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Abstract	

This	 research	 investigated	 pedestrians’	 crossing	 decisions	 and	 attention	

allocation,	 as	 indicated	 by	 head	 and	 gaze	 movements,	 in	 interactions	 with	

automated	vehicles	(AVs)	over	repeated	exposures,	aiming	to	provide	insights	for	

developing	safe	and	effective	AV	communication	strategies.	The	work	addressed	

questions	 relating	 to	 (i)	 drivers’	 kinematic	 cues	 in	 different	 contexts	 and	 their	

impact	 on	 pedestrians’	 crossing	 decisions	 for	 proposing	 AV	 implicit	

communication	strategies,	(ii)	pedestrians’	attention	allocation	behaviour	in	front	

of	 AVs	 employing	 explicit	 communication	 strategies,	 and	 (iii)	 the	 impact	 of	

repeated	exposures	on	pedestrians’	adaptation	in	crossing	decisions	and	attention	

allocation	 behaviour	 in	 response	 to	 implicit	 and	 explicit	 communication	

strategies.		

To	 address	 these	 questions,	 a	 series	 of	 experiments	 were	 conducted	 in	 virtual	

environments	using	a	CAVE-based	pedestrian	simulator	to	explore	AV-pedestrian	

interactions	 across	 varying	 contextual	 factors.	 Additionally,	 a	 distributed	

simulation	setup	was	developed,	connecting	the	pedestrian	simulator	to	a	motion-

based	driving	simulator,	enabling	real-time	interactions	between	both	actors	in	a	

controlled	and	repeatable	environment.	Results	revealed	that	drivers’	kinematic	

cues,	 such	 as	 braking	 and	 lateral	 movements,	 served	 as	 effective	 implicit	

communication	 strategies,	 significantly	 influencing	 pedestrians’	 crossing	

decisions	and	surpassing	 the	 impact	of	 infrastructure	cues	 like	zebra	crossings.	

Furthermore,	 pedestrians’	 attention	 allocation	 patterns	 in	 front	 of	 AVs	 were	

similar	 to	those	observed	with	conventional	vehicles.	However,	 the	presence	of	

explicit	 communication	 methods	 from	 AVs,	 such	 as	 external	 human-machine	



	

interfaces	(eHMIs)	or	augmented	reality	(AR),	reduced	pedestrians’	head-turning	

and	 gaze	 behaviours,	 indicating	 lower	 attentional	 demands	 and	 effectively	

conveying	 AV	 intent.	 Repeated	 exposures	 to	 these	 implicit	 and	 explicit	

communication	 strategies	 revealed	 a	 learning	 effect,	with	 pedestrians	 adapting	

their	crossing	decisions	and	attention	allocation	behaviours	over	time.		

This	 thesis	 concludes	 by	 providing	 a	 comprehensive	 understanding	 of	 AV-

pedestrian	 interactions	 through	 novel	 experimental	 approaches	 and	

measurements,	 offering	 insights	 for	 designing	 effective	 implicit	 and	 explicit	

communication	strategies	for	AVs.	
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1.1 BACKGROUND	

Vulnerable	Road	Users	(VRUs),	including	pedestrians,	cyclists,	and	motorcyclists,	

account	 for	more	than	half	of	all	 road	casualties	worldwide	(WHO,	2018),	with	

pedestrians	 being	 the	 most	 vulnerable	 group	 due	 to	 their	 lack	 of	 physical	

protection	and	slower	movement	compared	 to	other	 traffic	participants.	 In	 the	

UK,	pedestrians	account	for	27%	of	all	road	fatalities	(Department	for	Transport,	

2020).	This	vulnerability	has	driven	extensive	research	into	pedestrian	behaviours	

to	enhance	road	safety	and	develop	effective	traffic	policies.	Recent	technological	

advancements	are	paving	the	way	for	the	imminent	arrival	of	automated	vehicles	

(AVs),	particularly	highly	automated	vehicles	(HAVs,	Level	4	and	5)	(SAE,	2021),	

which	promise	improvements	in	traffic	safety	(Litman,	2021)	and	aim	to	protect	

road	users	by	reducing	human	error,	a	factor	thought	to	be	responsible	for	over	

90%	 of	 road	 crashes	 (Highway	 Traffic	 Safety	 Administration	 &	Department	 of	

Transportation,	2015).	The	introduction	of	AVs	is	also	expected	to	bring	benefits	

such	as	 lower	emissions	and	 improved	traffic	efficiency	by	reducing	congestion	

(Anderson	 et	 al.,	 2016;	 Litman,	 2021).	 However,	 it	 remains	 unclear	 how	 these	

autonomous	 systems	 will	 interact	 with	 vulnerable	 road	 users,	 particularly	

pedestrians,	 in	 future	 urban	 scenarios	 (Schieben	 et	 al.,	 2019).	 This	 uncertainty	

underscores	 the	 importance	 of	 understanding	 the	 role	 of	 AVs	 in	 the	 traffic	

ecosystem	before	their	widespread	deployment	(Alvarez	et	al.,	2019).	

The	shift	towards	AVs	may	introduce	a	new	challenge	by	replacing	human	drivers	

with	autonomous	systems	that	do	not	yet	conform	to	the	social	norms	of	current	

traffic	 systems	 (Rasouli	 &	 Tsotsos,	 2020).	Driving	 is	 a	 task	 that	 involves	 social	

interaction	with	other	road	users	while	establishing	right-of-way	and	navigating	

in	 urban	 environments	 (Domeyer,	 Lee,	 &	 Toyoda,	 2020;	 Sucha,	 2014).	 These	

interactions	 involve	 interpreting	 rules,	 norms,	 expectations,	 and	 situational	

factors	while	providing	clear	cues	to	other	road	users	to	maintain	orderly	and	safe	

movement,	prevent	collisions,	and	ensure	efficient	transport	systems	(Rezwana	&	

Lownes,	 2024;	 Wang	 et	 al.,	 2022)	 However,	 AVs	 currently	 lack	 such	 social	
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intelligence	(Kihlstrom	&	Cantor,	2000)	to	interpret	these	cues	from	pedestrians	

or	communicate	effectively	with	other	road	users	(Loke,	2019),	which	could	lead	

to	traffic	accidents	or	erratic	behaviour	towards	pedestrians	(Sparrow	&	Howard,	

2017).	Additionally,	current	research	has	suggested	five	capabilities	required	by	an	

AV	for	a	successful	interaction	process	between	AVs	and	VRUs.	These	include	(1)	

object	 detection,	 (2)	 object	 classification,	 (3)	 trajectory	 prediction,	 (4)	 intent	

prediction,	and	(5)	communication	with	vulnerable	road	users	(Reyes‐muñoz	&	

Guerrero‐ibáñez,	 2022).	 To	 date,	 the	 former	 three	 stages	 have	 been	 achieved	

relatively	well	by	advanced	technology	and	sensors,	whereas	the	latter	two	stages	

still	 remain	 as	 challenges	 for	 the	 current	AV	 technologies	 (Huang	 et	 al.,	 2024;	

Reyes‐muñoz	&	Guerrero‐ibáñez,	2022).	

Although	 substantial	 research	 has	 focused	 on	 facilitating	 smooth	 interactions	

between	pedestrians	and	AVs	through	mutual	understanding	of	intent	to	address	

these	concerns,	most	studies	only	examine	pedestrians'	initial	responses.	There	is	

a	noticeable	lack	of	research	on	how	pedestrians	adapt	and	learn	from	repeated	

exposures	to	AVs	that	utilise	new	communication	forms.	Addressing	this	gap	is	

critical,	 as	 pedestrian	 behavioural	 adaptation	 is	 key	 to	 day-to-day	 interactions	

(Vissers	 et	 al.,	 2017)	 and	 can	 evolve	 with	 repeated	 encounters,	 leading	 to	

adjustments	in	their	responses	and	corresponding	changes	in	AV	behaviour	and	

interpretation.	 Understanding	 these	 adjustments	 is	 essential	 for	 developing	

intuitive	 and	 natural	 mechanisms	 for	 AVs	 to	 achieve	 social	 interactions	 and	

seamlessly	integrate	into	urban	environments.	

The	aim	of	 this	PhD	programme	is	 to	understand	pedestrians'	adaptability	and	

learning	 behaviours	 in	 response	 to	AV	 communication	mechanisms,	 providing	

insights	 to	 guide	 the	 development	 of	 effective	 communication	 strategies	 with	

other	road	users,	and	intuitive	designs	for	AVs.	To	deepen	the	understanding	of	

this	 research	 topic,	 the	 next	 section	 of	 this	 chapter	 outlines	 the	 context	 of	

automated	driving	and	the	associated	human	factors	challenges.	This	is	followed	

by	 a	 literature	 review	 from	 three	 perspectives:	 i)	 road	 user	 interactions	 in	 the	



1.2	Interactions	in	current	traffic	

	

	

4	

current	 traffic,	 ii)	 pedestrians’	 interactions	 with	 automated	 vehicles,	 and	 iii)	

repeated	exposures	of	AV-pedestrian	interactions.	The	chapter	concludes	with	a	

summary	of	identified	research	gaps	and	the	specific	research	questions	this	thesis	

aims	to	address.	

