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ABSTRACT 

Experiments were undertaken to understand the fate of selected pesticides in water-

sediment systems and to determine whether laboratory experimental data coupled 

with mathematical modelling is able to represent behaviour in outdoor condition. 

Two pesticides were selected for study; thiamethoxam has a low sorption coefficient 

(Koc) and is susceptible to hydrolysis and photolysis, whilst metalaxyl-M has 

moderate sorption but is stable to hydrolysis and photolysis. A sequence of 

experiments was carried out starting with investigation of simple, single-phase 

systems and building additional complexity first in the laboratory and subsequently 

in the field. 

Hydrolysis of thiamethoxam was pH-dependent; the rate was very slow under acidic 

and neutral conditions and significantly higher at alkaline pH (p<0.001). Photolysis 

of thiamethoxam was also strongly influenced by pH (p<0.001) with the rate of 

photolysis 4.30 and 3.85 times faster at pH 10 than at pH 9 for pure and natural 

water, respectively. The presence of nitrate anions significantly (p<0.05) decreased 

rate of photolysis of thiamethoxam and this was attributed to a direct competition for 

absorption of light. Sorption of the two pesticides to a natural sediment (Koc 32.6 and 

36.6 L kg-1 for thiamethoxam and metalaxyl-M, respectively) suggested that these 

pesticide are weakly sorbed and likely to be present predominantly in the water 

phase. 

Pesticides in water-sediment systems with plants (Myriophyllum spicatum) degraded 

much faster than in systems without plants under both laboratory and outdoor 

conditions. Plants had direct effects through sorbing and taking up pesticide, but the 

dominant influence was indirect due to changing pH to alkaline conditions and thus 

increasing the rate of photolysis and hydrolysis. Degradation in water broadly 

translated from the laboratory to outdoor experiment, but sorption behaviour in 

simplified systems greatly overestimated pesticide sorption in complex systems in 

outdoor experiments. There was less intense contact between pesticide and sediment 

in vessels under outdoor conditions and pesticide degraded from water much more 

quickly, limiting the time available for sorption. A previously unreported tendency 
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for photolysis of metalaxyl-M in outdoor experiments showed the importance of 

selecting laboratory conditions able to mimic behaviour of pesticides under outdoor 

conditions. TOXSWA predictions for fate of the two pesticides in outdoor 

experiments showed a reasonable match to measured data for the water phase, 

although residues were overestimated at initial and after a few days of experiment.  

Model efficiency was -1.81 and 0.944 for thiamethoxam and metalaxyl-M, 

respectively. The simulations showed a reasonable match with measured data in 

plants for thiamethoxam, but underestimated concentrations of metalaxyl-M in 

plants. Concentrations of both pesticides in sediment were overestimated by the 

model at model efficiencies of -84.0 and -2.14 for thiamethoxam and metalaxyl-M, 

respectively. Further work could apply alternative models such as EXAMS or 

develop a new model able to account for all relevant processes acting on pesticides 

in surface waters. This work considered two pesticides in detail and further research 

with a wider range of pesticides is needed to develop generalised conclusions. 

 



Table of contents 

 

4 

 

TABLE OF CONTENTS 

Fate of two currently-used pesticides in water-sediment systems .................................... 1 

Abstract ............................................................................................................................ 2 

Table of contents .............................................................................................................. 4 

List of tables ................................................................................................................... 12 

List of figures ................................................................................................................. 14 

Acknowledgements ........................................................................................................ 20 

Author’s declaration ....................................................................................................... 21 

Chapter 1 ........................................................................................................................ 22 

1. Introduction ............................................................................................................ 22 

1.1 Aim and objectives ............................................................................................... 23 

Chapter 2 ........................................................................................................................ 26 

2. Literature review .................................................................................................... 26 

2.1 Environmental fate of pesticides ...................................................................... 26 

2.2 Routes of pesticide entry into water ................................................................ 27 

2.3 Major processes governing fate of pesticide in the environment ..................... 29 

2.4 Mathematical models to describe the fate of pesticides in surface water ........ 39 

2.5 Conclusions ..................................................................................................... 42 

Chapter 3 ........................................................................................................................ 43 



Table of contents 

 

5 

 

3. Effect of water type, pH and nitrate concentration on photo-transformation of 

thiamethoxam ................................................................................................................. 43 

3.1. Introduction ..................................................................................................... 43 

3.2. Material and methods ...................................................................................... 45 

3.2.1. Nitrate experiment .................................................................................... 47 

3.2.2. pH experiment .......................................................................................... 47 

3.2.3. HPLC analysis .......................................................................................... 48 

3.2.4. Processing of results and statistics............................................................ 48 

3.2.5. Sample absorbance ................................................................................... 50 

3.3 Results .................................................................................................................. 50 

3.3.1. Fitting test to first-order kinetics .............................................................. 50 

3.3.2. Nitrate experiment .................................................................................... 52 

3.3.3. pH experiment .......................................................................................... 54 

3.3.4. Sample absorbance ................................................................................... 56 

3.4 Discussion ........................................................................................................ 61 

3.4.1. Photolysis of thiamethoxam ..................................................................... 61 

3.4.2. Hydrolysis of thiamethoxam .................................................................... 62 

3.4.3. Conclusion ................................................................................................ 64 

Chapter 4 ........................................................................................................................ 66 



Table of contents 

 

6 

 

4. Sorption of the two studied pesticides in sediment from natural stream in Sand 

Hutton ............................................................................................................................. 66 

4.1 Introduction .......................................................................................................... 66 

4.2 Material and methods ........................................................................................... 68 

4.2.1. Selection of optimum sediment-to-solution ratio ..................................... 69 

4.2.2. Selection of optimum equilibration times ................................................ 69 

4.2.3. Freundlich sorption study ......................................................................... 70 

4.2.4. HPLC analysis .......................................................................................... 70 

4.2.5. Calculation of absorption coefficients ...................................................... 70 

4.3 Results .................................................................................................................. 71 

4.3.1. Optimum sediment-to-solution ratio ........................................................ 71 

4.3.2. Equilibration times ................................................................................... 72 

4.3.3. Sorption study ........................................................................................... 72 

4.4 Discussion ............................................................................................................ 75 

4.4.1. Sorption of thiamethoxam ........................................................................ 75 

4.4.2. Sorption of metalaxyl-M .......................................................................... 76 

4.5 Conclusion ............................................................................................................ 77 

Chapter 5 ........................................................................................................................ 78 

5. Fate of the pesticides metalaxyl-M and thiamethoxam in water-sediment systems 

under controlled conditions ............................................................................................ 78 



Table of contents 

 

7 

 

5.1 Introduction ..................................................................................................... 78 

5.2 Material and methods ...................................................................................... 79 

5.2.1. Experimental conditions ........................................................................... 79 

5.2.2. HPLC analysis .......................................................................................... 80 

5.2.3. Extraction of thiamethoxam and metalaxyl-M from sediment ................. 81 

5.2.4. Processing of results ................................................................................. 82 

5.3 Results ............................................................................................................. 84 

5.3.1. Dissipation of thiamethoxam in the water-sediment system .................... 86 

5.3.2. Dissipation of metalaxyl-M in the water-sediment system ...................... 87 

5.4 Discussion ............................................................................................................ 88 

5.4.1. Dissipation of thiamethoxam from the water phase ................................. 88 

5.4.2. Dissipation of thiamethoxam from the sediment phase ............................ 89 

5.4.3. Dissipation of metalaxyl-M from the water phase ................................... 90 

5.4.4. Dissipation of metalaxyl-M in the sediment phase................................... 90 

5.5 Conclusions .......................................................................................................... 91 

Chapter 6 ........................................................................................................................ 93 

6. Influence of the presence of plants on pesticide dissipation from water-sediment 

systems ........................................................................................................................... 93 

6.1 Introduction .......................................................................................................... 93 



Table of contents 

 

8 

 

6.2 Material and methods ........................................................................................... 95 

6.2.1. Chemicals and test systems ...................................................................... 95 

6.2.2. Experimental conditions ........................................................................... 96 

6.2.3. Treatment and application of test substance ............................................. 96 

6.2.4. Test duration, sampling and measurements .............................................. 97 

6.2.5. Calculation water content in Myriophyllum spicatum .............................. 99 

6.2.6. Extraction of thiamethoxam and metalaxyl-M from sediment ................. 99 

6.2.7. Extraction of metalaxyl-M and thiamethoxam from Myriophyllum 

spicatum ................................................................................................................. 99 

6.2.8. HPLC analysis .........................................................................................100 

6.2.9. Statistical analysis ...................................................................................102 

6.3 Results .................................................................................................................102 

6.3.1. pH of the water phase ..............................................................................102 

6.3.2. Dissipation of thiamethoxam from the water phase ................................103 

6.3.3. Dissipation of thiamethoxam from water-sediment systems ...................107 

6.3.4. Dissipation of metalaxyl-M from the water phase ..................................109 

6.3.5. Dissipation of metalaxyl-M from water-sediment systems .....................113 

6.4 Discussion ...........................................................................................................115 

6.4.1. Thiamethoxam .........................................................................................115 



Table of contents 

 

9 

 

6.4.2. Metalaxyl-M ............................................................................................116 

6.5 Conclusions .........................................................................................................118 

Chapter 7 .......................................................................................................................120 

7. Pesticide dissipation from water-sediment systems in vessel under outdoor 

conditions ......................................................................................................................120 

7.1 Introduction .........................................................................................................120 

7.2 Materials and methods .........................................................................................124 

7.2.1. Chemicals and test systems .....................................................................124 

7.2.2. Experimental conditions ..........................................................................124 

7.2.3. Sampling and measurements ...................................................................125 

7.2.4. Simulation of the fate of pesticides using TOXSWA ..............................126 

7.2.5. Calculation goodness fit for TOXSWA’s prediction and observed data .128 

7.3 Results .................................................................................................................128 

7.3.1. Weather data: temperature and solar radiation, during the experiment ...128 

7.3.2. pH in the water phase of the experimental treatments .............................131 

7.3.3. Dissipation of thiamethoxam from the water phase ................................132 

7.3.4. Dissipation of thiamethoxam in water-sediment systems .......................136 

7.3.5. TOXSWA prediction for thiamethoxam in the water-sediment-plants 

system 139 

7.3.6. Dissipation of metalaxyl-M from the water phase ..................................140 



Table of contents 

 

10 

 

7.3.7. Dissipation of metalaxyl-M in water-sediment systems ..........................145 

7.3.8. TOXSWA prediction for metalaxyl-M in the water-sediment-plant system

 147 

7.4 Discussion ...........................................................................................................147 

7.4.1. Thiamethoxam .........................................................................................147 

7.4.2. Comparison between dissipation of thiamethoxam in water-sediment 

systems under laboratory and outdoor conditions .................................................148 

7.4.3. Prediction fate of thiamethoxam in water-sediment systems ..................150 

7.4.4. Metalaxyl-M ............................................................................................152 

7.4.5. Comparison between dissipation of metalaxyl-M in water-sediment 

systems under laboratory and outdoor conditions .................................................153 

7.4.6. Prediction fate of metalaxyl-M in water-sediment system ......................154 

7.5 Conclusion ...........................................................................................................155 

Chapter 8 .......................................................................................................................157 

8. General Conclusions ..............................................................................................157 

8.1 Fate of selected pesticide in single component (water/sediment phase) .............157 

8.2 Fate of selected pesticides in water-sediment systems ........................................159 

8.3 Approach of laboratory data to predict behaviour of pesticide under outdoor 

conditions ..................................................................................................................160 

8.4 Recommendations for further research ...............................................................161 



Table of contents 

 

11 

 

List of references ...........................................................................................................163 

Appendices ....................................................................................................................175 

Appendices A: Observed data for photolysis experiments (Chapter 3) ....................175 

Appendices B: Sediment particle size determinations, and observed data for sorption 

experiment (Chapter 4) ..............................................................................................177 

Appendices C: Supporting data for water-sediment systems experiment (Chapter 5)

 ...................................................................................................................................183 

Appendices D: Pesticide residues in three components; water, sediment, plants in 

laboratory experiment. (Chapter 6) ...........................................................................188 

Appendices E: Pesticides residues in each compartment (water, sediment and plants) 

in the outdoor experiment, weather data during the experiment and statistical tests. 

(Chapter 7) .................................................................................................................204 

 



List of tables 

 

12 

 

LIST OF TABLES 

Table 2-1 Main features of models for pesticide fate in surface (Adriaanse et al., 

1997) ......................................................................................................... 41 

Table 3-1 Major properties of metalaxyl-M and thiamethoxam (PPDB, 2009) ....... 46 

Table 3-2 Analysis of variance of influence of nitrate concentration on photolysis 

rate constant of thiamethoxam on water type. .......................................... 53 

Table 3-3 Analysis of variance of hydrolysis rate constant of thiamethoxam with 

varying type of water and pH. .................................................................. 55 

Table 3-4 Analysis of variance of photolysis rate constant of thiamethoxam with 

varying type of water and pH. .................................................................. 56 

Table 4-1 Mobility classification based on soil distribution coefficients of pesticide 

(vanLoon and Duffy, 2005) ...................................................................... 67 

Table 5-1 Limits of detection in water and sediment extracts (mean+standard 

deviation) for metalaxyl-M and thiamethoxam. ....................................... 81 

Table 5-2 Recovery of metalaxyl-M and thiamethoxam from sediment spiked  at 

three concentrations (mean+standard deviation). ..................................... 82 

Table 6-1 Preparation of M4 Medium (Maltby et al., 2009; the first publication of 

the M4 medium can be found in Elendt (1990)) ...................................... 96 

Table 6-2 A summary of experimental treatments, dissipation processes and 

sampling intervals ..................................................................................... 98 

Table 6-3 Recovery of thiamethoxam and metalaxyl-M from plant extracts at three 

concentrations (mean+standard deviation) ..............................................100 



List of tables 

 

13 

 

Table 6-4 Limits of detection in M4 medium, sediment and Myriophyllum spicatum 

(mean+standard deviation) for metalaxyl-M and thiamethoxam ............102 

Table 6-5 Assumed processes occurring in the experimental treatments and half-life 

of thiamethoxam for each treatment, Chi2 for fit and rate constant of 

pesticide dissipation obtained by comparing between different 

experimental treatments...........................................................................105 

Table 6-6 Assumed processes occurring in the experimental treatments and half-life 

of metalaxyl-M for each treatment, Chi2 for fit and rate constant of 

metalaxyl-M dissipation obtained by comparing between different 

experimental treatments...........................................................................111 

Table 7-1 Summary of experimental treatments, dissipation processes and sampling 

intervals ...................................................................................................125 

Table 7-2 Assumed processes occurring in the experimental treatments and half-life 

of thiamethoxam for each treatment, Chi2 for fit and rate constants for 

pesticide dissipation obtained by comparing different experimental 

treatments ................................................................................................134 

Table 7-3 Assumed processes occurring in the experimental treatments and half-life 

of metalaxyl-M for each treatment, Chi2 for fit and rate  constant of 

metalaxyl-M dissipation obtained by comparing different experimental 

treatments ................................................................................................143 

Table 7-4 Half-life for thiamethoxam in treatments under laboratory and outdoor 

conditions: data are the same as those in Table 6-5 and 7-2. ..................149 

Table 7-5 Half-lives for metalaxyl-M in treatments under laboratory and outdoor 

conditions: data are the same as those in Table 7-6 and 7-3 ...................154 

 



List of figures 

14 

 

LIST OF FIGURES 

Figure 2-1 Major processes affecting pesticides after application (vanLoon and Duffy, 

2005) ......................................................................................................... 26 

Figure 3-1  Fitting of first-order kinetics to the change in thiamethoxam concentration 

with time in pure water adjusted to pH 9.03 under radiation conditions. . 51 

Figure 3-2 Plot of residuals calculated as the difference between measured and  

simulated thiamethoxam concentration shown in Figure 3-1 ................... 52 

Figure 3-3 Photolysis rate constant of thiamethoxam in pure and natural water as a   

function of nitrate concentration .............................................................. 53 

Figure 3-4 Hydrolysis rate constant of thiamethoxam as a function of pH in pure and 

natural water. ............................................................................................ 54 

Figure 3-5 Photolysis rate constant of thiamethoxam in pure and natural water as a 

function of pH .......................................................................................... 56 

Figure 3-6 UV light absorption profiles of 2 µg thiamethoxam mL-1 in pure water 

varying in pH from 5 to 10. ...................................................................... 57 

Figure 3-7  Compares light adsorption profiles of 2 µg thiamethoxam mL-1 (i) in pure 

water contain 25 and 100 µg nitrate mL-1,  and (ii) in pure water contain       

10 µg humic acids mL-1. ........................................................................... 58 

Figure 3-8 Compares light adsorption profiles of 2 µg thiamethoxam mL-1 in natural 

water varying in pH from 5 to 10. ............................................................ 58 

Figure 3-9  UV light absorption profiles of 2 µg thiamethoxam mL-1 (i) in natural 

water containing 25 and 100 µg nitrate mL-1,  and (ii) in natural water 

contain      10 µg humic acids mL-1. ......................................................... 59 



List of figures 

15 

 

Figure 3-10 UV light absorption profiles of (i) pure water alone and (ii) in pure water 

containing 25 and 100 µg nitrate mL-1. .................................................... 60 

Figure 3-11 UV light absorption profiles of (i) natural water alone and (ii) in natural 

water containing 25 and 100 µg nitrate mL-1. .......................................... 60 

Figure 3-12 Photolysis pathway of thiamethoxam. 1 and 2-8 equate to thiamethoxam 

and its metabolites, respectively (De Urzedo et al., 2007). ...................... 62 

Figure 3-13  Postulated pathway of alkaline hydrolysis of thiamethoxam. (1) and 1a, 2, 

4, 5, 6 equate to hydrolysed compound. A, B, C and D are the mechanistic 

pathways shown by the arrows (Karmakar et al., 2009b)......................... 63 

Figure 3-14 Postulated mechanisms of acid hydrolysis of thiamethoxam. 1, 3, 5, 7 and 

8 equate to thiamaethoxam (1) and hydrolysed compounds (3, 5, 7, 8); A, 

B, C, D and E are the cleavage point of bonds as depicted in the present 

compound  thiamethoxam (1) (Karmakar et al., 2009b). ......................... 64 

Figure 4-1  Change in sorption of metalaxyl-M and thiamethoxam (from the solution 

phase) on natural sediment with varying incubation time. Error bar is the 

standard deviation, n=3. ........................................................................... 72 

Figure 4-2 Fitting of linear sorption isotherms for metalaxyl-M and thiamethoxam in 

the natural sediment. Dash line (- - -) is a prediction line for metalaxyl-M 

and a solid line (-) is a prediction line for thiamethoxam ......................... 73 

Figure 4-3 Fitting of a Freundlich isotherms to sorption of thiamethoxam to a natural 

stream sediment ........................................................................................ 74 

Figure 4-4 Fitting of a Freundlich isotherm to sorption of metalaxyl-M to a natural 

stream sediment ........................................................................................ 74 

Figure 5-1 Pesticide comparments and assumed processes acting on pesticide once it 

entered into the water-sediment system.................................................... 83 



List of figures 

16 

 

Figure 5-2 Dissolved oxygen in the water phase at each sampling time during the 

experiment. ............................................................................................... 85 

Figure 5-3  pH in the water phase at each sampling time during the experiment ...... 85 

Figure 5-4 Measured and simulated residues of thiamethoxam in the water and 

sediment phase. Dots represent observed thiamethoxam residues and lines 

represent predictions from the model. ...................................................... 87 

Figure 5-5  Compares measured and simulated residues of metalaxyl-M in the water 

and sediment phases. Dots represent observed metalaxyl-M residues and 

lines represent prediction line from the model. ........................................ 88 

Figure 5-6  Possible transformation pathway for thiamethoxam in soil (Karmakar et 

al., 2006). .................................................................................................. 89 

Figure 6-1  Change in pH in M4 medium in different treatments during the experiment                         

(mean+standard deviation; n=3) ..............................................................103 

Figure 6-2 Change in concentration of thiamethoxam in solution over time for the six 

treatments (mean+standard deviation; n=3). ...........................................104 

Figure 6-3  Change in concentration (mean + standard deviation; n=3) of 

thiamethoxam in the water, sediment and plant phases between two 

systems with and without Myriophyllum spicatum. ................................107 

Figure 6-4  Change in mass (mean+standard deviation; n=3) of thiamethoxam in the 

water sediment and plant phases between two systems with and without 

Myriophyllum spicatum. ..........................................................................108 

Figure 6-5  Percentage metalaxyl-M (mean+standard deviation; n=3) remaining in M4 

medium among experimental treatments at three sampling interval times.

 .................................................................................................................110 



List of figures 

17 

 

Figure 6-6  Change in concentration (mean+standard deviation; n=3) of metalaxyl-M 

in the water, sediment and plant phases between two systems with and 

without Myriophyllum spicatum. .............................................................113 

Figure 6-7 Change in mass (mean+standard deviation; n=3 in water) of metalaxyl-M 

in the water, sediment and plant phases between two systems with and 

without Myriophyllum spicatum. .............................................................114 

Figure 7-1 Processes govern pesticide fate in water-sediment system in TOXSWA 

(Adriaanse et al., 2002). ..........................................................................122 

Figure 7-2  Change in air temperature during the experiment (day 0 is 9th August 

2011). .......................................................................................................129 

Figure 7-3  Change in solar radiation during the experiment (day 0 is 9th August 

2011). .......................................................................................................130 

Figure 7-4  Change in pH in M4 medium in different treatments without the plants 

during the experiment (mean+standard deviation; n=3). .........................131 

Figure 7-5 Change in pH in M4 medium in different treatments with the plants during 

the experiment (mean+standard deviation; n=3). ....................................132 

Figure 7-6 Change in concentration of thiamethoxam in solution over time for the  

treatments A, B and C (mean+standard deviation; n=3). ........................133 

Figure 7-7  Change in concentration of thiamethoxam in solution over time for the 

treatments D, E and F (mean+standard deviation; n=3). .........................133 

Figure 7-8 Change in concentration (mean+standard deviation; n=3) of thiamethoxam 

in the water, sediment and plant phases of systems with and without 

Myriophyllum spicatum. All concentrations on day 28 were smaller than 

the respective limit of detection. .............................................................137 



List of figures 

18 

 

Figure 7-9 Change in concentration (mean+standard deviation; n=3) of thiamethoxam 

in the sediment of systems with and without Myriophyllum spicatum. All 

concentrations on day 28 were smaller than the respective limit of 

detection. Data for the pesticide concentration in Figure 7-9 is the same as 

shown in Figure 7-8. ................................................................................137 

Figure 7-10  Change in mass (mean+standard deviation; n=3) of thiamethoxam in the       

water, sediment and plant phases of systems with and without       

Myriophyllum spicatum. ..........................................................................139 

Figure 7-11 Comparison between TOXSWA prediction and measured mass of 

thiamethoxam in water-sediment system with plants under outdoor 

conditions at average temperature 14.9oC. Observed data was from 

treatment F. ..............................................................................................140 

Figure 7-12  Change in concentration of metalaxyl-M in solution over time for the 

treatments A, B, C and D (mean+standard deviation; n=3). ...................142 

Figure 7-13 Change in concentration of metalaxyl-M in solution over time for the 

treatments E and F (mean+standard deviation; n=3). ..............................142 

Figure 7-14  Change in concentration (mean+standard deviation; n=3) of metalaxyl-M 

in the water, sediment and plant phases between two systems with and 

without Myriophyllum spicatum ..............................................................145 

Figure 7-15  Change in mass (mean+standard deviation; n=3 in water) of metalaxyl-M 

in the water, sediment and plant phases of two systems with and without 

Myriophyllum spicatum ...........................................................................146 

Figure 7-16 Comparison between TOXSWA predictions and measured mass of 

metalaxyl-M in water-sediment system with plants under outdoor 

conditions at average temperature 14.9oC. Observed data was from 

treatment F. ..............................................................................................147 



List of figures 

19 

 

Figure 7-17  Fresh weight of plants in treatments E (water-plants systems spiked with 2 

mg thiamethoxam and metalaxyl-M L-1), F (water-sediment-plants 

systems spiked with 2 mg thiamethoxam and metalaxyl-M L-1) and H  

(water-sediment-plants without any pesticides) under laboratory and 

outdoor conditions. Observed data did not collected at the same interval 

time so there was missing bar in this Figure. ..........................................150 

Figure 7-18 Comparison among predictions of thiamethoxam concentrations under 

Suntest and outdoor condition and outdoor measurement .......................152 

 

 

 

 

 

 

 



Acknowledgements 

20 

 

ACKNOWLEDGEMENTS 

First of all, I would like to express my sincere gratitude to Prof. Colin D. Brown for his 

valuable guidance, tremendous support, help and kindness throughout my study. My 

sincere appreciation would be given to Dr. Wendy van Beinum for HPLC and 

ModelMaker training, and her kind advice, thanks to Gareth Bryning for his help in 

developing the analytical methods. I would also like to specially thank all members and 

all PhD students of the FESF team at FERA for their support and good advice. Last but 

not least, I would like to thank the Thai government for funding my study and also the 

Food and Environmental Research Agency, York and Environment department for all 

facilities, especially laboratory equipment. 

 

 

 

 

 

 

 

 

 

 

 

 



Author’s declaration 

21 

 

AUTHOR’S DECLARATION 

I confirm that the work presented in this thesis is my own original research undertaken 

as a PhD student at the University of York, and within the FESF team of the Food and 

Environment Reasearch Agency (FERA), York.Where the research draws on the work 

of others, this is clearly stated in the text. The water-sediment model in ModelMaker 

that is used in Chapter 5 was developed by Dr Wendy van Beinum, FERA. 

       Kanyapat Traisup 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 1 

22 

 

CHAPTER 1 

1. INTRODUCTION  

Studies investigating pesticides in Thailand focused on compounds that are now 

restricted such as the organochlorines (Kruawal et al., 2005; Poolpak et al., 2008; 

Samoh and Ibrahim, 2008). Some pesticides in Thailand are inappropriately used and 

managed     (Plianbangchang et al., 2009). Those pesticides are potentially assimilated in 

crops, animals and the environment where the concentration can reach a harmful dose. 

Water-sediment systems are crucial for pesticide study in Thailand as rice cultivation is 

a major component of agriculture in Thailand and many reports showed pesticides were 

left over in crops (Panuwet et al., 2012) and surroundings (Jaipieam et al., 2009; 

Panuwet et al., 2012).  Much recent research has considered routes of pesticide transfer 

into water and persistence of pesticides in simple systems such as water or soil/sediment 

alone; much less work has been done on what happens when pesticides enter natural 

water-sediment systems. Understanding the behaviour of pesticides in water and 

sediment phases will allow prediction of persistence of pesticides in the environment. 

More work on current-use unrestricted pesticides and fate of pesticides in water-

sediment systems is required to support risk assessment, policy and health and safety.  

Pesticides have been widely used in agriculture for a long time for crop protection. 

Pesticides have not only been used in agriculture, but also are used in households and 

industries to control pests and diseases transmitted by insects and/or fungi. Most of the 

pesticides used are potentially harmful contaminants to human health, non-target living 

organisms, and the environment in general. As a result of being continuously applied, 

common and/or persistent pesticides are frequently found as hazardous contaminants in 

soil (Riise et al., 2004), surface water (Kruawal et al., 2005; Samoh and Ibrahim, 2008) , 

groundwater  (Jaipieam et al., 2009), and sediment (Poolpak et al., 2008). From treated 

fields, pesticides are potentially distributed to non-target areas by different carriers such 

as water, wind and soil particles. Especially, water can transport pesticides and/or soil 

particles sorbing pesticides to aquatic-sediment systems. Pesticides in water-sediment 
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systems have the potential to undergo various processes such as hydrolysis, photolysis, 

microbial degradation, sorption/desorption in soil/sediment, volatilization, and uptake 

by plants or animals (Katagi, 2006; vanLoon and Duffy, 2005). Physico-chemical 

properties of the pesticide itself and characteristics of the environment where the 

pesticide is present are influences on these processes (Katagi, 2006). 

Pesticide fate modelling has been utilised to predict pesticide concentrations for new 

pesticides (unregistered) and currently-used pesticides in different environmental 

compartments. Predictions by models were often found to be different from measured 

data (Beulke et al., 2000). In general, prediction from models needs field data to validate 

the results as being able to represent the field situation. Dubus et al. (2003) suggested 

that part of the discrepancy will come from uncertainty in input data including 

uncertainty of model parameters. For example, fate of pesticides in the environment is a 

complex process and can vary from pesticide to pesticide and also field to field so half-

lives of a pesticide from the pesticide database (PPDB, 2009) or the literature cannot 

describe all environmental situations.  

Bromilow et al. (2006) showed that laboratory experiments were able to emulate fate of 

some pesticides including isoproturon, chlorotoruron, chlopyrifos, and pendimethalin in 

water-sediment systems under outdoor conditions but not others such as permethrin and 

difenoconazole. It is not clear from their work why the extrapolation was successful for 

some pesticides but not others. This implies that further research is required to examine 

the extrapolation from simple laboratory experiments to complex field systems. If data 

obtained from the laboratory could represent realistic conditions without requiring field 

data, there would be many advantages such as experiments being repeatable, less 

expensive and less time consuming.  

1.1 Aim and objectives 

The aim of this research is to understand the fate of selected pesticides in water-

sediment systems and to determine whether laboratory experimental data coupled with 

mathematical modelling is able to represent behaviour in the field   
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The specific objectives are to:  

1. Understand individual factors which influence fate of pesticides after entry into water. 

2. Study the fate of pesticides in controlled water-sediment systems. 

3. Determine the fate under more realistic conditions. 

4. Use experimental data in TOXSWA to predict fate of pesticides in water-sediment 

systems. 

The chapters of this thesis follow the objectives from understanding of the behaviour of 

metalaxyl-M and thiamethoxam in simple systems (water and sediment alone) through 

to a complex water-sediment system under field conditions. 

Chapter 2 presents a literature review introducing routes of pesticide contamination of 

water, processes governing fate of pesticide in the environment, environmental models 

used to predict pesticide fate in water. 

Chapter 3 reports the results of individual factors influencing hydrolysis and photolysis 

of thiamethoxam in water and sorption properties of thiamethoxam and metalaxyl-M in 

sediment. Hydrolysis and photolysis of thiamethoxam were investigated at varying pH 

in water (acidic, neutral and alkaline condition) and with different nitrate concentration 

and water types.  

In Chapter 4 sorption studies of thiamethoxam and metalaxyl-M were carried out using 

a natural sediment that was used in the subsequent studies. 

Chapter 5 reports the results of fate of the two pesticides in water-sediment systems 

under dark conditions excluding photolysis. The results were processed using 

ModelMaker to simulate dissipation of the two pesticides from water and sediment 

phases.  
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Chapter 6 reports the fate of two pesticides in water-sediment systems containing a 

single species of aquatic plant (Myriophyllum spicatum) under controlled conditions. 

The results demonstrate the role of the plants in dissipation of the two pesticides.  

Chapter 7 reports the fate of the two pesticides in water-sediment systems under outdoor 

conditions (parallel experimental treatments to Chapter 6). Comparison of results from 

outdoor experiments with those from the laboratory experiment (Chapter 6) determined 

the effect of fluctuating light conditions (illuminated duration, light intensity) and 

temperature. The experimental data were used as input to the TOXSWA model to 

predict pesticide concentrations in water and sediment and to assess the ability of the 

model to extrapolate laboratory data to represent field behaviours. 

Chapter 8 summarises the main conclusions and requirements for further work. 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 Environmental fate of pesticides 

When pesticides are applied to target areas such as crops, some of the pesticide can 

be diluted by irrigation or rainfall then transported with water via runoff, drainage 

and leaching to non-target areas such as aquatic systems and groundwater; other 

fractions of the pesticide may be deposited on crop surface or volatilized and 

transported by wind currents or deposited from the atmosphere as shown in Figure 2-

1 (Gavrilescu, 2005; vanLoon and Duffy, 2005). Pesticide in the atmosphere, water, 

and soil/sediment can be degraded via photolysis, hydrolysis, microbial degradation 

and biotic uptake. 

 

 

Figure 2-1 Major processes affecting pesticides after application (vanLoon and 

Duffy, 2005) 
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2.2 Routes of pesticide entry into water  

Routes of pesticide entry into water include directly application to water to control 

pests/weeds (Carter, 2000).  Indirect routes of entry include via deposition (wet and 

dry) of pesticide from the atmosphere, surface runoff, drainage and leaching (Carter, 

2000). 

Atmospheric deposition possibly occurs following spray drift or volatilisation of 

pesticide from crop surfaces, soil or water and/or erosion of fine soil particles able to 

be held in the atmosphere. Yeo et al. (2004) reported that atmospheric concentrations 

of organochlorine pesticides (heptachlor, chlordane, DDTs, hexachlorocyclohexanes 

and endosulfan) showed seasonal variation as the maximum and minimum 

concentration in a rural area (Ansung) and an urban area (Seoul) in Korea was in 

summer and winter, respectively. The authors found a correlation between the 

atmospheric concentration and temperature as the atmospheric concentration 

increased with increasing temperature suggesting re-volatilization of the pesticide 

from plant and soil surfaces. 

Surface runoff (overland flow) is movement of water across the soil surface when 

inputs of water from rain/snow melt/irrigation on to the soil surface exceed the 

amount that can infiltrate into soil. Applied pesticide can move with surface runoff 

either dissolved in water and/or sorbed to eroded soil particle. Pesticide properties, 

soil characteristics and environmental conditions, including weather conditions, 

influence pesticide runoff. Pesticide properties such as aqueous solubility, sorption 

and persistence determine the amount of pesticide dissolved in surface runoff; 

pesticides with high aqueous solubility and less sorption to soil are likely to move 

with water runoff (Matocha et al., 2006). Pesticide persistence influences the amount 

available to move with runoff. Soil characteristics such as soil texture and soil 

moisture are important as water surface runoff is likely to occur in soil with saturated 

soil moisture and soil with a compacted layer as it is difficult for water to move 

downward through the soil. Rainfall/irrigation, vegetation and slope are 

environmental condition that affect on pesticide runoff (Patakioutas and Albanis, 

2004; Triantafyllidis et al., 2006). Heavy rain/irrigation can cause transportation of 
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pesticide with surface runoff and soil erosion when rainfall intensity exceeds the 

infiltration capacity of the soil. Pesticide runoff may be greater in areas with steep 

slopes because runoff water moves more quickly resulting in less time for pesticide 

sorption to soil. Vegetation helps to slow surface runoff, and enhance bio-

degradation of pesticide (Patakioutas and Albanis, 2004) resulting in reduced 

concentration of pesticide in water. 

Drainage is the movement of excess water from soil through pipes. Riise et al. 

(2004) found that loss of pesticide via runoff and drainage varied among three fields 

and was determined by content of organic carbon, aggregate stability and porosity. 

The authors found that high organic content, large pore-volume and better aggregate 

structure of soil resulted in reduced concentrations of bentazone and propiconazole 

in runoff and drainage water due to greater microbial activity, favourable conditions 

for sorption and the soil being less prone to erosion. Loss of the two pesticides via 

surface runoff and drainage was <0.5% of that applied to the three agricultural fields 

(Riise et al., 2004). Loss of a mobile pesticide, (bentazone, Koc~34 L kg-1) was 

higher compared to a strongly sorbed pesticide, propiconazole (Koc~1800 L kg-1). 

Brown and van Beinum (2009) reviewed loss of pesticides via drainflow and found 

that the seasonal loss accounted from not detectable to 10.6% of initial amount based 

on 97 records in seven countries in Europe. The concentration and loss of pesticide 

to drains were significantly influenced by strength of pesticide sorption to soil, half-

life of pesticide in soil, the interval between application and first drainflow and clay 

content of soil. The concentration and loss of pesticide decreased with high strength 

of sorption with a short half-life due to the applied pesticide being degraded and 

sorbed to soil. Generally, pesticide concentration was found to be highest in the first 

drainflow after pesticide application because there is a shorter time for sorption 

and/or degradation (Brown and Van Beinum, 2009). 

Leaching is the movement of water downward through soil. Pesticide can 

contaminate groundwater if it dissolves in water so that it is able to leach. Lysimeter 

experiments under outdoor condition by Renaud et al. (2004) showed that leaching 

of three pesticides (isoproturon, chlorotoluron and triasulfuron) was influenced by 

sorption distribution coefficient resulting in losses in the order triasulfuron (Koc 1.7 



Chapter 2 

 

29 

 

to 34 L kg-1) > isoproturon (Koc 66 to 68 L kg-1) > chlorotoluron (Koc 92 to 142 L kg-

1). The authors also found that preferential flow was an important transport process 

as the leached load increased with increasing clay content of soil. The authors 

suggested five factors that influence leached loads: (i) presence of macropores, (ii) 

sorption capacity of soils, (iii) degradation of pesticides in soil, (iv) sorption kinetics 

of pesticides and (v) diffusion of pesticides into soil-aggregates protecting the 

pesticide from leaching via preferential flow. A lysimeter experiment by Beulke et 

al. (2004) showed that chlorotoluron and isoproturon concentration in leached water 

decreased with increasing time from application at incubation temperatures of  5 and 

15oC. The authors explained that pesticide degradation in soil, sorption and diffusion 

of pesticides into intra-aggregate regions where caused less pesticide to be available 

for leaching. The concentration in leachate at 15oC was smaller than that at 5oC. The 

authors suggested that an increase in sorption of chlorotoluron and isoproturon at 

higher temperature resulted in less availability of the two pesticides for leaching. 

