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Abstract

We study the spherical subalgebra of the double affine Hecke algebra of type C∨Cn and relate

it, at the classical level q = 1, to a certain character variety of the Riemann sphere with four

punctures that we call the Calogero-Moser space. This establishes a conjecture from [EGO06]. As

a by-product, we construct a completed phase space for the trigonometric van Diejen system and

explicitly integrate the dynamics. We conclude by suggesting how one could quantise the main

isomorphism, and discussing some preliminary work that aims to reconcile the Poisson bracket

on the Calogero-Moser space with the bracket coming via its interpretation as the moduli space

of flat connections on a punctured Riemann surface by Fock and Rosly [FR99].
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Chapter 1

Introduction

The double affine Hecke algebra (DAHA) was introduced by Ivan Cherednik, who famously used

them to prove several conjectures on Macdonald polynomials [Che95a, Che95b]. Its rational

limit, the so-called rational Cherednik algebras, was then developed by Pavel Etingof and Victor

Ginzburg in their seminal paper [EG02]. Since their introduction, there has been much more

literature that studies these classes of algebras. Although some authors call the DAHA the

Cherednik algebra after its founder, be aware it is often an abuse of nomenclature that this

phrase is reserved for the rational limit of the DAHA. This isn’t an issue for most of this thesis,

because we work with the true DAHA, but the exposition herein will abuse this phrase also.

One of the key insights of [EG02] was that the spherical subalgebra of the Cherednik algebra

associated to a Coxeter group W ⊆ GL(V ) provides an interesting Poisson deformation of the

orbifold T ∗V/W . In particular, for the symmetric group W = Sn, [EG02] related the spherical

subalgebra, at the so-called classical level t = 0, to the Calogero-Moser space:

Mn = {X,Y ∈ Matn×n(C) : rank([X,Y ]− 1n) = 1} //GLn(C),

previously studied by George Wilson [Wil98]. These spaces have their origin in the theory of

Hamiltonian reduction and integrable systems [KKS78]. They are smooth 2n-dimensional affine

varieties that can be viewed as completed phase spaces [OP83] for the classical Calogero-Moser

system [Cal71, Mos75], at the same time parametrising rational solutions to the KP hierarchy

[Wil98]. In order to formulate this result of [EG02], we recall that the Cherednik algebra Ht,c

of W contains the group algebra CW , and the spherical subalgebra is defined as eHt,ce, where

e = 1
|W |
∑

w∈W w is the group algebra symmetriser. Recall also that the spherical subalgebra is

commutative at the classical level t = 0.
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Theorem 1.1 (cf. [EG02, Theorem 1.23]) For W = Sn and c ̸= 0, we have an isomorphism

Spec(eH0,ce) ∼=Mn.

Equivalently, one can say that eH0,ce is isomorphic to the algebra of regular functions C[Mn] on

the Calogero-Moser space. Also, Theorem 1.1 admits a representation theoretic interpretation

[EG02, Theorem 1.24]: every finite-dimensional irreducible representation of H0,c has dimension

n!, giving rise to a set-theoretic bijection with the points of Calogero-Moser space, that is

Irrep(H0,c) ∼=Mn.

This motivates studying the varieties Spec(eH0,ce) in other analogous situations. For example,

Etingof and Ginzburg consider symplectic reflection groups W = Gn ⋊ Sn for a finite subgroup

G ⊆ SU(2) and prove a generalisation of Theorem 1.1 for the corresponding symplectic reflection

algebras, cf. [EG02, Theorem 11.16].

Another closely-related result of that kind was obtained by Alexei Oblomkov in [Obl04], where

he studied the analogous problem for the DAHA Hq,τ of type GLn. Recall that this DAHA

contains the finite Hecke algebra of Sn, so one defines the spherical subalgebra as eHq,τe, where

e here denotes the so-called Hecke symmetriser. The associated smooth affine variety here is

CMτ = {X,Y ∈ GLn(C) : rank(τXY X−1Y −1 − τ−1
1n) = 1} //GLn(C).

This space was previously identified as a completed phase space for the Ruijsenaars-Schneider

system (a relativistic Calogero-Moser system) [FR99], so it is also dubbed a Calogero-Moser

space. The spherical subalgebra in this context also becomes commutative at the classical level

q = 1, and the main result is now stated.

Theorem 1.2 ([Obl04, Theorem 6.1]) If τ is not a root of unity, we have an isomorphism

Spec(eH1,τe) ∼= CMτ .

Again, this means that we have an isomorphism between the spherical subalgebra eH1,τe and

the algebra of regular functions C[CMτ ]. Oblomkov also establishes the representation theoretic

version of Theorem 1.2: the finite-dimensional irreducible representations of H1,τ have dimension

n!, giving rise to a set-theoretic bijection with the points of CMτ [Obl04, Corollary 6.2], that is

Irrep(H1,τ ) ∼= CMτ .
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A further generalisation was proposed in [EOR06] (in rank one) and [EGO06] (in higher rank) by

way of introducing generalised DAHAs (GDAHAs) associated to star-shaped quivers, prevalently

working with those of affine Dynkin type D̃4, Ẽ6, Ẽ7, Ẽ8. In these cases, [EGO06, Conjecture

5.1.1] postulates that the corresponding spherical subalgebras at the classical level q = 1 are

isomorphic to certain character varieties of a punctured Riemann sphere. While some important

steps towards a proof have been made in the paper itself [EGO06], it remained completely open.

The main result of this thesis is a proof of the aforementioned conjecture for the GDAHA of

type D̃4, and an interpretation of the corresponding character variety from the point-of-view of

integrable systems and Hamiltonian dynamics. In this case, the GDAHA is isomorphic to the

DAHA Hq,τ of type C∨Cn as studied in [Sah99, NS00, Sto00]. We have a spherical subalgebra

eHe where the idempotent e is again the Hecke symmetriser. The associated affine variety is

Cn = {Ai ∈ [Λi] : A1A2A3A4 = 12n} //GL2n(C),

where [Λi] ⊆ GL2n(C) are semi-simple conjugacy classes (4.1) defined later, given explicitly in

terms of the five non-zero DAHA parameters τ . It turns out that the parameters defining these

conjugacy classes are generic (in the sense of Definition 2.12), which is sufficient to guarantee

that Cn is a smooth 2n-dimensional affine variety. Our main result will now be stated.

Theorem 1.3 ([CR24, Theorem 6.3]) For generic parameters τ , we have an isomorphism

Spec(eH1,τe) ∼= Cn.

Indeed, we can reformulate this as an isomorphism between the spherical subalgebra eH1,τe and

the algebra of regular functions C[Cn] on the above character variety. Furthermore, we can again

interpret this result from a representation theory viewpoint: the finite-dimensional irreducible

representations of H1,τ have dimension 2nn!, giving rise to a set-theoretic bijection with the

points of Cn [CR24, Corollary 6.4], that is

Irrep(H1,τ ) ∼= Cn.

Our proof relies crucially on the existence of the Basic Representation (see Propositions 2.8

and 3.16). This is unavailable for the GDAHAs of type Ẽ6, Ẽ7, Ẽ8, so our approach does not

directly carry over and the conjecture [EGO06, Conjecture 5.1.1] in its entirety remains open.

Nevertheless, the isomorphism we do establish in Theorem 1.3 has a nice application to the

theory of integrable systems. Namely, our main result here (see Theorem 5.23) says that Cn
can be viewed as a completed phase space for the trigonometric van Diejen system, and the

corresponding Hamiltonian dynamics on Cn can be explicitly integrated.
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Structure of the Thesis

In Chapter 2, we dedicate some time to introducing the main themes of the thesis: Hecke

algebras (for the DAHA), character varieties and quiver varieties (for Calogero-Moser space),

affine algebraic varieties (for the statement of the main result) and Poisson structures (for the

Hamiltonian dynamics). In Chapter 3, we introduce the DAHA of type C∨Cn and discuss its

spherical subalgebra, an important duality property and the so-called Basic Representation.

In Chapter 4, we define a character variety Cn associated to this DAHA, analyse a map Φ

as constructed in [EGO06] which associates to points of Cn finite-dimensional representations

of the DAHA. In Chapter 5, we introduce coordinates on Cn and show that Φ restricts to an

isomorphism on a suitable coordinate chart. A technical argument then follows to show that two

such charts, one of which is obtained from the DAHA duality property, intersect transversally.

This then allows us to prove the main result Theorem 1.3 (rather, Theorem 5.17). We then

explain a way to quantise this isomorphism (see Proposition 6.2), before applying our main

result to the trigonometric van Diejen system. We conclude with Chapter 6, wherein we discuss

future avenues of research, where our work fits into the wider context, and a final preliminary

venture into how one obtains the dynamics on Cn via Hamiltonian reduction in the sense of Fock

and Rosly.



Chapter 2

Preliminaries

This chapter will motivate the main ingredients of the thesis. We begin with some exposition on

double affine Hecke algebras (DAHAs), followed by some basic notions on multiplicative quiver

varieties and a brief overview of the structure of a Poisson bracket on a smooth manifold. Each

of the numbered sections herein will (roughly) correspond to the chapters presented thereafter.

2.1 Hecke Algebras

We will motivate one of the most important aspects of this thesis by recalling some definitions

regarding reflection groups, braid groups and root systems. One of the best places to find a

detailed look at Hecke algebras, which we will follow, is the book [Mac03]. Throughout, let V

be a (complexified) n-dimensional vector space endowed with the Euclidean inner product ⟨·, ·⟩.

2.1.1 Root Systems

A root system is a finite subset R ⊆ V of non-zero vectors that spans V , is closed under taking

reflections in hyperplanes orthogonal to any α ∈ R, and the projection of any root onto some

α ∈ R is a half-integer multiple of α. The dual root system R∨ consists of the coroots α∨ =

2α/⟨α, α⟩ for each α ∈ R. Recall also that the simple roots a1, . . . , an form a basis of V such

that every α ∈ R can be written either as an N+- or N−-linear combination
∑

imiai of these

roots. This allows us to decompose R = R+ ∪ R− into the union of positive roots and negative

roots, and R− = −R+.

The affine-linear functions on V are functions V → C that are sums of linear functionals and

constant functions. The set of affine-linear functions is denoted V̂ . By identifying the space

of linear functionals with V (via the inner product), we see that V̂ ∼= V ⊕ Cδ where δ ≡ c is
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constant on V , the exponential of which is ec =: q. The corresponding affine root system is

R̃ = {α+ kδ : α ∈ R and k ∈ Z} ⊆ V̂ .

The highest root is the unique element φ ∈ R+ whose decomposition as a sum of simple roots∑
imiai is such that

∑
imi is maximal. In other words, φ + ai /∈ R for any i = 1, . . . , n. We

can extend the set {a1, . . . , an} of simple roots in R to a basis of the affine root system R̃ by

adjoining the element

a0 := δ − φ.

Example 2.1 ([Bou02, Plate III]) Let V = Rn and (εi) denote the canonical basis. We call

R = {±εi ± εj : 1 ≤ i < j ≤ n} ∪ {±2εi : 1 ≤ i ≤ n}

the root system of type Cn, and the corresponding subset of positive roots is given by

R+ = {εi ± εj : 1 ≤ i < j ≤ n} ∪ {2εi : 1 ≤ i ≤ n}.

The affine root system R̃ has the following as a basis of simple roots, for i = 1, . . . , n− 1:

a0 = δ − 2ε1, ai = εi − εi+1, an = 2εn.

The following final example will relate to something we see in Chapter 5, particularly §5.2.

Example 2.2 ([Bou02, Plate IV]) Let V = Rn and (εi) denote the canonical basis. We call

R = {±εi ± εj : 1 ≤ i < j ≤ n}

the root system of type Dn, and the corresponding subset of positive roots is given by

R+ = {εi ± εj : 1 ≤ i < j ≤ n}.

The affine root system R̃ has the following as a basis of simple roots, for i = 1, . . . , n− 1:

a0 = δ − ε1 − ε2, ai = εi − εi+1, an = εn−1 + εn.

A root system is reduced if the only scalar multiples of α ∈ R that belong to the root system are

±α. Additionally, a root system is irreducible if it cannot be decomposed as R = R1 ∪ R2 such

that ⟨α, β⟩ = 0 for α ∈ R1 and β ∈ R2.
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Lemma 2.3 ([Mac03, §1.3]) Let R be a non-reduced irreducible root system. Then, it determines

two reduced irreducible root systems such that R = R1 ∪R2, namely

R1 := {α ∈ R : 1
2α /∈ R} and R2 := {α ∈ R : 2α /∈ R}.

The type of a reduced root system is the type of Dynkin diagram that encodes it. In the case of

a non-reduced irreducible root system, if the corresponding reduced irreducible root systems R1

and R2 as defined in Lemma 2.3 are of respective types X1 and X2, we say R is of type (X1, X2).

Notation 2.4 A root system of particular interest to us throughout the thesis is the non-reduced

irreducible system of type (C∨
n , Cn), meaning R1 is of type C∨

n and R2 is of type Cn. Henceforth,

we shall adopt the slightly more compact notation C∨Cn when referring to this root system.

2.1.2 Weyl Groups

The corresponding Weyl group W is that which is generated by reflections sα, given by

sα(β) = β − 2⟨α, β⟩
⟨α, α⟩

α = β −
〈
α∨, β

〉
α.

The corresponding affine Weyl group W̃ consists of the invertible affine transformations of V

generated by the reflections sα̃ for each α̃ ∈ R̃. Explicitly, these are reflections across the

hyperplanes α̃(β) = 0, that is sα̃(β) = β − α̃(β)α∨. Since R ⊆ R̃ (set k = 0), we have W ⊆ W̃ .

Remark 2.5 In fact, Lemma 2.3 and everything thereafter holds also for an affine root system

R̃. Better yet, each of the reduced root systems R1 and R2 has the same underlying Weyl group.

A translation t : V → V is an affine-linear transformation of the form tλ(x) = x + λ for some

fixed λ ∈ V (most authors’ convention is to denote the translation only by the shift vector).

Any lattice L ⊆ V admits a translation lattice t(L) consisting of tλ for λ ∈ L. In particular, let

Q :=
∑

α Zα be the root lattice and Q∨ :=
∑

α Zα∨ the coroot lattice. With this, one identifies

W̃ ∼= t(Q∨)⋊W.

The action above is given explicitly by tλ • v = v − δλ. Given the above identification, we could

instead replace the coroot lattice Q∨ with a bigger lattice that admits a W -action. To that end,

let P :=
∑

i Zci be the weight lattice and P∨ :=
∑

i Zbi be the coweight lattice, which are defined

respectively by ⟨ci, a∨j ⟩ = δij and
〈
bi, aj

〉
= δij . The extended affine Weyl group is defined as

Ŵ := t(P∨)⋊W.

There is a Ŵ -action ŵ • f(x) = f(ŵ−1 • x) on the ring C(V ) of meromorphic functions, which
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extends to an action on the space of affine-linear functions V̂ . In particular, this can be viewed

as an action on the affine root system R̃ which permutes the affine roots.

The orthogonal reflections si := sai corresponding to the affine simple roots generate the affine

Weyl group W̃ . Hence, any w̃ ∈ W̃ can be written as w̃ = si1 · · · sik . The length ℓ(w̃) of this

element is the smallest k over all such decompositions. The subgroup of affine Weyl elements

of length zero is denoted Ω. Geometrically, the length of an affine Weyl group element w̃ is the

number of walls separating the alcove C := {x ∈ V : ⟨x, ai⟩ > 0} from w̃−1C, see [Mac03, §2.2].

Hence, the group Ω can be thought of as the group of automorphisms on the alcove-separating

walls, i.e. on the affine basis {a0, . . . , an}.

2.1.3 Braid Groups

The extended affine braid group B̂ is the group generated by elements Tŵ for ŵ ∈ Ŵ subject to

the relations Tv̂Tŵ = Tv̂ŵ if ℓ(v̂) + ℓ(ŵ) = ℓ(v̂ŵ). Let Ti := Tsi and write any ŵ ∈ Ŵ in reduced

form ŵ = si1 · · · siℓω where ω ∈ Ω. By writing Tŵ := Ti1 · · ·TiℓTω, we can think of B̂ as being

generated by T0, . . . , Tn and Tω for ω ∈ Ω subject to the following relations:

(i) TiTj · · · = TjTi · · · . (i ̸= j with ord(sisj) factors)

(ii) Tω1Tω2 = Tω1ω2 . (ω1, ω2 ∈ Ω)

(iii) TωTi = TjTω. (ωsi = sjω)

We then denote by B̃ and B the subgroups generated by T0, . . . , Tn and T1, . . . , Tn, respectively;

they are called the affine braid group and finite braid group. It turns out that the Tω generate a

subgroup of B̂ isomorphic to the subgroup Ω, which gives rise to the identification

B̂ ∼= B̃⋊ Ω.

Remark 2.6 For a dominant coweight λ ∈ P∨, one where ⟨λ, ai⟩ ≥ 0 for all simple roots ai, one

can define the element Y λ := Tt(λ) associated to the translation by λ. Because any λ ∈ P∨ admits

a decomposition as a difference λ = µ−ν of dominant coweights, one may define Y λ := Y µ(Y ν)−1

now for any λ ∈ P∨. According to [Mac03, (3.2.4)], one has T±1
i Y siλTi = Y λ where the sign

corresponds to ⟨λ, ai⟩ = 1 or ⟨λ, ai⟩ = 0, respectively. With this, [Mac03, (3.3.1)] identifies

B̂ ∼= B⋊ {Y λ : λ ∈ P∨}.

2.1.4 Double Affine Hecke Algebras

From [Mac03, §3.4], the double affine braid group B is the group generated by the extended affine

braid group B̂ and a multiplicative group isomorphic to some lattice in the space of affine-linear
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functions V̂ . Alternatively, the isomorphism from Remark 2.6 allows one to view the double

affine braid group as two extended affine braid groups overlapping on a finite braid group:

B ∼= {Xµ : µ ∈ P} ⊗B⊗ {Y λ : λ ∈ P∨}.

Definition 2.7 Let τ0, . . . , τn ∈ C∗ with τi = τj if si and sj are conjugate in Ŵ . The affine Hecke

algebra H̃ (resp. double affine Hecke algebra H ) is the quotient of the group algebra CB̃ (resp.

CB) of the extended affine braid group (resp. double affine braid group) by the Hecke relations

Ti − T−1
i = τi − τ−1

i .

For the non-reduced root system of type C∨Cn, special attention is needed. Here, we introduce

τ∨i := 1 for all i in the reduced case, and for all i = 1, . . . , n−1 in type C∨Cn. In other words, we

have introduced two new parameters τ∨0 and τ∨n for this root system, alongside the three existing

parameters τ0, τn and τ1 = · · · = τn−1. The corresponding DAHA has two elements involving

a∨0 := a0/2 and a∨n := an/2 satisfying Hecke relations with τ∨0 and τ∨n (cf. [Mac03, (4.3.19)]):

T∨
0 := T−1

0 X−a∨0 and T∨
n := X−a∨nT−1

n .

A final ingredient that is crucial to the proof of the main theorem is now discussed in some

generality, before we write it explicitly for the DAHA of interest to us. First, let Dq be the

algebra of q-difference operators on the vector space V , that is the algebra generated by the

meromorphic functions C(V ) and the translations t(P∨) of the coweight lattice, with the action

t(λ) • f(x) = f(x + cλ). If we extend the parameters by setting τα := τŵ(α), then we can adopt

similar notation to [Mac03, §4.2] in defining the following the rational expressions for any α ∈ R:

bα(X) :=
τα − τ−1

α + (τ∨α − (τ∨α )
−1)Xα/2

1−Xα
(2.1)

and

cα(X) :=
τ−1
α − ταXα − (τ∨α − (τ∨α )

−1)Xα/2

1−Xα
. (2.2)

There is significant cancellation by substituting τ∨α = 1, so the situation for reduced irreducible

root systems looks simpler. Nevertheless, we can use (2.1) to define a crucial representation of

the DAHA that works even in type C∨Cn, and (2.2) to discuss a localisation thereafter. We will

use the notations bi(X) := bai(X) and ci(X) := cai(X) when α = ai is any (affine) simple root.

Proposition 2.8 ([Mac03, (4.7.4)], Basic Representation) There is an injective homomorphism of
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algebras β : H → Dq ⋊CW given by β(Xµ) = Xµ, β(Ti) = τisi + bi(X)(1− si) and β(Tπ) = π.

This representation persists when we specialise to the so-called classical level q = 1, at which

point the algebra of difference operators becomes commutative (a Laurent polynomial algebra).

This is stated in [Obl04, Remark 3.1], and proven in the so-called untwisted case (cf. reduced

root systems) in [Geh06, Theorem 2.1.10]. A proof, in the so-called twisted case, is discussed

in [Sto11, Theorem 3.1]; see also [vDEZ18, §3] which includes the C∨Cn case. In op. cit., they

view the operators ταsα + bα(X)(1− sα) as elements of the semi-direct product of a localisation

of the group algebra CP of the weight lattice with CW . The aforementioned localisation is by

the (ideal generated by the) so-called Weyl denominator

δ(X) :=
∏
α∈R

(1−Xα). (2.3)

They also remark that the injective Basic Representation can then be lifted to an isomorphism

Hδτ (X)
∼= CPδτ (X) ⋊CW upon localisation this time by the τ -deformed Weyl denominator

δτ (X) :=
∏
α∈R

(1−Xα)(τ−1
α − ταXα). (2.4)

For the DAHA of type C∨Cn, the underlying root system is non-reduced and so the τ -deformed

Weyl denominator involves the additional parameters τ∨α such that τ∨α = 1 if α ∈ R but α/2 /∈ R,
where R is the root system of type Cn; see [Mac03, p. 64] and cf. [Sto20, (9.2.1)]. Explicitly,

this yields the following generalisation which reduces to (2.4) upon substituting τ∨α = 1:

δτ (X) =
∏
α∈R

(1−Xα)
(
τ−1
α − ταXα − (τ∨α − (τ∨α )

−1)Xα/2
)
. (2.5)

Remark 2.9 Some authors, like Macdonald, prefer a slightly different convention when it comes

to indexing their roots: (2.1) and (2.2) are transformed by α 7→ 2α. In this case, the additional

parameters τ∨α = τα if α ∈ R but 2α /∈ R. By substituting this into their version of bα(X)

and cα(X), one obtains a common factor in both denominator and numerator that reduces the

expressions down; their Weyl denominators (2.3)–(2.5) will vary slightly from ours.

2.2 Character Varieties

In this section, we recall some general facts about character varieties of punctured Riemann

surfaces. The primary reference we use is the paper [HLRV11], where more details are provided.

Let g, k ∈ N be non-negative integers, and fix conjugacy classes C1, . . . , Ck ⊆ GLm(C). Using
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the notation (X,Y ) := XYX−1Y −1 for the group commutator, we will now define the set

Rg,k := {X1, Y1, . . . , Xg, Yg ∈ GLm(C), Ai ∈ Ci : (X1, Y1) · · · (Xg, Yg)A1 · · ·Ak = 1m}.

Describing Rg,k (in particular, determining whether or not it is non-empty) is a very non-trivial

problem, and is difficult even in the genus g = 0 case. We will discuss a method for determining

said solutions in §2.3, but for now we simply state the named problem.

Problem 2.10 (Multiplicative Deligne-Simpson Problem) Find the irreducible (no common proper

invariant subspace) solutions of this equation, for fixed conjugacy classes C1, . . . , Ck ⊆ GLm(C):

A1 · · ·Ak = 1m, with Ai ∈ Ci,

There is a natural GLm(C)-action on Rg,k by conjugation. Because the corresponding quotient

may be singular, we wish to consider only closed orbits. This is called the GIT-quotient (for

geometric invariant theory), and is denoted by //. We use this to make the following definition.

Definition 2.11 The GLm(C)-character variety is the GIT-quotient

Mg,k := Rg,k //GLm(C).

The affine variety Mg,k can be viewed as the moduli space of GLm(C)-representations of the

fundamental group of a genus g Riemann surface Σg,k = Σg \ {x1, . . . , xk} with k punctures

where we also prescribe the conjugacy classes for the matrix representatives of the loops around

each puncture.

There are no assumptions made on the conjugacy classes Ci in Definition 2.11, so the character

variety Mg,k is not smooth in general. It may even be that it is empty. Fortunately, there are

some relatively mild assumptions one can make which will guarantee some useful properties of

Mg,k, cf. [HLRV11, Definition 2.1.1].

Assume that the conjugacy classes Ci are semi-simple, that is they are represented by diagonal

matrices (that encode the eigenvalues, possibly repeated, of Ai). Let us write λij with i = 1, . . . , k

and j = 1, . . . , di for the distinct eigenvalues of Ai, and µij for their multiplicities. For all i,

µi1 + · · ·+ µi di = m.

Definition 2.12 Let λij be the distinct eigenvalues of the semi-simple matrices Ai ∈ GLm(C),
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with corresponding multiplicities µij . The conjugacy classes Ci represented by Ai are generic if

k∏
i=1

di∏
j=1

λ
µij

ij = 1

and, for any 1 ≤ s < m and a collection of numbers νij ≤ µij with νi1 + · · ·+ νi di = s for each i,

k∏
i=1

di∏
j=1

λ
νij
ij ̸= 1.

This genericity condition guarantees that the action of PGLm(C) := GLm(C)/C∗ on Rg,k is free.

Theorem 2.13 ([HLRV11, Theorem 2.1.5]) Let Ci be semi-simple generic conjugacy classes. If

non-empty, Mg,k is a smooth equidimensional variety of dimension

d = 2 + (2g + k − 2)m2 −
∑
i,j

µ2ij . (2.6)

One of the most technical parts in Oblomkov’s proof of Theorem 1.2 was his need to establish

the irreducibility of CMτ . The first step was a straightforward argument showing smoothness.

The second step is a very difficult technical proof that CMτ is connected, which suffices to show

irreducibility because CMτ is also smooth. Note that this is a GLn(C)-character varietyM1,1 of a

one-punctured torus. In our case, smoothness follows immediately from Theorem 2.13, provided

our eigendata is generic, and irreducibility follows from a hard result by Hausel, Letellier and

Rodriguez-Villegas. More on this – with an independent argument using some combinatorics

based on a now-proven conjecture of theirs (see [Mel20]) – is discussed in Appendix A.

Theorem 2.14 ([HLRV13, Theorem 1.1.1]) Let Ci be semi-simple generic conjugacy classes. If

non-empty, Mg,k is connected and, hence, irreducible.

Recall that irreducibility follows immediately from smoothness and connectedness. Indeed, a

point in the intersection of two irreducible components would necessarily be singular, and thus

contradict smoothness. In this case, (2.6) is the formula for dim(Mg,k).

2.3 Multiplicative Quiver Varieties

The pioneering paper [CBS06] introduces an algebra defined on a quiver, from which one can

obtain a variety that encodes solutions of the multiplicative Deligne-Simpson problem (Problem

2.10). Some of the general exposition of this section can also be found in the lectures [CB99] by

Crawley-Boevey.
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2.3.1 Quivers

First and foremost, a quiver is simply a directed graph (so-named because it contains arrows).

More precisely, it is a pair Q = (Q0, Q1) consisting of vertices Q0 and arrows Q1 between pairs

of vertices. For an arrow a ∈ Q1, we say its head h(a) ∈ Q0 is the vertex where the arrow

terminates, and its tail t(a) ∈ Q0 is the vertex where the arrow originates. In other words, such

an arrow can be expressed pictorially as t(a)
a−→ h(a).

Definition 2.15 A quiver representation of a quiver Q is an assignment (Vv, fa) of vector spaces

Vv to each vertex v and linear maps fa : Vt(a) → Vh(a) to each arrow t(a)
a−→ h(a). Fixing the

dimension vector n := (nv) = (dim(Vv)), the space of quiver representations is precisely

Rep(Q,n) ∼=
∏
a∈Q1

Matnh(a)×nt(a)
(C).

There is a natural action on the space Rep(Q,n) by simultaneous conjugation, that is by

GL(n) :=
∏
v∈Q0

GLnv(C). (2.7)

A path is a concatenation of arrows that we read right-to-left. This agrees with [CBS06] so that

in the quiver representation, the arrows can be replaced by linear maps/matrices without any

additional modifications needed; their composition/multiplication makes sense from the get-go.

Note that the indices on the vertex and arrow sets are there to indicate that the vertices Q0 are

paths of length zero and the arrows Q1 are paths of length one.

The path algebra is the algebra CQ generated by the trivial paths ev and arrows a ∈ Q1, where

multiplication is the concatenation of paths with the following expected relations: e2v = ev for

each v ∈ Q0, eh(a)a = a = aet(a) for each a ∈ Q1 and evew = 0 when v ̸= w.

Remark 2.16 The category of quiver representations is equivalent to the category of (left) CQ-

modules, i.e. the category of representations of the path algebra; see [ARS95, Theorem III.1.5].

Briefly summarising, the quiver representation (Vv, fa) admits an element of the path algebra

V :=
⊕

v∈Q0
Vv. Conversely, V ∈ CQ induces the representation (Vv, fa) where Vv := evV and

fa is just multiplication by a, which is contained in Vh(a) by the relation a = eh(a)a.

