation masks are based on the method of
[217], with automatic segmentation at ED and ES, and label annotations for LV, LV



Myo, and RV. These SAX image stacks usually consist of a variable number of image
slices arranged along the axial direction.

To ensure data consistency and e”cient model training, all training images were
preprocessed. First, the region of interest (ROI) was selected on the images to ensure
that each image contained the key parts of the heart. Then, the images were cropped
to the same size, i.e., 128 → 128 → 10. This fixed size standardized the data and sim-
plified the subsequent model training process. To make the intensity distribution of
the images consistent, the images were intensity normalized and adjusted to the range
[0, 1]. During training, the input data is of size 128 → 128 → 10 → 2, which contains
images and corresponding segmentation masks. These data are stacked in the channel
dimension so that the model can process both image and segmentation information
simultaneously.

5.3.2 Experimental Setting

Using the trained LDM, we first generated 1000 3D cine CMR images and their cor-
responding segmentation masks. To fully evaluate the performance of the generated
images and segmentation masks, we used both quantitative and qualitative methods
and compared them with real data from the UK Biobank. To quantitatively evalu-
ate and benchmark our proposed LDM, we compared it with two baseline generative
methods: 3D VAE and 3D least squares generative adversarial network (3D LSGAN)
[218].

Specifically, for the 3D VAE, we implemented our model architecture following the
guidelines provided by [219], adapting it explicitly for handling 3D cardiac cine CMR
data. The encoder and decoder utilized 3D convolutional and transposed convolutional
layers, respectively. The loss function was composed of the reconstruction loss (mean
squared error) and a KL-divergence term. The hyperparameters (such as latent di-
mension size, learning rate, and batch size) were selected through cross-validation and
matched those used for training our proposed LDM to ensure fair comparison.

For the 3D LSGAN, we adapted and extended an existing publicly available imple-
mentation from a third-party source, specifically the PyTorch implementation released
by Xudong Mao et al. on GitHub (https://github.com/xudonmao/LSGAN). This code-
base was originally designed for 2D image generation tasks, and we explicitly modi-
fied it to support 3D convolutional operations suitable for cine CMR imaging. This

https://github.com/xudonmao/LSGAN


included adjustments to convolutional layers, batch normalization layers, and optim-
ization routines to ensure compatibility and e!ective training on our 3D cardiac cine
datasets.

5.3.3 Qualitative results

Figure 5.2 shows examples of real and generated images for di!erent slices of di!erent
real and synthetic objects, and their corresponding segmentation masks, respectively.
It can be observed that the synthetic images generated by our model achieve a good
level of anatomical fidelity. These synthetic images have good quality and visually
realistic appearance, and their corresponding segmentation masks also represent the
structures of interest.

In addition, Figure 5.2 also shows the diversity of generated images and segment-
ation masks in terms of ventricular shape and appearance. This diversity shows that
the model can generate a single type of anatomical structure and also cover the dif-
ferences between di!erent individuals. The generated synthetic images are consistent
with the real images in terms of grayscale level, texture details, and edge sharpness.
By comparison, it can be found that the myocardium and cardiac chamber structures
in the generated images are visually almost the same as the real images. This proves
the accuracy and fidelity of the model in data generation and also demonstrates its
potential application value in medical image analysis.

5.3.4 Quantitative results

In addition to visual inspection, we also performed quantitative evaluation of the gen-
erated synthetic data. We evaluated the performance of VAE and DDIM in our method
separately to fully understand the performance of the model in generating high-quality
images and segmentation masks. For the VAE, we separately calculated the SSIM and
PSNR for the reconstructed images of the test set, as well as the Dice coe”cient for the
corresponding segmentation masks. These metrics are evaluated to measure the impact
of image quality degradation caused by VAE, as this will a!ect the generation perform-
ance of DDIM. By calculating these metrics, the SSIM of the VAE reconstructed image
is 0.78 ± 0.03, the PSNR is 23.94 ± 2.76, and the Dice coe”cient of the corresponding
segmentation mask is 0.91 ± 0.01.



Figure 5.2: Comparison of real images and generated results, examples of full spatial

images of di!erent subjects and corresponding segmentation masks.



Table 5.1: Results of quantitative evaluation of FID, FRD, IP, IR, MS-SSIM and 4-G-
R SSIM on real test data, comparison on synthetic data generated using 3D VAE, 3D
LSGAN and our model.

Method FID⇓ FRD⇓ IP ⇔ IR⇔ MS-SSIM⇓ 4-G-R SSIM⇓
3D VAE 32.74 3.21 0.76 0.74 0.78 0.81
3D LSGAN 48.53 3.47 0.51 0.43 0.91 0.88
Ours 28.37 2.92 0.86 0.76 0.67 0.37

Dice = 2|A ⇑ B|
|A| + |B| (5.5)

To comprehensively evaluate the overall generative performance of the DDIM model,
we calculate several metrics: Fréchet Inception Distance (FID) scores [220], Fréchet
ResNet Distance (FRD) scores [221], Improved Precision (IP), Improved Recall (IR)
[222], multiscale structural similarity metric (MS-SSIM) [223] and Four-Grid-Recursive
Structural Similarity Index metric (4-G-R SSIM). Quantitative evaluation of these met-
rics provides a comprehensive understanding of the model’s generative performance.
The performance scores of the models are shown in Table 5.1.

The FID score measures the similarity between the generated image and the real
image in the feature space, using the pre-trained Inception-V3 [224] as the feature
extractor. The lower FID score indicates the higher perceived image quality generated.

FID(X, Y ) = ≃µX ↑ µY ≃2 + Tr(#X + #Y ↑ 2(#X#Y )1/2) (5.6)

where X and Y denote the feature space representation of the generated image and
the real image, respectively. µX and µY denote the mean vector of the generated image
and the real image in the feature space. #X and #Y represent the covariance matrices
of the generated image and the real image in the feature space, respectively.

FRD is similar to FID, but is calculated using the pre-trained ResNet50 as the fea-
ture extractor, and the similarity judgment between real images and generated images
is more consistent with humans. The lower FRD score indicates that the generated
image is more similar to the real image. IP and IR evaluate the quality and coverage of
measured image generated samples by forming explicit non-parametric representations
of real data and generated data manifolds, IP represents the probability that the gener-
ated image falls within the support range of the real image manifold, and IR represents
the probability that the real image belongs to the generated image manifold. MS-SSIM



and 4-G-R SSIM are used to evaluate the structural similarity of the generated images
at di!erent scales. They are calculated by taking the average of the generation results.
The lower the MS-SSIM score, the better the diversity of the generated images.

MS-SSIM(x, y) =




M

j=1
SSIMj(x, y)




1/M

(5.7)

Compared with the images generated by the competing methods, the MS-SSIM
and 4-G-R SSIM scores of the images generated by our model are lower, indicating
that the generated image diversity is better. Additionally, to compare the generated
segmentation masks and the real segmentation masks, we use box plots to visualize the
volume di!erences of LV, Myo and RV, as shown in Figure 5.3. The generated data n

are 1000, 2000, and 4000.
In addition, to visualize the distribution of synthetic data and real training and

test datasets, we used t-distributed Stochastic Neighbor Embedding (t-SNE), which is
a method of dimensionality reduction and visualization for projecting high-dimensional
data into a low-dimensional space. Figure 5.4 shows the visualization of the dataset
distribution after t-SNE.

