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Abstract

Approximately 5-8% of the general population harbours an intracranial an-
eurysm (IA), which is a localised dilation or ballooning of the cerebral blood
vessel caused by the weakness of the wall of a cerebral artery or vein. Un-
treated IAs may eventually rupture and lead to death. Nowadays, the
non-invasiveness of endovascular approaches is often used as a first-choice
treatment due to its low morbidity and mortality risk. The efficacy of
endovascular treatment for IA is influenced by both haemodynamics and
thrombosis. Currently, in vivo or image-based analysis of thrombosis hae-
modynamics in realistic anatomies and physiologies is very difficult, if not
impossible. Computational modelling has proven to be a powerful tool in
predicting thrombosis haemodynamics in IAs before and after endovascular
treatment and thus in patient-specific treatment planning or in silico tri-
als. However, before being applied in clinical practice, there is a need to
demonstrate the credibility of computational thrombosis modelling, defined
as trust in the predictive capability of a computational model. According
to the American Society of Mechanical Engineers (ASME) V&V 40, the
credibility of computational modelling can be assessed using clinical stud-
ies, robust model calibration studies, or population-level validation studies.
Given the complexity of thrombus formation, involving blood flow and the
net results of a series of biochemical reactions, it is important to improve the
efficiency of computational thrombosis modelling for using in population-
level model credibility assessment studies.

This thesis aims to improve both the credibility and efficiency of patient-
specific computational thrombosis modelling. This work contributes to the
following aspects: (1) We create a fully automatic multi-scale modelling
workflow that enables population-based in silico studies to calibrate haemo-
dynamic thresholds of thrombus formation against real population-specific
data. (2) We identify the most influential factors of our thrombosis model
through a comprehensive global sensitivity analysis and further validate
the thrombosis model based on a real patient case using patient-specific
parameters for those identified as influential ones and the calibrated trig-
ger thresholds of thrombosis initiation. (3) We investigate the use of a
physics-informed deep learning model to accelerate thrombosis modelling
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by leveraging the power of neural networks and GPUs.
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Chapter 1

Introduction: Background, Motivation and
Contribution
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Any biomedical product intended for commercial sale must undergo a rigorous de-
velopment and evaluation process to ensure its safety and efficacy before it can be
placed on the market [Viceconti et al., 2016]. Currently, the safety and efficacy of a
biomedical product are estimated through pre-clinical trials (controlled experiments in
vitro or in vivo in animals) and clinical trials (controlled experiments in vivo in humans)
[Viceconti et al., 2019]. In vivo experiments are conducted on living tissues, on whole
organisms or inside them [Lipatov et al., 2019]. In vitro experiments are conducted
on tissues, cells, or other parts of an organism outside of living organisms, typically in
test tubes or similar laboratory equipment. However, these traditional trials present
several challenges: (1) these trials are usually very expensive and not always successful.
Whenever a product fails at a later stage, the company suffers huge losses; (2) clinical
trials may tell us that a product is unsafe or ineffective, but they rarely tell us why
or suggest how to improve it; (3) both in vivo and in vitro methodologies pose signi-
ficant economic and ethical challenges, such as limited throughput, high operational
costs, and the inhumane treatment of animals during experimental procedures [Lip-
atov et al., 2019]. To address the inherent limitations of conventional clinical trials,
in silico clinical trials were first introduced in approximately 2011 as a computational
alternative [Haddad et al., 2017, Pappalardo et al., 2019]. The term “in silico clinical
trial” refers to an application of computational modelling and simulation where device
performance is evaluated using a “virtual cohort” of simulated patients with realistic
anatomical and physiological variability representing the indicated patient population
[Viceconti et al., 2021]. Computational modelling and simulation of medical device can
streamline development and reduce burdens associated with premarket device evalu-
ation. It can also reveal important information not available from traditional in vivo
or in vitro assessments, such as serious and unexpected adverse events that are un-
detectable within a study sample but occur frequently enough within the intended
population to be of concern. However, there is a need to demonstrate the credibility
of computational modelling and simulation for any possible clinical use in the future.
In the context of evaluation of endovascular medical devices in intracranial aneurysms,
both the simulation of aneurysmal haemodynamics and thrombosis after endovascular
treatment are computationally expensive now. It is important to improve the efficiency
of computational thrombosis haemodynamics modelling for using in population-level
model credibility assessment studies. The main aim of this research is to develop an
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credible and computationally efficient in silico clinical workflow in the context of eval-
uation of endovascular medical devices in intracranial aneurysms. In this chapter, we
will first describe the fundamental knowledge of intracranial aneurysms, endovascular
treatments, treatment outcomes, and thrombosis modelling.

1.1 Intracranial Aneurysms, Endovascular Treatments and
Outcome

1.1.1 Intracanial Aneurysms

Intracranial aneurysm (IA) is a type of cerebrovascular pathology, which is a local-
ised dilation or ballooning of the cerebral blood vessel caused by the weakness of the
wall of a cerebral artery or vein [Withers et al., 2013]. There are four main types of
IAs: saccular, fusiform, dissecting, and micotic [Keedy, 2006]. Among these, saccular
aneurysms accounts for 90% of IAs (Fig. 1.1). Therefore, our research primarily focuses
on saccular aneurysms. Approximately, 5-8% of the general population harbours an
IA [Rinkel et al., 1998]. The prevalence of aneurysms is very low during the first two
decades of life but steadily increases after the third decade [Rinkel et al., 1998]. Un-
treated aneurysms may eventually rupture and then result in aneurysmal subarachnoid
haemorrhage (SAH), a subset of stroke that has high case fatality and morbidity rates
[Kleinloog et al., 2018]. Aneurysmal SAH accounts for 80% of nontraumatic SAH cases,
occurring at a rate about 6 to 10 per 100,000 persons per year. SAH can cause sudden
death before the patients receive medical attention. Moreover, 10% to 20% of SAH
survivors are functionally dependent, and two-thirds of the functionally independent
experience a reduction in quality of life [Hop et al., 1997, Huang and Van Gelder, 2002,
van Gijn and Rinkel, 2001]. The goal of treating patients with unruptured IAs is to
maximise their duration of high-quality life by optimally balancing the risks of an-
eurysm rupture with those of treatment-related adverse outcomes [Burns and Brown,
2009].

1.1.2 Endovascular Treatments

There are three main treatment options for patients with IAs: observation, surgical
therapy, and endovascular therapy [Keedy, 2006]. The objective of the latter two is
to isolate the aneurysm from the circulatory system to prevent haemorrhage. Since
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Figure 1.1: A 16.5 mm saccular aneurysm at the middle cerebral artery (MCA), demonstrated
by digital subtraction angiography (DSA).

the introduction of endovascular therapy in 1991, its use has substantially increased in
treating of aneurysms [Burns and Brown, 2009, Guglielmi et al., 1991]. Endovascular
techniques can be categorised into: (1) parent artery reconstruction with coil depos-
ition, which includes primary coiling, balloon-assisted coiling, stent-assisted coiling,
and other new techniques such as neck reconstruction devices and intraluminal occlu-
sion devices; (2) reconstruction with flow diversion; and (3) deconstructive techniques,
which involve parent artery sacrifice with or without bypass [Diaz and Rangel-Castilla,
2016]. The novelty of endovascular coiling lies in the insertion of a soft, flexible coil
via a catheter into the IA cavity, which adapts to aneurysms of varying sizes and
shapes to reduce haemodynamic exchange between the aneurysm and the parent ves-
sel[Becske et al., 2013, Sarrami-Foroushani et al., 2017]. The randomised International
Subarachnoid Aneurysm Trial (ISAT) study demonstrated the superiority of endovas-
cular treatment of ruptured aneurysms using coil technology over surgical methods
[Burns and Brown, 2009, Molyneux et al., 2002, Pierot and Wakhloo, 2013]. However,
the limitation of the coiling treatment is evident in wide-neck aneurysms (neck size
≥ 4 mm) due to the difficulty in stabilising the coils inside the aneurysm [Pierot and
Biondi, 2016]. This limitation has led to developing other more complex endovascular
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Figure 1.2: The Modified Raymond-Roy Classification (MRROC) of angiographic results: Class
I: complete occlusion. Class II: residual neck. Class IIIa: residual aneurysm with contrast within
coil interstices. Class IIIb: residual aneurysm with contrast along aneurysm wall.

techniques, such as stent-assisted coiling, balloon-assisted coiling, and flow diversion.
Early stents, due to their high porosity, were unable to achieve complete occlusion of
the IA through blood flow diversion and had poor safety profiles. Subsequent research
led to improvements in the initial stent designs, resulting in flow diversion devices with
lower porosity. Currently, wide-neck IAs, which have a larger volume, a higher rup-
ture risk, and are difficult to occlude with coils alone, are typically treated with flow
diverter-assisted coil embolisation. The non-invasiveness of endovascular approaches is
often used as a first-choice treatment due to its low risk of morbidity and mortality
now[Sarrami-Foroushani et al., 2017, Withers et al., 2013].

1.1.3 Treatment Outcomes

After endovascular treatment, angiographic findings are recorded immediately, at
six months, and yearly thereafter [Roy et al., 2001]. As illustrated in Fig. 1.2, the
modified Raymond-Roy Classification (MRROC) is a widely accepted system for eval-
uating aneurysm occlusion class [Mascitelli et al., 2015]. In this scheme, Class I is
defined as complete occlusion, Class II as residual neck, Class IIIa as residual an-
eurysm with contract within coil interstices, and Class IIIb as residual aneurysm with
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contract along aneurysm wall. Published aneurysmal complete occlusion rates (refers
to the proportion of treated aneurysms in which imaging confirmation demonstrates
no residual filling of the aneurysm sac after endovascular treatments) are often vari-
able, ranging anywhere from 55% to 95% [Briganti et al., 2015, Brinjikji et al., 2013,
Roy et al., 2001], and the durability of aneurysm coil embolisation was not achieved
in all aneurysms [Pierot and Wakhloo, 2013]. According to a systematic review of a
large number of studies, aneurysm reopening (refers to the reappearance or reopening
of a previously treated aneurysm after an initial intervention) occurred in 20.8%, and
retreatment was performed in 10.3% [Ferns et al., 2009, Pierot and Wakhloo, 2013].
In addition, some aneurysms fail to develop a stable clot even with sufficient levels of
flow reduction and may end up with post-treatment rupture, leading to high risks of
mortality and morbidity [Byrne and Szikora, 2012, Kulcsár and Szikora, 2012, Sarrami-
Foroushani et al., 2019]. From autopsy studies of aneurysms, researchers found that
there are two different types of thrombi: organised white thrombus, rich in fibrin, and
non-organised red thrombus, rich in fibrin and erythrocyte (Fig. 1.3). Oranised white
thrombus and non-organised red thrombus can be found in stable clots and unstable
clots, respectively. Red thrombi are the result of stagnation of blood flow, resulting
in a clot containing all elements of normal blood, and they contain more enmeshed
erythrocytes among sparse fibrin strands compared to precipitation or white thrombi.
The red thrombi are expected to progress to organised white thrombi; otherwise, they
may promote an inflammatory reaction, eventually leading to the disintegration of the
aneurysm wall with subsequent rupture. Achieving organised white thrombi may re-
duce the probability of post-treatment rupture, and non-organised red thrombi have
also been suggested as a potential predictor for unsatisfactory treatment results [Fisc-
her et al., 2012, Sarrami-Foroushani et al., 2019, Turowski et al., 2011]. Controlled
thrombosis is the main aim of endovascular treatments and the generation of stable
white thrombi is often regarded as a positive post-treatment response [Ngoepe et al.,
2018].

1.2 Thrombosis Modelling in IAs

Thrombosis is a biological response closely linked to IAs and aneurysmal haemo-
dynamics. In unruptured IAs, thrombosis (spontaneous or device-induced) can either
stabilise the aneurysm or accelerate the path to rupture [Ngoepe et al., 2018]. Currently,

6



1.2 Thrombosis Modelling in IAs

Figure 1.3: Histology of non-organised red (unstable) and organised white (stable) thrombi
[Kulcsár and Szikora, 2012].

in vivo or image-based analysis of thrombosis haemodynamics in realistic anatomies and
physiologies is very difficult. The existing literature thrombosis models typically con-
sist of different physical subsystems (e.g., biochemical reactions, platelet activity, and
haemodynamics) that are coupled together to simulate the thrombus formation pro-
cess [Ngoepe et al., 2018]. Although there exists different literature thrombosis models
that address various aspects of the thrombus formation process, integrated 3D throm-
bosis models combining haemodynamics and biochemical reactions that have possible
clinical use for patient-specific cases are rare. The integrated thrombosis model origin-
ally developed by [Sarrami-Foroushani et al., 2019] incorporates biochemical reactions,
platelet activity, and haemodynamics (model details will be described in Chapter 2).
They defined a flow-induced platelet index (FiPi) as a quantitative measure of throm-
bus stability. FiPi quantifies the effect of blood flow on the transport of platelets to
and from the site of thrombus formation and, thus, on the final platelet content of the
formed thrombus. This model is not only capable of predicting both the haemodynamic
changes and the thrombus formation after endovascular treatment but is also able to
predict the long-term thrombus stability by investigating the thrombus composition.
However, this model has never been calibrated or validated based on real patient clin-
ical data, and it is computationally expensive; for example, simulation of thrombosis
in a flow-diverted aneurysm can take up to one month using 96 cores on ARC4 (ht-
tps://arcdocs.leeds.ac.uk/, all compute nodes contain Intel Xeon Gold 6138 CPUs).
This thesis aims to improve both the credibility and efficiency of patient-specific com-
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putational thrombosis modelling based on Sarrami-Foroushani et al. [2019]’s work. The
improved thrombosis modelling workflow might be able to determine the best treat-
ment course (e.g., coiling only, stenting only or the combination of coiling and stenting,
and different types and sizes of medical devices) for an individual after assessment and
validation, and further contribute to in silico clinical trials.

1.3 Thesis Contributions and Overview

This thesis aims to improve both the reliability and efficiency of patient-specific
computational thrombosis modelling to reduce the gap between computational throm-
bosis modelling and possible clinical applications (Fig. 1.4). To do this task, we look
at three critical aspects of patient-specific thrombosis modelling: calibrate the trigger
thresholds of thrombosis initiation for use in thrombosis models, identify the most in-
fluential parameters in thrombosis modelling and validate the thrombosis model based
on real clinical IAs, and accelerate patient-specific aneurysmal haemodynamics and
thrombosis modelling. The details of the research motivations and thesis contributions
are as follows:

• Calibrate the trigger thresholds for thrombosis initiation against population-
level clinical spontaneous thrombosis prevalence. The most challenging
part of a mechanistic model of thrombus formation in aneurysms is how to prop-
erly describe thrombosis initiation. Computational fluid dynamics (CFD) models
use haemodynamic surrogates in thrombosis initiation, with residence time (RT)
and shear rate (SR) being the most widely used parameters in flow stasis-induced
thrombosis models. However, there is no consensus on the trigger thresholds, with
different values used throughout the literature. Therefore, RT and SR thresholds
need to be calibrated for use in thrombosis models. In addition, we also improve
our thrombosis model by narrowing the thrombus formation region just near the
wall before treatment, as in the real situation, the thrombus cannot be suspended
in an aneurysm lumen on its own without any anchors.

• Perform comprehensive sensitivity analysis to identify the most in-
fluential model parameters and then validate our thrombosis model
based on real clinical IAs. To have a robust computational thrombosis model
for possible clinical use, it is essential to assess the model’s credibility through
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comprehensive sensitivity analysis of model parameters and validation studies
based on clinical information of real patients. We identify the most influen-
tial factors of aneurysmal thrombosis modelling through a comprehensive global
sensitivity analysis and further validate the thrombosis model based on a real pa-
tient case (partial thrombosis before treatment and residual neck after immediate
flow-diverter and coiling treatment) using patient-specific parameters for those
identified as influential ones and the previously calibrated trigger thresholds of
thrombosis initiation.

• Accelerate patient-specific aneurysmal haemodynamics and thrombosis
modelling. We create a fully automatic workflow executed on a cloud comput-
ing platform, MULTI-X (https://multi-x.org), that generates volumetric meshes,
sets patient-specific boundary conditions using a statistical population model,
assembles and executes fluid dynamic simulations, and provides patient-specific
intra-aneurysmal flows and thrombus formation information. However, the throm-
bosis modelling using ANSYS CFX is very time-consuming, e.g., the simulation
of thrombosis in a flow-diverted aneurysm can take up to one month using 96
cores. Therefore, we also investigate physics-informed deep learning models of
thrombus formation by utilising the power of physics-informed neural networks
and GPUs.

The following chapters in this thesis are organised as follows:
Chapter 2: This chapter introduces the background of aneurysmal haemodynamics

and thrombosis modelling and gives details of our patient-specific aneurysmal haemo-
dynamics and thrombosis modelling workflow. In addition, my technical contributions
in automating the workflow, improving virtual coiling for wide-neck aneurysms, and
narrowing thrombosis initiation to areas near the wall are also described at the end of
this chapter.

Chapter 3: This chapter presents first how we establish the clinical prevalence of
spontaneous thrombosis (ST) in IAs with different characteristics and different demo-
graphics, then how we calibrate the haemodynamic thresholds (RT and SR) of thrombus
formation by matching our numerical ST prevalence to the real clinical data, and fi-
nally investigate the differences in the ST prevalence and aneurysmal haemodynamic
factors (RT and SR) in normotensive and hypertensive patients. This study is enabled
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through a fully automatic multi-scale modelling workflow that we created to accelerate
population-based in silico studies.

Liu Q., Sarrami-Foroushani A., Wang Y., MacRaild M., Kelly C., Lin F., Xia Y.,
Song S., Ravikumar N., Patankar T., Taylor Z., Lassila, T., Frangi, A.F.. Haemody-
namics of Thrombus Formation in Intracranial Aneurysms: An in Silico Observational
Study. APL Bioengineering. 2023 Sep 1 (JCR Q1, IF6.6, Editor’s pick).

Chapter 4: This chapter identifies the most influential factors of our thrombosis
model through a comprehensive global sensitivity analysis and further validates the
thrombosis model based on a real patient case using patient-specific parameters for
those identified as influential ones and the previously calibrated trigger thresholds of
thrombosis initiation.

Liu Q., Lassila, T., Lin F., Patankar T., Islim F., MacRaild M., Song S., Xu
H., Chen X., Taylor Z., Sarrami-Foroushani A., Frangi, A.F.. Key Influencers in an
Aneurysmal Thrombosis Model: A Sensitivity Analysis and Validation Study. APL
Bioengineering. 2025 Feb 11 (JCR Q1, IF6.6, Editor’s pick).

Chapter 5: This chapter is to investigate physics-informed deep learning models of
thrombus formation. We investigate how PINNs perform in solving ADR equations and
whether better time-marching schemes can improve the long-term stability of PINNs.

Liu Q., Lassila T., Nie L., Shone F., MacRaild M., Taylor ZA., Sarrami-Foroushani
A., Frangi A.F.. Time Discretisation in the Solution of Advection-Diffusion-Reaction
Equations with PINNs. Bioengineering & Translational Medicine (2025), under review.

Chapter 6: This chapter concludes the thesis and discusses the outlooks and future
works.
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Figure 1.4: A graphical representation of the thesis structure, and the contribution of each
chapter.
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Chapter 2

Medical Image-Based Patient-Specific CFD
Workflow for Thrombus Formation in
Intracranial Aneurysms
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Medical image-based CFD of IAs has become a widely-used tool for elucidating the
role of haemodynamic forces in aneurysm development and rupture [Valen-Sendstad
et al., 2018]. At the same time, it is well-known that an image-based CFD workflow is
subject to numerous sources of uncertainty along its workflow, e.g., the image quality
of the aneurysm; digital segmentation of the aneurysm and vessel (thresholds, filtering,
smoothing, etc.); inlet flow boundary conditions; rigid wall assumption; and other
CFD solver settings. In this chapter, I will introduce the details of our CFD workflow
(Fig. 2.1), the common sources of uncertainty and our effort to increase the credibility
of our workflow.

Figure 2.1: Medical image-based CFD workflow. (a) Patient’s angiogram and vascular surface
model. (b) Virtual treatment: coiling (left) and stenting (right). (c) Volume meshing using
ANSYS ICEM CFD v19.3, impose patient-specific inlet flow waveforms, and run simulations
in ANSYS CFX v19.3.
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2.1 Vascular Blood Flow Modelling

2.1 Vascular Blood Flow Modelling

2.1.1 Aneurysm Imaging and Digital Segmentation

With the development of CT angiography (CTA) [Chappell et al., 2003], magnetic
resonance angiography (MRA) [Sailer et al., 2014], and 3D rotational angiography
(3DRA) [van Rooij et al., 2008], the image-based patient-specific analysis of the hae-
modynamics of IAs has been increasingly important for diagnosis, treatment plan, and
follow-up [Ren et al., 2016]. For medium and large IAs, MRA achieves diagnostic ac-
curacy that is equivalent to that of CTA. However, for aneurysms less than 5 mm,
most studies have shown CTA to be superior, with MRA sensitivity dropping to 56%
[Jacobson and Trobe, 1999, Jayaraman et al., 2004, Korogi et al., 1999]. Compared
with other imaging technologies, 3DRA can depict considerably more small additional
angiographic aneurysms (e.g., 1-3 mm) for which the sensitivity of CTA and MRA is
known to be less than 90% [Alberico et al., 1995]. In clinical practice, CTA and MRA
have become the first-line imaging modalities for IAs owing to their minimally invas-
ive nature. However, as the reconstructed 3DRA images can show only the enhanced
vascular lumina, which allows observing any desired region without hiding over pro-
jecting bony structures, the diagnosis and measurement of IAs can be performed more
accurately by using 3DRA technology [Ren et al., 2016]. Therefore, despite greater
invasiveness and increased risk to the patient, 3DRA remains a useful and critically
important tool in the detection and treatment of IAs and is usually used as the gold
standard.

The process of subdividing an image into its constituent parts that are homogeneous
in feature is called image segmentation, and it aims to extract some useful informa-
tion [Ramesh et al., 2021]. For generating an aneurysm model, the first step is to
segment image data in order to obtain the 3D geometry of the aneurysm with its prox-
imal and distal vessels. The segmentation process depends on the imaging modality,
with 3DRA typically considered the gold standard due to its high spatial resolution
[Rayz and Cohen-Gadol, 2020]. Alternatively, aneurysmal geometries can be obtained
from CTA and MRA data. While CTA and MRA have no significant differences in
reproducing aneurysm geometry [Ren et al., 2016], Geers et al. [2011] reported sig-
nificant differences in aneurysm necks reconstructed from CTA versus those obtained
from 3DRA, which were explained by the difference in imaging resolution. The ac-
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curacy of image-based CFD simulation is highly dependent on vessel and aneurysm
geometry, with medical image segmentation methods directly affecting the accuracy
of the aneurysm model construction. Sen et al. [2014] assessed three segmentation
methods for the analysis of 45 IA models in terms of geometry shape, volume, and
haemodynamic results. Although based on the same CTA data, different methods of
image segmentation generated variations in shape and volume, thus resulting in signific-
ant differences in computed haemodynamic parameters. Image resolution, quality, and
segmentation methods are considered to be major sources of variability for image-based
patient-specific modelling [Berg et al., 2018, Steinman and Pereira, 2019].

The patient image data (3DRA) in this thesis are from the @neurIST [Iavindrasana
et al., 2008, Villa-Uriol et al., 2011] project. All images are anonymised, respecting the
@neurIST ethical use approval for the use of patient data (http://www.aneurist.org).
We use a 3D multi-task segmentation neural network [Lin et al., 2023] to complete
the segmentation of the vessel and aneurysm dome automatically. This segmentation
network achieves an average Dice score of 0.82 by using the manually segmented results
[Iavindrasana et al., 2008, Villa-Uriol et al., 2011] as reference and an average surface-
to-surface error of 0.20 mm (less than the in-plane resolution (0.35 mm/pixel)). The
details of the segmentation algorithm and segmentation results can be found in [Lin
et al., 2023]. From the segmentation, we acquire patient-specific vascular surface models
that are used to generate unstructured volumetric meshes. We use ANSYS ICEM CFD
v19.3 (Ansys Inc. Canonsburg, PA, USA) to generate unstructured volumetric meshes.
To discretise the computational domain, including the vascular region and aneurysm
sac, tetrahedral elements with a maximum edge size of 0.2 mm and five layers of
prismatic elements with a maximum edge size of 0.1 mm are used. Sarrami-Foroushani
et al. [2019] performed mesh convergence tests based on the inflow rate at the aneurysm
neck and the sac-averaged concentrations of the fibrin and platelets. They demonstated
that the above-mentioned mesh resolution was fine enough to achieve an accurate flow
solution. In addition to tests by Sarrami-Foroushani et al. [2019], we performed a mesh
independence test based on the maximum residence time (RT) in the aneurysm sac
[Liu et al., 2023]. When using a fine mesh (tetrahedral elements with a maximum edge
size of 0.1 mm and five layers of prismatic elements with a maximum edge size of 0.1
mm) as the reference in the test, the maximum RT obtained on the above-mentioned
element sizes (tetrahedral elements with maximum edge size of 0.2 mm and five layers
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of prismatic elements with a maximum edge size of 0.1 mm) differed from the maximum
RT of the reference mesh by 2.5%.

