
Applications of search techniques to cryptanalysis and the

construction of cipher components.

James David McLaughlin

Submitted for the degree of Doctor of Philosophy (PhD)

University of York

Department of Computer Science

September 2012



2



Abstract

In this dissertation, we investigate the ways in which search techniques, and in particular

metaheuristic search techniques, can be used in cryptology. We address the design of

simple cryptographic components (Boolean functions), before moving on to more complex

entities (S-boxes). The emphasis then shifts from the construction of cryptographic arte-

facts to the related area of cryptanalysis, in which we first derive non-linear approximations

to S-boxes more powerful than the existing linear approximations, and then exploit these

in cryptanalytic attacks against the ciphers DES and Serpent.
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Chapter 1

Introduction.

This thesis involves two separate, and highly distinctive, areas of computer science: cryp-

tology and metaheuristic search.

Metaheuristic algorithms are general-purpose search algorithms that enable complex

search spaces to be traversed in search of optimal or high-quality solutions to a given

problem. They do not guarantee to find an optimal solution, but provide an efficient

means of obtaining very high-performing solutions.

Most metaheuristic search algorithms are based on analogies with natural processes.

For example, simulated annealing is based on an analogy with the physical processes of

cooling metals, genetic algorithms are based on the processes of natural evolution, memetic

algorithms build on these using an analogy to the concept of memes as defined by Richard

Dawkins [116], and ant algorithms take their inspiration from the foraging techniques used

by real ants.

Cryptology, a discipline predating the invention of computers, started out as a means

of preventing access to data by those not authorised to view it, as well as the study of

means to subvert this protection. In the Computer Age, cryptology has also found several

other applications in the field of computer security, such as tamper-proofing important

documents and verifying their authorship.

Metaheuristics, while used recreationally to break pre-computer age ciphers, were not

applied to serious cryptology until the start of the 21st century, when various papers by

(and coauthored by) John Clark [74, 82, 81, 83, 79, 64, 84, 86, 87, 80] demonstrated the

use of metaheuristics in the design of communication protocols and Boolean functions for

use in cryptology, as well as in the related field of quantum computation.
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However, many unsolved problems still remained in all these fields. Furthermore,

while this research had focused on cryptography - the construction of secure cryptologic

algorithms - there had been little work on cryptanalysis - the search for weaknesses in

these constructions. It may well have seemed counterintuitive that metaheuristics could

contribute to this field - the application of cryptography to data was intended to completely

obliterate any patterns in the data, leaving no “order amongst the chaos” for the search

algorithms to take advantage of. Such a view, however, ignored the possibility that instead

of being used to try to reverse cryptographic transforms directly, or to recover protected

data, metaheuristics could well be used to analyse the constructions of ciphers, hash

functions and other cryptographic algorithms, and identify weaknesses that a cryptanalyst

could exploit more conventionally.

This, then is our hypothesis: That metaheuristic search techniques have a

great deal of potential within cryptology; both to improve upon the design of

modern-day ciphers and their components, and to contribute to their crypt-

analysis.

1.1 The Structure of this Thesis

This thesis is structured as follows:

Chapter 2 presents a brief overview of the history of cryptology, in particular the aston-

ishing advances made in the second half of the 20th century.

Chapter 3 is the literature review chapter, describing various block cipher constructions

and cryptanalysis methods, as well as stream ciphers based on the LFSR construc-

tions. It then introduces the reader to metaheuristics, describing various metaheuris-

tic search algorithms and the application of metaheuristics to both cryptography and

cryptanalysis.

Chapter 4 describes the application of metaheuristic search to the design of so-called

“filter functions” for use in stream ciphers. It is shown that the important properties

of algebraic immunity and fast algebraic resistance, to which metaheuristics have not

so far been applied, can in fact be optimised using “local search”-based metaheuristic

algorithms such as simulated annealing, and we seek to simultaneously optimise these

and other properties of the filter functions.
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Chapter 5 applies metaheuristic search to the design of “S-boxes”, components used

to ensure nonlinearity in block cipher constructions. Existing research by Clark

et al. [86] is built on firstly by focusing on the criterion of differential uniformity

that was not addressed in earlier work, and secondly by comparing the performance

of metaheuristic search algorithms that were not previously utilised to solve this

problem with the simulated annealing algorithm of their initial paper.

Chapter 6 focuses on applying metaheuristics to cryptanalysis. As part of this, so-called

“nonlinear approximations” to S-boxes are evolved - these approximations could

compromise the cipher’s security against certain cryptanalytic techniques. However,

the use of nonlinear approximations in cryptanalysis is complex, and not well under-

stood. We therefore devote a significant proportion of this chapter to devising new

cryptanalysis algorithms that can exploit nonlinear approximations, as well as statis-

tical frameworks that can be used to calculate the complexity of the new techniques.

We also discuss the application of the new techniques and evolved approximations

to the cryptanalysis of various notable ciphers.

Chapter 7 is the concluding chapter, summarising the achievements of this research and

discussing the extent to which our experiments have supported the hypothesis.

Appendix A contains the best evolved functions for small parameter sizes that resulted

from the research in Chapter 4.

Appendix B is devoted to a discussion of a means to reduce the size of the search space

when attempting to evolve S-boxes, and to its potential to lead (with future research)

to an algorithm revealing whether two S-boxes are equivalent according to the con-

cept of affine equivalency. While this did not result in significant improvements to

the quality of the results obtained elsewhere in the chapter, it is nevertheless pre-

sented as an appendix due to the potential it may have if future research is applied

to it.

Appendix C corrects a highly misleading error which occurred in several earlier papers

on linear cryptanalysis of the cipher Serpent. The results of these papers are cited

in Chapter 6, and compared to the work therein, hence the importance of addressing

the error which seemed to invalidate them.
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Chapter 2

A brief history of cryptography

and cryptanalysis.

“Cryptography” is an umbrella term, encompassing several different problems in data se-

curity and their solutions. For example, digital signatures provide tamper resistance for

documents transmitted over the Internet, both against malicious interference and random

transmission errors, as well as confirmation that the document was written by the pur-

ported author. In this thesis, we will be applying metaheuristic search to ciphers - the

oldest and best-known aspect of cryptography.

A cipher is a means of controlling access to data, by effecting a transformation on

that data which can only be reversed by someone possessing the requisite piece of secret

information - the “key”. (Depending on the type of cipher, knowledge of the key may be

necessary to effect the transformation as well as its reverse).

Effecting the above-mentioned transformation is known as “encryption”, and reversing

it, whether legitimately or otherwise, is known as “decryption”. The algorithm taking the

key and the data as input and outputting encrypted “ciphertext” data is the cipher, also

referred to as the “cryptosystem”. The inverse algorithm, converting the ciphertext back

to the original “plaintext” data, typically has no name, or else the terms “cipher” and

“cryptosystem” are assumed to encompass both algorithms.

A malicious third party may obtain copies of the encrypted data, and wish to illicitly

reverse these transformations or obtain information on the key. Attacks on cryptosystems

fall under the heading of “cryptanalysis”, which, as its name suggests, is the analysis

of cryptosystems (or any cryptographic algorithm) looking for weaknesses, regardless of
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whether one intends to exploit these or to ensure that such weaknesses do not feature in

future cipher designs!

Both umbrella terms themselves - cryptography and cryptanalysis - are referred to

collectively by another umbrella term - “cryptology”.

The history of cryptography is a long one. Very basic “pen and paper” methods are

almost as old as writing itself; Mary, Queen of Scots corresponded in cipher during the

reign of Queen Elizabeth I, and it was the cryptanalysis of these letters which revealed her

involvement in a plot against Elizabeth and led to her execution [147, 218]. Notably, having

broken the cipher, a forger working for Sir Francis Walsingham, Elizabeth’s spymaster,

was able to append an additional enciphered paragraph to one of the letters requesting

the identities of the individuals who were to attempt the assassination. Believing that

the secrecy resulting from the cipher could not have been compromised - and unaware

that the means by which the enciphered messages were smuggled to/from Mary had been

discovered and that said messages in both directions were being intercepted en masse - the

leader of the conspiracy, Anthony Babington, sent an enciphered message back to Mary

containing this information. His confidence in the security of his cipher prevented him from

becoming suspicious when Mary, who did not need to know this particular information

and would be unlikely to have even heard of the other conspirators, nevertheless requested

their names!

Even further back, the Bible refers to a nonexistent place called “Sheshach”. Biblical

scholars eventually discovered that, by replacing the first letter in the Hebrew alphabet

with the last letter, the second letter with the second-last letter, and so on, that “Sheshach”

was in fact “Babel”, or Babylon [147, 218]. Kahn [147] speculates that this was more likely

to be wordplay by scribes than a serious attempt to disguise a place-name, however.

During the first half of the 20th Century, mechanical cipher machines came into ex-

istence; finding use protecting confidential information in businesses and the military.

(These were typically too expensive to be within the reach of private citizens.) During

the Second World War, one of these, Hagelin’s M-209, was used by US Army soldiers to

encrypt and decrypt messages in the field. The infamous Enigma cipher was the most

well-known example of such a machine, requiring significant advances in computational

technology and the development of electromechanical cryptanalysis machines at Bletchley

Park to be broken!

The rise of the computer after World War 2 forced another major evolution in ci-
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pher design. Computers were capable of cracking any practically-usable cipher that had

gone before them, and to counter this it was necessary to construct ciphers which could

themselves take advantage of the existence of the computer. This was also necessary to

ensure that cryptography could be applied to sensitive documents stored on computers.

Since expertise in cryptanalysis was typically concentrated within the highly-secretive in-

telligence agencies of governments, constructing a secure cipher for use by businesses and

other non-government entities was no trivial task. Eventually, in the 1970s, a cipher based

on IBM’s “Lucifer” design was accepted as the new Data Encryption Standard (DES).

DES itself was not uncontroversial. The USA’s National Security Agency had been

involved in the adaptations made to the original Lucifer, and accusations were made that

they had deliberately weakened the cipher to ensure that they could break it even if nobody

else could. These accusations fell into two primary categories:

• The key, originally a 64-bit value, was now only 56 bits long. The number of possible

values that would have to be tried to recover a key through exhaustive search was

now reduced by a factor of 256, and it was widely alleged that the NSA had forced

the reduction in key length to bring about a situation where it was within their

computational capacity to crack DES in this way (but not within anybody else’s).

• The NSA were also believed (accounts from IBM staff differ on this point) to have

changed the design of certain parts of the cipher, the “S-boxes”. These were lookup

tables mapping six-bit inputs to four-bit output values. Statistical analysis of the

S-boxes revealed that the values in the tables were not random, but did not find any

way in which they introduced a weakness.

It was, however, later discovered that the S-boxes had been designed to resist the

attack known as “differential cryptanalysis” (described later in this document); an

attack known to both IBM and the NSA at the time, but kept secret and not

rediscovered until the early 1990s.

Other developments during the 1970s included the development of asymmetric “public

key” ciphers such as RSA [208], in which the key value used to encrypt messages (the

public key) was not the same as the value used to decrypt them (the private key). These

were typically much slower than DES (or, indeed, the rival designs being developed), and

would typically be used to securely transmit the key to a conventionally-enciphered full

message. Nevertheless, the fact that a message could be securely encrypted, such that
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only its intended recipient could read it, by someone with no knowledge of the private key

or any other secret information, was thoroughly revolutionary.

With public key ciphers, the intention was that a potential recipient would publish

their public key - some central server or servers would act as a repository of public keys

and the email addresses of their owners, in effect a form of digital phone-book - and to

send a message to someone, you would look up their public key and use it to encipher the

message.

Another approach, key-exchange, was developed slightly earlier, in 1976. Let us illus-

trate this using an example, in which two parties want to agree on a secret key to use to

communicate using a conventional cipher. Most examples of cryptographic protocols refer

to a sender named Alice, and a recipient named Bob, trying to communicate without their

messages being intercepted by an eavesdropper, Eve. In this case Alice and Bob have no

means of securing their communications - any message sent in either direction could be

intercepted by Eve. How can they still establish a shared secret key?

The Diffie-Hellman key exchange protocol [118] provided a solution to this problem

using number theory:

1. Alice and Bob agree on a “public function” of the form f(x) = gx modulo P , where

P is a large prime number and g is some integer less than P . It does not matter if

the eavesdropper hears this and obtains the values of P and g.

2. Alice and Bob also each choose a private key. Each of these is another integer less

than P . Let a denote Alice’s key, and b denote Bob’s. Neither party reveals their

key.

3. Alice calculates α = f(a) = ga mod P , and sends this to Bob. Bob sends β = gb

mod P to Alice. Even if Eve intercepts these communications, due to the difficulty

of the so-called discrete-logarithm problem in number theory, she cannot deduce the

values of a and b.

4. Alice receives β, and calculates βa mod P = gab mod P . Bob calculates αb = gba

mod P . Since gba = gab, the two parties now have a shared secret number - and

despite the amount of data she has been able to intercept, Eve cannot calculate it,

because she cannot calculate either a or b!

(The Diffie-Hellman protocol is not absolutely perfect - it may be possible, for instance,
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for a more active adversary, Mallory, to pose as Alice and trick Bob into establishing a

shared key with him to communicate with. In the case of public-key cryptography, Alice

can use what are known as “zero-knowledge proofs” to demonstrate that she knows the

private key corresponding to the “Alice” public key without actually revealing anything

about it to Bob - thus confirming her identity.)

Public key cryptosystems led to the concept of a “digital signature”. Alice could use

her private key in the same way as Bob’s public key in the usual encryption procedure.

She could then encrypt using Bob’s public key, and send the message to Bob. After

using his private key to decrypt the message, Bob would check the identity of the claimed

sender (alice@alice.com), look up a directory of public keys, use Alice’s public key in the

decryption algorithm, and simultaneously

• complete decryption of the message, and

• confirm that Alice had written it.

The difficulty of digitally signing a full document would largely be overcome when

cryptographic hash functions were later developed. A cryptographic hash function, such

as MD5, SHA-1 or SHA-3, takes a document of arbitrary length and, using techniques

similar to those used in symmetric ciphers, computes a short string of bits (precisely how

“short” has varied - 128 bits for MD5, 160 for SHA-1, as many as 512 for SHA-3...) such

that:

• Where h denotes the hash function, it should be computationally infeasible (i.e.

impossible in practice) to deduce x from h(x). This property is known as preimage

resistance.

• Given some document x1, it should be computationally infeasible to find some x2 6=
x1 such that h(x2) = h(x1). This property is known as second preimage resistance.

• It should also be computationally infeasible to find any pair (x1, (x2 6= x1)) such

that h(x1) = h(x2). This property is known as collision resistance.

Cryptographic hash functions made it possible simply to sign a hash of the full docu-

ment, instead of the document itself.

The Data Encryption Standard’s 56-bit key value, whether or not it had been short

enough to break through exhaustive search in the 1970s, most certainly was by the late
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1990s. This forced a new, more open process to design DES’s successor, and to subject

it to cryptanalytic scrutiny using the new cryptanalytic techniques developed since DES’s

creation. Eventually, in 2001, the “Rijndael” cipher was selected as the new Advanced

Encryption Standard [192].

After a survey in which the cryptanalysis techniques of differential and linear crypt-

analysis are presented, along with a full survey of existing research in which metaheuristics

have been utilised in cryptology, we present the results of our own investigation in this

field.
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Chapter 3

Literature review

3.1 Information on various types of block cipher, and a brief

description of the Data Encryption Standard.

Several of the cryptanalytic techniques described in this document were originally designed

to attack the Data Encryption Standard (DES). This cipher is of immense importance in

the history of cryptology, partly due to its widespread usage by governments and businesses

after its creation (and acceptance as a U.S. government standard) in the 1970s, and partly

due to the amount of cryptologic research that has focused on it. As a widely used,

publicly-known cipher declared secure by America’s National Security Agency (NSA), it

has been subjected to more scrutiny by cryptanalysts than any other cipher since the dawn

of the computer age. We shall not describe it in detail here, but instead will provide a brief

description of DES and various other ciphers/types of cipher, and refer the reader to the

Federal Information Processing Standard document describing it [191] and an excellent

online tutorial [124] for more details.

In brief, DES uses a 56-bit string as the key to encrypt a 64-bit block of data. The

block is split into two 32-bit blocks; the “left-hand” and “right-hand” blocks. DES then

repeats a procedure known as a “round” sixteen times, whereby

• A copy is made of the right-hand block.

• The copy is input to a function referred to as the “round function”, along with 48

bits of the key.
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• The particular subset of 48 bits varies from round to round, and is derived from the

main key using an algorithm known as the “key schedule”.

• It is essential that the round function should not be a linear function of the data

input to it. The nonlinearity is provided by eight functions known as S-boxes. The

cipher contains no other source of nonlinearity, and this is partly why the S-boxes

have been subject to more intensive scrutiny than any other component of the DES.

• The left hand block is bitwise-XORed with the round function output.

• Unless this was the final round, the right and left-hand blocks are swapped around.

In addition, functions known as the “Initial Permutation” (IP) and “Final Permu-

tation” (FP) are applied to the data before the first round and after the final round.

However, these have no effect on the security of the cipher, and are usually ignored by

cryptanalysts. (They seem to be intended to improve DES’s efficiency by working around

the limitations of 1970s hardware [211].)

3.1.1 Feistel ciphers

DES is a specific instance of a wider class of ciphers known as Feistel ciphers, which are

in turn a subclass of the “block cipher” class - the class of symmetric ciphers operating

on w-bit “blocks” of data.

A more generalised description of a Feistel cipher would be:

• The cipher acts on a 2n-bit block of data, which is split up into two n-bit blocks. It

uses a k-bit key, and has r rounds.

• In each round:

– A copy is made of the right-hand block.

– The copy is input to the “round function”, along with a bitstring, the “round

key” derived from the key by the “key schedule” algorithm. In most ciphers,

all the round keys should be different.

– As with the DES, it is essential that the round function should not be a linear

function of the data input to it. S-boxes - functions equivalent to polynomials

of high algebraic degree - are usually the chief source of nonlinearity in the

round function. In some ciphers, the S-boxes differ between rounds.
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Figure 3.1: Diagram showing the basic “Feistel” structure of the Data Encryption Stan-
dard (DES). [231].
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– The left hand block is bitwise-XORed with the round function output.

– Unless this was the final round, the right and left-hand blocks are swapped

around.

Most Feistel ciphers do not have an IP or FP.

Feistel ciphers have the advantage that the same algorithm is used for encryption and

decryption (although decryption requires a slightly different key schedule to reverse the

order of the round keys). This is particularly useful for hardware implementations as it

removes the need to create a second circuit/chip for the decryption process.

3.1.2 Other types of block cipher

Although the Feistel model has proved extremely successful, and is still used in designing

ciphers today, it is not the only blueprint for block cipher design. There are also ciphers

in which the data block is not split up at the start; instead the entire block and a round

key are input to the round function - the output from which is input to the next round

function along with another round key - and so on until the ciphertext is output. Examples

of such ciphers include DES’s successor, the Advanced Encryption Standard (AES) [192],

the cipher for low-resource platforms known as “PRESENT” [40], and the simplified “Heys

cipher” from Howard Heys’s excellent tutorial on linear and differential cryptanalysis [140].

The Heys cipher is an example of a substitution-permutation network (SPN) [37]. In

each round of such a cipher, all of the data in the block should interact with the key in

some way, typically bitwise xor. The data is then input to several S-boxes in parallel. In

all rounds except the last, a reordering (permutation) of the data bits occurs after this.

In the last round, the data is typically xored with a final round key instead.

Two generalisations of such ciphers are described in the Encyclopedia of Cryptography

and Security [37]:

1. Substitution-linear networks (SLNs), in which the permutation is replaced with some

other linear function (AES is an example of an SLN), and:

2. Substitution-affine networks (SANs), a further generalisation in which the permuta-

tion is replaced with some affine function.

Although examples of the first such generalisation do exist (the Advanced Encryption

Standard being one of them), the term “Substitution-linear network” has not entered
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mainstream usage. Instead, the term “substitution-permutation network” has become

generalised, and is now generally understood to refer to SLN ciphers as well.

Courtois and Pieprzyk [110] define “XSL-ciphers” as ciphers in which

X.) The entire data block is XORed with the round key at the start,

S.) after which each round function inputs the block to a layer of parallel S-boxes,

L.) applies some linear function to the result,

X.) and then XORs it with the round key again.

AES is an example of such a cipher in which the linear function applied in the final

round is less complex than that applied in the other rounds. DES, while not an XSL

cipher (its round function does not act on all the data), does have the same sort of round

function, and the Heys cipher is similar to an XSL cipher except for the omission of the

linear transformation from the final round.

A far more general category is the iterative cipher [36]. An iterative cipher is defined

as a cipher in which the data and round keys are input to the same function (the round)

several times in succession before being output. Minor differences (such as the values of

certain constants) between the rounds are permitted, however the additional XOR and

weaker diffusion layer in the final round mean that AES and the Heys cipher are not

iterative ciphers. DES is probably the best-known example of an iterative cipher.

For most of this document, if we refer to a cipher without specifying which one we

mean, unless otherwise stated it will, like the ciphers so far described, apply the same

round function several times (with minor variations) to its data and subkeys.

3.1.3 Confusion and diffusion

Whatever its structure, to provide security for enciphered data, a cipher needs to provide

high levels of confusion and diffusion [215].

Definition 3.1.1. Confusion complicates the relationship between the key and the ci-

phertext as far as possible. The S-boxes are the main source of confusion in most block

ciphers, defining mappings that correspond to complicated polynomials that are not easy

to approximate with simpler functions. (Functions mapping sets of bits to other sets

of bits can always be expressed as collections of polynomials. It is necessary that these

polynomials be of high degree.)
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Figure 3.2: The Heys substitution-permutation network (SPN). [140].
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Definition 3.1.2. Diffusion eliminates, as far as possible, any statistical properties from

the ciphertext (In particular, it eliminates statistical properties of the original plaintext.).

The higher the diffusion, the more data the cryptanalyst will need to observe any statistical

properties that might aid in breaking the cipher. The permutations/linear functions/affine

functions are the main source of diffusion in the cipher, and the S-boxes also contribute

to this.

3.2 Linear cryptanalysis.

Linear cryptanalysis was first introduced by Mitsuru Matsui [179]. Where ⊕ indicates

exclusive-or - notation we shall use throughout this thesis - the cryptanalyst attempts

to find a linear equation x1 ⊕ . . . ⊕ xi = y1 ⊕ . . . ⊕ yj in the input and output bits of

some part of the cipher which holds true with probability sufficiently different to 0.5.

“Sufficiently different” means that for a known-plaintext attack on a feasible number of

known plaintexts, when the correct key (or part of it) is tried on all of these known

plaintexts, the number of plaintexts for which the equation holds will deviate significantly

from one half of the total.

Such an equation is known as a “linear approximation”.

Definition 3.2.1. For a given linear approximation to part of a cipher, let p be the

probability that it holds. We refer to (p − 1/2) as the bias of the approximation. The

higher the absolute value |p−1/2| of the bias, the more useful the approximation is to the

cryptanalyst.

The value |p− 1/2| may also be referred to as the “absolute bias” or the “magnitude

of bias”. In a minor abuse of notation, when we refer to an approximation having high

(or large, or significant) bias, we usually mean that the value of |p− 1/2| is high.

Matsui refined his attack in a 1994 paper [180], in which he used it to attack the

Data Encryption Standard. The refined attack could break the full 16-round DES with an

estimated 243 time complexity (that is, in an amount of time equivalent to that required

for 243 DES encryptions) and with an 85% probability of success. This time complexity

was the best achieved by any attack on DES at the time, and has not subsequently been

improved upon!

However, it also required 243 known plaintexts; and the difficulty of obtaining these, as

well as the resources required to store them, meant that a brute force attack was in practice
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more feasible. This remained the case despite later work by various authors suggesting

that the attack could succeed with less resources:

• Nyberg [198], and Harpes, Kramer and Massey [130] carried out analyses which

showed that some of Matsui’s assumptions had been overly pessimistic, and that the

true complexity of the attack would be better than he had predicted (although new

complexity estimates were not provided.)

• Junod [146] provided evidence that the time required by Matsui’s attack was in fact

equivalent only to that required to perform 241 DES encryptions.

• Biryukov et al. [38], conducting research into the use of several linear approximations

simultaneously (Matsui’s attack had used two) conjectured that the attack’s data

requirements could be reduced to 241 using a particular set of 108 approximations.

(They do not seem to have successfully implemented this attack, however.) They also

conjectured that, although new techniques would be needed, using approximately

10,000 approximations simultaneously would reduce the number of known plaintexts

needed to 236.

It should, however, be noted that there is some controversy surrounding this partic-

ular piece of research [188, 189].

Any new cipher must be shown to be resilient to linear cryptanalysis before it can

be considered for use. There are now block cipher design strategies, in particular Joan

Daemen and Vincent Rijmen’s wide trail strategy [112] and Serge Vaudenay’s decorrelation

theory [225, 226, 227, 228], which can be used to design block ciphers resilient against linear

cryptanalysis, differential cryptanalysis ([33, 32, 34] - the subject of Section 3.2) and their

variants. The first of these was in fact used to design the Advanced Encryption Standard

[113].

3.2.1 The attack.

Overview.

In an attack on a cipher, linear cryptanalysis is typically used in one of two ways. Both

of these require a large volume of known (plaintext, ciphertext) pairs:
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The 1R attack. Let r denote the number of rounds in the cipher. A linear approximation

is found for the first (r − 1) rounds. The cryptanalyst looks at how the output bits

of this linear equation are input into the final round, and partially deciphers it with

her guessed values for the relevant key bits. Only for the correct guess at these bits

- the “target partial subkey” (TPS) - should the approximation hold true as often

as expected.

The reason why the cryptanalyst is able to partially decipher the final round using

only some of the key is that for several block ciphers, a given input bit to the round

function will not affect all of the output bits. (For instance, in DES, no round

function input bit affects more than eight of the 32 output bits.) Furthermore, the

complete set of input bits affecting certain sets of output bits is usually relatively

small, the output bits being partitioned up and each partition assigned to a small

subset of the input bits. The cryptanalyst therefore only needs to use the key bits

acting on that subset of the input bits.

The number of key bits that should comprise the TPS is something the cryptanalyst

will need to decide for herself. It must be small enough for an exhaustive search over

all possible TPS values to be possible, but the cryptanalyst needs to consider how

the remaining key bits will be obtained. Exhaustive search? More linear attacks

with a different target partial subkey? This is something that will probably depend

on various different factors.

As well as the TPS, one more bit of key information can be obtained using this

attack; although this will take the form of a linear equation relating some of the key

bits. We will explain later how to identify these key bits, but basically whether they

xor to 1 or 0 can be determined by whether the linear approximation held or did

not hold for most of the plaintexts - for the rest of the attack this does not matter

as long as they do one or the other with the expected bias.

The attack algorithm for this final key bit was described by Matsui as “Algorithm

1”. Somewhat counterintuitively, the algorithm for the main attack on the bulk of

the key bits, which precedes the attack on that bit, is “Algorithm 2”!

The 2R attack. Matsui’s second paper defined the “2R” attack; which he used in his

attack on DES. The cryptanalyst finds a linear approximation for all of the cipher’s

rounds except the first and the last. As before, she uses candidate TPS values to
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decipher the final round output bits affected by the linear approximation’s output

bits. However, the TPS bits used in this no longer comprise the whole TPS - for

another subset of key bits, she encrypts some of the bits of each known plaintext

to obtain the linear approximation’s input bits. She then checks to see whether the

linear approximation holds.

As before, the correct TPS is expected to be the only one such that the approximation

holds with the expected bias, and one more bit of key information can be obtained

depending on whether it held or did not hold for most of the trials.

We stop to note that differential cryptanalysis, which is in many ways extremely similar

to linear cryptanalysis, seems to be more flexible in terms of which rounds can and cannot

be covered by their equivalent to the linear approximation. For instance, Biham and

Shamir [34] attacked DES using a differential attack in which two rounds at the end were

not covered, and in which the first round was intended to cause the input to the remaining

rounds to have the properties required.

Deriving the approximation.

Let us assume that we are trying to cryptanalyse a Feistel cipher like DES, or an SPN.

Typically the only parts of these ciphers which cannot be expressed as linear Boolean

formulae are the S-boxes.

Therefore, for each S-box and every possible subset of the input and output bits to it,

we calculate using all possible inputs whether the xor of that subset of the input bits is

equal to the xor of that subset of the output bits. From this, we calculate the probability

bias of every possible linear approximation to the S-box.

We assign to each S-box a linear approximation table, in which we record these biases.

An example is shown below, in Figure 3.3.

The next step is to link these linear approximations together to form an overall ap-

proximation of the entire cipher except for the last (and maybe the first) round. Finding

the best such approximation, or even a “good enough” approximation is not a trivial task.

Nor is it obvious how best to do this, and we intend at some point in the future to find out

if metaheuristic search techniques can be applied here. One currently-employed tactic is

to find a good approximation for a small number of rounds such that the subset of input

bits is the same as the subset of output bits. This allows the approximation to be iterated

several times to approximate the full set of r − 1 or r − 2 rounds.
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Figure 3.3: The linear approximation table for the example S-box in the Heys toy cipher
[140]

Building up the full approximation. We will discuss joining up the individual ap-

proximations later, but let us first look at how we build up the set thereof. Consider an

input bit that forms part of an (r − 1)-round linear approximation to the cipher. We

have to incorporate a linear approximation to the first round S-box it enters, and that

input approximation can only involve the input bits from our overall approximation that

actually enter it.

For the output bits involved in that linear approximation, we trace each one through

the cipher until it enters another S-box. We will need to incorporate a linear approximation

to that S-box as well. And, once again, the input bits of this approximation must be the

ones we traced to that S-box... Eventually, a set of branching paths are traced through the

cipher passing through various S-boxes along the way until they get to the approximation’s

output bits.

(Note that joining linear approximations together is more complicated in the case of

a Feistel cipher. Whenever a path forks, you only follow the bits down one of the forks,

and must choose which. In addition, you might have built up some of the approximation

by starting from the last-but-one round and working backwards, or by working outwards

from one of the rounds in the middle... This makes such diagrams for Feistel ciphers like

DES much harder to follow. We may appear to “skip” rounds that did not need to be

approximated, and round input bits resulting from working backwards can seem to appear
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Figure 3.4: A linear approximation to the first three rounds of the Heys SPN.
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out of nowhere if you try to trace the approximation from the start of the cipher.)

When choosing a linear approximation for each S-box, there are two desirable proper-

ties which, unfortunately, may conflict with each other. Both of them result from the same

fact; that the bias of the overall approximation is determined by multiplying together the

biases of the individual approximations.

Lemma 3.2.2. For each value (1 ≤ i ≤ n), let Xi be a random variable, independent of

Xj for all j 6= i, such that:

P (Xi = 0) = pi

P (Xi = 1) = (1− pi)

Then P (X1 ⊕X2 ⊕ . . . Xn = 0) is:

1

2
+ 2n−1

n∏
i=1

(pi − 1/2).

This lemma is known as the Piling-Up Lemma [179].

We use the Piling-Up Lemma in estimating the overall bias. Each Xi corresponds to

a linear approximation, taking the value 1 if it holds and 0 if it does not. This looks at

first sight like an exact calculation; however the various Xi are not in fact independent

of each other. Despite this, the values given by the Piling-up Lemma have been observed

to work well in practice, and do in fact slightly underestimate the probability p that

the approximation holds (Empirical evidence is given by experiments on DES and other

ciphers [146] [97]).

By examining the Piling-up Lemma, we see that it is desirable for each individual

S-box approximation to have a bias with a high absolute value, and for there to be as

few individual approximations as possible. In general, though, for a given S-box the

approximation with the most significant bias may not be the one that has the fewest output

bits, so choosing it may push up the number of S-boxes we will have to approximate in the

next round. This was certainly the case for DES, where the design team were particularly

careful to avoid good linear approximations with only one output bit [101]. Similarly, the

S-boxes of the cipher Serpent [5] were designed so that any linear approximation with one

input and one output bit could not have a bias exceeding 1/8 in magnitude; whereas the
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upper bound for absolute biases of other linear approximations was 1/4.

Launching the attack.

Having found a good approximation, we next do whatever is necessary to obtain our known

plaintext/ciphertext pairs. An integral equation relating the number of pairs N required

to the desired success rate (and certain other aspects of the attack) is given by Selçuk

[213]. This is used to determine c such that N = c/|p− 1/2|2 is necessary to achieve the

desired success rate.

If our TPS has t bits, we will also need enough memory to hold 2t integer values, one

for each possible value of the TPS. The integer variable corresponding to TPS value Ti is

referred to as the counter for Ti. At the start of the attack, we initialise all these counters

to zero.

Once we have obtained our pairs, for each pair and for each TPS guess Ti we decrypt

the relevant parts of the ciphertext (and encrypt the relevant parts of the plaintext.), and

check to see if our linear approximation holds for the thus-exposed bits. If it does, we add

1 to the counter for Ti.

(For most ciphers, a highly optimised algorithm exists that allows a “short cut” to

be taken in calculating the counter values, instead of testing all (pair, TPS guess) com-

binations. This is quite complicated, and the reader is referred to Chapter 6 for more

information.)

We expect that the correct guess will be the only one for which the calculated proba-

bility bias is seen to occur. For the others, the bias observed should usually be extremely

small. However, in practice other values will also produce significant biases, although not

as significant as the correct one.

There are various possible reasons for this, stemming in part from the fact that the

number of possible key guesses is often high enough for a minority of the incorrect guesses

to have a bias several standard deviations away from the low expectation, but also from

the fact that the biases for certain incorrect key guesses are not statistically independent

of the bias resulting from the correct guess.

What, then, should we do about these other significant biases? If we have been able to

acquire a large number of known plaintexts, the bias observed for the correct TPS may be

the largest by a noticeable margin, allowing us to simply ignore them. Perhaps, though,

we cannot be sure that the highest bias observed corresponds to the correct TPS. If so,
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we may want to assume that the largest bias corresponds to the correct value at first, but

if all possible values for the remaining key bits do not result in any successful decryptions,

switch to the value with the next-highest bias - and so on, up to some predefined limit on

the number of TPS candidates tried. This approach is referred to as key ranking.

One question that has not hitherto been asked is whether these biases, which seem

similar to local optima, might in some way be useful in applying nature-inspired search

techniques like hill-climbing to the attack. It seems unlikely that hill-climbing can be

directly employed, but it may be possible, by analysing how these biases occurred, to

obtain some useful information. We hope to be able to investigate this further at some

point in the future.

The other bit of key information. As stated earlier, one more bit of key information

can be obtained depending on whether the linear approximation held, or failed to hold,

with the bias predicted. However, we have not yet really explained this.

Let us consider a simplified approximation, in which the linear approximation is traced

through two 4×4-bit S-boxes. Like DES, we will assume that the data bits are xored with

key bits before they enter the S-boxes. Let the first S-box be denoted S1, and assume that

the only plaintext bit P1 entering it can be traced to input bit x2 of S1. Now, before that

bit actually does enter the S-box, it is xored with some key bit - call it k1.

If our linear approximation involves only one output bit, say y4, then our linear ap-

proximation is x2 = y4 and has probability p1. Since x2 = P1 ⊕ k1, P1 ⊕ k1 = y4 with

probability p1.

Let us trace this output bit to the second S-box, S2. Assume it enters the S-box as

input bit x3. Again, it would be xored with a key bit - call it k2 - before entering it. Let

the output bits this time be y2 and y4. We have the linear approximation x3 = y2 ⊕ y4,

holding with probability p2.

We now need to link the linear approximations together. We make a slight change to

our notation so that the input and output bits have a superscripted number identifying

their corresponding S-box:

1. x1
2 = y1

4, which we translate to P1 ⊕ k1 = y1
4.

2. x2
3 = y2

2 ⊕ y2
4, which we translate to y1

4 ⊕ k2 = y2
2 ⊕ y2

4. Rearranging this gives us

y1
4 = k2 ⊕ y2

2 ⊕ y2
4.
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By substituting for y1
4, we are now able to link the two approximations together and

obtain P1⊕ k1 = k2⊕ y2
2 ⊕ y2

4. For our simplified example, we will assume that the cipher

only has three rounds, and so we approximate only these two. The overall approximation

has probability p = p1 × p2.

Let us rearrange that equation. With probability p, P1 ⊕ y2
2 ⊕ y2

4 = k1 ⊕ k2. Hence,

if for the TPS value we accept as correct P1 ⊕ y2
2 ⊕ y2

4 = 0 for ≈ p×N pairs, we assume

that the xor of those two key bits is zero - and vice versa.

3.3 Differential cryptanalysis.

Differential cryptanalysis, published in 1990 by Biham and Shamir [32, 33], was the first

notable cryptanalysis technique for Information Age ciphers to be discovered outside the

world’s intelligence agencies. It was the first technique to allow an attack on DES faster

than exhaustive search [34]; although as with linear cryptanalysis the number of chosen

plaintext/ciphertext pairs required meant that exhaustive search was still more feasible in

practice.

(Note the reference to “chosen” pairs instead of “known” - the cryptanalyst must, for

this attack, ensure not only that there are enough plaintext/ciphertext pairs, but also that

they satisfy certain properties...)

Differential cryptanalysis is very similar to linear cryptanalysis; a “differential charac-

teristic” is built up to cover some of the rounds by calculating individual characteristics

for various S-boxes and then joining these together. In this case, we are trying to find a

situation where, for some pair of plaintexts (Pi, Pj) such that

in a 1R attack Pi ⊕ Pj = a particular “input difference” value ∆X.

in a 2R attack The partial encryption Qi of Pi, ⊕ the partial encryption Qj of Pj , =

∆X. Pi ⊕ Pj is in the set of values such that this is possible for at least one key.

the partial decryptions (Di, Dj) of the corresponding ciphertexts (Ci, Cj) will take a

particular “output difference” value, Di ⊕Dj = ∆Y with sufficiently high probability.

To build up the corresponding differential characteristic, we join together the individ-

ual S-box characteristics into characteristics for individual rounds (as we did for linear

cryptanalysis), and then join together the round characteristics by letting the output dif-

ference from one round be the input difference into the next. For a particular set of key
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Figure 3.5: Difference distribution table (DDT) for the 4×4 S-box used in the Heys cipher
[140].

bits (the TPS), we partially decrypt the cipher and, for each possible value of these bits,

maintain a count of how many times the correct output difference occurred.

Definition 3.3.1. For each S-box, we construct a table. Each column corresponds to a

given output difference, each row to a given input difference. Each entry in the table is

the number of pairs of S-box inputs with input difference corresponding to the row that

map to pairs with the column’s output difference.

We call these tables difference distribution tables (see for example Figure 3.5.)

Because of the need to have pairs of plaintexts with the given input difference, or with

input differences in a particular set, differential cryptanalysis is a chosen-plaintext attack,

unlike linear cryptanalysis which was a known-plaintext attack. This makes it harder

to carry out, as the cryptanalyst has to be able to obtain ciphertexts corresponding to

specified pairs of plaintexts instead of just random plaintexts. (In fact, variants of the

attack employ even more complicated sets of plaintexts related in specific ways, such as

quartets (P1, P2 = P1 ⊕∆X1, P3 = P1 ⊕∆X2, P4 = P2 ⊕∆X2).)

As stated, by joining together the differential characteristics, we obtain a differential

for the rounds in which they feature, (∆X,∆Y ). Let y denote the number of output bits
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affected by ∆Y . We are trying to choose and link up differential characteristics so that

∆Y will be the output difference for those y bits significantly more often than 1/2y of the

time, given that the input difference is ∆X.

An important factor in choosing and linking together differential characteristics is that,

for ciphers like DES where the key interacts with the data only by being xored with it

before entering the S-box, it will have absolutely no effect on the characteristic! Think

about an S-box with six input bits and four output bits. Let us assume that we are

working with input difference 010000 (in other words, inputting pairs that differ only in

bit x2) and output difference y1.

Where the superscripted number identifies whether a data value corresponds to the

first or second input in the pair, input difference 010000 means that x1
2 ⊕ x2

2 = 1, and

x1
i ⊕ x2

i = 0 for all other i. So, where the corresponding data bits are d1
2 and d2

2, and the

corresponding key bit is k2, (d1
2⊕ k2)⊕ (d2

2⊕ k2) = 1, which reduces to (d1
2⊕ d2

2) = 1 - the

key bit has no effect!

In general, differential cryptanalysis has not been as limited as linear cryptanalysis in

terms of the rounds that can be covered by characteristics. A given attack, designed for

maximum effectiveness, may cover only the first r − 1 rounds [140], it may cover the first

r − 3 rounds [32], it may cover rounds 2 to r − 2 and use the first round differently [34]

... All this varies depending on the cipher and any tweaks made by the cryptanalyst to

optimise the attack for it, although we will say that substitution-permutation networks,

since their round function acts on the whole data block, will probably require more rounds

to be covered as the diffusion throughout the remaining rounds will be faster.

The overall differential characteristic is considered not to be the differential (∆X,∆Y ),

but the set of input and output differences for each of the various rounds of the cipher,

accompanied for each round by the set of S-boxes involved and the input/output difference

we chose for each. In practice, the characteristic is the set of individual characteristics

that we used to build the differential. Even if the differences specified by the differential

characteristic do not occur, the differential may still occur (that is, the output difference

may be ∆Y for input difference ∆X), so the probability of the overall characteristic is a

lower bound for the probability of the differential.
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Figure 3.6: A differential characteristic linked across several rounds of the Heys SPN.
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3.3.1 The attack.

Obtaining ciphertexts.

We begin by obtaining the ciphertexts corresponding to our chosen plaintexts, by whatever

means are necessary.

Definition 3.3.2. Let ((Pi, Ci), (Pj , Cj)) be a chosen plaintext pair. Let (Qi, Qj) be

the partial encryptions of Pi and Pj , and (Di, Dj) the partial decryptions of (Ci, Cj). If

Qi ⊕Qj = ∆X and Di ⊕Dj = ∆Y , then this is a right pair. If not, it is a wrong pair.

How many chosen plaintexts do we need? Assume that we are counting the number

of times the expected output difference occurs for each TPS candidate. Let p denote the

probability that a given pair involved in the attack is a right pair. For the correct TPS, we

need the expected output difference to occur at least once, so we need at least one right

pair to be present. We expect one right pair to be present in 1/p pairs, so 2/p plaintexts

would be a reasonable lower bound to start with. (Not all differential attacks work like

this, though - the “memoryless” variant exploits the quartet structure to require only 1/p

plaintexts.)

Deriving a better figure is rather complex. We will explain it in more detail after we

have discussed some “preprocessing” done on the (Pi, Ci) pairs before the main attack.

Discarded pairs Before the main attack, we can discard certain pairs which cannot

possibly be right pairs. Consider the way in which our differential characteristic travels

through various S-boxes of the cipher, and in particular the ones it does not pass through

in the final round covered by the characteristic. If the characteristic holds, then since there

was no difference in the input to these S-boxes, there should be no difference in output

either. We trace this effect through the final, uncovered round(s) of the cipher to identify

ciphertext bits that should be identical.

Hence any chosen plaintext pair in which some of these bits differ in the corresponding

ciphertexts should be immediately discarded, as the differential characteristic could not

have held. We cannot check the plaintext for anything like this, though, as we chose the

plaintexts so that they only differed in the right places.

It may be possible to discard more pairs based on the S-boxes which are involved in

the final round of the characteristic. For the input differences specified, certain output

differences occur with probability zero - these are called impossible differentials. If it
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is possible to spot that these have occurred without a partial decryption (and this is

sometimes, but not always, the case) we can discard the pairs in which they occurred.

Again, we cannot do this in the first round, as we would have chosen the plaintexts to

avoid such impossible differentials.

These procedures will discard pairs which are certain to be wrong pairs. Shamir and

Biham also describe [32] a method of discarding pairs which have high probability of being

wrong pairs. This seems in practice not to have discarded too many right pairs, and to

have helped improve the effectiveness of the attack.

For a given pair, look at the actual output differences that have occurred for the S-boxes

involved in the final round of the characteristic. For the predicted input differences for

these S-boxes, and the observed output differences, we multiply together the corresponding

values in their difference distribution tables to obtain what is known as the weight of the

pair. Shamir and Biham state (without proof) [32] that a right pair will typically have a

higher weight than a wrong pair, and that for the attack on DES presented in that paper

eliminating all pairs with weight below 8192 “discarded about 97% of the wrong pairs”

while leaving “almost all of the right pairs”.

There may be ways to discard more pairs for a given cipher, but in any case we discard

all the pairs we can and are left with a set which should contain a higher concentration of

right pairs.

Suggested subkeys.

Definition 3.3.3. We say that a pair of chosen plaintexts “suggests” a given value for

the TPS if the correct differences (∆X,∆Y ) occur for that pair and that TPS candidate.

In working out how many chosen plaintexts we will need, the average (mean) number

of TPSes suggested by each pair is also important.

As an example of how to calculate this, let us make the simplifying assumption that

this is a 1R attack and our characteristic covers all rounds except the final round. Consider

a final-round S-box that is affected by our TPS, and the expected input difference to it.

We refer to the subset of the TPS bits corresponding to this S-box as the TPSS (target

partial sub-subkey). For every possible output difference from that S-box, let us total up

the number of pairs with the expected input difference that can give rise to it, then divide

by the total number of possible output differences.
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Lemma 3.3.4. For conventional S-boxes such as those used in DES or AES, this figure is

2|input bits|−|output bits|. We do not provide a proof here, but with knowledge of the properties

of difference distribution tables it is easy to prove.

This value is the number of TPSSes suggested by the S-box. This is because, for a

randomly chosen output difference in the ciphertext, it is the average number of keys that

could have turned the input pair into one of the ones that could result in that difference.

We multiply the figures we have obtained for each S-box, and obtain a, the average

number of target partial subkeys suggested by each pair.

The signal to noise ratio.

Definition 3.3.5. Let p be the probability of the differential characteristic used in the

attack, a be the average number of TPS candidates suggested by each pair, b be the ratio

|non-discarded pairs|/|total number of pairs|, and m be the number of bits in the TPS.

The signal to noise ratio, denoted S/N, is(
2m × p
a× b

)
.

Using S/N, which we now have enough information to work out, we can obtain a better

estimate for the number of pairs we need. Biham and Shamir state [32] that experiments

indicate an S/N between 1 and 2 requires between 40/p and 80/p chosen plaintexts, and

that the higher the signal-to-noise ratio, the less right pairs we need. S/N is in fact a

rearrangement of an equation for (number of right pairs present)/(number of times an

average TPS gives the correct output difference), and hence a lower bound for (number

of times the right key is counted)/(number of times an average key is counted.) Hence, if

the signal-to-noise ratio is too far below 1, the attack will fail.

(This does not necessarily mean that variant attacks like impossible differential crypt-

analysis will fail, though.)

After we have obtained the pairs.

Counting on every possible TPS. The most basic way to carry out a differential

cryptanalytic attack is, for each pair of known plaintexts, to partially encrypt them, and

decrypt their corresponding ciphertexts, with every possible TPS. We allocate an integer
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variable - a “counter” - to each TPS candidate, initialise it to 0 at the start, and increment

it by 1 whenever the expected output difference occurs for its corresponding subkey.

We either accept the TPS with the largest count as the correct one, or (if we are

not so sure that it has a commanding lead) start off by assuming it to be correct, but

switch to the one with the next highest count if it turns out not to be, and so on (up

to some predetermined limit on the number of TPS values tried). As we did with linear

cryptanalysis, we use the term “key ranking” for this approach.

Note that we are interested in the largest counts, not the ones that deviated the most

from |plaintext pairs|/2. This is an important difference between differential and linear

cryptanalysis.

The clique method. The clique method was introduced by Biham and Shamir to deal

with TPSes so large that the amount of memory required to assign a counter to each one

would not be feasible. It is, however, only viable if a relatively small number of pairs are

being analysed (though since a large TPS will result in a large signal to noise ratio, that

may not be an unreasonable assumption.)

Let us associate with each pair some form of data structure to keep track of the TPS

values it suggests. If a is low enough, a linked list would seem to be a good way to

do this; however Biham and Shamir did not make this assumption, and constructed an

alternate data structure using less memory but which would result in false positives for

some candidate keys. In practice this does not seem to have been a problem for them,

though.

For each S-box affected by the TPS bits, we allocate 2(TPS bits affecting that S-box) bits

of storage to each pair. Typically this will be 2input bits per S-box, one for each possible

sub-TPS affecting it. We initialise them to zero.

Whenever a particular TPS is suggested by the pair, for the sub-TPS corresponding to

each S-box we set its bit to 1. So, by concatenating sub-TPSes whose corresponding bits

have been set to 1, the idea is that we thus reconstruct a suggested key. This is where the

false positives issue becomes relevant - if two keys are suggested, and if five S-boxes are

involved, we may have to set two bits to 1 for every S-box. This means that we have in

practice recorded up to 2|involved S-boxes| = 32 keys as suggested when only two were! The

reason this did not in fact cause problems may have been that no individual false positive

of this sort was suggested for particularly many pairs, but this is not stated explicitly.

We then need to find out which key is recorded as having been suggested by the most
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pairs. Again, a linked list of objects (each object being a pair and its associated data on

suggested keys) would seem to be a useful data structure to use.

For the first pair in our list, we iterate through the list until we find another pair such

that they both suggest a common key. We then continue to iterate through the list looking

for other pairs that suggest this key. We keep track of how many suggested it, then look

for pairs that have different keys in common with the first... Eventually, we reach the

bottom of the list, and start looking for pairs which suggest keys that the second pair also

suggested.

The more pairs that suggest a particular TPS candidate, the more likely we consider

it to be the correct one.

When the TPS is too long for the first method, and there are too many pairs

for the clique method. In this case, we will have to use the conventional method,

except that we do not attack the full TPS because we are not counting on all the S-boxes.

In other words, we keep counters for every possible value of a smaller TPS, defined by

removing bits from the actual TPS corresponding to S-boxes we decided not to count on

- call them redundant S-boxes.

We will need a particularly high number of pairs for this to work, as the reduced TPS

size will reduce S/N. We can mitigate this somewhat by checking, for the redundant S-

boxes, whether impossible input/output difference combinations have occurred and using

this fact to discard more pairs, however.

After recovering the sub-TPS, we may be able to use the redundant S-boxes in a second

attack to recover the rest of the TPS, or we may simply proceed to an exhaustive search

on all the key bits we have not yet found.