5.4 Discussions

Data augmentation is an important part of training robust machine learning models
and is also widely used in the field of medical imaging. Traditional data augmentation
techniques, such as rotation, flipping, and scaling, can increase data diversity through
simple image transformations, thereby improving the performance and robustness of
the model. However, these methods have limitations when dealing with complex data
patterns. In contrast, generative models can generate realistic new data by learning the
inherent patterns of the data, thereby e!ectively improving the generalization ability
and robustness of the model.

In the field of medical imaging, the application of generative models has greatly ex-
panded the possibilities of data augmentation. For example, generative models can gen-
erate high-quality medical images and their corresponding annotations, substantially
reducing the workload and human errors that rely on manual annotation [225][226]. At
the same time, these generated data can also be used to enrich real training datasets
and further improve the performance of the model in various downstream tasks, such



Figure 5.3: Box plot for real and generated segmentation masks of volumes for the LV
(LVV), LV Myo (LVM) and RV (RVV) with n = 1000, 2000 and 4000, respectively.



Figure 5.4: t-SNE for the real and generated synthetic images with n = 731, 1000,
2000, and 4000, respectively.



as medical image segmentation and registration.
In this study, we use generative models to simultaneously generate medical images

and corresponding cardiac segmentation masks. The generated data can reduce the
burden of manual annotation, reduce subjective errors and variability, and also e!ect-
ively enhance the diversity of training data, thereby improving the performance of the
model in cardiac image segmentation and other related tasks [227][228].

Due to the computational complexity of analysing high-dimensional data, we use
VAE in the first part of the model to learn low-dimensional representations of the
data. This method can e!ectively reduce the computational complexity by encoding
high-dimensional data into a low-dimensional latent space and then decoding it back
to high-dimensional data from the latent space. However, this process inevitably leads
to the loss of image details and a!ects the quality of the model generation results.

Recently, some studies have explored the use of LDM to generate medical images,
including brain images, echocardiograms, and histopathology images [229]. The LDM
can generate higher-quality images by gradually adding noise to the image and learning
the denoising process. In this study, we use 3D cine CMR images for experiments. Com-
pared with traditional methods such as 3D VAE and 3D LSGAN, our method achieves
improvements in generation performance. Specifically, our method can more accurately
capture the details of cardiac images, and the generated images have improvements in
visual quality and structural consistency.

Our research shows that the use of advanced generative model technology can ef-
fectively make up for the shortcomings of traditional methods in detail preservation and
generation quality. Through comparative experiments, we verified the superiority of
the proposed method in generating 3D CMR images. This provides a new method for
the generation of cardiac medical images, and provides higher quality data support for
related downstream tasks (such as cardiac image segmentation and diagnosis), which
helps to improve the performance of automated medical image analysis.

5.5 Conclusion

In this study, LDM was used to achieve e”cient and high-quality simultaneous gener-
ation of cine CMR images and their corresponding biventricular segmentation masks.
Our method outperforms traditional GAN or VAE methods in terms of the diversity
and fidelity of synthesised cine CMR images and their segmentation masks. LDM can



generate imaging data with high diversity, covering a wide range of cardiac structural
variability, which is essential for training more robust and generalizable machine learn-
ing models. In addition, our method also has the ability to simultaneously generate
images and their corresponding segmentation masks, which could reduces the workload
and errors of manual annotation and improves the consistency and accuracy of data
annotation. The generated high-quality, annotated CMR image dataset can be widely
used in various medical image analysis tasks, including but not limited to cardiac
structure segmentation, disease diagnosis, treatment e!ect evaluation, etc. Overall,
this study demonstrates the great potential of LDM in the field of cardiac image gen-
eration. By generating high-quality and diverse CMR images and their segmentation
masks, our method provides strong data support for medical image analysis, helps im-
prove the accuracy and e”ciency of automated analysis, and promotes the development
and application of medical imaging technology.



Chapter 6

Conditional 4D spatio-temporal latent di!usion
generative model for cine CMR imaging synthesis
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Generating synthetic CMR images that maintain clinical relevance and reflect real sub-
ject demographics is essential for advancing medical image analysis and computational
modeling. In addition, exploring the relationship between cardiac images and non-
imaging clinical factors such as demographic information and diseases is also a key
issue in cardiac image analysis. In this chapter, we propose a conditional latent di!u-
sion generative model that aims to generate 4D spatio-temporal cine CMR images by
incorporating non-imaging demographic and clinical data such as age, gender, blood
pressure, and lifestyle factors as conditional variables. Our model embeds this inform-
ation into the latent space using a conditional encoder to guide the generation process.
We evaluate the model using various structural similarity and clinical measures, and
the results show that it is able to generate realistic and diverse cine CMR images.
The model achieves high generation performance, and the synthetic images are closely
related to the real data distribution.

6.1 Introduction

Cardiac imaging is essential for diagnosing and managing cardiovascular diseases [230][231].
For example, cine CMR imaging can reveal the anatomy of the cardiac and its dynamic
contraction and relaxation patterns [232][33]. Generating CMR images is essential for
conducting computer simulation experiments and model training for medical image
analysis. The generated data should capture su”cient variability while maintaining
plausibility and reflect the clinical characteristics and demographics of the subjects ob-
served in real data. In addition to anatomical details, the heart’s dynamic temporal
motion provides valuable information for clinical diagnosis and treatment management
decisions [25][233]. Developing computational tools to link spatio-temporal imaging
features with demographic and clinical data is crucial. Therefore, it is crucial to syn-
thesise images suitable for specific goals conditionally. This study aims to enhance
our understanding of spatio-temporal cardiac structure and its relationship with demo-
graphic and clinical factors through generative models. We develop a conditional LDM
for generating cine CMR images. By providing demographic information and clin-
ical factors as condition variables, our model generates 4D spatio-temporal cine CMR
images, which are realistic and align with the ground truth distribution.

Recently, great progress has been made in the field of conditional generative mod-
els, largely due to the development of deep learning techniques, including conditional



GAN [234], conditional VAE [235], flow-based model [236][237], and conditional dif-
fusion model [238][239]. These deep learning methods have performed well in e”-
ciently approximating the underlying conditional distribution and generating high-
quality samples. The application and improvement of these conditional generative
models have promoted many developments in di!erent generation tasks. For example,
in the image-to-image translation task, conditional generative models can transform one
type of image into another type of image. For example, conditional GANs are widely
used to transform one type of image into another form of the image [240][241]. In the
task of generating medical images, conditional generative models can generate new CT
or MRI images from existing image data [242][243]. Additionally, conditional generative
models in text-to-image synthesis can generate images from text descriptions, greatly
expanding the application scenarios of image generation [244][245].