2.1.2 Blood Flow Modelling

Although the rheology of blood can be described by using a Newtonian model with a
constant viscosity or by using non-Newtonian models that consider the shear-thinning
behaviour of blood [Sarrami-Foroushani et al., 2017], almost all CFD teams in the
literature [Valen-Sendstad et al., 2018] assumed Newtonian rheology, with blood density
typically between 1.05 and 1.06 g/cm3, and viscosity almost equally divided between
0.0035 and 0.004 Pa · s. In the literature, some studies have reported the magnification
of non-Newtonian effects in slow-flow regions [Morales et al., 2013, Rayz et al., 2008].
However, based on the review work and meta-analysis of Sarrami-Foroushani et al.
[2017], the differences between aneurysmal wall shear stress (WSS) values produced by
different rheological models have not been shown to be significant, and the influence of
blood rheological models on the WSS distribution is also negligible.

The computational study of blood flow in brain arteries has usually been approached
by the assumption that the considered arterial wall moments are significantly small
[Ramana Reddy and Srikanth, 2020]. Accordingly, wall distensibility is neglected in
almost all CFD simulations of blood flow in aneurysms, and a no-slip boundary condi-
tion is imposed [Sarrami-Foroushani et al., 2017, Valen-Sendstad et al., 2018]. Although
the meta-analysis [Sarrami-Foroushani et al., 2017] suggested an effect of wall distens-
ibility on the prediction of WSS magnitude by CFD, quantitative comparisons based
on global space-averaged measures showed an agreement between the rigid-wall and
non-rigid-wall (flow-structure-interaction) simulations when the distribution of WSS
on the aneurysm wall or the main flow characteristics in the aneurysm are of interest.
Currently, in the context of IA modelling, almost all teams assumed rigid walls with
no-slip boundary conditions.

Inflow boundary conditions are either taken from the literature or obtained from
patient-specific measurements [Sarrami-Foroushani et al., 2017]. Comparing results ob-
tained from simulations with typical literature-based and patient-specific inflow bound-
ary conditions has observed great differences in the magnitude of aneurysmal WSS and
oscillatory shear index (OSI). Although patient-specific inlet boundary conditions are
superior to the literature-based inflow conditions, in vivo measurement-derived inflow
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boundary conditions are usually unavailable for population-level aneurysm modelling.
At the outlets, the commonly used approaches are zero-pressure, Murray’s law (di-

vide outflows according to the cube of the diameter), and reduced-order models, with
zero-pressure imposed by the majority of CFD teams [Valen-Sendstad et al., 2018]. Des-
pite variability in outflow boundary condition implementations across computational
methodologies, the flow distribution to the dominant vascular branch demonstrated
remarkably consistency in haemodynamic simulations, as evidenced by Valen-Sendstad
et al. [2018]. Outflow boundary conditions appeared to have only a minor impact on
the variability of outflow divisions. However, they did not test whether and how these
might impact flow and WSS patterns for individual aneurysms. In a study (of which
I am a coauthor) named “Off-label in-silico flow diverter performance assessment in
posterior communicating artery aneurysms”, we compared imposing an 80:20, 60:40,
50:50, 40:60, 20:80 mass flow split at the middle cerebral artery (MCA) and the anterior
cerebral artery (ACA) outlets with the default zero pressure condition we used in the
posterior communicating artery (PComA) trial. We found that downstream conditions
are not very important for the aneurysm flow but that conditions applied to any branch
vessels that originate in the vicinity of the aneurysm are important (e.g., the PComA).
This PComA trial study was submitted to the Journal of NeuroInterventional Surgery
and received a major revision comment (June 2024).

2.1.3 Patient-Specific Inlet Flow Waveforms

Previous studies have found that inlet flow boundary conditions of CFD models
affect IA haemodynamics, with inter-subject variability in cerebral blood flow found to
be 10-20% [Bowker et al., 2010, Geers et al., 2014, Lassila et al., 2020, Xiang et al., 2014].
With in-vivo measurement-derived boundary conditions unavailable for our cohort, we
used a previously developed Multivariate Gaussian Model (MGM) [Sarrami-Foroushani
et al., 2016] to generate patient-specific boundary conditions as internal carotid flow
waveforms. The MGM model was trained and calibrated using the data from 17 healthy
young adults [Ford et al., 2005]. A virtual population of 1000 normotensive waveforms
was then generated, and three of them, i.e., high, mean, and low, were selected to
maximise the variability across the entire virtual population (by selecting high/low as
the upper/lower bounds of the 1000 waveforms). To consider inter-subject variability,
these three representative waveforms were used as inlet boundary conditions for flow

17



2.2 Virtual Endovascular Treatment

simulations. To enable population-wide comparisons, Poiseuille’s law was used to scale
the mean waveform such that the time-averaged WSS was 1.5 Pa at the inlet for each
patient (elimination of mean effect).

2.2 Virtual Endovascular Treatment

2.2.1 Coiling

Endovascular coiling is a well-established therapy for treating IAs. The novelty of
this approach is the catheter insertion of a coil, which is soft and adapts to different sizes
and shapes of aneurysms, within the aneurysm so as to reduce haemodynamic exchange
between the aneurysm and parent artery (Fig. 2.1 (b)). Although coiling is associated
with lower mortality and morbidity rates compared with surgical clipping, its outcome
is strongly influenced by packing density and is not always predictable [Morales et al.,
2011a]. Packing density is defined as the ratio between the inserted coils and aneurysm
volume, and usually, the aneurysms are packed as densely as possible.

The virtual coiling technique used in this thesis was proposed by Morales et al.
[2010]. The coils are defined by diameter and length, and the algorithm generates
the centreline of the coil with points separated by a limited distance. Each coil is
progressively placed by advancing its tip, which starts from an initial position inside
the aneurysm. The tip motion is constrained by the aneurysm dome, its ostium, and
other previously inserted coils. The technique sequentially places the coils inside the
aneurysms until either the known patient-specific number of coils or the desired packing
density is achieved. The details of the virtual coiling technique can be found in [Morales
et al., 2010, 2011a,b].

2.2.2 Stenting and Flow Diverter

As mentioned before, the most difficult IAs to treat with coiling are those with a
wide neck (neck size ≥ 4 mm) due to the difficulty in stabilising the coils inside the
aneurysm [Pierot and Biondi, 2016]. This prompted the development of more com-
plex endovascular techniques, including stent-assisted coiling. The initial experience
of aneurysm stenting showed relatively poor safety, as the porosity of early stents was
high, and so occlusion by flow diversion was not possible. Then, improvements were
made to the initial stent design to create a flow-diverter or flow-diverting stent [Phillips
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et al., 2010]. Flow diverters are low-porosity stents designed to reduce haemodynamic
exchange between the aneurysm and parent vessel, which helps to form thrombi within
the aneurysm sac (Fig. 2.1 (b)). Flow diverters have revolutionised the endovascu-
lar management of unruptured, complex, wide-neck, and giant aneurysms [Al-Mufti
et al., 2020]. Nowadays, several types of flow diverter devices have been approved for
the treatment of IAs: the Pipeline Embolization Device (Covidien), the Silk (Balt),
the Flow Re-direction Endoluminal Device (Microvention), the p64 Flow-Modulation
Device (Phoenix), and the Surpass Flow-Diverter (Stryker).

We used the Fast Virtual Stenting method [Larrabide et al., 2012] to create the
geometric models of the deployed flow diverters. To virtually release the stent, the first
step is to initialise the mesh inside the vessel geometry, which includes: (1) the creation
of the simplex points around the vessel centreline; (2) the creation of the simplex mesh
connectivity using the previously created points; and (3) the creation of the stent mesh.
Then, an iterative algorithm can be started to update the stent mesh position based
on the vascular geometry. The details of the Fast Virtual Stenting method and the
in silico application of this method can be found in [Larrabide et al., 2012, Liu et al.,
2023, Sarrami-Foroushani et al., 2019, 2021].

2.3 Aneurysmal Thrombosis Modelling

2.3.1 Hemostasis and Thrombosis

Hemostasis [Colman, 2006, Weitz and Fredenburgh, 2013] is a complex and critical
physiological process that stops bleeding at the site of an injury while maintaining nor-
mal blood flow elsewhere in the circulation, while thrombosis [Yesudasan and Averett,
2019] is the process of the formation of a blood clot inside a blood vessel, obstructing
the flow of blood through the circulatory system. Both hemostasis and thrombosis
involve blood clotting, and under physiological conditions, the formation of a blood
clot is a well-regulated process that includes three phases: (1) primary hemostasis, (2)
secondary hemostasis/coagulation, and (3) fibrinolysis [Goeijenbier et al., 2012]. The
details of hemostasis and thrombosis can be found in [Colman, 2006, Neubauer and
Zieger, 2022, Risman et al., 2023, Smith et al., 2015]. The formation of a blood clot is
very complex with at least 80 coupled reactions that regulate clot growth. The most im-
portant and commonly-modelled reactions are platelet activation, thrombin generation
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and fibrin generation.
The key difference between normal hemostasis and aneurysmal thrombosis relates

to how primary hemostasis is triggered (Fig. 2.2). In normal hemostasis, initiation is
triggered by blood exposure in the endothelial tissue caused by injury to the vascular
wall, while in cerebral aneurysm thrombosis, it has been linked to endothelial damage
present in the aneurysm sac, wall inflammation, blood-borne tissue factor, and the
contact with artificial surfaces after treatment [Giesen et al., 1999, Ngoepe et al., 2018,
Sarrami-Foroushani et al., 2017, Smith et al., 2015].

Figure 2.2: Overview of the coagulation cascade. The coagulation cascade is initiated in two
different mechanisms: the intrinsic pathway (initiated by factors within the blood) and the
extrinsic pathway (triggered by external trauma). Both pathways converge at the production
of factor Xa. The common pathway results in the generation of a burst of thrombin, which
converts fibrinogen to fibrin and activates platelets. Note: XIa represents the activation of XI.
HK, high-molecular-weight kininogen; PK, plasma prekallikrein; TF, tissue factor; TF:VIIa,
tissue factor binds factor VIIa; PT, prothrombin; TH, thrombin; FG, fibrinogen; FI, fibrin; RP,
resting platelets; AP, activated platelets.
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2.3.2 Literature Thrombosis Models

The multi-scale and multi-physics nature of thrombosis has inspired a wide range of
modelling approaches applied to various phenomena that aim to address how a throm-
bus forms [Gutierrez et al., 2023]. Gutierrez et al. [2023] classified the commonly used
thrombosis modelling techniques as (a) continuum models in which quantities such as
velocity or concentration of blood constituents are spatially averaged and mapped onto
finite regions in the computational domain or (b) particle models in which flow and
chemical quantities are, instead, represented as collections of particles. Continuum
models usually model large-scale processes on the order of millimetres [Gutiérrez et al.,
2021, Steinman, 2002, Taylor and Figueroa, 2009] and discretise a blood domain in
order to solve algebraic equations that represent differential equations. In continuum
models, cells and biochemical species such as platelets are commonly treated as aver-
aged homogeneous species as they are much smaller than the whole modelling domain.
Alternatively, particle models use particles instead of a mesh to represent flow, plate-
lets, and other biochemical species. Particle models can capture the deformation and
collision physics of platelets and red blood cells in flow [Qi and Shaqfeh, 2018, Skor-
czewski et al., 2013, Vahidkhah et al., 2014]. Current laptops can sufficiently solve
steady flow in a patient-specific vessel using continuum models within hours. However,
transient flow in complex geometries involving turbulence or particle-based models of
thousands of particles can take weeks to months, even on a high-performance com-
puting cluster. It may not be feasible on a standard computer. How computational
models can be applied to simulate various thrombosis processes depends on the end
goal for the model and is largely driven by the practical constraints of computational
cost (time and computational power) required for a simulation. More details about
the advantages and disadvantages of existing literature continuum and particle models
and how computational models can be applied to simulate various thrombosis processes
were summarised and discussed in [Gutierrez et al., 2023]. Although different modelling
methods can be coupled as informed by the scale and physics, the development of an
all-encompassing computational model of thrombosis, combining all relevant underly-
ing phenomena for patient-specific applications remains impractical, and, instead, it is
necessary to simplify models and to focus on specific questions.

Ngoepe et al. [2018] summarised the literature on computational models of physiolo-
gical (natural hemostasis) and pathological (thrombosis) clotting. They found that
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these models typically consist of different physical subsystems (e.g., platelets, coagula-
tion, and haemodynamics) that are coupled together to simulate the thrombus form-
ation process [Ngoepe et al., 2018]. The platelet models [Chatterjee et al., 2010, Fili-
povic et al., 2008, Flamm et al., 2012, Mody and King, 2008, Purvis et al., 2008] focus
on the adhesion, activation, and aggregation of platelets and sometimes the coagula-
tion reactions supported by the platelet membranes; the coagulation network models
[Hemker et al., 2000, Hemker and Kremers, 2013, Hemker et al., 2002, Hockin et al.,
2002, Mann et al., 2006, Wagenvoord et al., 2006] focus solely on the biochemical reac-
tions which result in the formation of thrombin and ultimately, fibrin; the integrated
models [Anand et al., 2006, 2008, Leiderman and Fogelson, 2011, Leiderman et al.,
2008, Sarrami-Foroushani et al., 2019, Sorensen et al., 1999, Storti and Van De Vosse,
2014, Xu et al., 2008] incorporate platelet activation/aggregation, biochemical reac-
tions, and haemodynamics, which can provide a mechanism for coupling the different
systems that contribute to the clot formation process and are therefore more readily
applicable to specialised aneurysmal thrombosis models. Although various hemostasis
and thrombosis models have been developed and presented in the literature, integrated
models designed specifically for brain aneurysm thrombosis are rare. Ouared et al.
[2008] defined a mesoscopic model for aneurysmal thrombus formation, implementing
platelets transport, adhesion, and aggregation on top of a 2D Lattice Boltzmann hae-
modynamics model. In their model, thrombosis starts and grows below a shear rate
(SR) threshold and stops above it. Bedekar et al. [2005] first combined biochemical
reactions with haemodynamics in patient-derived brain aneurysm geometries. They
formulated an integrated model that accounts for a detailed description of clot form-
ation biochemistry, activation mechanisms, surface adhesion, and aneurysmal haemo-
dynamics. Before that, the complex biochemical reactions were usually implemented
in idealised geometries, while only the haemodynamics were calculated using realistic
geometries. By building the trigger mechanism on the SR thresholding approach intro-
duced by [Ouared et al., 2008], Ngoepe and Ventikos [2016] developed a comprehensive
computational model of clotting that accounts for biochemical reactions coupled with
3D haemodynamics in image-derived patient aneurysms in the presence of a virtually
deployed stent. The reactions were initiated by expressing TF along a portion of the
aneurysm wall where the SR was below a given threshold. Ou et al. [2017] assumed that
the concentration of fibrin was seen to increase dramatically, signalling the initiation
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of coagulation when SR was decreased to below 10 s−1. Their model has been valid-
ated by studies in an experimental rat model and then applied to an idealised saccular
aneurysm treated with flow-diverter. Although SR is considered one of the important
parameters that contribute to thrombosis, Rayz et al. [2010] found that a model with
both low SR and high residence time (RT) could predict thrombosed areas significantly
better than the models using RT or SR alone. The RT of a fluid particle (or local
RT) is the time that the particle has spent inside a domain since its entry [Ghirelli
and Leckner, 2004]. Sarrami-Foroushani et al. [2019] assumed thrombosis to initiate
and progress in regions where SR fell below a specific threshold (25 s−1) and RT was
greater than a threshold (5 s). Their novel contribution combines platelet activation
and transport with fibrin generation, which is key to characterising stable and unstable
thrombus. Their integrated model coupled haemodynamics and biochemical reactions
and defined a flow-induced platelet index (FiPi) as a quantitative measure of thrombus
stability. Sarrami-Foroushani et al. [2019]’s model has been validated against an in
vitro phantom study of two flow-diverting stents with different sizing.

In summary, an ideal computational thrombosis model would be capable of predict-
ing both the haemodynamic changes and clot coagulation after endovascular treatment
and would determine the best course for an individual [Ngoepe et al., 2018]. Although
there is a wide range of hemostasis and thrombosis models in the literature, most
of the physiological (thrombosis) models have been implemented in two-dimensional
frameworks only. The integrated 3D models designed specifically for brain aneurysm
thrombosis and that can be applied to patient-specific aneurysmal thrombosis model-
ling both before and after treatment are rare. The integrated 3D thrombosis model
originally developed by Sarrami-Foroushani et al. [2019] incorporates biochemical re-
actions, platelet activity, and haemodynamics, and this model could be considered as
a useful tool in clinical decision-making after further population-level model credibility
assessment.

2.3.3 Residence Time

The most challenging part of a mechanistic model of thrombus formation in an-
eurysms is the mechanism used to describe thrombosis initiation, as it is complicated
and not fully understood yet [Ngoepe et al., 2018, Sarrami-Foroushani et al., 2017].
It has been shown that aneurysmal thrombi form or at least deposit in slow flow and
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low shear regions [Malaspinas et al., 2016, Ou et al., 2017, Rayz et al., 2008, Sarrami-
Foroushani et al., 2017]. CFD models use blood flow stasis as a surrogate for thrombosis
initiation mechanisms, with RT and SR being the most widely used parameters in flow
stasis-induced thrombosis models [Cebral et al., 2014, Ouared et al., 2016, Rayz et al.,
2010, Sarrami-Foroushani et al., 2019].

The RT of a fluid particle (or local RT) is the time that the particle has spent inside
a domain since its entry [Ghirelli and Leckner, 2004]. The details of the definition of
RT can be found in [Ghirelli and Leckner, 2004, Levenspiel, 1998]. The mean RT at
a point can be measured by introducing a pulse of tracer in the inlet to the domain,
while measuring the tracer concentration at a given point continuously. The mean RT
is defined as:

RT ≡
∫∞

0 CRT t dt∫∞
0 CRT dt

, (2.1)

where CRT is the local concentration of RT at a given point, and t is the time elapsed
since the injection of the tracer.

The literature RT calculation methods can be classified into Eulerian (e.g., Eu-
lerian RT, Virtual-ink RT, Eulerian indicator RT, Point-wise RT) and Lagrangian (e.g.,
Particle RT, Mean exposure time) approaches, where several measures have been cre-
ated to calculate RT [Reza and Arzani, 2019]. We used the Eulerian RT approach
(a widely-used effective approach) [Liu et al., 2023, Menichini and Xu, 2016, Rayz
and Cohen-Gadol, 2020, Sarrami-Foroushani et al., 2019] in our workflow, and RT was
modelled as a tracer passively transported with the blood flow by solving the following
advection-diffusion-reaction equation:

∂CRT

∂t
+ u · ∇CRT = DRT ∇2CRT + 1, (2.2)

where t is time, u is the velocity vector, CRT is the local concentration of RT, and
DRT represents the self-diffusivity of the flow (DRT = 1.14 × 10−11 m2s−1) [Harrison
et al., 2007, Menichini and Xu, 2016]. The source term considers a unit increase in the
concentration of RT for each unit increase in time [Menichini and Xu, 2016].

Three main triggers of flow stasis-based thrombosis models appear in the literature:
(1) high RT alone; (2) low SR or WSS alone; and (3) high RT and low SR/WSS in com-
bination. However, there is no clear consensus on the values of the trigger thresholds.
In Chapter 3, we calibrate these trigger thresholds based on clinical spontaneous throm-
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Figure 2.3: The thrombosis model in our group including four main biochemically-coupled
events: Thrombin generation, Fibrin generation, Platelet activation, and Platelet aggregation.

bosis prevalence, and this calibration study paper was published in APL Bioengineering
as an editor’s pick paper [Liu et al., 2023].

2.3.4 The Flow Stasis-Induced Thrombosis Model

The flow stasis-induced thrombosis model used in our group was originally de-
veloped by Sarrami-Foroushani et al. [2019]. Sarrami-Foroushani et al. [2019] assumed
thrombosis to initiate and progress in regions where RT was greater than a threshold
(e.g., 2.0 s) and SR fell below a specific threshold (e.g., 25 s−1). The novelty of this in-
tegrated thrombosis model (incorporating biochemical reactions, platelet activity, and
haemodynamics) is that they defined a flow-induced platelet index (FiPi) as a quant-
itative measure of thrombus stability. FiPi quantifies the effect of blood flow on the
transport of platelets to and from the site of thrombus formation and thus on the
final platelet content of the formed thrombus. This model is not only capable of pre-
dicting both the haemodynamic changes and thrombus formation after endovascular
treatment but is also able to predict the long-term thrombus stability by investigating
the thrombus composition.

As shown in Fig. 2.3, four main biochemically-coupled events that result in throm-
bus of fibrin mesh and aggregated platelets were considered, with five biochemical

25



2.3 Aneurysmal Thrombosis Modelling

species: prothrombin (PT), thrombin (TH), anti-thrombin (AT), fibrinogen (FG), fib-
rin (FI), and three categories of platelets: resting platelets (RP), activated platelets
(AP), fibrin bound aggregated platelets (BP). (1) Thrombin generation — conversion
of prothrombin to thrombin on the surface of resting, activated, and bound platelets,
also considered thrombin inhibition by anti-thrombin; (2) Fibrin generation — throm-
bin is able to convert fibrinogen into (insoluble) fibrin; (3) Platelet activation — resting
platelets become activated by exposure to thrombin or other activated/bound plate-
lets; and (4) Platelet aggregation — activated platelets attached to the fibrin network
aggregate to form bound platelets.

Three-dimensional momentum equations for incompressible and Newtonian fluid,
the Navier-Stokes equations, were used to describe blood flow. The vessel wall was
assumed to be rigid [Humphrey and Taylor, 2008], and the no-slip wall boundary con-
dition was imposed; the mean Reynolds number at the inlet was 338; a Poiseuille profile
was imposed at the inlet; and a zero-pressure condition was prescribed at all outlets
[Sarrami-Foroushani et al., 2019]. The Navier-Stokes equations for an incompressible
Newtonian fluid are given by:

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p + µ∇2u − µΦ(kf , kp)u, (2.3)

where u is the velocity vector, t is time, and p is the pressure. Blood flow was regarded
as an incompressible and Newtonian fluid with a constant density ρ of 1060 kg/m3 and
viscosity µ of 0.004 Pa · s [Geers et al., 2014, Villa-Uriol et al., 2011]. To consider the
effect of the thrombus on the fluid velocity field, without modelling the fluid-structure
interaction, the blood thrombus was regarded as a porous medium with both fibrin and
bound platelet components. A Darcy term, µΦ(Cf , Cp)u, was added to the momentum
equations. The function Φ(Cf , Cp) was defined as:

Φ(Cf , Cp) = 1
kfi

ϕfi
p + 1

kbp
ϕbp

p , (2.4)

where kfi and kbp are permeabilities of the thrombus due to fibrin fibres and bound
platelets, respectively. The Hill functions, of form ϕi

x = Cn
i /(Cn

i + Cn
i,50), ϕfi

p and ϕbp
p

were used to make sure that there is no flow restriction in non-thrombosed regions,
while flow restriction increases to half of its maximal value as fibrin and platelet con-
centrations approach 600 nM and 7 × 105 platelets/um3, respectively. We set n = 4 to
ensure a sharp boundary between the clot and blood.
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Denoted by Cpt, Cth, Cat, Cfg, Cfi, Crp, Cap, and Cbp, the bulk concentration of pro-
thrombin, thrombin, anti-thrombin, fibrinogen, fibrin, resting platelets, activated plate-
lets and bound platelets, respectively. The transport of each species was modelled using
the advection-diffusion-reaction (ADR) equation (2.5).