An entirely different approach - “memoryless” attacks. Biham and Shamir were

not able to turn any of the above approaches into an attack on DES faster than exhaustive

search. However, in a later work [34], they were able to come up with a new way to perform

the attack that worked with longer TPSes than any of the preceding methods, and to use

this in a more powerful attack on DES. It was also intended to use less memory, to be

highly parallelisable, and to produce results fast enough to deal with frequent key changes.

The basic idea is that the TPS should be very close in size to the actual key, and that

as soon as a given TPS is suggested by one of the pairs, all possible values of the remaining

key bits should be tried to see if one of them gives us the correct key. If none of them do,
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we resume the attack.

The attack requires a much more complex set of chosen plaintexts than before - instead

of a set of pairs with the required input difference, huge “structures” are defined containing

several (213 in the attack on DES) pairs with that input difference, all of them related

in some particular way. (Biham and Shamir later optimised the attack by using quartets

instead of pairs.) In the example given, each structure had an extremely low chance of

containing even one right pair, and 235 structures were needed to give the attack a 58%

probability of success.

Working out how the pairs in a structure should be related depends heavily on the

differential characteristic being used, the cipher being attacked, and any other tweaks

made to the method - in the attack on DES, for instance, the characteristic began at the

second round and only a fraction of the pairs in each structure had the required difference

going into this round. This is something the cryptanalyst will have to work out for herself

for each individual attack.

3.3.2 Variants of the differential cryptanalytic attack

There have been several variants of differential cryptanalysis, and attacks building on the

basic concept, since it was first introduced. We briefly discuss some of these variants here;

truncated differential cryptanalysis, higher-order differential cryptanalysis, and multiplica-

tive/hybrid differentials [42]. Although we do not discuss it here, we also draw the reader’s

attention to another variant, impossible differential cryptanalysis [160, 25, 26].

Attacks building on the concept of differential cryptanalysis include boomerang attacks

[229], amplified boomerang attacks [150] and rectangle attacks [28]. Again, however, we do

not cover these here.

Truncated differential cryptanalysis

In a conventional differential attack, ∆X and ∆Y are completely defined. However, it

may be possible to carry out attacks in which we do not need to know the full output

difference, just some of the bits in it. For example, given a DES S-box, instead of working

with output difference 0110, we might be interested in all output differences in which bit

3 changed and bit 4 did not, and be uninterested in the left-hand bits. So, instead of the

differential (∆X, 0110), we would instead have the truncated differential (∆X, ??10)

Similarly, we might have discovered for a given Serpent S-box that output difference
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0011 occurs with high probability as long as the input difference is either 0111 or 1111 (As

far as we know, this is not in fact the case for any of Serpent’s S-boxes.) and decide to use

both of these input differences. This would give us the truncated differential (?111, 0011).

Both of these are special cases of truncated differential characteristics, in which only

some of the bits in the input/output differences are specified. Truncated differential crypt-

analysis does, however, generalise even further than this - it is not even necessary to specify

specific bits. A truncated differential is defined as a pair (information determining a sub-

set of all input differences ∆X, information determining a subset of all possible output

differences ∆Y .) For example, the truncated input difference might be ??00, and we might

be interested in whether the first and last bits of the output difference XOR to 1.

Truncated differential cryptanalysis was first defined by Lars Knudsen [159], in which

it was used to attack 6-round DES. The differential cryptanalysis method we defined for

“When the TPS is too long for the first method, and there are too many pairs for the clique

method” is in fact a form of truncated differential attack that predates this definition! The

“partial differential” cryptanalysis of Biryukov and Kushilevitz [39] is another example of

truncated differential cryptanalysis.

Higher-order differential cryptanalysis

Higher-order differential cryptanalysis was first defined by Lai [169], and developed fur-

ther by Knudsen [159]. To understand higher-order differentials, it is first necessary to

understand the concept of derivatives:

Definition 3.3.6. The (first-order) derivative of a Boolean function f(x), with respect

to a vector s, is defined as ∆sf(x) = f(x + s) − f(x). Usually, we will be working over

GF (2) and so this will equate to ∆sf(x) = f(x) ⊕ f(x ⊕ s). This generalises directly to

the case of multiple-output Boolean functions such as S-boxes.

Definition 3.3.7. The definitions of higher-order derivatives are defined recursively from

the above definition - so ∆i
(a1,...,ai)

f(x) = ∆ai(∆
i−1
(a1,...,ai−1)f(x)).

For example, consider the second order derivative ∆2
a1,a2f(x) = ∆a2(∆a1f(x)):

∆a2(∆a1f(x))

= ∆a2(f(x⊕ a1)⊕ f(x))

= f(x⊕ a1 ⊕ a2)⊕ f(x⊕ a2)⊕ f(x⊕ a1)⊕ f(x).

45



We then also rely on the following results:

Lemma 3.3.8. If the cipher operates over GF (2), and if the entries in the vector (a1, . . . , ai)

are not linearly independent, ∆i
(a1,...,ai)

f(x) = 0.

Lemma 3.3.9. Let deg(f) denote the algebraic degree of f . Then deg(∆af(x)) ≤ (deg(f(x))−
1). Note that if f is the zero function, for which the degree is undefined in general but usu-

ally defined as −∞, we may have to treat it as a special case - or at least avoid confusion

by noting that that −∞ ≤ (−∞− 1).)

Corollary 3.3.10. If ∆i
(a1,...,ai)

f(x) is not a constant, then f has algebraic degree > i.

(The above corollary is used by Knudsen [159] as the basis of an algorithm that, given

a Boolean function on multiple outputs (such as a block cipher) returns a lower bound for

its algebraic degree.)

We now address the question of how to use this in cryptanalysis. Because any r-th

derivative of a multiple-output Boolean function with algebraic degree r is a constant,

a “higher-order differential” with probability 1, using chosen-plaintext structures each of

size 2r, is defined for any round function into which plaintext is input directly. (That is,

we assemble the 2r chosen inputs to the function specified by ∆i
(a1,...,ar)

f(x), ensuring that

all ak are linearly independent. The XOR of their outputs is a constant with probability

1, and we need to know beforehand what this constant is). If the decryption of the final

rounds will allow us to tell if the sum of the outputs was the predicted constant, then we

can carry out partial decryptions for the various TPS values, and eliminate any TPS for

which the correct output XOR did not result.

Unfortunately, this does not scale very well as the number of rounds increases. For

instance, although Knudsen is able to attack an arbitrary 5-round Feistel cipher in this

fashion, there seems no way to extend the attack as described to a Feistel cipher with six

or more rounds.

To defeat higher-order differential attacks, cryptographers are advised to avoid using

Boolean functions of low algebraic degree as S-boxes or round functions.

Multiplicative and hybrid differentials

Multiplicative differential cryptanalysis [42] works with pairs (x, x′ = ax) - so we multiply

x by a, instead of xoring it with a bitstring ∆X, to obtain x′.
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Before the paper describing multiplicative differential cryptanalysis was published,

several ciphers such as IDEA [170], Nimbus [176], xmx [185] and MultiSwap [212] utilised

scalar multiplication modulo some value m. There were various reasons for this:

• IDEA’s designers believed that mixing different operations over different groups,

which were “algebraically incompatible”, would provide a high level of security. (The

other operations they used were XOR and modular addition.) In the 22 years since

the cipher was published, it has taken until this year for an attack on the full cipher

[155] to be published; and even so this attack is not one which would be feasible in

practice.

• xmx’s designers were attempting to produce a fast, compact cipher with as much

cross-platform portability as possible. Like the designers of TEA [193] and Salsa20

[21], they believed that avoiding S-boxes and permutations in favour of simple oper-

ations that all processors would be able to carry out quickly would be the best way

to do this.

• Borisov, Chew, Johnson and Wagner [42] point out that scalar multiplication is

hard to attack with traditional differential cryptanalysis using pairs (x, x+ ∆X) or

(x, x⊕∆X).

Borisov et al. exploited the fact thatm was typically equal to 2size of block or 2size of block−
1) to come up with ways to use multiplicative differentials in the cryptanalysis of such

schemes. They also looked at generalisations of this - for example the inputs might be

values mod m, but the outputs might only be mod q for some q < m.

The key to multiplicative differential cryptanalysis is that we are still representing the

numbers involved as z-strings of bits, and the modulus used is often either the largest

value such a bitstring can represent or that value + 1. This leads to relationships such as

the following, which can be exploited by cryptanalysts:

• Where m = 2l − 1, −x mod m = (x⊕ 11 . . . 1) = (x⊕ n).

• Where m = 2l, (2k)x mod m = (x� k).

• Again, where m = 2l, reversing the bits transforms (x, 2x) to (x, x/2).

• Where m = 2l and x is odd, −x mod m = (x⊕ 11 . . . 10) = (x⊕ (n− 2)).
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Multiplicative differential cryptanalysis also makes use of the following result:

Lemma 3.3.11. The bitstring representation of any positive integer m can be expressed

as a sequence of strings of the form (111 . . . 1) or (100 . . . 0). For instance, 30777 =

111100000111001 = (111, 100000, 11, 100, 1).

Interestingly, Borisov et al. also demonstrated a truncated multiplicative differential!

Hybrid differentials Where the blocks on which a cipher operates are split into sub-

blocks, we may want to use different types of differential on different sub-blocks. In

the same paper in which they had published the aforementioned work on multiplicative

differentials [42], Borisov et al. presented an example where a 64-bit block abcd was

split into four 16-bit sub-blocks (a, b, c, d), a multiplicative differential applied to a and

d, and a conventional differential to b and c. This resulted in the chosen input pair

(a, b, c, d), (a′ = a× k, b′ = b⊕ 5, c′ = c⊕ 5, d′ = d× k).

These were referred to as “hybrid differentials”.

3.4 Stream ciphers based on linear feedback shift registers

The block ciphers with which we have dealt with so far have all acted on large blocks

of several bits at a time; DES, for example, encrypting 64-bit plaintext blocks to 64-bit

ciphertext blocks. Stream ciphers, by contrast, can encrypt data one bit at a time; the

bulk of the stream cipher’s operation being to generate a stream of apparently random

“keystream” bits which are then xored, one bit at a time, with an arbitrary-length plaintext

to generate the ciphertext.

(There do exist stream ciphers which output streams of bytes, or even words, instead

of individual bits - but we do not concern ourselves with these as our research is relevant

to a particular design outputting a stream of bits.)

The LFSR (Linear Feedback Shift Register) is a component frequently used in the

construction of stream ciphers with hardware implementations, such as the eSTREAM

finalists SOSEMANUK [17], DECIMv2 [18] and Grain [131]. It is not so popular in

software-based stream ciphers, for reasons of efficiency which may be due to its operating

on individual bits instead of bytes or words.

The LFSR may be represented, as seen in Figure 3.7, as an array of 1-bit integers and

a linear function. (There are many ways in which the linear function may be represented,
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Figure 3.7: Diagram showing the operation of a linear feedback shift register [75].

perhaps as a list of indices of array elements). Let the number of LFSRs in use be denoted

n, and let the total length of all the LFSRs in the cipher be denoted k. In a LFSR-based

stream cipher, the key is the k-bit integer representation of the initial set of k bits used

to initialise the LFSR arrays.

There is a restriction on the key value for this type of cipher; if all of the bits in the

initial state of any LFSR are equal to 0, all of that LFSR’s output bits will also equal 0,

making life much easier for the cryptanalyst! No key such that this is the case is therefore

permitted.

The ways in which an LFSR may be used in a stream cipher vary; for simplicity

we will consider only the two most basic stream cipher designs to make use of these:

combiner -based stream ciphers, and filter -based stream ciphers. We will first provide a

brief description of the workings of an LFSR, then explain how these two models utilise

LFSRs.

1. The cryptanalyst initialises the internal states of the LFSRs with the key - the initial

values of the individual bits.

2. At each iteration, the values of various bits in the internal states are input to a

49



Figure 3.8: Diagram showing the operation of a combiner-based stream cipher [75].

“combiner” or “filter” function, which in turn outputs a bit of keystream.

3. Each LFSR then updates its internal state. A 1-bit value α is calculated by xoring

together certain bits within the current state. The entries in the LFSR are then

shifted to the right - so for the LFSR in Figure 3.7, array element 9 takes the value

previously held by array element 8, element 8 takes the value previously in element

7... and so on.

4. Finally, the value α is placed into State[0].

The particular subset of LFSR elements xored together is extremely important in

ensuring that the sequence of LFSR states does not begin to repeat itself too soon. Where

there are m elements in the LFSR internal state, a subset corresponding to a so-called

“primitive polynomial” ensures that this sequence will have the maximum possible period

of (2m − 1) and will never include the all-zeroes state.

The combiner based stream cipher, at each iteration, inputs the n-bit value consisting

of the rightmost bit from each LFSR into a nonlinear combining function (or, alternatively,

combiner function). The LFSRs update their internal states as just described, and the

combiner function outputs one bit of keystream. Some ciphers attempt to complicate

this procedure with “irregular clocking”, in which at least one LFSR will not update its

internal state in every iteration, or in which some LFSRs will update more than once in

between each keystream bit output.
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Figure 3.9: Diagram showing the operation of a filter-based stream cipher [75].

A filter based stream cipher uses only one LFSR. It takes several of the state bits, not

merely (perhaps not even including!) the rightmost bit as input. As with the combiner

model, at each iteration the bits are input to the filter function, which in turn outputs

one keystream bit, and the LFSR updates its internal state.

The combiner and filter functions need to satisfy a great many cryptographic criteria,

to protect against many different forms of attack. A list of these criteria, and a brief

discussion, will be presented in the later chapter in which we attempt to evolve filter

functions satisfying said criteria.

In recent years, stream ciphers have tended to move away from the LFSR design.

Algebraic attacks [109, 103, 132] have forced significant increases in the number of LFSR

state bits that must be input to the filter function, which may be a factor in this, making

it more difficult to create adequate Boolean functions for this purpose. In Chapter 4, we

discuss reasons why the combiner model had fallen out of favour even before this. In any

case, during the eSTREAM contest [35] to design new stream ciphers, many ciphers either

did not use LFSRs, or used a mixture of LFSRs and “NLFSRs” (NonLinear Feedback

Shift Registers).

In Figure 3.7, at each iteration the new leftmost bit in the LFSR is obtained by xoring

certain of the other state bits - a linear function on these bits. In a NLFSR, the new

leftmost bit is a nonlinear function of these bits - however, as stated by Schneier [211], the

mathematical theory behind such designs is not so well known as for LFSRs, and it is not

easy to rule out the possibility of hard-to-detect weaknesses in the keystream generation

eventually resulting from such functions.
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3.5 A brief introduction to metaheuristics

Metaheuristic search techniques (also referred to as “combinatorial optimisation”, and

“nature-inspired search techniques”) have been applied to a very wide range of problems

in several different fields, such as network routing [59], scheduling machine workloads in

aluminium foundries [128], creating university timetables [47], and circuit design [157].

They have also been applied to different areas of cryptology - mostly cryptography, in

that they have been used to construct cipher components, but also cryptanalysis. We

will discuss this in more detail later on, but first of all we will explain the concept of

metaheuristics.

In a metaheuristic search algorithm, the user is attempting to solve a problem by

creating - or “evolving” - an entity of some form - whether this be a bitstring with particular

properties, or a design for an engine component... The user first defines a “cost function”

or “fitness function”, which takes an entity of the type being evolved, and outputs a scalar

value. In algorithms which use cost functions, high quality problem solutions should

correspond to low function output values, and poor solutions to high cost values. For

algorithms using fitness functions, the opposite is true.

There is no rigid definition of a “metaheuristic” search method. The various search

techniques to come under this banner have various features in common, but continuing

research has in some cases generalised the definition further.

• Most metaheuristic algorithms, as stated, require the user to rigorously define the

class of object being evolved, and then define a cost function C which returns a

single scalar value C(x) such that the lower the value of C(x), the better the solution

candidate x is considered to be.

(As stated, for some algorithms, a fitness function F must be defined such that high

values of F (x) correspond to high-quality solutions.)

In the event that there are various criteria which we need to optimise, some of

which may conflict with others, multiobjective evolutionary algorithms [154] are a

generalised form of metaheuristic, in which separate cost or fitness functions are

defined for each criterion, and one of various strategies is used to optimise these

simultaneously by some more sophisticated method than a single, conventional cost

function computing an overall cost from the outputs of the separate functions.

• The algorithm is not deterministic. It uses a pseudorandom number generator
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(PRNG) frequently in making decisions, or constructing candidate solutions, and

two runs of the same algorithm with different PRNG seed values should both be-

have differently.

• The algorithm is an iterative algorithm. In each iteration, it constructs either a

single solution candidate, or a “population” of several candidates.

• In all iterations other than its first, the algorithm uses information (possibly includ-

ing the cost) from the candidate solutions built up in some or all of the previous

iterations to build a replacement solution or set thereof. While the average cost at

iteration i is not guaranteed to be lower than the average cost at iteration i−1, over

time the cost should decrease.

There are various approaches to this. Memetic algorithms use the existing population

to build new solutions forming a new population, and then make several incremental

changes to each population member. In fact, most metaheuristics operate on entities

such that small changes with limited effect on the cost can be made to the entity.

Simulated annealing uses these changes to continuously change a single candidate

solution. Ant algorithms retain information from previous solutions, which they use

in constructing the new solutions, but do not retain either the previous solutions or

enough information to reconstruct them. Non-generational evolutionary algorithms

[11] are similar to memetic algorithms, but only replace a few of the population

members with new candidates at each stage.

• It must be possible to define a “search space”. This is the set of solution candidates,

consisting entirely of entities of the form being evolved. Any function used during

the search that generates a new solution candidate, whether from scratch or using

information from previous iterations, must have this set or some subset thereof as

its codomain. Any function which modifies a candidate solution during the search

must also have this set, or some subset thereof (perhaps partially defined by the

pre-modification candidate) as its codomain - so the search space is closed under

all defined functions which modify candidate solutions. There should be no element

within the search space such that the search algorithm cannot at some stage consider

it as a candidate.

In some cases, it may seem (wrongly!) as though this is violated, inasmuch as not

every element in the search space actually does correspond to a valid solution to
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the problem that the user wishes to solve. It may be that the search space consists

of a set of items such that some can be transformed into valid solutions, and the

cost function is based on the success of the transformation in achieving this [84]. In

some cases, the concept of genotype-phenotype separation results in a search space

consisting entirely of entities of one type, and the cost function penalises those

which cannot be transformed into entities of the second type - as well as rewarding

the relevant qualities of the entities of the second type when the transformation

succeeds.

• We refer above to “Any function which modifies a candidate solution during the

search”. Such functions are known as “move functions”, and a single application of

a move function is a “move”. They affect the definition of the search space, in that:

– Any entity may be viewed as having, for various x ≥ 1, an “x-move neighbour-

hood”, the subset of the search space consisting of solution candidates which

can be obtained from the original entity by making x moves.

– Where solution Sa is a member of the x-move neighbourhood of solution Sb, Sb

must also be a member of the x-move neighbourhood of Sa.

The definition of a move depends on the entity being evolved. For example, if we

were attempting to evolve a bitstring, we could choose one of its bits and flip it. Or

we could swap the positions of a zero and a one within the bitstring. A single move

should in general only have a small effect on the value of the cost function.

• The algorithm’s performance is initially little better than an algorithm choosing el-

ements from the set of candidate solutions at random. While these early solutions

may, depending on the algorithm, be subject to some form of (possibly determinis-

tic) optimisation, the early stages of the algorithm are intended to explore a wide

region of the search space. Over time, the algorithm’s behaviour moves away from

exploration, however, and becomes more and more focused on increasing the quality

of the solutions within their current region of the search space.

We present two important definitions

Definition 3.5.1. A local optimum is a candidate solution such that its cost is less than

the cost of any other solution candidate in its 1-move neighbourhood. Precautions must
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be taken to prevent the search algorithm becoming “stuck” too early in a local optimum

when there may be better local optima, or even the “global” optimum as defined below,

to find.

Definition 3.5.2. A global optimum is a candidate solution such that its cost, c, is less

than or equal to the cost of all other members of the search space. There may be more

than one such, depending on the cost function and search space.

3.5.1 Hill-climbing

Whether hill-climbing counts as a metaheuristic is debatable. It is used as a component in

various metaheuristic search algorithms, and is vital to memetic algorithms in particular,

but can also be used as a search algorithm in its own right.

There are many different hill-climbing algorithms, but in general they implement an

algorithm which tests some or all of the 1-move neighbourhood of the current solution

candidate S, either replacing S immediately whenever a candidate with lower cost is

found, or completing the tests and then replacing S with the best improvement found.

This is repeated either for some fixed number of iterations, or until no improving candidate

is found in one of the iterations.

Hill-climbing is a local-search-based metaheuristic, in that the candidate solutions it

checks at each iteration are all within the 1-move neighbourhood of the current candidate.

The below pseudocode shows the two hill-climbing algorithms we incorporated into

our search algorithms in this paper.

So-called “shotgun” hill-climbing, executing several hill-climbing algorithms from sev-

eral different, randomly-chosen starting points S0, and accepting the best result, has been

used frequently in cryptanalysing old pencil-and-paper ciphers [129] and machine ciphers

- in particular, allowing the cryptanalysis of the German Enigma when a ciphertext is

known but none of its corresponding plaintext [222].
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Algorithm 1 Pseudocode for a deterministic hill-climbing algorithm

S0 denotes initial candidate
S ← S0

repeat
Sbest ← S
ACCEPTS IN THIS LOOP ← false
for x← 0, sizeof(1-move neighbourhood of S) do

Sx denotes the xth member of the 1-move neighbourhood of S.
cost diff ← C(Sx)− C(Sbest)
if cost diff < 0 then

ACCEPTS IN THIS LOOP ← true
Sbest ← Sx

end if
end for
if ACCEPTS IN THIS LOOP = true then

S ← Sbest
end if

until ACCEPTS IN THIS LOOP = false
return S

Algorithm 2 Pseudocode for a non-deterministic hill-climbing algorithm

. This algorithm was only used in situations where the other was infeasible.
S0 denotes initial candidate
S ← S0

repeat
Sbest ← S
ACCEPTS IN THIS LOOP ← false
for x← 0, CANDIDATES PER LOOP do

Sx ← some randomly chosen member of the 1-move neighbourhood of S.
cost diff ← C(Sx)− C(S)
if cost diff < 0 then

ACCEPTS IN THIS LOOP ← true
Sbest ← Sx

end if
end for
if ACCEPTS IN THIS LOOP = true then

S ← Sbest
end if

until ACCEPTS IN THIS LOOP = false
return S
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3.5.2 Simulated annealing

Simulated annealing is another local-search based algorithm, akin in many ways to a more

complex form of hill-climbing. It is inspired by a technique used in metallurgy to eliminate

defects in the crystalline structures in samples of metal.

In simulated annealing, some initial candidate solution, S0, usually chosen at random,

is input to the SA algorithm, along with the following parameters:

• The cost function C.

• The initial value T0 for the “temperature”. The higher the temperature in the

current iteration, the more likely the search algorithm is to accept a move which

results in a candidate solution with higher cost than the current candidate (that is,

to store said candidate solution as the “current candidate”). The temperature drops

over time, causing the algorithm to accept fewer non-improving moves and hence

to shift away from exploration and towards optimisation. Towards the end of the

search, it is extremely rare for the algorithm to accept a non-improving move, and

its behaviour is very close to that of a hill-climbing algorithm.

• In choosing the value of T0, various sources state that it should be chosen so that a

particular proportion of moves are accepted at temperature T0. There is very little

information or advice available as to what this proportion should be. In one of the

earliest papers on simulated annealing [156] it is stated that any temperature leading

to an initial acceptance rate of 80% or more will do; however our initial experiments

indicated that this was far too high for most of the experiments in this thesis. We

usually settled on an initial acceptance rate of 0.5 or 0.6 instead of 0.8.

Having chosen the initial acceptance rate, the experimenter executes the annealing

algorithm with various T0 until a temperature is found that achieves a fraction close

enough to this. We started with the temperature at 0.1, and repeatedly ran the

algorithm, doubled the temperature, and re-ran the algorithm until an acceptance

rate at least as high as that specified was obtained. Where Ta was the temperature

at which this had been achieved, and Tb = Ta/2, we then used a binary-search-

like algorithm to obtain a temperature between Ta and Tb that would result in an

acceptance rate ≈ 50%.
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• A value α; the “cooling factor”, determining how far the temperature decreases at

each iteration of the algorithm.

• An integer value: MAX INNER LOOPS, determining the number of moves that

the local search algorithm can make at each temperature.

• The stopping criterion must also be specified. We used a MAX OUTER LOOPS

value, indicating how many times the algorithm was to be allowed to reduce the

temperature and continue searching before it stopped.

• We also specified aMAX FROZEN OUTER LOOPS parameter. If the algorithm

had, at any stage, executed this many outer loops without accepting a single move, it

would be considered extremely unlikely to do anything other than remain completely

stationary from then on, and would be instructed to terminate early.

3.5.3 Memetic algorithms

Memetic algorithms [183] combine local optimisation with the existing metaheuristic of

“genetic algorithms”, and have proven to be extremely effective search techniques.

There is some variation in their working - in particular, not every implementation for

every problem domain will go through the four main stages in the same order that we do,

and some will use more sophisticated machine learning techniques in the local optimisation

stage instead of the straightforward hill-climbing we do. With this noted, we continue with

our description.

The memetic algorithm maintains a “population” of candidate solutions, in the form

of a multiset with size determined by the parameter popsize. Over several iterations; or

“generations” - analogous to the outer loops of simulated annealing - new populations

Pi will be derived from their immediate predecessors. Members of the population P0 at

the start of the algorithm are generated randomly and hill-climbed to local optima. In

our implementation, an “interim” multiset contains the results of applying the various

stages of the algorithm to Pi - for the purposes of this chapter we denote this set PCP

(Post-Crossover Population). PCP is cleared at the start of each generation, and repop-

ulated by the “crossover” operation in said generation. The members of PCP are then

randomly altered during the “mutation” phase of the iteration, hill-climbed, and, during

the “selection” phase, used to generate Pi+1.
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Algorithm 3 Pseudocode for simulated annealing algorithm

S ← S0

bestsol← S0

T ← T0

ZERO ACCEPT LOOPS ← 0
for x← 0,MAX OUTER LOOPS − 1 do

ACCEPTS IN THIS LOOP ← false
for y ← 0,MAX INNER LOOPS − 1 do

Choose some Sn in the 1-move neighbourhood of S.
cost diff ← C(Sn)− C(S)
if cost diff < 0 then

S ← Sn
ACCEPTS IN THIS LOOP ← true
if C(Sn) < C(bestsol) then

bestsol← Sn
end if

else
u← Rnd(0, 1)
if u < exp(−cost diff/T ) then

S ← Sn
ACCEPTS IN THIS LOOP ← true

end if
end if

end for
if ACCEPTS IN THIS LOOP = false then

ZERO ACCEPT LOOPS ← ZERO ACCEPT LOOPS + 1
if ZERO ACCEPT LOOPS = MAX FROZEN OUTER LOOPS then

. Algorithm terminates early.
return bestsol

end if
end if
T ← T × α

end for
return bestsol
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The number of generations is one of the parameters - NO OF GENERATIONS,

analogous to the MAX OUTER LOOPS parameter of simulated annealing.

The crossover function, cross(p1, p2), takes two “parent” candidate solutions p1 and

p2 as input, and outputs a “child” candidate solution o1 which in some way combines

features from both p1 and p2. Note that o1 = cross(p1, p2) is not necessarily equal to

o2 = cross(p2, p1).

Several different crossover algorithms have been designed for the evolution of bijective

functions (or, indeed, any entity representable as a permutation on a set of integers),

and it is considered extremely important to choose a good crossover algorithm for the

problem domain. In the section of this thesis in which we attempt to evolve bijective

functions over the finite field GF (2n), we compare two different crossover methods; PMX

(“Partially Mapped CROSSover”) and cycle crossover [178]. These two crossover methods

were chosen because of their focus on the values of x mapping to each output, instead of

the order in which these outputs appeared.

• Cycle crossover works as follows

PARENT 1:a b c d e f g h i j

PARENT 2:c f a j h d i g b e

(Randomly chosen cycle start point is marked in bold.)

The element of Parent 1 at the cycle start point is copied into the child in the same

position:

CHILD:? ? ? d ? ? ? ? ? ?

The element in the same position in Parent 2 is the next to be copied into the child.

However, it is copied in into the same position in which it occurs in Parent 1:

CHILD:? ? ? d ? ? ? ? ? j

This process continues until the process returns us to the original cycle start point

- in other words, when a “loop” or “cycle” has been created. In this case:
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(d, j)→ (j, e)→ (e, h)→ (h, g)→ (g, i)→ (i, b)→ (b, f)→ (f, d)→ (d, j) again.

CHILD:? b ? d e f g h i j

Any still-vacant positions in the child are then filled by copying in the corresponding

values from Parent 2:

CHILD:c b a d e f g h i j

• PMX crossover begins by choosing two “crossing points” at random, as illustrated

by the vertical lines in the below. The elements of Parent 1 between these points

are copied into the child:

PARENT 1:a b | c d e f | g h i j

PARENT 2:c f | a j h d | i g b e

CHILD:? ? | c d e f | ? ? ? ?

Next, any elements of Parent 2 which have not already been copied into the child

are copied in:

PARENT 1:a b | c d e f | g h i j

PARENT 2:c f | a j h d | i g b e

CHILD:? ? | c d e f | i g b ?

C was already copied in from Parent 1, so the element in position [0] cannot be equal

to C. We see that the Parent 2 element in the same position as C in Parent 1 is A,

and copy that into position [0]. Similarly, the final element cannot equal E, and so

we put H in that position, the Parent 2 element in the same position as the E of

Parent 1.
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PARENT 1:a b | c d e f | g h i j

PARENT 2:c f | a j h d | i g b e

CHILD:a ? | c d e f | i g b h

The final unallocated position is trickier. We cannot copy F in, as it is already

present in the child. We look for F in Parent 1, and find D in the corresponding

position of Parent 2. Unfortunately, D has also been copied into the child by this

point! We go on to look for D in Parent 1, and find that J is present in the same

position of Parent 2 and has not been copied into the child, allowing us to complete

the process:

PARENT 1:a b | c d e f | g h i j

PARENT 2:c f | a j h d | i g b e

CHILD:a j | c d e f | i g b h

Whichever crossover method we choose, the following two parameters are involved:

• no of children: When p1 and p2 are selected from Pi, this determines whether, if

the crossover function is applied, it will merely be used to add o1 = cross(p1, p2) to

PCP , or whether o2 = cross(p2, p1) will also be calculated and added.

If the crossover function is not applied, this determines whether p1 alone, or both p1

and p2, are added to PCP .

• crossover probability: When p1 and p2 are selected from Pi during the crossover

phase, this determines the probability of the crossover function being applied - i.e

whether o1 (and o2, depending on the previous parameter), or p1 and perhaps p2,

are added to PCP in this generation.

We also need a “mutation function”, mutate(c), taking a candidate solution from

PCP as input, making a small random change (the “mutation”) of some form to it,

and returning the result (which replaces the original in PCP ). In our experiments, the
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mutation function makes one move as defined by the same local search methodology used

for simulated annealing and hill-climbs; in the case of evolution of bijective functions, this

means that two truth table elements are swapped. Two parameters are relevant to this:

• max possible mutations: During the “mutation phase” of the algorithm, this defines

the maximum number of mutations that may be applied to any single candidate.

• mutation probability: Each potential mutation (up to the number defined by the

criterion above) occurs randomly with this probability, independent of the other

potential mutations.

Mutation adds an aspect of exploration into the memetic search, enabling it to escape

from local optima.

The third phase, hill-climbing, is almost identical to the hill-climbing algorithm as

defined before. Note, however, that since memetic algorithms utilise a fitness function

instead of a cost function, the algorithm must be tweaked to accommodate this. In this

phase, the members of PCP are all hill-climbed to local optima with respect to said fitness

function.

Finally, we have the “selection” phase, which is itself divided into various subphases.

The implementer may decide to sort the elements of PCP by their fitness values for the

sake of efficiency at the start of the selection phase, if so this sorting is the first subphase.

After the sorting is carried out (or not), the next subphase is the “elitism” subphase.

If the parameter elitism level has a nonzero value, the elitism level members of Pi with

the highest fitness values are copied directly into Pi+1. If this results in a full population

(which is not advisable!) the selection phase ends. If not, we need to use a selection

method to keep choosing elements from PCP to add to Pi+1.

Let |PCP | be denoted M . The two selection methods we experiment with in this

thesis are:

1. Roulette-wheel selection: This method requires the fitness function to output

a value ≥ 0 for all possible inputs. Let
∑M

i=0 fitness(ci) be denoted Z. Let the

number of places remaining in the population be denoted r. Then we follow the

procedure in the pseudocode for Algorithm 4:
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Algorithm 4 Pseudocode for roulette-wheel selection

for i← 1, r do
One member of PCP is selected at random with probability fitness(ci)/Z

. All r selections are independent and at random.
. A candidate may be selected more than once.

A copy of this member is added to Pi+1.
The original member is placed back in PCP .

end for

2. Rank selection: For this selection method, the members of PCP must be sorted

by fitness. Indexing from 1 upward, PCP [1] is the candidate with the lowest fitness;

PCP [M ] the candidate with the highest.

As before, in each of r independent trials, a candidate is selected from PCP . A

copy of this candidate is placed in Pi+1, and the candidate is replaced in PCP . The

difference between this and roulette wheel selection is the probability with which

each candidate is chosen:

P (PCP [i]) =
2i

M(M + 1)

3.5.4 Ant algorithms

The first ant colony optimization method was Ant System, originally described [120] as

a metaheuristic that might be applied to the Travelling Salesman Problem (TSP). Later

refinements produced the more effective Ant Colony System [119] [175], which took a more

elitist approach and achieved superior results against the TSP.

Any problem to which ant algorithms can be applied must be possible to represent as

a graph. For the S-box experiments, the graph nodes are the values of x, and the graph

is directional - an edge from node x to node y signifies that S(x) = y. Furthermore, each

edge carries with it a cost - and unlike the conventional TSP, the edge leading from y to

x may not have the same cost as that from x to y (making our problem more akin to the

Asymmetric TSP).

The problem should also allow a useful cost function to be devised such that, during the

construction of each candidate solution, the cost starts at zero and is increased whenever

a new component is added until the final cost is derived. The component should be

representable as an edge on the graph.
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Algorithm 5 Pseudocode for memetic algorithm

. Stage 1: Crossover.
Reset PCP to an empty multiset.
while size(PCP ) < POST CROSSOV ER POPULATION SIZE do

Choose p1 and p2 from Pi uniformly at random.
if Rnd(0, 1) < crossover probability then

o1 ← cross(p1, p2)
Add o1 to PCP
if no of children = 2 then

o2 ← cross(p2, p1)
Add o2 to PCP

end if
else

Add p1 to PCP
if no of children = 2 then

Add p2 to PCP
end if

end if
end while

. Stage 2: Mutation
for i← 0, POST CROSSOV ER POPULATION SIZE − 1 do

for j ← 0,max possible mutations− 1 do
if Rnd(0, 1) < mutation probability then

Apply one move (as defined for local search) to PCP [i]
end if

end for
end for

. Stage 3: Hill-climbing
for i← 0, POST CROSSOV ER POPULATION SIZE − 1 do

Hill-climb PCP [i] to a local optimum.
end for

. Stage 4: Selection.
Reset the population to the empty multiset.
if elitism level is specified then

copy elitism level members of Pi into Pi+1

end if
while size(population) < popsize do

use a selection function to choose the next member of PCP to add to Pi+1.
end while
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The value dij denotes the amount by which the cost is increased if the edge from node

i to node j is added, i.e. if S(i) is assigned the value j. While for some problems (such

as the TSP) dij is constant, here it is affected by the truth table values that have already

been assigned, and so must be recalculated every time we need to add a value for S(i).

The following parameters are involved:

• The particular type of ant algorithm. In our experiments, we compared Ant System,

Dorigo’s original Ant Colony System, and the version of ACS defined in Sean Luke’s

“Essentials of Metaheuristics” [175]. Other algorithms exist; for instance “AntNet”

[59, 60], a specialised variant designed for network routing problems.

• hillclimb trails. This is a boolean value which determines whether or not local op-

timisation (i.e. hill-climbing the constructed solutions) is used during trail-building.

• next index method. After adding an edge from i to j, this parameter determines

which node the ant should try to add an edge leading from next. In this thesis,

we experiment with “cycle”, in which the next node is node j, and “increment”, in

which the next node is node (i+ 1).

• α and β are floating-point values. The value of α determines the amount of influence

pheromone levels have on edge selection, and the value of β determines the influence

of dij .

• e - the elitist pheromone update parameter (Used only in ACS versions of the global

update stage.)

• τ0 - the initial amount of pheromone on each edge.

• no of ants - the number of ants.

• Q - a scalar value by which the amount of pheromone deposited in the global update

is multiplied. In the paper in which Ant System was originally described [120], after

experiments with Q = 1, 100, and 10000, 100 was accepted as the “experimentally

determined optimal value”. However, in later descriptions of ACS [119, 121, 175],

Q = 1 was implicitly used, and no other values were mentioned.

• q0 - for ACS algorithms, this dictates the probability that a given edge selection will

use an elitist selection method instead of the exploratory Ant System method. For

Ant System, q0 is in effect always zero.
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• ρ - the non-elitist pheromone update parameter (also known as the “evaporation

rate”).

In the below pseudocode, which describes all three of Ant System, Dorigo’s ACS, and

Luke’s ACS, τij denotes the amount of pheromone on the edge corresponding to S(i) = j.

An ant trail is deemed to be complete when every node has an edge leading from it; i.e.

when every i has been assigned an output value j = S(i).

3.5.5 Metaheuristics in cryptography

Metaheuristics have been used to evolve Boolean functions on up to 10 variables with

better cryptographic properties than hitherto obtained [89] [80] [84] [82] [88], sometimes

using innovative techniques such as searching for the cost function [87]. They have also

been used to look into the feasibility of detecting, or guaranteeing the absence of, backdoors

in cryptographic Boolean functions [85].

As well as cryptographic primitives, they have also been used to evolve cryptographic

protocols [83, 81, 64]. For an excellent survey of the field up to 2001, the reader is urged

to read John Clark’s DPhil thesis [74]. Clark has coauthored the majority of the papers

mentioned so far, and is probably the most significant figure in research into the use of

metaheuristics in cryptology.

There has also been research into the evolution of quantum algorithms, circuits, and

protocols (collectively referred to as “quantum computing artefacts” [92]). Given the

relevance of quantum computers to cryptanalysis, in particular the effects of Shor’s and

Grover’s algorithms on cryptosystems currently believed secure (should quantum comput-

ers ever be implemented) and the research field of post-quantum cryptography that has

evolved in response to this, we do not think it beyond the remit of this section to briefly

discuss these.

The most recent survey paper in this area [96] was written by Clark and Stepney in

2007, and is an updated version of an earlier survey [95] by the same authors. Many of the

most-cited works in the field have been coauthored by Lee Spector [12, 14, 15, 13, 219],

frequently in collaboration with Howard Barnum and Herbert Bernstein. A large body of

work on the topic has also been conducted at York [90] [91] [44] [177].

As well as cryptology, we also note that there appears to be a large body of literature

on the use of metaheuristics, in particular artificial immune systems, in another aspect of

computer security; intrusion detection. We have not investigated these papers as they are
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Algorithm 6 Pseudocode for ant algorithms

Set the amount of pheromone on each graph edge to τ0.
best solution← some randomly generated solution candidate.
for x← 0, no of iterations− 1 do

. Each ant builds a trail
Clear all ant trails
(remove all edges, set current nodes of all ants to 0.)
while ant trails incomplete do

for a← 0, no of ants− 1 do
Let ia denote ant a’s current node.
Let the set of unassigned output values at this point be denoted U .

. Add an edge from ia to some node ja ∈ U

. (based on the cost of the edge and level of
. pheromone on it).

q ← rnd(0, 1)
if q ≤ q0 then

Choose node ja where ja is the value of k corresponding
to maxk ∈ U (ταiak·d

β
iak

)
else

Node ja is chosen from the set U with probability:
(ταiaja ·d

β
iaja

)∑
k ∈ U (ταiak·d

β
iak

)

end if
if ant method is Dorigo’s original ACS then

. Decrease pheromone levels on chosen edge (local update):
τiaja ← (1− ρ)·τiaja + ρ·τ0

end if
. Update current node:

if next index method = CY CLE then
ia ← ja

else if next index method = ITERATE then
ia ← (ia + 1) modulo no of nodes

end if
end for
if hillclimb trails then

Hill-climb all constructed solutions represented by the ant trails
to local optima.

end if
end while
Let best iteration be the ant which constructed the best solution in this iteration.
Let best itera sol be that solution.
if cost(best itera sol) < cost(best solution) then

best solution← best itera sol
end if
Update pheromone levels on all edges (global update).
(The method varies depending on the choice of ant algorithm).

end for
return best solution
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beyond the remit of this document; nevertheless we refer the interested reader to Clark’s

list of relevant articles [73].

3.6 Cryptanalysis with metaheuristic search.

In the previous section, we presented a brief survey of the application of metaheuristics to

cryptography. Despite its substantial contribution in this field, however, metaheuristics

has made very few contributions to the other component of cryptology - cryptanalysis. It

has been successfully used in the cryptanalysis of some early (already broken) pencil-and-

paper ciphers [94] [93], and in some (already obsolete) mechanical cipher machines from

the early 20th century. Modern-day ciphers from the computer age, though, have barely

been affected by it. The only notable success metaheuristics has achieved in this field is in

the cryptanalysis of a proposed identification scheme based on the Permuted Perceptron

Problem (described below); a problem which had its roots in artificial intelligence and

which metaheuristics therefore represented an obvious attack vector for.

3.6.1 Metaheuristic attacks on knapsack ciphers

There have been various attempts to attack knapsack cryptosystems using metaheuristics.

However, these [220, 165, 210] have only ever succeeded in breaking problem instances with

unrealistically small parameter sizes, whereas more conventional cryptanalytic techniques

have been deployed to devastating effect against most of the knapsack variants. We do not

consider this to be a promising research direction; partly due to the lack of existing success

and partly because it is not likely that knapsack ciphers will see use in the near future.

For a slightly more detailed summary of this topic, the reader is referred to Clark’s thesis

[74]. The criticisms and related information in articles by Rubin [209], and by Bergen et

al. [72] may also be of interest.

3.6.2 The Permuted Perceptron Problem

Possibly the most interesting application of metaheuristics to cryptanalysis has been in

the attacks on a set of zero-knowledge identification schemes proposed by Pointcheval

[205]. These were based on the difficulty of the “Permuted Perceptron Problem”; a harder

version of the NP-complete “Perceptron Problem”:
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Definition 3.6.1. Let A be a non-invertible m × n matrix (It was recommended by

Pointcheval that n ≈ m+16) with all its entries ∈ {−1, 1}. The Perceptron Problem (PP)

is the problem of finding a column vector V with all its entries ∈ {−1, 1} such that every

entry of AV ≥ 0.

(In two other papers by Pointcheval [204] [206], the Perceptron Problem is defined

merely as the simpler problem of discovering whether such a V exists. In the latter paper,

it is shown that even this simpler problem is NP-complete!)

Definition 3.6.2. Let the matrix A be defined as before. Let M be some multiset of

integers ≥ 0. The Permuted Perceptron Problem (PPP) is the problem of finding some

column vector V ∈ {−1, 1}n such that the multiset of entries in AV is the multiset M .

Since every solution to the PPP is also a solution to the PP, we see that the Permuted

Perceptron Problem is harder than the Perceptron Problem.

Pointcheval’s schemes are based on the difficulty of a weaker version of the Permuted

Perceptron Problem; whereby it is guaranteed that at least one solution V exists.

Pointcheval provides the following method to generate instances of the PPP for use in

these schemes:

1. Let p denote the number of elements of the finite field in which we operate. Decide

on the values for m and n. As stated, we probably stick to the restriction that

n ≈ m+ 16.

In addition, there is the question of whether n and m should be odd. It is not

explicitly stated that they should, however all values for these in Pointcheval’s paper

are odd, and an attempt to deal with finite field arithmetic in §4.2 appears to assume

that n is odd. However, this in turn would imply that entries of AV cannot be zero;

and Pointcheval does not rule 0-entries out. Pointcheval and Poupard do however

rule out even values of m and n [206], citing unspecified “technical reasons”.

Pointcheval suggests (m,n)-values of (101, 117), (121, 137), and (151, 167).

2. Generate a random vector V ∈ {−1, 1}n.

3. Generate a random m× n matrix A with all its entries ∈ {−1, 1}.

4. Compute AV . If the ith entry of AV is negative, multiply every entry in the ith row

of A by -1 and then recalculate AV with the new A.
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We will describe the first of the schemes [205] here. It is described as a “three-pass”

protocol. In an x-pass protocol, the first pass is deemed to begin when the first trans-

mission of information is made, and the (i+ 1)st pass begins when a participant P sends

a transmission that depends in some way on information P had received during the ith

pass. (This transmission is considered to take place during the (i+ 1)st pass.)

(Usually we refer to “rounds” instead of passes; however Pointcheval uses “rounds”

to refer to repetitions of the protocol - so by this definition the number of rounds is the

number of times the protocol must be repeated until P(the prover can succeed this many

times without knowing the secret key) is sufficiently low.)

In this protocol, the participants are Peggy (the prover) and Victor (the verifier).

Peggy’s private key consists of the vector V as described above. Her public key consists

of the matrix A and the multiset M , and she wishes to prove to Victor that she knows

V without revealing any information about it. Also publicly known (or, at least, known

to both parties) are the values n and m, and H, some collision-free cryptographic hash

function acceptable to both parties.

The following describes a round of the protocol:

Before transmissions begin, Peggy computes

• P , an m×m matrix such that PA can be obtained by applying some permutation

to the rows of A.

• Q, an n×n matrix such that AQ can be obtained by applying some permutation to

the columns of A, and then multiplying some of them by -1.

• W , a random n-vector.

• A′ = PAQ, V ′ = Q−1V , and R = W + V ′.

• h0 = H(P |Q), h1 = H(W ), h2 = H(R), h3 = H(A′W ), h4 = H(A′R). (Note. h0

could have been defined as (H(P ), H(Q)) instead. We are not sure if this would be

preferable, but it would be more closely related to what is being committed to.)

• Pass 1: Peggy sends (h0, h1, h2, h3, h4) to Victor.

• Pass 2: Victor chooses some random integer c ∈ {0, 1, 2, 3} and sends c to Peggy.

While Victor did not depend on any information already transmitted to compute c,

he could not send it until Peggy’s transmission of the hash values had committed her
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to the corresponding data. Otherwise this would have supplied her with information

useful in pretending to know V when in fact she did not, since she would know in

advance what to transmit in the next pass.

• Pass 3: If c is equal to:

0 : Peggy sends (P,Q,W ) to Victor. Victor checks that h0 = H(P |Q), h1 =

H(W ), and h3 = H(PAQW ).

1 : Peggy sends (P,Q,R) to Victor. Victor checks that h0 = H(P |Q), h2 = H(R),

and h4 = H(PAQR).

2 : Peggy sends (A′V ′, A′W ) to Victor. Victor checks that h3 = H(A′W ), h4 =

H(A′V ′ +A′W ), and that the multiset of the entries of A′V ′ is equal to M .

3 : Peggy sends (V ′,W ) to Victor. Victor checks that h1 = H(W ), h2 = H(V ′+

W ), and that V ′ ∈ {−1, 1}n.

It would take too long, and be beyond the scope of this section, to explain how with

each round of the protocol the chance that Peggy could have passed that many rounds

without knowing V decreases. We advise the interested reader to imagine a situation

where Peggy knew beforehand that a particular value of c would not occur, and to look at

how easy it would then be to construct data which would pass the test for any of the other

values. The reader should then look at how hard it is to find a way of further contriving

the data, without knowing V , so that it could also pass the test for the “forbidden” value

of c.

After a sufficient number of rounds of the protocol, Peggy should have convinced Victor

that she knows a solution to the Permuted Perceptron Problem. Pointcheval provides

instructions on setting the problem up in a way that will (hopefully) minimise the chance

that any other solution exists and if not, will hopefully minimise the number of other PPP

solutions that exist.

Attacking the Permuted Perceptron Problem with metaheuristics

Note that A should be non-invertible - it certainly will be if n = m+16, and that with less

rows than columns there are not enough simultaneous linear equations to recover V from

AV (Even if we knew AV instead of just the multiset of its elements.) Pointcheval looked

72



at various deterministic methods to solve similar schemes, such as Gaussian elimination,

but could not apply them here.

Pointcheval then looked at attacks based on the majority vector for the matrix A.

Definition 3.6.3. Given an m × n matrix with all its entries in {−1, 1}, the majority

vector for that matrix is an n-vector, the ith entry of which is 1 if more than half of the

entries in the ith column of the matrix are 1. If this is not the case, the ith entry is -1.

It is not absolutely clear from Pointcheval’s work as to whether this resulted from

the nature of the PPP or from the way in which problem instances were generated, but

nevertheless for problem instances generated as described earlier Pointcheval was able to

prove that approximately 80% of the entries of the majority vector were the same as the

corresponding entries of V . (It is also the case that the higher the difference between the

number of 1s and -1s in the jth column, the more likely the jth entry in the majority

vector is to agree with the jth entry of the secret vector.)

Pointcheval considered attacks where approximately 20% of the entries of the vector

were flipped and the results tested to see if they were PPP-solutions. (He also considered

tweaking this attack so that vector entries were more likely to be flipped if the sum of

the values in the corresponding column of A was close to zero.) This fact forced a lower

bound of 95 to be imposed on n to ensure a work factor of 264 (we would try to ensure a

higher work factor nowadays) in solving the problem; but problem-instances with such a

value of n could still be feasibly generated and used.

Pointcheval was aware from the start that metaheuristics might provide a means of

solving the problem, partly since the Perceptron Problem was derived from a related

problem in artificial intelligence. (In fact, a genetic algorithm [16] which could solve this

problem for m = O(n) was published in the same year as Pointcheval’s original paper,

though we do not know if he was aware of it.) His approach was to use simulated annealing

to search for solutions to the Perceptron Problem. Whenever a solution was found, the

algorithm would then test it to see if it was a solution to the PPP. He did not specify

the neighbourhood used, but the obvious neighbourhood would be the one in which the

neighbours of a given vector were those which differed from it in precisely one entry.