In medical imaging, there has been a need for research focused on incorporating
non-imaging demographic information and clinical variables into the conditional im-
age synthesis process. Wu et al. [246] introduced a class conditional GAN model to
synthesise enhanced mammography datasets. However, GAN-based models are known
to be prone to mode collapse problems, and the generated images may lack su”cient
diversity to capture the full range of anatomical variations present in real datasets.
Jung et al. [247] proposed a conditional cGAN that can synthesise MR images of dif-
ferent stages of Alzheimer’s disease (AD) (i.e., normal, mild cognitive impairment, and
AD). While GANs are e!ective in generating disease progression images, it is often
di”cult to have fine-grained control over the synthesised features, limiting their clin-
ical interpretability. Xia et al. [248] proposed a model to synthesise brain MRI based
on age and AD disease stage without relying on longitudinal data. However, the lack
of longitudinal consistency may result in unrealistic temporal progression patterns.
Bi” et al. [249] proposed a Ladder VAE (LVAE) generative model for shape analysis,
but VAE tends to produce blurrier images due to the inherent trade-o! between re-
construction fidelity and latent space regularization. Segmentation and classification
results validated the accuracy of the generated images, but the method did not expli-
citly incorporate clinical variables beyond anatomy. Reynaud et al. [250] proposed a
Deep ARtificial Twin-Architecture GeNerAtive Networks (D’ARTAGNAN) model to
synthesise 3D echocardiographic videos conditioned on LV EF and image. Although
this approach leverages both image and clinical data, it is still limited in its ability



to model high-dimensional spatio-temporal dependencies. Campello et al. [251] de-
veloped a conditional GAN to synthesise cardiac images of di!erent ages. Amirrajab
et al. [252] introduced a synthetic framework to synthesise CMR images with variable
anatomical and imaging features, but the scalability of this approach to real-world data-
sets with high inter-subject variability remains unclear. Qiao et al. [253] introduced a
conditional VAE-based generative model to capture the 4D spatio-temporal anatomy
of the heart and its interaction with clinical variables, but the images generated by
VAE typically have lower spatial resolution and finer anatomical details compared to
the di!usion model. While these studies o!er valuable insights into conditional medical
image synthesis, research generating spatio-temporal cardiac images based on numerous
demographic and clinical factors remains limited.

While these studies provide valuable insights into conditional medical image syn-
thesis, they typically rely on GANs or VAEs and thus have inherent limitations in
image quality, diversity, and interpretability. Furthermore, existing spatio-temporal
cardiac image generation methods remain limited in their ability to integrate numerous
demographic and clinical factors in a coherent and high-fidelity manner. To address
these challenges, we proposed a conditional LDM that generates realistic cine CMR im-
ages based on non-imaging demographic information and clinical variables such as age,
gender, height, weight, smoking status, alcohol status, and systolic and diastolic blood
pressure. The model adopts a conditional latent di!usion approach to learn the latent
representation in the low-dimensional feature space of cardiac images, and adopts a
conditional encoder to embed the demographic and clinical condition information into
the conditional latent vector, which is input into the model as guidance information
during the di!usion process. The proposed model shows satisfactory variety and ac-
curacy in image generation, evaluated through various similarity metrics, structural
overlap, surface distance measurements, and clinical parameters such as ventricular
volume and mass. The key contributions of this study can be outlined as follows:

• We introduce a 4D spatio-temporal conditional latent di!usion generative model
for cine CMR images that simultaneously considers spatial and temporal vari-
ations during the cardiac cycle.

• We train the model using both image-based and non-image-based demographic
and clinical information, allowing it to generate cardiac image sequences based
on various controllable variables.



Figure 6.1: Schematic diagram of the conditional latent di!usion framework.

z0: latent features of the autoencoder, zT : standard Gaussian, t: time step, ωω: noise
added to observed data.

• The low-dimensional feature space extracted by the pre-trained autoencoder has a
good balance between complexity and detail preservation, and the cross-attention
layer introduced in the di!usion model is transformed into a powerful generator
with controllable conditions to achieve high-resolution synthesis.

• We show that the model can synthesise highly realistic and varied cardiac MRI
sequences that closely align with the ground truth data distribution.

6.2 Methodology

Although di!usion models have demonstrated state-of-the-art performance in image
data synthesis and other areas [72][87], generating high-resolution images with these
models requires costly function evaluations in pixel space, which is costly to infer
and results in huge demands on computing time and computing resources. The LDM
model [71] was proposed to address these shortcomings. The LDM performs a di!usion
process on a compressed low-dimensional latent space, saving computing resources and
speeding up inference while ensuring synthesis quality. The LDM is divided into a com-
pression learning stage and a generation learning stage. The compression learning stage
obtains a compressed image space through perceptual learning of the auto-encoding
model, which greatly reduces the computational complexity. The proposed conditional
LDM uses non-imaging demographic information and clinical data as conditional in-
puts to generate 4D spatio-temporal CMR images. Figure 6.1 illustrates the overall
framework.



6.2.1 LDMs

Di!usion Models are probabilistic frameworks designed to understand and replicate a
sample distribution p(x). They achieve this by incrementally removing noise from a
variable that is initially normally distributed. This process mirrors training the reverse
sequence of a predefined Markov chain of length T . For the task of image generation,
the best-performing models [69][254] use a modified variational lower bound on p(x),
which closely resembles noise reduction score matching [255]. Essentially, these model
functions can be viewed as a sequence of equally weighted denoising autoencoders,
denoted as ωω(xt, t) for t = 1, 2, ..., T , here xt represents a noisy instance of the original
input x. The overall target function, which guides the training of these models is
simplified as follows:

LDM = Ex,ϖ→N(0,1),t
[
≃ω ↑ ωω(xt, t)≃2

2

]
, (6.1)

where t is uniformly selected from {1, ..., T}.
The generative model for the latent representation consists of encoder E and decoder

D. The encoder captures an e”cient low-dimensional latent space. This space abstracts
high-frequency, imperceptible details and is better suited for likelihood-based generative
models over high-dimensional pixel space. This allows the model to focus on the most
relevant and meaningful aspects of the data, and improving computational e”ciency.
The overall objective function can be simplified to:

LLDM := EE(x),ϖ→N(0,1),t
[
≃ω ↑ ωω(zt, t)≃2

2

]
. (6.2)

The model’s neural backbone is implemented using a time-conditional UNet [256]. The
time step t is modeled by the sinusoidal embedding method, which maps the time step
t to a fixed frequency sine and cosine function space to provide a stable and periodic
time representation. The method is defined as follows:

TimeEmbedding(t) = [sin(↽t), cos(↽t)] (6.3)

where ↽ is a set of predefined frequency parameters, which usually grows exponen-
tially to ensure that di!erent time steps have su”cient distinction in the embedding
space. The sinusoidal embedding method is similar to Transformer Positional Encod-
ing [257], which can provide rich temporal information to the model without relying on



additional trainable parameters. This design choice allows the model to leverage tem-
poral information e!ectively. The forward process is predefined and fixed, the latent
variable zt can be e”ciently derived from the encoder E, and samples from the prior
distribution p(z), the decoder D can map these back into the image space in one pass.

6.2.2 Conditioning Mechanisms

Like other generative models [258][235], di!usion models can model conditional distri-
butions in the form of p(z|y). This is achieved using a conditional denoising autoencoder
ωω(zt, t, y), which enables control over the synthesis process via various conditional in-
puts y, like text descriptions [244], semantic labels [259], or other tasks involving image
translation [240]. To enhance the flexibility of the di!usion model as a conditional
image generator, its UNet backbone is enhanced by a cross-attention mechanism [260].
The cross-attention mechanism plays a crucial role in integrating conditional informa-
tion y into the UNet backbone of the di!usion model. It enables the model to select-
ively focus on relevant aspects of the conditioning signal while generating images. The
fundamental idea of cross-attention is to establish relationships between the features
extracted from the noisy image zt and the conditioning information y through learned
transformations.