2.3 Major processes governing fate of pesticide in the 
environment  

Fate of pesticides in the environment will differ among pesticides, field and season 

as processes governing fate such as volatilization, photolysis, sorption, hydrolysis 

and biodegradation are influence by physico-chemical properties of the pesticide and 

environmental conditions.   

2.3.1 Volatilization  

Volatilization is the process whereby a pesticide changes in form from the solid 

and/or liquid phase into the gas phase (Racke et al., 1999). Volatilization of pesticide 

from matrices is influenced by other processes including transportation of pesticides 

to the surface of the matrix (water, soil, and plants), sorption to the surface of the 

matrix (Van Wesenbeeck et al., 2008), diffusion through the boundary layer, and 

transportation by air.  

Factors influencing volatilization of pesticides are physico-chemical properties of 

pesticides (Guth et al., 2004) including vapour pressure, water solubility, Henry’s 
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law constant, adsorption properties, and some environmental factors including soil 

moisture and soil/air temperature. Guth et al. (2004) reported that vapour pressure, 

water/air and soil/air coefficient can be used to predict volatilization from crop and 

soil surfaces based on 80 different chemicals, 123 soils and 71 crops. Direct and 

indirect measurement of volatile loss showed that chemicals with vapour pressure 

less than 10-3 and 10-4 Pa had negligible loss from soil and plants, respectively (Guth 

et al., 2004). 

Incorporation into the matrix (such as soil and plants) results in decreased 

volatilization (Bedos et al., 2006). Loss of trifluralin via volatilization was very high 

(1900 ng m-2 s-1) after applicationthen after 24 hours of application, loss of the 

pesticide via volatilization decreased to 100 ng m-2 s-1 (Bedos et al., 2006). The 

authors suggested that 99% of the loss of trifluralin occurred before the pesticide was 

incorporated into the soil. Additionally, different volatilization rates from different 

matrices were reported (Guth et al., 2004). Most volatilization rates from plant 

surfaces are higher than those from soil because there is generally less potential for 

incorporation into the matrix (Guth et al., 2004).  

2.3.2 Photolysis  

Photolysis occurs when compounds receive enough energy from either visible and/or 

ultraviolet light to cause breakdown of the molecule. There are two possible 

photolysis processes in water: direct and indirect photolysis (Hemond and Fechner-

Levy, 1999; vanLoon and Duffy, 2005). There are various transformation processes 

that can occur within a molecule of pesticide receiving light energy including 

cleavage of a C-C bond generating a key radical, isomerization, ester cleavage, 

decarboxylation, or decarbonylation at an ester or ketone, dehalogenation at a C-

halogen bond (Cl, Br and I),  oxidation with O2 or reactive oxygen species (Katagi, 

2004). The reaction rate of direct and indirect photolysis depends on the absorption 

spectrum of the substance (Hemond and Fechner-Levy, 1999), presence of 

intermediate compounds inducing indirect photolysis, the emission spectrum of the 

light source (Katagi, 2006), light intensity, and the matrix (water, soil, plant or etc.) 

where photolysis occurs (Hemond and Fechner-Levy, 1999; Bhattacharjee and 
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Dureja, 2002). For instance, the photolysis rate of a sulfonylurea herbicide, 

tribenuron-methyl on a glass surface (0.0988 days-1) was faster than the rate in soils 

(0.0633 and 0.0417days-1 for alluvial, and red soils, respectively) (Bhattcharjeel and 

Dureja, 2002). 

Direct photolysis is the process whereby pesticide directly absorbs light energy 

causing a chemical reaction within the molecule (Burrows et al., 2002; Hemond and 

Fechner-Levy, 1999).  

Indirect photolysis occurs where light-absorbing molecules or photo-sensitizers 

absorb energy from sunlight and subsequently either transfer energy to the pesticide 

or in association with electrons or highly reactive species attack and degrade 

pesticides (Hemond and Fechner-Levy, 1999). Examples of highly reactive species 

are singlet oxygen (1O2) and hydroxyl radicals which can be formed by several 

processes including photolysis of nitrate ions (Hemond and Fechner-Levy, 1999).  

Some chemicals act as sensitizers or radical initiators such as humic substances 

(Hemond and Fechner-Levy, 1999), riboflavin (Chan and Chu, 2009), phosphate (El 

Gaini et al., 2010), chlorophyll, nitrate and nitrite (Mack and Bolton, 1999; Nelieu et 

al., 2004; Shankar et al., 2007; Ukpebor and Halsall, 2012), and titanium dioxide 

(TiO2).  

Humic acids are naturally present in water; the light absorption wavelength of humic 

acids covers a wide range so they can compete in absorbing light energy with 

pesticides if the absorption wavelength overlaps, resulting in a decrease in photolysis 

rate. The presence of dissolved organic matter or humic acids can either increase or 

decrease the photodegradation rate of pesticides (Dimou et al., 2005; Pinna and 

Pusino, 2012; Ramezani et al., 2008; Xu et al., 2007). Xu et al. (2007) reported the 

effect of humic acids on photolysis of three chloroactanilide herbicides (acetochlor, 

propisochlor and butachlor); the photolysis rate of propisochlor increased at low 

concentration of humic acids (1 mg L-1) whilst at higher concentration (5 and 10 mg 

L-1), the rate decreased. Photolysis of acetochlor and butachlor was only inhibited in 

the presence of humic acids, namely the higher the concentration of humic acid, the 

less photolysis degradation. Dimou et al. (2005) reported that the photodegradation 
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rate of metalachlor increased in the presence of nitrate anions due to formation of 

hydroxyl radicals involved in photodegradation of metalachlor, the reverse effect 

was seen in the presence of dissolved organic matter due to competitive absorption 

of emitted photons from light energy.  

2.3.3 Sorption to soil/sediment  

Sorption to sediment or soil is a process whereby the pesticide molecule adheres to 

an active site of sorption (Gavrilescu, 2005; Harrison, 1999). Factors influencing 

sorption are soil properties, temperature, water content, pesticide properties, and 

experimental factors, including  the role of ionic strength of the aqueous phase (Kah 

and Brown, 2006).  

Many studies reported that properties of soil/sediment including organic matter 

content (Čadková et al., 2012; Kasozi et al., 2012; Sun et al., 2012), clay minerals 

(Peng et al., 2009; Polati et al., 2006) and aluminium and iron (hydr)oxides influence 

sorption (Harrison, 1999; Wang et al., 2008). Pesticides interact mainly with organic 

matter because hydrophobic pesticides are attracted to the hydrophobic sites of 

organic matter via hydrophobic sorption (Kah and Brown, 2006). Montmorillonite, 

kaolinite, and illite show different sorption properties due to Van der Waals forces 

and/or electrostatic interactions between ionic/polar pesticides and surface charges of 

the clay minerals (Harrison, 1999).  

Environmental conditions including soil pH (Harrison, 1999; Muhamad et al., 2011) 

and temperature (Broznić and Milin, 2012) also affect sorption of pesticide.  

Muhamad et al. (2011) reported that sorption of paraquat to clay and clay loam soil 

was pH dependent, with sorption of paraquat increasing with increasing pH. Sorption 

of paraquat to the two soils was similar, namely sorption to clay soil was 3.57 and 

4.05 µg g-1 at pH 2 and 11, respectively and the sorption to clay loam was 3.72 and 

4.08 µg g-1 at pH 2 and 11, respectively. Sorption decreased with increasing 

temperature for imidacloprid (Broznic and Milin, 2012) and diuron (Liu et al., 2010) 

Broznic and Milin (2012) explained that the value of the thermodynamic parameter 

ΔHo for imidacloprid was negative and small (-19.79 to -8.89 kJ mol-1) suggesting 
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weak forces of interaction in accordance with a decrease in Koc with increasing 

temperature suggesting that greater solubility of imidacloprid resulted in a decrease 

in sorption. 

Sorption of pesticide to soil particles is influenced by properties of the pesticide. 

Hence ionisable compounds (cations) are likely sorbed to soil colloids due to the 

isomorphous substitution of a clay mineral substituent and/or the pH dependent 

charges on oxides of Fe, Al, Mn and Si (Harrison, 1999) whilst non-ionisable 

compounds are likely sorbed to soil humic material (Harrison, 1999) or colloidal 

organic matter. Kah and Brown (2007) reported that sorption of acidic ionisable 

pesticides was weaker than that of basic ionisable pesticides. Adsorption was 

negatively correlated with soil pH and positively correlated with carbon content. The 

authors suggested that prediction of sorption of acidic pesticide can be based on log 

D (Kow corrected for soil pH), the soil organic carbon content, and a pesticide 

descriptor related to the Van der waals volume; sorption of basic pesticides was 

more complex and found to be specific to each compound. 

Sorption is a dynamic process in which sorbed molecules can exchange between the 

solid and liquid phases. Many studies on sorption of pesticides reported sorption 

mechanisms related to one or more force interactions (Kah and Brown, 2006), 

including hydrophobic sorption, Van der Waals interaction, H-bonding, ionic 

exchange, charge transfer, ligand exchange, and cation (or water) bridging.  

2.3.4 Hydrolysis  

Hydrolysis is a chemical process where molecules react with water causing 

replacement by the hydroxyl group of water (OH-) in an interacting molecule. 

Hydrolysis reactions can occur either by purely chemical or microbiological 

mechanisms (Connell, 2005; vanLoon and Duffy, 2005). The hydrolysis process can 

be represented as a simple equation:     
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where “R” represents a hydrocarbon group and “X” represents a halogen atom or 

ester group or analogue of an ester group (amide, thioester).  

The pH of the water affects the hydrolysis rate of some pesticides. For example, 

degradation of phoxim over 24 hours ranged from 41% (pH 4) to 85% (pH 9) 

indicating that an increase in pH of water resulted in faster hydrolysis (Gatidou and 

Iatrou, 2011). Two sulfonylurea herbicides (pyrazosulfuronethyl and halosulfuron 

methyl) were hydrolyzed faster under acidic and basic conditions than neutral 

conditions (Zheng et al., 2008). The authors found that there were two hydrolysis 

pathways for the two herbicides, namely cleavage and contraction at the sulfonylurea 

bridge. Under acid conditions, cleavage and contraction occurred at similar rates 

whilst under alkaline conditions, chlorine substitution on halosulfuron methyl’s 

pyrazole ring made the herbicide more susceptible to sulfonylurea bridge contraction 

than pyrozosulfuronethyl under alkaline conditions. Additionally, the hydrolysis rate 

of the two sulfonylurea herbicides also depended on temperature (Zheng et al., 

2008); when the temperature increased by 10oC, the hydrolysis rate increased about 

2.4 and 4.5 times for pyrazosulfuronethyl at pH 3 and 9, respectively and the 

hydrolysis rate increased about 2.9 and 3.2 times for halosulfuron methyl at pH 3 

and 9, respectively. Other pesticides where hydrolysis is known to be temperature-

dependent include mefenpyrdiethyl (Chnirheb et al., 2010), sulfonylurea herbicides 

(Zhen et al., 2008) and the fungicide cymoxanil (Morrica et al., 2004). The 

relationship between temperature and hydrolysis rate can be expressed by the 

Arrhenius equation: 

 

where k is hydrolysis rate 

(days-1), Ea is activation energy (kJ mol-1), R is gas constant = 8.314x10-3 kJ mol-1 K-

1, T is temperature in Kelvin (K) and A is a frequency factor describing the number 

of time two molecules will collide (days-1). 
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2.3.5 Biodegradation 

Biodegradation is a transformation process mediated by living organisms such as 

plants, algae, bacteria or fungi. Complex carbon compounds (including some toxic 

and synthetic substances) may be used as an energy source or nutrient substrate 

required for growth (Katagi, 2006; Navarro et al., 2000), or the compounds can be 

degraded without providing energy or nutrients (co-metabolism). Usually, co-

metabolism occurs when enzymes of low specificity are produced to alter or degrade 

substrates; some compounds that are similar in structure to the target compounds 

may be transformed or degraded by the enzymes as well (Connell, 2005).   

Structural variabiliy of compounds and bacteria with enzymes able to degrade 

compounds determine extent of biodegradation (Hussain et al., 2009; Murthy and 

Manonmani, 2007). Murthy and Manonmany (2007) reported that there were 

differences in biodegradation of hexaclorocyclohexane (HCH) isomers. The 

degradation of HCH-isomers by microbial communities was in the order of 

γ > α > β > δ at 10 mg L-1 under conditions of an inoculum level of 100 μg protein 

mL-1, pH 7.5, and at ambient temperature (26–28oC) (Murthy and Manonmani, 

2007). Environmental conditions including temperature and pH also affect 

biodegradation rate as described below.   

- Microbial degradation 

Most pesticides have been reported to be degraded by bacteria and fungi including 

DDT (Lin et al., 2012), cypermethrin (Rani and Juwarkar, 2012), and chlopyrifos 

(Briceño et al., 2012). Factors influencing microbial degradation include presence of 

plants/some animals (such as earthworms), soil moisture (El Sebai et al., 2010), 

temperature (Benoit et al., 2007), pH, carbon source concentration, soil organic 

matter and pesticide concentration (Caceres et al., 2008; Chiu et al., 2005; Druzina 

and Stegu, 2007; Lin et al., 2012; Rani and Juwarkar, 2012; Xie et al., 2011). In 

general, highest microbial activity is found for warm temperature, neutral pH and 

moist soil (Gavrilescu, 2005) 
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Xie et al. (2011) found pH, temperature, concentration of DDT and the presence of 

an additional carbon source affected degradation of DDT by the bacteria Alcaligenes 

strain KK. The degradation of DDT was maximal following addition of a carbon 

source (glucose) at a concentration of 0.5% and the degradation reduced at a carbon 

concentration of 1.5%. Fastest degradation was at 30oC, whilst extreme temperature 

(10 and 50oC) resulted in lowest degradation. The degradation increased with 

increasing pH of the medium (pH ranged from pH 4-10) where the degradation at pH 

4 was lower than at other pH and the fastest degradation was at pH 6. The peak 

degradation of DDT was found at an application concentration of 10 mg L-1 and 

degradation rate decreased at a concentration of 20 mg L-1.  

The presence of other living organisms, including earthworms (Lin et al., 2012) and 

plants (Rani and Juwarkar, 2012), affects pesticide degradation via microorganisms. 

Lin et al. (2012) found that the earthworm Eisenia foetida enhanced microbial 

degradation of DDT in soil due to an increase in microbial biomass, carbon and 

nitrogen relative to the control whilst A. robustus E. Perrier enhanced DDT 

degradation via DDT bioavailability, soil aeration and intestinal digestion. DDT was 

degraded 50.0-64.2% and 48.2-70.8% for Eisenia foetida and Amythas robustus E. 

Perrier treatments, respectively after 360 days whilst DDT in the control was 

degraded 23.7%. Rani and Juwarkar (2012) showed that bacterial degradation of 

phorate (64+5% over 30 days) in the presence of the plants Brassica juncea was 

higher in comparison with the degradation (55+4% at concentrations of phorate of 

10 and 20 µg ml-1) in the treatments with bacteria alone in soil and the degradation 

(38+4%) in the treatment with the plants alone. Chen et al. (2012) showed that a co-

culture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01 was more 

effective in cypermethrin degradation in comparison with mono-culture; 

cypemethrin (50 mg L-1) was metabolized 73.1%, 37.5% and 23.0% after 24 hours in 

co-culture, ZH-3 and HP-S-01 treatments, respectively.   

- Phytoremediation  

Plants are able to remove pesticides from the environment via a number of processes 

including direct uptake. Root exudates enhance bacterial degradation by providing 



Chapter 2 

 

37 

 

an additional carbon source and plant roots aggregate soil/sediment allowing more 

oxygen to reach the root zone (Gerhardt et al., 2009; Susarla et al., 2002). Physico-

chemical properties of the pesticide (such as Kow, solubility and volatility), mode of 

application, environmental characteristics (soil type, soil pH, organic matter, and 

temperature), plant species and climate factors will all affect pesticide uptake by 

plants (Gavrilescu, 2005).  

Bouldin et al. (2005) found that uptake of atrazine and lambda-cyhalothrin from 

microcosms was different for two different plants (Ludwigia peploides and Juncus 

effuses). The highest pesticide concentration in L. peploides was 426.2 and 86.50 µg 

kg-1 at 24 hours for atrazine and lambda-cyhalothrin, respectively. In the same 

microcosm, the peak pesticide concentration in J. effuses was 343.4 µg kg-1 at day 14 

for atrazine and 19.82 µg kg-1 at day 7 for lambda-cyholothrin.  Bicalho and 

Langenbach (2012) also found that bioaccumulation of atrazine varied between two 

plants, Cecropia hololeuca Miq. and Trema micranta (L.) Blum. growing in a 

microcosm. The bottom of the microcosm was treated with atrazine at one-tenth of 

the field-recommended dose to investigate movement of contaminated groundwater 

to the upper soil layers and into plants. The authors found that the degradation of 

atrazine increased from 1.2% (control without plants) to 10.2-10.9% (microcosm 

with plants) of the applied amount after 25 to 30 days. The applied atrazine was 

taken up about 45+14% (with 64 g plant weight) and 35+16% (with 28 g plant 

weight) by C. hololeuca and T. micrantha, respectively and atrazine was mainly 

accumulated in roots and leaves. De Calvaho et al. (2007a) reported that uptake of 

non-ionised pesticides by roots of the submerged aquatic plant Lagarosiphon major 

was dominant for pesticide with log Kow >1 and by roots of floating plant, Lemna 

minor with log Kow>1.8.  The uptake process of non-ionised pesticide was controlled 

by diffusion of pesticide into the plant followed by equilibration in the aqueous 

phase in the plant cells together with partitioning onto plant solids. Uptake of non-

ionised pesticide had a positive correlation with log Kow as pesticides with high 

lipophilicity were more likely to be taken up (De Carvalho et al., 2007a; de Carvalho 

et al., 2007b). 
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Peter et al. (2007) reported different uptake of p, p’-DDE from soil and compost by 

two plant species, Cucurbita pepo and Cucurbita maxima. Uptake of the pesticide by 

plants was seven to eight times higher from soil (1.4% organic carbon) than from 

compost (37.0% organic carbon). The authors suggested that organic carbon affected 

availability of DDE as demonstrated by rate of desorption of DDE from soil (16.3%) 

and compost (7.12%) and uptake by the plants. 

A number of studies (Ahmad et al., 2012; Dams et al., 2007) reported that the action 

of plants and microorganisms in combination enhances pesticide degradation. For 

example, Dam et al. (2007) reported that a combination of presence of plants and 

microorganisms was efficient for pentachlorophenol degradation. The fastest 

degradation of pentachlorophenol was found in treatments with plants (Triticum 

aestivum) and microorganisms, Sphingobium chlorophenolicum (about 80% loss 

from initial concentration after 6 days) in comparison with other treatments; loss of 

the pesticide in control treatments (a loamy sandy soil with the pesticide), treatments 

with plants, and treatments with inoculum microorganisms was similar at about 10-

15% at day 6. The presence of microorganisms reduced toxicity of 

pentachlorophenol to winter wheat (Triticum aestivum) as average plant weight in 

the presence of the pesticide (0.3 g) was significantly smaller than that in the 

presence of microorganisms (0.6 g) and plants alone without the pesticide (0.6 g). 

The authors also found that an increase in the population number of S. 

Chlorophenolicum in treatments with plants resulted in an increase in degradation of 

the pesticide and reduced toxicity to the plants. A similar finding was found by 

Ahmed et al. (2012) that there was enhanced degradation of chlopyrifos in 

contaminated soil in the presence of bacteria strain Bacillus pumilus C2A1 together 

with ryegrass, Lolium multiflorum. Degradation of chlopyrifos (at applied 

concentration of 50 mg kg-1) was 11, 89, 76 and 98% for control (no inoculation and 

no plants), treatment with the bacteria, treatment with plants, and treatment with a 

combination of bacteria and plants, respectively. 
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2.4 Mathematical models to describe the fate of pesticides 
in surface water 

Mathematical models have been developed and used as a tool to simulate and predict 

fate of pesticide in space and time because input parameters within the models can 

be adjusted resulting in an illustration under simulated scenarios (Wainwright and 

Mulligan, 2004). There are a number of models that can describe fate of pesticide in 

pesticides in surface water including ABIWAS, BASINS, SWAT, MIKE-SHE, 

HSPF, CHEMCAN, GIBSI, SLOOT.BOX, WASP, TOXSWA and EXAMS 

(Holvoet et al., 2007; Quilbe et al., 2006). Adriaanse et al. (1997) summarized the 

features of the main surface water models as given in Table 2-1.   

A set of models comprising SWASH, MACRO, PRZM and TOXSWA has been 

used to estimate predicted environmental concentrations of applied pesticides 

supporting the pesticide registration procedure in the Netherlands and the EU 

(Adriaanse et al., 2002; Beltman and Adriaanse, 1999). Padovani and Capri (2005) 

reported that the model over estimated predicted pesticide concentrations in water by 

a factor of eight under Mediterranean climatic conditions base on two scenarios A 

and B. Knabel et al. (2012) reported that FOCUS_TOXSWA tended to overestimate 

pesticide concentration (five organophosphorus, endosulfan and ten pyrethroid) in 

water (overestimate ranged from 57 to 96%) and sediment (overestimate ranged 

from 51 to 100%) based on 122 measured field concentrations from 22 field studies 

in the EU. 

McCarthy et al. (2007) modified a steady-state EXAMS model to simulate pesticide 

concentrations in a tidally-influenced ecosystem. The steady-state EXAMS model 

does not allow simulation of fate of pesticide under temporal change in flow and 

water volume so the authors created a time variant tidally-driven model. The authors 

found that when important environmental parameters (such as how pesticide 

concentration change by volume and area fluctuated with the tide) were included in 

model simulation, it improved accuracy of predictions for metolachlor (comparison 

with prediction by the steady-state EXAMS).  
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A review by Quilbe et al. (2006) based on 36 models of pesticide fate showed how 

variability in processing and data requirement for each model contributes to different 

strengths and weaknesses. Most of the models require data about weather 

(temperature, rainfall), soil properties (organic matter) and pesticides properties 

(sorption, degradation). In general, the models also need field data (such as pesticide 

concentration) to validate output of the model as discrepancy between model results 

and observed data is likely to occur. Beulke et al. (2000) found that the persistence 

of pesticides in soil obtained from a model overestimated field behaviour by more 

than a factor of 1.25 for 43.8% of 178 studies whilst underestimated persistence 

occurred in 16.9% of cases. There were a number of possibilities that contributed to 

the discrepancy including difference in temperature and soil moisture conditions 

between laboratory and field (generally, static conditions in the laboratory and 

fluctuating conditions in the field), biological, chemical and physical properties of 

prepared soil may be different from soil in the field, difference in laboratory 

experimental conditions (applied concentration of pesticide, temperature) used to 

obtain half-life in the pesticide, and variation in persistence of pesticide in different 

seasons and fields (Beulke et al., 2000).  

As there are several alternative models for fate of pesticide in surface water, the 

model selected by the user will depend on characteristics including availability of 

required data, fit with the purpose of the study, model availability (some models are 

free for download whilst others have to be purchased) and ease of use (Quilbe et al., 

2006). 
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Table 2-1 Main features of models for pesticide fate in surface (Adriaanse et al., 1997) 

Model Layout water 
network 

Hydrology Entry routes                                                       Pesticide processes 
Water column Sediment  

ABIWAS One segment Steady state Initial 
concentration 

- Only abiotic degradations are separated in 
input data 

- Sorption to suspended solids is considered  

- Sediment layer does not included 

SLOOT.BOX One segment Steady state Pulse type 
input 

- Degradation consider as a whole 
degradation (it does not differentiated as 
hydrolysis, photolysis and biodegradation) 

- Sorption to suspended solids is considered 

- Sedimentation is described but do 
not calculate predicted 
environmental concentration in 
sediment 

EXAMS Many segment 
(include 
branches) 

Steady state Pulse or 
continuous 
type input 

- Degradation is distinguish between 
hydrolysis, photolysis, redox reaction and 
biolysis 

- Sorption to suspended solids and plankton 
included 

- Calculate pesticide concentration 
in sediment 

- Sorption to solid phase, sediment, 
benthos is described but 
sedimentation and water flow do 
not included 

WASP Many segment 
(include 
branches) 

Dynamic Pulse or 
continuous 
type input 

- Degradation is differentiated to hydrolysis, 
photolysis, redox reaction and biolysis  

- Sorption to suspended solids, plankton 
included 

- Calculate pesticide concentration 
in sediment,  

- Sedimentation, sorption to solid 
phase, sediment and water flow 
including benthos included 

TOXSWA Different segment 
(no branches) 

Steady state Pulse or 
continuous 
type input 

- Degradation consider as a whole 
degradation 

- Suspended solids, macrophyte are 
considered 

- Calculate pesticide concentration 
in sediment 

- Not concern sedimentation 
- Sorption to solid phase and 

sediment, water flow included 
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2.5 Conclusions  

 A number of studies reported pesticide contamination in water in Thailand and most 

reports concern banned/restricted pesticides (Samoh and Ibrahim, 2008; Poolpak et 

al., 2008; Kruawal et al., 2005; Boonyatummanond et al., 1997). There is limited 

study of currently-used pesticides and this needs more research because it is possible 

that currently-used pesticides can contaminate the environment including being 

assimilated at harmful doses into biota. Knowledge on currently-used pesticides will 

help to guide policy planning and management.   

Models have been widely used to predict fate of pesticides in the environment. 

However the predictions are often found to deviate from measured data (Knabel et 

al., 2012 and Beulke et al., 2000) as fate of a pesticide is determined by multiple 

processes and will differ amongst pesticides and under different environmental 

conditions (pH, light intensity and temperature). Experimental studies can performed 

to determine influence of each factor on fate of pesticides and so to reduce 

uncertainty in input data to the models.  Further studies are needed to determine 

whether experimental data coupled to models provide a reasonable prediction for 

fate of pesticides under field conditions. 
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CHAPTER 3 

3. EFFECT OF WATER TYPE, PH AND NITRATE 
CONCENTRATION ON PHOTO-TRANSFORMATION 
OF THIAMETHOXAM 

3.1. Introduction 

Photo-transformation can be classified as direct or indirect photolysis. Direct 

photolysis occurs when a molecule absorbs energy from light which results in the 

molecule becoming unstable and degrading by itself (Hemond and Fechner-Levy, 

1999). Indirect photolysis occurs when reactive molecules absorb energy and then 

react with pesticides, resulting in breaking down the pesticide molecule (Hemond and 

Fechner-Levy, 1999). There are several potential active molecules such as humic 

acids (Xu et al., 2007), nitrate and nitrite anions that induce an indirect photolysis 

reaction (Mack and Bolton, 1999; Nelieu et al., 2004; Shankar et al., 2007).  

Nitrate anions absorb light energy between 290 and 400 nm with λmax 302 nm whilst 

nitrite anions have λmax of 352 nm . Irradiation of nitrate anions causes a formation of 

hydroxyl radicals and nitrite radicals (Nelieu et al., 2004; Shankar et al., 2007; Nelieu 

et al., 2008):  

  

 

+O (3P) 

 

Irradiation of nitrite anions induces a number of pathways (Nelieu et al., 2004; 

Shankar et al., 2007 and Nelieu et al., 2008) giving OHo, NOo and NOo
2 radicals:  
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Transformation products of photolysis vary depending on how the photo-radical 

reacts with the parent compound. The reaction could be hydroxylation of a phenyl 

ring, N-terminus substitution or Cl/OH substitution (Nelieu et al., 2004). Nitrate and 

nitrite anions occur naturally, and nitrate can also be added in agricultural areas by 

farmers, resulting in contamination of water resources. Hence it is interesting to 

investigate whether nitrate has an influence on pesticide degradation by photolysis.  

In water systems, there may be concurrent hydrolysis of the pesticide during 

photolysis of pesticides. Hence a measured rate constant of reaction is based on the 

rate constant of photolysis and the rate constant of hydrolysis. In order to get a rate 

constant solely for photolysis, it is necessary to carry out a parallel experiment in the 

dark to determine a rate constant of hydrolysis.   

Two currently-used pesticides; metalaxyl-M and thiamethoxam, were selected to 

study the fate of pesticides in water-sediment systems. Metalaxyl-M is moderately  

sorbed in soil/sediment whilst thiamethoxam is less strongly sorbed. Metalaxyl-M is a 

fungicide used to control various diseases such as downy mildews, late blight, 

damping off and root, stem and fruit rots in sugarcane, mustard, rapeseed, sunflower, 

maize, tobacco, tomato and various other crops (Timlin, 1997; Sukul and Spiteller, 

2000). It is a systemic fungicide with curative and protective action, absorbed through 

the leaves, stems and roots. In fungi, metalaxyl-M inhibits protein synthesis by 

interference with the synthesis of ribosomal RNA. Metalaxyl-M is highly water 

soluble (Table 3-1). The compound is resistant to photolysis and hydrolysis but it can 
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be degraded in soil moderately quickly under aerobic conditions. Metalaxyl-M is 

moderately persistent in water-sediment systems (half-life 56 days; PPDB, 2008). 

Toxicity of this pesticide is classified as moderate to birds (Colinus virginianus), fish 

(Oncorhynchus mykiss) and aquatic invertebrates (Dapnia magna) whereas toxicity is 

low to Lemna gibba and arthropods (Tomlin, 1997). 

Thiamethoxam is a neonicotinoid insecticide used to control a wide range of pests 

such as hopper species, aphids, whiteflies, thrips, mealybugs, wireworms and ground 

beetles (Tomlin, 1997). The action of thiamethoxam is broad spectrum and systemic 

with contact and stomach action as a nicotinic acetylcholine receptor (nAChR) 

agonist. In plants, thiamethoxam can be either taken up via the roots being distributed 

via xylem to protect new growing shoots and/or penetrate into the leaf lamina to 

control pests on the lower side of the leaf as a result of the good translaminar activity. 

Thiamethoxam is highly water soluble (Table 3-1), and sorption to organic carbon is 

relatively weak (Table 3-1). Thiamethoxam is not dissociated and is non-volatile 

(Table 3-1). Thiamethoxam is resistant to hydrolysis except under alkaline conditions 

(above pH 8). The compound is rapidly degraded via photolysis but it is persistent in 

soil. Thiamethoxam is degraded moderately quickly in water-sediment systems. 

Toxicity of this pesticide is classified as moderate to birds (Anas platyrhynchos), 

mammals and aquatic invertebrates (Daphnia magna) whereas it has low toxicity to 

Lemna gibba and fish (Oncorhynchus mykiss) (Tomlin, 1997). 

The aim of these experiments was to investigate the influence of pH and water type 

on photo-degradation of thiamethoxam in water and the influence of nitrate and water 

type on photo-degradation of thiamethoxam in water. Two separate experiments were 

undertaken to investigate the effects of pH and nitrate. Both experiments also 

compared photolysis in natural water with that in pure water. 

3.2. Material and methods 

There is a range in the susceptibility of pesticides to photolysis. There were two 

pesticides of interest for this project (thiamethoxam and metalaxyl-M) and Table 3-1 

gave their most important properties. Only thiamethoxam is subject to significant 
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photolysis (Table 3--1) so this was the only compound used in the photolysis 

experiments. 

Table 3-1 Major properties of metalaxyl-M and thiamethoxam (PPDB, 2009)  

 Metalaxyl-M Thiamethoxam 

Pesticide type Fungicide Insecticide 

Chemical group Phenylamide Neonicotinoid 

Chemical Formula C15H21NO4 C8H10ClN5O3S 

Molecular Mass(g mole
-1

) 279.33  291.71  

Solubility in water  at 20
o
C (mg L

-1
) 7100  4100  

Solubility in organic solvents at 20
o
C       

 (mg L
-1

) 

550000 in Benzene 

9100 in Hexane 

650000 in Methanol 

750000 in 
Dichloromethane 

48000 in acetone 

7000 in ethyl acetate 

1 in hexane 

680 in toluene 

Vapour pressure at 25
o
C (mPa) 0.75  6.60x10

-06
  

Henry’s Law constant at 25
o
C (Pa m

3
  

mol
-1

) 
1.60 x10

-05
  4.70x10

-10
  

Octanol-water partition coefficient at 
pH7, 20

o
C 

P: 44.67 

Log P: 1.65, low 

P: -0.13 

 

Dissociation constant at 25
o
C (pKa) 0 Not applicable 

Note: no dissociation 

Aqueous hydrolysis DT50 at pH 7, 20
o
C 

(days) 
106 pH sensitive: stable pH 1 

to pH  7, DT50 11.5 days 
at pH 9, all at 20

o
C 

Water-sediment DT50 (days) 56 40 

Water phase only DT50 (days) 56 30.6 

Aqueous photolysis DT50 at pH 7 
(days) 

Stable 2.7  
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Thiamethoxam (99.7% purity) was purchased from Sigma-Aldrich Ltd. Methanol and 

pure water (HPLC Fluorescence grade) were purchased from Fisher Scientific Ltd. 

NaNO3 (98.0% purity) was purchased from Alfa Aesar Company. 

3.2.1. Nitrate experiment 

Natural water from an artificial lake at the Food and Environment Research Agency 

(FERA) (54o 0’ 56”N; 0o 58’ 10”E) was collected in July 2009 containing nitrate at 

0.447 mg L-1.  A report by WHO (2011) reported that nitrate concentration in surface 

water ranged from 0 to 18 mg L-1 (WHO, 2011) and the concentration can be increase 

by agricultural runoff and human/animal waste. Nitrate concentrations at 25 and 100 

mg L-1 were selected to represent medium and high concentration in water, 

respectively.  Nitrate solution was prepared by using NaNO3 dissolved in pure water 

and in natural water to give concentrations of 25 and 100 mg  L-1. Subsequently, 

solutions were used to make up thiamethoxam solutions at a concentration of 2 mg 

thiamethoxam L-1. Aliquots of 20 mL of the solutions were placed into quartz tubes to 

give two sets (light set and dark set) of three replicates of each nitrate concentration 

and water type. There was no blank employed in this experiment. 

The experiment was carried out in a “Suntest” apparatus (Heraeus, Hanau, Germany) 

with an emission range of 300-1500 nm at a light intensity of 1.27 kW m-2. The 

temperature of the “Suntest” apparatus in operation was 31+2
o
C. The tubes for the 

dark experiment were wrapped in aluminum foil and then incubated under the same 

conditions as the light experiment. Aliquots of 1 mL were removed simultaneously 

from the light sets after 0, 0.5, 1, 2, 4 and 6 hrs. Aliquots from the dark set were 

collected only after 0 and 6 hrs. All samples were analyzed by HPLC. 

3.2.2. pH experiment 

Natural water from the lake at FERA was collected in August 2009. Natural water and 

pure water were adjusted to pH 5, 6, 7, 8, 9 and 10 using buffers recommended within 



Chapter 3  

48 

 

OECD Guideline 316 for direct photo-transformation of chemicals in water 

(Organisation for Economic Co-operation and Development, 2008). 

0.05M NaH2PO4, KH2PO4, and H3BO3 were made up and then the base/acid solution 

was added dropwise until reaching the desired pH. A NaH2PO4/HCl solution was used 

to adjust pH in the range of 3 to 6, whilst a KH2PO4/NaOH solution was used to 

adjust pH in the range of 6 to 8,  and water pH in the range of 8 to 10 was adjusted 

using a H3BO3/NaOH solution. Thiamethoxam was dissolved into the buffered 

solutions to give a final concentration of 2 mg thiamethoxam L-1. Aliquots of 20 mL 

of thiamethoxam in buffer were placed into quartz tubes to give two sets of three 

replicates of each pH and water type. There was no blank employed in this 

experiment. 

The experiment was again carried out in the “Suntest” apparatus. Aliquots of 1 mL 

were removed simultaneously from the light set after 0, 0.5, 1, 2, 4 and 7 hrs. Aliquots 

from the dark set were collected only after 0 and 7 hrs. All samples were analyzed by 

HPLC.  

3.2.3. HPLC analysis 

Pesticide concentrations were determined by HPLC-UV using an Agilent 1100 Series 

apparatus equipped with two pumps, an auto sampler, a photodiode array detector 

(model Agilent 1100 Series, G1365B MWD) and a C18 reversed-phase column 

(Supelco Discovery C18, 150 x 4.6 mm, 5 m). Mobile phases were mixtures of 

water acidified with 0.1% phosphoric acid and methanol at a constant flow rate of 1 

mL min-1.  The absorbance was measured at 252 nm. The limit of detection for 

thiamethoxam (+standard deviation) in water was 0.01+0.003 mg L-1. The retention 

time of thiamethoxam was 4.8+0.2 mins.   