∂Ci

∂t
+ (u · ∇)Ci = Di∇2Ci + Si, (2.5)

Where Ci is the species concentration, Di is the diffusion coefficient, and Si is the reac-
tion term. For bound platelets, the advection and diffusion terms need to be removed
to represent platelets adhered to the clot. The reaction source terms in equation (2.5)
were as follows (more details can be found in [Sarrami-Foroushani et al., 2019]):

Spt = −krp
thCrpCpt − kap

th CapCpt − kbp
thCbpCpt (2.6)

Sth = krp
thCrpCpt + kap

th CapCpt + kbp
thCbpCpt − kat

thCatCth (2.7)

Sat = −kat
thCatCth (2.8)

Sfg = −Sfi = −kth
fiCthCfg/(kth

m,fi + Cfg) (2.9)

Srp = −kth
paϕth

paCrp − kap
paCrp (2.10)

Sap = kth
paϕth

paCrp + kap
paCrp − kpbϕ

fi
pbCap (2.11)

Sbp = kpbϕ
fi
pbCap (2.12)

Platelet activation by thrombin was assumed to occur when thrombin concentration
was greater than 9×10−1 nM [Sorensen et al., 1999]. This was modelled by multiplying
the associated reaction source term by a Hill function, ϕth

pa, with n = 4. The platelet re-
cruitment and deposition were assumed to depend on the concentration of free platelets
and the value of a function representing fibrin-platelet. This was modelled by multiply-
ing the associated source term by a second-order Hill function ϕfi

pb with Cfi,50 = 60
nM (10% of the threshold concentration, 600 nM, at which fibrin clot is assumed to
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be formed). The details of all model parameters can be found in Table 4.1, Table 4.2,
and Table 4.3, and more details can be found in [Liu et al., 2023, Sarrami-Foroushani
et al., 2019].

FiPi was defined as the relative difference in platelet concentration between a closed
and an open system:

FiP i =
Copen

bp − Cclosed
bp

Cclosed
bp

=
Copen

bp

Crp,0 + Cap,0
− 1 (2.13)

Where Crp,0 and Cap,0 are initial concentrations of resting and activated platelets in the
clot-free blood, respectively. In a closed system with no inflow or outflow, the platelet
content of the clot is equal to the initial concentration of platelets in the system.
However, in an open system, because platelets can attach to the clot, the platelet
content of the clot would differ from that in a closed system. FiPi quantifies the effect
of blood flow on the movement of platelets in and out of the thrombus formation site,
and thus on the final platelet content of the formed thrombus.

2.4 Summary of Our CFD Workflow

It is well-known that different CFD codes and approaches will produce differing
results. Although medical image-based CFD of IAs has become a widely-used tool for
elucidating the role of haemodynamic forces in aneurysm development and rupture,
the CFD tools are subject to numerous sources of uncertainty [Valen-Sendstad et al.,
2018]. The common sources of uncertainty [Sarrami-Foroushani et al., 2016, 2017,
Valen-Sendstad et al., 2018] for the image-based CFD tools and our effort to increase the
credibility of our model are outlined below. It should be noted that image segmentation
and surface mesh generation are not part of this study.

1. Digital segmentation of the vessel and aneurysm: We used a 3D multi-task
segmentation neural network to complete the segmentation of the vessel and an-
eurysm dome automatically. Using the manually segmented results [Iavindrasana
et al., 2008, Villa-Uriol et al., 2011] as references, this segmentation network
achieved an average Dice score of 0.81 and an average surface-to-surface error of
0.20 mm (less than the in-plane resolution (0.35 mm/pixel)) for aneurysm seg-
mentation; and an average Dice score of 0.91 and average surface-to-surface error
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of 0.25 mm for vessel segmentation. The details of the segmentation algorithm
and performance can be found in Lin et al. [2023].

2. Mesh and time-step resolutions: (1) We used ANSYS ICEM CFD v19.3
(Ansys Inc. Canonsburg, PA, USA) to generate unstructured volumetric meshes.
To discretise the computational domain, including the vascular region and an-
eurysm sac, tetrahedral elements with a maximum edge size of 0.2 mm and five
layers of prismatic elements with a maximum edge size of 0.1 mm were used.
Sarrami-Foroushani et al. [2019] performed the mesh convergence tests based on
the inflow rate at the aneurysm neck, and according to their tests, mesh independ-
ence was obtained for the above-mentioned element sizes. (2) Unless otherwise
stated, the transient blood flow simulations were run for 3 cardiac cycles in the
flow-only model and 200 cardiac cycles in the full thrombosis model. Each car-
diac cycle was equally discretised into 200 steps [Sarrami-Foroushani et al., 2019].
CFX’s adaptive time-stepping with minimum, maximum, and initial time steps
of 0.0001s, 0.05s, and 0.01s was used in all simulations.

3. Blood flow modelling:

• Newtonian assumption: In the literature, blood rheology was often assumed
to be Newtonian, but non-Newtonian effects were suggested to be important
in the slow-flow regions [Sarrami-Foroushani et al., 2017]. In this thesis, we
compared CFD simulations performed with Newtonian and the classic Cas-
son [Xiang et al., 2012] model (non-Newtonian) in 5 large and giant cases
in terms of the maximum RT and the minimum SR in the aneurysm sac.
According to the results of Tukey’s range test (details of the Tukey’s range
test results can be found in Chapter 3), both the absolute mean differences
of RT and SR are smaller than the critical values. Therefore, the difference
in means between Newtonian results and non-Newtonian results is not stat-
istically significant (α = 0.05), and the Newtonian assumption is applicable
to this thesis.

• Inlet flow velocity boundary conditions: With in-vivo measurement-derived
boundary conditions unavailable for our cohort, we used a previously de-
veloped Multivariate Gaussian Model (MGM) [Sarrami-Foroushani et al.,
2016] to generate patient-specific boundary conditions as internal carotid
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flow waveforms. The MGM model was trained and calibrated by the data
from 17 healthy young adults [Ford et al., 2005]. A virtual population of 1000
normotensive waveforms was then generated while three of them, i.e., high,
mean, and low, were selected to maximise the variability across the entire
virtual population (by selecting high/low as the upper/lower bounds of the
1000 waveforms). To consider inter-subject variability, these three represent-
ative waveforms were used as inlet boundary conditions for flow simulations.
Poiseuille’s law was used to scale the MGM-generated waveforms to achieve
a time-averaged wall shear stress of 1.5 Pa at the inlet.

• Viscosity and density: Blood flow was regarded as an incompressible and
Newtonian fluid with a constant density ρ of 1060 kg/m3 and viscosity µ of
0.004 Pa · s [Geers et al., 2014, Villa-Uriol et al., 2011].

• Outlet boundary conditions and the pragmatic assumption of rigid wall: We
assumed the vessel wall was rigid [Humphrey and Taylor, 2008], and the
no-slip wall boundary condition was imposed; a zero-pressure condition was
prescribed at all outlets [Sarrami-Foroushani et al., 2019].

• Other CFD solver settings: The coupled Navier-Stokes equations and trans-
port equations were solved in ANSYS CFX v19.3 (Ansys Inc., Canonsburg,
PA, USA) using a finite volume method [Sarrami-Foroushani et al., 2019].

As mentioned above, we imposed the commonly used assumptions (e.g., rigid wall,
Newtonian flow, and zero-pressure outlets) and parameters (blood viscosity and density
values) from the literature. We also calibrated or validated each component of our
framework in the previous work of our group: (1) The basic CFD solver setting (ANSYS
CFX), blood viscosity/density, Newtonian assumption, rigid wall assumption, and zero-
pressure outlets were imposed in our group’s previous study [Larrabide et al., 2012],
where contrast time-density curves for in vitro and CFD data were generated and used
to compare the in vitro experiments and CFD analysis for intracranial aneurysmal
stenting. In vitro and CFD experiments were stated to be in agreement, especially for
the quantitative comparison of the contrast density curves; (2) Digital segmentation of
the vessel and aneurysm was from a previously published study [Lin et al., 2023]; (3) The
internal carotid flow waveforms were generated from a cerebral autoregulation system
(CARS) model originally proposed by Mader et al [Mader et al., 2015]. The details
about how they extended this model to include the between/within-subjects variability
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of the internal carotid flow waveforms can be found in our team’s previously published
study [Lassila et al., 2020, Sarrami-Foroushani et al., 2016]; (4) The thrombosis model
was originally developed by Sarrami-Foroushani et al. [2019]. They built computer
models of the in vitro phantom experiments and compared computational simulations
of the flow-diverter-induced thrombosis against in vitro observations reported by Gester
et al. [2016]. Good agreement was achieved in that study.

2.5 Improved CFD Workflow (Technical Contributions)

2.5.1 Fully Automatic Volume Meshing and Post-Processing

As shown in Fig. 2.4, we obtained the patient-specific vascular surface model from
segmentation. We used to manually generate the inlet and outlet surfaces, semi-
automatically create a neck surface to separate the vessel and aneurysm domains, and
semi-automatically generate the unstructured volumetric meshes using ANSYS ICEM
CFD v19.3. During my PhD research, I developed several Python scripts to automate
the volume meshing and post-processing components of our CFD workflow.

Inlet and Outlet Surfaces

The first step in generating unstructured volumetric meshes automatically, is to cre-
ate the inlet and outlet surfaces. A Python module named “vedo” can be used for cap-
ping the vascular surface model to obtain the inlet and outlet surfaces. I created a Py-
thon script based on two main functions, ‘caps = vessel surface.cap(return cap=True)’
and ‘cap surfaces = caps.split(maxdepth=40)’, from “vedo” to obtain the inlet and out-
let surfaces automatically. Then I used ‘vedo.Mesh.area(surface name)’ to calculate the
area of each surface and set the surface with the largest area as the inlet while all other
surfaces are used as outlets automatically. The function ‘vedo.mesn.Mesh.cap()’ gener-
ates a “cap” on a clipped mesh, or caps sharp edges, the function ‘vedo.mesh.Mesh.split()’
splits a mesh by connectivity, while the function ‘vedo.mesh.Mesh.area()’ computes the
surface area of the mesh. More details about the above vedo functions can be found in
‘https://vedo.embl.es/#gallery’. The above scripts were tested on 109 aneurysm cases
in the calibration study in Chapter 3.
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Figure 2.4: From segmentation, we acquired the patient-specific vascular surface model (a)
that can be used to generate unstructured volumetric meshes (b) using ANSYS ICEM CFD
v19.3 (Ansys Inc. Canonsburg, PA, USA). During volume meshing, a neck surface was used to
separate the computational domain into parent vessel and aneurysm.

Neck Surface

The main aims of using a neck surface to separate the vessel and aneurysm domains
for running simulations are as follows: (1) Since the thrombosis model is very time-
consuming (usually taking days to weeks per case), we can constrain the biochemical
reactions to occur only inside the aneurysm domain in ANSYS CFX to accelerate the
simulations. (2) We can easily output, post-process, and analyse the haemodynamics
and thrombus formation information inside the aneurysm, as we are more interested in
information inside the aneurysm sac rather than the entire computational domain.

However, the neck surface may lead to poor volume meshing and thus incorrect
simulation results (Fig. 2.5(a)). Although semi-automatically selecting some points
along the mesh element edges for generating the neck surface can reduce the likelihood
of poor volume meshing compared to using a plane for automatic cutting, we still need
to manually pre-process the vascular surface model. Neck-surface-related issues persist
even using the semi-automatic approach, with about 8.3% (10/121) cases having a
problematic neck surface.

Suppose the neck surface is not generated along the mesh element edges to separ-
ate the vessel and aneurysm geometries. In that case, it might be identified as a wall
surface (where blood flow can not pass through) rather than an internal wall (where
blood flow can pass through), leading to incorrect simulation results Fig. 2.5(a). To
avoid this issue, one approach is to use a single combined vessel and aneurysm surface
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Figure 2.5: The neck surface can sometimes result in poor volume meshing outcomes, leading to
incorrect simulation results. (a) If the aneurysm is cut out using a plane and then automatically
capped to create a flat neck surface, this surface can sometimes be mistakenly identified as a
wall during volume meshing. As a result, no blood flow (zero velocity inside the aneurysm)
can be transported to the aneurysm sac. (b) If points along the mesh element edges are
manually selected to separate the vessel from the aneurysm, and the neck surface is then semi-
automatically generated using ANSYS ICEM, the neck surface is usually treated as an internal
wall during volume meshing, allowing blood flow to pass through.
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model to generate the volumetric meshes for simulations. Then, we can automatic-
ally extract haemodynamic and thrombus formation information inside the aneurysm
sac during post-processing using a ‘vedo’ function. For example, the function “inside
aneurysm points = aneurysm mesh.inside points(combined vessel and aneurysm mesh,
invert=False, tol=1e-5, return ids=True)” can be used to extract points within the an-
eurysm sac from the whole computational domain without relying on the neck surface.

The limitation of this approach is that we need to run the thrombosis model for the
entire computational domain (both the parent vessel and aneurysm sac), which is time-
consuming. To address this, another approach involves using a single combined vessel
and aneurysm surface model to generate the entire volumetric meshes, then splitting
the entire domain into vessel and aneurysm domains. Once all volume mesh elements
are generated and named, for example, “VESSEL”, we can select the volumetric mesh
elements inside the aneurysm and rename them as “ANEURYSM” in ANSYS ICEM.
This process can be automated by calculating the minimum and maximum coordin-
ates of the sac surface using Python (e.g., “min sac coordinates = [numpy.min(sac.x),
numpy.min(sac.y), numpy.min(sac.z)]”) and creating the “ANEURYSM” domain using
ICEM functions such as “ic uns create selection subset 0”, “ic uns subset add region
uns sel 0 {min sac coordinates max sac coordinates}”, and “ic uns set part uns sel 0
ANEURYSM”. All remaining unselected volume mesh elements will be assigned to the
“VESSEL” domain by default.

In summary, I have proposed two automated methods to address the neck-surface-
related issue described above. The first method involves extracting information within
the aneurysm during post-processing, which has been tested on 42 cases in the calibra-
tion study presented in Chapter 3. The second method involves splitting the combined
computational domain into “ANEURYSM” and “VESSEL” domains during volume
meshing, which was tested on 5 cases and used in the sensitivity analysis and validation
study in Chapter 4. Additionally, I created a Python script to generalise the ANSYS
ICEM MACRO (.rpl file) for generating volume meshes across various scenarios, in-
cluding different numbers of inlet and outlet surfaces, with or without neck surfaces,
with or without the splitting of the combined vessel and aneurysm domain, and with
or without coils and stent devices. Consequently, the volume meshing, simulation, and
post-processing components of our workflow are now fully automated.
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2.5.2 Improved Virtual Coiling for Wide-Neck Aneurysms

Clinically, when treating wide-neck aneurysms with flow-diverter stents and coils,
clinicians typically insert the coils into the aneurysm sac first, followed by the deploy-
ment of the flow-diverter. The aneurysms are usually packed as densely as possible with
coils. The flow diverter stabilises the coils within the aneurysm sac, ensuring there is
no apparent gap or intersection between the stent and the coils.

In our CFD workflow, the virtual coiling and virtual stenting algorithms were de-
veloped independently. This may lead to two potential issues when treating wide-neck
aneurysms with virtual coils and flow-diverters: (1) possible crossing or overlap between
the virtual stent and coils, and (2) an unrealistic gap between the virtual stent and
coils.

The virtual stenting process updates the stent mesh position based on the parent
vessel geometry, with the deployed stent serving as a virtual reconstruction of the parent
vessel, while the virtual coiling technique places coils one by one into an aneurysm
geometry defined by its wall and ostium. Since these virtual treatment techniques
were developed independently, the virtual treatment outcomes are closely related to
the geometries used. Virtual coiling results depend on the aneurysm sac geometry,
while the parent vessel geometry influences virtual stenting results. For wide-neck
aneurysms, where there is often no distinct neck to separate the aneurysm sac from the
parent vessel, this can result in intersections or unrealistic gaps between the stent and
coils.

As illustrated in Fig. 2.6, the issues mentioned can be addressed by reconstructing
a virtual vessel surface within the aneurysm geometry for use in the virtual coiling
algorithm. The improved approach involves the following steps: (1) separate the an-
eurysm and vessel and virtually deploy the stent using the vessel geometry; (2) recon-
struct a virtual vessel surface based on the stent ( illustrated as the yellow surface in
Fig. 2.6(b)); (3) extrude the edge of the virtual vessel surface to make contact with the
aneurysm wall, then combine them to obtain a fully closed aneurysm geometry with
the reconstructed vessel surface; and (4) open a small ostium on the reconstructed vir-
tual vessel surface to insert the coils. This approach allows for the aneurysm sac to be
packed densely with coils while avoiding intersections or unrealistic gaps between the
stent and coils.

The improved virtual coiling strategy was employed in the patient-specific validation
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Figure 2.6: Improved virtual coiling for wide-neck aneurysms. (a) There are apparent gaps
between the virtual coils and stent on the left and right side of the stent while the coils already
contact with the top of the stent. (b) Improved virtual coiling to reduce gaps between the stent
and coils and also avoid intersection.

case described in Chapter 4 (the sensitivity analysis and validation study paper), where
we modelled the post-treatment haemodynamics and thrombus formation using patient-
specific coils and flow-diverter stents.

2.5.3 Narrowing the Thrombosis Initiation to Areas Near the Wall

Sarrami-Foroushani et al. [2019] assumed that thrombosis initiates and progresses
in regions where RT exceeds greater than a threshold (5 s) and SR falls below a specific
threshold (25 s−1). In Chapter 3, we calibrated these trigger thresholds based on
clinical spontaneous thrombosis prevalence data, adjusting the RT threshold to 1.9 s
and the SR threshold to 11 s−1 [Liu et al., 2023]. Furthermore, we enhanced the trigger
mechanism to constrain thrombus initiation and progression to areas near the vessel
wall or other thrombosed regions where the fibrin concentration, Cfi, is greater than
600 nM [Sarrami-Foroushani et al., 2019].

In untreated aneurysms, thrombi cannot remain suspended in the aneurysm lumen
without anchors. It will be carried away by blood flow and either adhere to the vessel
wall or be transported into the parent vessel. Given that we focus on saccular aneurysms
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Figure 2.7: The aneurysms sac of saccular aneurysms can be approximated with a least square
fit (or inscribed) ellipsoid or sphere.

in this thesis (which constitute 90% of IAs [Keedy, 2006]), and these aneurysms are
typically spherical, the aneurysm sac can be approximated as a least-square fit ellipsoid
or sphere [Piccinelli et al., 2012]. As illustrated in Fig. 2.7, we can separate aneurysm
points into near-wall points and internal points using a virtual ellipsoid or sphere inside
the aneurysm sac. The centre of the virtual ellipsoid or sphere is aligned with the centre
of the least-square fit ellipsoid or sphere. The radius of the virtual ellipsoid or sphere
is set to half of the radius of the least-square fit ellipsoid or sphere. We then use a
Hill function to constrain thrombus initiation for all internal points. The Hill function
is a sigmoidal activation function of form ϕfi

p = Cn
fi/(Cn

fi + Cn
fi,50), where the rate

of occurrence of event, p, requires an appropriate concentration of fibrin, Ci,50 is the
concentration of fibrin where the half-maximal activation (half saturation) occurs, and
the Hill coefficient (the exponent n) reflects the steepness of the response curve. In this
thesis, we set Ci,50 = 600 nM and n = 4 in the trigger mechanism.

This thrombosis initiation narrowing strategy was employed in a patient-specific
validation case in Chapter 4 (the sensitivity analysis and validation study paper), where
we improved the accuracy of the thrombosis model predictions to better align with
clinical realities prior to treatment.
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Chapter 3

Haemodynamics of Thrombus Formation in
Intracranial Aneurysms: An in Silico
Observational Study
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3.1 Introduction

Abstract — How prevalent is spontaneous thrombosis in a population contain-
ing all sizes of intracranial aneurysms? How can we calibrate computational models
of thrombosis based on published data? How does spontaneous thrombosis differ in
normo- and hypertensive subjects? We address the first question through a thorough
analysis of published data sets that provide spontaneous thrombosis rates across differ-
ent aneurysm characteristics. This analysis provides data for a subgroup of the general
population of aneurysms, namely those of large and giant size (>10 mm). Based on
these observed spontaneous thrombosis rates, our computational modelling platform
enables the first in silico observational study of spontaneous thrombosis prevalence
across a broader set of aneurysms phenotypes. We generate 109 virtual patients and
use a novel approach to calibrate two trigger thresholds: residence time and shear rate,
thus addressing the second question. We then address the third question by utiliz-
ing this calibrated model to provide new insights into the effects of hypertension on
spontaneous thrombosis.

We demonstrate how a mechanistic thrombosis model calibrated on an intracranial
aneurysm cohort can help estimate spontaneous thrombosis prevalence in a broader
aneurysm population. This study is enabled through a fully automatic multi-scale
modelling workflow. We use the clinical spontaneous thrombosis data as an indirect
population-level validation of a complex computational modelling framework. Further-
more, our framework allows exploration of the influence of hypertension in spontan-
eous thrombosis. This lays the foundation for in silico clinical trials of cerebrovascular
devices in high-risk populations, e.g. assessing the performance of flow diverters in
aneurysms for hypertensive patients.

3.1 Introduction

Spontaneous thrombosis (ST) of large and giant (>10 mm) unruptured intracranial
aneurysms (IAs) is a common event that can be detected incidentally during advanced
neuroradiological studies before treatment [Alberto et al., 2020, Cohen et al., 2007,
Whittle et al., 1982]. These spontaneously thrombosed aneurysms are considered un-
stable dynamic structures that may grow, recanalise, bleed, compress, or cause throm-
boembolic events [Cohen et al., 2003, 2007, Whittle et al., 1982]. Partially spontan-
eously thrombosed aneurysms may serve as a source of emboli leading to ischemic attack
[Brownlee et al., 1995, Whittle et al., 1982] or cerebral infarction [Alberto et al., 2020,
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Brownlee et al., 1995]. Complete ST can sometimes stabilise the growth of the lesion,
however, 33% (7/21) of the completely thrombosed aneurysms presented recanalisation
at follow-up [Alberto et al., 2020].

Given this, it is worth asking, what is the precise prevalence of ST formation in IAs?
In the literature, spontaneous intra-aneurysmal thrombosis is reported as a common
phenomenon, and the ST prevalence reported in different studies varies widely. The ST
prevalence rate of pediatric patients (8.3%-16.9%) is higher than in adults [Lasjaunias
et al., 2005, Liang et al., 2009], while female patients are more likely to present with
ST than male patients [Alberto et al., 2020]. Similarly, differences are observed de-
pending on the aneurysms themselves, with ST in small aneurysms (≤ 10 mm) a much
rarer phenomenon [Alberto et al., 2020, Ohta et al., 2001] than the approximately 50%
prevalence rate in giant IAs (≥ 25 mm) [Schubiger et al., 1980, Whittle et al., 1982].
Despite the statistics, the prevalence of ST on a population level is not well-understood,
as most studies had small sample sizes. We collect the clinically-reported prevalence
rates of ST (partial or complete) in IAs without treatment in the literature and con-
duct a statistical analysis to identify the prevalence rate of ST across different patient
demographics and aneurysm characteristics.

Experimental studies have highlighted the importance of haemodynamic factors in
the growth and rupture of aneurysms [Artmann et al., 1984, Meng et al., 2014]. CFD
models use high RT and low SR to describe the thrombosis initiation. However, there
is no consensus on the trigger thresholds, with different values used throughout the
literature [de Sousa et al., 2016, Gorring et al., 2015, Hathcock, 2006, Rayz et al.,
2010, Sarrami-Foroushani et al., 2019]. Therefore, there is a need to calibrate RT and
SR thresholds for use in thrombosis models [Sarrami-Foroushani et al., 2019]. In this
study, we create, for the first time, an automatic computational workflow that enables
population-level in silico studies to calibrate haemodynamic thresholds (RT and SR)
of thrombus formation against real population-specific data.

Finally, we use our calibrated thrombosis model to study the effect of hyperten-
sion on ST. Hypertension is a well-known risk factor of unruptured IAs [Vlak et al.,
2013] and more than 75% of saccular IA patients have hypertension [Kotikoski et al.,
2018]. The flow diverter performance assessment (FD-PASS) in silico trial showed that
hypertension may cause less effective flow diversion [Sarrami-Foroushani et al., 2021],
while the IntrePED study reported an association between hypertension and ischaemic
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stroke in flow-diverted aneurysms [Brinjikji et al., 2016]. We modelled hypertension
as boundary conditions modulated by a cerebral autoregulation system (CARS) model
[Lassila et al., 2020] originally proposed by Mader et al. [2015].