This enhancement is particularly e!ective for developing attention-based models
that handle various input modalities [261]. For preprocessing inputs y from di!erent
modalities, introduce a domain-specific encoder ⇀ω. This encoder maps y into an in-
termediate form ⇀ω(y) ↖ RM↘dε , which is then passed to the intermediate layers of
the UNet through a cross-attention mechanism. The cross attention mechanism is
implemented as follows, using the standard scaled dot-product attention formula:

Attention(Q, K, V ) = softmax
(

QKT

⇒
d

)

· V (6.4)

where Q = W (i)
Q

· ↼i(zt), represents the feature embeddings from the intermediate
layers of the UNet, which capture the current state of the noisy image at time step
t. K = W (i)

K
· ⇀ω(y), V = W (i)

V
· ⇀ω(y), K and V are derived from the conditional

information y, processed through a domain-specific encoder ⇀ω. ↼i(zt) ↖ RN↘d
i
ϑ repres-

ents a (flattened) intermediate feature of the UNet implementing ωω, and the matrices
W (i)

V
↖ Rd↘d

i
ϑ , W (i)

Q
↖ Rd↘dε , and W (i)

K
↖ Rd↘dε are trainable projection matrices that

map features to the appropriate dimensionality for attention computation [260].



The cross-attention mechanism enables the model to integrate conditioning inform-
ation into the image generation process dynamically. The query matrix Q represents
the current state of the image being denoised, while the key matrix K contains relevant
information from the conditioning signal y. The attention scores QK

T

↓
d

determine the
influence of each conditioning feature on the image, and the weighted sum of values V

provides updated features that guide the generation process. This mechanism allows
the model to modulate its focus based on di!erent conditioning inputs. For instance,
if the conditioning input is text, the attention mechanism aligns textual features with
spatial regions in the image to ensure semantic consistency. If the conditioning input
is a segmentation mask, it enforces structural coherence, and if the conditioning input
is another image, it facilitates style or content transfer.

Using image-conditioning pairs, the conditional LDM via:

LLDM := EE(x),y,ϖ→N(0,1),t
[
≃ω ↑ ωω(zt, t, ⇀ω(y))≃2

2

]
(6.5)

In this process, both the domain-specific encoder ⇀ω and the denoising autoencoder ωω

are jointly optimized according to Equation 6.4. This conditioning mechanism is highly
flexible, allowing ⇀ω to be parameterized by specialized domain models. For instance,
when y represents text prompts, ⇀ω can be implemented using unmasked transformers
[260]. This adaptability ensures that the model can e!ectively handle various types of
input data, enhancing its versatility and performance in di!erent tasks.

The generative model can achieve conditional spatio-temporal sequence generation
in the inference phase. The model is conditioned solely on demographic information
and clinical variables c, without requiring any image data as input. The sampling
process first samples the latent variable p(z) from a simple prior distribution (usually
a Gaussian distribution) and connects it with the conditional latent code zc. Based
on the latent variable z and the conditional information c, a di!usion model is used
to generate data. The di!usion model gradually transforms the initial noise into the
required data through a series of inverse di!usion processes.

6.2.3 Evaluation

To assess the conditional LDM, we employ quantitative evaluation metrics to evalu-
ate the results in addition to visual inspection and utilize clinical metrics to evaluate
the similarity of distributions. Additionally, we evaluate the performance of VAE and
conditional DDIM separately to gain a comprehensive understanding of the model’s



ability to generate high-quality results. For the autoencoder, we first calculate SSIM
and PSNR for the reconstructed test set images, as well as the Dice coe”cient, Haus-
dor! distance (HD), and average symmetric surface distance (ASSD) for the corres-
ponding segmentation masks. These metrics are evaluated to measure the impact of
image quality degradation caused by the autoencoder, as this will a!ect the generation
performance of the conditional LDM.

To comprehensively assess the generative performance of the conditional LDM, we
calculated the following important indicators: including FID score, FRD score, IP and
IR, maximum mean discrepancy (MMD), and MS-SSIM and 4-G-R SSIM. Given two
sets of sample sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}, the empirical MMD
is defined as:

MMD2(X, Y ) = 1
n(n ↑ 1)

∑

i≃=j

k(xi, xj)+ 1
m(m ↑ 1)

∑

i≃=j

k(yi, yj)↑ 2
nm

∑

i,j

k(xi, yj) (6.6)

where k is a kernel function, commonly the Gaussian kernel: k(x, y) = exp
(
↑⇐x↑y⇐2

2ϑ2

)
.

Secondly, we also extracted five imaging phenotypes from the generated images
to further evaluate the performance of the model: including LVM, left ventricular
and right ventricular end-diastolic volume (LVEDV and RVEDV), left ventricular and
right ventricular end-systolic volume (LVESV and RVESV). These phenotype data
were compared with real data sharing the same demographic information and clinical
variables to evaluate the authenticity and accuracy of the generated data.

Additionally, we examined the correlation between these phenotypes and condi-
tional variables to verify the plausibility and consistency of the generated data under
di!erent population characteristics [262]. We calculated the distribution of imaging
phenotypes relative to demographic information and clinical conditions, and compared
the generated data with real data. Qualitative results were compared using kernel
density plots, and quantitative results were compared using KL divergence [263] and
Wasserstein distance (WD) [264]. KL divergence is an information theory metric that
quantifies the di!erence between two probability mass functions. Specifically, KL di-
vergence measures the amount of information lost by encoding data using distribution
P under the assumption that distribution Q is the actual distribution. KL divergence
can be expressed as:

DKL(P ≃ Q) =
∑

x↗X

P (x) log P (x)
Q(x) (6.7)



where X is the set of all possible events, P (x) and Q(x) represent the probability
mass functions of event x under distributions P and Q, respectively. For continuous
distributions, KL divergence is calculated as:

DKL(P ≃ Q) =
 ⇒

↑⇒
p(x) log p(x)

q(x) dx (6.8)

WD measures the distance between two probability distributions. It represents the
least e!ort required to convert one distribution into another, where work is quantified
by the mass transfer from u to v multiplied by the distance it is moved. The formula
for the WD is as follows:

W (P, Q) = inf
ς→!(P,Q)

E(u,v)→ς [≃u ↑ v≃] (6.9)

where $(P, Q) represents the set of all joint distributions with marginal distributions
P and Q respectively. ⇁ is one of these joint distributions. E is the expected value
operator. ≃u ↑ v≃ is the distance between u and v.

6.3 Experiments and Results
6.3.1 Dataset

We performed the experiments using 415 SAX cine CMR sequences from the UK
Biobank study. Each scan consists of 50 time frames, covering a complete cardiac
cycle, and each frame comprises a stack of 10 SAX image slices along the heart’s ver-
tical axis. Therefore, each subject’s scan forms a 4D image volume with dimensions of
(x, y, z, t), where x and y denote the spatial resolution of each 2D slice, z indicates the
number of slices (i.e., spatial depth), and t represents time points across the cardiac
cycle. In other words, a single 4D image stack can be interpreted as 50 time frames of
3D image volumes: each composed of multiple 2D slices, providing rich spatio-temporal
information for learning.

All training images were cropped to a fixed spatial resolution of 128→128, and voxel
intensity values were normalized to the range [0, 1]. The entire dataset was randomly
split into 199 scans for training, 40 for validation, and 176 for testing. To leverage
the full 4D nature of the data, we adopted a 3D CNN architecture, which applies
convolutional filters in three spatial dimensions (x, y, z) at each time point. Compared
to traditional 2D CNNs, which operate on single image slices, 3D CNNs can capture



volumetric anatomical context within each 3D frame. Moreover, by processing all 50
time points sequentially, the model can learn the dynamic features of the beating heart.