1.2 INTERACTIONS	IN	CURRENT	TRAFFIC	

Despite	ongoing	efforts	to	improve	pedestrians’	safety,	they	still	account	for	23%	

of	global	road	traffic	fatalities,	with	deaths	increasing	by	3%	to	274,000	between	

2010	and	2021	(World	Health	Organization,	2023),	the	highest	proportion	among	

all	 road	user	groups.	 In	 the	UK,	pedestrians	 represent	27%	of	all	 road	 fatalities	

(Department	for	Transport,	2020),	while	in	the	EU,	they	account	for	18.1%	of	traffic	

deaths	(European	Commission,	2022).	Although	AVs	are	expected	to	reduce	these	

figures	through	advanced	sensors	and	technological	improvements,	the	transition	

to	fully	automated	traffic	will	involve	a	prolonged	period	of	coexistence	between	

conventional	vehicles,	partially	automated	vehicles,	and	fully	automated	vehicles	

(Dresner	&	Stone,	2007;	Litman,	2021).	Ensuring	road	safety	during	this	transition	

remains	a	critical	challenge	for	academia	and	industry	alike,	as	some	existing	road	

user	interactions	may	be	altered,	while	others	may	persist	(Habibovic	et	al.,	2018;	

Rasouli	&	Tsotsos,	2020).	This	section	examines	current	research	on	interactions	

within	 today’s	 traffic	 systems,	 providing	 a	 foundation	 for	 exploring	 how	 these	

dynamics	might	evolve	with	the	introduction	of	AVs.	

1.2.1 Road	user	interactions	and	non-verbal	communication		

Markkula	et	al.	 (2020)	define	 road	user	 interactions	as	occurring	during	 “space	

sharing	conflicts,”	situations	in	which	“two	or	more	road	users	are	intending	to	

occupy	the	same	region	of	space	at	the	same	time	in	the	near	future.”	During	these	

interactions,	it	is	critical	for	all	participants	to	share	a	common	interpretation	of	

the	situation	to	safely	negotiate	the	priority	of	using	the	shared	space.	Achieving	

this	requires	effective	communication	to	ensure	mutual	understanding,	which	is	



1.2	Interactions	in	current	traffic	

	

	

5	

vital	 for	 resolving	 ambiguities	 and	 preventing	 misinterpretations	 (Klein	 et	 al.,	

2004).	The	lack	of	effective	communication	can	significantly	increase	the	risk	of	

traffic	conflicts	(Endsley,	1995;	Portouli	et	al.,	2014),	as	evidenced	by	Risser	(1985)	

observational	study,	which	found	that	over	a	quarter	of	traffic	conflicts	were	due	

to	ineffective	communication,	with	nearly	half	of	these	conflicts	arising	from	no	

communication	attempts.	

Communication,	as	defined	by	Risser	(1985),	involves	the	exchange	of	information	

aimed	at	specific	objectives.	Within	the	context	of	road	user	interactions,	these	

objectives	 often	 include	 sharing	 intentions	 and	 coordinating	 access	 to	 shared	

spaces	 (Portouli	 et	 al.,	 2014).	 This	 coordination	 is	 facilitated	 through	 various	

communicative	 acts	 (Domeyer,	 Lee,	 &	 Toyoda,	 2020;	 Habibovic	 et	 al.,	 2018;	

Lundgren	 et	 al.,	 2017;	 Markkula	 et	 al.,	 2020).	 Linguistically,	 these	 acts	 are	

categorised	 into	 declarative	 utterances	 (verbal	 cues	 or	 locutionary	 acts)	 and	

directive	requests	for	intentions	(behavioural	cues	or	illocutionary	acts)	(Austin,	

1975).	Given	the	physical	separation	between	pedestrians	and	vehicles,	there	is	a	

greater	reliance	on	non-verbal	cues	(Färber,	2016),	with	over	90%	of	interactions	

involving	 non-verbal	 communication,	 such	 as	 changes	 in	 pedestrians’	 head	

orientations,	as	analysed	by	Rasouli	et	al.	(2018)	from	240	hours	of	observations	of	

road	user	interactions	recorded	in	Canada,	the	USA,	Germany,	and	Ukraine.		

 

Figure	1.1	Model	of	pedestrian-vehicle	interaction	in	current	traffic	with	non-

verbal	cues	from	both	actors	and	some	factors	influencing	the	interaction.	
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In	the	model	of	vehicle-pedestrian	interaction	(Figure	1.1),	non-verbal	cues	from	

both	actors	are	generalised	and	interpreted	differently	by	each	other	depending	

on	 the	 context	 (e.g.,	 location,	weather).	 They	 can	 be	 categorised	 as	 explicit	 or	

implicit,	 although	definitions	vary	 (Fuest,	 Sorokin,	 et	 al.,	 2018;	Markkula	et	 al.,	

2020;	 Powelleit	 et	 al.,	 2018;	 Rasouli	 &	 Tsotsos,	 2020).	 Implicit	 communication	

involves	conveying	messages	through	behavioural	cues	or	illocutionary	acts,	such	

as	 vehicles	 communicating	 intentions	 through	 changes	 in	 speed,	 while	

pedestrians	use	anticipatory	behaviours,	like	changing	walking	speed	or	stepping	

onto	the	curb,	to	indicate	readiness	or	hesitation	to	cross	(Beggiato	et	al.,	2017;	

Dey	&	Terken,	2017;	Schmidt	&	Färber,	2009).	Conversely,	explicit	communication	

entails	direct	cues,	or	locutionary	acts,	such	as	drivers	using	turn	indicators	and	

brake	 lights	or	pedestrians	employing	eye	contact	and	hand	gestures	 to	clearly	

convey	their	intentions	(Rasouli	et	al.,	2017;	Sucha	et	al.,	2017).		

Among	 these	 explicit	 cues,	 eye	 contact	 is	 particularly	 critical	 as	 it	 makes	

pedestrians	feel	acknowledged	and	significantly	affects	drivers'	decisions	to	yield	

(Guéguen	et	al.,	2015;	Mok	et	al.,	2022;	Rasouli	et	al.,	2018).	Using	a	field	study	at	a	

pedestrian	crossing	in	France,	Guéguen	et	al.	(2015)	found	that	drivers	were	more	

likely	to	stop	for	pedestrians	who	made	eye	contact	(68%)	compared	to	those	who	

did	not	 (45%).	 Similarly,	 observations	 by	Uttley	 et	 al.	 (2020)	 in	 a	UK	 car	 park	

revealed	that	pedestrians’	 failure	to	 look	toward	a	driver	 increased	uncertainty,	

leading	 drivers	 to	 slow	 down	 but	 not	 fully	 stop.	 However,	 a	 disparity	 exists	

regarding	the	relevance	of	eye	contact.	For	example,	Sucha	et	al.	(2017)	found	that	

84%	of	 pedestrians	 seek	 it	 during	 crossings,	 but	 this	was	 only	 seen	 for	 34%	of	

drivers.	This	discrepancy	highlights	pedestrians'	greater	need	for	reassurance	due	

to	their	vulnerability	and	underscores	the	necessity	for	AVs	to	effectively	signal	

recognition	and	intent	(Lundgren	et	al.,	2017;	Onkhar	et	al.,	2022;	Velasco	et	al.,	

2019).	As	traditional	forms	of	explicit	communication	from	drivers	will	decrease	

with	the	advent	of	higher-level	AVs,	there	is	the	potential	likelihood	of	increasing	

ambiguities	during	traffic	 interactions	with	other	road	users,	 since	AVs	are	not	

currently	 able	 to	 provide	 explicit	 communication	 cues.	 Addressing	 these	
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challenges	 requires	 a	 focus	 on	 the	 communication	 needs	 and	 mechanisms	

between	AVs	and	pedestrians,	which	will	be	developed	in	detail	later	in	Section	

1.3.	

1.2.2 Pedestrians’	situation	awareness	and	attention	allocation	

The	process	by	which	pedestrians	 receive	and	 interpret	cues	 from	vehicles	and	

their	environment	can	be	effectively	explained	through	the	Situation	Awareness	

(SA)	model.	Endsley	(1995)	provides	a	widely	recognised	definition	of	SA	as	"the	

perception	of	the	elements	in	the	environment	within	a	volume	of	time	and	space,	

the	comprehension	of	their	meaning,	and	the	projection	of	their	status	in	the	near	

future."	This	definition	further	delineates	SA	into	three	hierarchical	levels:	Level	1	

(Perception),	 Level	 2	 (Comprehension),	 and	 Level	 3	 (Prediction),	 as	 shown	 in	

Figure	 1.2.	 Essentially,	 SA	 enables	 pedestrians	 to	 observe	 cues	 in	 their	

environment	(depicted	in	Figure	1.1),	identify	and	comprehend	relevant	features	

for	assessing	crossing	tasks,	and	predict	the	potential	actions	of	vehicles	before	

deciding	whether	to	cross	(Figure	1.2).		

