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Abstract  
 

Ptychography is a form of computa?onal microscopy that has risen to prominence in the 

past 20 years. Despite achieving record breaking resolu?on[1], Depth-of-Field (𝐷𝑜𝐹) is a 

significant limi?ng factor for the technique. Recently, scien?sts have pioneered a 

propaga?on-based computa?onal three-dimensional (3D) imaging method to break through 

the 𝐷𝑜𝐹 limit, called “mul?-slice ptychography”, which has now been implemented in both 

far-field and Fourier ptychography configura?ons at a wide range of wavelengths [2] [3] [4]. 

This work explores a third implementa?on of mul?-slice ptychography opera?ng not in the 

Fourier or far-field configura?on but in the op?cal near-field. The main aim of this work is to 

combine near-field ptychography and mul?-slice ptychography for the first ?me, to address 

the mul?-scaZering effect that limits ptychography’s 𝐷𝑜𝐹, in order to maximise the sample 

volume for ptychographic imaging.  

This thesis introduces Near-field Mul?-slice Ptychography (NMP) through both theore?cal 

and experimental inves?ga?ons in both X-ray and op?cal applica?ons. The work started with 

modifica?on of the reconstruc?on framework, the mul?-slice algorithm called 3PIE [2], 

which is then implemented for NMP. In addi?on, the proof-of-principle op?cal bench 

experiments for NMP was demonstrated using a lensless cone-beam configura?on, showing 

the feasibility of the approach.  

Subsequently, NMP was successfully demonstrated with coherent hard X-rays at the 

synchrotron facility, achieving sub 100 nm lateral resolu?on, 300 µm depth resolu?on and 

extending the 𝐷𝑜𝐹 to image samples exceeding 1 mm thickness. The valida?on of NMP in 

the hard X-ray regime paves the way for high-resolu?on large volume imaging and the 

poten?al to combine with tomographic reconstruc?on in future research.  

Furthermore, the development of an op?cal near-field mul?-slice ptychography microscope 

system is presented, where the 𝐷𝑜𝐹 is extended by a factor of 10s, compared to 

conven?onal microscopy methods. The work demonstrates the poten?al of NMP as a new 

label-free imaging tool for research in biological science for transmissive samples, as an 

alterna?ve to fluorescence-based op?cal sec?oning methods such as confocal microscopy.    

 



 

4 
 

Acknowledgement  
 

First of all, I would like to thank my supervisor Dr. Andrew Maiden, for your pa?ence, 

support and guidance over the past few years. I have thoroughly enjoyed our discuss on 

research topic, experiment work in our basement op?cs lab and at the diamond light source 

and of course the conference trip in Los Angeles and touring around the Santa Monica and 

walk of fame for “science”! 

I would also like to thank my colleague Dr. Yiqian Zhang, Dr. Wenjie Mei, Dr. Shenbo Yo and 

Dr. Fredrick Allars for the invaluable discussions and helps throughout my PhD journey. In 

addi?on, I would like to thank the beamline scien?st Dr. Batey Darren and Dr. Peng Li in the 

DLS I13-1 for the technical support over the busy weeks. I would like to thank Ins?tu?on of 

Pure and Applied Math, University California Los Angeles and Na?onal Science Founda?on 

for hos?ng and funding me to aZend the computa?onal microscopy long programme, which 

brought me a lot more “sunshine” and unique experiences for my research. 

I would like to express my gra?tude to my parents Hong Yang and Kunshu Hu, for the 

uncondi?onal support during the 11 years journey I have been away from home on the 

other side of the world.   

Last but not least, to my lover, my best friend, also my family, Adam Hudson. Thank you for 

always being pa?ent and suppor?ve to me and give me a home where I feel happy, safe, and 

loved. Sorry that you had to deal with an “emo?onally unstable” PhD student over the past 

few years! I cannot wait to start a new life chapter with you.  

  



 

5 
 

Publication  
 

Journal papers  

Z. Hu, Y. Zhang, A. Maiden “Op?cal slicing via near-field mul?-slice ptychography,” (Opt. 

LeZer, accepted for publica?on, 2024) 

Z. Hu, Y. Zhang, P. Li, D. Batey, A. Maiden, "Near-field mul?-slice ptychography: quan?ta?ve 

phase imaging of op?cally thick samples with visible light and X-rays," Opt. Express 31, 

15791-15809 (2023) 

H. Ya, Z. Hu, R. Saad. “Breaking Barriers: Promo?ng Inclusive Research Culture among PGR 

Engineering Students,” Exchanges: The Interdisciplinary Research Journal (accepted, 2024) 

White paper: “Computa?onal Microscopy” (IPAM Long Program, Fall 2022), 

hZps://www.ipam.ucla.edu/news/white-paper-computa?onal-microscopy/ 

Conference presenta4on and proceedings  

A. Maiden, Z. Hu, Y. Zhang. “Near-Field Mul?-Slice Op?cal Ptychography,” OpNca Imaging 

Congress 2024, (Op?ca Publishing Group, 2024) 

Z. Hu, et al. “Op?cal near-field mul?-slice ptychography,” Ins?tu?on Pure Applied Math 

(IPAM), University California Los Angeles, June 2024 

Z. Hu, et al. "Near-field mul?slice ptychography – demonstra?on using visible light and x-ray 

experiment," in Microscience Microscopy Congress 2023, Technical Digest Series (MMC, 

2023).  

Z. Hu, “Near-field mul?-slice ptychography” (IPAM Long Program, Seminar series, Fall 2022). 

Z. Hu, "Step Size Influence on Defocused Beam Ptychography," in Imaging and Applied 

OpNcs Congress 2022 (3D, AOA, COSI, ISA, pcAOP), Technical Digest Series (Op?ca Publishing 

Group, 2022), paper CTh3C.3. 

  

https://www.ipam.ucla.edu/news/white-paper-computational-microscopy/


 

6 
 

List of Abbreviations 
 

Abbrevia4on Meaning 

ADMM Alterna?ng Direc?ons Method of Mul?pliers 

ASF Amplitude Spread Func?on 

CCD Charge-coupled Device 

CDI Coherent Diffrac?ve Imaging 

DM Difference Map 

DoF Depth of Field 

ePIE Fextend Ptychographic Itera?ve Engine 

ER Error Reduc?on 

FFT Fast Fourier Transform 

FMP Fourier Mul?-slice Ptychography 

FoV Field of View 

FST Fresnel Scaling Theorem 

GS Gerchberg-Saxton 

GUI Graphical User Interface 

ML Maximum Likelihood 

MLB Mul?-layer Born 

NA Numerical Aperture 

NMP Near-field Mul?-slice Ptychography 

NMPM Near-field Mul?-slice Ptychography Microscopy 

OSA Order Sor?ng Aperture 

PIE Ptychographic Itera?ve Engine 

PSF Point Spread Func?on 

RAAR Relaxed Averaged Alterna?ng Reflec?ons 

rPIE Regularised Ptychographic Itera?ve Engine 

SSE Sum of Squared Errors 

WASP Weighted Average of Sequen?al Projec?ons 

  



 

7 
 

List of Contents 
 

Declaration ............................................................................................................................................ 2 

Abstract ................................................................................................................................................. 3 

Acknowledgement ................................................................................................................................ 4 

Publication ............................................................................................................................................ 5 

List of Abbreviations ............................................................................................................................ 6 

List of Contents ..................................................................................................................................... 7 

Introduction .......................................................................................................................................... 9 

1. Background and theoretical framework ................................................................................... 14 

1.1. Fourier transform and Fourier theorems ......................................................................... 14 

1.2. Discrete Fourier transform ................................................................................................ 17 

1.3. Fundamentals of coherent X-ray imaging ........................................................................ 19 

1.3.1. Coherence .................................................................................................................... 19 

1.3.2. X-ray free-space propagation .................................................................................... 21 

1.4. Discrete near-field propagation and sampling condition ................................................ 28 

1.4.1. Single Fourier transform ........................................................................................... 28 

1.4.2. Fresnel transfer function and impulse response ...................................................... 29 

1.4.3. Sampling condition for Near-field propagator ......................................................... 31 

1.5. Projection approximation  - contrast formation in X-ray image .................................... 32 

1.6. Resolution ............................................................................................................................ 35 

1.6.1. Rayleigh resolution ..................................................................................................... 35 

2. Ptychography .............................................................................................................................. 38 

2.1. Development of Coherent Diffractive Imaging ................................................................ 38 

2.2. The phase problem ............................................................................................................. 40 

2.3. History of ptychography .................................................................................................... 41 

2.4. Development of iterative algorithm and modern ptychography .................................... 42 

2.5. Common ptychography experimental configurations ..................................................... 45 

2.5.1. Conventional ptychography with modulated illumination ..................................... 45 

2.5.2. Ptychography with modulated detection .................................................................. 46 

2.5.3. Fourier ptychography ................................................................................................ 48 

2.6. Ptychographic Iterative Engine ......................................................................................... 50 

2.7. Extension for ptychography reconstruction ..................................................................... 55 

2.7.1. Position correction ...................................................................................................... 55 

2.7.2. Reconstruction for state mixtures ............................................................................. 56 



 

8 
 

2.7.3. Error metric ................................................................................................................ 56 

2.8. Near-field ptychography .................................................................................................... 57 

2.8.1. Implementation of near-field ptychography ............................................................. 59 

2.8.2. Experimental parameters for near-field ptychography: ......................................... 59 

2.8.3. Equivalent geometry for cone-beam configuration ................................................. 62 

2.9. Ptychography for volume imaging .................................................................................... 64 

2.9.1. Ptycho-Tomography ................................................................................................... 65 

2.9.2. Multi-slice ptychography ........................................................................................... 66 

Near-field Multi-slice Ptychography ................................................................................................. 77 

3. Lensless optical cone-beam Near-field Multi-slice Ptychography (NMP) ............................. 79 

3.1. Geometric modification ...................................................................................................... 83 

3.2. Evaluation of aliasing condition ........................................................................................ 86 

3.3. Experimental configuration ............................................................................................... 87 

3.3.1. Experimental results ................................................................................................... 91 

4. X-ray NMP via cone-beam geometry ...................................................................................... 101 

4.1. Introduction to I13-1 at the DLS – Coherence branchline ............................................ 102 

4.2. X-ray Experiment 1 .......................................................................................................... 103 

4.2.1. Experimental configuration ..................................................................................... 103 

4.2.2. Sample preparation .................................................................................................. 106 

4.2.3. Experiment results .................................................................................................... 108 

4.3. X-ray experiment 2 ........................................................................................................... 114 

4.3.1. Experimental configuration ..................................................................................... 114 

4.3.2. Experiment results .................................................................................................... 116 

5. Optical slicing via near-field multi-slice ptychography microscopy ..................................... 125 

5.1. Experimental configuration ............................................................................................. 127 

5.2. Improvement of the reconstruction algorithm ............................................................... 128 

5.3. Optimisation of illumination frequency spectrum ......................................................... 131 

5.4. Step size influence on NMPM .......................................................................................... 135 

5.5. Further testing on various samples ................................................................................. 139 

5.6. Reducing the data requirements ..................................................................................... 144 

5.7. Implementation with large NA objective ........................................................................ 145 

Outlook and future work ................................................................................................................. 150 

Appendix I ......................................................................................................................................... 152 

Appendix II ....................................................................................................................................... 155 

References ......................................................................................................................................... 156 

 



 

9 
 

Introduction  
 

In the past few centuries, lens-based microscopy techniques have con?nuously evolved and 

played an indispensable role in the advanced modern scien?fic research, allowing scien?sts 

to explore the world from the milli-scale down to sub-ångström resolu?on. Imaging with 

lenses becomes increasingly difficult below this resolu?on due to imperfect op?cal 

components at very short wavelengths (X-rays) and in the electron microscope [5] [6] [7]. 

While aberra?on correc?on techniques have significantly improved the performance of 

microscopic imaging, par?cularly in electron microscopy, fundamental limita?ons such as 

photon scaZering, depth of field constraints, and radia?on damage con?nue to pose 

challenges for achieving high-resolu?on imaging. To image beyond the limits of these 

imperfect op?cs, in the late 1990s a breakthrough in microscopy called Coherent Diffrac?ve 

Imaging (CDI) was developed, where the diffrac?on paZern of an object can be directly 

measured without lenses and transformed into a high-resolu?on image [8]. This method 

overcomes the phase problem, caused by the loss of phase informa?on from the diffracted 

intensity measurement, by combining the coherent illumina?on with computa?onal 

reconstruc?on algorithms. Ptychography, also known as scanning probe CDI, has been 

developed rapidly in the past 20 years. It is based on the phase retrieval reconstruc?on via 

overlapping diffrac?on paZerns, that has further advanced the development of CDI [9] [10] 

[11]. Ptychography has dis?nguished itself from other CDI methods through the unique 

advantages [12]: it does not require a reference beam, is capable of super-resolu?on 

imaging, and is dose efficient. Ptychography has been widely implemented in most of the 

synchrotron facili?es as an advanced imaging technique. In op?cal regime, ptychography has 

been adopted for the applica?on of biomedical research, especially with the development of 

Fourier ptychography, which enables imaging with both high resolu?on and large FoV [13]. 

More recently, electron ptychography achieved record-breaking resolu?on at sub-ångström 

level [1]. 

Despite the achievement in spa?al resolu?on, there remains a strong desire to obtain three-

dimensional (3D) informa?on of a sample for research from biological to nano techniques. 

Conven?onally, tomography is one non-invasive solu?on to gather the 3D informa?on of a 

sample [14] [15] [16]. By taking images of the sample from various angles using a rota?onal 
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method, a comprehensive 3D visualisa?on can be constructed by integra?ng those 2D 

projec?ons. However, each 2D projec?on from tomography, along with other conven?onal 

2D imaging systems, are constrained by the depth of field (𝐷𝑜𝐹) limit, which describes the 

maximum extend of a sample thickness that can be resolved accurately along the beam 

propaga?on direc?on. If a sample falls within the acceptable 𝐷𝑜𝐹 range, all the features of 

the sample remain in focus. However, the higher the target resolu?on, the thinner sample 

needs to be.  

What is the solu?on to extend this 𝐷𝑜𝐹 and allow us to “see” further into the sample 

without compromising resolu?on, or having to physically slice the sample?  

One method to achieve 3D imaging and to extend 𝐷𝑜𝐹 is op?cal sec?oning. Most common 

op?cal sec?oning methods rely on the excita?on of specific fluorescent dyes on the 

specimen. The detector of the microscope will only focus and record a thin sec?on of the 

sample, where the fluorescence is excited. The process is repeated at different depths across 

the sample to produce a series of in-focus images. Those images contain thin slices of the 

sample that can later be assembled into a 3D image and thereby extend 𝐷𝑜𝐹. Such imaging 

techniques includes confocal microscopy [17], mul?photon microscopy [18] and light sheet 

fluorescence microscopy [19].  

In this thesis, a label-free op?cal slicing method called Mul4-slice Ptychography is 

introduced to address the 𝐷𝑜𝐹 problem [2]. Instead of the mechanical op?cal slicing 

approach, a thick sample is divided into mul?ple thin layers that are computa?onally 

reconstructed via a “mul?-slice” propaga?on model. The reconstruc?on of each slice can be 

solved using an inverse mul?-scaZering back-propaga?on. Furthermore, another focus of 

this work is on Near-field Ptychography, a varia?on of conven?onal ptychography [20]. 

Instead of a confined probe, the full sample is illuminated by a structured beam, just like in 

in-line holography, therefore the benefits of field of view (FoV) and high degree of relaxa?on 

in experiment and scaZering property are inherited. By combing the mul?-slice approach 

with near-field ptychography, a new method call Near-field Mul4-slice Ptychography (NMP) 

is proposed in the work, where the sample volume can be significantly extended both 

laterally and axially. 
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The proposed NMP method builds upon recent advances in near-field ptychographic and 

mul?-slice imaging, addressing key limita?ons of exis?ng ptychographic approach. 

Tradi?onal ptychography relies on the single-slice approxima?on, limi?ng its ability to 

recover depth informa?on from thick samples due to mul?ple scaZering effects. Recent 

developments in mul?-slice ptychography have improved depth sec?oning but have 

primarily been implemented in far-field regime [2]. The main advantages of NMP compared 

to exis?ng methods are: 

• Unlike far-field mul?-slice ptychography, which requires a ?ghtly focused probe and 

small scan steps to achieve high-resolu?on imaging, NMP illuminates the full sample 

with structured near-field paZerns. This enables a significantly larger FoV while 

maintaining high spa?al resolu?on, making it ideal for imaging extended samples 

without sacrificing detail. 

• Tradi?onal mul?-slice ptychography demands thousands of diffrac?on paZerns due 

to the requirement of a confined probe. Whereas the full field illumina?on in NMP 

can significantly reduce the number diffrac?on paZerns required while s?ll achieving 

accurate 3D reconstruc?ons. This leads to faster data collec?on and lower 

computa?onal burden. 

• The near-field implementa?on allows for reduced experimental complexity and 

sample misalignment as it eliminates the need of a confined probe, which can be 

cri?cal in prac?cal applica?ons, especially in X-ray and electron imaging where 

precise control over experimental parameters is challenging. 

The key contribu?ons of this thesis are: 

1. First demonstra?on of NMP in both op?cal and synchrotron X-ray facility: This work 

develops and experimentally validates a novel imaging technique that extends mul?-

slice ptychography to the near-field domain, enabling high-resolu?on, depth-

resolved, large FoV phase imaging without physical sec?oning. 

2. Systema?c op?misa?on of experimental configura?ons and reconstruc?on 

algorithms: This study inves?gates the op?misa?on between experimental 

parameters (e.g., probe structure, propaga?on distances, and step size) for 
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reconstruc?on quality, leading to improved robustness, accuracy, and scalability of 

NMP. 

3. The synchrotron X-ray implementa?on of NMP achieves sub-100 nm resolu?on over 

a cubic millimetre sample volume, a scale previously unaZainable due to X-ray 

scaZering limita?ons. This method has the poten?al to enable nanoscale imaging of 

large biological samples for a wide range of applica?ons. In neuroscience, it 

facilitates nanoscale imaging of brain ?ssue, enabling the study of intricate neural 

structures and their pathological changes over a thick volume. In correla?ve 

microscopy, it provides high-fidelity 3D phase images to guide targeted electron 

microscopy (EM) analysis, reducing the need for destruc?ve sample prepara?on.  

Chapter 1 starts with the background theory of Fourier transform and its discrete form. Then 

the mathema?cal framework for the wave propaga?on model for coherent X-ray imaging is 

introduced, followed by the Fresnel scaling theorem for cone-beam propaga?on geometry, 

implementa?on of the near-field propagator and the deriva?on of projec?on approxima?on. 

In the end of this chapter, the diffrac?on limit resolu?on is introduced. 

Chapter 2 presents a historical review of coherent diffrac?on imaging methods. Then the 

recent development of ptychography is reviewed – both experimental work and the 

reconstruc?on algorithm with the emphasis of the implementa?on of near-field 

ptychography and the PIE family of algorithms. In addi?on, the implementa?on of some 

common experimental configura?ons for mul?-slice ptychography and the implementa?on 

of mul?-slice models are detailed. 

The first result chapter, Chapter 3, starts with the modifica?on and implementa?on 

framework of the 3PIE algorithm for a cone-beam near-field configura?on. Following this is 

the experimental implementa?on and reconstruc?on results of lensless near-field mul?-slice 

ptychography on an op?cal bench as an ini?al tes?ng and simula?on tool for the later X-ray 

experiments presented in Chapter 4.  

Chapter 4 demonstrates two X-ray near-field mul?-slice ptychography experiments using a 

coherent hard X-ray source at a synchrotron facility. This chapter starts with an overview of 

the I13 coherent branch at Diamond Light Source, where both experiments in this chapter 

were performed. The experiment configura?on and the mul?-slice reconstruc?on results for 
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first experiments are presented to show the successful implementa?on of X-ray NMP. Then 

the follow up X-ray NMP experiment with an alterna?ve configura?on explores further and 

shows the poten?al improvement in both lateral and depth resolu?on.  

In the final result chapter, Chapter 5, the mul?-slice ptychography is implemented with an 

op?cal microscopy system. This work starts with the introduc?on to the experimental 

configura?on and addi?onal modifica?on of the 3PIE algorithm. The result sec?on 

demonstrates the versa?lity of NMP and its poten?al as an op?cal slicing method and a 3D 

phase imaging tool for applica?on on a wide range of biological samples.  

The thesis concludes with a summary of the experimental work for NMP and the poten?al 

improvement building upon current work for the future applica?on. 
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1. Background and theoretical framework 
 

In this chapter, the mathema?cal theory and physical concepts directly associated to work 

presented in this thesis are summarised. The chapter begins with the explora?on of the two-

dimensional Fourier transform and its discrete form [21], which are cri?cal tools for the 

digital implementa?on of wave propaga?on. This is followed by the revision of linear system 

theory and its applica?on to linear imaging systems. Then the fundamentals of coherent X-

ray imaging are introduced, based on the textbook wriZen by D. Paganin [22], and in 

par?cular, the primary focus for this thesis is discussed - the “near-field” propaga?on and 

wavefront recovery using the so-called angular spectrum method. Addi?onally, Fresnel and 

Fraunhofer diffrac?on are discussed as the other two important free-space diffrac?on used 

in conven?onal coherent diffrac?on imaging methods. This chapter also includes the 

deriva?on of the Fresnel scaling theorem, as an important extension theorem for the near-

field (Fresnel) paraxial propaga?on, highligh?ng its significance in establishing the geometric 

rela?onship between cone-beam and parallel-beam projec?ons. Furthermore, the sampling 

and implementa?on requirements for the discrete near-field propagator are introduced [23] 

[24] [25]. Finally, two-dimensional mul?plica?ve equa?on of a wave field interac?on with 

maZer is derived using the projec?on approxima?on [22], providing a mathema?cal 

framework that supports the subsequent chapters, and the Rayleigh resolu?on of diffrac?ve 

imaging will be analysed [26]. 

 

1.1. Fourier transform and Fourier theorems 
 

The Fourier transform reveals the rela?onship between the real-space (spa?al) domain and 

the corresponding Fourier (frequency) domain of a signal [21]. An image can be seen as a 2D 

signal with real-space coordinate 𝑔(𝑥, 𝑦) and its corresponding frequency representa?on is 

denoted as 𝐺+𝑓! , 𝑓"-, where +𝑓! , 𝑓"- is the frequency domain coordinates, 

𝐺+𝑓! , 𝑓"- = /𝑔(𝑥, 𝑦) exp3−𝑗2𝜋+𝑓!𝑥 + 𝑓"𝑦-9 𝑑𝑥𝑑𝑦
	

	

. (1. 1) 
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The inverse Fourier transform essen?ally decomposes the original “image” into a sum of 2D 

orthogonal basis func?ons [21], where each of those basis func?on corresponds to a specific 

frequency component of the “image”,  

𝑔(𝑥, 𝑦) = /𝐺(𝑓! , 𝑦!) exp3−𝑗2𝜋+𝑓!𝑥 + 𝑓"𝑦-9 𝑑𝑓!𝑑𝑓"

	

	

. (1. 2) 

Eq. 1.1. and Eq. 1.2. can also be described in a direct formula?on: 

𝐺(𝑢, 𝑣) = ℱ{𝑔(𝑥, 𝑦)}	 (1. 3) 

𝑔(𝑥, 𝑦) = ℱ$%D𝐺+𝑓! , 𝑓"-E. (1. 4) 

 

Some important Fourier theorems are summarised in Table 1.  

Table 1: Summary of important Fourier theorems [21] [22] 

Theorem Formula?on 

Linearity ℱ{𝐴𝑔(𝑥, 𝑦) + 𝐵ℎ(𝑥, 𝑦)} = 𝐴ℱ{𝑔(𝑥, 𝑦)} + 𝐵ℱ{ℎ(𝑥, 𝑦)} 

Similarity ℱ J𝑔 K
𝑥
𝑎 ,
𝑦
𝑏NO = |𝑎𝑏|𝐺(𝑎𝑓! + 𝑏𝑓!) 

Shix ℱ{𝑔(𝑥 − 𝑎, 𝑦 − 𝑏)} = 𝐺(𝑓! , 𝑓")exp	[−𝑗2(𝑎𝑓! + 𝑏𝑓")] 

Convolu?on ℱ S/𝑔(𝑢, 𝑣)ℎ(𝑥 − 𝑢, 𝑦 − 𝑣)𝑑𝑢𝑑𝑣T = 𝐺(𝑓! , 𝑓")𝐻(𝑓&, 𝑓') 

 

The convolu?on of two signals in the spa?al domain corresponds to the element-by-element 

mul?plica?on of their Fourier transforms in the frequency domain. Mathema?cally, this is 

expressed as:  

𝑔(𝑥, 𝑦) ∗ ℎ(𝑢, 𝑣) ↔ 𝐺(𝑓! , 𝑓")𝐻(𝑓&, 𝑓')	 (1. 5) 

Where * denotes to the convolu?on operator.  

An op?cal system can be modelled as a combina?on of basic func?ons and the Fourier 

transform of these individual or combined func?ons can be used as a convenient tool to 

model the corresponding diffrac?on limits. For instance, a signal 𝑔%(𝑥%, 𝑦%) input through an 
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op?cal system 𝑆, results in the output signal 𝑔(, which can be described by the system’s 

response to the original input signal: 

𝑔((𝑥(, 𝑦() = 𝑆{𝑔%(𝑥%, 𝑦%)}. (1. 6) 

From the property of system linearity, this output of the system can then be decomposed 

into the sum of sub- impulse responses using superposi?on integral,  

𝑔((𝑥(, 𝑦() = /𝑔%(𝑢, 𝑣)ℎ(𝑥(, 𝑦(; 𝑢, 𝑣)𝑑𝑢𝑑𝑣
	

	

. (1. 7) 

Where ℎ represents the impulse response of the system and it can be modelled as  

ℎ(𝑥(, 𝑦(; 𝑢, 𝑣) = 𝑆{𝛿(𝑥% − 𝑢, 𝑥( − 𝑣)}. (1. 8) 

Eq. 1.6. can be further simplified from space invariance property of a system, where 

𝑔((𝑥( − 𝑢, 𝑦( − 𝑣) = 𝑆{𝑔%(𝑥% − 𝑢, 𝑦% − 𝑣)}. (1. 9) 

Therefore, the impulse response of the system is  

ℎ(𝑥(, 𝑦(; 𝑢, 𝑣) = ℎ(𝑥( − 𝑢, 𝑦( − 𝑣). (1. 10) 

Consequently, the system can be rewriZen into the form of a convolu?on integral 

𝑔((𝑥(, 𝑦() = /𝑔%(𝑢, 𝑣)ℎ(𝑥( − 𝑢, 𝑦( − 𝑣)𝑑𝑢𝑑𝑣
	

	

, (1. 11) 

Or simply the representa?on via a direct convolu?on formula?on 

𝑔((𝑥(, 𝑦() = 𝑔%(𝑥%, 𝑦%) ∗ ℎ(𝑢, 𝑣). (1. 12) 

The corresponding system transfer func?on can be derived by taking a direct Fourier 

transform of Eq. 1.12, 

𝐺(+𝑓! , 𝑓"- = 𝐺%+𝑓! , 𝑓"-𝐻(𝑓&, 𝑓'). (1. 13) 

The transfer func?on described by Eq. 1.13 is crucial for modelling a linear op?cal system 

and can be used to approximate its diffrac?on limit [21] [27]. As an example, if an op?cal 

system is fully illuminated by a coherent light source, represented by a complex wave 

func?on 𝜓)*(𝑥%, 𝑦(), where amplitude of the image system is assumed to be linear, the 

output of the system can be represented by the following expression,   
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𝜓+&,(𝑥(, 𝑦() = 𝜓)*(𝑥%, 𝑦%) ∗ ℎ(𝑢, 𝑣) (1. 14) 

Where impulse response ℎ is the amplitude-spread func?on (𝐴𝑆𝐹) or coherent spread 

func?on for such coherent system.  

However, in prac?ce, most image systems operate with an incoherent illumina?on and the 

detector system measures only the intensity of light. Therefore, the complex wave func?on 

output in Eq. 1.14 is no longer accurate. Instead, the Point Spread func?on (𝑃𝑆𝐹) is the 

correct representa?on in this case [27]. The 𝑃𝑆𝐹 directly describes the forma?on of an 

image in rela?on to the distribu?on of light intensity and characterises how a point-like 

object is blurred through an image system [28] [21]. The output image from such system 

with linear intensity can be expressed as 

𝐼+&, = 𝐼)* ∗ |ℎ|( ≡ 𝐼)* ∗ 𝑃𝑆𝐹 (1. 15) 

Where, the 𝑃𝑆𝐹 is equal to the amplitude squared of the 𝐴𝑆𝐹. 