3.2.4. Processing of results and statistics 

It was assumed that three degradation processes (photolysis, hydrolysis and 

biodegradation) were operating concurrently in irradiated samples. The dark samples 
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were subject to hydrolysis and biodegradation. The photolysis rate constant was 

calculated as the difference between the overall rate constant and the hydrolysis rate 

constant:    

 

where  is photolysis rate constant (day-1) 

 is overall (hydrolysis + photolysis+biodegradation) rate constant (day-1) 

  is hydrolysis rate constant plus biodegradation rate 

constant (day-1) 

Photolysis and hydrolysis were assumed to be governed by first-order degradation 

kinetics. This was checked by fitting a first-order equation to the data using an Excel 

spreadsheet (created by Dr Sabine Beulke, Food and Environment Research Agency) 

and examining the residuals.  The equation for calculation of a first-order rate 

constant is: 

                                                           

where Ct is test chemical concentration at time t (mg L-1) 

          C0 is initial test chemical concentration at time t=0 (mg L-1) 

 k  is the first-order rate constant (days-1) 

 t  is time (days) 
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The half-life can be calculated by substituting the first-order rate constant into the 

following equation:                                                                       

  

where   is the half-life (days) 

Statistical analyses were carried out using GenStat Release 12.1. Two-way ANOVA 

was used to investigate any treatment-related differences. 

3.2.5. Sample absorbance 

Solutions used in the photo-transformation experiment were investigated for any shift 

in absorbance spectra profile that would indicate a change in the chemical properties 

of the systems using a UV-visible recording spectrophotometer, UV-160A Shimadzu. 

Measurement was made against a matrix-matched solution (without thiamethoxam).  

Samples in pure and natural water were scanned for absorbance including (i) nitrate 

25 and 100 mg L-1 (ii) pure water with pH of 5.01, 5.94, 7.08, 8.10, 9.19, 10.11 and 

natural water with pH of 4.99, 6.09, 7.05, 8.25, 9.09, 10.08 (iii) humic acids            

(10 mg L-1). Humic acids were included in the sample absorbance measurement 

because humic acids are commonly found in natural water (Connell, 2005).  

3.3 Results  

3.3.1. Fitting test to first-order kinetics 

Thiamethoxam concentration was plotted against time to check whether the data fitted 

to first-order kinetics. An example of thiamethoxam in pure water adjusted to pH 9.03 

is given in Figure 3-1 and the residual plot is shown in Figure 3-2. The calculation for 

single first-order kinetics was close to measured data indicating that the measured 

data were a good fit with the first-order degradation kinetics and this was supported 

by the random dispersal of residuals and a Chi2 statistic test.  In the example shown in 
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Figure 3-1, Chi2 was 1.35 and was smaller than the acceptance criteria at P<0.05 of 

9.488. All the fitting parameters and statistical results are given in Appendices A-2 

and A-3 for pure and natural water, respectively. 

 

Figure 3-1  Fitting of first-order kinetics to the change in thiamethoxam concentration 

with time in pure water adjusted to pH 9.03 under radiation conditions.  
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Figure 3-2 Plot of residuals calculated as the difference between measured and  

simulated thiamethoxam concentration shown in Figure 3-1 

3.3.2. Nitrate experiment 

There was negligible loss of thiamethoxam under dark conditions. The percentage of 

thiamethoxam remaining after 6 hours in pure water was 99.6+0.3, 99.8+0.3, and 

99.6+0.2% at 0, 25 and 100 mg NO-
3 L-1, respectively. In natural water, the 

percentage of remaining thiamethoxam showed similar values at 97.9+2.3, 99.4+3.1, 

and 99.7+1.1% at 0, 25 and 100 mg NO-
3 L

-1, respectively. It was assumed that the 

rate constant for hydrolysis and biodegradation of thiamethoxam was zero for the 

conditions studied.  

Photolysis rate constants for thiamethoxam at different nitrate concentrations (very 

low, moderate and very high) were 3.01+0.3, 2.62+0.2 and 2.39+0.2 day-1, 

respectively in pure water and 2.09+0.2, 2.01+0.2  and 2.02+0.05 day-1, respectively 

in natural water. Figure 3-3 suggests no effect of nitrate concentration on photolysis in 

natural water but there was a negative relationship between photolysis and nitrate 

concentration in pure water. 
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Two-way ANOVA (Table 3-2) suggested that nitrate concentration (p<0.01), type of 

water (p<0.001) and nitrate concentration coupled with type of water (p<0.05) were 

significant influences on the rate of photolysis of thiamethoxam. 

 

Figure 3-3 Photolysis rate constant of thiamethoxam in pure and natural water as a   

function of nitrate concentration 

Table 3-2 Analysis of variance of influence of nitrate concentration on photolysis 

rate constant of thiamethoxam on water type. 

Source of variation Degrees 
of 
freedom 

Sum of 
squares 

Mean 
squares 

Variance 
ratios 

F- 
probability 

Replicate stratum 

Replicate.*Units*stratum 

Nitrate concentration 

type of water 

Nitrate concentration*type of water 

Residual 

Total 

2 

 

2 

1 

2 

10 

17 

0.254 

 

0.370 

1.80 

0.229 

0.192 

2.85 

0.127 

 

0.185 

1.80 

0.115 

 

0.0192 

6.61 

 

9.62 

93.75 

5.96 

 

 

0.005 

<0.001 

0.020 
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3.3.3. pH experiment 

The hydrolysis study under dark conditions (control set) showed a small loss of 

thiamethoxam over the study period at pH 5, 7 and 8. The hydrolysis rate increased 

dramatically when pH was increased to pH 9 and above as shown in Figure 3-4. 

Hydrolysis rate constants in pure water at pH 5, 7, 8, 9 and 10 were 0.0222+0.0573, 

0.0438+0.0810, 0.0254+0.0139, 0.547+0.082 and 3.06+0.184 day-1, respectively 

(Appendix A-2). The hydrolysis rate constant in natural water at pH 5, 7, 8, 9 and 10 

were 0.0121+0.0076, 0.0075+0.0066, 0.0196+0.0093, 0.343+0.018, and 3.08+0.416 

day-1, respectively (Figure 3-4; Appendix A-3). The two-way ANOVA (Table 3-3) 

showed that only pH of water had a significantly effect on the hydrolysis of 

thiamethoxam (p<0.001). 

 

Figure 3-4 Hydrolysis rate constant of thiamethoxam as a function of pH in pure and 

natural water. 
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Table 3-3 Analysis of variance of hydrolysis rate constant of thiamethoxam with 

varying type of water and pH. 

Source of variation Degree of 
freedom 

Sum of 
squares 

Mean 
squares 

Variance 
ratios 

F- 
probability 

Replicate stratum 

Replicate.*Units*stratum 

pH 

Type of water 

pH*type of water 

Residual 

Total 

2 

 

4 

1 

4 

18 

29 

0.0850 

 

38.9 

0.0815 

0.0620 

0.363 

39.5 

0.0425 

 

9.73 

0.0815 

0.0155 

0.0201 

2.11 

 

482 

4.04 

0.77 

 

 

<0.001 

0.060 

0.560 

The photolysis rate constants of thiamethoxam at pH 5, 7, 8, 9 and 10 in pure water 

were 2.14+0.27, 1.64+0.07, 1.97+0.03, 2.46+0.34 and 11.6+2.42 day-1 (Appendix A-

2), respectively. The photolysis rate constant of thiamethoxam in natural water was 

1.90+0.17, 2.01+0.08, 1.74+0.27, 2.64+0.35, and 11.32+0.56 day-1, at pH 5, 7, 8, 9 

and 10, respectively (Appendix A-3). The largest photolysis rate constant in pure and 

natural water was at pH 10 as shown in Figure 3-5. The ANOVA showed a highly 

significantly positive effect of pH on photolysis under alkaline conditions (p<0.001, 

Table 3-4). In this case, the statistics showed no significant effect of type of water 

because there was no consistent trend in photolysis rates in pure water and natural 

water with varying pH; the photolysis rate of thiamethoxam in pure water was less 

than that in natural water at pH 7 and 10, but the rate in pure water was higher than 

that in natural water at pH 5, 6 and 8. 
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Figure 3-5 Photolysis rate constant of thiamethoxam in pure and natural water as a 

function of pH 

Table 3-4 Analysis of variance of photolysis rate constant of thiamethoxam with 

varying type of water and pH. 

Source of variation Degree of 
freedom 

Sum of 
squares 

Mean 
squares 

Variance 
ratios 

F-probability 

Replicate stratum 

Replicate.*Units*stratum 

pH 

Type of water 

pH*type of water 

Residual 

Total 

2 

 

5 

1 

5 

22 

35 

5.41 

 

418 

2.35 

10.4 

38.3 

475 

2.70 

 

83.6 

2.35 

2.09 

1.74 

1.55 

 

48.1 

1.35 

1.20 

 

 

<0.001 

0.258 

0.343 

3.3.4. Sample absorbance  

The absorption profiles shown in Figure 3.6-3.9 were from matrix-matched systems, 

so indicate absorption of light by thiamethoxam under a range of different conditions. 

This allows evaluation of whether there were chemical transformations under 

different conditions that may have changed the route of photoloysis.  There was no 

significant absorption of light at wavelengths over 300 nm in either pure or natural 
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water. This result is in accordance with the literature (Milz et al., 2012). Light 

absorption profiles showed no shift with varying pH (Figure 3-6 and 3-8) or in the 

presence of humic acids in the two waters (Figure 3-7 and 3-9). This suggests that 

there was no interaction between the thiamethoxam molecules and humic acids or 

change in the structure of thiamethoxam with pH. 

. 

 

Figure 3-6 UV light absorption profiles of 2 µg thiamethoxam mL
-1

 in pure water 

varying in pH from 5 to 10.  
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Figure 3-7  Compares light adsorption profiles of 2 µg thiamethoxam mL
-1

 (i) in pure 

water contain 25 and 100 µg nitrate mL
-1

, 
 
and (ii) in pure water contain       

10 µg humic acids mL
-1

. 

 

 

Figure 3-8 Compares light adsorption profiles of 2 µg thiamethoxam mL
-1

 in natural 

water varying in pH from 5 to 10.  
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Figure 3-9  UV light absorption profiles of 2 µg thiamethoxam mL
-1

 (i) in natural water 

containing 25 and 100 µg nitrate mL
-1

, 
 
and (ii) in natural water contain      

10 µg humic acids mL
-1

.  

As absorbance of the solution containing nitrate showed negative values in both pure 

and natural water at wavelength below about 240 nm (Figure 3-7 and 3-9), a further 

measurement was carried out to measure absorbance of a solution containing nitrate 

only (without thiamethoxam). The absorption profile of nitrate is shown in Figure 3-

10 and 3-11 for pure and natural water, respectively. According to the large 

absorption for nitrate alone in water solutions (Figure 3-10 and 3-11), it is possible 

that the negative absorbance values for pesticide solution containing nitrate came 

from the error in the spectrophotometer subtracting the much greater absorbance of 

nitrate from that of thiamethoxam 
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Figure 3-10 UV light absorption profiles of (i) pure water alone and (ii) in pure water 

containing 25 and 100 µg nitrate mL
-1

.  

 

 

Figure 3-11 UV light absorption profiles of (i) natural water alone and (ii) in natural 

water containing 25 and 100 µg nitrate mL
-1

. 



Chapter 3  

61 

 

3.4 Discussion 

3.4.1. Photolysis of thiamethoxam 

The photolysis rate constant in pure water decreased with increasing nitrate 

concentration (Figure 3-3). This may result from competition in light adsorption 

between nitrate and thiamethoxam because there was overlap in the light absorption 

wavelength of thiamethoxam and nitrate at some range as thiamethoxam absorbed 

light energy maximally at wavelength of about 255 nm (Figure 3-6 and 3-7, Pena et 

al., 2012) whilst nitrate absorbed light energy at wavelengths in the range <200 to 250 

nm (Figure 3-8 and 3-9).  

Table 3-3 shows that pH significantly influences photolysis of thiamethoxam and that 

photolysis rate increased at very alkaline conditions (pH 10). Pena et al. (2011) 

showed that half-lives of thiamethoxam were 0.779, 0.783 and 0.687 days in milli-Q 

water in solutions containing dissolved organic carbon concentration of 0, 3 and 9 mg 

L-1 (pH 7.5 to 7.7), respectively. The half-lives obtained in the study by Pena et al. 

(2011) were longer than the half-lives of thiamethoxam obtained in the current 

experiment (0.408 and 0.348 days for pure (pH 7.02) and natural water (pH 7.02), 

respectively). An important influence is that the higher light intensity contributed to 

faster photolysis as the solar radiation from sunlight (Pena et al.’s study) in Spain was 

lower (average 0.225 kW m-2) than that from the xenon lamp (1.27 kW m-2). Another 

possibility is that concentration of dissolved organic carbon derived from sewage 

sludge in Pena et al.’s study is higher than that in this study (>10 mg L-1). This would 

contribute to a decrease of light intensity reaching the thiamethoxam molecules and 

would likely result in slower photoloysis. De Urzedo et al. (2007) suggested 

photolysis pathways of thiamethoxam as shown in Figure 3-12. 
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Figure 3-12 Photolysis pathway of thiamethoxam. 1 and 2-8 equate to thiamethoxam 

and its metabolites, respectively (De Urzedo et al., 2007). 

 

3.4.2. Hydrolysis of thiamethoxam 

pH in water influenced hydrolysis of thiamethoxam (present study, Liqing et al., 

2006, Guzsvany et al., 2006) with the hydrolysis rate greatly accelerated under 

alkaline conditions. It was assumed that the more hydroxyl ion (OH-) in the medium, 

the more hydrolysis of thiamethoxam because the strong electron of the NO2 group 

causing a positive charge at the carbon of the C=N group of the thiamethoxam ring 

results in it being readily attacked by a hydroxyl ion (Guzsvany et al., 2006; Liqing et 

al., 2006). A similar hydrolysis cleavage for imidacloprid containing a nitroguanidine 

functional group has also been reported (Guzsvany et al., 2006; Zheng and Liu, 1999). 

Karmakar et al. (2009b) reported that hydrolysis rates at 28+2oC were 0.0216, 0.0103 

and 0.145 day-1 for pH 4, 7 and 9.2, respectively. Comparison of hydrolysis rates 
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obtained from this study with those obtained by Karmakar et al. (2009b) showed that 

the latter were smaller. The higher hydrolysis rate could be due to higher temperature  

(31+2oC). 

Karmakar et al. (2009b) proposed alkaline hydrolysis mechanisms for thiamethoxam 

under heating and microwave conditions as shown in Figure 3-13 and a summary of 

hydrolysis products of thiamethoxam is given in Table 3-4. Under alkaline conditions 

(pH 9.2, 28+2oC), only the amino methyl compound (2), oxo-compound (4) and 6-

hydroxy thiamethoxam compound (5) were found. Figure 3-14 shows acidic 

hydrolysis mechanisms of thiamethoxam under heating condition (Karmakar et al., 

2009b) and a summary of hydrolysis products of thiamethoxam is given in Table 3-4. 

The major hydrolysis products under neutral (pH 7.0) and acidic (pH 4.0) conditions 

were the amino methyl compound (2) and guanidine derivative compound (3).  

 

Figure 3-13  Postulated pathway of alkaline hydrolysis of thiamethoxam. (1) and 1a, 2, 4, 

5, 6 equate to hydrolysed compound. A, B, C and D are the mechanistic 

pathways shown by the arrows (Karmakar et al., 2009b). 
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Figure 3-14 Postulated mechanisms of acid hydrolysis of thiamethoxam. 1, 3, 5, 7 and 8 

equate to thiamaethoxam (1) and hydrolysed compounds (3, 5, 7, 8); A, B, 

C, D and E are the cleavage point of bonds as depicted in the present 

compound  thiamethoxam (1) (Karmakar et al., 2009b). 

3.4.3. Conclusion 

The result shows that the presence of nitrate ions and pH had a significant effect on 

photo-degradation of thiamethoxam. Influence of the presence of nitrate ions possibly 

occurred via a competition between nitrate anions in solution (by addition in pure 

water or natural presence in natural water) and thiamethoxam for light adsorption 

resulting in decreasing direct photolysis of thiamethoxam. Photolysis of 

thiamethoxam was greatly enhanced in very alkaline environments (pH 10). Type of 

water had a significant influence on photolysis at neutral pH (pH~7) whilst at varying 

pH, there was no significant effect on photolysis and no effect of pH and type of 

water combined.  

3 
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Hydrolysis of thiamethoxam was pH-dependent. The hydrolysis rate significantly 

increased at pH 9 and 10 in agreement with the literature (Liqing et al., 2006; 

Karmakar et al., 2009b). This experiment only used two types of water so it was not a 

strong experiment from this respect.  Hence type of water did not significantly affect 

hydrolysis. Inclusion of more types of water would give a more definitive result. 

The results will be used in subsequent chapters to aid interpretation of hydrolysis and 

photolysis behaviour of thiamethoxam in more complex systems. 
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CHAPTER 4 

4. SORPTION OF THE TWO STUDIED PESTICIDES IN 
SEDIMENT FROM NATURAL STREAM IN SAND 
HUTTON 

4.1 Introduction 

When chemical molecules interact with soil or sediment, binding can occur between 

the two. This process is generally known as “sorption”.  Sorption is an important 

factor for pesticide behaviour in the environment because it influences persistence of 

pesticides in soil, transport of pesticide and potential to pollute groundwater. 

Influences on pesticide sorption include pesticide properties such as water solubility, 

octanol-water partition coefficient, and acid-base ionization constant for ionizable 

pesticides and soil properties including organic matter content, mineral composition 

and pH of soil (Katagi, 2006; Hiller et al., 2009; Peng et al., 2009). For example, 

Hiller et al. (2009) reported a significant positive correlation between Kd of acetochlor 

and organic carbon content at initial concentration 1.0 and 10 mg L-1 among 8 soil and 

5 sediment samples. The authors showed through analysis of the humus fraction of 

organic carbon, that humic acid carbon was more strongly correlated to sorption of 

acetochlor than fulvic acid carbon. Peng et al. (2009) reported linear sorption isotherm 

of endrin to montmorillonite and kaolinite whereby the sorption increased with 

increasing ionic strength due to compression of the diffuse double layer supporting 

the interaction between clay surface and the endrin molecule. The authors also found 

that pH affected the sorption mechanism, with a charge-dipolar interaction of endrin 

to montmorillonite and kaolinite as the clay edges of silica-alumina units had variable 

charge due to the proton shift reaction of the units. Increase in pH contributed 

neutralized the edges of the units causing a decrease in positive charge of the units 

and reducing the charge-dipolar interaction. Conversely, the edge of the units was 

possibly ionized by an increase in pH contributing to an increase in negative charge of 

the edges that enhanced the charge-dipolar interaction and resulted in increased 

sorption of endrin (Peng et al., 2009) 
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In a sorption study, the soil sorption coefficient (Kd) and the soil organic carbon 

sorption coefficient (Koc) of pesticides are measured parameters. Kd is calculated as a 

ratio of pesticide concentration in the solid phase to pesticide concentration in the 

solution phase (Organisation for Economic Co-operation and Development, 2000; 

Wauchope et al., 2002). Previous work (Banerjee et al., 2008; Wauchope et al., 2002) 

has shown that the Kd value is often related to organic matter content in soil as soil 

organic matter serves as a non-polar phase to which non-polar pesticides can be 

sorbed (Wauchope et al., 2002). Soil organic matter is often measured and expressed 

as the amount of organic carbon (Wauchope et al., 2002). The soil organic carbon 

sorption coefficient (Koc) is calculated by dividing a measured Kd in a specific soil by 

the organic carbon content of the soil (Organisation for Economic Co-operation and 

Development, 2000; Wauchope et al., 2002).  

Gavrilescu (2005) and vanLoon and Duffy (2005) suggested a mobility classification 

based on the partition coefficient as shown in Table 4-1. A Koc value of greater than 

1000 mL g-1 indicates that there is very strong sorption of a pesticide to soil and thus 

it is less likely to move unless soil erosion occurs where a pesticide can be transported 

sorbed to soil particles. A Koc value less than 50 mL g-1 indicates a pesticide that is 

likely to travel with water either via leaching or surface runoff because of its weak 

sorption.  

Table 4-1 Mobility classification based on soil distribution coefficients of pesticide 

(vanLoon and Duffy, 2005) 

Koc (mL g
-1

) Kd (mL g
-1

) Mobility Class (typical) 

0-50 

50-150 

150-500 

500-2000 

2000-5000 

>5000 

0-0.5 

0.5-1.5 

1.5-5.0 

5.0-20 

20-50 

>50 

Very high 

High 

Medium 

Low 

Slight 

Immobile 

Aliphatic acids 

Carbamates 

Benzoic acids 

Triazines 

Organophosphates 

Organochlorines 
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This study investigated sorption of metalaxyl-M and thiamethoxam to a natural 

stream sediment from Sand Hutton, North Yorkshire, UK.  

4.2 Material and methods 

Metalaxyl-M (99.0% purity) was purchased from Sigma-Aldrich Ltd., CaCl2 was 

purchased from Fisher Scientific Ltd. and thiamethoxam (99.7% purity) was used as 

described in section 3.2.  

Sediment was collected from a small natural stream in Sand Hutton (54o 1’ 1”N;        

0o 56’ 38”E) in December 2009. The sediment was sieved to a particle size ≤2 mm at 

the stream. The natural sediment before being sieved contained dead leaves, dried 

stems, dried nuts and small stones (about 50% of original sediment collected from 

stream) and the fraction that had a particle size ≤2 mm accounted for about 50%.The 

moisture content of the sediment was analyzed in triplicate (Avery, 1982). For all 

calculations that relate to the weight of sediment, values were corrected to oven dry 

mass. The organic carbon content in sediment was 5.0+0.1%. The C/N ratio was 

18.2+0.3. The sediment texture of particle size ≤2 mm was sandy clay loam 

containing sand 48.7+5.5%, silt 19.4+0.8%, and clay 32.0+6.1%.  

This sorption experiment was carried out in three stages according to OECD 

Guideline 106 (Organisation for Economic Co-operation and Development, 2000). 

First, a screening test was carried out to determine the best ratio between sediment 

and water. A kinetic test investigated time to sorption equilibrium for the two 

pesticides studied. Finally, the appropriate soil-to-water ratios and equilibration times 

were deployed to conduct the sorption experiments.  

In order to give a better centrifugation and minimize cation exchange, the sediment 

was pre-equilibrated with a 0.01M CaCl2 solution for 12 hours before the addition of 

pesticides. All experiments were carried out in teflon centrifuge tubes at room 

temperature (20+2oC). 
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4.2.1. Selection of optimum sediment-to-solution ratio  

The sediment-to-solution ratios tested were 1:10, 1:5, 1:4 and 1:2 based on 2, 4, 5 and 

10 g sediment (dry weight basis) with 20 mL 0.01M CaCl2. It is desirable that the 

percentage sorption is more than 20% or preferably >50% so that the change in test 

substance concentration in the liquid phase is large enough to be measured accurately 

(Organisation for Economic Co-operation and Development, 2000).  

After pre-equilibration, stock solutions of the two pesticides were added to the 

respective amounts of sediment in order to make final concentrations of metalaxyl-M 

and thiamethoxam of 1 mg L-1. Control samples were prepared at 1 mg pesticide L-1 

in 0.01M CaCl2 but without sediment to check pesticide stability in 0.01M CaCl2 

solution and possible sorption to the test vessels. Blanks with sediment-to-solution 

ratios 1:10, 1:5, 1:4 and 1:2 were prepared and subjected to the same test procedure. 

All test vessels were shaken on a side-to-side shaker at 150 oscillations per minute for 

72 hours and then centrifuged at 2500 rpm for 15 minutes. The supernatants were 

collected and analyzed by HPLC.  

4.2.2. Selection of optimum equilibration times 

The optimum soil-to-solution ratio from the first test was employed for investigation 

of equilibration time for the two pesticides studied. After pre-equilibration, stock 

solutions of the two studied pesticides were added making the final concentrations of 

metalaxyl-M and thiamethoxam of 1 mg L-1. Control samples were made without 

sediment whilst blanks with sediment but no pesticide were prepared and subjected to 

the same test procedure. The test vessels were shaken on a side-to-side shaker at 150 

oscillations per minute then were centrifuged  at 2500 rpm for 15 minutes to sample 

after 0.5, 6, 24, 48, 72, and 96 hours. The supernatants were collected and analyzed by 

HPLC.  



Chapter 4  

70 

 

4.2.3. Freundlich sorption study 

After pre-equilibration with 0.01M CaCl2, different initial concentrations of the two 

studied pesticide solutions were prepared at 0.2, 0.5, 1, 1.5 and 2 mg thiamethoxam or 

metalaxyl-M L-1 and at a sediment-to-water ratio of 1:2. Each pesticide concentration 

was studied in triplicate in teflon centrifuge tubes. The suspension was shaken on        

a side-to-side shaker at 150 oscillations per minute at 20+2oC for 96 hours. The 

concentration in initial and final solutions was sampled and analyzed by HPLC.  

4.2.4. HPLC analysis 

Pesticide concentration was monitored by HPLC-UV using the same machine and 

measurement conditions as described in Section 3.2.3.  The absorbance for the two 

pesticides was measured at 215 nm. The retention time of metalaxyl-M and 

thiamethoxam was 8.9+0.5 and 4.8+0.2 minutes, respectively.   

The limits of detection (LOD) for metalaxyl-M and thiamethoxam in water were 

0.017+0.004 and 0.010+0.003 mg L-1, respectively.  

4.2.5. Calculation of absorption coefficients  

The distribution coefficient; Kd (L kg-1) is the ratio between the concentration of 

pesticide sorbed in the soil/sediment phase (Cs) and the concentration of pesticide in 

the solution (Ce) when adsorption equilibration is reached (Organisation for Economic 

Co-operation and Development, 2000). The equation for calculation of Cs is 

 

where  Cs is calculated substance concentration sorbed to soil/sediment  (mg kg-1) 

 Ci is initial concentration in the liquid phase (mg L-1) 

 Ce  is concentration in the liquid phase after equilibration time (mg L-1) 
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 V is initial volume of solution (L) 

           ms  is dry mass of soil/sediment (kg) 

The sorption coefficient can be calculated using either the linear or Freundlich model. 

The linear model is given by: 

 

The Freundlich sorption isotherm (Carbo et al., 2007; Organisation for Economic Co-

operation and Development, 2000), Kf ( kg L-n
f) is calculated as:     

   

where  nf  is the Freundlich exponent (dimensionless). 

The organic carbon normalized adsorption coefficient (Organisation for Economic 

Co-operation and Development, 2000), Koc (L kg-1) relates the linear distribution 

coefficient Kd to the amount of organic carbon in the soil/sediment sample. Koc is 

calculated as:       

 

where  OC is organic carbon in soil 

4.3 Results 

4.3.1. Optimum sediment-to-solution ratio  

Percentage sorption of metalaxyl-M at sediment-to-solution ratios of 1:2, 1:4, 1:5 and 

1:10 were 69.4+2.2%, 58.7+3.4%, 51.7+1.0% and 42.1+6.5%, respectively, indicating 

that the optimum sediment-to-solution ratio was 1:2. 
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Percentage sorption of thiamethoxam at sediment-to-solution ratios of 1:2, 1:4, 1:5 

and 1:10 were 63.5+1.8%, 52.6+0.9%, 51.3+0.7% and 40.5+2.7% respectively. The 

optimum sediment-to-solution ratio was again 1:2. 

4.3.2. Equilibration times  

Sorption of thiamethoxam and metalaxyl-M reached a steady state (equilibrium) after 

72 hours as shown in Figure 4-1. Subsequent sorption studies were carried out over 96 

hours to ensure that sorption of thiamethoxam and metalaxyl-M achieved equilibrium. 

 

Figure 4-1  Change in sorption of metalaxyl-M and thiamethoxam (from the solution 

phase) on natural sediment with varying incubation time. Error bar is the 

standard deviation, n=3. 

4.3.3. Sorption study 

The pesticide concentration in solution (Ce) was plotted against the pesticide 

concentration sorbed in sediment (Cs). Kd values were obtained from the slope of the 

linear regression of pesticide concentration sorbed in sediment against pesticide 

concentration in liquid at equilibrium as shown in Figure 4-2. Kd values were 1.83 and 

1.63 L kg-1 for metalaxyl-M and thiamethoxam, respectively. The linear isotherm line 
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for metalaxyl-M (Figure 4-2) did not fit with most of the observed points as sorption 

of metalaxyl-M was strongly non-linear. Hence metalaxyl-M was evaluated against fit 

to a Freundlich isotherm for non-linear sorption as recommended in OECD guildline 

106 (Organisation for Economic Co-operation and Development, 2000).  

The organic carbon normalized sorption coefficient (Koc) values were 36.6, and 32.6 L 

kg-1 for metalaxyl-M and thiamethoxam, respectively. The Koc values suggest that 

both compounds were weakly sorbed (vanLoon and Duffy, 2005; Table 4-1) by the 

sediment and hence that these pesticides are likely to be relatively mobile in the 

environment with a significant fraction staying in the solution of water-sediment 

systems.  

 

Figure 4-2 Fitting of linear sorption isotherms for metalaxyl-M and thiamethoxam in 

the natural sediment. Dash line (- - -) is a prediction line for metalaxyl-M 

and a solid line (-) is a prediction line for thiamethoxam 

The pesticide concentration in the solution at equilibrium (Ce) was plotted against the 

pesticide concentration sorbed to the sediment (Cs) as shown in Figure 4-3 for 

thiamethoxam and Figure 4-4 for metalaxyl-M. The least squares method with 

Microsoft Excel Solver was used to determine optimized values of Kf and nf. The Kf 

value calculated from the Freundlich sorption isotherm of thiamethoxam was 1.62 kg 
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L-1 and nf was 0.93. The chi2 value for the fit was 4.80 indicating an acceptable fit 

when compared to the critical value at p<0.05 of 7.82. The Kf value of metalaxyl-M 

was 1.76 kg L-1 and nf was 0.74. The fit was again acceptable (chi2 was 1.80).  

 

Figure 4-3 Fitting of a Freundlich isotherms to sorption of thiamethoxam to a natural 

stream sediment 

  

Figure 4-4 Fitting of a Freundlich isotherm to sorption of metalaxyl-M to a natural 

stream sediment 

 



Chapter 4  

75 

 

4.4 Discussion 

4.4.1. Sorption of thiamethoxam 

 The Koc value of the present study was 32.6 L kg-1 showing that thiamethoxam was 

weakly sorbed to the sediment (vanLoon and Duffy, 2005; Table 4-1). The Koc value 

obtained was lower than some previous studies (Carbo et al., 2007, Banerjee et al., 

2008). The reported Koc value of thiamethoxam from previous studies showed a large 

variation from 0.23 to 2877 L kg-1 based on seven soils in three studies (Banerjee et 

al., 2008; Campbell et al., 2005; Carbo et al., 2007). The Koc is very variable 

suggesting that sorption of thiamethoxam cannot be explained by %organic carbon 

alone. The different sorption may result either from composition of the organic carbon 

and/or composition of clay.  

The humic matter in soil is composed of humic and fulvic acids (Tan, 1994). It may 

be different in soil and stream sediment because of decomposing softwood, hardwood 

and grass humic matter. Humic matter in stream sediment is composed mainly of 

fulvic acid (Tan, 1994) which comes from soil humic matter (allochthonous) or 

aquatic plant material (autochthonous). Soil humic matter mainly consists of a ligno-

protein complex whereas aquatic humic matter is mainly carbohydrate-protein 

complexes (Tan, 1994). Hiller et al. (2009) reported a significant correlation between 

organic carbon content and Kd of acetochlor and also a significant correlation between 

humus components and Kd of acetochlor. The authors found that differences in humus 

components contributed to variation of Kd among soils and sediments where sorption 

of acetochlor was closely related to humic acid carbon and less related to fulvic acid 

carbon. The authors suggested that humic acid carbon content was a better predictor 

of sorption of acetochlor than organic carbon content. 

The previous sorption studies on thiamethoxam showed that not only organic carbon 

and clay content influence sorption processes but also their composition. A sorption 

study (Banerjee et al., 2008) in three Indian soils from a grapevine growing area 

showed that organic carbon and clay content in soils gave positive correlations to 

sorption of thiamethoxam and that the ordering of Koc values of the soils suggested  

that organic carbon played a dominant role in sorption process rather than the clay 
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content. A study by Carbo et al. (2007) in two Brazilian soils suggested no significant 

correlation of thiamethoxam with organic carbon content so mineral constituents in 

the soils may also play an important role in sorption processes under some 

circumstances. Previous studies (Čadková et al., 2012; Chen et al., 2009) on other 

pesticides showed different sorption to different clay constituents. Cadkova et al. 

(2012) studied tebuconazole sorption onto some soil minerals (birnessite, ferrihydrite, 

goethite, calcite and illite) and humic acid. The authors found no detectable sorption 

of tebuconazole to calcite whilst the highest sorption of analytical tebuconazole was 

found in order humic acid > ferrihydrite > illite > birnessite and goethite (negligible 

sorption). Chen et al. (2009) reported different adsorption capacity of carbaryl to three 

minerals, montmorilonite, kaolinite and goethite. The study showed higher adsorption 

capacity for carbaryl on montmorilonite than that on kaolinite or goethite.  

4.4.2. Sorption of metalaxyl-M 

The Kfoc value of metalaxyl-M in the present study was 36.6 L kg-1 within the range 

reported by previous studies. The Kfoc value of metalaxyl-M was in the range 20 to 

2536 L kg-1 based on 36 soils from five studies and a pesticides database (Andrades et 

al., 2001; Fernandes et al., 2003; Monkiedje and Spiteller, 2002; PPDB, 2009; Sharma 

and Awasthi, 1997). Organic matter (Andrades et al., 2001; Fernandes et al., 2003) 

and clay content (Sharma and Awashi, 1997; Andrades et al., 2001; Fernandes et al., 

2003) were reported to have positive correlations to sorption of metalaxyl. The wide 

variation of Kfoc (20 to 2536 L kg-1) may be explained by form and/or composition of 

organic matter in the sediment. This is supported by the finding of Rodriguez-Cruz et 

al. (2009) that higher sorption of metalaxyl was found in lignin (a hydrophobic 

molecule) than in cellulose (a hydrophilic molecule).  
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 4.5 Conclusion 

Sorption of the two pesticides to a natural sediment suggested that these pesticides are 

weakly sorbed and likely to be relatively mobile in the environment. The results from 

the sorption experiment quantify sorption behaviour of the pesticides to the stream 

sediment and can be used to predict behaviour of the pesticide in more complex 

systems. 
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CHAPTER 5 

5. FATE OF THE PESTICIDES METALAXYL-M AND 
THIAMETHOXAM IN WATER-SEDIMENT SYSTEMS 
UNDER CONTROLLED CONDITIONS  

5.1 Introduction 

Pesticides contaminate water by various routes such as direct application, spray drift, run-off, 

drainage, waste disposal, industrial, domestic or agricultural effluents and atmospheric 

deposition. Pesticide from different sources can enter water-sediment systems such as rivers, 

ponds, lakes or the ocean where the aquatic-sediment systems play a significant role in 

dissipation of the compounds. The upper water phase is often aerobic whilst the surface layer 

of sediment can be either aerobic or anaerobic depending on depth of the sediment. However, 

usually the sediment phase is predominantly anaerobic (Gavrilescu, 2005). Potential 

transformations of pesticides in water-sediment systems occur via various processes 

including hydrolysis, photolysis and microbial degradation (Katagi, 2006). 

The physico-chemical properties of the pesticide itself influence transformation/degradation 

in water-sediment systems and partitioning between water and sediment phases. For example, 

some pesticides including thiamethoxam can be transformed/degraded via hydrolysis 

(Karmakar et al., 2009, Katagi, 2006) whilst others including metalaxyl are stable in water 

(Sukul and Spiteller, 2000). Not only physico-chemical properties of the pesticide determine 

transformation/degradation, but also surrounding conditions such as pH (Karmakar et al., 

2009, Guzsvany et al., 2006, Liqing et al., 2006) and presence of photo-induced reactions 

(Katagi, 2006; Shankar et al., 2007). Environmental conditions influence rate of the 

transformation/degradation processes and partitioning of pesticides between water and 

soil/sediment phases. 