Subsequent work [163] [79] did in fact define the neighbourhood thus.

This approach was more successful than the majority vector attacks, but not by

enough to break all feasibly-usable problem sizes. The (n,m)-values originally suggested

by Pointcheval were based on parameters for which this approach had failed but which
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still allowed the identification protocol to be carried out efficiently.

Knudsen and Meier’s work Some progress was made in the cryptanalysis of the PPP

schemes in 1999 by Knudsen and Meier [163]. They came up with a new cost function

that would allow them to attack the PPP directly with simulated annealing, instead of

just the PP, and also came up with a modified attack that proved to be more effective

against the PPP.

Although they suggested several variations, their method was, basically, the following:

1. Using the new cost function, attack the PPP with simulated annealing t times.

Record the result of each attack as the vector which achieved the lowest value of the

cost function for that attack. (Most versions of simulated annealing would treat this

as the result anyway.)

2. Identify any vector entries which are the same in all t solutions.

3. Begin a new set of t simulated annealing attacks in which the initial state vectors

have, for these entries, the values that were found by the previous runs. The values

for other entries are chosen at random. As a variant, the attacker may choose to

fix these entries at the values found for the remainder of the attack, and to handle

errors in these values later on.

4. Return to Step 2. Continue in this fashion until either a solution is found, or the

number of entries upon which the searches do not agree is sufficiently small to brute-

force. Probabilistic information derived from the previous results can be exploited

to speed up the brute force stage, to the extent that the simulated annealing stage

may only need to find a quarter of the vector entries!

5. The solution found should be a PP-solution due to the nature of the new cost

function. If it is not a PPP-solution, start again.

It should be noted that Knudsen and Meier did not have a way to correct the afore-

mentioned errors, however the ability to start again if the solution was not a PPP-solution

seems to have been enough to handle this. The variant could be made to succeed with

time complexity ≈ 256 against Pointcheval’s smallest parameters (They did not in fact

expend this much time; this was based on how much faster PP-solutions could now be

found.) instead of the original estimate of 264.
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They also noted that in some cases the algorithm would find solutions a lot faster than

this. To examine this further, they conducted further experiments in which the algorithm

was aborted as soon as it fixed a vector entry at an incorrect value. Using brute force to

find the last entries, it was noted that approximately 9% of the time this attack would

find the correct solution, and the largest amount of time any of these successful runs were

observed to take in their experiments was 252 basic operations. It was also conjectured

that these results might further be improved upon by exploiting probabilistic properties

of the correct solution (such as correlation with the majority vector) in choosing initial

values and checking candidate solutions, and noted that in other instances of the problem

the algorithm might have found an alternative PPP-solution (if one existed) had they not

aborted it.

Knudsen and Meier concluded by pointing out that their results had used a relatively

low starting temperature, and a relatively high cooling rate, during the simulated anneal-

ing, and that in a serious cryptographic attack the attacker would probably not use such

parameters, having more time available to launch a more effective attack. They recom-

mended that (m = 101, n = 117) should not be used (this recommendation appears to

have been widely accepted), and pointed out that for the higher parameters recommended

the PPP-based schemes did not offer a significant efficiency advantage over those based

on other hard problems.

Clark and Jacob’s work Knudsen and Meier had made headway against the PPP

by not treating the optimisation-based attack as “black box”, but observing what hap-

pened during it and using this information to improve the attack. Clark and Jacob [79]

drew parallels between this and the way in which side-channel attacks had moved away

from viewing cipher-implementations as “black-box” to exploit information leaked by the

computations. Their improved attack followed two side-channel-analogous approaches:

• Fault injection: Analogous to the concept of causing errors in the cryptosystem’s

computations and exploiting them, Clark and Jacob introduced “errors” into the

cryptanalysis by changing the cost function so that the solution which minimised

the cost was, not the correct solution, but one which was closely correlated to it.

Several such cost functions were used, along with tweakable parameters allowing the

cost to be multiplied by and/or raised to the power of some scalar. Simpler methods

such as hill-climbing would then be used to find the correct solution from the related
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solutions.

This technique was referred to as “Problem Warping”.

• Timing attack: Knudsen and Meier had focused on vector entries which all an-

nealing runs agreed on. Clark and Jacob noted that certain entries would, relatively

early on in the search, take a particular value and then not subsequently deviate

from it. These values tended to be the correct values for those entries. It therefore

became important to keep track of how quickly the various entries became “stuck”

(later entries might just be getting stuck due to convergence on a local optimum).

This was inspired by a similar phenomenon observed before when using simulated

annealing in non-cryptographic contexts. While not becoming fixed early on, there

were situations where, if annealing was being used to find an optimal value for some

bitstring, certain bits which had the same value in all optimal solutions (these were

known as persistent variables) would be such that, as the temperature approached

zero, their average value over all the iterations at temperature Ti would converge

on their correct value as i increased. A 1995 paper [63] had exploited this by, at

each change in temperature, fixing the values of any bits which had taken one value

sufficiently more than the other. (The thresholds used to define “sufficiently more”

did not change as the temperature decreased.) The idea behind this was that, since

the bits were clearly converging on these values, they should be fixed at them to

reduce the number of non-improving moves available to the algorithm, and thus

increase its efficiency (especially at lower temperatures.) The new approach was

known as thermostatistical persistency (TP).

Clark and Jacob, varying this according to their knowledge of the PPP, now applied

it to cryptanalysis. They did not attempt to fix the values of these bits until the

hill-climbing stage (how long a bit would need to stay at a given value before being

considered “stuck” is not discussed - but to use an approach closer to TP, we would

need to have a strategy for this). Instead, they looked at observing over multiple

runs which bits tended to become stuck soonest and which/how many of these should

be considered correct in the search for the overall solution.

Problem warping Part of the inspiration for problem warping had been a property of

the multiset M not hitherto used, or indeed mentioned in previous papers. After V and
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the initial version of the matrix that would become A (call it Ainit) had been generated,

the values in the multiset of entries of AinitV were binomially distributed with a mean

of zero (which, for odd n, would not in fact occur as a value) - and hence the lower the

magnitude of a given odd number, the more likely it was to feature in the multiset. The

way in which A was derived from Ainit - by flipping the entries in any row such that AinitV

was negative - meant that the lower the magnitude of the positive integer between 0 and

n, the more often it could be expected to appear in the multiset, since it occurred as many

times as the total number of times it and its negative had occurred before.

This fact was not itself cryptographically useful, in fact it was causing problems for the

annealing-based search. Flipping an individual element of the candidate solution caused

every entry in U = AVcandidate to change by ±2, and this was observed to be causing

several small positive values in U to become negative when attempts were made to move

to a neighbouring candidate - which was in turn causing the search to become too easily

stuck in local optima.

Clark and Jacob, apparently counter-intuitively, introduced the parameter K ∈ N into

the cost function. Instead of simply penalising negative entries in U , any entries below K

would now be penalised, causing the search to seek out “solutions” such that AVsuggestion

would contain only positive values above a certain threshold.

Searches using the modified cost functions corresponding to the various values of K

would not find V , as vectors with the high number of 1s and other low-magnitude natural

numbers in the correct V would not minimise the cost. However, the solutions resulting

from these searches would frequently differ in ≤ 10 places from solutions to the Perceptron

Problem, and these solutions could be easily found by a hill-climbing algorithm flipping

individual entries. Clark and Jacob’s strategy was to attempt the search using ten runs

with every possible cost function, and to use brute-force on every result under the as-

sumption that a certain upper bound applied to the number of incorrect bits (this bound

being determined by their experiments on various parameter sizes.) For some of the cost

functions, this would fail; but for others, it would succeed. And extra information could

be gained by noting that any entries such that every problem instance had agreed on their

values (or that a heavy majority had) were likely to be correct. The less agreement there

was on a particular entry, the more likely it was to be flipped during hill-climbing.

K was incorporated into Knudsen and Meier’s cost function to allow more direct

attacks against the PPP, as were the two other parameters which multiplied the cost by
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a given amount and/or exponentiated it.

Clark and Jacob also made various other suggestions and observations about the prob-

lem. For instance, changing any element of Vcandidate caused all the entries in the U

computed from it to change by ±2. From this they worked out that it was possible to

tell whether the number of entry flips required to achieve Vcandidate = V was odd or even.

They also suggested exploiting the majority vector, and aspects of Knudsen and Meier’s

methods.

The attack with timing support The attack as so far described had already com-

prehensively broken the PPP. The (101, 117) version could now be solved in less than 254

time. (151, 167) could be solved in less than 260 time. Clark and Jacob had attacked (131,

147) instead of (121, 137); this had been solved fastest of all. We confess that this leaves

us slightly unsure about the status of the (121, 137) version of the problem, but given the

results against the supposedly hardest feasible parameters it would be foolish to assume

that this version could provide meaningful security. (We note also that Clark and Jacob

had used the same techniques to solve instances of the PP of size (201, 217) and (401,

417) with a 100% success rate, and sizes (501, 517), (601, 617) with success rates of 70%

and 50% respectively.) The real power of the attack had stemmed from problem warping

(In fact, Knudsen and Meier’s observing bits that the various runs agreed on had not

yet been exploited here!); the timing/thermostatistical aspects merely represented further

improvement on top.

As we currently understand it, the timing enhancements have not yet been used in

an unaided attack on the PPP. Information on the number of initially-settled bits that

proved to be correct for the “best” run/cost-function pair for each of the problem instances

attacked, together with the corresponding number of bits the annealing stage had correctly

deduced before terminating, is given, and there is some discussion of how such results

could reduce the complexity of the brute-force stage. It looks as if more experimentation

would be needed to decide how many initially-settled bits one should assume correct in a

practical attack, but the approach would appear to be the same; over all (|cost functions|×
|runs per cost function|) runs, the best solutions will yield results, for the worst ones we

give up before too much time is spent. Other ways to exploit this by brute-force on pairs

of runs are suggested; however these do not improve on the results obtained by problem

warping.

Combining timing support with aspects of Knudsen/Meier’s attack (perhaps accepting
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the agreement of most, not necessarily all, runs on certain secret vector entries), and

ranking the entries in terms of how quickly on average each became “stuck” (the higher

the rank, the more likely the entry was to have become stuck at the correct value) were

suggested as ways to obtain further improvements.

Other subsequent work After Clark and Jacob had demonstrated the insecurity of

even the largest of the suggested parameter sizes, the PPP no longer attracted interest

as a basis for identification schemes. Parameter sizes sufficient to render their attacks

impractical would result in protocols noticeably less efficient than those relying on the

difficulty of other problems, and even then it would be hard to predict the effects of new

cryptanalytic techniques (or indeed refinements to the existing techniques). However, we

wish to mention, briefly, two subsequent papers on the subject.

In the first of these [224], Uddin and Youssef apply ant colony optimisation to the

problem instead of simulated annealing. Of some interest is their statement that minor

variations to the cost function parameters are necessary during the search because of “our

experimental observation that, for a given cost function, some bits in the solution have

a tendency to get stuck at a wrong value throughout the search process”. They do not

specify how many bits would become fixed at the correct values before this happens, so

we cannot compare this to the seemingly very different behaviour of the SA algorithms.

We do note, however, that the sizes of the matrices A attacked do not correspond to

Pointcheval’s recommendations; in fact they do not always guarantee a non-invertible A,

and it is possible that differences in the behaviour of the search algorithms could be partly

attributable to this.

The second of these [206] we have in fact already mentioned. This paper, published in

2003 and coauthored by Pointcheval, focuses mainly on republishing existing material and

on the protocols and their implementation, as opposed to new research on the underlying

problems. However, it does contain some interesting material that contributes to a better

understanding of the Permuted Perceptron Problem - for instance, until its publication,

Pointcheval’s proofs that PP, PPP, and approximation of the PP were NP-complete had

not been translated from French into English.
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3.6.3 Metaheuristic attacks on block ciphers

Attempts have also been made to apply metaheuristics to the cryptanalysis of modern-day

symmetric ciphers. Most of this research has focused on block ciphers, although there has

been some work on stream ciphers [77]. Most of it has also been carried out by members

of the artificial intelligence community; the cryptographic community not appearing to

have shown much interest in these methods.

The Tiny Encryption Algorithm (TEA)

TEA [193] is a Feistel cipher with a 128-bit key size and 64-bit block size. It was introduced

by Needham and Wheeler in 1994 with the intention of providing an efficient algorithm

that could easily be implemented on as wide as possible a range of hardware architectures

and programming languages, while still providing a high level of security. A large amount

of this security came from its having sixty-four rounds; which it was able to afford due to

the efficiency of its round function.

Certain aspects of TEA’s design are quite notable. First of all, it does not use any

form of table lookup (such as S-boxes), considering this to be too slow and potentially

complicated (possibly on some architectures more than others). Instead, the entire cipher

is specified in terms of XOR, logical bit-shifts, and arithmetic addition. Bearing in mind

the rationale for similar design decisions in the stream cipher Salsa20 [21, 22] the choice of

these operations may also have provided some degree of security against timing attacks.

Secondly, every two rounds TEA’s round function changes. The 2ith and (2i − 1)st

round functions add i times the value δ ≈ 231(
√

5 − 1) to a copy of the round input,

depending on the modular reduction caused by this value overflowing its allocated storage

and on the irrationality of
√

5 to add randomness. (The ≈ comes from the fact that no

representation of this number using a finite bitstring can be completely exact.) TEA relies

entirely on this fact to provide security against slide attacks, since its key schedule repeats

every two rounds! Each pair (round 2i−1, round 2i) of TEA rounds using different round

keys and the same value of δ is referred to as a “cycle”.

Various weaknesses were discovered in TEA after its publication. At Crypto ’96,

Kelsey, Schneier, and Wagner presented a paper [152] in which they showed that every

key encrypted plaintexts to the same ciphertexts as three other keys. They also showed

how to obtain these three other keys. While this did not make much difference to TEA’s

security as an encryption algorithm (its effective key strength was reduced from 128-bit
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to 126-bit), it rendered it utterly insecure as a basis for cryptographic hash functions, as

the operation of TEA on a (plaintext, key) pair did not possess either second-preimage

resistance or collision resistance.

Kelsey, Schneier and Wagner uncovered further weaknesses in the algorithm, published

in 1997 [153], motivating TEA’s creators to design a replacement algorithm, XTEA [194].

(The reader may note that XTEA was published before this set of weaknesses were; this

is because Needham and Wheeler had been informed of them by Wagner prior to the

ICICS conference.) An even stronger algorithm, XXTEA, was published by Needham and

Wheeler in 1998 [195].

Bitmask-based attacks against TEA. In two papers published in 2002, and 2003,

Hernández-Castro et al. proposed a method of using genetic algorithms in a distinguishing

attack on reduced-round TEA (not XTEA or XXTEA). Their method [139, 138] worked

as follows:

1. The initial population consists of a set of one hundred 192-bit strings (bitmasks). It

is not explicitly stated how these are generated, we assume randomly. 211 random

(plaintext, key) pairs are generated at random.

2. For each string in the population:

(a) A bitwise AND is carried out with this string and each of the (plaintext, key)

pairs. That is, each input pair has its bits set to zero where the mask-bits are

zero.

(b) The thus-altered input pairs are run through the reduced-round cipher, and the

resultant ciphertexts subjected to statistical tests for randomness.

(c) The fitness function assigns a score to the bitmask based on its performance,

such as the χ2 value. The higher the value, the less random the output. If

the bitmask’s performance is sufficiently high, a higher-valued function of the

weight of the bitmask is assigned as a score instead, to give this bitmask a

significant advantage.

3. Selection, crossover, and mutation are applied, and either the next generation of

tests occurs or the best candidate (the one with the largest Hamming weight) is

selected.
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The bitstrings evolved were intended to define the distinguishing attacks; up to 211

random (key, plaintext) pairs would have bits set to zero in accordance with the bitmask,

be run through the function, and tested for non-randomness as before. If the outputs were

judged to have a sufficiently high score for non-randomness, the algorithm would decide

that the function was TEA and not a random function.

(No method for turning this into a key extraction attack is specified. The intuitive

approach would be to attack a black box implementing either TEA with key k, or a random

function, using a 64-bit mask on the plaintexts. This would require a bitmask which did

not impose constraints on the key bits to have been generated, so in practice it would

seem some other way to exploit the non-randomness would be needed.)

Direct searches for the encryption key We have already mentioned the folly of a

direct search for the encryption key, although this has nevertheless been attempted in

various papers [19, 20] [190]. One particular example which we wish to look at is the work

of Song, Zhang, Meng, and Wang [181], in which they attack four-round DES in this way

using a genetic algorithm.

The attack assumes that a quantity of known plaintext/ciphertext pairs are available

to the cryptanalyst. The candidate keys are used to encrypt the plaintexts, and the fitness

function is based on how many bits the results agree with the correct ciphertext in. (It

is not clear how many plaintexts each key is tested on) At the end of the search, the

“optimum” members of the final population (those members which have achieved fitness

levels above a certain threshold, approximately 80%) are identified. Any key bit which a

of these have agreed upon (The value of a varies, but the average value is 67.5%) is set to

that value in a new seeding population, with which the search is repeated.

This should be familiar from our earlier discussion of the PPP. In particular, as well as

the possibility that something analogous to a timing channel could be used, the reader will

realise that this must set several bits to incorrect values. If these bits cannot be altered

during the later searches, then no method has been provided to identify and correct these

- and even if they can change, it is not guaranteed that mistakes will be corrected during

the subsequent search. This is not addressed by Song et al. - their paper mentions the

number of correct bits after the first search (up to 13), but does not mention the number

of incorrect bits. They claim that they can continue the search to find the remaining key

bits and complete the key, but we are not sure. In any case, this approach could not break

DES reduced to more than a handful of rounds.
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Other applications of metaheuristics to cryptanalysis

A minority of researchers have begun to recognise other ways in which metaheuristics

(and, we suspect, search algorithms which are not metaheuristic in nature) can be used

in cryptanalysis. There are three particular directions of research, all of which use meta-

heuristics as a tool to optimise existing cryptanalytic techniques. This is a common thread

- realising that metaheuristics must be targeted at aspects of the cipher or its cryptanaly-

sis where there is reason to believe sufficient non-randomness exists to create a searchable

fitness landscape, and that such non-randomness in the cipher is usually exploited by, or

brought to light during, cryptanalysis.

Searching for differential characteristics In a paper published in 2004 [8], Bafghi

and Sadeghiyan use weighted graphs instead of tables to represent the difference distri-

bution tables of Serpent’s S-boxes. The S-boxes are linked together by further edges

corresponding to the paths the data follows through the cipher, and an ant colony algo-

rithm is used to find good differential characteristics, with the ants traversing the edges

of the graphs trying to find the paths with the maximum weight (corresponding to the

maximal likelihood of the differential characteristic occurring).

Serpent was considered the most secure of all the submissions to the AES contest,

more secure than the AES itself, and is hence one of the most important ciphers for

cryptanalysts to focus on. As a result, it has been shown to be highly secure against

differential cryptanalysis. This does not, however, mean that searching for differential

characteristics for it is a cryptographic dead end - ciphers designed to resist differential and

linear cryptanalysis have been comprehensively broken using variants of these techniques,

such as the boomerang attack [229] discovered by Wagner in 1999.

The boomerang attack is able to attack ciphers using a pair of good short differential

characteristics, instead of one long differential characteristic. Let the function defined by

the cipher be denoted E. The attack uses chosen plaintext and adaptive chosen ciphertext

as follows: (P, P ′ = P ⊕∆) is input to the cipher. After the first x rounds of the cipher

(call them E0), we expect with some probability that E0(P )⊕E0(P ′) = ∆∗ for some value

∆∗. We do not necessarily expect to observe any value of E(P ) ⊕ E(P ′) with sufficient

probability to use in a conventional differential attack. Let the function defined by the

remaining rounds of the cipher be denoted E1. We need to have a differential characteristic

for E1 whereby E1(R) ⊕ E1(R ⊕ O∗) = O for some (O∗,O) with reasonable probability.
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Figure 3.10: Diagram illustrating the boomerang attack [229].

Let D = E(P )⊕O. Let D′ = E(P ′)⊕O. We request the decryptions of D and D′. If the

resultant plaintexts have difference ∆, we use the quartet (P, P ′, E−1(D), E−1(D′)) in the

second stage of our attack, which includes the testing of candidate TPS values.

Boomerang attacks evolved into “amplified boomerang” attacks [150] using chosen-

plaintext quartets instead of chosen plaintexts and ciphertexts, before evolving again into

the rectangle attack [28] against Serpent reduced to ten rounds (from thirty-two).

The rectangle attack utilised a characteristic for the first four rounds of Serpent with

probability 2−29, and one for rounds 5-8 with probability 2−47. (Serpent, like TEA, varies

its round function throughout the cipher, albeit with periodicity eight. The last round

also has less diffusion than the others.) From these, characteristics for rounds 5-9 with

probability 2−60, and rounds 4-9 with probability 2−93 were discovered.

Bafghi and Sadeghiyan’s work was carried out in the context of this work, and two

other papers which had achieved the best-known characteristics for various sequences of

rounds of Serpent [151] [62]. Using the ant colony technique, they were able to find a

characteristic for rounds 1-5 with probability 2−65 instead of the 2−67 reported by Chan

et al. [62], and a characteristic for rounds 1-6 with probability 2−94 instead of Chan
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et al.’s 2−97. Their algorithm also succeeded in finding a characteristic for rounds 1-

4 with the same probability as that found by Biham et al. [28]. In a later paper [9],

coauthored with Reza Safabakhsh, neural networks did not improve on these results,

however “Boltzmann” neural networks incorporating ideas from simulated annealing were

able to obtain a characteristic for rounds 1-7 with probability 2−125. Whether any of these

will be used in attacks, however, remains to be seen.

Improved TPS evaluation in differential cryptanalysis In the earlier section on

differential cryptanalysis, we mentioned local maxima occurring when incorrect keys nonethe-

less caused the correct output difference to occur unexpectedly often, and wondered

whether these might be usable in metaheuristic attacks. Albassal and Wahdan [2, 3, 4]

start with a similar idea and analyse it in more depth.

The key observation they make is that for TPS candidates with several bits in com-

mon with the correct subkey, the expected output difference will occur more often than

expected, (although not as often as for the correct subkey) and that parts of the output

difference will occur with the expected frequency. The reason for this is that these will

have the correct values for some, though not all, of the S-boxes involved in the final round

of the characteristic, meaning that they will yield the correct values for the corresponding

bits of the output difference of these as often as the correct key will. Since the chance of

obtaining the correct output difference for, say, one random S-box with the wrong key is

higher than that of achieving the correct output difference for several S-boxes with the

wrong key, they will also result in the complete output difference more often than expected.

An examination of the frequency counts from a differential attack on a toy cipher [140]

does indeed demonstrate this phenomenon occurring. The result is that the success rates

of the various TPS candidates create a searchable fitness landscape, which can potentially

be exploited to reduce the number of chosen plaintexts required.

In their first paper on the subject [2], Albassal and Wahdan exploit this in an attack

against the aforementioned toy cipher, before going on to attack a simple Feistel cipher in

a follow-up paper [3]. Genetic algorithms are used in both cases, although we would have

liked to have seen hill-climbing or simulated annealing tried. Another paper by the same

authors [4] describes an attack on another simplified Feistel cipher using neural networks,

and presents a useful introduction to these, but does not really offer anything more than

the other papers in cryptographic terms.

We found the second of these papers to be the most interesting; since the S-box used
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in the Feistel network was a row from one of the DES S-boxes, the question of how to

improve on this attack with the intention of attacking DES was implicitly raised. We note

the following points:

• The fitness function rewards candidate TPSes based on how many times each yields

the correct output difference. For the Feistel cipher as described [3], we think that

rewarding them based on how many S-boxes they cause to exhibit the correct differ-

ence for each chosen plaintext pair would be more suitable, as this seems to better

reflect the behaviour of the nearby keys. Or rewarding based primarily on this, and

secondarily on occurrences of the full correct output difference.

• Whether this would apply to DES itself would need further investigation. An incor-

rect key bit input to a final-round S-box could, because of the DES expansion, cause

two adjacent S-boxes to exhibit the wrong output difference. We could, however,

find ways to exploit a tendency for certain solution candidates to frequently get two

S-boxes wrong when candidates different in only one bit do not. . .

• When a TPS gets several, but not all, bits of the output difference corresponding to

S-boxes right, it may be worth rewarding/penalising those for which it was incorrect

according to the DES design criteria. So, for example, an S-box in which the output

difference was wrong in only one bit should be penalised more than one for which it

was wrong in two, as a one-bit input difference to a DES S-box cannot result in a

one-bit output difference.

• This technique would appear not to be so easily applicable to linear cryptanalysis. In

differential cryptanalysis, a partial success in the decryption of one of the ciphertexts

can be evaluated and result from a partially correct key; this is not the case for linear.

However, in the case of DES, we might in some cases expect keys which are only

wrong by one bit to achieve higher success rates than other keys; since such keys

must cause an S-box output different in 2 or more bits to that for the correct key, the

possibility that the parity of the deciphered bits will be the same as for the correct

key will be increased.

That said, the best-known linear approximations for DES [180], although they in-

volve approximations involving all the S5 output bits, do not have the corresponding

key bits as part of the TPS and thus cannot exploit this phenomenon. But the out-

put bits when key bits for S5 are counted on still have a parity that we can predict
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the average behaviour of when one key bit is incorrect. It depends on which input

bit is incorrect, but the parity stays the same more often than it flips. So there may

still be something in this that we can exploit.

How much this can improve the complexity of the differential attack by is unclear. The

authors claim that the attack complexity can be halved, but the reasoning appears tenuous

and may not hold for a more complicated cipher; however by making improvements to the

fitness function as we have suggested the genetic attack’s complexity could be improved

further.

Apparently building on Albassal and Wahdan’s results, Itaim and Riff claim [142] to

use the same methodology to attack reduced-round XTEA. However, they do not state

the differential used, the differential characteristic used, or the signal-to-noise ratio; so we

cannot verify this claim.

In addition, although they claim to improve upon the complexity of a traditional

differential attack, in almost none of the cases presented has their final solution been

correct for all thirty-two TPS bits. The complexity faced in a real-world situation by a

cryptanalyst who did not know the correct key of

• trying to work out how many key bits were correct, and

• trying to find out which ones were incorrect

is ignored.

Searching for nonlinear approximations to S-boxes The existence of linear crypt-

analysis has led to several researchers attempting to generalise it thus: since the attack

relies on linear functions approximating the actions of S-boxes, why not nonlinear functions

on some subset of the S-box’s input - or indeed output - bits?

There are various reasons for this [130], in particular that it is not as easy to link

the approximations to successive rounds together as it is for linear cryptanalysis. In the

case of Feistel ciphers, nonlinear approximations are in most cases impossible to link up

between rounds in the same way as linear approximations [164]! More recently, Courtois

demonstrated [104] that bi-linear functions multiplying together linear expressions of the

left and right-hand data blocks of Feistel ciphers could be linked together and used in

cryptanalysis. We do not study these here, although Courtois has identified finding the
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best bi-linear approximation to a cipher as a hard problem and we very much hope to

apply metaheuristics to it at some later stage.

Instead, we consider the use of metaheuristics in the light of Knudsen and Robshaw’s

work [164], in which they noted that nonlinear approximations to the first and last rounds

of an overall cipher approximation could be made to work, as long as the only nonlinear

expressions were of the input/output bits of the overall approximation. We focus on the

work of Clark, Tapiador, and Hernández-Castro in finding nonlinear approximations of

this sort to S-boxes in the first/last rounds of a linear approximation [78]. In this work,

they focused on the unusually large (9 input bits, 32 output bits) S-box of the block cipher

MARS [49], which was one of the finalists during the contest to determine the Advanced

Encryption Standard.

Although the methods used in the paper are trivially adaptable to the S-boxes in the

final round of a linear approximation, they have only been used to find approximations for

the first round. This means that a non-linear function of the S-box input bits is equal to a

linear function of the output bits with some probability bias, and the aim is to maximise

this bias.

Now, at this point, we should make certain facts clear. Although this research has

obtained surprising results against the MARS S-box using simulated annealing, there

does not seem to have been adequate reason to believe that this would work at all in the

first place, and it is not clear why it did!

Let us be more specific. Clark et al. applied simulated annealing as follows:

• The set J was defined as the set of S-box input bits on which the nonlinear function

f operated. A function fj determined which of the S-box input bits corresponded

to each of f ’s input bits.

• A value, n̂, was set at the start determining the size of J . This variable did not

change during the annealing process. Neither was it ever set as high as 9, the

number of input bits to the MARS S-box.

• The non-linear function f was represented by its truth table.

• The linear function g of the S-box output bits was represented by a bitmask.

At each step, the candidate solution had to move to a neighbouring candidate. Pa-

rameters were specified detailing the probability, at each stage, of its doing so by each of
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these methods:

• varying the truth-table representation of f ;

• varying the bitmask representation of g, or;

• changing fj (and hence J).

The representation of f using its truth table appears to have been motivated by the

fact that small changes to a Boolean function’s truth table result only in small changes

to cryptographically relevant properties such as its nonlinearity and autocorrelation. This

fact had been, as we have already stated, the motivation behind the use of metaheuristics

to evolve cryptographic functions. However, there is no existing research on the effect of

truth table changes on the closeness of a random Boolean function f to a linear function g

on a different set of variables. (or, more precisely, a set of variables related to f ’s variables

and other variables by the actions of a highly nonlinear high-degree mapping.)

The behaviour of the search was, nevertheless, surprising. For nonlinear functions

on a large number of the S-box input bits, after a fairly modest initial improvement in

the solution quality, the algorithm would fail to significantly improve on the solution

quality for approximately 500,000 iterations. After this it would start obtaining dramatic

improvements, and continue to do so for between 400,000 and 600,000 more iterations [78],

before reaching a maximum and failing to improve further.

The best linear approximation for the MARS S-box has been shown to have a bias

of 84/512. The best nonlinear approximation obtained by Clark et al. was for the case

n̂ = 8, with a bias of magnitude 151/512 ≈ 0.295. Nonlinear approximations, as observed

by Knudsen and Robshaw [164], often exist with higher biases than linear approximations,

and for n̂ ≥ 6 simulated annealing almost always found nonlinear approximations with

better bias than the best known linear approximation.

While this was the first time simulated annealing had been used against a block cipher

in this fashion, the same team had also tried to find approximations to reduced-round

versions of the stream cipher Salsa20 [77]. The results, published two months earlier, were

not so impressive as the results against MARS - in particular, assumptions had had to be

made about the values of the key and a related value known as the “initialisation vector”,

and it was not clear how the results obtained would apply when these assumptions did not

hold. Nevertheless, the annealing process had shown almost identical behaviour, modest
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initial improvements transforming into a long period of significant improvements before

tailing off.

While suggestions to improve on this research have been suggested by its authors,

consisting mainly of speculations as to the effect of different representations of f and g, it

seems to us that the two most obvious starting points for further research are:

1. find out why this worked as well as it did, and

2. find out if it can be applied to the S-boxes of other ciphers

Most of our own research into evolving nonlinear approximations is presented in Chap-

ter 6, in which, among other things, we address the first of these issues in some detail,

and, through experimentation, are able to answer the question “is this applicable to the

S-boxes of other ciphers” with a resounding YES!

Part of the reason that we viewed it as necessary to look at ciphers other than MARS is

that MARS has not been widely used since its introduction in 1999. Other AES finalists,

such as Serpent and Twofish (and AES itself!) were viewed as far superior - Serpent

in particular being considered the most secure of the AES finalists, and in recent years

there have also been promising new block cipher designs intended for use in low resource

environments such as RFID tags and smart cards.

• Serpent uses 4×4 S-boxes, and as there are 24+24 = 220 = 1048576 nonlinear approx-

imations of this sort to a 4 × 4 first-round S-box, we do not expect metaheuristics

to offer any improvement over exhaustive search. However, neither metaheuristics

nor exhaustive search have yet been applied to this problem, and since the best cur-

rent cryptanalysis of reduced-round Serpent utilises a variant of linear cryptanalysis

[196], it seems to us worthwhile to search for nonlinear approximations which may

improve on this attack.

• Twofish’s 8× 8 S-boxes are derived from two fixed mappings in a way dependent on

part of the key. These are more complicated than conventional fixed S-boxes. We

note that Twofish’s designers considered average probabilities over all possible S-box

key inputs when analysing the cipher’s resistance to differential cryptanalysis, but

are not yet familiar enough with this sort of S-box to reach any conclusions regarding

the applicability of metaheuristics.
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• For a DES S-box, there are 24+26 = 268 such approximations if the nonlinear com-

ponent is in terms of the input bits, and 26+24 = 222 if it is in terms of the output

bits. We note that due to DES’s Feistel structure, the former case is applicable both

in the first and last rounds

DES uses eight different S-boxes in parallel, so to examine them all requires 23

separate searches of a search space 268 in size. We are not sure how easily the

computational resources for such an exhaustive search could be brought together;

even if this is feasible it may be beyond institutional budgets or the interest levels of

distributed computing projects to do so, or it may be felt that it would take too long.

The DES S-boxes therefore represent good candidates for metaheuristic analysis in

this fashion, especially since Triple DES is still in use.

• For an 8 × 8 AES S-box, there are 28+28 = 2264 first-round approximations of this

sort; likewise the last round. This is well out of the reach of exhaustive search and

AES would therefore seem to be an excellent target! However, due in no small part to

the “wide trail” design strategy, no significant linear cryptanalytic attacks against

reduced-round AES currently exist, and finding linear approximations to several

rounds of the cipher which could be combined with nonlinear approximations in a

viable attack may yet prove intractable.

It should be noted that even when an S-box can be exhaustively searched for the

“best” approximation, the possible need to repeat the searches to find approximations

better suited to overall cipher approximations, even if they have a lower bias than that S-

box’s “best” approximation, and the issue of storage for large numbers of approximations,

would appear to make a means of quickly searching for a nonlinear approximation under

specified constraints, such as metaheuristics, an attractive prospect! We discuss the results

of our search for nonlinear approximations to the AES, Serpent, DES and other S-boxes

in Chapter 6, as well as our investigation into why simulated annealing was so effective,

and build further on this research to define a nonlinear attack against eleven rounds of

Serpent. In particular, the bias of a single nonlinear approximation does not turn out

to be enough to assess its cryptanalytic usefulness, and we explain why the cryptanalyst

must in most cases evaluate the biases of several related nonlinear approximations as well.
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3.6.4 An attack with a quasi-metaheuristic methodology.

In 2002, three physicists [149] published a proposal for a new key-exchange protocol that

would not rely on number theory. It would instead rely on a phenomenon from chaos

theory known as chaotic synchronization, and on so-called “artificial neural networks”

(ANNs). Just as most metaheuristics are nature-inspired search algorithms, artificial neu-

ral networks may be viewed as nature-inspired machine-learning methods - the inspiration

from nature in this case being the human brain!

Alice and Bob would both possess a secret ANN, part of which would be defined by

a K × N matrix of “weight” values wk,n ((−L ≤ wk,n ≤ L) for some value L, (1 ≤ k ≤
K), (1 ≤ n ≤ N)). Apart from the values in the weight matrices, the ANNs would be

otherwise identical. Recommended parameter values were (L = 3, N = 101, K = 3).

In addition, at the start of each round, a K × N matrix X such that all matrix entries

xk,n ∈ {−1, 1} would be generated at random and in public.

The values xk,n would act as input to the two ANNS. A set of K individual components

- or “perceptrons” - of each ANN would output values ok, each of which would be input

to higher-level parts of the ANN. The ANN would eventually output a single value O ∈
{−1, 1}. Let OA denote the output of Alice’s network, OB the output of Bob’s network.

If the two values differed, the two parties would simply move on to the next round

of the protocol, starting with recalculating the matrix X. If they were the same, the

parties would carry out an “update” procedure on the weights of any perceptrons whose

outputs had agreed with the network’s overall output. Each perceptron could be viewed

as corresponding to a different row in the matrix of weights.

Over time, this would lead to the two weight matrices becoming identical, and out-

putting identical values in every round after this had occurred. After some predetermined

number of rounds (20-30 being recommended; a figure we personally consider too low) in

which the networks had constantly output identical values, it would be presumed that this

had happened - that the networks were “synchronised”. Alice and Bob’s shared crypto-

graphic key would then be derived by computing a one-way hash of the contents of the

weight matrix.

This protocol appears to be far less efficient than, say, the Diffie-Hellman protocol.

It requires a large number of rounds, and in each of these rounds the K × N matrix of

public data must be recalculated from scratch. Moreover, there is a slim probability that

the matrices will be deemed to have synchronized when in fact they have not, and the
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networks will have been outputting identical values by sheer coincidence - a coincidence

that might occur all too often if the protocol were implemented in billions of computers

worldwide! Presumably the motivation was to try to derive a protocol that would not be

vulnerable to attacks using quantum computers and Shor’s algorithm.

Klimov, Mityagin and Shamir [158] identified weaknesses in this protocol, and derived

three different attacks against it. One of these attacks, though not in fact a genetic

algorithm, was referred to as one, and utilised several concepts from GAs.

The attacker has a population of candidate solutions, each of which is an ANN defined

as above. At the start, the weight matrices for these are computed at random. The size

of the population will vary throughout the attack, which is conducted in parallel with the

protocol. There is no guidance on its original size, however a “threshold” size M is defined

which will be relevant during the attack. The aim of the attack is to synchronize one of

the candidate solutions with Alice’s ANN before Bob’s ANN synchronizes with it.

In each round of the protocol, if OA 6= OB, Alice and Bob move on to the next round

of the protocol, and the attacker does nothing.

If OA = OB, the attacker’s pseudo-GA proceeds in one of two ways depending on the

size of the population. If the population contains less than M members, then for the

recommended value K = 3, there are four different sets of ok which could have resulted in

output OA. Instead of a crossover operation, each member C of the population reproduces

asexually, creating four copies (C1, C2, C3, C4) of itself. Each Ci is then subjected to what

the update procedure would have been had its perceptrons actually output the ith set of

ok values - this being analogous to the mutation phase.

(The attacker still needs to keep a record of the outputs of the networks during this,

for reasons that will soon become clear. It is also necessary to keep track of the parent

neural network of each of the new networks.)

If there are M or more members in the population when it is observed that OA = OB,

a phase akin to the selection phase begins. All the ANNs in the population compute

their outputs, and any which output a value other than OA are deleted. The remaining

networks are then updated using their actual values of ok.

Using M = 2500, Shamir et al. observed a greater-than-50% chance that one of the

members of the population would synchronize with Alice’s network before Bob’s did, and

survive, updating in step with Alice’s network, for long enough (presumably the same

“20-30” generations) for the attacker to observe that one of the networks was outputting
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the value OA constantly and conclude that it had synchronized.

3.6.5 Attacks using non-metaheuristic search algorithms.

Other researchers have expressed problems in cryptanalysis as search problems, before

applying general-purpose, non-deterministic search algorithms to these. Of particular

note are:

• Shamir’s use of integer programming algorithms to break the so-called “single-iteration

knapsack cryptosystem” [214]. The integer programming algorithm used was later

superseded by the “LLL” algorithm [174], which presumably would have allowed the

attack to succeed even more efficiently.

• Borghoff et al. [41] expressed the stream cipher Bivium as a “mixed-integer pro-

gramming” (MIP) problem, allowing them to attack it using linear programming

algorithms.
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Chapter 4

Evolving balanced Boolean

functions with optimal resistance

to algebraic and fast algebraic

attacks, maximal algebraic degree,

and very high nonlinearity.

Previous work on evolving Boolean functions focused on the combiner model for LFSR-

based stream ciphers, and did not take resistance to algebraic attacks into account. We

give justification for focusing on the filter model instead. We demonstrate in this chapter

that smooth search landscapes exist for the properties of Boolean functions governing resis-

tance to algebraic attacks, and evolve Boolean functions with optimal resistance to these,

and with the high nonlinearity and algebraic degree that are also necessary. Raising the

computational resources allocated to the tasks, we improve on the best-known theoretical

results in the literature.

4.1 Introduction

Combiner and filter functions for shift register-based stream ciphers need to satisfy various

cryptographic criteria. They must be balanced [52], possess high nonlinearity to resist fast
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correlation attacks [55, 126, 50, 221], and must possess high algebraic degree:

• to resist the RØnjom-Helleseth attack [132],

• to resist the Berlekamp-Massey attack [52],

• as a necessary but not sufficient condition to resist fast algebraic attacks [103].

(Furthermore, where n denotes the number of input bits of the Boolean function, an

algebraic degree less than dn2 e restricts the degree of so-called algebraic immunity that can

be achieved.)

In the case of combiner functions, a high order of correlation immunity is also necessary

[216, 217]. For filter functions, correlation immunity of order 1 is considered sufficient [55].

Unfortunately, the criteria of correlation immunity and algebraic degree are in conflict with

one another, and the higher the correlation immunity of f , the lower the value that can

be achieved for its degree - which increases the desirability of a model relying on filter

instead of combiner functions.

(Correlation immunity of order 1 for a filter function is typically achieved by gener-

ating a function g which is as close as possible to the optimum for the other desirable

criteria, and then using a shift register state bit xn+1 which is not input to g to define a

function f(x1, . . ., xn+1) = g(x1, . . ., xn) ⊕ xn+1. It may be necessary to apply an affine

transformation to the input bits of f and/or g [52, 51].)

Correlation immunity of order m for a balanced function is also referred to as order-m

resiliency.

Until the early 21st century, these were the only criteria which a stream cipher’s

filtering/ combining function needed to satisfy. However, the discovery by Courtois et al.

of algebraic attacks [109] and fast algebraic attacks [103] changed this, forcing:

1. An increase in the number of input bits needed by these functions (from “about 10”

to “at least 13 and in practice much more, maybe 20” [55].) Where the shift register

is a 256-bit LFSR, Braeken et al. [43] show that a balanced filter function on at

least 14 input bits is needed to keep the time complexity of fast algebraic attacks

below 280. The “RØnjom-Helleseth attack” [132] is a more recent form of algebraic

attack, and it has been claimed [203] that filter functions need more than 30 input

bits to resist it.
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2. The introduction of two new criteria to quantify the resistance of Boolean functions

f to these attacks. The first of these is the aforementioned algebraic immunity

(AI) [57]. The second criterion, which involves “(dg, dh)−relations”, is unnamed at

present; we shall refer to it as fast algebraic resistance. A criterion known as fast

algebraic immunity attempts to unify the two; however we consider it to be flawed.

In a 2007 paper by Fischer and Meier [125], algebraic attacks on “augmented func-

tions” are discussed. For a given filter function f , shift register update polynomial L,

and integer m > 1, the augmented function Sm is a vectorial Boolean function which

takes as input the internal state of the shift register and is defined as the concatenation

(f(x)|f(L(x))|f(L2(x))|. . .|f(Lm(x))). Since the properties of augmented functions de-

pend on both the shift register update function and the filter function, and since this

chapter only studies filter functions, it is beyond our remit to examine resistance to such

attacks here.

Finding Boolean functions which combine optimal or near-optimal resistance to alge-

braic and fast algebraic attacks with the various other desirable properties has proven

difficult. The need for high algebraic degree has led some researchers in this field to aban-

don the combiner model and focus entirely on filter functions; for which only a few suitable

constructions have been found.

The first such was the Carlet-Feng construction [55]. This defines a class of balanced

Boolean functions on n variables with algebraic degree (n−1) and algebraic immunity dn2 e
(These are the optimal values of AI and degree for balanced f). A lower bound exists on

their nonlinearity; this lower bound is not near-optimal but in practice the nonlinearity of

the functions in this class was observed to exceed 2n−1− 2b
n
2
c+1 for n ≤ 11. Furthermore,

the fast algebraic resistance of the constructed functions was examined and, for functions

with less than 10 variables, shown by experimentation to be optimal.

The Carlet-Feng class was independently rediscovered by Wang et al. [148], with a

slight increase in the lower bound for nonlinearity. Functions with higher nonlinearity

than previously achieved for n = 8, n = 9 and n = 16 were also presented.

Carlet [54] demonstrated that the two constructions were the same. He also stated that

the functions could be implemented without needing to store a lookup table in memory; the

computation of the Boolean function could be reduced to calculating a discrete logarithm,

which, he stated, was feasible using the Pohlig-Hellman algorithm [134] when the function

operated on 20 input bits or less. He stated, however, that this was the highest value of n
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used by such functions, and if we accept Pasalic’s claim [203] that more than thirty are in

fact needed, then it is not clear whether such an implementation is in fact viable for these

larger functions.

The construction was improved upon in two later works coauthored by Carlet [56, 58].

The constructions in these papers obtained increased nonlinearity for n = 10, and results

were obtained for much larger values of n than the previous papers had dealt with. In

addition, the lower bounds on nonlinearity for the Carlet-Feng functions were tightened,

and another balanced construction was presented which improved on the nonlinearity for

some values of n but not others.

It is notable that the only apparent way to compute the functions in one of these papers

[56] without needing a lookup table also involves calculating a discrete logarithm, and this

would appear also to be a necessary step in computing the functions described in the other

paper [58]. We reiterate that it is not clear whether this is viable for functions on more

than 20, or indeed more than 30, input bits; thus motivating a search for alternatives.

In this chapter, we apply simulated annealing to the problem of finding balanced

Boolean functions with optimal AI, FAR, and algebraic degree, and high nonlinearity. As

stated in Section 3.5, this technique has achieved success in a similar context, when search-

ing for combiner functions with high nonlinearity, low autocorrelation, and good tradeoffs

between high degree and high order of correlation immunity [80, 84, 87]. In particular,

functions with profiles not hitherto obtained by any construction were found [80, 84] using

this method, and since combining optimal algebraic immunity and fast algebraic resistance

with the other cryptographically desirable criteria for filter functions remains an active

area of research, in which near-optimal values for nonlinearity in particular have not been

achieved, we hope to replicate this success here.

(Autocorrelation was believed when first defined [232] to be a potential weakness that

might lead to attacks on stream ciphers akin to differential cryptanalysis of block ciphers.

As this has not subsequently proven to be the case, and as no eSTREAM finalist other

than Dragon [117] was designed in a way that took autocorrelation into account, we will

not focus on it here.)

Crucial to the method’s success was a technique known as “two-stage optimisation”.

This technique would use one cost/fitness function for the simulated annealing, and would

then hill-climb the results using a different cost function. The idea was that the first cost

function would guide the annealing into a region of the search space (here the set of all
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Boolean functions of the pertinent size) in which candidate solutions (evolved Boolean

functions) of above-average quality as defined by the second cost function were likely

to exist. The second cost function would search this region for one of these high qual-

ity solutions, and return it. In Clark et al.’s experiments [80], this achieved far more

favourable results using two-stage simulated annealing than any previous attempts to

construct Boolean functions with metaheuristics.

This chapter is structured as follows: Section 4.2 will provide precise definitions of

the various cryptanalytic criteria and the tradeoffs between them. In Section 4.3, we will

describe the search landscape defined by the various properties, and justify our decision

to represent the candidate functions using truth tables. We will also discuss the various

cost functions used. In Section 4.4, we will compare the best Boolean functions found

by our search to the best found by means of construction, and discuss avenues for future

research.

4.2 Preliminaries

A balanced function is a Boolean function with an equal number of 1s and 0s in its

truth table. We are not interested in filter or combiner functions that are not bal-

anced, and the experiments were designed to ensure that these could not be evolved.

The algebraic normal form (ANF) of a Boolean function is its representation as a

multivariate polynomial in which the variables are the values (x0, . . ., xn−1) of the

input bits. This representation is unique, and there exist mappings from truth table

to ANF and vice-versa (both with matrix representations).

A linear function has algebraic normal form a0x0⊕a1x1⊕ . . .⊕an−1xn−1 (ai ∈ {0, 1}).

The algebraic degree of a Boolean function is defined thus: Let the Hamming weight

of a monomial be defined as the number of variables in it - so, for instance, x1x4

has weight 2. The algebraic degree d of a monomial is defined as being equal to

its weight, and the algebraic degree of a Boolean function is equal to the algebraic

degree of the highest-weight monomial in its ANF.

All balanced functions have algebraic degree ≤ (n− 1).

The Walsh-Hadamard spectrum of a Boolean function f ∈ Bn contains information

on the correlation between f and the various n-bit linear functions. That is to
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say, where ω is an integer between 0 and 2n − 1, let ω1ω2. . .ωn be the bitstring

representation of ω. Then entry ω in the Walsh spectrum is equal to:

F̂ (ω) =
2n−1∑
i=0

(−1)f(i) · (−1)ω·i

Given a Walsh spectrum F̂ , the truth table of the original function f can be recovered

from F̂ using the Inverse Walsh Transform [84]. It is, therefore, a valid alternate

representation.

The nonlinearity of f is defined as

2n−1 − maxω |F̂ (ω)|
2

Nonlinearity and algebraic degree are partially in conflict. For functions on an

even number of variables, the highest nonlinearity possible is achieved only by bent

functions, which have degree ≤ n/2 and cannot be balanced.

The correlation immunity of f is the maximal value m such that |F̂ (ω)| = 0 for all ω

of Hamming weight ≤ m (that is, all ω with m ones or less in their base-2 represen-

tations).

Correlation immunitym and algebraic degree d conflict with each other very strongly.

For a balanced function, (m+ d) ≤ (n− 1). For any other function, (m+ d) ≤ n.

The autocorrelation spectrum of f is defined thus. Let ω denote the bitstring repre-

sentation of an integer between 0 and 2n − 1. Then

r̂f (ω) =
2n−1∑
i=0

(−1)f(i)(−1)f(i⊕ω)

and the autocorrelation spectrum is the sequence (r̂f (0), r̂f (1), . . ., r̂f (2n − 1)).

There is no inverse transformation allowing the truth table to be recovered from the

autocorrelation spectrum.

The autocorrelation of f is the maximum absolute value, maxi 6=0 |r̂f (i)| in the auto-

correlation spectrum.
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Algebraic immunity (AI) is defined as the minimum degree of the nonzero functions

g such that either fg = 0 or (f ⊕ 1)g = 0. [57]. Such g are known, respectively,

as annihilators of f or of (f ⊕ 1). For this reason, algebraic immunity is sometimes

known as “annihilator immunity”.

A corollary to Theorem 6.0.1 in the cited paper is that AI(f) ≤ dn2 e.

Fast algebraic resistance (FAR) is defined thus:

For two values dg, (dh > dg), we say that a (dg, dh)−relation exists for f if two

nonzero functions, g and h, exist such that fg = h, deg(g) < deg(h), deg(g) = dg

and deg(h) = dh.

