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Abstract

In this thesis I will study the question of how close roots of a fixed degree integer
polynomial can be in terms of its height. This question has been studied extensively
in the case of real and complex roots but there is much less known in the case of
p-adic roots and this is what will be studied in this work. More specifically we will
investigate the largest real number K such that for any κ < K it is possible to find
infinitely many integer polynomials of fixed degree and bounded height such that

|α1 − α2|p ≤ H(P )−κ

holds for some roots α1 ̸= α2 ∈ Qp of P . This question for the case of real and
complex roots was first discussed by Mahler in 1964 as he proved that K ≤ n+ 1
for polynomials of degree n.

I will also study the quantitative version of this problem by counting the number
of polynomials with close p-adic roots. We will also explore the related problem of
bounding the discriminant of polynomials as we consider the separation of all roots
of a polynomial. To this end we will establish a counting result for the number of
polynomials of fixed degree and bounded height with p-adically small discriminant.

The method that I use relies on the quantitative non-divergence of Kleinbock
and Tomanov and its use in the investigation of the distribution of close p-adic roots
to find the infimum K. This work follows and develops similar methods for the real
and complex case by Beresnevich, Bernik and Götze.
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1

Introduction

If you take any two algebraic numbers not equal to each other of bounded heights
and degrees then they cannot be arbitrary close to each other. This can easily be
seen to be true since the number of algebraic numbers in question is finite. Indeed if
you have two rationals a

b
and c

d
not equal to each other with |b|, |d| ≤ H for some

H ∈ R then ∣∣∣∣ab − c

d

∣∣∣∣ ≥ 1
bd

≥ 1
H2 .

These rationals are roots of some polynomials, namely

P (X) = (bX − a)(dX − c).

In general, if the algebraic numbers are conjugate over the field of the rational
numbers then they will be roots of the same irreducible polynomial with integer
coefficients, otherwise they are roots of two different irreducible polynomials P1 and
P2. Of course, they can also be viewed as roots of the same (reducible) polynomial
P = P1P2. An example of this is the polynomial above which is clearly reducible
over Q.

In the 1960’s, Mahler [39] quantified the above trivial observation regarding the
separation of algebraic numbers, by establishing a very general lower bound on
the distance between two algebraic number of bounded height and degree. Various
upper bounds have also been obtained. We will give a survey of these in Chapter 3.
However, much less is know in the p-adic case.

The main purpose of this work is to answer the question of how close, as a function
of the naive height, can p-adic roots of an irreducible polynomial of degree n be,
where the naive height for a given integer polynomial P = anx

n+· · ·+a1x+a0 ∈ Z[x],

9



10 Chapter 1. Introduction

is defined as
H(P ) := max

0≤i≤n
|ai|.

For the field of p-adic numbers, Qp, and Pirr(n) the infinite subclass of irreducible
polynomials in Z[x] with degP = n and roots in Qp. Define κirr(n, p) to be the
infimum of all κ such that for all polynomials P ∈ Pirr(n) of sufficiently large height

|α1 − α2| > H(P )−κ

holds for any pair of roots α1 ̸= α2 ∈ Qp of P . That is to say that κirr(n, p) is the
largest real number such that for any κ < κirr(n, p) it is possible to find infinitely
many P ∈ Pirr(n) such that

|α1 − α2| ≤ H(P )−κ

holds for some roots α1 ̸= α2 ∈ Qp of P .
The above question can then be answered as we find a lower bound on κirr(n, p)

by the following theorem.

Theorem A. For any n ≥ 2 and any prime p, we have that

κirr(n, p) ≥ n+ 1
3 .

The natural progression of this is to then consider the discriminant of a polynomial,
which naturally encodes and quantifies the joint separation between all the roots
of a given polynomial. Indeed, by definition the discriminant of a polynomial P of
degree n with roots α1, . . . , αn and the leading coefficient an is

D(P ) := a2n−2
n

∏
1≤i<j≤n

(αi − αj)2.

Therefore the secondary aim of this work is to establish counting results for the
number of polynomials of a fixed degree and bounded height with p-adically small
discriminant. The size of the discriminant will be bounded by a function of the
height and degree.

This will be done by defining the set of polynomials of interest

Dn,p,γ(Q, ν) :=
P ∈ Pn(Q) :

0 < |D(P )|p ≤ γQ−2νand
P is irreducible over Q


and finding a lower bound of #Dn,p,γ(Q, ν). This is done as the following theorem.
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Theorem B. Let n ≥ 2 be an integer, p be a prime. Then there exist constants
Q0 = Q0(n, p) > 1, γ = γ(n, p) > 0 and C ′ = C ′(n, p) > 0 such that for all Q ≥ Q0

and any
0 ≤ ν ≤ n− 1

we have that
#Dn,p,γ(Q, ν) ≥ C ′Qn+1− n+2

n
ν .

1.1 STRUCTURE OF THESIS

As already mentioned above, the problems addressed in the thesis have been investi-
gated extensively in the real and complex case however relatively little is known for
the p-adic case. The past work on the problems, as well as key new results obtained
in this thesis, will be surveyed in Chapter 3.

In Chapter 2, we will give a brief introduction to p-adic numbers and other
relevant core definitions and results that will be used throughout. In Chapter 4, we
will discuss the methods of Kleinbock and Tomanov on the topic of quantitative
non-divergence. Their method will be instrumental in the proofs of the new results of
the thesis. Finally Chapter 5 is dedicated to obtaining full proofs of the new results.



2

Preliminaries

2.1 HISTORY AND MOTIVATION TO p-ADIC NUMBERS

The p-adic numbers were first introduced by Kurt Hensel in 1897 in a paper entitled
“Über eine neue Begründung der Theorie der algebraischen Zahlen” (“On a New
Foundation for the Theory of Algebraic Numbers”) [29]. He was heavily influenced
by Kummer’s techniques involving prime powers and congruence’s. Hensel’s notation
and formalism for p-adic numbers were not as refined as modern standards. This
played a part in the initial scepticism around a number system that differed so
radically from the familiar real and complex number systems. Another reason for
the scepticism was his false proof that e is transcendental. Further details of this
can be found in [46].

We begin by summarising Hensel’s ideas. Consider that the rings Z and C[x] are
similar in the respect that they both have a unique factorisation of elements. That
is, any integer can be expressed uniquely as the product of primes (possibly having
to be multiplied by −1, which is a unit — that is an invertible element — in Z.)
and any polynomial in C[x] can be expressed as the following unique product

P (x) = a(x− α1)(x− α2) · · · (x− αn)

where α1, ..., αn ∈ C are the roots of P and a ≠ 0 is thus a unit in C. Therefore
it can be said that the primes are analogous to the polynomials (x − α) ∈ C[x].
Hensel’s idea stretches further than this as he considered the Taylor expansion of an
element of C[x] and how this could be brought to Z. That is to say that a polynomial

12



2.1. History and Motivation to p-adic numbers 13

in C[x] can be expressed as

P (x) =
n∑

i=0
ai(X − α)i

with the coefficients ai ∈ C and naturally for any positive integer m and prime p it
is possible to write

m = ā0p
0 + ā1p+ · · · + ānp

n =
n∑

i=0
āip

i,

where 0 ≤ āi < p for all 0 ≤ i ≤ n.
The Taylor expansion allows us to see the local behaviour of a function around

an element, while p-adic expansions examines the local behavior of numbers with
respect to divisibility by powers of p.

The benefit of writing a number m as above is that it is possible to lift roots of a
polynomial equation. That is to say, if it is possible to find a root modulo pk then it
is possible to find roots module pk+1, pk+2, . . .. This concept is generalised to what
is now known as Hensel’s Lemma which will be discussed later in Section 2.2.3. For
now, this idea can be thought of as analogous to Newton’s method for finding roots
of a real function.

Hensel was initially more interested in congruence equations. He wanted to find
a sequence of numbers A0, A1, ... such that

ω = A0 + A1x+ A2x
2 + · · · mod pm

for each m ∈ N.
From around 1904, he began to consider questions involving convergence of the

series ∑n
i=0 aip

i and how these objects form a field K(p) (This is what we call Qp

in modern notation). These new ideas were then explored and later in 1908 he
published his book “Theorie der algebraischen Zahlen” (“The Theory of Algebraic
Numbers”)[30] and this clarification of ideas and notation aided in the growing
interest into the subject. An analysis of this book in English was given by Steven
Kieffer in their thesis “Computability in Principle and in Practice in Algebraic
Number Theory: Hensel to Zassenhaus” [32] as Chapter 2, Section 4.

An example of this growing interest is the work of Helmut Hasse who studied
under Hensel in the 1920s. This work lead to the Hasse-Minkowski Theorem. A
more in depth version of this history can be found in [46].
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The p-adics provide an alternate version of solving problem which can (sometimes)
be easier to work with than the real numbers. Examples of using p-adics include the
following questions.

• When is n3 + 1 highly divisible by 3?

• How to find roots of polynomials in modular arithmetic (Hensel’s Lemma)?

• How to prove it’s not possible to dissect a square into an odd number of
triangles of equal area (Monsky’s Theorem)?

• Why does ∑∞
i=0 4 · 5i = −1 makes sense?

While all these are interesting problems the one this thesis is mainly concerned about
involves looking at when p-adic conjugate roots of polynomials are close and the
proportion of time that this occurs.

2.1.1 Motivation and Visualisation

First it is important to consider a motivation for p-adics. Starting with a system of
rational numbers, consider the following series

4
∑
k≥0

(−1)k

2k + 1 .

This is a sequence of rational numbers which converges to a number which is not
rational (namely π). There are many similar examples, hence our system of rational
numbers must have gaps. Ideally these gaps should be filled in to create a complete
number system. The more obvious answer is to do this by extending the rational
numbers to the real numbers but that is not the only option.

Instead it is possible to extend the rationals in a different way by considering
what is meant when two numbers are ‘close’ to each other. First note that every
rational number x ∈ Q can be rewritten as

x =
∞∑

i=−n

aip
i

where n ∈ N ∪ {0}, p is prime, and the ai’s are a sequence of natural numbers such
that 0 ≤ ai ≤ p− 1. This is defined as a p-adic number. In this way each x can be
thought of as a power series in base p similarly to how usually a decimal number is
a power series in base 10. The sequence can be written in the following way:-

· · · ai · · · a2a1a0.a−1 · · · a−n
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Figure 2.1: A 3-adic tree with levels labeled and the representation of ...120 high-
lighted

Notice that numbers here runs continuously to the left, whereas when in the
realm of real numbers R they run continuously to the right (a number gets more
precise as it has more decimal places). As an example of this, take p = 5 and a
rational x = 241

25 so it can be rewritten as follows:

x = 1 · 5−2 + 3 · 5−1 + 4 · 50 + 1 · 51,

and therefore as a p-adic, x can be written as 14.31.
Two p-adics are described as close to each other if the first difference in their

sequences is a high power of p. The simplest way to imagine this in the p-adic
numbers is by a tree structure as seen in Figure 2.1, two p-adic’s are close to each
other if the point at which they had a node in common is on a high level.

For example in Figure 2.1 ...120 is closer to ...220 than ...110. This is because
...120 and ...220 are one branch away from each other (they last had a node in
common at level 2) where as ...120 and ...110 are two branches away (they last had
a node in common at level 1).

Another way to think of p-adic numbers is as nested balls. This can be seen in
Figures 2.2 and 2.3. In this context two p-adics are close to each other when the
number of nested ball we must move through to get to one that they share is small.

In Figure 2.1 the choice of digit 0,1 or 2 was selected by taking the left, middle or
right branch respectively, now in Figure 2.2 the choice of digit 0,1 or 2 will selected
by taking the top, bottom left or bottom right circle respectively. It can be seen
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Figure 2.2: A 3-adic circle diagram showing positioning of numbers

that the larger circles dictates the digit on the right and the smaller circles indicate
the digit to the left. This pattern continues and if the diagram is drawn to have
more layers, the next digit will be added to the left. This additional layer is shown
in Figure 2.3.

Again it can be seen by looking at Figure 2.3 that ...120 (in orange) is closer to
...220 (in cyan) than ...110 (in gray) as the orange and cyan balls are 1 layer apart
whereas the orange and gray balls are two layers apart.

Both diagrams in Figure 2.1 and Figure 2.3 show the same basic information
however, the different visualisations have different uses. The tree diagram shows
the expansion of coefficients and their positions in the sequence in a simpler way
whereas the circle diagram emphasizes the symmetric, modular and nested nature of
the p-adic numbers. In this way when imagining the p-adic numbers it is important
to consider both methods.

In both diagrams only numbers to the left of the decimal point have been
considered, i.e. those of the form

x =
∞∑

i=n

aip
i

where n ∈ N ∪ {0} and 0 ≤ ai ≤ p − 1. These p-adic numbers are called p-adic
integers. Both diagrams can be expanded though to show the more general p-adic
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Figure 2.3: A 3-adic circle diagram with ...120 coloured in orange, ...220 in cyan and
...110 in gray

number by adding a layer further upwards. This would be adding a layer 0 or -1 in
the tree diagram or larger circles around everything in the circular diagram.

2.2 STANDARD RESULTS FOR p-ADICS

In this Section the facts discussed previously will be formalised.
Let K be a field. A valuation on K is a map | · | : K → R satisfying for all

x, y ∈ K

A1. |x| ≥ 0 and |x| = 0 if and only if x = 0,

A2. |x+ y| ≤ |x| + |y| (triangle inequality),

A3. |xy| = |x||y|.
A valuation on K is called non-Archimedean or ultrametric if it satisfies the stronger
triangle inequality

|x+ y| ≤ max(|x|, |y|)

for all x, y ∈ K, otherwise it is called Archimedean. The usual norm | · |∞ on R is
an example of a valuation that is Archimedean while the valuation on the p-adic
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numbers satisfies the stronger triangle inequality and is thus non-Archimedean. We
will see this property of the p-adic valuation in more detail later in this section.

Now that we have the tools to formally introduce the p-adic valuation.
Suppose that x ∈ Q, then it can be written in the following way:

x = pαa

b

where α, a, b ∈ Z, b ̸= 0, p ∤ a and p ∤ b. From this the p-adic valuation (or order)
can be defined as a function vp : Q → Z ∪ {∞},

vp(x) :=

α, if x = pα a
b

∞, if x = 0

with α, a, b defined as above. The p-adic valuation has the following properties for
u, v ∈ Q \ {0}:
V1. vp(uv) = vp(u) + vp(v),

V2. vp(u+ v) ≥ min{vp(u), vp(v)},

V3. if vp(u) ̸= vp(v), then vp(u+ v) = min{vp(u), vp(v)},

V4. vp(x) = ∞ ⇔ x = 0.
From here the p-adic absolute value or p-adic norm of a ∈ Q is defined as

|a|p =

p
−vp(a) if x ̸= 0

0 if x = 0

and has the following properties
P1. |ab|p = |a|p · |b|p,

P2. |a+ b|p ≤ max{|a|p, |b|p} ≤ |a|p + |b|p,

P3. |x|p = 0 ⇔ x = 0.
The set of p-adic numbers is defined as the completion of Q with respect to the

p-adic absolute value and is denoted by Qp. Note that the elements of Qp also satisfy
properties P1-P3 stated above. It can also be seen from the property 2 that the
p-adic norm satisfies the strong triangle inequality and hence is ultrametric. A key
property of the space being ultrametric is given by the following lemma. Before this
we will introduce the following notation. Throughout, open ball centred at x0 ∈ Qp

with radius r > 0 will be denoted as

B(x0, r) = {x ∈ Qp : |x− x0|p < r},
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and a closed ball, that is the one that uses ≤ instead of <, will be denoted with
square brackets (i.e. B[x0, r]). Later we shall see that open balls are in fact closed
balls.

Lemma 2.2.1. Suppose that x, y ∈ Qp and r > 0 then

y ∈ B[x, r] ⇔ B[y, r] = B[x, r].

The proof of this can be found as Proposition 2.3.6 of [28]. This lemma gives an
idea of the structure of p-adics. Every point inside of a given ball is also the centre
of the ball which is very different from the Euclidean case. It implies that all points
within a ball are equally close to each other which can be seen in the hierarchical
structure of the nested balls. This clustering impacts the way that functions and
series behave within the space. An example of this can be seen when looking at the
series

S =
∞∑

n=0
5n.

In Euclidean space this grows rapidly and without bound, however, in the p-adic
metric the series does have a limit (−1/4) and is therefore bounded.

From the definition of the p-adic norm it follows that for x to be a p-adic integer
then |x|p ≤ 1 and this can be seen as an alternative definition. Another observation
is that p-adic numbers which are divisible by a higher power of p will have a smaller
p-adic norm. The field of p-adic numbers can be defined as the set

Qp =
{
a

b
: b ̸= 0, a, b ∈ Zp

}
with the operations + and · as they are defined in the quotient field.

Now we will establish a direct connection between the p-adic norm and congru-
ences modulo powers of p.

Lemma 2.2.2. For any y ∈ Q the following identity holds

|y|p ≤ p−b ⇔ y ≡ 0 mod pb.

Proof. Suppose first that |y|p ≤ p−b, this means that |y|p = p−m for some m ∈ Z
and p−m ≤ p−b. Then as b ≤ m it must be that y is a multiple of pb and hence
y ≡ 0 mod pb. If instead it is supposed that y ≡ 0 mod pb then y = pb · k for some
k ∈ Z. Therefore, it follows that |y|p = |pb|p|k|p = p−b · |k|p and as k ∈ Z we have
that |k|p ≤ 1 so therefore |y|p ≤ p−b.
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This statement aids in showing a direct relationship between the divisibility of a
p-adic y by the powers of p and how the concept of size is closely tied to divisibility.
Indeed by letting b = 0, it also clarifies the idea that |y|p ≤ 1 implies that y ∈ Zp.