Chapter 3 reported hydrolysis and photolysis of thiamethoxam which was influenced by pH, 

and sorption of thiamethoxam and metalaxyl-M to sediment. The Koc values of the two 

pesticides suggested that they were likely to stay largely in the water phase. Here, artificial 

water-sediment systems were set up under controlled conditions to investigate rate of 

dissipation of the two pesticides from water-sediment systems and to examine whether 
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hydrolysis and sorption behaviour observed in simplified phase experiments in Chapter 3 are 

able to predict behaviour of the two pesticides in water-sediment systems. 

The aim of this study was to investigate the rate of dissipation of the two studied pesticides, 

metalaxyl-M and thiamethoxam, in water-sediment systems under controlled conditions.  

5.2 Material and methods 

Pesticides, chemicals and sediment (collected in August 2010) used in this experiment were 

the same as those used in Chapter 3. The natural water (collected in August 2010) had pH 

8.32+0.02 at 22.6oC and DO 7.70+0.16 mg L-1.         

The study of fate of two pesticides, metalaxyl-M and thiamethoxam, in water-sediment 

systems was carried out according to the Organization for Economic Co-Operation and 

Development (OECD) Guideline 308 (Organisation for Economic Co-operation and 

Development, 2002).  

5.2.1. Experimental conditions 

A water-sediment experiment was set up in 150 mL glass bottles. Sediment (8.07+0.02 g dry 

weight basis) was added to each beaker followed by 80 mL natural water. All jars were 

covered with a lid to prevent evaporation.  All jars were bubbled with oxygen for one minute 

every three to four days to prevent de-oxygenation. At the beginning of the experiment, 

sediment was left overnight to settle. The water column was then spiked with 0.8 mL of a 

pesticide stock solution containing 200 mg L-1 thiamethoxam and metalaxyl-M to give a final 

concentration of 2 mg L-1 of each pesticide in overlying water. Natural water with spiked 

pesticide mixture alone was set up as a control and natural water and sediment without spiked 

pesticide mixture were blank samples. There were three replicates of treatments, blanks, and 

controls. The experiment was carried out in the dark for four weeks in a growth cabinet at 

20+2oC. Samples were collected after 0, 1, 3, 7, 14, 21, and 28 days. 

Three jars were destructively sampled at each sampling interval. At day zero, water alone was 

collected from a blank and control set to confirm dose levels. Blanks and controls were also 

sampled destructively at the end of the experiment (at 28 days). Overlying water was 
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removed as far as possible before sampling sediment. In order to improve extraction 

efficiency, remaining water was evaporated by air-drying the sediment at 20oC (room 

temperature) for 48 hours. Thus pesticide in sediment is the sum of that sorbed to particles 

and that present in sediment pore water. Subsequently, the sediment was extracted for 

pesticides by adding 20 mL methanol and shaking on a side-to-side shaker at 250 oscillations 

per minute for an hour. The extractant was collected and analyzed by HPLC.  

pH and dissolved oxygen (DO) in water were measured using a pH meter model 

VWR®sympHonyTM. The pH probe was calibrated with buffer pH 4 and pH 7 and the 

dissolved oxygen probe was calibrated with distilled water before performing the 

measurement each day. pH in water was measured by placing the pH probe in water and 

waiting until the recording stabilised.  

5.2.2. HPLC analysis 

Pesticide concentration was determined by HPLC-UV using the same HPLC equipment, 

column and mobile phases as detailed in Chapter 3. In this study, water and sediment samples 

were analyzed under gradient conditions. Mobile phases were mixtures of water acidified 

with 0.1% phosphoric acid and methanol at a constant flow rate of 1 mL min-1. For the first 

10 min the mobile phase was composed of 80% acidified water and 20% methanol. For the 

next 20 min the methanol content was increased to 100%, then over the next 7 min the 

methanol content was decreased to 20%. The absorbance for metalaxyl-M and thiamethoxam 

was measured at 215 and 252 nm, respectively. The Agilent 1100 series model was used to 

record and analyze the area of the peak for calculation of quantitative residue of the 

pesticides by comparing peak area and retention time of the pesticides with authentic 

standards. 

The limit of detection was the lowest concentration level that could be determined to be 

different from a blank. Limits of detection were matrix-, method- and instrument-specific. 

The limit of detection was set at a ratio of three between signal heights of the analyte to noise 

height of a blank (matrix matching). The limits of detection in water and sediment extracts 

for thiamethoxam and metalaxyl-M are given in Table 5-1. 



Chapter 5  

 

81 

 

Table 5-1 Limits of detection in water and sediment extracts (mean+standard deviation) for 

metalaxyl-M and thiamethoxam. 

Matrices Water (µg L
-1

) Sediment extract (µg kg
-1

) 

Metalaxyl-M     17+4  55+2  

Thiamethoxam  10+3  51+28  

5.2.3. Extraction of thiamethoxam and metalaxyl-M from sediment 

The overlying water was separated from sediment by slowly pouring. After removing the 

overlying water from sediment as much as possible, the sediment was still saturated with 

water. In order to improve extraction efficiency, the water was evaporated by air-drying the 

sediment at room temperature (20+2oC) for 48 hours. Dried sediment was disaggregated by 

stirring thoroughly to get a homogeneous matrix for extraction. Subsequently, 10 g of 

sediment (dry weight basis) was sampled into centrifuge tubes in three replicates for each 

system. The dry sediment was extracted by adding 20 ml methanol and shaking on a side-to-

side shaker at 150 oscillations per minute for one hour. The samples were centrifuged at 2500 

rpm for 10 minutes then supernatants were collected and then analyzed by HPLC.  

The recovery test was undertaken on sediment spiked to 0.92, 2.29, and 4.58 mg kg-1. The 

spiked sediment was stirred in order to achieve homogenous pesticide concentration in the 

sediment and then strained off prior to air-drying at room temperature (20+2oC) for 48 hours 

and then extracting as described above. The initial amount of spiked pesticide and measured 

amount of spiked pesticide were used to calculate recovery of the extraction method:  

 

The recovery of metalaxyl-M and thiamethoxam at the three concentrations is summarized in 

Table 5-2. The recovery for extraction  of the two pesticide from sediment was within an 

acceptable range (70-110% of total added pesticide; Organisation for Economic Co-operation 

and Development, 2002). However, there was a concern that the recovery decreased because 
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of degradation of pesticide on sediment if the spiked sediment was left for longer periods. 

Moreover when pesticide sorbed to sediment, a fraction of sorbed pesticide was non-

extractable, leading to a reduction in the recovery of pesticide from sediment. 

Table 5-2 Recovery of metalaxyl-M and thiamethoxam from sediment spiked  

at three concentrations (mean+standard deviation).  

Pesticides 
Spiked pesticide 
concentration (mg kg

-1
)       

Recovery of the 
pesticide (%+standard 
deviation) 

Metalaxyl-M 

0.92 

2.29 

4.58 

103.1 (+1.0) 

97.7 (+6.6) 

89.6 (+7.7) 

Thiamethoxam 

0.92 

2.29 

4.58 

90.4 (+1.8) 

88.2 (+5.5) 

84.0 (+9.5) 

5.2.4. Processing of results 

It was assumed that when pesticides were added to the water-sediment system, they were 

distributed between the two phases with an equilibrium established between the two. In the 

meantime, there were several processes resulting in transformation and dissipation of 

pesticide in one or both phases such as hydrolysis, microbial degradation in water, sorption to 

sediment and degradation in sediment.  

ModelMaker version 4.0 (Walker and Crout, 1997) was used to process data from the 

experiment to simulate pesticide concentration in water and sediment and to fit first-order 

degradation kinetics of the studied pesticides. Firstly, a simulated model diagram was created 

based on assumed processes acting on the pesticide once it entered the water-sediment system 

(Figure 5-1).  
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Figure 5-1 Pesticide comparments and assumed processes acting on pesticide once it 

entered into the water-sediment system. 

The model was simulated according to Figure 5-1 where each parameter was defined as 

follows:  

        M_water is mass of pesticide in water (µg) 

M_sediment is mass of pesticide in water (µg) 

Sinkwater is mass of pesticide sink in water (µg) 

Sinksediment is mass of pesticide sink in sediment (µg) 

  ks is rate constant of dissipation of pesticide in sediment (day-1) 

kw is rate constant of dissipation of pesticide in water (day-1) 

rsw is exchange rate of pesticide from sediment to water (day-1) 

rws is exchange rate of pesticide from water to sediment (day-1) 

F3 = kw*M_water 

F4 =  ks*M_sediment 

F1= rws*M_water 
F2 = rsw*M_sediment 

Mass of pesticide in water; dM_water/dt = -

F1+F2-F3, initial value = M0 

 

Mass of pesticide moving to a sink in water; 

dsinkwater/dt = +F3, initial value = 0 

Mass of pesticide in sediment; 

dM_sediment/dt = +F1-F2-F4, initial value 

= 0 

 

Mass of pesticide moving to a sink in sediment; 

dsinksediment/dt = +F4, initial value = 0 
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Observed data for sampling time (day) and residue (µg) were entered into the model. Initial 

estimates for ks, kw, rsw and rws were required before running the model; these were taken 

from previous studies with the pesticides (PPDB, 2009). The model was programmed to find 

the best values for ks, kw, rsw and rws with respect to the goodness-of-fit statistics (Marquardt 

optimization: Ordinary least squares) and optimization processes. The weighted sum of 

squares statistics was used to reach the quantity which minimizes the difference between the 

model’s result and observed data:  

 

where the summation is over all the input data values 

        oi is the value of the ith observation 

 Ei is the error estimate for that observation, and 

 mi is the model prediction for that observation. 

The half-life of the pesticides was calculated by substituting the first-order rate constant into 

the following expression     

 

           Where   is the half-life (days) 

k is the first-order rate constant (days-1) 

5.3 Results 

Dissolved oxygen in the water phase ranged from 2.47+0.24 to 4.60+0.37 mg L-1 during the 

experiment as shown in Figure 5-2. Dissolved oxygen in was initially was 3.37+0.11 mg L-1 

suggesting that the water phase started depleted in oxygen after the water-sediment system 
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was set up. During the experiment the dissolved oxygen increased because the water phase of 

the system was oxygenated every few days; however the dissolved oxygen decreased from 

day 15 which could result from microbial activity in the system.   

pH in the water phase of the system was stable at neutral ranging from 7.60+0.11 to 

7.84+0.17 as shown in Figure 5-3.  

 

 

Figure 5-2 Dissolved oxygen in the water phase at each sampling time during the experiment. 

 

Figure 5-3  pH in the water phase at each sampling time during the experiment 
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5.3.1. Dissipation of thiamethoxam in the water-sediment system 

ModelMaker version 4.0 was used to create a graph showing pesticide residues at each 

sampling time in the water and sediment phases as shown in Figure 5-4 and Figure 5-5 for 

thiamethoxam and metalaxyl-M, respectively. Tabulation of modelled values is given in 

Appendix C-3 for thiamethoxam and Appendix C-4 for metalaxyl-M and optimization 

statistics are given in Appendix C-5 for thiamethoxam and Appendix C-6 for metalaxyl-M.  

Thiamethoxam residues in the water phase decreased from 230+4 µg on day 0 to 35.4+6.8 µg 

on day 28. Residues in sediment increased rapidly to a peak of 25.5+2.0 µg on day 14 before 

decreasing slowly to the end of the experiment (Figure 5-4). The prediction line started below 

observed data points at day 0 because the initial concentration was not fixed as an input to the 

model. When this value was fixed it was found that the degradation rate in water-sediment 

system could not be optimised. The prediction line from the model did not fit some observed 

data in the water/sediment phase. It was possible due to the model tries to fit the prediction 

line with most of the observed values but there was some variability in observed data.  

The dissipation rate of thiamethoxam (excluding photolysis and sorption) from the water 

phase was obtained by processing the observed data and optimizing using ModelMaker 4.0. 

The rate constant for dissipation of thiamethoxam from water (+95% confidence interval) 

was 0.0532+0.0325 days-1giving a half-life of thiamethoxam in water of 13.0 days.  

The exchange rate of thiamethoxam from water to sediment (+95% confidence interval) was 

0.0649+0.0419 day-1 and the reverse exchange rate was 0.398+0.304 day-1. The rate constant 

of dissipation of thiamethoxam from sediment (+95% confidence interval) was 

0.0250+0.2410days-1 giving a half-life of thiamethoxam in sediment of 27.7 days.  
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Figure 5-4 Measured and simulated residues of thiamethoxam in the water and sediment 

phase. Dots represent observed thiamethoxam residues and lines represent 

predictions from the model. 

5.3.2. Dissipation of metalaxyl-M in the water-sediment system 

Metalaxyl-M residues in the water phase decreased rapidly from 135+2 µg on day 0 up to day 

7; thereafter metalaxyl-M in water gradually decreased to 56.8+3.7 µg on day 28. The 

residues in sediment increased rapidly to a peak of 25.7+0.3 µg on day 7 before decreasing 

slowly as shown in Figure 5-5. The rate constant for dissipation of metalaxyl-M from water 

(+95% confidence interval) was 0.00509+0.00943 days-1 giving a half-life of metalaxyl-M in 

water of 136 days.  

The exchange rate of metalaxyl-M between water and sediment (+95% confidence interval) 

was 0.110+0.013 day-1 and the reverse exchange rate was 0.305+0.044 day-1. The rate 

constant for dissipation of metalaxyl-M from sediment (+95% confidence interval) was 

0.0845+0.0365 days-1 giving a half-life of metalaxyl-M in sediment of 8.20 days.  
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Figure 5-5 Compares measured and simulated residues of metalaxyl-M in the water and 

sediment phases. Dots represent observed metalaxyl-M residues and lines 

represent prediction line from the model. 

5.4 Discussion 

5.4.1. Dissipation of thiamethoxam from the water phase 

Dissipation of thiamethoxam from the water phase may have resulted from hydrolysis, 

microbial degradation in water, sorption to sediment particles and pesticide exchange 

between water and sediment. Photo-degradation was negligible in the present study because 

the experiment was carried out under dark conditions. The neutral pH of the water phase 

suggested that hydrolysis rate would be very low based on the photolysis experiment in 

Chapter 3 and other studies (Liqing et al., 2006; Karmakar et al., 2009). Hence sorption by 

sediment and microbial degradation may play the dominant roles in dissipation of 

thiamethoxam from the water phase.  
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Sorption to sediment was assumed to have a major role in rapid dissipation in water during 

the first period because the dissipation rate was high until about 3 days after pesticide 

addition; subsequently, the rate was slower as thiamethoxam sorption to sediment increased 

initially then approached equilibrium. Results from the sorption experiment (Chapter 4) were 

used to estimate that 13.3% of thiamethoxam would sorb to sediment. In fact, maximum 

sorption was 23.4% of total measured thiamethoxam at day 14. The sorption of 

thiamethoxam from the calculation and the sorption in a water-sediment system were smaller 

than the sorption in the water-sediment system. The anomaly may have arisen because of the 

methodology to separate sediment from overlying water which would have left some pore 

water within the sediment.. 

5.4.2. Dissipation of thiamethoxam from the sediment phase 

Thiamethoxam sorbed to sediment such that the pesticide concentration in sediment increased 

until the sorption reached equilibrium. Thiamethoxam in sediment then decreased because of 

microbial degradation in sediment (Gupta et al., 2008; Karmakar et al., 2006) and pesticide 

exchange between sediment and water. 

A previous study by Karmakar et al. (2006) investigated degradation of thiamethoxam in four 

different soils; a loamy sand, sandy clay loam, silty clay loam, and sandy loam from India. 

The degradation was slower in the loamy sand with slightly acidic pH (pH 6.64) compared to 

degradation of thiamethoxam in the three alkaline soils (pH 7.50-8.10). The authors 

suggested a plausible transformation of thiamethoxam in soil as given in Figure 5-6. The 

authors also found a positive relationship between degradation and organic carbon content in 

the soils. 
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Figure 5-6  Possible transformation pathway for thiamethoxam in soil (Karmakar et al., 2006). 
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Gupta et al. (2008) studied persistence of thiamethoxam in a sandy loam soil under different 

moisture conditions (air-dry, field capacity and submerged conditions) at initial 

concentrations of 1.0 and 10 mg kg-1 for 90 days. The study showed that there was a 

significant difference in persistence with moisture condition with wetter soil giving faster 

dissipation of thiamethoxam. The dissipation of thiamethoxam was thought to result from 

microbial degradation. It was explained that microbial activities could be very slow or 

negligible under insufficient moisture condition (air-dry soil); under adequate moisture 

condition, the type of microbial population influenced degradation of thiamethoxam as 

anaerobic microorganisms (submerged soil) were more efficient in degradation of 

thiamethoxam than aerobic microorganisms (soil  at field capacity) (Gupta et al, 2008).  

5.4.3. Dissipation of metalaxyl-M from the water phase 

Metalaxyl-M was stable under acidic, neutral and slightly alkaline conditions (Sukul and 

Spiteller, 2000). As the hydrolysis of metalaxyl-M was not significant in the water phase, the 

possible dissipation mechanisms were sorption to sediment and microbial degradation. The 

rapid dissipation of metalaxyl-M from the water phase during the first period of the 

experiment results from metalaxyl-M sorption to sediment. The amount of metalaxyl-M 

sorbed to sediment in water-sediment systems (21.3%) was lower than that in the sorption 

study (31.6%) (Chapter 4). As above, the lack of shaking would influence this, but the 

difference was much greater for metalaxyl-M than for thiamethoxam. In the meantime, some 

metalaxyl-M was possibly dissipated via microbial degradation as metalaxyl-M residues 

decreased in the water phase after metalaxyl-M in the sediment phase reached the peak. 

5.4.4. Dissipation of metalaxyl-M in the sediment phase 

Metalaxyl-M concentration in sediment increased to 7 days and then slowly decreased. The 

residue trend agreed with the assumption that metalaxyl-M was sorbed by sediment until 

reaching equilibrium. The peak accounted for about 21.3% of total measured metalaxyl-M at 

day 7.  
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Previous studies (Droby and Coffey, 1991; Saha and Sukul, 1997; Sukul and Spiteller, 2001; 

Sukul et al., 2008) demonstrated that microorganisms are able to degrade metalaxyl. Saha and 

Sukul (1997) compared dissipation of metalaxyl in sterilized and non-sterilized soil at field 

capacity (aerobic condition) and under water-logged conditions (anaerobic conditions). Loss 

of metalaxyl in non-sterilized soil was 52.9 and 43.3% at field capacity and under water-

logged conditions, respectively whilst loss of metalaxyl in sterilized soil was 31.5 and 25.2% 

at field capacity and under water-logged conditions, respectively.  The higher loss in non-

sterilized soil indicated a significant role of microorganisms in degradation of the compound.   

Sukul and Spiteller (2001) confirmed an important role of the microbial population in 

dissipation of metalaxyl. The authors investigated dissipation of metalaxyl in four different 

soils (silt, clay, silt loam and sand) under sterilized and non-sterilized conditions. Dissipation 

of metalaxyl in non-sterilized soil was higher than in sterilized soil. The study found that 

microbial activity contributed 35.8-57.3% of dissipation and that 5.3-14.7% of dissipation 

was due to abiotic factors excluding light (the experiment was performed in the dark).  

It should be noted that the description of chemical exchange between water and sediment 

shown in Figure 5-1 is not entirely consistent with the physical process. In reality the 

exchange between water and sediment will depend on the disequilibrium (gradient in 

chemical potential or gradient in fugacity).  

Chemical will move from water to sediment when the ratio of Cs/ Cw is <Kd and there will be 

net movement from sediment to water when Cs/Cw >Kd. In the model displayed in Figure 5-1, 

flux from sediment to water depends only on mass of sediment and flux from water to 

sediment depends only on mass of water. This does not affect the ability of the model to 

represent concentration changes in water and sediment (see Figures 5-4 and 5-5) but it does 

affect how the parameters are interpreted. 

5.5 Conclusions 

Dissipation of the spiked pesticides from water-sediment systems in the dark arose from             

a number of mechanisms. The main mechanisms were hydrolysis, sorption to sediment and 

microbial degradation in sediment. Studies reported in Chapters 3 and 4 about factors 
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influencing dissipation of the pesticides helped to understand the role of each mechanism 

(hydrolysis and sorption) on dissipation of the pesticides from water-sediment systems.  

Sorption of thiamethoxam and metalaxyl-M to sediment in the water-sediment systems was 

higher than that calculated based on the Kd values. It may be because there was an error in 

discarding water from the sediment layer such that there was a lot of water left so 

thiamethoxam in water combined with thiamethoxam in sediment. The dissipation rate for 

thiamethoxam from water obtained from the model combined all processes contributing to 

pesticide dissipation from water including hydrolysis and sorption so dissipation rate of 

thiamethoxam obtained from the model (half-life was 13 days) was faster than the observed 

hydrolysis rate at similar pH (half-lives ranged from 16 to 27 days at pH  7-8; Chapter 3). 

The similarity in half-lives suggests that hydrolysis played an important role in dissipation of 

thiamethoxam from water and sorption to sediment served a minor role which agrees with the 

prediction based on Kd that thiamethoxam sorbed up to a maximum of 13.3% in sediment. 

The water-sediment study showed that a greater proportion of metalaxyl-M was in the water 

phase than would be predicted from the measured Kd value (Chapter 4). It could be due to 

non-extractable form of the pesticide sorbed to sediment. Metalaxyl-M in sediment appeared 

to degrade faster than the residues in the water phase because metalaxyl-M is stable to 

hydrolysis and there are generally fewer microorganisms in water than in sediment. 
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CHAPTER 6 

6. INFLUENCE OF THE PRESENCE OF PLANTS ON 
PESTICIDE DISSIPATION FROM WATER-SEDIMENT 
SYSTEMS  

6.1 Introduction 

Chapter 5 investigated dissipation of pesticides from water-sediment systems. However, these 

systems only partially represent dissipation in natural water-sediment systems as real-world 

systems commonly contain plants. Plants in the systems could be either floating plants, 

submerged plants and/or rooted plants. Plants play various important roles such as producer, 

food and habitat in aquatic systems. Plants are not only able to use organic matter, nutrients 

and CO2 from soil, water and air, but it is also recognized that they can be involved in 

dissipation of inorganic (Chaturvedi et al., 2012; Maresova et al., 2012; Materazzi et al., 

2012) and organic contaminants (Gregoire et al., 2009). 

Plants can influence dissipation of pesticides from water-sediment systems either directly or 

indirectly. Plants are able to directly take up and then metabolize pesticides from the 

surrounding water/sediment (Gregoire et al., 2009). The ability to uptake, accumulate and 

metabolize varies depending on plant species (Bouldin et al., 2005) and pesticide properties 

such as octanol-water coefficient (log Kow) (Collins et al., 2006; de Carvalho et al., 2007b; 

Stottmeister et al., 2003) and acidity dissociation constant pKa (Trapp, 2004). Indirect effects 

of plants could enhance both abiotic and biotic degradation of pesticides. Establishment of 

plant roots in soil/sediment allows oxygen transport in the root zone supporting aerobic 

microbial populations to grow and degrade pesticides (Gregoire et al., 2009). Plants in water 

use up dissolved carbon dioxide via photosynthesis and then they produce CO2 during 

respiration causing the diurnal range in pH as a result. Alkaline conditions in water can 

enhanced hydrolysis of some pesticides such as the neonicotinoid insecticides thiamethoxam 

(Karmakar et al., 2009) and imidacloprid (Guzsvany et al., 2006), and the organophosphorus 

insecticide phoxim (Gatidou and Iatrou, 2011).  

Potential processes relating to dissipation of organic contaminants from systems containing 

plants are removal, accumulation, transformation and degradation of organic contaminants 
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(Salt et al., 1998). Many studies investigated the potential of using plants for pesticide 

remediation from contaminated water in wetlands (Moore et al., 2006), agricultural drainage 

ditches (Moore et al., 2001) and vegetated microcosms (Bouldin et al., 2005). Moore et al. 

(2001) reported distribution of a hydrophilic pesticide (atrazine) and a hydrophobic pesticide 

(lambda-cyhalothrin) among water, sediment and plants. Mean percentages of atrazine in an 

agricultural drainage ditch at one hour after simulated runoff (at initial concentration of 28.9 

mg L-1) were 37, 2 and 61% in water, sediment and plants, respectively; mean percentages of 

lambda-cyhalothrin (at initial concentration of 0.46 mg L-1)  were 12, 1 and 87% in water, 

sediment and plants, respectively. The length of agricultural drainage ditch required for 

mitigation of atrazine/lambda-cyhalothrin to a no-effect concentration (≤20 µg L-1) was 50 m. 

The study suggested that plants served as an important sorption site taking up pesticide from 

water runoff as the total percentage of pesticide associated with plants during the study was 

42-77% and 61-93% for atrazine and lambda-cyhalothrin, respectively. Moore et al. (2006) 

found a majority of methyl parathion was in plants for vegetated wetlands and that most of 

the pesticide was in sediment for non-vegetated wetlands after 10 days of study. A vegetated 

wetland length to reduce methyl parathion to 0.1% of the initial concentration (8.01 mg L-1) 

was 18.8 m whilst a length for non-vegetated wetland was 62.9 m; this suggested that 

vegetated wetlands were about three times more effective in reducing methyl parathion from 

runoff than non-vegetated wetlands. When contaminated water was passed through a 

vegetated wetland, it was found that the pesticide concentration decreased to a non- 

detectable level at a certain distance from the contaminant source depending on water 

retention time, water runoff, plant contact and vegetative attributes (Moore et al., 2001).  

Studies have found that plants are able to take up herbicides and/or insecticides from water 

runoff (Moore et al., 2001; Bouldin et al., 2005; Moore et al., 2006). Pesticide could be 

accumulated in the leaf (Bicalho and Langenbach, 2012; Wilson et al., 2001), stems 

(Gregoire et al., 2009) and/or roots (Bicalho and Langebach, 2012). Wilson et al.  (2001) 

reported that stems and roots of four ornamental plants serve as transportation routes whilst 

metalaxyl was accumulated in the leaves. Bicalho et al. (2012) found that atrazine was 

accumulated in the roots and leaves of Cecropia hololueca Miq. and Trema micranta (L.) 

Blum. 
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The aim of this study was to use the model species Myriophyllum spicatum to investigate 

how the presence of plants influences the dissipation of thiamethoxam and metalaxyl-M from 

water-sediment systems. 

6.2 Material and methods 

6.2.1. Chemicals and test systems 

Pesticides and chemicals used in this experiment were the same as those used and 

characterized in Chapter 3.  

Sediment was collected in December 2010. The sediment was a sandy clay loam with 

48.7+3.0% sand, 19.4+0.8% silt and 26.9+5.5% clay (mean+standard deviation). Sediment 

pH was 7.12+0.03 in distilled water and 7.01+0.01 in 0.01M CaCl2. Total carbon was 

5.10+0.05% and total nitrogen was 0.274+0.002%. 

Myriophyllum spicatum was collected from an artificial pond at FERA, York.  Shoots of the 

plant were trimmed to 8.0+0.5 cm to give similar fresh biomass. Fresh weight for one shoot 

was 0.11+0.03 g at the start of the experiment.  

Sediment (150 g dry weight) was placed in glass jars and six shoots of Myriophyllum 

spicatum were planted in the sediment in each jar. M4 medium (Table 5-1) was adjusted to 

pH between 7.5 and 8.0 to allow for optimum growth of Myriophyllum spicatum (Maltby et 

al., 2009), then the medium (600 ml; ratio of 1 g dry weight sediment to 4 ml M4 medium) 

was added to the jars. The depth of sediment was 3.0+0.3 cm and that of water was 6.0+0.3 

cm. The system was maintained under test conditions for a period of one week to allow        

M. spicatum to establish. 
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Table 6-1 Preparation of M4 Medium (Maltby et al., 2009; the first publication of the M4 

medium can be found in Elendt (1990)) 

Macronutrient stock 
solutions (single 
substance) 

Amount added to 
water (g L

-1
) 

Concentration 
(relative to final M4 
medium) 

Amount of stock solution 
added to prepare medium 
(mL L

-1
) 

CaCl2.2H2O 

MgSO4.7H2O 

KCl 

NaHCO3 

Na2SiO3.9H2O 

NaNO3 

KH2PO4 

K2HPO4 

294 

247 

58.0 

365 

50.0 

2.74 

1.43 

1.84 

1,000-fold 

2,000-fold 

10,000-fold 

1,000-fold 

5,000-fold 

10,000-fold 

10,000-fold 

10,000-fold 

1.0 

0.5 

0.1 

1.0 

0.2 

0.1 

0.1 

0.1 

6.2.2. Experimental conditions 

The experiment was performed at 20+1oC in a growth chamber model SGC 970 Fitotron 

(Sanyo, UK) with a cycle of 16 hours light and 8 hours dark. Fluorescent lighting was used to 

provide a light intensity of 0.0117 kW m-2. This was chosen to provide optimum growth 

conditions for Myriophyllum spicatum (Maltby et al., 2009). 

6.2.3. Treatment and application of test substance 

At the beginning of the experiment, 12 mL of a 100.3 mg L-1 solution of metalaxyl-M and 

thiamethoxam in water was added to each system to give a final concentration of 2.00 mg L-1 

of each pesticide in overlying water. There were three replicates of each treatment. All 

experimental bottles were oxygenated every few days using an aquarium air pump model 

“airvolution; avmini” to prevent de-oxygenation in the water-sediment systems. An airline 

from the pump was connected to a glass pipette which was placed just below the surface to 

allow air bubbles to circulate in the water phase for three minutes without disturbing the 

sediment. 
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There were two controls without the spiked pesticides. The first control was a water-sediment 

system alone and the second control was a water-sediment system containing Myriophyllum 

spicatum. These two controls were set up in three replicates. Six different treatments were set 

up to investigate individual parameters (light, sediment and plants) which could affect 

pesticide dissipation (Table 6-2). Treatment A was the simplest system, with the spiked 

pesticides with M4 medium alone. From the simplest system, one parameter (light/sediment) 

was added to the systems giving treatment B to separate the effect of photolysis on pesticide 

dissipation and treatment C to understand the effect of sorption to sediment. More complex 

systems included two factors to give treatment D to understand the influence of sediment and 

light on pesticide dissipation and treatment E to understand the influence of light and plants. 

Treatment F comprised water, light, sediment and plants to quantify dissipation in the full 

systems. 

6.2.4. Test duration, sampling and measurements 

The experiment was performed in either light or dark environments for 56 days. Three jars 

from the respective treatment were sampled destructively at the intervals given in Table 6-2.  

The pH in water and the sediment phase and dissolved oxygen in water were measured at 

each interval in the sampled jars. Weight of fresh biomass of the six shoots of Myriophyllum 

spicatum was recorded. 

pH and dissolved oxygen in water were measured as described in Section 5.2.1. pH 

measurement for sediment was made with 1: 2.5 w/v suspensions in (a) water, and (b) 0.01M 

CaCl2. Air-dried sediment (10 g) was weighed into a 50 mL glass beaker. Distilled water 25 

mL was added to the beaker.  The sediment was stirred and left to stand for 10 minutes, then 

stirred again and the pH probe was introduced and pH was recorded when the pH reading was 

stable. 0.125M CaCl2 (2 mL) was added into the beaker using a micropipette. The solution 

was stirred, the probe re-introduced and the reading recorded when it stabilised (Avery, 

1982). The pH measurement in sediment was checked using a standard soil (obtained from 

FERA) to confirm correct measurement.  
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Table 6-2 A summary of experimental treatments, dissipation processes and sampling 

intervals 

Treatment 
Light 

(yes/no) 
Sediment 
(yes/no) 

Plant 
(yes/no) 

Pesticide dissipation processes 
Sampling 
interval (days) 

A no no no 

- Hydrolysis 

- Microbial degradation in 
water 

0, 28, 56 

B yes no no 

- Hydrolysis 

- Microbial degradation in 
water 

- Photolysis 

0, 28, 56 

C no yes no 

- Hydrolysis 

- Microbial degradation in 
water 

- Sorption to sediment 

- Degradation in sediment 

0, 28, 56 

D yes yes no 

- Hydrolysis 

- Microbial degradation in 
water 

- Sorption to sediment 

- Degradation in sediment 

- Photolysis 

0, 3, 7, 14, 28, 
42, 56 

E yes no yes 

- Hydrolysis  

- Microbial degradation in 
water  

- Photolysis  

- Plant uptake  

- Degradation in plant 

0, 28, 56 

F yes yes yes 

- Hydrolysis  

- Microbial degradation in 
water  

- Sorption to sediment  

- Degradation in sediment  

- Photolysis  

- Plant uptake  

- Degradation in plant 

0, 3, 7, 14, 28, 
42, 56 
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6.2.5. Calculation water content in Myriophyllum spicatum 

Most Myriophyllum spicatum fresh weight throughout the experiment was in the range 0.1 to 

0.2 g per shoot so M. spicatum with fresh weight 0.10+0.05 g per shoot were used for 

measurement of water content. Triplicate plants were dried using adsorbent tissues. The 

plants were oven-dried at 60oC for 1 hour and then were re-weighed. The process was 

repeated until there was no further change in weight. The calculation of water content in 

Myriophyllum spicatum was adopted from that for soil (Avery and Bascomb, 1982): 

 

The water content of Myriophyllum spicatum (+standard deviation) was 96.55+1.29% for the 

plant fresh weight at 0.11+0.05g. 

6.2.6. Extraction of thiamethoxam and metalaxyl-M from sediment 

Extraction of thiamethoxam and metalaxyl-M from sediment was performed as described in 

Section 5.2.3 

6.2.7. Extraction of metalaxyl-M and thiamethoxam from Myriophyllum 

spicatum  

Six shoots of Myriophyllum spicatum were rinsed with distilled water to remove sediment 

and/or pesticide solution from the plant surface and then the plants were dried using 

absorbent tissue. The plant was ground into small pieces using a glass motar. Methanol was 

added in a ratio of 10 ml MeOH per 1 g of the plants (wet weight) and this was then shaken 

on a side-to-side shaker at 150 oscillations per minute for 30 minutes. The samples were 

centrifuged at 2500 rpm for 10 minutes. Supernatants were decanted.  

Before the plant extract was cleaned-up and concentrated by solid phase extraction technique 

(SPE), the extract was dried under N2 flow, then re-dissolved in 1 mL of 20:80 (MeOH:H2O). 
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The SPE cartridge used was a Strata-x 33m polymeric reversed phase, 200 mg/ 3 mL (Strata 

TM, Phenomenex product). The cartridge was connected to a 24-port model,                

Supelco-VisiprepTM solid phase extraction vacuum manifold. The cartridge was conditioned 

with 3 mL MeOH followed by 3 mL water, then 1 mL of the plant extract in                    

20:80 (MeOH:H2O) was loaded onto the cartridge. 3 mL water was used for rinsing and then 

the pesticides were eluted using 3 mL MeOH. The eluate was dried under N2 flow and        

re-dissolved in 0.2 mL of 50:50 (MeOH:H2O). 

A recovery test for the clean-up and concentration of the two pesticides using solid phase 

extraction was performed in triplicate at three concentrations (0.2, 0.5, 2.0 µg mL-1). Plant 

extract (blank; 3 mL) was spiked with the two pesticides to obtain final concentrations of 0.2, 

0.5, and 2.0 µg mL-1), Solid-phase extraction was undertaken immediately as described 

above. The recovery values of thiamethoxam and metalaxyl-M are summarized in Table 6-3. 

The recovery showed that most of total added pesticides in plant extract were eluted with 

MeOH and they were not retained on the sorbent in the solid-phase extraction cartridge. 

Table 6-3 Recovery of thiamethoxam and metalaxyl-M from plant extracts at three 

concentrations (mean+standard deviation) 

Pesticide concentration (µg mL
-1

) Thiamethoxam Metalaxyl-M 

0.2 91.8+1.2 86.6+10.3 

0.5 97.4+1.8 84.2+0.8 

2.0 108+9 87.6+8.3 

6.2.8. HPLC analysis 

Pesticide concentration in water and sediment samples was determined by HPLC-UV using 

an Agilent 1100 Series equipped with a binary pump, an auto sampler, a photodiode array 

detector (Agilent 1100 Series, G1365B MWD) and a C18 reversed-phase column (Supelco 

Discovery C18, 150 x 4.6 mm, 5 m). Mobile phases were mixtures of water acidified with 
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0.1% phosphoric acid and methanol at a constant flow rate of 1 mL min-1. For the first 10 min 

the mobile phase was composed of 20:80 (MeOH: 0.1% acidified H2O). For the next 20 min 

the methanol content was increased to 100%, then for the next 7 min the methanol content 

was decreased to 20%. The absorbance for metalaxyl-M and thiamethoxam was measured at 

215 and 252 nm, respectively. The Agilent 1100 series model was used to record and analyze 

the area of the peak for calculation of quantitative residue of the pesticides by comparing 

peak area and retention time of the pesticides with authentic standards. 