The fast algebraic resistance of f is the minimum value of (dg + dh) for all (dg, dh)−
relations on f . Clearly, since f ·1 = f , this is upper-bounded by deg(f). From our

viewpoint, this means that any cost function dealing with fast algebraic resistance

also deals to some extent with algebraic degree, since the FAR lower-bounds the

degree.

For a given (dg + dh), different values of (dg, dh) lead to different attack complexi-

ties. Various tradeoffs have been discussed [103, 43]; however at present the cipher

designer simply aims to achieve a (dg + dh) too high for any (dg, dh) to lead to an

attack, and preferably equal to the maximum value (for a balanced function) of

(dg + dh) = (n− 1).

It is shown by Braeken et al. [43] that in any (dg, dh)−relation, dh is greater than

or equal to the algebraic immunity of f .

Fast algebraic immunity (FAI) is an attempt to unify the criteria of algebraic im-

munity and fast algebraic resistance. It is defined by Johansson and Wang [143]

as:

FAI(f) = min{2·AI(f), FAR(f)}

We believe that this criterion is inadequate, and illustrate our reasons as follows:

Let f ∈ B13 be a Boolean function with fast algebraic resistance 12. Clearly, the

optimal value of AI(f) is 7. However, when AI(f) = 6, the value for fast algebraic

immunity is the same as if it were 7, since in both cases FAI(f) = 12.
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4.3 The experiments

4.3.1 Representing candidates as truth tables

So far, we have referred to three possible representations of Boolean functions:

• Their truth tables.

• Their algebraic normal forms.

• Their Walsh-Hadamard spectra.

An additional representation in the form of a univariate polynomial also exists, in which

we treat the value of the n input bits as a single value in GF (2n). [52, 53].

We have decided to focus on the truth tables, with the positions of a 1 and a 0 being

swapped as the move function. Not only does this move function preserve balancedness,

but several smoothnesses in the search landscape exist for the truth table representation,

as we shall demonstrate below:

Lemma 4.3.1. If one element of the truth table of a Boolean function f with more than

one input bit changes value, the algebraic immunity of f changes by at most 1.

Proof. Let xα be the input value for which the output value flips. Let f be the original

function, f ′ the function after the truth table is altered that differs from f only in the

value of f(xα). Let g be an annihilator of either f or (f ⊕ 1) of degree AI(f).

f ′(x) = f(x)⊕δ(xα), where δ(xα) is the sum of all supermonoms of xα. (supermonoms

being xα and all multiples thereof, i.e. any monoms containing all the “on” variables of

xα.)

That is, δ(xα) = xα(1⊕xb⊕xc⊕xbxc⊕. . .) = xα(1⊕xb)(1⊕xc). . . where xb, xc, etc are

input bits not appearing in the monom xα. Let us refer to these as “not-in-common inbits”,

and the others as “in-common inbits”. For example, δ(10001) = x1(1⊕x2)(1⊕x3)(1⊕x4)x5,

where x1 and x5 are the in-common inbits, and x2, x3, x4 are the not-in-common inbits.

δ(xα)·(one of the not-in-common inbits) = 0. (Note that if xα is the maximum-weight-

all-ones input, no not-in-common inbits exist). Furthermore, δ(xα)·(1⊕any in-common inbit) =

0.

If xbg = 0 for all not-in-common xb, g must be a multiple of (1⊕ xb)(1⊕ xc). . ., with

algebraic degree ≥ (n−HW (xα)).
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If (1⊕ xi)g = 0 for all in-common xi, g must be a multiple of (xi · xj · . . .) = xα, with

algebraic degree ≥ HW (xα).

If xbg = 0 for all not-in-common xb and (1⊕ xi)g = 0 for all in-common xi, g must be

xα(1⊕ xb ⊕ xc ⊕ xbxc ⊕ . . .) with algebraic degree n. Since g has algebraic degree AI(f),

which is bounded above by dn2 e, this is only possible if n = 1. So there exists at least one

xb or (1⊕ xi) such that the product of it and g is nonzero, and such that the product of

it and δ(xα) is zero. Call it z.

(In fact, since g must have algebraic degree ≤ dn2 e, there exist at least bn2 c such

candidates for z; however we only need one of them to complete the proof.)

Either g is an annihilator of f , or an annihilator of (1⊕ f).

If the former: fg = 0. Then zgf ′ = zg(f ⊕ δ) = zgf ⊕ zgδ. gf = 0, so this

= zgδ = zδg = 0. Hence zg annihilates f ′, and AI(f ′) ≤ deg(zg) ≤ AI(f) + 1.

If the latter: (1⊕f)g = 0. zg(1⊕f ′) = zg(1⊕f ⊕δ) = zg(1⊕f)⊕zgδ = 0z⊕zδg = 0.

Hence zg annihilates (1⊕ f ′), and AI(f ′) ≤ deg(zg) ≤ AI(f) + 1.

We have shown that AI(f ′) ≤ AI(f) + 1. It is trivial to swap f ′ and f and repeat the

above procedure to show that AI(f) ≤ AI(f ′) + 1. Hence |AI(f)−AI(f ′)| ≤ 1.

Lemma 4.3.2. If one of the 0s in the truth table of a Boolean function f on more than

one input bit changes to a 1, and if one of the 1s in said truth table simultaneously changes

to a 0, the algebraic immunity of the resultant Boolean function f ′ differs from AI(f) by

at most 1.

Proof. Since this represents two changes to the truth table of f , we know from the above

result that |AI(f)−AI(f ′)| ≤ 2. Now, let the first change be the one turning a 1 into a 0

in the truth table, and let the Boolean function resulting from this change be denoted f2.

Clearly any annihilators of f are annihilators of f2, so AI(f2) ≤ AI(f).

The second change, a 0 to a 1, changes f2 into f ′. From result 10 above, we know

that AI(f ′) ≤ (AI(f2) + 1) ≤ (AI(f) + 1). By similar reasoning, we can show that

AI(f) ≤ (AI(f ′) + 1). Hence |AI(f)−AI(f ′)| ≤ 1.

Lemma 4.3.3. Let DP (f) be the minimum value of dg + dh such that f ∈ Bn (n > 1)

satisfies a (dg, dh)−relation. Let f ′ be a Boolean function differing from f in precisely one

truth table position, corresponding to input value xα.

Then |DP (f ′)−DP (f)| ≤ 2.
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Proof. As noted in Lemma 4.3.1 above, f ′ = f ⊕ δ(xα), where δ(xα), for all input bits

xb, xc, . . . that are not submonoms of xα, is equal to xα(1⊕ xb)(1⊕ xc). . .
Let g with degree dg and h with degree dh be two functions such that a (dg, dh)−relation

exists for f . For a valid (dg, dh)−relation, since dh ≥ AI(f), dg ≤ bn2 c.
If xbg = 0 for any input bit xb that is not a submonom of xα, g must be a multiple of

(1⊕ xb).
If (1 ⊕ xi)g = 0 for any input bit xi that is a submonom of xα, g must be a multiple

of xi.

It follows that there must exist at least dn2 e polynomials p = xb or (1 ⊕ xi) of the

form described above such that pg is a nonzero function, otherwise g would have algebraic

degree higher than bn2 c. Let us choose one, and denote it z.

z · δ(xα) must equal zero, since if z is one of the xb, we have z · δ = xαxb(1⊕ xb). . . =

xα · 0 · . . . = 0, and if z is one of the (1 ⊕ xi), z · xα = (1 ⊕ xi)xixj . . . = 0 and hence

z · δ = 0 · (1⊕ xb)(1⊕ xc). . . = 0.

Now, zgf ′ = zg(f ⊕ δ) = zgf ⊕ zgδ = zh ⊕ (gzδ = 0) = zh. deg(zg) ≤ deg(g) + 1 =

(dg + 1), and deg(zh) ≤ deg(h) + 1 = (dh + 1). We see that DP (f ′) cannot exceed

(DP (f)+2) since (zg)f ′ = zh with deg(zg)+deg(zh) ≤ (dg+1)+(dh+1) = (dg+dh+2).

We can similarly show that DP (f) ≤ (DP (f ′)+2), giving us the result that |DP (f ′)−
DP (f)| ≤ 2.

Corollary 4.3.4. Let DP (f) be the minimum value of dg + dh such that f ∈ Bn (n > 1)

satisfies a (dg, dh)−relation. Let f ′ be a Boolean function differing from f in precisely two

truth table positions. Then |DP (f ′)−DP (f)| ≤ 4.

Lemma 4.3.5. Let f ′ be a Boolean function differing from f in precisely one truth ta-

ble position. Then all values in the Walsh-Hadamard spectrum of f ′ differ from their

corresponding values in the spectrum of f by ±2.

Proof. Consider that, as stated earlier, entry ω in the spectrum is equal to:

F̂ (ω) =

2n−1∑
i=0

(−1)f(i) · (−1)ω·i

Since only one value of f(i) changes, only one value of (−1)f(i) · (−1)ω·i changes, from

either (−1)·(−1)ω·i to 1·(−1)ω·i, or vice versa. In any case, the magnitude of the change

is 2·(−1)ω·i, i.e. 2.
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Corollary 4.3.6. Let f ′ be a Boolean function obtained by swapping two differing values

in f ’s truth table. Then all values in the Walsh-Hadamard spectrum of f ′ differ from their

corresponding values in the spectrum of f by +4, 0, or −4.

Since, as stated earlier, all Walsh-Hadamard spectrum entries for a balanced function

are multiples of 4, we have:

Corollary 4.3.7. Let f ′ be a balanced Boolean function obtained by swapping two dif-

fering values in f ’s truth table. Let MW (f) denote the maximal absolute value in the

Walsh-Hadamard spectrum of f ; that is MW (f) = maxω |F̂ (ω)|. Then MW (f ′) =

MW (f) or MW (f) ± 4. In any case, the difference is at most 4. Since nonlinearity

is defined as 2n−1− maxω |F̂ (ω)|
2 , we see that the nonlinearities of f and f ′ differ by at most

2.

Early experiments on evolving truth tables with 8 or 9 input bits showed that the

optimal values for AI and FAR would always be found within two outer loops, even with

only 100 inner loops. For this reason, we felt confident in focusing solely on truth tables,

and in adding nonlinearity to the cost function, thus covering all the relevant criteria for

a filter function [55].

4.3.2 Choosing a cost function

When evolving Boolean functions with high nonlinearity, Clark et al. experimented with

cost functions of this form [80] for various values of R and X:

cost(f) =
2n−1∑
ω=0

||F̂f (ω)| −X|R

To be more precise, the value R = 3.0 was preferred, with 2.0 and 2.5 also experimented

with. In devising the part of the cost function that would deal with nonlinearity, however,

we opted to utilise R = 4.0 (and to divide this part of the cost function by a scalar factor

dependent on n), for various reasons:

1. According to Parseval’s Theorem, the sum of squares of the entries in a valid Walsh

spectrum is constant. It therefore seemed unlikely that exponent 2 would be of

much help. Furthermore, we had observed that high-quality solutions tended to

have higher costs as defined by the pair (X = 0, R = 1); and although attempts
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to base a cost function on this observation proved ineffective, this was nonetheless

evidence that R would have to exceed 2.

2. Applying a matrix transformation to the difference distribution table (DDT) of a

vectorial Boolean function yields a table containing the autocorrelation spectra of

all linear combinations of the co-ordinate functions, and applying a further matrix

transformation to this yields a table containing the squared entries of the Walsh-

Hadamard spectra for these functions [141]. Our research into evolving substitution

boxes (see Chapter 5) had utilised the sum of squares of DDT entries after (R =

2.0, X = 0) for this table turned out to be especially efficient and high-performing,

and this suggested that the sum of the squares of the squares of the Walsh entries

might be analogous with the sum of the squares of the DDT entries for a vectorial

Boolean function in some way.

3. Consistent with the preceding point, dividing the variance of the entries in the

“squared Walsh spectra” table by a particular value exponential in n yielded the

variance of the DDT; and we had been able to prove that the cost as defined by

the DDT variance changed by the same amount as the (R = 2.0, X = 0) DDT cost

function whenever a move was made.

4. During initial experimentation, dividing the sum of fourth powers by 2n+5 to define

a cost was observed to create a situation where each move changed the cost by 3.0 or

some integer multiple thereof, raising confidence in the uniform smoothness of the

search landscape.

5. Furthermore, when combined with algebraic and fast algebraic qualities, this cost

function obtained Boolean functions with comparable algebraic characteristics and

superior nonlinearity to a cost function in which (2n−1 − NL) - (the number of

occurrences of the maximal absolute value in the Walsh spectrum) was used as the

nonlinearity component.

The overall cost function, therefore, derived an initial cost using the Walsh spectrum

in this fashion, and then subtracted 2 ∗ AI(f) + FAR(f) from it to obtain the overall

cost. This meant that a one point improvement in the nonlinearity portion of the cost

function would subtract 3 from the cost, compared to 1 or 2 for the others. We felt that

this was justified to reflect the difficulty of obtaining functions with optimal nonlinearity
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through simulated annealing compared to functions with optimal algebraic characteris-

tics. In experiments, it was observed that this would allow the cost function to move

through candidates with suboptimal algebraic characteristics that might otherwise block

off promising search avenues. The additional weight given to AI compared to FAR simply

reflected its more restricted range of values.

As stated above, we used a different cost function for hill-climbing. This, again, sub-

tracted 2∗AI(f) +FAR(f) from the overall cost, but had a simpler nonlinear component

of (2n−1 − NL) − 2/freq(maxf (|F̂ (ω)|)). That is, we divided 2 by the frequency with

which the maximal absolute value in the Walsh spectrum occurred, and subtracted this

from (2n−1 − NL). On this occasion, however, we reduced the weighting given to the

nonlinearity - slightly suboptimal nonlinearity was acceptable, anything less than optimal

AI and FAR in the final product was not.

We used 500,000 inner loops for problems of size 9 or higher, and 20,000 for size 8

or less. We used 100 outer loops and 50 trials per problem size, cooling factor 0.97, and

initial acceptance rate 0.5. Algebraic immunity was calculated using Carlet, Meier and

Pasalic’s Algorithm 2 [57], and fast algebraic resistance using the algorithm of Braeken,

Lano and Preneel [43].

The next cost function

For up to 11 input bits, this was acceptably efficient. The following table compares our

results to the previously-known best in the literature [55, 56, 58, 148]:

n Previous best (NL,AI, FAR) Best (NL,AI, FAR) achieved by annealing

6 (24, 3, 5) (26, 3, 5)

7 (54, 4, 6) (56, 4, 6)

8 (114, 4, 7) (116, 4, 7)

9 (236, 5, 8) (238, 5, 8)

10 (484, 5, 9) (486, 5, 9)

11 (980, 6, 10) (986, 6, 10)

Table 4.1: Comparisons of annealed and previously-known Boolean functions for n ≤ 11.

However, both in memory and time, the cost of calculating algebraic immunity and fast
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algebraic resistance is exponential. Despite the optimisations we were able to make by

taking into account the lemmas above, both complexities were still exponential, and for

12 input bits the algorithm remained stuck in its first hill-climb for several days without

returning a result.

Since most of the results that had been achieved still had optimal algebraic character-

istics, and since the speed with which these were achieved suggested that functions with

optimal (AI, FAR) were plentiful, we decided to run a new set of experiments in which

we would remove all parts of the cost functions that did not focus on nonlinearity. We

would evaluate (AI, FAR) at the end of the algorithm, and hope that at least some of the

annealed functions were optimal in terms of these criteria.

The parameters remained unchanged up to n = 15. For n = 16, the increased com-

plexity meant that we reduced the number of inner loops to 200,000; however we later

raised this to 400,000 (and later 1,000,000, after discovering the substantial gulf between

constructed and annealed results at this size.) We did not go as far as n = 17; and note

that to do so would require at least 4GB of memory for the fast algebraic resistance calcu-

lations and the precomputed tables used in the nonlinearity sections of the cost function;

this quantity increases approximately fourfold when n is increased by 1.

We also reran the experiments for n = 9, n = 10 and n = 11 using this approach,

hoping either to improve on our best results or to increase the number of distinct affine

equivalence classes possessing the same set of optimal criteria. For n = 9, 8% of functions

achieved nonlinearity 240, but all of these had only FAR = 7. 32% of the functions for

n = 10 achieved nonlinearity 488, again at the cost of a slightly suboptimal FAR = 8.

The new experiment for n = 11, after hill-climbing, found functions with nonlinearity 988

on every run, but none of these possessed the necessary FAR > 9. What was more, as

well as FAR(f) = (n− 2), these functions also had suboptimal algebraic degree (n− 2).

Comparing this to the results for higher sizes; for n = 12 58% of the hill-climbed

functions had nonlinearity 1996, but all of these had suboptimal degree and FAR of 10.

For n = 13 60% of the hill-climbed functions had nonlinearity 4020, but all of these had

FAR 11 and degree 11.
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n Best (NL,AI, FAR) achieved with nonlinearity-only cost function.

12 (1994, 6, 11)

13 (4018, 7, 12)

14 (8082, 7, 13)

15 (16222, 8, 14)

16 (32536, 8, 15)

Table 4.2: Annealed Boolean functions for 12 ≤ n ≤ 16 before incorporation of algebraic
degree into the cost function.

4.3.3 Adding algebraic degree to the cost function.

Since all the functions we had found with nonlinearity in excess of those in Table 4.2 had

suboptimal algebraic degree, we altered the hill-climb cost function to heavily penalise

algebraic degree < (n− 1), and reran the previous experiments with increased numbers of

inner loops (going as far as 16,000,000 for n = 14).

The results of this were mixed. For n ≤ 13, the higher values for nonlinearity observed

previously simply did not occur. For n = 14, two Boolean functions with nonlinearity

8084 and the desired (AI, FAR) value were obtained; all the other functions at this size

had nonlinearity 8082. For n = 16 (with up to 3,000,000 inner loops) one function with

nonlinearity 32540 has been found. No functions with higher nonlinearity at this size have

yet been obtained through annealing; however all functions with this or lower nonlinearity

have so far possessed optimal (AI, FAR), suggesting that experiments over a longer time

period with more inner loops may obtain higher nonlinearities still.

For n = 15 (with up to 2,000,000 inner loops), however, most annealed functions

had only suboptimal AI of 7, despite their optimal degree and FAR. One function with

(NL 16226, AI 8, FAR 14) has nevertheless been found, but the reduced AI of most of

the results suggests that very few Boolean functions with high nonlinearity possess optimal

algebraic degree, algebraic immunity and fast algebraic resistance at this size, and that

increasing the computational resources devoted to this problem with the current cost

function might primarily have the effect of reducing the number of functions with AI = 8.

It should be noted that the evaluation of a Boolean function’s algebraic immunity is much

slower than the evaluation of its algebraic degree, and hence reintroducing this into the

cost function would significantly increase the time required to anneal a single Boolean

function, or force a reduction in the number of inner loops (and hence the achievable

nonlinearity). This may even result in functions with optimal algebraic degree (n−1) but
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FAR ≤ (n− 2).

n Previous best (NL,AI, FAR) Best (NL,AI, FAR) achieved with annealing.

12 (1988, 6, 11) (1994, 6, 11)

13 (3988, 7, 12) (4018, 7, 12)

14 (8072, 7, 13) (8084, 7, 13)

15 (16212, 8, 14) (16226, 8, 14)

16 (32556, 8, 15) (32540, 8, 15)

Table 4.3: Comparisons of the best existing Boolean functions with the final annealing
results for 12 ≤ n ≤ 16.

4.3.4 Equivalence classes

The histograms of the values in the Walsh spectra of the evolved functions differed, even

for functions with the same (NL,AI, FAR). Since these frequency histograms are affine

invariant, it was clear that several different affine equivalence classes of functions existed

with these properties.

(n,NL,AI, FAR) Number of distinct equivalence classes identified

(6, 26, 3, 5) 2

(7, 56, 4, 6) 2

(8, 116, 4, 7) 10

(9, 238, 5, 8) 62

(10, 486, 5, 9) 53

(11, 986, 6, 10) 11

(12, 1994, 6, 11) 22

(13, 4018, 7, 12) 7

(14, 8084, 7, 13) 2

(15, 16226, 8, 14) 1

(16, 32540, 8, 15) 1

Table 4.4: Number of non-equivalent functions so far with the best (NL,AI, FAR) ob-
tained through annealing.
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4.4 Summary of achievements, and avenues for future re-

search

In this chapter, we have established via theoretical analysis that the search landscape

defined by the use of truth table flips as a move function is extremely promising with

respect to the search for Boolean functions resistant to algebraic attacks, and indeed

(building on existing results in this area) with respect to Boolean functions resistant to

stream cipher cryptanalysis in general. We have demonstrated the existence of smooth

search landscapes for algebraic immunity and fast algebraic resistance, and exploited these

alongside the already known smooth landscape for nonlinearity, in a local-optimisation

based metaheuristic which has found Boolean functions with superior properties to the

best theoretical constructions for their corresponding values of n.

Truth tables for some of the evolved Boolean functions are presented in a later ap-

pendix, and any researchers wishing to investigate the full set of evolved truth tables are

invited to email the authors.

It would be interesting to see if such a search landscape is also defined for properties

such as transparency order which are relevant to side-channel attacks, or indeed for any

other properties of Boolean functions that are cryptographically relevant. Or, for that

matter, relevant in areas of computer science other than cryptology.

The key issue with the new functions is one of implementation. The Carlet-Feng

functions can be implemented using the Pohlig-Hellman algorithm [134] for up to 20 bits

(and possibly more) without needing the truth-table to be stored in memory; and for

purposes of efficiency, some fast means to calculate one of the new functions without

needing to store a large lookup table in memory or requiring a circuit with an overly

large number of gates is required for them to be of practical use. Algebraic immunity is

not invariant in the case of affine transformations on the outputs, but is invariant under

transforms on the function inputs, and all other relevant properties are affine invariant [43].

Hence, a potentially profitable avenue might be to apply various affine transformations to

the function inputs and to experiment with the results to find out if any of them are of the

types described by Carlet et al. [55, 56, 58]. Alternatively, the univariate representations

of the affine equivalence subclasses thus defined could be examined for functions with

suitably sparse univariate forms.

In this chapter, Boolean functions satisfying all the required properties for use as
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nonlinear filter functions, and with nonlinearity higher than that achieved by existing

constructions, have been shown to exist. Now the question is whether any of them can

be shown to be part of an infinite class of Boolean functions with these properties (and,

ideally, some more efficient means of implementation). The exponential complexity of the

algebraic immunity and fast algebraic resistance algorithms renders the use of the current

annealing approach to find such functions for higher values of n increasingly impractical.

We note that faster and more memory-efficient algorithms for the calculation of alge-

braic immunity and fast algebraic resistance could increase the values of n to which this

algorithm can be applied, as well as the algorithm’s performance for the values of n we

have so far been able to apply it to.

Although addressing implementation issues would go beyond the scope of the work in

this chapter, we have successfully demonstrated the existence of functions with hitherto-

unobtained cryptographic properties, and the power of metaheuristics to find these. Our

work has shown that metaheuristic search has very significant potential in the construction

of Boolean functions with excellent cryptographic properties.
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Chapter 5

Using evolutionary computation

to create vectorial Boolean

functions with low differential

uniformity and high nonlinearity.

The previous chapter dealt with Boolean functions mapping several input bits to only one

output bit. In this chapter we attempt to generalise to Boolean functions with multiple-bit

output values, and to address the different criteria such functions must satisfy. There has

been previous research in the use of metaheuristics in this area, with limited success, but

we believe there is a need to focus on different criteria to those of the previous researchers.

We also utilise three different types of metaheuristic - simulated annealing, memetic algo-

rithms, and ant algorithms - and three different types of algorithm from the third category.

Memetic algorithms have parameters which are themselves choices of algorithm, and we

vary these as well. Initial experiments focus on finding suitable cost functions, then on

finding the best parameter choices for the various algorithms. Finally, we compare the

performance of the algorithms.

5.1 Introduction

The two most important criteria for vectorial Boolean functions used in block ciphers are

differential uniformity and nonlinearity. Previous research into evolving such functions us-
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ing metaheuristics has focused only on nonlinearity and a different criterion, autocorrela-

tion. In this chapter, we describe the results of experiments in using simulated annealing,

memetic algorithms, and ant colony optimisation to create vectorial Boolean functions

with low differential uniformity.

5.1.1 Technical background

Definition 5.1.1. For some n,m, an n×m S-box is a mapping from GF (2n) to GF (2m).

If every value ∈ GF (2m) is mapped to by an equal number of distinct input values, we

say that the S-box is balanced.

S-boxes are typically the sole nonlinear components of ciphers, applied repeatedly so

that the equations describing each ciphertext bit will be complicated equations of high

algebraic degree in all the plaintext and key bits involving large numbers of monomials.

Although the original Data Encryption Standard [191] used S-boxes mapping a six-bit

output to a four-bit input, most modern cipher designs use only bijective n × n S-boxes.

In particular, we note that the current Advanced Encryption Standard (AES) [192], and

most block ciphers designed for environments where the AES is too resource-intensive (e.g.

PRESENT [40], PRINTCIPHER [162]), use only bijective n×n S-boxes. For this reason,

we will focus primarily on these S-boxes.

Even if it is not bijective, the S-box is usually required to be balanced. Otherwise,

the two most important criteria for a cryptographically secure S-box are low differential

uniformity and high nonlinearity. There are other relevant criteria as well - as an example,

it has been suggested that if large numbers of low-degree implicit equations with the S-

box’s input and output bits as variables hold, this may lead to the cipher being broken

[110, 184].

Definition 5.1.2. Let S be an S-box. Let us construct a table with 2n rows and 2m

columns by defining the entry in row i, column j to be the number of inputs x such that

S(x)⊕S(x ⊕ i) = j. (⊕ will signify exclusive-or throughout this chapter.) This table is

known as the difference distribution table, or DDT.

Note that all entries in this table must be even, for if S(x)⊕S(x ⊕ i) = j, then let

y = (x⊕i), and we see that S(y)⊕S(y ⊕ i) = j. Furthermore, it is clear that all entries in

the row of a DDT must sum to 2n, and hence that the sum of all entries in all rows must

be equal to 2m+n.
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Definition 5.1.3. The differential uniformity of an S-box S, sometimes denoted DU(S)

(or just DU when it is clear from the context that S is meant), is the largest value present

in its difference distribution table (barring the entry for i = j = 0).

Where DU(S) = k, we refer to S as being differentially k-uniform.

Definition 5.1.4. An S-box with differential uniformity 2 is referred to as being almost

perfect nonlinear (or “APN”). In theory, perfect nonlinearity would correspond to DU 1,

however since all entries in the DDT must be even, this is not achievable in practice. The

term ”almost perfect nonlinear” was introduced by Vaudenay et al. [61] in 1994.

Definition 5.1.5. The number of times that the value D equal to DU(S) appears in the

difference distribution table of S is referred to as its differential frequency (DF for short).

Definition 5.1.6. Let S be an S-box. Let us construct another table with 2n rows and 2m

columns by defining the entry in row i, column j as follows: where the parity of i AND x

is equal to the parity of j AND S(x) for k values of x, the corresponding entry in the

table is the value k − 2n−1.

This table is known as the linear approximation table, or LAT. The proof is a little

too long to reproduce here, but as long as the S-box is balanced, this table also has the

property that all its entries are even.

Definition 5.1.7. The nonlinearity of an S-box, NL(S) (or just NL when the box in-

volved is clear from the context.) is equal to 2n−1 −maxi,j |LATij | - that is, 2n−1 minus

the maximum absolute value in the LAT (excluding the entry for i = j = 0.)

Clearly this generalises the definition of nonlinearity from the previous chapter.

Definition 5.1.8. The number of times that the value 2n−1−NL(S) appears in the linear

approximation table of S is referred to as the nonlinear frequency of S (NF for short).

Differential uniformity and nonlinearity are the most important properties in a cipher’s

S-boxes, being crucial to its resistance against differential cryptanalysis [32, 34] and linear

cryptanalysis [179, 180] respectively, as well as the many variants on and hybrids of these

techniques.

As stated earlier, previous research also focused on a property known as autocorrelation.

While this has some relevance to the cipher’s resistance against the hybrid technique

differential-linear cryptanalysis [133, 29], differential uniformity and nonlinearity are far

more important even in this context. We did not therefore focus on autocorrelation in
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our experiments, but for the sake of completeness when discussing previous research we

provide the relevant definitions here:

Definition 5.1.9. Where S is an S-box, let us construct a third table with 2n rows and

2m columns. Let Sj(x) be the Boolean function with one output bit defined by xoring the

output bits of S corresponding to the 1s in the bitmask j. Let the entry in row i, column

j be equal to the number of inputs for which Sj(x) = Sj(x ⊕ i), minus the number of

inputs for which this was not the case.

This table is the autocorrelation table, or ACT.

Definition 5.1.10. The autocorrelation of an S-box, AC(S) (or just AC when it is clear

from the context that S is the box involved) is the maximum absolute value in its auto-

correlation table, barring the trivial entry for i = j = 0.

Definition 5.1.11. The number of times that the value AC(S) appears in the autocor-

relation table of S is referred to as the autocorrelation frequency of S (AF for short).

The three tables are in fact related. Using matrix transformations, the ACT can be

derived from the DDT, and a table C such that Ci,j = (2·LATi,j)2 can be derived from

either the LAT or the ACT [141]. Since this will prove relevant later on, we explain it in

more detail here.)

Definition 5.1.12. The Walsh-Hadamard matrix is also known as the “Sylvester-Hadamard

matrix”. It is defined recursively thus:

H0 =
[
1
]

Hn =

[
Hn−1 Hn−1

Hn−1 −1×Hn−1

]
So, for example,

H1 =

[
1 1

1 −1

]
H2 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


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Theorem 5.1.13. For an n × m S-box S, let DS denote the DDT of S. Treat it as a

matrix for the purposes of multiplication; then HnDSHm is the aforementioned table C

such that Ci,j = (2·LATi,j)2.

For a proof, the reader is referred to the paper in which this theorem originally appeared

[141].

5.1.2 The use of metaheuristics in this field.

Although there was some earlier work using simpler techniques such as hill-climbing, and

although metaheuristics had been applied to the related problem of evolving single-output-

bit Boolean functions, the first major attempt to construct S-boxes by utilising metaheuris-

tics was carried out in 1999 by Millan et al. [48]. They attempted to maximise nonlinearity

and minimise autocorrelation - nonlinearity itself being used as the fitness function for the

NL experiments, and some value derived from the autocorrelation as the fitness function

for the experiments in that area. (It is not clear from the paper what this fitness func-

tion was; most likely either 1/AC or the subtraction of AC from some fixed value.) The

metaheuristic used was a genetic algorithm variant without mutation and with an uncon-

ventional crossover function that the authors claimed introduced enough randomness to

eliminate the need for mutation.

Encouraged by the success of their previous research into the use of simulated anneal-

ing to evolve Boolean functions with 1-bit output length and low autocorrelation/high

nonlinearity [87, 84] [80], Clark, Jacob and Stepney employed the same techniques to try

to obtain S-boxes with these qualities [86]. Their approach differed from that which had

preceded it in two key respects:

• Instead of simply using the value of nonlinearity/autocorrelation for the cost/fitness

function, the whole linear approximation/autocorrelation table would be taken into

account, with the cost function focusing on trying to bring every value close to zero.

• After using one cost function for the simulated annealing, they would end the search

by hill-climbing, usually with a different cost function - so, for example, after obtain-

ing a relatively flat linear approximation table, they would hill-climb with nonlinear-

ity as the fitness function, based on the hypothesis that the primary cost function

would have guided the search into a region of the search space in which a higher

number of candidate solutions with above average nonlinearity existed.
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This approach improved on the best nonlinearity obtained by Millan et al. for bijections

such that 6 ≤ n = m ≤ 8, and equalled it for n = m = 5. However, the researchers noted

that S-boxes with higher nonlinearity were known to exist for n = 6 and n = 8. They also

noted that a slight increase in the value of n resulted in a massive increase to the problem

complexity.

S-boxes with equivalent properties and transformations.

Various equivalence notions exist according to which there may be several S-boxes in the

search space of bijections over GF (2n) with identical differential uniformity and nonlinear-

ity; and indeed with the same sets of absolute values in their DDTs and LATs [46]. This

has the potential to be particularly problematic for genetic and memetic algorithms, since

it implies that many different “genes” may result in the same cryptanalytically relevant

properties (see Appendix B for more information on this.) We define these notions here:

Definition 5.1.14. Let S1, S2 be two S-boxes.

S1 and S2 are affine-equivalent iff S2 = A·S1·B, where A,B are bijective affine trans-

formations (so A(x) would be the result of applying the transformation MAx⊕ VA, where

MA was some invertible matrix and VA a vector.)

Definition 5.1.15. Let S1, S2 be two S-boxes.

S1 and S2 are extended affine-equivalent (EA-equivalent) iff S2 = A·S1·B ⊕ C, where

A,B are bijective affine transformations and C is some, not necessarily bijective, affine

transformation acting on the same input x as A·S1·B.

Definition 5.1.16. Let S1, S2 be two S-boxes.

Let gr(S1) denote the graph of S1, i.e. the set of all (x, S1(x)) pairs. Let each such

pair be viewed as a value in GF (2)2n.

S1 and S2 are Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent for short) iff there

exists some affine permutation L : GF (2)2n → GF (2)2n such that L(gr(S1)) = gr(S2).

(so L(x, S1(x)) = (L1(x, S1(x)), S2(L1(x, S1(x)))), where L1 : GF (2)2n → GF (2)n

maps the input bits of L to the first n output bits.)

Definition 5.1.17. An affine-invariant property is a property which, if possessed by an

S-box S, is also possessed by all S-boxes affine-equivalent to S. Similarly, an EA-invariant

property is a property which, if possessed by an S-box S, is also possessed by all S-boxes
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EA-equivalent to S, and CCZ-invariant properties are defined in terms of CCZ-equivalent

S-boxes in the same way.

It may be seen from the above definition that any two S-boxes which are affine equiv-

alent are also EA-equivalent. It follows from this that all EA-invariant properties are

also affine-invariant. Furthermore, CCZ-equivalence generalises EA-equivalence [46], so

all CCZ-invariant properties are also EA-invariant and hence affine-invariant.

Importantly, differential uniformity and nonlinearity are CCZ-invariant properties [46].

We sought to find ways of utilising the equivalence classes to reduce the size of the

search space, and to reveal patterns in the truth tables of the evolved mappings which

could be exploited by the ant colony and memetic algorithm experiments (as well as some

experiments with genetic algorithms that were later superseded by the memetics). The

following theorem resulted from this:

Theorem 5.1.18. Every bijective S-box S is affine-equivalent to at least one bijective S-

box S2 such that S2 maps all inputs with Hamming weight less than 2 to themselves, 3 to

3 or 5 (we can restrict this to 5 if the S-box has differential uniformity ≤ 4), 5 to some

value ≤ 11 (this may be restricted to 6 or 10 if the S-box has differential uniformity 2),

and all 2i + 1(3 ≤ i ≤ (n− 1)) to some value ≤ 2i+2 − 2i− 1.

The proof, which also describes the procedure to construct the equivalent S-box, is

included in Appendix B.

5.2 Experiments with simulated annealing

We adopted the approach of Clark et al. of annealing with one cost function, and then

hill-climbing with another. We also based our annealing cost functions on theirs [86],

in that for whichever table T was relevant to the criterion of primary interest the cost

function took the form:

2n−1∑
i=0

2m−1∑
j=0

||Ti,j | −X|r

This family of cost functions aimed to “flatten” the contents of the table T as much

as possible, achieving a relatively uniform table in which few entries deviated significantly

from the value X. For a difference distribution table in particular, X equal to 0 or 1 would
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be an intuitive choice, since for the best possible APN S-boxes all values were 0 or 2 with

mean 1, and since low values in this table were desirable. In focusing on all the values

in the table, instead of the single most extreme value, the search was better equipped to

optimise table values that were not the extremal values at that particular point in time.

As stated earlier, we focused on differential uniformity and nonlinearity, meaning that

T would be either the DDT or the LAT. We experimented with various values of X and

r for both the LAT and DDT, and tried multiplying and adding the cost function output

values for different tables to achieve a multiobjective optimisation.

Our hill-climbing cost functions were not based solely on whichever of the differential

uniformity and nonlinearity was being targeted. Since each of these was defined in terms

of some extremal value in its corresponding table, we adapted the cost function to subtract

k/(the number of times this value appeared) - where k was the largest value for that table

that could be guaranteed to divide all entries in it. (k was equal to 2 in both cases). This

gave us as cost functions:

• DU − 2/DF and

• maxi,j |LATij | − 2/NF

By minimising the respective frequencies, we hoped to minimise the number of ways in

which the cryptanalyst could exploit the extreme table values - in particular, we hoped to

improve the S-box’s resistance against linear cryptanalysis with multiple approximations

[38, 70, 66]. We also hoped that this would guide the search towards lower values for

the DU and maxi,j |LATij |. Part of this was based on the fact that using only DU or

maxi,j |LATij | to define the cost function would have made it harder for the hill-climbing

stage to find improved candidate solutions if there were none with lower cost within the

1-move neighbourhood of the current candidate - in fact, whether it could do so at all

would be dependent on the precise hill-climbing method implemented. Another motiva-

tion was the fact that the 1-move neighbourhoods of the known APN S-boxes contained

differentially-4-uniform S-boxes with extremely low differential frequencies.

5.2.1 Refining the annealing cost functions for differential uniformity

During experiments with the following cost functions:
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2n−1∑
i=0

2m−1∑
j=0

||DDTi,j | −X|2

we observed that where the random number generator (the boost::mt19937 Mersenne

Twister from the C++ Boost libraries [1]) had been seeded with the same seed, experi-

ments for different values of X were producing the same results.

To work out why this was, we first note that there are no negative values in the DDT,

so the above equation is equivalent to
∑2n−1

i=0

∑2m−1
j=0 |DDTi,j − X|2. Since, for any d,

d2 = |d|2, we have:

2n−1∑
i=0

2m−1∑
j=0

||DDTi,j | −X|2

=

2n−1∑
i=0

2m−1∑
j=0

|DDTi,j −X|2

=
2n−1∑
i=0

2m−1∑
j=0

(DDTi,j −X)2

=

2n−1∑
i=0

2m−1∑
j=0

(DDT 2
i,j − 2·X·DDTi,j +X2)

=
2n−1∑
i=0

2m−1∑
j=0

DDT 2
i,j − 2X

2n−1∑
i=0

2m−1∑
j=0

DDTi,j +
2n−1∑
i=0

2m−1∑
j=0

X2

Note that
∑2n−1

i=0

∑2m−1
j=0 X2 is a constant value, independent of any values present in

the DDT. Moreover,
∑2n−1

i=0

∑2m−1
j=0 DDTi,j was shown in Definition 5.1.2 to be equal to

2m+n, and hence 2X
∑∑

DDTi,j is equal to 2m+n+1X; another constant.

We see that the only part of the above cost function which can change at all when a

move is made is
∑2n−1

i=0

∑2m−1
j=0 DDT 2

i,j , and this is not dependent on the value of X.

Early experiments to compare the effects of the various DDT cost functions used:

• n = 6,

• Cooling factor 0.99 (we would later reduce this to 0.97),

• MAX INNER LOOPS = 10000,

• MAX OUTER LOOPS = 500,
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• MAX FROZEN OUTER LOOPS = 200.

These parameters had already been observed to find S-boxes with optimal differential

uniformity and nonlinearity in some cases for n = 5; however we had not managed to find

S-boxes with the optimal properties for n = 6, and we felt that more information might

be obtained from the differential frequencies of those S-boxes which achieved near-optimal

differential uniformity of 4. In all cases, the hill-climb cost function was DU − 2/DF .

X

-2 -1 0 1 2

r = 2 (59, 224.44) (59, 224.44) (59, 224.44) (59, 224.44) (59, 224.44)

r = 3 (65, 224.68) (71, 223.1) (58, 225.72) (59, 222.71) (71, 219,97)

r = 4 (71, 223.69) (68, 223.5) (67, 223.75) (76, 229.3) (75, 232.54)

DU − 2/DF to anneal (0, N/A)

r = 2, X = 0 optimised (78, 217.12)

Table 5.1: (Percentage of DU 4, average DF for DU 4) for n = 6. No boxes with DU 2
were found.

The best DU we found in any of our experiments for n = 6 was 4, even though S-

boxes of this size with DU 2 are known to exist [45]. Exponent 2 resulted in fewer DU 4

S-boxes being found than the other exponents; however the average DF of these was not

significantly different. However, using exponent 2 and X = 0 allowed us to code a highly

optimised version of the “lookahead” function that evaluated the change in cost when a

move was being considered (the most generic approach to the lookahead would be to make

the move, update relevant data, call the cost function, then undo the preceding) - and

the result of this was that the search concluded 11.81 times as fast as the fastest of the

other cost functions. Increasing MAX INNER LOOPS proportionately, we obtained

78% DU 4 with average DF 217.12. We therefore accepted r = 2, X = 0 as the best

cost function to use in large scale attempts to obtain low differential uniformity through

simulated annealing.

5.2.2 Relating nonlinearity and differential cost functions.

The formula
∑2n−1

i=0

∑2m−1
j=0 ||Ti,j | −X|r bears a strong resemblance to the formula for the

sample variance of the entries of T . Indeed, for the DDT, let r = 2, and let X = 1, since

this is the sample mean of the entries in the DDT of a bijective S-box, then apart from
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the division by 2n+m, the formulae are identical. Prior to our discovering that the value

of X did not affect the behaviour of the search algorithm for the DDT with exponent 2,

this led to our experimenting with the variance of the DDT as a cost function. During

these experiments, the variance of the absolute LAT values, as well as the variance of the

squared LAT values (due to Theorem 5.1.13) was also recorded, and we noticed that in

every case the latter was equal to 22n−4× the DDT variance. However, the ratio between

the two variances was not a power of 2, or indeed an integer, for non-bijective S-boxes.

Investigating further, the same relationship was observed to hold between the sum of

squares of the DDT and the sum of fourth powers of the LAT for a bijective S-box. Again,

however, this was not the case for a non-bijective S-box.

We therefore make the following conjecture: For bijective S-boxes, the value of DDT

cost function r = 2, X = 0 is always a fixed multiple of the value of LAT cost function

r = 4, X = 0 (the precise multiple being determined by the value of n.) Although the

temperatures required to achieve the desired initial acceptance rate may differ for these

two cost functions; neither should be any more or less effective than the other in simulated

annealing - they are in practice equivalent.

In the experiments shown for the 6 × 6 problem size in Table 5.2, (r = 4, X = 0) is

not the best-performing cost function. Nevertheless, using the DDT cost function with

(r = 2, X = 0), the fastest of the other cost functions was 554 times slower in completing

a search than it was. Increasing MAX INNER LOOPS accordingly, as may be seen in

the second-last row of the table, results in the best average NF for NL 22. More generally,

using the DDT cost function for the annealing stage offers the following advantages:

1. It allows us to use a lower exponent than we would otherwise, reducing the extent

to which higher exponents would slow down the exponentiation involved.

2. As stated before, the optimised lookahead algorithm for DDT exponent 2 and X = 0

can be used.

3. Updating the difference distribution table for a candidate solution when a move

is made requires O(2n) time. Updating the linear approximation table requires

O(2n+m) time. Similarly, the initial calculation of these tables also differs in com-

plexity by a factor of 2m.

We therefore accepted this cost function as the best candidate for larger-scale searches

both for S-boxes with high nonlinearity and with low differential uniformity. Two sets
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of experiments, each consisting of 100 runs, were carried out. These used α = 0.97 and,

respectively, 3,000,000 and 30,000,000 inner loops per value of temperature.

max. inner loops % DU 2 after % NL 12 after % (DU 2, NL 12)
DU/DF hill-climb NL/NF hill-climb after dual hill-climb

3,000,000 11 11 6

30,000,000 45 34 35

Table 5.3: Experiments for n = 5. For this size, NL cannot exceed 12 [61].

Inner loops (% DU 4, avg. DF (% NL 22, avg. NF % (DU 4, NL 22)
for DU 4) after for NL 22) after after dual hill-climb
DU/DF hill-climb NL/NF hill-climb

3,000,000 (80, 204.25) (100, 29.83) 35 (avg. DF 204,
avg. NF 36.09)

30,000,000 (86, 197.65) (100, 28.06) 36 (avg. DF 199.25,
avg. NF 31.78)

Table 5.4: Experiments for n = 6. For this size, (DU 2, NL 24) and (DU 4, NL 24) S-boxes
are known to exist but were not found. It is not known if NL 26 boxes exist.

For the n = 5 problem size, the APN S-boxes found fell into two categories. The

boxes with nonlinearity 12 have properties consistent with the Gold exponent S-boxes [65]

and their inverses, whereas the APNs with nonlinearity 10 appear to be “inverse-based”

S-boxes [65]. All S-boxes with nonlinearity 12 were APN, this being due to the properties

of almost bent S-boxes [61]. This means that we have, for this problem size, obtained

results matching the theoretical best-possible (and the best S-boxes obtained through

mathematical construction), as well as improving on previous applications of simulated

annealing to this problem (which only achieved nonlinearity 10 - see Table 5.5.)

The best S-box we achieved for n = 6 in terms of differential uniformity had DU 4,

DF 159, NL 22, and NF 24, occurring as part of the 30,000,000 inner loop experiment.

Unfortunately, since a 6 × 6 APN S-box has been constructed [45], this means that we

have not managed to match the best existing constructions for this size.

Although 6 × 6 S-boxes with nonlinearity 24 have been constructed mathematically

[197] [45], we were unable to obtain any such for any choice of cost function. The best we

were able to achieve had nonlinearity 22. The lowest corresponding NF we found was 22

(unfortunately in conjunction with DU 6).

For larger problem sizes, we were unable to compete with the best known existing
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results. We did not achieve nonlinearity higher than 48 for n = 7, or higher than 104 for

n = 8 (the best-known values for these sizes are 56 and 112). The best DU possible for

n = 7 is 2, we achieved only DU 6 with best DF 11. Similarly, the best known DU for

n = 8 is 4; the best we achieved was 6 with DF 185.

Highest known NL Previous best Highest evolved NL
evolved NL [86] (this thesis)

n = 5 12 10 12

n = 6 24 22 22

n = 7 56 48 48

n = 8 112 104 104

Table 5.5: Comparison of best-known and evolved nonlinearities for n = 5, 6, 7 and 8.

5.3 Experiments with memetic algorithms

Due to its success and efficiency in the simulated annealing experiments, we focused ex-

clusively on the sum of squares in the DDT as the basis for the fitness function. In all the

below experiments, we carried out 100 runs of the memetic algorithm.

The first set of experiments varied the crossover method and selection method, as well

as the max possible mutations and mutation probability criteria. The population size

was set to 400, crossover probability to 1, elitism level to 1, and no of children to 2:

During earlier experiments with genetic algorithms (memetic algorithms without a

hill-climbing stage), there had been reason to believe that, depending on the population

size, a certain value of max possible mutations × mutation probability would prove to

be optimal. In the above experiments, there is far too much variation among the results

to draw any such conclusion. However, it is clear from Tables 5.6, 5.7, 5.8 and 5.9 that

the combination of cycle crossover and rank selection performs much more poorly than

the other three (crossover, selection) choices. Furthermore, the combination of PMX and

rank selection has led to higher percentages (14, 15, 16) of APN S-boxes than any of

the other combinations, so we opted to stick with this for the second set of experiments.

Choosing max possible mutations and mutation probability was similarly difficult due to

the extent to which the results varied - we eventually opted for 1 mutation with probability

0.6.

We compared the results of imposing restrictions based on Theorem 5.1.18 with the
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results of not doing so (as also of allowing the solution candidates to make moves dur-

ing mutation/hill-climbing that would violate these constraints and then retransform.)

However, for every set of parameters for which this was tried, it resulted in worsened

performance. We did not therefore make use of Theorem 5.1.18 in the experiments which

followed.

Using these parameters, we experimented with varying the crossover probability. As

part of this, we re-ran the original (1 mutation, probability 0.6, crossover probability 1.0)

experiment:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0 0 0 0 0 2 3 8 15

Table 5.10: Percentage of DU 2 for various crossover probabilities. Again, n = 5.

As may be seen, the performance of the memetic search drops markedly as crossover

probability is reduced. For this reason, we kept this fixed to 1.0 for the third set of

experiments, in which we varied the size of the population.

Population size % DU 2 % (DU 2, NL 12) Time taken (d:h:m:s)

200 1 1 00:01:46:01

400 15 7 00:03:44:21

800 18 11 00:07:27:48

1600 44 22 00:15:06:30

3200 66 37 01:06:14:15

Table 5.11: Memetic algorithm results for various population sizes with n = 5. All
experiments were carried out on a computer with a 2.66GHZ Intel Xeon X5355 processor.

It may be seen from Table 5.11 that the quality of the solutions increased with the

size of the population, although the time required to obtain these solutions also increased.

Nevertheless, the experiment with population size 3200 outperformed (66% DU 2 instead

of 45%) the simulated annealing experiment with 30,000,000 inner loops in Table 5.3; and

both of these experiments required roughly the same amount of time.

5.4 Experiments with ant colony optimisation

In Section 3.5.4 of this thesis, we stated:

“The problem should also allow a useful cost function to be devised such that, during the
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construction of each candidate solution, the cost starts at zero and is increased whenever

a new component is added until the final cost is derived.”

In this case, basing the cost function on the DDT allowed us to do this; we could,

for each S(i) that was to be assigned a value, calculate for each j which values in the

DDT would be increased, and could calculate what the new cost would be if the resultant

DDT values were input directly to the cost function. As with the memetic algorithms, we

used the sum of squared DDT entries as a cost function; with each new truth table entry

assigned a value, we could deduce which DDT entries would increase by 2 and how this

would affect the sum of squares.

We made the following decisions with regard to some of the other parameters:

• Early experiments indicated that setting hillclimb trails to false always led to worse

results, so we fixed it at true in all of the experiments in this chapter.

• We used control values α = 1, β = 2.

• When experimenting with values of e, the values 0.05, 0.1, 0.2, 0.3 and 0.4 were

tried, with 0.1 as control value in accordance with various significant works on ant

algorithms [23] [119].

• Based on calculations of the optimal cost, and advice in the existing literature [23], we

set τ0, the initial amount of pheromone on each edge, to 1.0/(2n ∗((2n−1)∗2n)/2.0).