𝑃𝑆𝐹 = |ℎ|( (1. 16) 

The 𝑃𝑆𝐹 of the whole complex image system can be decomposed into individual 

components described by the 𝑃𝑆𝐹. As an example, in a most basic op?cal microscope 

system consis?ng of an illumina?on source, op?cs and a detector, the output image is:  

𝐼+&, = 𝐼)* ∗ 𝑃𝑆𝐹-+&./0 ∗ 𝑃𝑆𝐹+1,)/- ∗ 𝑃𝑆𝐹20,0/,+. ≡ 𝐼)* ∗ 𝑃𝑆𝐹,+,34 (1. 17) 

 

1.2. Discrete Fourier transform  
 

The introduc?on of a discrete version of the Fourier transform is fundamental for the 

implementa?on of computa?onal wave propagators [23] [24]. For the clarity of the 

formula?ons presented in this thesis, the lateral coordinates in both real-space and 

reciprocal-space are reduced to one-dimension. Some common nota?ons represent the 

rela?onship between con?nuous and discrete Fourier transform are listed in Table 2 below. 
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Table 2: opera4onal representa4on for con4nuous and discrete Fourier transform [23] 

Terms Con?nuous Discrete 

Real-space coordinate 𝑥 𝑛𝛿𝑥 

Reciprocal-space coordinate 𝑞 𝑝𝛿𝑞 

Fourier transform / inverse 
Fourier transform ℱ and ℱ$% 𝐹 and 𝑓$% 

Integra?on h𝑑𝑥 i𝛿𝑥 

The simplified formula?ons of the con?nuous Fourier transform are expressed below. 

ℱ{𝑔(𝑥)} = 𝐺(𝑞) =
1
√2𝜋

h𝑔(𝑥) exp(−𝑖𝑞𝑥) 𝑑𝑥 (1. 18) 

ℱ$%{𝐺(𝑞)} = 𝑔(𝑥) =
1
√2𝜋

h𝐺(𝑞) exp(𝑖𝑞𝑥) 𝑑𝑞. (1. 19) 

The corresponding discrete forms are, 

𝐹{𝑔(𝑛𝛿𝑥)} = 𝐺(𝑝𝛿𝑞) =
1
√𝑁

i𝑔(𝑛𝛿𝑥) exp m−
𝑖2𝜋
𝑁 𝑝𝑛n (1. 20) 

𝐹$%{𝐺(𝑝𝛿𝑞)}𝑔(𝑛𝛿𝑥) =
1
√𝑁

i𝐺(𝑛𝛿𝑥) exp m
𝑖2𝜋
𝑁 𝑝𝑛n . (1. 21) 

The exponen?al term in Eq. 1.18 and Eq. 1.20 are set to be equivalent and 𝑁 is total number 

of pixels in reciprocal-space. 

exp(−𝑖𝑞𝑥) = exp(−𝑖𝑝𝛿𝑞𝑛𝛿𝑥) = exp m−
𝑖2𝜋
𝑁 𝑝𝑛n . (1. 22) 

Therefore, the rela?onship between the discrete sample in real-space and reciprocal-space 

can be derived as  

𝛿𝑞𝛿𝑥 =
2𝜋
𝑁

(1. 23) 

The Fourier transform is the essen?al mathema?cal tool for computa?onal imaging and 

digital signal processing. In the next sec?on, the fundamental applica?on to mathema?cal 

model for the wave propaga?on and along with its physical phenomena will be introduced.  
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1.3. Fundamentals of coherent X-ray imaging  
 

1.3.1. Coherence  
 

Coherence is a fundamental requirement of CDI imaging techniques, as it is the descrip?on 

of the correla?on between two wavefields [28]. If an illumina?on wavefield exhibits 

sufficient coherence, the resul?ng interference paZern can be observed as diffrac?on fringe. 

The degree of coherence directly influences the visibility and contrast of the paZerns 

resul?ng from the wave interference. In this sec?on, two fundamental proper?es - temporal 

and spa?al coherence are introduced.  

 

1.3.1.1. Temporal coherence  
 

 

Figure 1.1: Illustra>on of temporal coherence length. 𝑙!	is the temporal coherence length, at which 

the two incident waves with different wavelength becomes an>-phase [29] . 

 

Temporal coherence is used to quan?fy the correla?on between two wavefields with 

different wavelengths in the same propaga?on direc?on. Consider two wavefields, one with 

a wavelength of 𝜆 with the other differing by ∆𝜆. The temporal coherent length 𝑙, measures 

the distance travelled before the two wavefronts become out of phase by 5
(
:  

𝑙, ≈ 0.5
𝜆(

Δ𝜆
. (1. 24) 
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Therefore, according to Eq. 1.24, the degree of temporal coherence can be directly linked to 

the power spectral density of the illumina?on source. For instance, in order to achieve a 

highly temporal coherent X-ray beam, monochromators are commonly installed to form a 

narrower source bandwidth [22] [30]. 

 

1.3.1.2. Spa2al coherence 

 

 

Figure 1.2: Illustra>on of spa>al coherence length from Young’s double-slit experiment. The lateral 

coherent length is the distance between the two small pinholes [29]. 

 

Two wavefields are considered spa?ally coherent, if their wavefronts exhibit a constant 

phase rela?onship. Similarly to the concept of temporal coherence, the degree of spa?al 

coherence can be quan?fied using the spa?al coherence length 𝑙!,". Spa?al coherent length 

is determined by the maximum distance between two points where the inference of two 

wavefields can s?ll be observed. As shown in Figure 1.2, 	𝑑 represents the distance from the 

maximum of the first interference fringe to the minimum of the second interference fringe: 

𝑑 =
1
2
𝜆
𝐷
𝐿 =

𝑎
2
𝐿
𝑅
. (1. 25) 
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The transversal coherent length 𝑙!," is:	

𝑙!," = 𝐷 =
𝜆𝑅
a
. (1. 26) 

Where 𝜆 is the wavelength of the illumina?on source, 𝑎 indicates the size of source, 𝐷 is the 

distance between two pinholes, 𝑅 is the distance between the source and the pinhole plane, 

𝐿 is the distance between source and image plane. 

As indicated by equa?on 1.26, the spa?al coherence length is directly propor?onal to the 

source to image plane distance and inversely propor?onal to source size. Achieving high 

spa?al coherence typically requires posi?oning the source at a considerable distance from 

the aperture, with a small source size. Therefore, the equa?on also suggests that high spa?al 

coherence imaging techniques are more feasible with lower energy beams, which 

correspond to longer wavelength. 

 

1.3.2. X-ray free-space propagation 
 

 

Figure 1.3: Physical diffrac>on effects observed from a small aperture. 

 

Consider the case where an opaque screen with a small pinhole is illuminated by a point 

source of single-wavelength light. Figure 1.3 illustrates the fundamental physical principles 

of different types of diffrac?on as the propaga?on distance increases. If this wavefront is 

observed from a plane posi?oned very close to this screen, a defocused image of the pinhole 

z 

b

Near-field (Fresnel) region Fraunhofer region

NF  << 1 NF  ≈ 1 NF  >> 1
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appears, which is termed near-field or Fresnel diffrac?on. As the observa?on plane moves 

further away, the diffrac?on fringes around the pinhole image become increasingly more 

prominent. However, as this distance con?nues to increase, the diffrac?on paZern becomes 

more defocused, indica?ng the transi?on to Fraunhofer/far-field condi?on [22]. One of the 

most direct methods to determine the diffrac?on condi?on is based on a parameter called 

the Fresnel number, shown in Eq. 1.26. 

𝑁7 =
𝑏(

𝜆𝑧
, (1. 27) 

where, 𝑏 is the radius of the small aperture demonstrated in  Figure 1.3. 

A small Fresnel number (𝑁7 ≪ 1) indicates the far-field propaga?on of a wave field. 

Conversely, for 𝑁7 ≫ 1 (typically larger than 100), near-field propaga?on occurs. When 

𝑁7 ≈ 1 (typically around 1-100), it is considered as the Fresnel diffrac?on region.  

 

1.3.2.1. Free space propaga2on and angular spectrum  
 

The complex scalar representa?on of a wave-field in free space, denoted as Ψ(𝑥,  𝑦,  𝑧,  𝑡), 

can be decomposed spectrally using the Fourier integral: 

Ψ(𝑥,  𝑦,  𝑧,  𝑡) =
1
√2𝜋

h 𝜓8(𝑥,  𝑦,  𝑧)
9

:
  exp(−𝑖𝜔𝑡)  𝑑𝜔. (1. 28) 

Each monochroma?c component is represented as the evolu?on of spa?al wave-func?on 

with respect to ?me 𝑡, where 𝜔 represents the angular frequency of the radia?on source.  
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Figure 1.4: Free-space propaga>on of a plane wave originated from 𝐴 in the op>c axis direc>on of 𝑧. 

While a point source does not directly emit plane waves, at sufficiently large distances or when 

observing a small localised region, the emiUed wave can be well approximated as a plane wave. 

 

As demonstrated in Figure 1.4, in the 𝑧-direc?on, two parallel planes at distances 𝑧 = 0 and 

𝑧 = ∆ can be expressed as their forward-propaga?on fields 𝜓8(𝑥,  𝑦,  𝑧  =  0) and 

𝜓8(𝑥,  𝑦,  𝑧  =  ∆). The corresponding wavefront of this plane wave can be expressed as: 

𝜓8;<(𝑥,  𝑦,  𝑧) = exp3𝑖+𝑞!𝑥 + 𝑞"𝑦 + 𝑞=𝑧-9 . (1. 29) 

The term (𝑞! , 𝑞" , 𝑞=) represent the 𝑥, 𝑧, 𝑦 components of the wave-vector 𝑞 of the plane-

wave. 𝑘 is the wave number, given by 𝑘 = (>
5

, where 𝜆 is the wavelength of the radia?on. 

The 𝑧 component from the 𝑞 vector can then be rewriZen in the following expressions, 

𝑞!( + 𝑞"( + 𝑞=( = 𝑘(, (1. 30) 

𝑞= = �𝑘( − 𝑞!( − 𝑞"(. (1. 31)	

As a result, the expression of plane wave from Eq. 1.29 can be rewriZen: 

𝜓8;<(𝑥,  𝑦,  𝑧) = exp3𝑖+𝑞!𝑥 + 𝑞"𝑦-9 exp �𝑖𝑧�𝑘( − 𝑞!( − 𝑞"(� . (1. 32) 
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At the distance 𝑧 = 0, this unpropagated wavefield can be wriZen as   

𝜓8;<(𝑥,  𝑦,  𝑧 = 0) = exp3𝑖+𝑞!𝑥 + 𝑞"𝑦-9 . (1. 33) 

To propagate the ini?al wavefield a distance of 𝑧 = ∆> 0, a “free-space” propagator is 

introduced, expressed as exp3𝑖∆�𝑘( − 𝑞!( − 𝑞"(9. This term accounts for the wave's phase 

evolu?on as it travels through free space. 

The corresponding 2D Fourier integral of this unpropagated wave-field can be wriZen in the 

following term, 

𝜓8(𝑥,  𝑦,  𝑧  =  0) =
1
2𝜋  /ℱ𝜓8+𝑞! ,  𝑞" ,  𝑧  =  0- exp3𝑖+𝑞!𝑥 + 𝑞"𝑦-9𝑑𝑞!𝑑𝑞" . (1. 34) 

Similarly to its operator formula?on, the Fourier representa?on of the propagated angular 

spectrum wave-field at distance 𝑧 can also be expressed by the mul?plica?on of free-space 

propagator and the reciprocal representa?on of the 2D plane-wave.  

𝜓8(𝑥,  𝑦,  𝑧  =  ∆)

=
1
2𝜋  /ℱD𝜓8+𝑞! ,  𝑞" ,  𝑧  =  0-E exp �𝑖∆�𝑘( − 𝑞!( − 𝑞"(�

× exp3𝑖+𝑞!𝑥 + 𝑞"𝑦-9𝑑𝑞!𝑑𝑞" ,   ∆≥ 0 

≈ exp(𝑖𝑘∆)ℱ$% �ℱ{𝜓8	 (𝑥,  𝑦,  𝑧 = 0)} exp �
−𝑖∆+𝑞!( + 𝑞"(-

2𝑘 �� . (1. 35) 

However, it must be noted that if the condi?on under 𝑘( < 𝑞!( + 𝑞"( is met, the plane wave 

is then considered as ‘evanescent wave’. In this scenario, the sub-wavelength informa?on 

will be lost as the wave decays in 𝑧-direc?on. 

To summarise, the angular spectrum propagator of a wavefield 𝜓8	  can be expressed in a 

simplified formula?on as, 

𝐷?@ = ℱ$% �ℱ{𝜓8	 } exp�
−𝑖∆+𝑞!( + 𝑞"(-

2𝑘 �� . (1. 36) 

This expression for Angular spectrum propagator will be used consistently throughout this 

thesis. Furthermore. the free-space propaga?on over a distance 𝑧  =  ∆ can be express as,  

𝜓8(𝑥,  𝑦,  𝑧  =  ∆)  =  𝒟?@∆{𝜓8(𝑥,  𝑦,  𝑧  =  0)},   ∆≥ 0.   (1. 37) 
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1.3.2.2. Fresnel diffrac2on  
 

Fresnel diffrac?on is a specific case occurring at the transi?on point between the near-field 

and far-field region. Fresnel propagator can be directly derived using approxima?on theory 

from angular spectrum formula?on under the assump?on of “paraxial” condi?on. The term 

paraxial implies that all the plane-wave components along the op?c axis are considered to 

have small angles. 

Under the condi?on, where both 𝑞! and 𝑞" are << 𝑞= , and 𝑞= ≥ 0. Eq. 1.30 can be 

approximated via binomial approxima?on:  

�𝑘( − 𝑞!( − 𝑞"( ≈ 𝑘 −
𝑞!( + 𝑞"(

2𝑘 , (1. 38) 

Consequently, the Fresnel diffrac?on opera?on 𝐷∆7.0-*04  can be derived from the angular 

spectrum/near-field propagator,  

𝐷?@∆ ≈ 𝐷∆7.0-*04 = exp(𝑖𝑘∆)ℱ$% exp �
−𝑖∆(𝑞!( + 𝑞"()

2𝑘
�ℱ (1. 39) 

𝜓8(𝑥,  𝑦,  𝑧  =  ∆)  ≈ 𝐷∆7.0-*04 	𝜓8(𝑥, 𝑦, 𝑧	 = 	0)	 

= exp(𝑖𝑘∆)ℱ$% exp �
−𝑖∆(𝑞!( + 𝑞"()

2𝑘
�ℱ𝜓8(𝑥,  𝑦,  𝑧  =  0),   ∆≥ 0 (1. 40) 

where ℱ denotes a forward Fourier transform. 

Addi?onally, the convolu?on integral form of Fresnel diffrac?on can be expressed as: 

𝜓8(𝑥,  𝑦,  𝑧  =  ∆	≥ 0) 

= −
𝑖𝑘exp(𝑖𝑘∆)

2𝜋 / 𝜓8(𝑥B,  𝑦B, 𝑧 = 0)
9

$9
× exp S

𝑖𝑘
2∆
[(𝑥 − 𝑥B)( + (𝑦 − 𝑦B)(]T 𝑑𝑥B𝑑𝑦B	 

= −
𝑖𝑘exp(𝑖𝑘∆)

2𝜋 exp �
𝑖𝑘
2∆

(𝑥( + 𝑦()� × 

∬ 𝜓8(𝑥B,  𝑦B, 𝑧 = 0)9
$9 exp �)C

(∆
(𝑥B( + 𝑦B()� × exp �$)C

∆
(𝑥𝑥B + 𝑦𝑦B)� 𝑑𝑥B𝑑𝑦B																			(1. 41)  

Where 𝜓8(𝑥B,  𝑦B, 𝑧 = 0) denotes the unpropagated original wavefield. 
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1.3.2.3. Fraunhofer diffrac2on 
 

Mathema?cally, Fraunhofer or far-field diffrac?on can be considered as the limi?ng case of 

the Fresnel diffrac?on integral in Eq. 1.41. If the propaga?on distance is far enough, then this 

wavefront is now propagated to the “far-field” regime. The resul?ng diffrac?on paZern is 

known as a Fraunhofer (far-field) diffrac?on paZern. The corresponding Fraunhofer 

diffrac?on integral can be expressed in the form below, 

𝜓8(𝑥,  𝑦,  𝑧  =  ∆) = −
𝑖𝑘exp(𝑖𝑘∆)

2𝜋 exp �
𝑖𝑘
2∆

(𝑥( + 𝑦()� 

																																									×/ 𝜓8(𝑥B,  𝑦B, 𝑧 = 0)
9

$9
exp �

−𝑖𝑘
∆
(𝑥𝑥B + 𝑦𝑦B)� 𝑑𝑥B𝑑𝑦B.		 (1. 42) 

The simplified forma?on can be approximated into the following expression,  

𝜓8(𝑥,  𝑦,  𝑧  =  ∆) = −
𝑖𝑘exp(𝑖𝑘∆)

2𝜋∆ exp �
𝑖𝑘
2∆
(𝑥( + 𝑦()� ℱ[𝜓8(𝑥B,  𝑦B,  𝑧  =  0)]. (1. 43) 

Where 𝜓8(𝑥′,  𝑦′,  𝑧  =  0) denotes the ini?al wavefront. This implies that the far-field 

propaga?on essen?ally produces a wavefront directly propor?onal to the Fourier transform 

of the original wavefront.  
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1.3.2.4. Fresnel scaling theorem 
 

The Fresnel scaling theorem facilitates the conversion of a cone-beam projec?on into an 

equivalent parallel-beam geometry with an effec?ve coordinate system [22], as shown in 

Figure 1.5. 

 

Figure 1.5: Demonstra>on of Fresnel scaling theorem (not to scale). (a) cone-beam geometry and (b) 

the equivalent parallel-beam geometry. 

 

Under the condi?on of both paraxial and projec?on approxima?on, the exit wave from the 

sample point at distance 𝑧	 = 	0	for the parallel illumina?on 𝜓8
143*0 	is equivalent to the point 

illumina?on 𝜓8/+*0  following the expression below 

𝜓8/+*0(𝑥, 𝑦, 𝑧 = 0) = 𝜓8;<(𝑥, 𝑦, 𝑧 = 0)exp �
𝑖𝑘
2𝑧%

(𝑥( + 𝑦()� . (1. 44) 

By subs?tu?ng Eq. 1.44 in Eq. 1.41, 

𝜓8/+*0(𝑥,  𝑦,  𝑧  =  ∆	≥ 0) 	= −
𝑖𝑘exp(𝑖𝑘𝑧()

2𝜋𝑧(
exp �

𝑖𝑘
2𝑧(

(𝑥( + 𝑦()� ×/ 𝜓8;<(𝑥B,  𝑦B, 𝑧 = 0)
9

$9
	 

× exp

⎣
⎢
⎢
⎡ 𝑖𝑘

2 K 1𝑧%
+ 1
𝑧(
N
$% (𝑥

B( + 𝑦B()

⎦
⎥
⎥
⎤
× exp

⎣
⎢
⎢
⎡ −𝑖𝑘

K 1𝑧%
+ 1
𝑧(
N
$% (𝑥𝑥

B + 𝑦𝑦B)

⎦
⎥
⎥
⎤
𝑑𝑥B𝑑𝑦B. (1. 45) 

The geometric magnifica?on 𝑀 in Figure 1.5(a) is given by: 
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𝑀 =
𝑧% + 𝑧(
𝑧%

. (1. 46) 

The effec?ve propaga?on distance can therefore be derived as,   

𝑧0DD = m
1
𝑧%
+
1
𝑧(
n
$%

=
𝑧(
𝑀
. (1. 47) 

Subsequently, the final representa?on of Fresnel Scaling Theorem can be derived as:  

𝜓8/+*0(𝑥,  𝑦,  𝑧  =  ∆	≥ 0) 	= −
𝑖𝑘exp(𝑖𝑘𝑧()

2𝜋𝑧(
exp �

𝑖𝑘
2𝑧(

(𝑥( + 𝑦()� ×/ 𝜓8;<(𝑥B,  𝑦B, 𝑧 = 0)
9

$9
	 

× exp �
𝑖𝑘𝑀
2𝑧(

(𝑥B( + 𝑦B()� × exp �
−𝑖𝑘
𝑧(

(𝑥𝑥B + 𝑦𝑦B)� 𝑑𝑥B𝑑𝑦B. (1. 48) 

In addi?on, the rela?onship of corresponding intensity representa?on between the cone 

beam and parallel beam can be formulated as  

𝐼8/+*0(𝑥,  𝑦,  𝑧  =  ∆	≥ 0) = 𝑀$(𝐼8;< m
𝑥
𝑀 ,  

𝑦
𝑀 ,  𝑧  =  

∆
𝑀 	≥ 0n . (1. 49) 

 

1.4. Discrete near-field propagation and sampling condition 
 

So far, wave propaga?on has been described using con?nuous Fourier transforms. To model 

wave propaga?on computa?onally, it requires discrete equivalents. The digital 

implementa?on of the Fresnel propaga?on model based on single Fourier transform, Fresnel 

transfer func?on and impulse response will be described in this Sec?on [23] [24] [25]. 

 

1.4.1. Single Fourier transform 
 

In Sec?on 1.3.2.2, the formula?on of a con?nuous expression for Fresnel-Kirchhoff integral 

was introduced. For convenience, Eq. 1.41 is simplified into the one-dimensional 

representa?on, 

𝜓(𝑥, ∆) =
1

√𝑖𝜆∆
exp �

𝑖𝑘
2∆ 𝑥

(�h𝜓(𝑥B, 0) exp �
𝑖𝑘
2∆ 𝑥

B(� exp �
−𝑖𝑘
2∆ 𝑥𝑥B� 𝑑𝑥B. (1. 50) 
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The corresponding discrete form of Eq. 1.50 can be rewriZen  

𝜓(𝑚𝛿𝑥, ∆)

=
1

√𝑖𝜆∆
exp �

𝑖𝑘
2∆𝑚

(𝛿𝑥(�i 𝜓(𝑛𝛿𝑥B, ∆)
E$%

*F:

exp �
𝑖𝑘
2∆𝑛

(𝛿𝑥B(� exp �
−𝑖𝑘
2∆ 𝑚𝛿𝑥	𝑛𝛿𝑥B� 𝑑𝑥B. (1. 51)

 

Where, 𝑥′ corresponds to the real space coordinate, and 𝑥 is the coordinate at output plane. 

Their equivalent discrete expressions are 𝑛𝛿𝑥B and 𝑚𝛿𝑥 respec?vely.  

The exponen?al func?ons in both con?nuous and discrete Fourier transform are equivalent, 

as shown in Eq. 1.52,  

exp �
−𝑖𝑘
2∆

𝑚𝛿𝑥𝑛𝛿𝑥B� = exp �
−𝑖𝜋
𝑁

𝑚𝑛� . (1. 52) 

The equivalence condi?on is necessary to ensure that discrete Fourier propaga?on correctly 

approximates the con?nuous physics of wave propaga?on and maintains phase consistency 

between the two formula?ons. 

This gives the rela?onship between the pixel sizes in real space 𝛿𝑥 and the corresponding 

des?na?on plane 𝛿𝑥B 

𝛿𝑥𝛿𝑥B =
𝜆∆
𝑁
. (1. 53) 

Where, the observa?on plane is considered as a square grid consis?ng of 𝑁	 × 	𝑁 pixels. 

The discrete Fresnel Kirchhoff integral can be represented using a direct Fourier transform:  

𝜓(𝑚𝛿𝑥, ∆) =
1

√𝑖𝜆∆
exp �

𝑖𝜋𝜆∆𝑚(

𝑁(𝛿𝑥B(
� 	𝐹 S𝜓(𝑛𝛿𝑥B, ∆)	exp m−

𝑖𝑘
2∆	𝑛

(	𝛿𝑥′(n 𝛿𝑥BT	 (1. 54) 

 

1.4.2. Fresnel transfer function and impulse response  
 

The one-dimensional angular spectrum propagator can be rewriZen from Eq. 1.36 to the 

expression below 

𝜓(𝑥, ∆) = ℱ$% Sℱ{𝜓(𝑥, 0)} exp m−
𝑖∆
2𝑘	𝑞

(nT . (1. 55) 
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The corresponding discrete form of Eq. 1.55 is,  

𝜓(𝑚𝛿𝑥, ∆) = 𝐹$% S𝐹{𝜓(𝑛𝛿𝑥, 0)} exp �−
𝑖∆
2𝑘	𝑝

(𝑞(�T . (1. 56) 

The discrete transfer func?on that represents the propaga?on of each frequency component 
is given:  

𝐻�∆(𝑝𝛿𝑞) =
1
√2𝜋

exp �−
𝑖∆
2𝑘	𝑝

(𝑞(� . (1. 57) 

Accordingly, Eq. 1.54 can be wriZen in the form using impulse response and convolu?on 

theorem, 

𝜓(𝑥, ∆) = √2𝜋ℱ$% Jℱ{𝜓(𝑥, 0)}ℱ � %
√)5∆

exp K− )C!!

(∆
	N�O . (1. 58)

Which gives the discrete form of 

𝜓(𝑚𝛿𝑥, ∆) = 𝐹$% �𝐹{𝜓(𝑛𝛿𝑥, 0)}	𝐹 �
1

√𝑖𝜆∆
exp�−

𝑖𝑘𝑚(𝛿𝑥(

2∆
	�� 𝛿𝑥� . (1. 59) 

The discrete impulse response is 

ℎ�∆(𝑚𝛿𝑥) =
1

√𝑖𝜆∆
exp �

𝑖𝑘𝑚(𝛿𝑥(

2∆
� .	 (1. 60) 

Eq. 1.52 implies the maximum spa?al frequency of the propagator at observa?on plane, 

𝑘H3! =
𝜆∆

2𝑁(𝛿𝑥B(
. (1. 61) 
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1.4.3. Sampling condition for Near-field propagator  
 

Consider the one-dimensional Nyquist-Shannon sampling theorem as shown in Figure 1.6 

[31]. 

 

Figure 1.6. Shannon sampling theorem for a 1D signal in real space 𝑓(𝑥)	and the corresponding 

Fourier domain 𝐹(𝑢). For a con>nuous signal with bandwidth of 𝐵, the minimal sampling rate is 

1/2𝐵 in real space and 2B in Fourier space. FT: Fourier transform. iFT: inverse Fourier transform [31].  

 

In order to avoid aliasing arising in sampling a real space signal 𝑓(𝑥), the minimal sampling 

rate is required to be 1/2𝐵. In reciprocal space, the separa?on between two signal 

spectrums needs to be larger than the width of each spectrum 2𝐵 to avoid aliasing. i.e. The 

minimal sampling pixel spacing is inversely propor?onal to doubled cut-off frequency, which 

is equivalent to twice the signal’s bandwidth in reciprocal space [31]. 

The sampling condi?on according to Shannon’s theorem is  

𝑁 >
1

2𝑘H3!
. (1. 62) 

Subs?tute Eq. 1.61 in Eq. 1.62, the near-field propaga?on sampling requirement is derived, 
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𝑁 <
𝜆∆
𝛿𝑥B(

=
𝜆∆
𝛿𝑥( .

(1. 63) 

The deriva?on stated in Eq.1.63 is based on the assump?on that the magnifica?on between 

sample plane and observa?on plane remains unity. In the actual implementa?on for the 

near-field propaga?on, the geometrical scaling also needs to be carefully considered for the 

sampling condi?on. 

 

1.5. Projection approximation - contrast formation in X-ray image 
 

The projec?on approxima?on is used to model the interac?on between a radia?on and 

maZer, where the scaZering effect is neglected within the object. The deriva?on of the 

project approxima?on in regard to the phase and amplitude shixs is introduced in this 

sec?on [22].  

The complex refrac?ve index 𝑛8  models the interac?on between a radia?on source and 
maZer, 

𝑛8(𝑟, 𝑧) = 1 − 𝛿(𝑟, 𝑧) + 𝑖𝛽(𝑟, 𝑧), (1. 64) 

where 𝑟 represents the lateral coordinate (𝑥, 𝑦).  

Assuming that the source energy is higher than the electron binding energy, 𝛿 is a func?on 
related the electron density of the object,  

𝛿(𝑟, 𝑧) =
𝑟0𝜆(

2𝜋
𝑛0(𝑟), (1. 65) 

Where 𝜆 is the wavelength of the radia?on and 𝑟0 is the Bohr radius, 𝑛0  is the sum of 
electron densi?es of all atoms. 

𝑛0 = 𝑍𝑛3(𝑟), (1. 66) 

𝑛3 is the number density of the atoms, and 𝑍 is the number of electrons. 

The term 𝛽 in Eq. 1.64 is directly related to the linear aZenua?on due to photoelectric 
effect, 

𝛽(𝑟, 𝑧) =
𝜆
4𝜋

𝜇(𝑟, 𝑧), (1. 67) 

where 𝜇 is the photoelectric aZenua?on coefficient. 

The interac?on between a radia?on beam with maZer can also be expressed in the form of 

the inhomogeneous Helmholtz wave equa?on propaga?on in 𝑧 direc?on,  
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(∇( + 𝑛8( (𝑟, 𝑧)𝑘()𝜓8	 (𝑟, 𝑧) = 0, (1. 68) 

where  

∇(= ∇I( + 𝜕=(, (1. 69) 

Where the transverse Laplacian ∇I(  is equivalent to 𝜕!(+𝜕"( 

Under paraxial approxima?on the scaZered wave field can be expressed as a plane wave 

propagate in z direc?on with the disturbance from an envelope func?on 𝜓8B .  

𝜓8	 (𝑟, 𝑧) = 𝜓8B (𝑟, 𝑧) exp(𝑖𝑘𝑧). 	 (1. 70) 

Now the inhomogeneous paraxial wave equa?on can be derived, with the neglec?ng of 𝜕=(, 

(2𝑖𝑘𝜕= + ∇I( + (𝑛8( (𝑟, 𝑧) − 1)𝑘()	𝜓8B (𝑟, 𝑧) = 0. (1. 71) 

The wave equa?on here assumes that the original wavefield con?nues to propagate in 𝑧-

direc?on, and as the scaZering is sufficiently weak which implies that there is no further 

interac?on for any other neighbouring ray trajectories. Consequently, the Laplacian term of 

the wave equa?on can be neglected. 