This study aims to first establish the prevalence of ST in IAs with different charac-
teristics and different demographics. We then calibrate the haemodynamic thresholds
(RT and SR) of thrombus formation by matching our numerical ST prevalence to the
real clinical data. Finally, we use our calibrated thrombosis model to investigate the
differences in the ST prevalence and aneurysmal haemodynamic factors (RT and SR)
in normotensive and hypertensive patients. The novelty of this study is that we cre-
ate, for the first time, a fully automatic multi-scale modelling workflow that enables
population-based in silico studies to calibrate haemodynamic thresholds (RT and SR)
of thrombus formation against real population-specific data. We demonstrate how a
mechanistic thrombosis model calibrated on an IA cohort (large and giant IAs only)
can help estimate ST prevalence in a broader aneurysm population (all sizes included).
In addition, our framework can provide new insights into the impact of hypertension on
thrombosis by modelling hypertension as boundary conditions modulated by a CARS
model [Lassila et al., 2020].

3.2 Materials and Methods

Through a thorough analysis of published data sets that provided ST rates for a
subgroup of the general population of aneurysms, namely those of large and giant an-
eurysms (>10 mm), we estimated the clinical ST prevalence of large and giant IAs
for our simulation cohort. Using the clinical ST prevalence rate, we performed an in
silico observational study in 109 virtual patients to calibrate RT and SR thresholds and
estimate ST prevalence in a broader IA population. We further investigated how ST dif-
fers in normo- and hypertensive conditions. The haemodynamic factors were calculated
using an automatic workflow (Fig. 3.1). While each component of our methodological
framework has been independently developed and validated before, this study is the
first to model and present such a complex process on the largest patient cohort to date.
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Figure 3.1: Automatic workflow on MULTI-X. The images were from the @neurIST project
[Iavindrasana et al., 2008, Villa-Uriol et al., 2011]. We applied a multi-tasking neural net-
work to automatically segment these images [Lin et al., 2023] and generate the corresponding
patient-specific vascular surface models, and then we used ANSYS ICEM CFD v19.3 (Ansys
Inc. Canonsburg, PA, USA) to generate unstructured volumetric meshes. The patient-specific
inlet flow waveforms were generated from a Multivariate Gaussian Model (MGM) [Sarrami-
Foroushani et al., 2016] and a CARS model [Lassila et al., 2020]. Finally, the coupled Navier-
Stokes equations and transport equation for RT were solved in ANSYS CFX v19.3 (Ansys Inc.,
Canonsburg, PA, USA) using a finite volume method [Sarrami-Foroushani et al., 2019].
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3.2.1 Systematic Literature Review

To estimate the ST prevalence for different aneurysm characteristics, a compre-
hensive and systematic review of the literature up to July 2021 was conducted on the
MEDLINE database. We searched for articles reporting cohort cases of IA ST (partial
or complete). The articles were identified using Boolean searches on PubMed with the
following keywords “((spontaneous thrombosis) or (spontaneous clot formation)) and
((intracranial aneurysms) or (cerebral aneurysms))”. The search strategy followed the
PRISMA (Preferred reporting items for systematic review and meta-analysis protocols)
guidelines [Shamseer et al., 2015]. Case report articles were not considered. Only art-
icles in English were considered and only those reporting patient cohorts. Aneurysms
were divided into three groups: small (≤ 10 mm), large (>10 mm and <25 mm), and
giant (≥ 25 mm) according to the sizes reported by the investigators.

After the systematic literature review, we were able to estimate the ST prevalence
of aneurysms of different sizes. For a population, the ST prevalence (P ) is given by

P = NsPs + NlPl + NgPg

Ns + Nl + Ng
× 100%, (3.1)

where Ns, Nl, and Ng are the numbers of small, large, and giant IAs, respectively. Ps,
Pl, and Pg are the ST prevalence of small, large, and giant IAs, respectively. However,
ST is rarely reported in small IAs, so we used the collected ST prevalence of only
large and giant IAs, Pl and Pg, to estimate the clinical ST prevalence for our cohort
according to its distribution of large and giant cases. We calibrated our clotting model
by matching the numerical ST prevalence to the estimated clinical ST prevalence for
our simulation cohort. After calibration, we used the calibrated model to predict the
ST prevalence for small aneurysms, Ps. Finally, the ST prevalence for a broader general
population can be estimated by equation (3.1).

3.2.2 In Silico Observational Study

Patient and Aneurysm Characteristics

The patient image data in this paper were from the @neurIST project [Iavindrasana
et al., 2008, Villa-Uriol et al., 2011]. All images were anonymised, respecting the @neur-
IST ethical approval for the use of patient data (http://www.aneurist.org). We only
considered single aneurysm cases. 109 patient datasets (72 female, 37 male), with 67
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small, 40 large, and 2 giant IAs, were available. Among the 109 cases, 67 small, 21 large,
and 1 giant case were segmented automatically, while the other 19 large and 1 giant
case were manually segmented in the @neurIST project. The details of the population
characteristics of our simulation cohort can be found in Table 3.1, the average age of
our simulation cohort is 51 years (range 22-78 years) and the mean aneurysm neck size
is 5.0 ± 2.1 mm (range 1.7 - 12.3 mm). Of these 109 IAs, 61%(67/109) are small IAs,
37%(40/109) are large IAs, and 2%(2/109) are giant IAs. It is well-established in the
literature that aneurysm size is the most important factor associated with ST [Alberto
et al., 2020, Ohta et al., 2001, Scerrati et al., 2019]. The distribution of aneurysm sizes
in our simulation cohort is quite similar to that of the general population obtained from
a large consecutive series of 1993 ruptured IAs [Korja et al., 2016]: 68%(1355/1993)
small IAs, 30%(598/1993) large IAs, and 2%(40/1993) giant IAs. Thus, the size-based
ST prevalence calculated by our calibrated model can be applied to the general popu-
lation.

Flow Simulations

For our in silico observational study of ST, RT was modelled as a tracer passively
transported with the blood flow by solving equation (2.2) described in Chapter 2. SR
was calculated automatically by using an associated built-in variable in ANSYS CFX
[Sarrami-Foroushani et al., 2019].

In the literature, blood rheology was often assumed to be Newtonian, but non-
Newtonian effects were suggested to be important in the slow-flow regions [Sarrami-
Foroushani et al., 2017]. In this study, we compared CFD simulations performed with
Newtonian and the classic Casson [Xiang et al., 2012] model (non-Newtonian) in 5 large
and giant cases in terms of the maximum RT and the minimum SR in the aneurysm
sac (Table 3.2). According to the results of Tukey’s range test, both the absolute
mean difference of RT and SR are smaller than the critical values, thus the difference
in means between Newtonian results and non-Newtonian results is not statistically
significant (α = 0.05 ). In addition, when using the calibrated RT and SR thresholds,
1.9 s and 11 s−1, the numerical thrombosis status predicted by the Newtonian model
and the non-Newtonian model is the same in all 5 cases. Therefore, the Newtonian
assumption is applicable to this study.

For a given case, if RT is greater than the RT threshold and SR is less than the
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Table 3.1: Population Characteristics.

Number of aneurysms 109
Age, year
Mean ± SD (N) 51.4 ± 6.4 (109)
Median 51.0
Range 22.0-78.0
Female sex, % (n/N) 66.1 (72/109)
Aneurysm size, mm
Mean ± SD (N) 9.2 ± 4.7 (109)
Median 7.9
Range 2.5-30.9
Small (d ≤ 10 mm ), % (n/N) 61 (67/109)
Large (10 mm <d <25 mm ), % (n/N) 37 (40/109)
Giant (d ≥ 25 mm ), % (n/N) 2 (2/109)
Aneurysm neck, mm
Mean ± SD (N) 5.0 ± 2.1 (109)
Median 4.4
Range 1.7-12.3
Aneurysm location
ICA/PComA, % (n/N) 62.4 (68/109)
MCA, % (n/N) 21.1 (23/109)
BA/PCA/SCA, % (n/N) 11.9 (13/109)
ACA, % (n/N) 4.6 (5/109)

ICA, internal carotid artery; PComA, posterior communicating artery; MCA, middle cerebral
artery; BA, basilar artery; PCA, posterior cerebral artery; SCA, superior cerebellar artery; ACA,
anterior cerebral artery.

45



3.2 Materials and Methods

Table 3.2: The maximum RT and minimum SR assuming Newtonian and non-Newtonian blood
flows.

Cases
RT(s) SR(s−1)

Newtonian non-Newtonian Newtonian non-Newtonian

The max RT case 2.84 2.52 0.004 0.001

The median RT case 2.39 2.72 9.18 1.79

The median SR case 1.10 1.63 13.31 9.07

The median non-sphericity case 2.47 2.49 4.21 1.39

The min non-sphericity case 2.35 2.40 24.57 23.50

Mean 2.230 2.352 10.255 7.150

Variance 0.349 0.141 71.407 76.805

Tukey’s range test

q(2,8,α=0.05) 3.261 3.261

T = q ×
√

MSE
n 0.722 12.555

Absolute mean difference 0.122(<0.721) 3.105(<12.555)

Significant difference at α = 0.05 No No

The max RT cases is also the min SR case; the median RT case is also the max non-sphericity case;
MSE, mean square error; n, the number of items in one sample.

46



3.2 Materials and Methods

Figure 3.2: Segment the aneurysm sac alone and then extract the RT and SR information inside
the aneurysm sac during post-processing.
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Figure 3.3: Patient-specific inlet flow waveforms.

SR threshold in the aneurysm sac, thrombus formation is assumed to initiate. We
performed a series of unsteady simulations using the generated volumetric meshes and
calculated the magnitude and distribution of RT and SR on the whole computational
domain (both the vessel and the aneurysm sac) and on the isolated aneurysm sac for
each case (Fig. 3.2). By varying the values of the RT and SR thresholds, we obtained
different numerical ST prevalence across our cohort of large and giant IAs. Finally, by
matching the simulated ST prevalence in our large and giant IA cohort to the clinical
ST prevalence, we were able to obtain a plausible range of trigger threshold values for
RT and SR and calibrate our model.

Patient-Specific Inlet Flow Boundary Conditions

According to the latest definition of hypertension from the American College of
Cardiology/American Heart Association (ACC/AHA) in November 2017 [Yancy et al.,
2017], participants are considered hypertensive if they have a measured systolic blood
pressure SBP ≥ 130 mmHg or a measured diastolic blood pressure DBP ≥ 80 mmHg.
We use a computational model of cerebral autoregulation [Lassila et al., 2020] originally
proposed by Mader et al. [2015] to model the effect of hypertension on IA haemody-
namics. The CARS model takes the normotensive blood flow waveforms calculated for
each virtual case (the generation of the normotensive inflow waveforms can be found in
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Chapter 2), estimates the corresponding normotensive pressure waveforms (SBP: 90-
120 mmHg, DBP: 70-80 mmHg, heart rate: 68 bpm), scales the normotensive pressure
waveforms to hypertensive waveforms (fixed scale factor 1.3 of SBP and DBP [Lassila
et al., 2020, Ogoh et al., 2005], 68 bpm), and finally generates the associated hyper-
tensive waveforms. Fig. 3.3 shows the inlet flow waveforms for a 51-year-old female.

3.3 Results

3.3.1 Clinical ST prevalence

According to our search strategy, 434 studies were initially identified; after remov-
ing duplicates and case reports, 185 articles remained. 152 were excluded by title or
abstract reading, while 33 underwent further detailed review for eligibility. A total of
11 studies were finally included in the statistical analysis.

The details of the collected cohort data of ST in large and giant aneurysms are
shown in Table 3.3 and Table 3.4. In Table 3.5, we present the summary of all ST
prevalence calculated from the results of our literature review. There are 646 IAs in
total. The distribution of aneurysm sizes in these 646 IAs are as follows: 68%(437/646)
small, 4%(29/646) large, and 28%(180/646) giant IAs. Of the 29 large IAs, 7 cases
presented with ST. Therefore, the ST prevalence (partial or complete) for large IAs
is 24.1%(7/29) ± 7.9%, with 90% confidence. Of the 180 giant IAs, 97 cases were
thrombosed. Therefore, the ST prevalence (partial and complete) for giant IAs is
53.9%(97/180) ± 6.1%, with 90% confidence.

For our simulation cohort with 40 large and 2 giant cases, according to equation
(3.1), we estimated the ST prevalence rate as 25.5%. We used this as a criterion to
calibrate the RT and SR threshold parameters.

3.3.2 Numerical Results of RT and SR

The maximum RT and minimum SR in the aneurysm sac at mean flow normotensive
conditions for all 42 large and giant cases are shown in Table 3.6. For a given pair of
RT and SR thresholds, we obtained a specific numerical ST prevalence for large and
giant IAs. We plotted all combinations of RT and SR threshold values that can make
the simulated ST prevalence close (within ±5%) to the clinical ST prevalence of 25.5%
(Fig. 3.4). The overlap of these parameters at high, mean, and low is considered to
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Table 3.3: ST prevalence of large aneurysms (large IAs only).

cohort1 cohort2 summary

Number of large IAs 14 15 29

Age, year

Mean 52 44 47

Range 15-76 6-81 6-81

Aneurysm size, mm

Mean ± SD (N) 14.3 ± 3.6 (14) - -

Median 13.9 - -

Range 10.0-20.5 - -

Aneurysm location

ICA/PComA, % (n/N) 42.8 (6/14) 93.3 (14/15) 69.0 (20/29)

MCA, % (n/N) 28.6 (4/14) 0 13.8 (4/29)

BA, % (n/N) 21.4 (3/14) 6.7 (1/15) 13.8 (4/29)

Other, % (n/N) 7.1 (1/14) 0 3.4 (1/29)

ST IAs 5 2 7

ST prevalence 24.1% ± 7.9% (7/29)

ST, spontaneous thrombosis; The cohort1 data were from Baumgartner et al. [1994]
and the cohort2 data were from Saatci et al. [2003].
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Table 3.4: ST prevalence of giant aneurysms (giant IAs only).

cohort1 cohort2 cohort3 cohort4 cohort5 summary

Number of giant IAs 1 18 10 22 129 180

Age, year

Mean 52 44 45 49 68 55

Range 15-76 6-81 14-70 21-66 5-85 5-85

Aneurysm size, mm

Mean ± SD (N) 25.3 ± 0 (1) - 36.0 ± 7.0
(10)

- - -

Median 25.3 - 33.5 - - -

Range 25.3-25.3 - 27-50 - - -

Aneurysm location

ICA/PComA, % (n/N) 100.0 (1/1) 94.4
(17/18)

60.0 (6/10) 31.8 (7/22) 38.8
(50/129)

45.0 (81/180)

MCA, % (n/N) 0 0 20.0 (2/10) 45.5
(10/22)

31.8
(41/129)

29.4 (53/180)

BA, % (n/N) 0 0 20.0 (2/10) 18.2 (4/22) 24.8
(32/129)

21.1 (38/180)

Other, % (n/N) 0 5.6 (1/18) 0 4.5 (1/22) 4.6 (6/129) 4.5 (8/180)

ST IAs 0 9 6 12 70 97

ST prevalence 53.9% ± 6.1%
(97/180)

The cohort1 data were from Baumgartner et al. [1994], the cohort2 data were from Saatci et al. [2003], the cohort3
data were from Schubiger et al. [1980], the cohort4 data were from Whittle et al. [1982] and the cohort5 data were
from Nurminen et al. [2014].
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Table 3.5: Summary of the literature ST prevalence.

Characteristics ST prevalence References

Giant (≥ 25 mm) 53.9%(97/180) ± 6.1% Schubiger et al. [1980]; Whittle et al. [1982];
Baumgartner et al. [1994]; Nurminen et al.
[2014]; Saatci et al. [2003]

Large (>10 mm and
<25 mm)

24.1%(7/29) ± 7.9% Baumgartner et al. [1994]; Saatci et al. [2003]

Small (≤ 10 mm) Rarely reported Alberto et al. [2020]; Ohta et al. [2001]; Scer-
rati et al. [2019]

ICA (giant) 42.1%(32/76) ± 9.3% Schubiger et al. [1980]; Whittle et al. [1982];
Baumgartner et al. [1994]; Nurminen et al.
[2014]; Saatci et al. [2003]; Pierot et al. [2012]

MCA (giant) 62.3%(33/53) ± 11.0% Schubiger et al. [1980]; Whittle et al. [1982];
Nurminen et al. [2014]

BA (giant) 63.2%(24/38) ± 12.9% Schubiger et al. [1980]; Whittle et al. [1982];
Nurminen et al. [2014]

Sex Slight female prevalence Alberto et al. [2020]

Age (<15 years) 8.3% − 16.9% Lasjaunias et al. [2005]; Liang et al. [2009]

ICA, internal carotid artery; MCA, middle cerebral artery; BA, basilar artery.
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Figure 3.4: For a given case, thrombus formation in the aneurysm sac is assumed to initiate
when the RT exceeds the RT threshold and the SR is below the SR threshold. We systematically
explored all possible combinations of RT (ranging from 0 s to 5 s with 0.1 s increments) and
SR (ranging from 0 s−1 to 50 s−1 with 1 s−1 increments). Scatter plots were then generated
to visualise the RT-SR parameter combinations where the numerical ST prevalence aligned
with the clinical ST prevalence (25.5%) observed in large and giant aneurysms, with a 5%
tolerance. For three different inflow waveforms (high, mean, and low waveforms), different RT
and SR combinations were obtained. The plausible threshold values for thrombus formation are
those located within the overlap area, as this region indicates where the thresholds are largely
independent of inter-subject flow variability.

be the plausible range of thresholds since it indicates where the thresholds are largely
independent of the inter-subject flow variability. We have 42 large and giant cases in
total, and an increase or decrease of one thrombosed case increases or decreases the ST
prevalence by 2.4%. In Fig. 3.4, we set a 5% tolerance for the numerical ST prevalence
(tolerance for 2 cases), so the threshold values in the overlap region in Fig. 3.4 make
the numerical ST prevalence between 20.5-30.5%. For the overlap area in Fig. 3.4, the
RT and SR thresholds are in the ranges [1.0, 2.3] s and [8, 27] s−1, respectively. The
average value of RT and SR in the overlap area are 1.9 s and 11 s−1, respectively.

When using the average value of RT and SR thresholds, i.e., 1.9 s and 11 s−1, the
numerical ST prevalence of large and giant IAs for our cohort is 28.6%(12/42)±11.5%,
while the numerical ST prevalence of small IAs for our cohort is 17.9%(12/67) ± 7.7%.
We estimated the ST prevalence of large IAs (24.1% ± 7.9%) and giant IAs (53.9% ±
6.1%) from the literature data and we obtained the ST prevalence of small IAs (17.9%±
7.7%) from our observational study. The distribution of aneurysm sizes in a general
population with 1993 IAs [Korja et al., 2016] is: 68% (1355/1993) small IAs, 30%
(598/1993) large IAs, and 2% (40/1993) giant IAs. Therefore, the ST prevalence of the
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Table 3.6: Numerical results of Max RT and Min SR in the aneurysm sac for large and giant
IAs.

Case Max RT (s) Min SR (s−1) Size (mm) Age (years) Sex Location

Mean ± SD 2.02 ± 0.67 20.31 ± 16.84 13.80±4.40 51.6 ± 5.7 - -

Median 2.38 15.31 11.70 51 - -

Range 0.48-2.84 0.004-76.59 10.14-30.92 43-75 - -

1 1.56 13.05 11.39 51 F MCA

2 2.16 8.46 13.20 52 F MCA

3 2.48 2.71 17.87 51 F BA

4 2.31 6.02 17.28 66 M BA

5 0.50 42.08 15.92 48 M PComA

6 2.47 14.31 20.63 51 F ICA

7 1.10 13.31 15.23 51 F PComA

8 2.47 4.21 10.60 50 M MCA

9 2.84 0.004 11.10 43 F BA

10 0.50 19.30 10.20 54 M ICA

11 1.59 40.19 11.70 51 F PComA

12 2.39 9.18 10.43 51 F PComA

13 2.29 18.74 25.50 52 M ICA

14 0.86 29.52 10.45 44 F ICA

15 1.63 30.82 10.90 51 M PComA

16 2.43 6.21 20.20 54 F BA

17 1.89 21.53 11.47 44 M MCA

18 2.37 12.51 10.20 52 F ICA

19 0.48 69.34 16.00 51 F PComA

20 1.32 32.72 11.81 51 F ICA

21 1.77 30.64 11.20 43 F PComA

22 2.43 11.27 12.75 48 F BA

23 2.57 8.55 15.07 51 F ICA

24 2.68 5.13 19.78 51 F ICA

25 2.47 9.46 12.59 66 F ICA

26 2.45 8.67 11.67 46 M MCA

27 2.48 16.31 10.14 51 M MCA

28 2.34 34.37 10.31 75 F MCA

29 2.23 20.91 11.06 51 F ICA

30 2.50 10.85 10.49 51 M SCA

31 2.60 29.66 11.52 51 M ICA

32 2.45 35.68 13.93 51 F ICA

33 2.42 17.63 16.70 51 F ICA

34 0.99 76.59 10.32 51 M ICA

35 2.49 38.04 10.80 51 F PComA

36 1.69 36.39 16.02 51 F PComA

37 2.35 24.57 11.18 51 M PComA

38 2.44 3.73 30.92 51 F BA

39 2.39 7.47 15.69 51 F PComA

40 0.59 29.80 12.61 51 F ICA

41 2.52 0.05 11.10 51 F PCA

42 2.52 3.17 11.71 58 M ACA
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Table 3.7: Comparison between thrombosed and non-thrombosed aneurysms.

ST large/-
giant

Non-ST large/-
giant

p value ST small Non-ST small p value

Number of IAs 12 30 12 55

Age (year) 51.9 ± 5.7 51.5 ± 5.8 0.83 50.5 ± 3.3 51.4 ± 7.5 0.55

Female,%(n/N) 58.3%(7/12) 66.7%(20/30) 0.35 66.7%(8/12) 72.7%(40/55) 0.84

Size (mm) 15.6 ± 6.1 13.1 ± 3.5 0.19 6.9 ± 1.0 6.1 ± 1.8 0.09

Neck width
(mm)

6.3 ± 2.6 6.9 ± 2.1 0.49 3.4 ± 0.6 4.0 ± 1.1 0.01

Aspect ratio 1.9 ± 0.4 1.6 ± 0.7 0.05 1.7 ± 0.4 1.1 ± 0.5 8.2e-4

Non-sphericity 0.26 ± 0.05 0.19 ± 0.06 4.5e-4 0.26 ± 0.03 0.16 ± 0.06 1.7e-4

Max RT (s) 2.51 ± 0.14 1.83 ± 0.72 2.1e-5 2.46 ± 0.20 0.73 ± 0.60 4.1e-24

Min SR (s−1) 4.80 ± 3.10 26.52 ± 16.36 5.2e-8 3.23 ± 2.76 81.30 ± 102.52 8.0e-7

Aneurysm loc-
ation

ICA/PComA,
% (n/N)

25.0 (3/12) 76.7 (23/30) 66.7 (8/12) 61.8 (34/55)

MCA/Sylvian,
% (n/N)

16.7 (2/12) 16.7 (5/30) 16.7 (2/12) 25.4 (14/55)

BA/PCA/SCA,
% (n/N)

50.0 (6/12) 6.6 (2/30) 8.3 (1/12) 7.3 (4/55)

ACA, % (n/N) 8.3 (1/12) 0 (0/30) 8.3 (1/12) 5.5 (3/55)

p values were computed using the two-tailed t-test.

ICA, internal carotid artery; PComA, posterior communicating artery; MCA, middle cerebral artery; BA, basilar
artery; PCA, posterior cerebral artery; SCA, superior cerebellar artery; ACA, anterior cerebral artery.

general population containing all sizes of intracranial aneurysms can be estimated by
equation (3.1) as 20.5%(408/1993) ± 1.5%.

Our simulation results show that bigger aneurysms are more likely to be throm-
bosed, which is consistent with the literature data [Alberto et al., 2020, Lawton et al.,
2005, Ohta et al., 2001, Scerrati et al., 2019]. No exact ST prevalence for small IAs
is reported in the literature. From a hemodynamics point of view, our study found
that the numerical ST prevalence for small IAs of our cohort is 17.9%. Those throm-
bosed small IAs have a significantly higher aspect ratio (AR), measured as aneurysm
height-to-neck width, than the non-thrombosed small IAs (Table 4.5).