The HPLC equipment described above was used to determine pesticide concentration in the 

plant extract. The HPLC condition for analysis of metalaxyl-M was a mobile phase 

composing 50:50 (MeOH: 0.1% acidified H2O) at a constant flow rate of 1 mL min-1. The 

isocratic condition was run for 15 minutes. The area of metalaxyl-M’s peak for calculation of 

quantitative residue of the pesticide was recorded at 215 nm. The HPLC condition to analyze 

thiamethoxam was a mobile phase composing 15:85 (CH3CN:0.1% acidified H2O) at a 

constant flow rate of 1 mL min-1. The isocratic condition was run for 20 mins. 

The limit of detection (LOD) was the lowest concentration level that could be determined to 

be different from a blank. Limits of detection were matrix-, method- and instrument specific. 

The limit of detection was determined at a ratio of three for the signal height of the analyte to 

the noise height of a blank with matrix matching. Limits of detection in M4 medium, 

sediment extract and Myriophyllum spicatum extract for thiamethoxam and metalaxyl-M are 

summarized in Table 6-4.  
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Table 6-4 Limits of detection in M4 medium, sediment and Myriophyllum spicatum 

(mean+standard deviation) for metalaxyl-M and thiamethoxam 

Matrices 
Limit of detection for metalaxyl-M     

( +standard deviation)       

Limit of detection for thiamethoxam     

( +standard deviation) 

M4 medium    

(mg L
-1

) 
0.013 (+0.004)  0.009 (+0.004)  

Sediment 

(mg kg
-1

) 
0.055 (+0.002)  0.051 (+0.028)  

Myriophyllum spicatum 

(mg kg
-1

) 
6.04 (+0.73)   1.85(+0.12) 

6.2.9. Statistical analysis 

pH in water of experimental treatment were analysed by two-way anova using Sigma Plot 

12.0 to determine differences among treatments. According to pesticide residues in varying 

treatment and time were not normal distribution, half-live of pesticide with error of Chi2 in 

varying treatment were plotted to determine difference in degradation among treatments. 

6.3 Results  

6.3.1. pH of the water phase  

The pH in M4 medium during the experiment ranged from 5.96 to 9.49 as shown in        

Figure 6-1. For the systems without sediment (treatments A, B and E) the pH value in M4 

medium increased to alkaline conditions. There was significant different among treatments 

(p<0.001) and also significant different among varying time (p<0.001) (Appendix D-14).  

pH in treatment A was similar to that in treatment B whereas the presence of Myriophyllum 

spicatum resulted in more alkaline conditions in treatment E than in treatments A and B. 

Presumably, the rise in pH in the treatments was a result of photosynthesis activity whereby 
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CO2 in solution was used as a carbon source for photosynthesis (Prins et al., 1980). At the 

time that pH in water was measured, the systems were illuminated so CO2 was being fixed 

rather than produced by respiration.  

The pH value in treatment F did not change to very alkaline conditions and was similar to the 

control treatment (H) (data not shown); possibly there was a balance between the effects of 

photo-synthesis and producing CO2 via respiration of plants and the microbial population in 

sediment as the trend of pH in treatments C and D was towards acidic condition 

 

Figure 6-1  Change in pH in M4 medium in different treatments during the experiment                         

(mean+standard deviation; n=3) 

6.3.2. Dissipation of thiamethoxam from the water phase  

In the presence of plants, the rate of dissipation of thiamethoxam in treatments E and F was 

faster than the dissipation rate in other treatments without plants as shown in Figure 6-2. The 

presence of sediment had a positive effect on dissipation of thiamethoxam as the rate of 

dissipation of thiamethoxam in treatments C and D was faster than that in treatments A and B 
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(without sediment). The half-life of thiamethoxam in M4 medium was about three times 

longer in treatment A (without sediment) than in treatment C with presence of sediment 

(Table 6-5). At 56 days, the thiamethoxam remaining in M4 medium was about 50% of the 

initial concentration in treatment A whereas thiamethoxam in M4 medium decreased to less 

than the limit of detection in treatment C. 

The rate of dissipation of thiamethoxam in M4 medium decreased in the order treatment E > 

treatment F > treatment D > treatment C > treatment B > treatment A, as shown in Table 6-5.  

The details of thiamethoxam residues in each component of all treatments are given in 

Appendices D-1 to D-6.   

 

Figure 6-2 Change in concentration of thiamethoxam in solution over time for the six 

treatments (mean+standard deviation; n=3).  
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Table 6-5 Assumed processes occurring in the experimental treatments and half-life of thiamethoxam for each treatment, Chi
2
 for fit and rate 

constant of pesticide dissipation obtained by comparing between different experimental treatments  

Treatments 
Assumed processes related to pesticide 
dissipation  

Half-life 
(days) 

Chi
2
 for fit 

Rate constant derived by comparing  between two 
treatment (day

-1
) 

A 
- Hydrolysis       

- Microbial degradation in water 
62.6   6.57 ktreatmentA = ~khydrolysis = 0.0111 day

-1
 

B 

- hydrolysis  

- microbial degradation in water 

- Photolysis 

54.6  7.59 
ktreatmentB-ktreatmentA = kphotolysis 

0.0127-0.0111 = 0.00160 day
-1 

; Half-life = 433  days 

C 

- Hydrolysis  

- Microbial degradation in water  

- Sorption to sediment 

- Degradation in sediment 

15.5 

 

 

10.3 

 

 

 

D 

- Hydrolysis 

- Microbial degradation in water 

- Sorption to sediment  

- Degradation in sediment  

- Photolysis 

11.9 

 

 11.2 
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Table 6-5 (continued) Assumed processes occurring in the experimental treatments and half-life of thiamethoxam for each treatment, Chi
2
 for fit 

and rate constant of pesticide dissipation obtained by comparing between different experimental treatments. Thiamethoxam 

concentration in treatment E was below the detection limit after day 0 so the detection limit concentration (9 µg L
-1

) of thiamethoxam 

was used to calculate half-life in treatment E 

 
Treatments 

Assumed processes related to pesticide 
dissipation  

Half-life 
(days) 

Chi
2
 for fit 

Rate constant derived by comparing between two 
treatment (day

-1
) 

E 

- Hydrolysis  

- Microbial degradation in water  

- Photolysis  

- Plant uptake  

- Degradation in plant 

0.465  1.88  

F 

- Hydrolysis  

- Microbial degradation in water  

- Sorption to sediment  

- Degradation in sediment  

- Photolysis  

- Plant uptake  

- Degradation in plant 

 

 

 

1.13 

 

 

 

 

 

 

 

2.36 
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6.3.3. Dissipation of thiamethoxam from water-sediment systems  

Figure 6-3 shows the change in concentration of thiamethoxam whilst Figure 6-4 shows the 

same data but expressed as mass of thiamethoxam. Thiamethoxam gradually decreased from 

2.01+0.32 mg L-1 on day 0 to a non-detectable concentration on day 56 in the water phase of 

the systems without plants (Figure 6-3). The residues in sediment increased to a peak of 

0.449+0.080 mg kg-1 on day 14 before decreasing to a non-detectable concentration by day 

28.   

In the systems containing plants, thiamethoxam residues in the water phase decreased 

dramatically from 1.73+0.25 mg L-1at day 0 to a non-detectable concentration on day 7 and 

the highest peak of thiamethoxam residues in sediment was 0.0213+0.0073 mg kg-1 on day 

14 before decreasing to a non-detectable concentration. The residues in the plants increased 

to a peak of 5.97+8.13 mg kg-1 on day 7. 

 

Figure 6-3  Change in concentration (mean + standard deviation; n=3) of thiamethoxam in the 

water, sediment and plant phases between two systems with and without 

Myriophyllum spicatum.  
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Figure 6-4  Change in mass (mean+standard deviation; n=3) of thiamethoxam in the water 

sediment and plant phases between two systems with and without Myriophyllum 

spicatum. 

The initial mass of thiamethoxam in the systems without plants was 1.20+0.32 mg in the 

water phase and the mass was below the limit of detection in sediment (Figure 6-4). The 

maximum mass of thiamethoxam in sediment was 0.08+0.07 mg at day 14; thereafter the 

mass decreased to below the limit of detection. At the maximum mass of thiamethoxam in 

sediment, the ratio of mass in water to mass in sediment was 8.3 to 1.  

Initial mass of thiamethoxam in the water-sediment system with plants was 1.04+0.25 mg in 

the water phase and the mass of thiamethoxam in sediment was below the limit of detection 

throughout the experiment. At day 3, total mass of thiamethoxam decreased by 87% to 

0.17+0.09 mg in the system. The maximum mass of thiamethoxam in plants was 

0.000852+0.001292 mg. 

 



Chapter 6  

 

109 

 

6.3.4. Dissipation of metalaxyl-M from the water phase  

Loss due to volatilization was probably not significant due to the low vapour pressure of 

metalaxyl at 0.75 mPa (25oC) and comparatively high water solubility of 7.1-8.4 g L-1 

(PPDB, 2009; Sukul and Spiteller, 2000).  

In the presence of sediment, mass of metalaxyl-M in water decreased over 60% and about 

50% after 28 days in treatments F, C and D, respectively (Figure 6-5). The rate of dissipation 

of metalaxyl-M was faster in the treatment containing plants (treatment F) compared to 

treatments C and D. In water-sediment systems containing plants (treatment F), metalaxyl-M 

in M4 medium decreased by more than 65% after 28 days and decreased further to a non-

detectable concentration after 56 days of the experiment (Figure 5-5). Comparing water-

sediment treatments (D and F), Figure 6-5 shows that dissipation of metalaxyl-M in M4 

medium in treatment F containing plants was faster than in treatment D (no plants). At 56 

days after pesticide application, nearly 40% of metalaxyl-M remained in M4 medium in the 

treatment without plants whereas in the treatment containing the plants, the pesticide 

decreased to a non-detectable concentration. 

Rate of dissipation of metalaxyl-M in M4 medium decreased in the order treatment F > 

treatment C > treatment D > treatment E > treatment B > treatment A (Table 6-6). The details 

of metalaxyl-M residues in each component of all treatments are given in Appendices D-7 to 

D-13.   
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Figure 6-5  Percentage metalaxyl-M (mean+standard deviation; n=3) remaining in M4 medium 

among experimental treatments at three sampling interval times. 
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Table 6-6 Assumed processes occurring in the experimental treatments and half-life of metalaxyl-M for each treatment, Chi
2
 for fit and rate 

constant of metalaxyl-M dissipation obtained by comparing between different experimental treatments  

Treatment 
Assumed processes related to pesticide 
dissipation  

Half-life 
(days) 

Chi
2
 for fit 

Rate constant derived by comparing between two 
treatment (day

-1
) 

A 
- Hydrolysis       

- Microbial degradation in water 
310 3.31 ktreatmentA = ~khydrolysis = 0.00223  day

-1
 

B 

- hydrolysis  

- microbial degradation in water 

- Photolysis 

221 

  
3.57 

 

ktreatmentB-ktreatmentA = kphotolysis 

0.00313-0.00223 = 0.0009 day
-1 

; Half-life =  770 days  

C 

- Hydrolysis  

- Microbial degradation in water  

- Sorption to sediment 

- Degradation in sediment 

28.2 

  
0.970 

 

 

D 

- Hydrolysis 

- Microbial degradation in water 

- Sorption to sediment  

- Degradation in sediment  

- Photolysis 

33.0 

  
13.3 
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Table 6-6 (continued) Assumed processes occurring in the experimental treatments and half-life of metalaxyl-M for each treatment, Chi
2
 for fit 

and rate constant of metalaxyl-M dissipation obtained by comparing between different experimental treatments  

Treatment 
Assumed processes related to pesticide 
dissipation  

Half-life 
(days) 

Chi
2
 for fit 

Rate constant derived by comparing between two 
treatment (day

-1
) 

E 

- Hydrolysis 

- Microbial degradation in water  

- Photolysis  

- Plant uptake  

- Degradation in plant 

 

 

59.4 

 

 

 

 

11.6 

 

 

 

F 

- Hydrolysis  

- Microbial degradation in water  

- Sorption to sediment  

- Degradation in sediment  

- Photolysis  

- Plant uptake  

- Degradation in plant 

13.3 

 

15.0 
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6.3.5. Dissipation of metalaxyl-M from water-sediment systems  

Figure 6-6 shows change in concentration of metalaxyl-M whilst Figure 6-7 shows the same 

data but expressed as mass of metalaxyl-M. The water-sediment systems without the plants 

had metalaxyl-M concentration of 1.71+0.55 mg L-1 in water at day 0 and the residues in 

sediment increased to a peak of 0.904+0.177 mg kg-1 in the systems without the plants on day 

7 (Figure 6-6). Concentration in sediment then decreased to a non-detectable concentration 

after 42 days.  

Metalaxyl-M residues in the water phase decreased gradually from 2.31+0.29 mg L-1 on day 

0 to a non-detectable concentration on day 56 in the water-sediment systems containing 

Myriophyllum spicatum. The residues in sediment increased to a peak of 1.39+0.25 mg kg-1 

in the systems containing the plants and then decreased to a non-detectable concentration 

thereafter. The peak of metalaxyl-M residues in the plants was 15.74+2.74 mg kg-1 on day 14. 

 

Figure 6-6 Change in concentration (mean+standard deviation; n=3) of metalaxyl-M in the 

water, sediment and plant phases between two systems with and without 

Myriophyllum spicatum. 
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Figure 6-7 Change in mass (mean+standard deviation; n=3 in water) of metalaxyl-M in the 

water, sediment and plant phases between two systems with and without 

Myriophyllum spicatum. 

The initial mass of metalaxyl-M in the systems without plants was 1.40+0.17 mg. At the end 

of the experiment (day 56), the mass of metalaxyl-M remaining in water and sediment was 

0.453+0.023, 0.00705+0.00125 mg, respectively (Figure 6-7). The maximum mass of 

metalaxyl-M in sediment was at day 14 giving the ratio mass in water to mass in sediment of 

5.7 to 1. 

The initial mass of metalaxyl-M in systems with plants was 1.39+0.17 mg. Mass of 

metalaxyl-M continuously decreased to below the limit of detection at day 56. The maximum 

mass of metalaxyl-M in the sediment phase was 0.209+0.043 mg at day 7; thereafter the 

pesticide decreased to below the limit of detection at day 56 as shown in Figure 6-7. The ratio 

of mass of metalaxyl-M in water to that in sediment at the maximum metalaxyl-M in 

sediment was 3.1 to 1. The maximum mass of metalaxyl-M in the plants was 0.104+0.093 mg 

on day 56. 
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6.4 Discussion 

6.4.1. Thiamethoxam  

The presence of plants contributed to three processes of dissipation of thiamethoxam, namely 

(i) uptake by plants as the pesticide was found in plant extracts, (ii) enhanced hydrolysis and 

photolysis, and (iii) enhanced biodegradation as the rhizosphere supports microbial 

degradation and root exudates may degrade the two pesticides. This study did not collect data 

on biodegradation because of limitations in budget which prevented use of radioactive 

compounds. In treatments containing plants (treatment E and F), pH of water became more 

alkaline resulting in faster hydrolysis and photolysis rate.  

The hydrolysis rate of thiamethoxam in treatments A and B was similar because pH values in 

these treatments were both neutral. This assumption was supported by previous studies 

showing that hydrolysis of thiamethoxam under neutral conditions is slow (Chapter 3, Liqing 

et al., 2006 and Karmakar et al., 2009).   

Sediment also influenced dissipation of thiamethoxam as rate of dissipation in treatments C 

and D in the presence of sediment was faster than that without sediment (treatments A and 

B). The maximum observed amount of thiamethoxam in sediment (<0.07%) was smaller than 

the predicted amount (13.3%) based on a calculation using the Kd equation and Kd value (1.63 

L kg-1, Section 4.2). Again, it is likely that sorption of thiamethoxam to sediment in this 

experiment was lower than the predicted amount from Kd because only the top layer of 

sediment was directly in contact with pesticide whilst sediment was shaken in the sorption 

experiment (Section 4.2) meaning all sediment was in contact with pesticide. 

Light had a minor effect on rate of dissipation of thiamethoxam as rate of dissipation of 

thiamethoxam in the treatments in the presence of light was a little bit faster than that in 

treatments without light (treatment A (a half-life was 62.6 days) compared to treatment B (a 

half-life was 54.6 days), and treatment C (a half-life was 15.5 days) compared to treatment D 

(a half-life was 11.9 days)) regardless of the presence of sediment.   

Comparing photolysis of thiamethoxam in the “Suntest” (Section 3.1) and that in the growth 

chamber, half-lives of thiamethoxam from the “Suntest“ (0.34+0.01 day at pH 7.0, 0.40+0.06 
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day at pH 8.0) showed a much faster rate of photolysis than the rate in the growth chamber. 

There were a number of possibilities that contributed to high photolysis in the previous 

experiment. Light intensity from the xenon lamp in the “Suntest” (1.27 kW m-2) was much 

higher than that in the growth chamber (0.0117 kW m-2). The spectrum of light from the 

xenon lamp (“Suntest”) ranged 300-1500 nm whilst that from the fluorescent lamp ranged 

300-700 nm. Temperature in the “Suntest” was higher (30+2oC) than in the growth chamber 

(20+1oC). The container could be a subsidiary reason in that the quartz tube used in the 

photolysis experiment in the “Suntest” did not absorb UV light whilst the glass jars used in 

the water-sediment experiment had potential to absorb some UV light.  

6.4.2.  Metalaxyl-M 

Sukul and Spiteller (2000) stated that metalaxyl is stable to hydrolysis at a pH range from pH 

1 to pH 9 at 20oC. The pH in M4 medium across all experimental treatments was in the range 

6.0 to 9.5 so it can be assumed that hydrolysis of metalaxyl-M was negligible.  

The rate of dissipation of metalaxyl-M was faster in the presence of sediment than that in 

equivalent treatments without sediment. For instance, the half-life of metalaxyl-M in M4 

medium was about nine times longer in treatment A (without sediment) than in treatment C in 

the presence of sediment (Table 6-6). This demonstrates an effect of sediment on dissipation 

from the aqueous phase. After 56 days of the experiment, the thiamethoxam concentration in 

M4 medium was more than 80% of the initial concentration in treatment A whereas in 

treatment C only about 30% of initial metalaxyl-M remained in solution (Figure 6-5). The 

maximum observed amount of metalaxyl-M in sediment (15.0%) was again smaller than the 

expected amount (31.6%) based on calculation using Kd equation and Kd value (1.83 L kg-1, 

Section 4.2).  

Dissipation of metalaxyl-M from water-sediment-plant systems was faster than in the other 

treatments. It is assumed that in the presence of sediment, dissipation of metalaxyl-M from 

the water phase could be either from metalaxyl-M sorption to sediment, uptake by plants 

(Wilson et al., 2001; Zaki et al., 1981), or microbial degradation (Saha and Sukul, 1997; 

Sukul et al., 2008). It is possible that the presence of plants gave favourable conditions for the 
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microorganisms as roots of plants de-aggregate sediment allowing aeration and/or dead 

leaves are a source of food for microorganisms.  

Metalaxyl-M residues found in plants in this study were consistent with those in previous 

studies showing that plants are able to take up metalaxyl. Metalaxyl was taken up by roots 

(Wilson et al., 2001; Zaki et al., 1981) and then distributed within the plants and accumulated 

in the leaves (Wilson et al., 2001). The authors suggested from plant tissue analysis that after 

1 day of exposure, metalaxyl mainly accumulated in the leaves of Myriophyllum aquaticum 

Vell whilst very little metalaxyl was accumulated in the stems and roots. This evidence 

supported an assumption that metalaxyl was transported via stems and roots in parrotfeather, 

sweetflag and canna. The finding in other plants such as soybean (Gupta et al., 1985) and 

tomato (Zaki et al., 1981) also supported the assumption. Metabolic products of metalaxyl 

were different depending on plant species, metabolic pathways and enzymes (Sukul and 

Spiteller, 2000). For example, transformation of metalaxyl can occur via various processes 

such as aryl hydroxylation, ester cleavage, O-dealkylation and N-dealkylation (Businelli et 

al., 1984; Owen and Donzel, 1986). Wilson et al. (2001) reported different ability of four 

plants (sweetflag (Acorus gramineus Sol. Ex Aiton), canna (Canna hybrid L. ‘Yellow King 

Humbert’), parrot feather (Myriophyllum aquaticum Vell.) and pickerelweed (Pontederai 

cordata L.) to remove metalaxyl from solution. The reduction of metalaxyl in solution at day 

7 of the exposure period was 16, 60, 31, and 50% for sweetflag, canna, parrot feather and 

pickerelweed, respectively.   

Presence of light in the growth chamber did not contribute to the rate of dissipation of 

metalaxyl-M because of half-lives of metalaxyl-M for treatments A (dark) and B (light) 

suggesting persistent of metalaxyl-M in water phase. More than 80% of metalaxyl-M 

remained in M4 medium in both treatments without sediment (treatment A and B) at the end 

of the experiment (Figure 6-5). Sukul and Spiteller (2000) reported that λmax of metalaxyl is 

196 nm in aqueous solution and that there is no absorption above 290 nm. The emission 

wavelength of the fluorescent lamps was 300-700 nm which was not absorbed by metalaxyl 

molecules (Sukul and Spiteller, 2000). There was no significant difference in half-lives of 

metalaxyl-M in treatments C and D, suggesting that the presence of light in the growth 

chamber was not an important factor for degradation of metalaxyl-M in sediment.  
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6.5 Conclusions  

This experiment provided information on the distribution of thiamethoxam and metalaxyl-M 

among water, sediment and plants including dissipation of thiamethoxam and metalaxyl-M in 

each component in the systems with and without plants. The results demonstrate that plants 

have an important role in dissipation of thiamethoxam and metalaxyl-M. It suggests that in 

water-sediment systems with plants, dissipation of the pesticides will be faster than in 

equivalent systems without plants. Plants contributed to both direct and indirect effects on 

dissipation of pesticide; the direct effect was via uptake by plants and the indirect effect was a 

change in pH to more alkaline condition resulting in faster hydrolysis and photolysis of 

thiamethoxam. Uptake by the plants was small in terms of mass but would be a greater 

proportion of the total in natural systems with a greater mass of plants.  

Distribution of thiamethoxam residues in water-sediment systems was similar for all 

treatments in that most of the residues were located in the water phase whilst smaller amounts 

sorbed to sediment in agreement with the low Kd value (Section 4.2). Sorption of 

thiamethoxam to sediment was less than predicted based on a calculation from the Kd value. 

The strength of influencing factors on dissipation of thiamethoxam from the water-sediment 

systems with/without plants are in the order plants > sediment > light. Calculated photolysis 

(Table 6-5) at pH 7.0-8.5 showed that the photolysis rate of thiamethoxam was very low 

whilst photolysis in the systems with plants could be accelerated by alkaline conditions 

(Section 3.1). Light intensity in the growth chamber was constant and selected for optimum 

growth of Myriophyllum spicatum whilst the spectrum of wavelengths from sunlight is very 

different from that from the fluorescent light; also light intensity under the outdoor conditions 

fluctuates so photolysis of the pesticide under laboratory and outdoor conditions could be 

different.  

The distribution of metalaxyl-M in water-sediment systems also agreed with its low Kd value 

in general. Most of the metalaxyl-M residues were located in the water phase. The strength of 

influencing factors on dissipation of metalaxyl-M from the water-sediment systems 

with/without plants are in the order sediment > plants > light. As metalaxyl-M was stable to 

hydrolysis and photolysis, microorganisms served an important role in dissipation of 

metalaxyl-M from sediment. The fastest dissipation of metalaxyl-M was in a system with 
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sediment and plants as this could provide favourable conditions for growth of 

microorganisms. However the experiment did not investigate microdegradation of the 

pesticide, the role of microorganisms was assumed base on literature reviews. 
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CHAPTER 7 

7. PESTICIDE DISSIPATION FROM WATER-SEDIMENT 
SYSTEMS IN VESSEL UNDER OUTDOOR CONDITIONS  

7.1 Introduction 

Dissipation of pesticides measured in laboratory experiments has often been used to predict 

dissipation of pesticides in the field. Most research investigated dissipation of pesticides in 

single compartments under constant conditions for factors such as temperature and light 

intensity in order to explain behaviour of pesticides in natural systems. There were many 

pesticide studies in single components; either water, soil or sediment (Banerjee et al., 2008; 

Campbell et al., 2005; Carbo et al., 2007; Liqing et al., 2006). Under field conditions, most 

factors are not constant especially weather conditions, and natural systems are multi-

component containing water, soil, sediment, plants and animals. There is variation in either 

abiotic parameters (weather condition, light intensity, heterogeneous composition of 

sediment, and surface interactions between air-liquid-solid phases) and/or biotic parameters 

(number of species and population) that contributes to the difference between dissipation of 

pesticide in laboratory and field experiments. Physico-chemical properties of the pesticide 

determine the role of environmental factors. In many cases, differences between dissipation 

of pesticide in laboratory and field systems were found (Dinelli et al., 2000; Mazanti et al., 

2003; PerrinGanier et al., 1996). Generally, dissipation of pesticide under field conditions 

was faster than that under laboratory conditions both in water (Mazanti et al., 2003) and soil 

(Dinelli et al., 2000; PerrinGanier et al., 1996). Studies on three pesticides in aquaria and 

outdoor pond systems showed a similar dissipation rate of chlorpyrifos whilst half-lives for 

atrazine were 150 and 27-48 days under indoor and outdoor conditions, respectively (Mazanti 

et al., 2003). Half-lives for metolachlor were 55 and 12-20 days under indoor and outdoor 

condition, respectively (Mazanti et al., 2003). 

A study comparing behaviour of pesticides in water-sediment systems in the laboratory and 

field (Bromilow et al., 2006) showed that dissipation of eight pesticides in water-sediment 

systems in the laboratory was slower than in the field. In the field experiment, hot and dry 

weather over summer accelerated degradation of the pesticides (chlorotoluron, isoproturon, 
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pendimethalin, mecoprop) compared to degradation in winter.  Pesticide properties 

(especially lipophilicity) contributed to partition of pesticide in both sediment and plants. 

Lipophilic pesticides (chlorpyrifos, pendimethalin and permethrin) moved into 2.5 cm depth 

of the sediment within 30 days while others (isoproturon and chlorotoluron) remained largely 

in the water. Lipophilicity was also positively correlated with uptake into aquatic plants 

(Lemma major). Pesticide uptake by plants in the field was two-to threefold higher than 

uptake in the laboratory. Uptake by the plants was a small amount compared to sorption to 

sediment and the amount of dissolved pesticides in water. The authors suggested that 

laboratory systems gave a reasonably accurate prediction of field behaviour for some 

pesticides including isoproturon, chlorotoruron, chlopyrifos, and pendimethalin but for others 

including permethrin and difenoconazole, laboratory estimates could possibly overestimate 

persistence in the field and movement into soil/sediment. Beulke et al. (2005) compared 

degradation of two pesticides (cyanazine and bentazone) based on half-lives derived at 

constant temperature (15 or 25oC) and moisture content (40 or 70% soil moisture content) in 

a clay loam soil and half-lives measured under fluctuating conditions (temperature 15/25
o
C, 

moisture content 40/70%). The results showed that degradation obtained under static 

conditions gave a reasonable prediction of the degradation under fluctuating conditions. 

However, there is a need for more work with a wider range of pesticides and test conditions 

before concluding that laboratory experiments can mimic degradation of pesticide under field 

conditions (Beulke et al., 2005). 

The TOXSWA model describes fate of pesticides entering into single field water systems 

such as ditches, ponds or streams (Adriaanse et al., 2002; Beltman and Adriaanse, 1999).  

The model considers four processes: (i) transportation of pesticide by advection and 

dispersion in both water and sediment layers; (ii) transformation of pesticide as a function of 

temperature in water and sediment; (iii) sorption to sediment, suspended solid and 

macrophytes; and (iv) volatilization as a function of temperature (Figure 7-1).  
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Figure 7-1 Processes govern pesticide fate in water-sediment system in TOXSWA (Adriaanse 

et al., 2002). 

The TOXSWA model predicts the concentration of pesticide as a function of time and 

distance (or depth for sediment) in a water body and sediment. The model assumes a constant 

pesticide concentration in the vertical direction of the water column, whilst the pesticide 

concentration can be varied in the horizontal direction. In the sediment layer, the pesticide 

concentration is assumed to vary in both the horizontal and vertical distance.  

Transformation of pesticide in TOXSWA depends on temperature. The transformation is 

calculated via: 

 

Where  T is temperature (K), Tref is reference temperature (K), k is a transformation rate 

coefficient (d-1), E is molar Arrhenius activation energy (J mol-1) and R is the universal gas 

constant (~8.3144 J mol-1 K-1) 
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Volatilization of pesticide is calculated using the Van’t Hoff equation as: 

 

where P is saturated vapour pressure of substance (Pa) and ΔHP is enthalpy of vaporization (J 

mol-1) 

The Van ‘t Hoff equation is also used to calculate effect of temperature for solubility of 

pesticide in water as: 

 

where Csol is solubility of substance in water (g m-3) and ΔHsol is enthalpy of dissolution (J 

mol-1) 

The output of model simulation is concentration/mass of pesticide in water, macrophytes 

(optional) and sediment as a function of time and distance (depth for sediment) and 

distribution of pesticide among water, suspended solid, dissolved sediment, sorbed to 

sediment and macrophytes.  

Sediment in the simulated water-sediment system is divided into subsystems. The model 

assumes that there is no lateral interaction among each sediment subsystem in the horizontal 

layer and that the vertical is subdivided. Input transformation rates in TOXSWA are overall 

transformation in water and sediment phases. In water, the rate is a combination of 

hydrolysis, photolysis and biodegradation. Moreover, it is not possible to vary transformation 

rate caused by e.g. change in pH of water, and intensity of light. The results obtained from 

the model are dictated by the input data so careful selection of the input data, laboratory 

experiment and/or measured field data is required to get acceptable results. 

The aim of this study was to investigate dissipation of the two pesticides from water-sediment 

systems in vessel under outdoor conditions and compare behaviour with that in water-

sediment under laboratory conditions. The work also investigates whether using experimental 
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data from the laboratory as input to the TOXSWA model can give a reasonable prediction for 

fate of the pesticide in water-sediment systems under outdoor condition. 

7.2 Materials and methods 

7.2.1. Chemicals and test systems 

The pesticides, chemicals, M4 medium (growth medium), plants (Myriophyllum spicatum) 

and sediment used in this experiment were the same as those used and characterized in 

Section 6.2.1. Water-sediment systems for all treatments (Table 7-1) were set up similarly to 

those described in Section 6.2.1.  

7.2.2. Experimental conditions 

The experiment was performed outdoors at FERA, York (54o 0’ 53”N 0o 58’ 13”E). A WS-

HP1, Delta-T Devices automatic weather station was located within 200 m of the experiment. 

The weather station measured rainfall, wind speed, air temperature, soil temperature, relative 

humidity and solar radiation at an hourly interval (detail in Appendix Table E-1). Treatments 

and application of test substance were similar to the experiment in Chapter 6. The 

experimental time was decreased to 28 days because it was expected that dissipation of the 

two pesticides under outdoor conditions would be faster than under laboratory conditions as 

reported for previous studies (Mazanti et al., 2003; Perrin-Ganier et al., 1996; Dinelli et al., 

2000).  A summary of experimental treatments and sampling intervals is given in Table 7-1 

excluding two control treatments (no pesticide in the system); treatment G was a water-

sediment system without pesticides and treatment H was a water-sediment-plant system 

without pesticides.  
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Table 7-1 Summary of experimental treatments, dissipation processes and sampling 

intervals 

Treatment  Light 
(yes/no) 

Sediment 
(yes/no) 

Plants 
(yes/no) 

Pesticide dissipation processes Sampling 
interval (days) 

A no no no 

- Hydrolysis       
- Microbial degradation in 

water 
0, 14, 28  

B  yes no no 

- Hydrolysis  
- Microbial degradation in 

water  
- Photolysis 

0, 14, 28 

C  no yes no 

- Hydrolysis  
- Microbial degradation in 

water  
- Sorption to sediment 
- Degradation in sediment 

0, 14, 28  

D yes yes no 

- Hydrolysis 
- Microbial degradation in 

water 
- Sorption to sediment  
- Degradation in sediment  
- Photolysis 

0, 7, 14, 28  

E yes  no yes 

- Hydrolysis 
- Microbial degradation in 

water  
- Photolysis 
- Plant uptake  
- Degradation in plant 

0, 1, 3, 5, 7  

F  yes yes yes 

- Hydrolysis  
- Microbial degradation in 

water  
- Sorption to sediment  
- Degradation in sediment  
- Photolysis  
- Plant uptake  
- Degradation in plant 

0, 1, 3, 5, 7  

7.2.3. Sampling and measurements 

The experiment was performed under outdoor conditions for 28 days from 9th August 2011 

(day 0) until 6th September 2011. Three jars from the respective treatment were sampled 

destructively at the intervals given in Table 7-1 and the sampling time was midday+1 hours.  

The pH in water and sediment phases and dissolved oxygen in water were measured at each 
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interval in the sampled jars. The weight of fresh biomass of the six shoots of Myriophyllum 

spicatum was recorded. 

Water content of Myriophyllum spicatum was calculated as described in Section 6.2.5.  Water 

content of Myriophyllum spicatum (+standard deviation) was 90.6+0.25% for plants with 

fresh weight of 0.11+0.03g. 

Extraction of thiamethoxam and metalaxyl-M from sediment and plants and HPLC analytical 

conditions were as described in Sections 6.2.6 – 6.2.8.  

7.2.4. Simulation of the fate of pesticides using TOXSWA 

TOXSWA model version 1.0 (release date March 22nd, 1999) was used to simulate fate of 

pesticides in water-sediment systems. The model was written by M. Van Elswijk (SERC) and 

revised by G.F. van Laar (Q-Ray). TOXSWA predicts fate of pesticides via a simulation that 

combines a scenario and a set of pesticide parameters. Required input data for pesticide and 

water-sediment characteristics (scenario) are given in Appendices E-17 and E-18, 

respectively.  

The scenario for the water-sediment system (treatment F) used characteristics of the 

experimental water-sediment systems which were set up in glass bottles with 10 cm diameter. 

The height of the water layer was 6 cm from the top layer of sediment and the sediment layer 

height was 3 cm.  

A half-life for thiamethoxam in water was obtained by using average radiation from day 0 to 

day 3 (0.114 kW m-2) coupled with the photolysis rate constant from laboratory studies at pH 

10 (10.6 day-1) and light intensity of the xenon lamp in the Suntest system (1.27 kW m-2). The 

half-life for modelling was calculated as: 
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From the calculation above, the half-life of thiamethoxam in water used for modelling 

treatment F in outdoor condition was 0.73 days. The half-life in sediment was obtained from 

Chapter 5 (27.7 days). 

The half-life of metalaxyl-M in the water phase was obtained from the water-sediment study 

reported in Chapter 5. This experiment excluded photolysis and hydrolysis of metalaxyl-M, 

so the half-life was corrected with the hydrolysis rate constant at the same pH (hydrolysis rate 

at pH 10 is ca. 0.058 day-1, Sukul and Spittler, 2000) and the photolysis rate constant of 

metalaxyl-M under field conditions (the dissipation rate constant of treatment B minus the 

dissipation rate of treatment A; Table 7-3). The corrected half-life of metalaxyl-M was 

calculated as: 

 

Corrected rate constant of metalaxyl-M in water = 0.00509 + 0.058 + 0.00186 = 0.065 day-1   

The corrected rate constant of degradation for metalaxyl-M in water equated to a half-life of 

10.7 days. A half-life in sediment was obtained from Chapter 5 (8.20 days). 
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7.2.5. Calculation goodness fit for TOXSWA’s prediction and observed data 

Model efficiency (EF) was employed to calculate goodness fit for TOXSWA’s prediction and 

observed data (Boesten et al., 2006). Model efficiency was calculated as: 

 

Where  n = total number of observations 

Oi = ith observed value (with i = 1, 2,..., n) 

Ci = ith value calculated with selected model (with i = 1, 2, ...,n) 

Ō = mean of all observed values 

Value of EF can be from minus infinity to +1. The larger values indicate better agreement. 

For EF < 0, it suggests that the mean of the observed data is a better predictor of the observed 

values than the model (Boesten et al., 2006). For EF > 0, it indicates the fraction of the total 

variance of the data set that can be explained by the model. 