Regarding demographic and clinical data, all participants were healthy volunteers,
including 223 females and 192 males, aged between 40-69 years, with weights ranging
from 49 to 116 kg and heights from 147 to 195 cm. Smoking State (SS) and Alcohol
State (AS) included 0: Never, 1: Previous, and 2: Current. Systolic blood pressure
(SBP) ranged from 95 to 191 mm Hg, and diastolic blood pressure (DBP) was between
60-106 mm Hg.

6.3.2 Experimental Setting

The model utilizes PyTorch [202] for its implementation. The autoencoder part trans-
forms high-dimensional data into a reduced latent representation. The encoder features
3D convolutional layer and 3D attention layer network structure, outputting the latent
code z0. The decoder also consists of 3D convolutional and attention layers network
structure. Both encoder and decoder utilize convolutional and transposed convolutional
layers with a kernel size of 3. The training loss includes the image reconstruction L1
and KL regularization loss used to align the latent space with a standard normal distri-
bution. The latent space dimensions used are 16→16→1→50. The hyperparameters for
network training are: epochs = 300, KL weight is 1e ↑ 6, batch size is 2, and learning
rate is 1e ↑ 4. We select the best model based on the minimum validation loss.

After the autoencoder part is trained, it is used as the input for training the con-
ditional DDIM. The conditional mapping network is built using MLP and outputs the
latent code zc for the input condition c. The noise prediction network uses the 3D
U-net with a self-attention mechanism and is trained by minimizing the reconstruction
L1 loss. zt is the result of applying the forward di!usion process to the latent space
obtained from the pre-trained autoencoder. The backward di!usion process outputs
z0, which is the output from the 3D U-net noise prediction network. The denoised lat-
ent representation z0 constitutes the input to the decoder. The back-di!usion process
employs a batch size of 64 during training, a di!usion time step of 1000, a learning
rate of 1e ↑ 5, and a beta of (0.9, 0.99) for the ADAM optimizer, for a total of 50,000
training iterations. The latent space generated by the back-di!usion process is recon-
structed by the decoder to generate spatio-temporal cine CMR images. After training,
the back-di!usion process is sampled to generate the latent representation and used to



create the synthetic images. The model is completed on the NVIDIA A100 DGX.
For comparison, we use several baseline comparison methods. Methods for condi-

tional generation applied in other domains are extended from 2D image synthesis to 4D
data modeling. CGAN: A conditional adaptation of Generative Adversarial Networks
(GANs) [258]. CVAE: A conditional generative model CVAE [64] where the condi-
tional information is concatenated with the image in both the encoder and decoder.
CHeart [265]: A model for conditional generation of 3D-t cardiac anatomy, for com-
parison, we using cardiac images as input instead of cardiac segmentation masks while
maintaining the same model structure.

6.3.3 Qualitative evaluation

Evaluation of generative models is a well-known challenge since ground truth data is
often inaccessible. We first qualitatively analyse the obtained results, with examples of
real and synthetic images shown in Figure 6.2. We conducted a qualitative evaluation
through visual inspection, without external expert consultation. The synthetic images
exhibit high anatomical fidelity, preserving key structural features such as the ventricles’
shape and positioning. Additionally, they demonstrate high resolution and contrast,
with few artifacts, ensuring visual clarity. The overall appearance closely resembles real
data, confirming their visual realism. In addition, the generated images are diverse in
terms of the heart and appearance of the ventricles.

6.3.4 Quantitative evaluation

In addition to visual inspection, we also quantitatively evaluate the generated synthetic
data to assess how close between the generated and real data. After training, the model
generates new full spatio-temporal cine CMR synthetic images taking demographic in-
formation and clinical variables being the sole input. Given the randomness of LDM
generation, multiple cardiac image sequences can be generated for di!erent combin-
ations of input conditions of gender, age, height, weight, smoke and alcohol status,
systolic and diastolic blood pressure. We select 50 random samples from the Gaussian
distribution and generate 50 synthetic cardiac cine CMR image sequences for that set
of input conditions accordingly.

We evaluate the performance of VAE and DDIM in our methods separately. Figure
6.3 shows an example comparison of myocardial segmentation masks for VAE test set



Figure 6.2: Schematic diagram of examples of image generation. Some examples
include the ED frame at time t = 0 to t = 50. The first three rows are examples of
images from real data, and the last three rows are examples of images from synthetic
data.



Figure 6.3: Schematic diagram of comparison of myocardial segmentation

masks for test set images and reconstructed images after VAE.

Table 6.1: Results of quantitative evaluation of the image fidelity and diversity of
synthetic data generated using CGAN, CVAE, CHeart, and our model.

Method FID⇑ FRD⇑ IP⇓ IR⇓ MMD⇑ MS-SSIM⇓ 4-G-R SSIM⇓

CGAN [258] 43.73 ± 3.24 11.49 ± 0.75 0.79 ± 0.05 0.72 ± 0.03 0.26 ± 0.03 0.56 ± 0.04 0.33 ± 0.03
CVAE[64] 33.60 ± 2.46 7.23 ± 0.54 0.75 ± 0.06 0.74 ± 0.03 0.19 ± 0.04 0.59 ± 0.04 0.36 ± 0.03
CHeart [253] 7.74 ± 0.85 6.64 ± 0.64 0.84 ± 0.03 0.78 ± 0.02 0.23 ± 0.02 0.61 ± 0.03 0.36 ± 0.02
Ours 7.01 ± 0.69 6.17 ± 0.57 0.90 ± 0.03 0.80 ± 0.02 0.18 ± 0.02 0.66 ± 0.03 0.39 ± 0.02

images and reconstructed images. For VAE, we calculate the SSIM, PSNR of the test
set and the reconstructed results, as well as the Dice coe”cient, HD, and ASSD of
the myocardial segmentation masks. The SSIM of VAE is 0.89 ± 0.03, the PSNR is
29.57 ± 1.06, the Dice coe”cient of the myocardial segmentation mask is 0.95 ± 0.01,
the HD is 8.26 ± 2.63, and the ASSD is 1.69 ± 0.91. The reason for evaluating these
indicators is to measure the impact of image quality degradation caused by VAE, which
will a!ect the generation performance of conditional LDM.

The realism of the generated images is measured by the FID score. This method
uses the pre-trained Inception-V3 [224] model for feature extraction and is calculated
by comparing the feature distribution of the generated and the real image. The lower
the FID score, the greater the similarity between the generated and real images in
terms of perceptual quality. FRD uses the pre-trained ResNet50 model to extract
features to evaluate the similarity between the generated and real results. A lower
FRD score indicates a closer alignment between the distributions of the generated and



real results in the feature space, and this evaluation is more consistent with human
perception. IP and IR evaluate the quality and coverage of image generation samples
by forming an explicit non-parametric representation of the real and the generated
data manifold. IP represents the probability that the generated image falls within
the support range of the real image manifold, and the higher the value, the better;
while IR represents the probability that the real result belongs to the generated result
manifold, and more higher the value, the better the coverage of the generated result
to the real data. MMD quantifies the distance between sample distributions of two
datasets in the Reproducing Kernel Hilbert Space (RKHS). A smaller MMD value
indicates greater similarity between the distributions of generated and real images,
suggesting superior performance of the generative model. MS-SSIM and 4-G-R SSIM
measure image similarity. The generated results are evaluated with the reference images
in terms of structure, contrast, and brightness. A higher MS-SSIM score indicates a
higher similarity between the generated result and the ground truth, i.e., better quality.
Compared with images generated by competing methods, the images generated by our
method have higher MS-SSIM and 4-G-R SSIM values, indicating better generated
image similarity. These specific results are shown in Table 6.1. The proposed model
demonstrates strong image generation accuracy, with average FID, FRD, IP, IR, MMD,
MS-SSIM and 4-G-R SSIM of 7.01, 6.17, 0.9, 0.8, 0.18, 0.66 and 0.39 respectively.