To investigate why bigger aneurysms are more likely to present with ST, we com-
pared the demographics and aneurysm characteristics for thrombosed large and giant
IAs, non-thrombosed large and giant IAs, thrombosed small IAs, and non-thrombosed
small IAs (Table 4.5). The above grouping for all 109 cases is based on the model-
predicted ST status. These four groups are very similar in terms of patient age and
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sex, but the size and AR of the thrombosed groups are larger than that of the non-
thrombosed groups. 62.5% (15/24) of the thrombosed group are high AR ( >1.6)
[Sarrami-Foroushani et al., 2021] IAs. In contrast, high AR cases only account for
24.7% (21/85) of the non-thrombosed group. In our cohort, bigger aneurysms are also
more likely to be high AR cases, with 59.5% (25/42) of the large and giant IAs having
a high AR, while only 16.4% (11/67) of the small IAs have a high AR. The thrombosed
groups, including both large/giant and small IAs, have a significantly higher AR and
non-sphericity than the non-thrombosed groups. Our results show that IAs with higher
AR and non-sphericity are more likely to be thrombosed and bigger aneurysms usually
have a higher AR.

We also analysed the relationships between aneurysm geometry characteristics and
the two haemodynamic factors, RT and SR, for all 109 cases. As shown in Fig. 3.5,
correlation between size and RT/SR is weaker than between AR and RT/SR, and the
maximum RT increases with AR. The minimum SR in the aneurysm sac decreases with
both size and AR.

3.3.3 The Effect of Hypertension on the ST Prevalence

We imposed hypertensive inlet waveforms to investigate how hypertension affects
the ST prevalence in large and giant IAs. Our numerical results show that the ST
prevalence of large and giant IAs of our cohort at hypertension is 23.8%, which is
lower than at normotension (28.6%). To investigate why ST might be less common
in hypertensive patients, we compared normotension and hypertension in terms of the
maximum RT and minimum SR in the aneurysm sac for all 42 large and giant IAs (
Fig. 3.6). No significant differences are observed in the maximum RT calculated under
normotensive and hypertensive conditions (p = 0.5928). However, 90.5% (38/42) of
cases in hypertension have a higher minimum SR than in normotension (p = 0.0007).
This explains why flow stasis-induced computational models show a relatively lower ST
prevalence in hypertensive patients.
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Figure 3.5: Relationships between aneurysm geometry characteristics and RT/SR for the whole
simulation cohort.
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Figure 3.6: Comparison between normotension and hypertension for all 42 large and giant IAs
in terms of the maximum RT and the minimum SR. In the box and whiskers plot, the horizontal
line within the box denotes the median value. The lower and upper edges of the box denote the
25th and 75th percentiles. The ends of the whiskers are drawn to the upper and lower extreme
values. p values were computed using the two-tailed t-test. (a) Maximum residence time (RT).
(b) Minimum shear rate (SR).

3.4 Discussion

The prevalence of ST in large and giant aneurysms reported in the literature varies
widely. ST occurs in 10% to 30% of unruptured large and giant aneurysms [Alberto
et al., 2020], while the prevalence of ST varies from 30% to 70% [Alberto et al., 2020,
Scerrati et al., 2019, Schubiger et al., 1980, Whittle et al., 1982] in giant aneurysms
alone. For a specific cohort, the distribution of large and giant IAs can vary. The ST
prevalence may be higher with a larger proportion of giant cases. This might be one of
the main reasons why the ST prevalence in large and giant IAs varies widely. Another
reason is that some statistics are based on limited sample size. To obtain more accurate
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ST prevalence in aneurysms of different sizes, we conducted a comprehensive literature
review. We collected 646 cases in the literature, with 437 small, 29 large, and 180 giant
IAs. 7 out of 29 large IAs and 97 out of 180 giant IAs spontaneously thrombosed, there-
fore, the ST prevalence is 24.1%(7/29) ± 7.9% for large IAs and 53.9%(97/180) ± 6.1%
for giant IAs, with 90% confidence. These were used as benchmarks to calculate the ST
prevalence of large and giant IAs according to the distribution of large and giant IAs in
our simulation cohort. Although large and giant IAs are more likely than small IAs to
be spontaneously thrombosed, the intraluminal thrombosis is present in approximately
the same proportion of giant aneurysms, regardless of location [Nurminen et al., 2014].
The ST prevalence of large and giant IAs in different locations (ICA, MCA, and BA) is
shown in Table 3.5, but these statistics are not included in our calibration experiment
as it is well-established that aneurysm size [Alberto et al., 2020, Ohta et al., 2001,
Scerrati et al., 2019] is the main factor associated with ST, irrespective of its location
[Nurminen et al., 2014].

Three main triggers of flow stasis-based clotting models appear in the literature: (1)
high RT alone; (2) low SR or wall shear stress (WSS) alone; and (3) high RT and low
SR/WSS in combination. However, there is no clear consensus on the values of the trig-
ger thresholds, and published works studying ST haemodynamic thresholds often have
small sample sizes. Based on CFD simulations conducted on 113 aneurysms—where
particles injected into the parent vessel were tracked over multiple cardiac cycles—
Leemans et al. [2019] found that the particle residence time for four out of five partially
thrombosed aneurysms had a long residence time (>1.9 s). While thrombus formation
has been reported to initiate as early as RT = 1 s [Hathcock, 2006], Marsh et al. [2020]
found in their experiments that a threshold of RT ≥ 1 s was ineffective as multiple
patients in their cohort demonstrated a median RT >1 s in the aneurysm, even before
treatment. Reza and Arzani [2019] critically compared different RT measures in an-
eurysms. They compared Particle RT, Eulerian RT, and Virtual-ink RT (RTV I) in one
cerebral aneurysm geometry and obtained maximum RT values in the aneurysm sac of
0.66 s, 1.05 s, and 6.25 s, respectively. Rayz et al. [2010] estimated RTV I and analysed
the distribution of RT for 3 cases, for which they found that the mean RT was 18.22
± 11 s (range 0.63-40.13 s) in the thrombosed area. Their results showed that a model
with both low WSS and high RT could predict thrombosed areas significantly better
than the models using RT or WSS alone. WSS correlates with SR through the viscosity
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Table 3.8: Comparison between our CFD calibrated thresholds and the literature thresholds.

Results Simulation Literature

RT threshold (s) 1.9 (range: 1-2.3) 1 − 5 [Hathcock, 2006,
Leemans et al., 2019,
Marsh et al., 2020, Rayz
et al., 2010, Sarrami-
Foroushani et al., 2019]

SR threshold (s−1) 11 (range: 8-27) 10 − 25 [de Sousa et al.,
2016, Gorring et al., 2015,
Sarrami-Foroushani et al.,
2019]

of the fluid; however, SR is a measure of total blood deformation, which is a better
indication of blood stagnation and potential thrombosis because it takes into account
the shear forces due to both the wall and the surrounding fluid [Gorring et al., 2015].
Based on experimental results from Nyilas et al. [1975], Gorring et al. [2015] assumed
that flow-induced thrombosis would be initiated when SR <10 s−1; however, a limita-
tion of their work is that simulations were based on an idealized cavity rather than a
real aneurysm geometry. Based on a Fourier analysis of SR at thrombosed locations in
the aneurysm sac of 10 CFD simulations, de Sousa et al. [2016] determined 25 s−1 as
the threshold for the initiation of thrombosis.

High RT and low SR are usually used in computational models to characterise
the flow stasis that triggers the thrombus formation process in the aneurysm sac. We
calibrated RT and SR thresholds using the clinical ST prevalence of large and giant IAs.
Following calibration, the plausible range of RT and SR thresholds for our model are
located in the overlap area in Fig. 3.4, which indicates that the corresponding simulation
results are largely independent of the inter-subject flow variability. As shown in Table
3.8, the RT threshold is in the range [1.0, 2.3] s, with an average value of 1.9 s; the ST
threshold is in the range [8, 27] s−1, with an average value of 11 s−1. The calibrated
RT and SR thresholds are consistent with the literature and also more reliable due to
the rigorous calibration based on clinical data.

ST is not a well-documented phenomenon in hypertensive patients. This might be
because most patients treated for aneurysms have blood pressure-controlling measures
in place [Thompson et al., 2015]. Using the calibrated RT and SR threshold values, our
model predicted a slightly lower ST prevalence for our virtual cohort in hypertensive

60



3.4 Discussion

conditions, modelled as boundary conditions from a CARS model [Lassila et al., 2020].
As shown in Fig. 3.6, the minimum SR in the aneurysm sac in hypertension is usually
higher than in normotension (P <0.001), although the maximum RT is relatively similar
(p = 0.5928). SR is sensitive to changes in normotensive and hypertensive conditions,
whereas RT is robust. Blood flow stasis-induced models are usually triggered by high
RT and low SR. In a specific area in the aneurysm sac, only if RT is higher than the
RT threshold and SR is lower than the SR threshold is the clotting process assumed to
initiate. From our simulation results, the hypertensive conditions have limited effect
on RT and SR in the aneurysm sac, thus only causing a slightly lower ST prevalence
than is found in normotensive patients.

We performed CFD simulations for 109 cases and analysed the relationship between
aneurysm geometry characteristics and flow, finding that bigger aneurysms usually have
a higher AR in our cohort (Table 4.5). Higher AR and more complex shape (higher
non-sphericity) lead to higher RT and lower SR in the aneurysm sac, and high RT and
low SR ultimately trigger the thrombosis formation. There is a strong link between
IA morphology and haemodynamics [de Sousa et al., 2016]. The high prevalence of
thrombus formation within large and giant IAs is related to AR [Ohta et al., 2001].
Although high AR is not sufficient for reliable prediction of thrombus formation, IAs
with higher AR are more likely to present with ST. High AR results in low velocity, low
SR, and inhibition of pulsatile blood flow (Fig. 3.7, Fig. 3.8, and Fig. 3.9), leading to a
pro-inflammatory and pro-coagulable micro-environment at the aneurysm wall [Alberto
et al., 2020, de Sousa et al., 2016].

3.4.1 An Example Case Comparison Between Normotension and Hy-
pertension

In this section, we show how hypertension affects the distribution and magnitude of
RT and SR with an example case. We performed six simulations for each virtual case
using six different inlet flow waveforms. A middle-aged female patient case (51 years
old, aneurysm size 17.8 mm, AR 2.3, location Basilar Tip) was selected for a detailed
analysis. The inlet flow shown in Fig. 3.3, which is generated from a MGM model
[Sarrami-Foroushani et al., 2016] and a CARS model [Lassila et al., 2020] according to
the age and gender of the patient, is imposed for simulation for this case. As shown in
Fig. 3.10, the time-averaged velocity distributions are roughly similar for normotension
and hypertension, although the velocity magnitude is slightly higher for normotension.
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Figure 3.7: Velocity field and streamline plot of the highest AR case.

Figure 3.8: Velocity field and streamline plot of the mean AR case.
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Figure 3.9: Velocity field and streamline plot of the lowest AR case.

This is because although the peak velocity of the hypertensive inlet flow waveform is
higher than that of the normotensive inlet flow waveform, the mean velocity is higher
for normotension (mean: 13.78 cm/s) than for hypertension (mean: 11.29 cm/s).

For a given state (normotension/hypertension), the distribution and magnitude of
RT and SR are almost equivalent. For example, in Fig. 3.11, the results of Fig. 3.11(a)
and Fig. 3.11(b) are very similar. The difference between the maximum RT values
in normotensive and hypertensive conditions is small, whereas the distribution of RT
differs. We found apparent differences in both the magnitude and distribution of SR
from normotension to hypertension. In this case, slightly lower maximum RT and
higher minimum SR in the aneurysm sac are observed in hypertensive conditions.

3.4.2 Limitations

Limitations: (1) We assumed clotting in the aneurysm sac was triggered by blood
flow stasis, and high RT and low SR were usually used in computational models to
characterise the flow stasis. Therefore, we only focused on studying RT and SR in this
paper. (2) Although we performed a systematic review, we did not find enough data
to estimate ST prevalence for small aneurysms. It is well-established that aneurysm
size is the most important factor associated with ST and this phenomenon in large and
giant aneurysms is well-documented. We only used the clinical ST prevalence of large
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Figure 3.10: Comparison of the time-averaged velocity distribution between normotension and
hypertension. The mean inlet flow velocity in normotension and hypertension is 13.78 cm/s
and 11.29 cm/s, respectively.

Figure 3.11: Residence Time (RT) and Shear Rate (SR) distribution in normotension and
hypertension.
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and giant IAs to calibrate our clotting model. (3) There were few ST cases reported
in hypertensive patients for us to use to estimate the ST prevalence and compare
our results. This might be because most patients treated for aneurysms have blood
pressure-controlling measures in place. Ours is the first study that looked into RT and
SR for hypertensive patients. Our results showing a slightly lower prevalence of ST in
hypertensive cases were based only on the haemodynamics point of view and there may
be other physiology involved that was not included in our analysis.

3.4.3 Conclusion

In this sensitivity analysis into stasis-driven thrombosis trigger thresholds, we first
conducted a systematic literature review to estimate the clinical ST prevalence rate for
a subgroup of the general population of aneurysms, namely those of large and giant size
(>10 mm). We then performed a series of numerical simulations for a virtual cohort
of 109 patients and used the estimated clinical ST prevalence of large and giant IAs as
a criterion to calibrate the trigger thresholds in thrombosis models. We showed how
thrombosis models can be calibrated on aneurysm cohort and then help to estimate the
ST prevalence for a general population. To accelerate this in silico calibration experi-
ment, we created a fully automatic workflow to segment the image data, generate the
volume mesh, impose patient-specific boundary conditions and run the simulations on
a cloud computing platform. Our results showed that the high prevalence of thrombus
formation within large and giant IAs is related to high AR. Bigger aneurysms usually
have a higher AR, and IAs with higher AR are more likely to be thrombosed. Our cal-
ibration experiment identified the plausible values of two commonly used thrombosis
trigger threshold parameters, RT and SR, as 1.9 s and 11 s−1, respectively. Fur-
thermore, our model predicted a slightly lower ST prevalence in hypertensive than in
normotensive patients due to the larger minimum SR in the aneurysm sac caused by
hypertension. We found that SR is sensitive to the changes of boundary conditions
from normotension to hypertension, while RT is more robust. This study not only
collated ST literature and demonstrated how clinical ST prevalence data could guide
computational thrombus formation modelling by identifying plausible ranges of model
parameters, but also revealed that ST may be less common in hypertensive patients
with large and giant IAs.
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Chapter 4

Key Influencers in an Aneurysmal Thrombosis
Model: A Sensitivity Analysis and Validation
Study
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4.1 Introduction

Abstract — Thrombosis is a biological response closely related to IAs, and the
formation of thrombi inside the aneurysm is an important determinant of outcome
after endovascular therapy. As the regulation of thrombosis is immensely complicated
and the mechanisms governing thrombus formation are not fully understood, math-
ematical and computational modelling has been increasingly used to gain insight into
thrombosis over the last 30 years. To have a robust computational thrombosis model
for possible clinical use in the future, it is essential to assess the model’s credibility
through comprehensive sensitivity analysis of model parameters and validation studies
based on clinical information of real patients. Here, we conduct a global sensitivity ana-
lysis on a previously developed thrombosis model, utilising thrombus composition, the
flow-induced platelet index, and the bound platelet concentration as output metrics.
These metrics are selected for their relevance to thrombus stability. The flow-induced
platelet index quantifies the effect of blood flow on the transport of platelets to and
from the site of thrombus formation and thus on the final platelet content of the formed
thrombus. The sensitivity analysis of the thrombus composition indicates that the con-
centration of resting platelets most influences the final thrombus composition. Then,
for the first time, we validate the thrombosis model based on a real patient case us-
ing patient-specific resting platelet concentration and two previously calibrated trigger
thresholds for thrombosis initiation. We show that our thrombosis model is capable of
predicting thrombus formation both before and after endovascular treatment.

4.1 Introduction

Intracranial aneurysm (IA) is a type of cerebrovascular pathology, which is a local-
ized dilation or ballooning of the cerebral blood vessel caused by the weakness of the
wall of a cerebral artery or vein [Withers et al., 2013]. There are three main treatment
options for patients with IAs: observation, surgical therapy, and endovascular therapy
[Keedy, 2006]. The goal of treating patients with unruptured IAs is to maximie their
duration of high-quality life by optimally balancing the risks of aneurysm rupture with
those of treatment-related adverse outcomes [Burns and Brown, 2009]. In the literature,
24.2% (244/1009) IAs [Briganti et al., 2015] failed to obtain aneurysm occlusion after
endovascular or surgical treatment; aneurysm reopening and retreatment after endovas-
cular coiling occured in 20.8% (1697/8161) and 10.3% (840/8161), respectively [Ferns
et al., 2009]. Some aneurysms failed to develop a stable clot even with sufficient levels
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of flow reduction and may end up with post-treatment rupture, leading to high risks of
mortality and morbidity [Byrne and Szikora, 2012, Kulcsár and Szikora, 2012, Sarrami-
Foroushani et al., 2019]. From autopsy studies of aneurysms, researchers found that
there are two different types of thrombi: organised white thrombus, rich in fibrin and
platelet, and non-organised red thrombus, rich in fibrin and erythrocyte [Fischer et al.,
2012, Sarrami-Foroushani et al., 2019, Turowski et al., 2011]. They can be found in
stable clots and unstable clots, respectively. Red thrombi are the result of stagnation of
blood flow, resulting in a clot containing all elements of normal blood, and they contain
more enmeshed erythrocytes among sparse fibrin strands compared to precipitation or
white thrombi. The red thrombi are expected to progress to organised white thrombi;
otherwise, they may promote an inflammatory reaction, eventually leading to the dis-
integration of the aneurysm wall with subsequent rupture. Achieving organised white
thrombi may reduce the probability of post-treatment rupture, and non-organised red
thrombi have also been suggested as a potential predictor for unsatisfactory treatment
results [Fischer et al., 2012, Sarrami-Foroushani et al., 2019, Turowski et al., 2011].

In unruptured aneurysms, thrombosis (spontaneous or device-induced) can stabil-
ize the aneurysm or accelerate the path to rupture[Ngoepe et al., 2018]. Currently, in
vivo or image-based analysis of thrombosis haemodynamics in realistic anatomies and
physiologies is very difficult, if not impossible [Liu et al., 2023]. In recent decades, sig-
nificant effort has been directed towards computational predictions of haemodynamics
in aneurysms[Ngoepe et al., 2018]. However, computational prediction of thrombosis
within aneurysms is relatively unexplored. The integrated thrombosis model origin-
ally developed by Sarrami-Foroushani et al. [2019] incorporates biochemical reactions,
platelet activity, and haemodynamics. Briefly, the model combines platelet activation
and transport with fibrin generation and defines a flow-induced platelet index (FiPi) as
a quantitative measure of thrombus stability. According to aneurysm autopsy studies,
two different types of thrombus have been identified: the unstable red thrombus (rich
in fibrin and erythrocytes) and the stable white thrombus (rich in fibrin and plate-
lets). FiPi quantifies the effect of blood flow on the transport of platelets to and from
the site of thrombus formation, and thus on the final platelet content of the formed
thrombus. FiPi is related to the initial concentration of the resting platelets, the initial
concentration of the activated platelets, and the concentration of the bound platelets.
During the thrombus formation process, resting platelets become activated by expos-
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ure to thrombin or other activated platelets. The activated platelets adhere to the
fibrin network aggregate to form bound platelets. Both activated and bound platelets
are derived from resting platelets, and thus FiPi is highly related to the resting plate-
let concentration. Sarrami-Foroushani et al. [2019] set FiPi >0.15 as a threshold for
the formation of fibrin and platelet-rich white thrombi. This thrombosis model is not
only capable of predicting both the haemodynamic changes and the thrombus forma-
tion process but is also able to predict long-term thrombus stability by investigating
the thrombus composition. However, such a comprehensive computational thrombosis
model that considers both haemodynamics and biochemical reactions is very complex
with a large number of uncertain model parameters. Previously, we calibrated the
haemodynamic thresholds, residence time (RT), and shear rate (SR), of thrombosis
initiation against real population-specific data [Liu et al., 2023], but how the rest of
the model parameters affect the final formed thrombus has not yet been assessed. To
have a robust computational thrombosis model for possible clinical use in the future,
it is essential to assess the model reliability through comprehensive sensitivity analysis
(SA) of the model parameters and validation studies based on clinical information from
real patients. Uncertainty quantification of a computational model is crucial in in silico
trials to ensure the accuracy and reliability of predictions (model credibility) [Food
et al., 2021], thus improving confidence in regulatory submissions. It helps identify
and manage potential risks, ensuring robust and credible simulation outcomes that can
effectively replace or supplement traditional clinical trials.

This paper aims to first identify the most influential factors in our previously de-
veloped thrombosis model [Sarrami-Foroushani et al., 2019] through a comprehensive
global SA. We then validate the thrombosis model based on a real patient case (par-
tial thrombosis before treatment and residual neck after immediate post-treatment)
using patient-specific parameters for those identified as influential and two previously
calibrated trigger thresholds[Liu et al., 2023] of thrombosis initiation. In addition, we
improve our thrombosis modelling for untreated aneurysms by narrowing the throm-
bosis initiation in areas near the wall, as in the real situation, the thrombus is difficult
to be suspended in an aneurysm lumen on its own without any anchors to the sur-
rounding aneurysm wall. The novelty of this study is that we not only identify the
most influential factors in the modelling of aneurysmal thrombosis, but also demon-
strate for the first time the ability of our thrombosis model in predicting the thrombus
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Table 4.1: 5 parameters that no need to be assessed.

Parameters Default value
(a)

Reference Lower bound
(50%a)

Upper bound
(200%a)

Other

Thrombin (nM) 0 [Anand et al., 2003] * *

Fibrin (nM) 0 [Anand et al., 2003] * *

Bound platelets (nM) 0 * * *

RT threshold (s) 1.9 Liu et al. [2023] 1 5

SR threshold (s−1) 11 Liu et al. [2023] 10 25

formation both before and after treatment based on a clinical case of the patient.

4.2 Materials and Methods

4.2.1 The thrombosis model parameters

The flow-stasis-induced thrombosis model in our group was originally developed by
Sarrami-Foroushani et al. [2019]. Sarrami-Foroushani et al. [2019] assumed thrombosis
to initiate and progress in regions where RT is greater than a threshold (e.g., 2.0 s)
and SR is less than a threshold (e.g., 25 s−1). These trigger thresholds were calibrated
by Liu et al. [2023] as 1.9 s and 11 s−1, respectively. As shown in Fig. 2.3, four main
biochemically-coupled events that result in thrombus of fibrin mesh and aggregated
platelets were considered. Details of the simulation specifications and equations for
describing the blood flow transport and the biochemical reactions can be found in
Chapter 2. FiPi was defined as the relative difference in the platelet concentration
between a closed and an open system. More details can be found in chapter 2 equation
(2.13) and Sarrami-Foroushani et al. [2019].

As shown in Table 4.1, Table 4.2, and Table 4.3, there are 31 input parameters in
our thrombosis model. The default values of these 31 parameters are obtained from
literature [Sarrami-Foroushani et al., 2019]. To perform comprehensive SA, we identify
the upper and lower bounds of each parameter from the literature (e.g., upper and lower
bounds of the fibrinogen concentration) or UK Biobank (e.g., upper and lower bounds
of the resting platelet concentration). Where this information was not available, the
upper and lower bounds of each parameter used in the following SA are set as the
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Table 4.2: 12 parameters can be assessed with the 0D model and Sobol’ method.

Parameters Default value
(a)

Reference Lower bound
(50%a)

Upper bound
(200%a)

OD model and Sobol’

Krp
th

(UP LT −1s−1uM−1) 6.5 × 10−10 Sorensen et al.
[1999]

50%a 200%a

Kap
th

(UP LT −1s−1uM−1) 3.69 × 10−9 Sorensen et al.
[1999]

50%a 200%a

Kbp
th

(UP LT −1s−1uM−1) 3.69 × 10−10 Sorensen et al.
[1999]

50%a 200%a

Kat
th(uM−1s−1) 7.083 × 10−3 Sorensen et al.