 

Figure	1.2.	Model	of	situation	awareness	in	dynamic	decision	making,	adapted	

from	Endsley	(1995).	
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Attention	plays	a	pivotal	role	in	the	SA,	affecting	nearly	all	aspects	of	perception,	

comprehension,	and	action	(Endsley,	1995).	In	Level	1	(Perception),	the	allocation	

of	 pedestrians’	 attention	 determines	 which	 cues	 are	 gathered	 for	 processing	

during	decision-making.	Due	 to	 the	brain’s	 limited	capacity	 to	handle	multiple	

information	streams	simultaneously,	attention	operates	as	a	selective	mechanism	

that	filters	relevant	(signal)	from	irrelevant	(noise)	elements	based	on	the	specifics	

of	 the	 task	 (Carrasco,	 2011).	 In	 the	 context	 of	 crossing	 tasks,	 pedestrians	must	

selectively	focus	on	necessary	cues,	a	process	that	can	be	understood	through	a	

feature-based	structure,	distinguishing	between	bottom-up	(salience	and	novelty-

driven)	and	top-down	(goal	and	experience-driven)	processes	(Connor	et	al.,	2004;	

Corbetta	&	Shulman,	2002;	Katsuki	&	Constantinidis,	2014).	Bottom-up	attention	

is	an	externally	driven	process	where	information	is	automatically	processed	based	

on	salient	sensory	stimuli,	such	as	interfaces	that	capture	attention	or	distractions	

in	 the	 environment.	 Conversely,	 top-down	 attention	 is	 an	 internally	 driven	

process	where	information	is	actively	sought	based	on	an	individual's	expectations,	

experience,	 and	 the	 likelihood	 of	 encountering	 specific	 information	 in	 a	 given	

context,	 such	 as	 vehicle	 behaviour	 in	 a	 particular	 situation.	 This	 selection	 is	

influenced	by	mental	models,	memory,	and	past	experiences	and	exposures,	which	

help	in	guiding	attention	allocation	in	a	planned,	goal-directed	manner	in	Level	1	

(Perception)	and	interpreting	environmental	signals	in	Level	2	(Comprehension).	

These	 attentional	mechanisms	 are	 not	mutually	 exclusive	 and	 often	 coexist	 in	

visual	search	tasks.		

Gaze	allocation	reliably	reflects	attention	distribution	and	cognitive	processing,	as	

pedestrians	focus	on	elements	that	capture	their	attention,	a	connection	rooted	in	

the	 brain's	 mechanisms	 for	 stimulus	 selection	 and	 processing,	 established	 by	

psychologists	 such	 as	 Posner	 et	 al.	 (1980).	 Research	 on	 pedestrian-vehicle	

interactions	 demonstrates	 that	 gaze	 patterns	 are	 highly	 context-dependent,	

shaped	by	pedestrians’	efforts	to	gather	information	from	vehicles,	environmental	

cues	 such	 as	 infrastructure,	 and	 individual	 characteristics	 like	 age	 and	 gender	

(Lévêque	et	al.,	2020).	Field	studies	highlight	these	variations	in	gaze	behaviour	in	
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front	 of	 conventional	 vehicles.	 Trefzger	 et	 al.	 (2018)	 found	 that	 pedestrians	

navigating	predefined	 routes	 in	Germany	 focused	primarily	on	 the	path	ahead.	

Conversely,	Geruschat	et	al.	(2003)	observed	distinct	gaze	patterns	at	signalised	

intersections	 in	 the	U.S.,	where	compliant	pedestrians	 focused	on	traffic	 lights,	

while	 non-compliant	 ones	 directed	 their	 attention	 to	 vehicles.	 This	 study	 also	

found	 gaze	 patterns	 varying	 at	 different	 stages	 that	 pedestrians	 focused	 on	

crossing	 elements	 while	 walking	 to	 the	 curb	 but	 shifted	 their	 attention	 to	

approaching	 vehicles	 when	 standing	 at	 the	 curb.	 As	 vehicles	 approach,	 gaze	

behaviour	 shifts	dynamically.	 In	a	 field	 study	on	a	 straight	campus	 road	 in	 the	

Netherlands,	Dey	et	al.	(2019)	reported	that	pedestrians	transitioned	their	focus	

from	the	road	surface	to	the	vehicle's	bumper,	hood,	and	windshield	as	the	vehicle	

approached	pedestrians.	Similarly,	de	Winter	et	al.	(2021)	observed	that	in	parking	

environments,	 pedestrians	 focused	 on	 vehicles’	 sides,	 wheels,	 fronts,	 and	 the	

surrounding	ground.	

In	addition	to	gaze	allocation,	research	on	gaze	fixations,	defined	as	periods	when	

the	eyes	 remain	relatively	still	while	 focusing	on	a	specific	element	 (Salvucci	&	

Goldberg,	 2000),	 provides	 deeper	 insights	 into	 the	 process	 of	 comprehension	

(Level	 2)	 in	pedestrians’	 SA	 in	 the	 crossing	 task.	Longer	 fixation	durations	 can	

indicate	greater	visual	effort	 (He	&	McCarley,	2010;	Herten	et	al.,	2017;	 Jacob	&	

Karn,	2003),	difficulty	in	processing	visual	information	(Kotval	&	Goldberg,	1998;	

Milton	et	al.,	1950),	or	increased	uncertainty	of	the	vehicle’s	intent	(Liu	et	al.,	2023),	

while	 shorter	 fixations	 suggest	 quicker	 information	 absorption	 and	 easier	

decision-making.	For	example,	field	experiments	conducted	at	two	uncontrolled	

crosswalks	in	China	by	Liang	et	al.	(2022)	found	that	higher	vehicle	speeds	and	

closer	 proximity	 between	 pedestrians	 and	 vehicles	 resulted	 in	 longer	 fixation	

durations	on	the	approaching	manual-driven	vehicle.	This	finding	highlights	the	

potential	 of	 using	 fixation	 durations	 as	 a	 metric	 to	 evaluate	 communication	

strategies	 for	 conveying	 vehicle	 intent	 and	 supporting	 pedestrians’	 crossing	

decisions.		
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Eye-tracking	studies	can	provide	valuable	insights	into	how	pedestrians	allocate	

their	 attention	 interacting	 with	 conventional	 vehicles,	 although	 such	 data	 can	

sometimes	 be	 ambiguous	 due	 to	 factors	 like	 distance,	 calibration	 errors,	 and	

varying	 lighting	 conditions	 (de	 Winter	 et	 al.,	 2022).	 Another	 useful	 metric	 is	

tracking	pedestrians'	head	movements,	which	can	reveal	where	they	are	directing	

their	 attention.	 Head	 movements	 typically	 occur	 simultaneously	 with	 gaze	

behaviour,	helping	to	infer	the	direction	of	gaze	(Melvill	Jones	et	al.,	1988).	Head	

movements	and	eye-gaze	are	used	to	guide	attention	swiftly	and	automatically	to	

specific	 areas,	 essential	 for	 gathering	 information	 about	 our	 surroundings	

(Frischen	&	Tipper,	 2006;	Kleinke,	 1986).	 In	hazardous	 environments	 like	 road	

crossings,	 humans	 often	 turn	 their	 heads	 to	 expand	 their	 scanning	 field,	

compensating	for	the	limited	range	of	eye	movements	(±55°)	(Avineri	et	al.,	2012).	

Recent	studies,	such	as	those	by	Lyu,	Lee,	et	al.	(2024)	and	de	Winter	et	al.	(2021),	

utilize	 head-turning	 rates	 to	 measure	 active	 visual	 search	 behaviours	 in	

simulations	 and	 real-world	 environments.	 These	 studies	 demonstrate	 that	 a	

higher	 rate	 of	 head	 turns	 indicates	 a	 more	 intense	 need	 for	 information,	

particularly	 in	 uncertain	 crossing	 situations.	 Moreover,	 the	 frequency	 of	 head	

movements	 during	 crossings,	 as	 shown	 in	 studies	 like	 that	 by	Hamaoka	 et	 al.	

(2013),	correlates	with	the	need	to	establish	the	proximity	of	approaching	vehicles.		

Head	movements	 constitute	 a	 large	 proportion	 of	 non-verbal	 communication,	

signalling	 pedestrians’	 situation	 awareness	 in	 real-world	 interactions	 with	

conventional	vehicles	(Grasso	et	al.,	1998;	Kooij	et	al.,	2014;	Patla	et	al.,	1999).	As	

they	are	 readily	observable,	 they	can	be	utilised	by	drivers	 to	 infer	and	predict	

pedestrians’	crossing	intent	(Hariyono	et	al.,	2016;	Hassan	et	al.,	2005;	Kooij	et	al.,	

2014;	Kwak	et	al.,	2017;	Schmidt	&	Färber,	2009).	Real-world	observation	studies	

with	conventional	vehicles	have	shown	that	pedestrians'	crossing	 intent	can	be	

predicted	from	the	direction	of	head	movements,	the	frequency	of	head	turns,	and	

their	body	gait.	For	example,	at	the	start	of	a	crossing,	pedestrians	typically	turn	

their	heads	towards	an	approaching	vehicle	(Grasso	et	al.,	1998;	Imai	et	al.,	2001;	

Patla	 et	 al.,	 1999),	 a	 behaviour	 that	 signals	 their	 awareness	 of	 the	 vehicle’s	
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approach,	 thereby	 reducing	 the	 risk	 of	 an	 unsafe	 crossing	 (Kooij	 et	 al.,	 2014).	