2.2.1 Topology in Qp

The field of p-adic numbers Qp with the standard ultrametric topology is a locally
compact topological group. The p-adic norm induces a distance function

d(x, y) = |x− y|p

on Qp and this can be used to define the topology on Qp. The open sets that form
the basis of the topology are the open balls B(x, r). A key feature of the topology is
the following lemma.

Lemma 2.2.3. In Qp a ball is open if and only if it is closed.

The proof of this can be found in [28, Proposition 2.3.6]. Thus, every ball in the
p-adic topology is clopen, that is both open and closed.

This result shows that Qp is a totally disconnected space, which significantly
influences the analysis and structure within the p-adic setting. An example of this
can be seen by looking again at the convergence of a p-adic sequence. A sequence
{an} converges to a point a ∈ Qp if there exists a ball around a that eventually
contains all the terms of the sequence for large enough n. Since these balls are
clopen, any sequence within a ball stays within it with no gradual approach to an
external boundary. This greatly simplifies a convergence criteria because once the
terms of the sequence enter a clopen ball around the limit, they remain in that
ball permanently. This means that there is no need to consider boundary points
or asymptotic approaches as in real analysis. Another consequence of this is the
following lemma.

Lemma 2.2.4. The field Qp is locally compact.

The proof of this can be found in [28, Corollary 3.3.8].
Let S = {p1, p2, ..., pl−1,∞}. Define now the subset Sf of S to be {p1, p2, ..., pl−1}

and define the ring of S-adic integers of Q to be

ZS := Z
[

1
p1
, · · · , 1

pl−1

]
= {x ∈ Q : x ∈ Zp for all primes p /∈ Sf} .

(2.1)
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This can be described as the set of all fractions where the denominator is composed
of the multiplication of elements from Sf ∪ {1}.

We now discuss the measure on the p-adic space. Define A(Qp) to be the σ-
algebra (the family of open subsets of Qp). Then µ : A(Qp) → [0,∞] is defined to
be a Haar measure with the following properties:

1. µ ̸= 0,

2. for a compact subset K ⊂ A(Qp) we have µ(K) < ∞,

3. for a ∈ Qp and K ∈ A(Qp), µ(a+K) = µ(K).
As Qp is locally compact there exists a unique Haar measure µ such that the

p-adic integer have measure 1, µ(Zp) = 1.
Finally the compact sets of Qp will be discussed. In Qp, as in R, a set is compact

iff it is closed and bounded. The reason why this is the case for the two fields is
different however. In R, the Bolzano–Weierstrass theorem states that closed and
bounded sets are sequentially compact. Additionally due to the topology of R the
terms compact and sequentially compact are equivalent, so we have that compact
sets are those sets that are closed and bounded. In contrast to show the same result
holds in Qp we will use the fact that in a complete and totally bounded space, a set
is compact. Qp has an ultrametric topology and so by the strong triangle inequality
a set being bounded automatically implies that it is totally bounded. Combining this
with the completeness of Qp gives that the closed and bounded set of Qp are compact.
For example, closed balls in Qp are compact and so the set of p-adic integers Zp is
compact.

2.2.2 The Space Qm
S

For some set S = {p1, p2, ..., pl−1,∞} of primes (and infinity), for l ∈ N, define Qm
S

to be the direct product of Qm
v for v ∈ S,

Qm
S = Qm

p1 ⊗ Qm
p2 ⊗ · · · ⊗ Qm

pl−1 ⊗ Qm
∞.

Elements x ∈ Qm
S will be denoted as x = (x(v)), v ∈ S, where x(v) = (x(v)

1 , ..., x(v)
m ) ∈

Qm
v . The absolute value will be denoted as | · |v for all v ∈ S where | · |∞ is the usual

absolute value in R.
Now we will discuss the p-adic norm of a vector. Let m ∈ N and Qm

p denote
a vector space over Qp which consists of all points x = (x1, x2, ..., xm), where
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x1, x2, ..., xm are in Qp. Define the p-adic norm on Qm
p by

||x||p = max
1≤j≤m

|xj|p, for x ∈ Qm
p . (2.2)

For example, suppose that p = 7 and let

a =


7−5 · 1
712 · 3
73 · 6


Then ||a||p = max{75, 7−12, 7−3} = 75.

2.2.3 Hensel’s Lemma

This lemma has many versions and has been adapted many times. The most common
version finds simple roots and reads as follows.

Theorem 2.2.5. Let f(x) = a0 +a1x+ · · · +anx
n be a polynomial whose coefficients

are in Zp. Suppose that there exists α1 ∈ Zp such that

f(α1) ≡ 0 mod p,

f ′(α1) ̸≡ 0 mod p.

Then there exists a unique α ∈ Zp such that

f(α) = 0 and α ≡ α1 mod p.

A proof of this lemma can be found in [37, Theorem 3]. A variant which considers
the use of modulo pZp rather that p can be found in [28] as Theorem 3.4.1. A version
which is closer to the one that shall be used in this thesis can be found in [21], this
uses the condition that |f(a)|p < |f ′(a)|2p and so can find roots that are not simple.

The following Theorem is taken from [22] where two proofs can be found in
sections 5 and 6

Theorem 2.2.6 (Hensel’s Lemma). Let f(x) ∈ Zp[x] and a ∈ Zp for a fixed p.
Suppose that |f(a)|p < |f ′(a)|2p. Then there exists a unique z ∈ Zp such that the
following three conditions hold:

1. f(z) = 0,

2. |z − a|p =
∣∣∣ f(a)

f ′(a)

∣∣∣
p
< |f ′(a)|p,
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3. |f ′(z)|p = |f ′(a)|p.

It can be seen that the idea of this theorem is very similar to that of the
Newton–Raphson method for finding roots of equations. Whereas the latter is
used for finding approximations to roots, the former is used to find exact solutions.
Another difference between the two is that the Newton–Raphson method does not
always converge to a root but Hensel’s Lemma guarantees a root if the conditions
required are met. Indeed later in Section 5.5 Hensel’s Lemma will be used to find a
p-adic root of a polynomial equation.

2.3 DEFINITIONS

This Section will state the main definitions and notations that will be used throughout
the thesis.

A partially ordered set is a set combined with a binary relation that is reflexive,
antisymmetric and transitive. A metric space X is said to be Besicovitch if there
exists a constant NX such that for any bounded subset A of X and any family of
non-empty open balls B ∈ X such that for every x ∈ A it follows that x is the
centre of some ball of B, there exists a finite subfamily {Bi} of balls from B with
the property that

1A ≤
∑

i

1Bi
≤ NX ,

where 1A and 1Bi
are indicator functions. An example of a Besicovitch metric space

is the p-adics where NX = 1 because of the nested property of balls.
A locally finite Borel measure µ on X is called uniformly Federer if for all c > 1,

Dµ(c) := sup
x∈supp µ,r>0

µ(B(x, cr))
µ(B(x, r)) < ∞ (2.3)

for all x ∈ supp(µ). This definition can be found in [35].
An example of a measure µ being uniformly Federer is Lebesgue measure on R.

This can be seen for a ball B(x, r), it follows that µ(B(x, cr)) = cr, hence

sup
r>0

µ(B(x, cr))
µ(B(x, r)) = 2cr

2r = c.

Therefore for every c > 1 it is that Dµ(c) < ∞.
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Another example we will look at is Haar measure on Qp. Due to the discrete
nature of the measure, it is that the measure of the p-adic ball is the largest power
of p such that the radius is bigger than it. So for the balls B(x, r) and B(x, cr) it is
that

p−n−1 < r ≤ p−n, (2.4)
p−m−1 < cr ≤ p−m. (2.5)

Therefore the ratio can be seen to be

sup
r>0

µ(B(x, cr))
µ(B(x, r)) ≤ p−m+n.

Multiplying the equation (2.4) by c it can be combined with equation (2.5) to get the
bound p−m−1 < cp−n and hence p−m+n < cp so that for every c > 1, Dµ(c) < cp < ∞.

In the case that c = 3, we write Dµ rather than Dµ(c) in equation (2.3). Addi-
tionally it is that µ is Federer if for µ-almost everywhere and x ∈ X there exists a
neighbourhood U of x, such that µ|U is uniformly Federer.

2.3.1 Exterior Product

The exterior product (or wedge product) of two vectors a and b in a vector space
will be denoted as a ∧ b. It is a mathematical bilinear operation that, geometrically,
represents the oriented area of the parallelogram spanned by the vectors a and
b. The result is a bivector that encodes both the area and orientation of the
parallelogram spanned by a and b. A key property of the exterior product is that it
is antisymmetric, so that

a ∧ b = −b ∧ a.

In particular if the two vectors a and b are parallel then their exterior product is
zero. This property is useful in establishing the linear independence of vectors.

For a matrix V composed of the k vectors v1, ...,vk ∈ Rn, the exterior product
v1 ∧ · · · ∧ vk is known to be associated with the determinant of V . This is because
the exterior product captures the orientated volume of the parallelotope formed by
the vectors, this information can equally be displayed as the determinant. When
k = n, the determinant is the exact volume of the parallelotope in Rn and when
k < n, the determinant measures the k-dimensional volume of the parallelotope
embedded in the higher n-dimensional space.
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Denote the standard basis of Rn to be the vectors e1 = (1, 0, ..., 0), ..., en =
(0, 0, ..., 1). Then for 1 ≤ p ≤ n and integers 1 ≤ i1 < i2 < · · · < ip ≤ n the elements

ei1 ∧ ei2 ∧ · · · ∧ eip

form a basis of Rn
p of dimension l =

(
n
p

)
. This is known to be the standard basis of

the wedge product.
An application of this can be seen as the Laplace identity as described by Schmidt

in his book Diophantine Approximation [43] which says that for x1, ...,xp,y1, ...,yp

the following holds true:-

(x1 ∧ · · · ∧ xp) · (y1 ∧ · · · ∧ yp) =

∣∣∣∣∣∣∣∣∣∣∣∣

x1y1 x1y2 . . . x1yp

x2y1 x2y2 . . . x2yp

... ... . . . ...
xpy1 xpy2 . . . xpyp

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.6)

This equation can be seen to be true as both sides gives the volume of the body.
The left hand side of (2.6) represents the dot product of the two oriented volumes
formed by the vectors x1, ...,xp and y1, ...,yp. That is to say the volume of the body
described by the determinant of the multiplication of the matrix where the rows are
each xi and the matrix where each column is each yj, i.e. -

· · · x1 · · ·
· · · x2 · · ·

...
· · · xp · · ·




... ... ...

y1 y2 · · · yp

... ... ...

 ,

which is exactly the right hand side of (2.6). This method will be used later in
Section 5.3.2 to expand out a determinant of a Wronskian matrix.

2.3.2 Minkowski Theorems

A set H ⊂ Rn is a convex set if for any x, y ∈ H we can draw a line between them
that is completely contained in H and a convex body is a complete convex set with
non-empty interior. A convex body H is symmetric about the origin if for any a ∈ H

we have −a ∈ H. The convex body H is said to be strictly convex if for x and y in
the closure of H, (denoted H̄) with x ̸= y, all points

θx+ (1 − θ)y
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with 0 < θ < 1 are all inner points of H.
Now there is enough information to state the Minkowski Theorems which establish

connections between convex bodies and lattice points.

Theorem 2.3.1 (Minkowski’s First Theorem). A bounded convex body K which is
symmetric about the origin in Rn with volume vol(K) > 2n contains at least one
point u (not equal to the origin) with integral coordinates.

This essentially says that if a convex body has enough volume then it is guaranteed
to contain a non-zero lattice point. This theorem will be used later to show that a
system of equations has a non-zero solution.

Minkowski’s Second Theorem introduces the concept of successive minima, which
helps to understand how a convex body interacts with the underlying lattice. For
a bounded convex body K, over a lattice Γ, which is symmetric about the origin,
let λ be a positive number and consider the body λK, that is the body obtained by
scaling K uniformly in all directions by a factor of λ. If λ is sufficiently small then
λK does not contain any point except the origin. Given i ∈ R by increasing the size
of λ, λK contains i independent lattice points. From this, define λi to be the the
greatest lower bound of λ such that λK contains i independent lattice points. In
other words:

λi = inf{λ : λ > 0, dim(λK ∩ Γ) ≥ i}

for i = 1, ..., n. The numbers λi are called the successive minima of K and necessarily
it must be that,

0 < λ1 ≤ · · · ≤ λn.

Theorem 2.3.2 (Minkowski’s Second Theorem). Let Γ be a lattice in Rn and B ⊂ Rn

be a bounded convex body which is symmetric about the origin with successive minima
λ1, ..., λn over Γ. Then

2n

n! vol(Rn/Γ) ≤ λ1λ2 · · ·λn vol(B) ≤ 2n vol(Rn/Γ).

This gives a bound on the product of the successive minima of a convex body
which will be used later when scaling a convex body to ensure a non-zero point is
still present.
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Distribution of Algebraic Numbers

As already mentioned in the introduction, the problems that will be addressed in
this thesis were first studied extensively in the Archimedean case. In this Section we
give an overview of previous results as well as state the new results obtained in this
thesis.

The notation used in the papers on the topic varies, so first, we will introduce
notation that will be used in this thesis for clarity and consistency. Given an integer
polynomial P = anx

n + · · · + a1x+ a0 ∈ Z[x], define the height of P as

H(P ) := max
0≤i≤n

|ai|. (3.1)

For a given field L, define L to be the algebraic closure of L. Let Cn be an infinite
subclass of polynomials in Z[x] with degP = n. Then for L satisfying K ⊂ L ⊂ K,
where K is either Qp or R, define κ(L, Cn) to be the infimum of all κ such that for
all polynomials P ∈ Cn of sufficiently large height

|α1 − α2| > H(P )−κ

holds for any pair of roots α1 ̸= α2 ∈ L of P . That is to say that κ(L, Cn) is the
largest real number such that for any κ < κ(L, Cn) it is possible to find infinitely
many P ∈ Cn such that

|α1 − α2| ≤ H(P )−κ

holds for some roots α1 ̸= α2 ∈ L of P .
The goal of Chapter 5 is to obtain lower bounds for

κirr(n, p) := κ(Qp,Pirr(n)),

27
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where Pirr(n) (resp. P∗
irr(n)) is the set of all irreducible (resp. monic irreducible)

integer polynomials of degree n.
As stated above this problem has been intensively studied in the Archimedean

case, in which the most studied exponents are κirr(n) := κ(C,Pirr(n)) and κ∗
irr(n) :=

κ(C,P∗
irr(n)), as well as their analogues for all and all reducible integer polynomials:

κall(n) := κ(C,P(n)) , κ∗
all(n) := κ(C,P∗(n))

κred(n) := κ(C,Pred(n)) , κ∗
red(n) := κ(C,P∗

red(n))

where P(n), P∗(n), Pred(n), P∗
red(n) are the sets of all, all monic, all reducible and

all monic reducible integer polynomials of degree n respectively.

3.1 REAL AND COMPLEX CLOSE ROOTS

The earliest study of this problem was in 1964 by Mahler [39]. Rather than using
the height of a polynomial he used the so called Mahler measure, denoted M(P )
which is defined for a polynomial P as above with roots α1, ..., αn as

M(P ) = |an|
n∏

i=1
max(1, |αi|).

It can be shown however that Mahler measure is comparable to height as(
n

⌊n
2 ⌋

)−1

H(P ) ≤ M(P ) ≤ H(P )
√
n+ 1.

Using this he proved that κirr(n) ≤ n − 1. To obtain this result he used methods
concerning discriminants. He actually proved his result for a wider set of polynomials
that do not have a repeated root.

Forty years later in 2004, Evertse [26] proved that κall(3) = 2. Similarly in this
paper, Evertse used Mahler measure for the estimate rather than height. The proof
of this heavily leans on the following lemma

Lemma 3.1.1. Let α be a real, irrational algebraic number and let β1, ..., βn be
different complex numbers different from α. Then for every δ > 0 and every Q which
is sufficiently large in terms of δ, there is a matrix ( a b

c d ) ∈ GL(2,Z) such that

Q−1−δ ≤ |αa+ b|, |αc+ d| ≤ Q−1+δ,

Q1−δ ≤ |βia+ b|, |βic+ d| ≤ Q1+δ (i = 1, ..., n).
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An alternative proof of κall(3) = 2 is by Schönhage can also be found in [44]
where he used arguments involving the discriminant (similarly to the method of
Mahler).

Then in 2010, Beresnevich, Bernik and Götze [5] used methods relying on
quantitative non-divergence estimates (this method will be discussed in greater detail
later in chapter 4) to show that

min{κirr(n), κ∗
irr(n+ 1)} ≥ (n+ 1)/3.

Furthermore, it was also proved true for the field being restricted to just the real
numbers, - i.e.

min{κ(R,Pirr(n)), κ(R,P∗
irr(n+ 1))} ≥ (n+ 1)/3.

In 2011, Bugeaud and Mignotte [19] in which they proved many results regarding
general and irreducible polynomials. Among them, they proved the statement that
κall(3) = κirr(3) = 2 using ideas similar to that of Schönhage. They did go a step
further in the proof of this as their proof incorporated the idea of product of root
distances. That is for k and n being integers such that 2 ≤ k ≤ n, let Kirr[n, k] (resp.
K∗

irr[n, k]) be the infimum of all κ such that∏
1≤i<j≤k

|αi − αj| ≥ H(P )−κ,

where α1, ..., αn are roots of the polynomial P . They showed that Kirr[n, n−1] = n−1
for n ≥ 3. Additionally they showed for n ≥ 4 and any integer k ≥ 2 such that k
divides n it is that Kirr[n, k] ≤ n(k−1)

k
. These statements can be found as Theorem 3

of [19] and while interesting the study of Kirr[n, k] and K∗
irr[n, k] will not be discussed

further.
Additionally in this paper [19] they found results for κirr(2), κall(2), κ∗

irr(2) and
κ∗

all(2) by considering the distance

sep(P ) := min{|αi − αj| : 1 ≤ i < j ≤ n}

so that the question of root seperation can be restated as

sep(P ) ≥ H(P )−(n−1).