𝜕=	𝜓8B (𝑟, 𝑧) ≈
𝑖𝑘
2
+1 − 𝑛8( (𝑟, 𝑧)-𝜓8B (𝑟, 𝑧). (1. 72) 

The wavefield exi?ng a surface at 𝑧: can be approximated as:  

𝜓8B (𝑟, 𝑧 = 𝑧:) ≈ exp�
𝑘
2𝑖 h

[1 − 𝑛8( (𝑟, 𝑧)]𝑑𝑧
=F="

:
�𝜓8B (𝑟, 𝑧 = 0) . (1. 73) 

As the refrac?ve index of a radia?on source represented in Eq. 1.64, both  𝛿 and 𝛽 are 

significantly smaller than unity, therefore,  

1 − 𝑛8( (𝑟, 𝑧) ≈ 23+𝛿(𝑟, 𝑧) − 𝑖𝛽(𝑟, 𝑧)-9. (1. 74) 

Which leads to the further approxima?on of the above equa?on to the expression below: 

𝜓8B (𝑟, 𝑧 = 𝑧:) ≈ exp �−𝑖𝑘h [𝛿(𝑟, 𝑧) − 𝑖𝛽(𝑟, 𝑧)]𝑑𝑧
=F="

:
�𝜓8B (𝑟, 𝑧 = 0). (1. 75) 

The exponen?al term of the func?on in Eq. 1.75 is also known as the object’s complex 

transmission func?on  
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𝑜(𝑟) = exp �−𝑖𝑘h [𝛿(𝑟, 𝑧) − 𝑖𝛽(𝑟, 𝑧)]𝑑𝑧
=F="

:
� . (1. 76) 

Where the phase shix ∆𝜙 can be derived from the first term of the exponen?al func?on, 

∆𝜙 = 𝑘h[𝛿(𝑟, 𝑧) − 𝑖𝛽(𝑟, 𝑧)]𝑑𝑧 . (1. 77) 

However, for the scaZering through a homogenous material, the phase shix is directly 

dependent on the thickness of the material ∆𝑧.  

∆𝜙 = −𝑘𝛿(𝑟, 𝑧)∆𝑧. (1. 78) 

The second term of the exponen?al func?on in Eq. 1.75, exp+−𝑖𝑘 ∫ [𝑖𝛽(𝑟, 𝑧)]𝑑𝑧=F="
: - 

indicates the absorp?on of the radia?on along the 𝑧-direc?on.  

Finally, the exit wave 𝜓8B (𝑟, 𝑧 = 𝑧:) can be approximated as the wavefield before entering 

the object, modulated by the object’s transmission func?on, which leads to the expression 

of projec?on approxima?on: 

𝜓8B (𝑟, 𝑧 = 𝑧:) = 𝑜(𝑟)	𝜓8B (𝑟, 𝑧 = 0). (1. 79) 
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1.6. Resolution 
 

Resolu?on refers to the measurement that quan?fies how small an object can be visualised 

through a microscope, which also effec?vely defines the limita?on of an op?cal system. In 

this sec?on, the diffrac?on limit to the resolu?on defined by the Rayleigh criterion will be 

introduced. 

 

1.6.1. Rayleigh resolution 
 

Two main factors that limit the resolu?on in a CDI system arise from the finite size of a lens 

or the diffrac?on limit determined by ray op?cs [26]. 

 

Figure 1.7: illustra?on of diffrac?on limit due to the finite aperture  

 

Consider the case of far-field diffrac?on, an airy disc like diffrac?on paZern is formed by a 

circular finite aperture with focal length 𝑓 and radius 𝑅, as shown in Figure 1.7. The width 𝑑 

of the central spot of the diffrac?on paZern is  

𝑑 = 1.22
𝜆𝑓
𝑅
. (1. 80) 
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The Rayleigh criterion defines the minimum resolvable distance between two point sources, 

which is called Rayleigh resolu?on ∆𝛿 [21] which is determined by the distance between the 

peak of the diffrac?on paZern from the first point source coincides with the first minima of 

the diffrac?on paZern formed by the secondary point source. Therefore, the Rayleigh 

resolu?on ∆𝛿 or this minimal resolvable distance is given by,  

∆𝛿 =
1
2
𝑑 = 0.61

𝜆𝑓
𝑅
. (1. 81) 

 

Figure 1.8: Illustra?on of the diffrac?on limit of a microscope system. 

 

For an ideal and aberra?on free microscopy system, the output image formed by the 

imaging system can be summarised as the convolu?on of far-field diffrac?on of the lens and 

(de-)magnified image [21]. However, in the reality, the resolu?on of an image system is oxen 

constrained by diffrac?on limit and consequently results in a blurring effect.  

As shown in Figure 1.8. The minimal solvable distance	𝑑 between the two points indicated in 

the image plane set by diffrac?on is,  

𝑑 = 1.22
𝜆𝑏
𝐷
. (1. 82) 
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Subsequen?ally, the corresponding minimal resolvable distance between two points in the 

object plane is, assuming the sample is placed at the focal plane of the lens, 

∆𝑥H)* 	= 1.22
𝜆𝑔
𝐷
= 1.22

𝜆𝑓
𝐷
. (1. 83) 

This can be rewriZen in the form in terms of the numerical aperture of the imaging system, 

which is maximum half angle 𝜃 that light can be collected by a lens, 

𝑁𝐴 = 𝑛𝑠𝑖𝑛(θ). (1. 84) 

The term  D
J

 in Eq. 1.83 can be subs?tuted by half of inversed NA value, which determines 

the highest resolu?on can be achieved by a microscopy system.   

∆𝛿 = ∆𝑥 = 0.61
𝜆
𝑁𝐴

. (1. 85) 
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2. Ptychography  

This chapter commences with an historical review of coherent diffrac?ve imaging methods, 

highligh?ng the phase problem with those conven?onal techniques. It delves into the 

development of itera?ve phase retrieval algorithms and ptychography, one of the key 

solu?ons to this “phase problem” and explains the various configura?on of ptychography. 

Finally, the development and implementa?on of near-field ptychography and mul?-slice 

ptychography are reviewed and explored in depth. These two techniques together build up 

the groundwork for the rest of the thesis. 

 

2.1. Development of Coherent Diffractive Imaging  
 

The pursuit of atomic resolu?on in microscopy has been hindered by the inherent limita?ons 

of conven?onal electron microscopes due to spherical aberra?on of the lens, which distorts 

electron wavefronts and reduces image resolu?on, although aberra?on correc?on 

techniques have significantly mi?gated these limita?on. In 1947, D. Gabor introduced a 

ground-breaking concept – holography (the term holography has become an increasingly 

common term, and it was called hologram and holoscope in his original proposal) [5] [6]. 

Instead of relying on imperfect lenses, D. Gabor proposed to record the en?re field 

informa?on of a sample using coherent illumina?on. To achieve this, a two-step method was 

introduced. Firstly, a coherent illumina?on was required to interfere with a sample, called 

the object wave. Then this object wave interferes with a coherent background field, known 

as the reference beam. The resul?ng interference paZern, captured by a photographic plate, 

is called a hologram, and encodes both important phase and amplitude informa?on. The 

progress of holography faced significant challenges due to technological limita?ons during 

its early stages, leading D. Gabor to eventually set it aside. However, with the development 

of stable and coherent light sources in the 1960s [32], such as lasers, this once "forgoZen" 

technique experienced a resurgence and regained its prominence within the scien?fic 

community. 
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Tradi?onally, X-ray diffrac?on techniques were developed to determine the three-

dimensional atomic structures of crystalline materials, known as crystallography [33]. The 

groundwork for Coherent Diffrac?ve Imaging (CDI) can be traced back to the work by W. 

Bragg in the late 1930s, where the crystal structure can be observed from the X-ray 

diffrac?on generated by the crystal la}ces [33].  

However, with the expansion of scien?fic explora?on and interests into diverse fields such as 

physics, materials science, and biology, the need to image non-crystalline structures has 

grown. Along with the development of highly coherent X-ray sources, efficient detectors and 

computa?onal power, D. Sayre finally proposed the concept of CDI in 1980 as an alterna?ve 

to X-ray crystallography for non-crystalline samples [7] [34], and his idea was later validated 

by J. Miao in 1999 with the successful imaging of a non-crystalline sample for the first ?me 

[8] [35].  

The modern CDI method (as shown in Figure 2.1) offers a robust approach for studying the 

structure of both crystalline and non-crystalline samples [8]. Essen?ally, CDI involves 

illumina?ng a sample with a highly coherent and high flux X-ray beam. The beam is scaZered 

by a sample and the X-ray then propagates to and is recorded by a detector in the far-field, 

resul?ng in a diffrac?on paZern directly propor?onal to the Fourier transform of the object.  

 

Figure 2.1. Conven>onal CDI configura>on with a typical far-field coherent diffrac>on paUern shown 

on the right. The image on the right is reproduced from [36] permission from ©Elsevier 

 

This process, however, presents a challenge known as the "phase problem", where crucial 

phase informa?on is lost during the process of recording diffrac?on paZerns. Fortunately, 
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the later development in itera?ve algorithms (Figure 2.3) can be employed to recover this 

lost phase informa?on, enabling the reconstruc?on of a high-resolu?on image from the 

diffrac?on paZern. 

2.2. The phase problem  
 

Waves are characterised by two fundamental proper?es - amplitude and phase. These 

proper?es can be mathema?cally represented by a complex scalar func?on consis?ng of a 

real valued amplitude and the complex exponen?al of phase.  

𝜓(𝑥, 𝑦) = |𝜓(𝑥, 𝑦)| exp+𝑖𝜑(𝑥, 𝑦)-	 (2. 1) 

The propaga?on of a wavefield can only be accurately predicted if both modulus and the 

phase of this func?on are known. However, a major challenge has arisen: detectors are only 

able to record the intensity of a wavefield, which corresponds to the square of the wave 

modulus, 

𝐼(𝑥, 𝑦) = |𝜓(𝑥, 𝑦)|( = 𝜓(𝑥, 𝑦)𝜓∗(𝑥, 𝑦)		 (2. 2) 

The important phase informa?on 𝜑(𝑥, 𝑦) is discarded in this process. And this inability in 

directly measuring phase informa?on is known as the “phase problem”.   

Two common methods to overcome the phase problem are interferometry based 

techniques and phase retrieval algorithms. Interferometric methods require prior knowledge 

of a reference beam. Then the phase informa?on of a sample can be retrieved from the 

interference paZern with the reference beam [6] [37]. Phase retrieval algorithms usually 

leverage the recorded intensity with addi?onal constraints, so that the missing phase 

informa?on can be es?mated itera?vely with these algorithms.   

Ptychography is a technique developed upon the principle of phase retrieval method. It 

provides a unique and powerful solu?on to the phase problem by exploi?ng the redundant 

informa?on present in overlapping diffrac?on paZerns [11] [38]. A detailed discussion on 

ptychography and phase retrieval algorithms will be presented later in this chapter. 
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2.3. History of ptychography 
 

Ptychography is a word coming from Greek - ptycho, means “convolu?on” and “to fold”. This 

original concept was ini?ally proposed by Walter Hoppe back in 1969 to retrieve the phase 

informa?on for solving crystal structures through Bragg peaks [39] [40] [41] [42]. The 

interference of a confined coherent electron probe illumina?on on a crystalline specimen 

can be modelled as a convolu?on between the Bragg peaks (reciprocal-space sharp intensity 

maxima structure of the crystal) and the Fourier transform of the probe. As demonstrated in 

Figure 2.2., the schema?c of the first “crystallographic ptychography” configura?on, if the 

size of the illumina?on is small enough to match with the crystal la}ce spacing, the 

corresponding width in its reciprocal space will be comparable to the distance between 

Bragg peaks [43] [44]. Consequently, the convolu?on of the crystal structure and the beam 

in reciprocal space will overlap and interfere with each other. The phase informa?on 

encoded in the diffrac?on fringes (Figure 2.2(b)) can then be then retrieved from those 

overlaps. 

 

Figure 2.2. Experimental configura>on for the original ptychography for observing crystal structure. 

The illumina>on probe interferences with a crystalline sample and the diffrac>on orders are 

convoluted in the reciprocal plane with aperture func>on. An example diffrac>on paUern from a thin 

silicon structure is shown on the right and is reproduced from [44] permission from ©Elsevier. 
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2.4. Development of iterative algorithm and modern ptychography 
 

At its incep?on, ptychography posed significant challenges due to computa?onal inefficiency 

and the limita?ons of available computer memory and processing power. A breakthrough 

came in 1972 with the introduc?on of the first itera?ve phase retrieval framework called the 

Gerchberg-Saxton (GS) algorithm (Figure 2.3) developed by R. Gerchberg and O. Saxton [45]. 

It begins with an ini?al guess of a wavefield, and the algorithm itera?vely propagates this 

wave field back and forward via Fourier transform between the “object guess” and “intensity 

measurement, I(𝑟) = |Ψ(𝑢)|( ”, where the intensity measured from the Fourier space is 

then used to replace the intensity of the real space object es?ma?on. Subsequen?ally, the 

modulus projector 𝓅L of the current itera?on can be updated by replacing the current 

es?ma?on with the intensity measurement, given by: 

𝓅L{𝜓(𝑟)} = �I(𝑟)
Ψ(𝑢)
|Ψ(𝑢)|

, (2. 3) 

where Ψ(𝑢) is the direct Fourier transform of 𝜓(𝑟). The itera?ve process con?nues un?l a 

specific constraint is met and the algorithm is then deemed to have converged to a 

“solu?on”. 

 

Figure 2.3. the flow chart of generalised itera>ve reconstruc>on algorithm. 
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In 1982, J. Fienup further advanced the GS algorithm by generalising it and introduced the 

concept of error reduc?on (ER) algorithm [46] [47]. The ER algorithm applies the support 

constraint in object domain instead of the modulus constraint, which means any value 

outside the area set by 𝑆 will be zeros [47]. The support projector 𝓅-	can be express by Eq. 

2.4.  

𝓅-{𝜓(𝑟)} = S𝜓(𝑟)					𝑟 ∈ 𝑆0											𝑟 ∉ 𝑆.	
(2. 4) 

The ER algorithm essen?ally alternates between both modulus and support project. If the 

current es?ma?on is 𝜓M(𝑟) with itera?on number 𝑗, the next es?ma?on 𝜓MN%(𝑟)	can be 

updated as  

𝜓MN%(𝑟) = 𝓅LD𝓅-{𝜓(𝑟)}E. (2. 5) 

 These advancements marked a pivotal moment in the development of ptychography, paving 

the way for more efficient and accurate reconstruc?on algorithms. 

Later, this itera?ve framework has been further adopted by J. Rodenburg for ptychographic 

reconstruc?on in 2004, in an algorithm known as the Ptychographic Itera?ve Engine (PIE) [9] 

[48], which laid the founda?on for modern ptychography. The working principle and the 

reconstruc?on process are very similar to the original idea introduced in the GS algorithm, 

where the phase informa?on is recovered from the intensity measurement. As shown in 

Figure 2.4, a flowchart demonstrates the basic concept and the process of ptychography, 

and its itera?ve reconstruc?on strategy. An object is translated through a confined probe 

illumina?on with overlapping posi?ons and the resul?ng diffrac?on paZerns are then 

recorded in reciprocal space [9]. The reconstruc?on process includes two sets of constraints 

for both real space and reciprocal space. And the itera?ve process will repeat and update 

the object es?ma?on un?l the constraints are met from the diffrac?on measurement. 

However, due to the inability in probe update, the performance PIE algorithm is largely 

dependent on the prior knowledge of the probe [9]. The development itera?ve phase 

retrieval algorithm enabled the further advancing of ptychography. The details for the 

implementa?on of a ptychography experiment and the itera?ve reconstruc?on framework 

are introduced in Sec?on 2.6.  
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Figure 2.4. Flowchart of the basic principle for ptychography experiment.  

 

The main drawback of PIE algorithm is the requirement of an accurate probe es?ma?on, 

which can be difficult to obtain. In 2008, M. Guizar-Sicairos and J. Fienup piloted a non-linear 

op?miza?on approach that enabled the simultaneous recovery of both probe and object 

[49]. Around the same ?me, P. Thibault proposed a set projec?on method based on the 

Difference Map technique [36] [50]. Shortly thereaxer, A. Maiden extended the probe 

recovery capabili?es of the PIE algorithm, resul?ng in the development of the ePIE algorithm 

[51].  

Since the groundwork of X-ray ptychography demonstrated by J. Rodenburg in 2007 [10] and 

P. Thibault in 2008 [52], coupled with the ongoing advancement of all those robust 

reconstruc?on strategies men?oned above and rapid development of computa?onal power, 

ptychography has shown great poten?al in producing high resolu?on images, and has 

therefore garnered significant aZen?on within the wider research community.  

M. Dierolf’s work in 2010 successfully merged X-ray ptychography with X-ray tomography, 

achieving nano-resolu?on [14]. This powerful combina?on allowed the first 3D 

reconstruc?on of samples using the so-called ptycho-tomography method. In 2012, A. 

Maiden adopted a mul?-slice model for ptychography [2]. This pioneering approach enabled 

the reconstruc?ons of 3D volume with extended depth from single projec?on and addressed 

complex mul?-scaZering process. This will be discussed in detail in Sec?on 2.9.2. 
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In 2013, two new ptychography variants were introduced. M. Stockmar demonstrated X-ray 

ptychography in the near-field regime u?lising speckled illumina?on, as an alterna?ve to X-

ray inline holography [20], and G. Zheng introduced Fourier ptychography, which shixs data 

collec?on and the reconstruc?on process to the Fourier domain. Notably, Fourier 

ptychography surpasses the diffrac?on limit and enables super-resolu?on image 

reconstruc?on [13] [53]. 

More recently, major developments have been reported via electron ptychography 

microscopy. Y. Jiang’s work in 2018 achieved sub-ångström resolu?on for 2D material using 

electron ptychography for the first ?me [54]. In 2021, Z. Chen demonstrated the ability of 

electron ptychography to overcome the resolu?on limited by atom la}ce vibra?on, even for 

a thick sample, via the mul?-slice method [1]. As recently as 2024, K Nguyen achieved sub-

half-ångström resolu?on using electron ptychography without the need for aberra?on 

correctors [55].  

 

2.5. Common ptychography experimental configurations  
 

Generally speaking, the forma?on of diffrac?on paZerns or the intensity measurements in 

ptychography can be modelled in rela?on to its object and probe func?ons [12]. In this 

sec?on, the three most common ptychographic experiment configura?ons are introduced 

[12]. Then the recent development and implementa?on of near-field ptychography will be 

introduced. 

 

2.5.1. Conventional ptychography with modulated illumination 

 

Figure 2.5(a) shows one of the most conven?onal configura?ons for ptychography – far-field 

ptychography [11]. A confined probe is formed and projected onto a sample. A detector is 

then placed in the “far-field” region for data collec?on. During data acquisi?on process, the 

object 𝑂(𝑟) is moved laterally to the 𝑗th posi?on 𝑂(𝑅M), with overlap in the illuminated 

region to the previous posi?on. Here, 𝑟 represents real space coordinate (𝑥, 𝑦) and 𝑢 is the 

corresponding the 2D reciprocal coordinate. The resul?ng exit wave from the sample then 
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propagates to the far-field. Consequently, the corresponding 𝑗th diffrac?on paZern 𝐼M(𝑢)	is 

measured in by the detector, and can be described as the complex transfer func?on in Eq. 

2.6: 

𝐼M(𝑟) = ®ℱD𝑂+𝑟 − 𝑅M- · 	𝑃(𝑟)E®
(. (2. 6) 

 

Figure 2.5: Experimental configura>on type 1 - modulated illumina>on ptychography. a) conven>onal 

far-field ptychography. b) near-field ptychography with modulated illumina>on. 

 

Near-field ptychography [20] is alterna?ve form of modulated illumina?on ptychography, as 

shown in Figure 2.5(b) can be adapted from far-field ptychography by replacing the small 

aperture with a diffuser, similar to in-line holography. Addi?onally, the detector is posi?oned 

much closer to the sample to capture full-field near-field diffrac?on paZerns. Detailed 

discussion for near-field ptychography can be found in Sec?on 2.8.  

 

2.5.2. Ptychography with modulated detection 

 

An example experiment configura?on for “modulated detec?on” ptychography is 

demonstrated in Figure 2.6 [56] [57]. In this setup, the posi?ons of the object 𝑂(𝑟) and the 

diffuser 𝑆(𝑟) are swapped, such that the sample informa?on is modulated by the diffuser 

speckles. The main benefit of this configura?on is the ability to divert the large angle 

diffrac?on from the object into smaller, detectable angles, which are redirected by the 
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speckle field [12] [56]. Essen?ally, the high-frequency informa?on in the object is physically 

down-sampled by the diffuser modula?on into low-frequency components.  

In this configura?on, instead of direct recovery of the illumina?on probe, the wavefront 

exi?ng the diffuser plane is recovered. The transmission func?on of the speckle field is 𝑆(𝑟’), 

and the corresponding forward model of the recorded intensity is: 

𝐼M(𝑟BB) = ®𝐷?@#!D𝐷?@#${𝑂+𝑟 − 𝑟M-} · 	𝑆(𝑟
B)E®(, (2. 7) 

where 𝐷?@ is the angular spectrum propagator over distance 𝑑% or 𝑑(, 𝑟B and 𝑟B′ are 

coordinates at the ini?al and secondary propaga?on planes. The secondary propaga?on 

from the modulator to detector can be adapted for far-field configura?on. However, it is 

crucial that the diffuser layer is required to be sufficiently thin in order to sa?sfy the 

projec?on approxima?on model. In this case, the diffuser plane can also be treated as an 

equivalent probe in conven?onal ptychographic reconstruc?on [12].  

Typical implementa?ons for this configura?on include aperture-plane modula?on 

ptychography [58], and detector modula?on ptychography [56] [59]. 

 

 

Figure 2.6: An example experimental configura>on type 2 - modulated detec>on ptychography. The 

transmission func>on of the sample is propagated and modulated by a diffuser. Then the exit wave 

from the diffuser is propagated to the detector plain. 
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Both modulated illumina?on and modulated detec?on ptychography can be implemented 

on a conven?onal microscope [12]. In such setup, the original transmission func?on 

convolutes with the 𝑃𝑆𝐹 of the objec?ve lens. An example of such a configura?on with 

modulated ptychography is shown in Figure 2.6. The intensity measured at the detector 

plane is derived from the forward propaga?on and can be expressed as  

𝐼M(𝑟) = ®D𝐷?@D𝑂+𝑟 − 𝑟M-E · 	𝑆(𝑟B)E ∗ 𝑃𝑆𝐹+OM®
(. (2. 8) 

Where “*” denotes to the convolu?on operator. 

 

Figure 2.7: An example experimental configura>on type 3 - modulated detec>on ptychography with 

addi>onal microscopy system. 

 

Example implementa?ons of this configura?on include selected area ptychography [60] and 

op?cal near-field ptychography [61]. 

 

2.5.3. Fourier ptychography 

 

Fourier ptychography is an alterna?ve ptychographic system built upon a regular microscope 

system, with the systema?c configura?on shown in Figure 2.7 [12] [13] [53]. Unlike 

conven?onal ptychography, Fourier ptychography involves the conversion of reciprocal space 

and real space through a microscopy system [13] [53].  
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In Fourier ptychography, the illumina?on source usually comprises a programmable LED 

array. The sample is posi?oned at the object plane 𝑂(𝑟) and object is transformed by the 

objec?ve lens into its Fourier spectrum, where an aperture is placed, represented by a pupil 

func?on 𝑃𝑢𝑝𝑖𝑙(𝑢). Then a secondary Fourier transform occurs, and propagates the object’s 

spectrum exi?ng the aperture to the real-space image plane (𝑟).  

The object 𝑂M(𝑟) is illuminated by each sequen?al 𝑗th posi?on of the LED, the resul?ng 

image can be model as  

𝐼M(𝑟) = ®ℱ$%DℱD𝑂M(𝑟)E · 𝑃𝑢𝑝𝑖𝑙(𝑢)E ∗ 𝑃𝑆𝐹+OM®
(. (2. 9) 

 

Figure 2.8: Experimental configura>on type 4 - Fourier ptychography. 

 

In Fourier ptychography, the space-bandwidth product is determined by both the NA of the 

illumina?on and the NA of the objec?ve lens [62] [63]. Consequently, the achievable 

resolu?on exceeds the limita?ons imposed by the NA of the objec?ve lens alone. This 

property enables Fourier ptychography to achieve high resolu?on even when using an 

objec?ve lens with a low NA. Addi?onally, Fourier ptychography benefits from a large FoV of 

the low NA objec?ve lens, further enhancing its versa?lity and applicability in imaging tasks. 
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2.6. Ptychographic Iterative Engine 
 

With recent advancements in ptychography, a mul?tude of reconstruc?on techniques have 

been developed to extract phase images from ptychographic data. Among the most widely 

implemented algorithms are ePIE [51], Difference Map (DM) [50], Conjugate Gradient (CG) 

[49], Relaxed Averaged Alterna?ng Reflec?ons (RAAR) [64], Alterna?ng Direc?ons Method of 

Mul?pliers (ADMM) [65], and Maximum Likelihood (ML) [66]. However, only PIE family 

algorithm is implemented and discussed in this thesis. 

In this sec?on, the detailed implementa?on of the PIE family algorithm is introduced, which 

forms the backbone of many ptychographic reconstruc?on methodologies. For a 

comprehensive understanding, readers can refer to the original ePIE paper [51]. Addi?onally, 

two further varia?ons are introduced in this sec?on: regularised Ptychographic Itera?ve 

Engine (rPIE) [67] and Weighted Average of Sequen?al Projec?ons (WASP) [68], each offering 

unique advantages in the realm of ptychographic reconstruc?on. 

      

Figure 2.9: The flow chart of ePIE algorithm. PIE algorithm follows the same process but without the 

probe update part of the flow chart. 
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In comparison to the PIE algorithm, the main difference and improvement of ePIE is the 

ability to achieve blind deconvolu?on, where both probe and object func?on can be 

reconstructed simultaneously [51]. Hence, the prior knowledge of the probe no longer 

significantly affects the reconstruc?on performance. The flowchart of ePIE algorithm is 

demonstrated in Figure 2.9.  

The typical ptychography experimental procedure follows the below steps [68]: 

1. A transparent specimen is illuminated by a coherent radia?on source. 

2. The exit wave from the specimen propagates a distance to the detector plane and 

form a diffrac?on paZern (either far-field or near-field). 

3. The intensity measurement of the corresponding diffrac?on paZern is recorded by a 

pixellated detector. 

4. The sample is transited laterally to the next posi?on with overlap to the previous 

illuminated region. 

5. Step 1-4 are repeated un?l all the diffrac?on paZerns corresponding to the region of 

interest on the object are recorded. 

 

The forward model for a ptychographic experiment is demonstrated in Figure 2.10 [11] [68]. 

The exit wave from the object can be modelled as the mul?plica?on of a probe matrix 𝑃(𝑟) 

and the object box 𝑜(𝑟), where 𝑟 = (𝑥, 𝑦). A larger object matrix 𝑂P is used to represent the 

full sample size of [𝑋, 𝑌] and the posi?on of the top lex pixel of the object box is defined as 

[1,1]. The posi?on of the top lex pixel of the object box is denoted by 𝑅,4  and the posi?on 

corresponding boZom right pixel of the object box is denoted by 𝑅O. = 𝑅,4 + [𝑥, 𝑦] − [1,1].  
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Figure 2.10. Implementa>on of the computa>onal model for a ptychography experiment 
 

For the 𝑗th ptychographic scan, the posi?on of the object box is translated to lateral distance 

offset of 𝑅M,4, corresponding to the region 𝑂+𝑟 + 𝑅M,4- of the object matrix.  Following the 

flowchart in Figure 2.9., the itera?on of ePIE algorithm is described below. 

 

1. The process ini?ates with a randomly selected diffrac?on paZern recorded at a 

sample posi?on 𝑗 to avoid any bias toward the ini?al condi?on at the specific 

loca?on or anomaly (e.g. weak signal or missing frequencies) from the first probe 

posi?on. The exit wave at this posi?on is modelled as a product of the object and 

probe’s complex func?on, known as the mul?plica?ve approxima?on for 2D 

ptychography: 

𝜓M(𝑟) = 𝑃(𝑟)𝑂+𝑟 + 𝑅M,4-. (2. 10) 

 

2. Subsequently, this exit wave is propagated to the detector plane:  
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ΨM = 𝐷∆D𝜓ME, (2. 11) 

where 𝐷∆ is either the near-field or Fourier propagator and Ψ	is the corresponding 

wavefront at the detector plane.  

3. Then the first constraint is applied, where the es?mated modulus is corrected by the 

measured diffrac?on paZern 𝐼M(𝑢)  

ΨMB(𝑢) = �𝐼M(𝑢)
ΨM(𝑢)
®ΨM(𝑢)®

. (2. 12) 

4. This corrected wavefront is then back-propagated to the object plane and a revised 

es?ma?on of the original wavefront can be computed as: 

𝜓MB(𝑟) = 𝐷∆$%DΨMB(𝑢)E. (2. 13) 

5. Then the new es?ma?on of both object and probe are updated using the ePIE 

update func?ons. The update func?on is shown in a combined form with a single 

tuning parameter 𝛼 for simplified presenta?on: 

𝑈[𝑓(𝑟), 𝑔(𝑟), ∆𝜓(𝑓)] = 𝑓(𝑟) + 𝛼
𝑔∗(𝑟)

|𝑔(𝑟)|H3!( ∆𝜓(𝑟), (2. 14) 

∆𝜓(𝑟) = 𝜓MB − 𝜓M . (2. 15) 

Where 𝑓(𝑟) and 𝑔(𝑟) represent either probe or object func?on and “*” denotes the 

complex conjugate of its original value. 