Observations	from	roundabouts	and	intersections	have	shown	that,	for	a	vehicle	

approaching	from	the	right,	pedestrians	tend	to	turn	their	heads	to	the	left	before	

stepping	off	the	curb	and	then	to	the	right	before	crossing	(Geruschat	et	al.,	2003).	

Head-turning	 frequency	 tends	 to	 increase	 about	 4	 seconds	 before	 a	 crossing,	

reaching	a	peak	during	the	last	second	before	the	crossing	begins	(Hassan	et	al.,	

2005).	Finally,	pedestrians	are	found	to	turn	their	heads	first	just	before	a	crossing	

initiation,	followed	by	movement	of	the	rest	of	the	body	(Kalantarov	et	al.,	2018).		

Overall,	 understanding	 pedestrians’	 gaze	 and	 head	 movements	 is	 crucial	 for	

analysing	 their	 interactions	 in	 current	 road-crossing	 scenarios.	 However,	 how	

these	patterns	change	with	the	introduction	of	automated	vehicles	remains	largely	

unexplored,	a	topic	that	will	be	further	addressed	in	Section	1.3.	Considering	the	

context-based	 nature	 of	 pedestrians’	 behaviour	 and	 decision-making,	 the	 next	

section	will	explore	the	factors	influencing	these	behaviours.	

1.2.3 Factors	influencing	interactions	

In	terms	of	pedestrian	interactions	with	manually	controlled	vehicles,	extensive	

research	has	been	conducted	to	understand	what	factors	influence	their	crossing	

decisions	and	behaviours	(Ezzati	Amini	et	al.,	2021;	Rasouli	&	Tsotsos,	2020).	It	is	

widely	recognised	that	pedestrian	characteristics	vary	significantly,	and	there	 is	

no	 definitive	 "average"	 pedestrian	 (Ackermann,	 Beggiato,	 Bluhm,	 et	 al.,	 2019).	

Pedestrian	behaviour	diverges	based	on	personal	 factors	such	as	demographics,	

personality,	expectations,	past	experiences,	and	abilities,	as	well	as	social	factors	

such	as	norms,	local	customs,	and	culture,	and	environmental	characteristics	like	

street	delineations,	speed	limits,	and	road	configurations,	as	shown	in	Figure	1.3.	

Despite	 the	 many	 factors	 influencing	 pedestrians'	 crossing	 decisions	 and	

behaviours	in	interactions	with	conventional	vehicles,	this	section	will	focus	on	

two	factors	relevant	to	this	PhD	programme.	
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Figure	1.3.	Factors	involved	in	the	pedestrian	decision-making	process	at	the	

time	of	crossing.	Redrawn	from	Rasouli	and	Tsotsos	(2020).		

 

Vehicle	kinematics	

Vehicle	kinematics,	such	as	speed,	acceleration,	and	time	gap,	play	a	critical	role	

in	shaping	pedestrian	crossing	behaviour	and	driver-pedestrian	interactions	in	the	

current	 traffic.	Pedestrians	rely	on	these	dynamic	cues	 to	assess	crossing	safety	

and	make	 timely	 decisions,	while	 drivers	 adjust	 these	 kinematic	 behaviours	 to	

communicate	their	intent	to	yield	or	not.	Subtle	changes	in	vehicle	movements,	

such	 as	 speed	 adjustments	 or	 braking	 patterns,	 are	 often	 used	 as	 non-verbal	

signals	in	these	interactions	(Ackermann	et	al.,	2018;	Bindschädel	et	al.,	2022;	Dey,	
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Matviienko,	et	al.,	2020;	Domeyer,	Lee,	Toyoda,	et	al.,	2020;	Fuest,	Michalowski,	

et	al.,	2018;	Lee	et	al.,	2022;	Rettenmaier	et	al.,	2021;	Risto	et	al.,	2017;	Várhelyi,	

1998;	 Zach	Noonan	 et	 al.,	 2023).	 For	 example,	 Risto	 et	 al.	 (2017)	 observed	 that	

drivers	 intending	 to	 yield	 typically	 brake	 early	 and	 maintain	 a	 lower	 speed,	

signalling	their	willingness	to	give	way.	Conversely,	rolling	forward	at	low	speed	

or	maintaining	a	steady	or	accelerating	pace	communicates	the	intention	to	retain	

the	right	of	way.	Similarly,	Schneemann	and	Gohl	(2016)	noted	that	deceleration	

is	 often	 interpreted	 by	 pedestrians	 as	 an	 intent	 to	 yield.	 These	 kinematic	

behaviours	 enable	 implicit	 communication	 between	 road	 users,	 allowing	

pedestrians	 to	 infer	 a	 driver’s	 intentions.	 For	 safe	 crossings,	 pedestrians	 must	

accurately	interpret	these	cues	while	factoring	in	the	dynamic	nature	of	traffic.	

A	particularly	critical	kinematic	factor	is	the	time	gap,	also	referred	to	as	Time	to	

Arrival	 (TTA),	 which	 defines	 the	 time	 remaining	 before	 a	 vehicle	 reaches	 a	

pedestrian’s	 location	 at	 its	 current	 speed	 (Tresilian,	 1995).	 Gap	 acceptance,	 a	

related	concept,	refers	to	the	point	at	which	a	pedestrian	perceives	a	gap	in	traffic	

as	 sufficient	 to	 cross	 safely	 (Beggiato	 et	 al.,	 2017).	 Research	 suggests	 that	

pedestrians	generally	do	not	cross	if	the	TTA	is	below	3	seconds	(DiPietro	&	King,	

1970)	and	are	likely	to	cross	when	it	exceeds	7	seconds	(Schmidt	&	Färber,	2009).	

However,	gap	acceptance	thresholds	are	highly	context-dependent,	influenced	by	

factors	 such	 as	 age	 and	 gender	 (Harrell	 &	 Bereska,	 1992;	 Oxley	 et	 al.,	 2005;	

Petzoldt,	 2014;	Wang	 et	 al.,	 2010),	 group	 size	 (DiPietro	 &	 King,	 1970),	 cultural	

norms	(Schmidt	&	Färber,	2009),	the	level	of	law	compliance	(Ishaque	&	Noland,	

2008),	 street	width	 (Sucha,	 2014),	waiting	 times	 (Sun	 et	 al.,	 2002),	 vehicle	 size	

(Beggiato	et	al.,	2017)	and	speed	(Beggiato	et	al.,	2017;	Oxley	et	al.,	2005;	Velasco	

et	al.,	2019).		However,	most	existing	research	on	time	gap	and	gap	acceptance	has	

been	primarily	focused	on	pedestrian	safety	assessments,	with	limited	attention	

to	 the	corresponding	driving	responses	 that	could	 influence	crossing	decisions.	

Understanding	the	dynamic	interplay	between	time	gaps	and	driver	behaviours	is	

critical	 for	 developing	 AV	 systems	 that	 replicate	 human-like	 interactions	 and	

ensure	safety	in	pedestrian	crossings.	
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Additionally,	 research	 has	 also	 shown	 humans’	 imperfect	 ability	 to	 accurately	

perceive	 speed,	 especially	 from	 a	 distance	 (Cavallo	 &	 Laurent,	 1988;	 DeLucia,	

2008).	This	could	lead	to	risky	crossing	decisions,	such	as	crossing	in	front	of	a	

vehicle	approaching	at	higher	speeds	when	it	is	further	away,	even	though	the	TTA	

is	 insufficient	 (Beggiato	et	al.,	2017;	Oxley	et	al.,	2005;	Schmidt	&	Färber,	2009;	

Velasco	et	al.,	2019).	Such	perceptual	challenges	are	 likely	 to	 intensify	with	 the	

integration	 of	 AVs,	 which	 lack	 the	 intuitive,	 non-verbal	 cues	 used	 by	 human	

drivers.	It	highlights	the	need	for	effective	communication	mechanisms	in	AVs,	to	

clarify	ambiguities	in	communicating	the	intent	and	reducing	potential	hazards	

arising	from	pedestrians’	inaccurate	estimations	of	these	kinematics	in	road	user	

interactions,	which	will	be	developed	in	detail	later	in	Section	1.3.	

Infrastructure	cues	 	

Environmental	 factors	 significantly	 impact	 pedestrian	 behaviour	 and	 crossing	

decisions	 in	 current	 road	 user	 interactions,	 including	 aspects	 such	 as	 traffic	

volume,	road	width,	crossing	location,	and	weather	and	illumination	conditions	

(Crompton,	1979;	Harrell,	1991;	Schmidt	&	Färber,	2009;	Sucha,	2014).	Among	these,	

traffic	signals	play	a	pivotal	role	in	shaping	pedestrian	behaviours	and	compliance	

with	laws,	with	pedestrians	displaying	varied	behaviours	at	different	crossing	types	

(Moore,	 1953;	Sisiopiku	&	Akin,	2003;	Sucha	et	al.,	2017;	Tom	&	Granié,	2011;	H.	

Wang	 et	 al.,	 2020).	 For	 example,	 at	 signalised	 intersections,	 they	 pay	 close	

attention	to	both	traffic	signals	and	vehicle	movements,	facilitating	safer	and	more	

regulated	crossings.	In	contrast,	at	unsignalised	crossroads	where	traffic	lights	are	

absent,	pedestrians	rely	heavily	on	assessing	vehicle	dynamics	and	movements	to	

make	 safe	 crossing	 decisions	 (Tom	 &	 Granié,	 2011).	 This	 reliance	 becomes	

particularly	 critical	 due	 to	 the	 ambiguity	 in	 legal	 rules	 and	 unclear	 pedestrian	

right-of-way,	which	may	pose	challenges,	especially	with	the	integration	of	AVs.	