7.3 Results 

7.3.1. Weather data: temperature and solar radiation, during the experiment 

Daily average air temperature during the experiment (day 0 to 28) was in the range 11.5 to 

19.7oC as shown in Figure 7-2. The minimum and maximum air temperature were 7.1oC and 

25.4oC, respectively (full detail of the temperature is given in Appendix E-1).  Daily average 

solar radiation during the experiment (day 0 to 28) ranged from 0.031 to 0.186 kW m-2 as 

shown in Figure 7-3. Detail of the solar radiation is given in Appendix E-1. 
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Figure 7-2 Change in air temperature during the experiment (day 0 is 9
th

 August 2011). 
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Figure 7-3  Change in solar radiation during the experiment (day 0 is 9
th

 August 2011).  
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7.3.2. pH in the water phase of the experimental treatments 

The pH in M4 medium during the experiment ranged from 7.95 to 9.49 as shown in Figures 

7-4 and 7-5. pH was significantly different between treatments (p<0.001) and also significant 

different over time (p<0.001) (Appendices E-14, E-15 and E-16). For the systems without 

sediment (treatments A, B and E), the pH was alkaline throughout the study as shown in 

Figures 7-4 and 7-5. pH in treatment A was similar to that in treatment B regardless of the 

presence of light, whereas the presence of Myriophyllum spicatum resulted in more alkaline 

conditions in treatment E. As pH measurements were made at midday+1 hours on the 

sampling day, the elevated pH in the presence of plants resulted from photosynthesis that 

removed CO2 from the solution (Prins et al., 1980), thus reducing the acidity in the water. For 

the systems with sediment (treatments C and D), the pH in treatment D was more alkaline 

than treatment C (Figure 7-4). There are a number of possibilities for this observation 

including a formation of photolysis products from algae as this experiment used natural 

sediment which may contain microorganisms and algae.  

 

Figure 7-4  Change in pH in M4 medium in different treatments without the plants during the 

experiment (mean+standard deviation; n=3). 
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Figure 7-5 Change in pH in M4 medium in different treatments with the plants during the 

experiment (mean+standard deviation; n=3). 

7.3.3. Dissipation of thiamethoxam from the water phase   

In the presence of light, the dissipation rate of thiamethoxam in treatments B, D, E and F was 

faster than dissipation in equivalent treatments without light (treatments A and C) as shown 

in Figure 7-6 and 7-7. This confirms that light is a dominant influence on dissipation of 

thiamethoxam from the water phase under outdoor conditions (Chapter 3, Liqing et al., 2006 

and Karmakar et al, 2000).   

In the presence of plants, the dissipation rate of thiamethoxam in the treatments containing 

plants was much faster than the others. Thiamethoxam concentration was dramatically 

decreased within 3 to 5 days of the pesticide application as shown in Figure 7-6 and 7-7. 

Rate of dissipation of thiamethoxam in M4 medium was calculated according to single first-

order kinetics. The calculation was close to observed data and the statistic test (Chi2) for 

fitting passed for all treatments (Table 7-2).  The details of thiamethoxam residues in each 

component of all treatments are given in Appendices E-2 to E-7.   
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Figure 7-6 Change in concentration of thiamethoxam in solution over time for the  

treatments A, B and C (mean+standard deviation; n=3).  

 

Figure 7-7  Change in concentration of thiamethoxam in solution over time for the treatments 

D, E and F (mean+standard deviation; n=3). 
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Table 7-2 Assumed processes occurring in the experimental treatments and half-life of thiamethoxam for each treatment, Chi
2
 for fit and rate 

constants for pesticide dissipation obtained by comparing different experimental treatments  

Treatment 
Assumed processes related to pesticide 
dissipation  

Half-life 
(days) 

Chi
2
 for fit 

Rate constants derived by comparing between two 
treatments (day

-1
) 

A 
- Hydrolysis       

- Microbial degradation in water 
54.5 2.41  ktreatmentA = ~khydrolysis = 0.0127 day

-1
 

B 

- hydrolysis  

- microbial degradation in water 

- Photolysis 

4.28 0.733  
ktreatmentB-ktreatmentA = kphotolysis 

0.162-0.0127 = 0.149 day
-1 

; Half-life =  4.65 days 

C 

- Hydrolysis  

- Microbial degradation in water  

- Sorption to sediment 

- Degradation in sediment 

10.4 1.60   

D 

- Hydrolysis 

- Microbial degradation in water 

- Sorption to sediment  

- Degradation in sediment  

- Photolysis 

2.69 3.96   
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Table 7-2 (continued) Assumed processes occurring in the experimental treatments and half-life of thiamethoxam for each treatment, Chi
2
 for fit 

and rate constants for pesticide dissipation obtained by comparing different experimental treatments  

Treatment 
Assumed processes related to pesticide 
dissipation  

Half-life 
(days) 

Chi
2
 for fit 

Rate constant derived by comparing between two 
treatment (day

-1
) 

E 

- Hydrolysis  

- Microbial degradation in water  

- Photolysis  

- Plant uptake  

- Degradation in plant 

0.465 1.69  

F 

- Hydrolysis  

- Microbial degradation in water  

- Sorption to sediment  

- Degradation in sediment  

- Photolysis  

- Plant uptake  

- Degradation in plant 

3.59 14.0   
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7.3.4. Dissipation of thiamethoxam in water-sediment systems  

Figure 7-8 shows the change in concentration of thiamethoxam, whereas Figure 7-10 shows 

the same data but expressed as mass of thiamethoxam. Thiamethoxam in the water phase in 

the systems without plants gradually decreased from 1.38+0.02 mg L-1 on day 0 to a non-

detectable concentration on day 14. Residues in sediment increased to a peak of 

0.0182+0.0126 mg kg-1 on day 7 before decreasing to a non-detectable concentration at day 

28 (Figure 7-8).   

In the systems containing plants, thiamethoxam residues dramatically decreased to a non-

detectable concentration at day 5 and thiamethoxam residues in sediment phase fluctuated, 

through to seven days after which residues were non-detectable. The highest thiamethoxam 

concentration detected in sediment was 0.0231+0.0219 mg kg-1 at day 1. Thiamethoxam 

concentrations showed large variability in plant residues, possibly associated with differences 

in mass and physiology of individual plants. The highest value was 0.617+0.534 mg kg-1 on 

day 1 and 5. 
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Figure 7-8 Change in concentration (mean+standard deviation; n=3) of thiamethoxam in the 

water, sediment and plant phases of systems with and without Myriophyllum 

spicatum. All concentrations on day 28 were smaller than the respective limit of 

detection.  

 

Figure 7-9 Change in concentration (mean+standard deviation; n=3) of thiamethoxam in the 

sediment of systems with and without Myriophyllum spicatum. All concentrations 

on day 28 were smaller than the respective limit of detection. Data for the pesticide 

concentration in Figure 7-9 is the same as shown in Figure 7-8. 
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The initial mass of thiamethoxam in water-sediment systems with the plants was 0.331+0.077 

mg in the water phase. Initial mass of thiamethoxam was smaller than the target mass (1.2 

mg). It is possible that the very alkaline conditions in the water phase resulted in degradation 

of thiamethoxam when it was applied to the systems. The two pesticides were prepared as a 

mix in a batch so the concentration of metalaxyl-M in the same treatment can be used to 

check the expected initial concentration and that the stock solution was added correctly to the 

systems. The concentration of thiamethoxam in other treatments matched the expected initial 

concentration of thiamethoxam. The mass of thiamethoxam was very low in sediment 

throughout the experiment with the highest mass being 0.0231+0.0219 mg at day 1 as shown 

in Figure 7-10. The ratio of mass of thiamethoxam in water to that in sediment at the 

maximum mass of thiamethoxam in sediment was 15.6:1. The low accumulated mass in 

sediment results from the physico-chemical properties (solubility and Kd) of thiamethoxam 

meaning that the pesticide is predominantly located in water. The mass of thiamethoxam in 

plants was negligible as the total mass of plants in the system was very small. 

The initial mass of thiamethoxam in the systems without plants was 0.828+0.011 mg in the 

water phase and 0.00261+0.00069 in sediment. The maximum mass of thiamethoxam in 

sediment was 0.0106+0.0037 mg at day 7; thereafter the mass decreased to below the limit of 

detection as shown in Figure 7-10. At the maximum mass of thiamethoxam in sediment, the 

ratio of mass of thiamethoxam in water to that in sediment was 13.5:1.  
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Figure 7-10  Change in mass (mean+standard deviation; n=3) of thiamethoxam in the       

water, sediment and plant phases of systems with and without       

Myriophyllum spicatum. 

7.3.5. TOXSWA prediction for thiamethoxam in the water-sediment-plants 

system 

Mass of thiamethoxam predicted by TOXSWA corresponded with most of the measured data 

in water except at day 0 (Figure 7-11). The model overestimated mass of thiamthoxam in 

plants at day 0 and day 1 and then measured thiamethoxam corresponded with the prediction 

from day 3 onwards. The prediction overestimated mass of the pesticide in sediment 

throughout. 
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Figure 7-11 Comparison between TOXSWA prediction and measured mass of thiamethoxam in 

water-sediment system with plants under outdoor conditions at average 

temperature 14.9
o
C. Observed data was from treatment F. 

7.3.6. Dissipation of metalaxyl-M from the water phase  

Presence of plants and sediment were potentially two important influences on dissipation of 

metalaxyl-M from the water phase as dissipation of metalaxyl-M in treatments without 

sediment (treatment A and B) was slower than from the remaining treatments (Figure 7-12). 

Similarly to dissipation of thiamethoxam, the dissipation of metalaxyl-M from the water 

phase was faster in the treatments containing the plants (treatment E and F) than the 

remainder (treatments A, B, C and D) (Figure 7-12 and 7-13).  

Dissipation of metalaxyl-M in treatments A (no radiation and no sediment), B (in presence of 

radiation and no sediment), C (no radiation and in presence of sediment) and D (in presence 

of radiation and sediment) suggested that both radiation and sediment accelerated dissipation 

of metalaxyl-M. Sediment had an influence on dissipation of metalaxyl-M (Figure 7-12) that 

was larger than that from radiation (comparing treatment B and treatment D).  
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In the presence of sediment and without plants, the dissipation rate of metalaxyl-M in 

treatment C (no radiation, having sediment) was higher than the dissipation rate in treatment 

A (no radiation and no sediment).  The dissipation rate of metalaxyl-M in treatment B 

(radiation but no sediment) compared to that in treatment D (radiation plus sediment) that the 

rate the latter higher than in the former. It is likely that there are more microorganisms in the 

upper layer of sediment than in water. In contrast, the dissipation rate in treatment E (no 

sediment, but with plants) was less than the dissipation rate in treatment F (having sediment 

and plants). The faster dissipation in treatment E may arise from hydrolysis under more 

alkaline conditions in treatment E during the experiment as Sukul and Spiteller (2000) 

reported that the half-life of metalaxyl was 200 days at pH 5 and 7, and 12 days at pH 10. In 

this case, the sediment acted to buffer the change in water pH associated with photosynthesis. 

The dissipation rate of metalaxyl-M in M4 medium decreased in the order treatment E > F > 

D > C > B > A as shown in Table 7-3. The details of metalaxyl-M residues in each 

component of all treatments are given in Appendices E-8 to E-13.   
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Figure 7-12  Change in concentration of metalaxyl-M in solution over time for the treatments A, 

B, C and D (mean+standard deviation; n=3).   

 

Figure 7-13 Change in concentration of metalaxyl-M in solution over time for the treatments E 

and F (mean+standard deviation; n=3).  
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Table 7-3 Assumed processes occurring in the experimental treatments and half-life of metalaxyl-M for each treatment, Chi
2
 for fit and rate  

constant of metalaxyl-M dissipation obtained by comparing different experimental treatments  

Treatments 
Assumed processes related to pesticide 
dissipation  

Half-life 
(days) 

Chi
2
 for fit 

Rate constant derived by comparing between two 
treatment (day

-1
) 

A 
- Hydrolysis       

- Microbial degradation in water 
372 2.00 ktreatmentA = ~khydrolysis = 0.00186  day

-1
 

B 

- Hydrolysis  

- Microbial degradation in water 

- Photolysis 

66.8 4.34 
ktreatmentB-ktreatmentA = kphotolysis 

0.0104-0.00186 = 0.00854 day
-1 

; Half-life =  81.1 days  

C 

- Hydrolysis  

- Microbial degradation in water  

- Sorption to sediment 

- Degradation in sediment 

13.4 2.45  

D 

- Hydrolysis 

- Microbial degradation in water 

- Sorption to sediment  

- Degradation in sediment  

- Photolysis 

8.28 2.38  
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Table 7-3 (continued) Assumed processes occurring the experimental treatments and half-life of metalaxyl-M for each treatment, Chi
2
 for fit     

and rate constant of metalaxyl-M dissipation obtained by comparing between different experimental treatments  

Treatments 
Assumed processes related to pesticide 
dissipation  

Half-life 
(days) 

Chi
2
 for fit 

Rate constant derived by comparing between two 
treatment (day

-1
) 

E 

- Hydrolysis 

- Microbial degradation in water  

- Photolysis 

- Plant uptake  

- Degradation in plant 

4.43 7.88  

F 

- Hydrolysis  

- Microbial degradation in water  

- Sorption to sediment  

- Degradation in sediment  

- Photolysis 

- Plant uptake  

- Degradation in plant 

4.66 3.77  
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7.3.7. Dissipation of metalaxyl-M in water-sediment systems  

Figure 7-14 shows change in concentration of metalaxyl-M whilst Figure 7-15 shows 

the same data but expressed as mass of metalaxyl-M. In the presence of Myriophyllum 

spicatum, metalaxyl-M residues in the water phase decreased from 1.46+0.05 mg L-1 

on day 0 to 0.512+0.036 mg L-1 on day 7.  The residues in sediment increased to a 

maximum of 0.137+0.088 mg kg-1 on day 5 in the system containing Myriophyllum 

spicatum. The highest metalaxyl-M concentration detected in the plants was 26.3+4.8 

mg kg-1 on day 3. The faster decrease in metalaxyl-M in the aqueous phase and less 

accumulation of metalaxyl-M in sediment in the treatment with the plants suggests 

that the plants contributed to dissipation of metalaxyl-M from the systems. 

The water-sediment systems without the plants had 1.54+0.03 mg L-1 metalaxyl-M on 

day 0 decreasing to 0.831+0.028 mg L-1 on day 7 and with 0.130+0.006 mg L-1 

remaining on day 28. The residues in sediment increased to a maximum of 

0.201+0.047 in the systems without the plant on day 14 (Figure 7-14).  

 

Figure 7-14 Change in concentration (mean+standard deviation; n=3) of metalaxyl-M in 

the water, sediment and plant phases between two systems with and 

without Myriophyllum spicatum 
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Figure 7-15  Change in mass (mean+standard deviation; n=3 in water) of metalaxyl-M in 

the water, sediment and plant phases of two systems with and without 

Myriophyllum spicatum 

In the presence of the plants, the initial mass of metalaxyl-M in the water-sediment 

systems was 0.875+0.028 mg. The mass of metalaxyl-M in water decreased steadily 

to 0.307+0.022 mg at day 7. The maximum mass of metalaxyl-M in sediment was 

0.0205+0.0133 mg at day 5 as shown in Figure 7-15. The ratio of metalaxyl-M in 

water to that in sediment at the maximum metalaxyl-M in sediment was 18.7:1. The 

maximum mass of metalaxyl-M in plants was 0.0263+0.0048 mg at day 3. 

Initial mass of metalaxyl-M in the systems without the plants was 0.924+0.016 mg. At 

the end of the experiment (day 28), the mass of metalaxyl-M remaining in water and 

sediment was 0.0782+0.0038, 0.0103+0.0006 mg, respectively. The maximum mass 

of metalaxyl-M in sediment was at day 14 giving a ratio for mass in water to mass in 

sediment was 10.1:1.  
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7.3.8. TOXSWA prediction for metalaxyl-M in the water-sediment-plant 

system 

TOXSWA gave a reasonable prediction for mass of metalaxyl-M in the water phase 

(Figure 7-16). The predicted mass of metalaxyl-M in sediment was greatly 

overestimated throughout. The predicted mass of metalaxyl-M in plants was lower 

than measured data throughout. 

 

Figure 7-16 Comparison between TOXSWA predictions and measured mass of 

metalaxyl-M in water-sediment system with plants under outdoor 

conditions at average temperature 14.9
o
C. Observed data was from 

treatment F. 

7.4 Discussion 

7.4.1. Thiamethoxam  

Two of the six treatments included presence of plants, namely treatment E was water-

plant systems and treatment F was water-sediment-plant systems. The two treatments 

were different with respect to presence of sediment and pH (treatment E had more 
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alkaline conditions). Hydrolysis and photolysis of thiamethoxam are both faster under 

alkaline conditions and would contribute more to dissipation in treatment E than other 

treatments (Section 3.1).  

In the presence of light, dissipation of thiamethoxam was faster than in the equivalent 

that treatment in the dark regardless of the presence of sediment. A previous 

experiment (Section 3.1) showed that thiamethoxam can be degraded rapidly by 

radiation giving half-lives of thiamethoxam of 0.34+0.01 days at pH 7.0 and 

0.40+0.06 days at pH 8.0. These values are shorter than the half-life from this 

experiment. This results from different light intensity and temperature of the 

equipment in the earlier experiment. Temperature in the photolysis experiment 

(30+2oC) was generally higher than that outdoors (in the range of 11.5 to 19.7oC).  

Sediment plays only a minor role in dissipation of thiamethoxam because most 

thiamethoxam residues are located in the water phase. Thiamethoxam is only weakly 

sorbed and the use of unstirred systems inhibited pesticide contact with sediment at 

depth. Moreover, thiamethoxam residues in sediment were possibly degraded by 

microorganisms resulting in a decrease of any residues in the sediment phase (Gupta 

et al., 2008).  

7.4.2. Comparison between dissipation of thiamethoxam in water-

sediment systems under laboratory and outdoor conditions 

The dissipation of thiamethoxam via hydrolysis in treatment A under field conditions 

(pH 8.0 to 8.5) was 1.15 times faster than that under laboratory conditions (pH 6.9 to 

8.4) as shown in Table 7-4. Thiamethoxam from treatment A (no radiation and no 

sediment) under field conditions (pH 8.0 to 8.5) reached less than 80% of initial 

concentration whilst thiamethoxam from the treatment under controlled condition (pH 

6.9 to 8.4) remained at more than 80% of initial concentration at day 28. It was 

assumed that more alkaline conditions in the water phase contributed to faster 

hydrolysis. 
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Dissipation of thiamethoxam in treatment B under field conditions was 12.7 times 

faster than that under laboratory conditions (Table 7-4). It was possible that light 

intensity around midday was higher than natural light provided wide emission 

wavelength which support for light absorption of thiamethoxam molecules (200-400 

nm) whilst fluorescent lamp in growth chamber provided emission wavelength in 

range 300-700 nm.  

Table 7-4 Half-life for thiamethoxam in treatments under laboratory and outdoor 

conditions: data are the same as those in Table 6-5 and 7-2. 

Treatment Half-life of thiamethoxam 
under laboratory condition 
(days) 

Half-life of thiamethoxam 
under outdoor condition 
(days) 

A (water alone/dark) 

B (water alone/light) 

C (water-sediment/dark) 

D (water-sediment/light) 

E (water with plants/light) 

F (water-sediment with plants/light) 

62.6 

54.6 

15.5 

11.9 

0.465 

1.13 

54.5 

4.28 

10.4 

2.69 

0.465 

3.59 

The dissipation rate of thiamethoxam measured in the presence of sediment but 

without light (treatment C) in water-sediment systems under outdoor conditions was 

1.49 times faster than that under laboratory conditions (Table 7-4). Thiamethoxam 

from treatment C (no radiation) under outdoor conditions represented about 15% of 

initial mass at day 28 whilst thiamethoxam from the treatments under laboratory 

conditions remained at about 40% of initial mass. At peak of thiamethoxam in 

sediment, the sorption accounted for 0.33 and 0.87% of initial mass under laboratory 

and outdoor conditions, respectively. The difference in dissipation rate of 

thiamethoxam in sediment could have been due to fluctuation in temperature being 

favourable for microbial populations. Additionally, the fresh weight of the plants 

under outdoor conditions was higher than that under laboratory condition (Figure 7-

17).  
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Figure 7-17  Fresh weight of plants in treatments E (water-plants systems spiked with 2 

mg thiamethoxam and metalaxyl-M L
-1

), F (water-sediment-plants systems 

spiked with 2 mg thiamethoxam and metalaxyl-M L
-1

) and H  (water-

sediment-plants without any pesticides) under laboratory and outdoor 

conditions. Observed data did not collected at the same interval time so 

there was missing bar in this Figure. 

7.4.3. Prediction fate of thiamethoxam in water-sediment systems  

The model gave a reasonable prediction of mass of thiamethoxam in water under 

outdoor conditions when the half-life of thiamethoxam in water was corrected for pH 

and light intensity. This judgement is based on visual assessment and the model 

efficiency value of thiamethoxam (-1.81). This suggests that experimental data from 

single-phase experiments can be coupled with the TOXSWA model to predict 

thiamethoxam in water-sediment systems with plants. The model overestimated mass 

of thiamethoxam in plants early in the experiment (day 0 and day 1) and then 

corresponded with the measured behaviour. The model efficiency value was -84.0 for 

thiamethoxam in plants. TOXSWA assumes that transfer to plants is from sorption 
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whereas it seems likely that there was also some uptake into the plants. The model did 

not give a reasonable prediction in sediment based on the model efficiency for 

thiamethoxam sorbed to sediment of -124. Sorption to sediment in the vessels under 

outdoor condition was much less than would be predicted from laboratory water-

sediment studies with thiamethoxam in the dark. Sorption of a non-extractable form of 

thiamethoxam to sediment could be a reason for low measured concentrations in 

sediment. The rate of dissipation of thiamethoxam from water under outdoor 

conditions was very rapid and it seems likely that there was insufficient time for the 

pesticide to transfer to the sediment prior to degradation. There are limitations to the 

capacity for TOXSWA to simulate fate of pesticide in water-sediment system under 

outdoor condition. The model does not allow separation of aquatic degradation into 

separate processes such as hydrolysis, photolysis and microbial degradation, and 

simulations cannot account for fluctuations in temperature, light intensity or other 

environmental variables. This is a major limitation to the ability to use models to 

extrapolate between laboratory and outdoor behaviour. Inclusion of these additional 

functions could improve the ability of the model to represent fate of pesticides in the 

field. Figure 7-18 shows an independent prediction of photolysis rate for the 

calculation of thiamethoxam residues in the water of outdoor conditions (Treatment 

B). The photolysis rate measured at high light intensity in the “Suntest” was used to 

calculate photolysis rate in the outdoor using an Microsoft Excel calculation as 

described in section 7.2.4. The rate constant at pH 8 in natural water (1.73 day-1) was 

corrected using hourly data for solar radiation for solar radiation in the outdoor in 

order to predict thiamethoxam concentration under fluctuating solar radiation (outdoor 

conditions; bold line in Figure 7-18). Figure 7-18 shows that the outdoor 

measurements were in line with the predicted concentration under outdoor conditions 

suggesting that laboratory data were able to predict photolysis of thiamethoxam in 

water (single compartment) under outdoor conditions. This implies that a major 

requirement is to develop mathematical models that can separate different processes 

influencing pesticide fate and can respond to changes in environmental conditions 

(e.g. light/dark cycles). 
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Figure 7-18 Comparison among predictions of thiamethoxam concentrations under 

Suntest and outdoor condition and outdoor measurement 

7.4.4. Metalaxyl-M 

Most of the metalaxyl-M residues were located in the water phase whilst a smaller 

amount of metalaxyl-M was in sediment and plants. The dissipation rate of metalaxyl-

M between treatments showed that the influence of different factors on dissipation 

increased in the order plants > sediment > radiation.  

Only a small amount of metalaxyl-M was found in the plants, so the influence of 

plants on dissipation may not only arise from uptake by plants but also from an 

indirect effect on hydrolysis due to more alkaline conditions. A previous study (Sukul 

and Spiteller, 2000) reported that alkaline conditions (Half-lives were 200 days at pH 

5 and 7, and 12 days at pH 10) in water resulted in increased hydrolysis of metalaxyl. 

Treatments E and F had pH close to 10 so hydrolysis of metalaxyl-M would probably 

have occurred in these systems. One of possibilities is that in the presence of plants 

supporting microbial degradation. Muratova et al. (2003) reported that the microbial 

population in vegetated soil was 1.3 times higher than that in non-vegetated soil 
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resulting in faster degradation of polycyclic aromatic hydrocarbons. Sun et al.  (2004) 

showed that plants not only take up aldicarb but also that degradation is promoted by 

in the presence of plants. Half-lives of aldicarb were 2.7, 1.7, 1.6 and 1.4 days in soil 

without plants, soil with cowpea, maize, and mung bean, respectively. Loss of 

aldicarb via uptake by plants was varied among plant species accounting for 16.2%, 

61.5% and 8.0% of total removal of aldicarb in plant-grown soil for cowpea, maize 

and mung bean, respectively.  

Regarding the influence of sediment, it is assumed that not only metalaxyl-M sorption 

to sediment contributed to dissipation of metalaxyl-M from the water phase, but also 

that there was some microbial degradation (Saha and Sukul, 1997; Sukul et al., 2008).   

7.4.5. Comparison between dissipation of metalaxyl-M in water-

sediment systems under laboratory and outdoor conditions 

Hydrolysis of metalaxyl-M was assumed negligible in all treatments under laboratory 

conditions and also in treatments A, B and C under outdoor conditions because the 

neutral or slightly alkaline conditions in the water phase do not favour hydrolysis of    

metalaxyl-M (Sukul and Spiteller, 2000).  

The rate of photolysis of metalaxyl-M in the experiment under outdoor conditions was 

3.3 times higher than that in the experiment under laboratory conditions (Table 7-5). 

Natural light will comprise more light at a wavelength below 290 nm where light 

absorption of metalaxyl-M possibly occurs (Sukul and Spiteller, 2000). 

Dissipation of metalaxyl-M from the treatment in the presence of sediment but 

without light (treatment C) under outdoor conditions was 2.15 times faster than that in 

the growth chamber (Table 7-5). The maximum metalaxyl-M sorption to sediment in 

treatment C was 14.9% and 6.97% of total applied metalaxyl-M under laboratory and 

outdoor conditions. In contrast, the dissipation of metalaxyl-M from the water phase 

under outdoor conditions was faster than that under laboratory condition (Table 7-5), 

so metalaxyl-M sorption to sediment was not the only process contributing to 

dissipation. It is clear that microbial degradation also contributed to the dissipation.   
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Table 7-5 Half-lives for metalaxyl-M in treatments under laboratory and outdoor 

conditions: data are the same as those in Table 7-6 and 7-3 

Treatment Half-life of metalaxyl-M 
under laboratory condition 
(days) 

Half-life of metalaxyl-M 
under outdoor condition 
(days) 

A (water alone/dark) 

B (water alone/light) 

C (water-sediment/dark) 

D (water-sediment/light) 

E (water with plants/light) 

F (water-sediment with plants/light) 

310 

221 

28.2 

33.0 

59.4 

13.3 

372 

66.8 

13.4 

8.28 

4.43 

4.66 

7.4.6. Prediction fate of metalaxyl-M in water-sediment system 

 There was good correspondence between measured and predicted behaviour in water 

(TOXSWA). The visual agreement was good and the model efficiency was 0.944. 

However the model greatly overestimated the mass of metalaxyl-M in sediment. The 

model efficiency was -1545 indicating that the observed data in sediment may be 

better explained by the mean of observed mass in sediment than by the model. 

Concentrations of metalaxyl-M in sediment in the outdoor systems were much smaller 

than those in equivalent treatments in the growth chambers (Chapter 7). It could be 

that under outdoor conditions, there was more non-extractable form of metalaxyl-M 

bound to sediment. The reasons for this discrepancy are unknown and require further 

study. The model did not give a reasonable prediction mass of metalaxyl-M in plants 

based on visual assessment and the model efficiency (-2.14). It could be because a 

prediction of mass in plant by TOXSWA relies on mass of pesticide in water. This 

was not true in reality because there was no pesticide in plants at initial time and a 

prediction of mass in plants needs to concern uptake, metabolism and depuration. 
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7.5 Conclusion 

Most of the thiamethoxam and metalaxyl-M residues were found in the water phase in 

line with the physico-chemical properties of the two pesticides (Kd). However 

sorption of pesticides to sediment was generally less than predicted based on Kd value 

(Chapter 4). Varying water-sediment treatments with/without plants showed strength 

of factors influencing dissipation of thiamethoxam to be: plants > light > sediment. 

Dissipation of thiamethoxam occurred via hydrolysis, photolysis, microbial 

degradation and uptake by plants. The presence of plants had a dominant effect 

because this increased hydrolysis and photolysis rate due to enhanced alkaline 

conditions and possibly increased microbial degradation. Metalaxyl-M is stable to 

photolysis and also persistent to hydrolysis in water (PPDB, 2008) so the factors 

influencing dissipation of metalaxyl-M were different from those for thiamethoxam.  

The order of factor influence for metalaxyl-M was plants > sediment > light. The 

results suggest that some photolysis may occur under field conditions (Table 7-5) so 

dissipation of metalaxyl-M occurred via uptake by plants, microbial degradation, 

photolysis and hydrolysis. The presence of plants resulted in more alkaline conditions 

to the extent that it could increase hydrolysis. Plants are able to take up metalaxyl-M 

and also enhance microbial degradation as plant roots aggregate sediment resulting in 

increased oxygen at the root zone. 

Comparison of dissipation of thiamethoxam and metalaxyl–M under laboratory and 

field conditions suggested that the hydrolysis rate obtained from laboratory conditions 

gave a reasonable prediction of hydrolysis in field condition. Light intensity needs to 

be carefully selected for photolysis experiments in the laboratory in order to obtain a 

reasonable measure for pesticides in the environment. In general, dissipation of the 

two pesticides was faster in the outdoor. There were a number of parameters 

contributing to the discrepancy of parallel systems under laboratory and outdoor 

conditions (i) difference in wavelength of light, (ii) light intensity, (iii) favourable 

conditions which enhance microbial degradation or pesticide uptake by plants.    

The predicted fate of pesticides in water-sediment systems using TOXSWA showed 

that experimental data are able to predict fate of selected pesticide in the water phase 
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in the outdoor but that input data need to be corrected using actual environmental 

variables (such as light intensity and pH). The model did not give a reasonable 

prediction of mass of pesticide in sediment and plants. The reason could be that the 

TOXSWA model did not allow to separate degradation processes in plants and 

sediment. For plants, the model only accounts for sorption process but in reality, 

plants are able to take up pesticide and the pesticides could be metaboliseds. In 

sediment, the model relies on measured concentration in sediment and counts the 

decrease in concentration as a combined degradation. Some of the pesticide sorbed to 

sediment could be in non-extractable form which contributed to less measured 

concentration of pesticides than the concentration of the total sorbed pesticide to 

sediment.  
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CHAPTER 8 

8. GENERAL CONCLUSIONS  

Literature reviews showed that fate of pesticides in the aquatic environment depends 

on various processes such as photolysis, hydrolysis, volatilisation, microbial 

degradation, uptake by plants, and sorption to sediment. Environmental conditions 

affect all these processes. Discrepancies between predictions from models and 

measured data (Knabel et al., 2012; Beulke  et al., 2000), and different behaviour of 

pesticides under laboratory and field conditions (Dinelli et al., 2000; Mazanti et al., 

2003; PerrinGanier et al., 1996) have been reported.   

This thesis focused on understanding the fate of two pesticides in water-sediment 

systems. It started by investigating fate in simple, single-phase systems and built up to 

more complex systems incorporating a range of phases under outdoor conditions. 

Comparison between results and limited modelling were used to determine the extent 

to which simple laboratory experiments can be extrapolated to describe behaviour of 

pesticides in the outdoor.  

8.1 Fate of selected pesticide in single component 
(water/sediment phase) 

Two currently-used pesticides were selected with different physico-chemical 

properties and degradation; thiamethoxam dissipates via hydrolysis and photolysis 

and has a low sorption coefficient (Koc = 56.2 L kg-1), whilst metalaxyl-M is stable to 

hydrolysis and photolysis and has moderate sorption (Kfoc = 660 L kg-1; PPDB, 2009).  

Hydrolysis experiments (Chapter 3) showed that the pH of water strongly influenced 

the rate of hydrolysis of thiamethoxam with a significant increase at alkaline 

conditions (above pH 9; p<0.001). Photolysis of thiamethoxam was also strongly 

influenced by pH (p<0.001) with the rate of photolysis 4.30 and 3.85 times faster at 

pH 10 than at pH 9 for pure and natural water, respectively. Thiamethoxam 

degradation via photolysis has a maximum absorption of light at about 250 nm 

(Figures 3-6 to 3-9). The presence of nitrate anions significantly (p<0.05) decreased 
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the rate of photolysis of thiamethoxam and this was attributed to a direct competition 

for absorption of light.  

Sorption of thiamethoxam fitted a linear isotherm. The sorption coefficient (Koc = 32.6 

L kg-1) showed that thiamethoxam was likely to be present primarily in the water 

phase (Table 4-1, vanLoon and Duffy, 2005) and the value corresponded with the 

literature. 

Hydrolysis and photolysis experiments were not performed for metalaxyl-M as the 

pesticide database (PPDB, 2009) suggested it to be stable. However, half-lives of 

metalaxyl-M for experiments under outdoor conditions (Table 7-5) suggested that 

photolysis of metalaxyl-M may occur under natural sunlight. The finding highlights 

the importance of selecting appropriate light intensity and source of light for 

photolysis experiments in order to determine whether a pesticide will be subjected to 

photolysis under outdoor conditions.  

The sorption coefficient of metalaxyl-M in the sediment (Kfoc = 35.2 L kg-1) suggested 

that the pesticide was again likely to be located primarily in the water phase of aquatic 

systems (vanLoon and Duffy, 2005); the value is smaller than most values in the 

literature which suggest that metalaxyl-M is moderately sorbed to soil. The natural 

sediment used in this study was collected from a small stream where there were a lot 

of decomposed leaves; Different forms of organic matter in soil/sediment could 

contribute to variation in the Kfoc value; Rodriguez-Cruz et al. (2009) showed that 

sorption of metalaxyl to lignin (a hydrophobic molecule) was greater than that to 

cellulose (a hydrophilic molecule).  
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8.2 Fate of selected pesticides in water-sediment systems 

Experiments in single-component systems (Chapter 3) gave information on the effects 

of individual factors on the dissipation of pesticides as a first step in studying natural 

water-sediment systems comprising multiple components and subjected to fluctuating 

environmental conditions. Dissipation of the two pesticides from water-sediment 

systems under outdoor conditions was generally faster than that under laboratory 

conditions. Not only abiotic degradation processes such as hydrolysis and photolysis 

were contributors to dissipation of pesticide from the experimental water-sediment 

systems but also biodegradation had a role on dissipation of pesticides from the water-

sediment systems, especially in the presence of plants (Susarla et al., 2002; Sun et al., 

2004). As there was no study of biodegradation in this work, the role of 

biodegradation is uncertain and needs further studies in water-sediment systems with 

and without plants. 

Dissipation of thiamethoxam in experimental treatments under laboratory conditions 

showed the strength of factors influencing dissipation of the pesticide was in the order 

plants > sediment > light. Presence of plants was the dominant factor influencing fate 

of thiamethoxam in water-sediment systems even though the mass of thiamethoxam in 

plants was small (the maximum mass of thiamethoxam in plants was 0.08% of applied 

mass) in comparison to that in other compartments. Dissipation of thiamethoxam from 

the water phase in water-sediment system with plants was much faster than that in the 

system without plants primarily because the rates of photolysis and hydrolysis were 

greatly accelerated by the alkaline conditions induced by the presence of plants.  

Literature studies (Susarla et al., 2002; Sun et al., 2004) reported that plants enhance 

biodegradation via rhizosphere and root exudates so, biodegradation in the 

experimental water-sediment system with plants could be faster than that in the 

systems without plants. For this study, difference in biodegradation rate between the 

system with plants and the system without plants is uncertain. It needs further studies 

on biodegradation to quantify biodegradation rate in the two systems. In natural 

water-sediment systems, direct removal of pesticide from water and sediment by 

uptake or sorption to plants will be greater than reported in this thesis as plant density 

in natural water bodies (50 - 300 g m-2 dry weight basis; Beltman and Adriaanse, 
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1999) is higher than those used in the current studies (maximum about 44 g m-2). The 

measured concentration of pesticide in plants showed high variation between 

replicates and this is most likely associated with differences in the mass and 

physiology of plants in individual systems. 

Strength of factors influencing dissipation of thiamethoxam under outdoor conditions 

was in order plants ≥ light > sediment. The loss rate of thiamethoxam in water-

sediment systems under outdoor conditions was faster than that under laboratory 

conditions. The higher light intensity under outdoor conditions (daily average ranged 

0.031 to 0.186 kW m-2) than that under laboratory conditions (0.0117 kW m-2) 

contributed to the change in strength of effect because thiamethoxam degraded via 

photolysis. 

Behaviour of metalaxyl-M in water-sediment systems under laboratory conditions 

corresponded with information from pesticide databases and the literature in that the 

pesticide was stable to hydrolysis and photolysis but was degraded in sediment via 

microbial degradation (Saha and Sukul, 1997; Sukul et al., 2008). Unexpectedly, the 

behaviour of metalaxyl-M in water-sediment systems changed under outdoor 

conditions. The importance of photolysis and hydrolysis to field behaviour is 

demonstrated by the half-life of metalaxyl-M in water alone under outdoor conditions 

(a half-life in water alone with illumination was 66.8 days) compared to that under 

laboratory conditions (a half-life in water alone with illumination was 221 days, Table 

7-5) and the half-lives of treatments E and F under outdoor conditions compared to 

those in the laboratory (Table 7-5).  