• The control value for the number of ants was 10 in accordance with the arguments

in Dorigo et al.’s seminal paper on ACS [119].

• For the problem size n = 5, we experimented with the values 1, 10, 100, and (2n ∗
(2n − 1))/2 = 496 for Q.

• In the experiments with ACS algorithms, the control value for q0 was 0.98, with 0,

0.1, 0.25, 0.5, and 0.75 also being tried. For Ant System, q0 was of course always

zero.

• The control value for ρ was 0.1, again in accordance with various papers on ACS

[23] [119]. 0.05, 0.2, 0.3, 0.4, and 0.5 were also tried.

As with the memetic algorithms, we used the sum of DDT squares (and the cumulative

effect of each added edge on it) as a cost function. The first major set of experiments varied

Q, q0, and the ant method:
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Q 1 10 100 496

(% DU 2) (cycle) 9 5 9 6

(% DU 2) (increment) 11 6 7 8

Table 5.12: (% DU 2) for n = 5 with Ant System

Q

1 10 100 496

q0 = 0 7 5 12 2

q0 = 0.1 3 3 6 8

q0 = 0.25 9 4 7 3

q0 = 0.5 6 7 5 2

q0 = 0.75 1 1 4 3

q0 = 0.98 1 1 4 3

Table 5.13: (% DU 2) for n = 5 with various values of Q and q0 for Dorigo ACS (cycle).

Q

1 10 100 496

q0 = 0 9 1 2 5

q0 = 0.1 8 5 3 2

q0 = 0.25 10 3 3 1

q0 = 0.5 2 2 2 1

q0 = 0.75 6 1 6 0

q0 = 0.98 1 0 2 0

Table 5.14: (% DU 2) for n = 5 with various values of Q and q0 for Dorigo ACS (incre-
ment).

Q

1 10 100 496

q0 = 0 7 10 5 6

q0 = 0.1 4 7 8 5

q0 = 0.25 4 4 7 2

q0 = 0.5 5 10 8 7

q0 = 0.75 13 5 9 4

q0 = 0.98 5 5 3 5

Table 5.15: (% DU 2) for n = 5 with various values of Q and q0 for Luke ACS (cycle)

133



Q

1 10 100 496

q0 = 0 5 11 6 10

q0 = 0.1 7 1 3 3

q0 = 0.25 7 5 8 12

q0 = 0.5 12 3 4 10

q0 = 0.75 8 5 6 7

q0 = 0.98 7 10 11 4

Table 5.16: (% DU 2) for n = 5 with various values of Q and q0 for Luke ACS (increment).

In the above tables, we show only the percentage of DU 2, since for this size NL 12

occurs only for DU 2 and the cost function has no effect on whether the DU 2 S-box is

one of the NL 10 or NL 12 boxes we have seen so far.

As before, the amount of variation in the results makes them hard to interpret. How-

ever, large Q for Dorigo’s ACS appears to be detrimental to its performance, and we set

Q to 1 for the second set of experiments. It was difficult to draw any similar conclusion

for Luke’s ACS, but we set Q to 1 for future experiments with this for the sake of compar-

ison. Likewise, too high a value of q0 seemed detrimental to the performance of Dorigo’s

algorithm, so we set this to 0.

In the second set of experiments, we varied the evaporation rate ρ and elitist update

parameter e:

ρ 0.05 0.1 0.2 0.3 0.4 0.5 Total

(% DU 2) 8 8 7 4 5 7 39

Table 5.17: (% DU 2) for Ant System (increment) with various evaporation rates.

ρ 0.05 0.1 0.2 0.3 0.4 0.5 Total

(% DU 2) 11 4 8 11 9 7 50

Table 5.18: (% DU 2) for Ant System (cycle) with various evaporation rates.
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Evaporation rate (ρ)

0.05 0.1 0.2 0.3 0.4 0.5 Total

e = 0.05 3 6 8 4 11 8 40

e = 0.1 5 8 10 8 6 4 41

e = 0.2 3 6 10 7 6 7 39

e = 0.3 9 7 11 6 9 6 48

e = 0.4 7 6 9 4 6 8 40

e = 0.5 6 4 9 7 8 6 40

Total 33 37 57 36 46 39 248

Table 5.19: (% DU 2) for Luke ACS (cycle) with varying e and ρ.

Evaporation rate (ρ)

0.05 0.1 0.2 0.3 0.4 0.5 Total

e = 0.05 4 18 4 10 7 7 50

e = 0.1 5 9 9 4 10 7 44

e = 0.2 8 10 5 9 6 5 43

e = 0.3 4 9 4 5 3 10 35

e = 0.4 8 8 7 3 5 5 36

e = 0.5 5 7 11 7 6 6 42

Total 34 61 40 38 37 40 250

Table 5.20: (% DU 2) for Luke ACS (increment) with varying e and ρ.

Evaporation rate (ρ)

0.05 0.1 0.2 0.3 0.4 0.5 Total

e = 0.05 9 6 8 5 8 6 42

e = 0.1 9 10 6 3 7 8 43

e = 0.2 3 5 15 8 6 5 42

e = 0.3 7 5 9 7 6 6 40

e = 0.4 3 5 8 5 6 7 34

e = 0.5 3 4 7 7 7 4 32

Total 34 35 53 35 40 36 233

Table 5.21: (% DU 2) for Dorigo ACS (cycle) with varying e and ρ.
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Evaporation rate (ρ)

0.05 0.1 0.2 0.3 0.4 0.5 Total

e = 0.05 7 5 3 6 8 6 35

e = 0.1 7 8 7 9 6 7 44

e = 0.2 7 4 10 4 9 6 40

e = 0.3 2 6 7 6 10 4 35

e = 0.4 4 4 3 6 7 6 30

e = 0.5 6 2 7 7 6 5 33

Total 33 29 37 38 46 34 217

Table 5.22: (% DU 2) for Dorigo ACS (increment) with varying e and ρ.

The above tables show a similar level of variation in the achieved results to their

predecessors, with no apparent patterns. In an attempt to obtain some information on

the merits of the various techniques and parameter choices, we have summed the numbers

of APN S-boxes achieved across all experiments for each algorithm. Again, these results

have a great deal of variance, but it does appear that Dorigo ACS with increment index is

underperforming compared to the other ACS variants. In fact, we believe that the above

tables are evidence that Luke’s ACS outperforms Dorigo’s for this particular problem.

While this is not so certain, we also note that high values of e do appear to impair

performance for Dorigo ACS; there is a clear drop in performance for cycle index; and also

for increment index with the exception of e = 0.05 (which we believe to be a statistical

outlier). No such pattern is visible for the values of ρ tried, however.

Cycle clearly outperforms increment index for the Dorigo ACS experiments, and while

the effective sample size for the Ant System experiments is smaller, cycle still outperforms

increment in these experiments by a clear margin. This is not the case for the Luke ACS

experiments, however the number of APNs in the increment-index experiments would be

reduced below the number for cycle-index by a slight margin if the statistical outlier for

e = 0.05, ρ = 0.1 were disregarded. We therefore believe that while this differs by ant

algorithm, cycle-index is in general more effective than increment-index for this problem.

For our third set of experiments (in which the number of ants was varied), we decided

to conduct the experiments for both Luke ACS and Ant System, since it was not possible

to draw a firm conclusion from the evidence so far as to which was the more effective. We

set ρ to 0.1 and (for Luke ACS) e to 0.1. We also set q0 to 0:
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Number of ants

10 32 64 128

Ant System 6 17 40 68

ACS (Luke) 7 22 37 57

Table 5.23: (% DU 2) for varying numbers of ants.

The Ant System result, as well as outperforming the best run with the memetic algo-

rithm, also did so in just over 19 hours as opposed to just over 34 for the memetic.

(As an aside, we had also experimented again with restricting S-box output values

in accordance with Theorem 5.1.18, believing that these restrictions would be necessary

(though perhaps insufficient) for the search to succeed. Ant algorithms reward edges that

feature in “good” solutions by increasing the amount of pheromone on them, but any

given edge (i, S(i) = j), could feature in any S-box with any set of properties - it would

always be possible to make an affine transformation that ensured this was so - and we

hoped that the truth table restrictions imposed in Theorem 5.1.18 would overcome this.

Unfortunately, this did not turn out to be the case - as with the memetic algorithms, it

resulted in poorer-quality solutions on average for all the ant algorithm variants and all

values of Q/q0 tried - and we had to abandon this line of inquiry.)

5.5 Conclusions, and directions for future research.

We have demonstrated that where the criteria are differential uniformity and nonlinearity

- the two most important criteria for block cipher S-boxes - that metaheuristic search is

capable of matching the best theoretical results for S-boxes of size 5×5 and smaller. Unfor-

tunately, the significant increase in the size of the search space for higher n means that the

difficulty level of the problem increases extremely rapidly, regardless of the metaheuristic

used, and we were not able to achieve the same success for any n ≥ 6.

Experimenting with various cost functions, we have found a particularly fast and ef-

fective cost function for this particular problem. We have also experimented with various

parameter choices and found particularly effective parameters for three different types of

metaheuristic applied to this problem. In comparing the metaheuristics, we have observed

that ant algorithms - and in particular Ant System - appear to be more effective than ei-

ther memetic algorithms or simulated annealing. This is also the first time ant algorithms

and memetic algorithms have been applied to the S-box problem.
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It seems unlikely that evolutionary methods acting on the truth table alone will be

sufficient to find almost perfect nonlinear (or DU 4 with low DF ) S-boxes for n = 6 or

higher. In future research, it may prove beneficial to try alternate representations of the

S-box [84], however it is not currently known if any alternate representations with suitable

search landscapes exist.

Further research focusing on the use of theoretical results to impose further constraints

on the truth table values (and hence the search space) may also yield a breakthrough.

Currently, the restrictions imposed by Theorem 5.1.18 act on a fraction of truth table

entries that decreases exponentially with n, and leave a great deal of latitude for the

remaining values.

Furthermore, Theorem 5.1.18 only focuses on affine equivalence due to the difficulty

in finding EA and CCZ transformations that achieved the results desired while preserving

bijectivity. Attempting to find such transformations may achieve the stronger restric-

tions required, especially given that replacing a bijective S-box with its inverse is a CCZ

transformation that preserves bijectivity.

Finally, the cost of a given edge in the ant colony experiments varied depending on the

other edges added beforehand. This may indicate that a version of ant colony optimization

designed for dynamic problems, such as AntNet, might be possible to adapt to obtain

superior performance.
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Chapter 6

Nonlinear cryptanalysis and

metaheuristic search for S-box

approximations.

In this chapter, unlike the previous two chapters, we apply metaheuristic search - in partic-

ular, simulated annealing - to cryptanalysis. However, there has been little prior research

into nonlinear cryptanalysis, and so we also design algorithms to exploit the “nonlinear

approximations” we evolve, and work out the statistical frameworks governing the per-

formance of these algorithms. We are then able to work out which properties, from the

cryptanalyst’s point of view, would be desirable in a nonlinear approximation. This enables

us to design cost functions to search for approximations with these properties. We also

study existing attempts to apply simulated annealing to this problem, and work out which

types of move have smooth search landscapes defined. We state the results of this for var-

ious ciphers, and attempt to incorporate the evolved approximations into new attacks on

the DES and Serpent ciphers, resulting in an improved cryptanalysis of 11-round Serpent.

The results in this chapter have the potential to lead to improvements in the cryptanal-

ysis of other well-known ciphers, and establish the potential for further exploitation of

metaheuristics in cryptanalysis.
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6.1 Introduction.

The basic linear cryptanalytic method [179, 180] has already been described in Section 3.2

of Chapter 3. There have, however, been several extensions and variations proposed since

its discovery in 1993.

The use of multiple approximations was first seen, in a somewhat ad hoc way with

limited scope for generalisation, in 1994 [180]. Later that same year, Kaliski and Robshaw

conducted a dedicated investigation into linear cryptanalysis with multiple approximations

[144], and subsequent research in the use of multiple approximations [38, 186] finally

culminated in the new method known as multidimensional linear cryptanalysis [68, 69,

70, 71, 66, 196], used in the best cryptanalysis to date of reduced-round PRESENT [40]

[67] and Serpent [5] [196].

Another research direction proposed was the generalisation of the method to make use

of nonlinear approximations. That is, instead of being restricted to equations of the form

xa1 ⊕ xa2 ⊕ . . .⊕ xai ⊕ yb1 ⊕ yb2 ⊕ . . .⊕ ybj in the input bits xi and output bits yi of cipher

components, the cryptanalyst could make use of higher-degree terms such as xa1xa3 - in

other words, terms that needed the AND operation to be evaluated.

This was first proposed by Harpes, Kramer and Massey [130], and investigated in

more depth by Knudsen and Robshaw [164], in which it was concluded that nonlinear

approximations could replace linear approximations only in the first and last rounds of

the distinguisher - and even then, there were problems (as described by Knudsen and

Robshaw) that would not apply in the case of a purely linear approximation. One of

these was the difficulty of finding the nonlinear S-box approximations; for a DES-sized

6 × 4 S-box, the search space for possible approximations was 264 in size, increasing to

2256 for an AES-sized 8×8 S-box. This was handled by restricting the search to nonlinear

approximations with degree below a certain threshold d; significantly reducing the size of

the search space but also preventing better approximations of higher degree from being

found [161].

The assumption that nonlinear approximations could only be used in the outer rounds

of the distinguisher was partially challenged by Courtois [104, 105]. Courtois demonstrated

that the use of nonlinear approximations was in fact possible in other rounds of a Feistel

cipher, as long as each round’s approximation was a bi-linear expression using no nonlinear

parts that were not of the form (Liα⊕Liβ⊕ . . .⊕Liω) ·(Ria⊕Rib⊕ . . .⊕Riq) (where Li and

Ri were variables from the left and right-hand ciphertext blocks in round i respectively).

140



He did, however, have to accept a certain amount of key-dependence, in that a given bi-

linear approximation B could hold with lower bias for some key values than for others.

His attack also strongly relied on the Feistel structure, and could not be generalised to

attack SPN-based ciphers.

The first, and so far only, use of metaheuristics in the context of nonlinear cryptanalysis

was the use of simulated annealing by Clark et al. [78] to evolve nonlinear approximations

to the MARS S-box [49] of the form f(xi1 , xi2 , . . . , xik) = (yj1 ⊕ yj2 ⊕ . . . ⊕ yjk), for use

in the first round of nonlinear distinguishers. Their approach, building on similar work in

the context of stream ciphers [77], found various nonlinear approximations holding with

a significantly higher absolute bias (151/512) than the best-known linear approximations

for the MARS S-box (84/512). However, no means of exploiting these in an attack on

reduced-round MARS was known.

In this chapter, we attempt to build on the above research in the following directions:

• We look at the question of which moves have a smooth search landscape defined when

they are used as the move function in a local optimisation-based metaheuristic for

finding nonlinear S-box approximations. We adapt the metaheuristic search method

of Clark et al. to prioritise these over the other move types previously defined.

• The cryptanalyst does not know the values of the key bits xored with the bits involved

in the nonlinear approximation. Where n0 denotes the nonlinear function involved,

computing n0 on the bits exposed through partial encryption/decryption means that

the cryptanalyst is in fact computing nα1α2...αl = n0(x1⊕kα1 , x2⊕kα2 , . . . , xl⊕kαl).
There exist 2l candidates for the correct function, ni, to compute on these bits,

and the cryptanalyst does not know which is correct. Furthermore, the incorrect

functions may still define approximations with nonzero bias, and hence

– may contain additional information that would be of use even if the cryptanalyst

did know the correct function.

– may not be possible to distinguish from the correct approximation if their biases

are too close to each other.

We devise various statistical frameworks for nonlinear modifications of the basic

linear cryptanalytic algorithm - Matsui’s “Algorithm 2” [179] - which can succeed in

spite of - or even with the assistance of - these “related” functions (or, equivalently,
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the “related approximations” they define). We describe the new attack, and how

to incorporate recent advances in linear cryptanalysis into it. We also adapt the

metaheuristic search algorithm to take into account the properties of the related

functions. Finally, we present newly-obtained nonlinear approximations for the S-

boxes of various ciphers, with bias in excess of the best linear approximations for

the same, and utilise these in new attacks on reduced-round Serpent.

Figure 6.1 below depicts a 1R nonlinear approximation, which we have used successfully

in attacking the Heys toy cipher [140]. The (r−1)-round approximation is composed of an

(r− 2)-round linear approximation, followed by a nonlinear approximation which replaces

the linear approximation to round (r − 1). As explained above, the cryptanalyst cannot

simply guess the bits from the final round key, but is also forced to deal with the incorrect

approximations (and one correct approximation) derived from guessing the involved values

of the penultimate round key bits. Note in particular the “partial decryption” in the final

round, where twelve ciphertext bits are xored with twelve guessed key bits, and the inverse

S-box is applied to each of the 4-bit results. In effect, the first part of the decryption

procedure is applied to part of the ciphertext.

This chapter is structured as follows: The remainder of this section provides a brief

description of linear cryptanalysis, as well as an important refinement to it due to Collard

et al. [100]. Section 6.2 discusses the ways in which using nonlinear approximations affects

the attack. Section 6.3 describes the new attack, including the adaptation of Collard et al.’s

improved methodology to the nonlinear domain and the Feistel structure, and addresses

the question of how its complexity is to be calculated.

At this point in the paper, we will have described a well-defined scenario in which

we can use the evolved nonlinear approximations, and will have addressed in detail the

question of how the related approximations can and should be handled. This means that

we will finally be in a position where we can construct cost functions taking all this into

account, and so in Section 6.4 we will describe our experiments with the new simulated

annealing algorithm; including how it differs from that originally used by Clark et al. [78].

A large proportion of Section 6.3 is focused on the Data Encryption Standard, as the

best-known example of a Feistel cipher. Section 6.5 discusses the application of the new

technique to the DES further. It also discusses the application of the new technique to

other ciphers. In particular, we:

• Describe new attacks on reduced-round Serpent,
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Figure 6.1: Diagram of a 1R nonlinear approximation to the Heys toy cipher [140].
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• Give the results of our search for S-box approximations for the AES, DES and

PRESENT S-boxes,

• Demonstrate the workings of an attack on the DES using the best of the new ap-

proximations. The attack is not in practice as efficient as the best-known attack

against DES [180]; it is presented chiefly to demonstrate how a nonlinear attack on

a Feistel cipher would work.

Finally, Section 6.6 presents our conclusions, and discusses avenues for further research.

6.1.1 Linear cryptanalysis - the three main phases of an Algorithm 2

attack.

Unless otherwise stated, the linear cryptanalytic attack will be assumed to be a 2R attack,

in which the cryptanalyst knows of a linear approximation to rounds 2, 3, . . . , (r − 1) of

the cipher, and by using candidate key bit values to partially decipher parts of the known

ciphertexts (reversing the effects of round r on certain key bits), as well as to partially

encrypt certain bits in the known plaintexts, obtains values for the bits on which the

probabilistic linear relation should hold. Note in particular that, unlike the 1R attack

shown in the earlier diagram, this means that key bits are guessed in both round 1 and

round r.

The theoretical bias for this linear approximation is calculated by starting with the

biases of the linear approximations to each individual S-box, and then using the Piling-Up

Lemma [179]. This lemma was already given as Lemma 3.2.2, we restate it here for clarity:

Definition 6.1.1. For 1 ≤ i ≤ n, let Xi be independent Bernoulli random variables such

that:

pi = P (Xi = 0)

(1− pi) = P (Xi = 1)

(In the case of linear cryptanalysis, Xi = 0 iff the linear approximation to the ith

approximated S-box holds.)

Then P (X1 ⊕X2 ⊕ . . . Xn = 0) is:
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(1/2) + 2n−1
n∏
i=1

(pi − 1/2).

with probability bias:

ε = 2n−1
n∏
i=1

(pi − 1/2)

In reality, the probabilities of the linear approximations to the S-boxes in one round

holding are not independent of the probabilities of the linear approximations to other

rounds holding, so the Piling-Up Lemma only yields an estimate of the true bias. This is

usually accurate enough for the purposes of cryptanalysis, although situations where it is

not are discussed by Murphy [187] and Leander [172].

Definition 6.1.2. Where a linear approximation holds with bias ε, i.e. with probability

1/2 + ε, the capacity of the approximation is equal to 4× ε2. More generally, in an attack

using multiple approximations Ai (1 ≤ i ≤ M), each with bias εi, the capacity of the set

of the approximations is 4
∑M

i=1 ε
2
i .

We note in particular that the bias of the linear approximation xa1 ⊕ xa2 ⊕ . . . xan =

yb1⊕ . . .⊕ybm as calculated using the Piling-Up Lemma may be either positive or negative,

and that the values of various bits in the round keys affecting the approximated rounds may

cause the actual bias to possess the opposite sign. In the standard attack, the cryptanalyst

is only interested in the magnitude of the bias and hence this is not a problem. In fact, this

phenomenon is actively exploited if the cryptanalyst goes on to use Matsui’s Algorithm 1

[179] to obtain the parity of these key bits.

Section 3.2 of the literature review chapter in this thesis contains a description of the

linear cryptanalytic attack. We propose here to build on the description by describing the

way in which a linear attack is split into three main phases, and explaining in detail what

the cryptanalyst does during each phase. We will then describe a recent methodological

improvement to one of these phases that significantly reduces the attack’s complexity,

but that was felt to be beyond the scope of the introductory Section 3.2. When first

published, this improvement only applied to substitution-permutation networks; we will

however describe a way in which it can be adapted to Feistel ciphers such as the Data

Encryption Standard. (This will prove to be important; a nonlinear attack on DES is

presented in this chapter which would otherwise have overly high time complexity.)
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A linear cryptanalytic attack may be divided into three main phases; each of which we

need to calculate the complexity of separately. These are:

1. The distillation phase. In this phase, the cryptanalyst has access to N pairs (plain-

text, corresponding ciphertext), all encrypted with the same key k0. These are

“known plaintext” pairs, as opposed to “chosen plaintext”, because the cryptanalyst

is not assumed to have been able to make any choices regarding any of the N plain-

text values encrypted. The cryptanalyst needs to extract the relevant data from

these pairs and discard the rest.

Certain bit positions in the plaintext and ciphertext will have been identified as

relevant, in that they are the bits which must be partially encrypted/decrypted

to obtain the values of the bits involved in the approximation. Let the number

of such positions be denoted l. The cryptanalyst allocates memory for an array

COUNTERS 1 of 2l integer variables, each of which must be capable of holding

any integer between 0 and N , and initialises these to 0. These variables are the first

of several sets of counters used in the attack.

For each known plaintext/ciphertext pair in turn, the cryptanalyst extracts the l

relevant data bits. Where j denotes the l-bit value corresponding to the values of

the l bits, the cryptanalyst increments the value in COUNTERS 1[j] by 1, discards

the current pair, and moves on to the next pair until all N pairs have been processed.

Clearly this phase has complexity O(N). Let ε denote the bias of the linear approx-

imation, then the cryptanalyst needs N to be equal (for some a) to a/ε2. Advice

on the value of a to choose to achieve a desired success probability was provided

in Matsui’s original paper [179], and later updated with a more accurate statistical

framework by Selçuk [213].

2. The analysis phase. We shall refer to the set of key bits which are to be recovered as

the target partial subkey (TPS). Let k denote the number of bits therein. For most

ciphers, k and l will be equal; however DES’s expansion phase makes it an example

of a cipher for which this is not the case.

The cryptanalyst allocates memory for an array of integers, COUNTERS 2, with 2k

entries, such that each array entry should be able to take any value between 0 and N .

She then, for every possible TPS value i, uses it to partially encrypt/decrypt every
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possible value j of the relevant text bits in turn. If the linear approximation holds for

the pair (i, j), COUNTERS 2[i] is incremented by the value in COUNTERS 1[j].

When this process is complete, the values in COUNTERS 2 should be converted

into the absolute values of the biases with which the approximation held for the

various key guesses; this is done by mapping each value COUNTERS 2[i] to v[i] =

|COUNTERS 2[i]−N/2|. The higher the value of v[i], the more likely it is that i

is the correct TPS.

This phase as described has O(2k+l) (usually 22k) time complexity, in that this many

partial encryptions/decryptions must be carried out, each potentially requiring data

to be written to an array in memory. However, this is the phase for which the

aforementioned improvement exists, which we will soon address.

3. The search phase. During this, the correct value of the TPS bits must be obtained

from the counter values calculated in the analysis phase, and the remaining key bits

must also be found.

It may be that the cryptanalyst will just accept the highest value in COUNTERS 2

as corresponding to the correct key guess. The correct key guess should have reversed

the effect of the outer rounds and yielded bits for which this high bias was expected;

the wrong key guesses, by contrast, would not have resulted in the data bits being

mapped to such values and would in effect have applied a function with a randomizing

effect to them.

If the cryptanalyst proceeds thus, various formulae exist in terms of the approx-

imation’s bias ε [179, 213] which can be used to calculate the number of known

plaintexts N required for the attack to succeed with probability p. The cryptan-

alyst needs O(2k) time to search the array v for the highest value therein. After

this, where K denotes the key size of the cipher, the cryptanalyst is faced with the

problem of finding the remaining (K − k) key bits, requiring an exhaustive search

(time complexity O(2K−k) encryptions), unless further attacks (whether linear with

another approximation, or some other technique) can be applied to recovering some

or all of these bits.

However, this is not always the strategy employed. The number of possible values

for the TPS bits involved is likely to be extremely high, and some of these will result,

by pure chance, in high biases themselves (rather than the expected near-zero bias).
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If the number of known plaintexts N does not provide a sufficiently large sample,

some of these biases may be more extreme than that for the correct TPS.

In Matsui’s attack on the full DES [180], this behaviour was predicted, and dealt with

in a way that allowed a much lower value of N to be used than would otherwise have

been the case. The correct key was expected to result in one of the X highest-ranking

values of v[i] (in this case, X was equal to 213), but not necessarily the highest such

value. With this as the goal of the previous phases, the data complexity was much

lower than it would have been had the correct key been required to yield the highest

value of v[i]. However, this came at the cost of increased time complexity, as the

search for the remaining 2K−k key bits was repeated for up to X different TPS

candidates.

This technique is known as key ranking.

The complexity of sorting the vector v to identify the highest biases is O(k2k)). It

may, for small values of X, be faster simply to search for the X highest biases, in at

most O(X2k) time. In either case, starting with the highest-ranked TPS candidate,

and continuing on for each successive candidate until the right one is found among

the X highest ranked keys, the cryptanalyst must (probably through exhaustive

search), search for a value for the remaining (K − k) key bits such that the full key

value resulting correctly decrypts the known ciphertexts.

Without key ranking, this stage should be presumed to have complexity O(2k+2K−k)

unless there is reason (such as another high-bias linear approximation involving

the other key bits) to believe that the remaining key bits can be obtained with-

out exhaustive search. With key ranking, this stage has a higher complexity of

O(min(k,X)·2k +X·2K−k), although as stated the use of key ranking will probably

reduce the number of known plaintexts needed and hence reduce the time complexity

of the distillation phase and the data complexity of the attack as a whole.

The improved method for the analysis phase, due to Collard, Standaert and

Quisquater.

(Note: we now switch from referring to the ith element of an array a as a[i], and will

henceforth use the notation ai.)

Other methods for the analysis phase do exist, including one used by Biham, Dunkel-
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man and Keller [27] to overcome a situation in which the time complexity for the naive

method described above would have been infeasible. We focus here on a newer method

with very significantly improved time complexity due to Collard, Standaert and Quisquater

[100]; originally defined for 2R linear attacks, and later adapted to 1R attacks by Nguyen,

Wu and Wang [196].

(In both cases, the method applied only to SPN ciphers like AES and Serpent where

the number of active key bits was equal to the number of active text bits (let k denote

this number), and not to Feistel ciphers such as DES. In the particular case of DES,

the expansion phase of the round function was another factor inhibiting compatibility,

in addition to the Feistel structure. We will describe an adaptation of the method that

overcomes these obstacles later on in this chapter.)

In this method (in the notation of Collard et al.):

• N , as stated earlier, is the number of known plaintext/ciphertext pairs.

• k, as also stated earlier, is the number of key bits in the TPS. It was originally

assumed [100] that this was also the number l of data bits that had to be partially

encrypted/decrypted, since for an SPN cipher each of these key bits would be xored

with its corresponding data bit during said process. In the interests of simplicity, we

will limit ourselves for the time being to ciphers such that this assumption is valid.

• C is a 2k × 2k matrix. If the approximation holds for target partial subkey value i

and value j for the relevant plaintext/ciphertext bits, Cij = 1. If not, Cij = −1.

• Where the “active” text bits are those which we partially encrypt/decrypt during

the attack, x is a vector such that xj is the number of (plaintext, ciphertext) pairs

in which the k-bit number represented by these bits is j. Note that x is the vector

we previously referred to as COUNTERS 1; the computation of x is in fact the

distillation phase and has complexity O(N) as previously stated.

• In the case of a 1R attack, T is calculated during the distillation phase and replaces

x in the algorithm. Tj is defined as (the number of P/C-pairs such that the value

of the active ciphertext bits is j and the parity of the active plaintext bits is 0) -

(number of pairs such that the active ciphertext bits have value j and the active

plaintext bits have parity 1.)
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The matrix/vector product Cx, when all entries within are divided by 2, is the

previously-defined vector v such that vi is the sample bias for TPS candidate i. We

do not need to carry out this division, as the values currently present (vi = the number

of pairs such that the approximation held for candidate i, minus the number such that it

did not hold.) suffice equally well. For this reason, we will engage in a minor abuse of

notation and refer to Cx as v from here on. Where key ranking is involved, this vector

would need to be sorted (in O(k·2k) time); otherwise it would need to be searched (in

O(2k) time) for the maximum absolute value therein.

To compute and store the entire matrix C would require O(22k) time and memory,

in addition to the O(22k) time complexity of the multiplication Cx. However, by relying

on various properties of C, and on the Fast Fourier Transform, we are able to derive the

vector v = Cx using only one column of C. We can do this with time complexity O(2k)

to calculate the column of C, O(3·k·2k) to compute the transforms, and O(2k) memory

since only one column of C is needed for the new technique.

This is a significant improvement on the O(22k) complexity of the original algorithm

for this phase.

(The key property of the matrix C is that the value of Cij is entirely dependent on

(i ⊕ j). Any Cij and Cgh such that (i ⊕ j) = (g ⊕ h) will have the same value. This

means that the set of values in any one column of C is the same as the set of values in

any other column - just in a different order. This redundancy is the key to the complexity

improvements obtained. We do not have the space to provide a full explanation here, but

refer the reader to Collard et al.’s paper [100] for the full explanation.)

Let us be a little more precise with regards to the memory requirements. The column

of C has 2k entries, all -1 or 1. This implies that we need no more than 2k bytes to store

it in signed char variables. Variable types using fewer bits are unlikely to be present on

any compiler, or to have the same speed of implementation.

We also need to store x. This has 2k entries, each of which must be at least log2(N) bits

in size. On a modern processor with 64-bit word size, most ciphers will require no more

than 2k+1 words here, or 2k+4 bytes. We do not know of any block ciphers in widespread

use with block size > 128, although pre-AES versions of Rijndael did support up to a

256-bit block.

During the calculation of Cx, two “interim” arrays, y and z, are used [100]. Based on

Carlet’s description [52] of a version of the FFT using finite-field arithmetic over GF (2)x,
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which is equivalent to both the Fast Walsh-Hadamard Transform and the k-dimensional

FFT of size 2k [166], and on our own implementation of the same, we can say with

confidence that the same data types can be used for these as for x, and hence that these

arrays should require 2k+5 bytes between them.

This gives us a memory complexity of 2k + 2k+4 + 2k+5 ≈ 2k+5.615 bytes. One of the

previous arrays can presumably be reused to store Cx itself - the space for the array that

stored x could be repurposed for signed instead of unsigned data, for instance.

We now address the question of what the time complexity is in terms of. Clearly the

naive algorithm would require 22k partial encryption/decryptions (PEDs) to calculate C,

in addition to O(22k) arithmetic operations (AOs) and memory accesses (MAs) to calculate

Cx. The new algorithm requires 2k PEDs to calculate the first column of C, followed by

O(3·k·2k) memory accesses and AOs to calculate Cx.

The question of how many arithmetic operations are involved in partially encrypt-

ing/decrypting a cipher varies by cipher, attack, and implementation. It is further compli-

cated if lookup tables are used for the S-boxes and we are forced to evaluate the complexity

of an encryption or decryption in terms of memory accesses as well, since the complexity

of these will vary significantly by CPU. We will later on make use of approximate com-

plexity in terms of arithmetic operations for reduced-round versions of Serpent using the

optimised bitslice implementation [5, 6].

Based on the aforementioned version of the FFT [52], we estimate ≈ (2k + 3) · 2k

MAs per transform. (This is only an estimate, since we do not have detailed knowledge

of CPU register allocation.) Where y and z denote the output arrays from the first two

transforms, the dot product y ·z must then be calculated, requiring 3×2k memory accesses.

Multiplying the per-transform complexity by three, and adding the complexity of the dot

product and the 2k memory accesses when the first column of C was calculated and written

into memory, gives us ≈ (6k + 13) · 2k MAs in total. As for arithmetic operations, the

calculation of the dot product requires 2k AOs, and based on the same evidence as before

we estimate ≈ (2k + 1) · 2k AOs per transform, giving us a total of ≈ (6k + 4) · 2k AOs.

This is a significant improvement over the O(22k) memory accesses of the original anal-

ysis phase; although in most cases that phase was able to access contiguously stored array

elements in sequence (work with COUNTERS 2[i] and COUNTERS 1[j + 1] would oc-

cur immediately after work with COUNTERS 2[i] and COUNTERS 1[j] (stored at the

address prior to COUNTERS 1[j + 1])) and it may be that the extent of the improve-
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ment is reduced if this factor aided the CPU’s cache management/location-seeking in main

memory.

We note that equating complexity in terms of memory accesses to complexity in terms

of partial cipher encryptions is a difficult matter [122], depending on several factors such

as; whether the CPU’s memory controller is on-die or off-die, whether the memory access

is to L1 cache, L2 cache, higher-level cache or main memory, the instruction set of the

CPU, the efficiency of physical address extension... Previous work on the cryptanalysis of

reduced-round Serpent [27, 31, 30] was not always consistent in converting between the

two, and assumed 3 processor cycles per memory access - which would seem to require

all memory accesses to be to L1 processor cache. Estimates for the time required to

access data in main memory in the event of a cache miss vary from 75 to 300 cycles,

and it is not clear if this figure is likely to increase or decrease over time, as processor

performance improvements increasingly rely on multiple cores and parallel execution rather

than increased clock speed. In 2003, the NESSIE project [207] gave a figure of 50 cycles

per encrypted byte on either the PowerPC G3 or G4 processor as the best performance

for full Serpent; if we extrapolate from this to 800 cycles per block we have a worst-case

estimate of 1 MA = 3/8 of a full Serpent encryption, and we do not have up-to-date figures

for more recent processors to compare this to. It is becoming accepted that there is no

easy means to compare complexity in terms of memory accesses to complexity in terms of

cipher operations [122], and this is a problem we ourselves will encounter when discussing

the performance of our attacks in a later section.

For 2R attacks, later research [196] offers a potential performance improvement, trading

very slight increases in MA and AO complexity for reduced memory and PED complexities.

Let l1, l2 be such that (l1 + l2) = k, where l1 denotes the number of TPS bits acting on

the plaintext, and l2 the number of TPS bits acting on the ciphertext. Then instead of 2k

partial encryption/decryptions, the method need only execute 2l1 partial encryptions and

2l2 partial decryptions, in addition to est. (2l2 ·(6l1+4)·2l1 +2l1 ·(6l2+4)·2l2) = (6k+8)·2k

arithmetic operations and est. (2l2 · (6l1 + 13) · 2l1 + 2l1 · (6l2 + 13) · 2l2) = (6k + 26) · 2k

memory accesses. Memory complexity is also improved, since the arrays y and z need only

have 2max(l1,l2) entries each, reducing the total to 2k + 2k+4 + 2max(l1,l2)+5 ≈ 2k+4.087 +

2max(l1,l2)+5 bytes.

A generalised version of this algorithm for use in multidimensional linear attacks was

also developed [196], leading to the best cryptanalytic result so far against 12-round Ser-
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pent. Where m denotes the number of dimensions, the generalised algorithm requires

2m× the number of MAs and AOs for the one-dimensional case, plus the complexity of

computing 2l1+l2 more transforms on a data set of size 2m, to convert the experimental

correlations to empirical probability distributions.

Generalising the new method to the Feistel structure - an example.

As stated, it is in some cases possible to generalise the improved analysis phase to ciphers

other than substitution-permutation networks. The key fact upon which all of the new

methodology relies is that Cij = f(i⊕j) for key value i and text value j. Let us note that

in Matsui’s attack on the full DES, twelve text bits are xored with twelve key bits prior

to being input to f , but the thirteenth (an xor of eight text bits) is not. Let us therefore

introduce a “dummy” key bit, the value of which we know to be zero (but which we will

act as though we do not know), and assume that it is xored with one of these eight bits at

the start or end of the cipher (One such bit, referred to in Matsui’s notation as CH [29],

is not in fact suitable for this; we must use one of the others.) This allows us to treat the

partial encryption/decryption in Matsui’s attack as f(i⊕j), to construct a column of C

containing 213 entries, and indeed to carry out the rest of the attack with complexity as

described above for k = 13. The fact that each row for (dummy bit = 1) will be equal

to −1×(corresponding row for dummy bit = 0, all other key bits unchanged), and hence

that the matrix will be rank-deficient, will not affect the attack.

Unfortunately, the analysis phase of Matsui’s attack on the full DES has the least effect

on the overall complexity, and it is this phase which would be optimised by applying the

above. Furthermore, the fact that CH [29] could not be xored with a dummy key bit (since

it was already one of the bits xored with a real key bit) suggests that approximations for

DES, and other non-SPN ciphers, may exist to which this method cannot be applied.

6.2 How nonlinear approximations affect the attack

6.2.1 How unbalanced nonlinear components in the approximation af-

fect the attack.

Let us assume that we have set up a 2R linear or nonlinear approximation to the inner

rounds of some cipher. (It will be straightforward to extrapolate the results of this sub-

section to the case of 1R attacks.) For a conventional linear approximation, this would be
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Figure 6.2: Diagram showing the full 16-round DES and the approximation for rounds 2
to 15 used by Matsui [180]. Biases are expressed as fractions, numbers in square brackets
indicate active bits in the approximation.
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an equation of the form (xa1 ⊕ xa2 ⊕ . . . ⊕ xas) ⊕ (yb1 ⊕ . . . ⊕ ybt) = 0, where the xa are

the input bits to Round 2 and the yb are the output bits of round r − 1.

Now, this equation, assuming the cipher has acted sufficiently well in randomising its

outputs, should hold with bias 0 if the correct TPS has not been guessed.

We have (balanced function on one set of bits x) ⊕ (balanced function on some other

set of bits y) = 0. Again, assuming the cipher’s randomising effect has been adequate,

the value of the first set of bits should be viewed as independent of the second. Then

P(approximation = 0) =

P ((xa1 ⊕ . . .⊕ xas = 0) ∩ (ya1 ⊕ . . .⊕ yas = 0))

+ P ((xa1 ⊕ . . .⊕ xas = 1) ∩ (ya1 ⊕ . . .⊕ yas = 1))

= (0.5× 0.5) + (0.5× 0.5)

= 0.5

This only depends on the linear function on the approximation’s input bits (the linear

component at the input end) and the linear function on the approximation’s output bits

(the linear component at the output end) being balanced, not on their being linear. Either

or both of these could be replaced with a balanced nonlinear function without affecting

this.

Therefore, for the following configurations for the overall approximation, the attack

works as predicted by the usual probability model:

1. First per-round approximation (Round 2 of the cipher) in overall approximation is

linear. Final per-round approximation (to Round (r − 2)) is also linear.

2. First per-round approximation in overall approximation is a nonlinear approximation

with a balanced nonlinear component. Final per-round approximation is linear.

3. First per-round approximation in overall approximation is linear. Final per-round

approximation is a nonlinear approximation with a balanced nonlinear component.

4. First per-round approximation in overall approximation is a nonlinear approximation

with a balanced nonlinear component. Final per-round approximation is also a

nonlinear approximation with a balanced nonlinear component.
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Now, let us assume that either the first per-round approximation, or the final per-round

approximation, is an unbalanced function, and that the other is balanced. Without loss of

generality, we may assume that it is the first per-round approximation, the approximation

to Round 2 of the cipher, that is balanced. Let P(unbalanced component = 0) be denoted

α.

Then, for an incorrect key, P(approximation = 0) =

P ((xa1 ⊕ . . .⊕ xas = 0) ∩ (ya1 ⊕ . . .⊕ yas = 0))

+ P ((xa1 ⊕ . . .⊕ xas = 1) ∩ (ya1 ⊕ . . .⊕ yas = 1))

= (0.5× α) + (0.5× (1− α))

= (0.5× 1.0)

= 0.5

We see that, as long as either the first or the last round of the approximation is a

balanced function on the input bits to the inner rounds, or the output bits to said rounds,

it does not matter whether the function acting on the bits at the other end is balanced.

The question therefore arises: can we use approximations which are unbalanced at both

ends?

Unfortunately, in general we cannot. Let β denote the probability that the nonlinear

function at the input end is zero. Let γ be the probability that the nonlinear function at

the output end equates to zero. Then P(approximation = 0) =

P ((xa1 ⊕ . . .⊕ xas = 0) ∩ (ya1 ⊕ . . .⊕ yas = 0))

+ P ((xa1 ⊕ . . .⊕ xas = 1) ∩ (ya1 ⊕ . . .⊕ yas = 1))

= (β × γ) + ((1− β)× (1− γ))

This is not always equal to 0.5. For example, let β = 0.4, γ = 0.6. Then the above

is equal to 0.48, not 0.5. Let β = γ = 0.1 and the probability equates to 0.82, diverging

further from 0.5. Clearly, having an unbalanced function at both ends of the approximation
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is problematic, and it is for this reason that we limit ourselves to situations in which at

least one end of the approximation is a balanced function on its respective set of bits.

The reader may, having noted that the related approximations previously referred

to define several different functions at their respective ends of the approximation, be

concerned that this will make it difficult to ensure that they are all balanced. Fortunately,

all nonlinear components in a set of related approximations are balanced if and only if the

primary approximation is balanced.

To prove this, let us assume without loss of generality that the correct key is an all-

zeroes bitstring, and that the nonlinear component is in terms of the approximation’s

output bits. Consider that the nonlinear component of the α1α2. . .αlth related approxi-

mation, nα1α2...αl , is equal to n0((y1⊕α1), (y2⊕α2), . . ., (yl⊕αl)), where n0 is the nonlinear

component of the correct, or primary, approximation. Clearly, each related approximation

ni must have a truth table which is a permutation of that of n0, the permutation being

determined by the fact that ni(y) = n0(y ⊕ i).

6.2.2 How the related approximations affect the attack.

We have already discussed the difficulty faced by the cryptanalyst in working out which of

2h functions on the partially-decrypted ciphertext bits (and partially-encrypted plaintext

bits) is equivalent to the nonlinear function on the S-box output/input bits involved in the

approximation. One possible approach would be to compute all possible functions, and

for each guess at the key bits involved, accept the function with the highest probability

bias as correct.

Knudsen and Robshaw [164] considered a very simple form of this, in which no partial

decryption was involved. In effect, they carried out a “0R” attack in which the whole cipher

(5-round DES) was nonlinearly approximated, using an approximation that was linear on

the plaintext bits but nonlinear on the ciphertext bits. The nonlinear approximation to

the final round had an absolute bias of 24, and the aim of the attack was to deduce the

four key bits kα1 . . . kα4 which were xored with the final-round S-box input bits involved

in the approximation.

The problem that occurred was that several of the “related” functions corresponded

to alternative nonlinear approximations which also possessed high bias. One of these

possessed the same absolute bias as the original, and for those which did not, it was not

clear how much data would be required to distinguish, say, the correct function defining a
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bias 24 approximation from an incorrect function which defined a bias 16 approximation.

Or, in some of the situations we encountered when devising our own approximations, a

bias 24 approximation and an incorrect function defining an approximation with bias −22.

Let us try to demonstrate, using examples, why this problem does not apply in the case

of linear cryptanalysis, and why attacks based on nonlinear cryptanalysis cannot disregard

it in the same way as conventional linear attacks.

In a conventional 2R linear attack, key bits are guessed for S-boxes in the first and

last rounds of the cipher. It is not necessary to guess the key bits affecting the S-boxes

in the first and last rounds of the approximation. Any guess, right or wrong, at these

bits simply xors a linear function with a constant value. Some key guesses will, in effect,

always xor the correct function calculation with zero and leave it unaffected. Others, by

always xoring with 1, will merely flip the sign of the bias.

Figure 6.3: Diagram showing the final key xors and last round of the Heys toy cipher
during a conventional linear attack.

In the context of Matsui’s attack on 16-round DES [180], this means that although the

first and last rounds of the approximation are, respectively, 2 and 14, it is not necessary

to guess the round key bits which are xored with S-box input values in these rounds. Only

round key bits from rounds 1 and 16 are needed.

For a nonlinear attack, this is not the case. If either the first or last round of the

approximation involves a nonlinear component, and if the bits involved in said component

are xored with key bits after leaving/before entering the active S-box, these key bits have

to be guessed.

Let xi denote the ith input bit to whichever S-box we are dealing with, and let yj be

the jth output bit. Let us compare the linear approximation x4⊕x5 = y3⊕ y4 to DES S5

with the nonlinear approximations

• x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1y3
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• x3 ⊕ x4 = 1⊕ y1 ⊕ y3 ⊕ y4y1 ⊕ y3y4 ⊕ y3y4y1

to Serpent S3:

Related approximation Linear function Bias

0 x4 ⊕ x5 = y3 ⊕ y4 +6
1 (x4 ⊕ 1)⊕ x5 = y3 ⊕ y4 -6
2 x4 ⊕ (x5 ⊕ 1) = y3 ⊕ y4 -6
3 (x4 ⊕ 1)⊕ (x5 ⊕ 1) = y3 ⊕ y4 +6

Table 6.1: Linear approximation to DES S5. Note that all relateds are either the original
approximation or 1⊕ it.

Related approximation Nonlinear function Bias

0 x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1y3 +6
1 x3 ⊕ x4 = y4 ⊕ y3 ⊕ (y1 ⊕ 1)y3 0
2 x3 ⊕ x4 = y4 ⊕ (y3 ⊕ 1)⊕ y1(y3 ⊕ 1) 0
3 x3 ⊕ x4 = y4 ⊕ (y3 ⊕ 1)⊕ (y1 ⊕ 1)(y3 ⊕ 1) +2
4 x3 ⊕ x4 = (y4 ⊕ 1)⊕ y3 ⊕ y1y3 -6
5 x3 ⊕ x4 = (y4 ⊕ 1)⊕ y3 ⊕ (y1 ⊕ 1)y3 0
6 x3 ⊕ x4 = (y4 ⊕ 1)⊕ (y3 ⊕ 1)⊕ y1(y3 ⊕ 1) 0
7 x3 ⊕ x4 = (y4 ⊕ 1)⊕ (y3 ⊕ 1)⊕ (y1 ⊕ 1)(y3 ⊕ 1) -2

Table 6.2: Nonlinear approximation to Serpent S3. In this table, the polynomial forms of
the related approximations are not expanded.

Related approximation Nonlinear function Bias

0 x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1y4 ⊕ y1y3 ⊕ y1y3y4 6
1 x3 ⊕ x4 = 1⊕ y4 ⊕ y3 ⊕ y1 ⊕ y1y4 ⊕ y1y3y4 -4
2 x3 ⊕ x4 = 1⊕ y4 ⊕ y3 ⊕ y1 ⊕ y1y3 ⊕ y1y3y4 -2
3 x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1 ⊕ y1y3y4 2
4 x3 ⊕ x4 = y3y4 ⊕ y1y4 ⊕ y1y3 ⊕ y1y3y4 -2
5 x3 ⊕ x4 = y3 ⊕ y1 ⊕ y3y4 ⊕ y1y4 ⊕ y1y3y4 2
6 x3 ⊕ x4 = y4 ⊕ y1 ⊕ y3y4 ⊕ y1y3 ⊕ y1y3y4 2
7 x3 ⊕ x4 = 1⊕ y4 ⊕ y3 ⊕ y1 ⊕ y3y4 ⊕ y1y3y4 -4

Table 6.3: Another nonlinear approximation to Serpent S3. In this table, the polynomial
forms of the related approximations are expanded.

For the first nonlinear approximation, in a situation where y1y3 = 1, any wrong guess

at key bits (k1, k3) will result in its value being wrongly calculated as 0. If y1y3 = 0, by

contrast, only one of the three possible wrong guesses for (k1, k3) will result in its value
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being calculated incorrectly. In general, an incorrect key guess will not consistently result

in the wrong value being assigned to the nonlinear terms affected by it, and so will not

simply leave the overall magnitude of the bias involved in the attack invariant.

It is therefore necessary to guess at the key bits involved in the first and last rounds

of the approximation, as well as those involved in the first and last rounds of the cipher

or reduced-round variant thereof (in a 2R-attack.), simply to be able to obtain the latter

set of key bits. Since having to guess the values of these bits adds to the time complexity

of the attack, we would like to obtain some information about them.

Let us look again at the approximation x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1y3 above. The related

approximations when k4 is guessed wrongly hold with the same absolute bias as the corre-

sponding relateds for when it is not, so unfortunately we cannot recover any information

about the value of k4. However, the related for (k4 alone wrong) is the only related with

an absolute bias near to that of the correct guess, so we should be able to recover the

values of bits k1 and k3

Now consider x3⊕ x4 = 1⊕ y4⊕ y3⊕ y1y4⊕ y1y3⊕ y1y3y4. As seen in the table above,

no related approximation has as high a bias as the correct one, so in theory it should

be possible to obtain information on all three key bits involved. In practice, since the

relateds for (k4 wrong) and (all three key bits wrong) both have high bias, the amount of

data required to distinguish these from the correct related will be higher than that for the

remainder of the attack.

For this reason, in a search for approximations to use in a straightforward generalisation

of the linear attack, it would seem that the cost function should try to maximise the

difference between the absolute bias of the evolved approximation, and the highest absolute

bias of any of the related approximations. Since the attacker needs to obtain the key bits

for the first and last rounds of the cipher, the need for the “primary” approximation to

possess a high absolute bias is also important.