Zebra	crossings,	a	specific	type	of	infrastructure	cue,	are	particularly	influential	in	

current	traffic	systems,	affecting	both	pedestrian	and	driver	behaviour.	They	offer	

pedestrians	a	sense	of	safety	and	clarity	and	serve	as	a	visual	prompt	for	drivers	to	
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yield.	In	the	UK,	drivers	are	legally	required	to	give	way	at	zebra	crossings	(Rule	

H2	in	The	Official	Highway,	2023).	Studies	have	shown	that	pedestrians	are	more	

likely	to	use	zebra	crossings,	wait	less	time	before	crossing,	and	walk	at	a	slower	

pace	 compared	 to	 unmarked	 crossings	 (Havard	&	Willis,	 2012).	 These	 findings	

have	been	further	corroborated	through	simulation	studies	(Clamann	et	al.,	2017;	

Velasco	et	al.,	2019).	Additionally,	pedestrians	in	the	UK	report	feeling	safer	and	

having	greater	perceived	control	when	crossing	at	marked	crossings	 (Havard	&	

Willis,	2012;	O'Dell	et	al.,	2022).	

However,	drivers	do	not	always	yield	at	zebra	crossings	even	when	they	know	they	

should	(Dabrowska-Loranc	et	al.,	2021;	Várhelyi,	1998).	For	instance,	field	studies	

in	 Poland	by	Dabrowska-Loranc	 et	 al.	 (2021)	 revealed	 that	 only	 45%	of	 drivers	

approaching	 unsignalised	 zebra	 crossings	 yielded	 to	 pedestrians,	 often	 due	 to	

urgency	or	failure	to	notice	pedestrians	in	time.	It	is	important	to	note	that	this	

study	was	conducted	prior	to	the	June	2021	amendment	to	Polish	traffic	law,	which	

extended	pedestrian	priority	to	include	not	only	those	already	on	a	zebra	crossing,	

but	 also	 those	 approaching	 it	 with	 the	 intention	 to	 cross.	 Research	 on	 driver	

behaviour	at	 zebra	crossings	has	not	been	conclusive.	While	 research	 in	China	

found	 that	 drivers	 braked	 more	 frequently	 at	 zebra	 crossings	 compared	 to	

unmarked	 locations	 (Zhang	 et	 al.,	 2020),	 naturalistic	 driving	 data	 used	 in	 this	

study	is	often	difficult	to	draw	causal	relationships,	making	it	difficult	to	isolate	

specific	 factors	 affecting	 driver	 behaviour	 (Dozza,	 2013).	 Another	 research	 by	

Dozza	et	al.	(2020)	addressed	these	challenges	by	using	a	fixed-base	simulator	to	

examine	driver	responses	to	pre-programmed	pedestrian	movements	and	found	

that	driver	behaviour	was	influenced	primarily	by	pedestrian	time-to-arrival	and	

visibility,	while	zebra-crossing	presence	had	minimal	effects.	However,	the	lack	of	

interactions	between	drivers	 and	pedestrians	 in	 such	 simulations	 reduces	 their	

applicability	 to	 real-world	 scenarios,	 as	 real-world	 behaviour	 is	 shaped	

dynamically	by	both	parties’	actions.	
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To	address	these	limitations,	distributed	simulation	enables	real-time,	interactive	

environments	 where	 both	 driver	 and	 pedestrian	 simulators	 are	 connected.	

Kearney	et	al.	 (2020)	demonstrated	this	approach	 in	a	study	where	pedestrians	

wearing	 head-mounted	 displays	 interacted	 with	 both	 simulated	 and	 human-

driven	 cars	 at	 intersections	 and	 midblock	 crossings.	 The	 results	 showed	 that	

pedestrians	 crossed	 more	 frequently	 at	 intersections	 than	midblock	 crossings,	

while	 drivers	 were	 less	 likely	 to	 yield	 at	 midblock	 locations.	 Despite	 these	

advancements,	 current	 research	 remains	 limited	 in	 exploring	 the	 dynamic	

interplay	of	kinematic	cues	(e.g.,	time	gaps)	and	infrastructure	cues	(e.g.,	zebra	

crossings).	 Investigating	this	dynamic	 interaction	 is	essential	 for	understanding	

road	user	behaviour	and	designing	AV	systems	that	respond	safely	and	effectively.	

The	next	section,	1.3	explores	how	AV	integration	may	alter	road	user	interactions,	

focusing	 on	 focusing	 on	 how	 implicit	 and	 explicit	 communication	 affect	

pedestrians’	behaviour.	

1.3 INTERACTIONS	WITH	AUTOMATED	VEHICLES	(AVS)	

1.3.1 Definition	of	automated	vehicles	

The	 concept	 of	 automation	 is	 defined	 as	 the	 partial	 or	 entire	 substitution	 of	

manual	work	 in	 a	 function	 using	machines	 to	 complete	 tasks	 (Parasuraman	&	

Riley,	1997).	With	machines	taking	over	“operating”	tasks,	humans	are	responsible	

for	intellectual	and	cognitive	tasks,	such	as	problem-solving	and	planning	(Wei	et	

al.,	1998)	Automated	systems	are	designed	to	leverage	the	respective	strengths	and	

weaknesses	 of	 humans	 and	 machines,	 involving	 varying	 levels	 of	 human	

interventions	and	machine	operations.	To	precisely	describe	 this	 collaboration,	

Levels	of	Automation	(LoA)	are	utilised	to	specify	the	extent	to	which	a	task	 is	

automated,	varying	across	a	continuum	of	levels	from	completely	done	by	humans	

to	entirely	operated	by	automation	(Parasuraman	et	al.,	2000;	Sheridan	et	al.,	1978).	
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In	terms	of	vehicle	automation,	this	generally	refers	to	substituting	some	or	all	of	

the	human	 labour	of	driving	with	electronic	or	mechanical	devices	 (Shladover,	

2018).	Automated	vehicles	are	defined	as	motor	vehicles	 capable	of	partially	or	

totally	controlling	the	lateral	and	longitudinal	aspects	of	driving,	without	active	

human	 interaction	 (NHTSA,	 2013).	 Similar	 to	 definitions	 of	 LoA,	 the	 Level	 of	

Driving	 Automation	 (LoDA)	 is	 defined	 by	 the	 degree	 of	 human	 intervention	

required	 (SAE,	 2021).	 The	most	widely	 accepted	definition	 for	 levels	 of	 driving	

automation,	used	in	this	thesis,	is	outlined	by	the	SAE	J3016	standards	(SAE,	2021).	

These	include	Level	0	(No	Driving	Automation),	Level	1	(Driver	Assistance),	Level	

2	(Partial	Driving	Automation),	Level	3	(Conditional	Driving	Automation),	Level	

4	(High	Driving	Automation),	and	Level	5	(Full	Driving	automation),	(SAE,	2021,	

Figure	1.4).		

	

Figure	1.4.	Descriptions	for	the	five	levels	of	driving	automation	defined	by	SAE	

J3016,	derived	from	SAE	(2021).	
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Here,	Levels	1	to	2	are	categorised	as	“driver	support”	features,	where	drivers	are	

relieved	of	physical	control	of	certain	aspects	of	the	driving	task,	but	they	must	

constantly	 supervise	 these	 support	 features,	 requiring	 near-continuous	 human	

despite	 occasional	 machine	 control.	 On	 the	 other	 hand,	 Levels	 3	 to	 5	 are	

considered	as	“automated	driving”	features,	where	the	automated	system	executes	

driving	entirely	once	active	with	occasional	or	no	human	intervention.	At	Level	3,	

the	automated	system	can	manage	all	driving	tasks	under	specific	conditions	but	

still	 requires	the	driver	to	be	seated	and	ready	to	take	over	when	requested.	 In	

contrast,	Level	4	and	Level	5	AVs	do	not	require	any	human	intervention	to	resume	

control	of	the	vehicle.	In	such	vehicles,	there	may	be	no	steering	wheel	or	pedals	

installed.	 Two	 types	 of	 Level	 4	 AVs	 currently	 exist:	 pod-like	 shuttles	

(ITSInternational,	 2016),	 which	 lack	 steering	 wheels	 and	 pedals	 entirely,	 and	

personal	AVs	(Zhang	et	al.,	2024),	where	the	driver	may	or	may	not	occupy	the	

driving	seat.	