8.3 Approach of laboratory data to predict behaviour of 
pesticide under outdoor conditions 

Behaviour of the two selected pesticides in water-sediment system with plants showed 

that the data from simple systems (water/sediment phase) gave a picture of behaviour 

of pesticide under specific conditions. In order to approach the behaviour of pesticide 

in water-sediment systems under outdoor conditions, some parameters such as pH in 

water, sorption of soil/sediment and light intensity were used to correct dissipation of 

pesticides measured in the laboratory.  



Chapter 8 

 

161 

 

The TOXSWA model was able to give a reasonable prediction in water phase for the 

two selected pesticides and overestimated the mass of the two pesticides in sediment. 

The discrepancy between prediction and measured data could be the pesticides in 

water degrade quickly so there not enough time for sorption to sediment. The 

discrepancy also found with predicted mass in plants for both pesticides. One 

possibility that the model assumed only sorption to plants and not concern other 

possible processes such as uptake. 

8.4 Recommendations for further research 

1. Only two pesticides were studied in this thesis, so this restricts generalisation of the 

results. In particular, experiments did not consider a pesticide with high sorption. 

Initial experiments included propiconazole to address this need, but it was found to 

have a high detection limit for analysis in water and high toxicity to plants 

(preliminary tests, data not shown). Further research should include pesticides with 

stronger sorption and/or compounds with higher volatility. 

2. Further data should be collected to improve understanding of the fate of pesticides 

in water-sediment systems. For example, characterising the form of organic matter in 

sediment would provide greater depth of understanding of the controls on sorption, 

particularly for metalaxyl-M where sorption behaviour was different from that 

expected from the literature. It would be useful to quantify microbial degradation in 

water-sediment systems to investigate whether rate of microbial degradation varies 

under laboratory and outdoor conditions and to include and change in degradation rate 

amongst the treatments. In practice, maintenance of sterile conditions needed to 

isolate microbial degradation would be very difficult in the field. An alternative 

option is to use radioactive compound to identify CO2 produced by microbial 

mineralisation.   

3. The density of plants used in water-sediment systems in this thesis was lower than 

that expected in natural water bodies. Presence of more plants in the system would 

have affected both the direct and indirect impacts of the plants on pesticide fate. The 

plant species used in experiments in this thesis is a submerged plant. Further research 
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should be undertaken with different types of plants (floating or rooted plants) and/or 

different species to investigate the influence of plants in changing of the pH of water-

sediment systems and to assess variation in pesticide sorption to different plants. 

4. It is interesting to do further work under tropical conditions. Environmental 

conditions such as temperature and light intensity are higher than in this study, so 

such experiments would investigate whether fate of pesticide in water-sediment 

systems changes as rates of photolysis, volatilization and microbial activity increase 

with increasing temperature and solar radiation. 

5. Prediction of the fate of pesticide could be undertaken using other models such as 

EXAMS. The model separate degradation processes in the water phase into 

hydrolysis, photolysis, redox reactions and biological degradation. EXAMS thus 

addresses some of the limitations in the TOXSWA model and could be used to 

generate more precise predictions of fate. However, there are also shortcomings for 

EXAMS. The model has not been actively developed for 15 years and still operates 

under MS-DOS with model-specific programming requirements. EXAMS does not 

include any simulation of plants in water or their influence on pesticide fate. A 

stronger alternative, would thus be to develop a new model that includes and 

distinguishes all relevant fate processes, includes plants and their effect on pesticide 

behaviour, and is able to account for fluctuations in environmental conditions. 

6. Scale-up the experiment system to systems such as mesocosms in the field; this will 

provide a picture of the dissipation of pesticide under field condition.  
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APPENDICES 

Appendices A: Observed data for photolysis experiments 
(Chapter 3) 

Appendix A-1 Photolysis rate constants and calculated half-lives of thiamethoxam in    

pure and natural water with varying nitrate concentration 

Water type 
Nitrate concentration 
(mg L

-1
) kphotolysis (day

-1
) Chi

2
 for fit 

Photolysis half-life 
(days) 

pure  0 3.01 0.755 0.231 

water 25 2.62 0.557 0.266 

 100 2.39 0.502 0.291 

natural  0 2.09 4.43 0.334 

water 25 2.01 0.799 0.347 

 100 2.02 1.55 0.343 

Appendix A-2 Measured rate constant of overall reaction, measured hydrolysis rate 

constant and calculated photolysis rate constant and half-life of     

thiamethoxam in pure water with varying pH. 

Water type 
koverall 
(day

-1
) 

Chi
2
 

for fit 
khydrolysis  

(day
-1

) 
kphotolysis 

(day
-1

) 

Half-life 
(calculated 

from photolysis 
reaction (days) 

Pure water   

pH 5 (pH 4.45) 
2.14 0.73 0.0222 2.11 0.328 

Pure water 

pH 7 (pH 7.02)   
1.74 0.57 0.0438 1.70 0.408 

Pure water  

pH 8 (pH 8.01) 
1.97 0.63 0.0254 1.94 0.357 

Pure water 

pH 9 (pH 9.03) 
3.08 1.35 0.547 2.53 0.274 
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Appendix A-3 Measured rate constant of overall reaction, measured hydrolysis rate 

constant and calculated photolysis rate constant and half-life of 

thiamethoxam in natural water with varying pH. 

 

 

 

 

 

 

 

 

Pure water  pH 10 (pH 10.02) 

 
14.0 1.74 3.06 10.9 0.0636 

Water type 
koverall 
(day

-1
) 

Chi
2
 for fit 

khydrolysis  

(day
-1

) 
kphotolysis 

(day
-1

) 

Half-life 
(calculated 

from photolysis 
reaction (days) 

Natural water 

pH 5 (pH 5.10) 
1.72 1.17 0.0121 1.71 0.405 

Natural water  

pH 7 (pH 7.00) 
2.00 1.52 0.00750 1.99 0.348 

Natural water 

pH 8 (pH 8.04) 
1.75 1.10 0.0196 1.73 0.401 

Natural water  

pH 9 (pH 9.00) 
3.09 1.84 0.343 2.75 0.252 

Natural water 

pH 10 (pH 10.01) 
13.7 1.63 3.08 10.6 0.0654 
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Appendices B: Sediment particle size determinations, and 
observed data for sorption experiment (Chapter 4) 

Appendix B-1 Sediment particle size determinations 

Introduction 

Soil particle-size (%sand, silt and clay) is important information for any experiment 

relating to soil or sediment. Soil particle-size relates to soil properties such as soil-

water retention, leaching, erosion potential and sorption. There are several methods 

for particle-size analysis for example including hydrometer and pipette methods 

(Avery et al., 1982). Kettler et al. (2001) developed a soil particle-size determination 

method name ‘rapid method’ by analysing six different soil samples. Later, Chaudhari 

et al. (2008) confirmed the rapid method by analyzing 100 saline and alkaline soil 

samples. Kettler et al. (2001) and Chaudhari et al. (2008) evaluated the rapid method 

by comparison against a standard pipette method for the same soils (Table B-1). The 

authors claimed that the rapid method provides a reliable soil particle-size 

determination with similar results to the pipette method.  

Table B-1 Linear regression equation relating measured sand, silt and clay fraction 

using the hydrometer, particulate organic matter (POM) and rapid method 

to the pipette method (Kettler et al., 2001 and Chaudhari et al., 2008). 

Fraction Hydrometer vs. pipette POM vs. pipette Rapid vs. pipette 

 Equation R
2
 Equation R

2
 Equation R

2
 

Sand 

 

Silt 

 

Clay 

y=0.93x+1.44 

- 

y=0.87+5.33 

- 

y=0.90x+2.86 

- 

0.98 

- 

0.88 

- 

0.95 

- 

Y=0.98x+0.92 

Y=1.02x 

Y=0.96+1.61 

Y=0.99x 

Y=0.95x+1.04 

Y=0.95x 

0.99 

0.99 

0.98 

0.98 

0.99 

0.93 

Y=0.99x+0.26 

Y=1.02x 

Y=1.01x+0.37 

0.999x 

Y=1.01x+1.04 

Y=0.96X 

0.99 

0.99 

0.99 

0.99 

0.99 

0.97 
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Note: (-) is information was not given. 

Method 

Air-dried (<2 mm) sediment samples in three replicate (15 g) were mixed with 3% 

(by weight) hexametaphosphate solution (90 mL) and then the flasks were shaken on 

a reciprocating shaker at 120 revolutions min-1 for 2 hours.  Afterwards the mixtures 

were sieved through a 0.063-mm sieve to separate sand particles. The sand particles 

were rinsed and oven dried at 105oC to constant weight. The sand content in the 

sample was calculated as: 

 

The mixture solution was transferred to a one litre beaker and stirred for 30 minutes to 

get a homogeneous suspension. The beakers were left undisturbed for 4 hours at room 

temperature (20+2oC) for silt sedimentation. Afterwards, the liquid phase in the 

beakers was discarded. The settled silt was dried in the beaker at 105oC to constant 

weight. Silt content in the soil sample was calculated as: 

 

The clay content was determined by subtraction:   %clay = 100 – (%sand + %silt)  

Results 

The amount of sand measured in three replicates was 7.68, 6.36 and 7.86 g giving 

sand content in the sediment of 51.2, 42.4 and 52.4%, respectively. The amount of 

measured silt from the three replicates was 2.88, 2.81, and 3.03 g giving silt in the 

sediment of 19.2, 18.7 and 20.2%, respectively. Calculated clay fraction in the 

sediment was 29.6, 38.9 and 27.4% for three replicates. The sediment was composed 

of (mean+standard deviation) 48.7+5.5%, 19.4+0.8%, 32.0+6.1% for sand, silt and 

clay, respectively. 
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Appendix B-2 Thiamethoxam residues in sorption test systems varying in water-sediment ratio (1:10, 1:5, 1:4, and 1:2) 

Sample 
Initial Total 

Pesticide 
Pesticide per mL 

Measured 

Pesticide 

Total 

Pesticide in 
Total TMX in Sorption Average % 

Standard 

deviation 

 
per Tube (mg) 

(no sorption) in sol. 

(mg) 

After 3-Days 

(mg/l) 

Solution 

(mg) 
Soil (mg) (%) Sorption  

2 g soil 0.020 0.0010 0.62 0.012 0.0075 37.7 
 

 

2 g soil 0.020 0.0010 0.57 0.011 0.0086 43.0 40.5 2.67 

2 g soil 0.020 0.0010 0.59 0.012 0.0082 40.8 
 

 

4 g soil 0.020 0.0010 0.48 0.0096 0.010 51.8 
 

 

4 g soil 0.020 0.0010 0.49 0.0099 0.010 50.6 51.3 0.65 

4 g soil 0.020 0.0010 0.48 0.0097 0.010 51.5 
 

 

5 g soil 0.020 0.0010 0.47 0.0095 0.011 52.6 
 

 

5 g soil 0.020 0.0010 0.48 0.0096 0.010 51.8 52.6 0.87 

5 g soil 0.020 0.0010 0.46 0.0093 0.011 53.5 
 

 

10 g soil 0.020 0.0010 0.36 0.0072 0.013 64.0 
 

 

10 g soil 0.020 0.0010 0.35 0.0070 0.013 64.9 63.5 1.80 

10 g soil 0.020 0.0010 0.39 0.0077 0.012 61.5 
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Appendix B-3 Metalaxyl-M residues in sorption test system varying in water-sediment ratio (1:10, 1:5, 1:4, and 1:2) 

Sample 
Initial Total 

Pesticide 
Pesticide per mL 

Measured 

Pesticide 
Total Pesticide in Total MET in Sorption Average % 

Standard 

deviation 

 
per Tube (mg) 

(no sorption) in sol. 

(mg) 

After 3-Days 

(mg L
-1

) 
Solution (mg) Soil (mg) (%) Sorption  

2 g soil 0.020 0.0010 0.65 0.013 0.0070 35.1 
 

 

2 g soil 0.020 0.0010 0.57 0.011 0.0087 43.4 42.1 6.47 

2 g soil 0.020 0.0010 0.52 0.010 0.0096 47.9 
 

 

4 g soil 0.020 0.0010 0.47 0.0094 0.011 52.8 
 

 

4 g soil 0.020 0.0010 0.49 0.0098 0.010 50.9 51.7 0.98 

4 g soil 0.020 0.0010 0.49 0.0097 0.010 51.4 
 

 

5 g soil 0.020 0.0010 0.38 0.0075 0.012 62.5 
 

 

5 g soil 0.020 0.0010 0.44 0.0088 0.011 55.8 58.7 3.43 

5 g soil 0.020 0.0010 0.42 0.0084 0.012 57.8 
 

 

10 g soil 0.020 0.0010 0.33 0.0066 0.013 67.0 
 

 

10 g soil 0.020 0.0010 0.30 0.0060 0.014 69.9 69.4 2.19 

10 g soil 0.020 0.0010 0.29 0.0058 0.014 71.2 
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Appendix B-4 Thiamethoxam (TMX) residues in solution and in sediment for the main sorption study 

Sample  

Initial 

total TMX 

per tube 

(mg) 

TMX per 

mL (no 

sorption) in 

solution 

(mg) 

Measured 

TMX after 

4-Days   

(mg  L
-1

) 

Total 

thiamethoxam 

in Solution (mg) 

Actual total 

thiamethoxam in 

sediment (mg) %Sorption 

Average 

%Sorption 

Standard 

deviation 

TMX 

in soil 

(mg 

kg
-1

) 

TMX in 

solution 

(ug mL
-1

) 

TMX 0.2 mg L
-1

_1 0.00400 0.000200 0.113 0.00226 0.00174 43.5 47.1 9.3 0.180 0.113 

TMX 0.2 mg L
-1

_2 0.00400 0.000200 0.120 0.00240 0.00160 40.1   

 

0.165 0.120 

TMX 0.2 mg L
-1

_3 0.00400 0.000200 0.085 0.00169 0.00231 57.6   

 

0.238 0.0847 

TMX 0.5 mg L
-1

_1 0.0100 0.000500 0.294 0.00588 0.00412 41.2 41.8 1.2 0.425 0.294 

TMX 0.5 mg L
-1

_2 0.0100 0.000500 0.284 0.00568 0.00432 43.2   

 

0.445 0.284 

TMX 0.5 mg L
-1

_3 0.0100 0.000500 0.295 0.00590 0.00410 41.0   

 

0.423 0.295 

TMX 1 mg L
-1

_1 0.0200 0.00100 0.556 0.0111 0.00889 44.4 47.5 2.8 0.917 0.556 

TMX 1 mg L
-1

_2 0.0200 0.00100 0.501 0.0100 0.0100 49.9   

 

1.03 0.501 

TMX 1 mg L
-1

_3 0.0200 0.00100 0.518 0.0104 0.00963 48.2   

 

0.994 0.518 

TMX 1.5 mg L
-1

_1 0.0300 0.00150 0.889 0.0178 0.0122 40.7 43.7 2.6 1.26 0.889 

TMX 1.5 mg L
-1

_2 0.0300 0.00150 0.827 0.0165 0.0135 44.9   

 

1.39 0.827 

TMX 1.5 mg L
-1

_3 0.0300 0.00150 0.819 0.0164 0.0136 45.4   

 

1.41 0.819 

TMX 2 mg L
-1

_1 0.0400 0.00200 1.17 0.0234 0.0166 41.6 44.0 2.6 1.72 1.17 

TMX 2 mg L
-1

_2 0.0400 0.00200 1.06 0.0213 0.0187 46.8   

 

1.93 1.06 

TMX 2 mg L
-1

_3 0.0400 0.00200 1.13 0.0226 0.0174 43.5   

 

1.79 1.13 
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Appendix B-5 Metalaxyl-M (MET) residues in solution and in sediment for the main sorption study 

Sample 

Initial total 

MET per 

tube (mg) 

MET per mL 

(no sorption) 

in solution. 

(mg) 

Measured MET 

after    4-Days      

(mg L
-1

) 

Total MET 

in solution 

(mg) 

Total MET 

in Soil 

(mg) %Sorption 

Average 

%Sorption 

Standard 

deviation 

MET in 

Soil (mg 

kg
-1

) 

MET in 

solution 

(µg mL
-1

) 

met 0.2 mg L
-1

_1 0.0040 0.00020 0.127 0.00253 0.00147 36.7 58.3 19.2 0.151 0.127 

met 0.2 mg L
-1

_2 0.0040 0.00020 0.0704 0.00141 0.00259 64.8   

 

0.267 0.070 

met 0.2 mg L
-1

_3 0.0040 0.00020 0.0534 0.00107 0.00293 73.3   

 

0.302 0.053 

met 0.5 mg L
-1

_1 0.010 0.00050 0.199 0.00398 0.00602 60.2 56.9 3.4 0.621 0.199 

met 0.5 mg L
-1

_2 0.010 0.00050 0.233 0.00466 0.00534 53.4   

 

0.551 0.233 

met 0.5 mg L
-1

_3 0.010 0.00050 0.214 0.00427 0.00573 57.3   

 

0.591 0.214 

met 1 mg L
-1

_1 0.020 0.0010 0.457 0.00915 0.0109 54.3 51.4 2.5 1.12 0.457 

met 1 mg L
-1

_2 0.020 0.0010 0.499 0.0100 0.0100 50.1   

 

1.03 0.499 

met 1 mg L
-1

_3 0.020 0.0010 0.502 0.0100 0.0100 49.8   

 

1.03 0.502 

met 1.5 mg L
-1

_1 0.030 0.0015 0.793 0.0159 0.0141 47.1 47.3 0.5 1.46 0.793 

met 1.5 mg L
-1

_2 0.030 0.0015 0.783 0.0157 0.0143 47.8   

 

1.48 0.783 

met 1.5 mg L
-1

_3 0.030 0.0015 0.797 0.0159 0.0141 46.9   

 

1.45 0.797 

met 2 mg L
-1

_1 0.040 0.0020 1.12 0.0224 0.0176 43.9 45.5 1.4 1.81 1.12 

met 2 mg L
-1

_2 0.040 0.0020 1.08 0.0216 0.0184 46.0   

 

1.90 1.08 

met 2 mg L
-1

_3 0.040 0.0020 1.07 0.0213 0.0187 46.6   

 

1.92 1.07 
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Appendices C: Supporting data for water-sediment systems 
experiment (Chapter 5) 

Appendix C-1 Observed thiamethoxam (µg) in water and in sediment at selected time intervals 

(days) 

Time (days) 

Thiamethoxam in water (µg) Thiamethoxam in sediment (µg) 

Replicate 1 Replicate 2 Replicate 3 Replicate 1 Replicate 2 Replicate 3 

0 235 228 227 Not 
detected 

Not 
detected 

Not 
detected 

1 165 162 161 5.70 6.93 7.41 

3 137 141 142 10.2 16.1 13.8 

7 121 120 119 13.8 15.3 16.0 

14 80.9 81.1 88.5 27.8 24.4 24.2 

21 54.7 58.5 48.7 9.42 9.88 6.99 

28 42.1 35.6 28.4 12.7 8.19 3.98 

 

Appendix C-2 Observed metalaxyl-M (µg) in water and in sediment at selected time intervals 

(days) 

Time (days) Metalaxyl-M in water (µg) Metalaxyl-M in sediment (µg) 

Replicate 1 Replicate 2 Replicate 3 Replicate 1 Replicate 2 Replicate 3 

0 136 132 136 Not 
detected 

Not 
detected 

Not 
detected 

1 121 124 118 12.3 13.4 15.4 

3 105 108 108 19.5 23.2 19.7 

7 90.8 96.3 97.5 26.0 25.7 25.5 

14 78.6 76.0 82.3 20.3 19.7 16.8 

21 64.4 59.9 62.6 24.1 23.8 23.5 

28 52.6 59.6 58.2 19.7 22.2 20.1 
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Appendix C-3 Calculated thiamethoxam (µg) in water and in sediment from ModelMaker,  

      version 4.0 

Time (days) 
Thiamethoxam in water from 
model (µg) 

Thiamethoxam in sediment from model 
(µg) 

0 187 0 

1 169 9.42 

2 155 14.7 

3 144 17.5 

4 134 18.8 

5 127 19.2 

6 120 19.1 

7 113 18.7 

8 108 18.1 

9 102 17.4 

10 97.3 16.7 

11 92.6 16.0 

12 88.1 15.2 

13 83.9 14.5 

14 79.9 13.8 

15 76.0 13.2 

16 72.4 12.6 

17 68.9 12.0 

18 65.6 11.4 

19 62.5 10.8 

20                       59.5 10.3 
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Appendix C-3 (Continued) Calculated thiamethoxam (µg) in water and in sediment from 

ModelMaker, version 4.0 

Time (days) 
Thiamethoxam in water from 
model (µg) 

Thiamethoxam in sediment from model 
(µg) 

21 56.6 9.84 

22 53.9 9.37 

23 51.3 8.92 

24 48.9 8.49 

25 46.5 8.09 

26 44.3 7.70 

27 42.2 7.33 

28 40.2 6.98 

Appendix C-4 Calculated metalaxyl-M in water and in sediment from ModelMaker,         

        version 4.0  

Time (days) Metalaxyl-M in water from model (µg) Metalaxyl-M in sediment from model (µg) 

0 135 0 

1 122 11.7 

2 113 18.6 

3 107 22.7 

4 102 24.9 

5 98.6 26.0 

6 95.5 26.5 

7 92.7 26.5 

8 90.2 26.3 

9 87.9 26.0 

10 85.7 25.5 
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Appendix C-4 (Continued) Calculated metalaxyl-M in water and in sediment from ModelMaker,    

version 4.0  

Time (days) 
Metalaxyl-M in water from model 

(µg) 
Metalaxyl-M in sediment from model 

(µg) 

11 83.7 25.0 

12 81.7 24.4 

13 79.8 23.9 

14 77.9 23.4 

15 76.1 22.8 

16 74.3 22.3 

17 72.6 21.8 

18 70.9 21.3 

19 69.3 20.8 

20 67.7 20.3 

21 66.1 19.9 

22 64.5 19.4 

23 63.1 19.0 

24 61.6 18.5 

25 60.2 18.1 

26 58.8 17.7 

27 

28                                        

                        57.4 

                        56.1 

17.3 

16.9 
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Appendix C-5 Optimization statistics for the thiamethoxam in water-sediment study simulated 

with ModelMaker version 4.0 

Statistic parameter Model Residual Total 

Degree of freedom 3 35 38 

Weighted sum of squares 1.82 x 10
5
 6.50 x 10

3
 1.89 x 10

5
 

Mean square 6.08 x 10
4
 1.86 x 10

2
 N/A 

Total uncorrected sum of squares - - 3.77 x 10
5
 

r
2
 - - 0.966 

F - - 3.27 x 10
2
 

P - - 1.40 x10
-21

 

Q - - N/A 

 

Appendix C-6 Optimization statistics for the metalaxyl-M in water-sediment study simulated 

with ModelMaker version 4.0 

Statistic parameter Model Residual Total 

Degree of freedom 3 35 38 

Weighted sum of squares 6.79 x 10
4
 3.76 x 10

2
 6.82 x 10

4
 

Mean square 2.26 x 10
4
 10.7 N/A 

Total uncorrected sum of squares - - 2.09 x 10
5
 

r
2
 - - 0.994 

F - - 2.10 x 10
3
 

P - - 1.74 x 10
-05

 

Q - - N/A 
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Appendices D: Pesticide residues in three components; water, sediment, plants in laboratory 
experiment. (Chapter 6) 

Pesticide concentration (thiamethoxam and metalaxyl-M) in water, sediment and plants in treatments G and H (control treatments) are not shown 

because all measured concentrations were below the detection limit. Any sample were concentration below detection limit is defined as a half of 

detection limit concentration in water, sediment and plants if use the concentration at limit detection, the sample with below detection limit 

concentration could result in high concentration than sample at very low concentration 

Appendix D-1 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water in treatment A 

Sample ID 

Added 

TMX 

(mg L-1) 

TMX in water 

(mg L-1) Mean STDEV 

TMX in 

sediment 

(mg kg-1) Mean STDEV 

TMX in 

plants    

(mg kg-1) Mean STDEV 

Treatment A-day0_1D 2.00 2.06 
  

No sediment No plants 

Treatment A-day0_2D 2.00 1.97 2.02 0.06 

Treatment A-day0_3D 2.00 1.97 
  Treatment A-day28_1D 2.00 1.67 
  Treatment A-day28_2D 2.00 1.66 1.67 0.01 

Treatment A-day28_3D 2.00 1.67 
  Treatment A-day56_1D 2.00 1.08 
  Treatment A-day56_2D 2.00 0.983 1.03 0.07 

Treatment A-day56_3D 2.00 0.938 
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Appendix D-2 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water in treatment B 

Sample ID 

Added 

TMX     

(mg L-1) 

TMX in water 

(mg L-1) Mean STDEV 

TMX in 

sediment 

(mg kg-1) Mean STDEV 

TMX in 

plants    

(mg kg-1) Mean STDEV 

Treatment B-day0_1L 2.00 1.92 
  

 

No sediment 

 

No plants 

Treatment B-day0_2L 2.00 2.03 1.97 0.08 

Treatment B-day0_3L 2.00 2.05 
  Treatment B-day28_1L 2.00 1.59 
  Treatment B-day28_2L 2.00 1.61 1.60 0.02 

Treatment B-day28_3L 2.00 1.66 
  Treatment B-day56_1L 2.00 0.875 
  Treatment B-day56_2L 2.00 0.887 0.881 0.009 

Treatment B-day56_3L 2.00 0.903 
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Appendix D-3 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water and sediment in treatment C 

Sample ID 

Added TMX 

(mg L-1) 

TMX in water 

(mg L-1) Mean STDEV 

TMX in sediment 

(mg kg-1) Mean STDEV 

TMX in plants    

(mg kg-1) Mean STDEV 

Treatment C-day0_1D 2.00 1.94 
  

0.0255   

 

No plants 

Treatment C-day0_2D 2.00 2.44 2.19 0.35 0.0255 0.0255 0.0280 

Treatment C-day0_3D 2.00 1.67 
  

0.0255   

Treatment C-day28_1D 2.00 0.657 
  

0.0255   

Treatment C-day28_2D 2.00 0.648 0.652 0.006 0.0255 0.0255 0.0280 

Treatment C-day28_3D 2.00 0.708 
  

0.0255   

Treatment C-day56_1D 2.00 0.00450 
  

0.0255   

Treatment C-day56_2D 2.00 0.00450 0.00450 0.00400 0.0255 0.0255 0.0280 

Treatment C-day56_3D 2.00 0.00450 
  

0.0255   
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Appendix D-4 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water and sediment in treatment D 

Sample ID 

Added TMX 

(mg L-1) 

TMX in water 

(mg L-1) Mean STDEV 

TMX in sediment 

(mg kg-1) Mean STDEV 

TMX in plants    

(mg kg-1) Mean STDEV 

Treatment D-day0_1L 2.00 1.86 
  

0.0255   

 

No plants 

Treatment D-day0_2L 2.00 2.38 2.12 0.32 0.0255 0.0255 0.0280 

Treatment D-day0_3L 2.00 1.79 
  

0.0255   

Treatment D-day3_1L 2.00 1.85 
  

0.0726   

Treatment D-day3_2L 2.00 1.79 1.82 0.03 0.128 0.0929 0.0301 

Treatment D-day3_3L 2.00 1.84 
  

0.0785   

Treatment D-day7_1L 2.00 1.07 
  

0.375   

Treatment D-day7_2L 2.00 1.00 1.04 0.07 0.423 0.377 0.045 

Treatment D-day7_3L 2.00 1.14 
  

0.334   

Treatment D-day14_1L 2.00 1.00 
  

0.498   

Treatment D-day14_2L 2.00 0.921 0.958 0.053 0.357 0.428 0.100 

Treatment D-day14_3L 2.00 0.877 
  

0.492   

Treatment D-day28_1L 2.00 0.533 
  

0.0255   

Treatment D-day28_2L 2.00 0.573 0.553 0.029 0.0255 0.0255 0.0280 

Treatment D-day28_3L 2.00 0.515 
  

0.0255   

Treatment D-day42_1L 2.00 0.151 
  

0.0255   

Treatment D-day42_2L 2.00 0.135 0.143 0.011 0.0255 0.0255 0.0280 

Treatment D-day42_3L 2.00 0.132 
  

0.0255   

Treatment D-day56_1L 2.00 0.00450 
  

0.0255   

Treatment D-day56_2L 2.00 0.00450 0.00450 0.00400 0.0255 0.0255 0.0280 

Treatment D-day56_3L 2.00 0.00450 
  

0.0255   
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Appendix D-5 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water and plants in treatment E 

Sample ID 

Added TMX 

(mg L-1) 

TMX in 

water 

(mg L-1) Mean STDEV 

TMX in 

sediment 

(mg kg-1) Mean STDEV 

TMX in plants    

(mg kg-1) Mean STDEV 

Treatment E-day0_1L 2.00 1.01 1.02 0.02 

No sediment 

11.6 
  Treatment E-day0_2L 2.00 1.03 

  
8.39 6.96 5.46 

Treatment E-day0_3L 2.00 1.01 
  

0.926 
  Treatment E-day28_1L 2.00 0.00450 0.00450 0.00400 0.851 
  Treatment E-day28_2L 2.00 0.00450 

  
0.926 0.901 0.043 

Treatment E-day28_3L 2.00 0.00450 
  

0.926 
  Treatment E-day56_1L 2.00 0.00450 0.00450 0.00400 0.926 
  Treatment E-day56_2L 2.00 0.00450 

  
0.926 0.926 0.120 

Treatment E-day56_3L 2.00 0.00450 
  

0.926 
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Appendix D-6 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water, sediment and plant in treatment F 

Sample ID 

Added TMX 

(mg L-1) 

TMX in water 

(mg L-1) Mean STDEV 

TMX in sediment 

(mg kg-1) Mean STDEV 

TMX in plants    

(mg kg-1) Mean STDEV 

Treatment F-day0_1L 2.00 1.52 
  

0.0255 
  

0.926 
  Treatment F-day0_2L 2.00 1.69 1.60 0.25 0.0255 0.0255 0.0098 0.926 0.926 0.12 

Treatment F-day0_3L 2.00 2.00 
  

0.00856     0.926     

Treatment F-day3_1L 2.00 0.366 
  

0.0169 
  

0.425 
  Treatment F-day3_2L 2.00 0.181 0.274 0.092 0.0133 0.0151 0.0063 0.656 0.540 0.115 

Treatment F-day3_3L 2.00 0.282 
  

0.0255     0.548     

Treatment F-day7_1L 2.00 0.00450 
  

0.0255 
  

0.926 
  Treatment F-day7_2L 2.00 0.00450 0.00450 0.00400 0.0255 0.0255 0.0280 1.61 5.97 8.15 

Treatment F-day7_3L 2.00 0.00450 
  

0.0255 
  

15.4 
  Treatment F-day14_1L 2.00 0.00450 

  
0.0128 

  
0.926 

  Treatment F-day14_2L 2.00 0.00450 0.00450 0.00400 0.0255 0.0191 0.0073 0.926 0.926 0.120 

Treatment F-day14_3L 2.00 0.00450     0.0255     0.926     

Treatment F-day28_1L 2.00 0.00450 
  

0.0255 
  

0.926 
  Treatment F-day28_2L 2.00 0.00450 0.00450 0.00400 0.0255 0.0255 0.0280 0.926 1.11 0.31 

Treatment F-day28_3L 2.00 0.00450     0.0255     1.46     

Treatment F-day42_1L 2.00 0.00450 
  

0.0255 
  

1.04 
  Treatment F-day42_2L 2.00 0.00450 0.00450 0.00400 0.0255 0.0255 0.0280 1.19 1.11 0.08 

Treatment F-day42_3L 2.00 0.00450     0.0255     1.06     

Treatment F-day56_1L 2.00 0.00450 
  

0.0255 
  

0.698 
  Treatment F-day56_2L 2.00 0.00450 0.00450 0.00400 0.0255 0.0255 0.0280 1.90 1.30 0.64 

Treatment F-day56_3L 2.00 0.00450     0.0255     0.926     
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Appendix D-8 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water in treatment A 

Sample ID 

Added 

MET    

(mg L-1) 

MET in water 

(mg L-1) Mean STDEV 

MET in 

sediment 

(mg kg-1) Mean STDEV 

MET in 

plants      

(mg kg-1) Mean STDEV 

Treatment A-day0_1D 2.00 2.10 
  

No sediment No plants 

Treatment A-day0_2D 2.00 2.06 2.05 0.05 

Treatment A-day0_3D 2.00 2.00 
  Treatment A-day28_1D 2.00 2.10 
  Treatment A-day28_2D 2.00 2.11 2.08 0.04 

Treatment A-day28_3D 2.00 2.03 
  Treatment A-day56_1D 2.00 1.83 
  Treatment A-day56_2D 2.00 1.80 1.80 0.03 

Treatment A-day56_3D 2.00 1.77 
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Appendix D-9 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water in treatment B 

Sample ID 

Added 

MET    

(mg L-1) 

MET in water 

(mg L-1) Mean STDEV 

MET in 

sediment 

(mg kg-1) Mean STDEV 

MET in 

plants        

(mg kg-1) Mean STDEV 

Treatment B-day0_1L 2.00 1.95 
  

 

No sediment 

 

No plants 

Treatment B-day0_2L 2.00 2.09 2.06 0.09 

Treatment B-day0_3L 2.00 2.13 
  Treatment B-day28_1L 2.00 2.02 
  Treatment B-day28_2L 2.00 2.03 2.04 0.02 

Treatment B-day28_3L 2.00 2.07 
  Treatment B-day56_1L 2.00 1.65 
  Treatment B-day56_2L 2.00 1.80 1.71 0.08 

Treatment B-day56_3L 2.00 1.67 
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Appendix D-10 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water, sediment and plants in treatment C 

Sample ID 

Added MET    

(mg L-1) 

MET in water 

(mg L-1) Mean STDEV 

MET in sediment 

(mg kg-1) Mean STDEV 

MET in plants     

(mg kg-1) Mean STDEV 

Treatment C-day0_1D 2.00 2.04 
  

0.0275   

 

No plants 

Treatment C-day0_2D 2.00 2.69 2.35 0.32 0.0275 0.0275 0.002 

Treatment C-day0_3D 2.00 2.31 
  

0.0275   

Treatment C-day28_1D 2.00 1.06 
  

1.48   

Treatment C-day28_2D 2.00 1.02 1.06 0.03 1.74 1.39 0.39 

Treatment C-day28_3D 2.00 1.09 
  

0.962   

Treatment C-day56_1D 2.00 0.652 
  

0.909   

Treatment C-day56_2D 2.00 0.686 0.693 0.045 1.14 1.02 0.12 

Treatment C-day56_3D 2.00 0.742 
  

1.02   

 

 

 

 

 



Appendices 

 

197 

 

Appendix D-11 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water and sediment in treatment D 

Sample ID 

Added MET    

(mg L-1) 

MET in water 

(mg L-1) Mean STDEV 

MET in sediment 

(mg kg-1) Mean STDEV 

MET in plants      

(mg kg-1) Mean STDEV 

Treatment D-day0_1L 2.00 1.24 
  

0.0275   

 

No plants 

Treatment D-day0_2L 2.00 1.58 1.71 0.55 0.0275 0.0275 0.002 

Treatment D-day0_3L 2.00 2.32 
  

0.0275   

Treatment D-day3_1L 2.00 1.98 
  

0.00683         

Treatment D-day3_2L 2.00 1.82 1.88 0.09 0.00931 0.00781 0.00132 

Treatment D-day3_3L 2.00 1.84 
  

0.00729   

Treatment D-day7_1L 2.00 1.26 
  

0.912   

Treatment D-day7_2L 2.00 1.28 1.28 0.03 1.08 0.904 0.177 

Treatment D-day7_3L 2.00 1.32 
  

0.723   

Treatment D-day14_1L 2.00 1.40 
  

0.0357   

Treatment D-day14_2L 2.00 1.30 1.33 0.07 0.0394 0.0363 0.0029 

Treatment D-day14_3L 2.00 1.28 
  

0.0338   

Treatment D-day28_1L 2.00 1.02 
  

0.0257   

Treatment D-day28_2L 2.00 1.08 1.07 0.05 0.0273 0.0271 0.0013 

Treatment D-day28_3L 2.00 1.11 
  

0.0283   

Treatment D-day42_1L 2.00 0.893 
  

0.0268   

Treatment D-day42_2L 2.00 0.937 0.922 0.025 0.0321 0.0305 0.0032 

Treatment D-day42_3L 2.00 0.935 
  

0.0326   

Treatment D-day56_1L 2.00 0.746 
  

0.0381   

Treatment D-day56_2L 2.00 0.722 0.754 0.038 0.0482 0.0470 0.0084 

Treatment D-day56_3L 2.00 0.796 
  

0.0548   
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Appendix D-12 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water and plants in treatment E 