In this way by considering a square free quadratic polynomial P (x) = ax2 + bx+ c

with a > 0 and discriminant ∆ the exact formula

sep(P ) =

√
|∆|
a
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can be seen. They then choose more specific values of a, b and c to get exact values
of ∆ so as to show that

κirr(2) = κall(2) = 1;
κ∗

irr(2) = κ∗
all(2) = 0.

Note that the root separation in question is always considered between distinct
roots. This avoids the trivial case of repeated roots and ensures that all bounds
on κirr, κall, κ

∗
irr and κ∗

all are non-trivial. The approach that Bugeaud and Mignotte
take is to take an integer polynomial that originally has one root repeated k times,
and then modify it slightly to produce a new polynomial with k distinct roots that
are nearly the same.

In the same paper [19] as Theorem 2, they stated and proved that
• for any even integer n ≥ 4, κall(n) ≥ κirr(n) ≥ n

2 ;

• for any odd integer n ≥ 5, κall(n) ≥ n+1
2 and κirr(n) ≥ n+2

4 .
Then as Theorem 4 they stated that κ∗

irr(3) = κ∗
all(3) ≥ 3/2 with equality if Hall’s

conjecture is true. Where Hall’s conjecture is that if for any ε > 0, there exists a
constant c(ε) > 0 such that if x and y are positive integers satisfying x3 ̸= y2, then
|x3 − y2| > c(ε)x1/2−ε. Finally as Theorem 5, they stated that

• for any even integer n ≥ 4, κ∗
all(n) ≥ n/2 and κ∗

irr(n) ≥ n−1
2 ;

• for any odd integer n ≥ 5, κ∗
all(n) ≥ n−1

2 and κ∗
irr(n) ≥ n+2

4 .
Later in the same year, Bugeaud and Dujella [17] obtained the following:

• for any integer n ≥ 4, κirr(n) ≥ n/2 + n−2
4(n−1) ;

• for any odd integer n ≥ 7, κ∗
irr(n) ≥ n/2 + n−2

4(n−1) − 1.
To prove these, Bugeaud and Dujella construct a one-parametric family of irreducible
integer polynomials denoted as Pn,a(x).

In a subsequent paper in 2014 Bugeaud and Dujella [18] proved that
• for any even positive integer n ≥ 6, κ∗

all(n) ≥ 2n−3
3 ;

• for any odd positive integer n ≥ 7, κ∗
all(n) ≥ 2n−5

3 ;

• for any positive integer n ≥ 4, κ∗
irr(n) ≥ n

2 − 1
4 .

Again in these proofs they construct parametric families of integer polynomials
In 2017, Dujella and Pejković [25] found new bounds for reducible monic polyno-

mials of specific degrees:
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• 3 ≥ κ∗
red(5) ≥ 7

3 ;

• 5 ≥ κ∗
red(7) ≥ 17

5 ;

• 7 ≥ κ∗
red(9) ≥ 31

7 .
by again construct parametric families of integer polynomials.

In 2020, for arbitrary degree Dubickas [24] found that

n

2 ≤ κred(n) ≤ 3n− 2
4 .

This estimate comes from looking at a separable integer polynomial P of degree
n ≥ 3 and its derivative P ′. By letting m ≤ n − 1 be the largest positive integer
such that P ′ has an irreducible factor over Q of degree m it can be seen that

κred ≤ n+m− 1
2 .

Then by considering trinomial P (or its reciprocal) of the form a0 + an−lx
n−l + anx

n

where 1 ≤ l ≤ ⌊n/2⌋ it must be that m ≤ l and so

κred ≤ n+ l − 1
2 .

and by the conditions on l the bound can be obtained.

3.1.1 Wirsing’s problem

A similar problem to the one considered in this thesis is that of Wirsing’s problem.
Before stating this we will introduce the classifications of Mahler and Koksma.
The former will be discussed later in Section 3.2 but will be introduced here for
completeness and for comparison to the latter classification.

Mahler’s classification divides the set of real numbers ξ by how accurate a non-
zero polynomial evaluated at ξ approaches 0. Define ωn(ξ) to be the supremum of
real numbers ω such that there exists infinity many integer polynomials P (X) of
degree less than or equal to n that satisfy

0 < |P (ξ)| ≤ H(P )−ω.

Also define
ω(ξ) = lim sup

n→+∞

ωn(ξ)
n

.

The classification of a real number ξ is as such:
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• ξ is an A-number if ω(ξ) = 0,

• ξ is an S-number if 0 < ω(ξ) < ∞,

• ξ is an T -number if ω(ξ) = ∞ and ωn(ξ) < ∞ for all n ≥ 1,

• ξ is an U -number if ωn(ξ) = ∞ for all n greater than some N ∈ N.
These classes can be broken down further but will not be discussed here. Further
details can be found in [16].

Koksma’s Classification considers the approximation of ξ by algebraic numbers.
Define ω∗

n(ξ) to be the supremum of real numbers ω such that there exists infinity
many real algebraic numbers α of degree less than or equal to n that satisfy

0 < |ξ − α| ≤ H(α)−ω−1,

where H(α) is the the height of the irreducible polynomial of which α is a root of.
Now there is enough information to state Wirsing’s problem which is as follows:

Given any integer n ≥ 1 and transcendental real ξ, do we have ω∗
n(ξ) ≥ n?

This problem can be found in Wirsing’s 1961 paper [47] in which he established the
bound that ω∗

n(ξ) ≥ n+1
2 for any transcendental real ξ. By Dirichlet’s Theorem the

problem is true for n = 1 and it was also shown to be true for n = 2 by Davenport
and Schmidt [23]. Recent work around this include that done by Badziahin and
Schleischitz [2] in 2019 who found that ω∗

n(ξ) ≥ n√
3 for n ≥ 4. Then in 2024, Poëls

[42] improved this to ω∗
n(ξ) ≥ an where a = 1

2−log 2 for n ≥ 2.

3.2 p-ADIC CLOSE ROOTS

There are far fewer results surrounding p-adic root separation so instead we will
look at a more general introduction to the area where similar problems have been
discussed.

In 1978, Morrison [40] proved results about the approximation of a p-adic ξ ∈ Qp

by algebraic numbers. That is he considered the p-adic version of Wirsing’s problem
discussed above. Specifically he had two results

• Let ξ ∈ Qp. If ξ is not algebraic of degree less than or equal to n, then there
are infinitely many solutions α ∈ Qp, to

|ξ − α|p ≪ H(α)−(n+3)/2
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where α is algebraic of degree at most n.

• Let ξ ∈ Qp. If ξ is not a rational or quadratic irrational there are infinitely
many solutions α ∈ Qp to

|ξ − α|p ≪ H(α)−(1+
√

3)

with α rational or quadratic irrational.
Here the notation f ≪ g is used to mean f ≤ Cg where C is a constant depending
only on ξ, n and p.

In 2004, Bugeaud discussed Mahler’s and Koksma’s functions in [16] (Section
9.3 (pages 194-199)) and how this classification could be extended to be used for
p-adics. Similar to the work of Morrison, Bugeaud considered the approximation
of a p-adic ξ ∈ Qp by algebraic numbers, but he restricted his attention to those
numbers within Qp.

This work was continued in 2015 when Bugeaud and Pejković [20] found explicit
examples of p-adic numbers for which the values of Mahler’s and Koksma’s functions
differ by any prescribed value from the interval [0, 1] for polynomials with degree
at most 2. Here they used families of close conjugate p-adic numbers to construct
numbers with different Mahler and Koksma exponents.

In 2016, Pejković [41] found in the irreducible cubic case with p ̸= 2, that
κirr(3, p) ≥ 25/14.

3.3 POLYNOMIALS WITH SMALL DISCRIMINANTS

The other problem which will be studied in this thesis will be on the estimate of the
number of polynomials of bounded height and degree such that they have a small
discriminant. That is to estimate the number of polynomials satisfying

0 < |D(P )| ≤ γH(P )2n−2−2ν ,

where
D(P ) := a2n−2

n

∏
1≤i<j≤n

(αi − αj)2, (3.2)

where an is the leading coefficient of P and α1, . . . , αn are its roots. Since D(P ) = 0
if and only if P (x) has repeated roots, the condition 0 < |D(P )| implies that P (x)
has distinct roots. Additionally, since we require the polynomials to have integer
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coefficients, the discriminant must also be an integer. Therefore, we can restate the
problem as estimating the number of polynomials satisfying

1 ≤ |D(P )| ≤ γH(P )2n−2−2ν .

The analogous p-adic problem is to count polynomial of bounded height and degree
such that

0 < |D(P )|p ≤ H(P )−2ν (3.3)

for some ν > 0.
Define the set of polynomials

Pn(Q) := {P ∈ Z[x] : degP = n and H(P ) ≤ Q}.

To estimate the number of polynomials in Pn(Q) that have small discriminant, define
the following set that combines the Archimedean and p-adic cases

Dn,γ1,γ2(Q, ν1, ν2) :=
P ∈ Pn(Q) :

1 ≤ |D(P )| ≤ γ1Q
2n−2−2ν1

and |D(P )|p ≤ γ2Q
−2ν2

 .
In the case that γi = 1 for i = 1 or i = 2, the subscript will be dropped, for example
Dn(Q, ν1, ν2) := Dn,1,1(Q, ν1, ν2).

3.3.1 Euclidean Case

To begin known results relating to the real/complex case will be stated, in this case
it is that ν2 = 0. The first estimate of this type of result was in 2008 by Bernik,
Götze and Kukso [9]. Their Theorem 1 shows that

#Dn(Q, ν1, 0) ≫n Q
n+1−2ν1

where ν1 ∈ [0, 1
2 ]. This was later extended to ν1 ∈ [0, (n− 2)/3] in [3] Later then in

2014, Götze, Kaliada and Kusko [31] proved that for n = 3

#Dn(Q, ν1, 0) ≍n Q
4− 5

3 ν1

where 0 ≤ ν1 <
3
5 . This range was extended to 0 ≤ ν1 ≤ 2 by Badziahin [1] in 2024.

Then in 2016, Beresnevich, Bernik and Götze [4] extended the known lower bound
to obtain

#Dn,γ1(Q, ν1, 0) ≫n Q
n+1− n+2

n
ν1 ,
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where 0 ≤ ν1 ≤ n− 1. This together with Badziahin’s [1] result essentially resolves
the problem for n = 3 in the Archimedean case. In 2019, Koleda [38] proved that for
polynomials with no complex roots it we have that

#Dn,γ1(Q, ν1, 0) ≍n Q
n+1− n+2

n
ν1 ,

where 0 ≤ ν1 ≤ n
n+2 .

3.3.1.1 Ordered Roots

Next we will discuss special cases where the roots are ordered in specific ways.
In 2015, Bernik, Budarina and O’Donnell [8] considered the case the roots of a
polynomial were ordered so that

|α1 − α2| ≤ |α1 − α3| ≤ · · · ≤ |α1 − αn|.

They stated that if |α1 − α3| = Q−t where 0 ≤ t ≤ ν1
3 then

#D3(Q, ν1, 0) ≫n Q
4−2ν1+t.

In 2017, Bernik, Budarina and Götze [11] looked at the set of polynomials
P ∈ P3(Q) such that the roots α1, α2, α3 are ordered in the following way

|α1 − α2| ≤ |α1 − α3|,

|α1 − α2| = Q−ρ2 ,

|α1 − α3| = Q−ρ3 ,

with 0 ≤ ρ3 ≤ ρ2. By letting D′
3(Q, ν1, 0) denote the set of such polynomials that

satisfy
ν1

3 ≤ ρ2 ≤ 4 − 5ν1

3 ,

they found that
#D′

3(Q, ν1, 0) ≪n Q
4− 5ν1

3 +ε,

for 0 ≤ ν1 ≤ 2.
In 2020, Bernik, Budarina and O’Donnell [15] considered the polynomials of

degree 4. In this case the roots of the polynomial are ordered as

|α1 − α2| ≤ |α1 − α3| ≤ |α1 − α4|,

|α1 − α2| ≪ |α3 − α4| ≪ |α2 − α3| ≪ |α1 − α3|,
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and they found that
#D′

4(Q, ν1, 0) < Q5− 3ν1
2 +ε,

for 0 ≤ ν1 ≤ 1.
Another special result to consider is that of Budarina in 2019 [14] who considered

a subset of polynomials from Dn(Q, ν1, 0) such that the roots of these polynomials
α1, ..., αn ∈ C are ordered such that for a real number ρ ≥ 0 they satisfy

|α1 − α2| ≤ |α1 − α3| ≤ · · · ≤ |α1 − αn|,

|α1 − αj| ≪ 1, for 3 ≤ j ≤ n,

|α1 − α2| = Q−ρ.

This set of polynomials can be described as the set of irreducible polynomials
P ∈ Dn(Q, ν1, 0) that have only one root α2 close to α1. This set of polynomials will
be denoted as D∗

n(Q, ν1, 0) and it was found by Budarina that

#D∗
n(Q, ν1, 0) ≫n Q

n+1−2ν1 ,

#D∗
n(Q, ν1, 0) ≪n Q

n+1−2ν1 for ρ ≥ n− 1 + 2ν1

3 + ε,

if 0 ≤ ν1 ≤ n+2
4 − ε.

3.3.1.2 Asymptotic results

Asymptotic estimates for

Nn(Q,X) := #{P ∈ Pn(Q) : |D(P )| ≤ X}

have been studied for degrees n = 2 and n = 3.
In 2013, Götze, Kaliada and Korolev [27] proved that

N2(Q,X) = κ2QX +O(X3/2 lnQ+ (Q lnQ)3/2),

where κ2 = 4(ln 2 + 1). It is easy to see that for the main term in this estimate to
be larger than the error term it is required that Q1/2(logQ)3/2 ≪ X ≪ (Q/ logQ)2.
Then in 2014, Götze, Kaliada and Kusko [31] showed that

N3(Q,X) = κ3Q
2/3X5/6 +O(X lnQ+Q3)

where κ3 = 26.95 . . .. It is easy to see that for the main term in this estimate to be
larger than the error term it is required that Q14/5 ≪ X ≪ Q4/(logQ)6.
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3.3.2 p-adic and Combined Cases

In 2008, Bernik, Götze and Kukso [12] additionally published an analogous p-adic
version of their result [9]. They showed that

Dn,γ2(Q, 0, ν2) ≫n Q
n+1−2ν2

for 0 ≤ ν2 ≤ 1
2 .

Finally we consider the case where polynomials have a small discriminant in
terms of both the Euclidean and p-adic metrics at the same time. In 2012, Budarina,
Dickinson and Yuan [48] considered a combined version of the result in which ν1 and
ν2 were the same so that

Dn,γ2(Q, ν3, ν3) ≫n Q
n+1−4ν2

for 0 ≤ ν3 ≤ 1
3 . Then in 2018 Bernik, Budarina and O’Donnell [7] also studied this

combined case and found that

#D3(Q, ν1, ν2) < Q4− 5
3 (ν1+ν2)+ε

holds if 3ε
20 ≤ ν1 + ν2 ≤ 6

5 . More recently in 2023, Bernik, Vasilyev, Kalosha and
Panteleeva [10] obtained a bound for arbitrary degrees when 0 < ν1 + ν2 < 2:

Dn(Q, ν1, ν2) ≪n Q
n+1−(ν1+ν2)+ε

for arbitrarily small ε > 0.

3.4 NEW RESULTS

As stated above the main results of this thesis are concerned with the problem of
obtaining a lower bound for

κirr(n, p) := κ(Qp,Pirr(n)).

More specifically we will prove that

Theorem A. For any n ≥ 2 and any prime p, we have that

κirr(n, p) ≥ n+ 1
3 .
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The new result for the lower bound of the number of polynomials with a small
p-adic discriminant is as follows.

Theorem B. Let n ≥ 2 be an integer, p be a prime. Then there exist constants
Q0 = Q0(n, p) > 1, γ2 = γ(n, p) > 0 and C ′ = C ′(n, p) > 0 such that for all Q ≥ Q0

and any
0 ≤ ν2 ≤ n− 1 (3.4)

we have that
#Dn,γ2(Q, 0, ν2) ≥ C ′Qn+1− n+2

n
ν2 . (3.5)



4

Quantitative Non-Divergence

The term ‘Quantitative Non-Divergence’ is used to describe the process in which
by imposing certain quantitative conditions, the likelihood of trajectories diverging
into regions where they might otherwise exhibit extreme behaviour are limited.
The general idea of this technique is to show that the measure of the set of points
where a function takes small values (e.g. covolume or shortest vector length) can
be explicitly bounded from above. These small values are the points at which the
system is approaching instability, such as a lattice collapsing in certain directions.
Quantitative non-divergence results ensure that the set of points where this instability
occurs is small and they additionally provide estimates on how large this set can be.
This technique was developed by Kleinbock and Margulis in 1998 [36]. These ideas
were then built upon by Kleinbock and Tomanov in their paper ‘Flows on S-arithmetic
homogeneous spaces and applications to metric Diophantine approximation’ [35] as
they established quantitative non-divergence estimates for continuous transformations
on homogeneous spaces. In this Chapter, e will overview a technique as presented
by Kleinbock and Tomanov which will be used later in Chapter 5.

Firstly we shall state the notation used within the paper. Let S be a finite
set of normalised valuations of Q that contains the Archimedean one (i.e ∞ which
corresponds to Q∞ = R), ZS is the ring of S-adic integers of Q as defined by equation
2.1 and QS = ∏

v∈S Qv where Qv is the completion of Q over a valuation v. From
here, the groups within this context can be defined as follows:

GL(m,QS) :=
∏
v∈S

GL(m,Qv),

GL1(m,QS) := {(g(v))v∈S ∈ GL(m,QS) :
∏
v∈S

| det(g(v))|v = 1}.