The above was all taken into account by Knudsen and Robshaw. However, what was

not observed was that related approximations with high absolute bias may actually benefit

the cryptanalyst during the search for the key bits in the cipher’s outer rounds. If the

correct key is guessed in these rounds, the related approximations will be expected to

hold with their predicted biases; if not they will be expected to hold with bias 0. By

evaluating all possible related approximations, the cryptanalyst can track the information

on the biases of 2l approximations instead of just one, and may be able to use this extra
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information to boost the “signal-to-noise ratio” and reduce the data requirements of the

basic attack - in effect trading increased time complexity against reduced data complexity.

Moreover, it may be that the cryptanalyst will decide only to attack the key bits in

the outer rounds, basing the score for each outer-round key candidate on the best experi-

mentally obtained bias across all of the relateds. If the primary approximation is expected

to hold with a particularly high magnitude of bias, the reduced data complexity resulting

from this approach may be deemed a reasonable tradeoff for the increased time complexity

(compared to conventional linear) in evaluating the full set of related approximations.

6.3 New statistical frameworks and cryptanalytic techniques.

6.3.1 Adapting the new analysis phase to nonlinear cryptanalysis of

substitution-permutation networks.

Where the cipher being attacked is a substitution permutation network, we will describe

an adaptation of Collard et al.’s new analysis method [100], as also the improvements due

to Nguyen et al. [196] to nonlinear cryptanalysis. For other cipher structures, such as

Feistel ciphers, the intention is to adapt this method as far as possible - indeed, in the

next subsection we will discuss adapting this method to the Data Encryption Standard.

• Let k denote the target partial subkey; i.e. the set of attacked key bits. Let k1 be

the bits of k interacting with the S-boxes in the outer rounds of the cipher (the ones

which we must partially encrypt/decrypt.) Let k2 be the bits of k interacting with

the S-boxes in the outer rounds of the approximation.

• Let f(i, j), where i is the value of the active text bits, and j the value of the bits of

k1 with which they are xored, be a 2|k2|-long string of values ∈ {−1, 1} defined as

follows:

1. Partially encrypt/decrypt i using j. This will yield a string of text bits enter-

ing/leaving the outer rounds of the approximation, |k2| of which are involved

in the nonlinear component. Note that this string of text bits is in fact only

dependent on the value (i⊕ j).

2. For each possible value µ of k2, xor the |k2| bits mentioned above with the

appropriate bits of µ, and compute the nonlinear function on these. Set the
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µth entry in the string of values to −1 if the nonlinear approximation does not

hold when this is done. Otherwise, set it to 1.

• The string of 1s and -1s is obtained by applying a sequence of functions to a set

of bits determined entirely by the value of (i ⊕ j). This allows the matrix C such

that Cij = f(i⊕ j) to be defined as before, except that Cij is now a string of values

instead of just one.

• Where x is the vector containing the frequency with which each value for the involved

text bits has occurred, Cx can also be calculated as before, although each entry in

Cx is now a 2|k2|-string of integers.

(To clarify, let us assume that we have 2|k2| matrices C(y), defined by letting C(y)i,j

be equal to the yth entry in Ci,j . We can calculate C(y)x for each C(y), and then

Cx is the vector such that Cxi is the string of ith entries from each of the C(y)x in

order: (C(1)xi, C(2)xi, . . ., C(2|k2|)xi).)

• So far, the memory complexity, and the time complexities in terms of arithmetic

operations and memory accesses, of the corresponding stages of the linear version of

this method can simply be multiplied by 2|k2| to obtain the complexity of the new

method up to this point.

• The first problem we are faced with is choosing the correct value of j (i.e. of k1)

from this. Each string of values needs to be assigned a score such that, according

to some statistical theory, the more likely a given k1 candidate is to be correct, the

higher the score assigned to its corresponding string of values.

In conventional linear cryptanalysis using the analysis method of Collard et al.,

there would be only one value in this string, the absolute value of which would be

the score. The complexity of going through the values in Cx and setting them to

their absolute values would be at most 2|k1|+1 memory accesses (2|k1| reads, and

at most 2|k1| writes.) and 2|k1| arithmetic operations. More generally, the time

complexity for this phase for nonlinear cryptanalysis is at least O(2|k1| + 2|k1|+|k2|)

memory accesses, to access all values in all strings and to write the scores to an

array.

• One way in which we could handle this would be by allocating each string of values

a score equal to the maximum absolute value therein. This approach, which we shall
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refer to as the maximum-bias approach, is the simplest possible method, and may

be the best to use when one of the approximations has a bias of considerably higher

magnitude than any of the other relateds. However, it does fail to make use of most

of the information in each vector Cxi.

The vector of scores should need at most (block size of cipher) bits per entry. Cur-

rently most block ciphers have block size ≤ 128, so this usually adds ≤ 16 × 2|k1|

bytes to the memory complexity. The time complexity will be dominated by the

O(2|k1| + 2|k1|+|k2|) memory accesses.

• Another possible approach would be to allocate each string of values a score equal

to the sum of squares of the values therein, before either accepting the value of k1

with the highest score or key ranking according to this score.

The time complexity for scoring according to this method should not differ sub-

stantially from the maximum-bias method, but the memory required for the vector

of scores would be substantially higher - 2|k1|+|k2| × 2dlog2(N)e bits, ≤ 2|k1|+|k2| ∗
(BLOCK SIZE ∗ 2), since in theory an attack using the full codebook could result

in at least one score equal to 22×BLOCK SIZE . For a 128-bit block cipher, this leads

to an upper bound of ≤ 2|k1|+|k2| ∗ 32 bytes.

If the truth tables of the related approximations are statistically independent, this

will allow us to make use of the χ2-statistic in a way similar (but not identical) to

its use in multidimensional linear cryptanalysis [70, 66].

If they are not, we still gain information from the sum of squares that allows them

to be used as a distinguisher, but we do not gain as much as if they were indepen-

dent. Since there is no known statistical framework for a variation of the χ2-statistic

where some of the Pearson correlation coefficients of the variables are not ∈ {0,±1}
(i.e. where they are not independent), we will need to conduct experiments on

significantly reduced-round cipher variants to obtain empirical evidence for the dis-

tinguishing advantage obtainable.

• The question arises as to whether we could exploit our knowledge of the theoretically

predicted distribution of the biases of the nonlinear approximation and its relateds.

For example, if we expect the related approximation for k2 ⊕ α for some value α to

hold with bias β, and the related approximation for k2 ⊕ γ ⊕ α (for some value γ)

to hold with bias −β, the above approaches do not currently utilise this knowledge.
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However, since we do not know in advance the correct value of k2, this would require

us, for each k1, to attempt to match the distribution to every possible value for k2 -

which would result in increased time complexity.

Since the log-likelihood ratio has the optimal data complexity among all methods

for distinguishing a distribution p from another distribution q [111, 70], we believe

that this would be the most effective means to exploit the information referred to.

Since the related approximations may not have statistically independent truth tables,

though, similar problems to those described for the χ2-statistic may still arise.

There is also the “linear hull” effect to be borne in mind. Approximations with the

same input and output bitmasks, but following different paths through the cipher -

i.e. different characteristics - may result in the actual distribution being different to

that predicted theoretically. Figure 4 of a recent paper by Collard and Standaert [97]

shows the results of experiments conducted on reduced-round versions of the cipher

SmallPRESENT [171], in which this difference is seen to increase significantly with

the number of rounds. In all of these experiments, we note that as the number

of rounds increases, the magnitude of the theoretical bias for a conventional linear

approximation (as calculated using the Piling-Up Lemma) is seen to increasingly

underestimate the magnitude of the actual bias. Furthermore, the extent of this

underestimate varies significantly depending on the key value, although the extent

of this variation does not appear to increase further after five rounds.

For the other methods we have suggested, this would not pose a problem; indeed it

would be beneficial to the attack’s performance. However, for a particular distance

metric (the Kullback-Leibler distance), the LLR statistic in a linear cryptanalysis

variant would reward high distance from the uniform distribution, and low distance

from the theoretical distribution, equally. The linear hull effect would clearly inter-

fere with the second part of this.

Furthermore, experiments conducted on SmallPRESENT are particularly relevant

to PRESENT and Serpent - in fact, SmallPRESENT is parameterisable such that

for one particular parameter value, it is exactly the same as PRESENT. All three

ciphers have the following in common:

– An SPN structure, so that round-key xor, application of a layer of substitu-

tion boxes to the entire block, and then a linear diffusion layer, are applied in
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sequence in each round (Serpent omits the diffusion layer in the final round),

followed by a final key xor at the end of the cipher.

– All the S-boxes in a given round are identical 4× 4 bijections, with differential

uniformity 4, nonlinearity 4, and most/all of the S-box co-ordinate functions

having algebraic degree 3. In particular, the S-box used in PRESENT and

SmallPRESENT is affine-equivalent to Serpent’s S2 and S6.

Serpent does have a more effective diffusion layer than the permutation used by

PRESENT and SmallPRESENT, but whether the increased number of active S-

boxes resulting from this exacerbates the problem observed by Collard and Standaert

or not is unclear - it seems extremely unlikely that it could in any way mitigate it.

Where the theoretical prediction is known to be accurate, or where experiments have

indicated that it is likely to be for the particular cipher and number of rounds being

attacked, the log-likelihood ratio (LLR) has been shown in the context of multidi-

mensional linear cryptanalysis [70] to be superior to the χ2 statistic. Approximations

to the LLR statistic also exist which can be computed much more quickly - one based

on its Taylor series expansion [111], another, slightly less accurate but faster to com-

pute, based on the convolution of probability distributions [135, 136]. However,

since the extent to which the linear hull effect would distort the accuracy of attack

complexity calculations is currently unknown, we will not cover it in detail in this

thesis.

• Upon accepting a given value of k1, we next need to find k2. Depending on the

various parameters of the attack, there may be situations where the most practical

approach is simply to include the bits of k2 in the exhaustive search for the non-

attacked key bits. For example, it may be that the incorrect key guesses result in

related approximations with too high a bias to be practically distinguishable from

the correct k2 and corresponding approximation.

As an example, let us consider an attack on Serpent in which only the final round

of the approximation contains a nonlinear component; this being in S-box S3 with

input bitmask 11 (so x1⊕x3⊕x4 = some nonlinear function of the output bits with

some bias ε.). We have eight nonlinear approximations to this bitmask with bias

6, four of which are of particular interest here. Each of these four has one related
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approximation with a bias of −6, one related approximation with bias 2, and one

related approximation with bias −2.

(Approximations with these biases occur frequently for 4×4 S-boxes. They are es-

pecially useful for various reasons:

– Both of the related approximations with absolute bias 2 are statistically inde-

pendent of the approximation with bias 6.

– The approximation with bias -6 has a truth table which can be obtained from

the truth table of the bias 6 approximation by flipping all of the bits therein.

This means that it provides no information that the approximation with bias

6 does not, and can safely be omitted from the attack.

– The approximation with bias 2 is related to the approximation with bias -2 in

the same way. This means that only one of them provides useful information,

and the other can be omitted from the attack. It is up to the cryptanalyst to

decide which one.

– Their nonlinear components are balanced.

We are therefore able to handle statistical dependence among the related approxi-

mations in an extremely straightforward fashion, leaving us with a set of completely

independent approximations for which the χ2 statistic is fully valid, and for which

the LLR statistic is also valid (barring issues resulting from the linear hull effect).)

We can use any of the approximations individually, or we can attempt a form of

multiple nonlinear cryptanalysis using two or more approximations (or, equivalently,

two or more sets of related approximations) simultaneously. The below pseudocode

demonstrates the attack for both the one-approximation and two-approximation

cases.

For each value of k1, based on whichever statistical method is in use (whether

maximum-bias, χ2 or other) we assign a score to the distribution of values in its

corresponding Cx entry. For the maximum-bias and χ2 methods, the scoring system

should reward high values for the distance between the experimentally obtained dis-

tribution and the uniform distribution. A randomly-chosen wrong key is expected

to possess much lower distance than the correct key; however (as noted in subsection

166



Algorithm 7 Nonlinear cryptanalysis algorithm

l← the number of active data bits.
h← the length of k2.
for (i⊕ j)← 0, 2l − 1 do

Partially encrypt/decrypt (i⊕ j).
Let m denote the result of this.
Let µ denote the bits of m involved in the nonlinear component(s).
for CURRENT K2 V AL← 0, 2h − 1 do

δ ← µ⊕ CURRENT K2 V AL
if Attack uses one approximation then

Compute nonlinear function on δ
if Approximation holds then

Cij [CURRENT K2 V AL]← 1
else

Cij [CURRENT K2 V AL]← −1
end if

else if Attack uses multiple approximations then
for CURRENT APPROX ← 0, NO OF APPROXIMATIONS do

Compute current nonlinear function on δ
if Current approximation holds then

Cij [CURRENT APPROX][CURRENT K2 V AL]← 1
else

Cij [CURRENT APPROX][CURRENT K2 V AL]← −1
end if

end for
end if

end for
end for
Compute Cx.
We obtain, for each value of k1, a vector of values.
We allocate a score to this vector depending on the statistical method in use.
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6.1.1) this does not necessarily mean that the correct key will possess the highest

distance, and some form of key-ranking may be required.

An important complexity issue arises. In determining whether the nonlinear approx-

imation holds for each candidate k2 value, we need to repeatedly evaluate a nonlinear

expression, and the complexity of this compared to evaluating a linear expression in the

conventional attack (considered negligible in most papers) is not clear (although experi-

ments have confirmed that it is considerably higher.)

For example, this is the nonlinear component of an approximation to DES S5:

1⊕ x5 ⊕ x5x6 ⊕ x2x6 ⊕ x1x5 ⊕ x1x2 ⊕ x1x5x6 ⊕ x1x2x6

It is not clear how to compare the complexity of this to the complexity of the full S-box,

as it is unlikely that an S-box implementation would rely solely on XOR, AND and NOT

(to add the constant term) gates. Moreover, the difficulty of finding, for a given basis and

function, the circuit for that function with the smallest number of gates is a difficult and

still open problem [108]. It is to be assumed that the cryptanalyst would be using S-box

implementations chosen to maximise speed, without regard to such factors as resistance

to side-channel attacks which most cipher implementations would have to address.

Since this may be represented by a lookup table with as many elements as the S-box:

1101110111011101100010001000100011111111111111110000000000000000,

and since its algebraic normal form has a much smaller weight than any co-ordinate func-

tion of the S-box it approximates, we will proceed with the assumption that the complexity

of calculating this function is less than or equal to that of computing a full S-box. Since

it will have to be calculated 2|k2| times for each partial encryption/decryption, where Sc

denotes the total number of S-boxes in all the rounds of the cipher, we will estimate the

time required for each partial encryption/decryption to be (number of active outer round

boxes)/Sc + 2|k2|/Sc of the time required for a full encryption.

6.3.2 The theoretical complexity of the new attack.

The key question that now arises is how much the use of nonlinear approximations will

affect the known-plaintext requirements for the attack. It seems at first sight that they

should be significantly reduced. For example, if we use the nonlinear approximation to
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DES S5 above in the final round of Matsui’s attack [180], instead of one approximation to

the whole cipher with bias −1.192× 2−21, we have a set of eight related approximations,

including one with bias 1.431× 2−21.

(More precisely: one approximation with bias 1.431×2−21, one with bias 1.907×2−22,

two with bias −1.907× 2−22, two with bias 1.431× 2−22 and two with bias −1.431× 2−22

- unfortunately, these are not statistically independent of each other.)

We cannot adapt the complexity predictions from Biryukov et al.’s 2004 work on linear

cryptanalysis with multiple approximations [38], since Murphy [188, 189] has demonstrated

flaws in the crucial Corollary 1, and shown that it underestimates the data requirements

(increasingly so as the number of approximations increases.)

We have, instead, focused on adapting the data complexity predictions for multidi-

mensional linear cryptanalysis, which uses different statistical frameworks not affected by

this flaw. However, this does bring further problems to light.

Before we discuss these, we define the essential concept of advantage:

Definition 6.3.1. If, in a cryptanalytic attack on a TPS of length n, we are employing

key ranking such that the attack will be considered a success if the correct TPS is one of

the 2n−a highest ranked, the value a is referred to as the advantage of the attack.

We use the following notation:

• a denotes the advantage.

• When discussing the χ2 statistic, b denotes the value Φ−1(1−2−a). When discussing

the LLR, b denotes the value Φ−1( M+1
√

1− 2−a).

• k0
1 denotes the correct value of k1.

• k0
2 denotes the correct value of k2.

• N denotes the number of known plaintext/ciphertext pairs involved in the attack.

• In nonlinear cryptanalysis, M denotes the number of related approximations. In the

case of multidimensional linear cryptanalysis, M = 2m − 1 is the number of linear

approximations involved in the attack; these being the nonzero linear combinations

of the m base approximations.

• PS is the success probability of the attack.
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• C(p) is the theoretical capacity of the set of approximations used. Since p is clearly

the theoretical distribution from the context in which this is referred to, we will

sometimes simply denote it C.

The chi-squared statistic.

Consider the complexity calculations for the χ2-statistic in multidimensional linear crypt-

analysis [70]. Prior to Theorem 1, the authors state that Φ(−b) ≈ e−b
2/2

√
2π

when b is large.

This is not in fact the case - the approximation was taken from Section 4 of an earlier

paper [10], but the authors of this had realised that the approximation was erroneous and

published a correction [182]. The correct approximation for large b is e−b
2/2

b
√

2π
.

Theorem 1 of this paper relies on rearranging

N ≈ 2
√
Mb+ 4Φ−2(2PS − 1)

C(p)

to obtain

b2 ≈ (NC(p)− 4Φ−2(2PS − 1))2

4M
(6.3.1)

The authors, relying upon the formula 2−a = Φ(−b), applied the approximation

2−a = Φ(−b) ≈ e−b
2/2

√
2π

, claiming from this that a ≈ b2 and so that the above equa-

tion gave an approximate formula for the advantage of the attack in terms of N . Since
√
e = 1.648721271 6= 2, this is already incorrect. Allowing for the correction to the

approximation, a ≈ b2

2·ln(2) + log2(b) + log2(
√

2π) ≈ 0.72b2 + log2(b) + log2(
√

2π) ≈
0.72b2 + log2(b) + 1.325.

The value b is not so large as to allow us to simplify further with a ≈ 0.72b2+log2(
√

2π);

this would result in a 2-bit underestimate for the advantage in Cho’s attack on PRESENT

[67].

We note, however, that for relatively marginal attacks with low advantage, the con-

dition of “large b” is not satisfied. Later on in this section, we will plot graphs of the

estimated advantage based on this approximation, and on the direct computation of

a = −log2(1 − Φ(b)), and show that the approximation mistakenly predicts that low

advantage attacks with data complexity below 227 on reduced-round Serpent cannot be

mounted. We recommend calculating a from b directly if possible.

However, the problems run deeper still. Despite contacting the authors of the key
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paper [70], we have not been able to re-derive the approximation

NC(p) ≈ 2
√
Mb+ 4Φ−2(2PS − 1)

One of the authors, taking into account the incorrect Φ(−b) approximation, has stated

that there may have been a mistake, but no longer has access to the software originally

used in obtaining the approximation. In particular, we believe that there is no way to

obtain an approximation containing Φ−2(2PS − 1), and conjecture that this results from

a misunderstanding of the formula (2PS − 1) = erf(Φ−1(PS)√
2

).

Equation 9 of the same paper is:

Φ−1(Ps) =

 µR − µa√
σ2
R + σ2

a


in which:

σ2
a =

2M

2n+aφ(b)2

In solving Equation 9 to obtain a formula for NC(p), the approximation σ2
a ≈ 0 was

originally made [70], and a quadratic equation with NC(p) as the variable is formed. In

a later revision [199], the approximation σ2
a < M is used; and the formula for NC uses

σ2
a = M to provide a conservative value for NC.

As n denotes the number of key bits targeted in the attack, we argue that n ≥ 3

(this value could in theory result during a 1R linear attack on a cipher using the CTC2

S-box [107]. A block cipher’s S-boxes cannot have less than 3 input bits if they are to be

nonlinear balanced functions. For an SPN the number of output bits would also have to

be 3 and for a Feistel cipher it would only be the number of S-box input bits that was

relevant), hence (n+a) ≥ (3+a). Moreover, it is clear that (n+a) ≥ 2a. Exploiting these

facts, it is possible to verify that M does represent an upper bound for advantage ≥ 1.

(Using the computer algebra package Mathematica, we draw graphs of 2M/(23+aφ(b)2)

and 2M/(22aφ(b)2) to confirm this.) Using information from the graphs, we were able to

obtain a tighter upper-bound of 0.7854M .

Note that depending on how close the advantage is to n, the significance of the over-

estimate varies substantially. For example, σ2
a = M/25.2 is attained for a = n = 56. For a

smaller advantage of 32 and n = 56, σ2
a ≤ M/(228.35) � M . However, if M=256 − 1 (as
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used in various attacks on reduced-round Serpent [196]), this is not ≈ 0.

(Note that said attacks must in fact have used the log-likelihood ratio, not the χ2-

statistic, to succeed for so high a value of M .)

Replacing σ2
a with 0.7854M in the aforementioned quadratic equation, we use the

quadratic formula to solve the equation in NC and obtain:

NC(p) ≈ 2Φ−2(PS) +
√

2Mb±
√

Φ−2(PS)(4Φ−2(PS) + 4
√

2Mb+ 2.7854M) (6.3.2)

We note that the expression under the square root sign cannot take on a negative value

for Ps > 0.5 as long as the advantage a is greater than or equal to 1 bit - and depending

on Ps may still not be negative even for extraordinarily marginal attacks with lower a.

So we are able to accept that the roots of this equation will be non-complex in real-world

attack situations.

The question arises as to whether the larger or the smaller of the two roots should

be considered the solution. For an attack obtaining a 4-bit advantage and probability of

success ≥ 0.95, the smaller root is a negative value, strongly indicating that it cannot be

the correct solution. Furthermore, in email correspondence, we obtained from Nyberg [199]

a pessimistic formula for NC relying on certain assumptions. If we consider situations

in which these assumptions hold, we find that the smaller root diverges massively from

the value given by this formula, while the larger root does not differ to such an extent.

Based on this, we conclude that the smaller root does not match the true complexity of

the attack and that the larger root is the correct value of NC: 1

NC(p) ≈ 2Φ−2(PS) +
√

2Mb+

√
Φ−2(PS)(4Φ−2(PS) + 4

√
2Mb+ 2.7854M) (6.3.3)

Using this new model, we find b by using Mathematica to solve the equation above,

after which we can either compute the advantage directly from b or use the “large b”

approximation referred to earlier. For the 4, 7, 10 and 12-dimensional χ2 attacks on 5-

round Serpent in Hermelin et al.’s FSE 2009 paper [70], we use the corresponding capacities

1To avoid the use of computer algebra packages in deriving the above formula, it is stated [199] that
NC < M/4 and that this should be substituted for NC in the denominator, resulting in a pessimistic
estimate for NC. Although this seems to have been the case for all multidimensional linear attacks so far,
M is often much smaller in nonlinear attacks, and certainly exceeded 4NC in the attack on DES below,
so we were unable to make this substitution.
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Figure 6.4: The graph on the left shows the result of using the approximation to calculate
the advantage from b. We see that the approximation fails for marginal, low-advantage
attacks. The graph on the right shows the result of computing advantage directly.

to plot new graphs of N against advantage (Figure 6.4).

Now, the y axes of these graphs show the advantage going up to 12, since this was the

number n of bits in the TPS. However, if we do not use the graph plotting software to im-

pose these restrictions, the graphs show the advantage continuing to increase indefinitely

with an increasingly steep gradient, even though it should be upper-bounded by n. Fur-

thermore, equation 6.3.3 does not have n as a variable after the pessimistic approximation

for σa is introduced, suggesting underlying flaws in Selçuk’s statistical model for conven-

tional linear cryptanalysis [213] that may have been exacerbated in the generalisation to

multiple dimensions.

In Selçuk’s model [213], for all advantages except 0 and maximum advantage a = n, the

rth-highest bias of any wrong key candidate (r = 2n−a) is assumed to have an asymptotic

normal distribution. Let T1 be the lowest bias of any wrong key, T2 the second lowest, . . . ,

T2n−1 the highest (so that T2n−r corresponds to r). A value q ≈ (1− 2−a) (0 < q < 1) is

defined, such that (2n− r) = bq(2n−1)c+ 1. Since there are 2n−1 wrong key candidates,

we can obtain a tighter upper bound for q of q ≤ 2n−1
2n−2 . As this would correspond to an

attack with maximum advantage, for which the precise distribution of the highest bias of

the wrong key candidate is known (assuming the Wrong-Key Randomization hypothesis),

a formula based on this and not the asymptotic Normal approximation is used to calculate

the attack’s complexity.

(A useful topic for future research would be a generalisation of this formula to the

multidimensional case, so that the effect of varying the number of dimensions on the
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accuracy of the Normal approximations can be investigated.)

We can therefore say, when working with the non-extreme-value asymptotic Normal

distribution, that q < 2n−1
2n−2 , and it also seems reasonable to treat the current statistical

model as suspect for advantage higher than (n− 1).

However, there is also reason to believe that the model may not be valid for some

smaller advantages (n − x) either. In the textbook “Order Statistics” [115], discussing

order statistic Xr (where the order statistics are X1 ≤ X2 ≤ . . .Xn), David states (at the

start of Section 9.1):

“If r/n → λ as n → ∞, fundamentally different results are obtained according as

0 < λ < 1 or λ = 0 or 1, with r or (n− r) fixed.

“In the former case, Xr is a sample quantile and (subject to mild regularity conditions)

has an asymptotic normal distribution. The latter case includes the extremes X1, Xn and

corresponds to the mth extremes Xm, Xn−m+1 with m fixed. These have non-normal

limiting distributions. Such a dichotomy into ‘quantile theory’ and ‘extreme value theory’

is helpful. However, there are also intermediate situations where r is a more general

function of n.”

It is not clear how to deal with this when the value of n is fixed (bear in mind that

David’s n corresponds to our 2n − 1), but it indicates that the m-th most extreme order

statistics for some unknown value of m (or some extreme ratio m/n) may also fail to be

described accurately by the Normal approximation, not just the single highest and lowest.

Another useful topic for future research would be to conduct investigations into the value

of this m, or the ratio m/n, for various values of (N and n).

The maximum-bias model.

In this model, we can use the maximum absolute bias of all the related approximations to

calculate the data complexity in the same way that the bias of a single linear approximation

is used in conventional linear cryptanalysis.

The log-likelihood ratio.

For the reasons stated in Subsection 6.3.1, we will not be covering the use of the log-

likelihood ratio in nonlinear cryptanalysis in detail in this thesis. However, most of the

results of Hermelin et al. [70] apply both to multidimensional linear and nonlinear crypt-

analysis, and so we wish to briefly address an error in their earlier work here.
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The following equation is derived using the incorrect approximation a ≈ (b2/2) −
log2(M + 1):

a ≈ (
√
NC − Φ−1(Ps))

2/2− log2(M + 1) (6.3.4)

Using the approximation b ≈ Φ−1(1−2−a−log2(M+1)) instead, we obtain a very different

equation:

a ≈ 0.72(
√
NC − Φ−1(Ps))

2 + log2(
√
NC − Φ−1(Ps)) + 1.325− log2(M + 1) (6.3.5)

Where appropriate, we have used Mathematica to solve the above equation and re-

calculate N for the LLR-based multidimensional attacks which we compare our nonlinear

attacks to. The issues relating to the linear hull effect are by no means resolved through

this correction, and we emphasise that research into the effectiveness of the LLR statistic

in cryptanalysing ten or more rounds of a Serpent-like cipher is sorely needed!

6.3.3 When the cipher is not a substitution-permutation network.

For a cipher such as DES, the procedure is not so straightforward to adapt, and it may not

be possible to do so in all cases. Let us consider a situation in which we have incorporated

nonlinear approximations into Matsui’s linear attack on the full DES [180]. Let us start

by adapting the part of the attack based on his Equation 4:

We cannot replace the third-round xor of bits [7, 18, 24] with a nonlinear term due to

the xors which are applied to it; a nonlinear term in variables z[i] is not equal to the xor

of (the same nonlinear term in variables x[i]) with (the same nonlinear term in variables

y[i]). Therefore, we cannot incorporate nonlinear components into the first round of the

approximation.

The final round is another matter. We can replace the linear approximation to DES S5

with any nonlinear approximation with output bitmask 15 and nonlinear input component.

There are several of these such that at least one of the set of relateds has bias ±24; at

present our metaheuristic algorithm has found sixty-two. Of these (numbering the S-box

input bits from 1 to 6, with the MSB being 1):

• One approximation uses S-box input bits 1, 2, 5, 6. Although we number the S-box

input bits xi differently, this is the approximation found by Knudsen and Robshaw
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Figure 6.5: Diagram showing the first three rounds of DES in Matsui’s attack. The num-
bers in square brackets indicate the active bits using Matsui’s indexing system [180], and
the fraction on the right shows the probability p of the first round’s linear approximation.

Figure 6.6: Diagram showing the last three rounds of DES in Matsui’s attack. As in Figure
6.5, the numbers in square brackets indicate the active bits using Matsui’s indexing system
[180], and the fraction on the right shows the probability p of the penultimate round’s linear
approximation.
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[164].

• Thirty-one approximations use input bits 1, 2, 4, 5, 6.

• Thirty approximations use input bits 1, 2, 3, 5, 6.

Let us look at how we can adapt the new procedure to the first of these cases.

First of all, we will need to decrypt S-boxes in Round 16 to expose the data bits

relevant to S5 in Round 15:

Round 15 data bit Round 16 data bit

S5 input bit 1 S3 output bit 2

S5 input bit 2 S1 output bit 2

S5 input bit 3 S2 output bit 4

S5 input bit 4 S6 output bit 4

S5 input bit 5 S4 output bit 2

S5 input bit 6 S8 output bit 4

Table 6.4: S-box output bits in Round 16 corresponding to the S5 input bits in Round 15.

In addition, we will need to guess key bits for S5 in round 15. Some of these will

already have been guessed:

Round 15 key bit Round 16 key bit

S5 input bit 1 S6 input bit 2

S5 input bit 2 S6 input bit 3

S5 input bit 3 S6 input bit 1

S5 input bit 4 S8 input bit 4

S5 input bit 5 S8 input bit 1

S5 input bit 6 N/A (main key bit 53, numbering from 0 to 55)

Table 6.5: Key bits corresponding to S5 input bits in Round 15, and their Round 16
counterparts where applicable.

Finally, we still have to guess key bits for S5 in round 1:
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Round 1 key bit Round 16 key bit

S5 input bit 1 S8 input bit 2

S5 input bit 2 Main key bit 52 - S7 bit 6

S5 input bit 3 S8 input bit 6

S5 input bit 4 N/A (main key bit 37)

S5 input bit 5 S6 input bit 6

S5 input bit 6 Main key bit 55 - S7 bit 4

Table 6.6: Key bits corresponding to S5 input bits in Round 1, and their Round 16
counterparts where applicable.

Let us consider the approximation on bits 1, 2, 5 and 6, since this provides the simplest

example. We need to guess key bits for four S-boxes (S1, S3, S4, S8) in Round 16; 24 key

bits corresponding to 22 text bits. To allow C to have the property that Cij = f(i ⊕ j),
we will work with the 24 bits resulting from applying the expansion to the text bits. We

also need to guess four key bits in Round 1 - we will need to introduce two dummy key

bits to correspond to the six input bits of S5 - despite knowing that they should share the

same values as key bits 2 and 6 of S8. So far, we have |k1| = 30. We also have four active

text bits in the left-hand ciphertext block, which we cannot now simply xor together and

treat as part of a larger xor of bits. These require us to introduce four more dummy key

bits with the value zero, in addition to the dummy key bit for the xored bits in the left

hand of the plaintext and right hand of the ciphertext. We have |k1| = 35. Since one of

the four key bits at the input to DES S5 in round 15 is active in round 16, we also have

|k2| = 3.

The question of estimating the complexity of a partial encryption/decryption in terms

of DES encryptions also arises. Matsui encrypts one S-box, decrypts another, and xors

various bits; as the full DES involves (8x16) = 128 S-boxes, we will estimate the complexity

of each partial encryption/decryption in Matsui’s analysis phase to be 2/128 = 1/64 of a

full DES encryption.

In our case, this is more complicated. We encrypt one S-box and decrypt four, after

which we need to compute the following algebraic expression on S5’s input bits 2|k2| = 8

times:

1⊕ x5 ⊕ x5x6 ⊕ x2x6 ⊕ x1x5 ⊕ x1x2 ⊕ x1x5x6 ⊕ x1x2x6

(Note that this was the expression used as an example before.)

We therefore estimate the time required for each partial encryption/decryption to be
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5/128 + 8/128 = 13/128 of the time required for a full DES encryption.

This specific attack, although it breaks the DES and in spite of its improved bias,

turns out to have poorer data complexity than that of Matsui [180]. We will explain later

on how Matsui’s attack - in effect a combination of two separate attacks - is able despite

its lower bias to perform more effectively. For now, though, with the method defined, we

have enough information to design cost functions and run experiments, and it is therefore

time to discuss the metaheuristic algorithm.

6.4 The use of simulated annealing to evolve nonlinear ap-

proximations.

In the previous application of simulated annealing to this problem by Clark et al. [78, 76],

each nonlinear approximation was represented as follows:

• A global constant, k, determined the maximum number of S-box input bits that

could be involved in the nonlinear component of the approximation. The number n

of input bits was 9, and values of k between 2 and 8 were used in experiments.

• The nonlinear equation, on k of the n input bits, was represented by its truth table

(an array of 1s and 0s). As stated, this framework did not take into account the

related approximations.

• The linear equation on the output bits was represented by an m-bit bitmask (m being

32 in this case), with 1s corresponding to the positions of the bits involved. Most

C/C++ compilers could easily accommodate this using an unsigned long integer.

• A “projection” containing the information on which of the input bits were involved

in the approximation was represented using an array of size k.

The cost function multiplied the absolute bias of the approximation by -1, and returned

the result. The initial acceptance rate was set at 0.6. The move function was somewhat

unusual for a simulated annealing algorithm, in that it chose one of four move types at

random. Three user-supplied parameters dictated the relative probabilities of changes to

the nonlinear component’s truth table, the linear component’s bitmask, and the projection

as follows:
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0 ≤ P NL TT ≤ P BITMASK ≤ P SWAP USED UNUSED ≤ 1.0
u← RAND(0, 1)
if u < P NL TT then

A randomly chosen bit in the nonlinear component’s truth table is flipped.
else if P NL TT ≤ u < P BITMASK then

The linear component’s bitmask is changed.
A new bitmask is chosen uniformly at random from the set of m-bit integers.
(This causes 2m−1 bits in the linear component’s truth table to change.)

else if P BITMASK ≤ u < P SWAP USED UNUSED then
The projection is altered.
An unused input bit replaces one of those involved in the nonlinear function.

else
The ordering of the bits in the projection is changed

end if

Clark et al. experimented with (0.25 ≤ P NL TT ≤ 0.45), (0.25 ≤ P BITMASK ≤
0.45), and P SWAP USED UNUSED ∈ {0.5, 1.0}.

For changes in the truth table of the nonlinear component, we have reason to believe

a smooth search landscape is defined for the move function as described.

Let there be k bits involved in the nonlinear approximation of a single S-box S. Then,

if the nonlinear component of the approximation acts on the input bits, there are (n− k)

input bits not involved in it (and (m− k) if the nonlinear component acts on the output

bits).

The truth table of the nonlinear component of the approximation will contain 2k

entries. Let us consider a “padded” truth table for the approximation, containing the

value of the nonlinear expression for every possible value of the bits at the same “end”

as the nonlinear component. This truth table will contain 2n−k (or 2m−k) copies of the

truth table entry for any choice of the k involved bits. Changing one bit of the nonlinear

approximation’s truth table will change the values of these copies in the padded truth

table, and no other bits.

Now, let us consider the full truth table of the nonlinear approximation, containing

the value of the nonlinear expression for every possible value of the S-box’s input bits.

Clearly if the nonlinear expression is in terms of the input bits, this will be identical

to the padded truth table. If not, we compute the full truth table using the equation

FULL TRUTH TABLE[i] = PADDED TRUTH TABLE[S(i)]. For a bijective S-box,

changing one bit in the basic truth table of the nonlinear component will change precisely
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2m−k = 2n−k bits in this table. For a balanced S-box with more input than output

bits (such as a DES S-box), changing one bit in the basic truth table of the nonlinear

component will change 2n−m · 2m−k = 2n−k bits in the full truth table.

Since we can upper bound the number of changes to the truth table of the approx-

imation’s nonlinear component by 2n−k, which can be as low as 2 in the circumstances

described if the nonlinear approximation uses (n − 1) input bits, and since the truth ta-

ble of the linear component does not change, none of the 2k related approximations can

change bias by more than 2n−k when a move of this sort is made - and this acts in turn

as an upper bound on changes in the absolute values of their biases.

However, for the other possible moves, experiments have shown that a smooth search

landscape is not defined:

• A change to the bitmask changes the value of precisely half the bits in the linear

component’s truth table, meaning that for an S-box mapping GF (2)n to GF (2)m,

the change in an approximation’s bias from such a move is upper bounded by 2n−1

- an upper bound so high as to be almost meaningless.

As an example, consider the following nonlinear approximation to DES S5. The

nonlinear component of the approximation involves input bits 0, 1, 3, 4, 5 and has

full truth table

1111111111111111100011001000110011111111111111110000001000000010

This approximation holds with bias 22 when the linear component has bitmask 1111.

However, changing the bitmask to 1101 results in its holding with bias 0, and 0 is

12 less than the smallest absolute bias of any of the original related approximations.

• Changing the order of the bits involved in the nonlinear approximation (for example,

where approximation input bit xa0 is x0 and xa1 is x1, exchanging their positions

so that xa0 = x1 and xa1 = x0) will have no effect on the basic truth table of the

approximation, but can affect several bits in the full truth table (in this case, as many

as 2n−1). In the case of our previous example, this causes the bias to drop from 22

to 2. Moreover, the highest absolute bias of any of the related approximations drops

to 4, when the lowest had previously been 12.

• Finally, we consider swapping one of the bits involved in the nonlinear approximation

with an uninvolved bit. One of the approximations related to our previous example
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held with bias -20. Replacing xa1 = x1 with xa1 = x2 changed its full truth table

in 26 places and reduced this bias to 0. The largest absolute bias among any of the

related approximations was now 8, 4 lower than the previous minimum.

There is evidence that this affected the behaviour of the search in Clark et al.’s exper-

iments. In their paper, it is stated that for “almost all the executions tried” the search

began with an initial period in which there was little improvement in the quality of the

best approximation found, lasting approximately 500,000 moves. After this, a period of

rapid and almost uninterrupted improvement began, lasting for approximately 500,000 to

700,000 moves, before the level of improvement tailed off.

We believe that the period of improvement began when the temperature of the anneal-

ing algorithm had dropped to a point where non-improving moves were very unlikely to

be accepted, and that early on in this period, a sequence of moves, all acting on the truth

table of the nonlinear component, were accepted. These moves increased the absolute

bias of the approximation to the extent that any other sort of move was most unlikely

to be accepted due to the unpredictable (but increasingly likely to be negative) effects of

such moves on said value. In other words, the algorithm spent this period hill-climbing,

with a move function that was limited to changing bits in the truth table of the nonlinear

component, before slowing down as it approached a local optimum.

To exploit this, we significantly increase the probability of truth table changes being

chosen as the move; we chose to increase probability to 0.9. Since we were attempting to

find nonlinear approximations to replace the first and last round components of existing

linear approximations to ciphers, the bitmask was assigned a value at the start of the

search and remained static thereafter. We still allowed the search to make moves of the

other two types (with probability 0.05 each) to see if it would “home in on” particular

choices of projection which would result in biases of higher magnitude than others; this

was indeed the case.

We focused primarily on S-boxes from ciphers which were

1. such that linear cryptanalysis or a variant/derivative thereof has been used in a

significant attack on the cipher or a reduced-round variant thereof.

2. significant, due to being or having been widely used, or being considered a viable

alternative to AES, or being a promising new lightweight cipher...
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The three ciphers which best satisfied both of these criteria were DES [191], PRESENT

[40] and Serpent [5].

Our original experiments utilised various cost functions.

1. Let the number of related approximations be denoted R, and let εi denote the bias

of the ith related approximation (0 ≤ i < R).

We initially rewarded high values for the sums-of-squares of the biases; with the cost

being:

23n−3 −
R−1∑
i=0

ε2i

2. As it became apparent that the related approximations were not always statistically

independent of each other; and furthermore that the sample biases in the vector v

at the end of the cryptanalysis would not be either, we attempted to refine the first

cost function to address this issue. The next cost function was identical to the first,

but did not count the biases of related approximations with truth tables that were

either identical to the truth tables of previous relateds, or could be obtained from

such by flipping all the bits in the truth table. (We refer to a truth table that can

be obtained in this way as a “bit-flip” of the previous truth table from which it

is obtained.) This was not sufficient to address the issue of statistical dependency

among the linear algorithms, and we began to focus our cost functions more on the

maximum bias model.

3. We rewarded the highest absolute bias:

cost =

(
2n−1 − max

(0≤i<R)
|εi|
)

In situations where the maximum-bias model is used, and obtaining the k1 bits is

prioritised over obtaining k2 bits, this strategy makes the most sense. In the attacks

on Serpent described below, for instance, the number of k2 bits compared to the

number of k1 bits was extremely small. This was also the case with the attack on

DES, and no cost function used identified a nonlinear approximation such that we

could be sure the correct value of k2 could be identified.

4. We attempted to obtain related approximations such that all biases were high in
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magnitude by rewarding high values for the smallest absolute biases:

cost =

(
2n−1 − min

(0≤i<R)
|εi|
)

This cost function, when tried, merely returned the highest bias linear approximation

for the specified bitmask in all cases, suggesting (though this is not a matter of

certainty) that nonlinear approximations with all relateds having bias in excess of

the best linear approximation may not exist.

5. In an attempt to find cost functions suited for obtaining both k1 and k2 bits, we

then tried cost = 22n−2 − (max. bias - 2nd highest bias). In the case of the 4 × 4

S-boxes, this did not find any nonlinear approximations that cost function 3 above

had not. In the case of DES S5, which we were targeting due to its presence in

the final round of Matsui’s linear attack, this found approximations such that the

maximum bias among the relateds had magnitude ranging from 18 to 22; and such

that the second-highest bias was 12 lower. The bias 24 approximations found by cost

function 3 were, however, considered more effective in recovering the k1 bits due to

the extent to which they reduced the data complexity. It should be noted that we

considered the recovery of the k1 bits to be a much higher priority than the recovery

of the k2 bits, since achieving the first objective was necessary to achieve the second.

6.5 Experiments on various ciphers, and application to their

cryptanalyses.

6.5.1 AES.

We ran several experiments with the AES S-box and a cost function seeking to reward

the maximum absolute bias of all related approximations. Using 600,000 inner loops,

500 outer loops, cooling factor 0.97 and initial acceptance rate 0.95, these yielded several

approximations with absolute biases ranging from 64 to 72 (albeit with much lower-bias

relateds). Some of these approximations were linear on the S-box’s input bits, and some

were linear on the output bits - in both cases, several approximations with bias ±72 were

obtained. For all of the input and output bitmasks involved, the bias of the best linear

approximation was ±16.
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Since all AES S-box co-ordinate functions are affine-equivalent [127], the question arises

as to whether the absolute bias of the best nonlinear approximation to a Boolean function

is affine invariant. While more experimentation would be needed to gain evidence for this,

if true it would mean that for all input and output bitmasks, the AES S-box would have at

least one nonlinear approximation with bias ±72 (and for some bitmasks, we have already

found more than one nonlinear approximation with such a bias.)

While some of the approximations with bias ±72 were balanced, most were not. All

balanced approximations found so far with absolute bias 72 have been linear on the input

bits and nonlinear on the output bits, although further experimentation may yield balanced

approximations with this absolute bias that are linear on the output bits.

6.5.2 Serpent.

In the literature, various linear, differential-linear, multiple linear and multidimensional

linear attacks on reduced-round Serpent are described. These fall into two categories,

those based on Collard et al.’s approximations [98, 99, 100, 196] and those based on the

approximation of Dunkelman, Keller et al. [27, 31, 123]. In Appendix C, we point out a few

errors in the descriptions of Dunkelman et al.’s approximation as found in the literature.

Of the existing attacks on reduced-round Serpent to utilise linear approximations,

those described by Collard et al. included a 2R attack on 11 rounds of Serpent, utilising a

9-round approximation, and later using the new analysis phase to improve time complexity.

The same 9-round approximation was later used by Nguyen et al. [196]. In their paper,

a 56-dimensional approximation to the preceding round using several input bitmasks was

connected to the first round of the original approximation; yielding a 10-round multidi-

mensional approximation which resulted in the best attacks so far against reduced-round

Serpent (up to 12 rounds).

However, we believe that the data complexities of these attacks have been underesti-

mated.

Let C denote capacity, and p the probability that the linear approximation holds (so

that (p− 1/2) is the bias). In Nguyen et al.’s work [196], the data complexity N specified

in each case is 4C−1. This figure appears to have been chosen to match the values for N

used by Collard et al., in which key ranking was not used and values of N equal to 4C−1

were used in the multiple linear attacks. However, Collard et al. also used N equal to

4 · |p−1/2|−2 in the conventional linear attacks (apparently to obtain a success probability
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of 0.785 as predicted by Matsui [179]), and 4C−1 is equal to 1/(sum of squares of biases).

To obtain internal consistency, N = 16C−1 would have been needed.

Moreover, Matsui’s Table 3 [179], containing the success probabilities for various mul-

tiples of |p − 1/2|−2, is calculated from the double integral in his Lemma 5 based on the

assumption that the TPS length l is equal to 6. Selçuk [213] states that there is a tendency

to base complexity calculations for linear cryptanalytic attacks on results from Matsui’s

work that specifically applied to his attacks on DES. He presents an alternative double

integral for use in calculating the advantage when key ranking is not utilised.

Since this double integral is different from that in Matsui’s Lemma 5, the question of

how each was derived, and which is the better choice, arises. Neither is limited to the case

of l = 6, and different values may easily be input.

Examining Matsui’s original integral, we observe first of all a typographical error. The

limits of the internal integral include the term (p − 1/2). This is clearly meant to be

|p − 1/2|, since if not, two attacks using approximations with identical magnitude but

different sign of bias would have significantly different complexity.

The intent behind the double integral would be as follows: for each possible value x

for the empirical absolute bias when the correct key is used, calculate the probability that

the empirical bias y for all other ki satisfies (−x < y < x). By integrating this over all

x > 0, the probability of success of the attack is obtained.

∫ ∞
0

 ∏
ki 6=k0

Pr(−x < y < x)

 fR(x)dx

=

∫ ∞
0

 ∏
ki 6=k0

∫ x

−x
fWki

(y)dy

 fR(x)dx

However, examining the integrals in more depth makes it clear that a Normal distri-

bution is assumed for x, whereas if x represents absolute bias, it would have a Folded

Normal distribution. We therefore restate the intent as follows: for each possible value

x for the bias when the correct key is used, calculate the probability that the empirical

bias y for all other ki satisfies (min(−x, x) < y < max(−x, x)). By integrating this over

(∞ > x > −∞), the probability of success of the attack is obtained.
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∫ 0

−∞

 ∏
ki 6=k0

Pr(x < y < −x)

 fR(x)dx+

∫ ∞
0

 ∏
ki 6=k0

Pr(−x < y < x)

 fR(x)dx

=

∫ 0

−∞

 ∏
ki 6=k0

∫ −x
x

fWki
(y)dy

 fR(x)dx+

∫ ∞
0

 ∏
ki 6=k0

∫ x

−x
fWki

(y)dy

 fR(x)dx

=

∫ 0

−∞

 ∏
ki 6=k0

∫ −x
x

1

σW
φ

(
y − µW
σW

)
dy

 1

σW
φ

(
x− µR
σR

)
dx

+

∫ ∞
0

 ∏
ki 6=k0

∫ x

−x

1

σW
φ

(
y − µW
σW

)
dy

 1

σR
φ

(
x− µR
σR

)
dx

Selçuk simplifies the calculation by assuming that the Wrong-Key Randomization Hy-

pothesis (WKRH) applies. That is, for all incorrect candidate values ki 6= k0 for the TPS

k1, he assumes that the biases have identical underlying probability distributions with

mean 0. We will also do so here:

∫ 0

−∞

(∫ −x
x

1

σW
φ

(
y − µW
σW

)
dy

)2l−1
1

σR
φ

(
x− µR
σR

)
dx

+

∫ ∞
0

(∫ x

−x

1

σW
φ

(
y − µW
σW

)
dy

)2l−1 1

σR
φ

(
x− µR
σR

)
dx

Let us integrate by substitution. Firstly, let u = ((x− µR)/σR):
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∫ 0−µR
σR

−∞

(∫ −x
x

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

+

∫ ∞
0−µR
σR

(∫ x

−x

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

=

∫ 0−µR
σR

−∞

(∫ −uσR−µR
uσR+µR

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

+

∫ ∞
0−µR
σR

(∫ uσR+µR

−uσR−µR

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

Selçuk states that the bias of the correct key has a Normal distribution, with mean

µR = (p−1/2) and variance σ2
R = 1/4N . The figure for the variance appears to be derived

from Junod [146]; we have no reason to doubt it.

If p > 1/2, the mean (p − 1/2) is equal to |p − 1/2|. Let N = a×|p − 1/2|−2, and we

have:

0− µR
σR

= 2
√
N(0− |p− 1/2|) = 2

√
a|p− 1/2|−1(0− |p− 1/2|) = −2

√
a

Assuming a > 2, (0− µR)/(σR) < −2
√

2 ≈ −2.828. Φ(−2
√

2) ≈ 1/427, implying that

the contribution of the first integral will be negligible and that we can approximate the

whole expression with:

∫ ∞
0−µR
σR

(∫ uσR+µR

−uσR−µR

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

If p < 1/2, the mean (p− 1/2) is equal to −|p− 1/2|. Again, let N = a×|p− 1/2|−2,

and we have:

0− µR
σR

= 2
√
N(0 + |p− 1/2|) = 2

√
a|p− 1/2|−1(0 + |p− 1/2|) = 2

√
a

Still assuming a > 2, (0 − µR)/(σR) > −2
√

2 ≈ 2.828. P (u > 2
√

2) = 1 − Φ(2
√

2) ≈
1/427, implying that the contribution from the second integral will be negligible and that

we can approximate the whole with:
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∫ 0−µR
σR

−∞

(∫ −uσR−µR
uσR+µR

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

On the other hand, for p < 1/2, we could have defined x as −1× the bias at the

start, and obtained the same approximation as for the case p > 1/2. This means that the

probability of success can in both cases be approximated by:

∫ ∞
0−µR
σR

(∫ uσR+µR

−uσR−µR

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

with µR = |p− 1/2| and σR = 1/2
√
N . (If this were not the case, we would have been

faced with a situation where the sign of the approximation’s bias affected the performance

of the attack despite the cryptanalyst discarding this information and taking the absolute

bias in Attack 2.)