While	AVs	at	Levels	below	3	resemble	conventional	vehicles	and	require	a	driver	

in	the	driving	seat	to	perform	driving	tasks,	Highly	Automated	Vehicles	(HAVs)	

(level	4	and	above)	may	look	significantly	different	externally,	e.g.,	Level	4	pod-

like	AVs	or	personal	AVs	without	a	driver	present	 for	supervision.	This	shift	 in	

appearance	or	driver’s	role	is	likely	to	influence	pedestrians’	crossing	decision	and	

behaviour	around	these	vehicles.	For	instance,	research	suggests	that	pedestrians	

feel	more	 stressed	 and	 hesitant	 to	 cross	 in	 front	 of	 a	 vehicle	 when	 the	 driver	

appears	distracted	(e.g.,	talking	on	the	phone	or	reading	a	newspaper)	or	is	absent,	

as	observed	 in	simulated	environments	(Velasco	et	al.,	2019)	and	Wizard-of-Oz	

experiments	(Lundgren	et	al.,	2017).	Furthermore,	pedestrians	tend	to	spend	more	

time	observing	and	gathering	 information	about	crossing	safety	 in	 front	an	AV	

compared	to	a	human-operated	vehicle,	as	noted	by	Liu	et	al.	(2023)	in	a	Wizard-

of-Oz	experiment.	Additionally,	Madigan	et	al.	(2019),	in	their	analysis	of	22	hours	

of	video	data	recorded	from	Greece	and	France,	observed	that	pedestrians	kept	a	

greater	lateral	distance	from	AV	pods	than	from	other	vehicles	on	a	2	km	route.	

Taken	together,	these	studies	highlight	notable	behavioural	changes	in	pedestrian	
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interactions	with	HAVs.	Consequently,	this	thesis	focuses	on	HAVs	(Level	4	and	

above)	 to	examine	how	repeated	exposures	 to	 these	HAVs	would	 influence	 the	

interactions.	 It	 explores	 how	 AVs	 should	 negotiate	 the	 right-of-way	 with	

pedestrians	to	facilitate	efficient	and	safe	interactions	between	road	users.	

While	some	researchers	(Millard-Ball,	2018),	argue	that	pedestrians	do	not	need	

to	 communicate	with	AVs	because	 they	expect	AVs	 to	always	 comply	with	 the	

rules	 of	 the	 road	 and	 yield	 for	 pedestrians.	 However,	 others	 believe	 that	

ambiguities	between	pedestrians	and	AVs	in	conveying	their	intent	to	the	other	

actor	cannot	always	be	resolved	(Domeyer,	Lee,	&	Toyoda,	2020;	Habibovic	et	al.,	

2018;	Löcken	et	al.,	2019;	Lundgren	et	al.,	2017;	Merat	et	al.,	2018).	For	example,	a	

field	 study	 by	 Merat	 et	 al.	 (2018)	 has	 shown	 that	 pedestrians	 expect	 AVs	 to	

communicate	 crucial	 information	 such	 as	 acknowledgment	 of	 pedestrian	

detection,	the	vehicle's	automated	status,	its	speed,	stopping	intentions,	and	its	

perception	of	the	environment.	However,	current	guidance	on	how	and	where	this	

communication	should	be	implemented	and	how	pedestrians	adapt	to	it	remains	

unclear.	In	the	following	sections,	we	will	examine	research	results	from	studies	

investigating	the	use	of	both	implicit	and	explicit	communication	strategies	and	

assess	their	effectiveness	in	facilitating	effective	communication	during	road	user	

interactions.	

1.3.2 Implicit	communication	from	AVs	

Implicit	communication,	which	is	directly	related	to	a	vehicle’s	kinematics,	is	the	

primary	 method	 for	 conveying	 a	 vehicle's	 intent	 during	 vehicle-pedestrian	

interactions,	 as	 discussed	 in	 Section	 1.2.3.	 Research	 consistently	 highlights	 its	

prevalence	 over	 explicit	 communication	 methods.	 For	 example,	 video-based	

observations	 in	 the	Netherlands	by	Dey	and	Terken	(2017)	 revealed	 that	nearly	

97%	of	pedestrians	do	not	use	explicit	methods	(e.g.,	gestures)	and	that	explicit	

communication	from	drivers	is	even	rare.	Similarly,	a	study	by	Lee	et	al.	(2020),	

which	analysed	701	 road	user	 interactions	at	Leeds,	Athens	and	Munich,	 found	
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that	explicit	communications	like	eye	contact,	hand	gestures,	and	honking	among	

drivers	and	pedestrians	are	rare.	While	 researchers,	 such	as	Sucha	et	al.	 (2017),	

acknowledged	 occasional	 instances	 of	 explicit	 communication	 in	 road	

interactions,	 implicit	communication	remains	 the	dominant	and	most	 intuitive	

approach,	as	it	aligns	with	the	natural	way	pedestrians	interpret	vehicle	behaviour	

in	everyday	scenarios.	

As	 AVs	 integrate	 into	 traffic	 systems,	 adopting	 these	 familiar	 implicit	 cues	

becomes	essential	 for	maintaining	traffic	efficiency	and	ensuring	safe	road	user	

interactions.	 These	 cues	 allow	 pedestrians	 to	 interact	 with	 AVs	 in	 ways	 they	

already	 understand,	minimising	 confusions	 and	 fostering	 intuitive	 information	

exchanges	(Ackermann	et	al.,	2018;	Dietrich,	Maruhn,	et	al.,	2020;	Rettenmaier	et	

al.,	2021;	Zach	Noonan	et	al.,	2023).	Research	also	shows	that	humans	are	more	

likely	to	trust	and	accept	automated	systems	that	exhibit	human-like	motions,	as	

these	 behaviours	 are	 perceived	 as	 more	 natural	 and	 competent	 (Duffy,	 2003;	

Waytz	et	al.,	2014).	For	AVs,	this	means	emulating	the	behaviour	of	a	competent	

and	 experienced	 human	driver	 (Pillai,	 2020).	 To	 achieve	 this,	 researchers	 have	

proposed	various	algorithms	designed	to	replicate	human-like	driving	behaviours,	

such	as	human-like	car	following,	driving	trajectories,	navigation	reasoning,	and	

motion	planning	(Fu	et	al.,	2019;	Gu	et	al.,	2017;	Kolekar	et	al.,	2020;	C.	Wang	et	

al.,	2020).	By	developing	human-like	implicit	communication	strategies,	AVs	are	

expected	 to	 negotiate	 the	 road	 in	 a	 manner	 similar	 to	 (good)	 human	 drivers	

adhering	to	designated	traffic	rules	(Dietrich,	Maruhn,	et	al.,	2020;	Schneemann	

&	Gohl,	2016).	Furthermore,	situations	such	as	standoffs	between	AVs	and	human	

road	users	highlight	the	importance	of	AVs	understanding	and	adopting	the	subtle	

(implicit)	 cues	 humans	 use	when	 interacting	 on	 the	 road	 (Brown	 et	 al.,	 2023).	

Incorporating	 these	 cues	 can	 improve	 the	 flow	of	movement	 and	 coordination	

among	all	road	users.	To	explore	this	potential,	the	following	section	will	examine	

two	specific	human	driving	behaviours,	i.e.,	braking	and	lateral	movements,	that	

could	be	applied	to	future	AV	implicit	communication	strategies	in	AV-pedestrian	

interactions.	
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Braking	behaviour	

There	 has	 been	 extensive	 research	 on	 how	 AVs	 should	 brake	 in	 response	 to	

pedestrians,	 focusing	 on	 designing	 braking	 rates	 and	 timing	 to	 effectively	

communicate	intent	through	implicit	cues	(Ackermann,	Beggiato,	Bluhm,	et	al.,	

2019;	Ackermann,	Beggiato,	 Schubert,	 et	 al.,	 2019;	Beggiato	 et	 al.,	 2018;	Bella	&	

Silvestri,	2016;	Dietrich,	Maruhn,	et	al.,	2020;	Lyu,	Lee,	et	al.,	2024;	Schmidt	et	al.,	

2020;	 Tian	 et	 al.,	 2023;	 Zach	 Noonan	 et	 al.,	 2023).	 For	 example,	 Ackermann,	

Beggiato,	 Bluhm,	 et	 al.	 (2019)	 tested	 pedestrians’	 reaction	 times	 of	 noticing	

vehicle’s	adjustments	 in	driving	behaviour	across	braking	strategies,	presenting	

different	deceleration	rates	(5,	3.4,	1.5	𝑚/𝑠!)	and	two	deceleration	onsets	(an	early	

onset	at	3.5	s-	4.5	s	TTC,	a	late	onset	at	2-3	s	TTC),	in	a	video-based	study.	Their	

results	 indicated	 that	 pedestrians’	 reaction	 time	 to	 acknowledge	 deceleration	

onset	was	shorter	when	vehicles	presented	a	higher	deceleration	rate	(5	and	3.4	

𝑚/𝑠!),	while	the	impact	of	braking	onset	timing	was	not	significant.	In	contrast,	

with	a	lower	deceleration	rate	at	1.5	𝑚/𝑠!,	pedestrians	presented	a	shorter	reaction	

time	with	an	early	braking	onset	compared	to	the	late	onset.		This	finding	aligns	

with	research	that	suggested	an	earlier	braking	onset	for	AVs	(Pillai,	2020;	Risto	et	

al.,	 2017;	 Schneemann	 &	 Gohl,	 2016;	 Tian	 et	 al.,	 2023),	 while	 highlighting	 the	

consideration	of	deceleration	rates	together	(Dietrich,	Tondera,	et	al.,	2020).		