39
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Here, GL(m,QS) is the Cartesian product of the general linear groups GL(m,Qv)
for each v ∈ S, and the group GL1(m,QS) is a subset of GL(m,QS) consisting of
tuples where the product of the determinants, taken with respect to each v ∈ S,
is equal to 1. Similarly, define GL(m,ZS) to be the group of m×m matrices that
take entries from ZS and are invertible. There is a natural diagonally embedding of
GL(m,ZS) into GL(m,QS) in which each matrix g ∈ GL(m,ZS) is mapped to the
tuple (g, g, ..., g) ∈ ∏

v∈S GL(m,Qv). For such a matrix to be invertible in GL(m,ZS)
it is needed that the determinant is a unit of ZS as these are the only invertible
elements of the ring. That is under the diagonal embedding each determinant satisfies
that det(g) is a unit of Zv for all v ∈ S and moreover when taking the product of
these determinants we get that ∏

v∈S

| det(g(v))|v = 1,

and so GL(m,ZS) is a subset of GL1(m,QS). Using these definitions it is possible
to define the homogeneous space

Ω1
S,m := GL1(m,QS)/GL(m,ZS),

= {gZm
S : g ∈ GL1(m,QS)}.

This can be interpreted as the space of all lattices in Qm
S that have covolume 1,

where each lattice is a free ZS-module of rank m.
Now we shall define the content functions

c(x) :=
∏
v∈S

|x(v)|v for x = (x(v))v∈S ∈ QS, (4.1)

c(x) :=
∏
v∈S

||x(v)||v for x = (x(v))v∈S ∈ Qm
S , (4.2)

where ||x(v)||v is defined by (2.2).

4.1 (C, α)-GOOD FUNCTIONS

Suppose that X is a metric space. Let B be a subset of X and (F, | · |) be a valued
field. A function f : B → F is said to be good if the set of points x ∈ B where f
has small values has small measure. More formally, given an ε > 0, points x which
take small measure over a function f will be denoted as

Bf,ε = {x ∈ B : |f(x)| < ε}. (4.3)
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Additionally, define ||f ||B := supx∈B|f(x)|. Further for a locally finite measure µ on
X such that µ(B) > 0 define ||f ||µ,B := ||f ||B∩supp µ. In the case that f is continuous
and B is open it can be seen that

||f ||µ,B = sup {c : µ({x ∈ B : |f(x)| > c}) > 0} . (4.4)

This norm measures the largest significant size of |f | on B in the sense that it
excludes the extreme values that may occur on certain subsets of B which have
negligible measure. In this way the norm is not effected by spikes or singular values
of f that may occur on sets of measure zero.

Definition 4.1.1. Let X be a metric space with a Borel measure µ and (F, | · |) be
a valued field. Suppose U ⊂ X and C, α > 0 are constants, then a Borel measurable
function f : U → F is (C, α)-good on U with respect to µ if for any open ball B ⊂ U

centred in the support of µ

µ
(
Bf,ε

)
≤ C

(
ε

||f ||µ,B

)α

µ(B) (4.5)

for all ε > 0.

From this definition, the following lemma can be seen.

Lemma 4.1.2 (Lemma 3.1 of [35]). For a metric space X, a measure µ on X and
a subset U of X let C, α > 0 and f : U → F be a function. Then

1. f is (C, α)-good on U with respect to µ iff |f | is (C, α)-good on U with respect
to µ;

2. If f is (C, α)-good then c · f is (C, α)-good for all c ∈ F ;

3. If fi for i ∈ I are (C, α)-good on U with respect to µ and f = supi∈I |fi| is
Borel measurable then f is (C, α)-good on U with respect to µ;

4. If f is (C, α)-good on U with respect to µ and c1 ≤ |f(x)|
|h(x)| ≤ c2 for all x ∈ U

then h is (C( c2
c1

)α, α)-good on U with respect to µ.

This lemma is given without proof in [35] so one shall be provided here for
completeness. Versions of this lemma can also be found in [13], [33] and [34].

Proof. 1. By definition it can be seen that
∣∣∣∣∣∣f ∣∣∣∣∣∣

µ,B
=
∣∣∣∣∣∣|f |

∣∣∣∣∣∣
µ,B

and Bf,ε = B|f |,ε.
Hence the statement follows.
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2. Consider first the trivial case where c = 0. In this case c ·f(x) = 0 for all x ∈ B

which implies that B0·f,ε = B and ||0 · f ||µ,B = 0. Hence the statement holds
true trivially. Now consider c ̸= 0. It can be seen that ||c · f ||µ,B = |c| · ||f ||µ,B

and similarly

Bcf,ε = {x ∈ B : |cf(x)| < ε},

=
{
x ∈ B : |f(x)| < ε

|c|

}
,

= Bf, ε
|c| .

Using the fact that f is (C, α)-good, we observe that

µ
(
Bf, ε

|c|
)

≤ C

( ε
|c|

||f ||µ,B

)α

µ(B),

= C

(
ε

|c| · ||f ||µ,B

)α

µ(B),

= C

(
ε

||c · f ||µ,B

)α

µ(B).

Then as Bcf,ε = Bf, ε
|c| , it must be that c · f is also (C, α)-good for all c ∈ F .

3. By definition |fi(x)| ≤ |f(x)| for all i ∈ I, then as

Bf,ε = {x ∈ B : |fi(x)| ≤ |f(x)| < ε},

it can be seen that Bf,ε ⊆ Bfi,ε. Hence µ(Bf,ε) ≤ µ(Bfi,ε). Similarly it can
be seen that ||f ||µ,B = supi∈I ||fi||µ,B. Using the definition of each fi being
(C, α)-good it can be then verified that

µ
(
Bf,ε

)
≤ µ

(
Bfi,ε

)
≤ C

(
ε

||fi||µ,B

)α

µ(B) ≤ C

(
ε

||f ||µ,B

)α

µ(B).

4. From the given condition, it must be that c1||h||µ,B ≤ ||f ||µ,B. Similar to above
if |h(x)| < ε then it must be that |f(x)| < c2ε and so Bh,ε ⊆ Bf,c2ε which in
turn implies that µ(Bh,ε) ≤ µ(Bf,c2ε). Putting these together with the fact
that f is (C, α)-good;

µ
(
Bh,ε

)
≤ µ

(
Bf,c2ε

)
≤ C

(
c2ε

||f ||µ,B

)α

µ(B) ≤ C

(
c2ε

c1||h||µ,B

)α

µ(B).

This then implies that h is (C(c2/c1)α, α)-good on U with respect to µ.
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4.1.1 Polynomials are Good Functions

It can be seen that polynomials are in fact good functions. The first result that shall
be considered is from [35].

Lemma 4.1.3 (Lemma 3.4 of [35]). Let F be either R or a locally compact ultrametric
valued field. Then for any d, k ∈ N, any polynomial f ∈ F [x1, x2, ..., xd] of degree
not greater than k is a (C, 1/dk)-good on F d with respect to Haar measure λ, where
C is a constant depending only on d and k.

This lemma considers the case for more than one variable and while the paper
does not provide a proof it does outline how it would be obtained using two other
papers. The proof is split into two parts with the first considering a single variable
(i.e. d = 1) and the second considering multiple variables (i.e. d > 1).

The result for when d = 1 can be seen by using Lagrange’s interpolation formula,
a proof of which can be seen in Proposition 3.2 of [33] where it can be seen that
α = 1

k
and C = 1

2k
(k + 1)1/k. The proof in the case d > 1 can be found in [45] as

Lemma 4.1. The case we will consider is that of when d = 1.
The following lemma can be used when dealing with functions on products of

metric spaces.

Lemma 4.1.4 (Lemma 3.2 of [35]). Let metric spaces X and Y with measures µ, ν
given. Suppose that f is a continuous function on U × V , where U ⊂ X and V ⊂ Y

are open subsets, and suppose C,D, α, β are positive constants such that
1. for all y ∈ V ∩ supp ν, the function x 7→ f(x, y) is (C, α)-good on U with

respect to µ,

2. for all x ∈ U ∩ suppµ, the function y 7→ f(x, y) is (D, β)-good on V with
respect to ν.

Then f is (E, γ)-good on U × V with respect to µ× ν, where

γ = αβ

α + β
and E = (α + β)

(C
β

)β (
D

α

)α
 1

α+β

(4.6)

Remark. This result has been stated for completeness. It will not be necessary to
use this later in Section 5.3.2 as the function that is considered later only takes one
p-adic value x from Qp. The element that we end up taking from Q∞ is not involved
in the estimate so as stated above we have that d = 1. The more general case though,
that perhaps take multiple values from QS, would make use of this lemma.
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4.2 SUBMODULES

The final ingredient to introduce before the quantitive non-divergence estimates is
that of submodules. These will be used in the first specialisation of the quantitative
non-divergence Theorem (stated in Section 4.3) as elements of a poset that shall be
introduced at the end of this Section. To start, recall these standard definitions from
Algebra and Number Theory.

Definition 4.2.1. Let R be a ring with identity 1R. A (left) R-module M is an
additive abelian group together with scalar multiplication R ×M → M , such that
for m,m′ ∈ M and r, r′ ∈ R the following holds:

1. r(m+m′) = rm+ rm′,

2. (rr′)m = r(r′m),

3. 1Rm = m.

A non-empty subset N of M is a submodule if N is closed under addition and scalar
multiplication. A R-module is called simple if it is non-zero and has no non-zero
proper subgroups. A R-module M is free, if there exists a R-basis for M , meaning
that there is a set of elements {m1, ...,mk} in M such that every element m ∈ M

can be uniquely expressed as a finite linear combination of the basis elements with
coefficients from R. The size of this basis is uniquely determined and referred to as
the rank of M and is denoted rk(M).

An example of this can be seen by taking R = Z and M = Zp. This is not
a free submodule however as it is not possible to find a basis with finitely many
elements. The Z-module M = Zn is free however and this can be seen as the elements
e1, e2, ..., en where ei is the tuple with 1 in the i-th position and 0 elsewhere.

Definition 4.2.2. Suppose that Λ is a R-submodule of M and ∆ is a submodule of
Λ. Suppose that δ is any submodule of Λ such that rk(δ) = rk(∆) and ∆ ⊆ δ, then
∆ is said to be primitive in Λ if δ = ∆.

A trivial example of this is the existence of a primitive submodule over the
division ring D. For a module M over a division ring D, the division D-submodule
is defined as

M [D] = {x ∈ M : αx = 0, ∀α ∈ D}
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This is primitive as M [D] = {0}, this clearly has rank 0 so any other submodule
contained inside of M [D] of the same rank must in fact be equal to M [D].

For a example where the primitive submodule is not just the element 0, consider
the Z2-submodule (2, 4)Z. This is can be seen to be not primitive by considering the
submodule (1, 2)Z. Both of these have rank one and clearly (2, 4)Z ⊂ (1, 2)Z but it
is not true that (2, 4)Z = (1, 2)Z. Indeed (1, 2)Z is primitive in Z2.

This definition of primitive stated above is the one presented by Kleinbock and
Tomanov but it is not the one that can be seen in many introductions to module
theory. This more standard definition will be stated now and can be seen to be
equivalent. First the following definitions are required.

Definition 4.2.3. Let M be a left R-module. The collection of scalars that act
trivially on M is called the annihilator :

AnnR(M) := {r ∈ R : r ·m = 0 ∀m ∈ M}. (4.7)

Further, we call M faithful if all non-zero elements in R act non-trivially upon M

(i.e. AnnR(M) = {0}).

It can be seen that the field of rationals Q is a faithful Z-module as every element
of Z acts non trivially on Q and so AnnZ(Q) = {0}. However, Z/nZ is a Z-module
that is not faithful as the annihilator of M is the set of multiples of n, i.e

AnnZ(Z/nZ) = {k · n ∈ R : k ∈ Z}. (4.8)

An alternative definition for primitive is that the module is simple and faithful.
These two versions will now be shown to be equivalent.

A submodule ∆ is simple and faithful iff ∆ has no non-zero proper subgroups
on which the ring acts non-trivially. That is, any proper submodule of ∆ either has
strictly smaller rank, or there exists a non-zero element of the ring that annihilates
it (i.e. a non-zero ring element that sends all the elements of the submodule to zero).
This is true iff when rk(δ) = rk(∆) and δ ⊆ ∆ it must be that δ = ∆. Otherwise, δ
would be a proper submodule of full rank, contradicting simplicity. This is exactly
the definition of primitive as presented by Kleinbock and Tomanov.

The following notation will now be introduced:
• D is an integral domain;
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• K is the quotient field of D;

• R is a commutative ring that contains K as a subring;

• For ∆ a D-submodule of Rm, K∆ is the K-linear span inside Rm;

• For ∆ a D-submodule of Rm, R∆ is the R-linear span inside Rm.
The rank of a submodule can also be defined as

rk(∆) := dimK(K∆).

The following is a classification of primitive submodules.

Lemma 4.2.4 (Lemma 7.2 of [35]). The following are equivalent for a submodule ∆
of Dm:

(i) ∆ is primitive;

(ii) ∆ = K∆ ∩ Dm;

(iii) ∆ = R∆ ∩ Dm for any commutative ring R containing K as a subring.

A partial proof is present in the paper but a full proof will be provided here.

Proof. If ∆ = {0}, then the result is trivial. It must be primitive as it has rank 1,
so any other submodule that contains ∆ and has rank 1 must be equal to ∆. The
K-linear span of ∆ is {0}, hence by intersecting with Dm the resulting element must
just be {0}, i.e. ∆. In a similar way it must be that ∆ = R∆ ∩ Dm. Hence it shall
be assumed that ∆ ̸= {0}.

(i ⇒ iii) If x ∈ R∆ ∩ Dm, then x ∈ R∆ so it can be rewritten as

x =
n∑

i=0
riγi

for ri ∈ D and γi ∈ ∆. As x ∈ Dm and D is an integral domain, it must be possible
to write ri as an element of K. Therefore x ∈ K∆ ∩ Dm and further it can be
seen that K∆ ∩ Dm is a submodule of Dm that contains ∆. This submodule must
also have the same rank as ∆ and hence by the primitively of ∆ it must be that
∆ = R∆ ∩ Dm.

(iii ⇒ ii) It must be that ∆ ⊆ K∆ ∩ Dm as ∆ ⊆ K∆ and ∆ ⊆ Dm by definition.
Therefore the only thing left to show is that ∆ ⊇ K∆ ∩ Dm. If x ∈ K∆ ∩ Dm, then
x ∈ K∆ so it can be rewritten as

x =
n∑

i=0

ai

aj

γi
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for ai,∈ D for all 0 ≤ i ≤ n, γi ∈ ∆ and ai,∈ D is a non-zero element chosen so
that ai

aj
lie inside of K. The K-linear span is contained inside the R-linear span so

x ∈ R∆ ∩ Dm. Hence ∆ ⊇ K∆ ∩ Dm.
(ii ⇒ i) By assuming otherwise, it follows that there exists a submodule ∆′ with

∆ ⊆ ∆′ and rk(∆) = rk(∆′). As they have the same rank, it must then be that ∆
and ∆′ span the same space over Dm, hence ∆K = ∆′K and thereby ∆′ ⊆ K∆. As
∆′ ⊆ Dm, it must be that ∆′ ⊆ K∆ ∩ Dm. Then as ∆ = K∆ ∩ Dm, it must be that
∆′ ⊆ ∆ and so by the initial assumption of ∆′ it must be that ∆ = ∆′ and thereby
∆ is primitive.

The next thing to consider is the group GL(m,R). Any element g ∈ GL(m,R)
maps D-submodules of Rm to D-submodules of Rm and preserves the rank and
inclusion relation. This is because for a D-submodule ∆, an element g∆ must
remain within Rm as any D-linear combination of elements in ∆ is preserved by g.
Applying an invertible matrix does not change the number of linearly independent
vectors within the submodule ∆ and so the rank does not change. Regarding the
inclusion relation it can be seen that if we have two submodules ∆1,∆2 such that
∆1 ⊆ ∆2 then for all elements δ ∈ ∆1 it must be that gδ ∈ g∆1 and gδ ∈ g∆2, hence
g∆1 ⊆ g∆2.

It is now possible to define the sets

M(R,D,m) := {g∆ : g ∈ GL(m,R),∆ is a submodule of Dm}, (4.9)

and
B(D,m) := the set of all primitive submodules of Dm. (4.10)

These sets will be important in the following Section as we look at specific functions
whose domain is M(R,D,m). These functions will be defined in more detail later in
subsection 4.3.1 but essentially they map a matrix multiplied by a submodule from
B(D,m).

4.3 QUANTITATIVE NON-DIVERGENCE ESTIMATE

Recall that the Kleinbock and Tomanov paper generalises work of Kleinbock and
Margulis [33]. More specifically it is defined for functions on arbitrary metric spaces.
Here partially ordered sets (here after referred to as posets) B are mapped into
functions on a metric space X with measure µ.
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The notation used is as follows. Let l(B) denote the length of the poset B (that
is the number of elements in a maximal linearly ordered subset of B) and for a
subset G of B denote B(G) to be the poset of elements in B but not in G such that
they are comparable with all elements of G. Additionally, let C(B) denote the space
of continuous functions whose range consists of real numbers on some subset B of
X. The maps that are considered are denoted ψ : B → C(B) which takes a value
s ∈ B and maps it to what shall be denoted as ψs ∈ C(B).

For such maps and positive numbers ε < ρ, it is said that a point z ∈ B is
(ε, ρ)-marked relative to the poset B if there exists a linearly ordered subset Gz ⊆ B

such that

(M1) ε ≤ |ψs(z)| ≤ ρ for all s ∈ Gz;

(M2) |ψs(z)| ≥ ρ for all s ∈ B(Gz).