The updated probe and object are:  

𝑃B(𝑟) = 𝑈3𝑃(𝑟), 𝑂+𝑟 − 𝑅M-, ∆𝜓(𝑟)9, (2. 16) 

𝑂B+𝑟 − 𝑅M- = 𝑈3𝑂+𝑟 − 𝑅M-, 𝑃(𝑟), ∆𝜓(𝑟)9. (2. 17) 

 

One itera?on of the process involves repea?ng the aforemen?oned steps for all recorded 

diffrac?on paZerns. The en?re process repeats for any desired number of itera?ons or un?l 

the error, evaluated by sum of squared errors (𝑆𝑆𝐸) (see Sec?on 2.7.3) becomes sufficiently 

small.   
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rPIE: 

Regularised Ptychographic Itera?ve Engine (rPIE) is further improved upon ePIE 

algorithm[67], where the weigh?ng func?on of the update func?on was regularized. As a 

result, rPIE shows its superiority through quick convergence and beZer stability in 

comparison to the PIE and ePIE algorithms. 

The combined form of the rPIE update func?on is shown below: 

𝑈[𝑓(𝑟), 𝑔(𝑟), ∆𝜓(𝑓)] = 𝑓(𝑟) +
𝑔∗(𝑟)

(1 − 𝛼)|𝑔(𝑟)|	( + 𝛼|𝑔(𝑟)|H3!( ∆𝜓(𝑟), (2. 18) 

where the tunning parameter 𝛼 can adapt to different value for probe and object update. 

 

 WASP: 

Weighted average of sequen?al projec?ons (WASP) is a newly developed algorithm which 

benefits from the advantages from both sequen?al projec?on algorithms and weighted 

average or ptychographic error reduc?on (ER) algorithms [68]. It shows robust ini?al 

convergence, and it can be operated in parallel. The main idea of WASP is to u?lise the 

outputs - revised exit waves, from sequen?al projec?on algorithms, such as ePIE and rPIE, to 

accelerate and enhance the performance of ER algorithms [68].  

For the implementa?on of the “ER” part of the algorithm [47] [68], it is useful to embedded 

probe matrix into the larger matrix [𝑋, 𝑌] as shown in Figure 2.10, to calculate the 

accumula?on of probe intensity for all the illuminated pixels in the object matrix. Similar to 

the embedding process for the object box men?oned previously, the 𝑗th embedded probe 

matrix 𝑃MP can be modelled as:  

𝑃MP = S𝑃+𝑟 − 𝑅M
,4-								𝑅M,4 ≤ 𝑥 ≤ 𝑅MO.

0														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
	 (2. 19) 

The update func?ons for this ER algorithm are summarised below:  

𝑃B(𝑟) =
∑ 𝑜M∗(𝑟)	
M · 𝜓B(𝑟)
∑ ®𝑜M(𝑟)®	
M

=
∑ ®𝑜M(𝑟)®

(	
M · �

𝜓MB(𝑟)
𝑜M(𝑟)

�

∑ ®𝑜M.®
(	

M

, (2. 20) 
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𝑂PB =
∑ 𝑃MP∗	
M · 𝜓B(𝑟)
∑ ®𝑜M(𝑟)®	
M

=
∑ ®𝑃MP®

(	
M · �

𝜓MB(𝑟)
𝑃MP

�

∑ ®𝑃MP®
(	

M

. (2. 21) 

Where the 
R%
&(.)

;%'
  and 

R%
&(.)

+%(.)
	are equivalent to the es?ma?on of 𝑗th object box and probe 

es?ma?on from the 𝑗th diffrac?on paZern measurement respec?vely.  

 

2.7. Extension for ptychography reconstruction  
 

2.7.1. Position correction  

 

The rela?ve posi?on change between the object and the illumina?on is one of the key 

requirements for ptychographic reconstruc?on. The posi?on acquisi?on is determined by 

feedback from the transla?on stage used in the experiment. However, achieving an accurate 

posi?on record can be challenging due to various factors such as op?c axis misalignment, 

system magnifica?on discrepancies, sample stage drix, and inherent inaccuracies in the 

stage itself. To mi?gate these challenges, ptychography oxen employs an annealing 

algorithm, some?mes referred to as the "Jiggle" method, for posi?on correc?on [69]. This 

algorithm operates itera?vely, systema?cally exploring different poten?al posi?ons within a 

small search radius for each diffrac?on paZern. During each itera?on, the algorithm 

evaluates the error associated with each tested posi?on and compares it to the original 

posi?on. The posi?on yielding the lowest es?mated error is then selected as the correct 

posi?on. This process of evalua?ng and adjus?ng posi?ons can be repeated over mul?ple 

itera?ons un?l the changes in posi?on become negligible, ensuring op?mal alignment 

between the object and the illumina?on. By employing such itera?ve posi?on correc?on 

algorithms, ptychography can effec?vely compensate for posi?onal inaccuracies and 

improve the overall effec?veness of the reconstruc?on process.  
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2.7.2. Reconstruction for state mixtures 

 

The success of conven?onal coherent diffrac?ve imaging (CDI) techniques hinges largely on 

the availability of a highly coherent and stable radia?on source, necessita?ng stringent 

experimental condi?ons. In ptychography reconstruc?on there are three main factors that 

contribute to decoherence, which are par?al coherence of the radia?on source, object 

interac?on and the point spread of the detector. These factors introduce challenges to the 

coherence of the imaging process, poten?ally leading to inaccuracies or ambigui?es in the 

reconstructed images. 

Mixed-state reconstruc?on for ptychography was ini?ally introduced by P. Thibault in 2013 

[70] and it is one of the mostly implemented methods for ptychography reconstruc?on [71] 

[72]. By decomposing the original probe illumina?on into mul?ple sub-probes, the imaging 

system gains increased robustness against fluctua?ons or instabili?es in the illumina?on 

source. 

As an example [70], the measure intensi?es with the implanta?on of 𝑘 probe modes with 

𝑗th scan posi?on is  

𝐼M =i ®𝐷D𝜑M
C,4E®

(

C,4
	 (2. 22) 

Where 𝜑MC represents the new sets exit waves φUV(𝑟) = 𝑃C(𝑟)𝑂4(𝑟 − 𝑅M), 𝑃C and 𝑂4  is the 

corresponding probe states and object states; 𝐷 represents either near-field or far-field 

propagator.   

The implementa?on of state mixture reconstruc?on for ptychography effec?vely leverages 

the versa?lity of ptychographic techniques to achieve improved imaging performance in 

various experimental condi?ons [70] [72]. 

 

2.7.3. Error metric 
 

The accuracy and the performance of ptychographic itera?ve algorithm reconstruc?on can 

be monitored using an error metric – the sum squared error (𝑆𝑆𝐸) [67], which is used to 
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evaluate the error induced between the diffrac?on paZern recovered with es?ma?on and 

the measured diffrac?on paZern at the 𝑗th posi?on axer each itera?on.   

𝑆𝑆𝐸	 =i 𝐼M(𝑢) − ®ΨU(u)®
(

M
	 (2. 23) 

The lower value calculated from the 𝑆𝑆𝐸 indicates a more accurate result in comparison to 

the measured intensity. However, in reality the noise induced during the diffrac?on paZern 

measurement in unavoidable, which means the measurement itself may pose degrees of 

error, such as the incoherent signal in the diffrac?on paZern measured due to inelas?c 

scaZering.  

 

2.8. Near-field ptychography 
 

Near-field ptychography amalgamates the principles of conven?onal far-field ptychography 

and inline-holography. It was pioneered by M. Stockmar in 2013 [20] [73]. The experimental 

configura?on for near-field ptychography is shown in Figure 2.5(b). In this configura?on, the 

detector is moved much closer to the sample, to the near-field regime. Instead of using an 

aperture to form a confined illumina?on, this incident beam is now modulated by a speckle-

field 𝑃H(𝑟), where the subscript 𝑚 denotes to a modulated field. In addi?on, the 

illumina?on extends to the full-field of the sample and usually covers the en?re detector. 

Following the same data acquisi?on process, the intensity of the diffrac?on paZern is now 

recorded in the image plane posi?oned in the near-field region, which can be modelled via 

the angular spectrum propagator 𝐷?@ Therefore, similarly to conven?onal far-field 

ptychography, the intensity of the image with the near-field setup (modulated illumina?on) 

can be described as: 

    

𝐼M(𝑟) = ®𝐷?@D𝑂+𝑟 − 𝑟M- · 	𝑃H(𝑟)E®
(. (2. 24) 

 

As demonstrated in various ptychographic implementa?ons, a strong speckle-modulated 

field can substan?ally enhance the signal-to-noise ra?o and even offer the poten?al to 
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surpass the diffrac?on limit of a lens [12]. However, in near-field ptychography, the 

modula?on introduced by speckle field is par?cularly crucial [20]. To see why this is 

important, imagine a ptychographic scan is performed using a completely uniform 

illumina?on – there would be no extra informa?on apart from the lateral posi?on changed 

between each scan [20]. In far-field ptychography, even with a uniform illumina?on, 

sufficient phase retrieval is possible due to the inherently rich angular diversity from 

Fraunhofer diffrac?on condi?on. In addi?on, the overlapping probe posi?ons in real space 

translate to overlapping regions in Fourier space which also enhances the redundancy in the 

dataset. In near-field, the probe overlaps do not directly translate to Fourier redundancy. 

The diffrac?on intensi?es do not change significantly with small lateral shixs if the probe is 

uniform. The use of a diffuser creates speckle field that interferes with the sample and 

encodes more diverse frequency informa?on in the diffrac?on paZerns. 

The main benefits of near-field ptychography are the large FoV and a successful 

reconstruc?on can be achieved with as few as 4 diffrac?on paZerns, and that the rela?vely 

uniform illumina?on characteris?c of the near-field regime relaxes the requirement for 

detector dynamic range, streamlining the experimental setup [74]. However, the main draw-

back of near-field ptychography is the limited resolu?on imposed by detector pixel size: 

near-field ptychography does not extend resolu?on beyond the probe-forming op?cs in the 

same way that far-field ptychography does. 

Near-field ptychography is also commonly implemented in a modulated detec?on 

configura?on, where the modulator func?ons as an effec?ve probe. Such implementa?on 

was demonstrated by S. Jiang via an on-chip lensless near-field ptychography system [56], 

where the modula?on layer is implemented in the fashion of configura?on shown in Figure 

2.6. S. McDermoZ incorporated a microscopy system for near-field ptychography and 

posi?on the modulator at the corresponding microscope image plane [61]. Y. Zhang further 

adapted this configura?on and demonstrated a near-field ptychography add-on, designed 

for a conven?onal microscope using a rota?onal diffuser [75]. Furthermore, H. Zhang 

demonstrated the possibility to implement Fourier ptychography in the near-field regime 

[76].  

While showing success in both X-ray and op?cal setups, the near-field configura?on has also 

been trialled in electron ptychography. The first implementa?on of electron near-field 
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ptychography was reported by A. Maiden in 2015, where select area aperture mode was 

used to form a “virtual” ptychographic probe [77]. However, the Fresnel number in this 

setup was rela?vely small – approximately 17.2, indica?ng that the system operates under 

condi?ons closer to the Fresnel regime. In 2020, F. Allars further improved the near-field 

condi?on by increasing the Fresnel number to approximately 412 by decreasing the sample 

detector distance via defocused probe configura?on [78]. In addi?on, instead of using the 

selected aperture mode, the near-field diffrac?on paZerns were formed using a defocused, 

full-field illumina?on, with a silicon nitride phase diffuser trialled to generate speckled 

illumina?on [78]. Later in 2023, S. You demonstrated near-field electron ptychography 

Lorentz mode using an amplitude diffuser. This configura?on offers more experien?al 

flexibility and reduces inelas?c scaZer effect [79]. The reconstruc?on results from his 

experiment exhibited several advantages over electron holography, including large FoV and 

relaxed experimental condi?on.  

 

2.8.1. Implementation of near-field ptychography 
 

In this sec?on, several key elements par?cularly important for near-field ptychography 

experiments and reconstruc?on are introduced. 

2.8.2. Experimental parameters for near-field ptychography: 
 

1. Scan pa`erns. This is the term that refers to the specific path for the illumina?on to 

follow during a scan route through the sample. There are two commonly used scan 

paZerns for regular step scans [80]: 

a. Raster scan. In this paZern, the probe moves in a regular line-by-line manner 

across the sample. However, the regular scan grid can induce stripes or grid 

like ar?facts due to the periodic nature of the scan. In order to mi?gate the 

artefact, random shixs between posi?ons can be used to disrupt the grid 

paZern. Alterna?vely, these grid artefacts can also be removed with specific 

image processing procedures [81] [82]. 

b. Fermat spiral scan. This type of scan paZern offers improved coverage 

uniformness and higher overlap ra?o between each two adjacent scan points. 
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Furthermore, it inherits the aperiodicity from the normal spiral scan path 

which can eliminate the artefact which appears in regular grid scan [80]. 

However, due to the high overlap ra?o, this scan paZern has a rela?vely 

smaller FoV and it is considered less dose efficient. 

 

2. Step size/ Overlap. “Step size” refers to the distance moved between two adjacent 

scan points and overlap refers to the actual percentage of the overlaying diameter 

between each two illumina?ons. 0% overlap means each scan paZern is independent 

therefore no redundant informa?on can be obtained. 100% overlap means there is 

no shix in posi?on between each scan, therefore there is no “diversity”. Generally 

speaking, an overlap over at least 70%-80% is required to achieve a high-quality 

ptychographic reconstruc?on [83] [84]. In near-field ptychography, a higher overlap 

scan typically results in a higher signal-to-noise ra?o in the reconstruc?on and the 

choice of step size is directly related to the speckle size of the diffuser used in the 

experiment [74]. 

 

3. Camera distance (∆) and effec4ve propaga4on distance (∆𝒆𝒇𝒇). Camera distance is 

the absolute propaga?on distance between the most downstream sample plane and 

the detector. Effec?ve propaga?on distance is calculated using Eq. 2.25, where the 

cone-beam geometry is converted into a parallel-beam geometry via Fresnel scaling 

theorem [22], 

∆YZZ=
∆
M .

(2. 25) 

 

 

4. Pixel size (𝒅𝒙) and effec4ve pixel size (𝒅𝒙𝒆𝒇𝒇). Pixel size is the physical dimension 

size of a single pixel on the detector. Similarly, to the effec?ve propaga?on distance, 

the effec?ve pixel size 𝑑𝑥0DD is the equivalent pixel size calculated using cone-beam 

geometry with magnifica?on 𝑀 [22], 

𝑑𝑥0DD =
𝑑𝑥
𝑀
. (2. 26) 
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5. Exposure 4me and Frame averaging. These two parameters can be considered 

together as important factors that determine the overall data quality and also the 

total radia?on dose to which the sample is exposed. Exposure ?me refers to the ?me 

taken for the detector to record one diffrac?on paZern. Frame averaging means the 

number of ?mes this process is repeated for each scan point, with the resul?ng 

series of frames averaged to produce a single lower noise diffrac?on paZern. Higher 

exposure ?me usually means the ability to capture a stronger signal (without over 

exposure). A higher number of averaging can help to stabilise and reduce the noise in 

the data. However, both parameters need to be considered within the ?me 

constraint of the experiment and the radia?on sensi?vity of the sample. 

 

6. Darkfield. This is a measurement recorded for background correc?on, where the 

direct illumina?on source is blocked. This background measurement, known as the 

darkfield, helps to account for and eliminate any unwanted background noise. By 

subtrac?ng the darkfield data from each individual diffrac?on paZern, the influence 

of the background is minimised, leading to cleaner, more accurate diffrac?on 

informa?on. This technique is oxen used to enhance the signal-to-noise ra?o in the 

data. 
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2.8.3. Equivalent geometry for cone-beam configuration  
 

 

Figure 2.11: Two equivalent plane-illumina>on models for the cone beam geometry. a) the cone 

beam arrangement: the detector is of width 𝐷, 𝑑 is a representa>ve distance at the sample surface, 

𝑧" is the distance from the cone beam focus to the sample, and 𝑧# is the distance from the sample 

surface to the detector. b) provided the small angle approxima>on is valid, the cone beam can be 

modelled by an equivalent plane-illumina>on setup, where the detector is imagined to be smaller 

and posi>oned nearer to the sample. Both the detector and the sample-detector distance are scaled 

down by the geometric magnifica>on, given by 𝑀$ =
%!&%"
%!

. 

In order to overcome the resolu?on limit imposed by the physical pixel size of the detector, 

near-field ptychography is usually performed in a cone-beam geometry, as shown in Figure 

2.11(a).  

In this geometry, the beam propagates a distance 𝑧%  from the cone apex (at the focus of up-

beam op?cs) to the sample, passes through, and propagates a further distance 𝑧( to a 

detector. The detector records the resul?ng diffrac?on paZern, which in this regime extends 

across its en?re width, 𝐷. As with conven?onal ptychography, a full near-field ptychographic 

data set comprises a series of these diffrac?on paZerns, collected over a grid of sample 
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posi?ons; work by Clare et al studied the technique in detail, assessing the effect of 

diffrac?on paZern speckle size and different posi?on grids on eventual image quality [74].  

The itera?ve algorithms that reconstruct images from data collected in this cone beam 

geometry require an appropriate forward model of the experiment, which can be derived 

from the Fresnel scaling theorem (FST) [22]. The FST shows that, subject to the paraxial 

approxima?on, the cone beam geometry produces data iden?cal to an equivalent 

experiment where the incident beam is assumed planar, rather than curved, as shown in 

Figure 2.11(b). In this plane-illumina?on geometry, both the distance from the sample to the 

detector, 𝑧(, and the size of the detector, 𝐷, are shrunk by the geometric magnifica?on, 𝑀:, 

of the cone beam, where: 

𝑀: =
𝑧% + 𝑧(
z%

=
𝑧,+,
𝑧%

. (2. 27) 

This equivalence means that, as far as the reconstruc?on algorithm is concerned, it is as if 

the experiment were carried out with a structured, but flat (non-expanding) source of 

illumina?on and with a smaller detector placed closer to the sample. This is a 

straigh�orward model to implement digitally since it avoids the need to explicitly sample the 

beam curvature, which can cause aliasing. With the help of the FST, conven?onal 

ptychographic algorithms can reconstruct images from cone-beam data with only three 

minor modifica?ons:  

1. Replace the conven?onal far-field propaga?on model (a single FFT) with a two-FFT 

angular spectrum propagator [21],  

2. Reduce the propaga?on distance used in that propagator by a factor of 𝑀:, from 𝑧( 

to =!
L"

,  

3. Model the smaller camera by reducing the pixel pitch used in the reconstruc?on 

from 𝑑𝑐, the real-world pixel pitch of the detector, to 2!
L"

.  

The first of these changes requires some small code changes to the algorithms, but the 

second and third are pre-processing steps requiring only changes to the algorithm input 

parameters.  
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Importantly for the work shown in this thesis, there is a less well-known second equivalent 

plane-illumina?on geometry, shown in Figure 2.11(c) [85]. Here, rather than shrinking the 

detector, the sample is expanded by 𝑀:, and rather than reducing the sample-detector 

distance, 𝑧(, it is increased by the same factor: it is now as if the experiment were carried 

out with a larger facsimile of the sample, placed further away from the detector. This second 

equivalent geometry requires similar minor adjustments to conven?onal ptychographic 

algorithms:  

1. Replace the conven?onal far-field propaga?on model with the angular spectrum 

propagator as before,  

2. Increase the propaga?on distance used in that propagator from 𝑧( to 𝑧(𝑀:, 

3. Use Eq. 2.28 to convert the scan posi?ons measured from the sample transla?on 

stage, 𝑟!," (in metres), to pixel offsets 𝑟H,* in the matrix represen?ng the 

reconstructed sample image: 

𝑟H,* =
𝑀:

𝑑𝑥
𝑟!,"	 (2. 28) 

Again, the first requirement involves small changes to the code whilst the second and third 

only involve changes to the algorithm input parameters.  

There are no computa?onal differences between the two methods of implemen?ng the FST 

– their propaga?on kernels and thus their outpuZed images are iden?cal. Only the frame of 

reference changes, with the first method using the sample as the reference frame and the 

second using the detector. This is inconsequen?al for 2D ptychography, but when it comes to 

mul?-slice ptychography the less well-known method of keeping the detector as the fixed 

frame of reference, and therefore not having to change the pixel pitch, will prove easier to 

implement. 

2.9. Ptychography for volume imaging  
 

 Volumetric ptychography is the extension of the conven?onal 2D ptychographic method to 

imaging for 3D volumes. Two primary configura?ons for volume ptychography are the 

rota?on-based or ?lt-based method - ptycho-tomography [14], and the propaga?on-based 
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method – mul?-slice ptychography. Both methods will be introduced in the following 

sec?ons, with the focus on mul?-slice ptychography. 

 

2.9.1. Ptycho-Tomography 

 

Tomography is a non-invasive 3D imaging technique that uses set of 2D projec?on data 

recorded at different rota?on angle to reconstruct a volumetric image of a sample. This 

technique is par?cularly popular among the X-ray community, due to its ability to retrieve 

the 3D informa?on of a sample in a non-invasive manner. In a conven?onally tomography 

se}ng, the 2D projec?ons acquired are based on absorp?on contrast image, therefore, 

contrast is par?cularly poor when using highly penetra?ve X-ray sources as the illumina?on.  

By combining tomography with ptychography, the advantage of high-resolu?on, high 

contrast phase image from conven?onal ptychography is inherited, and it is able to resolve 

the 3D complexed refract-index map of a sample. This combine technique is oxen known as 

Ptycho-tomography [14] [86] [87] . 

The experimental configura?on for ptycho-tomography is shown in Figure 2.12 [14]. The 

data collec?on and reconstruc?on procedure of ptycho-tomography starts with acquiring a 

projec?on data set using ptychography method at a range of rota?on angles, followed by 

ptychographic reconstruc?on of these data sets to form a series of projec?on images, then 

tomographic combina?on of these projec?ons into a 3D volume. The following pre-

processing steps are required in order to successfully carry out the tomography step:  

1. Removing linear phase ramp and offset.  

2. Phase unwrapping. 

3. Projec?on posi?on alignment.  

Once these preprocessing steps are completed, the phase images reconstructed from 

various projec?on angle are processed using standard tomographic reconstruc?on 

techniques to generate the 3D sample volume. Detailed implementa?on and reconstruc?on 

framework can be referred to [14]. 
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Figure 2.12: Experimental configura>on for ptycho-tomography. The sample posi>on is recorded with 

a real-space coordinate	(𝑥, 𝑦, 𝑧)	and the for the tomographic data collec>on process, a series of 

ptychographic data set is collec>on at various projec>on angle θ and translate to the effec>ve 

coordinate (𝑥’, 𝑦’, 𝑧’). 

 

2.9.2. Multi-slice ptychography  

 

The mul?-slice model was originally proposed by Cowley and Moodie in 1957 to simulate 

the scaZering of an electron beam for electron microscopy [88] [89]. In 2012, this mul?-slice 

model was adopted by A. Maiden who introduced mul?-slice ptychography [2]. Conven?onal 

ptychography reconstruc?on relies on a 2D mul?plica?ve approxima?on to simulate the 

interac?on between probe and object. However, this approxima?on is only valid if the 

sample is op?cally thin. If the sample is too thick, this approxima?on will fail due to the 

neglec?ng of mul?-scaZering effects. The mul?-slice model essen?ally solves a complex 

mul?-scaZering process by breaking down a thick sample into thin slices in the direc?on of 

propaga?on, where each slice is assumed to be weakly scaZering (subject to paraxial 

approxima?on) and sa?sfies the 2D mul?plica?ve approxima?on. Passage of an X-ray beam 

through the slices is computed by mul?plying the first (most up-beam) slice by the incident 
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illumina?on wavefront, to model its interac?on with that volume of the sample, then 

propaga?ng, as if through free-space, to the second slice, and so forth in a series of mul?ply-

propagate steps un?l the final (down-beam) slice is reached. This approach enables the 

reconstruc?on of mul?ple slices of an object simultaneously along the direc?on of light 

propaga?on. It has drawn great aZen?on in recent years for its ability to break through the 

𝐷𝑜𝐹 limit and achieve improved resolu?on in comparison to 2D ptychography.  

Successful implementa?on of mul?-slice ptychography has been shown with various 

wavelength. In 2014, T. Godden demonstrated the far-field mul?-slice approach with an 

op?cal microscopy system and showed the poten?al to apply the mul?-slice approach on an 

op?cally thick biological sample, achieving op?cal-sec?oning at micron resolu?on [90]. In 

2015, L. Tian adopted the mul?-slice approach for Fourier ptychography and demonstrated 

the possibility of super-resolu?on mul?-slice ptychography [3]. Later in 2019, S. Chowdhury 

further improved this work and realised the sub-micron in both lateral and axial resolu?on 

[91].  

Proof-of-principle experiment of X-ray mul?-slice ptychography has also been demonstrated 

by A. Suzuki in 2014 [4] and E. Tsai in 2016 [92]. However, due to the short wavelength of X-

ray, the lateral resolu?on that can be achieved is significantly beZer than the axial 

resolu?on. Consequently, manipula?ng the data for the later 3D reconstruc?on becomes 

challenging.  

The mu?-slice model has demonstrated great poten?al in the field of material science when 

combined with electron ptychography, with the first proof-of-principle experiment 

conducted by S. Gao in 2017 [93]. In 2021, Z. Chen showcased the ability of mul?-slice 

model to overcome lens aberra?ons and mul?ple scaZering in transmission electron 

microscopy and to achieve the resolu?on set by thermal fluctua?on [1].  

In this sec?on, mul?-slice ptychography is segmented into two primary categories: the real-

space and Fourier space configura?ons. The implementa?ons for both configura?on and 

reconstruc?on processes are discussed. Addi?onally, an alterna?ve 3D scaZering model, the 

mul?-layer Born approxima?on, adapted from the first-Born approxima?on, is introduced. 
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2.9.2.1. Mul(-slice model for ptychography  

 

The process of mul?-slice ptychography starts the same as in conven?onal 2D ptychography. 

An incident probe illumina?on 𝑃+𝑟 − 𝑅M- is project onto the first slice of the sample 𝑂%(𝑟) 

with a posi?on offset of 𝑅M, and the exit wave 𝜓0!,% of this  slice can be modelled using the 

mul?plica?ve approxima?on of the incident probe illumina?on and the object’s transmission 

func?on of the thin slice, where 𝜓0!,%(𝑟) = 𝑃+𝑟 − 𝑅M-𝑂%(𝑟). Now this exit wave from the 

first slice propagates to the 2nd slice and becomes the new incident probe illumina?on this 

slice, and this procedure repeats un?l the final nth slice is reached.   

𝜓0!,*(𝑟)

= 𝐷∆[()$,(𝑂*(𝑟) S𝐷∆[()!,()$𝑂*$%(𝑟) J…𝐷∆[!,+𝑂((𝑟) J𝐷∆[$,!𝑂(D𝑃+𝑟 − 𝑅M-𝑂%(𝑟)EO… OT , (2. 29)
 

𝐷∆[,)$,,  denotes the free-space propaga?on over the distance between the (𝑛 − 1)th to the 

𝑛th slice.  

 

2.9.2.2. real-space mul(-slice ptychography 

 

The 3PIE algorithm incorporate this mul?-scaZering process with conven?onal ptychography 

itera?ve algorithm. Figure 2.13 demonstrates both forward and backward model for 3PIE 

algorithm. The update procedure is similar to the conven?onal ptychography itera?ve 

reconstruc?on described previously.   



 

69 
 

 

Figure 2.13: Schema>c of mul>-slice model for 3PIE algorithm. In the forward calcula>on, for each 

slice, the exit wave from the previous slice becomes the new incident wave front for the next slice.  

 

1. Star?ng with a new diffrac?on paZern recorded at a random posi?on 𝑗 with a 

posi?on offset of 𝑅M. The exit wave from the first slice can be computed as 

𝜓0!,%(𝑟) = 𝑃+𝑟 − 𝑅M-𝑂%(𝑟) (2. 30) 

2. This exit wave is propagated over distance ∆z to the next slice and becomes the new 

subsequent incident wave ∆z*$%,* =	z* − z*$%, where z* denotes to the distance 

between the 𝑛th slice and the detector, and z*$% denotes to the distance between 

the 𝑛th and (𝑛 − 1)th slice correspondingly, 

𝜓)*,((𝑟) = 𝐷∆=$,!D𝜓0!,%(𝑟)E. (2. 31) 

3. This same propaga?on process repeats through all the subsequent slices un?l the 

exit wave of the final 𝑛th slice is computed as 

𝜓0!,*(𝑟) = 𝐷∆=()$,(D𝜓)*,*$%(𝑟)E. (2. 32) 

4. Then this exit wave at 𝑗th posi?on is propagated to the detector plane with a 

propagator, 𝐷∆ (either near-field or Fourier propagator) over distance ∆. 