Given a quiver Q, one can define its double Q = (Q0, Q1) which has the same vertex set but an

enlarged arrow set: for every arrow v
a−→ w, we attach to the picture the opposite arrow v

a∗←− w.
It is often convenient to extend this slightly to an involution on the set Q1 by setting (a∗)∗ = a.
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From this, we obtain an indicator-like function ε : Q1 → {±1} given by

ε(a) =

1 if a ∈ Q1

−1 if a∗ ∈ Q1

.

2.3.2 Preprojective Algebras

One of the critical definitions of interest to us here is that of a preprojective algebra. These were

studied by Gelfand and Ponomarev in [GP79], with deformed versions introduced in [CBH98].

These correspond to an additive Deligne-Simpson problem. In the setting of interest to us, we

want a multiplicative analogue, namely the algebra introduced by Crawley-Boevey and Shaw.

Definition 2.17 (cf. [CBS06, Definition 1.2]) Suppose Q is a quiver and q = (qv) ∈ (C∗)|Q0|.

The multiplicative preprojective algebra is the algebra Λq(Q) arising as the localisation of the path

algebra CQ of the double by the elements 1 + aa∗ for a ∈ Q1, modulo the following relation:∏
a∈Q1

(1 + aa∗)ε(a) =
∑
v∈Q0

qvev.

Some care should be made to choose an ordering on the arrow set Q1, and the above product is

then taken with respect to said order. However, [CBS06, Theorem 1.4] establishes that Λq doesn’t

depend on the choice of ordering (and orientation) up to isomorphism. We have therefore opted

only to alert the reader to this detail and neglected explicit meaning of it ourselves. As for the

representation theory, one identifies representations of the multiplicative preprojective algebra

as a subspace Rep(Λq,n) ⊆ Rep(Q,n) that satisfies analogues of the relations in Definition 2.17:

idVh(a)
+fa ◦ fa∗ is invertible for all a ∈ Q1

and ∏
a∈Q1
h(a)=v

(idVh(a)
+fa ◦ fa∗)ε(a) = qh(a) idVh(a)

.

2.3.3 Quiver Varieties

There is the natural group action by (2.7) on quiver representation spaces, which we can quotient

out (and keep only the closed orbits). But the GL(n)-conjugation action by non-zero scalar

multiplies of the identity is trivial, so we further quotient by {z1 : z ̸= 0} ∼= C∗ without loosing
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anything. In other words, we quotient by PGL(n) := GL(n)/C∗ which has dimension

d := −1 +
∑
v∈Q0

n2v. (2.8)

Definition 2.18 The multiplicative quiver variety associated to a quiver Q is the GIT-quotient

Mq,n(Q) = Rep(Λq,n) // PGL(n).

In the same way that the multiplicative preprojective algebra is a multiplicative analogue of the

usual (deformed) preprojective algebra Πλ from Crawley-Boevey and Holland, the multiplicative

quiver varieties are analogues of the varieties corresponding to Πλ, the so-called Nakajima quiver

varieties introduced in [Nak94, §2].

We wish to say something about the dimension ofMq,n(Q). First, let’s recall the Ringel form

⟨·, ·⟩ : N|Q0| × N|Q0| → N, ⟨n,m⟩ =
∑
v∈Q0

nvmv −
∑
a∈Q1

nt(a)mh(a), (2.9)

The Ringel form applied to two copies of the same tuple gives us the so-called the Tits form, i.e.

q(n) := ⟨n,n⟩. (2.10)

A symmetric variant of the Ringel form (2.9) is known as the Cartan form. Explicitly, this is

(n,m) := ⟨n,m⟩+ ⟨m,n⟩ = 2
∑
v∈Q0

nvmv −
∑
a∈Q1

(
nt(a)mh(a) +mt(a)nh(a)

)
. (2.11)

For convenience, we introduce the following given in terms of the Tits form:

p(n) := 1− q(n). (2.12)

The last bit of notation we define, for any q = (qv) ∈ (C∗)|Q0| and n = (nv) ∈ N|Q0|, is

qn :=
∏
v∈Q0

qnv
v .

The next result will allow us to compute the dimension of a multiplicative quiver variety from

the data of the multiplicative preprojective algebra. One can also use [CBS06, Theorems 1.8 and

1.10], and [CF17, Theorem 2.8], in the case that the representations of Λq are simple.
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Proposition 2.19 ([CBS06, Theorem 1.11]) For all q, let any non-trivial decomposition of the

dimension vector n =
∑

i ni into a sum of positive roots with qni = 1 satisfy p(n) >
∑

i p(ni).

Then, if non-empty, Rep(Λq,n) is smooth and equidimensional of dimension d + 2p(n), with d

as in (2.8) and p as in (2.12). The group PGL(n) acts freely on Rep(Λq,n), which means the

dimension of the multiplicative quiver varietyMq,n(Q) is d+ 2p(n)− d = 2p(n).

The assumption that the decomposition of n into positive roots has qni = 1 will for us be encoded

by the genericity condition (Definition 2.12) placed on the eigenvalues of certain matrices that

we can extract from a representation of Λq. Namely, there is no such decomposition and thus

Proposition 2.19 holds immediately in the cases that we wish to apply it.

Recall that a short exact sequence of modules 0 → A → M → B → 0 is split if M ∼= A ⊕ B.

There is a group Ext1(A,B) that measures how many ways there are to form a short exact

sequence of the form 0 → A → M → B → 0, whose zero element corresponds to the trivial

extension M = A⊕B. The final result of this section is an explicit formula for the dimension of

this so-called first Ext group; this particular lemma is crucial for an argument in §5.1.1.

Lemma 2.20 (cf. [CBS06, Theorem 1.6]) For finite-dimensional Λq-modules Mi and Mj,

dim
(
Ext1Λq(Mi,Mj)

)
= dim

(
HomΛq(Mi,Mj)

)
+ dim

(
HomΛq(Mj ,Mi)

)
− (ni,nj),

with (·, ·) as in (2.11), and ni and nj the associated respective dimension vectors.

2.3.4 Obtaining Deligne-Simpson Solutions

Definition 2.21 A star-shaped quiver is a tree with one vertex of degree k, called the central

vertex, and the rest of degrees one and two, forming the k-legs of the star. We denote by di the

number of vertices on the ith leg (including the central vertex).

0

[1, 1]

[2, 1]

[k, 1]

[1, 2]

[2, 2]

[k, 2]

[1, d1 − 1]

[2, d2 − 1]

[k, dk − 1]

...
...

...

· · ·

· · ·

· · ·

Figure 2.1: The star-shaped quiver.

Suppose (A1, . . . , Ak) is a solution of the multiplicative Deligne-Simpson problem (Problem 2.10)



§2.4 Affine Algebraic Varieties 17

with semi-simple conjugacy classes, and denote by λij the eigenvalues of Ai. Associated to this

is the multiplicative preprojective algebra of a star-shaped quiver. Here, q = (qv) is given by

q0 =
k∏

i=1

1

λi1
, q[i,j] =

λij
λi j+1

. (2.13)

The corresponding representation of Λq is that with vector spaces

V0 = Cn, V[i,j] = im
(
(Ai − λi1) · · · (Ai − λij)

)
,

meaning the dimension vector is n = (n0, n[i,j]) where

n0 = n, n[i,j] = rank
(
(Ai − λi1) · · · (Ai − λij)

)
. (2.14)

Let aij denote the arrow with tail at the vertex [i, j]. The (surjective) linear maps Xa∗ij
are

products that successively kill eigenspaces, and the (injective) linear maps Xaij are inclusions.

Conversely, one can extract a Deligne-Simpson solution from such a representation of Λq, namely

Ai = λi1(1 +Xai1Xa∗i1
).

A similar construction works more generally for arbitrary conjugacy classes, see [CB04, CBS06].

Proposition 2.22 ([CBS06, Lemma 8.3]) For a star-shaped quiver Q, there is a simple repre-

sentation of Λq if and only if there is an irreducible solution of the associated multiplicative

Deligne-Simpson problem.

For semi-simple generic conjugacy classes, solutions to the associated Deligne-Simpson problem

are irreducible. The proof of [CBS06, Lemma 8.3] in that situation implies the following result.

Proposition 2.23 For generic eigenvalues λij, the character variety M0,k and the multiplicative

quiver varietyMq,n(Q) are isomorphic. In particular, both are smooth irreducible affine varieties.

2.4 Affine Algebraic Varieties

We will next recall some of the standard language commonly used in algebraic geometry. This

will become important when we prove the main result of the thesis. We offer a rather limited-

but-sufficient scope of the algebraic geometry required, cherry-picking from the much better

developed work [Har77]. Throughout, we work over the field of complex numbers K = C.
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2.4.1 Varieties

The affine n-space An is the set of all n-tuples of complex numbers. The vanishing set of a subset

of polynomials S ⊆ C[x1, . . . , xn] is the set of points in the affine space where all polynomials in

S are simultaneously zero when evaluated at these points, that is

V (S) = {(a1, . . . , an) ∈ An : f(a1, . . . , an) = 0 for all f ∈ S}.

Definition 2.24 An affine algebraic variety is any subset X ⊆ An of the affine n-space that can

be expressed as a vanishing set X = V (S) of some subset S ⊆ C[x1, . . . , xn].

The coordinate ring C[X] of a variety X is the quotient of the polynomial ring in n variables by

I(X) = {f ∈ C[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X}, the so-called vanishing

ideal of the variety. In other words, the coordinate ring is the restriction of polynomials to X.

Remark 2.25 The coordinate ring is an attribute of (or data defining) a variety. If two varieties

are isomorphic, this naturally induces an isomorphism on coordinate rings. This is what we used

to re-phrase Theorems 1.1, 1.2 and 1.3. Indeed, the coordinate ring of the variety Spec(R) is

R itself, and the coordinate rings of the corresponding Calogero-Moser spaces are precisely the

rings of regular functions on said spaces. Hence, Spec(R) ∼=M implies R ∼= C[M ].

2.4.2 Maps Between Varieties

Suppose X ⊆ An and Y ⊆ Am are affine algebraic varieties. We say that a map f : X → Y

is regular if it can be given locally by polynomials, that is f is the restriction to X of some

polynomial F : An → Am. In this way, we can view the coordinate ring of a variety as a regular

map from X to the trivial variety Y = C. It is for this reason that the elements of a coordinate

ring C[x1, . . . , xn]/I(X) are called the regular functions on the variety.

Definition 2.26 We can add to the affine n-space a topology called the Zariski topology, where

the closed subsets are precisely the vanishing sets V (S) for each S ⊆ C[x1, . . . , xn]. Being more

topologically conventional, the open subsets are complements of these vanishing sets, that is the

open subsets are complements of the affine algebraic varieties.

Remark 2.27 A generalisation of a variety is a scheme, which is a certain type of space iso-

morphic to the spectrum Spec(R) of some commutative ring R. Indeed, the affine variety

X = V (S) with coordinate ring C[x1, . . . , xn]/I(X) has associated to it the affine scheme

Spec(C[x1, . . . , xn]/I(X)). As a set, recall that Spec(R) is the set of prime ideals of the ring

R. There is a parallel to Definition 2.26 for Spec(R), whereby we define V (S) = {p ⊆ R prime :

p ⊇ S} as the set of prime ideals containing the ideal S; these are the closed subsets in the

Zariski topology.



§2.5 Poisson Structures and Dynamics 19

A rational map between varieties f : X 99K Y is a regular map from an open (in the Zariski

topology) dense subset X ⊇ U → Y . In other words, a rational map is an equivalence class of

pairs (ϕ,U) with ϕ : U → Y , where we declare (ϕ,U) ∼ (ψ, V ) if and only if ϕ ≡ ψ on the subset

U ∩V . This generalises the notion of a rational function g/h where g, h ∈ C[x1, . . . , xn]. Indeed,
viewing a rational function as living in the coordinate ring of some variety X, it gives rise to a

rational map f : X 99K CP1 which is given by f(x) = [g(x), h(x)] in projective coordinates.

2.5 Poisson Structures and Dynamics

The final preliminary content is really a part of mathematical physics. One of the most complete

places to study this background is [Arn89]; we briefly recall some of the important definitions

and results to use later when interpreting our main result from a dynamical point-of-view.

2.5.1 Integrability

Let C(x) be the field of meromorphic functions in the variables x1, . . . , xn. A dynamical system

is a collection of differential equations ẋi = Fi(x1, . . . , xn), where the dot notation denotes a time

derivative. Then, a vector field on C(x) is a linear homogeneous differential operator

XF =

n∑
i=1

Fi
∂

∂xi
.

These can be used to compute the time evolution of a meromorphic function f(x), namely

ḟ := XF f.

Definition 2.28 A Hamiltonian system in C2n is a dynamical system of the form

ṗi = −
∂H

∂qi
, q̇i =

∂H

∂pi
. (2.15)

The function H = H(p,q) in Definition 2.28 is called the Hamiltonian of the system. For any

analytic f(p,q) on C2n, the dynamics are dictated by the Hamiltonian; its time evolution is

ḟ =
n∑

i=1

(
∂f

∂pi
ṗi +

∂f

∂qi
q̇i

)
=

n∑
i=1

(
− ∂f
∂pi

∂H

∂qi
+
∂f

∂qi

∂H

∂pi

)
,

Recall that a Poisson bracket on a smooth (complex) manifoldM is a Lie bracket {·, ·} : Cω(M)×
Cω(M)→ Cω(M) that satisfies the Leibniz rule, where Cω denotes the space of complex analytic

functions (analogous to the space of smooth functions C∞ in the case thatM is a real manifold).
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A smooth manifold equipped with this bracket is called a Poisson manifold.

On the phase space C2n, one can view it as a Poisson manifold by introducing the bracket

{f, g} :=
n∑

i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
.

Remark 2.29 A Poisson bracket is, in general, degenerate in the sense that there exist functions

f ∈ Cω such that, for all g ∈ Cω, {f, g} = 0. These f are called Casimir functions (or Casimirs).

The space of functions on the phase space C2n forms an infinite-dimensional algebra called a

Poisson algebra, whose Poisson centre consists of Casimirs. With respect to a given Hamiltonian,

one can define the Poisson algebra of integrals

FH := {f ∈ Cω : {f,H} = 0}.

Given that this is an algebra, it is closed under taking functions of its elements. This allows one

to fully describe FH by only considering so-called functionally-independent integrals, which are

collections of elements f1, . . . , fk ∈ FH such that the Jacobian matrix (∂fi/∂xj) has rank k.

Theorem 2.30 (Liouville-Arnold Theorem) If a Hamiltonian system in C2n has n functionally-

independent integrals f1, . . . , fn in involution, that is {fi, fj} = 0 for all i, j = 1, . . . , n, then it

can be solved by quadratures.

This theorem says that the Hamiltonian equations (2.15) can be explicitly integrated under the

hypotheses of Theorem 2.30. One obtains from this the popular definition of integrability for

(finite-dimensional) Hamiltonian systems known as Liouville integrability.

2.5.2 Deformations of Algebras

Following [Eti09, §3.1], one can obtain a Poisson bracket from a so-called formal deformation of

a commutative algebra A0. Namely, consider the ring of formal power series K = C[[ℏ1, . . . , ℏn]]
in n variables, which has maximal ideal m = (ℏ1, . . . , ℏn). A formal n-parameter deformation of

A0 is a K-algebra A which is topologically free as a K-module (isomorphic to V [[ℏ1, . . . , ℏn]] for
some C-vector space V ) alongside an isomorphism

η0 : A/mA
∼−→ A0. (2.16)

Remark 2.31 One can think of a one-parameter deformation by ℏ1 = ℏ as the algebra A0[[ℏ]]
whose multiplication ∗ is determined by products in A0 via following formal power series, where
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µi : A0 ⊗A0 → A0 are linear maps, the first of which µ0(a, b) = ab is multiplication in A0:

a ∗ b :=
∞∑
k=0

µk(a, b)ℏk.

For a one-parameter deformation, the commutator on the corresponding deformed algebra Aℏ

determines the Poisson bracket on the classical (non-deformed) algebra A0. Indeed, for any

a, b ∈ Aℏ, we expand the commutator as [a, b] = iℏ{η0(a), η0(b)} + · · · , and call the elements

η0(a), η0(b) ∈ A0 the classical limits of a and b, respectively. It is common to introduce q = e−iℏ

which controls the deformation. In the classical limit ℏ→ 0, this corresponds to q → 1. Hence,

[a, b] = (q − 1){η0(a), η0(b)}+ · · · . (2.17)





Chapter 3

Double Affine Hecke Algebras

The double affine Hecke algebra (DAHA) of a reduced root system first appeared in the paper

[Che92] by Ivan Cherednik. A subsequent extension to the non-reduced root system of type C∨Cn

came about by Sahi in his pioneering paper [Sah99], wherein he constructed this new DAHA

to analyse some Macdonald and Koornwinder polynomials. More works [NS00, Sto00] further

study the latter. This chapter recapitulates some of the set-up from the aforementioned papers,

we follow [EGO06] for the interpretation the DAHA of type C∨Cn as a generalised double affine

Hecke algebra (GDAHA), and we adapt a construction in [Cha19] to represent some elements of

this DAHA by matrices. We conclude by analysing the eigendata of each matrix.

Notation 3.1 In §2.1.4, we introduced notation τ∨0 , τ0, . . . , τn, τ
∨
n for the parameters of the DAHA

of type C∨Cn, where τ1 = · · · = τn−1. Now on, we use the following notation for the parameters:

τ0 = k0, τn = kn, τ1 = · · · = τn−1 = t, τ∨0 = u0, τ∨n = un.

3.1 The DAHA and its Spherical Subalgebra

As the name suggests, the DAHA contains two copies of an affine Hecke algebra; of interest to

us is the one associated with the root system of type Cn (rather, the affine root system C̃n).

Namely, the DAHA of [Sah99] contains the affine Hecke algebras H̃n associated with each of Cn

and its dual C∨
n . Let’s give an explicit definition of this DAHA that we work with henceforth.

This is a particular case of Definition 2.7, made explicit by having now chosen W of type Cn.

Definition 3.2 Let q, k0, kn, t, u0, un ∈ C∗ and write τ for the parameters (k0, kn, t, u0, un). The

double affine Hecke algebra of type C∨Cn is the associative algebraHq,τ over C[τ±1, q±1] generated

by invertible elements T0, . . . , Tn and X1, . . . , Xn subject to the following relations:
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(i) T0 − T−1
0 = k0 − k−1

0 .

(ii) Ti − T−1
i = t− t−1. (i = 1, . . . , n− 1)

(iii) Tn − T−1
n = kn − k−1

n .

(iv) [Ti, Tj ] = 0. (|i− j| > 1)

(v) T0T1T0T1 = T1T0T1T0.

(vi) TiTi+1Ti = Ti+1TiTi+1. (i = 1, . . . , n− 2)

(vii) Tn−1TnTn−1Tn = TnTn−1TnTn−1.

(viii) [Xi, Xj ] = 0. (1 ≤ i < j ≤ n)

(ix) [Ti, Xj ] = 0. (j ̸= i, i+ 1)

(x) TiXi = Xi+1T
−1
i . (i = 1, . . . , n− 1)

(xi) T∨
0 − (T∨

0 )
−1 = u0 − u−1

0 . (T∨
0 := q−1T−1

0 X1)

(xii) T∨
n − (T∨

n )
−1 = un − u−1

n . (T∨
n := X−1

n T−1
n )

The DAHA of type C∨Cn contains an overt copy of the affine Hecke algebra H̃n of type C̃n as

a subalgebra, generated by T0, . . . , Tn with parameters k0, kn and t. Under the specialisation

k0 = kn = t = 1, this is isomorphic to the group algebra CW̃ of the affine Weyl group of type

C̃n. A similar story persists for the finite Hecke algebra Hn of type Cn, generated by T1, . . . , Tn

with parameters kn and t. This is isomorphic to the group algebra CW under kn = t = 1.

Notation 3.3 As a way to alleviate notation here henceforth, we shall introduce the following:

S := T1 · · ·Tn−1 and S† := Tn−1 · · ·T1.

Lemma 3.4 In Hq,τ , we have the relation qT0T
∨
0 ST

∨
n TnS

† = 1.

Proof : Using T∨
0 = q−1T−1

0 X1 and T∨
n = X−1

n T−1
n , the relation here becomes X1SX

−1
n S† = 1,

that is S†X1 = XnS
−1. But this follows by inductively applying relation (x) in Definition 3.2.

From §2.1.2, recall w ∈W admits a reduced decomposition w = si1 · · · siℓ into simple reflections

(that is, where ℓ is minimal). To each simple reflection, one can associate a corresponding Hecke

generator Ti := Tsi , which has corresponding parameter τi = τsi . This extends to every w ∈ W
in the sense that Tw := Ti1 · · ·Tiℓ ; the corresponding parameter is τw := τi1 · · · τiℓ . Therefore, the
mapping Ti 7→ t (i = 1, . . . , n− 1) and Tn 7→ kn extends to a one-dimensional representation

χ : Hn → C, Tw 7→ τw.
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Definition 3.5 (cf. [Mac03, (5.5.7)]) The Hecke symmetriser is the idempotent associated to χ:

e :=
1∑

w∈W τ2w

∑
w∈W

τwTw.

Now, in analogue with the rational Cherednik algebra [EG02] and the DAHA of type GLn

[Obl04], we wish to discuss a certain subalgebra of our DAHA. We will provide a definition and

state some structural results in the style of [Obl04, §5] which are proved in an identical way.

Definition 3.6 The spherical subalgebra of the DAHA Hq,τ is the algebra eHq,τe.

One of the most important features is that the spherical subalgebra at the classical level q = 1 is

precisely the centre of the DAHA (see Theorem 5.15), and it admits a useful known quantisation

which isn’t immediately clear by looking purely at said centre (see §5.5).

3.2 The GDAHA

The GDAHA of [EGO06] is defined using a star-shaped quiver (see Definition 2.21). Recall this

is nothing more than a tree with k legs protruding from the central vertex, and that the number

of vertices on the ith leg (including the central vertex) is denoted di.

Definition 3.7 ([EGO06, Definition 3.2.1]) Let uij , t ∈ C∗ for i = 1, . . . , k and j = 1, . . . , di and

write u for the parameters (uij). The generalised double affine Hecke algebra of rank n associated

to the star-shaped quiver Q is the associative algebra Hn(Q) over C[u±1, t±1] generated by the

invertible elements U1, . . . , Uk and T1, . . . , Tn−1 subject to the following relations:

(i) Ti − T−1
i = t− t−1. (i = 1, . . . , n− 1)

(ii) [Ti, Tj ] = 0. (|i− j| > 1)

(iii) TiTi+1Ti = Ti+1TiTi+1. (i = 1, . . . , n− 2)

(iv) [Ui, Tj ] = 0. (i = 1, . . . , k and j = 2, . . . , n− 1)

(v) [Ui, T1UiT1] = 0. (i = 1, . . . , k)

(vi) [Ui, T
−1
1 UjT1] = 0. (1 ≤ i < j ≤ k)

(vii)
di∏
j=1

(Ui − uij) = 0. (i = 1, . . . , k)

(viii) (U1 · · ·Um)SS† = 1.

As promised in the introductory paragraph of this chapter, there is an interpretation of the usual

DAHA Hq,τ as a GDAHA. Specifically, we should consider the GDAHA associated to Q = D̃4
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in order to reconcile Definitions 3.2 and 3.7. Note that k = 4 and each di = 2 for this GDAHA.

Lemma 3.8 ([EGO06, Proposition 3.3.2]) There is an isomorphism φ : Hn(D̃4)→ Hq,τ whereby

φ(Ti) = Ti, φ(U1) = qT0, φ(U2) = T∨
0 , φ(U3) = ST∨

n S
−1, φ(U4) = STnS

−1,

provided also that the GDAHA parameters are mapped to the DAHA parameters via t 7→ t and

u11 7→ qk0, u12 7→ −qk−1
0 , u21 7→ u0, u22 7→ −u−1

0 ,

u31 7→ un, u32 7→ −u−1
n , u41 7→ kn, u42 7→ −k−1

n .

Note relation (viii) in Definition 3.7 becomes the Lemma 3.4 relation under the isomorphism φ.

3.3 Duality

Notation 3.9 The collection of n variables X1, . . . , Xn is denoted by the shorthand X. For an

element λ ∈ Zn, we extend this shorthand to Xλ, which denotes the product Xλ1
1 · · ·Xλn

n .

Apart from the obvious commutative subalgebra C[X±1] of Laurent polynomials inX1, . . . , Xn in

Hq,τ , there is another commutative Laurent polynomial subalgebra C[Y ±1] in Y1, . . . , Yn, where

Yi := Ti · · ·Tn−1TnTn−1 · · ·T1T0T−1
1 · · ·T−1

i−1. (3.1)

Proposition 3.10 ([Che95b, Theorem 1.2], PBWProperty) For λ,µ ∈ Zn, the elements XλTwY
µ

form a basis of Hq,τ , that is every element h ∈ Hq,τ admits a unique presentation of the form

h =
∑

λ,µ∈Zn

w∈W

hλ,w,µX
λTwY

µ, hλ,w,µ ∈ C.

Sketch of Proof : From [Lus89, Proposition 3.7], we know H̃n
∼= Hn ⊗ C[Y ±1] as vector spaces.

On the other hand, [Mac03, (4.7.4)(ii)] says Hq,τ
∼= C[X±1]⊗ H̃n as vector spaces. Combining,

Hq,τ
∼= C[X±1]⊗Hn ⊗ C[Y ±1].

The PBW Property indicates that theXi and Yi elements of the DAHA should be viewed on equal

footing (which is not clear a priori). This is manifested by the so-called duality, an isomorphism

between two DAHAs with different parameters. This is discussed by Sahi when he introduces the

DAHA [Sah99], and Stokman who develops this to obtain not one but two dual DAHAs [Sto00].

However, one of these is an anti -isomorphism which, although interesting, would interchange left
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and right modules; this is not desirable.

The duality that Sahi studies doesn’t quite map the DAHA to itself, rather the parameter are

inverted, and some are interchanged. The flavour of this map from the perspective of the GDAHA

(in light of Lemma 3.8) is that it inverts everything and interchanges U1 and U3. Let

Hq,τ be the DAHA with parameters τ = (k0, kn, t, u0, un),

Hq−1,σ be the DAHA with parameters σ = (u−1
n , k−1

n , t−1, u−1
0 , k−1

0 ).

Theorem 3.11 ([Sah99, Theorem 4.2], Duality Isomorphism) There is a unique isomorphism

ε : Hq,τ → Hq−1,σ given by

ε(T0) = S(T∨
n )

−1S−1

ε(Ti) = T−1
i

ε(Xi) = Yi

for i = 1, . . . , n, where the jth parameter in τ maps to the jth parameter in σ for each j = 1, . . . , 5.

Comparing this to [Obl04, §3.5], it is clear that the Duality Isomorphism is the analogue of

the Fourier-Cherednik transform that Oblomkov uses when working with the DAHA of type

GLn. The Duality Isomorphism ε will become a key ingredient when we start to consider things

from the character variety point-of-view. In particular, once we have constructed some local

coordinates, duality allows us to immediately obtain a second coordinate chart (see §5.3).

Remark 3.12 The proof of Proposition 3.10 sheds some light on the “double” in DAHA. Namely,

Lusztig’s presentation of the affine Hecke algebra H̃n has a dual presentation C[X±1]⊗Hn via ε.

Therefore, the DAHA of type C∨Cn can be thought of as two copies of the affine Hecke algebra

of type C̃n that overlap on the finite Hecke algebra of type Cn.

3.4 The Basic Representation

A crucial idea needed to prove Theorem 1.3 is that of the Basic Representation [Sah99, Theorem

3.1], which extends the representation of the affine Hecke algebra H̃n of type C̃n found by Noumi

[Nou95] to a representation of the DAHA Hq,τ . This is done by representing the generators of

the DAHA by so-called q-difference-reflection operators.

First, we consider the ring of q-difference operators generated by X±1
i and P±1

i for i = 1, . . . , n

subject to [Xi, Xj ] = [Pi, Pj ] = 0 for all i and j, as well as the deformed commutation relation

PiXj = q2δijXjPi. (3.2)
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Remark 3.13 The DAHA in [Sah99] is defined with square root parameters τ 1/2 and q1/2. Using

either his convention or ours will be, for the most part, simply personal preference. However, his

Pi acts by multiplicative q-shift, which corresponds to multiplicative q2-shift when working with

the squared parameters as we do. The change is subtle, but it means the Poisson bracket on the

spherical subalgebra eH1,τe, viewed as a one-parameter deformation of eHq,τe in the sense of

§2.5.2, is obtained exactly as in (2.17) but instead with coefficient (q2 − 1), see (5.16).