The set of all such points is denoted by Φ(ε, ρ,B). This translates to the set of
points such that there exists a linearly ordered subset Gz of B such that for all
s ∈ Gz the function ψ assigned to that s lies in absolute values between the two
constants ε and ρ. Additionally, for any element in B \ Gz that is comparable to an
element in Gz, it must be that ψs(z) is greater in absolute value than the original
upper bound.

We can now state the quantitative non-divergence result.

Theorem 4.3.1 (Theorem 6.1 of [35]). Let X be a Besicovitch metric space, µ a
uniformly Federer measure on X, m ∈ Z+ and C, α, ρ > 0. Suppose that we are
given a poset B, a ball B = B(x, r) in X, and a mapping ψ : B → C(B̃), where
B̃ := B(x, 3mr), such that the following holds:

(A0) l(B) ≤ m;

(A1) ψs is (C, α)-good on B̃ with respect to µ for all s ∈ B;

(A2) ||ψs||µ,B ≥ ρ for all s ∈ B;

(A3) #{s ∈ B : |ψs(y)| < ρ} < ∞ for all y ∈ B̃ ∩ suppµ.

Then one has that

µ (B \ Φ(ε, ρ,B)) ≤ Cm
(
NXD

2
µ

)m
(
ε

ρ

)α

µ(B), (4.11)

for all ε ≤ ρ.
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A proof of this theorem is given in [35]. The idea of the proof is to do an induction
on m (where the claim is trivial for m = 0). That is it will be assumed that for
m ≥ 1 the statement of equation (4.11) is true for some m− 1. A poset B′ then of
length less than m− 1 will be introduced that can be shown to satisfy the conditions
(A0-3) and will be used to show that the statement is true for the originally defined
poset B.

The theorem is proved for a subset E of the ball B where

E := {y ∈ B ∩ suppµ : H(y) ̸= ∅},

and
H(y) := {s ∈ B : |ψs(y)| < ρ}.

This is because if H(y) is empty then y must be (ε, ρ)-marked for any ε > 0 by just
taking G = {∅}. Therefore to prove the theorem we instead only need to show that

µ (E \ Φ(ε, ρ,B)) ≤ Cm
(
NXD

2
µ

)m
(
ε

ρ

)α

µ(B).

This implies the theorem as the smaller set E is considered rather than the whole
ball.

4.3.1 Application to a Specific Poset

The next step to create an auxiliary lemma which will be used in the case studied
is to apply theorem 4.3.1 to the poset B(D,m) as defined by (4.10) where the
relation is the inclusion relation ⊆. To do this, it is needed to define a function
ν : M(R,D,m) 7→ R+ to be norm-like if the following holds:
(N1) for any ∆,∆′ ∈ M(R,D,m) with ∆′ ⊂ ∆ and rk(∆′) = rk(∆) then

ν(∆′) ≥ ν(∆);

(N2) there exists Cν > 0 such that for any ∆ ∈ M(R,D,m) and any γ /∈ R∆,

ν(∆ + Dγ) ≤ Cν · ν(∆) · ν(Dγ);

(N3) for every submodule ∆ of Dm, the function GL(m,R) → R+, g 7→ ν(g∆), is
continuous.

This function will allow the notion of size to be associated to submodules.
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Theorem 4.3.2 (theorem 7.3 of [35]). Let X be a Besicovitch metric space, µ a
uniformly Federer measure on X, and let D ⊂ K ⊂ R be as described on page 45, R
being a topological ring. For m ∈ N, let a ball B = B(x0, r0) ⊂ X and a continuous
map h : B̃ → GL(m,R) be given, where B̃ stands for B(x0, 3mr0). Also let ν be a
norm-like function on M(R,D,m). For any ∆ ∈ B(D,m) denote by ψ∆ the function
x 7→ ν(h(x)∆) on B̃. Now suppose for some C, α > 0 and 0 < ρ < 1/Cν one has

(i) for every ∆ ∈ B(D,m), the function ψ∆ is (C, α)-good on B̃ with respect to µ;

(ii) for every ∆ ∈ B(D,m), ||ψ∆||µ,B ≥ ρ;

(iii) #{∆ ∈ B(D,m) : ψ∆(x) < ρ} < ∞ for all x ∈ B ∩ suppµ.
Then for any positive ε ≤ ρ one has

µ ({x ∈ B : ν(h(x)γ) < ε for some γ ∈ Dm \ {0}}) ≤ mC
(
NXD

2
µ

)m
(
ε

ρ

)α

µ(B).

The proof of this is more apparent and can be seen in full in [35] but a brief
outline will be given here for completeness. The conditions given in the theorem
readily give (A1-3) and (A0) is true as B(D,m) is a poset of length m. Therefore
the only thing to prove is that

B \ Φ(ε, ρ,B) = {x ∈ B : ν(h(x)γ) < ε for some γ ∈ Dm \ {0}}

or equivalently

Φ(ε, ρ,B) ⊂ {x ∈ B : ν(h(x)γ) ≥ ε for some γ ∈ Dm \ {0}}.

This is done by taking a (ε, ρ)-marked point x ∈ B and letting {0} = ∆0 ⊊ ∆1 ⊊
· · · ⊊ ∆l = Dm be the elements of Gx ∪ {{0},Dm}. Then take any γ ∈ Dm \ {0}
so that for some 1 ≤ i ≤ l it is that γ ∈ ∆i \ ∆i−1. It is then shown that for
∆′ := D∆i−1 + Dγ,

∆ := K∆′ ∩ Dm = K∆ ∩ Dm ⊂ K∆i ∩ Dm = ∆i,

so that ∆ is then comparable to any element of Gx. Finally the properties (M1-2)
can be used with this to conclude that ν(h(x)γ) ≥ ε.

4.3.2 Specialising the Theorem Further

Define first the function δ : ΩS,m → R+ by

δ(Λ) := min {c(x) : x ∈ Λ \ {0}} , (4.12)
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where c(x) is defined by equation (4.1). This defines the smallest value of the product
of all the norms || · ||v across all v ∈ S. This therefore is a strictly positive number
for any x ̸= 0. Now there is enough information to state the final specialisation of
Theorem 4.3.1 as presented by Kleinbock and Tomanov.

Theorem 4.3.3 (Theorem 9.3 of [35]). Let X be a Besicovitch metric space, µ a
uniformly Federer measure on X, and let S be as above. For any m ∈ N, let a ball
B = B(x0, r0) ⊂ X and a continuous map h : B̃ → GL(m,QS) be given, where B̃
stands for B(x0, 3mr0). Now suppose that for some C, α > 0 and 0 < ρ < 1 one has

1. for every ∆ ∈ B(ZS,m), the function cov(h(·)∆) is (C, α)-good on B̃ with
respect to µ;

2. for every ∆ ∈ B(ZS,m), || cov(h(·)∆)||µ,B ≥ ρ.
Then for any positive ε ≤ ρ one has

µ ({x ∈ B : δ(h(x)Zm
S ) < ε}) ≤ mC

(
NXD

2
µ

)m
(
ε

ρ

)α

µ(B). (4.13)

The remainder of this Chapter will be spent looking at how this specialisation
is derived from Theorem 4.3.2 by looking at a specific set M(D, K,R) and the
covolume function.

The set M(QS,ZS,m) is the set of elements g∆ such that g ∈ GL(m,QS) and ∆
is a submodule of Zm

S . Consider ∆ to be a discrete ZS-submodule of Qm
S . This can

be then seen to be a free ZS-submodule as it is possible to find a basis {a1, a2, ..., ar}
in Qm

S for some r ≤ m such that

∆ = ZSa1 ⊕ · · · ⊕ ZSar.

A proof of this statement can be found as Proposition 8.1 in [35]. The consequence
of this is that the set of discrete ZS-submodules of Qm

S coincides with M(QS,ZS,m)
and so we can consider the elements to be lattices in the set

ΩS,m = {gZm
S : g ∈ GL(m,Qs)}. (4.14)

It can then be seen by Lemma 8.2 of [35], that for such a ZS-submodule ∆ of
Qm

S , its (appropriately normalized) covolume can be computed as the content of the
wedge product of its ZS-basis vectors:

cov(Λ) = c(a1 ∧ · · · ∧ ak) . (4.15)
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This covolume function can be seen to be norm-like by the checking properties (N1-3).
The proof of this can be seen as Lemma 9.1 of [35].

A property of the covolume function is that it is not possible to have an infinite
number of sublattices of Λ whose covolume is at most ρ. This statement was proved
as Corollary 8.7 of [35]. As a consequence of this property it means that the third
condition of Theorem 4.3.2 is true by definition.

The last thing to consider is the condition that cov(h(x)γ) < ε for some γ ∈
Zm

S \ {0} implies that δ(h(x)Zm
S ) < ε. The condition that δ(h(x)Zm

S ) < ε means
that there exists a vector x ∈ δ(h(x)Zm

S ) \ {0} with c(x) < ε. By the definition of
covolume it must then be that cov(xZm

S ) < ε and so it must be possible to find some
γ ∈ Zm

S \ {0} such that cov(h(x)γ) < ε.

4.3.3 Specialisation for the Case Considered

We will now specialise Theorem 5.3.1 for our specific case:

Terms in Theorem 5.3.1 Specific definition in the case considered
Besicovitch Metric Space X Qp

Federer Measure µ Haar measure µ on Qp with µ(Zp) = 1
Set of valuations S {p,∞}

Besicovitch constant NX 1
Federer constant Dµ ≤ 3p

Now we use this information to specialise Theorem 5.3.1 to our case in the following
corollary.

Corollary 4.3.4. Let µ be Haar measure on Qp normalized so that µ(Zp) = 1,
S = {p,∞}, and h : B̃ → GL(n + 1,QS) be a map, where B := B(x0, r) and
B̃ = B(x0, 3n+1r) are balls in Qp. Suppose that for some C, α > 0 and 0 < ρ < 1
one has

(1) for every ∆ ∈ B(ZS, n+ 1), the function cov(h(·)∆) is (C, α)-good on B̃ with
respect to µ;

(2) for every ∆ ∈ B(ZS, n+ 1), ∥ cov(h(·)∆)∥B ≥ ρ.
Then for any positive ε ≤ ρ one has

µ
(
{x ∈ B : δ(h(x)Zn+1

S ) < ε}
)

≤ C(n+ 1)(3p)2(n+1)
(
ε

ρ

)α

µ(B). (4.16)
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Results

The work in this chapter comes from joint work with Victor Beresnevich [6].

5.1 INTRODUCTION

Throughout this Section p ∈ Z is as usual a prime number and n ∈ Z, n ≥ 2. Given
an integer polynomial P = anx

n + · · · + a1x+ a0 ∈ Z[x], we define the height of P as

H(P ) := max
0≤i≤n

|ai|. (5.1)

In this Section we build on the approach of [5], which also enables quantitative
bounds for the number of polynomials with ‘close’ roots. But first, for convenience,
we will restate our main non-quantitative result.

Theorem A. For any n ≥ 2 and any prime p, we have that

κirr(n, p) ≥ n+ 1
3 .

5.1.1 The quantitative theory of p-adic root separation

Throughout n ≥ 2 is an integer. Given Q ≥ 1, let

Pn(Q) := {P ∈ Z[x] : deg(P ) = n and H(P ) ≤ Q}. (5.2)

53
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Let θ ≥ 0, Q ≥ 1 and C0, C1, C2 > 0. Define the following set

An(Q, θ, C0, C1, C2) :=


α ∈ Zp :

∃ irreducible P ∈ Z[x] with degP = n,
P (α) = 0 and C1Q ≤ H(P ) ≤ C2Q

such that ∃ β ∈ Qp with P (β) = 0
and 0 < |α− β|p ≤ C0Q

−θ


.

The following is our main result on p-adic algebraic numbers with a conjugate
at a specified distance. In what follows µ will denote the Haar measure on Qp

normalized so that µ(Zp) = 1.

Theorem 5.1.1. Let n ≥ 2, p be a prime and 0 < κ < 1. Then there are constants
C0, C1, C2 > 0 depending on n, p and κ only such that the following holds. For any
θ satisfying

0 ≤ θ ≤ n+ 1
3 , (5.3)

and any ball B := B(x0, r) = {x ∈ Zp : |x− x0|p ≤ r} ⊂ Zp

µ

 ⋃
α∈An(Q,θ,C0,C1,C2)

B(α,C0Q
−n−1+2θ) ∩B

 ≥ κµ(B) (5.4)

for all sufficiently large Q.

Corollary 5.1.2. Let n ≥ 2, p be a prime and 0 < κ < 1. Then there are constants
C0, C1, C2 > 0 depending on n, p and κ only such that for any θ satisfying (5.3) and
any ball B ⊂ Zp

#(An(Q, θ, C0, C1, C2) ∩B) ≥ κ

pC0
·Qn+1−2θµ(B) (5.5)

for all sufficiently large Q.

Proof. By the obvious covering argument it follows that

#(An(Q, θ, C0, C1, C2) ∩B)pC0 ·Q−n−1+2θ

≥ µ

 ⋃
α∈An(Q,θ,C0,C1,C2)

B(α,Q−n−1+2θ) ∩B


≥ κµ(B)

where the final line comes from using (5.4). From this equation (5.5) follows by
rearranging.
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Corollary 5.1.3. Let n ≥ 2. Then for all sufficiently large Q the number of p-adic
algebraic numbers α ∈ Zp of degree n with height H(α) ≤ Q such that

|α− β|p ≪ Q− n+1
3 (5.6)

for some β ∈ Qp that is conjugate to α, is ≫ Q
n+1

3 . The implied constants depend
on n and p only.

Proof. This result follows from Corollary 5.1.2 by taking θ = (n+ 1)/3, κ = 1/2 and
B = Zp.

Proof of Theorem A. This immediately follows on from Corollary 5.1.3.

5.1.2 New results on Discriminants

For a sufficiently large Q we want to estimate the number of irreducible polynomials
P of degree n which have a small discriminant satisfying

0 < |D(P )|p ≪ Q−2ν (5.7)

for some fixed ν > 0 where

D(P ) := a2n−2
n

∏
1≤i<j≤n

(αi − αj)2. (5.8)

Here an is the leading coefficient of P and α1, . . . , αn are the roots of P . Define now
the set of polynomials of interest

Dn,p,γ(Q, ν) :=
P ∈ Pn(Q) :

0 < |D(P )|p ≤ γQ−2νand
P is irreducible over Q

 . (5.9)

The notation here is a simplified version of that used above in Section 3.3 as we only
use one condition on the discriminant.

Theorem B. Let n ≥ 2 be an integer, p be a prime. Then there exist constants
Q0 = Q0(n, p) > 1, γ = γ(n, p) > 0 and C ′ = C ′(n, p) > 0 such that for all Q ≥ Q0

and any
0 ≤ ν ≤ n− 1 (5.10)

we have that
#Dn,p,γ(Q, ν) ≥ C ′Qn+1− n+2

n
ν . (5.11)
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5.2 AUXILIARY RESULTS FOR POLYNOMIALS

In this Section we state and discuss the following statement, which is instrumental
in establishing all the new results obtained in this work. In short, it allows us to
find many irreducible polynomials with fixed sizes of height and derivatives.

Lemma 5.2.1. Let n ≥ 2 be an integer, p be a prime, v > 0 and 0 < κ < 1. Then
there exists positive constants δ0, C1 and C2 depending only on n, p and κ only such
that for any ball

B := B(x0, r) = {x ∈ Zp : |x− x0|p ≤ r} , (5.12)

where x0 ∈ Zp and 0 ≤ r ≤ 1, there exists Q0 = Q0(B, n, p, v, κ) such that for any
Q ≥ Q0 and any parameters

0 < ξ0 ≤ · · · ≤ ξn−1 ≤ ξn = 1 (5.13)

satisfying
n∏

i=0
ξi = Q−(n+1) and ξ0 ≤ Q−1−v , (5.14)

there exists a measurable set GB ⊂ B, depending on n, p, B, κ, Q and ξi’s, such
that

µ(GB) ≥ κµ(B), (5.15)

and for every x ∈ GB there are n + 1 linearly independent primitive irreducible
polynomials P ∈ Z[x] of degree n and height C1Q ≤ H(P ) ≤ C2Q satisfying

δ0ξi ≤
∣∣∣∣ 1i!P (i)(x)

∣∣∣∣
p

≤ ξi (5.16)

for all 0 ≤ i ≤ n, where P (i)(x) denotes the i-th derivative of the polynomial P at x.

The proof of this result will be given in Section 5.4, and it relies on the quantitative
non-divergence estimate of Kleinbock and Tomanov as seen in Chapter 4. In this
Section we provide a reformulation of the r.h.s. inequality of (5.16) in a matrix form
necessary for the use of the quantitative non-divergence estimate.

5.2.1 Outlining the approach

Our first observation is that in the proof of Lemma 5.2.1 it suffices to assume that
the parameters ξi and Q are integer powers of p. Indeed, suppose that we are given
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parameters 0 < ξi ≤ 1 for 0 ≤ i ≤ n and Q > 1. Then we can find integers bi ∈ Z≥0

such that

p−bi ≤ ξi ≤ p−bi+n (5.17)

and
n∑

i=0
bi = t(n+ 1), (5.18)

for some t ∈ N. Then, clearly Q̃/Q, where Q̃ = pt, is bounded below and above by
constants depending on n and p only and p−nξi ≤ ξ̃i ≤ ξi. It is then readily seen
that it suffices to consider ξ̃i = p−bi and Q̃ = pt instead of the initial parameters ξi

and Q. Thus for the rest of the proofs we will assume that

ξi = p−bi and Q = pt (5.19)

for some integers bi ∈ Z≥0 and t ∈ N satisfying (5.18). In particular, we have that

0 < ξi ≤ 1 and
n∏

i=0
ξi = Q−(n+1). (5.20)

In what follows we will assume that

C2 = p2u for some u ∈ Z≥0. (5.21)

Let x ∈ Zp, and let P denote a polynomial in P≤n(Q) with coefficients (a0, . . . , an).
Consider the system of inequalities∣∣∣∣ 1i!P (i)(x)

∣∣∣∣
p

≤ ξi (0 ≤ i ≤ n) . (5.22)

This can be rewritten in the following matrix form:

1 x x2 · · · xn

0 1 2x · · · nxn−1

0 0 1 · · · 1
2n(n− 1)xn−2

... ... ... . . . ...
0 0 0 · · · 1





a0

a1

a2
...
an


p

≤



ξ0

ξ1

ξ2
...
ξn


, (5.23)

where
p

≤ is the component-wise inequality obtained by taking the p-adic norm of the
left hand side. Additionally, rewrite the bound H(P ) ≤ C2Q on the height of P in
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the matrix form as follows:
1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1




a0

a1
...
an


∞
≤


C2Q

C2Q
...