ΨM(𝑢) = 𝐷∆D𝜓0!,*(𝑟)E. (2. 33) 
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5. Then the first constraint is applied, where the es?mated modulus of the wavefront is 

corrected by the measured diffrac?on paZern 𝐼(𝑢)  

ΨMB(𝑢) = �𝐼M(𝑢)
ΨM(𝑢)
®ΨM(𝑢)®

. (2. 34) 

6. This corrected wavefront then back-propagates to the object plane and a revised 

es?ma?on of the original wavefront at 𝑛	th slice 

𝜓0!,*B (𝑟) = 𝐷∆$%DΨMB(𝑢)E. (2. 35) 

7. The newly revised approxima?on of incident probe and object at nth slice are 

updated using appreciated update func?on 

𝜓)*,*B (𝑟) = 𝑈3𝜓)*,*(𝑟), 𝑂*(𝑟), ∆𝜓*(𝑟)9, (2. 36) 

𝑂*B (𝑟) = 𝑈3𝑂*(𝑟), 𝜓)*,*(𝑟), ∆𝜓*(𝑟)9, (2. 37) 

With ∆𝜓*(𝑟) = 𝜓0!,*B − 𝜓0!,*. 

8. This revised incident wave is then propagated back to (𝑛 − 1)th slice and the exit 

wave of this slice can be computed 

𝜓0!,*$%B (𝑟) = 𝐷∆?@$% D𝜓)*,*B (𝑟)E. (2. 38) 

9. The revised incident wavefront of n-1 slice now can be computed as  

𝜓)*,*$%B (𝑟) = 𝑈3𝜓)*,*$%(𝑟), 𝑂*$%(𝑟), ∆𝜓0!,*$%(𝑟)9, (2. 39) 

𝑂*$%B (𝑟) = 𝑈3𝑂*$%(𝑟), 𝜓)*,*$%(𝑟), ∆𝜓0!,*$%(𝑟)9. (2. 40) 

10. Step 8 and 9 are then repeat un?l the incident wavefront (probe) and object slice 

corresponding to the 1st slice are updated  

𝑃B+𝑟 − 𝑅M- = 𝑈3𝑃+𝑟 − 𝑅M-, 𝑂%(𝑟), ∆𝜓%(𝑟)9, (2. 41) 

𝑂%B(𝑟) = 𝑈3𝑂%(𝑟), 𝜓)*,%(𝑟), ∆𝜓%(𝑟)9. (2. 42) 

All the object 𝑂*(𝑟) is replaced with the updated 𝑂′* and 𝑃(𝑟) is replaced with 

𝑃′(𝑟). 

All steps describe above are repeat for all the posi?on recorded for one itera?on of 3PIE 

algorithm.  
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Experimental configura2on for far-field mul2-slice ptychography 
 

 

Figure 2.14 Experiment configura>on for far-field mul>-slice ptychography. (a) lensless configura>on, 
(b) with added microscope system. 

 

One advantage of mul?-slice ptychography is the compa?bility with any standard 2D 

ptychography imaging system [2], which can be implemented either in a lensless 

configura?on [2] or with an addi?onal microscope system [90], as discussed in Sec?on 2.5. In 

this sec?on, some op?cal far-field mul?-slice ptychography configura?ons and results are 

reviewed. 

 

a. Lensless configuration  
 

The assembly of the imaging system is shown in Figure 2.14(a) was first demonstrated by A. 

Maiden [2]. The lensless conven?onal ptychography system is formed by a standard 4F 

configura?on, where the op?cal system uses two doublet lenses L1 and L2 to perform 

Fourier transforms on the input image. A pinhole with diameter of 100 µm is placed at the 

upper focal point of L1 (𝑓 = 30 mm), while the sample is mounted at the down-beam focal 

point of L2 (10× objec?ve). The 4F system projects the demagnified pinhole image (~60 µm) 
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onto the sample, forming the far-field diffrac?on paZerns for ptychographic reconstruc?on, 

where a CCD camera is mounted 32 mm downstream to the sample. Each ptychographic 

data set is consisted of 400 diffrac?on paZerns (128×128 pixels) with step size of 6 µm. The 

resul?ng pixel pitch of the configura?on is approximately 1.4 μm. The corresponding best 

reconstruc?on result from this configura?on consists of the 3 slices slice separated by 11 μm 

[2].  

 

b. Additional microscope system 
 

The resolu?on for op?cal far-field ptychography is primarily determined by the diameter of 

the aperture and the detector pixel size. In order to improve the resolu?on limit, Godden 

later added a microscope system to the op?cal mul?-slice ptychography configura?on, 

where a virtual detector with a demagnified pixel pitch size was formed for the collec?on of 

diffrac?on paZern data [90]. The schema?c of the imaging system is shown in Figure 2.14(b) 

[90]. A 400 µm pinhole at the upper focal plane of L1 (𝑓 = 30 mm) was projected onto the 

sample, posi?oned at down-beam focal point of L2 (𝑓 = 3.1 mm) via a 4F system. This results 

in a demagnified diameter of approximately 75 µm. 400 far-field diffrac?on paZerns 

(1024×1024 pixels) with step size of 5 µm were then collected via the virtual detector with 

magnifica?on of 21× magnifica?on, which is posi?oned 65 µm downstream from the 

sample. The resulted pixel pitch size of the configura?on is 280 nm. The best reconstruc?on 

result from this configura?on is consisted of a total number of 33 slices with separa?on 

distance of 4.7 µm [90]. A further experiment using 40× magnifica?on virtual detector was 

reported to achieve 34 slices with 2 µm axial step. 

 

Both high lateral and depth resolu?on can be achieved by far-field mul?-slice ptychography 

in comparison to other op?cal imaging techniques, however, at least 400 far-field diffrac?on 

paZerns were required to maintain a reasonable reconstruc?on FoV, due to the small 

illumina?on size, which is constrained by the small pinhole size. Therefore, in order to image 

a rela?vely large sample volume, the data size can be excessively large, which requires high 

computa?onal power.  
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2.9.2.3. Fourier mul(-slice ptychography (FMP) 

 

Mul?-slice model has also been implemented with Fourier ptychography. With the main 

benefit of the ability to achieve both lateral and depth resolu?on beyond diffrac?on limit of 

the microscope, and the large FoV is inherited from using a low NA objec?ve lens [3]. 

Forward model: 

Star?ng with one random ini?al probe illumina?on 𝑃*
M(𝑟) angled from the 𝑗th LED, the 

wavefront exi?ng  𝜓0!,*
M 	the 𝑛th slice can be expressed by the following mul?-propaga?on 

process, where the next incident field is 𝑃*N%
M (𝑟): 

𝜓0!,*
M (𝑟) = 𝑂*(𝑟)𝑃*

M(𝑟) (2. 43) 

𝑃*N%
M (𝑟) = 𝐷∆=(,(-$D𝜓0!,*(𝑟)E. (2. 44) 

Following by the steps described above, the complex transfer func?on of the Fourier 

spectrum 𝐶M(𝑢) at the aperture plane can be denoted as the product of the spectrum of the 

exit wave  Ψ-1(𝑢) from the final 𝑛th slice and the pupil func?on 𝑃𝑢𝑝𝑖𝑙(𝑢) of the aperture. 

The spa?al frequency here is determined by the illumina?on angle 𝜃, where 𝑢 =

K-)*\.,%
5

, -)*\/,%
5

N. 

𝐶M(𝑢) = Ψ-1
U (𝑢)𝑃𝑢𝑝𝑖𝑙(𝑢), (2. 45) 

where the spectrum of the exit wave from the sample is   

Ψ-1
U (𝑢) = ℱD𝜓0!,*

M (𝑟)E, (2. 46) 

The intensity measurement recorded at 𝑗th LED illumina?on is  

𝐼	M(𝑟) = ®ℱD𝐶M(𝑢)E®
(
. (2. 47) 

 

Backward model: 

Similar to the conven?onal ptychography, the new es?mate of the Fourier spectrum at 

detector plane is updated using the measured intensity:  
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𝐶	BM(𝑢) = ℱ$% ��𝐼*
ℱD𝐶ME
|ℱ{𝐶M}|�

. (2. 48) 

The revised es?ma?on of the exit wave spectrum and pupil func?on of the aperture using 

update func?ons: 

Ψ-1
BU (𝑢) = 𝑈3Ψ-1,*, 𝑃𝑢𝑝𝑖𝑙, ∆𝐶	M9, (2. 49) 

𝑃*
BM(𝑢) = 𝑈3𝑃𝑢𝑙𝑝𝑖𝑙, Ψ]^, ∆𝐶	M9. (2. 50) 

where ∆𝐶M(𝑢) = 𝐶BM − 𝐶M. 

The corresponding real-space exit wave at 𝑛th slice can be computed using inverse Fourier 

transform, 

𝜓0!,*B (𝑟) = ℱ$%DΨ-1B (𝑢)E. (2. 51)	 

The transmissive func?on of the object 𝑂*
M(𝑟)	and the incident wavefront 𝑃*

M(𝑢)	at 𝑛th slice 

are then updated by the same process  

𝑂*
BM(𝑟) = 𝑈3𝑂*

M(𝑟), 𝑃M(𝑟), ∆𝜓0!,*9, (2. 52) 

𝑃*
BM(𝑢) = 𝑈3𝑃*

M(𝑟), 𝑂*
M(𝑟), ∆𝜓0!,*9, (2. 53) 

where ∆𝜓0!,* = 𝜓0!,*B − 𝜓0!,*. 

Then the exit wavefront is updated by back-propagate 𝑃*
BM(𝑢) from the last slice, 

𝜓0!,*$%B (𝑟) = 𝐷$∆=()$,(D𝑃*
BM(𝑢)E. (2. 54) 

The process will repeat through the en?re sample volume un?l the first slice is reached, 

where the probe illumina?on is the ini?al incident wavefront,  

𝑃%
BM(𝑢) = 𝑃%

M(𝑢). 

One itera?on includes repeats all procedure above for all illumina?on angles from each 

LEDs.  
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2.9.2.4. Mul2-layer Born model  
 

The Mul?-layer Born (MLB) approxima?on is an alterna?ve to conven?onal mul?-slice model 

demonstrated by M. Chen to address the high-angle illumina?on by incorpora?ng non-

paraxial scaZering in the model, where the 3D poten?al field for each individual slice is 

considered (shown in Figure 2.15) [94].  

 

 

Figure 2.15: Forward scaUering model for mul>-layer Born. 𝜓'( is the incident field and 𝜓)*  is the 3D 

scaUer field. Each layer has a finite thickness of ∆𝑧, the physical posi>on of each layer z occupies 

9𝑛 − "
#
< ∆𝑧	𝑡𝑜	 9𝑛 + "

#
<∆𝑧. 

 

According to the first Born approxima?on, the new wave field scaZered by a weakly 

scaZered 2D object can be represented as  

𝜓*0_(𝑟, 𝑧) ≈ 𝜓)*(𝑟, 𝑧) +/𝐺(𝑟 − 𝑟B, 𝑧 − 𝑧B) ×𝜓)*(𝑟B, 𝑧B)𝑉(𝑟B, 𝑧B)𝑑𝑟B𝑑𝑧B. (2. 55) 

Where, 𝑟 is the (𝑥, 𝑦) coordinate, 𝐺	is the scaZering poten?al derived from Green’s 

func?on, 𝑉 is the 3D scaZering field for an op?cally thick object.  
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Similarly to the conven?onal mul?-slice approach, Mul?-Layer Born model can be 

decomposed into mul?ple first Born approxima?on for each layer with a finite thickness of 

∆𝑧. Assuming the incident wave at the first slice 𝜓)*,%(𝑟) is from the ini?al probe 

illumina?on. The incident wavefront for (𝑛 + 1)th layer can be expressed as the recursive 

forward formular of MLB model for an object consisted of 𝑛 slices in Eq. 2.56:   

𝜓)*,*N%	(𝑟, (𝑛 + 1)∆𝑧) = 	𝜓)*,*(𝑟, (𝑛 + 1)∆𝑧) + 𝜓-/,*(𝑟, (𝑛 + 1)∆𝑧). (2. 56)	 

The first term of Eq. 2.56 can be treated as free-space propaga?on of the incident wave  

𝜓)*,*N%(𝑟, (𝑛 + 1)∆𝑧) = 𝐷?@∆1D𝜓)*,*(𝑟, (𝑛 + 1)∆𝑧)E. (2. 57) 

The second term of Eq. 2.56 models the 3D scaZering field:  

𝜓-/,*N%(𝑟, (𝑛 + 1)∆𝑧) = ℱ$% J𝐺Ä(𝑢, ∆𝑧)ℱD𝜓)*,*(𝑟, (𝑛 + 1)∆𝑧)𝑉*(𝑟)EO . (2. 58) 

It is assumed that the scaZering of the poten?al field 𝑉*(𝑢) over a small thickness remain 

unchanged for each slice. 𝐺Ä denotes to the Fourier spectrum of Green’s func?on.  

Where 𝐷∆ is angular spectrum propaga?on with the distance from (𝑛 − 1) to 𝑛th slice. 

Then the standard Fourier ptychography model is followed, where the spectrum of the 

wavefield exi?ng the 𝑛th slice at detector plane is  

𝜓)H3`0(𝑟) = ℱ$% J𝐶+𝑢, ∆𝑧D-ℱD𝜓)*,*N%(𝑟, (𝑛 + 1)∆𝑧)EO . (2. 59) 

𝐶 is the refocusing operator, which compensates for the defocus distance by applying a 

correc?on func?on in the frequency domain. This func?on 𝐶 adjusts for the defocus effect 

over the propaga?on distance ∆𝑧D, which is essen?ally a free-space propaga?on step over 

distance ∆𝑧D.  

The detailed backward model and the implementa?on of the reconstruc?on algorithm can 

be referred to the original work [94]. 
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Near-field Multi-slice Ptychography 
 

The next part of the thesis is divided into three result chapters, which present the 

modifica?on of the 3PIE algorithm and the corresponding experimental results for Near-field 

Mul?-slice Ptychography (NMP) in the cone-beam geometry for visible light and X-rays, and 

a further NMP microscope implementa?on with an op?cal configura?on.  

Chapter 3 begins with an introduc?on to the 𝐷𝑜𝐹 limit in ptychography and the adapta?on 

of the mul?-slice model for cone-beam near-field ptychography. The modifica?ons of the 

3PIE algorithm to accommodate the alterna?ve equivalent geometry, as discussed in sec?on 

2, are then addressed for samples exceeding the 𝐷𝑜𝐹 limit. This is followed by a detailed 

introduc?on to the proof-of-principle lensless op?cal NMP experiment. Subsequently, the 

chapter presents the mul?-slice ptychographic reconstruc?on results using the modified 

3PIE algorithm, star?ng with a double-layered laser-cut tes?ng sample to op?mise the ini?al 

experiment configura?on, and progressing to an op?cally thick bee’s leg sample. A 

comprehensive comparison between 2D reconstruc?on and the survey on the minimum 

diffrac?on paZern number requirement is then presented in the results sec?on.    

Following the op?cal NMP result, Chapter 4 starts with an overview of the coherent 

branchline I13-1 at the Diamond Light Source, followed by two X-ray NMP experiment 

sec?ons with two different configura?ons. In the first experiment sec?on, the experimental 

setup and data acquisi?on process are described. The experiment is then performed with a 

Siemens star tes?ng sample and a series of layered and con?nuous thick samples. The 

resolu?on and 𝐷𝑜𝐹 achieved is then evaluated and discussed. In the second experiment, the 

limita?on faced in the ini?al experiment were evaluated and improved. Finally, 

reconstruc?on results consis?ng of an ini?al reconstruc?on of a Siemens star and a 

con?nuous thick sample are presented.  

The final result chapter, Chapter 5, NMP is combined with addi?onal microscope system 

with objec?ve lens magnifica?on of 20× and NA = 0.5, called Near-field Mul?-slice 

Ptychography Microscopy (NMPM). This chapter starts with a detailed introduc?on to the 

experimental configura?on and a comprehensive survey on the influence of illumina?on 

frequency spectrum and step size on the mul?-slice reconstruc?on effec?veness. 
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Furthermore, the op?mised imaging system is then tested on three sets of biological 

samples and the minimal requirement of diffrac?on paZern number is inves?gated. In the 

end, a further experimental implementa?on with higher NA objec?ve lens (40×; NA = 0.75) 

is presented. 
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3.  Lensless optical cone-beam Near-field 

Multi-slice Ptychography (NMP) 
 

Ptychography’s headline advantage is the ultra-high resolu?ons it can achieve, reaching 

deep sub-ängstrom levels in the electron microscope [72] and, in combina?on with x-ray 

tomography [14], hi}ng isotropic 3D image resolu?on below 20 nm [95]. These remarkable 

resolu?ons are, however, limited to small, op?cally thin samples. Similarly to tradi?onal 

forms of microscopy, ptychography also requires that the en?re sample thickness lies within 

the 𝐷𝑜𝐹 of the imaging system. Thicker samples cause ptychographic algorithms either to 

fail completely or to heavily distort the reconstructed image.  

 

Figure 3.1. Representa>on of the Ewald sphere for a sufficiently thin object. 𝛩+,-  is the half angle of 

the object scaUering angle and 𝛩'.. 	is the half angle of the illumina>on angle. 

 

One way to define the 𝐷𝑜𝐹 or the maximum sample thickness is to consider the Ewald 

sphere of an image system under Born approxima?on, as shown in Figure 3.1 [3] [96]. The 

sample is required to be sufficiently thin, so that the exit wave can be approximated by the 

mul?plica?on of the illumina?on and the transmissive func?on of the sample. A generalised 
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numerical representa?on of 𝐷𝑜𝐹 in rela?on to the numerical aperture of both the 

illumina?on and the object, was derived by L. Tian as shown in Eq. 3.1 [3]. 

𝐷𝑜𝐹 =
λ

2 − �1 − 𝑁𝐴)44&( −�1 − 𝑁𝐴+OM(
. (3. 1)

 

Where 𝑁𝐴)44& is the numerical aperture of the illumina?on and 𝑁𝐴+OM  is the numerical 

aperture of the object.  

Several researchers have then later refined this equa?on in rela?on to the image resolu?on, 

determined by the NA of the image system, to which can be reliably applied for conven?onal 

ptychography, both theore?cally and experimentally. The general rela?onship they agree on 

is given by Eq. 3.2:   

𝑇H)* = 𝐷𝑜𝐹 ≤
𝑐δ.

(

λ . (3. 2) 

Here 𝑇H)* is the minimal slice separa?on distance, δ.  represents the image resolu?on, λ is 

the beam wavelength and 𝑐 is a constant, variously reported to have a value from 1 [97] up 

to 5.4 [98]. The constant 𝑐 varies depending on the overall system NA of the imaging system, 

as well as other factors like the sample being imaged. This constant adjusts the equa?on to 

account for varia?ons in these factors. Regardless of this scale factor, the thickness limit of 

Eq. 3.2 becomes increasingly severe as the target resolu?on drops. In X-ray ptychography, for 

example, even at hard X-ray energies 𝐷𝑜𝐹 falls into the 100’s of micron range as the lateral 

resolu?on goes beneath 100 nm. This trade-off between thickness and resolu?on poses a 

par?cular problem for ptycho-tomography applica?ons aiming to obtain sta?s?cally 

significant amount of data from meaningful sample volumes, for example mapping 

connec?ons in brain ?ssue, where neurons only a few tens of nanometres in diameter can 

extend over hundreds of microns [99] [100]. 

One way to overcome sample thickness constraints in ptychography is to incorporate a 

mul?-slice model into the reconstruc?on algorithm [2] [92]. Mul?-slice ptychographic 

algorithms pass es?mates of the illumina?on wavefront and the contents of each slice 

through this forward model, revise the resul?ng es?mate of the wavefront incident on the 
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detector to agree with the measured data, then reverse the mul?-slice process as shown in 

Figure 3.2(b) – back-propaga?ng to each slice in turn and upda?ng the wavefronts and slice 

contents along the way, via update equa?ons iden?cal to those used in conven?onal 

ptychography [51] [67]. For samples whose thickness exceeds that dictated by Eq. 3.2, the 

mul?-slice model is considerably more accurate than the standard mul?plica?ve 

approxima?on used by 2D ptychography, which can be thought of as the reduc?ve case of a 

mul?-slice model with only a single slice. Incorpora?ng this more accurate model within 

ptychographic algorithms has extended 𝐷𝑜𝐹 by an order of magnitude, with visible light, X-

rays and in the electron microscope [1] [4] [90] [101].   

As discussed earlier in this chapter, the mul?-slice method had been applied only in the far-

field diffrac?on regime. As men?oned previously, one of the aims of this thesis is to increase 

both sample thickness and lateral volume imaging capabili?es. To achieve this, 

implementa?on of the mul?-slice method in the near-field regime becomes a natural choice. 

Unlike far-field ptychography, where a small, localised patch of illumina?on is used to ‘probe’ 

the sample, near-field ptychography u?lises a beam modulator, or diffuser, to generate a 

speckle-like paZern that flood-illuminates the sample [20]. Whilst opera?ng in this near-field 

regime does not offer the extremely high resolu?on of the far-field method, it does provide 

two benefits. First, a large FoV can be captured from data comprising only twenty or so 

diffrac?on paZerns, compared to many hundreds or thousands for far-field ptychography. 

This can be especially advantageous for ptycho-tomography, where data collec?on in the far-

field can take many hours. Secondly, the dynamic range requirement of the detector can be 

reduced because there is no huge central diffrac?on peak in the data.  

In this chapter, an adapta?on of the original mul?-slice ptychographic algorithm, 3PIE, 

outlined in Sec?on 2.9.2, is introduced for the implementa?on of cone-beam, near-field 

ptychography. Then the experiment configura?on for op?cal NMP is demonstrated via a 

designated 2-layered sample and a con?nuous biological sample - a bee’s leg. In the end of 

the chapter, the minimum requirement for op?cal NMP is evaluated. 
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Figure 3.2. A schema>c illustra>on of the mul>-slice reconstruc>on process. A sample of thickness T 

is modelled by thin slices, each of which represents part of the sample volume – the mul>-slice 

algorithm solves for these slices, as well as the illumina>ng cone beam wavefront. (a) The algorithm 

first approximates the wavefront incident upon the detector via a chain of mul>ply-propagate steps 

through the slices, using current es>mates of the illumina>on wavefront and the slice contents. (b) 

This wavefront is modified to match the recorded diffrac>on data and the result then back-

propagated through the slices one by one, upda>ng the slice contents and the illumina>on wavefront 

at each step. 
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3.1. Geometric modification   
 

To adapt mul?-slice ptychography for the cone beam geometry the FST (see Sec?on 1.3.2.4) 

must be used to propagate not only from the sample to the detector, as in the 2D case 

discussed in Sec?on 2.8.3, but also between the slices in the mul?-slice model. This 

addi?onal deployment of the FST is complicated by the changing geometric magnifica?on 

within the sample thickness: the magnifica?on is higher for the up-beam face of the sample, 

closest to the cone beam focus, decreases within the sample volume, and reaches a 

minimum at the down-beam face, closest to the detector. Applica?on of the FST must 

therefore use a slightly larger magnifica?on at the first slice than at the second slice, and so 

forth. It is possible to do this through an extension of Figure 2.11(b) to the mul?-slice case 

[85], but this involves re-interpola?ng the wavefronts at each slice of the object to 

accommodate the changing magnifica?ons. Instead, a simpler approach extends Figure 

2.11(c) to implement the mul?-magnifica?on FST, through the equivalence of the two 

geometries shown in Figure 3.3. 

 

Figure 3.3. An equivalent plane-illumina>on model for an op>cally thick sample. (a) Experimental 

configura>on of cone-beam near-field ptychography. (b) Equivalent plane-illumina>on. 
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Figure 3.3(a) shows the experimental setup for cone-beam near-field ptychography, the 

sample thickness is 𝑇, the detector is of diameter 𝐷, d is a representa?ve distance on the 

down-beam face of the sample, 𝑟!	is an example sample transla?on between posi?ons in the 

ptychographic scan, which moves the sample to the loca?on shown by the doZed line. 𝑧% is 

the distance from the cone beam focus to the down-beam face of the sample and 𝑧(  is the 

distance from the down-beam face to the detector. Figure 3.3(b) shows an equivalent three-

slice model of the actual experimental geometry in Figure 3.3(a) incorpora?ng the change in 

magnifica?on within the sample volume, where the slices are located at the down-beam 

face of the sample, a distance 𝑧( from the detector; an arbitrary distance 𝑑𝑧 up-beam from 

this; and at the up-beam face of the sample, a distance 𝑧( + 𝑇 from the detector and a 

distance 𝑧% − 𝑇 from the cone apex. The distance from the detector to the down-beam 

sample face is mul?plied by the base geometric magnifica?on 𝑀+ . The sample itself is 

imagined to be stretched both laterally and axially as shown, reflec?ng the magnifica?on 

changes within the sample volume. The model incorporates parallax by scaling the 

ptychographic scan transla?ons by the magnifica?on at different planes, as shown by the 

transla?on vectors to the right and the doZed outline. 

The magnifica?on at the down-beam face is 𝑀: as it was for the 2D case. The magnifica?on 

of the slice located 𝑑𝑧 meters up-beam of this face is given by Eq. 3.3: 

𝑀2= =
𝑧% + 𝑧(
𝑧% − 𝑑𝑧

=
𝑧,+,

𝑧,+,
𝑀:

− 𝑑𝑧
, (3. 3) 

with the magnifica?on at the down-beam slice found by subs?tu?ng 𝑑𝑧 = 𝑇.  

Referring to the diagrams shown in Figure 3.3(a), the magnifica?on factor of the most down-
beam slice 	𝑀: and the most up-beam slice  𝑀a  are: 

𝑀a = 𝑀2= =
𝑧% + 𝑧(
𝑧% − 𝑇

, 	𝑀: =
𝑧% + 𝑧(
𝑧%

. (3. 4) 

 

Consequently, the distance between the slices in Figure 3.3(b) located at 𝑀a(𝑧( + 𝑇) and 
𝑀:𝑧( can be derived: 

𝑀a(𝑧( + 𝑇) −𝑀:𝑧(	
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= 𝑀: �
𝑧%(𝑧( + 𝑇)
𝑧% − 𝑇

− 𝑧(�	

=
𝑀:

𝑧% − 𝑇
+𝑧%(𝑧( + 𝑇) − 𝑧((𝑧% − 𝑇)-	

= 𝑀:𝑇
(𝑧% + 𝑧()
𝑧% − 𝑇

	

= 𝑀:𝑇𝑀a . (3. 5) 

 

Within the sample, the z-axis of the model in Figure 3.3(b) is stretched non-linearly, such 

that the physical distance between two adjacent slices in the mul?-slice model increases by 

the product of the magnifica?ons of each slice. For example, illustrated in the Figure are two 

slices located 𝑧( + 𝑑𝑧 and 𝑧( + 𝑇 up-beam of the detector. The physical distance between 

these slices is 𝑇 − 𝑑𝑧 and the magnifica?ons of the slices are calculated from Eq. 3.4 as 𝑀2= 

and 𝑀a: the model therefore implements the FST by stretching the intervening distance to 

(𝑇 − 𝑑𝑧)𝑀a𝑀2=. This model is consistent with the usual 2D near-field model shown in 

Figure 2.13, in that any one of the slices in the model can be chosen and the rest of the 

slices “deac?vated” (maintained as free-space or matrices of ones in the algorithm) and the 

result is the same as for one of the 2D algorithms, albeit with the propaga?on to the 

detector broken into several sub-propaga?ons. 

Similar adjustments to those used to convert conven?onal 2D ptychographic algorithms for 

cone-beam near-field data also apply to the mul?-slice case. The adjustment steps for the 

equivalence 3D case shown in Figure 3.3, now are as follows:  

1. As with the 2D modifica?ons, use the angular spectrum propagator to propagate 

from the down-beam face of the sample to the detector,  

2. Increase the propaga?on distance used in that propagator from 𝑧( to 𝑧(𝑀:, 

3. Mul?ply the propaga?on distances between adjacent slices in the mul?-slice model 

by the product of the magnifica?ons at each slice, 

4. Set different magnifica?ons for each slice of the mul?-slice model by conver?ng the 

measured sample posi?ons, 𝑟!,", to pixel offsets, 𝑟C,H,*, that are different for each of 

the 𝑘 = 1…𝐾 slices. These offsets are calculated according to Eq. 3.6: 

𝑟C,H,* =
𝑀C

𝑑𝑐
𝑟!," , (3. 6) 
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where 𝑀C is the magnifica?on at the plane of the 𝑘th slice, given by subs?tu?ng the 

corresponding slice posi?on, 𝑑𝑧, into Eq. 3.3. Again, step 1 requires minor modifica?on of 

the code, but steps 2-4 are preprocessing steps and only require changes to the input 

parameters to the 3PIE algorithm; once these pre-processing steps are carried out, the 

algorithm proceeds exactly as outlined in Figure 3.2 and as detailed in the Sec?on 2.9.2 [2]. 

Alterna?ve mul?-slice ptychographic reconstruc?on algorithms can also be modified in the 

same way to accommodate the cone beam geometry [92]. 

The reconstruc?on Code 1 and example Dataset 1 is avaiblable in Appendix I. 

  

3.2. Evaluation of aliasing condition 
 

In Sec?on 1.4.3, the sampling condi?on for the discrete near-field propagator was evaluated, 

leading to Eq. 3.7:  

𝑁 <
𝜆𝑧
𝑑𝑥(

, (3. 7) 

or  

𝑑𝑥 <
𝜆𝑧
𝐿
, (3. 8) 

where, 𝑁 is the size of the sampling matrix in pixels, 𝜆 is the wavelength of the radia?on 

source, 𝑧 is the propaga?on distance and 𝑑𝑥 is the real-space sampling pixel size. 𝐿 is the 

field of view or camera dimension, which consists of 𝑁 pixels, 𝐿 = 𝑁	𝑑𝑥. If the above 

condi?ons are violated, periodical copies of the spherical phase chirps will occur causing 

aliasing. Therefore, it is very important to consider this condi?on while designing experiment 

configura?ons for the near-field regime. 