Table 6.2 shows the image generation performance comparison between CGAN,
CVAE, CHeart and our method. Clinical measurements obtained from each real sample
are compared with those obtained from 50 synthetic samples under identical conditions.
The results in Table 6.2 show that our model achieves low measurement di!erences
in clinical phenotypes between real samples, with average di!erences of 28.15 mL,
13.56 mL, 39.45 mL, 19.52 mL and 27.43 g for LVEDV, LVESV, RVEDV, RVESV and
LVM, the quantitative indicators demonstrate that the proposed model exhibits fidelity,
indicating a high similarity between generated and ground truth samples. Moreover,
the model’s output aligns well with expected cardiac structures.

We further assess the realism and variety of the generated results in relation to the
ground truth through distance evaluation. Tables 6.3 and 6.4 show the KL divergence
and WD between the synthetic and real data distributions, respectively. Our method
achieves the best KL or WD indicators in most of them. The KL divergence for LVEDV,
LVESV, RVEDV, RVESV and LVM are 28.15, 13.56, 39.45, 22.45, 31.76, and the WD



Table 6.2: Comparison of the generation capabilities between CGAN, CVAE, CHeart,
and our method. Clinical measurements obtained from each real sample are compared
with those from 50 synthetic results under identical conditions.

Method dLVEDV(mL) dLVESV(mL) dRVEDV(mL) dRVESV(mL) dLVM(g)
CGAN 38.51 ± 15.87 21.26 ± 9.82 46.82 ± 26.46 25.61 ± 12.51 39.46 ± 25.31
CVAE 36.45 ± 18.15 19.51 ± 8.94 48.52 ± 27.61 23.86 ± 11.75 34.81 ± 27.31
CHeart 29.72 ± 16.61 16.59 ± 7.45 42.73 ± 26.51 22.45 ± 10.56 31.76 ± 21.51
Ours 28.15 ± 19.85 13.56 ± 7.28 39.45 ± 20.57 19.52 ± 10.25 27.43 ± 17.53

values are 29.72, 13.56, 39.45, 19.52, 27.43, respectively.
In addition to quantitative evaluation, we qualitatively assess the distribution of

clinical measurements about age and weight for real and synthetic images, including
LVEDV, LVESV, RVEDV, RVESV, and LVM, as shown in Figure 6.4 and Figure 6.5.
The qualitative evaluation involves visually inspecting kernel density plots, we compare
the contour shapes, density patterns, and data concentration regions between real and
synthetic distributions. A strong similarity in these density patterns suggests that the
synthetic data e!ectively captures key statistical properties of the real data. The results
indicate that the synthetic data distribution, conditioned on age and weight, closely
resembles the real distribution. Given the general expectation that individuals with
higher weights tend to have larger hearts, the alignment between real and synthetic
distributions may seem intuitive. However, the near-perfect match observed in Figures
6.4 and 6.5 raises concerns about potential overfitting. This suggests that our model
might be capturing not only the true underlying distribution but also noise or specific
patterns from the training data. A more detailed evaluation is necessary to determine
whether the generated data generalizes well or merely replicates training characteristics.
Future work should investigate regularization techniques or adversarial validation to
ensure the synthetic data maintains biological plausibility without excessive mimicry.

In addition, we compared our method with other methods for generating cine CMR
images, all of which are dedicated to generating time series medical images. Table 6.5
shows the performance comparison of each method on the corresponding indicators,
where the missing values indicate that the original paper did not report the indicator.
The comparison shows that our method is better than the comparison methods in SSIM,
Dice coe”cient and FID, and is comparable to the best method in PSNR, indicating
good performance in generating high-quality Cine CMR images. In particular, it shows



Table 6.3: KL divergence between the distribution of synthetic and real data.

Similarity of distributions LVEDV LVESV RVEDV RVESV LVM
CGAN 38.51 ± 15.87 21.26 ± 9.82 46.82 ± 26.46 25.61 ± 12.51 39.46 ± 25.31
CVAE 36.45 ± 18.15 19.51 ± 8.94 48.52 ± 27.61 23.86 ± 11.75 34.81 ± 27.31
CHeart 29.72 ± 16.61 16.59 ± 7.45 42.73 ± 26.51 19.52 ± 10.56 27.43 ± 21.51
Ours 28.15 ± 19.85 13.56 ± 7.28 39.45 ± 20.57 22.45 ± 10.25 31.76 ± 17.53

Table 6.4: WD between the distribution of synthetic and real data.

Similarity of distributions LVEDV LVESV RVEDV RVESV LVM
CGAN 38.51 ± 15.87 21.26 ± 9.82 46.82 ± 26.46 25.61 ± 12.51 39.46 ± 25.31
CVAE 36.45 ± 18.15 19.51 ± 8.94 48.52 ± 27.61 23.86 ± 11.75 34.81 ± 27.31
CHeart 28.15 ± 16.61 16.59 ± 7.45 42.73 ± 26.51 22.45 ± 10.56 31.76 ± 21.51
Ours 29.72 ± 19.85 13.56 ± 7.28 39.45 ± 20.57 19.52 ± 10.25 27.43 ± 17.53

greater advantages in myocardial segmentation accuracy (Dice coe”cient) and overall
image quality (FID).

Figure 6.6 shows the visualization of the latent space of the generated image se-
quence after dimensionality reduction by t-distributed stochastic neighbor embedding
(t-SNE) [266], which shows that the generative model can capture the temporal dy-
namic changes in the cardiac sequence. In each time frame, the volume of the heart LV
first decreases and then increases, and the thickness of the myocardium first increases
and then decreases, which is consistent with the contraction and relaxation patterns of
the real heart.

Table 6.5: Comparison of di!erent methods for generating cine CMR images. Missing
values indicate that the corresponding metric was not reported in the original paper.

Method SSIM ⇔ PSNR ⇔ Dice ⇔ FID ⇓
TexDC [267] - - - 54.82
SADM [268] 0.851 28.992 - -
Di!usion Deformable Model [269] - 30.725 0.802 -
Ours 0.89 ± 0.03 29.57 ± 1.06 0.95 ± 0.01 7.01 ± 0.69

6.4 Discussions

The model proposed in this work is based on the conditional LDM, which integrates
conditional branches to control and simulate the e!ect of various demographic inform-
ation and clinical variables on the synthesis process. The qualitative and quantitative
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Figure 6.4: Schematic diagram of comparative distribution of clinical meas-

urements for real and synthetic data. Kernel density plots of imaging phenotypes
versus age are shown separately. In each subplot, the x-axis represents age while the
y-axis represents the measurement of the imaging phenotype. Darker regions indicate
higher data concentration, whereas lighter regions signify sparser data.
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Figure 6.5: Schematic diagram of comparative distribution of clinical meas-

urements for real and synthetic data. Kernel density plots of imaging phenotypes
versus weight are shown separately. In each subplot, the x-axis represents weight and
the y-axis represents the measurement of the imaging phenotype. Darker regions rep-
resent areas where data are more concentrated. Lighter areas represent areas where
data are more sparse.