C2Q

 , (5.24)

where
∞
≤ is the component-wise inequality obtained by taking the usual absolute

value on the left.
The following statement will be required to use Minkowski’s Theorem for convex

bodies in order to find solutions to the combination of (5.23) and (5.24):

Proposition 5.2.2. Let x ∈ Zp and ξi be given by (5.19) for some integers bi ∈ Z≥0.
Let Γ be the collection of integer points (a0, . . . , an) satisfying (5.22). Then Γ is a
sublattice of Zn+1 such that

cov(Γ) =
n∏

i=0
ξ−1

i . (5.25)

Proof. To show Γ is a sublattice of Zn+1 it is enough to show for all a, a′ ∈ Γ we have
a−a′ ∈ Γ. Let P1(x) and P2(x) be polynomials with coefficients a = (a0, . . . , an) and
a′ = (a′

0, . . . , a
′
n) respectively that satisfy equation (5.22). Then by the ultrametic

property we have that

|P (x)|p = |(i!)−1P
(i)
1 (x) − (i!)−1P

(i)
2 (x)|p ≤ ξi,

where P = P1 − P2 ∈ Z[x], degP ≤ n has coefficients a − a′. Hence a − a′ ∈ Γ. The
covolume (the volume of the fundamental domain) of the lattice Γ can be found by
reinterpreting (5.22) in the following way. Since the integers are dense in Zp, we
can find x̃ ∈ Z such that |x − x̃| < ξi. Then by the ultrametric property we have
that |i!−1P (i)(x)|p = |i!−1P (i)(x̃)|p. Thus within (5.22) we can assume without loss of
generality that x ∈ Z. Then, the quantity (i!)−1P (i)(x) is in Z and, by using (5.19),
we have that ∣∣∣∣ 1i!P (i)(x)

∣∣∣∣
p

≤ p−bi ⇐⇒ 1
i!P

(i)(x) ≡ 0 mod pbi . (5.26)

From the congruence condition, we see that each element of Γ satisfies

1
i!P

(i)(x) ≡ 0 mod pbi ,
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which implies that the i-th coordinate lies in pbiZ. Therefore, Γ contains the lattice
generated by pb0e0, . . . , p

bnen hence it follows then that Γ has covolume

cov(Γ) = vol(Rn+1/Γ) =
n∏

i=0
pbi =

n∏
i=0

ξ−1
i ,

which verifies (5.25).

Using this proposition and Minkowski’s first Theorem it can be easily shown for
all x ∈ Zp that we can find a solution to (5.22). Indeed, in Section 5.4 we will demon-
strate, by using the second theorem of Minkowski, that under a ‘mild’ restriction
on x and a suitable choice of C2 we can find n + 1 primitive linearly independent
points of Γ in BQ,C2 which will define irreducible polynomials P1, . . . , Pn+1. Here we
outline the approach for obtaining lower bounds in (5.16) as well as lower bound on
the heights of Pi.

If we strengthen one of the inequalities in equation (5.22), say with the index
i′ between 0 and n, by multiplying the right hand side by some small constant
δ2(n+1) > 0, where δ is a negative integer power of p, we obtain the inequalities∣∣∣∣ 1i!P (i)(x)

∣∣∣∣
p

≤ δiξi (0 ≤ i ≤ n), (5.27)

where

δi =

δ
2(n+1)C−n−1

2 if i = i′,

1 otherwise .
(5.28)

Doing this, we can then show using the quantitative non-divergence estimate, as
stated above in Section 4.3.2, that this forces x to lie in a very small set. Hence by
then taking x to lie outside of the union of these sets, taken over all i′ ∈ {0, . . . , n},
we can find a lower bound required (5.16).

To use the quantitative non-divergence estimate we need to re-normalize both
systems of matrix inequalities (5.23) and (5.24) so as to get the same values, to be
denoted R, on the right hand side of the inequalities. This is achieved by multiplying
each matrix on the left hand sides of (5.23) and (5.24) by diagonal matrices filled
with gi’s and di’s respectively, where gi = |gi|−1

p is a power of p and di ∈ Q>0 for
0 ≤ i ≤ n. The precise choice of these scaling factors will depend on the inequalities
(5.23) and (5.24). Additionally we will require the normalisation condition

n∏
i=0

|gi|p|di| = 1 . (5.29)
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Obviously, we then get that for all 0 ≤ i ≤ n

|gi|pδiξi = R, (5.30)
diC2Q = R. (5.31)

Multiplying these equations together we get that

Cn+1
2 Qn+1

n∏
i=0

|gi|pdiδiξi = R2(n+1) (5.32)

and by the conditions placed on ξi, Q, gi and d by equations (5.20), (5.28) and (5.29)
this becomes

δ = R. (5.33)

Therefore we have that

|gi|p = R

δiξi

= δ

δiξi

=


δ1−2(n+1)Cn+1

2
ξi

if i = i′,

δ

ξi

otherwise ,
(5.34)

di = R

Q
= δ

Q
. (5.35)

It should be noted that each di does not depend on i hence we must have d = d0 =
· · · = dn. From here the following matrices are defined:

h1(x) =


g0 0 · · · 0
0 g1 · · · 0
... ... . . . ...
0 0 · · · gn




1 x · · · xn

0 1 · · · nxn−1

... ... . . . ...
0 0 · · · 1

 , (5.36)

h2(x) = d · In+1. (5.37)

This now gives us the map

h := (h1, h2) : Qp → GL(n+ 1,QS), (5.38)

where S = {p,∞} and GL(n+ 1,QS) = GL(n+ 1,Qp) × GL(n+ 1,R), so that h1

defines a linear transformation in GL(n+1,Qp) and h2 defines a linear transformation
in GL(n+ 1,R).

Using equations (5.36) and (5.37) with gi and d defined by equations (5.34) and
(5.35), we get that

∥h1(x)a∥p ≤ δ , (5.39)

∥h2(x)a∥∞ ≤ δ . (5.40)
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We now summarise the above discussion as the following statement.

Proposition 5.2.3. Let ξ0, · · · , ξn, Q be as in (5.19) and (5.20) for some integers
bi ∈ Z≥0 and t ∈ N. Let δ > 0 be a negative integer power of p. Let C2 be defined by
(5.21). Fix any i′ ∈ {0, . . . , n} and define δi (0 ≤ i ≤ n) as in equation (5.28). Let
x ∈ Zp. Suppose that (5.27) holds for some non-zero polynomial P ∈ Z[x] of degree
≤ n and height ≤ C2Q. Then (5.39) and (5.40) hold, where a ∈ Zn+1 \ {0} is the
vector of coefficients of P , h1 and h2 are given by (5.36) and (5.37) with gi = |gi|−1

p

and di defined by (5.34) and (5.35).

In a similar way we can ensure a lower bound on the height of the polynomial by
considering the system (5.22) together with

max
0≤i≤n

|ai| ≤ δ2Q . (5.41)

By using the quantitative non-divergence estimate we will demonstrate that the
measure of x satisfying the above inequalities is small provided that δ is small enough.
Then on taking x outside the set defined by (5.22) and (5.41) we will ensure a lower
bound of H(P ).

We re-normalize (5.22) and (5.41) in the same way as before where gi = |gi|−1
p is

a power of p and di ∈ Q>0 for 0 ≤ i ≤ n such that equation (5.29) holds to get

|gi|pξi = R, (5.42)
|di|δ2Q = R. (5.43)

By multiplying these 2(n + 1) equations together and simplifying we obtain that
R = δ and the constants are now defined as

|gi|p = R

ξi

= δ

ξi

, (5.44)

di = R

δ2Q
= 1
δQ

. (5.45)

In a similar way we can then define the matrices h1(x) and h2(x) as in equation
(5.36) and (5.37) with the gi’s as defined in equation (5.44) and d = di for all i
as defined in equation (5.45). Once again we arrive at (5.39) and (5.40). We now
summaries the above discussion as the following statement.
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Proposition 5.2.4. Let ξ0, · · · , ξn, Q be as in (5.19) and (5.20) for some integers
bi ∈ Z≥0 and t ∈ N. Let δ > 0 be an integer power of p. Let x ∈ Zp. Suppose that
(5.22) and (5.41) hold for some non-zero polynomial P ∈ Z[x] of degree ≤ n. Then
(5.39) and (5.40) hold, where a ∈ Zn+1 \ {0} is the vector of coefficients of P , h1

and h2 are given by (5.36) and (5.37) with gi = |gi|−1
p and di defined by (5.44) and

(5.45).

5.3 A QUANTITATIVE NON-DIVERGENCE ESTIMATE

5.3.1 A result of Kleinbock and Tomanov

In this subsection we shall recall appropriate material already discussed in Chapter
4. In this work we will be working with X = Qp and Haar measure µ and as seen
above it is that Dµ ≤ 3p.

Given a function f : X → F with values in a valued field F , recall from equation
(4.4) the following norm:

∥f∥µ,B = sup{c : µ({x ∈ B : |f(x)| > c}) > 0} , (5.46)

where B is a ball in X with µ(B) > 0.
Let S be a finite set of normalised valuations of Q including the Archimedean one.

Let QS be the direct product of completions Qv of Q over v ∈ S and GL(n+1,QS) :=∏
v∈S GL(n + 1,Qv). Given x = (x(v))v∈S ∈ Qn+1

S , recall from equation (4.2) the
content of x is defined as

c(x) :=
∏
v∈S

∥x(v)∥v , (5.47)

where the v-norm of x(v) = (x(v)
0 , . . . , x(v)

n ) is given by

∥x(v)∥v = max{|x(v)
0 |v, . . . , |x(v)

n |v} .

Also recall from equation (4.12) for a given subset Λ ⊂ Qn+1
S , the function

δ(Λ) := min {c(x) : x ∈ Λ \ {0}} .

In the case that S = {∞}, Qn+1
S = Rn+1. Then for a lattice, or a discrete subgroup, Λ

of Rn+1, δ(Λ) is simply the length of its shortest vector with respect to the supremum
norm. We note that Λ can be obtained by a applying a linear transformation
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g ∈ GL(n+ 1,R) to a discrete subgroup ∆ of Zn+1, thus Λ = g∆. In this work we
will be interested in the case S = {p,∞} for a prime p. In this case, Λ will be a
discrete ZS-submodule of Qn+1

S , where ZS = Z[ 1
p
]. Respectively, Λ will be of the

form g∆ for some g ∈ GL(n+ 1,QS) and a discrete submodule ∆ of ZS. Following
[35] let B(ZS, n+ 1) be the set of all non-zero primitive submodules of Zn+1

S .
Recall also the calculation of covolume from equation (4.15), namely that for

given a ZS-submodule
Λ = ZSa1 ⊕ · · · ⊕ ZSak

of Qn+1
S , can be computed as the content of the wedge product of its ZS-basis vectors:

cov(Λ) = c(a1 ∧ · · · ∧ ak) . (5.48)

Additionally recall Theorem 4.3.3, as

Theorem 5.3.1 (Theorem 9.3 of [35]). Let X be a Besicovitch metric space, µ a
uniformly Federer measure on X, and let S be a finite collection of valuations of Q
including the Archimedean one. Let m ∈ N, and let a ball B = B(x0, r0) ⊂ X and a
continuous map h : B̃ → GL(m,QS) be given, where B̃ stands for B(x0, 3mr0). Now
suppose that for some C, α > 0 and 0 < ρ < 1 one has

(1) for every ∆ ∈ B(ZS,m), the function cov(h(·)∆) is (C, α)-good on B̃ with
respect to µ;

(2) for every ∆ ∈ B(ZS,m), ∥ cov(h(·)∆)∥µ,B ≥ ρ.

Then for any positive ε ≤ ρ one has

µ ({x ∈ B : δ(h(x)Zm
S ) < ε}) ≤ mC

(
NXD

2
µ

)m
(
ε

ρ

)α

µ(B). (5.49)

In the application of Theorem 5.3.1 considered in this chapter the corresponding
function will always be polynomials. Hence finally we recall Lemma 4.1.3 as

Lemma 5.3.2 (Lemma 3.4 of [35]). Let F be either R or a locally compact ultrametric
valued field. Then for any d, k ∈ N, any polynomial f ∈ F [x1, x2, . . . , xd] of degree
not greater than k is (C, 1/dk)-good on F d with respect to Haar measure λ, where C
is a constant depending only on d and k.

Recall now the specialisation of Theorem 5.3.1 for our specific case from section
4.3.3
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Corollary 5.3.3. Let µ be Haar measure on Qp normalized so that µ(Zp) = 1,
S = {p,∞}, and h : B̃ → GL(n + 1,QS) be a map, where B := B(x0, r) and
B̃ = B(x0, 3n+1r) are balls in Qp. Suppose that for some C, α > 0 and 0 < ρ < 1
one has

(1) for every ∆ ∈ B(ZS, n+ 1), the function cov(h(·)∆) is (C, α)-good on B̃ with
respect to µ;

(2) for every ∆ ∈ B(ZS, n+ 1), ∥ cov(h(·)∆)∥B ≥ ρ.
Then for any positive ε ≤ ρ one has

µ
(
{x ∈ B : δ(h(x)Zn+1

S ) < ε}
)

≤ C(n+ 1)(3p)2(n+1)
(
ε

ρ

)α

µ(B). (5.50)

The aim is now to show that the map h as defined in equations (5.36)–(5.38)
satisfies the properties required in Corollary 5.3.3.

5.3.2 Verifying conditions (1) and (2) in Corollary 5.3.3

It should be noted that Condition (1) has been mostly verified above by Lemma 5.3.2
but it must also be checked that the coordinates of the corresponding multivector are
in fact polynomials in order to use the lemma. This will be done later in this Section.
The main content here will concentrate on establishing Condition (2). We begin
with auxiliary statements regarding the parameters gi and d defined in Section 5.2.

Proposition 5.3.4. For 0 ≤ i ≤ n, let gi and d be integer powers of p such that∏n
i=0(|gi|pd) = 1. Further suppose that for some parameters s1, . . . , sn ≥ s0 := 1, we

have that
sigi ≤ si+1gi+1 for 0 ≤ i ≤ n− 1. (5.51)

Then for all 1 ≤ k ≤ n(
k−1∏
i=0

d|gi|p
)−1

≤ max
{

1
d|g0|p

, |gn|pd
n−1∏
i=1

si

}
. (5.52)

Proof. First note that (∏k−1
i=0 d|gi|p)−1 = ∏k−1

i=0 d
−1gi since each gi is a power of p.

Using the inequalities sigi ≤ si+1gi+1 we get that
g0

d
≤ s1g1

d
≤ · · · ≤ sngn

d
. (5.53)

Define j0 (if it exists) to be the minimum of all possible j such that sjgjd
−1 ≥ 1,

then it is readily seen that there are 4 different types of behaviour of the product
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Πk := ∏k
i=0 sigid

−1 as function of k, summarized in Figure 5.1, and in each case the
maximal value of the product is achieved at either k = 0 or k = n− 1.

k

(a)

k

(b)

k

(c)

k

(d)

Figure 5.1: (a) j0 does not exist, (b) j0 = 0,
(c) j0 > 0, Π0 ≥ Πn−1, (d) j0 > 0, Π0 ≤ Πn−1

Indeed, we must have that

g0

d
≥ g0

d
· s1g1

d
≥ · · · ≥

j0−1∏
i=0

sigi

d
≤

j0∏
i=0

sigi

d
≤ · · · ≤

n−1∏
i=0

sigi

d
. (5.54)

It is then clear that the largest of all possible values of ∏k
i=0 sigid

−1 must be
max{g0d

−1,
∏n−1

i=0
sigi

d
}. Since ∏n

i=0 gid
−1 = 1 and gi = |gi|−1

p we obtain (5.52).
If j0 does not exist, then we just have the left part of (5.54) so that the maximal

value is g0d
−1 and we again obtain (5.52).

We now specialise Proposition 5.3.4 further by using specific values of |gi|p and d
given by (5.34) and (5.35).

Corollary 5.3.5. Let n ≥ 2, 0 < δ < 1 be an integer power of p, Q ≥ 1,

ξ0 ≤ · · · ≤ ξn (5.55)

and (5.19) and (5.20) hold. Fix any 0 ≤ i′ ≤ n and define d and gi for 0 ≤ i ≤ n

by equations (5.34) and (5.35) respectively. Assume that ξn = 1 and ξ0 ≤ Q−1−v for
some 0 < v ≤ 1. Then for every 1 ≤ k ≤ n

k−1∏
i=0

d|gi|p ≥ Qvδ4n+2C−2n−2
2 . (5.56)

Proof. From the definition of d and gi it can be seen that
n∏

i=0
d|gi|p = 1 . (5.57)
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Using equations (5.34) and (5.35) with δi defined by equation (5.28) it can be easily
seen that

1
d|g0|p

=


Qξ0

δδ1−2(n+1)Cn+1
2

if i′ = 0,
Qξ0
δ2 otherwise.

≤


δ2n

QvCn+1
2

if i′ = 0,
1

Qvδ2 otherwise.
(5.58)

d|gn|p =


δδ1−2(n+1)Cn+1

2
Qξn

if i′ = n,

δ2

Qξn
otherwise.