However,	pedestrians	in	a	simulation	study	in	VR	done	by	Schmidt	et	al.	(2020)	

can	detect	earlier	 the	 intent	of	 the	vehicle	when	 the	braking	onset	 is	 late	 than	

early.	This	 contradiction	might	be	due	 to	 varying	 time	gaps	used	 in	 these	 two	

studies,	where	the	Schmidt	et	al.	(2020)	adopts	a	large	gap	of	8	s.	It	has	been	noted	

by	Tian	et	al.	(2023)	that	if	the	traffic	gap	was	sufficiently	large,	vehicle	behaviour	

estimation	 might	 not	 directly	 affect	 crossing	 decisions	 as	 pedestrian	 crossing	

decisions	are	mainly	based	on	the	size	of	the	traffic	gap	rather	than	on	estimations	

of	 vehicle-yielding	 behaviour.	 It	 is	 therefore	 reasonable	 to	 propose	 different	

braking	 strategies	 for	AVs	under	different	 time	gaps	and	other	 context	 factors,	

such	 as	 zebra	 crossings	 (Zhang	 et	 al.,	 2020),	 however,	 this	 area	 is	 largely	

overlooked	in	the	driver-pedestrian	interaction.	
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Lateral	movements	

While	pedestrians	can	distinguish	a	vehicle's	intent	through	changes	in	speed	and	

braking	 behaviour,	 research	 has	 shown	 the	 potential	 for	 incorporating	 other	

implicit	cues,	such	as	lateral	movements	(Fuest,	Michalowski,	et	al.,	2018;	Sripada	

et	 al.,	 2021;	 Sucha,	 2014)	 with	 accompanying	 braking	 of	 the	 vehicle	 to	

communicate	 its	 intentions.	 Lateral	movements	 have	 also	 been	widely	 used	 in	

vehicle-vehicle	communication.	For	example,	drivers	often	shift	toward	the	centre	

lane	 at	 bottlenecks	 to	 assert	 their	 right	 of	 way	 (Rettenmaier	 et	 al.,	 2020;	

Rettenmaier	et	al.,	2021),	or	signal	a	lane	change	on	the	highway	well	ahead	of	the	

manoeuvre	(Färber,	2016;	Kauffmann	et	al.,	2018).	This	technique	is	also	preferred	

by	 human	 drivers	 when	 interacting	with	 AVs	 (Potzy	 et	 al.,	 2019).	 In	 a	 driving	

simulation	study	by	Rettenmaier	et	al.	(2021),	drivers	negotiated	right-of-way	with	

AVs	employing	lateral	offsets	at	bottlenecks,	resulting	in	shorter	passing	times	and	

fewer	 accidents,	 suggesting	 these	 movements	 are	 an	 intuitive	 method	 for	

communicating	intent.	

In	terms	of	vehicle	communication	towards	pedestrians,	Fuest,	Michalowski,	et	al.	

(2018)	investigated	drivers'	non-yielding	behaviours	in	a	survey,	with	some	opting	

to	 deviate	 50	 cm	 laterally	 away	 from	 pedestrians.	 This	 behaviour	 was	 later	

simulated	 in	 a	Wizard-of-Oz	 vehicle	 to	 assess	 its	 communicative	 effectiveness.	

Although	pedestrians	showed	a	preference	for	non-yielding	vehicles	with	a	lateral	

offset,	no	significant	differences	were	observed	in	the	time	it	took	for	pedestrians	

to	 recognise	 the	 vehicle's	 intentions	 between	 trials	 with	 and	 without	 lateral	

deviations.	This	might	be	attributed	to	insufficient	trials	for	pedestrians	to	clearly	

associate	lateral	deviation	with	driver	intent,	leading	them	to	rely	on	other	cues	

like	 vehicle	 speed	 and	 deceleration	 instead.	 Additionally,	 this	 study	 was	

conducted	in	scenarios	where	interactions	occurred	within	a	3-second	time	gap,	

creating	 a	 risky	 context	 that	 likely	 compelled	 pedestrians	 to	 prioritise	 braking	

behaviour	 over	 lateral	 movements.	 However,	 lateral	 deviations	 may	 still	 have	

potential	in	scenarios	with	larger	time	gaps,	where	pedestrians	have	more	time	to	

interpret	these	signals.	
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Sripada	et	al.	(2021)	investigated	the	manipulation	of	lateral	deviations	by	AVs	for	

signal	 yielding	 or	 non-yielding	 intentions.	 Their	 video-based	 research,	 which	

varied	 in	timing,	magnitude,	and	directional	mapping	of	deviations,	 found	that	

movements	 towards	 pedestrians	 to	 indicate	 yielding,	 and	 movements	 away	

pedestrians	 to	 signal	 non-yielding,	 were	 intuitively	 understood	more	 than	 the	

reverse	 option.	However,	 only	 34%	of	 participants	 accurately	 interpreted	 these	

signals,	with	the	remainder	uncertain	or	misinterpreting	the	intent,	likely	due	to	

the	limitations	of	visibility	in	video	studies	and	limited	trial	numbers	to	facilitate	

learning	effects.	

Investigating	 the	 potential	 for	 adopting	 this	 communication	 strategy	 may	 be	

warranted,	for	example	by	using	of	lateral	offset	as	a	communicative	tool	when	a	

speed	estimation	by	pedestrians	is	compromised	by	factors	such	as	higher	speeds	

or	greater	distances	of	an	approaching	vehicle	(Clay,	1995;	Sucha,	2014;	Sun	et	al.,	

2015).	However,	a	gap	exists	in	confirming	the	real	value	of	such	strategies	in	more	

realistic	 settings,	 as	 this	behaviour	 is	only	 found	by	 studies	using	 self-reported	

surveys	or	focus	groups	(Fuest,	Michalowski,	et	al.,	2018;	Sucha,	2014).	Moreover,	

how	 this	 behaviour	 correlates	 with	 pedestrian	 crossing	 decisions	 remains	

unexplored,	particularly	in	scenarios	involving	repeated	encounters	that	allow	for	

the	development	of	understanding	towards	this	implicit	cue.		

Overall,	 this	 section	 highlights	 the	 importance	 and	 potential	 of	 implicit	

communication	 strategies	 for	 AVs	 to	 convey	 intent	 to	 pedestrians	 through	

human-like	motions.	While	these	cues	are	familiar	and	intuitive,	pedestrians	often	

require	more	 information	 from	AVs,	 such	as	 the	vehicle's	automated	status,	 its	

speed,	 whether	 it	 will	 stop,	 whether	 it	 has	 detected	 the	 pedestrian,	 and	 its	

perception	of	the	environment	(Böckle	et	al.,	2017;	Dziennus	et	al.,	2016;	Habibovic	

et	al.,	2018;	Lagström	&	Lundgren,	2015;	Merat	et	al.,	2018).	These	details	cannot	

be	adequately	conveyed	through	motion	alone.	Additionally,	substantial	evidence	

supports	the	role	of	eye	contact	in	pedestrian–vehicle	interactions	(Markkula	et	

al.,	 2020;	 Rasouli	 et	 al.,	 2017;	 Rasouli	 &	 Tsotsos,	 2020;	 Sucha	 et	 al.,	 2017),	 the	
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absence	of	which	in	AVs	may	lead	to	increased	hesitancy	in	pedestrians’	crossing	

decisions	and	less	perceived	safety	(Onkhar	et	al.,	2022).	Furthermore,	research	

has	 shown	 humans’	 imperfect	 ability	 to	 accurately	 perceive	 implicit	 cues,	

especially	from	a	distance	(Cavallo	&	Laurent,	1988;	DeLucia,	2008).	These	create	

opportunities	 for	 explicit	 communication	 strategies,	 including	 eHMI	 and	 AR	

displays,	to	complement	implicit	communication	in	situations	where	kinematics	

cues	may	be	ambiguous	and	insufficient.	The	following	section	will	explore	these	

explicit	strategies	in	detail.	

1.3.3 Explicit	communication	from	AVs	

External	human	machine	interface	(eHMI)	

External	Human-Machine	Interfaces	(eHMIs)	have	been	proposed	as	a	solution	to	

compensate	 for	 the	 lack	 of	 direct	 human	 communication	 and	 to	 mitigate	

uncertainty	 in	 pedestrian	 behaviours	 (Bengler	 et	 al.,	 2020;	 Carsten	&	Martens,	

2019),	 in	order	to	address	these	concerns	and	enhance	the	social	capabilities	of	

AVs	alongside	implicit	cues.	They	provide	visual	information	either	on	the	vehicle	

or	 projected	 on	 the	 road	 (Bazilinskyy	 et	 al.,	 2019;	 Carmona	 et	 al.,	 2021;	 Dey,	

Habibovic,	et	al.,	2020),	featuring	modalities	such	as	light	signals	(Hensch	et	al.,	

2019;	 Lee	 et	 al.,	 2022),	 textual	messages	 (Nissan	Motor	Corporation,	 2015),	 and	

anthropomorphic	 symbols	 (Semcon,	 2016).	 Researchers	 and	 OEMs	 have	 been	

actively	 exploring	 developing	 various	 prototypes	 and	 concepts	 for	 explicit	 AV	

communication,	 such	 as	 the	 Mercedes-Benz	 F015	 Concept	 (Daimler,	 2015),	

Jaguar/Land	Rover	Virtual	Eyes	Concept	(Jaguar	Land	Rover,	2018),	and	Smiling	

Car	Concept	(Semcon,	2016).	