Figure 6.6: Schematic diagram of the T-distributed Stochastic Neighbor Em-

bedding (t-SNE) visualization representing the latent space of the synthes-

ised full sequence of cine CMR images. Each dot represents an individual time
frame, with color indicating the sequence index. The image decoded from the latent
code by one subject is visualized.



results of the experiment show that the model has good generation performance. The
control of the conditional variables can show the influence of demographic information
and clinical factors on the shape and anatomical changes of the heart. The evaluation
results of several clinical measurement indicators (left and right ventricular volume
and mass) show that the generated sample distribution aligns closely with the actual
samples in both qualitative and quantitative terms, and has diversity. Although the
generation results of the model perform well, the similarity between the distributions of
generated and real samples needs to be further improved, and the relationship between
the anatomical shape and motion of the cardiac and the conditional information needs
to be further explored.

The trained cardiac image generation model can be used for potential downstream
tasks, such as augmented data for model training to enhance the ability of medical
diagnosis and research, privacy-preserving data generation and discovery of complex
patterns and changes in images. The conditional generation model means that the
model can learn cardiac patterns for specific conditions (such as gender, age, height and
weight) and evaluate deviations in a personalized way, thereby providing more accurate
diagnosis and support. The model can deeply understand features and identify poten-
tial risk factors after learning complex patterns and changes in di!erent demographic
information and clinical factors. In addition, the trained model can produce substantial
synthetic data for various applications. Synthetic data can enhance data augmentation
strategies, thereby improving the performance of machine learning models [270][271].
Additionally, the models can generate synthetic data to promote fairness in predictive
models [272], or act as virtual simulation tools for in-silico experiments [273]. The
diversity and authenticity of generated data can address data scarcity issues, particu-
larly when access to real data is limited or challenging. These synthetic data can also
be used for privacy protection research [274], providing safe and available alternative
data, thereby promoting the development of medical research and clinical applications.
Further, generative models can also be used for personalized medicine and precision
medicine. By generating personalized models based on the specific characteristics of
patients, doctors can better formulate treatment plans, predict treatment e!ects, and
accurately manage patients’ health. This capability will help advance the development
of individualized treatment plans and drive the medical field toward a more personalized
and precise direction in the future.



This work has some limitations. First, we preprocessed the input image size to 128→
128→10 and used 50 time frames, which makes the computational cost and complexity
of the 4D data model high. Future research directions can focus on reducing the
dimensionality and computational complexity. In addition, our training data consists of
healthy subjects from the UK Biobank. In the future, it can be extended to longitudinal
clinical subjects with cardiovascular disease and multi-center datasets to enhance the
variety of the generated models.

6.5 Conclusion

In this study, we develop a conditional generative model based on latent di!usion that
can generate spatio-temporal cine cardiac images with the input of controllable demo-
graphic information and clinical factors as conditions. The results demonstrate that
the generated 4D CMR images are highly realistic and diversity, and can synthesise
realistic cardiac anatomical structures and motion changes. This study lays the found-
ation for generative modeling research in cardiac MRI imaging, which can be further
extended to include di!erent disease types or focus on anatomical structure represent-
ation and mesh form in the future. In addition, this work could be utilized in a range
of downstream applications, including data augmentation, construction of cardiac im-
ages under specific conditions, and downstream tasks such as synthetic image cardiac
segmentation and registration.
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Conclusion and Future Work
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This chapter summarizes the main results of this paper in detail and demonstrates the
positive progress in applying deep learning technology to cardiac image generation and
analysis. In addition, we discuss some inherent limitations of existing methods and
propose possible directions for improvement. These improvement directions could help
to overcome the shortcomings of current methods, and also provide new ideas for future
research to further enhance and optimize the techniques and methods proposed in this
thesis.

7.1 Conclusion

Motivated by the application of generative models in the field of medical imaging to
obtain synthetic images, this research is dedicated to exploring the generation and
analysis of multiple generative models on CMR of multiple sequence modalities. The
synthesis and analysis of the cardiac through deep learning techniques are explored,
and three follow-up works are proposed.

Firstly, we introduce a smcVAE model to learn the joint latent representation of
multiple sequential CMR images, and use only cine CMR to synthesise tagging CMR
and estimate myocardial strain. This model does not require additional clinical se-
quence acquisition, and obtains reliable myocardial strain estimation. Furthermore,
the model can be extended to generate demographic and clinical information from
other channels, not just the generation of images domain.

Furthermore, focusing on cine CMR, we introduce a latent denoising di!usion im-
plicit generative model to synthesise full-spatial cine CMR images and corresponding
biventricular segmentation masks. The synthesised images can be used as the viable
substitute for real datasets in deep learning model training and downstream tasks such
as cardiac image registration or segmentation, and the synthesised cardiac anatomical
images can help alleviate the burden of manually annotated images.

Additionally, the relationship between non-imaging factors such as clinical and
demographic information and imaging is explored through a conditional latent dif-
fusion generative model. The full spatio-temporal 4D cine CMR images generation
model can describe the 4D spatio-temporal images of the cardiac and its interactions
with non-imaging demographic and clinical factors. It can be used to generate healthy
datasets, and also to generate cardiac images that combine disease types and condition-
specific. This is of great value in creating comprehensive datasets with limited abnormal



samples, and the proposed model also shows great potential for personalized modeling
and pathological development evaluation.

These contributions explore multiple deep learning generative models, which to-
gether improve the accuracy and reliability of cardiac multi-sequence image generation,
and are of great significance in the applications of image enhancement, data augmenta-
tion, automatic annotation, and personalized medicine. Overall, it improves the image
processing quality and e”ciency, contributes to the robustness of medical image ana-
lysis, and provides strong support for personalized medicine and medical research.

7.2 Limitations and Future Research Directions

In this thesis, although our research has achieved promising results, there are still some
challenges and limitations that need further attention to promote better cardiac image
generation and analysis.

In deep learning-based cardiac image analysis, richer image latent representations
and more time-related features should be considered. In Chapter 4, we designed a
sparse dual-image channel VAE to learn the joint latent space of cine CMR and tagging
CMR images. However, other non-imaging population information or clinical factors
were not considered. It would be interesting to expand VAE to more channels. Model
architectures that integrate more information may be more improved than dual-channel
image models. In addition, most cardiac image analysis only uses CMR images in
ED and ES frames, without considering other time frames in the entire cardiac cycle.
Incorporating these time frames into analysis and research can achieve more accurate
performance.

A more general challenge is the problem of domain adaptation between di!erent
datasets, which is one of the common limitations of current deep learning-based meth-
ods. During the testing phase, deep learning networks are usually able to perform well
on data that is similar to the training data, but their performance may drop when
applied to new data that di!ers greatly from the training data. This challenge is par-
ticularly significant in the field of medical image analysis. For example, data from
di!erent imaging equipment and multiple centers may di!er in appearance, causing the
model to perform poorly on these data.