Let us now complete the substitution of |p − 1/2| for µR and 1/2
√
N for σR in the

equation above:

∫ ∞
−2
√
N |p−1/2|

(∫ u/2
√
N+|p−1/2|

−u/2
√
N−|p−1/2|

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

Then, we integrate by substitution again. Let v = (y − µW )/σW , and we have:

∫ ∞
−2
√
N |p−1/2|

∫ u/2
√
N+|p−1/2|−µW

σW

−u/2
√
N−|p−1/2|−µW

σW

φ(v)dv

2l−1

φ(u)du

=

∫ ∞
−2
√
N |p−1/2|

∫ u/2
√
N+|p−1/2|−0

1/2
√
N

−u/2
√
N−|p−1/2|−0

1/2
√
N

φ(v)dv

2l−1

φ(u)du

=

∫ ∞
−2
√
N |p−1/2|

(∫ u+2
√
N |p−1/2|

−u−2
√
N |p−1/2|

φ(v)dv

)2l−1

φ(u)du

- precisely Selçuk’s equation. We therefore accept this double integral as correct unless

there is reason to believe that the WKRH does not apply, and even then we would use a

modified version of Selçuk’s equation in preference to Matsui’s.

Let us compare the predicted values for the probability of success (denoted Ps) in

Matsui’s attack on 8-round DES with l = 6:
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N 2|p− 1/2|−2 4|p− 1/2|−2 8|p− 1/2|−2 16|p− 1/2|−2

Ps (l = 6, Matsui) 0.486 0.785 0.967 0.999

Ps (l = 6, Selçuk) 0.589331 0.902745 0.997249 0.999999

Table 6.7: Comparison of success probabilities (calculated numerically using Wolfram
Mathematica) for l = 6 according to Matsui [179] and Selçuk [213]

Clearly, unless Matsui had reason to believe that the wrong-key randomization hy-

pothesis did not hold, his original equation gave pessimistic estimates for the success

probability of Algorithm 2 without key ranking.

Tables 6.8, 6.9, and 6.10 give the expected success rates for other values of l, in

particular l = 108, since this is the value of l used in Collard et al.’s maximum advantage

attack. We can clearly see from these that N = 4|p − 1/2|−2 = 2118 was not enough in

Collard et al.’s attack on 11-round Serpent to achieve Ps = 0.785. A reasonably close

probability to 0.785 may be achieved with N = 41.5|p−1/2|−2 ≈ 2121.375, or an extremely

high probability with N = 2122.

For the same reasons, in Biham et al.’s linear attack on 11-round Serpent, N = 53|p−
1/2|−2 ≈ 2121.728 is needed instead ofN = 4|p−1/2|−2 = 2118 to achieve success probability

0.785.

N 8|p− 1/2|−2 16|p− 1/2|−2 17.6|p− 1/2|−2 32|p− 1/2|−2

Ps (l = 44, Selçuk) 0.028194 0.657866 0.785718 0.999875

Table 6.8: Probabilities of success (calculated numerically) for a = l = 44.

N 16|p− 1/2|−2 32|p− 1/2|−2 41.5|p− 1/2|−2 64|p− 1/2|−2

Ps (l = 108, Selçuk) 0.000027 0.229319 0.794093 0.999955

Table 6.9: Probabilities of success (calculated numerically) for a = l = 108. We were
unable to solve for a precise success rate of 0.785.

Furthermore, these are methods used to calculate the data complexity for one-dimensional

attacks, and unfortunately the increase in N above would not have been enough to take

into account the increase in data requirements resulting from the move from one dimension

to fifty-six.

The “Method 2”-based attack on 12-round Serpent [196] aims for 172-bit maximum

advantage a = l with M = (256 − 1) and capacity C = 2−116. Based on the discussion

above, we assume that the intended probability of success Ps is 0.785. Using this infor-
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N 32|p− 1/2|−2 53|p− 1/2|−2 64|p− 1/2|−2

Ps (l = 140, Selçuk) 0.007278 0.785316 0.986902

Table 6.10: Probabilities of success (calculated numerically) for a = l = 140.

mation to solve Equation 6.3.5 and to compute N from b, we obtain a data complexity of

N ≈ 2124.39.

The “Method 1”-based attack from the same paper is not so easy to estimate data

complexity for, since it consists of 2128 separate 1R attacks with key guessing on 48 bits

in the final round. We can assume that the data complexity for one such 1R attack must

lower-bound the value of N in this case, but we believe that it must be an underestimate.

Using the same methodology as before, for a capacity of 2−114, we obtain N ≥≈ 2121.275.

If differences between the actual and theoretical distributions resulting from the linear

hull effect are not too significant, this is still the best attack on reduced-round Serpent to

date. However, as the effectiveness of LLR-based nonlinear and multidimensional linear

attacks has not to our knowledge been experimentally tested for as many as 12 rounds - or

indeed as many as 11 - we are forced to express some doubt as to whether the attack can

succeed with the data complexity claimed. This would be a matter for future research.

If we attempt to address this issue by carrying out the attack using the χ2 statistic

instead, then according to the formula given in subsection 6.3.2, if we use the entire

codebook of 2128 known plaintexts, we obtain an advantage of ≈ 0.279. Since the attack is

against 256-bit Serpent, this gives the search phase a time complexity of ≈ 2255.721. This

dominates the complexity of the attack, giving us an approximate overall time complexity

of ≈ 2255.721. Since the success probability is 0.785, and since an exhaustive search of

78.5% of the keyspace would have slightly lower time complexity ≈ 2255.651, we are not

sure that the χ2 attack could reasonably be viewed as an attack under these circumstances.

The same paper’s attacks on 11-round Serpent also underestimate the data complexity.

In the case of the attack with twelve active S-boxes in the final round, 48-bit advantage is

the implied aim since key ranking is not used. We solve Equation 6.3.5 for M = (256− 1),

capacity 2−114 and Ps = 0.785, and obtain N ≈ 2121.275.

In the case of the attack with eleven active final-round S-boxes, we use the same

methodology and obtain N ≈ 2123.219.

(Both of these figures depend on the LLR-statistic remaining usable in spite of the

linear hull effect after 11 rounds. If this is not the case, since the same linear characteristic
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is used as in the case of the 12-round attacks, we still obtain advantage of only ≈ 0.279

and resultant time complexity ≈ 2255.721 when using the χ2 statistic instead - and for the

same reasons as before, this probably cannot be considered to constitute an attack.)

If the LLR statistic is used, we assume that the convolution method [136] is used to

minimise the complexity of converting the empirical distributions into scores for the various

key candidates. The time complexity is still non-negligible compared to the remainder of

the attack, being equal to 2k((6m+ 13)·2m) MAs + 2k((6m+ 4)·2m) AOs.

As we see from tables 6.11, 6.12 and 6.13 below, the best existing attacks on eleven-

round Serpent in terms of data and memory complexity are those of Nguyen et al. Time

complexity depends on which of the Serpent key lengths is in use; for the 192 and 256-bit

keys, Collard et al. have less key bits remaining to search for and achieve the best time

complexity of the existing methods; for the 128-bit key length the faster analysis phase,

and reduced time required to encrypt the known plaintexts, of Nguyen et al.’s method

dominates the time complexity and makes it the superior attack. The complexity of the

search phase gives the nonlinear attack in this thesis the best overall time complexity for

the case of 11-round Serpent with 256-bit keys, and it may also be seen that nonlinear

cryptanalysis achieves better data complexity than any other known-plaintext - or indeed

chosen plaintext - attack on 11-round Serpent with 192 or 256-bit keys.

Using nonlinear attacks to reduce the data complexity of attacking 11-round

Serpent-192 and Serpent-256.

It is not clear how, if it is possible at all, to combine nonlinear and multidimensional linear

approximations. We therefore focus on modifying Collard et al.’s “Approximation D2”,

and focus on the version with 12 active S-boxes in the final round.)

The simplest change possible is to replace the (input bitmask 12, output bitmask 10)

bias 4 approximation in the first round (affecting bits 16, 17, 18, 19) with the following

approximation:

x2 ⊕ x1 ⊕ x1x4 = y1 ⊕ y3

The primary approximation has bias 6, and after we eliminate related approximations

which are bit-flips of others, we obtain sum-of-squares-of-biases 40. Fortunately, the re-

lated approximations are uncorrelated and we obtain the full corresponding increase in

capacity should we choose to use the χ2 model.

20 instead of 15 S-boxes are now activated in the plaintext, increasing the number of

192



R
o
u

n
d

s
T

y
p

e
o
f

at
ta

ck
D

at
a

T
im

e
(a

n
al

y
si

s)

11
L

in
ea

r
[2

7]
2

1
2
1
.7

2
8

K
P

2
1
8
8
.1

E

11
L

in
ea

r
[2

7]
2

1
2
1
.7

2
8

K
P

2
9
6

P
E

+
24

4
P

D
+

21
4
9
.7

3
A

O
+

21
4
9
.7

6
M

A

11
L

in
ea

r
[1

00
]

2
1
2
1
.3

7
5

K
P

2
6
0

P
E

+
24

8
P

D
+

21
1
7
.3

6
A

O
+

21
1
7
.4

M
A

11
M

u
lt

id
im

.
li

n
ea

r
[1

96
]

2
1
2
1
.2

7
5

K
P

2
4
8

P
D

+
21

1
3
.9

1
6

A
O

+
21

1
3
.9

4
3

M
A

11
M

u
lt

id
im

.
li

n
ea

r
[1

96
]

2
1
2
3
.2

1
9

K
P

2
4
4

P
D

+
21

0
9
.8

8
4

A
O

+
21

0
9
.9

1
M

A

11
D

iff
er

en
ti

al
-l

in
ea

r
[1

23
]

2
1
2
1
.8

C
P

2
1
3
5
.7

M
A

11
N

o
n

li
n

ea
r

(t
h

is
th

es
is

)
2

1
2
0
.4

6
7

K
P

2
8
0

P
E

+
24

8
P

D
+

21
3
9
.6

A
O

+
21

3
9
.6

3
M

A

11
N

o
n

li
n

ea
r

(t
h

is
th

es
is

)
2

1
1
7
.4

0
1

K
P

2
6
0

P
E

+
27

6
P

D
+

21
4
9
.6

9
A

O
+

21
4
9
.7

2
M

A

11
N

o
n

li
n

ea
r

(t
h

is
th

es
is

)
2

1
1
5
.4

4
K

P
2

6
0

P
E

+
28

0
P

D
+

21
5
3
.7

3
A

O
+

21
5
3
.7

6
M

A

11
D

iff
er

en
ti

al
-l

in
ea

r
[1

23
]

2
1
1
3
.7

C
C

2
1
3
7
.7

M
A

12
D

iff
er

en
ti

al
-l

in
ea

r
[1

23
]

2
1
2
3
.5

C
P

2
2
4
9
.4

E

12
M

u
lt

id
im

.
li

n
ea

r
(M

et
h

o
d

2)
[1

96
]

2
1
2
4
.3

9
K

P
2

1
2
8

P
E

+
24

4
P

D
+

22
3
8
.7

4
4

A
O

+
22

3
8
.7

6
9

M
A

12
M

u
lt

id
im

.
li

n
ea

r
(M

et
h

o
d

1)
[1

96
]
≥

2
1
2
1
.2

7
5

K
P

2
1
2
8

P
E

+
24

8
P

D
+

22
4
1
.9

1
6

A
O

+
22

4
1
.9

4
3

M
A

T
a
b

le
6
.1

1
:

A
tt

ac
k

co
m

p
le

x
it

ie
s.

In
m

os
t

ca
se

s
P
s

=
0.

78
5

(o
r

sl
ig

h
tl

y
h

ig
h
er

.)
T

h
e

ch
os

en
p

la
in

te
x
t

at
ta

ck
s

of
B

ih
am

et
al

.
h

av
e
P
s

=
0.

8
4,

a
n

d
th

e
ch

o
se

n
-c

ip
h

er
te

x
t

at
ta

ck
h

as
P
s

=
0.

93
.

T
h

e
ti

m
e

co
m

p
le

x
it

y
fo

r
B

ih
am

et
al

.’
s

li
n

ea
r

cr
y
p

ta
n

al
y
si

s
va

ri
es

d
ep

en
d

in
g

o
n

w
h

et
h

er
th

e
n

ew
an

al
y
si

s
m

et
h

o
d

of
C

ol
la

rd
et

al
.

is
u

se
d

,
or

w
h

et
h

er
an

ea
rl

ie
r

an
al

y
si

s
m

et
h

o
d

[2
7]

is
.

E
=

fu
ll

en
cr

y
p

ti
o
n

s
o
f

th
e

re
d
u

ce
d

ro
u

n
d

ci
p

h
er

.
P

E
=

p
ar

ti
al

en
cr

y
p

ti
on

s.
P

D
=

p
ar

ti
al

d
ec

ry
p

ti
on

s.
A

O
=

ar
it

h
m

et
ic

o
p

er
a
ti

o
n

s.
K

P
=

k
n

ow
n

p
la

in
te

x
ts

.
C

P
=

ch
os

en
p

la
in

te
x
ts

.
C

C
=

ch
os

en
ci

p
h

er
te

x
ts

.

193



R
o
u

n
d

s
T

y
p

e
o
f

atta
ck

T
im

e
(an

aly
sis)

su
m

m
ary

M
em

B
its

recovered

1
1

L
in

ear
[2

7
]

2
1
8
8
.1

E
*

140

1
1

L
in

ear
[2

7
]

2
1
3
7
.0

8
E

+
2

1
4
9
.7

6
M

A
2

1
4
4
.0

8
7

140

1
1

L
in

ear
[1

0
0]

2
1
0
4
.7

1
E

+
2

1
1
7
.4

M
A

2
1
1
2
.0

8
7

108

1
1

M
u

ltid
im

.
lin

ea
r

[1
96]

2
1
0
1
.2

6
6

E
+

2
1
1
3
.9

4
3

M
A

2
1
0
8

48

1
1

M
u

ltid
im

.
lin

ea
r

[1
96]

2
9
7
.2

3
4

E
+

2
1
0
9
.9

1
M

A
2

1
0
4

44

1
1

D
iff

eren
tia

l-lin
ea

r
[123]

2
1
3
5
.7

M
A

2
7
6

48

1
1

N
o
n

lin
ea

r
(th

is
th

esis)
2

1
2
6
.9

5
E

+
2

1
3
9
.6

3
M

A
2

1
3
4
.0

8
7

128
k

1 ,
2
k

2

1
1

N
o
n

lin
ea

r
(th

is
th

esis)
2

1
3
7
.0

4
E

+
2

1
4
9
.7

2
M

A
2

1
4
4
.0

8
7

136
k

1 ,
4
k

2

1
1

N
o
n

lin
ea

r
(th

is
th

esis)
2

1
4
1
.0

8
E

+
2

1
5
3
.7

6
M

A
2

1
4
8
.0

8
7

140
k

1 ,
4
k

2

1
1

D
iff

eren
tia

l-lin
ea

r
[123]

2
1
3
7
.7

M
A

2
9
9

60

1
2

D
iff

eren
tia

l-lin
ea

r
[123]

2
2
4
9
.4

E
2

1
2
8
.5

160

1
2

M
u

ltid
im

.
lin

ea
r

[1
96]

2
2
2
5
.9

6
4

E
+

2
2
3
8
.7

6
9

M
A

2
2
3
2

172

1
2

M
u

ltid
im

.
lin

ea
r

[1
96]

2
2
2
9
.1

3
6

E
+

2
2
4
1
.9

4
3

M
A

2
1
0
8

176

T
a
b

le
6.12

:
A

tta
ck

co
m

p
lex

ities
con

t.
A

ll
m

em
ory

com
p

lex
ities

are
m

easu
red

in
b
y
tes.

T
h

e
tim

e
an

d
m

em
ory

com
p

lex
ities

for
B

ih
a
m

et
al.’s

lin
ea

r
cry

p
ta

n
a
ly

sis
va

ry
d

ep
en

d
in

g
on

w
h

eth
er

th
e

n
ew

an
aly

sis
m

eth
o
d

of
C

ollard
et

al.
is

u
sed

,
or

w
h

eth
er

an
ea

rlier
an

a
ly

sis
m

eth
o
d

[27]
is.

In
th

e
latter

case,
th

e
relevan

t
sou

rces
[27,

100]
d

isagree
as

to
th

e
m

em
ory

com
p

lex
ity.

B
ased

o
n

th
e

b
itsliced

S
erp

en
t

im
p

lem
en

tation
an

d
O

sv
ik

’s
n

ew
im

p
lem

en
tation

of
S

6
[5,

202]
w

e
estim

ate
2

1
2
.6

5

A
O

s
are

n
eed

ed
fo

r
a
n

11-rou
n

d
S

erp
en

t
en

cry
p

tion
,

ign
orin

g
th

e
key

sch
ed

u
le

as
th

is
is

on
ly

d
on

e
on

ce,
an

d
2

1
2
.7

8
A

O
s

for
12

-rou
n

d
S

erp
en

t.
E

=
fu

ll
en

cry
p

tion
s

o
f

th
e

red
u

ced
rou

n
d

cip
h

er.
P

E
=

p
artial

en
cry

p
tion

s.
P

D
=

p
artial

d
ecry

p
tion

s.
K

P
=

k
n

ow
n

p
lain

tex
ts.

C
P

=
ch

osen
p

lain
tex

ts.
C

C
=

ch
osen

cip
h

ertex
ts.

194



Bits remaining

Rounds Type of attack (128-bit key) (192-bit key) (256-bit key)

11 Linear [27] N/A 52 116

11 Linear [27] N/A 52 116

11 Linear [100] 20 84 148

11 Multidim. linear [196] 80 144 208

11 Multidim. linear [196] 84 148 212

11 Differential-linear [123] 80 144 208

11 Nonlinear (this thesis) N/A 62 126

11 Nonlinear (this thesis) N/A 52 116

11 Nonlinear (this thesis) N/A 48 112

11 Differential-linear [123] 68 132 196

12 Differential-linear [123] N/A 32 66

12 Multidim. linear [196] N/A 20 84

12 Multidim. linear [196] N/A 16 80

Table 6.13: Complexities for attack when Ps = 0.785 (or slightly higher) cont.

k1 key bits attacked to 128. The memory requirements are increased to 2(128+2)+4.087 =

2134.087 bytes, due both to the extra k1 bits and the four related approximations. The

time complexity of the analysis phase also increases, and is dominated by the 4·(6×128 +

8)·2128 = 2139.6 arithmetic operations and 4·(6×128 + 26)·2128 = 2139.63 memory accesses

(The multiplication by 4 results from there being four “relateds”).

Despite the aforementioned difficulty in comparing memory access complexity to com-

plexity in terms of encryptions, we are able to calculate an estimate for the number of

arithmetic operations per reduced-round encryption, by counting the number of oper-

ations involved in the optimised “bitslice” implementation of Serpent [5]. In particular,

this implementation does not use lookup tables for the S-boxes, but instead uses arithmetic

operations to calculate the output values extremely quickly.

If we obtain an optimistic estimate for the number of arithmetic operations per reduced-

round Serpent encryption, dividing the attack’s AO complexity by this figure will give us

a conservative estimate for its time complexity. For this reason, we base our estimate

on a version of Serpent in which Osvik’s implementation of S6 [202] has replaced the

original implementation, allowing one less AO per calculation of S6, and assume that the

performance gains of the bitslice implementation are not compromised by this. If future

research should provide evidence that this is not in fact possible, we can easily base new

estimates on the original version.
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(Note that operations such as bitwise xor, which might more often be described as

logical operations, are included under the banner of “arithmetic operations” in this case.)

This gives us 212.65 AOs per 11-round Serpent encryption, and 212.78 per 12-round

encryption. Dividing the appropriate figure by 212.65, we obtain time complexity of 2126.95

encryptions + 2139.63 MAs.

In the χ2 model, the capacity of the new approximation is equal to 2.5× what it was

before, however the increased number of degrees of freedom (4 instead of 1) means that

we cannot reduce the data requirements a full 2.5-fold. The number of degrees of freedom

is too low for us to use Equation 6.3.3, which in any case heavily underestimates the

advantage of the original attack; however if it can be taken as a guide, it indicates that

we achieve the same advantage with 2120.875 known plaintexts instead of 2121.375.

If we use the maximum-bias approach instead, the capacity is multiplied by (6/4)2 =

2.25. However, we cannot decrease the known-plaintext requirements 2.25-fold, since the

increased number of k1 bits, and the need to deal with 22 relateds per outer key guess,

effectively raises l to 130. To obtain success probability close to the 0.794 of the original

attack, a higher value of N |p− 1/2|−2 is needed. 49.75 instead of the previous 41.5 gives

us success probability 0.8, and means that N is in fact reduced by a factor of 1.877, to

2120.467. This is clearly a better option than using the χ2 statistic.

This approximation involves three k2 bits. Due to the bit-flipped relateds, we can only

recover two of these; the bits corresponding to x1 and x4.

There is another bias 4 linear approximation in the first round, and several approxima-

tions in the final round with bias ±4, that can be replaced with nonlinear approximations

possessing similar properties to the one above. Let us consider a situation in which:

• the entire first round approximation remains linear,

• we replace the final-round S-box approximation x3 ⊕ x4 = y4 (bias 4; affecting state

bits 76 to 79) with x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1y3. This approximation has bias 6, and a

statistically independent related with absolute bias 2. All other relateds either have

zero bias or are bit-flips of these, so we have sum of squares of biases 40.

This increases the number of active final-round S-boxes from 12 to 17.

• we also replace one of the final-round x1 ⊕ x3 ⊕ x4 = y2 approximations (bias 2; the

one affecting state bits 96 to 99) with x1⊕ x3⊕ x4 = y2⊕ y1⊕ y2y4. The number of

active final-round S-boxes increases again, from 17 to 19.
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The total number of active S-boxes increases from 27 to 34.

We have replaced a bias 4 (bias2 = 16) approximation and a bias 2 (bias2 = 4)

approximation with two nonlinear approximations, each being such that the primary ap-

proximation has bias 6, and such that the sum of squares of statistically independent

biases is equal to 40.

Let us first consider the χ2 model. In this model, the capacity is multiplied by (2.5×
10) = 25. Evidence from experiments on an SPN-based cipher in which final-round linear

approximations with bias ±4 were replaced with nonlinear approximations with identical

properties to the ones above suggests that a 6.25-fold increase in capacity, mitigated by

an increase in the number of degrees of freedom from 1 to 16, results in a reduction in

data complexity by a factor of approximately 21. This would lead to an estimated 2120.375

known-plaintext requirement. Since we have a further 22-fold increase in capacity on

top of this, we estimate that 2118.375 known plaintexts are required, and that the data

requirements for the same advantage as Collard et al.’s original attack are very unlikely

to be ≥ 2119.375. However, these experiments used a smaller value of l, and due to the low

number of degrees of freedom, it is not clear how much confidence we can place in these

figures.

Figure 6.7: Graph showing mean advantages for attack on four round SPN with 4 × 4
S-boxes using:
linear approximation (red),
nonlinear approximation (Two final-round S-boxes are approximated with “6, 2, bit-flips”
approximations of the type used in this section) in χ2 model (blue),
same nonlinear approximation in maximum-bias model (grey),
multiple nonlinear in χ2 model with two sets of approximations of this type (black),
multiple nonlinear with same two approximations in maximum-bias model (brown).

If, by contrast, we utilise the maximum-bias model, we replace one bias 4 approxima-
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Figure 6.8: Graph showing alternate calculation for average advantage in which the mean
rank obtained was input to the formula for advantage.

tion and one bias 2 approximation with two bias 6 approximations, multiplying capacity

by
(

6×6
4×2

)2
= 20.25. Since the value of l is effectively increased to 140, this does not simply

reduce the known-plaintext requirements to 2117.035, since we have to increase N |p−1/2|2

to compensate. N = 53.5|p− 1/2|−2 gives success probability 0.8, and N = 2117.401. The

memory requirements are increased to 2144.087. The time complexity of the analysis phase

is dominated by 16·(6·136 + 26)·2136 = 2149.72 MAs and 16·(6·136 + 8)·2136 = 2149.69 AOs

≈ 2137.04 11-round encryptions.

To reduce the number of known plaintexts further, we could replace another of the

x1 ⊕ x3 ⊕ x4 = y2 approximations with a nonlinear approximation instead of replacing

x3 ⊕ x4 = y4. If we choose the approximation affecting state bits 116-119, we can do this

with a total of 35 S-boxes activated, and we obtain time complexity 16·(6·140+26)·2140 =

2153.76 MAs and 16·(6·140 + 8)·2140 = 2153.73 AOs ≈ 2141.08 eleven-round encryptions with

memory complexity 2148.087. Estimated data complexity in the χ2 model is 2116.375, but for

the reasons given above we view complexity calculations as more reliable in the maximum-

bias model. l is in effect increased to 144, resulting in N having to equal 55|p− 1/2|−2 to

obtain success probability 0.8 with N = 2115.44.

Improving the capacity of the highest-bias approximation of nine rounds of

Serpent.

The description of Collard et al.’s approximations [99] includes one of several nine-round

linear approximations discovered with bias 2−50 (capacity 2−98); the highest bias achieved

for a linear approximation of that many rounds. However, none of these approximations
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are used in attacks, since the high number of active S-boxes in each would result in attacks

with far higher complexity than the then-current state of the art.

Our algorithm found several higher-capacity replacements for linear S-box approxi-

mations in the outer rounds (both of which used Serpent S3). These included various

approximations in which the various “relateds” were all either:

1. statistically independent, or

2. bit-flips of other relateds, which could safely be ignored

allowing us to calculate the new capacity precisely:

• The first round - nonlinear components in the input bits.

– We can replace the bias −4 (capacity 64) linear approximation x1 ⊕ x4 =

y2⊕y4 (input bitmask 9, output bitmask 5) with one of the following nonlinear

approximations:

1. x2⊕ x1x4⊕ x1x2 = y2⊕ y4 and relateds. (Primary approximation has bias

+6, we can choose a statistically-independent related with bias either 2 or

-2, other relateds either have bias 0 or are bit-flips of these.)

2. x4⊕x1⊕x2x4 = y2⊕y4 and relateds. (Primary approximation has bias -6.

Again, we can choose a statistically-independent related with bias either 2

or -2, and the other relateds either have bias 0 or are bit-flips of these.)

3. Other nonlinear approximations such that one related has bias ±6 exist,

but the truth tables of the related approximations are not statistically

independent, so we are unable to calculate their capacity when working

in the χ2 model. In experiments on a toy cipher, these appear to have

approximately the same capacity, but since optimisations to omit bit-flips

and zero-bias relateds cannot be made, they are also much slower to work

with.

Table 6.14 summarises the above:

Nonlinear component Bias (2, 4) wrong (1) wrong (1, 2, 4) wrong

x2 ⊕ x1x4 ⊕ x1x2 +6 -6 -2 +2

x4 ⊕ x1 ⊕ x2x4 -6 +2 +6 -2

Table 6.14: Nonlinear approximations to S3 with output bitmask 0101.
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– We can also replace the bias 4 (capacity 64) linear approximation x2 ⊕ x3 =

y1 ⊕ y2 (input bitmask 6, output bitmask 12) with one of various nonlinear

approximations with very similar properties to those found in the above case:

1. x2⊕x3x4 = y1⊕ y2 and relateds. (Primary approximation has bias +6, we

choose an independent related with bias either 2 or -2, all other relateds

have either bias 0 or are bit-flips of the preceding.)

2. x3 ⊕ x2x4 = y1 ⊕ y2 and relateds. (Primary approximation has bias +6,

again we choose an independent related with bias either 2 or -2, and all

others have zero bias or are bit-flips of the preceding two.)

As before, other nonlinear approximations with bias ±6 primary approxima-

tions but statistically dependent relateds also exist.

Nonlinear component Bias (2) wrong (3) wrong (2, 3) wrong

x2 ⊕ x3x4 +6 -6 -2 +2

x3 ⊕ x2x4 +6 -2 -6 +2

Table 6.15: Nonlinear approximations to S3 with output bitmask 1100.

• The final round - nonlinear components in the output bits.

– We can replace the bias 4 linear approximation x3 ⊕ x4 = y4 with one of

two nonlinear approximations with similar properties to those presented above.

These are: x3⊕ x4 = y4⊕ y3⊕ y1y3 and x3⊕ x4 = y4⊕ y3⊕ y3y4⊕ y1y4⊕ y1y3.

Nonlinear component Bias (4) wrong (1, 3, 4) wrong (1, 3) wrong

y4 ⊕ y3 ⊕ y1y3 +6 -6 -2 +2

y4 ⊕ y3 ⊕ y3y4 ⊕ y1y4 ⊕ y1y3 +6 -2 -6 +2

Table 6.16: Nonlinear approximations to S3 with input bitmask 0011.

This pattern occurs fairly frequently.

– The bias 4 approximation x1 ⊕ x3 ⊕ x4 = y1 (which occurs three times) can be

replaced with one of the four approximations in Tables 6.17 and 6.18:

– The bias −4 approximation x1 ⊕ x2 ⊕ x3 = y3 can be replaced with either of

the two approximations in Table 6.19 (both capacity 160):
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Nonlinear component Bias (1) wrong (1, 2) wrong (2) wrong

y2 ⊕ y1 ⊕ y2y4 +6 -6 -2 +2

y2 ⊕ y2y4 ⊕ y1y4 +6 -2 -6 +2

Table 6.17: First set of nonlinear approximations to S3 with input bitmask 1011.

Nonlinear component Bias (1) wrong (1, 3) wrong (3) wrong

y4 ⊕ y3 ⊕ y1 ⊕ y3y4 -6 +6 +2 -2

y3 ⊕ y3y4 ⊕ y1y4 +6 -2 -6 +2

Table 6.18: Second set of nonlinear approximations to S3 with input bitmask 1011.

Nonlinear component Bias (1, 3, 4) wrong (1, 3) wrong (4) wrong

y4 ⊕ y1 ⊕ y3y4 ⊕ y1y4 ⊕ y1y3 +6 -6 -2 +2

y4 ⊕ y1 ⊕ y3y4 ⊕ y1y4 +6 -2 -6 +2

Table 6.19: Nonlinear approximations to S3 with input bitmask 1110.

Although we are likely to encounter the same issues with increased TPS size and time

complexity of handling the relateds as before, in the maximum-bias model this gives us

several nonlinear approximations to nine-round Serpent with bias ±2−45.9 instead of 2−50.

In the χ2 model, we can replace the highest-capacity approximation to 9-round Serpent

known so far (capacity 4 ∗ (2−50)2 = 2−98) with several different approximations with

capacity ≈ 2−88.75.

This is unlikely to be of use in practice - the original nine-round linear approximation

had too many active S-boxes in the plaintext and ciphertext to be used in a feasible attack,

and this approximation only exacerbates the same problem. We include it here merely

to demonstrate the potential nonlinear approximations to cipher rounds have to increase

bias and capacity.
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6.5.3 DES.

# bits in Bitmask for linear function of output bits.
NL function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 4 8 8 8 6 8 10 6 8 8 8 6 10 12 18
3 10 10 12 8 14 10 14 10 10 12 12 10 12 16 24
4 14 14 14 14 14 14 20 16 14 14 18 14 18 18 24
5 14 14 18 16 16 18 22 16 16 16 20 16 22 22 28

Best linear: 14 12 8 10 10 12 12 14 8 12 12 12 10 12 18

Table 6.20: DES S1. Maximum (absolute) bias found for cost function rewarding maxi-
mum bias among relateds.

# bits in Bitmask for linear function of output bits.
NL function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 4 6 8 4 8 8 10 4 6 8 16 8 12 10 14
3 10 10 12 14 12 10 12 8 10 10 16 10 16 14 22
4 14 12 14 16 14 12 20 10 12 14 18 16 20 18 22
5 16 14 16 18 20 16 24 14 18 18 22 20 22 22 24

Best linear: 10 12 10 14 10 8 10 14 12 10 16 10 12 10 12

Table 6.21: DES S2. Maximum (absolute) bias found for cost function rewarding maxi-
mum bias among relateds.

# bits in Bitmask for linear function of output bits.
NL function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 4 8 8 4 10 8 8 4 8 8 12 8 14 10 16
3 8 10 12 8 14 12 14 6 10 12 16 12 18 14 18
4 12 12 16 12 16 16 16 10 14 16 18 14 18 20 20
5 14 16 18 14 22 22 20 14 18 20 22 20 24 22 22

Best linear: 14 10 12 12 10 12 12 14 12 10 12 10 14 10 16

Table 6.22: DES S3. Maximum (absolute) bias found for cost function rewarding maxi-
mum bias among relateds.
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# bits in Bitmask for linear function of output bits.
NL function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 4 4 8 4 8 8 12 4 8 8 10 8 10 12 16
3 10 8 8 8 12 8 16 10 8 12 16 8 16 16 16
4 12 12 16 12 12 16 18 12 16 12 18 16 18 18 24
5 16 16 20 16 16 20 22 16 20 16 22 20 22 22 32

Best linear: 10 10 12 10 12 16 10 10 16 12 10 12 10 10 16

Table 6.23: DES S4. Maximum (absolute) bias found for cost function rewarding maxi-
mum bias among relateds. Note in particular that, for bitmask 15, maximum bias of 32
was achieved - the xor of the four output bits of DES S4 is independent of the sixth input
bit.

# bits in Bitmask for linear function of output bits.
NL function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 6 6 6 4 10 6 10 6 6 10 12 8 14 16 20
3 6 12 8 6 12 10 16 8 10 10 14 10 14 16 20
4 10 12 14 10 14 14 18 12 14 14 18 14 18 18 24
5 16 18 16 12 16 16 20 14 16 18 20 18 22 22 24

Best linear: 10 12 10 14 10 8 10 12 10 12 12 10 14 16 20

Table 6.24: DES S5. Maximum (absolute) bias found for cost function rewarding max-
imum bias among relateds. Note that for bitmask 4 the best linear approximation has
higher magnitude of bias than any of our nonlinears. The linear function on the input bits
involves all six xi, whereas our nonlinear approximations were limited to five to reflect the
fact that if all six xi were exposed to the cryptanalyst, there would be no need to use an
approximation.

# bits in Bitmask for linear function of output bits.
NL function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 4 6 6 4 6 8 14 6 8 8 14 8 12 12 12
3 12 8 10 8 10 12 18 6 12 10 14 12 14 18 14
4 12 10 12 10 14 14 20 12 16 16 16 16 18 18 18
5 16 14 20 16 16 16 24 14 18 20 22 22 22 22 20

Best linear: 12 12 10 12 10 10 14 12 8 10 14 12 12 12 12

Table 6.25: DES S6. Maximum (absolute) bias found for cost function rewarding maxi-
mum bias among relateds.
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# bits in Bitmask for linear function of output bits.
NL function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 4 8 10 8 10 6 10 6 8 10 14 10 14 16 14
3 6 8 12 12 14 10 12 8 12 12 16 10 14 16 16
4 12 12 16 14 16 14 18 12 16 14 20 14 18 20 20
5 14 18 20 18 20 20 20 14 18 18 22 20 22 22 24

Best linear: 14 10 10 18 10 10 12 12 8 12 14 12 14 16 14

Table 6.26: DES S7. Maximum (absolute) bias found for cost function rewarding maxi-
mum bias among relateds.

# bits in Bitmask for linear function of output bits.
NL function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 4 6 8 4 8 6 8 6 12 8 12 6 12 16 16
3 8 10 12 12 10 10 16 10 14 12 14 10 16 16 24
4 14 12 14 12 12 14 18 10 14 16 18 16 18 22 28
5 16 18 18 20 18 16 20 16 18 18 20 18 22 24 28

Best linear: 10 12 12 12 10 10 14 10 12 10 12 10 12 16 16

Table 6.27: DES S8. Maximum (absolute) bias found for cost function rewarding maxi-
mum bias among relateds.

The approximation on bits 1, 2, 5, 6

As stated, since one of the four key bits at the input to DES S5 in round 15 is active

in round 16, we have |k2| = 3. The main approximation has bias 24, and the relateds

corresponding to wrong key guesses for the three undetermined bits have bias 16 (in three

cases) and 12 (four cases).

• If the χ2-statistic is used, then the number M of degrees of freedom for the new

attack is equal to 2|k2|, which for this attack is 8. We cannot re-guess the key bit

that was active in Round 16 to take advantage of the biases of the incorrect relateds,

since each of these has a truth table obtained by flipping all the bits in the truth

table of one of the relateds for the correct value of this key bit; and hence they

provide us with no additional information.

• The complexity of the analysis stage would be dominated by:

– 26 PEs, each with complexity 1/128 that of a full encryption.
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– 224 PDs, each with complexity 12/128 that of a full encryption. (The total

complexity of the PEs and PDs so far equates to 220.585 DES encryptions.)

– (6× 35 + 8)× 235 = 242.77 arithmetic operations.

– (6× 35 + 26)× 235 = 242.88 memory accesses.

Equating complexity in terms of arithmetic operations to an estimated complexity

in terms of DES encryptions is much more difficult than in the case of Serpent. If

we treat the number of gate operations as equivalent to the number of AOs, Kwan’s

best figures for bitsliced DES [167] give us a total of 6528 AOs for the S-boxes.

Biham [24] claims that we need not treat the DES expansion and permutation as

requiring any operations in a bitsliced implementation, that the key xor requires 48

operations per round, and the xor of the round function outputs with the left block

requires 32. (32 + 48) × 16 = 1280. Reference is also made to 160 CPU load/store

instructions per round; due to the small amount of data involved it may be possible

to keep these in cache memory, but they clearly complicate the issue. Kwan also

notes [168] improved bitslice S-boxes by the developers of the “John the Ripper”

password cracking software, which depending on the CPU architecture may be able

to use as few as 4208 AOs instead of 6528.

• An additional 235 time would then be required to go through the set of results and

eliminate all values corresponding to incorrect values of the dummy key bits. If we

count this as part of the analysis phase, its complexity is expected to be negligible

compared to the above.

• Since seven of the bits of k1 were dummies, there would be 28 key bits remaining to

handle during the search phase. There are also 28 non-dummy bits in k1. If we seek

to obtain the same advantage as Matsui’s linear attack (a = 13), then we would need

to use key-ranking with the X = 228−13 = 215 highest-scoring keys, and the search

phase would have complexity O(28·228) to sort the results, plus (215·228) ≈ 243 DES

encryptions.

The complexity of the distillation phase is dependent on the change in data complexity.

The various related approximations involved are all statistically dependent, with pairwise

correlation coefficients of 0.5, and we do not currently have a statistical model or empirical

evidence for the effect this would have on the capacity when using the χ2-statistic. We
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therefore use the maximum-bias model, noting that we may not have sufficient data to

deduce bits of k2 due to the high bias of the relateds involved. Although it is not clear

precisely how the time complexity so far compares with Matsui’s original attack, we will

now see that despite the improved bias of the approximation, the data complexity has

worsened !

It seems as though the data complexity should be reduced by a factor of 242/202 =

1.44 = 20.526, giving overall data complexity, and time complexity for this phase, of

243−0.526 = 242.474. Unfortunately, this is not the case. Matsui’s attack does in fact

consist of two separate attacks with a = 6.5, combined to produce one attack with a = 13.

This low advantage allows Matsui to use less data than would be the case for a direct

advantage 13. We can obtain Ps = 0.85 for a = 6.5, N = 242.5, but not with a = 13

[213]. The reduced advantage would massively increase the attack’s time complexity; still

breaking DES but much more slowly than Matsui.

The approximations on bits 1, 2, 4, 5, 6

To use these approximations, it is necessary to guess thirty key bits in the final round (for

(S1, S3, S4, S6, S8)). The six active key bits in Round 1 now include three guessed bits and

three dummy bits, as one of them is input to S6 in round 16. We need five instead of four

dummy key bits for the left-hand ciphertext block now, raising the value of |k1| to 41. The

complexity of a partial encryption/decryption is now 6/128 that of a full DES encryption,

plus the time required to compute the truth tables of the nonlinear functions on bits 1, 2,

4, 5 and 6. |k2| is reduced to 1, as only one of the five active key bits at the input to S5

in Round 15 is now not active in Round 16. However, we can increase it by re-guessing

Round 16 key bits. The minimum possible complexity of a partial encryption/decryption

is, therefore, equal to ((6 + 21)/128) = (1/16) of a full DES encryption

The complexity of the analysis phase is, as a result of this, now at least

• 230 PDs, each with complexity 7/128 that of a full encryption.

• 26 PEs, each with complexity 1/128 that of a full encryption. (The total complexity

of the PEs and PDs so far equates to 225.8 DES encryptions.)

• (6× 41 + 8)× 241 = 249 arithmetic operations.

• (6× 41 + 26)× 241 = 249.09 memory accesses.
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In terms of time complexity, this attack is clearly inferior to its predecessor. As for

data complexity, the maximum-bias model only equals the attack described above, and

the level of statistical dependence among the related approximations means that we do

not currently know what its data complexity in the χ2 model would be.

6.5.4 PRESENT.

Currently, the largest number of rounds of PRESENT attacked is 26 [66, 67]. This (slightly

controversial [137]) attack utilises a new form of multidimensional linear cryptanalysis that

relies heavily on the existence of multiple linear paths with the same bias.

We note that this paper’s formula for the data complexity is almost identical to Her-

melin et al.’s Theorem 1 [70], except that it incorporates the assumption that a ≈ b2, and

replaces the value 4M with 8M .

We have already criticised the original formula and the a ≈ b2 assumption; however

the replacement of 4M with 8M in the (denominator) of 6.3.1, resulting in

a ≈ (NC(p)− 4Φ−2(2PS − 1))2

8M
(6.5.1)

is a new development, which the author does not explain. Although this is referred to

elsewhere [137] as a typographical error; in emails the author has stated that he believes

the 8M version to be correct, and has introduced the change to bring the theoretical

formula more closely into line with empirical evidence for the behaviour of the attack.

Unfortunately, for the 1-bit input/output bitmasks of the S-boxes in the outer rounds

of the approximation, we have not been able to find any nonlinear approximations with

sufficient capacity and lack of dependence among the related approximations to improve on

this attack, nor on its (less controversial) predecessor [201]. Nonlinear approximations for

the PRESENT S-box with higher magnitude of bias than linear approximations do exist,

but not for the bitmasks required to attach them to the linear approximation involved in

this attack.

Bitmask for linear function of input bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max bias (NL approx.) 4 4 6 4 4 4 6 4 6 4 8 4 6 4 6

Best linear approx. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table 6.28: PRESENT S-box. Maximum (absolute) bias found for cost function rewarding
maximum bias among relateds (3 bits in nonlinear component).
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Bitmask for linear function of output bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max bias (NL approx.) 4 4 6 4 6 4 4 4 6 4 6 4 6 6 6

Best linear approx. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table 6.29: PRESENT S-box. Maximum (absolute) bias found for cost function rewarding
maximum bias among relateds (3 bits in nonlinear component).

6.6 Conclusions, and directions for future research.

In this chapter, we have evolved nonlinear approximations for block cipher S-boxes with

higher absolute bias than the best-known linear approximations for said boxes. Prior to

doing this, we have designed new algorithms which would be able to use these new forms of

approximation in attacks, and devised the statistical frameworks allowing us to calculate

the attack complexities, before designing the cost functions with these facts in mind.

We have also built on existing work in evolving nonlinear approximations not merely

by incorporating a more detailed knowledge of the problem domain, but by studying

the various possible move functions and by establishing the existence of a smooth search

landscape for one type of move function when evolving nonlinear approximations.

We have also incorporated the newly evolved approximations into attacks on DES

and Serpent, and although we have not improved on the performance of the best attack

on DES, we have succeeded in devising an attack on 11-round Serpent with better data

complexity than any other known-plaintext attack, and have also achieved the best time

complexity of any attack so far on 11-round Serpent-256.

We now consider directions in which this research might proceed further.

Instead of trying to modify the approximations from existing linear attacks - with the

resulting increase in the number of active plaintext/ciphertext bits - a promising research

direction could be to develop new algorithms to search for approximations which achieve

a better bias/active-outer-round-S-box tradeoff. Given the low data complexity of the

differential-linear attacks on reduced-round Serpent, another promising research avenue

might be to develop statistical frameworks for, and working prototypes of, differential-

nonlinear attacks.

We mentioned earlier that we did not know how to combine multidimensional lin-

ear approximations and nonlinear approximations in the same attack. This may prove a

promising research avenue, as might attempts to move from what is basically a multiple-
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approximation attack using the multiple “related” nonlinear approximations to a multi-

dimensional nonlinear attack utilising all linear combinations of the relateds, and indeed

to explore further generalisations of multiple nonlinear cryptanalysis to forms of multidi-

mensional cryptanalysis.

Although it is not in general possible to link together nonlinear approximations to the

inner rounds of a cipher, for certain weak key classes it may be possible to do so in certain

cases, leading to increasingly powerful attacks for such keys. Search algorithms to find

such approximations may also prove useful in identifying weak key classes of this form.

We have already mentioned that use of the log-likelihood ratio statistic - or indeed

approximations thereof - to achieve attacks with even lower data complexity is impaired

for approximations more than a certain number of rounds in length by the linear hull

effect. Collard et al.’s work [97] shows the true distribution for the bias of a single linear

approximation becoming increasingly key-dependent, and diverging increasingly from the

theoretical distribution calculated beforehand, as the number of approximated rounds

increases. Research into means by which the scale of the effect might be estimated, and

partial information about the theoretical distribution incorporated into a modified LLR-

like statistic could prove fruitful. Possibly, for individual attacks, nonlinear approximations

to inner rounds might be utilised to obtain information about the various key-dependent

distributions.

There has also been research, as mentioned earlier [67, 201] into a variation of linear

cryptanalysis exploiting the linear hull effect [145, 114, 200]. Although we have not yet

found a way to exploit nonlinear approximations in the best-known use of this method,

to whit the attack on PRESENT mentioned previously, research into combining nonlinear

approximations with linear hull cryptanalysis could prove promising.
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Chapter 7

Evaluation and conclusions

In this thesis, we set out to investigate the following hypothesis:

“That metaheuristic search techniques have a great deal of potential within cryptology;

both to improve upon the design of modern-day ciphers and their components, and to

contribute to their cryptanalysis.”

In the conclusions to each of the individual technical sections, we have discussed the

achievements of the corresponding research project in relation to this hypothesis, as well

as identifying avenues for future research. We now consider these as a whole.

7.1 Single-output Boolean functions (Chapter 4).

In this section, we obtained Boolean functions suitable for use as the filter functions of

LFSR stream ciphers, with optimal resistance to algebraic and fast algebraic attacks,

and superior resistance to the other known types of attack compared to any existing

construction for this type of function.

This work, however, possessed two principal limitations. First of all, the question of

how to implement an evolved function, other than by storing its truth table in memory

(possibly requiring more memory than would be available in a low-resource environment)

is vital if these are to be utilised. The most promising research avenue in terms of ad-

dressing this would be for theoreticians to investigate the new functions to see if any can

be transformed into functions of a (new or known) “type”, such as the Carlet-Feng type

[55], with equivalent properties and some known means of efficient implementation for any

number n of input bits. If so, and if this were an existing type, these functions would have
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superior cryptographic properties to any known functions of said type.

The second limitation was as follows: As the number of input bits increases, the

time and memory complexity of the search algorithm increases exponentially, due to the

properties of the known algorithms to calculate algebraic immunity and fast algebraic

resistance. For more than 15 input bits, we were no longer achieving results superior to

those of constructed functions, and a modest increase in the number of input bits would

soon have required a very large number of gigabytes of memory indeed.

Again, the most promising research avenue in terms of addressing this would be to

find some larger class of functions containing at least some of the newly evolved functions,

such that some efficient means of constructing functions of this class for arbitrary values

of n exists. For example, to construct a Carlet-Feng function, the cryptanalyst chooses

some primitive element α of the field GF (2n), and, using finite field arithmetic, calculates

the positions of the 1s in the truth table as follows: {0, 1, α, α2, . . . , α2n−1−2}. If any of the

new functions, or a property-preserving transform thereof, were to be shown to be of the

Carlet-Feng type, further research into the properties of these functions which lead to their

possessing higher nonlinearity than others of this type, and the values of α corresponding

to these, would be the next logical step.

7.2 Vectorial Boolean functions (Chapter 5).

Although metaheuristics have been applied to the evolution of S-boxes before, this was

their first application to finding S-boxes with good differential uniformity. We also com-

pared simulated annealing, which was applied to the evolution of S-boxes with different

properties, with two metaheuristics which had not hitherto been applied to the evolution

of vectorial Boolean functions, and carried out a comprehensive examination of various

parameter choices for all three techniques.

Since metaheuristics have not previously been applied to evolving vectorial Boolean

functions with good differential uniformity, we do not have any prior use of search tech-

niques in this field to compare our work to. Comparing it with results constructed by

theoreticians, for sizes greater than or equal to n = 6, we have not managed to match the

best-obtained results.

This is in part due to the chief limitation we encountered - the “combinatorial explo-

sion” in the size of the search landscape is extremely rapid, since this size is equal to 2n!

(the ! signifies factorial).
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We have conducted, as may be seen in Appendix B, additional research into a potential

means of mitigating this problem. This has not proven successful, but further research in

this area should not be ruled out.

Another possibility for future research might be to look at ways to apply a “divide-

and-conquer” methodology to the problem - for example, evolving two subfunctions with

low differential uniformity that would then join up into the larger function. This would

not guarantee that the main function had low differential uniformity, but since it would

be necessary for, say, two 5 × 6 S-boxes to have differential uniformity 2 if their 6 × 6

concatenation was to, it might lead to a way of tackling a smaller search space to solve

the problem, or produce S-boxes closer to the optimum.