The above equa?ons can be further derived from the Nyquist limit on the quadra?c phase to 

model the cone-beam near-field propagator configura?on. The maximum magnifica?on that 

can be achieved without the occurrence of aliasing in the model is given by Eq. 3.9. 

𝑀$ <
𝑁𝑑𝑥#

𝜆𝑧𝑡𝑜𝑡
+ 1. (3. 9) 
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3.3. Experimental configuration  
 

 

Figure 3.4. Top: Near -field mul>-slice ptychography configura>on on op>cal bench, BoUom leh: an 

example diffrac>on paUern collected in the experiment. BoUom right: reconstructed probe. 

 

Experiments in the visible light regime were conducted on the op?cal bench setup with the 

assembly shown in Figure 3.4. The system comprised a fibre-coupled laser with wavelength 
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of 675 nm (THORLABS S1FC675 5mW), a collima?ng lens and a microscope objec?ve (40×, 

0.75NA, Olympus); a scotch tape diffuser; a 3-axis linear transla?on motorised stage from 

Newport (M-VP-25XL-XYZR); and an sCMOS camera with dynamic range of 16-bit and 

2048×2048 pixels on a 6.5 µm pitch (PCO edge 4.2). The full system was constructed on top 

of a Newport op?cal table for damping absorp?on and dissipa?on of any excessive 

environmental vibra?on. The beam from the fibre laser passes through a collima?ng lens, 

then a diffuser before hi}ng the inverted objec?ve lens. The objec?ve focuses the beam to 

a point, and from there the structured wavefront expands as it propagates a distance 𝑧% to 

arrive at the sample of thickness 𝑇, which is mounted on a motorised transla?on stage. Axer 

passing through the sample the wavefront then propagates a distance 𝑧( to the detector. In 

Figure 3.4, an example of a 2048×2048 pixels diffrac?on paZern collected from the setup is 

shown boZom lex, and the structured illumina?on wavefront, recovered during the 

reconstruc?on process, is shown boZom right. 4× 0.5s camera exposures were averaged in 

the recording of each paZern and a dark frame recording was subtracted from the data, with 

any nega?ve-valued pixels set to zero. The sample was translated through the structured 

beam in a Fermat Spiral scan paZern [32] with a step size of 130 μm, equa?ng to an overlap 

between scan posi?ons of 95%. The instrumental control and data acquisi?on were realised 

via an interface system on MATLAB. An example of the MATLAB control GUI window for the 

op?cal bench experiment is shown in Figure 3.5. The GUI is dived into three main parts – 

Data collec?on, stage controls and displays. Most of the data collec?on parameters were 

explained in Sec?on 2.8.2. The “Stage Controls” ini?alises the sample posi?on, with 𝑥 and 𝑦 

represen?ng the lateral posi?on and 𝑧 represen?ng the beam direc?on. Those inputs also 

determine the se}ng of camera length and the degree of (de-)focus of the sample. The 

detector view is displayed in the “Live View” window. The “Histogram” shows the average 

intensity of the detector view, and “Cross Sec?on” shows the intensity of the pixels 

corresponding to the green doZed line in the “Live View”. “Mag. Calcula?on” is used to 

calculate the magnifica?on, focus-to-camera distance and camera length automa?cally via a 

cross-correla?on algorithm. The value of the lateral step 𝑋/  is typically set to around 10% of 
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the detector’s dimension, and the value of z-step 𝑋/= is set to value equal to “defocus” 

distance. 

 

 

Figure 3.5. Op>cal bench control GUI via MATLAB planorm 
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The general data collec?on procedure for the op?cal NMP experiment follows the steps 

below: 

1. The diffuser was removed from the beam path. 

2. The sample was placed onto the motored stage, and the region of interested aligned 

to the centre of the detector view. 

3. The exact magnifica?on and the camera length (distance from sample to detector) 

were calculated.  

4. The diffuser was placed back to the original posi?on.  

5. The exposure ?me and laser intensity were adjusted so that the average intensity 

was around 40000 – 50000 (the camera saturated at a value of 216). 

6. The scan paZern and total number of diffrac?on paZerns were chosen, and the step 

size was set to an equivalence approximately 80-90% overlap.   

7. Diffrac?on paZerns were then collected via ptychography scan with a dark frame 

recorded in the beginning. 
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3.3.1. Experimental results 
 

3.3.1.1. Ini(al tes(ng - double layered laser cut sample. 

 

 

Figure 3.6.  (a) shows the layout of the double-layered sample with 90-degree rota>onal shih 

between the two layers, (b) shows the arrangement of the design layout of the double-layered 

sample. (c) and (d) are phase reconstruc>on of the two layered sample with 200 µm separa>on 

distance, (e) is the recovered probe. 

 

To test the ini?al experimental configura?on, a 2-layer laser-cut tes?ng sample (as shown in 

Figure 3.6(a-b)) with 200 µm gap were designed to assess the effect of illumina?on angle 

and separa?on effec?veness across a range of magnifica?on.  

For the experiment corresponding to the reconstruc?on result shown in Figure 3.6(c-d), the 

focal-to-detector distance (𝑧,+,) was ini?ally set to approximately 4 cm and the sample to 

detector distance was set to 3.3 cm, which gave a resultant geometrical magnifica?on of 

5.82×. The ptychographic dataset consisted of 400 diffrac?on paZerns with 95% overlap 

between each scan point. All the diffrac?on paZerns were binned by a factor of 2 to 

1024×1024 pixels to avoid aliasing, which gives an effec?ve pixel size of 2.34 µm. 
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The geometrical magnifica?on can be changed simply by adjus?ng the ra?o of the focal-to-

sample distance (𝑧%) and sample-to-detector distance (𝑧(). Further tests of 2-layer mul?-slice 

reconstruc?on results for the layered logo sample shown Figure 3.7(a-c) were collected 

using 40× illumina?on objec?ve lens, yielding the measured magnifica?ons of 5.9×, 3.7× and 

14.86×. The results shown in Figure 3.7(d) were obtained with a smaller illumina?on angle 

formed with a 20× objec?ve lens with magnifica?on of 5.9×. A list of experimental and 

reconstruc?on parameter is summarised in Table 3.  

Due to the large illumina?on area in near-field ptychography and the use of small step (95% 

overlap between scan) the effec?ve field of view (FoV) is essen?ally determined by the 

illumina?on size. Although the central region may receive higher total fluence when a large 

number of diffrac?on paZerns are acquired, the overall uniformity of the illumina?on across 

the FoV is maintained. At a rela?vely small magnifica?on, as shown in (a), (b) and (d), most 

of the features were separated, however, the low-frequency crosstalk can s?ll be observed in 

both slices. And there is no direct indica?on that the illumina?on angle cons?tutes to the 

effec?veness of separa?on limit. However, a smaller effec?ve pixel size or larger 

magnifica?on, can significantly improve the depth resolu?on. At magnifica?on of 14.86 (c), a 

much cleaner separa?on of the two slices is shown with no presence of crosstalk. While MSE 

are commonly used to quan?ta?vely assess the quality of ptychographic reconstruc?ons, in 

this par?cular case they do not provide a meaningful reflec?on of image fidelity. This is due 

to the early proof-of-principle nature of the experiment, where overall reconstruc?on 

quality remains low and significant crosstalk is visible across both slices. As a result, visual 

inspec?on of the reconstructed slices provides a more reliable method for evalua?ng 

separa?on effec?veness. 
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Figure 3.7. Phase reconstruc>on of the 2-layered sample with various magnifica>on and illumina>on 

angle. The illumina>on objec>ve lens (a)-(c) has a magnifica>on of 40×, the geometrical 

magnifica>ons are 5.9×, 3.7× and 14.86× respec>vely. The illumina>on for (d) is formed with an 

objec>ve lens 20× and the geometrical magnifica>on is measured as 5.9×. 
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Table 3: Experimental parameter for lensless op4cal near-field mul4-slice ptychography 

 

 

 Figure 

3.6(cd) 

Figure 

3.7(a) 

Figure 

3.7(b) 

Figure 

3.7(c) 

Figure 

3.7(d) 
Figure 3.8 

Illumina?on 

objec?ve lens 
40× 40× 40× 40× 20× 40× 

Camera distance 

𝑧( (cm) 
3.3 4.15 3.65 4.66 4.15 2.98 

Geometrical 

Magnifica?on 

𝑀`0+ 

5.82 5.9 3.7 14.86 5.9 3.6 

Effec?ve pixel 

size 𝑑𝑥0DD (µm) 
2.34 2.20 3.51 8.75 2.20 1.80 

Number of 

diffrac?on 

paZerns 

400  100 

Scan paZern Fermat spiral scan 

Binning factor  2 N/A 

Size of diffrac?on 

paZerns 
1024×1024 2048×2048 

Number of 

reconstruc?on 

itera?on 

300 500 

update 

coefficient 

object update coefficient α = 0.5; 

 probe update coefficient β = 1. 

α = 1; 

β = 1. 
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3.3.1.2. Bee’s legs 

 

Axer an ini?al test of the mul?-slice, near-field method and of the reconstruc?on algorithm, 

further experiments were carried out on the op?cal bench setup shown in Figure 3.4 with 

the exact parameters outlined in the experiment configura?on sec?on. This structured cone 

beam illumina?on wavefront, recovered during the reconstruc?on process, is shown in the 

boZom right corner of the Figure 3.4. Having passed through the thick sample, the 

wavefront propagates to the detector, which records diffrac?on paZerns (as shown in 

boZom lex of Figure 3.4) at a series of different sample posi?ons. The distance between the 

camera and the focal point of the objec?ve lens was approximately 4.08 cm. The distance 

between the camera and the sample (𝑧() was 2.98 cm, giving a geometric magnifica?on of 

𝑀: = 3.6  and leading to an effec?ve pixel spacing in the reconstruc?on of 1.80 μm. The test 

specimen in these op?cal bench experiments was switched to a set of bee’s hind legs, 

approximately 250 μm thick, mounted on a standard op?cal microscope slide and covered 

by a coverslip. 100 diffrac?on paZerns were collected using a spiral scan paZern [32] with a 

linear overlap between adjacent scan posi?ons of 90%.  

Assuming a best-case image resolu?on of double the pixel spacing in the reconstruc?on 

(3.61 μm), the 𝐷𝑜𝐹 of the image system can be approximated using Eq. 3.2. depending on 

the constant 𝑐 [97][98], 

𝐷𝑜𝐹 ≤
𝑐δ.

(

λ =
𝑐(3.61µm)(

675𝑛𝑚 = 20~100	µm. 

Feeding the bee leg data from the op?cal bench setup to the 3PIE algorithm, adapted as 

described in Sec?on 3.1 and using six slices spaced 45 μm apart, produced the 

reconstruc?on shown in Figure 3.8. Figure 3.8 shows the reconstructed phase images from 

the six slices: Figure 3.8(a) is the most up-beam slice, furthest from the camera, progressing 

through to Figure 3.8(f), which is closest to the camera. From these images, and the 

accompanying zoomed-in inset images, it is clear that different features of the bee’s leg are 

separated axially between the slices, indica?ng that the sample is thick enough to warrant 

the use of mul?-slice ptychography for the reconstruc?on.  
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Figure 3.8. An example of a 6-layer phase image mul>-slice reconstruc>on using the 3PIE algorithm, 

the sample is a bee’s leg. (a-f) show the slices moving progressively up-beam, from furthest from the 

camera in (a) to nearest the camera in (f). The lower images in each panel show blow-ups of the 

areas in the red boxes. The phase ranges have been clipped in these images to enhance contrast. 
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To highlight the improvement in 𝐷𝑜𝐹 of the 3D method compared to conven?onal near-field 

ptychography, we combined all six layers of the mul?-slice reconstruc?on together by taking 

the pixel-wise product of all the slices. (Note: this is effec?ve only if the pixel offsets, 𝑟C,H,*, 

for each slice in the reconstruc?on all share the same mean centre-point, otherwise the 

slices do not align when the product is taken.) The resul?ng phase image (the sum of the 

phases of the six slices) is shown in Figure 3.9(a). This phase image is equivalent to a cone 

beam projec?on of the sample, where the diffrac?ve, out-of-focus features that would 

usually be expected for a sample of this thickness have been removed by the mul?-slice 

reconstruc?on. To highlight this, the phase image resul?ng from processing the same data 

using the same algorithm, but employing only a single slice, is shown in Figure 3.9(b). The 

single-slice images were reconstructed using 500 itera?ons of the same algorithm employing 

three slices each ?me, but with only the middle slice allowed to update. The front and back 

slices were kept as free-space (unity matrices). The slice separa?ons were set so that the 

central slice was directly in the middle of the sample volume. Although image quality from 

the 2D reconstruc?on is reasonable here, closer inspec?on shows that the mul?-slice image 

exhibits much beZer focus across all features compared to the 2D phase image.  
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Figure 3.9. A comparison of mul>-slice and single-slice reconstruc>ons. (a) summed phase of the 

three slices from the 3PIE reconstruc>on. (b) compara>ve single slice phase image. 

 

Using the same bee leg data and parameters, the minimum number of diffrac?on paZerns 

required for a successful image reconstruc?on was then inves?gated. Since the data were 

collected using a spiral scan paZern, we reduced the number of paZerns by simply 

discarding the outer loops of the spiral, reducing the number of paZerns to 50 (Figure 

3.10(a-d)), 25 (Figure 3.10(e-h)) and 15 (Figure 3.10(i-l)). Figure 3.11 shows the full FoV of 

the summed phase images – over 25 mm2. The results show that, for a six-slice 

reconstruc?on, effec?ve mul?-slice imaging is possible with as few as 15 diffrac?on paZerns. 

Although considerable noise is introduced at this extreme, it is interes?ng to note that low 

spa?al frequency content appears to reduce in contrast, as a result of under sampling from 

lower numbers of diffrac?on paZerns and therefore less redundant informa?on from the 

overlaps, although the high 𝐷𝑜𝐹 of the larger scan sizes is retained. In addi?on, it is 

overserved that the absolute values of phase shix recovered changes with number of 

diffrac?on paZerns. The absolute values of the recovered phase can change with the 
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number of diffrac?on paZerns, especially if the dataset is limited. For quan?ta?ve phasing in 

near-field ptychography, a sufficient number of diffrac?on paZerns is required to ensure 

accurate phase recovery. Insufficient paZerns may result in phase errors, impac?ng the 

quan?ta?ve measurements. 

 
Figure 3.10. Reconstruc>ons of 3 selected layers phase of bee’s legs using 3PIE algorithm. The 

Column one the leh shows the most down-beam side bee leg features, and the third column shows 

the most up-beam features. Each row represents the reconstruc>on data set using different amount 

of diffrac>on paUerns which are dedicated as (a)-(d): 50 dps with 360 itera>ons; (e)-(h): 30 dps with 

600 itera>ons; and (i)-(l): 15 dps with 1200 itera>ons.  
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Figure 3.11. The full FoV of summed phase images from 6-layer mul>-slice reconstruc>on of the 

bee’s leg data, using different numbers of diffrac>on paUerns. (a) using 50 diffrac>on paUerns; (b) 

using 25 diffrac>on paUerns; (c) using 15 diffrac>on paUerns. 

This chapter derived the geometric modifica?ons necessary for cone-beam near-field 

ptychography, including the adapta?on of the FST to account for varying magnifica?on 

across different sample slices. These adjustments ensure accurate wavefront propaga?on in 

the near-field regime while maintaining computa?onal efficiency. Addi?onally, the successful 

implementa?on of Lensless Op?cal Cone-beam NMP was demonstrated, addressing the DoF 

limita?on in tradi?onal ptychography, which restricts imaging to op?cally thin samples. 

Experimental valida?on confirmed that the NMP approach extends the capabili?es of near-

field ptychography to thicker biological samples while maintaining a large FoV and high 

resolu?on. By incorpora?ng a mul?-slice forward model into the reconstruc?on algorithm, 

this work enables volumetric imaging of samples exceeding the conven?onal DoF by an 

order of magnitude.  
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4. X-ray NMP via cone-beam geometry  
 

In this chapter, two implementa?ons of Near-field Mul?-slice Ptychography (NMP) using 

hard X-rays at a synchrotron facility are presented. These experiments build upon the 

experimental and reconstruc?on framework developed in the op?cal bench experiment, 

demonstra?ng the applicability of NMP in an X-ray regime.  

The primary objec?ves of this chapter are threefold. First, it aims to assess the feasibility of 

NMP in overcoming the DoF limita?ons inherent in conven?onal X-ray ptychography 

imaging. Second, the study evaluates the spa?al and depth resolu?on achievable with cone-

beam X-ray NMP. This involves determining the method’s capability to resolve fine structural 

details across different sample depths. Finally, the experimental setup is op?mised by 

refining detector selec?on, op?cal arrangements, and illumina?on diversity, alongside 

enhancing reconstruc?on algorithms to improve imaging result for thick samples. 

This chapter starts with a brief introduc?on to the coherence branchline I13-1 at the 

Diamond Light Source (DLS) where at all the X-ray experiments in this thesis were 

performed. This is followed by two experiment sec?ons. Both X-ray experiment sec?ons 

start with the descrip?on of the experimental setup and the data acquisi?on process. In the 

first X-ray experiment, an indirect detector with a scin?llator was implemented, whereas in 

the second experiment, a direct X-ray detector was implemented. Then the reconstruc?on 

results from the experiment are presented.  

In the first result sec?on, the performance of the experiment configura?on and 

reconstruc?on quality is tested using a Siemens star. This ini?al evalua?on in resolu?on 

determined the range of 𝐷𝑜𝐹 of the X-ray NMP system. Thereby a series of test samples – 

including two double-layered sample and a thick, con?nuous sample, are designed 

correspondingly and u?lised for the experiment. Furthermore, the near-field ptychographic 

mul?-slice reconstruc?on results for those sample are presented and discussed. At the end 

of this sec?on, the minimum requirement for the number of diffrac?on paZerns to 

successfully carry out ptychographic mul?-slice reconstruc?on is evaluated.  
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The next experiment sec?on starts with the descrip?on of the modifica?on and 

improvement upon the previous configura?on. Then the Siemens star and a con?nuous thick 

sample were used to evaluate the lateral resolu?on and depth resolu?on of this alterna?ve 

X-ray NMP configura?on.   

  

4.1.  Introduction to I13-1 at the DLS – Coherence branchline  
 

 

Figure 4.1: Schema>c of beamline I13 in DLS. The X-ray experiments were performed in I13-1, 

coherence branchline.  (Image © Diamond Light Source) [102] 

 

Coherence branchline I13-1 at the DLS is one of the longest beamline branches at the third-

genera?on synchrotron Diamond Light Source. The experimental hutch is located over 200m 

from the source and operates at beam energies range of 6-20 keV. The overall schema?c of 

the branchline configura?on is shown in Figure 4.1. To maximise the coherent flux for I13-1, 

a monochromator is implemented before the beam reaches the experimental hutch to 

minimise the beam vibra?on. The further coherent frac?on can be adjusted by the extra sets 

of slits before the experiment.  The typical lateral coherence length with slits size of 

approximately 50 μm is reported to be larger than 300 μm [102]. 
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4.2. X-ray Experiment 1  
 

4.2.1. Experimental configuration  
 

 

Figure 4.2. Photography of X-ray near-field mul>-slice ptychography experimental configura>on in 
I13-1 

 

 

Figure 4.3. Experimental configura>on for X-ray near-field mul>-slice ptychography  

 

A photograph of the main experimental configura?on is shown in Figure 4.2 and a schema?c 

diagram of the experimental setup is shown in Figure 4.3. The beam energy was 9.7keV 

corresponding to a wavelength of 0.124 nm. The beam was focused using a Fresnel zone 

plate with a diameter of 180 μm and outer zone width of 50 nm, resul?ng in a convergence 
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angle of 2.6 mrad. The intense zero-order beam was eliminated by inser?ng a gold central 

stop. A 20 μm order sor?ng aperture was placed further down-beam of the zone plate. A 

sheet of paper was placed approximately 1 cm up-beam of the zone plate as a diffuser to 

introduce a structured speckle into the illumina?on. The detector (a PCO 4000) had a 

dynamic range of 5455:1 and a pixel pitch of 9 µm. It imaged a scin?llator through a 

microscope objec?ve with a 20× magnifica?on.  

For data collec?on, the sample was placed approximately 2.5 cm (𝑧%) from the zone plate 

focus and the scin?llator was a further around 32.5 cm (𝑧() down-beam. The resultant 

geometric magnifica?on, 𝑀: varied between 13-14 due to slight changes in the sample 

posi?on and its different thicknesses in the experiments. Its precise value was determined 

by trial and error during the reconstruc?on process. Due to the inefficiency of the X-ray 

op?cs, the counts acquired in the experiments was par?cularly low. Therefore, each 

diffrac?on paZern required an exposure ?me of at least 15 seconds and was binned by a 

factor of 2 to 1024×1024 pixels. A dark frame recording was subtracted from the data and 

any nega?ve-valued pixels set to zero. Due to the changes in geometrical magnifica?on 

between the different experiments the pixel pitches in the reconstruc?ons ranged from 64 – 

69 nm. All diffrac?on data were collected using a raster scan with random offsets added to 

eliminate artefacts that can arise with a periodic grid [32]. The step size was calibrated 

through the ini?al Siemens star experiments and achieved best results with a step size of 10 

μm (an overlap ra?o between scan posi?ons of ~86%), plus random perturba?ons to the 

regular grid of ± 2.5 μm. An example diffrac?on paZern is also shown in the top lex of Figure 

4.3. PaZerns that just filled the detector, and did not extend beyond it, gave the best 

compromise between flux and field of view.  

Compared to the op?cal bench work, the available flux here was lower because of losses in 

the Fresnel zone plate and the scin?llator, and diffrac?on data suffered from high noise and 

low counts (reducing from >10000 per pixel to <1000 per pixel). 

Table 4 summarises the experimental parameter used for both X-ray experiment and 

reconstruc?on. 
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Table 4: Experimental parameters for the X-ray near-field mul;-slice ptychography 

 

 Siemens 
star 

(Figure 
4.4) 

 

1mm 2-
layer 

sample  

(Figure 
4.5) 

0.5mm 
2-layer 
sample  

(Figure 
4.6) 

2.5mm 
con?nuous 

sample  

(Figure 4.7) 

Siemen 
star 

(Figure 
4.10) 

1mm 
con?nuous 

sample 
(Figure 
4.13) 

Detector pixel 
pitch size (μm)  

9 55 

Microscope 
objec?ve 

20× N/A 

Geometrical 
Magnifica?on 
𝑀`0+ 

14 13.6 13.3 13.6 1300 1100 

Effec?ve pixel 
size 𝑑𝑥0DD 
(nm) 

64.3 71.4 67.7 66.2 42.3 50.0 

Number of 
diffrac?on 
paZerns 

11×11 10×10 10×10 10×10 50x50 50x50 

Scan paZern Raster grid scan 

Line-overlap 86% ± 20% offset 90% 

Binning factor  2 NA 

Size of 
diffrac?on 
paZerns 

1024×1024 512×512 

Number of 
reconstruc?on 
itera?on 

500 500 

Update 
coefficient 

object update coefficient α = 1; 

probe update coefficient β = 1. 

α = 0.5; 

β = 0.5. 
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A Siemens star sample was used ini?ally to calibrate and op?mise the setup. The best phase 

image from these ini?al 2D experiments is shown in Error! Reference source not found.(a), 

together with a contrast-boosted zoom-in. The corresponding reconstruc?on of the 

structured cone beam is shown in Figure 4.4, showing the speckled phase (colour) and 

amplitude (brightness) introduced by the diffuser and the hollow donut centre resul?ng 

from the up-beam central stop. The 2D Fourier transform shown in Figure 4.4(c) of the 

central region of the Siemens star, indicates the cut-off frequency approximately 

7.56 × 10d/𝑚, which corresponds to 133 nm resolu?on. The thickness limit dictated by Eq. 

3.2 for this setup, with an X-ray wavelength of 0.124 nm and a resolu?on of 133 nm, can 

then be calculated,  

𝑇H)* = 𝐷𝑜𝐹 ≤
𝑐δ.

(

λ =
𝑐(133nm)(

0.124𝑛𝑚 = 0.142~1	mm.  

 

4.2.2. Sample preparation  
 

The two-layer sample was fabricated using a mixture of 2 – 20 μm hollow glass beads gently 

blown on Kapton discs and mounted on both sides of washers that were 1 mm and 0.5 mm 

thick. The con?nuous sample was made from paraffin wax melted on a hot plate in an 

aluminium foil container mould at 70 degrees. A mixture of the same 2-20 μm diameter 

hollow glass beads were gently s?rred into the liquid paraffin wax un?l the mixture was 

evenly distributed, then the mould was removed from the hot plate to cool down un?l solid. 

The paraffin block was axerwards manually trimmed and shaped into a cuboid with 2.5 mm 

thickness.    
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Figure 4.4. Results from a calibra>on experiment of the X-ray near-field setup, using a Siemens star 

test sample. (a) the reconstructed phase image of the sample, showing also a phase-boosted zoom 

of the area in the red box. (b) a colour-wheel representa>on of the reconstructed illumina>on 

wavefront, where colour indicates the phase and brightness indicates the amplitude of the 

reconstruc>on. (c) is the 2D Fourier transform of the zoomed-in region shown in (a). 
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4.2.3. Experiment results  
 

4.2.3.1. Double layered sample  
 

Having determined from the Siemens star tests the geometry, resolu?on and magnifica?on 

(𝑀: = 14) of the setup, we next replaced the star with various thicker samples. Two double-

layer samples with 1 mm separa?on distance were made to test the 𝐷𝑜𝐹. Due to the 

sample’s thickness and inaccuracies in its posi?oning in the beam, the geometric 

magnifica?on in this experiment was 𝑀: = 13.6, slightly lower than for the Siemens star 

setup, but data was collected in an iden?cal manner. The 3PIE reconstruc?on, using two 

slices spaced 1mm apart to match the measured sample proper?es, is shown in Figure 

4.5(a-d). As shown in Figure 4.5(a) and Figure 4.5(b), the reconstruc?on effec?vely 

separated the two layers of balls. In fact, clear separa?on of the spheres is achieved within 

only a couple of itera?ons of the algorithm, with full convergence observed axer only 50 

itera?ons.  

This indicates that the sample is near the limit of thickness for which 2D ptychography is 

effec?ve but does not exceed it greatly. The fact that the reconstruc?on converges quickly 

(within 50 itera?ons) suggests that the sample behaves in a way that is mostly compa?ble 

with a 2D model. If the sample were significantly thicker than the limit for 2D ptychography, 

a slower convergence would be expected, as the algorithm struggles to resolve complex 

mul?ple scaZering effects. Therefore, the clear depth separa?on of the two layers is 

therefore unexpected. 

The two separate layers are combined by pixel-wise mul?plica?on in Figure 4.5(c) and for 

comparison the same dataset reconstructed using only a single slice is shown in Figure 

4.5(d). Although most features are s?ll present in the 2D image, resolu?on is reduced 

considerably and the whole image is blurred, implying that the effec?ve reconstruc?on 

plane of the 2D image – which is “chosen” by the algorithm in the sense that it is defined by 

the concurrent reconstruc?on of the structured illumina?on profile – falls somewhere 

between the two Kaptan film layers. It appears to be a trait of ptychography generally that 

blind recovery of the probe results in some self-adjustment of the reconstruc?on plane, to a 

loca?on that gives a best fit to the measured data.  
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Figure 4.5. A 2-layer 3PIE reconstruc>on of a sample comprising two Kaptan films populated with 

microspheres and separated by a 1mm airgap. (a) and (b) phase images of the two slices, where (a) is 

the up-beam plane and (b) is the down-beam plane. (c) pixel-wise sum of the mul>-slice layers.  (d) 

the corresponding single-layer reconstruc>on. 
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Figure 4.6. A 2-layer 3PIE reconstruc>on of a sample comprising two Kaptan films populated with 

microspheres and separated by a 0.5 mm airgap. (a) and (b) phase images of the two slices, where 

(a) is the up-beam plane and (b) is the down-beam plane. (c) pixel-wise sum of the mul>-slice layers.  

(d) the corresponding single-layer reconstruc>on. 
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To further test the separa?on limit of our setup, a second two-layer sample was imaged with 

the same configura?on, this ?me with a 0.5 mm separa?on – at the very lowest end of the 

𝐷𝑜𝐹 according to Eq. 1.2. The diffrac?on paZerns data were captured in the same style, with 

a magnifica?on measured at 𝑀: = 13.3 in this instance. The reconstruc?on results are 

shown in Figure 4.6. Reasonable separa?on of the two layers is s?ll apparent in Figure 4.6(a) 

and Figure 4.6(b), although the slices now exhibit no?ceable cross-talk. These effects cancel 

each other out in the pixel-wise mul?plica?on of the two slices shown in Figure 4.6(c), to 

give a well-focussed 2D cone beam projec?on, but there is now liZle to dis?nguish this 

image from the single-slice reconstruc?on of Figure 4.6(d). Again, the clear depth separa?on 

is surprising, given that diffrac?on of the beam in the space between the two film layers is 

minimised, such that 2D ptychography provides a well-focussed image shown in Figure 

4.6(c) – if diffrac?on within the sample volume can be neglected, the extra depth 

informa?on recovered is unexpected.  