[1999]
50%a 200%a

Kth
fi (s−1) 59.0 Anand et al. [2003] 50%a 200%a

Kth
m,fi(nM) 3160 Anand et al. [2003] 50%a 200%a

Kth
pa(s−1) 0.5 [Kuharsky and Fo-

gelson, 2001]
50%a 200%a

Kap
pa (nM−1s−1) 0.3 [Kuharsky and Fo-

gelson, 2001]
50%a 200%a

Kpb(s−1) 1.0 × 104 [Leiderman and Fo-
gelson, 2011]

50%a 200%a

Cfi,50(nM) 600 [Anand et al., 2003] 50%a 200%a

Cbp,50(platelets/um3) 7.0 × 105 [Wufsus et al.,
2013]

50%a 200%a

Cth,50(nM) 9.11 × 10−1 Sorensen et al.
[1999]

50%a 200%a

71



4.2 Materials and Methods

Table 4.3: 14 parameters can be assessed with the full 3D model and EE method.

Parameters Default value
(a)

Reference Lower bound
(50%a)

Upper bound
(200%a)

3D model and EE

Dpt(cm2s−1) 5.21 × 10−7 [Anand et al., 2003] 50%a 200%a

Dat(cm2s−1) 5.57 × 10−7 [Anand et al., 2003] 50%a 200%a

Dth(cm2s−1) 6.47 × 10−7 [Anand et al., 2003] 50%a 200%a

Dfg(cm2s−1) 3.10 × 10−7 [Anand et al., 2003] 50%a 200%a

Dfi(cm2s−1) 2.47 × 10−7 [Anand et al., 2003] 50%a 200%a

Drp(cm2s−1) 2.50 × 10−7 [Leiderman and Fo-
gelson, 2011]

50%a 200%a

Dap(cm2s−1) 2.50 × 10−7 [Leiderman and Fo-
gelson, 2011]

50%a 200%a

Kfi(um2) 1.2 × 10−1 [Wufsus et al.,
2013]

0.0015 × 10−1 1.2 × 10−1

Kbp(um2) 3.1 × 10−1 [Wufsus et al.,
2013]

50%a 200%a

Prothrombin (nM) 1400 [Anand et al., 2003] 1100 200%a

Antithrombin (nM) 2410 [Anand et al., 2003] 50%a 3400

Fibrinogen (nM) 7000 [Anand et al., 2003] 4000 10000

Resting platelets (ml−1) 2 × 108 UK Biobank 1.14 × 108 4.38 × 108

Activated platelets (%) 5 Sorensen et al.
[1999]

1 20
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Figure 4.1: The sensitivity analysis (SA) workflow. There are 31 parameters in our thrombosis
model with 12 parameters that can be assessed with a lumped 0D model, 14 that can be
investigated with the 3D full model, and 5 others that do not need to be assessed. We first
screened 4 influential parameters from the 12 kinetic-associated parameters using the lumped
0D model, then performed SA with the elementary effect (EE) method using the 3D full model
for 18 (4 + 14) parameters to identify the most influential model parameter. Finally, we further
demonstrated the necessity of SA with a validation case by comparing the simulation results
under patient-specific and non-patient-specific settings with the clinical ground truth.

variation 200% (upper bound) or 50% (lower bound) of the literature default value.

There are five parameters that do not need to be included in the SA (Fig. 4.1 and
Table S1). Three of these parameters are the initial concentrations of thrombin, fibrin,
and bound platelets, as we assume that no thrombus formed before the thrombus
formation process began. These three biochemical species are also the product of the
associated biochemical reactions; for example, thrombin is generated by the conversion
of prothrombin to thrombin on the surface of resting and activated platelets. Therefore,
it is reasonable to set the initial concentrations of these three species to 0. The other
two parameters that are not included in the SA are the RT and SR thresholds, as
these were previously calibrated by Liu et al. [2023] using the prevalence of clinical
spontaneous thrombosis.

The thrombosis model is complex and time-consuming, requiring 5-20 days per
case using 256 cores, as it combines haemodynamics with eight coupled biochemical
reactions. To efficiently identify the most influential parameters, we first developed a
lumped parameter model and used the least-squares fitted linear model [Saltelli, 2008]
to screen for key parameters from the 12 kinetic parameters. For those identified as
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key parameters using the lumped parameter model, along with the other 14 paramet-
ers, we then employed the 3D full thrombosis model and the elementary effect (EE)
method [Andrea et al., 2008] to identify the most influential parameters. Finally, we
validated the thrombosis model using a real patient case, which exhibited partial throm-
bosis before treatment and a residual neck after immediate post-treatment, by applying
patient-specific values for the parameters identified as the most influential.

4.2.2 0D model and least-squares fitted linear model

We denote by CP T , CT H , CAT , CF G, CF I , CRP , CAP , and CBP the bulk concen-
trations of prothrombin, thrombin, antithrombin, fibrinogen, fibrin, resting platelets,
activated platelets, and bound platelets, respectively. The biochemical reaction of each
species in the lumped parameter model was modelled using the following equation:

∂Ci

∂t
= Si, (4.1)

where Ci is the species concentration and Si is the reaction term. The full form of all
advection-diffusion-reaction equations can be found in the supplementary material.

In the simplified lumped parameter model, we assume that each species is fully
diffused at its initial concentration. We then apply the least-squares fitted linear
model[Saltelli, 2008] to investigate the lumped parameter model using the duration
of thrombus formation (the simulation time from 0% to the final 95% thrombosed) as
the output metric.

As a first approximation, the dependency can be viewed as linear in each parameter.
Consider a model with k inputs X = (X1, X2, ..., Xk) and the output metric is Y , the
entire model being simulated would behave approximately like so:

Y = b0 +
k∑

i=1
biXi = b0 + b1X1 + b2X2 + ... + bk−1Xk−1 + bkXk (4.2)

where the bi’s are all constants that we assume are unknown at the start of SA. When
the model is run with a set of parameter values, a data point becomes available for
SA. In general n simulations will result in the following n × (k + 1) system of linear
equations,
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...
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y1

y2

...

yn


which can be abbreviated using matrix notation as

XnkBk = Yn (4.3)

The matrix Xnk has 1’s in the first column, and experimental values for the k para-
meters in the n simulations in the remaining columns. Bk contains the k + 1 unknown
coefficients corresponding to the intercept b0 and the k parameters. Yn contains the
n output values from the n simulations. Unless otherwise stated, we used n = 1000.
If n is strictly greater than k + 1, it will not be possible to solve the equations ex-
actly, unless the model is in fact linear, as the system of equation is overdetermined
[Saltelli, 2008]. However, a least-squares solution will generally be available. As solving
an overdetermined system of equations for a least-squares solution is computationally
expensive and random samples tend to be poorly conditioned for large k because of
clustering, we used Sobol sequences [Renardy et al., 2021] to generate the samples.
Sobol sequences are a particularly common example of low-discrepancy sequences and
exhibited faster convergence in comparison with random and Latin hypercube sampling
(LHS) sampling, as has been demonstrated with correlated normal distributions in fin-
ance applications [Bianchetti et al., 2016].

4.2.3 Elementary effect (EE) method

The EE method [Andrea et al., 2008] can be regarded as an extension of the chan-
ging one parameter at a time (OAT) approach but it is a global approach as the
EE method partially overcomes the limitations of the OAT approach by introducing
wider ranges of variations for inputs and averaging a number of local measures so as
to remove the dependence on a single sample point. Consider a model with k inputs
x = (x1, x2, ..., xk), the input space is discretised into a p-level grid Ω. For a given
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value of x, the elementary effect of the ith factor is defined as:

EEi = [y(x1, x2, ..., xi−1, xi + ∆, ..., xk) − y(x1, x2, ..., xk)]
∆ , (4.4)

where p is the number of levels, ∆ is a value in 1/(p − 1), ..., 1 − 1/(p − 1). x =
(x1, x2, ..., xk) is any selected value in Ω such that the transformed point (x + ei∆)
is still in Ω and ei is a vector of zeros but with a unit as its ith component.

Morris [1991] suggested an efficient design to build r paths of (k + 1) points in the
input space, each providing one EE value for each of k parameters, r independent paths
give r EE values for each parameter. The sensitivity measure, improved by Saltelli et al.
[2005], µ∗ and σ are the estimates of the mean of the absolute values and the standard
deviation of the EE distribution associated with the ith parameter. µ∗

i is a measure of
influence of the ith parameter on the output metric, while σi is a measure of non-linear
and/or interactive effects of the ith parameter. Here, the output metric is the measure
of thrombus composition (FiPi and the bound platelet concentration).

µi = 1
r

r∑
j=1

EEj
i , (4.5)

µ∗
i = 1

r

r∑
j=1

|EEj
i |, (4.6)

σ2
i = 1

r − 1

r∑
j=1

(EEj
i − µ)2, (4.7)

The computational cost to implement the EE method is r(k + 1). Unless otherwise
stated, we used p = 4 and r = 5 in this study.

4.2.4 Validation study

After the comprehensive SA study, we identified the most influential parameters
of our thrombosis model. To improve the model’s performance and credibility, it is
necessary to obtain patient-specific values for the parameters identified as influential
ones. After anonymisation, we used a patient case (partial thrombosis before treat-
ment and residual neck after immediate flow diverter & coiling treatment; Male; 52
years old; normotension; platelet count, 2.07×1011/ml; aneurysm size,16.5 mm; aspect
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Table 4.4: Patient-specific flow-diverter model and coils information.

Flow-diverter P64 (4 × 24 mm)

Coils

1 Target XL 360 standard 14 mm × 50 cm

2 Target XL 360 standard 12 mm × 45 cm

3 Target 360 standard 10 mm × 30 cm

4 Target XL 360 soft 8 mm × 30 cm

5 Target 360 soft 7 mm × 30 cm

6 Target 360 soft 5 mm × 30 cm

7 Target XL 360 soft 6 mm × 20 cm

8 Target 360 soft 5 mm × 20 cm

9 Target 360 soft 5 mm × 20 cm

10 Target 360 soft 5 mm × 15 cm

ratio, 2.2; location, MCA) from Leeds General Infirmary as a validation study case
by comparing the thrombus regions predicted by our model with the clinical ground
truth both before and after treatment. We collected the 3D rotational angiography
images and detailed clinical records from Leeds General Infirmary (Fig. 4.2 (a)), seg-
mented the vasculature and aneurysm with a deep learning-based approach VASeg[Lin
et al., 2023], manually labeled the partially thrombosed regions with ITK-SNAP 3.8.0
(Fig. 4.2 (b)), obtained the patient-specific vascular surface mesh, deployed the virtual
stent and coils with GIMIAS (version 1.8.r1) [Larrabide et al., 2009], generated the
volume mesh using ANSYS ICEM CFD v19.3 (Ansys Inc. Canonsburg, PA, USA),
imposed the patient-specific inlet flow waveform generated from a multivariate Gaus-
sian model[Lassila et al., 2020, Sarrami-Foroushani et al., 2016], ran the thrombosis
model on an HPC cluster ARC4, and post-processed the simulation results with AN-
SYS CFD-POST and Paraview 5.10.0-RC1. The patient-specific clinical flow-diverter
model and coils information can be found in Table 4.4.

When modelling the stent, we are often concerned with alterations in the flow
pattern and haemodynamics in the aneurysm rather than detailed flow fields near the
walls of the parent vessel[Appanaboyina et al., 2009]. Given this, only the portion of
the stent that crosses the neck of the aneurysm is modelled to reduce the computational
expense of the simulations. The resolution of the mesh in the vicinity of the stent wires
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Figure 4.2: A partially thrombosed clinical case with manual label of the thrombosis region
before treatment. (a) The raw image from Leeds General Infirmary. (b) The manually labelled
partial thrombosis regions (the green regions), the manually labelled aneurysm sac and parent
vessel regions (the red regions).

was set according to Sarrami-Foroushani et al. [2019], where the independence of the
mesh was obtained for the maximum edge size of 0.01 mm on the wires. The packing
density, defined as the ratio of the volume of the physically inserted coil to the volume
of the aneurysm, for this patient-specific case is 21.5%. The coils were discretised with a
mesh resolution of 1.5 × the diameter of the primary coil [Babiker et al., 2013, Fujimura
et al., 2018]. The above settings resulted in volumetric meshes with 27 million total
number of elements for this patient-specific case with a single flow diverter and 10 coils.
The details of the mesh convergence analysis were previously described in Chapter 2
and [Liu et al., 2023, Sarrami-Foroushani et al., 2019].

4.2.5 Narrowing the thrombosis initiation to areas near the wall

Rayz et al. [2010] found that thrombus forms in layers, with the initial layer adhering
to the arterial wall in regions of increased flow residence time and then gradually ex-
panding into the aneurysmal bulge. Moreover, imaging studies of untreated aneurysms
often show thrombus formations that are closely associated with areas of altered flow
patterns near the aneurysm wall, rather than suspended freely within the aneurysm
sac [Strother et al., 1989]. For untreated aneurysms, the thrombus is difficult to be
suspended in an aneurysm lumen on its own without any anchors to the aneurysm
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wall. Previously, we calibrated the trigger thresholds based on the prevalence of clin-
ical spontaneous thrombosis (RT threshold 1.9 s and SR threshold 11 s−1) [Liu et al.,
2023]. Here, we further constrain the thrombus to only initiate and progress near the
wall or other thrombosed regions (where the fibrin concentration, CF I , is greater than
600 nM [Sarrami-Foroushani et al., 2019]).

In this study, we mainly consider saccular aneurysms as the saccular type accounts
for 90% of IAs [Keedy, 2006]. Saccular aneurysms are spherical in shape and the
aneurysm sac can be approximated with a least square fit ellipsoid or sphere [Piccinelli
et al., 2012]. Therefore, we can separate all aneurysm points into near-wall points and
internal points by a virtual ellipsoid or sphere inside the aneurysm sac. We set the
center of the virtual ellipsoid or sphere to coincide with the center of the least square
fit ellipsoid or sphere. The radius of the virtual ellipsoid and sphere is set as half the
value of the least square fit ellipsoid or sphere radius. Then we used a Hill function to
constrain the initiation of thrombus formation for all internal points. The Hill function
is a sigmoidal activation function of the form ϕfi

p = Cn
F I/(Cn

F I + Cn
F I,50), where the

rate of occurrence of an event, p, requires an appropriate concentration of fibrin, Ci,50

is the fibrin concentration where the half maximum activation (half saturation) occurs,
and the Hill coefficient (the exponent n) reflects the steepness of the response curve.
In this study, we set Ci,50 = 600 nM and n = 4 in the trigger mechanism.

Spontaneous thrombosis of unruptured intracranial aneurysms is a common event
that can be detected incidentally during advanced neuroradiological studies before
treatment [Alberto et al., 2020, Cohen et al., 2007, Whittle et al., 1982]. These spon-
taneously thrombosed aneurysms are considered unstable dynamic structures that may
grow, recanalize, bleed, compress, or cause thromboembolic events [Cohen et al., 2003,
2007, Whittle et al., 1982]. The validation case may eventually become complete spon-
taneous thrombosis. But it was treated when the partial thrombosis was fresh and
unstable, as noted by the clinician. Complete spontaneous thrombosis can sometimes
stabilize the growth of the lesion, however, 33% (7/21) of the completely thrombosed
aneurysms presented recanalization at follow-up [Alberto et al., 2020]. The spontan-
eously formed thrombus was neither stable nor mature before treatment, making it
inappropriate to compare a converged simulation result with an unstable and uncon-
verged clinical ground truth. For the pre-treatment simulations, our approach is to
select the simulation time that best matches the clinical ground truth. For instance,
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in the non-constrained initiation model, the thrombus formed at 30 seconds of sim-
ulation time closely resembles the clinical ground truth, so we used this time point.
Consequently, for the constrained initiation model, we also ran the simulation for 30
seconds.

4.3 Results

4.3.1 SA results of the lumped parameter model

Using the reduced lumped parameter model, we conducted 14,000 simulations for
-50% to +200% variation of 12 kinetic parameters (Table 4.2) using the thrombus form-
ation duration as the output metric. As shown in Fig. 4.3, the SA results indicate that
the duration of thrombus formation is sensitive to 4 kinetic parameters: CF I,50, KT H

F I ,
KAP

T H , and KAT
T H . Platelet recruitment and deposition were assumed to depend on the

concentration of free platelets and the value of a second-order Hill function ϕF I
P B with

CF I,50 = 60 nM. KT H
F I is a kinetic constant related to thrombin-mediated fibrin gen-

eration. KAP
T H is the kinetic constant of the kinetic reaction of thrombin generation on

the surface of activated platelets. Thrombin inhibition by antithrombin was modelled
as a second-order reaction with kinetic constant, KAT

T H . The other 8 kinetic-related
parameters have limited or negligible effects on the lumped parameter model.

4.3.2 SA results of the full 3D model using EE method

We identified 4 key parameters from the SA results of the lumped parameter model.
These 4 kinetic-related parameters and another 14 parameters (Table 4.3) were assessed
based on a 3D aneurysm geometry (Fig. 4.4: a spontaneous thrombosis case from our
previous study[Liu et al., 2023]; Male; 51 years old; aneurysm size, 6.8 mm; aspect
ratio, 1.5; location, PCoA) using the 3D full model and EE method. For 18 parameters
and 5 randomly generated paths, we conducted r(k + 1) = 95 model runs for the 3D
full thrombosis model using the EE method. According to previous studies [Anand
et al., 2003, 2008, Sarrami-Foroushani et al., 2019], the clot was assumed to be formed
in regions where the fibrin concentration is greater than 600 nM. As shown in Fig. 4.5,
the space-averaged fibrin concentration in the aneurysm sac is converged at 100 cardiac
cycles when using three different resting platelet concentration values. Therefore, we

80



4.3 Results

Figure 4.3: The 0D model & least-squares fitted linear model results show that 4 kinetic-related
parameters: CF I,50, KT H

F I , KAP
T H , and KAT

T H have significant effect on the lumped parameter
model.

Figure 4.4: 3D vessel & aneurysm geometry used in the sensitivity analysis study.
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Figure 4.5: Convergence of the sensitivity analysis simulations.

Figure 4.6: The 3D model & Elementary effect (EE) method results using FiPi as the output
metric indicate that the resting platelet concentration is the unique most important parameter
that affects the final formed thrombus composition.
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Figure 4.7: The 3D model & Elementary effect (EE) method results using bound platelet
concentration as output metric indicate that the resting platelet concentration is the unique
most important parameter that affects the final formed thrombus composition.

ran all 95 simulations for 100 cardiac cycles in this SA study using EE method. The
output metric is the measure of thrombus composition ( FiPi [Sarrami-Foroushani et al.,
2019] and the bound platelet concentration). The EE method allows us to classify the
inputs into three groups: (1) Small µ∗

i : inputs have negligible effects; (2) Large µ∗
i and

small σi: inputs having large linear effects without interactions; (3) Large µ∗
i and large

σi: inputs having large non-linear and/or interaction effects.

As shown in Fig. 4.6 and Fig. 4.7, the SA results show that the concentration of rest-
ing platelets has the greatest effect on the final formed thrombus composition (FiPi and
bound platelet concentration), while the other 17 parameters have limited or negligible
effects on the thrombosis model.

4.3.3 Validation study based on a real patient case with detailed clin-
ical records

Simulation results of the untreated aneurysm

High RT and low SR are widely used in computational models to characterize flow
stasis that triggers the thrombus formation process in aneurysms. In our previous in
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Figure 4.8: We manually labeled the partial spontaneous thrombosis region as pre-treatment
clinical ground truth. High residence (RT) and low shear rate (SR) are widely used in compu-
tational models to characterize the flow stasis that triggers the thrombosis formation process
in the aneurysm sac. Using our previously calibrated trigger thresholds[Liu et al., 2023], RT
1.9 s and SR 11 s−1, our flow simulation model successfully predicted the main thrombosis area
before treatment.

silico observational study[Liu et al., 2023], we calibrated these trigger thresholds as
RT 1.9 s and SR 11 s−1. Using these calibrated trigger thresholds, we ran the flow
simulation model (about 10 hours per run using 128 cores) to obtain haemodynamics
inside the aneurysm sac to predict the possible thrombosis region. The flow simulation
with all the reaction terms switched off is an initialization simulation for the following
coupled flow and thrombosis simulation. From haemodynamics (Fig. 4.8), this patient-
specific aneurysm is shown to be a spontaneous thrombosis case and the main possible
thrombosis region is located in the left side of the aneurysm sac, which coincides with
the clinical ground truth before treatment.

We then performed the coupled flow and thrombosis model (about 10 days per run
using 128 cores) to investigate how the selection of patient-specific and non-patient-
specific parameters affects the final formed thrombi (Table 4.5). The settings of non-
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Figure 4.9: Comparison between the patient-specific and non-patient-specific simulation results
using the clinical record as ground truth. In the clinical ground truth figure, the red part was
the manually labelled partial thrombosis region. In the simulation results, the thrombus were
assumed to be formed in regions where the fibrin concentration, Cfi, is greater than 600 nM.

Table 4.5: Comparison between patient-specific and non-patient-specific modelling.

Non-patient-
specific

Patient-
specific

Near-wall
thrombosis

Clinical ground
truth

RP concentration (ml−1) 2.0 × 1011 2.07 × 1011 2.07 × 1011 2.07 × 1011

FI concentration (nM) 7000 15000 15000 > 13000

Simulation results

Thrombus percentage (%) 22.5 24.6 8.7 17.7

Stable thrombus percentage (%) 40.6 44.6 32.2 n/a

The definition of the percentage of thrombus is: thrombus volume / aneurysm volume, and the definition
of the percentage of stable thrombus is: volume of stable thrombus / thrombus volume. We used FiPi to
classify the formed thrombi into stable and unstable types. Here, we set FiPi >0.15[Sarrami-Foroushani
et al., 2019] as a threshold for the formation of a fibrin and platelet-rich white (stable) thrombus. Due
to current imaging limitations, we were only able to identify areas of thrombus formation in patients who
were still alive, but were unable to further analyse the composition or stability of the thrombus. We have
used “n/a” to denote that we do not know the exact percentage of stable thrombus for this patient.
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patient specific parameters were from Sarrami-Foroushani et al. [2019], while the set-
tings of patient-specific parameters were from the patient’s clinical record. As shown
in Fig. 4.9, the red part (located in the lower-left corner of the aneurysm sac) in the
clinical ground truth figure is the manually labeled partial thrombosis region. There
is no significant difference between the patient-specific simulation results and the non-
patient-specific simulation results in terms of the location of the thrombi and the shape
of the thrombi. However, a higher percentage of stable thrombi (44.6%) was obtained
in the patient-specific model compared to the non-patient-specific model (40.6%). The
patient-specific and non-patient-specific models predicted that the thrombosis region
was located in the middle and left sides of the aneurysm sac and the thrombus grew
mainly from the middle of the lumen to the aneurysm wall, which is unrealistic, as
the thrombus is difficult to be suspended in the middle of the sac without any an-
chors. To address this model limitation, we constrained the thrombosis initiation to
occur only near the wall or other thrombosed regions. As shown in the third row of
Fig. 4.9, the thrombus grew mainly near the left wall, rather than in the center of the
sac, which better matches the clinical ground truth prior to treatment. Although the
wall-constrained initiation model successfully predicted the primary thrombosis initi-
ation site before treatment, the extent of thrombosis was significantly underestimated
compared to the clinical ground truth. As mentioned earlier, the comparison with clin-
ical observations is complex by the unstable and unconverged state of the thrombus.
Nevertheless, successfully predicting the main thrombosis initiation site is considered
a significant achievement.

Simulation Results of the Treated Aneurysm

As shown in Fig. 4.10,we virtually deployed patient-specific coils and flow diverter
using GIMIAS (version 1.8.r1) [Larrabide et al., 2009]. We then performed a post-
treatment simulation with patient-specific virtual treatments and patient-specific con-
centrations of resting platelets and fibrinogen for 200 cardiac cycles of simulation time.
It took about 2 months to obtain the results of the post-treatment simulation using 128
cores. The volume of the formed thrombi in the aneurysm sac over time is presented
in Fig. 4.11. The thrombus grows very slowly and it is noteworthy that the thrombus
volume at 175 cardiac cycles reaches 95% of the final volume observed at 325 cycles.

According to the O’Kelly-Marotta[Joshi et al., 2013, O’kelly et al., 2010] (OKM)
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Figure 4.10: Virtual deployment of the stent and coils according to the patient-specific treat-
ment information.