Sample ID 

Added MET    

(mg L-1) 

MET in water 

(mg L-1) Mean STDEV 

MET in sediment 

(mg kg-1) Mean STDEV 

MET in 

plants      

(mg kg-1) Mean STDEV 

Treatment E-day0_1L 2.00 1.00 
  

No sediment 

0.926 
  Treatment E-day0_2L 2.00 1.03 1.03 0.03 0.468 0.773 0.264 

Treatment E-day0_3L 2.00 1.06 
  

0.926 
  Treatment E-day28_1L 2.00 0.833 

  
14.8 

  Treatment E-day28_2L 2.00 1.05 0.925 0.113 17.8 25.1 15.3 

Treatment E-day28_3L 2.00 0.891 
  

42.7 
  Treatment E-day56_1L 2.00 0.208 

  
9.58 

  Treatment E-day56_2L 2.00 0.558 0.464 0.224 22.8 18.5 7.7 

Treatment E-day56_3L 2.00 0.626 
  

23.0 
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Appendix D-13 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water, sediment and plants in treatment F 

Sample ID 
Added MET    
(mg L-1) 

MET in water 
(mg L-1) Mean STDEV 

MET in sediment 
(mg kg-1) Mean STDEV 

MET in plants      
(mg kg-1) Mean STDEV 

Treatment F-day0_1L 
2.00 2.04 

  
0.0275 

  
0.505 

  Treatment F-day0_2L 2.00 2.62 2.31 0.29 0.0275 0.0275 0.002 0.697 0.608 0.096 

Treatment F-day0_3L 2.00 2.28 
  

0.0275 
  

0.622 
  Treatment F-day3_1L 2.00 1.87 

  
0.269 

  
8.14 

  Treatment F-day3_2L 2.00 1.72 1.84 0.11 0.208 0.205 0.065 7.95 8.42 0.66 

Treatment F-day3_3L 2.00 1.92 
  

0.139 
  

9.18 
  Treatment F-day7_1L) 2.00 0.989 

  
0.601 

  
9.05 

  Treatment F-day7_2L 2.00 1.04 1.08 0.11 0.615 0.597 0.021 9.07 6.35 4.70 

Treatment F-day7_3L 2.00 1.20 
  

0.574 
  

0.926 
  Treatment F-day14_1L 2.00 1.12 

  
1.55 

  
14.7 

  Treatment F-day14_2L 2.00 1.07 1.07 0.05 1.57 1.39 0.29 18.8 15.7 2.7 

Treatment F-day14_3L 2.00 1.01 
  

1.06 
  

13.6 
  Treatment F-day28_1L 2.00 0.778 

  
1.04 

  
15.1 

  Treatment F-day28_2L 2.00 0.672 0.720 0.053 0.833 0.951 0.106 11.5 14.1 2.2 

Treatment F-day28_3L 2.00 0.712 
  

0.981 
  

15.6 
  Treatment F-day42_1L 2.00 0.372 

  
0.049 

  
3.23 

  Treatment F-day42_2L 2.00 0.324 0.355 0.027 0.0275 0.041 0.012 2.70 7.40 7.68 

Treatment F-day42_3L 2.00 0.367 
  

0.0458 
  

16.3 
  Treatment F-day56_1L 2.00 0.0045 

  
0.0286 

  
11.9 

  Treatment F-day56_2L 2.00 0.0045 0.004 0.004 0.0290 0.0284 0.0008 20.1 12.2 7.7 
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Treatment F-day56_3L 2.00 0.0045     0.0275     4.74 
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Appendix D-14 Analysis of variance for pH of the water phase varying with treatment and time 

Source of Variation  Degree of freedom    Sum of square  Mean of square    F    P   

Treatments 7  10.1                 1.44  6.15 <0.001  

Time (days) 2  4.07               2.04  8.71 <0.001  

Residual 56  13.1              0.234    

Total 65    27.3                 0.42    

 

Appendix D-15 Multiple comparison (Tukey test) for pH of the water phase in each treatment to 

isolate the groups that differ from the others based on treatment 

Comparison Difference of Means    p q   P  P<0.05  

E vs. D 1.307            8 8.106 <0.001  Yes  

E vs. C 1.161            8 7.203 <0.001  Yes  

E vs. F 0.868                     8 5.383 0.008  Yes  

E vs. H 0.843                              8 4.603 0.038  Yes  

E vs. G 0.838            8 4.576 0.040  Yes  

E vs. A 0.657            8 4.073 0.096  No  

E vs. B 0.531            8 3.295 0.297  Do Not Test  

B vs. D 0.776            8 4.811 0.026  Yes  

B vs. C 0.630            8 3.908 0.126  No  

B vs. F 0.337            8 2.088 0.816  Do Not Test  

B vs. H 0.312            8 1.704 0.927  Do Not Test  

B vs. G 0.307            8 1.677 0.933  Do Not Test  

Note: A, B, C, D, E, F, G and H are name of treatments as described in Table 6-2. 
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Appendix D-15 (Continued) Multiple comparisons (Tukey test) for pH of the water phase in 

each treatment to isolate the groups that differ from the others based on treatment 

Comparison Difference of Means    p q   P  P<0.05  

B vs. A 0.126            8 0.779 0.999  Do Not Test  

A vs. D 0.650            8 4.032 0.103  No  

A vs. C 0.504            8 3.129 0.360  Do Not Test  

A vs. F 0.211            8 1.310 0.982  Do Not Test  

A vs. H 0.187            8 1.019 0.996   Do Not Test  

A vs. G 0.182            8 0.992 0.997  Do Not Test  

G vs. D 0.468            8 2.556 0.618  Do Not Test  

G vs. C 0.323            8 1.762 0.914  Do Not Test  

G vs. F 0.0294            8 0.161 1.000  Do Not Test  

G vs. H 0.00500            8 0.0246 1.000  Do Not Test  

H vs. D 0.463            8 2.529 0.630  Do Not Test  

H vs. C 0.318            8 1.734 0.921  Do Not Test  

H vs. F 0.0244            8 0.133 1.000  Do Not Test  

F vs. D 0.439            8 2.723 0.540  Do Not Test  

F vs. C 0.293            8 1.820 0.900  Do Not Test  

C vs. D 0.146            8 0.903 0.998  Do Not Test  
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Appendix D-16 Multiple comparison (Tukey test) for pH in the water phase in each treatment to 

isolate the groups that differ from the others base on time 

Comparison Difference of means  p q P  P<0.05  

0.000 vs. 28.000 0.598  3 5.419 0.001  Yes  

0.000 vs. 56.000 0.0329  3 0.333 0.970  No  

56.000 vs. 28.000 0.565  3 5.121 0.002  Yes  
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Appendices E: Pesticides residues in each compartment (water, sediment and plants) in the outdoor 
experiment, weather data during the experiment and statistical tests. (Chapter 7) 

Appendix E-1 Daily weather data (mean from every hour for 24 hours); wind speed, air temperature, soil temperature, relative humidity and solar 

radiation during experiment from 9
th

 August 2011 to 6
th

 September 2011 

    
Wind 
speed     

Air 
temperature     

Soil 
temperature 

- 10 cm     
Relative 
humidity   

Solar 
radiation 

Day   (m/s)     (
o
C)     (

o
C)     (%)   (kW/m

2
) 

  Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean Total 

0 0.03 1.83 0.73 8.87 19.53 13.66 15.84 17.02 16.50 73.22 103.58 95.70 12.08 

1 0.08 2.24 1.06 9.04 18.59 13.61 16.05 17.32 16.68 57.60 103.53 81.98 15.58 

2 0.03 1.13 0.50 8.84 16.23 13.30 15.99 16.82 16.36 103.48 103.58 103.55 3.99 

3 0.11 0.98 0.54 13.86 18.62 16.22 16.38 17.37 16.81 103.53 103.63 103.59 7.03 

4 0.08 2.71 1.35 13.03 18.99 15.70 16.81 17.32 17.07 83.97 103.58 97.70 7.39 

5 0.00 1.60 0.75 13.03 20.07 17.18 16.95 18.00 17.42 75.57 103.63 93.48 10.09 

6 0.00 1.11 0.41 10.06 18.99 14.98 16.83 17.61 17.26 58.37 103.58 88.92 9.32 

7 0.00 1.09 0.45 7.07 19.42 13.76 15.92 17.20 16.64 56.78 103.53 85.87 14.03 

8 0.03 1.83 0.98 11.01 20.59 14.92 16.46 17.36 16.86 78.54 103.58 96.40 9.16 

9 0.05 1.14 0.49 7.10 18.49 13.03 15.77 16.90 16.41 59.34 103.53 84.24 12.54 

10 0.00 1.95 0.64 7.26 17.52 12.73 15.38 16.48 16.00 67.23 103.58 90.66 11.00 

11 0.00 1.03 0.41 7.62 20.31 14.85 15.42 16.99 16.23 60.57 103.53 83.69 14.24 

12 0.08 0.78 0.51 12.13 23.23 18.13 16.17 17.71 16.91 59.14 103.58 83.10 12.99 

13 0.01 1.43 0.53 11.30 21.00 16.69 16.93 17.85 17.39 68.76 103.58 89.43 12.11 

Note; Rainfall did not shown because the value was 0.00 mm during the experiment. 
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Appendix E-1 (Continued) Daily weather data (mean from every hour for 24 hours); wind speed, air temperature, soil temperature, relative humidity 

and solar radiation during experiment from 9
th

 August 2011 to 6
th

 September 2011 

    
Wind 
speed     

Air 
temperature     

Soil 
temperature 

- 10 cm     
Relative 
humidity   

Solar 
radiation 

Day   (m/s)     (
o
C)     (

o
C)     (%)   (kW/m

2
) 

  Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean Total 

14 0.00 1.89 0.62 7.87 20.87 14.51 16.08 17.47 16.83 52.43 103.53 81.99 16.11 

15 0.20 0.98 0.55 10.85 16.75 13.89 16.42 17.00 16.71 74.96 103.58 96.71 6.05 

16 0.00 0.93 0.37 9.15 22.12 14.82 16.04 17.25 16.65 59.08 103.58 89.27 10.03 

17 0.00 1.26 0.45 10.82 18.92 13.97 15.89 16.92 16.47 63.49 103.58 91.28 10.94 

18 0.02 1.18 0.45 10.17 14.00 12.14 15.84 16.48 16.02 103.48 103.58 103.53 2.65 

19 0.00 0.85 0.26 7.92 15.24 11.73 15.09 15.79 15.53 91.49 103.58 102.13 7.17 

20 0.03 1.79 0.93 8.06 17.16 12.77 14.78 15.85 15.36 63.08 103.53 86.30 14.12 

21 0.08 2.32 0.95 9.01 15.60 12.28 14.96 15.50 15.25 61.18 103.53 84.06 9.99 

22 0.02 1.61 0.44 7.50 15.69 11.54 14.53 15.25 14.91 76.13 103.58 98.35 5.75 

23 0.62 2.23 1.48 14.83 24.70 19.79 17.38 18.94 18.20 62.36 92.47 79.01 12.18 

24 0.00 2.04 0.61 13.05 24.75 18.52 17.47 19.03 18.24 66.92 103.63 90.46 10.97 

25 0.04 2.34 0.70 13.15 25.43 18.09 17.47 19.46 18.60 64.26 103.63 95.65 15.18 

26 0.03 2.13 0.63 11.82 19.06 15.94 17.27 18.62 18.17 98.36 103.63 102.90 6.02 

27 0.00 1.38 0.60 9.94 21.32 16.16 17.08 18.82 17.92 56.47 103.58 83.26 16.31 

28 0.01 2.05 0.52 9.96 17.24 13.17 16.41 17.38 17.03 103.53 103.58 103.56 5.11 

  Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean Total 

  0.05 1.58 0.65 10.15 19.33 14.76 16.19 17.30 16.77 72.53 103.19 91.96 300.12 

Note; Rainfall is not shown because the value was 0.00 mm during the experiment. 
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Appendix E-2 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water in treatment A 

Sample ID 

Added 

TMX 

(mg L-1) 

TMX in water  

(mg L-1) Mean STDEV 

TMX in 

sediment 

(mg kg-1) Mean STDEV 

TMX in 

plants    

(mg kg-1) Mean STDEV 

Treatment A-day0_1D 2.00 1.42 
  

No sediment No plants 

Treatment A-day0_2D 2.00 1.42 1.41 0.0105 

Treatment A-day0_3D 2.00 1.40     

Treatment A-day14_1D 2.00 1.14 
  Treatment A-day14_2D 2.00 1.18 1.12 0.0647 

Treatment A-day14_3D 2.00 1.05     

Treatment A-day28_1D 2.00 1.01 
  Treatment A-day28_2D 2.00 1.04 1.00 0.0376 

Treatment A-day28_3D 2.00 0.963     

 

 

 

 



Appendices 

 

207 

 

Appendix E-3 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water in treatment B 

Sample ID 

Added 

TMX 

(mg L-1) 

TMX in water     

(mg L-1) Mean STDEV 

TMX in 

sediment 

(mg kg-1) Mean STDEV 

TMX in 

plants      

(mg kg-1) Mean STDEV 

Treatment B-day0_1L 2.00 1.35 
  

 

No sediment 

 

No plants 

Treatment B-day0_2L 2.00 1.41 1.37 0.0339 

Treatment B-day0_3L 2.00 1.35     

Treatment B-day14_1L 2.00 0.0700 
  Treatment B-day14_2L 2.00 0.180 0.143 0.0635 

Treatment B-day14_3L 2.00 0.180     

Treatment B-day28_1L 2.00 0.0136 
  Treatment B-day28_2L 2.00 0.00450 0.00752 0.00524 

Treatment B-day28_3L 2.00 0.00450     
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Appendix E-4 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water, sediment in treatment C 

Sample ID 

Added TMX 

(mg L-1) 

TMX in water 

(mg L-1) Mean STDEV 

TMX in sediment 

(mg kg-1) Mean STDEV 

TMX in plants 

(mg kg-1) Mean STDEV 

Treatment C-day0_1L 2.00 1.35 
  

0.0150   

 

No plants 

Treatment C-day0_2L 2.00 1.36 1.39 0.0635 0.0163 0.0136 0.00363 

Treatment C-day0_3L 2.00 1.46     0.00946     

Treatment C-day14_1L 2.00 0.572 
  

0.228   

Treatment C-day14_2L 2.00 0.609 0.582 0.0236 0.195 0.155 0.0982 

Treatment C-day14_3L 2.00 0.565     0.0436     

Treatment C-day28_1L 2.00 0.209 
  

0.0163   

Treatment C-day28_2L 2.00 0.230 0.214 0.0140 0.0237 0.0212 0.00425 

Treatment C-day28_3L 2.00 0.203     0.0236     
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Appendix E-5 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water and sediment in treatment D 

Sample ID 

Added TMX 

(mg L-1) 

TMX in water 

(mg L-1) Mean STDEV 

TMX in sediment 

(mg kg-1) Mean STDEV 

TMX in plants 

(mg kg-1) Mean STDEV 

Treatment D-day0_1L 2.00 1.36 
  

0.00313   

 

No plants 

Treatment D-day0_2L 2.00 1.39 1.38 0.0192 0.00183 0.00261 0.000694 

Treatment D-day0_3L 2.00 1.39     0.00289     

Treatment D-day7_1L 2.00 0.179 
  

0.00828   

Treatment D-day7_2L 2.00 0.356 0.215 0.127 0.0149 0.0106 0.00374 

Treatment D-day7_3L 2.00 0.109     0.00863     

Treatment D-day14_1L 2.00 0.0045 
  

0.00101   

Treatment D-day14_2L 2.00 0.0045 0.00450 0.00400 0.00270 0.00191 0.000846 

Treatment D-day14_3L 2.00 0.0045     0.00201     

Treatment D-day28_1L 2.00 0.0045 
  

0.0255   

Treatment D-day28_2L 2.00 0.0045 0.00450 0.00400 0.0255 0.0182 0.0126 

Treatment D-day28_3L 2.00 0.00450     0.00371     

 

 

 

 



Appendices 

 

210 

 

Appendix E-6 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water and plants in treatment E 

Sample ID 

Added TMX  

(mg L-1) 

TMX in water 

(mg L-1) Mean STDEV 

TMX in 

sediment 

(mg kg-1) Mean STDEV 

TMX in 

plants       

(mg kg-1) Mean 

 
 
STDEV 

Treatment E-day0_1L 2.00 0.599 
  

No sediment 

0.926 
  Treatment E-day0_2L 2.00 0.294 0.299 0.297 0.926 0.926 0.120 

Treatment E-day0_3L 2.00 0.0045     0.926     

Treatment E-day1_1L 2.00 0.203 
  

0.00206 
  Treatment E-day1_2L 2.00 0.00450 0.0706 0.115 0.00258 0.00177 0.000979 

Treatment E-day1_3L 2.00 0.00450     0.000682     

Treatment E-day3_1D 2.00 0.00450 
  

0.926 
  Treatment E-day3_2D 2.00 0.00450 0.00450 0.00400 0.926 0.926 0.120 

Treatment E-day3_3D 2.00 0.00450     0.926     

Treatment E-day5_1D 2.00 0.00450 
  

0.00250 
  Treatment E-day5_2D 2.00 0.00450 0.00450 0.00400 0.000593 0.310 0.534 

Treatment E-day5_3D 2.00 0.00450     0.926     

Treatment E-day7_1L 2.00 0.00450 
  

0.926 
  Treatment E-day7_2L 2.00 0.00450 0.00450 0.00400 0.926 0.926 0.120 

Treatment E-day7_3L 2.00 0.00450     0.926     
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Appendix E-7 Summary mean and standard deviation (STDEV) of thiamethoxam (TMX) residues in water, sediment and plants in treatment F 

Sample ID 

Added 

TMX    

(mg L-1) 

TMX in water 

(mg L-1) Mean STDEV 

TMX in 

sediment 

(mg kg-1) Mean STDEV 

TMX in 

plants 

(mg kg-1) Mean 

 
 
STDEV 

Treatment F-day0_1L 2.00 0.395 
  

0.0019 
  

0.926 
  Treatment F-day0_2L 2.00 0.246 0.331 0.0766 0.0079 0.00360 0.00377 0.00125 0.618 0.534 

Treatment F-day0_3L 2.00 0.352     0.0010     0.926     

Treatment F-day1_1L 2.00 0.165 
  

0.0072 
  

0.00116 
  Treatment F-day1_2L 2.00 0.534 0.361 0.186 0.0481 0.0231 0.0219 0.00105 0.309 0.534 

Treatment F-day1_3L 2.00 0.383     0.0141     0.926     

Treatment F-day3_1L) 2.00 0.201 
  

0.0164 
  

0.000841 
  Treatment F-day3_2L 2.00 0.119 0.110 0.095 0.0153 0.0119 0.00695 0.000766 0.000617 0.000325 

Treatment F-day3_3L 2.00 0.0111     0.0039     0.000244     

Treatment F-day5_1L 2.00 0.00450 
  

0.0009 
  

0.926 
  Treatment F-day5_2L 2.00 0.00450 0.00450 0.00400 0.0027 0.00155 0.00102 0.000100 0.617 0.535 

Treatment F-day5_3L 2.00 0.00450     0.0010     0.926     

Treatment F-day7_1L 2.00 0.00450 
  

0.0023 
  

5.47E-05 
  Treatment F-day7_2L 2.00 0.00450 0.00450 0.00400 0.0008 0.0177 0.0280 7.61E-05 0.309 0.535 

Treatment F-day7_3L 2.00 0.00450     0.0500     0.926     

 



Appendices 

 

212 

 

Appendix E-8 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water in treatment A 

Sample ID 

Added 

MET 

(mg L-1) 

MET in water 

(mg L-1) Mean STDEV 

MET in 

sediment 

(mg kg-1) Mean STDEV 

MET in 

plants       

(mg kg-1) Mean STDEV 

Treatment A-day0_1D 2.00 1.56 
  

No sediment No plants 

Treatment A-day0_2D 2.00 1.50 1.52 0.04 

Treatment A-day0_3D 2.00 1.49 
  Treatment A-day14_1D 2.00 1.43 
  Treatment A-day14_2D 2.00 1.45 1.41 0.05 

Treatment A-day14_3D 2.00 1.35 
  Treatment A-day28_1D 2.00 1.46 
  Treatment A-day28_2D 2.00 1.52 1.44 0.08 

Treatment A-day28_3D 2.00 1.35 
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Appendix E-9 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water in treatment B 

Sample ID 

Added 

TMX    

(mg L-1) 

MET in water     

(mg L-1) Mean STDEV 

MET in 

sediment 

(mg kg-1) Mean STDEV 

MET in 

plants      

(mg kg-1) Mean STDEV 

Treatment B-day0_1L 2.00 1.44 
  

 

No sediment 

 

No plants 

Treatment B-day0_2L 2.00 1.50 1.46 0.03 

Treatment B-day0_3L 2.00 1.46 
  Treatment B-day14_1L 2.00 1.06 
  Treatment B-day14_2L 2.00 1.14 1.15 0.09 

Treatment B-day14_3L 2.00 1.24 
  Treatment B-day28_1L 2.00 1.07 
  Treatment B-day28_2L 2.00 1.06 1.12 0.09 

Treatment B-day28_3L 2.00 1.22 
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Appendix E-10 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water and sediment in treatment C 

Sample ID 

Added MET 

(mg L-1) 

MET in water 

(mg L-1) Mean STDEV 

MET in sediment 

(mg kg-1) Mean STDEV 

MET in plants 

(mg kg-1) Mean STDEV 

Treatment C-day0_1L 2.00 1.40 
  

0.0106   

 

No plants 

Treatment C-day0_2L 2.00 1.41 1.45 0.08 0.0112 0.0164 0.010 

Treatment C-day0_3L 2.00 1.55     0.0275     

Treatment C-day14_1L 2.00 0.745 
  

0.365   

Treatment C-day14_2L 2.00 0.764 0.74 0.03 0.385 0.405 0.054 

Treatment C-day14_3L 2.00 0.698     0.466     

Treatment C-day28_1L 2.00 0.299 
  

0.250   

Treatment C-day28_2L 2.00 0.350 0.32 0.03 0.238 0.228 0.028 

Treatment C-day28_3L 2.00 0.297     0.196     
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Appendix E-11 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water and sediment in treatment D 

Sample ID 

Added MET 

(mg L-1) 

MET in water 

(mg L-1) Mean STDEV 

MET in sediment 

(mg kg-1) Mean STDEV 

MET in plants 

(mg kg-1) Mean STDEV 

Treatment D-day0_1L 2.00 1.51 
  

0.0436   

 

No plants 

Treatment D-day0_2L 2.00 1.56 1.54 0.03 0.0275 0.0338 0.009 

Treatment D-day0_3L 2.00 1.56     0.0303     

Treatment D-day7_1L 2.00 0.857 
  

0.212   

Treatment D-day7_2L 2.00 0.834 0.831 0.03 0.259 0.186 0.090 

Treatment D-day7_3L 2.00 0.801     0.0857     

Treatment D-day14_1L 2.00 0.476 
  

0.171   

Treatment D-day14_2L 2.00 0.492 0.508 0.04 0.255 0.201 0.047 

Treatment D-day14_3L 2.00 0.556     0.176     

Treatment D-day28_1L 2.00 0.125 
  

0.0719   

Treatment D-day28_2L 2.00 0.128 0.130 0.01 0.0647 0.0688 0.004 

Treatment D-day28_3L 2.00 0.137     0.0698     
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Appendix E-12 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water and plants in treatment E 

Sample ID 

Added MET   

(mg L-1) 

MET in water 

(mg L-1) Mean STDEV 

MET in sediment 

(mg kg-1) Mean STDEV 

MET in 

plants     

(mg kg-1) Mean 

 
 
STDEV 

Treatment E-day0_1L 2.00 1.61 
  

No sediment 

46.1 
  Treatment E-day0_2L 2.00 1.42 1.47 0.12 40.8 43.2 2.7 

Treatment E-day0_3L 2.00 1.38     42.8     

Treatment E-day1_1L 2.00 1.40 
  

43.9 
  Treatment E-day1_2L 2.00 0.00650 0.47 0.81 56.8 47.6 8.0 

Treatment E-day1_3L 2.00 0.00650     42.0     

Treatment E-day3_1D 2.00 0.00650 
  

0.926 
  Treatment E-day3_2D 2.00 0.782 0.532 0.456 0.926 3.17 3.88 

Treatment E-day3_3D 2.00 0.809     7.65     

Treatment E-day5_1D 2.00 0.627 
  

33.1 
  Treatment E-day5_2D 2.00 0.706 0.657 0.042 14.8 16.3 16.1 

Treatment E-day5_3D 2.00 0.640     0.926     

Treatment E-day7_1L 2.00 0.578 
  

0.926 
  Treatment E-day7_2L 2.00 0.492 0.558 0.059 0.926 3.9 5.1 

Treatment E-day7_3L 2.00 0.605     9.8     
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Appendix E-13 Summary mean and standard deviation (STDEV) of metalaxyl-M (MET) residues in water, sediment and plants in treatment F 

Sample ID 

Added 

MET    

(mg L-1) 

MET in water 

(mg L-1) Mean STDEV 

MET in 

sediment 

(mg kg-1) Mean STDEV 

MET in 

plants 

(mg kg-1) Mean 

 
 
STDEV 

Treatment F-day0_1L 2.00 1.46 
  

0.0400 
  

16.8 
  Treatment F-day0_2L 2.00 1.50 1.46 0.05 0.0245 0.0316 0.0079 32.7 21.6 9.6 

Treatment F-day0_3L 2.00 1.41 
  

0.0302 
  

15.3 
  Treatment F-day1_1L 2.00 1.14 

  
0.0302 

  
21.2 

  Treatment F-day1_2L 2.00 1.22 1.20 0.05 0.0351 0.056 0.040 26.8 22.6 3.8 

Treatment F-day1_3L 2.00 1.22 
  

0.102 
  

19.6 
  Treatment F-day3_1L) 2.00 1.02 

  
0.1024 

  
20.9 

  Treatment F-day3_2L 2.00 1.04 1.00 0.05 0.0380 0.0666 0.0328 30.3 26.3 4.8 

Treatment F-day3_3L 2.00 0.941 
  

0.0595 
  

27.6 
  Treatment F-day5_1L 2.00 0.593 

  
0.0595 

  
20.8 

  Treatment F-day5_2L 2.00 0.745 0.641 0.091 0.118 0.137 0.088 19.7 17.7 4.5 

Treatment F-day5_3L 2.00 0.584 
  

0.233 
  

12.5 
  Treatment F-day7_1L 2.00 0.513 

  
0.233 

  
8.02 

  Treatment F-day7_2L 2.00 0.548 0.512 0.036 0.0627 0.120 0.098 15.0 10.5 3.9 

Treatment F-day7_3L 2.00 0.476 
  

0.0634 
  

8.50 
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Appendix E-14 Analysis of variance of pH in water phase varying treatments and time 

Source of Variation  Degree of freedom    Sum of squares  Mean square    F    P   

Treatment 7   29.29 4.18 91.2 <0.001  

Time (days) 6   4.77 0.795 17.3 <0.001  

Residual 67   3.07 0.0459    

Total                                       80            65.3      0.816   

 

Appendix E-15 Multiple comparison (Tukey test) pH of water phase in each treatment to 

isolate the group to groups that differ from the others for factor: treatment  

Comparison Difference of means p q P P<0.05  

E vs. G 2.38  8 28.4      <0.001 Yes  

E vs. C 2.23  8 29.6       <0.001 Yes  

E vs. B 2.15  8 28.5       <0.001 Yes  

E vs. A 2.09  8 27.8       <0.001 Yes  

E vs. D 1.06  8 15.9       <0.001 Yes  

E vs. H 0.892  8 10.6       <0.001 Yes  

E vs. F 0.541  8 8.93     <0.001 Yes  

F vs. G 1.84  8 21.9       <0.001 Yes  

F vs. C 1.69  8 22.5        <0.001 Yes  

F vs. B 1.61  8 21.4        <0.001 Yes  

Note: A, B, C, D, E, F, G and H are name of treatments as described in Table 7-2. 

 

 



Appendices 

 

219 

 

Appendix E-15 (Continued) Multiple comparisons (Tukey test) pH in water phase in 

each treatment to isolate the group to groups that differ from the others for 

factor: treatment  

Comparison Difference of means p q P P<0.05  

F vs. A 1.55  8 20.6        <0.001 Yes  

F vs. D 0.523  8 7.840    <0.001 Yes  

F vs. H 0.351  8 4.19         0.076 No  

H vs. G 1.48  8 14.6       <0.001 Yes  

H vs. C 1.34  8 14.1       <0.001 Yes  

H vs. B 1.26  8 13.3       <0.001 Yes  

H vs. A 1.20  8 12.6       <0.001 Yes  

H vs. D 0.172  8 1.95       0.865 No  

D vs. G 1.31  8 14.9      <0.001 Yes  

D vs. C 1.17  8 14.5      <0.001 Yes  

D vs. B 1.09  8 13.5      <0.001 Yes  

D vs. A 1.03  8 12.8     <0.001 Yes  

A vs. G 0.283  8 2.98      0.421 No  

A vs. C 0.141  8 1.61     0.946       Do Not Test  

A vs. B 0.0589  8 0.671   1.000       Do Not Test  

B vs. G 0.224  8 2.36     0.707       Do Not Test  

B vs. C 0.0822  8 0.937   0.998      Do Not Test  

C vs. G 0.142  8 1.50     0.963      Do Not Test  

Note: A, B, C, D, E, F, G and H are name of treatments as described in Table 7-2. 
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Appendix E-16 Multiple comparison (Tukey test) pH in water phase in each treatment to 

isolate the group to groups that differ from the others for factor: time 

Comparison Difference of means  p q P  P<0.05  

0.000 vs. 28.000 0.598  3 5.419 0.001  Yes  

0.000 vs. 56.000 0.0329  3 0.333 0.970  No  

56.000 vs. 28.000 0.565  3 5.121 0.002  Yes  
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Appendix E-17 Input parameters for pesticide characteristics for the TOXSWA model 

Data category parameter units 
Values for 

thiamethoxam 
Source of 

data 

Value for 
metalaxyl 

-M 

Source of 
data 

General 
Molar mass 

g 
mol

-1
 

291.71 
Pesticide 
database 

279.33 
Pesticide 
database 

Saturated 
vapour 
pressure 

Pa 6.60x10
-9

 
Pesticide 
database 

0.0033 
Pesticide 
database 

Molar 
enthalpy of 
vaporization 

J 
mol

-1
 

95000 
Model 
user’s 
manual 

95000 
Model 
user’s 
manual 

Solubility in 
water 

mg 
L

-1
 

4100 
Pesticide 
database 

26000 
Pesticide 
database 

Molar 
enthalpy of 
dissolution 

J 
mol

-1
 

27000 
Model 
user’s 
manual 

27000 
Model 
user’s 
manual 

Diffusion 
coefficient 
in water 

M
2
  

d
-1

 
40 

Model 
user’s 
manual 

40 
Model 
user’s 
manual 

Transformation - Half-life in 
water 

Days 0.73 Corrected 
with 
hydrolysis 
and 
photolysis 

10.7 Corrected 
with 
hydrolysis 
and 
photolysis 

 - Half-life in 
sediment at 
20

o
C 

Days 27.7 Laboratory 
data 
(Chapter 
4) 

8.20 Laboratory 
data 
(Chapter 
4) 

 -Activation 
energy 

J 
mol

-1
 

54000 Model’s 
user 
manual 

54000 Model’s 
user 
manual 



Appendices 

 

222 

 

Appendix E-17 (Continued) Input parameter for pesticide characteristics for the 

TOXSWA model 

Data 
category 

parameter units 
Values for 

thiamethoxam 
Source of 

data 

Value for 
metalaxyl 

-M 

Source of 
data 

Sorption Suspended 
solids 

-Organic 
matter 
sorption 
coefficient 
(Kom) 

 

 

L  
kg

-1 

 

 

0 

 

 

Give value 0 
becasue no 
suspended 
solid  

 

 

0 

 

 

Give value 0 
because no 
suspended 
solid 

 - Freundlich 
exponent 

No 
unit 

0.93 Laboratory 
data (Section 
3.2) 

0.74 Laboratory 
data (Section 
3.2) 

 - Reference 
concentration 
in liquid 
phase 

mg 
L

-1
 

 

2 Applied 
concentration 

2 Applied 
concentration  

 Sediment 

- Kom 

 

L  
kg

-1 

 

18.95 

 

Calculate 
from Koc 
(Section 3.2)) 

 

21.3 

 

Calculate 
from Koc 
(Section 3.2)) 

 - Freundlich 
exponent 

No 
unit 

0.93 Laboratory 
data (Section 
3.2) 

0.74 Laboratory 
data (Section 
3.2) 

 - Reference 
concentration 
in liquid 
phase 

mg 
L

-1
 

2.0 Added 
concentration  

2.0 Added 
concentration 

 Macrophyte 

- Sorption 
coefficient 

 

L  
kg

-1 

 

3.49 

 

Calculated 
from 
laboratory 
data  

 

12.4 

 

Calculated 
from 
laboratory 
data  
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Appendix E-18 Input parameters governing water and sediment characteristics and 

hydrology for the TOXSWA model 

Data 
category 

Parameters Units Values for 
thiamethoxam  

Source of 
data 

Value for 
metalaxyl-
M 

Source of 
data 

Water-
sediment 
systems 

Water layer 

-Water depth 

 

m 

 

0.06 

 

Laboratory 
data 

 

0.06 

 

Laboratory 
data 

-Length of 
water layer 

m 0.06 Laboratory 
data 

0.06 Laboratory 
data 

-Bottom width m 0.10 Laboratory 
data 

0.10 Laboratory 
data 

Side slope m 0.00001 Set 
minimum 

0.00001 Set 
minimum 

Macrophyte 

-dry weight 

 

(g m
-2

) 

 

44.3 

 

Laboratory 
data 
(Chapter 
5) 

 

44.3 

 

Laboratory 
data 
(Chapter 
5) 

-Depth def. 
Perimeter 

(hor/ver) 0.06 Laboratory 
data 

0.06 Laboratory 
data 

Water-
sediment 
systems 

Suspended 
solids 

-Concentration 
suspended 
solids 

 

mg 
L

-1
 

 

1 

 

 

Set 
minimum 

 

1 

 

Set 
minimum 

-Mass ratio 
organic matter 

No 
unit 

0.086 Calculated 
form % 
organic 
carbon 

0.086 Calculated 
from % 
organic 
carbon 
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Appendix E-18 (Continued) Input parameters governing water and sediment 

characteristics and hydrology for the TOXSWA model 

Data 
category 

Parameters Units Values for 
thiamethoxam  

Source of 
data 

Value for 
metalaxyl-
M 

Source of 
data 

Water-
sediment 
systems 

Sediment 
segment 

-Thickness 

 

m 

 

0.03 

 

Laboratory 
data 

 

0.03 

 

Laboratory 
data 

 -Segment No 
unit 

10 Selected by 
user 

10.0 selected by 
user 

Hydrology -Flow 
velocity  

m d
-1

 0 Estimated 
from 
laboratory 
data 

0 Estimated 
from 
laboratory 
data 

 -Water 
depth water 
body 

m 0.06 Laboratory 
data 

0.06 Laboratory 
data 

 Temperature 
in water and 
sediment 

o
C 14.9 Average air 

temperature 
under field 
condition for 
treatment F 

14.9 Average air 
temperature 
under field 
condition for 
treatment F 

 -Dispersion 
coefficient in 
water 

M
2
 d

-1
 20 Model’s 

user 
manual 

20 Model’s 
user 
manual 

 -Dispersion 
length in 
sediment 

m 0.1 Model’s 
user 
manual 

0.1 Model’s 
user 
manual 

 

 



Appendices 

 

225 

 

Appendix E-18 (Continued) Input parameters governing water and sediment 

characteristics and hydrology for the TOXSWA model 

Data 
category 

Parameters Units Values for 
thiamethoxam  

Source of 
data 

Value for 
metalaxyl-
M 

Source of 
data 

Hydrology Upward 
seepage and 
concentration 
pesticide in 
incoming 
water 

 -Seepage 

 

 

 

mm 
d

-1
 

 

 

 

0 

 

 

 

Laboratory 
data 

 

 

 

0 

 

 

 

Laboratory 
data 

Simulation 

 

-Concentration mg 
L

-1
 

0 Laboratory 
data 

0 Laboratory 
data 

 -calculation time 
step 

s 600 Default 
value 

600 Default 
value 

 Output time 

-time interval of 
output 

 

days 

 

0.5 

 

Default 
value 

 

0.5 

 

Default 
value 

 

 

 