In the meantime, however, it does not seem likely that the direct application of search to

this problem will compete with the best results obtained through theoretical constructions

in the short term.

7.3 Nonlinear approximations and nonlinear cryptanalysis

(Chapter 6).

In this section, we have not simply evolved nonlinear S-box approximations. Through

careful considerations of the differences between these and the linear approximations they

would replace, we were able to define the properties they would need to have, the ways

in which cryptanalytic algorithms utilising them would have to differ from conventional

linear cryptanalysis, and the new statistical frameworks for these algorithms. All of this

allowed us to evolve nonlinear approximations with superior properties to the best linear

approximations for various cipher S-boxes.

We were also able to go further, joining our nonlinear approximations to linear ap-

proximations for the inner rounds of two ciphers, and evaluating the effect of this on the

existing attacks on these ciphers. In the case of one of these ciphers, the new approxima-

tions improved in two different ways on the cryptanalytic state of the art for that cipher,

demonstrating the power of metaheuristics in this form of cryptanalysis.

We have also addressed inadequacies with previous research using conventional linear

cryptanalysis, and used more rigorous statistical reasoning both in assessing the perfor-

mance of attacks with the evolved approximations and in comparing them to previous

attacks.
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The limitations we encountered fell into two main categories; those also encountered

by conventional linear cryptanalysis without metaheuristics, and those unique to crypt-

analysis with the newly-evolved nonlinear approximations.

The first category A limitation in the first category was the so-called “linear hull

effect”. This prevented us from employing the optimal statistic for distinguishing between

two probability distributions. Future research into the linear hull effect, in particular on

ways to estimate the scale of the effect for cipher approximations, would be key to making

progress towards overcoming this.

The second category In some statistical models, nonlinear cryptanalysis has to deal

with sets of variables that may not be independent - the so-called “related approximations”

- and these statistical models are only valid when the variables are independent. Finding

a way to quantify the effect of statistical dependence in this area would seem to be an

important avenue for future research. This may well represent a significant unsolved

problem within statistics in general, not merely in the context of nonlinear approximations,

but it is certainly preventing the design of cost functions capable of addressing this issue.

Other areas for future research In linear cryptanalysis, several individual S-box ap-

proximations must be combined into an approximation of one cipher round, and several

such approximations combined to approximate several of the inner rounds of a particular

cipher. Searching for such multi-round approximations is a non-trivial task. Perhaps the

most promising research avenue for nonlinear cryptanalysis would be the design of algo-

rithms to automate the search for such approximations, albeit with nonlinear components

in their outer rounds. Currently, we have to modify existing multi-round linear approxima-

tions, and the changes made to these to accommodate nonlinear approximations interfere

with the fine-tuning done to keep the number of outer-round S-boxes down. Furthermore,

it may well be that more high-bias nonlinear approximations could have been added to

linear approximations specifically constructed with this in mind.

Some of the best cryptanalytic results against the Serpent cipher were obtained by

using the “differential-linear cryptanalysis” technique. Using chosen-plaintext and chosen

ciphertext structures such that N plaintext-ciphertext pairs could be used to provide in

excess of N/2 samples for the attack, the researchers using this methodology were able

to significantly decrease the data complexity - at the cost of making it more difficult to
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obtain the required data.

It should be possible to use evolved approximations in a form of differential-nonlinear

cryptanalysis. Since the linear approximations used in the existing differential-linear at-

tacks could not be easily modified to accommodate nonlinear components, this might also

require the researcher to devise new differential characteristics and linear approximations

for the remaining rounds, which could then be joined to the nonlinear approximations.

Nevertheless, this could lead to improved cryptanalysis of eleven or more rounds of Serpent

with lower CC/CP data complexity than hitherto.

Multidimensional linear cryptanalysis has been seen to be a powerful variant of the

basic linear cryptanalysis technique. One possible research direction would be a search for

ways to incorporate nonlinear approximations into this. Moreover, at the end of Chapter

6, we briefly described various possible “multidimensional nonlinear” cryptanalysis tech-

niques. It may well be worth investigating these to see if they can lead to improvements

in the attack’s data complexity that would outweigh their increased time complexity.

Combining nonlinear cryptanalysis with the so-called “linear hull cryptanalysis” has

not proven possible in the case of the linear hull attack against the cipher PRESENT, but

may be possible in the case of other such attacks.

In the multi-round approximations used in linear and nonlinear cryptanalysis, we have

so far only been able to evolve nonlinear S-box approximations for the first and last rounds

of these. Using nonlinear approximations in other rounds is not so straightforward; it is

known that improvements resulting from these would probably apply only to some of

the possible keys attacked [130], but research into weak keys of this nature, and perhaps

whether all keys might be weak depending on which of a choice of various nonlinear

approximations is used, could lead to improved performance when inner-round nonlinear

approximations (which could be nonlinear at both the input and output ends, not simply

linear at one end and nonlinear at the other) are incorporated into an attack. We believe

that the use of inner-round nonlinear approximations may also be of use in researching

the extent of the linear hull effect and how it varies depending on the attacked key.

7.4 A unified view...

We have attempted not only to argue that metaheuristic search has a role in modern

cryptology, but to actively place it within the cryptanalyst’s (figurative) toolbox. In

some areas of cryptology we have clearly succeeded in demonstrating the potential of

214



metaheuristics, in some areas we have had a more modest success of this form, and in

some areas we have had to accept that metaheuristic search may not be the most effective

technique in the short term.

We have attacked larger-scale, more sophisticated problems in cryptology than have

previously had metaheuristics applied to them, and have managed to advance the limits

of cryptologic knowledge and the state of the art in various areas. We believe that we

have provided strong evidence in favour of our hypothesis, and hope that this will inspire

further research into the use of metaheuristics in cryptology.

In considering areas for future research, a common theme has been the fact that

metaheuristics should not replace previous techniques completely, but rather combine

with them. For example, nonlinear cryptanalysis has combined metaheuristically-evolved

“nonlinear approximations” with the existing technique of linear cryptanalysis and the

constructions designed by other means for use in that area. Similarly, evolving filter func-

tions can only go so far in terms of the number of input bits it can handle, but it has

shown that superior properties can be achieved to those of the existing functions, and has

made it possible to look for classes of Boolean functions which have such properties and

which exist regardless of the value of n. We think that cryptanalysts should look for areas

in their work in which they can use metaheuristics, and hope that in the next few years

the use of metaheuristics as part of the cryptanalyst’s toolbox will become a matter of

routine.
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Appendix A

Truth tables of evolved filter

functions

We present, in hexadecimal format, some of the truth tables of the evolved functions. Any

researchers who would like the full set of evolved functions with nonlinearities as shown in

Tables 4.1 and 4.2 are welcome to contact the authors directly (jmclaugh@cs.york.ac.

uk).

n = 6: The following two truth tables are representatives of the discovered equivalence

classes:

3502 8c3e f607 f571

and

385d b3b3 6f90 58a1

n = 7 : The representative truth tables are:

094f ddf3 299f 8b6c 15a4 42c7 5185 edc8

and

58ff 2d3a d029 4127 1958 f4d9 d436 3b53

n = 8 :

fbf2 6023 2e62 c9c7 aec4 d8b6 e4b2 ade5

616e 3c45 03f3 08d5 5baf e9aa 9609 6031

possesses fewer 24s (the maximal absolute value) in its Walsh spectrum than any
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other annealed function of this size, and

cccf 5ed2 8ac9 2b6a 7470 ceea fea5 3b90

4f42 50bd c031 6091 bee7 a079 e2c7 4368

has the most zeroes in said spectrum.

n = 9 :

94f2 066e 9763 7bf4 5c73 be75 c0ff 98fa

828f ba5b 4411 23b8 f288 b8e7 958c bda6

d92d d595 123d 343c ed40 3832 2233 e129

81b5 e652 349f 8140 d005 bf79 ad1e ae17

has the fewest 36s in its spectrum, and

d39e f4ef 1781 c8ba 2cdb 34d0 f6e7 83cf

8a17 d712 bb5a 51d0 d762 6825 ab33 a1dd

b4e3 a66a e2c0 a722 0ecf 154d 2181 a63e

bc0f 09f0 14d8 88e4 bba5 3679 77b0 46d0

has the most zeroes.

n = 10 :

67d7 20ef af0f 51a5 bdfd 440b 4080 4bf4

a543 b21f 7796 de5f 31fc 998f 553b bbaa

c7c0 c16c 3509 a835 894f 1589 499f 10d6

219f dfbc b50a bf3a cd89 24d6 69d5 461e

ebcb cba6 03b4 0313 d37c ea74 4d88 97aa

176c 7176 020b 8d98 315b 69e1 2a8b 4a9a

87b6 66d8 1c09 0347 5137 e400 7f2a 34d9

f34d d885 f7b3 d654 f213 ac31 a4f1 82b1

has fewer 52s in its spectrum than any other annealed function of this size and

nonlinearity.
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Appendix B

The proof of Theorem 5.1.18

We show that given any bijection S over GF (2n), an affine-equivalent bijection S2 exists

such that S2 maps 0 and all 2i to themselves (i.e. all (n+ 1) values with Hamming weight

< 2 are fixed points), and all 2i + 1 to values within a certain restricted range. We then

show that for S with differential uniformity 2 or 4, the range of output values for certain

inputs can be made even narrower. We do not succeed, however, in obtaining a unique

representation - or “normal form” for the affine equivalence class of S in this way; and the

ramifications of this when trying to evolve bijections over GF (2n) (such as cryptographic

S-boxes) using memetic or ant-based metaheuristic algorithms are considered.

B.0.1 Preliminaries.

Lemma B.0.1. Let S denote a bijective S-box. It is trivial to construct another n × n
S-box, S2, which is EA-equivalent to S and which maps all inputs with Hamming weight

≤ 1 to themselves. However, S2 is not necessarily bijective.

Proof. Let S2 = S ⊕ Cx ⊕ d. Let d be the bitstring representation of S(0). By choosing

the matrix C so that it will map every input x with Hamming weight 1 to S(x)⊕S(0)⊕x,

we obtain an S2 with the properties described.

Such a C can be constructed by letting the ith column be the bitstring representation

of 2n−i ⊕ S(2n−i)⊕ S(0).

We now present an example where S2 is constructed as described above from some

bijective S, but is not itself bijective. Let S be the S-box from the Courtois Toy Cipher

[106]:
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0 1 2 3 4 5 6 7

7 6 0 4 2 5 1 3

The matrix C must then be defined as follows:

C =


0 1 0

0 0 0

1 1 0


Note that S(0)⊕C·0 = 7⊕0 = 7. However, S(7)⊕C·7 = 3⊕4 = 7.

It follows that S2(0) = S2(7) = 7⊕ d. (Since d is defined as S(0), d = 7.)

In the following section, we shall prove that at least one S-box affine-equivalent to S,

and mapping all inputs with Hamming weight ≤ 1 to themselves as described, but which

is also bijective, must always exist. We shall describe a procedure to construct this S-box

from S; firstly by constructing an S-box mapping 0, 1 and 2 to themselves, and then

applying a more complicated procedure to construct the final S-box from this. Although

we do not manage to prove that any other values can be mapped to themselves without

jeopardising affine equivalence, we do limit the range of values that can be mapped to by

some of the S-box inputs with Hamming weight 2.

B.0.2 Constructing the equivalent bijection.

We shall construct a sequence of S-boxes, the first of which we shall construct from the

original S-box, and will construct each successive S-box from its predecessor until we

obtain one with the desired properties.

Lemma B.0.2. Let S1 be a bijective S-box.

Then there exists at least one bijective S-box S2 with S2(0) = 0, and which is also

affine-equivalent to S1.

Proof. To construct S2, we can either

• Xor every output of S1 with S1(0), or

• Let S2 be defined as S2(x) = S1(x⊕S−1
1 (0)).
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Lemma B.0.3. If S1 has differential uniformity < 2n, there exist at least two S2 equivalent

to S1 with the properties described above.

Proof. If S1(0) = 0, let Sa be some affine-equivalent S-box such that this is not the case.

Perhaps we could xor all of S1’s outputs with 1 to achieve this. If S1(0) 6= 0, let Sa = S1.

Let S2a be the box we obtain by xoring every output of Sa with Sa(0).

Let S2b be the box defined by S2b(x) = Sa(x⊕S−1
a (0)).

(Note that one of these may be the same S-box as the original S1.)

If S2a and S2b were the same S-box, it would follow that Sa(x⊕S−1
a (0)) was equal to

Sa(x)⊕Sa(0) in all cases. The entry in S′as difference distribution table for row S−1
a (0) and

column Sa(0) would then be equal to 2n. However, since differential uniformity is affine-

invariant, this would lead to a contradiction, as S1 does not have differential uniformity

2n.

If n is equal to 1, then this is enough to prove the main result, since the bijectivity of

the constructed S-box would mean that it also had to map 1 to itself. We shall therefore

assume from here on that n ≥ 2.

Lemma B.0.4. For any nonzero n-vector, there exists at least one linear bijection ex-

pressed as an n× n matrix over GF (2) such that said vector is a column thereof.

Furthermore, for any distinct pair of nonzero n-vectors, there exists at least one linear

bijection expressed as an n × n matrix over GF (2) such that each of these vectors is a

column thereof.

Proof. The result is trivial. The only condition imposed on the matrix by its bijectivity

is that it must be invertible, which is the case if and only if all its columns are linearly

independent. This does not prevent us from choosing the first column arbitrarily (as long

as it is nonzero), and the only restriction imposed on the second column is that it should

not be equal to zero or to the first column. We choose the rest of the columns accordingly,

and then reorder them if we do not wish the vector (or vectors) we started with to occupy

the first column (or first two columns.)

Corollary B.0.5. For all nonzero x ∈ GF (2n), and for any 0 ≤ k < n, there exists at

least one bijective matrix M such that M(2k) = x.

Proof. Simply choose M as described above so that its (n − k)th column is the vector

x.

220



Corollary B.0.6. For all distinct nonzero (x, y) ∈ GF (2n), and for any 0 ≤ k < l < n,

there exists at least one bijective matrix M such that M(2k) = x and M(2l) = y.

Proof. Choose M so that its (n− k)th column is x and its (n− l)th column is y.

Note that M(2k ⊕ 2l) will be equal to (x⊕y).

Corollary B.0.7. For all nonzero x ∈ GF (2n), and for any 0 ≤ k < n, there exists at

least one bijective matrix M such that M(x) = 2k.

Proof. Choose some N as described in Corollary B.0.5 such that N(2k) = x. Then N−1

is M as desired.

Corollary B.0.8. For all distinct nonzero (x, y) ∈ GF (2n), and for any 0 ≤ k < l < n,

there exists at least one bijective matrix M such that M(x) = 2k and M(y) = 2l.

Proof. Choose some N as described in Corollary B.0.6 such that N(2k) = x and N(2l) = y.

Then N−1 is M as desired.

Note that since N(2k⊕2l) will equal x⊕y, M(x⊕y) = (2k ⊕ 2l).

Theorem B.0.9. Let S be a bijective S-box such that S(0) = 0. For any 0 ≤ k < l < n,

there exists at least one affine-equivalent bijective S-box S2 such that:

• S2(0) = 0,

• S2(2k) = 2k,

• S2(2l) = 2l, and

• S2(x) = M ·S(x) for some linear bijective matrix M .

Proof. Any bijective linear transformation of 0 is 0, so S2(0) = 0.

From Corollary B.0.8, we can choose M to be a transformation mapping S(2k) to 2k

and S(2l) to 2l. (Again, we note that M will also map (S(2k)⊕ S(2l)) to (2k ⊕ 2l).)

Theorem B.0.10. Let S be a bijective S-box such that S(0) = 0. For any 0 ≤ k < l < n,

there exists at least one affine-equivalent bijective S-box S2 such that:

• S2(0) = 0,

• S2(2k) = 2k,
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• S2(2l) = 2l, and

• S2(x) = S·M(x) for some linear bijective matrix M .

Proof. Any bijective linear transformation of 0 is 0, so S2(0) = 0.

From Corollary B.0.6, we can choose M to be a transformation mapping 2k to S−1(2k)

and 2l to S−1(2l). (Again, we note that M will also map (2k⊕2l) to (S−1(2k)⊕S−1(2l)).)

We see that it is fairly straightforward to construct an affine-equivalent bijective S-box

mapping 0, 1, and 2 to themselves. If n = 2, we have now achieved the desired result, so

we shall now assume n ≥ 3.

Lemma B.0.11. Let S be an APN S-box mapping 0, 1 and 2 to themselves. S(3) cannot

be equal to 3.

Proof. If S(3) were equal to 3, (input difference 3, output difference 3) would occur for

the input pairs (0, 3), (3, 0), (1, 2), and (2, 1), meaning that the differential uniformity

of S would be at least 4 and contradicting the statement that it is APN.

We note that for values of n such as 4, for which APN bijections do not exist [173], we

cannot guarantee that a given S-box mapping 0, 1 and 2 to themselves will not also map 3

to itself, but it seems highly unlikely that boxes mapping 0, 1, 2 and 3 to themselves will

not be in the minority. Certainly APN bijective S-boxes are known to exist for n = 6 [45]

and for all odd n [197]; furthermore differentially-4-uniform S-boxes are known to exist

for all n [197] and a later result in the appendices to this document will show that, given

some bijective differentially-4-uniform S-box mapping 0, 1, 2 and 3 to themselves, we can

construct from it an affine-equivalent differentially-4-uniform bijective S-box mapping 0,

1, 2 and 3 to 0, 1, 2 and 5 respectively.

Theorem B.0.12. Let S be a bijective S-box mapping 0, 1, 2 to themselves, but not

mapping 3 to itself. There exist bijective S-boxes S1, S2, S3 affine-equivalent to S which

also map 0, 1, and 2 to themselves, such that:

• S1(3) = 5

• S2(3) = 6

• S3(3) = 7
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Proof. If S(3) ≤ 7, we can construct the desired Si immediately, by applying a process

which we will refer to as ”controlled-XOR”:

Definition B.0.13. Let CXOR(i, a1a2. . .ai−1) be a matrix identical to the identity ma-

trix except in its ith-last column

Instead of ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

. . .

0

1

0

0

. . .

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
let it be ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

. . .

0

1

a1

a2

. . .

ai−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Applying CXOR to the outputs of the S-box will map all values < 2i−1 to themselves,

as also any values > 2i−1 whose ith-last bit is zero. CXOR will map any output values

with nonzero ith-last bit from
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1

. . .

cp

1

b1

b2

. . .

bi−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
to ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1

. . .

cp

1

b1 ⊕ a1

b2 ⊕ a2

. . .

bi−1 ⊕ ai−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and we simply choose (a1, . . ., ai−1) to give the desired result.

In this case, we simply apply CXOR with i=3 and a1, a2 chosen to give whichever of

5, 6 and 7 is desired as the value for S(3).

If S(3) > 7, we first create an S-box Sa mapping 0, 1 and 2 to themselves and such

that Sa(3) ≤ 7.

This will involve applying a matrix which we will refer to as MSB SHIFT ; which is

similar to the matrices which comprise the SWAP and CNOT quantum gates.

Definition B.0.14. Let MSB SHIFT (S(i)) be a matrix identical in all but two rows to

the identity matrix. These rows must be: the row in which the first (i.e. the MSB - the

topmost when it is expressed as a column vector) nonzero bit of S(i) occurs, and the row

immediately below it. Let them be denoted R1 and R2 respectively.

Whereas the identity matrix includes:
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ROW ABOVE R1: 0 . . . 1000 . . . 0

R1: 0 . . . 0100 . . . 0

R2: 0 . . . 0010 . . . 0

ROW BELOW R2: 0 . . . 0001 . . . 0

the corresponding rows of MSB SHIFT (S(i)) are:

ROW ABOVE R1: 0 . . . 1000 . . . 0

R1: 0 . . . 0A10 . . . 0

R2: 0 . . . 01X0 . . . 0

ROW BELOW R2: 0 . . . 0001 . . . 0

where:

• A is the value of the bit immediately following the first nonzero bit of S(i) (so S(i)

is of the form 1Abc. . .ω)

• X is either 0 or (1⊕A).

It is easy to confirm that the columns of MSB SHIFT (S(i)) are all linearly indepen-

dent.

We transform S by applying MSB SHIFT (S(i)) to the outputs of S; i.e. by calcu-

lating

MSB SHIFT (S(i))(S). The effect of MSB SHIFT (S(i)) on S(i) (indeed, on all out-

puts of S) is to map
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

. . .

0

1

A

b

. . .

ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
to ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

. . .

0

(A·1)⊕ (1·A) = 0

(1·1)⊕ (X·A) = 1

b

. . .

ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

. . .

0

0

1

b

. . .

ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
to
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

. . .

0

(A·0)⊕ (1·1) = 1

(1·0)⊕ (X·1) = X

b

. . .

ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
To obtain an S-box Sη where Sη(3) ≤ 7 and which maps 0, 1 and 2 to themselves, we

apply MSB SHIFT (S(3)) to S to create a new S-box, Sa. If Sa(3) > 7, we create and

apply MSB SHIFT (Sa(3)) to Sa to obtain Sb... Eventually, this procedure will yield Sη

as desired.

We can then use on Sη the procedure we would have used on S had S(3) been less

than or equal to 7.

Theorem B.0.15. Let S be a bijective S-box mapping 0, 1, 2 to themselves, with differ-

ential uniformity ≤ 4. There exist bijective S-boxes S1, S2, S3 affine-equivalent to S which

also map 0, 1, and 2 to themselves, such that:

• S1(3) = 5

• S2(3) = 6

• S3(3) = 7

Proof. If S is APN, or if S(3) 6= 3, we have already obtained the desired result. Let us

therefore focus on the case where S is differentially-4-uniform and S(3) = 3.

Apply a matrix Ma to the S-box outputs mapping 2 to some value x ≥ 4, but preserving

the property that 0 and 1 are mapped to themselves. This will map 3 to (x⊕ 1).

Let the S-box resulting from this be denoted Sa. We have Sa(2) = x, Sa(3) = (x⊕ 1).

The input difference between S−1
a (2) and S−1

a (3) cannot be equal to 1. For if it could,

we would have (input difference 1, output difference 1) for ((x1, x2), (y1, y2)) =

• ((0, 1), (0, 1))

• ((2, 3), (x, x⊕ 1))
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• ((S−1
a (2), S−1

a (3)), (2, 3))

contradicting our assertion that S has differential uniformity ≤ 4.

Apply some matrix Mb to the S-box inputs, mapping 2 to S−1
a (2) and 1 to itself. This

will map 3 to (S−1
a (2)⊕ 1), which we have already shown cannot be S−1

a (3).

We can now continue with the procedure described in Theorem B.0.12 to achieve our

desired result.

Without loss of generality, we shall henceforth assume that the preferred value for S(3)

was 5.

The procedure now starts to become more complicated. The purpose served by The-

orem B.0.16 will not be obvious until we reach Theorem B.0.17. These two theorems will

allow us to construct an equivalent S-box mapping all inputs with Hamming weight 0 or

1 to themselves, and 3 to 3 or 5 (we will assume that 3 is mapped to 5 for an S-box with

differential uniformity 2 or 4). We will then demonstrate how, after an S-box mapping 0,

1, 2, and 4 to themselves, and 3 to 3 or 5, has been constructed, assuming n ≥ 4, we can

construct another equivalent S-box as described but with additional restrictions on the

values of S(x) for x of the form 2i + 1, using a procedure which will reduce the number of

times we need to apply that of the below theorem:

Theorem B.0.16. Let S be a bijective S-box such that, for some h ≥ 1,

• S(x) = x ∀ x ∈ {0, 1, 2, . . . , 2h},

• S(3) = 3 or 5,

• S−1(2h+1) < 2h+1, and

• n ≥ (h+ 2).

There exist at least (h+ 3) bijective S-boxes S2 affine-equivalent to S such that

• S2(x) = x ∀ x ∈ {0, 1, 2, . . . , 2h},

• S2(3) = S(3) = 3 or 5,

• S−1
2 (2h+1) ≥ 2h+1, and

• S2(x) = M(S(x)) for some linear bijection M .
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Proof. We note first of all that the procedure described in this proof will not be necessary

for h = 1, since under the circumstances described S−1(4) must be greater than or equal

to 4. We can therefore replace the assumption that h ≥ 1 with the assumption that h > 1.

The matrix M is in fact a CXOR matrix as described in Definition B.0.13. Let all of

M ’s columns except the (n − (h + 1))st be identical to the corresponding column of the

identity matrix. Since they are linearly independent, this is permissible.

This column must be of the form ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

. . .

0

1

x1

x2

. . .

xh+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where at least one xi should be nonzero, and such that the column should not be the

same as any S-box outputs x with the property that S−1(x) < 2h+1. From the condition

that at least one xi should be nonzero, we see that there are at most 2h+1 − 1 possible

columns. It should be clear that this column is also linearly independent of the other

columns in the matrix.

We look at the question of how many x such that S−1(x) < 2h+1 could be equal to

such a column. There are 2h+1 values of x such that S−1(x) < 2h+1.

(h+1) of these are the values {20, 21, . . . , 2h}. None of these could equal such a column.

An (h+ 2)nd such x which cannot correspond to the column described is 0.

An (h+ 3)rd such value of x is S(3). (This is easily shown to follow from the fact that

h > 1.)

We obtain an (h + 4)th such value by noting that S−1(2h+1) < 2h+1, and that this

cannot correspond to the column due to the condition that at least one xi be nonzero.

We see that at most (2h+1−(h+4)) of the first 2h+1 truth table entries can correspond

to such columns, leaving at least (2h+1 − 1)− (2h+1 − (h+ 4)) = (h+ 3) valid choices for
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the column of M .

How does this work? The transformation S2 = M(S(x)) will not affect any outputs of

S which are < 2h+1. It will, however, map the S-box output equal to the column to 2h+1.

The fact that this output corresponds to an input greater than or equal to 2h+1 is what

causes the transformation to obtain the desired result.

Each different choice for this column will result in a different value for S2(S−1(2h+1))

(and a different value for S−1
2 (2h+1)), hence our statement that at least (h+3) such S-boxes

exist.

Theorem B.0.17. Let S be a bijective S-box such that

• S(x) = x for x ∈ {0, 1, 2, . . . , 2h} for some h,

• S(3) = 3 or 5,

• S−1(2h+1) ≥ 2h+1, and

• n ≥ (h+ 2).

There exists at least one bijective S-box S2 affine-equivalent to S such that S2(x) = x

for all x ∈ {0, 1, 2, 22, . . ., 2h, 2h+1}, S2(3) = S(3) and S2(x) = S(M(x)) for some linear

bijection M .

Proof. If S−1(2h+1) = 2h+1, we do not need to do anything. Otherwise, let M be such

that its (n− (h+ 1))st column is equal to S−1(2h+1), and such that its (n− i)th column is

equal to 2i (i.e. equal to the corresponding column of the identity matrix) for all 0 ≤ i ≤ h.

All other columns can be chosen arbitrarily, as long as they are linearly independent of

these and of each other.

M will map 2h+1 to S−1(2h+1), and will leave invariant all values < 2h+1. Hence S2

will map such values to the same outputs as S.

Since S−1(2h+1) ≥ 2h+1, it cannot be in the spanning set of the columns to the right

of it, and hence M is a valid linear bijection.

It follows from the preceding results that:

Corollary B.0.18. Every bijective S-box S is affine-equivalent to at least one bijective

S-box S2 such that S2 maps all inputs with Hamming weight < 2 to themselves, and 3 to

either 3 or 5. Furthermore, if S has differential uniformity of 4 or less, we may assume

that S2(3) = 5.
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We will now show how a variation on this procedure may be obtained to construct an

S-box with the properties described and with further restrictions on the values mapped to

by some of the x with Hamming weight 2.

Theorem B.0.19. Let S be a bijective S-box such that, for some h ≤ (n − 2), S(x) = x

for all x ∈ {0, 20, 21, . . ., 2h}, S(3) ≤ 5, S(2i + 1) ≤ (2i+2 − 1) for all 1 < i < h, and such

that n ≥ 3.

(The result does also trivially hold for h = (n − 1), but for this value of h the below

procedure does not need to be applied.)

There exists at least one affine equivalent bijective S-box S2 such that S2(x) = x for

all x ∈ {0, 1, 2, 22, . . ., 2h}, S2(3) = S(3), and S2(2i + 1) ≤ (2i+2 − 1) for all 1 < i ≤ h.

Proof. If S(2h + 1) ≥ 2h+2, we keep constructing and applying MSB SHIFT (S(2h + 1))

until this has ceased to be the case.

MSB SHIFT is only used if S(2h + 1) ≥ 2h+2. It has no effect on any S-box output

in which the first nonzero bit occurs two places or more later than the first nonzero bit

of S(2h + 1). Hence, any S-box output < 2h+1 is unaffected. This means that, for all

0 < i ≤ h, all S(2i) = 2i are unaffected, S(0) is unaffected, and for all (0 < i < h), all

S(2i + 1) ≤ (2i+2 − 1), and so ≤ (2h+1 − 1), are unaffected.

We note that the use of MSB SHIFT in this fashion will eventually result in a

situation where 2h+1 ≤ S(2h + 1) ≤ (2h+2 − 1). (Since no S-box output less than 2h+1 is

affected, we know that 2h+1 is a lower bound for the value of S(2h + 1) at the end of this

procedure.)

Through the use of CXOR on the MSB SHIFT ed value, we can reduce the upper

bound for the S(2i + 1) even further. Let us begin with the specific case of S(5):

Lemma B.0.20. Let S be a bijective S-box such that S(x) = x for x ∈ {0, 1, 2, . . ., 4},
such that S(3) ≤ 5 and such that n ≥ 3.

There exists at least one affine equivalent bijective S-box S2 such that S2(x) = x for

x ∈ {0, 1, 2, . . ., 4}, S2(3) = S(3), S2(5) ≤ 11, and (if S2(5) > 8), S−1(8) ≥ 8.

Proof. If S(5) ≤ 11 and S−1(8) ≥ 8 already, we do not need to proceed any further. If

S(5) ≤ 7, again, we do not need to proceed further. We assume for the rest of the proof

that n ≥ 4, since the result is trivially true for n = 3.

If S2(5) > 11, we begin by applying the procedure described in the proof of Theorem

B.0.19, so that 8 ≤ S2(5) ≤ 15.
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S2(5) will now be of the form ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

. . .

0

1

y1

y2

y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We wish to use CXOR(4, a1a2a3) as described above to

• replace S2(5) with a vector of this form such that y1 = 0, and

• to ensure that the procedure of Theorem B.0.16 will not need to be applied (as

otherwise the application of said procedure might undo what we had achieved here.)

(That is, we need to ensure S−1
2 (8) ≥ 8).

We know that all of S(0, 1, 2, 3, 4) are less than or equal to 7, but do not know if this

is the case for S(6) or S(7). This gives us up to two values that may be of the form 1y1ij

and be such that using the corresponding y1ij as a1a2a3 for the CXOR would result in

S−1(8) being less than 8. A third such value arises from the need not to xor with S2(5)

itself. As there are four y1ij to choose from (y100, y101, y110, y111), of which only three

are potentially problematic, at least one suitable y1ij for the CXOR will always exist.

Let us now generalise to the remaining S(2i + 1)

Theorem B.0.21. Let S be a bijective S-box such that, for some h ≤ (n − 2) (The

result does trivially hold for h = (n− 1), but the below procedure is neither necessary nor

applicable in said case):

• S(x) = x ∀ x ∈ {0, 1, 2, 22, . . ., 2h}

• S(3) ≤ 5

• S(2i + 1) ≤ (2i+2 − 2i− 1) for all 0 < i < h,

• n ≥ 3.
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There exists at least one bijective S-box S2 affine equivalent to S such that:

• S2(x) = x ∀ x ∈ {0, 1, 2, 22, . . ., 2h},

• S2(3) ≤ 5,

• S2(2i + 1) = S(2i + 1), and hence S2(2i + 1) ≤ (2i+2− 2i− 1), for all 0 < i < h, and

• S2(2h + 1) ≤ (2h+2 − 2h− 1).

Proof. Consider first of all the special case 20 = 1. S(20+1) = S(2) = 2. (20+2−2·0−1) =

(4− 0− 1) = 3.

Consider also the particular cases h = 1 and h = 2. S(21 + 1) = S(3), which we have

already stated is less than or equal to 5. (21+2 − 2·1− 1) = (8− 2− 1) = 5.

S(22 + 1) = S(5). 22+2− 2·2− 1 = 11, and we have already shown that we can always

achieve S(5) ≤ 11. (in fact, we will later show that S(5) ≤ 10 can always be achieved for

an APN.)

We see therefore that there is no contradiction inherent in the properties of S as

described above. Let us therefore assume from here on that h ≥ 3.

If S2(2h + 1) ≤ (2h+2 − 2h− 1) already, we do not need to proceed any further.

Otherwise, we begin by applying the procedure described in the proof of Theorem

B.0.19, so that 2h+1 ≤ S2(2h + 1) ≤ (2h+2 − 1).

S2(2h + 1) will now be of the form ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

. . .

0

1

a1

a2

. . .

ah+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We wish to use CXOR(h+ 2, b1b2. . .bh+1) to

• replace this with another vector of this form such that a1a2. . .ah+1 ≤ (2h+1−2h−1),

and

233



• to ensure that the procedure of Theorem B.0.16 will not need to be applied (as

otherwise said procedure might undo all that we had achieved here.)

How many other S-box outputs S(k) (k < 2h+1) are there such that 2h+1 ≤ S2(k) ≤
(2h+2 − 1)? For k < 8, there are at most two (only S(6) and S(7) can, at this point, take

values in such a range.) For larger k, there are at most
∑h

j=3 2j − 2 such outputs (since

S(2j) and S(2j + 1), for each j, either do not at this stage take values in this range or, for

j = h, are the value we wish to CXOR.)

This gives us a total of (2 +
∑h

j=3 2j − 2) outputs which may restrict the range of

values we can CXOR with (lest they be mapped to 2h+1). 22 − 2 = 2, so in fact we have

≤
∑h

j=2(2j − 2) such outputs. In fact, as 21 − 2 = 0, we have less than or equal to

h∑
j=1

(2j − 2) =
h∑
j=1

2j − 2h = (2h+1 − 2)− 2h = 2h+1 − 2h− 2

such outputs.

In the worst-case scenario, these will prevent the CXORs that would have resulted in

the (2h+1−2h−2) smallest values> 2h+1. Hence S2(2h+1) ≤ [(2h+1+1)+(2h+1−2h−2)] =

2h+2 − 2h− 1.

We can now obtain the following result:

Theorem B.0.22. Every bijective S-box S is affine-equivalent to at least one bijective

S-box S2 such that S2 maps all inputs with Hamming weight less than 2 to themselves, 3

to 5, 5 to some value ≤ 11, and all 2i + 1 (3 ≤ i ≤ (n− 1)) to some value ≤ 2i+2− 2i− 1.

Proof. We shall begin by addressing the part of the result that states that S(5) ≤ 11.

• Consider applications of Theorem B.0.17’s procedure carried out after the point at

which the procedure described in the proof of Lemma B.0.20 has either been carried

out or deemed unnecessary. These will leave invariant the effect of S-box inputs less

than 2h+1, which by that point will always be ≥ 8. Hence, these will not affect the

value of S(5).

• If the procedure described in the proof of Lemma B.0.20 was carried out, the proce-

dure described in the proof of Theorem B.0.16 will not be carried out until 2h+1 ≥ 16

(in fact, due to the procedures in the proofs of Lemma B.0.20 and Theorem B.0.21,
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it might not be carried out until much later or indeed at all). As 11 < 16, and as it

was stated in the proof of Theorem B.0.16 that no S-box outputs < 2h+1 would be

affected by the procedure, it follows that the value of S(5) remains unaffected.

• If this procedure was not carried out, and if the reason for this was that S(5) ≤ 7,

then Theorem B.0.16’s procedure may be carried out when 2h+1 = 8. However,

since this is greater than S(5) under these circumstances, the value of S(5) remains

unaffected.

We thus prove the part of the result pertaining to S(5).

We now need to address the question of any other values of the form (2i + 1) that we

have caused to be mapped to values ≤ (2i+2 − 2i − 1). For i = (n − 1), this is always

the case, and we need not consider the corresponding (2i + 1). For the remaining values

of i ≥ 3, it is possible that Theorem B.0.16’s procedure may have to be applied, if the

value of S(2i+1) was too small to require the procedures of Theorem B.0.19 and Theorem

B.0.21. If so, the value of S(2i + 1) will be too small to be affected by application of the

matrix M as described, and we already know that later applications of Theorem B.0.16’s

procedure will leave S(2i + 1) unaffected, just as this application will leave unaffected

S(2j + 1) for any j < i.

Theorem B.0.17’s procedure does not affect S-box inputs less than 2h+1, which exceeds

(2i + 1).

We thus see how, by incorporating the procedures described in the proofs of Theorem

B.0.19 and Lemma B.0.20 into our construction, we obtain an S-box with the desired

properties.

For an APN or D4U S-box, we can tighten the restrictions on S(5) imposed by the

above results further. We begin by ensuring that S(5) 6= 7. Consider the point in the

procedure at which we would normally apply the methodology described in the proof of

Lemma B.0.20:

Lemma B.0.23. Let S be a bijective S-box for n ≥ 3, such that S maps 0, 1, 2 and 4 to

themselves, maps 3 to 5, and 5 to 7.

Then there exists at least one S-box S2 linear-equivalent to S, such that S2 maps 0, 1,

2 and 4 to themselves, 3 to 5, and 5 to:

• 6, 9, 10, or 11. (if S is APN).

235



• 3, 6, 9, 10, or 11. (otherwise).

Proof. We currently have an S-box of the form(
0 1 2 3 4 5 6 7 . . .

0 1 2 5 4 7 X1 Y1 . . .

)

for two unknown values (X1, Y1)

We apply a matrix identical to the identity matrix except that the last two rows of its

last two columns are of the form ∣∣∣∣∣0 1

1 0

∣∣∣∣∣
to the inputs, and then to the outputs. (Or the outputs and then the inputs; the order

we choose is irrelevant.)

The values with Hamming weight 1 will not map to themselves after the first matrix

application; however they will again after the second, and the transformation will result

in an S-box of the form: (
0 1 2 3 4 5 6 7 . . .

0 1 2 6 4 X2 7 Y2 . . .

)

Apply CXOR(3, 11) so that 3 will map to 5. The S-box now takes the form:(
0 1 2 3 4 5 6 7 . . .

0 1 2 5 7 X3 4 (Y3 = Y2 or Y2 ⊕ 011) . . .

)

Operate on the inputs as described in the proof of Theorem B.0.17), mapping 4 to

S−1(4) = 6, so that 4 will again map to itself. We have:(
0 1 2 3 4 5 6 7 . . .

0 1 2 5 4 Y3 7 X3 . . .

)

Y3 may be 6 (if so, Y2 will have been 5 and Y1 will have been 6), or it may be 3 if the

S-box is not APN. If it is neither of these, we can apply the procedure described in the

proof of Lemma B.0.20 to ensure that 5 maps to 9, 10 or 11 without changing the values

mapped to by 0, 1, 2, 3 and 4, and as explained in the proof of Theorem B.0.22, this will

remain the case after the full procedure has been applied to the S-box.
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If S is APN, we can then go on to ensure 5 will not map to 9:

Lemma B.0.24. Let S be a bijective APN S-box for n ≥ 3, such that S maps 0, 1, 2 and

4 to themselves, maps 3 to 5, and 5 to 6, 9, 10, or 11.

Then there exists at least one S-box S2 linear-equivalent to S, such that S2 maps 0, 1,

2 and 4 to themselves, 3 to 5, and 5 to 6, 10, or 11.

Proof. If S(5) 6= 9, this is already true, and we do not need to do anything.

Otherwise, S is of the form(
0 1 2 3 4 5 6 7 . . .

0 1 2 5 4 9 Y1 Z1 . . .

)

for two unknown values (Y1, Z1).

S(6) and S(7) cannot both be ∈ {10, 11}, since (input difference 1, output difference 1)

already occurs for S-box inputs 0 and 1. It will therefore be possible to apply at least one

of CXOR(4, 011) or CXOR(4, 010) so that 5 maps to either 10 or 11, without creating a

situation where S−1(8) < 8. As previously stated, we can now continue with the rest of

the procedure without affecting the value of S(5).

However, prior to continuing with the rest of the procedure, we can eliminate 11 from

the set of possible values for S(5) if S is APN:

Lemma B.0.25. Let S be a bijective APN S-box for n ≥ 3, such that S maps 0, 1, 2 and

4 to themselves, maps 3 to 5, and 5 to 11.

Then there exists at least one S-box S2 linear-equivalent to S, such that S2 maps 0, 1,

2 and 4 to themselves, 3 to 5, and 5 to 6 or 10.

Proof. S is of the form (
0 1 2 3 4 5 6 7 . . .

0 1 2 5 4 11 X1 Y1 . . .

)

Y1 cannot be equal to 9, otherwise we would have (input difference 2, output difference

2) for inputs 0, 2, 5, 7, and hence S would not be APN.

If X1 is not equal to 9, we can simply apply CXOR(4, 001) to the outputs.

If X1 is equal to 9, we cannot do this, as otherwise it will result in the procedure of

Result 14 having to be applied when ensuring S(8) = 8, undoing what we have achieved

here. We have
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(
0 1 2 3 4 5 6 7 . . .

0 1 2 5 4 11 9 Y1 . . .

)

(Note that Y1 6= 8 if S is APN.) Carry out the affine transformation which xors all

inputs with 1, resulting in: (
0 1 2 3 4 5 6 7 . . .

1 0 5 2 11 4 Y1 9 . . .

)
Carry out the same transformation on the outputs:(

0 1 2 3 4 5 6 7 . . .

0 1 4 3 10 5 Y2 8 . . .

)

Apply CXOR(2, 1) to the inputs:(
0 1 2 3 4 5 6 7 . . .

0 1 3 4 10 5 8 Y2 . . .

)
Use the same CXOR on the outputs:(

0 1 2 3 4 5 6 7 . . .

0 1 2 4 11 5 8 Y3 . . .

)

(Note that since S is APN, Y3 6= 9.)

Apply CXOR(3, 01) to the outputs:(
0 1 2 3 4 5 6 7 . . .

0 1 2 5 11 4 8 Y4 . . .

)

(Since S is APN, Y4 6= 9.)

Apply the same CXOR to the inputs:(
0 1 2 3 4 5 6 7 . . .

0 1 2 5 4 11 Y4 8 . . .

)

We reiterate that Y4 cannot be equal to 9, or else we would have (input difference 1,

output difference 1) for ((0, 0), (1, 1)) and ((6, 9), (7, 8)).

We now apply CXOR(4, 001) to the outputs, obtaining:
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(
0 1 2 3 4 5 6 7 . . .

0 1 2 5 4 10 Y5 9 . . .

)
Note that since Y4 could not equal 9, Y5 cannot equal 8. As a result, we will not

have to apply the procedure of B.0.16, and the value of S(5) will not be affected by any

subsequent part of the overall procedure.

From this, it follows that:

Corollary B.0.26. Every bijective S-box S with differential uniformity ≤ 4 is affine-

equivalent to at least one bijective S-box S2 such that S2 maps all inputs with Hamming

weight less than 2 to themselves, 3 to 5, 5 to

• 6 or 10 (if S is APN)

• 3, 6, 9, 10, or 11 (otherwise)

and all 2i + 1(3 ≤ i ≤ (n− 1)) to some value ≤ 2i+2 − 2i− 1.

The question arises as to whether this representation is unique. We have tested this on

various S-boxes by generating several affine-equivalent boxes and applying the procedure

described above, and unfortunately the representation as described above (whether it be

the more general result, the result assuming D4U, or the more restricted representation

for APN S-boxes) has not in any of these cases been unique.

An additional result that applies for APN S-boxes.

Lemma B.0.27. Let S be a bijective, APN S-box mapping all inputs with Hamming weight

1 to themselves. S does not map any inputs with Hamming weight 2 or 3 to themselves.

Proof. For some value a ∈ GF (2n), let HW (a) denote the Hamming weight of a. If some x

with weight 2 was mapped to itself, input difference x, output difference x would occur for

the two pairs (0, x) and (x, 0). However, it would also occur for (2k, 2l) and (2l, 2k) where

(2k ⊕ 2l) = x. This would imply that S had differential uniformity ≥ 4, contradicting our

assertion that it was APN.

If some x with weight 3 was mapped to itself, let y be some input such that HW (y) = 1

and HW (x ⊕ y) = 2. It would follow that HW (S(x) ⊕ S(y)) = 2. Let z be the value

(x⊕y). From z having weight 2, we see that (input difference z, output difference z) would
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occur not only for the two input pairs (x, y), (y, x), but also for (z1, z2), (z2, z1) where z1

and z2 are the two values with Hamming weight 1 that would xor to give z. Again, this

contradicts the assumption of almost-perfect nonlinearity.

B.0.3 Consequences for genetic/memetic and ant algorithms

Genetic and memetic algorithms

The concept of epistasis in genetic algorithms is introduced in various tutorials on the

subject [230, 223], and is also relevant in the context of memetic algorithms [102]. It is

stated that, for such algorithms to be effective, the representation of the entities being

evolved should be such that there is “little interaction between genes”. In the context of

the tutorial, the entities were strings of bits, and the individual genes were the individual

bits. As far as possible, Townsend indicated, the effect of one bit’s value on the fitness of

the candidate solution should be independent of any other bit’s effect.

While no rigorous mathematical definition based on the level of dependence was given,

the representation of the candidate solutions was deemed to have high epistasis if the

effects of certain bits on the fitness were in fact highly dependent on the values of other

bits. This is not desirable.

In the case we are dealing with (bijections over GF (2n)), the genes are the positions

assigned to the individual output values. Clearly, if we use the unmodified truth table

as the representation, the level of epistasis is extremely high. No individual output value

contains any information, since given any S-box S with S(x) = y and a given set of

affine invariant properties, we may xor the set of outputs with any nonzero m-bit value

to obtain S2 with S2(x) 6= y and precisely the same set of properties. Even if we ensure

S(0) = 0 to prevent this, using a different matrix to that defined in Theorem B.0.9 means

that (S(1), S(2)) can still be mapped to any pair of arbitrary nonzero values. Clearly no

information on the overall fitness exists until after we have fixed the values for these three

truth table entries and at least one other - possibly not even then - and the effect of S(x)’s

value for any x > 2 is clearly dependent on the values for these three and other entries.

We have attempted to counter this in our genetic and memetic algorithms by using

the results of Section B.0.2 to fix the values of all S(2i) and S(3), and to enforce the

stated restrictions on the values of the S(2i + 1) so that these are consistent with the

restrictions that would apply for an APN. Unfortunately, in experiments using the entries

in the difference distribution table to calculate fitness, this has led to poorer average fitness
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than when we have not done so, for the following reasons:

1. In the experiments, the mutation phase must either block mutations that would

violate these restrictions, or allow them but then execute the full procedure of Section

B.0.2 to render the candidate compliant again.

• In the first case, this removed potential improvements from the set of mutations

that would otherwise have been beneficial in terms of fitness.

• In the second case, the number of changes in truth table entries resulting from

the transformation procedure appears to have impaired the algorithm’s conver-

gence.

2. The impaired convergence may well result from the non-uniqueness of the represen-

tation described. As an example, we evolved an APN S-box for n = 5 and applied

an algorithm that generated S-boxes affine-equivalent to it and then applied the

procedure of Section B.0.2 to these until it was unable to find any more equivalent

boxes satisfying these restrictions.

In this experiment, the value of S(6) took on every value ∈ [17, 31]\{24} in at least

one of the thus-constructed S-boxes. S(31) took on twenty different values, and the

values in other positions were similarly varied. It would appear that the level of

epistasis is still extremely high even after the affine transformations are used to fix

and restrict truth table values as defined in Section B.0.2, and without knowledge

of further transformations which could tighten the restrictions further, it is not

clear how this can be addressed. Neither is there any alternate representation for

affine equivalence group equivalence classes which would possess less epistasis, and

all known alternate representations for bijections over GF (2n) are themselves in

one-to-one correspondence with different truth tables.

3. The effects as described affected not only the mutation phase, but also the local

optimisation phase when memetic algorithms were used. Since the local optimisation

phase involved the equivalent of several mutations per individual at each generation,

the loss of performance was even more marked.

In addition to the above, there exist more general notions of equivalence than affine-

equivalence: EA-equivalence (Definition 5.1.15) and CCZ-equivalence (Definition 5.1.16).
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Both of these generalise affine equivalence, and their invariant properties include the fre-

quency with which each DDT entry occurs, as also the frequencies of absolute values of

entries in the cryptographically relevant autocorrelation table and linear approximation

table (the latter being particularly important in calculating the crucial nonlinearity prop-

erty.) This fact almost certainly serves to increase the level of epistasis further, as non

affine-equivalent S-boxes may still be CCZ or EA-equivalent, and possess identical fitness

in terms of these tables. At this time, we do not know how to exploit the CCZ and EA

transformations to impose further restrictions on output values that might counter this,

and are forced to leave this as a matter for future research.

Finally, we note that experiments were made in using the restrictions in conjunction

with simulated annealing, by preventing moves that would violate the constraints. The

loss in performance observed was consistent with that observed for the memetic algorithms

as noted.

Ant algorithms

In experiments for n = 5, the restrictions as described again led to worse performance for

all parameter choices for the Ant System [120] and for two versions of Ant Colony System

[119, 175]. Why this was so is not so clear as in the case of memetic algorithms, although

local optimisation used in these algorithms would have been affected for the same reasons

(either due to restricted moves, or retransformations impairing convergence.)
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Appendix C

Errors in the description of the

Dunkelman/Keller approximation

In the original description of Biham et al.’s linear approximation [27], on page 20, after

S6 is applied the only active bit in the state is bit 30. In the descriptions given in later

papers [31, 123], after the application of S6, bit 28 is shown as active instead of bit 30. In

private email correspondence, one of the authors informed us that bit 28 was correct.

The linear diffusion layer is then applied, after which the active bits according to the

diagram are 80, 101 and 103. However, by examining the description of Serpent’s diffusion

layer in its AES proposal [5], and the C reference implementation [7], we see that the xor

of diffusion layer output bits {80, 101, 103} is the xor of input bits {4, 22, 35, 44, 46, 57,

62, 75, 86, 96, 97} - and is therefore unaffected by either bit 28 or bit 30. In the same

correspondence mentioned above, this was revealed to be another typographical error -

the active bits at this point should in fact have been 81, 83 and 100.
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