=


Cn+1

2
Qδ2n if i′ = n,

δ2

Q
otherwise.

(5.59)

Recall, by (5.34), that

gi =


ξi

δ1−2(n+1)Cn+1
2

if i = i′,

ξi

δ
otherwise .

Then, by (5.55), inequalities (5.51) are fulfilled with (s1, . . . , sn) = (1, . . . , 1) if i′ = 0
and with

(s1, . . . , sn) = (1, . . . , 1︸ ︷︷ ︸
i′−1

, δ−2(n+1)Cn+1
2 , 1, . . . , 1︸ ︷︷ ︸

n−i′

) if i′ > 0 .

Combining (5.58) and (5.59) with Proposition 5.3.4 and using the fact that 0 < δ < 1
we obtain that(

k−1∏
i=0

d|gi|p
)−1

≤ max
{

1
Qvδ2 ,

Cn+1
2

Qvδ2n

n−1∏
i=0

si

}
≤ C2n+2

2
Qvδ4n+2 ,

implying (5.56), as required.

The following statement is an analogue of Corollary 5.3.5 for the case (5.44) and
(5.45) instead of (5.34) and (5.35).

Corollary 5.3.6. Let n ≥ 2, 0 < δ < 1 be an integer power of p, Q ≥ 1,

ξ0 ≤ · · · ≤ ξn (5.60)

and (5.19) and (5.20) hold. Define d and gi for 0 ≤ i ≤ n by equations (5.44) and
(5.45) respectively. Assume that ξn = 1 and ξ0 ≤ Q−1−v for some 0 < v ≤ 1. Then
for every 1 ≤ k ≤ n

k−1∏
i=0

d|gi|p ≥ Qv . (5.61)
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Proof. The proof of this is similar to that of Corollary 5.3.5. Again from the definition
of d and gi it can be seen that

n∏
i=0

d|gi|p = 1 . (5.62)

Using equations (5.44) and (5.45) with δi defined by equation (5.28) it can be easily
seen that

1
d|g0|p

= ξ0Q ≤ Q−v (5.63)

d|gn|p = 1
Qξn

= Q−1 (5.64)

Recall, by (5.44), that
gi = ξi

δ

Then, by (5.55), inequalities (5.51) are fulfilled with (s1, . . . , sn) = (1, . . . , 1). Com-
bining (5.63) and (5.64) with Proposition 5.3.4 we obtain that(

k−1∏
i=0

d|gi|p
)−1

≤ max
{

1
Qv

,
1
Q

}
= 1
Qv

,

implying (5.61), as required.

We now have all the parts to show that the map h as defined above satisfies the
properties stated in Corollary 5.3.3.

Proposition 5.3.7. Let ∆ ∈ B(ZS, n + 1) where S = {p,∞} and a1, . . . ,ak be a
basis of ∆, let h1 and h2 be given by (5.36)and (5.37) respectively. Then

h2a1 ∧ · · · ∧ h2ak = dk(a1 ∧ · · · ∧ ak) (5.65)

and the coordinates of h1(x)a1 ∧ · · · ∧ h1(x)ak in the standard basis are(∏
i∈I

gi

)
p−lRI(x) , (5.66)

where I = {i1 < · · · < ik} ⊂ {0, . . . , n}, RI(x) ∈ Z[x] is a polynomial of degree
≤ M =

[
(n+1

2 )2
]

and height

H(RI) ≪ ∥pl(a1 ∧ · · · ∧ ak)∥∞ (5.67)

and l is the smallest integer such that pl(a1 ∧ · · · ∧ ak) is an integer multivector.
Furthermore, RI is non-zero for I = {0, . . . , k − 1}.
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Proof. First, we note that (5.67) is an immediate consequence of the fact that
h2ai = dai for every 1 ≤ i ≤ k. Now, consider the matrix

A =



a11 a12 · · · a1k

a21 a22 · · · a2k

a31 a32 · · · a3k

... ... . . . ...
an+1,1 an+1,2 · · · an+1,k


(5.68)

of the coordinates of a1, . . . , ak. Then, the coordinates of h1(x)a1 ∧ · · · ∧ h1(x)ak in
the standard basis are the determinants det(h1,I(x)A), where I = {i1 < · · · < ik} ⊂
{0, . . . , n} and h1,I(x) is the matrix composed of the rows number i1 + 1, . . . , ik + 1
from h1(x).

When I = {0, . . . , k − 1}. Then, it is readily seen that

det
(
h1,I(x)A

)
=

= det


g0P1(x) g0P2(x) · · · g0Pk(x)
g1P

′
1(x) g1P

′
2(x) · · · g1P

′
k(x)

... ... . . . ...
gk

(k−1)!P
(k−1)
1 (x) gk

(k−1)!P
(k−1)
2 (x) · · · gk

(k−1)!P
(k−1)
k (x)

 , (5.69)

where Pi(x) = ∑n
j=0 aj+1,ix

j. It can be easily verified that the right hand side of
(5.69) is a constant times the Wronskian of P1, . . . , Pk so we know it is non-zero.
This follows from the fact that P1, . . . , Pk are linearly independent over R, and this
is because a1, . . . , ak are linearly independent over Q.

Another way to work out det
(
h1,I(x)A

)
is by using the Laplace identity:

det
(
h1,I(x)A

)
= (gi1ri1 ∧ · · · ∧ gik

rik
) · (a1 ∧ · · · ∧ ak) , (5.70)

where ri is the i-th row of h1(x).
Expanding ri1 ∧ · · · ∧ rik

out we obtain a vector of N =
(

n+1
k

)
polynomials, say

Q̂1, . . . , Q̂N ∈ Z[x], of degree

≤ n+ · · · + (n+ 1 − k) − 1 − · · · − (k − 1) ≤
[
(n+1

2 )2
]

= M .

Then we can write Q̂i(x) = ∑M
j=0 q̂j,ix

j for 1 ≤ i ≤ N where q̂j,i ∈ Z depend only on
n and k. In turn, we can write a1 ∧ · · · ∧ ak = (â1, . . . , âN), where âj ∈ Z

[
1
p

]
for
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each j. By definition, l is the smallest integer such that

(b̂1, . . . , b̂N) := pl(â1, . . . , âN) ∈ ZN . (5.71)

Hence, by (5.70) and (5.71),

det(h1,I(x)A) =
(∏

i∈I

gi

)
(Q̂1(x), . . . , Q̂N(x)) · (â1, . . . , âN)

=
(∏

i∈I

gi

)
p−l(Q̂1(x), . . . , Q̂N(x)) · (b̂1, . . . , b̂N)

=
(∏

i∈I

gi

)
p−l

N∑
i=1

b̂iQi(x)

=
(∏

i∈I

gi

)
p−l

N∑
i=1

b̂i

M∑
j=0

q̂j,ix
j

=
(∏

i∈I

gi

)
p−l

M∑
j=0

cjx
j, where cj :=

N∑
i=1

b̂iq̂j,i .

(5.72)

Define
RI(x) :=

M∑
j=0

cjx
j . (5.73)

Clearly RI(x) ∈ Z[x]. Finally, it can be seen that

|cj| ≤
M∑

i=1

∣∣∣b̂iq̂j,i

∣∣∣ ≪n max
i

|b̂i| = ∥(b1 ∧ · · · ∧ bk)∥∞ = ∥pl(a1 ∧ · · · ∧ ak)∥∞ ,

whence (5.67) follows.

Proposition 5.3.8. Let ∆ ∈ B(ZS, n+ 1) where S = {p,∞} and h1(x) and h2(x)
be the matrices from equations (5.36) and (5.37) respectively. Then

cov(h(x)∆) ≫
(

k−1∏
i=0

d|gi|p
)

|R̃(x)|p (5.74)

for some R̃ ∈ ZS[x] such that

R̃ =
M∑

j=0
c̃jx

j with max
j

|c̃j|p = 1 . (5.75)

Proof. Using the same notation as in the proof of Proposition 5.3.7, let

I = {0, . . . , k − 1 }
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where k = rank ∆. By Proposition 5.3.7, equations (5.47) and (5.48), we have that

cov(h(x)∆) ≥ | det(h1,I(x)A)|p · ∥dk(a1 ∧ · · · ∧ ak)∥∞,

=
∣∣∣∣∣
(

k−1∏
i=0

gi

)
p−lRI(x)

∣∣∣∣∣
p

· ∥dkp−lpl(a1 ∧ · · · ∧ ak)∥∞,

=
(

k−1∏
i=0

d|gi|p
)

|RI(x)|p ∥pl(a1 ∧ · · · ∧ ak)∥∞.

(5.76)

As in the proof of Proposition 5.3.7, let cj denote the coefficients of RI , so that RI

has form (5.73). Let C̃ = maxj |cj|p and define

R̃(x) := RI(x)C̃ =
M∑

j=0
c̃jx

j , where c̃j = cjC̃ .

Note that
max

j
|c̃j|p = max

j
|cjC̃|p = max

j
|cj|pC̃−1 = 1 . (5.77)

Thus the vector (c̃0, . . . , c̃M) of coefficients of R̃ is placed on the unit ball in QM+1
p .

Since |cj|p|cj| ≥ 1, we have that |cj|p∥c∥∞ = |cj|pH(RI) ≥ 1. Therefore, C̃H(RI) ≥ 1
and, by (5.67), we get that

C̃ · ∥pl(a1 ∧ · · · ∧ ak)∥∞ ≫ 1 . (5.78)

Observe that
|R(x)|p =

∣∣∣R̃(x)C̃−1
∣∣∣
p

=
∣∣∣R̃(x)

∣∣∣
p

· C̃ (5.79)

using (5.76),(5.78) and (5.79) we obtain that

cov(h(x)∆) ≥
(

k−1∏
i=0

d|gi|p
)

|R̃(x)|p · C̃ · ∥pl(a1 ∧ · · · ∧ ak)∥∞

≫
(

k−1∏
i=0

d|gi|p
)

|R̃(x)|p

as required.

Proposition 5.3.9. Let δ, Q, ξ0, . . . , ξn, g0, . . . , gn, d be as in Corollary 5.3.5 or
Corollary 5.3.6. Let ρ = 1 and α = M−1, where M = [

(
n+1

2

)2
]. Then for any

non-empty ball B ⊂ Zp the map h := (h1, h2) := Qp → GL(n+ 1,Qp) × GL(n+ 1,R)
as defined in (5.38) satisfies the conditions stated in Corollary 5.3.3, in which C > 0
depends on n only, for all sufficiently large Q.
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Proof. The validity of condition (1) in Corollary 5.3.3 follows from Lemma 5.3.2.
Indeed, by Proposition 5.3.7 and the definition of cov(h(·)∆), the function cov(h(·)∆)
is the maximum of p-adic absolute values of polynomials in one variable of degree at
most M , and therefore, by Lemma 5.3.2 and Lemma 3.1 in [35], it is (C, α) good for
α = M−1 and some C > 0 depending only on M . Thus, ultimately C depends on n
only.

Now we verify condition (2) in Corollary 5.3.3. Fix any non-empty ball B ⊂ Zp.
If k = n+ 1 then, since ∏n

i=0(d|gi|p) = 1, using the explicit form of h1 and h2 given
by (5.36) and (5.37) one readily verifies that cov(h(x)∆) = 1 ≥ ρ. Indeed, since ∆ is
primitive the standard basis ei = (δi,1, . . . , δi,n+1) with 1 ≤ i ≤ n+1, where δi,j = 1 if
i = j and 0 otherwise, is a basis of ∆. Then ∥h1(x)e1 ∧ · · · ∧h1(x)en+1∥p = ∏n

i=0 |gi|p
and ∥h2(x)e1 ∧ · · · ∧ h2(x)en+1∥∞ = dn+1. Then

cov(h(x)∆) = ∥h1(x)e1 ∧ · · · ∧ h1(x)en+1∥p×

× ∥h2(x)e1 ∧ · · · ∧ h2(x)en+1∥∞ =
n∏

i=0
(d|gi|p) = 1 ,

as claimed above.
Naturally, for the rest of the proof we will assume that 1 ≤ k ≤ n. By (5.74) we

have that
∥ cov(h(x)∆)∥B ≫

(
k−1∏
i=0

d|gi|p
)

sup
x∈B

|R̃c̃(x)|p , (5.80)

where c̃ = (c̃0, . . . , c̃M) ∈ Z[ 1
p
]M+1 and R̃c̃ satisfies (5.75). Define

ρ̃ := inf
∥c̃|p=1

sup
x∈B

|R̃c̃(x)|p . (5.81)

Clearly ρ̃ is a constant depending on k, n, p and B only. Since B is non-empty, we
have that for every choice of c̃ ∈ QM+1

p with ∥c̃∥p = 1 the quantity

sup
x∈B

|R̃c̃(x)|p (5.82)

is strictly positive. Also, since for every fixed x ∈ Qp, R̃c̃(x) is a linear function of c̃,
we have that (5.82) depends on c̃ continuously. Since the set of c̃ ∈ QM+1

p subject to
∥c̃∥p = 1 is compact, we conclude that ρ̃, given by (5.81), is strictly positive.

Now, combining (5.80) and (5.81), and using Corollary 5.3.5 and Corollary 5.3.6
together with the facts that δ ≤ 1 and C2 ≥ 1, we obtain that

∥ cov(h(x)∆)∥B ≫ Qvδ4n+2C−2n−2
2 ρ̃ ,



72 Chapter 5. Results

where the implied constant depends on n only. Therefore, since δ, C2 and ρ̃ do not
depend on Q, we have that

∥ cov(h(x)∆)∥B ≥ ρ = 1

provided that Q is sufficiently large.

Combining Proposition 5.3.9 with Corollary 5.3.3 we obtain the following:

Corollary 5.3.10. Let n ≥ 2 be an integer, p be a prime number, µ be Harr measure
on Qp, δ, Q, ξ0, . . . , ξn, g0, . . . , gn, d be as in Corollary 5.3.5 or Corollary 5.3.6, in
particular ξn = 1 and ξ0 ≤ Q−1−v for some fixed v > 0. Let α = [

(
n+1

2

)2
]−1 and

h := (h1, h2) := Qp → GL(n+ 1,Qp) × GL(n+ 1,R) be as defined in (5.38). Then
there exists a constant K > 0 depending on n and p only satisfying the following
statement. For any non-empty ball B ⊂ Zp there exists Q0 = Q0(B, n, p, v, C2) such
that for all Q ≥ Q0 and ε > 0 one has that

µ
(
{x ∈ B : δ(h(x)Zn+1

S ) < ε}
)

≤ Kεαµ(B). (5.83)

We remark that the constant K appearing in (5.83) is given by

K = C(n+ 1)(3p)2(n+1),

where C arises from condition (2) of Corollary 5.3.3 and, as established in Proposi-
tion 5.3.9, depends only on n and p.

5.4 PROOF OF LEMMA 5.2.1

The proof of Lemma 5.2.1 will now be given. As outlined in §5.2.1, we can assume
without loss of generality that ξi and Q are powers of p, that is (5.19) and (5.20)
are satisfied for some integers bi ∈ Z≥0 and t ∈ N satisfying (5.18). Let BQ,1 be the
convex body defined by (5.24) with C2 = 1. It is readily seen that

vol(BQ,1) = (2Q)n+1 . (5.84)

Let Γ be the lattice defined in Proposition 5.2.2. Let λ1, . . . , λn+1 be the successive
minima of BQ,1 on Γ, that is

λi := inf
{
λ > 0 : rank

(
Γ ∩ (λBQ,1)

)
≥ i

}
.
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By (5.84), (5.25) and Minkowski’s second theorem, we get that

(2Q)n+1
n+1∏
i=1

λi ≤ 2n+1
(

n∏
i=0

ξi

)−1

. (5.85)

Hence, by (5.20) and the inequalities λ1 ≤ . . . ,≤ λn+1, we get that

λn
1λn+1 ≤

n+1∏
i=1

λi ≤ Q−(n+1)
(

n∏
i=0

ξi

)−1

= 1 . (5.86)

Now define the following ‘exceptional’ set

E(B; ε0) = {x ∈ B : λ1 ≤ ε0} , (5.87)

where ε0 > 0 is a small parameter, to be determined soon. By the definition of λ1,
there must exist a polynomial P = anx

n + · · · + a0 ∈ Z[x] satisfying (5.22) and

0 < max
0≤i≤n

|ai| ≤ ε0Q. (5.88)

By Proposition 5.2.4 we must have that c(h(x)Zm
S ) ≤ ε0 for the h as in that

proposition with δ2 = ε0. In particular, we assume that ε0 is an even power of p.
Then, by Corollary 5.3.10, we have that

µ(E(B; ε0)) ≤ Kεα
0µ(B) , (5.89)

provided that Q is sufficiently large. Choose

ε0 ≤
(

1 − κ

(n+ 2)K

)1/α

.

Then
µ(E(B; ε0)) ≤ 1 − κ

n+ 2 µ(B). (5.90)

Then if x /∈ E(B; ε0) we must have that λ1 ≥ ε0 and so combining this with equation
(5.86) gives

λn+1 ≤ c0 := (ε0)−n. (5.91)

A polynomial of degree at most n can be identified with a vector in Rn+1 by associating
it with its coefficient vector {a0, a1, ..., an}. This allows us to view the space of such
polynomials as an (n+ 1)-dimensional vector space over R. The subset of integer
polynomials, where each coefficient is in Z forms a full-rank discrete subgroup of
Rn+1 which is precisely the lattice Γ. Hence by the definition of λn+1, there are n+ 1
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linearly independent polynomials Pj(x) = aj,nx
n + · · · + aj,0 ∈ Z[x] for 0 ≤ j ≤ n

satisfying (5.22) and
max
0≤i≤n

|aj,i| ≤ c0Q. (5.92)

Define the sub-lattice Λ of Γ as the Z-span of aj = (aj,0, . . . , aj,n+1) for 0 ≤ j ≤ n.
Then

cov(Λ) = m · cov(Γ) ,

where m ∈ N is the index of Λ in Γ. Since the fundamental domain of Λ can be
chosen to be contained in the body defined by (5.92), we have that

cov(Λ) ≤ (2c0Q)n+1 = (2c0)n+1 cov(Γ) ,

where the latter follows from (5.20) and (5.25). Hence, m ≤ (2c0)n+1. Recall now
Bertrand’s Postulate that for every n > 1, there is always at least one prime p such
that n < p < 2n. In this way it is possible to choose a fixed prime number q such
that m < q < 4m and q ̸= p. The width of the gap is chosen so that we can find at
least two primes by Bertrand’s Postulate so at least one of them is not p.