The ring of q-difference operators is denoted

Dq := Cq[X
±1,P±1], (3.3)

which becomes the ring of Laurent polynomials in two variables at the classical level q = 1. By

localising Dq on the (Ore) set C[X±1] \ {0} of non-zero Laurent polynomials, we obtain the ring

Dq := Cq(X)[P±1]. (3.4)

Now, the Weyl group of type Cn consisting of sign-changing permutations on n letters

W = Zn
2 ⋊ Sn (3.5)

is generated by transpositions sij and sign-reversals si. In general, Weyl group elements w ∈W
act on functions by w • f(X) = f(w−1 •X). Here, (3.5) acts naturally on Dq and Dq by

si : Xi 7→ X−1
i , Pi 7→ P−1

i ,

sij : Xi 7→ Xj , Pi 7→ Pj ,

s+ij = sij si sj : Xi 7→ X−1
j , Pi 7→ P−1

j .

(3.6)

Definition 3.14 The algebra of q-difference-reflection operators is the semi-direct product

Dq ⋊CW.

The elements of Dq ⋊CW are finite C(X)-linear combinations of the form∑
λ∈Zn

w∈W

aλ,w(X)P λw. (3.7)
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For i = 1, . . . , n, we introduce the notation

s0 = P−1
1 s1,

si = si i+1,

sn = sn .

(3.8)

It is straightforward to see that s0, . . . , sn generate the affine Weyl group W̃ of type C̃n, cf.

relations (v)–(vii) in Definition 3.2. As the si act on functions via (3.6), there is an isomorphism

Dq
∼= C(X)⋊CW̃ .

Remark 3.15 In the general setting, the above equivalence is only true with the extended affine

Weyl group Ŵ (see §2.1.2) in place of W̃ . The situation in which we find ourselves in the present

chapter, where we have fixed W to be the Weyl group (3.5) of type Cn, the objects Ŵ and W̃

coincide and we needn’t make a distinction.

Proposition 3.16 ([Sah99, (13)], Basic Representation) There is an injective homomorphism of

algebras β : Hq,τ → Dq ⋊CW defined as follows for i = 1, . . . , n− 1:

β(Xi) = Xi,

β(T0) = k0s0 +
k0 + qu0X

−1
1

1− q2X−2
1

(1− s0),

β(Ti) = tsi +
t

1−XiX
−1
i+1

(1− si),

β(Tn) = knsn +
kn + unXn

1−X2
n

(1− sn),

where we use · to denote the difference between a parameter and its inverse, e.g. t = t− t−1.

Remark 3.17 For q ̸= 1, we can view the elements of Dq ⋊CW (and hence the elements of Hq,τ )

as operators acting on functions of n variables, with Pi variables acting as multiplicative shifts

Pi • f(X1, X2, . . . , Xn) = f(X1, . . . , Xi−1, q
2Xi, Xi+1, . . . , Xn) (3.9)

and with the si elements acting as follows:

s0 • f(X1, X2, . . . , Xn) = f(q2X−1
1 , X2, . . . , Xn),

si • f(X1, X2, . . . , Xn) = f(X1, . . . , Xi−1, Xi+1, Xi, Xi+2, . . . , Xn),

sn • f(X1, X2, . . . , Xn) = f(X1, . . . , Xn−1, X
−1
n ).

(3.10)



30 3 Double Affine Hecke Algebras

We conclude this section by discussing an important corollary of Proposition 3.16 regarding a

localisation property of Hq,τ . Let’s recall the correct notion of non-commutative localisation.

Definition 3.18 Let R be a ring and S ⊆ R a multiplicative subset. The (right) Ore condition

says rS ∩ sR ̸= ∅. In other words, for every r ∈ R and s ∈ S, there exist r′ ∈ R and s′ ∈ S with

rs′ = sr′ ⇔ s−1r = r′(s′)−1.

In other words, the Ore condition allows one to move localised elements from one side of a ring

element to the other (at the expense of perhaps being changing both the localised and ring

elements). Of course, there is a natural analogue to Definition 3.18 for left-standing elements.

Notation 3.19 For S ⊆ R a (right) Ore set, the (right) localisation of R by S is denoted R[S−1].

Consider the following multiplicative subset, whose generating elements have i ̸= j and ℓ ∈ Z:

S =

〈
1− qℓX±1

i X±1
j , 1− qℓt2X±1

i X±1
j , 1− qℓX±2

i ,

1− qℓk0u0X±1
i , 1 + qℓk0u

−1
0 X±1

i , 1− qℓknunX±1
i , 1 + qℓknu

−1
n X±1

i

〉
. (3.11)

Lemma 3.20 The multiplicative subset S is a left and right Ore set in Hq,τ .

Proof : It suffices to prove this on generators s ∈ S with each of Xi and Ti from the DAHA. The

former is trivial since they commute with every s. As for the latter, we embed the DAHA into

the algebra of q-difference-reflection operators via the Basic Representation β. In doing so, Ti

acts by si from (3.10). Writing the action of si on Ti as a superscript, we can see that

Ti (s)
sis︸ ︷︷ ︸
s′

= s (s)siTi︸ ︷︷ ︸
r′

,

Since S is closed under the action of si, we indeed have s′ ∈ S, and clearly r′ ∈ Hq,τ . Finally

then, the argument for showing that S is a left Ore argument is completely analogous.

Proposition 3.21 The Basic Representation β induces an isomorphism of the Ore localisations

Hq,τ [S−1] ∼= Cq[X
±1,P±1][S−1]⋊CW.

Proof : The DAHA generators are represented by elements of Cq[X
±1,P±1][S−1]⋊ CW by the

same formulae as those appearing in the Basic Representation. Conversely, the Weyl group

W is generated by si from (3.10) for i = 1, . . . , n. The definition of S in (3.11) allows us to

rearrange the expressions in Proposition 3.16 for each si. We see that each Xi is sent to the

DAHA generator of the same name and, in light of (3.8), each Pi is ultimately obtained by
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rearranging the Basic Representation for s0; we can easily get P−1
1 and successively act on it to

get the others.

When q = 1, we can replace the Ore set S with the multiplicative set generated by the elements

δ(X) :=
n∏

i=1

(1−X2
i )(1−X−2

i )
∏
j ̸=k

(1−XjXk)(1−X−1
j Xk)(1−XjX

−1
k )(1−X−1

j X−1
k ) (3.12)

and

δτ (X) :=
∏
i<j

(1− t2XiXj)(1− t2X−1
i Xj)(1− t2XiX

−1
j )(1− t2X−1

i X−1
j )

×
n∏

i=1

(1− k0u0Xi)(1 + k0u
−1
0 Xi)(1− knunXi)(1 + knu

−1
n Xi)

×
n∏

i=1

(1− k0u0X−1
i )(1 + k0u

−1
0 X−1

i )(1− knunX−1
i )(1 + knu

−1
n X−1

i ).

(3.13)

The product of (3.12) and (3.13) is the W -invariant form of the τ -deformed Weyl denominator

(2.5) for R the affine root system of type Cn. For instance, the factors (1−knunXn)(1+knu
−1
n Xn)

appear in the τ -deformed Weyl denominator when α = an = 2εn is the nth simple root.

In the sequel, we use subscripts δ(X) and δτ (X) for respective localisations by each of (3.12)

and (3.13), and a superscript W for the subalgebra comprising of W -invariant elements.

Corollary 3.22 Let H = H1,τ . The Basic Representation β induces isomorphisms of localisations

Hδ(X)δτ (X)
∼= C[X±1,P±1]δ(X)δτ (X) ⋊CW

and

eHδ(X)δτ (X)e ∼= C[X±1,P±1]Wδ(X)δτ (X)e.

Proof : The first isomorphism is the classical limit q = 1 of Proposition 3.21. The second is

obtained from the first by embedding the DAHA into the algebra of q-difference-reflection op-

erators via β, multiplying on the left- and right-hand sides by the Hecke symmetriser e, and

finally pushing e through to the right. The Laurent polynomial ring then becomes the ring of

W -invariant Laurent polynomials.





Chapter 4

Representations of the DAHA

Wementioned in Chapter 1 that the results of Etingof and Ginzburg (Theorem 1.1) and Oblomkov

(Theorem 1.2) admit representation-theoretic interpretations. The purpose of this chapter is to

explore a similar situation this time associated to the DAHA of type C∨Cn. In particular, we ex-

plicate the relationship between the finite-dimensional irreducible representations of this DAHA

and a certain character variety called Calogero-Moser space that is suggested in [EGO06].

4.1 Calogero-Moser Space

We begin this chapter by first looking towards the character variety side of the story. Namely,

we introduce this section’s titular object as a particular specialised character variety: let us fix

Ci = [Λi] ⊆ GL2n(C) to be the semi-simple conjugacy classes defined by the diagonal matrices

Λ1 = diag(−k−1
0 , . . . ,−k−1

0︸ ︷︷ ︸
n

, k0, . . . , k0︸ ︷︷ ︸
n

),

Λ2 = diag(−u−1
0 , . . . ,−u−1

0︸ ︷︷ ︸
n

, u0, . . . , u0︸ ︷︷ ︸
n

),

Λ3 = diag(−u−1
n , . . . ,−u−1

n︸ ︷︷ ︸
n

, un, . . . , un︸ ︷︷ ︸
n

),

Λ4 = diag(−k−1
n , . . . ,−k−1

n︸ ︷︷ ︸
n

, knt
−2, . . . , knt

−2︸ ︷︷ ︸
n−1

, knt
2n−2︸ ︷︷ ︸
1

).

(4.1)

Definition 4.1 The Calogero-Moser space of type C∨Cn is the GL2n(C)-character variety M0,4 of

the four-punctured Riemann sphere with conjugacy classes Ci = [Λi] defined above by (4.1):

Cn := {Ai ∈ [Λi] : A1A2A3A4 = 12n} //GL2n(C).



34 4 Representations of the DAHA

Note that the conjugacy classes here make reference to the DAHA parameters. In particular,

recall the genericity condition we imposed on the conjugacy classes in Definition 2.12. However,

another notion of genericity will be helpful and yield nice results, here at the level of DAHA.

Definition 4.2 We call τ = (k0, kn, t, u0, un) generic if, for every a, b, c, d, e ∈ Z not all-zero,

ka0k
b
nt

cud0u
e
n ̸= 1.

Proposition 4.3 For generic τ , the Calogero-Moser space Cn is non-empty and smooth.

Proof : Non-emptiness follows from an explicit construction of a coordinate chart (see §4.3). As

for smoothness, it suffices to show the eigendata (4.1) is generic, so that the result then follows

from Theorem 2.13. Let λij be the eigenvalues with multiplicities µij of the matrix Λi. Then,

4∏
i=1

di∏
j=1

λ
µij

ij = 1.

The multiplicity of the eigenvalue λ41 = knt
2n−2 is µ41 = 1, so there are only two choices for ν41.

(i) If ν41 = 1, then since s < 2n, there will always be a surviving t-term or kn-term. Indeed,

ν42 = n− 1 kills the t-terms, but we must have ν43 < n and the product will contain kn.

(ii) If ν41 = 0, we have a persistent t-dependence from the penultimate eigenvalue λ42.

Irreducibility is now readily established from [HLRV11, HLRV13], in particular Theorem 2.14.

By following this line of reasoning, we have avoided a complicated technical argument as had to

be done in Oblomkov’s case [Obl04, §2.3]. Nevertheless, the reader is directed to Appendix A for

a combinatorial proof (of connectedness, hence irreducibility in the smooth case) using [Mel20].

Corollary 4.4 For generic τ , the Calogero-Moser space Cn is irreducible.

Moreover, we also know the dimension of Calogero-Moser space; it is given by the formula (2.6):

dim(Cn) = 2 + (0 + 4− 2)(2n)2 − (7n2 + (n− 1)2 + 1) = 2n.

It is sometimes convenient to use the following description of the space Cn. For V = C2n, let Rn

be the set of X,Y, T ∈ GL(V ) and (v, w) ∈ Hom(C, V )⊕Hom(V,C) subject to the relations

T − T−1 = (u0 − u−1
0 )1V , (4.2)

XT−1 − TX−1 = (k0 − k−1
0 )1V , (4.3)

T−1Y −1 − Y T = (un − u−1
n )1V , (4.4)
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tY TX−1 − t−1XT−1Y −1 = (knt
−1 − k−1

n t)1V + (t− t−1)vw, (4.5)

wv =
t2n − 1

t2 − 1
kn +

1− t−2n

1− t−2
k−1
n . (4.6)

There is a natural action of g ∈ GL(V ) on Rn, namely

g • (X,Y, T, v, w) := (gXg−1, gY g−1, gTg−1, gv, wg−1). (4.7)

Proposition 4.5 Let τ = (k0, kn, t, u0, un) be generic in the sense of Definition 4.2. Then, the

action (4.7) on Rn is free and we have an isomorphism of varieties Cn ∼= Rn/GL(V ).

Proof : To semi-simple matrices A1, A2, A3, A4 with the eigenvalues (4.1), associate X = A1A2,

Y = A4A1 = A−1
3 A−1

2 and T = A2. Let λ1, . . . , λ2n be the eigenvalues of A4 in reverse order as

they appear in (4.1), with respective corresponding eigenvectors v1, . . . , v2n. We then take v to

be the map C→ V sending 1 to v1, and define the map w : V → C by

w(v1) =
t2n − 1

t2 − 1
kn +

1− t−2n

1− t−2
k−1
n , w(vi) = 0 for i = 2, . . . , 2n.

It is easy to see that such X,Y, T , v, w satisfy the relations (4.2)–(4.6).

As for a map in the opposite direction, we take X,Y, T , v, w satisfying the relations (4.2)–(4.6)

and define A1 = XT−1, A2 = T , A3 = T−1Y −1 and A4 = Y TX−1. Obviously, A1A2A3A4 = 1V .

From (4.3), A1 is diagonalisable with eigenvalues from the set {k0,−k−1
0 }; one can argue similarly

for A2 and A3, but we still need to establish that the eigenvalues have equal multiplicity. On the

other hand, (4.5) and (4.6) will imply that tA4 − t−1A−1
4 is diagonalisable with two eigenvalues:

knt
−1− k−1

n t (of multiplicity 2n− 1) and knt
2n−1− k−1

n t−2n+1 (of multiplicity one). This implies

A4 is also diagonalisable, with 2n − 1 eigenvalues from the set {knt−2,−k−1
n } and one from

{knt2n−2,−k−1
n t−2n}. But the product of the matrix determinants is one, which gives us a

relation of the form ka0k
b
nt

cud0u
e
n = 1 with some a, b, c, d, e ∈ Z. Since the parameters are generic,

the only possibility is that a = b = c = d = e = 0. This forces A1, A2, A3 to have two eigenvalues

each of multiplicity n. This, in turn, implies that det(A4) = (−1)n, and we find that this is only

possible if A4 has eigenvalues as in (4.1).

In view of Proposition 2.23, there is an interpretation of the Calogero-Moser space from the angle

of quiver varieties. In these terms, the character variety M0,4 corresponds to the multiplicative

preprojective algebra of a framed affine Dynkin quiver of type D̃4, as sketched in Figure 4.1

below. The so-called framed quiver Q∞ is obtained from Q = D̃4 by extending one of its legs

by a single vertex (denoted ∞). The corresponding data (2.13) and (2.14) defining the quiver
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variety in the particular case of Q∞ is given explicitly below:

q = (q0, q1, q2, q3, q4, q∞) = (k0u0unkn,−k−2
0 ,−u−2

0 ,−u−2
n ,−k−2

n t2, t−2n),

n = (n0, n1, n2, n3, n4, n∞) = (2n, n, n, n, n, 1).
(4.8)

Corollary 4.6 For generic τ and quiver data (4.8), the Calogero-Moser space Cn ∼=Mq,n(Q
∞).

1

2

3

4 ∞

Figure 4.1: The quiver Q∞ corresponding to the Calogero-Moser space Cn.

4.2 The Etingof-Gan-Oblomkov Map

Notation 4.7 Throughout, we use H = H1,τ for the DAHA at the classical level q = 1.

One of the key constructions of [EGO06, §5.2] is a map from the set of irreducible (regular, in a

certain sense) representations of the GDAHAs for Q = D̃4, Ẽ6, Ẽ7, Ẽ8 at the classical level q = 1

to a suitable character variety M0,k. In our situation, for Q = D̃4, this provides us with a map

Φ : Irrep′(H)→ Cn,

where Irrep′(H) ⊆ Irrep(H) is the subset of irreducible representations that restrict to the

regular representation of the finite Hecke algebra Hn ⊆ H. In particular, dim(V ) = 2nn! for all

V ∈ Irrep′(H). In fact, the main result of the thesis will imply Irrep′(H) = Irrep(H), but this is
certainly non-obvious a priori (see Corollary 5.18).

Recall the one-dimensional representation χ : Hn → C that assigns Ti 7→ t (i = 1, . . . , n− 1) and

Tn 7→ kn. Consider the subalgebra H
′
n ⊆ Hn generated by T2, . . . , Tn, and denote by χ′ : H ′

n → C
the restriction of χ to H ′

n. Following [EGO06, §4.3], for a representation V ∈ Rep(Hn), consider

V ′ = {f : χ′ → V },

the space of homomorphisms between χ′ and V , viewed as H ′
n-modules. We may consider V ′ as
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a subspace of V . More explicitly, let e′ be the Hecke symmetriser of the subalgebra H ′
n, that is

e′ :=
1∑

w∈W ′ τ2w

∑
w∈W ′

τwTw, (4.9)

where W ′ ⊆ W is the Weyl group associated to H ′
n. We can view V ′ = e′V , as in the second

proof of [EGO06, Lemma 4.3.1]. But Hn has basis (Tw)w∈W by [Mac03, (4.1.3)] and e′ ∈ V ′, so

it follows that (e′w)w∈W is a basis for the set of cosets W ′\W . Hence, the dimension of V ′ is the

number of cosets which, for us, is |W |/
∣∣W ′∣∣ = 2nn!/(2n−1(n−1)!). Consequently, dim(V ′) = 2n.

Proposition 4.8 ([EGO06, cf. Proposition 5.2.10]) For S, S† as in Notation 3.3, let Zi ∈ H be

Z1 = T0, Z2 = T∨
0 , Z3 = ST∨

n S
−1, Z4 = STnS

†. (4.10)

(i) For V ∈ Irrep′(H), the elements Zi commute with H ′
n and hence preserve the subspace V ′.

(ii) For V ∈ Irrep′(H), denote by Ai ∈ EndC(V
′) the restriction of Zi onto the subspace V ′:

Ai = Zi

∣∣∣
V ′
. (4.11)

Then, the assignment V 7→ (A1, A2, A3, A4) defines a map Φ : Irrep′(H)→ Cn.

At the quantum level, one can abuse notation and replace Z1 (4.10) with the element Z1 = qT0.

This will be briefly used in Chapter 6 only, but the reader can keep this quantisation in mind.

Definition 4.9 The map Φ from Proposition 4.8(ii) is henceforth called the EGO map.

Remark 4.10 Our definition of Φ is slightly different from the one in [EGO06]. In op. cit., the

authors use the subalgebras H and H ′ ⊆ H generated respectively by STnS
−1, T1, . . . , Tn−1 and

STnS
−1, T1, . . . , Tn−2. These are clearly analogous to the subalgebras Hn and H ′

n in our set-up

(in fact, their H can also be generated by T1, . . . , Tn so it is exactly Hn). Their H ′ is used to

define a subspace V ′ ⊆ V in a similar way. Instead of the above elements Zi (4.10), they consider

Ũi := S†Zi(S
†)−1.

Their definition of the map Φ then uses the restriction of these Ũi onto V
′, in contrast with our

Ai (4.11). But the proof of [EGO06, Proposition 5.2.10] is easily adaptable to our setting.

4.3 From DAHA to Matrices

Our next task is to make the EGO map more explicit. It will be convenient to use a realisation

of Hq,τ by operator-valued matrices as in [Cha19]. At the classical level q = 1, this provides us
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with a coordinate chart on the Calogero-Moser space Cn; in the language of Problem 2.10, we

obtain a family of solutions to the corresponding multiplicative Deligne-Simpson problem.

We begin by considering the vector space

M := CW ⊗Dq. (4.12)

We identify M ∼= Dq ⋊CW , writing its elements as

f =
∑
w∈W

wfw, fw ∈ Dq. (4.13)

The action of Dq⋊CW on itself, by left multiplication, provides us with a faithful representation

π : Dq ⋊CW → Mat|W |×|W |(Dq). (4.14)

Identifying Hq,τ with its image under the Basic Representation, (4.14) implies a representation

Hq,τ ↪→ Mat|W |×|W |(Dq).

Let W ′ ⊆W be the Weyl subgroup generated by elements that fix the first index, that is

W ′ :=
〈
si, sij : i, j = 2, . . . , n

〉
. (4.15)

Associated to W ′ is the subspace of W ′-invariants

M ′ = e′M, e′ :=
1

|W ′|
∑

w∈W ′

w. (4.16)

We choose {s1i, s+1i} with i = 1, . . . , n as the coset representatives in W ′\W , where s11 := id and

s+11 := s1. Each element f ∈M ′ of this subspace admits a unique presentation of the below form:

f = e′

 n∑
j=1

s1j fj +

n∑
j=1

s+1j f
+
j

, fj , f
+
j ∈ Dq. (4.17)

Lemma 4.11 Let Z denote any of the elements Z1, Z2, Z3, Z4 in (4.10). Then, Z preserves M ′.

Proof : This is by a standard argument. First, notice that the Basic Representation implies

Ti − τi = ci(X)(si − 1)
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for the rational function ci(X) = cai(X) as defined using (2.2), cf. [Mac03, (4.3.12)]. Notice

that each Z commutes with the generators T2, . . . , Tn of the Hecke subalgebra H ′
n. Indeed, each

of these proofs is similar and thus the full details are omitted, but we will proceed with a proof

in the case Z = Z4 (this is the more technical of the bunch, but it still boils down to careful

application of the DAHA relations). To begin with, for all i = 3, . . . , n− 3, we see that

TiZ4 = TiSTnS
†

= TiT1 · · ·Tn−1TnTn−1 · · ·T1
= T1 · · ·Ti−2TiTi−1TiTi+1 · · ·Tn−1TnTn−1 · · ·T1
= T1 · · ·Ti−2Ti−1TiTi−1Ti+1 · · ·Tn−1TnTn−1 · · ·T1
= T1 · · ·Ti−2Ti−1TiTi+1 · · ·Tn−1TnTn−1 · · ·Ti+1Ti−1TiTi−1Ti−2 · · ·T1
= T1 · · ·Ti−2Ti−1TiTi+1 · · ·Tn−1TnTn−1 · · ·Ti+1TiTi−1TiTi−2 · · ·T1
= T1 · · ·Ti−2Ti−1TiTi+1 · · ·Tn−1TnTn−1 · · ·Ti+1TiTi−1Ti−2 · · ·T1Ti
= STnS

†Ti

= Z4Ti.

The above range of indices is restricted simply due to the particular DAHA relation used to show

commutativity. Of course, we must also proceed for i = 2, n− 2, n− 1 (which are near-identical)

and i = n. This latter case uses another DAHA relation, so we explicate it here:

TnZ4 = TnSTnS
†

= TnT1 · · ·Tn−1TnTn−1 · · ·T1
= T1 · · ·Tn−2TnTn−1TnTn−1Tn−2 · · ·T1
= T1 · · ·Tn−2Tn−1TnTn−1TnTn−2 · · ·T1
= T1 · · ·Tn−2Tn−1TnTn−1Tn−2 · · ·T1Tn
= STnS

†Tn

= Z4Tn.

Consequently, for i = 2, . . . , n and Z any of the four elements (4.10), we have

(si − 1)Z =
1

ci(X)
(Ti − τi)Z =

1

ci(X)
Z(Ti − τi) =

1

ci(X)
Zci(X)(si − 1),

from which it follows that (si− 1)Ze′ = 0. Hence, if f ∈M is W ′-invariant, then (si− 1)Zfe′ =

(si − 1)Ze′f = 0; the element Zf is also W ′-invariant. In other words, Z(M ′) ⊆M ′.

One of the key insights of [Cha19] is that one can explicitly obtain a matrix of a DAHA element
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that preserves the subspace M ′. We will use this to now derive explicit expressions for the

Dq-valued matrices Ai representing the action of Zi on the subspace M ′, defined by (4.11).

Let Z be an element that preserves M ′ = e′M ; it is sufficient to consider W ′-invariant elements

Zw = wZ for all w ∈ W ′. We compute the corresponding matrix by pulling group elements

to the left of Zf , where f ∈ M ′ has the form in (4.17); this concept is discussed in [Cha19,

§4.3]. Our convention is that the matrix has columns corresponding to the rational functions

f1, . . . , fn, f
+
1 , . . . , f

+
n and rows corresponding to the cosets s11, . . . , s1n, s

+
11, . . . , s

+
1n.

Proposition 4.12 Consider an arbitrary W ′-invariant element of the form

Z := A+B s1+

n∑
i ̸=1

Ci s1i+

n∑
i ̸=1

C+
i s+1i . (4.18)

Then, for a general element f ∈M ′ written in the form (4.17), we see that

Zf = e′
n∑

j=1

s1j(A)
s1j + s+1j(B)s1j s1 +

n∑
i ̸=j

s1i(Ci)
s1j s1i +

n∑
i ̸=j

s+1i(C
+
i )s1j s

+
1i

fj
+ e′

n∑
j=1

s+1j(A)
s+1j + s1j(B)s

+
1j s1 +

n∑
i ̸=j

s1i(Ci)
s+1j s1i +

n∑
i ̸=j

s+1i(C
+
i )s

+
1j s

+
1i

f+j .
Proof : This is a careful-but-simple calculation like [Cha19, (4.16)]. Writing f ∈M ′ as in (4.17),

Zf = Ze′

 n∑
j=1

s1j fj +
n∑

j=1

s+1j f
+
j


= e′Z

 n∑
j=1

s1j fj +
n∑

j=1

s+1j f
+
j


= e′

n∑
j=1

A+B s1+

n∑
i ̸=1

Ci s1i+

n∑
i ̸=1

C+
i s+1i

 s1j fj

+ e′
n∑

j=1

A+B s1+
n∑

i ̸=1

Ci s1i+
n∑

i ̸=1

C+
i s+1i

 s+1j f
+
j

= e′
n∑

j=1

A s1j +B s1 s1j +

n∑
i ̸=1

Ci s1i s1j +
n∑

i ̸=1

C+
i s+1i s1j

fj
+ e′

n∑
j=1

A s+1j +B s1 s
+
1j +

n∑
i ̸=1

Ci s1i s
+
1j +

n∑
i ̸=1

C+
i s+1i s

+
1j

f+j
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= e′
n∑

j=1

s1j(A)
s1j + s1 s1j(B)s1j s1 +

n∑
i ̸=j

s1i s1j(Ci)
s1j s1i +

n∑
i ̸=j

s+1i s1j(C
+
i )s1j s

+
1i

fj
+ e′

n∑
j=1

s+1j(A)
s+1j + s1 s

+
1j(B)s

+
1j s1 +

n∑
i ̸=j

s1i s
+
1j(Ci)

s+1j s1i +
n∑

i ̸=j

s+1i s
+
1j(C

+
i )s

+
1j s

+
1i

f+j .
The final step is to write any products of coset representatives as one representative by absorbing

into e′ anything that preservesM ′, e.g. e′ s1i s1j = e′ sij s1i = e′ s1i. This completes the proof.

This demonstrates that any element of Dq ⋊ CW preserving M ′ can, therefore, be represented

by a Dq-valued matrix of size 2n × 2n. We shall soon see some examples of this. In particular,

in light of Lemma 4.11, we can determine the matrices corresponding to each of the DAHA

elements Z1, Z2, Z3, Z4 by writing them in the form (4.18). The task of finding A1 and A2 turns

out to be simple, in view of the Basic Representation. The other matrices are trickier, but A4 is

(essentially) done in [Cha19, Proposition 4.3] and A3 can be found by analogy.

Before we apply Proposition 4.12 to the DAHA elements (4.10), we first try some simple examples

to get a grasp on how it is done. But also, the first of these particular examples will be helpful

when determining the matrix representing A4 from a closely-related result by Chalykh.

Example 4.13 We will compute the matrices representing each of X1 and P1. Writing X1 in the

form (4.18), we have A = X1 and B = Ci = C+
i = 0. Following Proposition 4.12 then, the only

non-zero coefficients in Zf are (A)s1j = Xj and (A)s
+
1j = X−1

j . Thus, for X1, we obtain

X := diag(X1, . . . , Xn, X
−1
1 , . . . , X−1

n ).

An identical line of reasoning allows us to conclude that the matrix representing P1 is

P := diag(P1, . . . , Pn, P
−1
1 , . . . , P−1

n ).

Example 4.14 We will compute the matrix representing the inversion element s1 from (3.6). This

is already written in the form (4.18), albeit very degenerately because the coefficients are A = 0,

B = 1 and Ci = C+
i = 0. Following Proposition 4.12 then, the only non-zero coefficients in Zf

are (B)s1j s1 = 1 and (B)s
+
1j s1 = 1. Consequently, we obtain the following block-diagonal matrix: 0 1n

1n 0

.
Example 4.15 We will compute the matrix representing the affine element s0 ∈ W̃ from (3.10).