 

4.2.3.2. Con2nuous sample 
 

The NMP method was then tested on the 2 con?nuous paraffin sample with total thickness 

of 2.5 mm as described above. Again, diffrac?on data were collected in the same manner, 

with a magnifica?on of 𝑀: = 13.6 in this instance. A 3-slice model was used to reconstruct 

this data, where the separa?on distances were set to 1mm to ensure the whole sample 

thickness fell within the 𝐷𝑜𝐹 of one of the slices. The reconstructed phase images of each 

slice and the corresponding pixel-wise product of the slices are shown in Figure 4.7. The 

phase images of the three layers are shown in Figure 4.7(a-c), where Figure 4.7(a) is the up-

beam layer, Figure 4.7(b) is in the middle and Figure 4.7(c) is the down-beam layer. 

Sec?oning of the spheres contained in the paraffin into the different slices of the 

reconstruc?on is evident in these figures. The pixel-wise product is shown in Figure 4.7(d), 

and whilst the single-slice image of Figure 4.7(e) at first glance does not appear to differ 

greatly from the pixel-wise product, on closer inspec?on several microspheres, especially 

those from the slice shown in Figure 4.7(a), have all but disappeared from the 2D image (as 

highlighted in the red boxes shown in Figure 4.7(e)).  
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Figure 4.7. Reconstruc>on of microspheres embedded in paraffin, using a three-slice mul>-slice 

model with 1mm separa>on between the slices. (a), (b) and (c): Phase images of each slice, where (a) 

is the upper stream plane (b) is the middle plane and (c) is the down-beam plane. (d) summed-phase 

projec>on of the three slices, with phase unwrapped. (e) single-slice reconstruc>on, with phase 

unwrapped. The red boxes indicate areas where microspheres have disappeared in the single-slice 

image. 

 

4.2.3.3. Inves2ga2on of minimum diffrac2on paJern number  
 

In this sec?on, the lower limit of diffrac?on paZern number on the X-ray data is inves?gated. 

Figure 4.8(a-d) shows that when the diffrac?on paZern number is decreased from 121 to 49 

(a sub-set of the original data created by extrac?ng the central 7×7 scan posi?ons), a 

rela?vely high-quality reconstruc?on is s?ll achieved. However, there is no significant 

resolu?on loss compared to the larger scan as less redundant informa?on was obtained 

from the diffrac?on paZern data set. A further reduc?on in the diffrac?on paZern number 

to 36 s?ll achieves some degree of separa?on in the slices, albeit with a significant increase 

in noise. When the number of total diffrac?on paZerns is reduced to 25, the reconstruc?on 

starts to fail, especially for the two up-beam slices. Accordingly, the final summed-phase 

image also shows poor quality. That this lower limit for the X-ray data is higher than it was 
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for the op?cal bench results described in Sec?on 3.3.1.2 is not unexpected, given the 

rela?ve increase in noise and lowering of flux. 

 

Figure 4.8. Phase images of a three slice 3PIE reconstruc>on with a reduced number of diffrac>on 

paUerns. (a)-(c) phase images of each slice when using 49 diffrac>on paUerns in a 7×7 grid; (d) 

summed phase of the three slices; (e)-(g) phase images of each slice when using 36 diffrac>on 

paUerns in a 6×6 grid; (h) the summed phase; (i)-(k) phase images of each slice when using 25 

diffrac>on paUerns in a 5×5 grid; (l) summed phase. 
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4.3. X-ray experiment 2 
 

4.3.1. Experimental configuration  
 

The ini?al experiments described in the previous sec?on suffered several issues. Firstly, the 

resolu?on achieved in the first experiment was limited to 200 nm, which consequently 

restricted the depth resolu?on to approximately 1 mm. Secondly, the total counts in the 

diffrac?on paZerns collected from the experiment were very low due to the inefficient X-ray 

op?cs. Specifically, the high angle Fresnel zone plate had less than 50% efficiency, and the 

requirement of a scin?llator for the indirect detector further reduced the available counts. 

Due to the low available flux, a sheet of paper was ini?ally used as the diffuser, which did 

not provide sufficient high-frequency components as the illumina?on modulator. The lack of 

illumina?on diversity also limited the overall reconstruc?on effec?veness. 

To address those men?oned issue, several adjustments were made to improve op?cs 

efficiency and illumina?on diversity: 

The main configura?on for the X-ray experiments can be referenced in Figure 4.3. The beam 

energy was slightly adjusted from the ini?al experiment and set to exactly 10 keV, 

corresponding to a wavelength of 0.124 nm. The beam was focused using the same op?c 

setup as configura?on 1 shown in Figure 4.3. To increase the diversity of the illumina?on, a 

sheet of 2000p sandpaper was used instead of a piece of paper and placed approximately 1 

cm up-beam of the zone plate to act as a diffuser, introducing much stronger and finer 

speckles. To achieve the highest possible count, instead of using the scin?llator and 

microscope with a small-pixel detector, a direct X-ray photon detector (Merlin Quad) with 

large pixel size was used in the experiment, which had a pixel pitch of 55 µm and full 

detector dimension of 512×512 pixels. 

The sample was placed approximately 0.6 cm (𝑧%) down-beam from the Fresnel zone plate 

focus point and the detector was posi?oned a further 7.74 m (𝑧() down-beam. The actual 

resul?ng geometric magnifica?on, 𝑀:, ranged between 1100-1350 due to slight changes in 

the sample posi?on and the different thicknesses in subsequent experiments. Similarly to 

the previous X-ray experiment, the precise value of the magnifica?on needed to be 

determined through trial and error during the reconstruc?on process. The higher op?cs 
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efficiency leads to a reduc?on in exposure ?me to around 2 seconds per diffrac?on paZern. 

The full detector size with 512×512 pixels was u?lised for data collec?on. No dark frame was 

recorded. The final pixel pitches in the reconstruc?ons ranged from 57 – 62 nm due to the 

varia?on in the geometric magnifica?on. All diffrac?on data sets were collected using the 

same strategy as described in X-ray experiment 1. The scan step size was however reduced 

to 2 μm due to the small illumina?on size of 20 μm, which corresponds to an overlap ra?o 

between scan posi?ons of approximately 90%. Addi?on random offset of ± 20% of the step 

size was required to eliminate the artefact induced by a regular scan paZern.  

Figure 4.9 shows the two example diffrac?on paZerns, one collected from the ini?al 

experiment (Figure 4.9(a)) and the other one from the improved experimental configura?on 

(Figure 4.9(b)). The average intensity of the diffrac?on paZern shows about a threefold 

improvement. However, due to the sampling condi?on, the diameter of the illumina?on only 

occupies about 2/3 of the full detector size (512×512 pixels). Furthermore, the detec?on 

panel on Merlin Quad detector is dived into 4 sub-regions, so when the full detector is 

u?lised, a “cross” artefact can be observed in the collected diffrac?on paZerns (as shown in 

Figure 4.9(b)). Consequently, an extra pre-processing step need to be undertaken, where a 

Gaussian smooth mask is applied to the cross region.  

 

Figure 4.9. Example diffrac>on paUerns, (a) the diffrac>on paUern collected from X-ray experiment 1 

with dimension of 1024x1024 pixels with pixel pitch of 18 µm, (b) the diffrac>on paUern collected 

from X-ray experiment 2 with dimension of 512×512 pixels with pixel pitch of 55 µm. 
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4.3.2. Experiment results 
 

4.3.2.1. Siemen star 
 

 

Figure 4.10. Results from a calibra>on experiment of the new x-ray near-field setup, using a Siemens 

star test sample. (a) the reconstructed phase image of the sample, with a zoomed-in area indicated 

by the red box. The orange-coloured bar shows the line profile, indicates the resolu>on around 100 

nm. The blur in x-direc>on is likely to be caused by the mechanical instabili>es in the sample stage or 

beam drih that was introduced by systema>c shihs that degrade resolu>on along the drih direc>on. 

(b) is the corresponding 2D Fourier transform of the zoomed-in area shown. 

 

Again, a Siemens star was used to calibrate the ini?al experimental configura?on. The best 

reconstructed phase image is shown in Figure 4.10. The zoomed-in feature indicates the 
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lateral resolu?on around 100 nm, es?mated from Siemens star reconstruc?on. The 2D 

Fourier transform also shows a cut-off frequency of 1.08×107/m (equivalent to resolu?on 

just below 100 nm). Both values demonstrate twofold improvement upon the previous 

configura?on. The recovered probe illumina?on shown in the Figure 4.11(a) , with the 

boZom half, Figure 4.11(b) showing the recovered probe illumina?on of the Siemens star 

sample from first X-ray experiment. The corresponding frequency domains of both probes 

are shown on the right, respec?vely. Compared to the illumina?on in the previous 

experiment, the recovered probe in the top figure shows much finer and randomised 

speckle employed in the new experiment, with speckle feature sizes spread out between 

100 – 400 nm on average which is a good match with the NA of the design imaging system. 

Consequently, the much more even distribu?on across the en?re frequency spectrum is 

shown in Figure 4.11(a) also indicates the high diversity of the modulated illumina?on. 

Whereas as shown in Figure 4.11(b) the probe recovered from the previous experiment 

consisted of average speckle size around 5 – 10 µm, which is way below the system NA. The 

strong central low frequency distribu?on around 1.5×106/m shown in Figure 4.10(b) 

indicates this rela?ve low diversity of the illumina?on. The diffuser speckle in the new 

experiment is 50–100 times smaller in average, reflecting a more diverse and better-

modulated illumination, which leads to more diverse and evenly distributed frequency 

spectrum, enabling the recovery of higher resolution details.  

However, due to the misalignment of the OSA, the new experiment unfortunately suffered 

from diffrac?on from the unwanted direct beam, which mean degrees of inhomogeneity 

from the other diffrac?on order contributed to the blur and sox edges effects, and overall 

reduced phase contrast observed in the final reconstruc?on result. 
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Figure 4.11. Colour-wheel representa>on of the reconstructed illumina>on wavefront with the 

corresponding 2D Fourier transform on the right, where colour indicates the phase and brightness 

indicates the amplitude of the reconstruc>on. (a) probe reconstruc>on of the new experimental 

configura>on. (b) probe reconstruc>on from the previous experiment.  
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4.3.2.2. Paraffin beads 
 

The depth resolu?on of the new X-ray NMP system then was approximated using Eq. 3.2, 

where the 𝐷𝑂𝐹 is directly propor?onal to the squared value of the resolu?on: 

𝑇H)* = 𝐷𝑜𝐹 ≤
𝑐δ.

(

λ =
𝑐(100	𝑛𝑚)^2	
0.124	𝑛𝑚 = 160 − 400	µm, 

which gives the theore?cally 𝐷𝑜𝐹 of the new experiment configura?on somewhere between 

160 µm to 400 µm. This compares well with configura?on 1 where the 𝐷𝑜𝐹	was from 0.142 

-1 mm. Axer the ini?al evalua?on with the Siemens star, the same experimental system was 

used to image a con?nuous 1 mm paraffin block populated with randomly scaZered glass 

beads as in configura?on 1. 

For the reconstruc?on process, the magnifica?on varia?on between each layer due to the 

cone-beam configura?on was calculated and scaled using the equivalent geometry 

described in Figure 3.3(b). The magnifica?on of the most down-beam slice was set to 1100, 

which corresponding to an effec?ve pixel size of 65 nm.  

Due to the small but highly diverse illumina?on (approximately 20 µm() and small step size, 

2500 diffrac?on paZerns (via 50 × 50 pixels raster grid scan) were collected in the 

experiment to achieve field of view of just over 100 µm(. The probe was split into three 

modes (as shown in Figure 4.12), which significantly accelerated the probe convergence 

speed. The main, secondary and third illumina?on mode contribute 43.0%, 31.6% and 25.3% 

to the total power spectrum respec?vely, indica?ng a large degree of incoherence, which is 

unexpected. Several factors could poten?ally contribute to the incoherence. Most 

commonly, the scaZering from the X-ray op?cs installed in the beamline experiment [70]. 

Secondly, the diffrac?on paZern data were not corrected from the darkfield data. Without 

the help from extra probe modes, all those incoherent scaZering factors can pose challenges 

on the reconstruc?on process.  
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Figure 4.12. Three probe mode used for the ptychography reconstruc>on. From leh to right the main 

probe mode, 2nd probe mode and 3rd probe mode are displayed. 

 

To evaluate the 𝐷𝑜𝐹 limit, the data set was fed into 3PIE algorithms with the reconstruc?on 

parameter (Table 4) and method indicated in previous sec?ons. Given the sample thickness 

of approximately 1 mm, three sets of reconstruc?ons (as shown in Figure 4.13) were 

conducted with evenly spread-out separa?on distance of Figure 4.13(a) 2×500 µm (3 slices), 

Figure 4.13(b) 3×333 µm (4 slices) and Figure 4.13(c) 4×250 µm (5 slices) separa?on. All 

reconstruc?on were completed with 500 itera?ons, however full convergence was reached 

usually axer around 100 itera?ons. As shown in Figure 4.13(a-b), a good degree of 

separa?on is evident between the reconstructed slices. Due to the random posi?ons of the 

glass beads in the paraffin block, there are some features shared by the 𝐷𝑜𝐹 between two 

adjacent slices in Figure 4.13(b). With careful observa?on, some features s?ll fell within the 

region set by the separa?on distance in the reconstruc?on, consequently appearing in only a 

single slice. In contrast, almost no features in Figure 4.13(c) show the presence in only a 

single slice. This observa?on indicates the 𝑇H)* of around 350-500 µm.  

Degrees of inconsistency in the separa?on ability is shown in this experiment, while some 

features separate successfully within the 𝐷𝑜𝐹 range, some appear in mul?ple reconstructed 

slices. However, it is possible to set the separa?on distance much lower than the actual 

𝐷𝑜𝐹, as shown in Figure 4.13(c). As a result, each slice only shows the feature falls within 

the 𝐷𝑜𝐹 range at the current slice posi?on.  
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Figure 4.13. Reconstructed mul>-slice phase images of 1mm thick paraffin mounted glass beads. (a) 3 

slices were reconstructed with separa>on distance set to 500 µm, (b) 4 slices were reconstructed 

with separa>on distance set to 333 µm, (c) 5 slices were reconstructed with separa>on distance set 

to 250 µm.1 
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On ini?al inspec?on, the depth separa?on achieved in both results appear to contradict Eq. 

3.2 and disagree with the literature on mul?-slice ptychography in the conven?onal, far-field 

geometry. Indeed, for the results presented in the chapter the inter-slice separa?on can be 

set to zero, and the two slices s?ll separate out the microspheres effec?vely. The cause of 

this apparent discrepancy is the geometric parallax of the cone beam: it is the way features 

in different axial loca?ons move rela?ve to one another as the sample scans that dictates 

the minimum distance between slices for which a degree of depth separa?on can be 

obtained. This minimum, 𝑇H)*, is dependent on the change in geometric magnifica?on 

between slices, as shown in Figure 4.14. In the Figure, due to parallax effect, the star 

feature, projected onto the plane of the square feature, moves a larger distance as the 

sample is scanned through the beam. In the extreme case where the star is scanned from 

one side of the beam to the other, its projec?on must move at least a resolu?on element 

further than the star in order that some depth informa?on be encoded in the recorded data.  

The minimum separa?on 𝑇H)*, for which the recorded diffrac?on data contains a degree of 

depth informa?on can be es?mated from a geometric considera?on of parallax. When the 

sample is translated by a distance 𝐷/𝑀aH)*, the star feature moves from one side of the 

beam to the other. Its projec?on onto slice 2 ini?ally lines up with the square feature, but 

axer the transla?on, the square has moved by the transla?on distance 𝐷/𝑀aH)* but the 

projected star has moved further, a distance 𝐷/𝑀:. The difference between these two 

distances is 𝐷𝑇H)*/𝑧:	 and this must exceed the lateral resolu?on 𝛿𝑟 if the star and square 

are to be differen?ated in depth. This leads to Eq. 4.1, where the star slice must be 

separated from the square slice by a distance: 

𝑇H)* =
𝑧,+,𝛿𝑟
𝐷

(4. 1) 

Where 𝐷 is the diameter of the detector (or of the cone disc if its en?rety falls within the 

detector area), 𝛿.  is the resolu?on, and 𝑧,+, is the distance from the cone beam apex to the 

detector. Note that this limit is governed by the convergence angle of the cone beam, which 

under the paraxial approxima?on is 𝐷/𝑧,+,, and that it is independent of the wavelength. 

For the op?cal bench experiments Eq. 4.1 gives 𝑇H)*=11 μm, and for both X-ray experiment 

configura?ons it gives 𝑇H)* ≈ 100 μm and 50 μm, respec?vely. These figures are the smallest 
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possible slice separa?ons for which some degree of depth informa?on is encoded in the 

diffrac?on data. Eq. 3.2 is applicable only for the highest resolu?on features in the sample 

volume and is con?ngent on the sample being scanned across the en?re beam diameter.  

 

Figure 4.14. Demonstra>on of minimum separa>on set by geometric parallax effect of cone-beam 

NMP configura>on. 

 

In prac?ce, depth separa?on appears to be some small mul?ple of the extreme limit in Eq. 

3.2 and is likely sample- and setup-dependent due to the system NA, which is determined by 

the NA of the image system and the object NA from the sample, as demonstrated in Figure 

3.1. For instance, the minimum slice separa?on is limited to ~0.5 mm at an image resolu?on 

of ~200 nm the near-field X-ray setup, around a factor of 5 above the limit set by Eq. 4.1. 

From the results, if the slice separa?on is lower than this threshold the mul?-slice 

reconstruc?on does not provide significant benefit over single-slice, 2D imaging, whilst for 

samples thicker than this, resolu?on and 𝐷𝑜𝐹	are improved by using the mul?-slice method.  

This chapter successfully demonstrated the implementa?on of X-ray NMP in synchrotron 

facility. First, it significantly extended the DoF, with mul?-slice reconstruc?ons resolving 

features in samples up to 2.5 mm thick—far exceeding the theore?cal DoF limit of for just 

under 150 nm resolu?on.  

Second, resolu?on trade-offs were explored across different experimental configura?ons. 

Depth separa?on was validated through experiments with both layered and con?nuous 

samples. In Experiment 1, which u?lized an indirect detector, a resolu?on of 133 nm and 

depth resolu?on around 1 mm was achieved; however, the setup suffered from low flux and 
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limited illumina?on diversity. In contrast, Experiment 2, which employed a direct detector, 

improved the resolu?on to below 100 nm and depth resolu?on to approximately 100–400 

µm by leveraging higher flux, beam geometry and op?mised speckle illumina?on. 

As well as demonstra?ng a good degree of depth sensi?vity and extension of 𝐷𝑜𝐹, these 

experiments successfully demonstrated MNP over large fields of view using as few as 20 

diffrac?on paZerns – a considerable data saving over equivalent far-field ptychographic 

scans. Building on the recent demonstra?on of mul?-slice ptycho-tomography at op?cal 

wavelengths [33], the work presented in this chapter shows the poten?al to realise the 

implementa?on of near-field mul?-slice ptycho-tomography, aiming to increase accessible 

sample volume and reduce the huge data sets that are currently required. 
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5. Optical slicing via near-field multi-slice 

ptychography microscopy   
 

As a tool for op?cal microscopy, ptychography has been implemented in myriad forms, 

including microscope add-ons, stand-alone systems and as a system-on- chip [12] [103] 

[104]. Unlike X-ray and electron ptychography, the key advantages of the method at op?cal 

wavelengths comes not from its lens-free opera?on but from the contrast enhancement 

offered by phase imaging and the ability, especially of Fourier ptychography, to extend an 

op?cal system’s space-bandwidth product. In the work presented in this chapter, these 

benefits were combined with one of ptychography’s other facets: accommoda?ng mul?ple 

scaZer and diffrac?on when imaging op?cally thick samples, via the mul?-slice method [2]. 

The mul?-slice method described in previous Chapters has been implemented as a 

microscope add-on, either in Fourier or conven?onal sample-scanning geometries, and has 

enabled computa?onal op?cal sec?oning, where the axial or z resolu?on of the slicing 

reduces to the micron scale [90] [91]. The approach proposed in this chapter con?nues this 

theme, enhancing a standard microscope through a combina?on of mul?-slice and near-field 

ptychography (where interference paZerns are recorded at Fresnel numbers ≫ 1) [20] [74] 

[73] [105] to realise extended FoV for computa?onal op?cal sec?oning, free from the effects 

of mul?ple scaZering and diffrac?on.  

The aim of this work is to implement and op?mise Near-field Mul?-slice Ptychography 

Microscopy (NMPM) to enhance phase imaging in op?cal microscopy, enabling high-

resolu?on, label-free computa?onal op?cal sec?oning with an extended depth of field 

(DoF). To achieve this, an op?cal NMPM system is developed and implemented by 

integra?ng NMP within an op?cal microscope to enhance phase imaging for thick samples. 

The experimental configura?on is also op?mised by systema?cally evalua?ng the effect of 

illumina?on modula?on and further experimental parameters on reconstruc?on quality.  

This chapter started with the mo?va?on to further implement near-field mul?-slice 

ptychography within an op?cal microscope. The experiment configura?on for NMPM and 
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modifica?on of 3PIE algorithm are then demonstrated, followed by three studies using this 

op?cal NMPM configura?on.  

The first study focuses on the op?misa?on of the illumina?on spa?al frequency, where four 

diffrac?on paZern data sets were collected using illumina?on modulated by a range of 

speckle sizes. The reconstruc?on results are then compared and analysed systema?cally.  

The second study inves?gates the step size influence on mul?-slice reconstruc?on and the 

importance of the introduc?on of a second probe mode for the algorithm convergence.  

In the final part, three sets of result are presented to demonstrate the NMPM method’s 

capability to recover the phase image at a diffrac?on-limited resolu?on of around 1 μm and 

extend the 𝐷𝑜𝐹 for samples ranging in thickness from 40 to 130 μm. In addi?on, the 

minimum number of diffrac?on paZerns for mul?-slice reconstruc?on was inves?gated 

aiding the reduc?on of computa?on requirement. 
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5.1. Experimental configuration  

 

Figure 5.1: Top: op>cal experimental configura>on for near-field mul>-slice ptychography 

microscopy.  BoUom leh: example of a diffrac>on paUern collected in the experiment, with size of 

1024×1024 pixels. BoUom right: example of recovered probe illumina>on.  

 

The optical arrangement of the multi-slice microscope is shown at the top of Figure 5.1. A 

fibre-coupled diode laser of wavelength 675 nm first passes through a ground glass diffuser 

and a square aperture that limits the extent of the beam. The resulting structured 
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wavefront (an example of recovered probe illumination is shown in bottom right of Figure 

5.1) was projected onto the sample through a condenser lens (NA = 0.4). The fibre tip and 

back focal plane of the condenser were conjugated, so that the wavefront between the 

condenser and objective lenses was formed into a collimated pencil beam. The most down-

beam plane of the sample was initially positioned at the image plane of a standard 

compound microscope comprising a 20×, NA = 0.5 objective and f = 180 mm tube lens with 

the measured magnification of 20.27×. For the data collection process, the sample was then 

axially offset in the up-beam direction by 25 µm from the image plane. This results in near-

field diffraction patterns imaged onto the CCD detector, a PCO edge 4.2 with a pixel pitch of 

6.5 µm. Ignoring lens aberrations, the combination of the microscope and the detector can 

be seen as a virtual detector positioned 25 µm from the sample, with a demagnified pixel 

pitch of 0.325 µm. The diffuser can be moved along the optic axis to change the speckle size 

of the measured interference patterns; Figure 5.1 bottom left shows a typical diffraction 

pattern with a speckle size in this range. Each diffraction pattern comprises an average of 16 

frames, each exposed for 200 µs and corrected by subtraction of a darkfield reference. The 

diffraction pattern data were binned by a factor of 2, to 1024×1024 pixels, resulting in an 

effective pixel size for the reconstructed images of 0.64 µm. A full ptychographic data set 

was collected from the microscope by recording a series of between 100 - 400 of these 

diffraction patterns as the sample was laterally translated through a Fermat spiral pattern of 

scan positions, with a 25 µm step between each position [80].  

The lateral resolution set by the system is approximately 1.1	µm, suggesting a 𝐷𝑜𝐹 for the 

system in of 1.8 − 9.3	µm defined by Eq. 3.2 Conventional (non multi-slice) ptychography 

results in image reconstructions showing considerable out-of-focus diffraction artefacts for 

samples beyond the upper end of this thickness, and for samples well beyond this limit 

multiple scattering causes convergence failure of the reconstruction algorithms.   

 

5.2. Improvement of the reconstruction algorithm 
 

The recorded diffrac?on data are reconstructed via the 3PIE algorithm [2], adapted for near-

field opera?on as described in Sec?on 2.9.2, by replacing the final far-field (FFT) propaga?on 

from sample to detector with an angular spectrum propagator. Different from the work 
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presented in Chapter 2 and 3, as the illumina?on beam was collimated in the experiment, no 

extra geometrical adjustment was required. However, In the work, several further 

modifica?ons are also introduced for the most op?mal reconstruc?on result: 

 

1. Tikhonov regularisa?on was implemented for the slice update. The original 3PIE 

algorithm suffered from the limita?on caused by the weakly constrained low 

spa?al frequency as itera?on progresses [91] [1], where the low spa?al frequency 

artefacts appear if the slice separa?on is set to a small value  – typically smaller 

than the 𝐷𝑜𝐹 defined by Eq. 3.2. 

 

2. Because the beam must be back-propagated sequen?ally through the slices of 

the mul?-slice object, the down-beam slices, which are addressed first, are 

preferen?ally updated, and features located at up-beam slices can take a 

considerable amount of itera?on to emerge.  Consequently, the update rate is 

tapered when the number of slices is large – typically more than 10 slices.  

 

3. Due to the complexity of the highly speckled illumina?on probe, two coherent 

probe modes were implemented to model the illumina?on wavefront [70], which 

significantly boosted the convergence speed. However, the coherence was not an 

issue for the fibre coupled laser illumina?on source. An example of the two 

coherent modes is shown in Figure 5.2. An example shown the evolu?on of the 

probe recovery over 2000 itera?on in Figure 5.3. It takes more than 2000 

itera?ons for the probe just start to converge using only one probe mode with 

MSE of 0.0713, whereas the employment of two probe modes results in an 

accurate and fully converged probe es?ma?on and reach MSE of 0.0313 in less 

than 250 itera?ons. This shows the method with two probe modes achieves a 

significantly beZer convergence rate and improved accuracy, as evidenced by the 

lower MSE. The MSE obtained using two probe modes is approximately 56% 

lower than that from the single-mode reconstruc?on, and this result is achieved 

with only one-tenth of the itera?on count, clearly demonstra?ng a substan?al 

advantage in both convergence speed and reconstruc?on accuracy. 
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Figure 5.2. Example of two coherent probe modes. Leh: the main probe mode; right: secondary 

probe mode. 

 

 

Figure 5.3: The probe es>ma>on over 2000 itera>on using a single probe mode and the full probe 

convergency with two probe modes with 250 itera>ons. 
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Alongside the modifica?ons men?oned above, all the mul?-slice results shown in this 

chapter were conducted using a two-step reconstruc?on strategy when the number of 

reconstruc?on slice was set to more than 10. First an accurate model of the illumina?on 

wavefront was recovered using 250 itera?ons of the modified 3PIE, with 5 slices evenly 

spaced through the sample volume. Then the number of slices was increased to any desired 

amount before running a further 250 itera?ons. 

The modified version of 3PIE algorithm and example dataset are shown in Code 2 and 

Dataset 2. 

 

5.3. Optimisation of illumination frequency spectrum   
 

In near-field ptychography, the resolu?on is primarily determined by the NA of the imaging 

system. However, resolu?on can be improved by employing a highly spa?al-frequency-

diverse illumina?on [106][107]. From the defini?on of the projec?on approxima?on, the 

forma?on of the diffrac?on paZerns, or the intensity measurement in ptychography data are 

determined by the scaZering power of the object itself and the frequency spectrum of the 

illumina?on. Since the scaZer power of the sample is usually fixed, the illumina?on becomes 

a more viable strategy to enhance the diversity of the intensity measurement.  

In conven?onal ptychography, the far-field measurements are naturally highly diverse due to 

the pinhole illumina?on, which offers a wide range of spa?al frequency informa?on [108] 

[49]. However, this is not the case for near-field ptychography. As explained in Sec?on 2.8 

[20] [74] [97], the diversity in the diffrac?on paZern data relies heavily on the illumina?on 

spectrum, which is determined by the combina?on of the illumina?on NA and the spa?al 

frequency spectrum of the speckle modula?on introduced by the diffuser. 

Tradi?onally, scotch tape was commonly used as a choice of diffuser for near-field 

ptychography in an op?cal setup [61] [75]. However, high-resolu?on informa?on is oxen 

missing from the reconstructed phase images, because of the limited frequency spectrum of 

the scotch tape diffuser. Ideally, the projec?on of the diffuser speckle size needs to be small 

enough to fully occupy illumina?on frequency NA, while the speckles also need to be large 

enough to be resolved by the NA of the virtual detector.  
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Figure 5.4. Diffrac>on paUerns collected with a range of speckle sizes from (a) largest to (d) smallest. 

The colour bar indicates the root-squared value of the recorded intensity. 