Let A be the matrix with the vectors aj, the basis of Λ, being its columns.
Then 1 ≤ | detA| = cov(Λ) = m cov(Γ) and since cov(Γ) = Qn+1 is a power of
p and q > m, then q does not divide cov(Λ). Therefore q does not divide detA
and the following system of congruence equations has a unique non-zero solution
t = (t0, t1, . . . , tn)T ∈ [0, q − 1]n+1

At ≡ s mod q, (5.93)

where s = (0, 0, . . . , 0, 1)T and T means a transpose. In particular, we have that
q | (At − s).

Now for each l ∈ [0, n] define rl := (1, 1, . . . , 1, 0 . . . , 0)T , where the number of
zeros is l, and let γ l := (γl,0, γl,1, . . . , γl,n)T ∈ [0, q − 1]n+1 be the unique integer
solution to the system

Aγ l ≡ −
(
At − s
q

)
+ rl mod q. (5.94)

Let ηl := t + qγ l, where ηl = (ηl,0, ηl,1, . . . , ηl,n)T is an integer vector. Then, clearly
ηl ≡ t mod q and so ηl is a solution to (5.93). Furthermore, by our choice, the
vectors rl are linearly independent, and therefore the vectors ηl and consequently
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the vectors ηl are linearly independent. Therefore the following polynomials with
integer coefficients are linearly independent:

P̃l(x) :=
n∑

i=0
ηl,iPi(x) (0 ≤ l ≤ n) . (5.95)

Fix any l and write P̃l(x) as ã0 + ã1x + · · · + ãnx
n. Then, as is easily seen, that

(ã0, ã1, . . . , ãn)t = Aηl and so it must be that Aηl ≡ s mod q. Therefore, ãi ≡ 0
mod q for 0 ≤ i ≤ n − 1, ãn ≡ 1 mod q and ã0 ̸≡ 0 mod q2. Thereby, degPl = n

and, by Eisenstein’s criterion, P̃l is irreducible, for all 0 ≤ l ≤ n.
Further, without loss of generality we can assume P̃l are primitive, as otherwise

we can just divide through by the greatest common divisor. The height of the
polynomials can be estimated by calculating an upper bound on ηl:

ηl,i = ti + qγl,i

≤ q − 1 + q(q − 1)
≤ q2 − 1
≤ (4m)2 − 1.

(5.96)

Define C2 ≥ c0((4m)2 − 1) to be the smallest value satisfying (5.21), hence by
equation (5.95) it is obtained that

max
0≤i≤n

|ãi| ≤ C2Q. (5.97)

Also, by construction, the coefficients of every polynomial P̃l are in Λ ⊂ Γ and
hence the right hand side inequalities of (5.16) hold. The remainder of the proof is
dedicated to establishing the lower bounds in (5.16).

To do this we use equation (5.27) with δi defined by equation (5.28) for some
sufficiently small δ = δ0 > 0, to be determined soon. Define the set

Ei′(B, δ0) :=

x ∈ B :
∃ P ∈ Z[x] with deg(P ) = n

and H(P ) ≤ C2Q such that
equations (5.27)δ=δ0 hold

 . (5.98)

Now we can use Corollary 5.3.10 similarly to the above argument to get that

µ(Ej(B, δ0)) ≤ 1 − κ

n+ 2µ(B) (5.99)
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for sufficiently large Q. Define

GB := B \

 n⋃
j=0

Ej(B, δ0) ∪ E(B, ε0)
 . (5.100)

Then for any x ∈ GB the polynomials P̃l we have constructed necessarily satisfy
equations (5.16) and C1Q ≤ H(P̃l) ≤ C2Q with C1 = ε0. Further we estimate the
measure of GB, to show that equation (5.15) holds, as follows

µ(GB) ≥ µ(B) −
n∑

i=0
µ(Ej(B, δ0)) − µ(E(B, ε0))

≥ µ(B) − (n+ 2)1 − κ

n+ 2µ(B) = κµ(B).
(5.101)

This completes the proof.

5.5 FINDING CLOSE ROOTS

In this Section we will establish how close to x the roots of a polynomial satisfying
system (5.16) are. The associated parameters ξi will be suitably chosen. We will use
Hensel’s Lemma, which we already discussed in Section 2.2.3 to identify a suitable
root α ∈ Qp of P close to x. For convenience, we repeat the statement of Hensel’s
Lemma here.

Lemma 5.5.1 (Hensel’s Lemma). Suppose that f ∈ Zp[x] and x ∈ Zp satisfy
|f(x)|p < |f ′(x)|2p. Then there exists a unique α ∈ Zp such that

1. f(α) = 0,

2. |f ′(α)|p = |f ′(x)|p,

3. |x− α|p < |f(x)| · |f ′(x)|−1
p < |f ′(x)|p.

Now we specialise Hensel’s Lemma to the setup of Lemma 5.2.1.

Corollary 5.5.2. Let n ≥ 2, 0 < δ0 < 1 be a sufficiently small constant, Q > 1 and
ξ0 = Q−θ0, ξ1 = Q−θ1 ≤ ξ2 = · · · ≤ . . . ξn−1 ≤ ξn = 1. Suppose that

Q−θ0 < (δ0Q
−θ1)2 . (5.102)

Let x ∈ Zp. Then for any polynomial P ∈ Pn(Q) satisfying system (5.16) there exists
a unique root α ∈ Zp of P such that

|x− α|p ≤ δ−1
0 Q−θ0+θ1 . (5.103)
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Proof. Obviously, with f = P , (5.16) and (5.102) verify the condition |f(x)|p <
|f ′(x)|2p in Hensel’s Lemma, and therefore (5.103) follows immediately from conclu-
sion 3 of Hensel’s Lemma combined with (5.16) and the condition θ0 + θ1 = n+ 1.
Indeed, we have that

|α− ξ|p ≤ ξ0(δ0ξ1)−1 = δ−1
0 Q−θ0+θ1 . (5.104)

Lemma 5.5.3. Let x ∈ Zp be a fixed point and P ∈ Zp[x] be a polynomial of degree
n ≥ 2, with the leading coefficient an and roots α1, . . . , αn ∈ Qp, some possibly
repeated, ordered so that

|x− α1|p ≤ |x− α2|p ≤ · · · ≤ |x− αn|p. (5.105)

Then for any 0 ≤ j < n, the following bound holds∣∣∣ 1
j!P

(j)(x)
∣∣∣
p

≤ |an|p|x− αj+1|p · · · |x− αn|p. (5.106)

Furthermore, if |x− αj|p < |x− αj+1|p then we have equality in (5.106).

Proof. To begin with, write the polynomial P as the product

P (x) = an(x− α1) · · · (x− αn) .

Then on differentiating this expression we obtain that

1
j!P

(j)(x) = an

∑
1≤i1<···<in−j≤n

(x− αi1) · · · (x− αin−j
). (5.107)

Define Tj+1 = (x− αj+1) · · · (x− αn). By (5.105), this can be seen to be the term
with the largest p-adic value in the sum. We will also define T̂j+1 to be the term with
the second largest p-adic value. The p-adic value of each term in the sum in (5.107)
is less than or equal to |Tj+1|p. Hence by the ultrametric property it must be that∣∣∣ 1

j!P
(j)(x)

∣∣∣
p

≤ |an|p|Tj+1|p , (5.108)

which is exactly (5.106). Next, we can rewrite equation (5.107) as

1
j!P

(j)(x) = an

∑
1≤i1<···<in−j≤n

(x− αi1) · · · (x− αin−j
) − Tj+1 + Tj+1. (5.109)
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By the ultrametric property again, we must have that∣∣∣∣∣∣
∑

1≤i1<···<in−j≤n

(x− αi1) · · · (x− αin−j
) − Tj+1

∣∣∣∣∣∣
p

≤
∣∣∣T̂j+1

∣∣∣
p
, (5.110)

as by taking away the largest term we are left with the second largest term. Observe
that |x − αj|p < |x − αj+1|p implies that T̂j+1 < Tj+1, and therefore by, (5.109),
(5.110) and the ultrametric property, we obtain that | 1

j!P
(j)(x)|p = |an|p|Tj+1|p. This

means exactly the equality in (5.106).

Lemma 5.5.4. Let x ∈ Zp and Q > 1. Let P ∈ Pn(Q) be such that inequalities
(5.16) hold with ξi = Q−θi for some θi, where 0 ≤ i ≤ n. Let α1, . . . , αn ∈ Qp be the
roots of P ordered as in Lemma 5.5.3. Define

dj = θj−1 − θj (5.111)

for 1 ≤ j ≤ n and suppose that

d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 . (5.112)

Then the roots of P satisfy the inequalities

|x− αj|p ≤ δ−1
0 Q−dj (1 ≤ j ≤ n). (5.113)

Proof. We will prove (5.113) by induction on j. First consider j = 1. Then, using
(5.106), we obtain that

|P ′(x)|p ≤ |an|p|x− α2|p · · · |x− αn|p = |P (x)|p
|x− α1|p

. (5.114)

By rearranging and using the bounds from equation (5.16) we obtain that

|x− α1|p ≤ |P (x)|p
|P ′(x)|p

≤ Q−θ0

δ0Q−θ1
= δ−1

0 Q−d1 (5.115)

as required in (5.113) for j = 1.
Now suppose that 1 ≤ j < n and (5.113) holds for this j. We shall prove (5.113)

for j + 1. Define Tj+1 = (x− αj+1) · · · (x− αn) and Tj+2 = (x− αj+2) · · · (x− αn),
as in Lemma 5.5.3, where Tj+2 = 1 if j = n− 1. By Lemma 5.5.3, we get that∣∣∣ 1

(j+1)!P
(j+1)(x)

∣∣∣
p

· |x− αj+1|p ≤ |an|p|Tj+2|p|x− αj+1|p

= |an|p|Tj+1|p ,
(5.116)



5.6. Proof of Theorem 5.1.1 79

and so
|x− αj+1|p ≤ |an|p|Tj+1|p∣∣∣ 1

(j+1)!P
(j+1)(x)

∣∣∣
p

. (5.117)

If additionally, we assume that |x − αj|p < |x − αj+1|p then by Lemma 5.5.3, we
obtain that |an|p|Tj+1|p =

∣∣∣ 1
j!P

(j)(x)
∣∣∣
p

and so together with (5.117) and (5.16) it
follows that

|x− αj+1|p ≤

∣∣∣ 1
j!P

(j)(x)
∣∣∣
p∣∣∣ 1

(j+1)!P
(j+1)(x)

∣∣∣
p

≤ Q−θj

δ0Q−θj+1
= δ−1

0 Q−dj+1 . (5.118)

If |x− αj|p < |x− αj+1|p does not hold, then, by the ordering (5.105), we have that
|x− αj|p = |x− αj+1|p. Then, by (5.112) and the induction assumption, we get that

|x− αj+1|p = |x− αj|p ≤ δ−1
0 Q−dj ≤ δ−1

0 Q−dj+1 , (5.119)

thereby proving the required statement for j + 1 and finishing the proof.

5.6 PROOF OF THEOREM 5.1.1

Let n ≥ 2, p be a prime, v = 1, 0 < κ < 1 and δ0, C1 and C2 be the constants
arising form Lemma 5.2.1. Take any ball B ⊂ Zp and let Q > Q0, where Q0 is as in
Lemma 5.2.1.

Let θ satisfy equation (5.3). Define ξ2 = · · · = ξn = 1,

ξ0 =


δ0Q

−n−1+θ if θ > 1 ,

Q−n−1+θ if θ ≤ 1 ,
and ξ1 =


δ−1

0 Q−θ if θ > 1 ,

Q−θ if θ ≤ 1 .

Define θi by the equation ξi = Q−θi for 0 ≤ i ≤ n. Then, it is readily verified that

2 ≤ 2
3(n+ 1) < θ0 ≤ n+ 1, (5.120)

0 ≤ θ1 <
n+ 1

3 (5.121)

and that for all sufficiently large Q the conditions of Corollary 5.5.2 are satisfied by
ξ0, . . . , ξn for any choice of θ.

Then, clearly (5.13) and (5.14)v=1 hold and Lemma 5.2.1 is applicable, and we
have a measurable set GB ⊂ B satisfying (5.15). Take any x ∈ GB and fix, by



80 Chapter 5. Results

Lemma 5.2.1, any primitive irreducible polynomials P ∈ Z[x] of degree n and height
C1Q ≤ H(P ) ≤ C2Q satisfying (5.16).

Let α1, . . . αn ∈ Qp be the roots of P ordered as in equation (5.105). It is readily
seen that (5.112) hold. Then by Lemma 5.5.4 we have

|x− α1|p ≤ δ−1
0 Q−θ0+θ1 ≤ δ−1

0 Q−(n+1−2θ) , (5.122)
|x− α2|p ≤ δ−1

0 Q−θ1 ≤ δ−2
0 Q−θ .

By Corollary 5.5.2, α1 must be the same as α arising from Corollary 5.5.2 and therefore
α1 ∈ Zp. By the ultrametric property α1 ∈ B provided that Q is sufficiently large.
By (5.3) and the ultrametric property again

|α1 − α2|p ≤ max{|x− αi|p, |x− αj|p} ≤ δ−2
0 Q−θ. (5.123)

This completes the proof of Theorem 5.1.1, with C0 = δ−2
0 . Indeed, (5.4) follows

from (5.122) and (5.15), while (5.123) together with the aforementioned properties
of P ensures that α = α1 belongs to An(Q, θ, C0, C1, C2).

5.7 PROOF OF THEOREM B

Let n ≥ 2, p be a prime, v = 1, κ = 1/2 and δ0, C1 and C2 be the constants arising
form Lemma 5.2.1. Take any ball B = Zp and let Q > Q0, where Q0 is again as in
Lemma 5.2.1.

Let ν satisfy equation (5.10). Let θn = 0, d1, . . . , dn satisfy (5.112) and let θn−1, θ0

be defined by (5.111). Clearly, we have that

θ0 ≥ · · · ≥ θn = 0 . (5.124)

We also set ξi = Q−θi and require that θ0 + · · · + θn = n+ 1. By (5.124), we have
that θ0 ≥ 1 + 1/n. Hence (5.13) and (5.14)v=1/n hold and Lemma 5.2.1 is applicable.
Therefore, there is a measurable set GB ⊂ B satisfying (5.15), where B = Zp. Take
any x ∈ GB and fix, by Lemma 5.2.1, any primitive irreducible polynomials P ∈ Z[x]
of degree n and height C1Q ≤ H(P ) ≤ C2Q satisfying (5.16).

Let α1, . . . αn ∈ Qp be the roots of P ordered such as in equation (5.105). It is
readily seen that (5.112) hold. Then by Lemma 5.5.4 and the ultrametric property
we have that

|αi − αj|p ≤ δ−1
0 Q−dj (5.125)
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for any 1 ≤ i < j ≤ n. It follows that

0 < |D(P )|p ≤ |an|2n−2
p

∏
0≤i<j≤n

Q−2dj ≪ Q−2
∑n

j=2(j−1)dj . (5.126)

Setting
ν =

n∑
j=1

(j − 1)dj. (5.127)

gives that 0 < |D(P )|p ≪ Q−2ν .
Rearranging (5.111) we get θj−1 = dj + θj, and then we obtain that θj−1 =

dj + · · · + dn + θn = dj + · · · + dn since θn = 0. Hence,
n∑

j=1
jdj =

n−1∑
j=0

dj+1 + · · · + dn =
n−1∑
j=0

θj = n+ 1, (5.128)

where we have used the fact that θn = 0. Now it is possible to compute ν by
expanding the right hand side of equation (5.127):

ν = n+ 1 −
n∑

j=1
dj . (5.129)

By Lemmas 5.2.1 and 5.5.4, for every x ∈ GB there exists an irreducible polynomial
P ∈ Z[x] of degree n with one of its roots α = α(P ) satisfying

|x− α(P )|p ≤ δ−1
0 Q−d1 . (5.130)

Hence,

GB ⊂
⋃

P ∈Dn,p,γ(C2Q,ν)

n⋃
j=1

{
x ∈ Zp : |x− αj(P )|p ≤ δ−1

0 Q−d1
}
, (5.131)

where α1(P ), . . . , αn(P ) ∈ Qp are the roots of P . Therefore, since we have taken
B = Zp, we have that

1
2 = 1

2µ(B) ≤ #Dn,p,γ(C2Q, ν) · nδ−1
0 Q−d1 (5.132)

and so by rearranging we get

#Dn,p,γ(C2Q, ν) ≥ δ0

2nQ
d1 . (5.133)

It can be further seen that the best possible lower bound is obtained by maximising
the value of d1, or by (5.129), minimizing d2, . . . , dn. By (5.112), this can be done
by letting d2 = d3 = · · · = dn, and, by solving (5.128) and (5.129), we obtain that

d1 = n+ 1 − n+ 2
n

ν and d2 = 2ν
n(n− 1) . (5.134)

It is readily seen that d1 ≥ d2 for 0 ≤ ν ≤ n− 1. Substituting d1 into (5.133) and
rescaling the bound for the height by letting Q̃ = C2Q we complete the proof.
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