Figure 4.11: Variation of the thrombus volume for the post-treatment simulation. The thrombus
grows rapidly at the very beginning (0-5 cycles), and then the growth slows down (5-325 cycles).
For this patient-specific case, the thrombus volume at 5 cardiac cycles reaches 86% of the final
volume observed at 325 cycles. The thrombus volume at 175 cardiac cycles reaches 95% of the
final volume at 325 cycles.
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grading scale, aneurysms are assigned grades based on the amount of contrast filling
of the aneurysm sac (filling grades, A, B, C, D) and how long contrast persists in
the aneurysm sac with respect to angiographic phase (stasis grades, 1, 2, 3). For this
patient-specific aneurysm case treated with a flow diverter and ten coils, the aneurysm
incompletely filled its lumen with contrast that persists within the lumen into the
capillary phase of the angiogram (Fig. 4.12 (a)). It was assigned grade 2B according to
the clinical record. As shown in Fig. 4.12, our simulation results show good agreement
with the clinical immediate post-treatment angiographic result: minimal residual flow
in the neck of the aneurysm after treatment.

4.4 Discussion

Thrombosis is a biological response closely linked to intracranial aneurysms. The
thrombus formation process is usually slow and complex as it is associated with blood
flow and the net result of a series of biochemical reactions. The multi-scale and multi-
physics nature of thrombosis has inspired a wide range of modelling approaches applied
to various phenomena that aim to address how a thrombus forms [Gutierrez et al.,
2023]. Although different modelling methods can be coupled as informed by the scale
and physics, the development of an all-encompassing computational model of throm-
bosis, combining all relevant underlying phenomena for patient-specific applications
remains impractical, and, instead, it is necessary to simplify models and to focus on
specific questions [Gutiérrez et al., 2021, Gutierrez et al., 2023]. The main interest of
our thrombosis model is to investigate the thrombus composition/stability. Our novel
model combines platelet activation and transport with fibrin generation, which is key
to characterizing stable and unstable thrombus [Sarrami-Foroushani et al., 2019]. Our
model does not consider the fibrinolysis process which involves the breakdown of a fib-
rin clot [Boluijt et al., 2015]. Therefore, the thrombus would keep growing according to
the haemodynamics until reach a constant volume and won’t dissolve as the fibrinolysis
process is not included in our model. The clot is to be formed in regions where the fibrin
concentration is greater than 600 nM [Anand et al., 2003, 2008, Sarrami-Foroushani
et al., 2019]. Based on this, we could assume that the fibrinolysis takes place where the
concentration drops below this threshold [Ngoepe et al., 2018] if the fibrinolysis process
needs to be included in our model in the future.
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Figure 4.12: Qualitative comparisons between the immediate post-treatment angiographic res-
ult and our simulation result. (a) The clinical immediate post-treatment digital subtraction
angiography (DSA) result shows minimal residual flow in the neck of the aneurysm; (b) The
post-treatment simulation result also shows residual blood flow in the neck region of the an-
eurysm; (c) The thrombus formation result predicted by our thrombosis model after virtual
patient-specific treatment. The thrombi are assumed to be formed in regions where the fibrin
concentration, CF I , is greater than 600 nM. The white patches in the slice shown are caused
by the visualisation of the virtual coils.
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Given the complexity of thrombosis, with at least 80 coupled reactions that regulate
thrombus growth[Cito et al., 2013, Taylor et al., 2016], a comprehensive computational
thrombosis model considering both the haemodynamics and biochemical reactions is
usually very complex and time-consuming with a large number of uncertain model
parameters even after simplification. Our thrombosis model was originally developed
by Sarrami-Foroushani et al. [2019], where they built computer models of the in vitro
phantom experiments and compared computational simulations of the flow diverter-
induced thrombosis against in vitro observations reported in Gester et al. [2016]. A good
agreement was achieved in that study. There are 31 model parameters in our thrombosis
model [Sarrami-Foroushani et al., 2019] with 8 biochemical reactions coupled to the
transport of the blood flow. Previously, we calibrated the trigger thresholds (RT and SR
thresholds) of thrombosis initiation as there is no consensus on the trigger thresholds,
with different values used throughout the literature [Liu et al., 2023, Rayz et al., 2010,
Sarrami-Foroushani et al., 2019]. Building on this threshold calibration study [Liu et al.,
2023], in the present study we performed a global SA to identify the most influential
parameters and further validate our thrombosis model based on a real patient case.
The unique most influential model parameter identified by the whole SA workflow is
the resting platelet concentration, which means the concentration of resting platelets
has the biggest effect on the final formed thrombus composition.

Our flow simulation model successfully predicted the spontaneous thrombosis status
before treatment. The flow simulation is efficient (about 10 hours per run for the un-
treated aneurysm) compared with the time-consuming thrombosis model (about 10
days per run for the untreated aneurysm), but can only provide haemodynamic in-
formation. To investigate the details of the formed thrombi, we ran the coupled hae-
modynamics and thrombosis model. As shown in Fig. 4.9, even using literature aver-
age values, our model is robust in predicting the main thrombi formation region. The
concentration of patient-specific resting platelets primarily affects the composition/sta-
bility of the thrombi (Table 4.5) which is consistent with our SA results. The resting
platelet count distribution obtained from more than 400,000 cases from UK Biobank
can be found in Fig. 4.13 where 90% of the population was within 1.14 × 108/ml and
4.38 × 108/ml (Table 4.3). Given there is such a large range in the resting platelet
concentrations for the general population, it is important to use patient-specific rest-
ing platelet concentration information when investigating the composition/stability of
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Figure 4.13: Resting platelet count distribution obtained from more than 400,000 cases from
UK Biobank.

thrombi for individual cases.

We assumed the thrombus formation was triggered by blood flow stasis, which was
characterized by high RT and low SR. Here, we further constrained the thrombosis
initiation to only happen in regions near the wall or other thrombosed regions by
adding a Hill function into the trigger mechanism for all internal points in the untreated
aneurysm sac. This makes the thrombus formation process more realistic as for an
untreated aneurysms the thrombus is difficult to be suspended in the lumen on its own
without any anchors to the surrounding aneurysm wall. As shown in Fig. 4.8, Fig. 4.9,
and Fig. 4.12, the simulation results of our thrombosis model show good agreement
with the clinical ground truth both before treatment (spontaneous thrombosis) and
immediate post-treatment (residual neck). It has been shown that aneurysmal thrombi
form or at least deposit in regions of slow flow and low shear stress [Malaspinas et al.,
2016, Ou et al., 2017, Rayz et al., 2008, Sarrami-Foroushani et al., 2017]. As illustrated
in Fig. 4.12 (c), there are flow-stasis regions in the vicinity of the device within the main
vessel that contribute to thrombus formation. In practice, this patient was treated
with dual antiplatelet therapy consisting of aspirin and prasugrel (“75 mg of aspirin
indefinitely and 10 mg of prasugrel for 6 months”). Dual antiplatelet therapy helps
prevent stent-related thromboembolic events in cardiac patients and is commonly used
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during neurointerventional procedures [Akbari et al., 2013]. This may explain why
there were no thromboembolic events reported in the clinical records for this patient.
The reported incidence of thrombus formation at the interface of the coil and the
parent vessel is approximately 7%, based on retrospective analyses[Bruening et al.,
2006, Workman et al., 2002].

The post-treatment simulation is very time-consuming, taking months. The sugges-
ted future work from this study is to accelerate the thrombosis simulation to investigate
the long-term post-treatment thrombus formation after patient-specific virtual endovas-
cular treatments in an efficient way. Despite limitations due to the excessive run time,
our results have demonstrated that our calibrated model can accurately predict the
formed thrombus regions. The model could therefore be considered as a useful tool
in clinical decision-making after further population-level and patient-specific validation
studies, particularly when the run times are reduced and it becomes viable to use the
model when planning treatments.

4.4.1 Limitations

Limitations: (1) We assumed the thrombus formation in the aneurysm sac was
triggered by blood flow stasis, and high RT and low SR were widely used in computa-
tional models to characterize the flow stasis. There may be other trigger mechanisms
involved that were not included in our analysis. (2) The partially thrombosed regions
were manually labeled with ITK-SNAP 3.8.0. There may be unavoidable errors due to
subjective factors and the technical limitations of precise labeling of thrombosed areas.
Although our model successfully predicted the main thrombosed region located in the
left side of the aneurysm sac, the simulation results also showed that there is a small
piece of thrombi formed in the right side of the aneurysm. In the raw images, we didn’t
see apparent thrombi there. (3) As our thrombosis model is very time-consuming, we
performed the global SA of our model only using a single geometry. Although our
simulation results have demonstrated that our calibrated model can accurately predict
the formed thrombus regions for the validation case, this study is limited to only one
case. Further population-level validation studies should be investigated to increase the
model credibility.
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4.4.2 Conclusion

In this comprehensive SA into all thrombosis model parameters and further clinical
patient case validation study, we identified the unique most influential factor in aneurys-
mal thrombosis modelling, the resting platelet concentration. We also demonstrated
that our thrombosis model is effective in predicting the thrombus formation both be-
fore and after treatment based on a clinical patient case, thereby further validating our
model. Further large-scale validation studies across multiple patients are required to
build additional trust in the model, but our results suggest there is significant value in
using computational models to aid clinical decision-making.
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Chapter 5

Time Discretisation in the Solution of
Advection-Diffusion-Reaction Equations with
PINNs
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5.1 Introduction

Abstract — When modelling the thrombus formation process, the transport of bio-
chemical species involved in thrombosis is typically modelled using advection-diffusion-
reaction (ADR) equations. Over the past decades, physics-informed neural networks
(PINNs) – neural networks that are trained to solve supervised learning tasks while re-
specting any given laws of physics described by general nonlinear partial differential
equations [Raissi et al., 2019] – have been increasingly used for modelling physical sys-
tems. However, the accuracy of the standard continuous-time PINNs model suffers
from non-linearities and higher-order derivatives [Mattey and Ghosh, 2022]. In this
study, we compared the performance of the standard continuous-time PINNs model
with that of a discrete-time PINNs model in solving ADR equations in a 2D chan-
nel. The reference solution for the 2D channel problem was obtained using the finite
difference method (FDM). For time discretisation, we applied the backward differen-
tiation formulae (BDF). We first tested the BDF-PINNs model on the 2D channel
problem and then combined BDF with SIREN, a neural network architecture employ-
ing the sine function as a periodic activation function, to investigate the performance
of BDF-SIREN in solving ADR equations in a 2D idealised aneurysm. We found that
the BDF-PINNs model required less training data and better represented the residence
time (RT) solution in the 2D channel, showing much smaller relative errors compared to
the standard continuous-time PINNs model. Furthermore, the tanh-based architecture
(a neural network architecture using tanh activation functions) struggled to capture
the fine details of RT in the 2D aneurysm, whereas the BDF-SIREN architecture was
able to represent more detailed features. The reference solution for the 2D idealised
aneurysm problem was solved using ANSYS CFX. However, the relative errors of all
the PINNs models increased over time; for example, the relative error of the BDF-
SIREN architecture could exceed 30% after two cardiac cycles. Therefore, improving
the long-term stability of PINNs in solving ADR equations remains an area requiring
further investigation.

5.1 Introduction

Mesh-based schemes, such as finite difference methods (FDM), finite element meth-
ods, and finite volume methods, are widely used approaches for solving partial dif-
ferential equations (PDEs) [Calabrò et al., 2023]. These methods require the initial
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generation of grid points or elements, which can be challenging when the shape of the
computational domain is complex. The PDE solution is then approximated by evalu-
ating it at a set of grid points or elements distributed over the spatiotemporal domain
[He and Tartakovsky, 2021]. The discrete solution is obtained by discretising the time
and spatial derivatives of the state variables. While mesh-based methods are accurate,
they can be computationally expensive for complex problems, such as nonlinear PDEs
[Mattey and Ghosh, 2022].

The flow stasis-induced thrombosis model used in our group was originally de-
veloped by Sarrami-Foroushani et al. [2019], where the transport of biochemical spe-
cies involved in the thrombus formation process was modelled using eight advection-
diffusion-reaction (ADR) equations, which were coupled with the Navier-Stokes equa-
tions. The coupled Navier-Stokes equations and transport equations for eight biochem-
ical species were solved in ANSYS CFX v19.3 (Ansys Inc., Canonsburg, PA, USA)
using a finite element method. This complexity makes it very time-consuming to model
flow-thrombosis; for example, simulating thrombosis in a flow-diverted aneurysm (with
more than ten million mesh elements) can take up to one month on a 96-core computer
[Sarrami-Foroushani et al., 2019]. The main reasons why the integrated thrombosis
model is so time-consuming are as follows: (1) the vast number of mesh elements (usu-
ally more than ten million for modelling the post-treatment aneurysm); (2) the fluid-
structure interaction between the blood flow and the formed thrombus at each time step;
and (3) the very small time-step size [Sarrami-Foroushani et al., 2019] (between 0.0001s
and 0.001s) required to achieve sufficient convergence for such a complicated system.
To test a large number of patients for different kinds of medical devices or products,
numerous in silico trials are needed. However, traditional computational fluid dynamics
(CFD) simulations typically require significant computing resources and time or may
not be sophisticated enough to capture the salient details of the thrombus formation
process [Malaspinas et al., 2016, Ou et al., 2017, Ouared et al., 2016, Rayz et al., 2010,
Sarrami-Foroushani et al., 2019]. Consequently, the need for extensive simulations in
in silico trials calls for accelerated computational models.

Recent advances in solving PDEs using deep learning techniques offer a promising
alternative method for simulating thrombus formation. Physics-informed neural net-
works (PINNs) are neural networks that can be trained to solve supervised learning
tasks while respecting any given laws of physics described by general nonlinear PDEs
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[Raissi et al., 2019]. Unlike traditional mesh-based methods, PINNs operate in a mesh-
less framework that uses automatic differentiation [Baydin et al., 2018], a family of
techniques similar to but more general than backpropagation for efficiently and accur-
ately evaluating derivatives of numeric functions expressed as computer programs, to
represent all time and space derivatives, thus eliminating the need for explicit mesh
generation [Raissi et al., 2019, Yin et al., 2020]. The PINNs method approximates the
solution of PDEs with deep neural networks (DNNs). The PDEs are encoded into the
loss function, and the DNNs’ coefficients are computed by minimising this loss func-
tion, which includes the residuals of the PDEs, the training data, initial conditions,
and boundary conditions [He and Tartakovsky, 2021]. A key advantage of PINNs is
their ability to be effectively trained using small data sets (e.g., boundary data only or
boundary data and a small portion of interior data), a scenario often encountered in
the study of physical systems where data acquisition costs may be prohibitive [Raissi
et al., 2019]. Additionally, nearly any neural network package can easily leverage GPUs
for parallel computing. With the rapid growth in computational resources, PINNs are
increasingly being used for modelling and simulating physical systems.

Given the complexity of our thrombosis model (eight ADR equations coupled with
the Navier-Stokes equations), it is challenging to immediately replace our existing CFD
codes with PINNs. Based on my current knowledge, there is no PINNs-based throm-
bosis model in the literature yet. The majority of PINNs codes for solving PDEs
have been tested primarily on 1D problems [He and Tartakovsky, 2021, Maczuga and
Paszyński, 2023, Mattey and Ghosh, 2022, Raissi et al., 2019, Vadyala et al., 2022,
Wang et al., 2021, Yang et al., 2021], a few on 2D problems [Cai et al., 2021, He and
Tartakovsky, 2021, Mattey and Ghosh, 2022, Raissi et al., 2019, Wang et al., 2021], and
very few on 3D problems [Biswas and Anand, 2023, Cai et al., 2021, Moser et al., 2023].
This is mainly because the performance of neural networks can be significantly affected
by the complexity and dimensionality of the problem. High-dimensional problems are
usually more complex, requiring neural networks to possess higher representational
power. This implies that the network needs more parameters (e.g., more layers or
wider layers) to capture the intricate patterns, which increases the difficulty of training
the model and the risk of overfitting, while gradient descent algorithms struggle to find
global optima.

In this study, we investigate how PINNs perform in solving ADR equations used to
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describe the transport of biochemical species. We compare the continuous-time PINNs
model with the discrete-time PINNs model for a single 2D ADR equation in terms of
model accuracy. For the discrete-time methods, we investigate the BDF techniques for
ADRs, as BDF methods of orders 2-4 are preferred over the commonly used forward
Euler method, which is known for its slow convergence and potential for order reduc-
tion or numerical instability [Calabrò et al., 2023]. This study explores the accuracy,
efficiency, and stability of PINNs in solving ADR equations, which could provide new
insights for simulating the full thrombosis model with PINNs in the future.

5.2 Materials and Methods

5.2.1 Advection-Diffusion-Reaction Equation

The transport of biochemical species can be modelled using ADR equations. Our
thrombosis model comprises eight ADR equations, with the primary differences among
them pertaining to the source term or reaction term. In this study, we test our PINNs
codes with a 2D ADR equation to solve for residence time (RT), as its source term is
relatively simple. RT is modelled as a tracer passively transported with the blood flow
by solving the following ADR equation:

∂CRT

∂t
+ u · ∇CRT − DRT ∇2CRT − 1 = 0, x ∈ Ω, t ∈ [0, T ], (5.1)

where t is time, u is the velocity vector, CRT (x, y, t) is the local concentration of
RT, Ω is a subset of Rd, DRT represents the self-diffusivity of the flow (DRT = 1.14 ×
10−11 m2s−1) [Harrison et al., 2007, Menichini and Xu, 2016]. The source term considers
a unit increase in the concentration of RT for each unit increase in time [Menichini and
Xu, 2016]. The initial and inlet concentrations of RT were set as zero. A zero flux
boundary condition was adopted on the wall and outlet boundary [Menichini and Xu,
2016].
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Figure 5.1: Basic overview of the continuous-time physics-informed neural network (PINNs)
used in this chapter, displaying network inputs, output, and the four loss components.
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5.2.2 The Continuous-time PINNs Model

Considering the continuous-time PINNs model for solving equation (5.1) , we define
f(x̂, ŷ, t̂) to be given by the left-hand side of equation (5.1):

f := ∂ĈRT

∂t̂
+ (u · ∇)ĈRT − DRT ∇2ĈRT − 1 (5.2)

In the context of PINNs [Raissi et al., 2019], a fully connected forward neural network
composed of multiple hidden layers is used to approximate the solution of the PDE
ĈRT (x̂, ŷ, t̂) by taking the space and time coordinates (x̂, ŷ, t̂) as inputs (Fig. 5.1). The
network can be derived by applying the chain rule for differentiating compositions of
functions using automatic differentiation [Baydin et al., 2018]. In PINNs, solving equa-
tion (5.1) is converted into an optimisation problem by iteratively updating the train-
able neural network model parameters with the goal of minimising the mean squared
error loss

Loss = Ldata + Lin + Lb + Lf , (5.3)

where

Ldata = 1
Nd

Nd∑
i=1

(|ĈRT (x̂i, ŷi, t̂i) − CRT, i|2) (5.4)

Lin = 1
Nin

Nin∑
i=1

(|ĈRT (x̂i, ŷi, t̂i) − 0|2) (5.5)

Lb = 1
Nb

Nb∑
i=1

(|∂ĈRT (x̂i, ŷi, t̂i)
∂n

− 0|2) (5.6)

Lf = 1
Nf

Nf∑
i=1

(|f(x̂i, ŷi, t̂i)|2) (5.7)

Here, the loss Ldata corresponds to the interior and boundary training data, Nd points
(50% of the total mesh elements); the loss Lin corresponds to the inlet conditions, Nin

points (all inlet points included); while Lf enforces the structure imposed by equation
(5.1) at Nf collocation points (75% of the total mesh elements). The loss Lb corresponds
to the zero flux boundary condition (wall and outlet), and ∂n indicates the direction
of the outward-facing normal, such that ∂ĈRT /∂n is understood as the flux leaving
the computational domain (all boundary points included). The optimisation of the
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loss function and updating the learning parameters (weights and biases of the neural
network) are performed using the ADAM and LBFGS optimisers [Mattey and Ghosh,
2022].

Figure 5.2: Basic overview of the backward differentiation formulae (BDF) physics-informed
neural network (PINNs) used in this chapter, displaying network inputs, output, and the three
loss components.

5.2.3 The Discrete-time PINNs Model

For the time marching, we consider the BDF methods as they show good accuracy
and convergence properties [Calabrò et al., 2023]. Given

C
[0]
RT (x, y), C

[1]
RT (x, y), ..., C

[k−1]
RT (x, y), (5.8)

a k-step BDF applied to equation (5.1) can be written as

∆ t bk L(Ĉ [n+k]
RT (x̂, ŷ)) − ak Ĉ

[n+k]
RT (x, y) =

k−1∑
i=0

ai C
[n+i]
RT (x̂, ŷ), (5.9)
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L(ĈRT ) = ∂ĈRT

∂t
= −(u · ∇)ĈRT + DRT ∇2ĈRT + 1 (5.10)

where L is an operator acting only on the spatial variables, ∆ t is the time-step size,
n = 0, 1, ... and the coefficients aj , j = 0, ..., k, and bk are listed in Table 5.1 for k ≤ 6.
It is worth noting that the 1-step BDF is the backward Euler method, and the BDF
methods are not zero-stable for k>6. Definitions and further details of BDF-k can be
found in Calabrò et al. [2023], Wanner and Hairer [1996].

Table 5.1: Coefficients of the BDF methods.

k a6 a5 a4 a3 a2 a1 a0 bk

1 1 −1 1

2 1 −4
3

1
3

2
3

3 1 −18
11

9
11 − 2

11
6
11

4 1 −48
25

36
25 −16

25 − 3
25

12
25

5 1 −300
137

300
137 −200

137
75
137 − 12

137
60
137

6 1 −360
147

450
147 −400

147
225
147 − 72

147
10
147

60
147

In the BDF-k-PINNs model, we use DNNs to approximate the solution of the PDE
ĈRT (x̂, ŷ) at each time-step by taking the spatial coordinates (x̂, ŷ) as inputs, and the
solutions from the previous k time-steps are also used to calculate the current solution
Ĉ

[n+k]
RT (x̂, ŷ) (Fig. 5.2). The discrete-time PINNs model is used to solve a steady-state

RT problem at each time-step. We define F (x̂, ŷ) to be given by the left-hand side
minus the right-hand side of equation (5.9):

F := ∆ t bk L(Ĉ [n+k]
RT (x̂, ŷ)) − ak Ĉ

[n+k]
RT (x̂, ŷ) −

k−1∑
i=0

ai C
[n+i]
RT (x̂, ŷ), (5.11)

The inlet concentrations of RT were set to zero. A zero flux boundary condition was
adopted on the wall and outlet boundaries [Menichini and Xu, 2016]. The mean square
error loss of the BDF-k-PINNs model is

LossBDF = Lin + Lb + LF , (5.12)

where
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Lin = 1
Nin

Nin∑
i=1

(|ĈRT (x̂i, ŷi) − 0|2) (5.13)

Lb = 1
Nb

Nb∑
i=1

(|∂ĈRT (x̂i, ŷi)
∂n

− 0|2) (5.14)

LF = 1
NF

NF∑
i=1

(|F (x̂i, ŷi)|2) (5.15)

Here, the loss Lin corresponds to the inlet condition (all inlet points included). The
loss Lb corresponds to the zero flux boundary condition (all boundary points included)
and the loss LF represents the residual of the PDE equation (5.1) (75% of the mesh
elements).

5.2.4 Activation Functions

In the literature, various activation functions, such as rectified linear units (ReLUs)
and tanh, are available. The choice of activation function often depends on the specific
problem at hand [Chai et al., 2024]. ReLU-based multilayer perceptrons are commonly
used in many PINNs architectures [Sitzmann et al., 2020]. However, ReLU networks
may struggle with representing fine details in the underlying signals because ReLUs can
not model higher-order derivatives; their second derivative is zero. As an alternative
activation, tanh is capable of representing higher-order derivatives [Sitzmann et al.,
2020]. However, Sitzmann et al. [2020] found that tanh’s derivatives are often not
well-behaved and demonstrated that the periodic sine functions are well-suited for cap-
turing complex signals. In this study, we tested both the hyperbolic tangent activation
functions and the periodic sine activation functions.

Hyperbolic tangent has an output range of [-1, 1] and is defined as follows [Zaman-
looy and Mirhassani, 2013]:

tanh(x) = ex − e−x

ex + e−x
(5.16)

The SIREN activation also has an output range of [-1, 1] and is formulated as
[Sitzmann et al., 2020]:

ϕ(z) = sin(w0 · z) (5.17)
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where z = W x + b is the the linear transformation of the layer (weight matrix W

and bias b), and w0 is a hyperparameter controlling the frequency of the sine wave
(commently set to values like 30 to enhance high-frequency signal modelling).