42 4 Representations of the DAHA

Recall from (3.8) that we can write s0 = P−1
1 s1. This is quite similar to Example 4.14, but here

the coefficients in the corresponding expression (4.18) are A = 0, B = P−1
1 and Ci = C+

i = 0.

Hence, by the above proposition, the only surviving coefficients in the expression for Zf are

(B)s1j s1 = Pj and (B)s
+
1j s1 = P−1

j . Alternatively, we can multiply the matrices of P−1
1 (cf.

Example 4.13) and s1. Either way, the corresponding matrix is again block-diagonal: 0 diag(P−1
1 , . . . , P−1

n )

diag(P1, . . . , Pn) 0

.
Theorem 4.16 The matrix representing Z1 = qT0 is that whose ijth entry is

(A1)ij =



qk0 + q2u0X
−1
i

1− q2X−2
i

if i = j

qk0P
−1
i −

qk0 + q2u0X
−1
i

1− q2X−2
i

P−1
i if i− j = ±n

0 otherwise

,

and the matrix representing Z2 = T∨
0 is that whose ijth entry is

(A2)ij =



−q
−1k0Xi + q−2u0X

2
i

1− q−2X2
i

if i = j

q−1k0P
−1
i X−1

i −
q−1k0 + u0X

−1
i

1− q2X−2
i

P−1
i X−1

i if i− j = ±n

0 otherwise

,

extending the indices from {1, . . . , n} to {1, . . . , 2n} by setting Xn+i := X−1
i and Pn+i := P−1

i .

Proof : The proofs of each part of this result are very similar, so we only provide details for the

first. Throughout, we do not distinguish Ti and β(Ti). Namely, we assume that the DAHA is

embedded in Dq ⋊CW . This allows us to use the Basic Representation, alongside (3.8), to write

T0 = a0(X1) + b0(X1)P
−1
1 s1,

for a0, b0 ∈ Cq(X
±1). Since Z1 preserves M ′ by Lemma 4.11, we apply Proposition 4.12 where

A = a0(X1), B = b0(X1)P
−1
1 , Ci = 0, C+

i = 0.

As we indicated earlier, the above matrices are pretty easy to find. However, Z3 = ST∨
n S

−1 and

Z4 = STnS
† require some more careful work. Fortunately, the matrix for Z4 s1 is determined in
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[Cha19], so we can easily obtain from this the matrix for Z4. Indeed, the matrix representing

s1 was calculated in Example 4.14, so multiplying by its inverse (s1 itself) will yield the desired

matrix. Therefore, we will only discuss the matrix for Z3 in depth.

The key technique employed in [Cha19, Lemma 4.1] that we borrow is to split Z3 into three

parts, each of which we can restrict to M ′. However, the elements S and S† do not preserve

M ′, so Proposition 4.12 cannot be used yet. Instead, we insert the following cyclic permutation

c := s12 s23 · · · sn−1n into our DAHA elements so that Z3 and Z4 are expressed as follows:

Z3 = Sc−1(cT∨
n c

−1)cS−1,

Z4 = Sc−1(cTnc
−1)cS†.

(4.19)

The task at present is to restrict each of the factors to M ′. Due to the presence of the cyclic

permutation, it turns out that Sc−1 (and therefore its inverse cS−1) and cS† still don’t preserve

M ′. However, we can work with a slightly larger subspace than the usual M ′, namely

M ′′ = e′′M, e′′ :=
1

|Sn−1|
∑

w∈Sn−1

w. (4.20)

Note that we are symmetrising over the honest permutations of the indices {2, . . . , n} instead of

those that also account for arbitrary sign changes. Namely, this is the group algebra symmetriser

corresponding to the subgroup Sn−1 in the Weyl subgroup W ′ from (4.15). Consequently, we see

that M ′ ⊆M ′′. If we can restrict the factors of (4.19) to M ′′, then it descends to M ′ for free.

Lemma 4.17 The elements Sc−1 (and therefore its inverse cS−1) and cS† preserve M ′′.

Proof : This is similar in spirit to the proof of Lemma 4.11. Namely, we show these elements

commute with Ti for i = 2, . . . , n− 1, carefully using the DAHA relations. For i = 3, . . . , n− 2,

TiSc
−1 = TiT1 · · ·Tn−1c

= T1 · · ·Ti−2TiTi−1TiTi+1 · · ·Tn−1c
−1

= T1 · · ·Ti−2Ti−1TiTi−1Ti+1 · · ·Tn−1c
−1

= STi−1c
−1

= Sc−1Ti.

The cases i = 2 and i = n− 1 are basically the same. Note a straight substitution above would
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break our notation, e.g. i− 2 doesn’t make sense when i = 2, but the arguments run parallel:

T2Sc
−1 = T2T1 · · ·Tn−1c

= T1T2T1T3 · · ·Tn−1c
−1

= T1T2T3 · · ·Tn−1T1c
−1

= ST1c
−1

= Sc−1T2,

Tn−1Sc
−1 = Tn−1T1 · · ·Tn−1c

= T1 · · ·Tn−3Tn−1Tn−2Tn−1c
−1

= T1 · · ·Tn−3Tn−2Tn−1Tn−2c
−1

= STn−2c
−1

= Sc−1Tn−1.

As for the second case, the argument is very similar. Indeed, for i = 3, . . . , n− 2, we have

TicS
† = TicTn−1 · · ·T1
= cTi−1Tn−1 · · ·T1
= cTn−1 · · ·Ti+1Ti−1TiTi−1Ti−2 · · ·T1
= cTn−1 · · ·Ti+1TiTi−1TiTi−2 · · ·T1
= cS†Ti.

The situation is the same as above; identical proofs work for i = 2 and i = n−1, but a straight-up

substitution fails due to the notation. On this occasion, we omit the explicit calculations.

Remark 4.18 In the above proof, and in general when concerned with the preservation of M ′′,

imagine the Ti are embedded in Dq ⋊CW via the Basic Representation β (see Proposition 3.16).

Doing this reveals that Tn involves sn = sn, which is an inversion and hence not absorbed by e′′.

This explains why we needn’t consider TnSc
−1; attempting such an argument, we conclude that

these two elements do not commute, but this is expected.

Using the Basic Representation, for i = 1, . . . , n− 1, we can write the DAHA generators Ti as

Ti = bi i+1 + ai i+1 si i+1, (4.21)

where

aij =
t−1 − tXiX

−1
j

1−XiX
−1
j

and bij =
t

1−XiX
−1
j

. (4.22)

Notation 4.19 The above rational functions have ith index with positive power and jth index

with a negative power. We adopt the following convention henceforth: indices ij denote variables

XiX
−1
j , indices +

ij denote variables XiXj and indices −
ij denote variables X−1

i X−1
j . For (4.22),

a+ij =
t−1 − tXiXj

1−XiXj
, a−ij =

t−1 − tX−1
i X−1

j

1−X−1
i X−1

j

, b+ij =
t

1−XiXj
, b−ij =

t

1−X−1
i X−1

j

.
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The Hecke relations T−1
i = Ti − t for i = 1, . . . , n allow us to write T−1

i in analogy with (4.21):

T−1
i = βi i+1 + αi i+1 si i+1, (4.23)

where

αij =
t−1 − tXiX

−1
j

1−XiX
−1
j

and βij =
tXiX

−1
j

1−XiX
−1
j

. (4.24)

Remark 4.20 Comparing the rational functions (4.22) and (4.24), it is clear αij = aij , and still

somewhat noticeable that βij = bij − t = −bji. We could simply stick with the notation in (4.22)

alone, but it is sometimes convenient to track whether or not we are talking about Ti vs. T
−1
i

by differentiating the Latin and Greek letters; this is sometimes done henceforth.

Lemma 4.21 The elements Sc−1, cS−1 and cS† can be written using (4.21) and (4.23) as follows:

(i) Sc−1 = (a12 + b12 s12) · · · (a1n−1 + b1n−1 s1n−1)(a1n + b1n s1n).

(ii) cS−1 = (αn1 + βn1 s1n)(αn−1 1 + βn−1 1 s1n−1) · · · (α21 + β21 s12).

(iii) cS† = (an1 + bn1 s1n)(an−1 1 + bn−1 1 sn−1 1) · · · (a21 + b21 s21).

Proof : The proofs are all similar, so we proceed only with Sc−1. The strategy is to express

S = T1 · · ·Tn−1 as a product of factors of the form (4.21), pull out a factor of si i+1 from the

right-hand side of each of these and push them all the way through to cancel the c−1. Indeed,

Sc−1 = T1T2 · · ·Tn−1c
−1

= (b12 + a12 s12)(b23 + a23 s23) · · · (bn−1n + an−1n sn−1n)c
−1

= (a12 + b12 s12) s12(a23 + b23 s23) s23 · · · (an−1n + bn−1n sn−1n) sn−1n c
−1

= (a12 + b12 s12) · · · (a1n−1 + b1n−1 s1n−1)(a1n + b1n s1n)cc
−1.

Proposition 4.22 The restrictions of the following elements onto M ′ are given as follows:

(i) Sc−1 has the form A+
n∑

i ̸=1

Bi s1i, where A =
n∏

k ̸=1

a1k and Bi = b1i
n∏

k ̸=1,i

aik.

(ii) cS−1 has the form C +
n∑

i ̸=1

Di s1i, where C =
n∏

k ̸=1

αk1 and Di = βi1
n∏

k ̸=1,i

αki.

(iii) cS† has the form E +
n∑

i ̸=1

Fi s1i, where E =
n∏

k ̸=1

ak1 and Fi = bi1
n∏

k ̸=1,i

aki.

Proof : (i) Looking at Lemma 4.21(i), the term corresponding to the trivial coset comes from

selecting the first summand in each factor, that is by selecting a1k for each k = 2, . . . , n, giving

the expression for A. Next, B2 (the coefficient of the representative of the coset s12) is determined



46 4 Representations of the DAHA

by selecting b12 s12 from the first factor and a1k for each k = 3, . . . , n from each of the remaining

factors, and pushing s12 through. Hence, we obtain

B2 = b12

n∏
k ̸=1,2

a2k.

It remains to note that sik

(
A+

∑n
i ̸=1Bi s1i

)
e′ =

(
A+

∑n
i ̸=1Bi s1i

)
e′, which means Bi can be

obtained from B2 via the action of s2i. This gives the formula presented in the statement.

(ii) The proof is near-identical to the first case (i). Looking at Lemma 4.21(ii), we can determine

C straightforwardly. The main difference is we first obtain Dn (instead of D2, as one may initially

expect), and then hit it with the action of sni to obtain the expression for Di = (Dn)
sni .

(iii) This is very similar to (ii), wherein we can determine E quickly from Lemma 4.21(iii) and

then find Fn just as easily. We conclude by obtaining via the sni-action, that is Fi = (Fn)
sni .

Remark 4.23 Recall from §2.1 the DAHA parameters τi can be expanded to the corresponding

(affine) root system by setting τα := τw(α) for an (affine) Weyl element w. Therefore, we can

extend the indices of β(Ti) from Proposition 2.8 to any (affine) root. This is called the R-matrix

R(α) := ταsα + bα(X)(1− sα),

where the sα is the orthogonal reflection with respect to the hyperplane α(x) = 0. Their name

comes from the fact that they solve a version of the Yang-Baxter equation. In particular, if one

considers the R-matrix associated to an affine simple root ai for i = 0, . . . , n, then we see that

R(ai) = Ti si i+1 ⇔ Ti = R(ai) si i+1 .

This is the language preferred in [Cha19, §3.2]. It also alleviates some notation. Indeed,

Rij := R(εi − εj) = aij + bij sij and R+
ij := R(εi + εj) = a+ij + b+ij s

+
ij ,

where the rational functions are those from (4.22) and Notation 4.19. For i = 1, . . . , n− 1,

Ti = Ri i+1 si i+1,

which we substitute into the Hecke relation to determine the inverse R-matrix representing Ti:

(Ti − t)(Ti + t−1) = 0 ⇔ (Ri i+1 si i+1−t)(Ri i+1 si i+1+t
−1) = 0

⇔ Ri i+1Ri+1 i−1 + (t−1Ri i+1−tRi i+1) si i+1 = 0

⇔ Ri i+1(Ri+1 i−t si i+1) = 1.
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In fact, this can be generalised to any two indices, giving us the following expression:

R−1
ij = (Rij)

sij − t sij ,

Proceeding similarly for R+
ij , we express these inverses in terms of the functions from (4.24):

R−1
ij = αji + βji sij and (R+

ij)
−1 = α+

ij + β+ij s
+
ij .

Lemma 4.24 We have the following R-matrix expressions of the factors in (4.19):

Sc−1 = R12R13 · · ·R1n, cS−1 = R−1
1n R

−1
1n−1 · · ·R

−1
12 , cS† = Rn1Rn−1 1 · · ·R21 .

Proof : This is an easy change of notation, in light of the expressions from Remark 4.23.

The R-matrix digression now comes to a close. Next, there are two remaining factors in each of

(4.19) that we are yet to discuss: cT∨
n c

−1 and cTnc
−1. Recalling T∨

n = X−1
n T−1

n from Definition

3.2, we now introduce yet more notation, this time specific to the element Tn. To that end, let

Tn = bn + an sn,

where, for i = n,

ai =
k−1
n − knX2

i − unXi

1−X2
i

and bi =
kn + un
1−X2

i

. (4.25)

Note the need for only a single index. In parallel with Notation 4.19, we see that ai = a+i and

bi = b+i . Consequently, the only additional notation we may require is following shorthand:

a−i :=
k−1
n − knX−2

i − unX
−1
i

1−X−2
i

and b−i :=
kn + un

1−X−2
i

.

As before, we can also write the inverse of Tn using expressions similar to those in (4.25). Namely,

T−1
n = βn + αn sn,

where, for i = n,

αi =
k−1
n − knX2

i − unXi

1−X2
i

and βi =
knX

2
i + unXi

1−X2
i

. (4.26)

We can now carefully compute the expressions of the middle factors using this notation. The
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A4-factor is easiest because we can push c through to the right-hand side, which leaves us with

cTnc
−1 = b1 + a1 s1 . (4.27)

It isn’t much extra work for the A3-factor; using the fact that T∨
n = X−1

n T−1
n , we can substitute

the expression for T−1
n and push through c to produce cT∨

n c
−1 = X−1

1 (β1+α1 s1). We can relabel

X−1
1 β1 and X−1

1 α1 as new Greek letters, and multiply by a suitable power of X1 so that all such

terms have positive powers (so we can still follow the convention of Notation 4.19). Thus, we get

cT∨
n c

−1 = δ1 + γ1 s1, (4.28)

where

γi :=
k−1
n − knX2

i − unXi

Xi(1−X2
i )

and δi =
knXi + un
1−X2

i

. (4.29)

Combining (4.28) with Proposition 4.22, the restrictions of Z3 and Z4 from (4.19) toM ′ can now

be written more explicitly. Note that this involves the cosets s1i and s1. However, the general

element (4.18) involves also the cosets s+1i. Therefore, it is convenient to input s1 s1 = id between

the second and third factors. Pulling one into the second factor and pushing the other through

the third factor produces

Z3

∣∣∣
M ′

=

A+

n∑
i ̸=1

Bi s1i

(γ1 + δ1 s1)

(C)s1 +

n∑
i ̸=1

(Di)
s1 s+1i

 s1 (4.30)

and

Z4

∣∣∣
M ′

=

A+
n∑

i ̸=1

Bi s1i

(a1 + b1 s1)

(E)s1 +
n∑

i ̸=1

(Fi)
s1 s+1i

 s1 . (4.31)

Lemma 4.25 The element (4.30) can be written as U + V s1+
n∑

i ̸=1

(Wi s1i+W+
i s+1i), where

U = X−1
1 k−1

n t2−2n − V −
n∑

i ̸=1

(Wi +W+
i ), V = γ1

n∏
k ̸=1

a1kα
+
1k,

Wi = γ−i b
+
1iα1i

n∏
k ̸=1,i

a−kiαki, W+
i = γib1iα

+
1i

n∏
k ̸=1,i

aikα
+
ik,
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and the element (4.31) can be written as A+ B s1+
n∑

i ̸=1

(Ci s1i+ C+i s+1i), where

A = knt
2n−2 − B −

n∑
i ̸=1

(Ci + C+i ), B = a1

n∏
k ̸=1

a1ka
+
1k,

Ci = a−i b
+
1ia1i

n∏
k ̸=1,i

a−kiaki, C+i = aib1ia
+
1i

n∏
k ̸=1,i

aika
+
ik.

Proof : The structure of these proofs is very much the same, and a close relative of the latter

is done in [Cha19, Lemma 4.2]. We therefore provide the proof of the former restriction. Let’s

initially focus only on the first three factors in brackets, that is temporarily ignoring the s1 at

the end. If the lemma is to be believed, these three factors can be written as

V + U s1+
n∑

i ̸=1

(W+
i s1i+Wi s

+
1i),

after which incorporating the final factor s1 on the right will give the result. It suffices to focus

on just these, then. We see that the trivial coset is represented if and only if we select A, γ1,

(C)s1 in the factors of (4.30), which immediately implies the formula for V . Next, the only way

to represent the s1i-coset is to select Bi s1i, γ1, (C)
s1 in the factors of (4.30). Pushing the s1i

through then gives the expression for W+
i . We showed in Lemma 4.11 that Z3 preserves M ′,

meaning it is invariant under the action of the Weyl subgroup W ′. Therefore, Wi = (W+
i )si .

Finally, let e ∈ CW be the full symmetriser. On one hand, applying the operator e to the

restriction, all group elements are absorbed and we are left withV + U s1+

n∑
i ̸=1

(W+
i s1i+Wi s

+
1i)

e =
V + U +

n∑
i ̸=1

(W+
i +Wi)

e.
On the other hand, Tie = τie for each i (from which the Hecke relation implies T−1

i e = τ−1
i e)

and TiX
−1
i+1 = X−1

i T−1
i , which is an equivalent form of the cross relation (ix) in Definition 3.2.

Repeatedly applying this fact, it is then straightforward to see that (ST∨
n S

−1)e is precisely

(T1 · · ·Tn−1X
−1
n T−1

n T−1
n−1 · · ·T

−1
1 )e = (X−1

1 T−1
1 · · ·T−1

n−1T
−1
n T−1

n−1 · · ·T
−1
1 )e = X−1

1 k−1
n t2−2ne.

Combining these two avenues of thought, we conclude that

V + U +

n∑
i ̸=1

(W+
i +Wi) = X−1

1 k−1
n t2−2n.
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We are now able to reap the rewards of this technical lemma and find the remaining matrices.

Theorem 4.26 The matrix representing Z3 = ST∨
n S

−1 is that whose ijth entry is

(A3)ij =



γ−j

2n

⋄
∏
k=1

a−jk if i− j = ±n

γ−j b
+
ijaij

2n

⋄
∏
k=1

a−jk if i− j ̸= 0,±n

X−1
i k−1

n t2−2n −
∑
k ̸=i

(A3)ik if i = j

,

and the matrix representing Z4 = STnS
† is that whose ijth entry is

(A4)ij =



a−j

2n

⋄
∏
k=1

a−jk if i− j = ±n

a−j b
+
ijaij

2n

⋄
∏
k=1

a−jk if i− j ̸= 0,±n

knt
2n−2 −

∑
k ̸=i

(A4)ik if i = j

extending the indices from {1, . . . , n} to {1, . . . , 2n} by setting Xn+i := X−1
i . The symbol ⋄

∏
means we take a product but exclude the values of k for which k − i = 0,±n and k − j = 0,±n.

Proof : This is a consequence of using Proposition 4.12, with Z being each of the expressions

in Lemma 4.25. The latter is again closely related to a result by Chalykh, namely [Cha19,

Proposition 4.3], so we omit the easy translation between that work and this. Instead, we proceed

with a full derivation of A3. Let’s begin by reminding the reader of Remark 4.20, wherein we

explain that α = a; this replacement is henceforth made ubiquitously when referring back to the

content of Lemma 4.25. We first work with the off-diagonal entries (j = i± n), encoded by

(V )s1j s1 =

γ−1 n∏
k ̸=1

a−1kak1

s1j

= γ−j

n∏
k ̸=j

a−jkakj

(V )s
+
1j s1 =

γ−1 n∏
k ̸=1

a−1kak1

s+1j

= γj

n∏
k ̸=j

ajka
+
kj .and

Note that these belong to the off-diagonals in the lower-left and upper-right blocks, respectively.

But because we extend the indices by setting εn+j := −εj and the upper-right block has columns
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indexed by n+ j, changing the index amounts to applying sj . Explicitly, this produces for us

(V )s
+
1j s1

sj7−→ γ−j

n∏
k ̸=j

a−jkakj . (4.32)

Hence, all off-diagonal entries of A3 are described by (4.32). But notice this can be re-written as

γ−j

n∏
k=1
k ̸=j

a−jk

n∏
k=1
k ̸=j

akj = γ−j

n∏
k=1
k ̸=j

a−jk

2n∏
k=n+1
k ̸=j±n

a−jk = γ−j

2n∏
k=1

k−j ̸=0,±n

a−jk =: γ−j

2n

⋄
∏
k=1

a−jk

by again using the index change εn+j := −εj . We now move onto the non-diagonal entries of the

matrix (i ̸= j and i ̸= j ± n). Proceeding as for the off-diagonals, these entries are encoded by

(Wi)
s1j s1i =

γ−1 b+1iai1 n∏
k ̸=1,i

a−k1ak1

s1j

= γ−j b
+
jiaij

n∏
k ̸=i,j

a−kjakj ,

(Wi)
s+1j s1i =

γ−1 b+1iai1 n∏
k ̸=1,i

a−k1ak1

s+1j

= γjbija
+
ij

n∏
k ̸=i,j

ajka
+
kj ,

(W+
i )s1j s

+
1i =

γ−1 b1ia−1i n∏
k ̸=1,i

a−1kak1

s1j

= γ−j bjia
−
ji

n∏
k ̸=i,j

a−jkakj

(W+
i )s

+
1j s

+
1i =

γ−1 b1ia−1i n∏
k ̸=1,i

a−1kak1

s+1j

= γjb
−
jiaji

n∏
k ̸=i,j

ajka
+
kj .and

These belong in the upper-left, upper-right, lower-left and lower-right blocks, respectively. We

again use the change of indices to see if there is a common formula describing all such entries.

The upper-right is indexed by j + n, so changing the index amounts to applying sj . Similarly,

the lower-left is indexed by i+ n, so changing the index amounts to applying si; the lower-right

is indexed by i+ n and j + n, so changing indices amounts to applying si sj . Hence, we obtain

(Wi)
s+1j s1i

sj7−→ γ−j b
+
ijaij

n∏
k ̸=i,j

a−jkakj ,

(W+
i )s1j s

+
1i

si7−→ γ−j b
+
jiaij

n∏
k ̸=i,j

a−jkakj ,

(W+
i )s

+
1j s

+
1i

si sj7−−→ γ−j b
+
jiaij

n∏
k ̸=i,j

a−jkakj .

(4.33)

By the index symmetry of the rational functions with superscripts ±, the three expressions in
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(4.33) coincide (and equal the expression for the upper-left entries). Hence, all non-diagonal

entries of A3 are described by this common expression. But notice this can be re-written as

γ−j b
+
ijaij

n∏
k=1
k ̸=i,j

a−jk

n∏
k=1
k ̸=i,j

akj = γ−j b
+
ijaij

n∏
k=1
k ̸=i,j

a−jk

2n∏
k=n+1
k ̸=i,j±n

a−kj = γ−j b
+
ijaij

2n∏
k=1

k−i ̸=0,±n
k−j ̸=0,±n

a−jk =: γ−j b
+
ijaij

2n

⋄
∏
k=1

a−jk.

The final entries to consider are those on the main diagonal (i = j), which are encoded by

(U)s1j = X−1
j k−1

n t2−2n − (V )s1j −
n∑

i ̸=j

(
(Wi)

s1j + (W+
i )s1j

)
(U)s

+
1j = Xjk

−1
n t2−2n − (V )s

+
1j −

n∑
i ̸=j

(
(Wi)

s+1j + (W+
i )s

+
1j

)
.and

These are the entries in the upper-left and lower-right blocks. But since the lower-right block is

indexed by i+n and j+n, changing indices amounts to applying si sj . Explicitly, this produces

(U)s
+
1j

si sj7−−→ X−1
j k−1

n t2−2n − (V )s1j −
n∑

i ̸=j

(
(W+

i )s
+
1j + (Wi)

s1j
)
. (4.34)

Hence, all diagonal entries of A3 are described by this common expression. Now, it is not difficult

to see that (V )s1j is described by (4.32), and both of (Wi)
s1j and (Wi)

s+1j are described by (4.33).

Be aware that these equalities are true except with i and j interchanged (but this matters not

since i = j here). Lastly, (4.34) can be re-written in the form as stated.

Corollary 4.27 The product of the matrices qA1A2A3A4 = 12n.

Proof : This is clear by applying the representation (4.14) to the relation in Lemma 3.4.

One can give a cleaner alternate proof that A3 has the form stated in Theorem 4.26, in light of

Corollary 4.27. Indeed, Z1Z2 = qT0T
∨
0 = X1, whose matrix we derived in Example 4.13. Thus,

A1A2A3A4 = XA3A4 = 12n ⇒ A3 = X−1A−1
4 .

We can use Proposition 4.22 and (4.27) to write an analogue of (4.31) but this time for Z−1
4 .

Notation 4.28 Recall that α = a are the same rational functions, noted in Remark 4.20, but it

is often convenient to track whether we are talking about the restriction of an element onto M ′

vs. its inverse onto M ′. Thus, we use blackboard bold letters to denote replacing the functions
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a’s and b’s with their Greek counterparts α’s and β’s. For convenience, here they are explicitly:

A =

n∏
k ̸=1

a1k and Bi = b1i

n∏
k ̸=1,i

aik become A =

n∏
k ̸=1

α1k and Bi = β1i

n∏
k ̸=1,i

αik,

E =
n∏

k ̸=1

ak1 and Fi = bi1

n∏
k ̸=1,i

aki become E =
n∏

k ̸=1

αk1 and Fi = βi1

n∏
k ̸=1,i

αki.

Therefore, one can check (using the R-matrix description from Remark 4.23, for instance) that

Z−1
4

∣∣∣
M ′

=

A+

n∑
i ̸=1

Bi s1i

(α1 + β1 s1)

(E)s1 +
n∑

i ̸=1

(Fi)
s1 s+1i

 s1 . (4.35)

Lemma 4.29 The element (4.35) can be written as U + V s1+
n∑

i ̸=1

(Wi s1i+W+
i s+1i), where

U = k−1
n t2−2n − V −

n∑
i ̸=1

(Wi +W+
i ), V = α1

n∏
k ̸=1

α1kα
+
1k,

Wi = α−
i β

+
1iα1i

n∏
k ̸=1,i

α−
kiαki, W+

i = αiβ1iα
+
1i

n∏
k ̸=1,i

αikα
+
ik.

Proof : The structure is identical to that of the proof of Lemma 4.25. As before, we initially

focus only on the first three factors and temporarily ignore the s1 at the right-hand end. Our

goal is therefore to prove that the first three factors can be written as

V + U s1+
n∑

i ̸=1

(W+
i s1i+Wi s

+
1i),

after which incorporating the final factor s1 on the right will give the result. To this end, we see

that the trivial cost is represented if and only if we select A, α1, (E)s1 , which immediately implies

the formula for V. Next, the only way to represent the s1i-coset is to select Bi s1i, α1, (E)s1 ;
pushing the s1i through then gives the expression for W+

i . Because (4.35) is invariant under

the action of the Weyl subgroup W ′, we have Wi = (W+
i )si . Finally, let e ∈ CW be the full

symmetriser. Applying this to the restriction, every group element is absorbed, which meansV + U s1+
n∑

i ̸=1

(W+
i s1i+Wi s

+
1i)

e =
V + U +

n∑
i ̸=1

(W+
i +Wi)

e.
On the other hand, recall that Tie = τie where τi is the parameter corresponding to this Hecke
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element. Applying this to Z−1
4 , we obtain (STnS

†)−1e = (t1−nk−1
n t1−n)e = k−1

n t2−2ne. Hence,

V + U +

n∑
i ̸=1

(W+
i +Wi) = k−1

n t2−2n.

Corollary 4.30 The matrix representing Z−1
4 = (STnS

†)−1 is that whose ijth entry is

(A−1
4 )ij =



α−
j

2n

⋄
∏
k=1

α−
jk if i− j = ±n

α−
j β

+
ijαij

2n

⋄
∏
k=1

α−
jk if i− j ̸= 0,±n

k−1
n t2−2n −

∑
k ̸=i

(A−1
4 )ik if i = j

extending the indices from {1, . . . , n} to {1, . . . , 2n} by setting Xn+i := X−1
i . The symbol ⋄

∏
means we take a product but exclude the values of k for which k − i = 0,±n and k − j = 0,±n.