 

To demonstrate the role of the illumina?on spa?al frequency content in the NMPM system, 

four sets of 400 diffrac?on paZerns of a 1951 USAF resolu?on target (as shown in Figure 5.4) 

were collected, with gradually decreased speckle sizes, to assess their impact on the 

reconstruc?on effec?veness. The step size for the data collec?on was fixed at 25 µm 

(equivalent to approximately 90% line-overlap). Figure 5.4 presents examples of the 

collected diffrac?on paZerns: in order from (a) to (d) the average speckle sizes are 

approximately 20-30 pixels, 10-20 pixels, 5-10 pixels and 2-5 pixels. All the 2D reconstruc?on 
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were performed using 250 itera?ons of the 3PIE algorithm, but with only one slice enabled. 

The reconstruc?on results are shown in Figure 5.5, where (a-d) corresponds to the 

diffrac?on paZerns shown in Figure 5.4. The top row shows the reconstructed amplitude 

images of the resolu?on target, with the zoomed-in views of group 8 and 9 in the second 

row. The third row shows the recovered probe illumina?on, whereas the frequency 

spectrums corresponding to the central region of those probes (cropped to 800 × 800, so 

that not affected by the distorted edge) are shown in the boZom row. The spa?al 

frequencies indicated in the boZom row from lex to right are approximately 3.9×105/m 

5.9×105/m, 7.0×105/m and 7.8×105/m.  

As expected, a much more evenly distributed frequency spectrums and spread across the 

en?re illumina?on NA are shown in Figure 5.5(c) and (d). Whereas the cut-off frequency 

corresponds to the illumina?on shown in (a) and (b) almost halved and most distributed 

across the centre, which is approximately a third of the illumina?on NA frequency spectrum.   

All the reconstructed images indicate that the smallest set of bars in group 8 of the paZern 

can be clearly resolved, corresponding to a lateral resolu?on of 𝛿43,0.34 = 1.1	µm. 

Despite the results shown in Figure 5.5(c) and (d) seems to have the most op?mal frequency 

spectrum, the reconstruc?on result from the smallest speckle unexpectedly shows slight 

blur and reduced contrast. There are several factors that poten?ally contribute to this 

discrepancy: Firstly, the slit was not aligned perfectly to the back image plane formed by the 

collec?on lens and condenser, which led unwanted scaZering and aberra?on. Secondly, the 

environmental instability caused the vibra?on of the system. The employment of small 

speckles which requires high system stability. In addi?on, the choice of step size has 

significant influence on the resolu?on, which is inves?gated in the following sec?on. 

However, further work is required to evaluate the cause of the blurring. 

Overall, the speckle size shown in Figure 5.5(c), around 3-10 pixels holds a good compromise 

between some degree of relaxa?on of the experiment condi?on and the speckles employ 

here being highly random and containing high spa?al frequencies to fully u?lise the 

illumina?on NA. This ensures rapid evolu?on of the illumina?on field along the propaga?on 

direc?on, which allows the recovery of clean sample slices at minimal axial separa?on. 
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Figure 5.5. 2D reconstruc>on result for a resolu>on target with different speckle grain size from (a) 

largest to (d) smallest. First Row: recovered modulus of the resolu>on target. Second row: zoom-in 

view of group 8 and 9. Third row: recovered illumina>on probe. BoUom row: the corresponding 

frequency spectrum of the illumina>on probe.  The maximum spa>al frequency in the boUom row is 

7.8×105/m. 
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5.4. Step size influence on NMPM 
 

From the experiences of conven?onal ptychography experiments and most of the simula?on 

work, a step size equivalent to 70-80% overlap is typically considered as the most op?mal 

scanning step [83]. This balance ensures sufficient redundant informa?on while maintaining 

the high diversity of the diffrac?on paZern data. However, this is not the case for near-field 

ptychography, especially with the extra diffuser modula?on. R. Clare has previously 

suggested that the step size for near-field ptychography experiment should be chosen 

depending on the characteris?c of the diffuser, with the most op?mal value ranged between 

4 – 20 ?mes of the speckle size [74]. Based on the solu?on from Clare’s work, the step size 

influence is then inves?gated for mul?-slice reconstruc?on using the most op?mal 

illumina?on from the last experiment, which has an average speckle size of is approximated 

3- 10 µm, shown in Figure 5.5(c). 

A comprehensive survey was conducted by collec?ng four sets of 100 diffrac?on paZerns 

with step sizes of 66 (90% overlap), 25, 8 and 4 (99% overlap) µm using a whole aphid 

sample with a thickness of around 130 µm. In total, 26 slices with separa?on distance of 5.2 

µm were reconstructed using the reconstruc?on strategy described previously. The 

reconstruc?on results of three selected slices are shown in Figure 5.6 (Slice 1 is the most up-

beam slice and slice 26 is the most down-beam slice; the step size decreases from top row to 

boZom row). The corresponding zoomed-in views are shown in Figure 5.7. From the ini?al 

inspec?on on Figure 5.6, all four sets of data achieved high resolu?on reconstruc?on results, 

apart from slightly decreasing FoV at a small step size. 
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Figure 5.6. Reconstructed phase images using mul>-slice method with step size of 66 µm (top row), 

25 µm (2nd row), 8 µm (3rd row) and 4 µm (boUom row). 
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However, the corresponding zoom-in view in Figure 5.7 reveals that as the step size 

decreases from 66 µm to 8 µm, both image resolu?on and phase contrast improves. When 

the step size is rela?vely large in comparison to the average speckle size, 66 µm in the case, 

the high frequency features cannot be recovered or are blurred. This effect is par?cularly 

severe and can be easily observed in slice 26s, as the “dot” features were missing from the 

reconstruc?on. When the step size is reduced to 25 µm, these features begin to emerge, and 

the phase standard devia?on increases to 0.062 over the central region, indica?ng greater 

contrast. A further reduc?on to 8 µm improves SNR, reducing the standard devia?on to 

0.059 and recovering finer structures. At 4 µm, however, a slight decline in contrast occurs, 

with the standard devia?on decreasing to 0.048, likely due to increased redundancy and 

averaging effects. In this case, the subtle drop in SD combined with beZer feature recovery 

suggests that noise was reduced without loss of meaningful contrast, which is ideal. 

Addi?onally, the MSE axer 100 itera?ons for step sizes of 4 µm, 8 µm, and 25 µm are 

0.0233, 0.0236, and 0.0279, respec?vely, showing a ~16.5% improvement in reconstruc?on 

error when decreasing from 25 µm to 8 µm, and a further minor gain at 4 µm. While smaller 

steps yield beZer feature recovery, the diminishing returns and slight loss of contrast at 4 µm 

suggest an op?mal trade-off around 8 µm. This is further supported by more uniform 

illumina?on sampling and improved frequency coverage in the reconstruc?on. In this case, a 

rela?vely small step size close to the speckle size shows great improvement on the recovery 

of high frequency features and increases the signal-to-noise ra?o, thereby the resolu?on for 

each slice reconstruc?on is improved. However, further inves?ga?on is required to op?mise 

and evaluate the rela?onship between the ptychographic step sampling condi?on and 

illumina?on frequency spectrum. In addi?on, there is no direct indica?on showing that the 

separa?on ability and depth resolu?on were affected by changing the step size.   
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Figure 5.7. The zoomed-in view corresponding to the reconstructed phase images in Figure 5.6. 
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5.5. Further testing on various samples 
 

With the op?mised configura?on and experiment set up, the versa?lity of NMPM method is 

now demonstrated using three different biological samples which show a range of phase 

varia?on and structure complexity: Lilium pollen grains, an algae colony and a whole aphid. 

All the data comprised 400 diffrac?on paZerns and were collected using the illumina?on 

shown in Figure 5.6(c) with the step size of 25 µm, which gives a good comprise between 

high resolu?on and large FoV. 

 

Figure 5.8. Reconstructed phase images of lilium pollen grains, computa>onally sec>oned using 

mul>-slice ptychography. Leh: pixel-wise product of all 43 reconstructed slice phases. Right: 

examples of individual slices at the indicated depths through the sample volume. 

 

The lilium pollen grains were approximately 40 μm thick – exceeding the op?cal system’s 

𝐷𝑜𝐹 by a factor of at least 4. The grains were pre-stained and mounted on a standard 

microscope slide beneath a 200 μm coverslip. Following the data collec?on and 

reconstruc?on procedure as described in Sec?on 5.2, 43 slices spaced 0.95 µm apart were 

reconstructed. Figure 5.8 shows the recovered projected phase of the full sample volume on 

the lex: this is obtained by summing the phases of the individual slices. Examples of four 

reconstructed slices are shown on the right, corresponding to posi?ons within the sample 

volume at 7.6 μm, 17.1 μm, 26.7 μm, and 36.2 μm (the most down-beam plane of the 
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sample is posi?oned at 0 μm).  A movie of all 43 slices is shown in Media 1, and the sample 

volume is rendered in 3D in Media 2. The mul?-slice reconstruc?on boosted the possibility 

to iden?fy structural detail within individual slices that is not apparent in the 2D projec?on, 

including the cell wall, tube nucleus, pollen wall, and aperture.  

 

Figure 5.9. Reconstructed phase images of a volvox, computa>onally sec>oned using mul>-slice 

ptychography. Top leh: pixel-wise product of all 41 reconstructed slices. Top right: examples of 

individual slices at the indicated depths through the sample volume. BoUom: 3D-FFT of the full 

reconstructed image stack, the red doUed line indicates the cut-off frequency of approximately 

0.09	 ×	10/	/𝑚, corresponding to the axial resolu>on of 11.1 μm. 

 

A second sample, a volvox colony approximately 90 µm thick and mounted in the same way 

to the previous sample, produced the reconstruc?on shown in Figure 5.9.  The 

reconstruc?on was performed using the same two-step strategy, finishing with 41 slices, 

spaced 2.25 µm apart. To the top lex, the phases of all 41 slices are added to produce a 

single projec?on through the sample. Examples of individual slices through the volvox are 
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shown to the top right of the main figure at the indicated range of depths through the 

sample volume. A movie showing the reconstruc?on of all slices can be viewed in Media 3.  

The 𝐷𝑜𝐹  achieved in the reconstruc?on is at least 10 ?mes the 𝐷𝑜𝐹 of the microscope 

objec?ve and the projec?on remains free from diffrac?on and mul?ple-scaZering artefacts, 

leaving only blurring due to the missing wedge of low spa?al frequencies as shown in Figure 

5.9. The plot represents the project of 3D-FFT spectrum from 𝑧-direc?on, where the 

horizontal axis and the ver?cal axis corresponds to the lateral spa?al frequency and the 𝑧-

frequency of the full reconstructed sample volume.  

In a final test the whole aphid sample, which had an approximate thickness of 130 μm, at 

least 13 ?mes the 𝐷𝑜𝐹 set by the imaging system, was imaged again. The exoskeleton 

structure and the sox ?ssue of this sample exhibit very different op?cal densi?es, which can 

be par?cularly challenging for conven?onal light microscopy: standard brigh�ield 

microscope images, collected from the same op?cal setup (The same objec?ve lens and the 

matching condenser NA was used to take the light microscopy images and the 𝐷𝑜𝐹	for is 

es?mated at approximately 5 μm) at a range of defocii, are shown in the top row of Figure 

5.10, and clearly demonstrate the difficulty posed by background light and diffrac?on when 

aZemp?ng to clearly resolve features at different depths through this thick sample. Mul?-

slice reconstruc?on of 44 individual slices separated by approximately 3 μm produced the 

zoomed-in phase images shown in the middle row of Figure 5.10 at the same depth 

loca?ons (120.9 µm, 74.4 µm and 27.9 µm), showing the evolu?on of the aphid reproduc?ve 

system over the change in depth, with the boZom row showing the full reconstruc?on FoV. 

High-resolu?on visualisa?on of both the internal and external structures of the aphid are 

made clear across a significant depth range here, well beyond the limits of the conven?onal 

microscope. Furthermore, the phase informa?on obtained at different depths provides 

much beZer contrast and richer structural detail. The complete reconstruc?on of all 44 slices 

is shown in Media 4.  
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Figure 5.10. Reconstructed slices of a whole aphid through the full sample volume. The highlighted 

boxes show a zoomed-in view of the reproduc>ve organs. A series of images taken using a compound 

light microscope at the same depth and cropped to the same region for comparison. 
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Figure 5.11. Comparison between mul>-slice reconstruc>on and 2D reconstruc>on. (a): pixel-wise 

sum of the phase image from mul>-slice reconstruc>on. (b): 2D reconstruc>on. (c) unwrapped image 

of mul>-slice reconstruc>on shown in (a). (d): modulus of the pixel-wise added mul>-slice 

reconstruc>on. 

 

The result from mul?-slice reconstruc?on were then compared to a 2D ptychographic 

reconstruc?on using the same dataset, further highligh?ng the capacity of the mul?-slice 

approach to extend 𝐷𝑜𝐹. Figure 5.11(a) presents the pixel-wise sum of all 44 reconstructed 

slices, covering a full FoV of approximately 1.5 mm(. By performing mul?-slice 

reconstruc?on, all the fine features are revealed with high resolu?on across the full sample 



 

144 
 

volume. In contrast, the 2D reconstruc?on (Figure 5.11(b)) exhibits significant out-of-focus 

blur artefact limi?ng the observable features and details within the sample. Both images in 

(a) and (b) are presented with wrapped phase to facilitate a more direct visual comparison. 

Furthermore, Figure 5.11(c) shows the unwrapped phase of the mul?-slice result, while (d) 

shows the corresponding recovered modulus. However, the 2D reconstruc?on result shown 

in (b) cannot be unwrapped due to the presence of phase vortex artefacts, which arise from 

the viola?on of 2D projec?on approxima?on condi?on.  

 

5.6. Reducing the data requirements 
 

Data collec?on and reconstruc?on ?mes are a poten?al drawback for mul?-slice 

ptychography and are in general the most significant weakness in the ptychographic 

method. The results where 400 diffrac?on paZerns were collected, took, in total, around 

600 seconds for data collec?on and 8283 seconds to run through the reconstruc?on process. 

To reduce these ?mes, the effect of collec?ng fewer diffrac?on paZerns on the mul?-slice 

reconstruc?on is now inves?gated. Figure 5.12. displays the 33rd slice out of 44 slices, 

showing the aphid embryo and reproduc?ve organ, reconstructed using (a): 100, (b): 50, (c): 

25, and (d): 16 diffrac?on paZerns. The smaller data sets were created simply by discarding 

the outer parts of the spiral scan paZern whilst maintaining the same step size. Both data 

collec?on and reconstruc?on ?mes fall linearly with the number of diffrac?on paZerns, so 

that the data set containing 100 paZerns took 150 seconds to collect and 993 seconds to 

reconstruct. 

Notably, with 50-100 diffrac?on paZerns (Figure 5.12(a,b)), the aphid embryo's reproduc?ve 

organ remains clearly visible, and lateral and axial resolu?on are comparable to the 

reconstruc?on using 400 paZerns. A further reduc?on to 25 diffrac?on paZerns (Figure 

5.12(c)) results in significantly lower signal-to-noise ra?o, thereby obscuring fine details, but 

most features remain recognisable. When the number of total diffrac?on paZerns is reduced 

to 16 (Figure 5.12(d)), the reconstruc?on fails. Media 5 provides a comparison of 

reconstruc?ons with reduced diffrac?on paZern number, further illustra?ng the decrease in 

phase contrast, especially in upstream slices, as the number of paZerns is reduced.  
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Figure 5.12. A selected slice from mul>-slice reconstruc>ons of the aphid sample, using fewer 

diffrac>on paUerns. (a) 100 diffrac>on paUerns; (b) 50 diffrac>on paUerns; (c) 25 diffrac>on paUerns; 

(d) 16 diffrac>on paUerns. 

 

5.7. Implementation with large NA objective 
 

Further advantage of the NMPM method including the use of a straigh�orward and easily 

calibrated op?cal setup with a fixed op?cal path during data acquisi?on, which can be 

adapted easily to meet various resolu?on requirements, for both lateral and depth-wise, 

through the adjustment of the numerical aperture of the condenser and objec?ve lenses.  
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A further experiment implemented with high NA objec?ves is demonstrated using the Lilium 

pollen grains sample. The experiment configura?on remains mostly the same as shown in 

Figure 5.1, with the excep?on that both the condenser and objec?ve lenses from the 

previous setup were replaced by 40x, 0.75 NA objec?ves, which resulted in an effec?ve pixel 

size of 0.325 μm. The theore?cal 𝐷𝑜𝐹 for this configura?on ranged between approximately 

1 - 4.3 μm, determined by Eq. 3.2. In addi?on, the camera length was reduced to the 10 μm. 

The data collec?on process followed the same procedure as described in the previous 

experiments, where 400 diffrac?on paZerns were collected using a Fermat spiral scan with 

step size of 10 μm. 

The reconstruc?on strategy outlined in Sec?on 5.2 was then applied, where 71 slices with 

axial step of 0.5 μm were recovered. Figure 5.13 shows a series of selected reconstructed 

phase image of Lilum pollen grains, with the complete reconstruc?on stack available in 

Media 6. Several key aspects of the reconstruc?on are shown in Figure 5.14: The top lex 

image presents the frequency spectrum of the centre slice, revealing a cut-off frequency of 

approximately 1.3 × 10d/m, which corresponds to a lateral resolu?on of around 750 μm. 

The top right image shows the recovered probe illumina?on, which has an average speckle 

size of 1-2 μm; And the boZom image provides an orthogonal view (from 𝑧 direc?on) of 3D-

FFT for the full image stack. The “donut” shaped 3D-FFT indicates a cut-off frequency of 

0.3 × 10d/m at 𝑧-direc?on, corresponding to the 𝐷𝑜𝐹 of approximately 3.3 μm. Whereas, 

the depth resolu?on using 20x objec?ve configura?on was measure at approximately 10 -15 

μm, as determined from the 3D-FFT plot shown in Figure 5.9.  

The reconstruc?on results clearly show that both lateral and depth resolu?on are 

significantly improved with the implementa?on of high NA objec?ves (40×). However, 

despite these enhancement in resolu?on, the reconstruc?on result s?ll suffers from the 

heavy shadowing and blurring artefact in the adjacent reconstruc?on planes. Again, those 

artefacts are aZributed to the missing wedge of the low-frequency informa?on in the 3D-FFT 

spectrum shown in Figure 5.14. The recovery and separa?on of those low frequency 

informa?on require further inves?ga?on. 
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Figure 5.13. Mul>-slice reconstruc>on results of Lilium pollen grains with 40x, 0.75 NA objec>ves. 
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Figure 5.14. Top leh: the frequency spectrum of the most centre slice of the reconstruc>on; Top 

right: the recovered probe illumina>on; BoUom: the orthogonal view of 3D-FFT for the full image 

stack. 

 

In this work, the reconstruc?on results for computa?onal sec?oning of thick biological 

samples via mul?-slice near-field ptychography were demonstrated, incorpora?ng speckle-

modulated illumina?on on a standard microscope pla�orm. The reconstruc?on results 

achieved axial resolu?on below 10 µm over 40 computa?onally recovered slices at a lateral 

resolu?on of 1 µm with 20× microscope, while the 71 slices were recovered at lateral 

resolu?on of 750 nm and depth resolu?on of 3.3 µm using 40× microscope. The microscope 

implementa?on of NMP allows detailed visualisa?on of complex structures of biological 

samples across a significant depth. Notably, the near-field implementa?on of mul?-slice 

ptychography requires significantly less data to cover a large FoV than the far-field and 
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Fourier ptychography configura?on [90] [91] – typically fewer than 100 diffrac?on paZerns 

are required to complete high quality NMP reconstruc?on. In far-field mul?-slice 

ptychography, the illumina?on is typically constrained by a small pinhole to ensure spa?al 

coherence and controlled diffrac?on. A small illumina?on area limits the sample region 

probed in each scan posi?on, meaning that a large number of diffrac?on paZerns are 

essen?al to cover a reasonable FoV. Increasing the illumina?on size via op?cs (e.g., a larger 

pinhole or lens-based expansion) in conven?onal ptychography could improve coverage per 

scan posi?on, but it will lead to reduc?on of resul?ng spa?al resolu?on due to the trade-off 

between spot size and numerical aperture. On the other hand, the ability of the NMPM to 

clearly address the depth of the sample with large FoV and maintain high resolu?on in this 

work strongly suggests the poten?al of the imaging method for revealing the 3D morphology 

of large-volume biological specimens. Unlike conven?onal 2D ptychography methods, which 

are constrained by their limited 𝐷𝑜𝐹 and suscep?bility to ar?facts, mul?-slice model can 

overcome these limita?ons, offering a more comprehensive and accurate representa?on of 

those op?cally-thick samples. 
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Conclusion and future work 
 

In this thesis, the implementa?ons and op?misa?on for near-field mul?-slice ptychography 

using X-ray and visible radia?on source were presented. This proof-of-principle work 

revealed the unique capability of extending sample volume in both lateral and 𝑧-direc?on by 

implement mul?-slice ptychography in a near-field regime. These ini?al results pave the way 

for further applica?ons in biological sciences aiming at imaging large volume samples. 

Addi?onally, several important experiment parameters were revisited and further op?mised 

specifically for NMP, such as illumina?on spa?al frequency spectrum, step size and minimum 

requirement for the number of diffrac?on paZerns. Finally, serval modifica?ons of 3PIE 

algorithm were introduced for enhance the overall performance and quality of the 

reconstruc?on, especially the implementa?on of addi?onal probe modes, even where the 

illumina?on can be considered coherent, was shown to significantly accelerate the ini?al 

convergence and thereby reduced computa?onal ?me. 

In the first result chapter an alterna?ve equivalent geometrical model for cone-beam 

illumina?on NMP was demonstrated, followed by the implementa?on and modifica?on of 

the 3PIE algorithm. A lensless op?cal configura?on for NMP was then designed to simulate 

the experimental geometry for the cone-beam X-ray setup and to evaluate the performance 

of the modified 3PIE algorithm. The successful mul?-slice reconstruc?on was demonstrated 

through two sets of results - a two-layered tes?ng sample and six 35 µm thick slices from a 

bee’s leg sample with total thickness of around 200 µm.  

The second result chapter presented two experimental works for NMP using hard X-ray (10 

keV) radia?on source. The first proof-of-principle experiment achieved a lateral resolu?on of 

150 nm and extended the 𝐷𝑜𝐹 for a con?nuous sample up to 2.5 mm thick with the 

separa?on limit of 0.5 mm to 1 mm. However, due to the inefficient X-ray op?cs and 

indirec?on detector, the limited resolu?on achieved resulted in poor depth resolu?on. In the 

second X-ray NMP experiment, alongside the higher geometrical magnifica?on, a direct 

detector was implemented, and the illumina?on was modulated by a sandpaper diffuser 

which had a much broader spa?al frequency spectrum. As a result, the available count for 
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the diffrac?on paZern data was improved by a factor of 5-10 and the lateral resolu?on was 

improved to sub 100 nm while the depth resolu?on was improved to 300 µm. 

The final chapter reported the implementa?on of NMP with an external op?cal microscope 

system. The chapter emphasised the importance of a diverse illumina?on frequency 

spectrum and matching of the step size with the frequency spectrum range to improve the 

resolu?on in both 2D and 3D near-field ptychography. Furthermore, the robustness and 

versa?lity of NMPM was shown using a wide range of transmissive biological sample, 

extending the 𝐷𝑜𝐹 by over 10-15 ?mes at NA resolu?on (for both spa?al and depth 

resolu?on) with as few as 50 diffrac?on paZerns.  

The future work is mainly aimed at three prospects: 1. The resolu?on improvement, both 

laterally and in depth. 2. The combining NMP with tomography – near-field diffrac?ve mul?-

slice ptycho-tomography. 3. Inves?ga?ng sample prepara?on and the implementa?on with 

different wavelength for X-ray NMP.  

Star?ng with the resolu?on improvement with the NMPM, the most direct forward method 

is to implement a higher NA microscope system with a matching illumina?on spa?al 

frequency spectrum as men?oned in Chapter 5. Another possibility is to realise super-

resolu?on for near-field mul?-slice ptychography microscopy by joint modulated 

illumina?on and detec?on, so that the illumina?on has an enriched frequency spectrum, 

and the NA limita?on set by the objec?ve lens can be surpassed. Addi?onally, when 

compared with far-field and Fourier mul?-slice ptychography, the separa?on of the low 

spa?al frequency components in the NMP reconstruc?on is rela?vely poor, which need to be 

further inves?gated.   

One of the main limita?ons of conven?onal ptycho-tomography is the restric?on of 𝐷𝑜𝐹 for 

each projec?on angle [14]. Similarly to other imaging techniques, the higher the resolu?on 

is, the thinner sample needs to be. However, by incorpora?ng the mul?-slice model, 

combining near-field mul?-slice ptychography with tomography [97] [109], the 𝐷𝑜𝐹 for 

reconstruc?on from each projec?on can be extended, leveraging the naturally large FoV of 

near-field ptychography. This approach could theore?cally increase the sample size by at 

least factors of ten without the requirement for extra data.  
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As men?oned previously the major limita?on of the hard X-ray NMP is that, the depth 

resolu?on achieved is disappoin?ng, even with the lateral resolu?on at sub 100 nm region, 

the depth resolu?on is only limited to 300 µm, which means the sample is required to be 

sufficiently thick. Even though the idea of slicing a 1 mm sample can be temp?ng, but in 

reality, the high radia?on dose and the risk of radia?on damage posed for those thick 

biological samples needs also to be considered. In addi?on, the sample prepara?on requires 

further inves?ga?on for the hard X-ray NMP. At this X-ray energy regime, heavy metal 

staining methods are usually required to enhance the contrast of certain biological 

structures. For a thick sample, this staining technique can be par?cularly challenging, due to 

the high absorp?on of the staining material. On the other hand, without staining, the 

structures will appear to be “clusters” like and become undis?nguishable in the 

reconstruc?on, due to the similar refrac?ve indices of those structures in the hard X-ray 

regime. Alterna?vely, sox X-ray perhaps is a more promising applica?on for NMP. The 

combina?on of longer wavelength and high-resolu?on of sox X-ray regime offer a much 

beZer balance between the lateral and depth resolu?on according to Eq. 2.3. and has the 

poten?al to push the separa?on limit of NMP method to micron or even sub-micron region, 

therefore even with limited penetra?on power of sox X-ray, the 𝐷𝑜𝐹 can s?ll be extended 

by a factor of 2-5. Furthermore, the other advantage of sox X-ray is to generate contrast for 

those biological ?ssues without the need in staining.  

This thesis, the introduc?on of mul?-slice ptychography implementa?on in the near-field 

regime completes the trilogy of mul?-slice ptychography, alongside far-field and Fourier 

mul?-slice ptychography. NMP method offers dis?nct advantages over the other two mul?-

slice implementa?ons, including the ability to extend both FoV and 𝐷𝑜𝐹 for imaging large 

sample volume, reduced computa?onal power requirement, and more relaxed experimental 

condi?on.  

The op?cal implementa?on of NMP demonstrates significant poten?al to be applied to a 

wide range of biological samples, posi?oning it as a promising alterna?ve to other exis?ng 

op?cal slicing microscopy techniques to achieve high-resolu?on, label-free phase imaging. 

However, in order to fully realise the poten?al of NMP in the context of X-ray applica?on, 

further explora?on is required. While the current work provides a solid founda?on for X-ray 

NMP, future inves?ga?ons should focus on extending the method's applica?on to the sox X-
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ray wavelength regime which could effec?vely enhance the technique's effec?veness for 

large volume bio-imaging, especially when combined with ptycho-tomography. 
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Appendix I 
 

Hu, Ziyang; Maiden, Andrew; Zhang, Yiqian; Li, Peng; Batey, Darren (2023). Near-field 
Mul?slice Ptychography. The University of Sheffield. Dataset. 
hZps://doi.org/10.15131/shef.data.21830094  

 

Code 1: 3PIE algorithm for near-field cone-beam configura?on 

Dataset 1: Example datasets for Chapter 3 and 4 

 

 

Hu, Ziyang; Maiden, Andrew (2024). modified 3PIE algorithm for near-field mul?-slice 
ptychography. The University of Sheffield. Soxware. 
hZps://doi.org/10.15131/shef.data.25773630  

Code 2: Modified 3PIE algorithm for near-field mul?-slice ptychography  

 

Hu, Ziyang (2024). Dataset for near-field mul?-slice ptychography. The University of 
Sheffield. Dataset. hZps://doi.org/10.15131/shef.data.25833298  

Dataset 2: Example datasets for Chapter 5 

  

https://doi.org/10.15131/shef.data.21830094
https://doi.org/10.15131/shef.data.25773630
https://doi.org/10.15131/shef.data.25833298
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Appendix II 
 

Hu, Ziyang (2024). Near-field Mul?-slice Ptychography: Chapter 5: Mul?-slice reconstruc?on. 

The University of Sheffield. hZps://doi.org/10.15131/shef.data.25416685  

 

Media 1: Near-field mul?-slice ptychography reconstruc?on of Lilium pollen grains with 400 
diffrac?on paZerns 

 

Media 2: visualisa?on of 3D rendering of lily pollen 

 

Media 3: Near-field mul?-slice ptychography reconstruc?on of volvox colony with 400 
diffrac?on paZerns 

 

Media 4: Near-field mul?-slice ptychography reconstruc?on of a whole aphid with 400 
diffrac?on paZerns 

 

Media 5: Near-field mul?-slice ptychography reconstruc?on of a whole aphid with 100, 50 
and 25 diffrac?on paZerns 

 

Media 6: Near-field mul?-slice ptychography reconstruc?on of Lilium pollen grains with 400 
diffrac?on paZerns and 40x objec?ve 

  

https://doi.org/10.15131/shef.data.25416685
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