5.2.5 2D Channel Problem

The vascular segments at common sites for IAs (such as bifurcations of the Circle
of Willis [Feng et al., 2023]) typically have length and diameter parameters in the
millimetre range. For example, the mean length of the internal carotid artery (ICA)
from the proximal cavernous segment to the ICA terminus was 33.1±6.1 mm. The
mean diameter at the cavernous ICA was 5±0.6 mm [Rai et al., 2013]. Therefore, it
is reasonable to set the length and width of the 2D channel as 20 mm and 10 mm,
respectively.

In this experiment, we investigated the effect of flow on RT in a 2D rectangular
domain by solving equation (5.1). The dimensionless computational domain for this
2D channel problem was defined as Ω = {(x, y)|0 ≤ x ≤ 2, 0 ≤ y ≤ 1}, with the
left and right boundaries serving as the inlet and outlet, respectively, and the top and
down boundaries acting as walls. The parabolic velocity field for the entire domain was
computed using the Lattice Boltzmann method and then used as known variables in
solving equation (5.1).

Equation (5.1) for the 2D channel was initially solved numerically using the backward-
time-centered-space (BTCS) finite difference method (FDM) in MATLAB, providing a
high-resolution RT dataset that was used both for training and as a reference for the
PINNs code (Fig. 5.3). The numerical scheme employed in the computational domain
Ω is as follows:

RT n+1
i,j − RT n

i,j

∆t
+ ui,j

RT n+1
i+1,j − RT n+1

i−1,j

2∆x
+ vi,j

RT n+1
i,j+1 − RT n+1

i,j−1
2∆y

= (5.18)

DRT

(
RT n+1

i+1,j − 2RT n+1
i,j + RT n+1

i−1,j

∆x2 +
RT n+1

i,j+1 − 2RT n+1
i,j + RT n+1

i,j−1
∆y2

)
+ 1 (5.19)

where ∆t = 0.0001 s, ∆x = ∆y = 0.0001 m, with 20,000 mesh elements in total.

For both the continuous-time PINNs and discrete-time PINNs models applied to the
2D channel problem, the chosen neural network architecture comprises 8 hidden layers,
each with 20 neurons, and uses the tanh activation function. The ADAM [Kingma and
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Figure 5.3: The reference of RT in 2D channel problem solved using the finite difference method
(FDM).

Ba, 2014] optimiser is employed with an initial learning rate of 1 × 10−4, selected to
be the highest possible value without causing divergence. The maximum number of
epochs is set to 2000.

5.2.6 2D Idealised Aneurysm Problem

It has been shown that aneurysmal thrombus forms, or at least deposits, in regions
of slow flow and low shear [Malaspinas et al., 2016, Ou et al., 2017, Rayz et al., 2008,
Sarrami-Foroushani et al., 2017]. Consequently, CFD models often use blood flow stasis
as a surrogate for thrombosis initiation mechanisms, with RT and SR being the most
commonly used parameters in flow stasis-induced thrombosis models. Since the 2D
channel geometry does not adequately represent a flow stasis environment, we further
tested the discrete-time PINNs model with a 2D idealised aneurysm geometry (Fig. 5.4).
In this setup, the left side serves as the inlet with a uniform velocity entrance of 0.1
m/s, while the right side acts as the outlet. We assumed a rigid wall with a no-slip
boundary condition and prescribed a zero-pressure condition at the outlet. Both the
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Figure 5.4: The 2D idealised aneurysm.

Navier-Stokes equations and the ADR equation (5.1) for RT were solved using ANSYS
CFX. To discretise the computational domain, tetrahedral elements with a maximum
edge size of 0.2 mm and five layers of prismatic elements with a maximum edge size of
0.1 mm were used (32,000 mesh elements in total).

Given our interest in assessing how PINNs perform in solving ADR equations, we
turned off the fluid solver in ANSYS CFX after 8 cardiac cycles. ANSYS CFX includes
an override parameter named ‘solve fluids’, which allows continuation with solving other
equation groups, such as the ADR equations, once fluid convergence has been achieved.
The fixed velocity field was then incorporated into the PINNs code as known variables,
with the solution of equation (5.1) obtained from ANSYS CFX in the 2D idealised
aneurysm serving as both initialisation data and a reference for the BDF-k-PINNs
model.

5.3 Results

5.3.1 PINNs for RT in 2D Channel

In the continuous-time PINNs model, we utilised interior and boundary data from
the FDM solution at t = 1, 2, 3, ..., 10 s for training while also constraining the model
with the PDE equation (5.1). As illustrated in Fig. 5.5, the results of the continuous-
time PINNs model appear seemingly good for t ≤ 10 s (within the training data range)
but diverge rapidly when extended beyond this range (t>10). The performance of
the continuous-time PINNs model is highly dependent on the training data range,
and it diverges significantly over time if no training data is provided beyond the initial
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Figure 5.5: The continuous-time PINNs model for solving RT in 2D channel performed well
with training data (≤ 10 s) but failed to predict the correct solution beyond the training data
set (>10 s).

training data range. Given that our objective is to solve long-term solutions of the ADR
equations, the continuous-time PINNs model (space-time method) is less appealing
compared to the discrete-time PINNs model (time-stepping method).

We then applied the discrete-time PINNs model, specifically the BDF-1-PINNs
model, to solve the RT in the 2D channel problem. The time-step size was set to
0.01 s, and the maximum number of epochs was set to 1000. For the BDF-1-PINNs
model, the PINNs model was initialised solely with the FDM solution at t = 5 s. As
shown in Fig. 5.6, the BDF-1-PINNs model performed effectively in solving the RT in
the 2D channel, using only the FDM solution data from t = 5 s for initialisation. The
BDF-1-PINNs model not only required less training data but also demonstrated better
long-term stability compared to the continuous-time PINNs model (see Fig. 5.7).
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Figure 5.6: The BDF-1-PINNs model for solving RT in 2D channel showed good long-term
stability. It successfully predicted the RT solution at t = 15 s while only initialised with the
reference data at t = 5 s.

Figure 5.7: The relative errors of the PINNs model for solving RT in 2D channel. The RT
reference solution was generated from the finite difference method (FDM).
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5.3.2 PINNs for RT in 2D Idealised Aneurysm

For the BDF-k-PINNs model solving equation (5.1) in the 2D idealised aneurysm,
the neural network architecture chosen comprises 6 hidden layers with 256 neurons in
each layer. The time-step size was set to 0.01 s. The ADAM [Kingma and Ba, 2014]
optimiser is employed with an initial learning rate of 1 × 10−4, and with a maximum of
1000 epochs and early stopping after 100 epochs. Initially, the tanh activation function
was used. Although tanh can represent higher-order derivatives, it often struggles with
poorly behaved derivatives and fails to capture fine details [Sitzmann et al., 2020]. As
illustrated in Fig. 5.8, while the BDF-1-PINNs model with tanh activation function
successfully predicted the general distribution of RT, it did not capture finer details,
particularly near the aneurysm wall.

To address this issue, we combined BDF-1 with SIREN [Sitzmann et al., 2020], a
neural network architecture designed for implicit neural representations that employs
sine as a periodic activation function. Unlike conventional nonlinearities such as the
hyperbolic tangent or ReLU, the sine function is periodic and non-local. This periodic
sine activation significantly enhances the representation of RT details in the 2D idealised
aneurysm (Fig. 5.8) and reduces the relative errors (Fig. 5.9).

However, despite using BDF-1-SIREN or BDF-2-SIREN, the relative errors of the
PINNs models still increase linearly with time, reaching more than 30% after 2 cardiac
cycles. Fig. 5.10 shows how the errors accumulate over time, with ANSYS CFX results
used as the reference.

5.4 Discussion

PINNs are a class of machine learning models where the governing PDE is incor-
porated into the neural network’s loss function [Raissi et al., 2019]. The standard
PINNs approach trains the model to predict the solution at any point across the en-
tire spatial-temporal domain, which corresponds to the continuous-time PINNs model
used in this study [Mattey and Ghosh, 2022]. In contrast, the discrete-time PINNs
models—particularly those incorporating the BDF technique—are less commonly ex-
plored [Calabrò et al., 2023]. However, the discrete-time PINNs models, employing a
time-stepping method, are more attractive than the continuous-time PINNs models for
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Figure 5.8: Comparison between the PINNs results with different activation functions and the
ground truth calculated using ANSYS CFX at t = 8 s.

Figure 5.9: The relative errors of PINNs by using the CFX results as references in 2 cardiac
cycles. The time-step size is 0.01s.
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Figure 5.10: The absolute errors of BDF-1-SIREN by using the CFX results as references in 2
cardiac cycles.

solving long-term solutions of PDEs, as they do not require training data generation
over time. In this study, we demonstrated that the BDF-PINNs models performed
significantly better in solving ADR equations compared to standard continuous-time
PINNs models. Specifically, in the 2D channel problem, the BDF-1-PINNs model
exhibited superior accuracy and long-term stability compared to the continuous-time
PINNs model (Fig. 5.7).

In this PINNs for solving ADR equations study, we focused on solving the ADR
equations themselves rather than the flow field. The fixed velocity field was used as
known variables when solving the ADR equations. Therefore, the approaches (e.g.,
finite difference method, Lattice Boltzmann method, ANSYS CFX, or any other effect-
ive numerical methods) we used for solving the velocity field would not affect how we
solve the ADR equations. It’s worth noting that the LBM codes used in the 2D channel
problem were from my previously published work (which was not part of this research)
[Liu et al., 2020] where I already demonstrated its effectiveness. The effectiveness of
the ANSYS CFX method were also demonstrated in Chapter 3 and Chapter 4.

In our study, we observed that while tanh-based architectures performed adequately
for solving RT in a 2D channel, they struggled to represent fine details in ADR equations
within a 2D aneurysm model. In the 2D channel problem, the simplicity of both the
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geometry and velocity distribution allowed even a basic BDF-PINNs architecture (with
8 layers and 20 neurons per layer) using the tanh activation function to capture the
RT solution effectively. However, in the more complex 2D aneurysm scenario, the tanh
activation function was insufficient for capturing the fine details of the RT solution.
We then applied the BDF-SIREN architecture to the 2D idealised aneurysm problem
and found that it performed significantly better than the BDF-PINNs (tanh) model
in capturing fine details. However, even with the seemingly superior BDF-SIREN
architecture, the relative errors of PINNs increased over time and could exceed 30%
after two cardiac cycles (Fig. 5.9).

According to the expert’s guide to training PINNs [Wang et al., 2023], we have ap-
propriately set the PINNs architecture and demonstrated its capability in solving the
RT in a 2D channel (Fig. 5.6 and Fig. 5.7). In addition to the PINNs architecture and
optimisation strategies, the most common sources of the error accumulation in PINNs
when solving RT in 2D aneurysms are the numerical discretisation of the ADR equation
(both time and spatial discretisation) and the implementation of boundary conditions.
The identical relative errors observed in the BDF-1-PINNs and BDF-2-PINNs models
for both the 2D channel and 2D idealised aneurysm problems suggest that the BDF-1
scheme is capable enough for these relatively simple 2D problems. The increase in error
over time can then likely be attributed to the spatial discretisation or boundary condi-
tions. To discretise the computational domain, tetrahedral elements with a maximum
edge size of 0.2 mm and five layers of prismatic elements with a maximum edge size
of 0.1 mm were used. Mesh independence was confirmed for these element sizes in our
previous studies [Liu et al., 2023, Sarrami-Foroushani et al., 2019]. Therefore, the error
accumulation over time is most likely related to boundary conditions in the PINNs
model (Fig. 5.10). The discrete-time PINNs model was initialised with the ANSYS
CFX solutions at the 8th cardiac cycle (7.06 s). As shown in Fig. 5.10, the error was
tiny at 7.10 s but then accumulated from the inlet and wall boundaries. The zero RT
concentration condition at the inlet only weakly constrained the inlet areas, and then
the errors spread from the wall to the internal points of the vessel. The highest errors
were observed around the neck of the 2D aneurysm, where the nearby wall geometry is
sharp. This suggests that boundary conditions may be a significant factor in the error
accumulation over time.

This issue may be common for PINNs models dealing with nonlinear and higher-
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order time-varying PDEs [Mattey and Ghosh, 2022]. Mattey and Ghosh [2022] proposed
backward-compatible PINNs (bc-PINNs) to address such issues. The key idea of bc-
PINNs is to re-train the same neural network for solving PDEs over successive time
segments while satisfying the already obtained solutions for previous time segments.
The bc-PINNs model was tested on 1D or 2D (square geometry) Allen-Cahn and Cahn-
Hilliard equations [Mattey and Ghosh, 2022]. However, it remains to be investigated
whether this approach can be applied to our BDF-SIREN architecture for solving ADR
equations and how to improve the long-term stability of PINNs. Our BDF-SIREN
model performed well in the 2D channel problem but diverged more rapidly in the 2D
aneurysm problem, which features a more complex geometry compared with the 2D
channel. Further exploration is needed to address these challenges.

As mentioned before, the transport of biochemical species involved in the thrombus
formation process is described using ADR equations; therefore, the long-term stability
of the BDF-SIREN architecture in solving ADR equations is of great importance. The
next step, based on this study, is to improve the accuracy and long-term stability of
the BDF-SIREN architecture in solving ADR equations. Once the long-term stability
issue is addressed, we can further investigate how to build a PINNs-based full throm-
bosis model to accelerate the thrombus formation simulation workflow, leveraging the
following advantages of the BDF-SIREN architecture: (1) The PINNs architecture is
mesh-less. As a result, although we still need to define a set of collocation points in
the domain where the PDEs and boundary conditions are enforced, these points can
be distributed more flexibly than in traditional mesh-based methods. For example, the
collocation points can be concentrated in regions with high gradients or near bound-
aries to improve accuracy. (2) The BDF time-marching scheme is more stable than
other classic methods, such as the forward Euler method. Therefore, we can use a
larger time-step size in the BDF-SIREN architecture. and (3) We can treat the flow
field as a constant flow in each cardiac cycle (updating the Darcy term for modelling
the fluid-structure interaction between the flow and the formed thrombus every cardiac
cycle rather than every small time-step) and focus on the biochemical reactions at each
time-step. Currently, the coupling between the Navier-Stokes equations and the other
eight ADR equations is modelled at every time step [Sarrami-Foroushani et al., 2019].

In this way, we might be able to accelerate the thrombus formation modelling
workflow by utilising the power of PINNs and GPUs.
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5.4.1 Conclusion

In this simplified PINNs-based analogue to the full thrombosis model, we demon-
strated that the discrete-time PINNs model (the BDF-1-PINNs) outperformed the
standard continuous-time PINNs model in solving ADR equations. Although the tanh
activation function is often considered a good alternative to the classic ReLU function
for representing higher-order derivatives, we found that the tanh-based architecture
was unable to capture the fine details of RT in the 2D aneurysm model. The BDF-
SIREN architecture, which uses the sine function as the activation function, was able
to capture finer details than the tanh-based architecture in solving ADR equations.
However, errors grew over time for all the above PINNs models, which may be due
to the implementation of boundary conditions in PINNs. Reducing PINNs errors and
improving the long-term stability of PINNs in solving ADR equations require further
investigation.
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Conclusions and Outlook
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6.1 Conclusions

The motivation behind this thesis is to enhance both the credibility and efficiency
of patient-specific computational thrombosis modelling by addressing its critical tasks,
including workflow automation and acceleration, calibration and sensitivity analysis,
and validation. The main contributions of the thesis are outlined as follows:

• Fully automated the volume meshing and post-processing components, improved
virtual coiling for wide-neck aneurysms and narrowed the thrombosis initiation
to near-wall regions for untreated IAs.

• Conducted a systematic review of ST reported in clinical studies, calibrated the
haemodynamic thresholds of thrombosis initiation and explored the influence of
hypertension in ST.

• Assessed the impact of various model parameters on the final formed thrombus
composition and further validated the thrombosis model using clinical data from
real patients.

• Investigated the acceleration of the thrombus formation modelling workflow by
utilising the power of PINNs and GPUs.

6.2 Outlook

In this thesis, I contributed to the creation of a fully automatic haemodynamics
and thrombosis modelling workflow, calibrated the key haemodynamic thresholds for
thrombosis initiation, identified the most significant factors in aneurysmal thrombosis
modelling, validated our thrombosis model based on a real patient case, and invest-
igated physics-informed deep learning models of thrombus formation. While I have
made noteworthy strides and achieved promising outcomes in these areas, certain chal-
lenges and promising future directions remain that require further attention to advance
haemodynamics and thrombosis modelling in IAs.

Enhance the thrombosis trigger mechanism to enable more accurate
thrombosis modelling. One of the most challenging aspects of aneurysmal throm-
bosis modelling is accurately describing the trigger mechanism. In this thesis, we as-
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sumed that thrombus formation in the aneurysm sac was primarily triggered by blood
flow stasis, using high RT and low SR to characterise this stasis. However, the literat-
ure indicates that cerebral aneurysm thrombosis is also associated with factors such as
endothelial damage in the aneurysm sac, wall inflammation, blood-borne tissue factors,
and contact with artificial surfaces following treatment. Incorporating these additional
trigger mechanisms, such as device-induced thrombosis initiation, could potentially lead
to more accurate predictions of thrombus formation in aneurysms.

Conduct large-scale validation studies across multiple patients to en-
hance model credibility. In Chapter 4, I demonstrated that our thrombosis model
can effectively predict thrombus formation both before and after treatment based on
a single clinical patient case. However, this validation was limited to just one patient.
To ensure that the computational thrombosis model is robust and reliable for poten-
tial clinical use in the future, extensive validation studies across multiple patients are
necessary to build greater confidence in the model.

Accelerate thrombosis modelling to reduce the computational cost of
post-treatment simulations. Our thrombosis model is currently very time-consuming;
for instance, simulating thrombosis in a post-treatment aneurysm (as discussed in
Chapter 4, a clinical case treated with a flow diverter and 10 coils) can take up to
2 months on a 128-core computer. As mentioned in Chapter 5, the primary reasons
for this high computational cost are: (1) the large mesh size; (2) the fluid-structure
interaction between blood flow and the formed thrombus at each time step; and (3) the
very small time-step size.

Firstly, the significant difference in length scales between the flow-diverter wires
(≈ 30 um) and the arterial diameters (≈ 5 mm) necessitates a high mesh resolution to
produce a grid with sufficient quality around the wires when modelling the virtual device
explicitly. Further investigation into simplifying the virtual device modelling using
alternative methods (e.g., the porous media method or the immersed boundary method)
may accelerate post-treatment thrombosis modelling. However, the effectiveness of
these methods in medical device modelling needs to be demonstrated first.

Secondly, as discussed in Chapter 5, the BDF-SIREN architecture has unique ad-
vantages compared to ANSYS CFX. The next steps based on the current BDF-SIREN
results are: (1) determine exactly why the BDF-SIREN error accumulates over time;
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(2) explore whether the key idea of bc-PINNs can be applied to ADR equations to re-
duce errors; (3) investigate other literature methods to improve the long-term stability
of PINNs in solving ADR equations; and (4) subsequently, develop a full thrombosis
modelling workflow based on PINNs.

Investigate clinically relevant questions using our workflow. For example,
we aim to explore why some aneurysms rupture after seemingly successful flow-diverter
treatment. Although flow diverter is a safe and effective modality, some patients can
experience delayed aneurysmal rupture [Brinjikji et al., 2013]. The reported incidence
of rupture varies significantly between different centres, such as 11.4%(5/44) [Roy et al.,
2017] or 0.6%(5/793) [Kallmes et al., 2015] after flow-diverter treatment. Even in cases
of complete occlusion, delayed rupture occurs in nearly 2% of cases [Brinjikji et al.,
2013]. However, the mechanism behind this delayed rupture remains unknown.

Past studies have identified several possible risk factors [Hou et al., 2020]: (1)
increased intra-aneurysmal pressure after flow-diverter treatment; (2) partial formation
of intra-aneurysmal thrombi (97.3%(36/37)); though it is still a mystery why thrombus
may lead to permanent cure in some patients but trigger future delayed rupture in
others; (3) large and giant aneurysms (88.7%); (4) symptomatic aneurysms (97.8%); (5)
saccular aneurysms with high aspect ratio (> 1.6); (6) delayed flow-diverter migration
into the aneurysm sac; and (7) mechanical injury by flow-diverter.

As shown in Fig. 6.1, we designed a study titled ‘An in silico investigation into
the mechanism of delayed rupture after flow-diverter treatment’ to examine why some
aneurysms rupture after flow-diverter treatment. This study compares aneurysm mor-
phology (size and aspect ratio), haemodynamics (pressure change and flow reduction),
and thrombus formation (thrombosed region and thrombus composition) between the
delayed rupture and complete occlusion groups. Out of 145 cases collected from Leeds
General Infirmary, we found 61 complete occlusion cases but only 3 delayed rupture
cases. Our research team is now collaborating with more clinical centres across the UK
to collect additional clinical cases. This study will be finalised once we have gathered
a sufficient number of delayed rupture cases.
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Figure 6.1: Workflow for investigating the mechanism of delayed rupture. Green labels indicate
that they have been completed, yellow labels indicate that they are in progress, and blue labels
indicate that they will be completed in the future. My main contributions to this delayed
rupture study were as follows: (1) background research and study design; (2) collection of
clinical image data and verification of segmentation results; (3) selection of the study cohort
and virtual deployment of FD.
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John T Fallon, Juan J Badimon, Jacques Himber, Markus A Riederer, and Yale
Nemerson. Blood-borne tissue factor: another view of thrombosis. Proceedings of
the National Academy of Sciences, 96(5):2311–2315, 1999.

Marco Goeijenbier, M Van Wissen, C Van De Weg, Eefje Jong, VEA Gerdes, JCM
Meijers, DPM Brandjes, and ECM van Gorp. Viral infections and mechanisms of
thrombosis and bleeding. Journal of medical virology, 84(10):1680–1696, 2012.

N Gorring, L Kark, A Simmons, and T Barber. Determining possible thrombus sites
in an extracorporeal device, using computational fluid dynamics-derived relative res-
idence time. Computer methods in biomechanics and biomedical engineering, 18(6):
628–634, 2015.
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Jeannette W Hop, GabriÃ≪l JE Rinkel, Ale Algra, and Jan van Gijn. Case-fatality
rates and functional outcome after subarachnoid hemorrhage: a systematic review.
Stroke, 28(3):660–664, 1997.

Kun Hou, Guichen Li, Xianli Lv, Baofeng Xu, Kan Xu, and Jinlu Yu. Delayed rup-
ture of intracranial aneurysms after placement of intra-luminal flow diverter. The
Neuroradiology Journal, 33(6):451–464, 2020.

133



REFERENCES

Johnson Huang and James M Van Gelder. The probability of sudden death from
rupture of intracranial aneurysms: a meta-analysis. Neurosurgery, 51(5):1101–1107,
2002.

JD Humphrey and CA Taylor. Intracranial and abdominal aortic aneurysms: similar-
ities, differences, and need for a new class of computational models. Annual review
of biomedical engineering, 10:221, 2008.

Jimison Iavindrasana, Luigi Lo Iacono, Henning Müller, Ivan Periz, Paul Summers,
Jessica Wright, Christoph M Friedrich, Holger Dach, Tobias Gattermayer, Gerhard
Engelbrecht, et al. The@ neurist project. Studies in health technology and informat-
ics, 138:161–164, 2008.

Daniel M Jacobson and Jonathan D Trobe. The emerging role of magnetic resonance
angiography in the management of patients with third cranial nerve palsy. American
journal of ophthalmology, 128(1):94–96, 1999.

Mahesh V Jayaraman, William W Mayo-Smith, Glenn A Tung, Richard A Haas, Jef-
frey M Rogg, Neerav R Mehta, and Curtis E Doberstein. Detection of intracranial
aneurysms: multi–detector row ct angiography compared with dsa. Radiology, 230
(2):510–518, 2004.

MD Joshi, CJ O’Kelly, T Krings, D Fiorella, and TR Marotta. Observer variability
of an angiographic grading scale used for the assessment of intracranial aneurysms
treated with flow-diverting stents. American Journal of Neuroradiology, 34(8):1589–
1592, 2013.

David F Kallmes, R Hanel, D Lopes, E Boccardi, Alain Bonafé, S Cekirge, D Fiorella,
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