Although the latent di!usion framework proposed in Chapters 5 and 6 shows robust-
ness, its generalizability may be limited when faced with di!erent datasets and various



pathological conditions. This issue is critical because the e!ectiveness of medical ima-
ging models largely relies on their applicability in various real-world scenarios. Only
when they can maintain high performance across di!erent datasets and pathological
conditions, the models play their true value in clinical practice.

Another common challenge in medical image analysis models is the limitation of
datasets. Current research often relies on small datasets with a limited number of pub-
licly available samples. For example, in cardiovascular disease research, commonly used
datasets usually have only about 100 samples. This limitation in data size brings prob-
lems. First, small datasets may not fully represent all possible pathological conditions
and patient characteristics, which a!ects the generalization ability of the model and
its reliability in practical applications. In addition, the acquisition and annotation of
medical image data are expensive, and involve issues such as privacy protection, which
makes it unlikely to expand the size of such datasets in the future. This limitation
further restricts the range of options researchers have when developing and validating
new models.

Another notable limitation is the lack of quality control evaluation of the results
of generative models, especially in the context of deep enhancement for medical im-
age analysis. Although the proposed models show satisfactory generation capabilities,
their practical utility depends on the quality and reliability of the generated samples
in clinical applications. However, there are currently challenges and deficiencies in this
regard. Firstly, when generating medical images, generative models may have artifacts,
noise, or other unnatural features, which may mislead doctors when making diagnoses.
Second, even if the generated images look realistic visually, their clinical validity re-
mains questionable if they do not accurately reflect the real pathological conditions. In
addition, generative models may overfit the training data, thus lacking generalizability
across di!erent datasets and pathological conditions.

In summary, although deep learning-based image generation and analysis methods
have achieved remarkable success in a wide range of computer vision applications,
successful and accurate cardiac image synthesis and analysis require special attention
to the inherent limitations of deep learning methods and relevant priors of cardiac
imaging, such as cardiac motion, cardiac cycle, etc. Taking these factors into account
is both necessary and crucial to obtain more e”cient and accurate results in the analysis
of cardiovascular disease.



Looking ahead, future research can aim to develop model architectures that in-
tegrate more information. Such as multi-channel VAE models that integrate more
non-imaging demographic information and clinical factors. These models can capture
richer potential representations, thereby improving the accuracy and generalization of
image generation and analysis. As well as incorporating dynamic feature processing,
design algorithms that can handle cardiac cycles and cardiac motion, considering all
time frames throughout the cardiac cycle to improve the model’s adaptability to dy-
namic changes and analysis accuracy.

Developing e!ective domain adaptation methods is also a future research direction,
enabling the model to maintain high performance under di!erent datasets and ima-
ging conditions. For example, using techniques such as transfer learning and adaptive
learning to improve the applicability of models in di!erent domains.

In terms of data augmentation, generative models and data augmentation tech-
niques are used to augment existing datasets. By generating high-quality synthetic
images, the diversity of data can be increased, thus enhancing the model’s general-
ization capability. As well as promoting multi-center collaboration, integrating data
resources from di!erent imaging devices and multiple centers to create larger and more
diverse datasets. This will help improve the robustness and reliability of the model
under di!erent conditions.

In terms of quality control, to implement comprehensive quality control protocols,
including quantitative evaluation indicators, clinical validation, cross-dataset valida-
tion, and improving model interpretability, to ensure that the generated data is not
only diverse but also clinically valid, thereby improving the reliability of the generated
models in practical applications.
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Manuel Jorge Cardoso. Brain imaging generation with latent di!usion models.
ArXiv, abs/2209.07162, 2022.

[100] Zakaria Rguibi, Abdelmajid Hajami, Zitouni Dya, Amine Elqaraoui, Reda Zour-
ane, and Zayd Bouajaj. Improving medical imaging with medical variation di!u-
sion model: An analysis and evaluation. Journal of Imaging, 9, 2023.



[101] Amirhossein Kazerouni, Ehsan Khodapanah Aghdam, Moein Heidari, Reza Azad,
Mohsen Fayyaz, Ilker Hacihaliloglu, and Dorit Merhof. Di!usion models in med-
ical imaging: A comprehensive survey. Medical image analysis, 88:102846, 2022.

[102] Geert Litjens, Francesco Ciompi, Jelmer M Wolterink, Bob D de Vos, Tim Leiner,
Jonas Teuwen, and Ivana Išgum. State-of-the-art deep learning in cardiovascular
image analysis. JACC: Cardiovascular imaging, 12(8 Part 1):1549–1565, 2019.

[103] Fanwei Kong and Shawn C Shadden. A generalizable deep-learning approach for
cardiac magnetic resonance image segmentation using image augmentation and
attention u-net. In Statistical Atlases and Computational Models of the Heart.
M&Ms and EMIDEC Challenges: 11th International Workshop, STACOM 2020,
Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised
Selected Papers 11, pages 287–296. Springer, 2021.

[104] Didier RPRM Lustermans, Sina Amirrajab, Mitko Veta, Marcel Breeuwer, and
Cian M Scannell. Optimized automated cardiac mr scar quantification with
gan-based data augmentation. Computer methods and programs in biomedicine,
226:107116, 2022.

[105] Youssef Skandarani, Nathan Painchaud, Pierre-Marc Jodoin, and Alain Lalande.
On the e!ectiveness of gan generated cardiac mris for segmentation. arXiv pre-
print arXiv:2005.09026, 2020.

[106] Shusil Dangi, Cristian A Linte, and Ziv Yaniv. A distance map regularized cnn
for cardiac cine mr image segmentation. Medical physics, 46(12):5637–5651, 2019.

[107] Bob D De Vos, Floris F Berendsen, Max A Viergever, Marius Staring, and Ivana
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ware Engineering Perspectives in Intelligent Systems: Proceedings of 4th Compu-
tational Methods in Systems and Software 2020, Vol. 1 4, pages 102–114. Springer,
2020.



[221] Hao Tang, Wei Wang, Dan Xu, Yan Yan, and Nicu Sebe. Gesturegan for hand
gesture-to-gesture translation in the wild. In Proceedings of the 26th ACM inter-
national conference on Multimedia, pages 774–782, 2018.

[222] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo
Aila. Improved precision and recall metric for assessing generative models. Ad-
vances in Neural Information Processing Systems, 32, 2019.

[223] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity
for image quality assessment. In The Thrity-Seventh Asilomar Conference on
Signals, Systems & Computers, 2003, volume 2, pages 1398–1402. Ieee, 2003.

[224] Xiaoling Xia, Cui Xu, and Bing Nan. Inception-v3 for flower classification. In 2017
2nd international conference on image, vision and computing (ICIVC), pages
783–787. IEEE, 2017.

[225] Felix Nensa. The future of radiology: The path towards multimodal ai and super-
diagnostics. European Journal of Radiology Artificial Intelligence, page 100014,
2025.

[226] Hongwei Ding, Qi Tao, and Nana Huang. Bdgan: Boundary and diversity-aware
generative adversarial network for imbalanced medical image augmentation. In
ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 1–5. IEEE, 2025.

[227] Jiahao Xia, Yutao Hu, Yaolei Qi, Zhenliang Li, Wenqi Shao, Junjun He, Ying
Fu, Longjiang Zhang, and Guanyu Yang. Fcas: Fine-grained cardiac image
synthesis based on 3d template conditional di!usion model. arXiv preprint
arXiv:2503.09560, 2025.

[228] Tewodros Weldebirhan Arega, François Legrand, Stéphanie Bricq, and Fabrice
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