Sketch of Proof : Follow the same strategy as in the proof of Theorem 4.26.

Thus, (A3)ij = (X−1A−1
4 )ij = (X−1)iℓ(A

−1
4 )ℓj . But X

−1 = diag(X−1
1 , . . . , X−1

n , X1, . . . , Xn) as a

trivial corollary of Example 4.13, from which we can write its entries (X−1)iℓ = δiℓX
−1
i with the

usual extended index convention. Given this is non-zero if and only if i = ℓ, we conclude that

(A3)ij =



X−1
i α−

j

2n

⋄
∏
k=1

α−
jk if i− j = ±n

X−1
i α−

j β
+
ijαij

2n

⋄
∏
k=1

α−
jk if i− j ̸= 0,±n

X−1
i k−1

n t2−2n −
∑
k ̸=i

X−1
i (A−1

4 )ik if i = j

=



Xja
−
j

2n

⋄
∏
k=1

a−jk if i− j = ±n

Xja
−
j b

+
ijaij

2n

⋄
∏
k=1

a−jk if i− j ̸= 0,±n

X−1
i k−1

n t2−2n −
∑
k ̸=i

(X−1
i )ii(A

−1
4 )ik if i = j
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=



γ−j

2n

⋄
∏
k=1

a−jk if i− j = ±n

γ−j b
+
ijaij

2n

⋄
∏
k=1

a−jk if i− j ̸= 0,±n

X−1
i k−1

n t2−2n −
∑
k ̸=i

(A−1
3 )ik if i = j

,

which agrees verbatim with Theorem 4.26. Note we have again used α = a (see Remark 4.20),

X−1
i = Xj when i− j = ±n, and also the identities Xja

−
j = γ−j and X−1

i β+ij = Xjb
+
ij , which are

obvious when you view them explicitly using the expressions (4.22), (4.24), (4.25) and (4.29).

We now want to ensure that the conjugacy classes containing each of the classical (q = 1)

matrices A1, A2, A3 and A4 calculated in Theorems 4.16 and 4.26 are the correct ones as defined

in (4.1). It turns out to be a straightforward task for A1 and A2 in light of the faithfulness of

the matrix representation (4.14), and A3 given a result by Stokman. Indeed, A1, A2 and A3

not only satisfy the product relation qA1A2A3A4 = 12n (Corollary 4.27), but also the respective

quadratic relations of T0, T
∨
0 and T∨

n (the latter of which is due to [Sto04, Proposition 6.6]), i.e.

A1 −A−1
1 = k012n, A2 −A−1

2 = u012n, A3 −A−1
3 = un12n. (4.36)

For A4, the Hecke relation is deformed as explained below; a similar proof for a slightly different

element is done in [EGO06, §4.3] and is readily adapted to our situation, cf. Remark 4.10.

Recall that H ′
n is the Hecke subalgebra associated to W ′ with symmetriser e′ defined in (4.9).

Lemma 4.31 (cf. [Mac03, (5.5.14), (5.5.15)]) Let R be a root system and W the associated Weyl

group, with R′ and W ′ the subsystem and subgroup stabilised by the first coordinate, respectively.

For R+ and R′
+ the respective positive roots and cα(X) defined as in (2.2), we have the following:

(i) ee′ = e.

(ii) e = ec+(X) where c+(X) :=
∏

α∈R+

cα(X
−1) and e ∈ CW is the usual symmetriser.

(iii) e′ = e′c′+(X) where c′+(X) :=
∏

α∈R′
+

cα(X
−1) and e′ ∈ CW ′ is the usual symmetriser.

In other words, e′M = e′M and so e′ acts on M ′ by identity. As for the action of e on M ′, this

was calculated in [Cha19] and the proof is reproduced here for the convenience of the reader.

Lemma 4.32 ([Cha19, §3.8 and §4.4]) Consider the column and row vectors v,w given by

v = (1, . . . , 1)T , w = (ϕ1, . . . , ϕ2n), ϕi = a−i

n∏
k ̸=i

a−ikaki.
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The Hecke symmetriser e acts on M ′ = e′M by the rank-one matrix γ−1vw, where

γ =
t2n − 1

t2 − 1
kn +

1− t−2n

1− t−2
k−1
n . (4.37)

Proof : We first follow the proof of [Cha19, Proposition 3.3]. From Lemma 4.31, we see that

ee′ = ee′
1

c′+(X)
= e

1

c′+(X)
= ec+(X)

1

c′+(X)
= e

∏
α∈R+\R′

+

cα(X
−1) =: eϕ(X).

In our situation, R and W are of type Cn, so recall from Example 2.1 that the subset of positive

roots is R+ = {εi±εj}∪{2εi} where 1 ≤ i < j ≤ n. Hence, α ∈ R+\R′
+ has the form α = ε1±εk

(k = 2, . . . , n) or α = 2ε1. As a consequence, the above product can be made explicit. Indeed,

ϕ(X) = c2ε1(X
−1)

n∏
k ̸=1

cε1+εk(X
−1)cε1−εk(X

−1) = a−1

n∏
k ̸=1

a−1kak1.

Using the matrix representation à la Proposition 4.12, with arbitrary f ∈M ′ (4.17), we have

ϕf = ϕe′

 n∑
i=1

s1i fi +
n∑

i=1

s+1i f
+
i

 = e′

 n∑
i=1

s1i(ϕ)
s1ifi +

n∑
i=1

s+1i(ϕ)
s+1if+i

.
In other words, ϕ acts as the diagonal matrix diag(ϕ1, . . . , ϕn, ϕ

+
1 , . . . , ϕ

+
n ) where ϕi := (ϕ)s1i and

ϕ+i := (ϕ)s
+
1i . But the group symmetriser e acts as the matrix of all-ones, from which it follows

that the Hecke symmetriser e acts on M ′ by vw up to a constant factor. Hence, vw = γe on

M ′ for some γ ∈ C∗. To calculate this constant, we use the idempotence property e2 = e, from

which we see that γ = wv. To determine this constant, we can take the variables Xi → ∞
within a particular Weyl chamber. This yields

wv =
t2n − 1

t2 − 1
kn +

1− t−2n

1− t−2
k−1
n , (4.38)

as stated.

Lemma 4.33 The restriction of Z4 onto M ′ satisfies the equation

tZ4 − t−1Z−1
4 = (knt

−1 − k−1
n t) +

n∑
i=1

(s1i+ s+1i)ta
−
1

n∏
k ̸=1

a−1kak1, (4.39)

where we again consider s11 = id and s+11 = s1.

Proof : We use the restrictions of Z4 and Z
−1
4 ontoM ′ from Lemmata 4.25 and 4.29, and continue
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with the notation therein. The strategy is to compare coset coefficients. For the s1-coset,

(tA− t−1U) s1 =

ta1 n∏
k ̸=1

a1ka
+
1k − t

−1α1

n∏
k ̸=1

α1kα
+
1k

 s1

= ta1

n∏
k ̸=1

a1ka
+
1k s1,

using the fact that the α’s and a’s coincide (Remark 4.20). So that it stands on the correct side

as in the statement, we pull s1 all the way through to the left. Using index symmetry, we obtain

s1 ta
−
1

n∏
k ̸=1

ak1a
−
k1.

Slightly more involved, we now work with the s1j-coset. Here then, we see that

(tC+j − t
−1W+

j ) s1j =

ta−j b+1ja1j n∏
k ̸=1,j

a−kjakj − t
−1α−

j β
+
1jα1j

n∏
k ̸=1,j

α−
kjαkj

 s1j

=

a−j (tb+1j − t−1b+1j + t−1t)a1j

n∏
k ̸=1,j

a−kjakj

 s1j

=

ta−j a−1ja1j n∏
k ̸=1,j

a−kjakj

 s1j

=

ta−j n∏
k ̸=j

a−kjakj

 s1j .

We again used that the α’s and a’s coincide, but also that β’s coincide with b− t. From the Basic

Representation, it is possible to see that t(b+1j + t−1) = ta−1j ; this is what we used when moving

from the second equality to the third. Again pulling s1j all the way through to the left yields

s1j ta
−
1

n∏
k ̸=1

ak1a
−
k1.

Similarly for the s+1j-coset, we have

(tCj − t−1Wj) s
+
1j =

tajb1ja+1j n∏
k ̸=1,j

ajka
+
jk − t

−1αjβ1jα
+
1j

n∏
k ̸=1,j

αjkα
+
jk

 s+1j
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=

aj(tb1j − t−1b1j + t−1t)a+1j

n∏
k ̸=1,j

ajka
+
jk

 s+1j

=

tajaj1a+1j n∏
k ̸=1,j

ajka
+
jk

 s+1j

=

taj n∏
k ̸=j

ajka
+
jk

 s+1j .

The difference here compared to that of the previous coset is that we use t(b1j + t−1) = taj1,

which we one again see from the Basic Representation. Finally, pulling s+1j to the left gives us

s+1j ta
−
1

n∏
k ̸=1

ak1a
−
k1.

The remaining term is the identity, and it turns out to be somewhat more involved. First of all,

we can simplify things using what we have already calculated for the other cosets:

tB − t−1V = t

knt2n−2 −A−
n∑

j ̸=1

(Cj + C+j )

− t−1

k−1
n t2−2n − U −

n∑
j ̸=1

(Wj +W+
j )


= knt

2n−1 − k−1
n t1−2n − (tA− t−1U)−

n∑
j ̸=1

(tCj − t−1Wj)−
n∑

j ̸=1

(tC+j − t
−1W+

j )

= knt
2n−1 − k−1

n t1−2n − ta1
n∏

k ̸=1

a1ka
+
1k −

n∑
j ̸=1

taj

n∏
k ̸=j

ajka
+
jk −

n∑
j ̸=1

ta−j

n∏
k ̸=j

a−kjakj .

Based on the statement we are after, it suffices to show that subtracting (knt
−1−k−1

n t) from the

above will give us ta−1
∏n

k ̸=1 a
−
1kak1. This is equivalent to verifying the following equality:

knt
2n−1 − k−1

n t1−2n + k−1
n t− knt−1 (4.40)

=

t

a−1 n∏
k ̸=1

a−1kak1 + a1

n∏
k ̸=1

a1ka
+
1k +

n∑
j ̸=1

aj n∏
k ̸=j

ajka
+
jk + a−j

n∏
k ̸=j

a−kjakj




=

t

n∑
j=1

aj n∏
k ̸=j

ajka
+
jk + a−j

n∏
k ̸=j

a−kjakj

.
Note that the bracket on the ‘right’-hand side of the equality is invariant under the action of sℓ
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and s1ℓ for all ℓ = 1, . . . , n. This guarantees there are no poles and so that rational function is

actually a polynomial. Moreover, the degrees in the numerator and denominator agree, since the

expression is ‘homogeneous’. Therefore, the polynomial has degree zero; it is constant. It remains

to show that it agrees with the constant on the ‘left’-hand side. Let’s consider an asymptotics

argument where each Xℓ →∞ given X1 ≫ · · · ≫ Xn ≫ 1. For all i, j = 1, . . . , n, we have these:

(i) ai → kn,

(ii) a−i → k−1
n ,

(iii) aij → t−1 if Xi ≪ Xj ,

(iv) aij → t if Xi ≫ Xj ,

(v) a+ij → t,

(vi) a−ij → t−1.

Note that any order on the variables can be used, but it will slightly alter the way in which we

apply (iii) and (iv) from above. For fixed j and asymptotic order X1 ≫ · · · ≫ Xn, we need only

worry about the factors
∏
ajk and

∏
akj in each summand since the asymptotics of the other

factors are independent of their indices. Well, (iii) and (iv) from above imply that

n∏
k ̸=1

ajk = (t−1)j−1 · tn−j and

n∏
k ̸=1

akj = tj−1 · (t−1)n−j .

The ‘right’-hand side of the equality, under the above asymptotics, thus behaves as the constant

t
n∑

j=1

(
knt

2(n−j) + k−1
n t−2(n−j)

)
.

If we now expand t = t− t−1 into the sum, the resulting expression exhibits some telescoping:

n∑
j=1

(
knt

2(n−j)+1 − knt2(n−j)−1 + k−1
n t−2(n−j)+1 − k−1

n t−2(n−j)−1
)
.

Indeed, working through term-by-term, we see it is equal to precisely what we wanted, namely

knt
2n−1 − k−1

n t1−2n + k−1
n t− knt−1.

Remark 4.34 The above proof is independent of the chosen asymptotic order on (rather, the

Weyl chamber within which live) the variables X1, . . . , Xn. Indeed, selecting a different ordering

will change the behaviour of the aij in the limit Xℓ →∞; the difference is the exponents in
∏
ajk

and
∏
akj , but these still simplify and the sum again telescopes to the same constant (4.40).

Corollary 4.35 In Hq,τ , the element Z4 = STnS
† satisfies the relation

(tZ4 − t−1Z−1
4 − knt

−1 + k−1
n t)e′ = (knt

2n−1 − k−1
n t1−2n + k−1

n t− knt−1)e. (4.41)
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Proof : Act by both sides on M ′ = e′M = e′M , so that it follows immediately from Lemma 4.33.

Note that the sum of cosets in (4.39) is equivalent to the matrix of all-ones, that is the matrix

representing the Hecke symmetriser e. This is, at the level of matrices, equivalent to

tA4 − t−1A−1
4 − (knt

−1 − k−1
n t)12n = (t− t−1)vw. (4.42)

We know vw = γe onM ′, and tγ is the coefficient of the right-hand side of (4.41). Because Hq,τ

acts faithfully on M , the relation (4.41) holds in totality.

Corollary 4.36 At the classical level q = 1, the quadruple (A1, A2, A3, A4), with matrices Ai from

Theorems 4.16 and 4.26, represents a point on the Calogero-Moser space. This gives a coordinate

chart on Cn with 2n coordinates Xi, Pi.

Proof : This is proved using the description of the Calogero-Moser space à la Proposition 4.5.

Indeed, set X = A1A2, Y = A4A1 and T = A2. In doing so, equations (4.36), (4.38) and (4.42)

imply the relations (4.2)–(4.6) and thus we have a chart.

One can also see that the action by a finite Weyl group element w ∈W on (P ,X) is equivalent

to conjugating (A1, A2, A3, A4) by the permutation matrix representing w. In other words, the

action on coordinates permutes the matrix entries in the expected way. Therefore, we have a

well-defined map

Υ : U/W → Cn, (P ,X) 7→ (A1, A2, A3, A4), (4.43)

where

U := (C∗)n × ((C∗)n \D), with D = {X ∈ (C∗)n : δ(X) = 0}. (4.44)

4.4 The EGO Map on a Chart

Let us explain how the work done in §4.3 is related to the EGO map from Definition 4.9. At

the classical level q = 1, it is clear that the Basic Representation β induces an injective map

H ↪→ C[X±1,P±1]δ(X) ⋊ CW . Thus, one can construct a family of irreducible representations

of H from irreducible representations of C[X±1,P±1]δ(X)⋊CW by restriction, cf. [Obl04, §3.3].

Notation 4.37 To alleviate some of the notation, let R := C[X±1,P±1]δ(X) and R̂ := R⋊CW .

Now, pick a point (µ,ν) ∈ U (4.44) and define a one-dimensional representation χµ,ν of R by

χµ,ν : f(X,P ) 7→ f(ν,µ),
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from which we can induce a finite-dimensional module

Vµ,ν := IndR̂R χµ,ν = R̂⊗R χµ,ν . (4.45)

Proposition 4.38 Assume δτ (ν) ̸= 0. Then, viewed as an H-module, Vµ,ν belongs to Irrep′(H)
and its image under the EGO map is represented by the tuple (A1, A2, A3, A4), where the Ai are

the matrices from Theorems 4.16 and Theorems 4.26 with q = 1 under the specialisation Pi = µi

and Xi = νi.

Proof : Since δ(ν)δτ (ν) ̸= 0, one can use Corollary 3.22 to view Vµ,ν as a module over

Hδ(X)δτ (X)
∼= C[X±1,P±1]δ(X)δτ (X) ⋊CW.

It is clearly irreducible as a (C[X±1,P±1]δ(X)δτ (X)⋊CW )-module, and thus also as anH-module

(cf. [Obl04, Proposition 3.3]). It is isomorphic to CW as a W -module, by construction. Hence,

Vµ,ν is isomorphic to the regular representation as an Hn-module by a deformation argument

(our genericity assumption from Definition 4.2 on the parameters implies thatHn is semi-simple).

This establishes that Vµ,ν ∈ Irrep′(H).

To apply the EGO map to the module Vµ,ν , one needs to consider the subspace V ′ on which the

Hecke subalgebra H ′
n acts according to the character χ′, see §4.2. This means that (Ti− τi)v = 0

for v ∈ V ′ and i = 2, . . . , n. We claim that V ′ = e′Vµ,ν , where e
′ is the symmetriser (4.16). Indeed,

Ti − τi = ci(X)(si − 1), where ci(X) is invertible on Vµ,ν due to the condition δ(ν)δτ (ν) ̸= 0.

Hence, (si − 1)v = 0 for v ∈ V ′ and i = 2, . . . , n. This establishes that V ′ = e′Vµ,ν .

By definition, a basis of Vµ,ν is given by elements w ⊗ 1 where w ∈ W and with 1 denoting a

basis vector in χµ,ν . Elements of V ′ can then be written similarly to elements (4.17) of M ′, i.e.

v = e′

 n∑
i=1

s1i⊗fi +
n∑

i=1

s+1i⊗f
+
i

, fi, f
+
i ∈ C. (4.46)

Any element of C[X±1,P±1]δ(X)δτ (X) ⋊ CW preserving V ′ can be represented by a matrix of

size 2n× 2n. For example, the action of X1 and P1 on V ′ are given by the respective matrices

X := diag(ν1, . . . , νn, ν
−1
1 , . . . , ν−1

n ), P := diag(µ1, . . . , µn, µ
−1
1 , . . . , µ−1

n ).

Clearly, we are in the same setting as in §4.3, with the only difference being that Xi and Pi are

specialised to νi and µi, respectively. Hence, the action of Z1, Z2, Z3 and Z4 on V ′ is found by

specialising the formulae in Theorems 4.16 and 4.26.
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Remark 4.39 The H module Vµ,ν admits the following interpretation, cf. [Obl04, Lemma 6.1].

Assuming that δ(ν)δτ (ν) ̸= 0, one can consider a one-dimensional representation χµ,ν of the

(commutative)W -invariant algebra C[X±1,P±1]Wδ(X)δτ (X)e defined by f(X,P )e 7→ f(ν,µ). We

can further restrict χµ,ν to the spherical subalgebra eHe using Corollary 3.22. Hence,

Vµ,ν
∼= He⊗eHe χµ,ν . (4.47)



Chapter 5

Calogero-Moser Coordinates

We have obtained 2n coordinates on Cn coming from the double affine Hecke algebra (DAHA),

in particular, from the map Υ defined in (4.43). The goal of this chapter is to restrict Υ to a

suitable subset upon which it is injective and identify the image of said subset explicitly as a

subset of the Calogero-Moser space; this gives us our first coordinate chart on Calogero-Moser

space. From this, we obtain a second chart by interpreting the Duality Isomorphism ε at the

level of character varieties, and finish by proving the main result (Theorem 1.3).

Without further ado, let us define the following subset of U from (4.44):

Uτ := (C∗)n × ((C∗)n \ (D ∪Dτ )), with Dτ = {X ∈ (C∗)n : δτ (X) = 0}. (5.1)

Proposition 5.1 The map Υ is injective on the subset Uτ/W .

Proof : Let Υ(P ,X) = (A1, A2, A3, A4) and Υ(P ′,X ′) = (A′
1, A

′
2, A

′
3, A

′
4) be such that

Υ(P ,X) = Υ(P ′,X ′) and (A1, A2, A3, A4) = g(A′
1, A

′
2, A

′
3, A

′
4)g

−1, (5.2)

for some g ∈ GL2n(C). From the definitions of A1 and A2, the matrix X = A1A2 represents the

action of X1 on M ′, so it has the diagonal form as calculated in Example 4.13. Therefore, up

to the action by W , we may assume X = X ′, which then forces g to be diagonal and implies

both A3 = A′
3 and A4 = A′

4. Combining this with the last entries of the tuples in (5.2), we

have gA4g
−1 = A4 (with g diagonal). However, the condition δτ (X) ̸= 0 implies that all the off-

diagonal entries of A4 are non-zero. This forces g to be a multiple of the identity. Consequently,

A1 = A′
1. Because the rational functions ai (4.25) are non-zero on Uτ , it follows that P = P ′.

By Corollary 4.36, having an injective algebraic map Υ : Uτ/W → Cn, we would like to charac-
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terise its image. Both sides have dimension 2n, so irreducibility of Cn tells us that the image of

Υ is automatically dense in Cn. Now, at every point of Uτ , recall that the matrix X = A1A2 is

the diagonal matrix calculated in Example 4.13. In particular, its eigenvalues are paired-off into

reciprocals. We next demonstrate that this fact holds globally.

Lemma 5.2 For any (A1, A2, A3, A4) ∈ Cn, X = A1A2 satisfies trXk = trX−k for all k ∈ Z,
and its eigenvalues appear in pairs (xi, x

−1
i ) for each i = 1, . . . , n. Hence, there is a global map

Cn → (C∗)n/W, (A1, A2, A3, A4) 7→ (x1, . . . , xn).

Proof : We first need to show that det(X − λ12n) = det
(
X−1 − λ12n

)
. By the above, this is true

on a dense subset of Cn (namely, on the image of Υ), hence it is true everywhere. This means

that the eigenvalues of X, distinct from ±1, appear in pairs (xi, x
−1
i ). We claim that each of the

eigenvalues ±1 has even multiplicity, and so a pair (1, 1) or (−1,−1) can be viewed as special

case of (xi, x
−1
i ) with xi = ±1. To see this, perturb the point (A1, A2, A3, A4) so that X has

eigenvalues different from ±1. This means that eigenvalues of X pair-off into reciprocals, which

obviously remains true under degeneration of some of the xi into ±1.

In other words, the eigenvalues of X = A1A2 are always of the form (x1, . . . , xn, x
−1
1 , . . . , x−1

n ),

which defines a point x := (x1, . . . , xn) ∈ (C∗)n, but only up to the action of W . Our next goal

is to establish the following result.

Proposition 5.3 The map Υ (4.43) defines an isomorphism Uτ/W ∼= Cτn , where

Cτn := {(A1, A2, A3, A4) ∈ Cn : δ(x)δτ (x) ̸= 0}. (5.3)

In view of Proposition 5.1, we need only show Υ is onto. Given a point (A1, A2, A3, A4) ∈ Cτn ,
we show that it is represented by the matrices from Theorems 4.16 and 4.26 in a suitable basis

(at the classical level q = 1). Unlike in [Obl04], we cannot easily solve the matrix equations

determining the Ai, so we instead use the interpretation involving the Deligne-Simpson problem

and the representation of a multiplicative preprojective algebra (see §2.3.3).

5.1 Two Deligne-Simpson Problems

The condition δ(x) ̸= 0 guarantees that X = A1A2 is diagonalisable, so we readily assume that

X = diag(x1, . . . , xn, x
−1
1 , . . . , x−1

n ), with δ(x)δτ (x) ̸= 0. (5.4)

The problem of determining the matrices A1, A2, A3 and A4 then splits into two separate



§5.1 Two Deligne-Simpson Problems 65

problems, by considering a so-called pair of pants decomposition of the four-punctured sphere.

Problem 5.4 Let X be the matrix (5.4) and Ci ⊆ GL2n(C) the conjugacy classes in (4.1).

(i) Find A1 ∈ C1 and A2 ∈ C2 with

A1A2X
−1 = 12n.

(ii) Find A3 ∈ C3 and A4 ∈ C4 with

XA3A4 = 12n.

Each of Problem 5.4 is a Deligne-Simpson problem on the three-punctured sphere Σ0,3. The

corresponding star-shaped quivers are shown below in Figure 5.1.

A1

A2

X−1 · · ·

(a) The quiver Q1 for Problem 5.4(i).

A3

A4

X · · ·

(b) The quiver Q2 for Problem 5.4(ii).

Figure 5.1: The quivers associated with Problem 5.4.

The dimension vectors of the quivers Q1 and Q2, reading vertices left-to-right, are

n1 = (1, . . . , 2n− 1, 2n, n, n) and n2 = (1, . . . , 2n− 1, 2n, n, n, 1). (5.5)

We know already that each of these problems has a solution. As we shall explain, the solution

is unique up to conjugation, and the corresponding multiplicative quiver variety in each case

consists of a point. Additional n coordinates p1, . . . , pn arise corresponding to the different ways

of “glueing” the two solutions together. The following result will be used.

Theorem 5.5 ([CBS06, Lemma 1.5 and Theorem 1.8]) The dimension of a simple Λq-module is

a positive root for the corresponding quiver Q. Moreover, if α is the dimension of a Λq-module,

then α admits a decomposition into a sum of positive roots α = β+γ+· · · with qβ = qγ = · · · = 1.
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5.1.1 Problem 5.4(i)

The quiver Q = Q1 is a finite Dynkin quiver of type D2n+2. We consider the multiplicative

preprojective algebra Λq with the parameters q (2.13) determined from the eigenvalues of X,

A1 and A2. We use the eigenvalues of X in the following order going from left-to-right along Q:

x−1
n , . . . , x−1

1 , xn, . . . , x1. We are interested in Λq-modules of dimension

α = n1 = (1, . . . , 2n− 1, 2n, n, n).

By Theorem 5.5, α must be a sum of positive roots of Q. Since the arrows of Q are represented

by injective/surjective maps, the support of each summand β, γ, . . . should include the central

node. This gives us the following possibilities for the summands in Figure 5.2, cf. Example 2.2.

0

1

11· · ·10· · ·0

1

1

11· · ·10· · ·0

1

1

2· · ·21· · ·10· · ·0

Figure 5.2: Positive roots supported at the central node.

The first two types of summand can be ruled out because qβ ̸= 1 in these cases. For example,

in the first case, we have a one-dimensional subspace at the central node which has to be an

eigenspace for X−1, A1 and A2 with respective eigenvalues x±1
i , k0 and u0. But A1A2X

−1 = 12n,

so it follows that x±1
i k0u0 = 1, a contradiction to the assumption δτ (x) ̸= 0 made in (5.4).

Consequently, each positive root summand β, γ, . . . should be of the final type. In this case,

we have a two-dimensional subspace at the central node. As above, this corresponds to X−1

having eigenvalues x±1
i , x±1

j for some i, j. The condition qβ = 1 then forces these eigenvalues to

be reciprocal to one another. Hence, β must be one of e1n+1, e2n+2, . . . , en 2n, where eij is the

2n-tuple associated with the last positive root in Figure 5.2, that is

eij = (0, . . . , 0, 1︸︷︷︸
ith

, . . . , 1, 2︸︷︷︸
jth

, . . . , 2, 1, 1).
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Hence, the only allowed decomposition of α = n1 into a sum of simple roots is

α = e1n+1 + e2n+2 + · · ·+ en 2n. (5.6)

As the next lemma shows, this determines the Λq-module uniquely.

Lemma 5.6 (i) For each root βi := ei n+i, there is a unique Λq module Mi of dimension βi.

(ii) If M is a Λq-module of dimension α = n1, then M is isomorphic to the direct sum of Mi

for i = 1, . . . , n. Hence, up to isomorphism, there is one Λq-module of dimension α = n1.

Proof : (i) Existence and uniqueness ofMi follow from [CBS06, Theorem 1.9], using the fact that

Q is of finite Dynkin type and thus its roots are real. Alternatively, the problem of constructing

Mi can be interpreted as the description of the monodromy of the classical hypergeometric

equation, where uniqueness (so-called rigidity in op. cit.) as well as the existence are well know.

(ii) From (5.6), it follows that the composition series of M consists of the modules M1, . . . ,Mn.

By using Lemma 2.20, one can check that Ext1Λq(Mi,Mj) = 0 for i ̸= j. It suffices to confirm

that the Cartan form (βi, βj) between any of the summands of α is zero. Let i < j without loss

of generality and use (·)k to denote the kth entry of the vector. By (2.11), the Cartan form is

2

2n+2∑
k=1

(βi)k(βj)k −
2n∑
k=1

(
(βi)k(βj)k+1 + (βj)k(βi)k+1

)
− (βi)2n(βj)2n+2 − (βj)2n(βi)2n+2.

Because i < j, the first non-zero term occurs at the jth place. Explicitly then, we work with

1 i − 1 i j − 1 j n + i − 1 n + i n + j − 1 n + j 2n 2n + 1 2n + 2

βi = (0, . . . , 0, 1, . . . , 1, 1, . . . , 1, 2, . . . , 2, 2, . . . , 2, 1, 1),

βj = (0, . . . , 0, 0, . . . , 0, 1, . . . , 1, 1, . . . , 1, 2, . . . , 2, 1, 1).

Carefully substituting the corresponding entries into the Cartan form expression, we obtain

(βi, βj) = 2
(
(n+ i− j) + 2(j − i) + 4(n− j + 1) + 2

)
−
(
(n+ i− j + 1) + 2(j − i− 1) + 4(n− j + 1) + 4

)
−
(
(n+ i− j − 1) + 2(j − i+ 1) + 4(n− j) + 4

)
= 2(5n− i− 3j + 6)− (5n− i− 3j + 7)− (5n− i− 3j + 5)

= 0.

But each HomΛq(Mi,Mj) = 0 due to Schur’s Lemma. Hence, substituting this along with the

zero Cartan form into Lemma 2.20, we confirm that M splits into the direct sum of the Mi.
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5.1.2 Problem 5.4(ii)

The quiver Q = Q2 is not of finite Dynkin type, but we can use the fact it becomes Dynkin

after the removal of the extending vertex (the framing). We again begin by considering the

multiplicative preprojective algebra Λq with the parameters q determined from the eigenvalues

of X, A3 and A4. We are interested in Λq-modules of dimension

α = n2 = (1, . . . , 2n− 1, 2n, n, n, 1).

Lemma 5.7 Any Λq-module of dimension α = n2 is simple.

Proof : If if were not simple, α would be a sum β+ γ+ · · · of roots of Q with qβ = qγ = · · · = 1.

At least one of them, β say, must have a zero entry corresponding to the extended vertex. Hence,

it is a root of the finite Dynkin graph of type D2n+2. The same analysis as for Problem 5.4(i)

can then be carried out; the difference is that the eigenvalues for A4 have powers of t, preventing

qβ = 1, a contradiction.

By [CBS06, Theorem 1.8], α = n2 is a root of Q2. The dimension of the multiplicative quiver

variety can be found using [CBS06, Theorem 1.10]. Namely, it is 2p(α), where p(α) := 1− q(α)
and q(α) being the Tits form. By direct calculation, q(α) = 1 and hence p(α) = 0. Therefore,

the varietyMq,α(Q2) is zero-dimensional. This is the so-called rigid case of the Deligne-Simpson

problem, in which case its solution is unique; see [CB04, Theorem 1.5].

5.2 The First Chart

We can now use the quiver interpretation in order to prove Proposition 5.3. Recall that we must

show every point in Cτn (5.3) is represented by (A1, A2, A3, A4) in accordance with the formulae

for the matrices in Theorems 4.16 and 4.26, at the classical level q = 1.

Proof of Proposition 5.3 : Let us first set all Pi = 1 and denote the corresponding matrices A•
i .

From the construction of these matrices, we know that A•
1A

•
2 = X and A•

3A
•
4 = X−1, where X

is the matrix from Example 4.13. This gives us solutions to Problems 5.4(i) and (ii). Assuming

δτ (X) ̸= 0, each solution to these Deligne-Simpson problems is unique up to conjugation by a

matrix that leaves X unchanged (i.e. up to conjugation by diagonal matrices). This gives rise to

two conjugation matrices C and D, and thus the general solution of the main Deligne-Simpson

problem, given X, is

(A1, A2, A3, A4) = (CA•
1C

−1, CA•
2C

−1, DA•
3D

−1, DA•
4D

−1).



§5.3 The Second Chart 69

Using simultaneous conjugation on this solution, we can set D = 1, meaning A•
3 = A3 and

A•
4 = A4 are already in the desired form. On the other hand, A•

1 and A•
2 have most of their

entries equal to zero. One can use their formulae from Theorem 4.16 (with all Pi = 1) and

verify that they commute with diagonal matrices of the form C = diag(c1, . . . , cn, cn+1, . . . , c2n).

However, conjugating each of the matrices A•
1 and A•

2 by this C, we see that there are only n

degrees of freedom because the diagonal entries pair-up: the off-diagonal blocks involve cic
−1
n+i

or its inverse. Therefore, we can define Pi := cic
−1
n+i and consider C = diag(1, . . . , 1, P1, . . . , Pn);

conjugating A•
1 and A•

2 by these such C results in precisely A1 and A2 from Theorem 4.16. So,

any point in Cτn with given X satisfying (5.4) is represented by the Ai we calculated in §4.3.

5.3 The Second Chart

Recall the Duality Isomorphism ε from Theorem 3.11. It acts on the elements (4.10) by

ε(Z1) = (Z ′
3)

−1, ε(Z2) = (Z ′
2)

−1, ε(Z3) = (Z ′
1)

−1, ε(Z4) = (Z ′
4)

−1. (5.7)

Here, the images are understood as elements of the DAHA H′ := Hq−1,σ. At the classical level

q = 1, this induces an isomorphism of the corresponding character varieties, given by

E : (A1, A2, A3, A4) 7→ (A′
1, A

′
2, A

′
3, A

′
4) := (A−1

3 , A−1
2 , A−1

1 , A−1
4 ), (5.8)

or, in the alternative form from Proposition 4.5, given by

E : (X,Y, T, v, w) 7→ (X ′, Y ′, T ′, v′, w′) := (Y,X, T−1, v, w). (5.9)

Notation 5.8 Use ε′ and E ′ for the duality maps applied to the DAHA/character variety for H′.

The maps (5.7) and (5.8) are involutions in the sense that ε′ ◦ ε = E ′ ◦ E = id. Obviously, we

have E ′ ◦ Φ = Φ ◦ ε, where Φ is the EGO map from Definition 4.9. We can use E to construct a

second coordinate chart on Cn by transferring coordinates from the corresponding variety C′n. In
this chart, the matrix Y = A−1

3 A−1
2 = A4A1 is put into diagonal form

Y = diag(y1, . . . , yn, y
−1
1 , . . . , y−1

n ), with δ(y)δσ(y) ̸= 0, (5.10)

so y1, . . . , yn give n of the coordinates, with the remaining n coordinates read-off of A2 or A3.

We can transport everything across to this second chart and proceed as we did in §4.3 to compute

matrices, and §5.1 for the interpretation via multiplicative Deligne-Simpson problems.

Let us briefly outline how we can obtain matrices representing Z ′
2 and Z ′

3 explicitly (in a manor

similar to that of Theorem 4.16). First, the Duality Isomorphism ε is an involution of the DAHA,
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so we know the images of the inverse elements directly from Theorem 3.11. This is an important

observation which we use below.

Proposition 5.9 The matrix representing Z ′
2 = (T∨

0 )
′ is that whose ijth entry is

(A′
2)ij =



qunYi + u0
1− q2Y 2

i

if i = j

qu−1
n Q−1

i Y −1
i +

qun + u0Y
−1
i

1− q−2Y −2
i

Q−1
i Y −1

i if i− j = ±n

0 otherwise

,

and the matrix representing Z ′
3 = (ST∨

n S
−1)′ is that whose ijth entry is

(A′
3)ij =



−
q−1unY

−2
i + u0Y

−1
i

1− q−2Y −2
i

if i = j

q−1u−1
n Q−1

i +
q−1un + q−2u0Y

−1
i

1− q−2Y −2
i

Q−1
i if i− j = ±n

0 otherwise

,

extending the indices from {1, . . . , n} to {1, . . . , 2n} by setting Yn+i := Y −1
i and Qn+i := Q−1

i .

Sketch of Proof : The matrices in question are readily computed from (5.7) by applying the Basic

Representation β′ this time of the dual DAHA Hq−1,σ (defined in §3.3). We have chosen to use

Q-variables in the dual setting in analogy with the P -variables in the usual story. The proof is

then near-identical to that of Theorem 4.16.

Finally, the arguments involving quivers is now essentially a replacement of notation from that

which we had before. In particular, the pair of Deligne-Simpson problems corresponding to this

second chart is stated as follows, cf. Problem 5.4.

Problem 5.10 Let Y be the matrix (5.10) and Ci ⊆ GL2n(C) the conjugacy classes in (4.1).

(i) Find A2 ∈ C2 and A3 ∈ C3 with

A2A3Y = 12n.

(ii) Find A1 ∈ C1 and A4 ∈ C4 with

A1Y
−1A4 = 12n.

As with the first coordinate chart, the Deligne-Simpson problems here are again problems on the

three-punctured sphere Σ0,3. They correspond to the star-shaped quivers in Figure 5.3 below.
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A2

A3

Y · · ·

(a) The quiver for Problem 5.10(i).

A1

A4

Y −1 · · ·

(b) The quiver for Problem 5.10(ii).

Figure 5.3: The quivers associated with Problem 5.10.

This dual analysis ultimately leads to the establishment of the following result, completely similar

to the way it is done in §5.2 using the quiver ingredients, cf. Proposition 5.3.

Proposition 5.11 The map Υ (4.43) defines an isomorphism Uσ/W ∼= Cσn , where

Cσn := {(A1, A2, A3, A4) ∈ Cn : δ(y)δσ(y) ̸= 0}. (5.11)

5.4 The Main Result

Proofs of our main results can now be obtained by repeating the arguments from [Obl04]. The

reader is reminded of the notation H = H1,τ adopted in Notation 4.7, which we again use, as

well as the crucial properties of the spherical subalgebra we reference in Theorem 5.15.

Notation 5.12 Throughout, Z := Z(H) is the centre of the DAHA of type C∨Cn at q = 1.

We will summarise some of the general results about the spherical subalgebra below that will be

needed for the proof of the main theorem. But this involves some definitions from commutative

algebra and algebraic geometry. Therefore, we first briefly remind the reader of some key defi-

nitions that crop up in the theory of algebraic varieties. We can use standard texts once again,

say [Har77, §II.8] or [Eis95, §18].

Indeed, let R be a ring andM an R-module. A regular sequence forM is a collection of elements

r1, . . . , rk ∈ R such that ri is not a zero divisor in the quotient M/⟨r1, . . . , ri−1⟩. In the case that

R is a local ring (that is it has a unique maximal ideal, say m), the depth of R is the maximal

length of a regular sequence for which every ri ∈ m. A local Noetherian ring R is Cohen-Macaulay

if depth(R) = dim(R), where the latter denotes the Krull dimension. The condition is used also

to define a Cohen-Macaulay module, that is one where depth(M) = dim(M).

Definition 5.13 A variety V is Cohen-Macaulay if all of its local rings Ox,V are Cohen-Macaulay.

Similar to Definition 5.13, a variety V is normal if all of its local rings Ox,V are integrally closed
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domains, meaning that Ox,V is an integral domain with self-closure in its field of fractions.

Theorem 5.14 (cf. [DG65, Theorem 5.8.6], Serre’s Normality Criterion) A variety V is normal

if and only if V is regular in codimension one, and the regular maps on V \ Y extend to Y for

any subvariety Y whose codimension is at least two.

These conditions are respectively referred to as (R1) and (S2) in the literature. The former states

Vp is regular for all hgt(p) ≤ 1, meaning the minimum number of generators of its maximal ideal

is equal to its Krull dimension dim(Vp). The latter condition states that Vp has depth at least

two for all prime ideals p with hgt(p) ≥ 2.

We also require the following result that is lifted from Oblomkov’s paper; his proof is done in

sufficient generality to work for any DAHA, not just the type GLn DAHA he usually works with.

Theorem 5.15 ([Obl04, Theorem 5.1]) The following are true:

(i) The spherical subalgebra eHe is commutative.

(ii) The variety M = Spec(eHe) is irreducible, normal and Cohen-Macaulay.

(iii) The right eHe-module He is Cohen-Macaulay.

(iv) The left H-action on He induces an isomorphism of algebras H ∼= EndeHe(He).

(v) The centre Z ∼−→ eHe by the Satake isomorphism η : z 7→ ze. Hence, M = Spec(Z).

Analogously to [Obl04, Lemma 5.1] (cf. Corollary 3.22), we have

Zδ(X)δτ (X)
∼= C[X±1,P±1]Wδ(X)δτ (X).

Equivalently, we have an isomorphism Spec(Zδ(X)δτ (X)) ∼= Uτ/W . We obtain from this the fact

Υ : Spec(Zδ(X)δτ (X))
∼−→ Cτn (5.12)

by combining it with Υ (4.43) and Proposition 5.3. Consequently, we have a rational map

Υ : Spec(Z) 99K Cn. (5.13)

One final result we require for the proof of the main theorem is the following.

Lemma 5.16 In Spec(Z), any hypersurfaces f(X) = 0 and g(Y ) = 0 intersect transversally.

Proof : Because we are in the (spectrum of the) centre, f ∈ C[X±1]W and g ∈ C[Y ±1]W are

W -invariant. By the Basic Representation (at the classical level q = 1), we can embed the centre

Z ↪→ C(X)[P±1]W . Consider the prime factorisation of f(X) in Z; any factor is of the form
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f ′(X) ∈ C(X)W because there is no algebraic relation between the X- and P -variables, i.e. the

field C(X,P ) is a purely transcendental extension of C(X) with the obvious transcendence base

{P1, . . . , Pn}. But by the Duality Isomorphism, we can argue identically with the dual Basic

Representation that any prime factor of g(Y ) in Z has the form g′(Y ) ∈ C(Y )W . Finally, it

remains to show that each hypersurface has no common factor. Indeed, write f ′ = p/q for p, q ∈
C[X±1]W and g′ = r/s for r, s ∈ C[Y ±1]W . If there existed a common factor f ′(X) = g′(Y ),

this is equivalent to

p(X)

q(X)
=
r(Y )

s(Y )
⇒ p(X)s(Y ) = q(X)r(Y ).

This uses commutativity; these polynomials are W -invariant and so belong to Z. By the PBW

Property (Proposition 3.10), p(X) = q(X) and r(Y ) = s(Y ), contradicting primality.

Theorem 5.17 (cf. [Obl04, Theorem 6.1]) For generic τ , the rational map Υ (5.13) is a regular

isomorphism of algebraic varieties. In particular, M = Spec(Z) = Spec(eHe) is smooth.

Proof : Using duality in the senses of (5.7) and (5.8), we obtain from (5.12) an isomorphism

Υ′ : Spec(Zδ(Y )δσ(Y ))
∼−→ Cσn

for a suitable open subset Cσn ⊆ Cn. The maps Υ and Υ′ agree on the intersection

Spec(Zδ(X)δτ (X)) ∩ Spec(Zδ(Y )δσ(Y )). (5.14)

Indeed, for a point z in (5.14), the corresponding H-modules (4.45) are completely determined

by the one-dimensional character χz representing this point z, cf. Remark 4.39. As a result, Υ

is regular on (5.14). But δ(X)δτ (X) = 0 and δ(Y )δσ(Y ) = 0 are transversal in Spec(Z), by
Lemma 5.16, from which it follows that Υ is regular everywhere except a subset of codimension

two. We know that Spec(Z) is normal (by Theorem 5.15(ii)), so Υ extends to a regular map on

the whole variety by Serre’s Normality Criterion. Since the Calogero-Moser space is irreducible

(by Corollary 4.4), it follows that Υ is dominant, and thus we can use [Sha13, Theorem 2.21] to

guarantee a birational inverse.

As an immediate consequence, by the same arguments as in [Obl04], we arrive at the following.

Corollary 5.18 (cf. [Obl04, Corollaries 6.1 and 6.2]) (i) He is a projective eHe-module.

(ii) H = End(E), where E is a vector bundle over Spec(Z), i.e. H is an Azumaya algebra.

(iii) Every irreducible representation of H is of the form Vz = He⊗eHe χz for z ∈ Spec(Z).

(iv) Vz has dimension 2nn!, and is a regular representation of the finite Hecke algebra Hn.
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5.5 Application to the Trigonometric van Diejen System

The spherical subalgebra eH1,τe of the DAHA of type C∨Cn at the classical level q = 1 admits

a one-parameter deformation, namely eHq,τe. This gives rise to a Poisson bracket { · , · }. We

can use the isomorphism Υ established in the main result (Theorem 1.3) to carry this bracket

across to the Calogero-Moser space Cn. We can then apply our results to study the trigonometric

van Diejen integrable system [vD95]. In particular, we show that Cn is a completed phase space

for the trigonometric van Diejen system (which is a C∨C-analogue of the Ruijsenaars-Schneider

system) and obtain explicit log-canonical coordinates on the character variety.

The elements wY kv belong to the algebra of quantum integrals of the trigonometric van Diejen

system, with w and v from Lemma 4.32, cf. [Cha19, Proposition 4.5]. At the classical level q = 1,

the algebra of integrals is generated by trY k. It is difficult to work with these Hamiltonians. As

such, we instead work with trXk in (X,P ) coordinates; showing that they are in involution and

computing the dynamics is more straightforward. We can then apply duality (5.8) to conclude

analogously for trY k.

The q-difference Macdonald operators are the quantum Hamiltonians of a relativistic version

of the trigonometric Calogero-Moser system (in type GLn) [Rui87]. Per [Sto20], these pairwise-

commuting operators arise as the image of a symmetric combination of Y -variables under sym ◦β,
where β is the Basic Representation and the symmetrising map sym : Dq ⋊CW → Dq associates

to the q-difference-reflection operator F =
∑

w∈W fww the q-difference operator

Fsym :=
∑
w∈W

fw.

In type C∨Cn, one uses q-difference Koornwinder operators (of which the Macdonald operators

are a particular case), see [Nou95, Sto04]. Noumi identified (Y1+ · · ·+Yn+Y −1
1 + · · ·+Y −1

n )sym

with a linear combination of a scalar with the q-difference Koornwinder operator

n∑
i=1

(
Φi(x)(t(εi)− 1) + Φi(x

−1)(t(−εi)− 1)
)
, (5.15)

where t(λ) are translations (see §2.1.2) and

Φi(x) = k−1
0 k−1

n t2n−2 (1− axi)(1− bxi)(1− cxi)(1− dxi)
(1− x2i )(1− q2x2i )

∏
j ̸=i

(1− t2xixj)(1− t2xix−1
j )

(1− xixj)(1− xix−1
j )

,

with constants (a, b, c, d) = (qk0u0,−qk0u−1
0 , knun,−knu−1

n ). If one passes to the classical level,

this corresponds to trY . Indeed, it is possible to use the expressions of the (classical) matrices

A4 and A1 from Theorems 4.26 and 4.16 to calculate this explicitly; one obtains (5.15) at q = 1.
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Remark 5.19 This is slightly easier to see if we use the expression for A1 from [CR24, Proposition

4.8], in particular the factorised functions (4.13) and (4.14) immediately preceding loc. cit..

5.5.1 Poisson Bracket

Recall from §2.5.2 that the Poisson bracket on a commutative algebra A0 can be read from the

commutator on its one-parameter deformation Aℏ. In light of Remark 3.13 then, (2.17) becomes

[a, b] = (q2 − 1){η0(a), η0(b)}+ · · · . (5.16)

Proposition 5.20 (i) The coordinates Xi, Pi on Cn are log-canonical, that is

{Pi, Xj} = δijPiXj , {Pi, Pj} = {Xi, Xj} = 0.

(ii) The duality map E (5.8) is a Poisson anti-automorphism, so E∗{ · , · }Cn = −{ · , · }C′
n
.

(iii) The Poisson bracket on Cn is non-degenerate, so Cn is symplectic.

Proof : (i) This follows because the coordinates Xi, Pi correspond to the generators of the algebra

C[X±1,P±1], whose Poisson bracket comes from the quantised algebra Cq[X
±1,P±1]. Indeed,

[Pi, Pj ] = [Xi, Xj ] = 0 implies the trivial brackets. The deformed commutation relation implies

[Pi, Xj ] = PiXj −XjPi = (q2δij − 1)XjPi = (q2 − 1)δijXjPi,

from which the bracket of the classical (commuting) variables as stated follows from (5.16).

(ii) The duality map E is induced by the algebra automorphism ε. It therefore respects the

Poisson structure on the spherical subalgebra, with the change of sign for the bracket caused by

the fact that ε interchanges q ↔ q−1.

(iii) For the non-degeneracy, we observe in (i) that the bracket is log-canonical and thus non-

degenerate in both coordinate charts. Therefore, the bracket is non-degenerate except on a subset

of codimension two, and hence non-degenerate globally by Hartog’s Extension Theorem.

5.5.2 The First Integrable System

We now work in the first chart (Xi, Pi) and consider the functions hk := trXk with X = A1A2,

hk =
n∑

i=1

(Xk
i +X−k

i ). (5.17)

It is clear that these Hamiltonians are in involution, that is {hk, hl} = 0 for all k, l = 1, . . . , n.
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Lemma 5.21 For the Hamiltonians (5.17) and i = 1, . . . , n, we have {Xi, hk} = 0 and

{P±1
i , hk} = ±kP±1

i (Xk
i −X−k

i ).

Proof : View the coordinates Pi = ep and Xi = eq. The definition of the Poisson bracket tells us

{P±1
i , Xk

i } = {e±p, ekq} = ±e±p · kekq = ±kP±1
i Xk

i . Log-canonicity (Proposition 5.20) implies

that all other brackets are zero, and we obtain the stated result via linearity of the bracket.

This means that the Hamiltonian dynamics governed by hk is separated in (X,P ) coordinates:

Xi(t) = Xi(0), Pi(t) = ekt(X
k
i −X−k

i )Pi(0).

We describe the corresponding dynamics in invariant terms, globally on Cn. It is convenient to

do so on the representation variety associated to the conjugacy classes defined by (4.1), that is

Rn := R0,4 = {Ai ∈ Ci : A1A2A3A4 = 12n}.

Recall Cn = Rn //GL2n(C). Introduce the following GL2n(C)-invariant vector field on Rn:

Ȧ1 = −k(A1X
k −XkA1), Ȧ2 = −k(A2X

k −XkA2), Ȧ3 = 0, Ȧ4 = 0. (5.18)

This can be easily integrated, giving X = A1A2 constant and

A1(t) = ektX
k
A1(0)e

−ktXk
, A2(t) = ektX

k
A2(0)e

−ktXk
, A3(t) = A3(0), A4(t) = A4(0).

The dynamics is called complete if the trajectories don’t diverge to infinity in finite time given

any initial condition, so Ai(t) are well-defined for all t ∈ R. The GIT-quotient ensures that

everything works upon taking a quotient, and that the trajectories on Cn are projections of those

from the auxiliary space Rn.

Proposition 5.22 The Hamiltonian dynamics on Cn governed by hk = trXk can be obtained by

projecting the dynamics (5.18) onto Cn. The dynamics is complete on Cn.

Proof : This can be confirmed by a straightforward calculation in coordinates. Indeed, the fact

Ȧ3 = Ȧ4 = 0 is clear from Theorem 4.26; there is no P -dependence whatsoever, meaning

the entry-wise brackets are zero and thus {A3, hk} = {A4, hk} = 0, confirming the final two

equations in (5.18) on this chart. As for Ȧ1 and Ȧ2, we argue only for the former since the latter

is essentially identical. Recall from Theorem 4.16 that the only P -dependence occurs in the ijth

entries where i − j = ±n. The idea is to first use Lemma 5.21 and apply the Poisson bracket



§5.5 Application to the Trigonometric van Diejen System 77

entry-wise, and then to compare this to A1X
k −XkA1. Indeed,

(A1X
k)ij =



k0 + u0X
−1
i

1−X−2
i

Xk
i if i = j

k0P
−1
i Xk

i −
k0 + u0X

−1
i

1−X−2
i

P−1
i Xk

i if i− j = ±n

0 otherwise

and

(XkA1)ij =



k0 + u0X
−1
i

1−X−2
i

Xk
i if i = j

k0P
−1
i X−k

i − k0Xi + u0

1−X−2
i

P−1
i X−k

i if i− j = ±n

0 otherwise

.

Consequently, the difference in question is now easy to see:

(A1X
k −XkA1)ij =



0 if i = j(
k0 −

k0 + u0X
−1
i

1−X−2
i

)
P−1
i (Xk

i −X−k
i ) if i− j = ±n

0 otherwise

=



−1

k

{
k0 + u0X

−1
i

1−X−2
i

, hk

}
if i = j

−1

k

{
k0P

−1
i −

k0 + u0X
−1
i

1−X−2
i

P−1
i , hk

}
if i− j = ±n

−1

k
{0, hk} otherwise

.

by the Leibniz rule. It is now clear that the formula for Ȧ1 in (5.18) holds on the coordinate

chart. By analytic continuation, the result is valid globally on Cn. Because the dynamics is

obviously complete on the auxiliary space Rn, the completeness descends to Cn.

5.5.3 The Second Integrable System

Applying the duality map E , one can interchange the roles of X = A1A2 and Y = A4A1. The

latter matrix Y has been identified in [Cha19, Corollary 4.4] as a Lax matrix for the van Diejen

system. In particular, its conserved quantities are given by Hk := trY k, so we will take them as
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Hamiltonians of this system. The corresponding dynamics on Rn takes the form

Ȧ1 = 0, Ȧ2 = −k(Y kA2 −A2Y
k), Ȧ3 = −k(Y kA3 −A3Y

k), Ȧ4 = 0, (5.19)

which integrates to give Y = A4A1 constant and

A1(t) = A1(0), A2(t) = e−ktY k
A2(0)e

ktY k
, A3(t) = e−ktY k

A3(0)e
ktY k

, A4(t) = A4(0).

Theorem 5.23 The Hamiltonian dynamics on Cn governed by Hk = trY k can be obtained by

projecting the dynamics (5.19) onto Cn. The dynamics is complete on Cn.

The second coordinate chart on Cn provides the action-angle variables for the van Diejen system.

The action variables are determined by the eigenvalues of Y , and the angle variables, Qi, are the

dual counterparts of Pi. Correspondingly, the functions hk = trXk in terms of these action-angle

coordinates assume the form of the van Diejen Hamiltonians with dual parameters. This picture

is analogous to the Ruijsenaars duality well-known in the GLn-case [Rui88, FGNR00, FK11],

and it is a non-trivial manifestation of the duality for DAHAs. In a special limiting case of the

five-parameter van Diejen system, such duality was established in [FM17, FM19].



Chapter 6

Further Work

This PhD thesis has established an isomorphism between a character variety of the four-punctured

sphere with prescribed generic semi-simple conjugacy classes (the so-called Calogero-Moser space)

and the spherical subalgebra of the DAHA of type C∨Cn, settling part of a conjecture by Etingof-

Gan-Oblomkov [EGO06]. However, there are still a number of interesting related problems that

remain open.

One such is an extension of our result to the so-called spin case, that is where we alter the

representation of the affine D̃4 quiver, and interpret this from an integrable systems point-of-

view. This would yield a new integrable system: a spin generalisation of Koornwinder-van Diejen

system. Also, it should be possible to realise a quantised version (see §6.1) of the isomorphism

eHe ∼= C[Cn] from the point-of-view of quantised quiver varieties and quantum Hamiltonian

reduction [ELOR08, Jor14, Wen24]. The aforementioned spin analogue may also be quantisable.

Another intriguing question is whether there are further generalisations for affine D̃m quivers

(with m > 4). Some recent results by Braverman-Finkelberg-Nakajima [BFN19] on quantised

Coulomb branches of 3d N = 4 gauge theories suggest that such a generalisation might exist.

One approach may be to start with attempts to generalise the quiver variety by combining D̃4

and Ã-type quivers in a new way. This would provide a (yet missing) quiver interpretation of

Braverman-Finkelberg-Nakajima’s results.

Finally, one can begin looking at the generalised DAHA associated to affine Ẽ6, Ẽ7, Ẽ8 with

the intention of proving the entirety of [EGO06, Conjecture 5.1.1]. This is a challenging task

because the corresponding DAHAs are far less understood. However, it may be that the recent

work by D. Dal Martello and M. Mazzocco [DMM24] can be harnessed to deal with these more

obscure algebras (at least, perhaps, the GDAHA associated with Ẽ6).
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6.1 Quantisation

Our main result is an isomorphism between affine varieties, so recall this induces an isomorphism

between coordinate rings eHe ∼= C[Cn]. Our calculations of the matrices Ai in §4.3 were done at

the quantum level, so it stands to reason that this should generalise this isomorphism to q ̸= 1;

this is the content of Proposition 6.2. But we first continue to work at the classical level q = 1 for

the next auxiliary result, viewing Cn using the alternate form from Proposition 4.5 with relations

(4.2)–(4.6).

Lemma 6.1 The algebra C[Cn] of regular functions on the Calogero-Moser space is, as an algebra,

generated by wXmY nv and wXmY nTv with m,n ∈ Z.

Sketch of Proof : By definition, C[Cn] is generated by traces of words a ∈ C
〈
A±1

1 , A±1
2 , A±1

3 , A±1
4

〉
.

Using the alternative form of the character variety in Proposition 4.5, it is equivalent to say this

algebra is generated by traces of words a ∈ C
〈
X±1, Y ±1, T±1

〉
. To show that this is equally

generated by wa(X,Y, T )v then, let the degree of such a word be defined by counting the total

number of X±1, Y ±1 and T±1. But we can swap generators of a word by using the relations

(4.2)–(4.6), modulo words of smaller degree. This defines a filtration on the set of such words.

It suffices to consider XmY nT and XmY n with m,n ∈ {0,±1}. For example, by (4.2) and (4.3),

tr(XuY vT ) = tr (XXu−1Y vT )

= tr (Xu−1Y vTX)

= tr (Xu−1Y v(T−1 + u0)X)

= tr (Xu−1Y vT−1X) + · · ·

= tr (Xu−1Y v(TX−1 + k0)) + · · ·

= tr (Xu−1Y vTX−1) + · · ·

= tr (Xu−2Y vT ) + · · · .

Similar is true of the Y -generators, and this is why we need only consider powers in {0,±1}.
Note that T satisfies a Hecke relation (4.2), so we can automatically replace T by its inverse and

a constant. The statement follows by showing that the traces tr(XmY nT ) and tr(XmY n) are

themselves generated by wXmY nTv and wXmY nv, respectively; there are 18 total cases.

If we work at the quantum level with q arbitrary, consider the Dq-valued matrices Ai defined by

Theorems 4.16 and 4.26, as well as X = A1A2, Y = A4A1, T = A2, v and w as in Lemma 4.32.

Proposition 6.2 The elements wb(X,Y, T )v form a subalgebra of DW
q isomorphic to eHq,τe,

with arbitrary non-commutative polynomials b ∈ C
〈
X±1, Y ±1, T±1

〉
.
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Proof : Recall the elements Zi ∈ Hq,τ from (4.10). For a ∈ C
〈
Z±1
1 , Z±1

2 , Z±1
3 , Z±1

4

〉
, the elements

ea(Z1, Z2, Z3, Z4)e

clearly belong to the spherical subalgebra eHq,τe. Moreover, the relation (4.41) implies that

these elements form a subalgebra of eHq,τe, which we denote Aq,τ . The matrix representation

π (4.14), combined with Lemmata 4.11 and 4.32, defines an isomorphic subalgebra Bq,τ ⊆ DW
q :

Aq,τ
∼−→ Bq,τ , ea(Z1, Z2, Z3, Z4)e 7→ γ−1wa(A1, A2, A3, A4)v,

where γ is the constant (4.37). At the classical level q = 1, we have B1,τ
∼= eH1,τe by Lemma

6.1 combined with Theorem 5.17. Hence, they remain isomorphic for arbitrary q. Finally, any

element of the form wa(A1, A2, A3, A4)v can be transformed into wb(X,Y, T )v by using the

relation qA1A2A3A4 = 1 from Corollary 4.27.

Corollary 6.3 The spherical subalgebra eHq,τe is, as an algebra, generated by eXa
1Y

b
1 e and

eXa
1Y

b
1 T

∨
0 e with a, b ∈ Z. Its copy in DW

q is generated by wXaY bv and wXaY bTv with a, b ∈ Z.

6.2 Hamiltonian Reduction

One of the areas we started to study, but are yet to wholly complete, was an interpretation

of the Poisson structure on the Calogero-Moser space via Hamiltonian reduction. In general, a

character variety of a Riemann surface can be seen as a result of (infinite-dimensional) Hamil-

tonian reduction, performed on the moduli space of smooth connections [AB83], and so it has a

canonical Poisson structure, cf. [Gol84, Gol86]. Fock and Rosly [FR99] explained how to obtain

the same space by a finite-dimensional reduction, modelling flat connections by combinatorial

connections on graphs embedded into the surface.

Applying this to the one-punctured torus, they obtained the variety CMτ appearing in Theorem

1.2 and were able to interpret it as a completed phase space for the Ruijsenaars-Schneider system,

see [FR99, Appendix] (the observation that the Ruijsenaars-Schneider system naturally arises on

the moduli space of flat connections on the one-punctured torus goes back to [GN95]). Carrying

out the same approach for the four-punctured sphere would be technically difficult, but we can

fortunately arrive at a similar interpretation without much hard work, thanks to the results at

hand. Below, we freely use the terminology and notation from [FR99], so the reader should

consult that paper for the details.
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a

b

c

Figure 6.1: A graph corresponding to the four-punctured sphere.

Let us consider the space of G-valued graph connections on the graph in Figure 6.1, representing

the four-punctured sphere. It has three edges, to each of which we associate an element of G.

Hence, the moduli space of graph connections in this case is Al = G × G × G. The graph has

one vertex, so the gauge group Gl = G acts on Al by simultaneous conjugation.

According to [FR99], the choice of a Poisson structure on Al is based on a choice of a classical

r-matrix. We work with the group G = GLm(C) for m = 2n, and choose the standard r-matrix

r =

m∑
i<j

Eij ⊗ Eji +
1

2

m∑
i=1

Eii ⊗ Eii.

Remark 6.4 We can express r = ra + t as the sum of a skew-symmetric and symmetric part, for

ra =
1

2
(r − r21) and t =

1

2
(r + r21),

where r21 = rω is obtained via the action of the tensor swap ω : x ⊗ y 7→ y ⊗ x. It is often

common to see r = r12 in the literature, to further emphasise the order of the tensor factors.

This defines a Poisson bivector on Al, by [FR99, (16)], which then induces a Poisson bracket on

Al/Gl. By [FR99, Proposition 5], the resulting Poisson manifold is isomorphic to the moduli space

M of flat connections on the four-punctured sphere, with the Atiyah-Bott Poisson structure.

Symplectic leaves correspond to fixing the conjugacy classes of holonomies around the punctures,

so we choose the conjugacy classes Ci defined by (4.1), resulting in our character variety of the

Calogero-Moser space Cn. In terms of (A,B,C) ∈ Al, this means imposing the constraints

A ∈ C1, A−1B ∈ C2, B−1C ∈ C3, C−1 ∈ C4.

Therefore, a priori, we have two Poisson brackets on Cn: the Atiyah-Bott bracket { · , · }AB and

the bracket coming from the DAHA { · , · }DAHA. We claim that these brackets are the same.
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Before the proof, we write the Poisson brackets on Al, which are analogues of [FR99, (A2)–(A4)]:

{A,A} = ra(A⊗A) + (A⊗A)ra + (1⊗A)r21(A⊗ 1)− (A⊗ 1)r(1⊗A), (6.1)

{A,B} = r(A⊗B)− (A⊗B)r21 + (1⊗B)r21(A⊗ 1)− (A⊗ 1)r(1⊗B), (6.2)

with {B,B}, {C,C} completely similar to (6.1), and {A,C}, {B,C} completely similar to (6.2).

Any other brackets are found by using anti-commutativity and the Leibniz rule.

Proposition 6.5 The isomorphism eHe ∼= C[Cn] is a Poisson map, that is it identifies the natural

Poisson bracket on the spherical subalgebra with the Atiyah-Bott bracket on the character variety.

Proof : Working on Al with the Fock-Rosly bracket, we take trBk and calculate its brackets with

A, B, C. This is similar to the way [FR99, (A6)–(A8)] are derived, and the result is

{A, trBk} = −k(ABk −BkA), {B, trBk} = 0, {C, trBk} = 0. (6.3)

Upon the identification A = A1, B = A1A2 = X and C = A−1
4 , the vector field { · , trBk} is

the same as in (5.18). Projecting onto Cn ∼= Al/Gl, it becomes clear that trXk defines the same

vector field with respect to each of the Poisson brackets, which is to say

{ · , trXk}AB = { · , trXk}DAHA.

Similarly, for Y = C−1A, we calculate brackets between trY k and A, B, C, and notice

{ · , trY k}AB = { · , trY k}DAHA.

We see now that trXk and trY k are in the kernel of { · , · } := { · , · }AB−{ · , · }DAHA. But the 2n

functions (trXk, trY k)k=1,...,n are functionally independent generically on Cn, so { · , · } ≡ 0.

Corollary 6.6 The coordinates Xi, Pi on Cn are log-canonical with respect to the Atiyah-Bott

bracket. The spherical subalgebra eHq,τe provides a quantisation of the character variety Cn,
equipped with the Atiyah-Bott bracket.

We conclude that the symplectic leaf Cn of the moduli spaceM of flat GL2n(C)-connections on
the four-punctured sphere (chosen by specifying the conjugacy classes) serves as a completed

phase space for the van Diejen system.

Remark 6.7 The variety Cn, as a multiplicative quiver variety, seems obtainable by quasi-

Hamiltonian reduction by the result of Van den Bergh [VdB08]; see also [MT14]. We expect

the resulting Poisson bracket to coincide with the Atiyah-Bott bracket.
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[DMM24] D. Dal Martello and M. Mazzocco. Generalized double affine Hecke algebras, their

representations, and higher Teichmüller theory. Adv. Math., 450:109763,, 2024. doi:

10.1016/j.aim.2024.109763.

[EG02] P. Etingof and V. Ginzburg. Symplectic reflection algebras, Calogero-Moser space,

and deformed Harish-Chandra homomorphism. Invent. Math., 147:243–348, 2002.

doi:10.1007/s002220100171.

[EGO06] P. Etingof, W. L. Gan, and A. Oblomkov. Generalized double affine Hecke algebras

of higher rank. J. Reine Angew. Math., 600:177–201, 2006. doi:10.1515/CRELLE.

2006.091.

[Eis95] D. Eisenbud. Commutative Algebra. Graduate Texts in Mathematics. Springer, 1995.

ISBN: 978-1-461-25351-8.

https://doi.org/10.1016/j.aim.2005.02.003
https://doi.org/10.1016/j.geomphys.2017.08.006
https://doi.org/10.1016/j.geomphys.2017.08.006
https://doi.org/10.1007/s00220-019-03289-8
https://doi.org/10.1155/S1073792892000199
https://doi.org/10.1155/S1073792892000199
https://doi.org/10.2307/2118632
https://doi.org/10.1007/bf01231441
https://doi.org/10.1007/s00029-021-00721-7
https://arxiv.org/abs/2410.23456
https://doi.org/10.1016/j.aim.2024.109763
https://doi.org/10.1016/j.aim.2024.109763
https://doi.org/10.1007/s002220100171
https://doi.org/10.1515/CRELLE.2006.091
https://doi.org/10.1515/CRELLE.2006.091


References 87

[ELOR08] P. Etingof, S. Loktev, A. Oblomkov, and L. Rybnikov. A Lie-Theoretic Construction

of Spherical Symplectic Reflection Algebras. Transform. Groups, 13(3):541–556,

2008. doi:10.1007/s00031-008-9035-8.

[EOR06] Pavel Etingof, Alexei Oblomkov, and Eric Rains. Generalised Double Affine Hecke Al-

gebras of Rank 1 and Quantized Del Pezzo Surfaces, 2006. arXiv:math.QA/0406480.

[Eti09] P. Etingof. Lectures on Calogero-Moser Systems, 2009. arXiv:math.QA/0606233.

[FGNR00] V. Fock, A. Gorsky, N. Nekrasov, and V. Rubtsov. Duality in integrable systems and

gauge theories. J. High Energy Phys., 2000(7), 2000. doi:10.1088/1126-6708/

2000/07/028.
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Appendix A

Irreducibility of Calogero-Moser Space

The celebrated result [Mel20, Theorem 7.12] formulates the Poincaré polynomial of a GLm(C)-
character variety of a punctured Riemann surface. Connectedness, and thus irreducibility in

the smooth case, follows by proving that the constant term of this polynomial is one. In this

appendix, we detail an asymptotics argument different-yet-akin to the proof of the general result

(see Theorem 2.14) given in [HLRV13]. Note that our work is not dependant on this section.

Recall that the kth Betti number of a topological space counts the number of k-dimensional

holes. More formally, it is the rank of the kth homology group Hk(X) = ker(∂k)/ im(∂k+1), where

∂k : Ck → Ck−1 is a homomorphism between Abelian groups for each k ∈ N. In words, we say

that this group contains equivalence classes of cycles that don’t appear as the boundary of a

(k + 1)-dimensional submanifold. From these Betti numbers, we can write down a generating

function called the Poincaré polynomial. Our task is to prove that the zeroth Betti number (the

number of connected components) of Calogero-Moser space Cn is one.

To this end, the paper [Mel20] of Anton Mellit provides a proof of a conjecture by Hausel,

Letellier and Rodriguez-Villegas, which gives an explicit expression for the Poincaré polynomial

of Mg,k in the semi-simple generic case. We will state his theorem only for the M0,4 character

variety (the case of higher genus has some additional complexity that we need not worry about).

Notation A.1 Throughout, X = (x1, x2, . . . ) denotes a sequence of infinitely-many variables. The

ring of symmetric functions in these variables is then denoted Sym[X], an element of which is

denoted f [X]. We then use subscripts Xi to distinguish different collections of infinitely-many

variables. The square brackets indicates a plethystic substitution (see Definition A.6).

Finally, because the character variety M0,4 is smooth (see Theorem 2.13), we have access to de

Rham’s Theorem and the main theorem we use in this section is stated for cohomology.
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Theorem A.2 ([Mel20, cf. Theorem 7.12], Mellit’s Theorem) Let M0,4 have semi-simple generic

conjugacy classes. Then, its Poincaré polynomial
4n∑
i=0

(−1)iq
i
2 dim(H i(M0,4,C)) is given by

P (M0,4, q) = qn

〈
HHLV

0,4 [X; q−1, 1, T ]
∣∣∣
T 2n

,
4∏

i=1

hµi [Xi]

〉
,

where µi is the tuple of multiplicities for the ith conjugacy class and X denotes X1, . . . ,X4.

A.1 Symmetric Functions

Much of the understanding of Mellit’s Theorem comes via symmetric function theory, for which

[Mac95] is a brilliant reference that we will rely on. Before we start to dissect Theorem A.2, let’s

first recall some important symmetric polynomials.

Definition A.3 Let X = (x1, x2, . . . ) be a collection of infinitely-many variables and n ∈ Z+.

(i) An elementary symmetric function is the sum of distinct products of n variables:

en[X] =
∑

k1<···<kn

xk1 · · ·xkn .

(ii) A homogeneous symmetric function is the sum of distinct monomials of degree n:

hn[X] =
∑

k1≤···≤kn

xk1 · · ·xkn .

(iii) A power-sum symmetric function is the sum of distinct powers of n:

pn[X] =
∑
k

xnk .

Recall a partition of a positive integer m ∈ Z+ is a tuple µ = (µ1, . . . , µℓ) of positive integers in

descending order with µ1 + · · · + µℓ = m. The positive integer m is called its size, denoted |µ|.
The set of all such partitions is denoted Pm. The corresponding partition statistic is defined as

n(µ) =
ℓ∑

i=1

µi(i− 1). (A.1)

We can extend the notion of a partition by considering µ as having infinitely-many zeros after

the final positive entry, i.e. µℓ+1 = µℓ+2 = · · · = 0. In this way, we can extend the definitions of
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the functions in Definition A.3 to ones on partitions, not just integers. Well, for µ ∈ Pm, define

eµ :=
ℓ∏

i=1

eµi [X], hµ :=
ℓ∏

i=1

hµi [X], pµ :=
ℓ∏

i=1

pµi [X]. (A.2)

Definition A.4 Let X = (x1, x2, . . . ) be a collection of infinitely-many variables and µ ∈ Pm. The

monomial symmetric function is the sum of all monomials whose exponents are the parts in µ:

mµ =
∑
σ∈S∞

∏
k

x
µσ(k)

k ,

that is where we sum over all permutations of the parts in the partition µ = (µ1, . . . , µℓ, 0, 0, . . . ).

It turns out that any symmetric function can be written uniquely in terms of the {hµ}, and also

in terms of the {mν}, where µ, ν ∈ P are partitions. In other words, these two collections form

bases of Sym[X] viewed as a Z-module. It turns out that these two bases are dual to one another.

Definition A.5 ([Mac95, (4.5)]) The Hall pairing is a scalar product defined on Sym[X] by

〈
hµ,mν

〉
= δµν ,

where µ, ν ∈ P are partitions and the right-hand side is the Kronecker delta.

As is done in [HLRV11, (2.3.1)], we extend the Hall pairing definition as to cover a collection X

of infinitely-many variables. Indeed, let Sym[X1, . . . ,Xk] = Sym[X1]⊗ · · ·⊗Sym[Xk] and declare

〈
f1[X1] · · · fk[Xk], g1[X1] · · · gk[Xk]

〉
:=
〈
f1[X1], g1[X1]

〉
· · ·
〈
fk[Xk], gk[Xk]

〉
. (A.3)

Looking at the content of Theorem A.2, we have described the inner product and the homoge-

neous symmetric functions hµij appearing in the right-hand input. It remains to introduce the

generating function HHLV
0,4 , which has a complicated definition in terms of an operation on sym-

metric functions called the plethystic logarithm. Although this is rather difficult to use explicitly,

we can use some work in [HLRV11] to get a better combinatorial grasp on things. We provide

some narrative on the general idea, but refer the reader to [HLRV11, §2.3.3] for more details.

Definition A.6 Let f ∈ Sym[X] and M = m1 +m2 + · · · be a formal sum of monomials. The

plethystic substitution f [A] is the formal series obtained by writing f in the basis of power sum

symmetric functions pn and making the substitution pn = xn1 + xn2 + · · · 7→ mn
1 +mn

2 + · · · , i.e.

f =

∞∑
n=1

anpn(x1, x2, . . . ) 7→
∞∑
n=1

anpn(m1,m2, . . . ) =: f [M ].
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As discussed in Notation A.1, we denote our symmetric functions using square brackets f [X].

This is now consistent with Definition A.6 in the following way: if we view X as denoting the

formal sum x1 + x2 + · · · of all our variables, then the plethystic substitution of X into f is

f [X] = f(x1, x2, . . . ).

We now refer to [HLRV11, (2.3.3)] for the discussion on the plethystic exponential and its inverse,

the plethystic logarithm. The former PExp is a map which takes a formal power series in one

variable with coefficients in Sym[X] without constant term to one with a constant term, whose

inverse PLog is a map in the opposite direction. We will see a simple example of each below.

Example A.7 (cf. [Mel18, §2]) Let f [X] = X, meaning f(x1, x2, . . . ) = x1 + x2 + · · · . Then,

PExp[X] = exp

 ∞∑
n=1

1

n
pn[X]

,
where pn is the power-sum symmetric function from Definition A.3. Its inverse is

PLog[1 + X] =
∞∑
n=1

µ̈(n)

n
pn[log(1 + X)],

where µ̈(n) is the Möbius function (the umlaut is used to distinguish it from a partition µ); recall

this is zero if n is not square-free and, in the square-free case, either ±1 depending on whether

the number of distinct prime factors is even or odd, respectively.

A.2 The HLRV Kernel

We are close to being able to introduce HHLV
0,4 , but the final piece of the set-up we require is some

theory developed by Garsia and Haiman [GH96], namely the concept of (modified) Macdonald

polynomials. These are also rather complicated, but controlled combinatorially by partitions.

With this in mind, we first recall an important (partial) order on the set Pm of partitions of m.

Definition A.8 Let λ, µ ∈ Pm. The dominance (partial) ordering on Pm is where we declare λ ⪯ µ
if, for every k ≥ 1, the sum of the first k parts of λ is at most the sum of the first k parts of µ:

λ1 + · · ·+ λk ≤ µ1 + · · ·+ µk.

At this point, we will recall a pictorial representation of partitions via so-called Young diagrams.

Namely, a partition µ = (µ1, . . . , µℓ) is represented by ℓ-rows of boxes in the English style, that

is the first (top) row contains µ1 boxes, the second row contains µ2 boxes, and so forth.
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Figure A.1: The Young diagram representing µ = (4, 3, 2).

Definition A.9 Let µ ∈ Pm be a partition. The dual partition is the unique µ′ ∈ Pm obtained by

taking the transpose of its Young diagram and extracting from it the corresponding partition.

In other words, the dual to µ = (4, 3, 2) is precisely µ′ = (3, 3, 2, 1). Indeed, the transpose of the

Young diagram in Figure A.1 means we obtain the partition whose parts are now represented

by the columns of the original diagram from left-to-right. Before we move on, let’s remind the

reader that the arm-length a of a Young cell is defined to be the number of cells to its right, and

the leg-length l is defined to be the number of cells below it.

Definition A.10 ([Hai99, Proposition 2.6]) LetM⪯µ := {mλ : λ ⪯ µ} be the subspace spanned by

monomial symmetric functions with respect to the dominance order ⪯. The (modified)Macdonald

polynomials H̃µ are the unique polynomials that satisfy the following:

(i) H̃µ[(t− 1)X] ∈M⪯µ.

(ii) H̃µ[(q − 1)X] ∈M⪯µ′ .

(iii) H̃µ[1] = 1.

Remark A.11 There is a technicality we haven’t overtly mentioned in Definition A.10, namely

the involvement of the parameters q and t. When we define the Macdonald polynomials, we

are actually working now with symmetric functions in infinitely-many variables X = (x1, x2, . . . )

whose coefficients lie in the field of rational functions Q(q, t). In fact, {H̃µ}µ∈P is a basis of

Q(q, t)⊗ Sym[X], cf. [Mac95, Chapter IV, (4.7)]. Consequently, we denote H̃µ = H̃µ[X; q, t].

One can use the Hall pairing to define a new scalar product called the Macdonald pairing. This

is done in [Mel20, Porposition 2.7], for example, wherein Mellit explains that the Macdonald

polynomials are orthogonal with respect to this new pairing. More interestingly, there is an

explicit combinatorial formula for the Macdonald pairing of H̃µ with itself given in terms of

arm-lengths and leg-lengths of the Young diagram representing µ.

Proposition A.12 ([Mel20, Proposition 2.7]) The Macdonald polynomials H̃µ from Definition

A.10 are orthogonal with respect to the Macdonald pairing, which is defined below via the Hall

pairing: 〈
F [X], G[X]

〉
q,t

:=
〈
F [X], G[(q − 1)(1− t)X]

〉
.
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Moreover, because the Hall pairing is non-degenerate, one can obtain the explicit formula

⟨H̃µ, H̃µ⟩q,t =
∏
a,l

(qa+1 − tl)(qa − tl+1),

where the product is over the arm-lengths a and leg-lengths l of the Young cells of µ ∈ P.

We have finally established everything necessary to meaningfully discuss HHLV
0,4 . Recall that we

mentioned the involvement of the plethystic logarithm, which is still somewhat complicated.

Although the next definition involves PLog, we will soon extend the notion of a partition to that

of a type, which will allow us to remove all explicit mention of the plethystics. First, to alleviate

notation, we call the reciprocal of the following Macdonald pairing the deformed hook product :

Hµ :=
1

⟨H̃µ, H̃µ⟩q,t
=
∏
a,l

1

(qa+1 − tl)(qa − tl+1)
. (A.4)

Definition A.13 The HLV kernel is the quantity appearing in the left input of Theorem A.2, i.e.

HHLV
0,k = (q − 1)(1− t) PLog

∑
µ∈P
Hµ

k∏
i=1

H̃µ[Xi; q, t]T
|µ|

.

A.3 From Partitions to Types

To circumvent the plethystic logarithm issue in Definition A.13, we will use an important notion

introduced in [HLRV11, §2.3.1]. First, recall that the lexicographic ordering where we declare

λ <lex µ if there exists i such that λj = µj for all j < i but then λi < µi. This is a total ordering

and is implied by the dominance ordering. Now, following [HLRV11, §2.3.1], consider the set of

pairs (d, µ) ∈ Z+ ×P∗ of integers and non-zero partitions, on which there is a total ordering ≥:

� If d > e, then (d, λ) > (e, µ).

� If |λ| > |µ|, then (d, λ) > (d, µ).

� If |λ| = |µ| but λ >lex µ, then (d, λ) ≥ (d, µ).

Definition A.14 A type is a sequence of pairs ω := (d1, µ
1) · · · (dℓ, µℓ) where (di, µi) ≥ (di+1, µ

i+1)

with respect to the above total order for each i, and upper subscripts are used to avoid confusion

with the parts of a partition. The set of types is denoted T . We call the di the degrees of ω and

ℓ the length of ω. The size of the type ω is defined as |ω| :=
∑ℓ

i=1 di
∣∣µi∣∣.

Let’s now discuss how we can extend a symmetric function defined on partitions to one defined on

types. There is a blueprint for exactly this in [HLRV11, §2.3.2]. Indeed, let Aµ[X1, . . . ,Xn; q, t]
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be defined on partitions where A(0) = 1. This extends to a type ω of length ℓ as follows:

Aω[X1, . . . ,Xn; q, t] :=
ℓ∏

i=1

Aµi [Xdi
1 , . . . ,X

di
n ; qdi , tdi ]. (A.5)

Definition A.15 Let ω = (d1, µ
1) · · · (dℓ, µℓ) be a type. The type coefficient is the number

Cω :=


µ̈(d)

d
(−1)ℓ−1 (ℓ− 1)!∏

µmultω(d, µ)!
if di = d for all i

0 otherwise

,

where µ̈(d) is the Möbius function and multω(d, µ) is the number of appearances of (d, µ) in ω.

It turns out this is sufficient to avoid the plethystics woven into the statement of Theorem A.2,

in particular the plethystic logarithm in the HLV kernel from Definition A.13. Indeed, [HLRV11,

(2.3.9)] expresses the plethystic logarithm of a sum indexed by partitions now as a sum indexed

by types. This is almost a manual replacement of µ by ω, albeit with an appearance by Cω:

PLog

∑
µ∈P

AµT
|µ|

 =
∑
ω∈T

CωAωT
|ω|. (A.6)

We will now apply (A.6) to the right-hand side of Mellit’s Theorem. But first, we will define

H0,4(q, t) :=

〈
HHLV

0,4 [X, q, t, T ]
∣∣∣
T 2n

,

4∏
i=1

hµi [Xi]

〉
. (A.7)

Note the
∣∣
T 2n means we extract from the series expansion in T the coefficient of T 2n. Looking

at (A.6), this amounts to considering partitions/types of size 2n. With this in mind, and using

the multiplicativity of the extended Hall pairing established in (A.3), we can re-write (A.7) as

H0,4(q, t) =
∑

|ω|=2n

(q − 1)(1− t)CωHω

4∏
i=1

〈
H̃ω[Xi; q, t], hµi [Xi]

〉
. (A.8)

Notation A.16 To simplify notation, we will henceforth refer to (A.8) in the following way:

H0,4(q, t) =:
∑

|ω|=2n

Hω
0,4(q, t).

Notice that the right-hand side of the expression in Theorem A.2 is qnH0,4(q
−1, 1). Recall we are
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interested in the constant term (the zeroth Betti number/the number of connected components).

This is the q−n-term in H0,4(q
−1, 1), which means it is the qn-term in H0,4(q, 1). Our task is to

isolate this term from the summation in ω above in (A.8) and show that its coefficient is one.

A.4 Kostka Coefficients

The first step on our journey to better understanding the Hall pairing, rather the Macdonald

polynomials, within each Hω
0,4(q, t) is to first recall yet more combinatorics regarding the Young

diagram representation of a partition.

Definition A.17 Let µ ∈ Pm be a partition. A Young tableaux T of shape µ is a filling of the

Young cells in the associated Young diagram of µ with integers from the set {1, 2, . . . ,m}.

(i) T is semi-standard if the filling (allowing repetition) is weakly increasing along the rows and

strictly increasing down the columns. The set of such tableaus is denoted SSYT(µ).

(ii) T is standard if the filling (without repetition) is strictly increasing both along the rows

and down the columns. The set of such tableaus is denoted SYT(µ).

1 2 6 6

2 3 7

4 8

Figure A.2: A semi-standard Young tableaux of shape µ = (4, 3, 2).

Definition A.18 Let λ ∈ P be a partition and µ ∈ Nk a tuple of integers. The Kostka number

Kλµ is the number of semi-standard Young tableaux of shape λ with weight µ, meaning the

filling of the tableaux is done with µi copies of i for each i = 1, . . . , k.

At the moment, the second index µ is rather general. However, it is somewhat clear that there

are no semi-standard Young tableaux of shape µ ∈ Pm if the weight λ has more than m parts

(because then we are trying to fit more labels in than there are Young cells). In fact, we can

rapidly reduce the number of considerations with the following basic lemma.

Lemma A.19 ([Sta99, Proposition 7.10.5]) The Kostka number Kλµ ̸= 0 if and only if λ, µ ∈ Pm
are partitions of the same size and the former dominates the latter, meaning λ ⪰ µ.

It turns out that the Kostka numbers generate, in the monomial basis, an important type of

symmetric function. This will be a crucial ingredient for getting a grasp on the workings of both

the Macdonald polynomials and the Hall pairing. Let’s now define the aforementioned functions.

Definition A.20 Let X = (x1, x2, . . . ) be a collection of infinitely-many variables and µ ∈ P. The
Schur symmetric function is the sum of monomials in which the power ki of xi is the number of
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appearances of i in the filling of the Young tableaux µ in a semi-standard way, that is

sµ[X] =
∑

T∈SSYT(µ)

xk11 x
k2
2 · · · .

The key fact [GP92, (I.2)] is that the Schur functions decompose in the monomial basis as

sν =
∑
η

Kνηmη. (A.9)

But from [Hai01, (7)], one sees that we can write the Macdonald polynomials in the Schur basis:

H̃µ =
∑
ν

K̃νµ(q, t)sν . (A.10)

Remark A.21 Macdonald defines so-called q, t-Kostka polynomials Kνµ(q, t) in [Mac95, Chapter

VI, (8.11)] as the coefficients appearing in the Schur basis expansion of a so-called integral form.

The coefficients appearing in the above expansion (A.10) are modified q, t-Kostka polynomials.

We often drop the “modified” because we rarely consider the usual polynomials, but the relation

between the two is made explicit in [Hai01, p. 5], for example, and will be rather useful later:

K̃νµ(q, t) = tn(µ)Kνµ(q, t), (A.11)

where n(µ) is the partition statistic from (A.1). The reader should note this neat relationship:

Kνµ = Kνµ(0, 1) = K̃νµ(0, 1).

It is absolutely non-obvious that the q, t-Kostka polynomials (i) are Laurent polynomials, and (ii)

have non-negative integer coefficients. This was conjectured in [GH96], the Macdonald Positivity

Conjecture, and proven a few years later by Haiman as a corollary of [Hai01, Proposition 3.7.3].

Observe that we can combine (A.9) with (A.10) to obtain a decomposition of H̃µ in the monomial

basis. This will then allow us to apply the Hall pairing. The final comment we make before

proceeding with some auxiliary calculations is this: recall that the µi in Theorem A.2 are the

multiplicities of the eigenvalues in each conjugacy class. In the context of the Calogero-Moser

space Cn, this eigendata is that from (4.1). Explicitly, the partitions we work with are

µ1 = (n, n), µ2 = (n, n), µ3 = (n, n), µ4 = (n, n− 1, 1).

Lemma A.22 We have the following behaviours of the Kostka numbers for ν ∈ P2n:
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(i) Kν(n,n) ̸= 0 if and only if ν = (a, b), with b = 0 allowed.

(ii) Kν(n,n−1,1) ̸= 0 if and only if ν = (a, b, 1) or ν = (α, β), with β = 0 allowed.

Proof : Per Lemma A.19, we consider partitions ν that dominate each of (n, n) and (n, n− 1, 1).

(i) The partitions that dominate (n, n) are precisely those with two parts and the first part

larger than n; this is captured by ν = (a, b) with allowing b = 0, i.e. ν = (2n).

(ii) The partitions that dominate (n, n− 1, 1) are precisely those with either last part one and

first part larger than n or with two parts and the first part at least n; this is captured by

ν = (a, b, 1) and ν = (α, β) with allowing β = 0, i.e. ν = (2n).

Corollary A.23 We have the following values of the Kostka numbers:

(i) Kν(n,n) =

1, if ν = (a, b) or (2n)

0, otherwise
.

(ii) Kν(n,n−1,1) =


1, if ν = (a, b, 1) or (n, n) or (2n)

2, if ν = (a, b) ̸= (n, n)

0, otherwise

.

Proof : We here use the interpretation that Kνµ counts semi-standard Young tableaux of shape

ν and weight µ, the latter of which tells us to fill it with µ1 ones, µ2 twos, µ3 threes, and so on.

We know from Lemma A.22 the non-zeroness of Kν(n,n) and Kν(n,n−1,1).

(i) The only non-zero Kν(n,n) occur if we can semi-standardly fill a Young diagram of a par-

tition of 2n with n ones and n twos. Let ν = (a, b) ∈ P2n with b = 0 allowed. To ensure

that the columns are strictly increasing, the second row will always consist only of twos.

This means that there are still n ones and n − b twos to fit into the tableaux. However,

there is only one way to do this and still adhere to semi-standardness: fill the top row with

the ones followed by the remaining twos. This is the only way to keep the rows weakly

increasing. Because this is the unique semi-standard Young tableaux of shape (a, b) and

weight (n, n), it follows that Kν(n,n) = 1 in this case.

(ii) The only non-zero Kν(n,n−1,1) occur if we can semi-standardly fill a Young diagram of a

partition of 2n with n ones, n− 1 twos and one three. There are four cases, from which we

obtain the result.

� Let ν = (2n). There is obviously only one way to fill this, so K(2n)(n,n−1,1) = 1.
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� Let ν = (n, n). This is similar to the first case, but because the tableaux is rectangular,

this forces the three in the right-most cell of the second row. The filling is then just

ones along the top and twos in the remaining second row cells. As there is no true

choice here, we have K(n,n)(n,n−1,1) = 1.

� Let ν = (a, b, 1) ∈ P2n. We must have the three in the lone third-row cell (otherwise

the first column would not be strictly increasing). Hence, the first cell in the second

row must be a two, and therefore so are all cells therein. Again then, there is no

choice: we fill as much of the first row as possible with ones and continue with twos

and this is it. Consequently, K(a,b,1)(n,n−1,1) = 1.

� Let ν = (a, b) ∈ P2n with a and b ̸= 0 not both n; we have a > b. Because the

first row is longer than the second, the ones can only go in the top (otherwise this

would contradict strictly increasing columns). There are two ways to complete the

filling, where either the three appears at the end of the first row (and it has no cell

below it since a > b), as in Figure A.3(a), or it appears at the end of the second row,

as in Figure A.3(b). This demonstrates that K(a,b)(n,n−1,1) = 2 and concludes the

proof.

1 · · · · · · · · · 1 2 · · · 2 3

2 · · · 2

(a) Three in the first row.

1 · · · · · · · · · 1 2 · · · 2

2 · · · 2 3

(b) Three in the second row.

Figure A.3: The semi-standard Young tableaux counted by K(a,b)(n,n−1,1) with a > b.

Definition A.24 Let µ ∈ P be a partition and T be a standard Young tableaux of shape µ. An

entry k ∈ T is called a descent if k + 1 ∈ T appears in any row strictly below it. The set of

descents is denoted Des(T ). The major index of the tableaux is the sum of all descents, that is

maj(T ) =
∑

k∈Des(T )

k.

We can now prove an important stepping stone en route to the goal of showing that the Calogero-

Moser space is connected, i.e. the Poincaré polynomial of Cn has constant term equal to one.

Proposition A.25 If ω = (1, 2n), then the qn-term appears in Hω
0,4 with coefficient 1.

Proof : One can write the Macdonald polynomials in the monomial basis by combining (A.10)

and (A.9). The Hall pairing guarantees the only surviving terms are those arising from m(n,n)
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and m(n,n−1,1). Combining these observations, this means we need only concern ourselves with

(i)
∑
ν

K̃νµ(q, t)Kν(n,n) and (ii)
∑
ν

K̃νµ(q, t)Kν(n,n−1,1). (A.12)

As we assume ω = (1, 2n), the partition of interest here is µ = (2n). From [Mac95, p. 362],

Kν(m)(q, t) =
∑

T∈SYT(ν)

qmaj(T ). (A.13)

In particular, (A.13) implies that Kν(2n)(q, t) is a polynomial in q alone. Because the partition

statistic n((m)) = 0 for the trivial partition, it follows from (A.11) that K̃ν(2n)(q, t) is also

a polynomial in q alone. It remains to demonstrate that Hω
0,4 has highest term qn. For the

moment, we care not about the value of the Kostka numbers in (A.12) but rather only their

non-zeroness. By Lemma A.22 then, we consider the following cases:

(i) The Hall inner product is non-zero if and only if ν = (a, b); we are interested in

K̃(a,b)(2n)(q, t).

Looking at (A.13), the maximum major index comes from the standard Young tableaux

T of shape (n, n) whose columns are labelled [1, 2], [3, 4], . . . , [2n− 1, 2n]. Thus, the major

index is the sum of the odd numbers from 1 to 2n, meaning precisely that maj(T ) = n2.

(ii) The Hall inner product is non-zero if and only if ν = (a, b, 1) or (α, β); we are interested in

K̃(a,b,1)(2n)(q, t) + K̃(α,β)(2n)(q, t).

The second summand above is dealt with by (i), the q-term with the largest power is qn
2
.

As for the first, the maximum major index comes from the standard Young tableaux T of

shape (n, n− 1, 1) whose columns are labelled [1, 3, 2n], [2, 5], . . . , [2n− 4, 2n− 1], [2n− 2].

Thus, the major index is one less than the sum of the even numbers from 2 to 2n, that is

maj(T ) = n2 + n− 1. Note that this is always at least the power of the second summand.

Notice that the hook product (A.4) for the type ω = (1, 2n) simplifies as each leg-length l = 0:

Hω = H(2n) =

2n−1∏
a=0

1

(qa+1 − 1)(qa − t)
.

The highest power of q in this denominator is
∑2n−1

a=0 (2a+ 1) = 4n2. Recall from (A.8) that

Hω
0,4 = (q − 1)(1− t)CωHω

〈
H̃ω, h(n,n)

〉3〈
H̃ω, h(n,n−1,1)

〉
. (A.14)
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We have Cω = 1 directly from Definition A.15. Considering the asymptotics when q ≫ t,

Hω
0,4 ∼ q

(qn
2
)3(qn

2+n−1)

q4n2 =
q4n

2+n

q4n2 = qn.

Finally, combining the expressions for the Hall inner products in (i) and (ii) above, and recalling

that the q-power of the first summand in (ii) dominates that of the second, it is an immediate

consequence of Corollary A.23 that the coefficient of qn is one.

Our next target is to prove the converse of Proposition A.25; this is a bit more broad in the

sense that it appears we must consider arbitrary types |ω| = 2n of the correct size. If we can

show that none of them produce asymptotics leading to a qn-term, we have proved the result we

are after. The full set-up is again very combinatorial, but let’s first state a simple lemma.

Lemma A.26 Let d ∈ Z+ and µ ∈ P. Then, mµ[X
d] = mdµ[X] where dµ := (dµ1, . . . , dµℓ).

Proof : Let X = x1 + x2 + · · · . From the definition of the monomial symmetric function, we get

mµ[X
d] =

∑
α∼µ

(
xd1x

d
2 · · ·

)α
=
∑
α∼µ

(x1x2 · · · )dα = mdµ[X],

where α ∈ Nℓ and α ∼ µ if and only if α is a rearrangement of µ = (µ1, . . . , µℓ) as an ℓ-tuple.

We now prove an important consequence of Lemma A.26 which will dramatically reduce the

number of types we must consider when proving the converse of Proposition A.25. Namely, it

turns out that we need only consider types concentrated in degree d = 1.

Corollary A.27 For ω = (d1, µ
1) · · · (dℓ, µℓ) with some dk ̸= 1, we have

〈
H̃ω, h(n,n−1,1)

〉
= 0.

Proof : Per (A.5), the Macdonald polynomial indexed by the type ω is the product

H̃ω[X; q, t] =
ℓ∏

i=1

H̃µi [Xdi ; qdi , tdi ].

The (extended) Hall pairing is multiplicative per (A.3); it suffices to consider only the kth factor,

that is where dk ̸= 1. Expanding H̃µk in the monomial basis, as in the proof of Proposition A.25,

H̃µk [Xdi ; qdi , tdi ] =
∑
η

∑
ν

K̃νµk(qdk , tdk)Kνηmη[X
dk ]

=
∑
η

∑
ν

K̃νµk(qdk , tdk)Kνηmdkη[X],
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by Lemma A.26. The only way the Hall pairing with h(n,n−1,1) is non-zero is if dkη = (n, n−1, 1).
But because dk ∈ Z+, this occurs if and only if η = (n, n− 1, 1) and dk = 1, a contradiction.

A.5 Statistics from Young Diagrams

There is a neat combinatorial formula for the Macdonald polynomials provided in [HHL05] which

will give us a good handle on their asymptotic behaviour. In order to understand this though,

we must first introduce yet more combinatorial notions. Throughout, ϕ : µ → Z+ is a so-called

filling function which assigns a positive integer to each Young cell of µ.

Definition A.28 A descent of ϕ is a Young cell y whose filling is strictly larger than the Young

cell x immediately above, that is ϕ(y) > ϕ(x). The set of descents of ϕ is denoted Des(ϕ).

This notion of a descent is not the same as that in Definition A.24, so one should be vigilant

when encountering this word (but we henceforth only refer to descents as in Definition A.28).

Definition A.29 For two Young cells u, v ∈ µ, we say u attacks v if either of the following occur:

(i) u is strictly to the left of v in the same row.

(ii) u is strictly to the right of v in the row immediately below that which contains v.

u v

(a) Attacking cells in the same row.

v

u

(b) Attacking cells in neighbouring rows.

Figure A.4: Two types of cell attacks in a Young diagram.

In other words, every cell attacks its arm and gets attacked by the arm of the cell below it. Now,

the Hanunó’o reading order of a Young diagram of µ ∈ P is the total ordering on Young cells

given by reading them row-by-row, left-to-right, bottom-to-top (so-named after the Hanunó’o

script which is famous for being written upwards). For two Young cells u, v ∈ µ, we denote this

u ≺ v. If we let u = (i, j) and v = (a, b) indexed by the row and column, respectively, then

(i, j) ≺ (a, b) ⇔ (−i, j) <lex (a, b).

Definition A.30 An inversion of ϕ is a pair of Young cells (u, v) where u attacks v, the fillings

satisfy ϕ(u) > ϕ(v) and u ≺ v. The set Inv(ϕ) is the set of pairs of cells that are inversions of ϕ.
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This definition as made in [HHL05, (11)] is easier because they use the French style, where the

Young diagram has its longest part on the bottom; this would be like drawing µ = (µℓ, . . . , µ1)

in the English convention. The order they put on their Young diagrams is then the standard

reading order. The next definition is crucial for the Macdonald polynomial formula we will use.

Definition A.31 Let ϕ : µ→ Z+ be a filling function of the Young diagram of a partition µ ∈ P.

(i) The major statistic of ϕ is as follows, where l(u) is the usual leg-length of Young cell u:

maj(ϕ) :=
∣∣Des(ϕ)

∣∣+ ∑
u∈Des(ϕ)

l(u).

(ii) The inversion statistic of ϕ is as follows, where a(u) is the usual arm-length of Young cell u:

inv(ϕ) :=
∣∣Inv(ϕ)∣∣− ∑

u∈Des(ϕ)

a(u).

It is not clear a priori that the inversion statistic inv(ϕ) is non-negative for any filling ϕ, but this

turns out to be the case; a short justification is provided by Haglund in [Hag04, Remark 2].

Example A.32 Consider the Young diagram of µ = (4, 3, 2) with a filling as in Figure A.5 below.

5 3 7 4

1 2 9

6 8

Figure A.5: A filling ϕ of the Young diagram of µ = (4, 3, 2).

Per Definition A.28, the set of descents of ϕ in this example is

Des(ϕ) =
{

6 , 8 , 9
}
.

Next, here is a list of all attacking pairs, where (u, v) means that cell u attacks cell v:(
5 , 3

)
,
(

5 , 7
)
,
(

5 , 4
)
,
(

3 , 7
)
,
(

3 , 4
)
,
(

7 , 4
)
,
(

1 , 2
)
,(

1 , 9
)
,
(

2 , 9
)
,
(

6 , 8
)
,
(

2 , 5
)
,
(

9 , 5
)
,
(

9 , 3
)
,
(

8 , 1
)
.

Per Definition A.30, we can pick from the above list the inversions of ϕ and form the set of them:

Inv(ϕ) =

{(
5 , 3

)
,
(

5 , 4
)
,
(

7 , 4
)
,
(

9 , 5
)
,
(

9 , 3
)
,
(

8 , 1
)}

.
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We can now immediately compute the major and inversion statistics from Definition A.31:

maj(ϕ) = 3 + (0 + 0 + 0) = 3 and inv(ϕ) = 6− (1 + 0 + 0) = 5.

We can now state a crucial fact we will use when proving the converse of Proposition A.25.

Proposition A.33 ([HHL05, Theorem 2.2]) The Macdonald polynomial H̃µ is given by

H̃µ[X; q, t] =
∑
ϕ

qinv(ϕ)tmaj(ϕ)Xϕ,

where we sum over all fillings and Xϕ =
∏
u∈µ

xϕ(u) is a monomial in at most |µ| variables.

From Proposition A.33, it appears we must study inv(ϕ) to access the behaviour of the q-powers.

But the minus makes it more troublesome than maj(ϕ). Fortunately, there is a q, t-symmetry

satisfied by the Macdonald polynomials which allows us to interchange these two indeterminates

at the expense of replacing the partition µ with its dual µ′ (see [CHM+22, Remark 3.2]), that is

H̃µ[X; q, t] = H̃µ′ [X; t, q]. (A.15)

Combining (A.15) with Proposition A.33 then, we arrive at the following useful expression:

H̃µ′ [X; t, q] =
∑
ϕ

tinv(ϕ)qmaj(ϕ)Xϕ. (A.16)

A.6 Asymptotics

Recall from Mellit’s Theorem (Theorem A.2) that the Poincaré polynomial arises after taking

the Hall pairing of the HLV kernel with each of h(n,n) and h(n,n−1,1). From Definition A.5, the

only surviving Macdonald polynomial coefficients are those of m(n,n) and m(n,n−1,1). So, we are

concerned with fillings where (i) Xϕ = m(n,n), and (ii) Xϕ = m(n,n−1,1), meaning the following:

(i) ϕ is a filling by two letters of n copies and n copies, say ϕ = 1n2n.

(ii) ϕ is a filling by three letters of n copies, n− 1 copies and 1 copy, say ϕ = 1n2n−13.

The next auxiliary result will be an application of (A.16) to find upper bounds on the q-powers

of the above-mentioned Hall pairings. Where we use the notation ∼ to denote that two objects

behave the same asymptotically, we use the notation ≲ to denote an asymptotic upper bound.

Proposition A.34 Let µ = (µ1, . . . , µℓ) ∈ P2n. Then, we have the following:
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(i) ⟨H̃µ, h(n,n)⟩ ≲


q

1
4
(µ2

1+···+µ2
ℓ ), if µ1 is even

q
1
4
(µ2

1+···+µ2
ℓ )−

1
4 , if µ1 is odd

.

(ii) ⟨H̃µ, h(n,n−1,1)⟩ ≲


q

1
4
(µ2

1+···+µ2
ℓ )+

1
2
µ1−1, if µ1 is even

q
1
4
(µ2

1+···+µ2
ℓ )+

1
2
µ1− 3

4 , if µ1 is odd

.

Proof : From Definition A.31, we can maximise the major statistic by ensuring that there are as

many descents of µ′ as possible, as high up as they can go. This amounts to vertical fillings by

(i) dominoes [1, 2], or (ii) dominoes [1, 2] with one triomino [1, 2, 3]. So if we now use (A.16), this

means we transpose the Young diagram and now we fill µ with horizontal dominoes with the

same labels as above. Note that descents are now counted as neighbouring cells where the right

is greater than the left. We then replace l(u) by a(u) in Definition A.31(i). Strictly speaking, we

are defining an equivalent statistic by

maj′(ϕ) :=
∣∣Des′(ϕ)

∣∣+ ∑
u∈Des′(ϕ)

a(u), (A.17)

where Des′(ϕ) is the set of filled cells whose left-neighbour’s filling is less. The filling considered

in (A.17) is that of the transpose of the partition; we abuse notation and omit the prime, because

maj(ϕµ) = maj′(ϕµ′). Note that for any µ ∈ P, the arm-length of a Young cell u in the ijth place

(as usual, labelled akin to positions in a matrix) is given by the simple formula

a(uij) = µi − j. (A.18)

(i) We consider a filling ϕ = 1n2n and focus on maximising the major statistic for a single

row µi; the maximum is obtained if we fill by as many horizontal dominoes 1 2 starting

from the far-left and continuing until we run out of (at least) one of the filling numbers;

we complete the filling by putting what’s left in what remains; see Figure A.6 below.

1 2 1 2 1 2 1 · · ·

Figure A.6: Maximising the major statistic for row µi when Xϕ = h(n,n).

We clearly must separate into cases depending on the parity of µi. But regardless, note

that maj(ϕ) is calculated by summing the number of descents (shaded in grey) and their
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arms; each descent is in an even-indexed column. Thus, we conclude that

∣∣Des(ϕ)
∣∣ =


µi

2 , if µi is even

µi−1
2 , if µi is odd

and

∑
u∈Des(ϕ)

a(u) =



µi/2∑
k=1

(µi − 2k), if µi is even

(µi−1)/2∑
k=1

(µi − 2k), if µi is odd

=


µ2
i
4 −

µi

2 , if µi is even

µ2
i
4 −

µi

2 + 1
4 , if µi is odd

.

Summing the above gives us the options for the major statistic depending on parity:

maj(ϕµi) =


µ2
i
4 , if µi is even

µ2
i−1
4 , if µi is odd

. (A.19)

(ii) We consider a filling ϕ = 1n2n−13 and focus on maximising the major statistic for a single

row µi; the maximum is obtained if we fill by starting with 1 2 3 in the far-left of row

one µ1 and continuing with as many horizontal dominoes 1 2 henceforth, and continuing

until we run out of (at least) one of the filling numbers; we complete the filling by putting

what’s left in what remains; see Figure A.7 below.

1 2 3 1 2 1 2 1 · · ·

Figure A.7: Maximising the major statistic for row µ1 when Xϕ = h(n,n−1,1).

We again have a parity dichotomy. In this case, the first descent is in the second column
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and all subsequent descents in odd-indexed columns (third and onwards). Hence, we get

∣∣Des(ϕ)
∣∣ =


µ1

2 , if µ1 is even

µ1+1
2 , if µ1 is odd

and

∑
u∈Des(ϕ)

a(u) =



(µ1/2)−1∑
k=1

µ1 − (2k + 1)

+ µ1 − 2, if µ1 is even

(µ1−1)/2∑
k=1

µ1 − (2k + 1)

+ µ1 − 2, if µ1 is odd

=


µ2
1
4 − 1, if µ1 is even

µ2
1−5
4 , if µ1 is odd

.

Again, summing the above gives us the options for the major statistic depending on parity:

maj(ϕµ1) =


µ2
1
4 + µ1

2 − 1, if µ1 is even

µ2
1
4 + µ1

2 −
3
4 , if µ1 is odd

. (A.20)

To find the major statistic of the entire partition ϕ = ϕµ (and therein the q-power of the relevant

Hall pairing), it suffices to sum over the major statistics for each row maj(ϕµi). However, one

must take care with the case ϕ = 1n2n−13; note that filling the first row obeys (ii) above, but

every subsequent row is filled with only ones and twos, so this obeys (i) above. We therefore

separate into cases depending on the parity of the first row µ1.

(a) If µ1 is even, we use the even case from (A.20) and, for subsequent rows, we notice that the

even case for (A.19) is strictly larger than the odd case. In all, we assume that every part

is even (since this is the ‘worst-case scenario’). Hence, the q-power of maj(ϕ) is at most

1

4
µ21 +

1

2
µ1 − 1 +

ℓ∑
i=2

µ2i
4

=
1

4
(µ21 + · · ·+ µ2ℓ ) +

1

2
µ1 − 1 if ϕ = 1n2n−13,

ℓ∑
i=1

µ2i
4

=
1

4
(µ21 + · · ·+ µ2ℓ ) if ϕ = 1n2n.
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(b) If µ1 is odd, we use the odd case from (A.20) and, for subsequent rows, we still use the

even case for (A.19) as it is is strictly larger. In all, we assume that every part except µ1

is even (since this is the ‘worst case scenario’). Hence, the q-power of maj(ϕ) is at most

1

4
µ21 +

1

2
µ1 −

3

4
+

ℓ∑
i=2

µ2i
4

=
1

4
(µ21 + · · ·+ µ2ℓ ) +

1

2
µ1 −

3

4
if ϕ = 1n2n−13,

1

4
µ21 −

1

4
+

ℓ∑
i=2

µ2i
4

=
1

4
(µ21 + · · ·+ µ2ℓ )−

1

4
if ϕ = 1n2n.

The result as stated is immediate from interpreting these cases as Hall pairings with the relevant

homogeneous symmetric polynomial; this is really a consequence of (A.16).

The converse of Proposition A.25 has us consider types of size 2n concentrated in degree one (a

consequence of Lemma A.26). There are obviously a lot of them, so we will prove the following

technical lemma to greatly reduce the amount of required considerations for ω. In words, if

ω = (1, µ1) · · · (1, µℓ) is our type, we can build from the constituent partitions a brand new

partition by taking all the parts amongst µ1, . . . , µℓ and arranging them from largest-to-smallest.

Lemma A.35 Let µ1, . . . , µℓ ∈ P be partitions. Then, the partition η = (η1, . . . , ηm) defined by

η1 := max
i,j
{µji} and ηk := max

i,j

(
{µji} \ {η1, . . . , ηk−1}

)
has Hη ∼ Hω, for ω = (1, µ1) · · · (1, µℓ) the type concentrated in degree one built from the µj.

Proof : Looking at (A.4), it is clear that the deformed hook product behaves asymptotically as

Hµ ∼ q
−

∑
u∈µ

(2a(u)+1)

. (A.21)

But the arm-length a(u) is calculated row-wise, and the partition η obtained as above is nothing

more than stacking rows of Young cells from amongst the µj . Therefore, we can conclude that

Hη ∼ q
−

∑
u∈η

(2a(u)+1)

=
∏
j

q
−

∑
u∈µj

(2a(u)+1)

∼ Hω.

Theorem A.36 The qn-term appears in Hω
0,4 if and only if ω = (1, 2n), and with coefficient 1.

Proof : (⇐) This is Proposition A.25.

(⇒) Since Cω = 0 unless ω is concentrated in degree d, and as a result of Corollary A.27, it is

sufficient to consider only types of the form ω = (1, µ1) · · · (1, µℓ) where |ω| = 2n; this means
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that
∣∣µ1∣∣ + · · · + ∣∣µℓ∣∣ = 2n by the definition of the size of a type. The strategy of the proof is

this: if we have a type of length ℓ = 1, we will show that the optimal partition (in the sense of

maximising the q-power) is µ1 = (2n). We then argue that for a type of length ℓ ≥ 2, we can

form a single partition whose q-power is no less than that of the original type. Recall (A.14), i.e.

Hω
0,4 = (q − 1)(1− t)CωHω

〈
H̃ω, h(n,n)

〉3〈
H̃ω, h(n,n−1,1)

〉
.

Suppose ω = (1, µ) is the type of interest. Because its length ℓ = 1, we can replace ω simply by

µ in the formula above. The asymptotics of the deformed hook product (A.4) are given in the

previous proof, see (A.21). We simplify this using the arm-length formula (A.18). Indeed then,

∑
u∈µ

a(u) =
ℓ∑

i=1

µi∑
j=1

(µi − j) =
ℓ∑

i=1

(
µ2i −

1

2
µi(µi + 1)

)
=

1

2
(µ21 + · · ·+ µ2ℓ )−

1

2
|µ|.

Therefore, we have refined the asymptotic expression for the deformed hook product to

Hµ ∼ q−(µ2
1+···+µ2

ℓ ).

Using this along with Proposition A.34 and (A.14), we conclude that

Hµ
0,4 ≲


q1+

3
4
(µ2

1+···+µ2
ℓ )+

1
4
(µ2

1+···+µ2
ℓ )+

1
2
µ1−1−(µ2

1+···+µ2
ℓ ), if µ1 is even

q1+
3
4
(µ2

1+···+µ2
ℓ )−

3
4
+ 1

4
(µ2

1+···+µ2
ℓ )+

1
2
µ1− 3

4
−(µ2

1+···+µ2
ℓ ), if µ1 is odd

=


q

1
2
µ1 , if µ1 is even

q
1
2
(µ1−1), if µ1 is odd

.

We see that this is maximised when µ1 is even and is equal to the entire length of the partition,

that is µ1 = 2n. This occurs if and only if µ = (2n); this is the optimal partition amongst all types

with length one. Next, suppose ℓ ≥ 2, so the general form of the type is ω = (1, µ1) · · · (1, µℓ).
Since the sum of the Young cells in totality is still 2n, we can fill the partitions concurrently with

(i) n ones and n twos or (ii) n ones, n− 1 twos and one three; maximising over each part of each

partition will produce the largest possible maj(ϕω) and thus largest q-power of the respective

Hall pairing. But this is equivalent to defining a new partition as in Lemma A.35; geometrically,

η amounts to splitting the Young diagrams of the µj into rows and stacking them top-to-bottom

from longest-to-shortest. The resulting partition η ∈ P2n is such that

maj(ϕη) = maj(ϕω) and Hη ∼ Hω.
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The latter is precisely the statement of Lemma A.35 and the former is obvious because we

maximise the major statistic row-by-row. However, we know that the largest q-power obtainable

from a single partition is qn when it is (2n); since ℓ ≥ 2, it must be that η1 ≤ 2n− 1 and so the

largest q-power of ω is strictly less than n via the argument above.

Corollary A.37 For generic conjugacy classes, the Calogero-Moser space Cn is connected.

Proof : We show that the constant term (the number of connected components) in the Poincaré

polynomial from Theorem A.2 is one. This polynomial is precisely qnH0,4(q
−1, 1) in the language

of (A.7). We can decompose H0,4(q, 1) into a sum over types of size 2n, see (A.8) and Notation

A.16. We interpret Theorem A.36 as saying that only the summand Hω
0,4(q, t) where ω = (1, (2n))

has a qn-term, and with coefficient one. Therefore, H0,4(q, 1) has a single qn-term with coeffi-

cient one, meaning H0,4(q
−1, 1) has a single q−n-term with coefficient one, and consequently the

Poincaré polynomial qnH0,4(q
−1, 1) has constant part exactly one.
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