However,	research	on	the	suitability	and	effectiveness	of	eHMIs	for	conveying	AV	

intentions	 in	 facilitating	 AV-pedestrian	 interactions	 is	 not	 conclusive.	 On	 one	

hand,	the	use	of	eHMIs	has	been	shown	to	increase	pedestrian	trust,	acceptance,	

and	perceived	safety	of	AVs	(de	Clercq	et	al.,	2019;	Faas	et	al.,	2020;	Holländer	et	

al.,	2019),	 leading	to	a	greater	willingness	 to	cross	and	 faster	crossing	decisions	
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(Lee	et	al.,	 2022;	Löcken	et	al.,	 2019;	Madigan	et	al.,	 2023).	On	the	other	hand,	

much	 research	 has	 pointed	 out	 that	 although	 eHMIs	 provide	 important	

information,	they	are	considered	supplementary	to	the	physical	movement	cues	

from	the	vehicle	(Clamann	et	al.,	2017;	Hochman	et	al.,	2020;	Li	et	al.,	2018).	Studies	

have	also	explored	 if	 eHMI	complicated	 the	efficacy	of	AV’s	communication	of	

intent	and	pointed	out	that	eHMIs	are	context-dependent.	For	example,	these	are	

found	to	be	most	effective	in	the	absence	of	formal	road	markings,	such	as	zebra	

crossings	(Madigan	et	al.,	2023),	or	during	certain	kinematic	conditions,	such	as	

during	gentle	and	early	braking	(Dey,	Matviienko,	et	al.,	2020),	lower	speed	and	

time	gaps	(Lee	et	al.,	2022)	(Lee	et	al.,	2022),	or	at	greater	AV	distances	(Horn	et	

al.,	2023).		

Studies	have	examined	how	infrastructure	cues,	such	as	zebra	crossings,	influence	

the	 effectiveness	 of	 eHMIs	 in	 AV-pedestrian	 communication	 and	 crossing	

behaviour.	Clamann	et	al.	(2017)	developed	a	prototype	forward-facing	display	on	

a	Dodge	Sprinter	van,	simulating	an	autonomous	vehicle,	to	provide	pedestrians	

with	 safety	 crossing	 information	 at	 either	 marked	 crosswalks	 or	 unmarked	

midblock	locations	in	a	naturalistic	setting.	Their	findings	indicated	that	while	the	

display	type	did	not	significantly	affect	pedestrian	response	times,	pedestrians	at	

crosswalks	responded	faster	than	those	at	midblock	locations.	This	suggests	that	

pedestrians	 tend	 to	 rely	more	 on	 familiar	 behaviours	 and	 environmental	 cues	

rather	 than	 novel	 information	 provided	 by	 technology.	 However,	 the	 study’s	

realism	was	limited	as	it	used	a	human-driven	vehicle	posing	as	an	autonomous	

one,	potentially	making	the	eHMI	more	of	a	distraction	since	the	driver	was	visibly	

present.	 In	 contrast,	 Velasco	 et	 al.	 (2019)	 employed	 a	 virtual	 reality	 setup	 that	

removed	the	visibility	of	a	driver	and	tested	various	road	crossing	scenarios.	The	

findings	highlighted	that	the	presence	of	a	zebra	crossing,	a	shorter	time	gap,	and	

the	 presence	 of	 an	 eHMI	 significantly	 increased	 the	 likelihood	 of	 pedestrians’	

crossing	decision	Unlike	findings	from	Clamann	et	al.	(2017),	the	impact	of	eHMIs	

was	observed	regardless	of	the	presence	of	zebra	crossings.	
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However,	both	studies	overlooked	interaction	of	zebra	crossings	and	eHMIs	and	

focused	 on	 simple	 road	 contexts,	 like	 straight,	 one-directional	 streets,	 where	

driving	behaviour	is	easier	to	predict.	Addressing	these	limitations,	Madigan	et	al.	

(2023)	examined	pedestrian	crossing	decisions	at	a	virtual	crossroad	with	varying	

AV	 behaviours,	 eHMI	 presence,	 and	 road	 infrastructure.	 The	 study	 found	 that	

eHMIs	 significantly	 reduced	 crossing	 initiation	 times,	 but	 only	 when	 zebra	

crossings	were	present.	This	highlights	the	importance	of	considering	the	specific	

context,	such	as	road	infrastructure	and	traffic	complexity,	when	adopting	eHMI	

strategies.	

Although	 research	 suggest	 that	 pedestrians	 may	 disregard	 eHMI	 messages	 in	

favour	 of	 the	 vehicle’s	 kinematics	 when	 there	 is	 conflicting	 information	 (Dey,	

Matviienko,	 et	 al.,	 2020),	 repeated	 exposure	 to	 eHMIs	 can	 gradually	 alter	 this	

pattern,	 leading	 to	 over-reliance	 on	 explicit	 communication.	 For	 example,	

Kaleefathullah	et	al.	(2020)	found	that	about	35%	of	pedestrians	in	a	simulation	

crossed	the	road	when	an	eHMI	was	present,	despite	the	vehicle	not	decelerating,	

indicating	 increasing	 reliance	 on	 the	 eHMI	 over	 time.	 This	 suggests	 that	 as	

pedestrians	 gain	 familiarity	 with	 eHMIs	 through	 repeated	 exposures,	 their	

understanding,	trust,	and	acceptance	of	these	systems	improve	(Holländer	et	al.,	

2019).	While	this	can	enhance	communication	and	facilitate	crossing	decisions	in	

road	user	interactions	(Lee	et	al.,	2024),	it	also	raises	potential	safety	concerns,	as	

over-trust	 during	 the	 learning	 phase	 could	 lead	 to	 risky	 crossing	 decisions.	

Furthermore,	increasing	exposure	to	eHMIs	may	influence	pedestrians'	attention	

allocation	during	crossing	tasks,	potentially	shifting	their	focus	to	the	eHMI	at	the	

expense	 of	 other	 critical	 cues,	 such	 as	 vehicle	 speed	 or	 braking	 behaviour.	

Understanding	 these	 changes	 in	 attention	 and	 behaviour	 is	 vital	 to	 identify	

potential	safety	risks	associated	with	over-reliance	on	eHMIs.	Unfortunately,	this	

aspect	has	been	largely	overlooked	in	existing	research,	highlighting	the	need	for	

further	investigation.	
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Furthermore,	eHMIs	can	face	challenges	in	their	scalability	and	ability	to	manage	

multiple	interactions	in	dynamic	traffic	scenarios	(Dey	et	al.,	2021;	Holländer	et	

al.,	2022;	Lyu,	Zhang,	et	al.,	2024;	Wilbrink	et	al.,	2021).	Typically,	these	interfaces	

are	used	in	one-to-one	interactions	between	a	pedestrian	and	an	AV	(Colley	et	al.,	

2020).	In	contrast,	real-world	traffic	often	involves	simultaneous	interactions	with	

multiple	road	users,	which	necessitates	the	creation	of	eHMIs	that	can	effectively	

communicate	across	various	distances	and	directions.	This	complexity	introduces	

challenges	in	identifying	which	pedestrian	an	AV	is	signalling	to	and	which	AV	a	

pedestrian	 should	 pay	 attention	 to	 the	 message,	 issues	 that	 are	 sometimes	

exacerbated	by	eHMI	visibility	problems,	such	as	those	caused	by	their	placement	

and	size	(Dey,	Habibovic,	et	al.,	2020).	To	address	these	challenges,	personalised	

communication	 strategies	 such	as	Augmented	Reality	 (AR)	 are	being	 explored.	

These	 approaches	 aim	 to	 provide	 tailored	 safety	 information	 to	 pedestrians,	

thereby	 enhancing	 the	 efficiency	 and	 reliability	 of	 pedestrian-AV	 interactions	

(Calvi	et	al.,	2020;	Matviienko	et	al.,	2022;	Peereboom	et	al.,	2024;	Tabone	et	al.,	

2023;	Tabone	et	al.,	2021;	Tran	et	al.,	2023;	Tran	et	al.,	2022).	

Augmented	reality	(AR)	

Advancements	in	wearable	AR	technology	(e.g.,	Microsoft	HoloLens,	Google	Glass,	

Apple	Vision	pro)	have	sparked	significant	interest	and	diverse	applications	within	

the	 automotive	 industry,	 particularly	 for	 in-car	 users.	 Features	 like	 heads-up	

displays	 and	 windshield	 projections	 enhance	 navigation,	 highlight	 potential	

hazards,	 and	 facilitate	 a	 clearer	understanding	between	drivers	 and	 automated	

systems,	ultimately	boosting	both	safety	and	comfort	(Riegler	et	al.,	2021;	Wiegand	

et	al.,	2019).	Building	on	these	 in-car	benefits,	 recent	research	has	expanded	to	

explore	AR's	potential	 for	enhancing	 interactions	between	AVs	and	 road	users.	

Wearable	 AR	 allows	 for	 simultaneous	 interactions	 between	 the	 AV	 and	 an	

unlimited	number	of	road	users,	providing	precise,	customised	visual	information	

that	can	adapt	to	individual	user	preferences	and	needs	(Dey,	Habibovic,	et	al.,	

2020;	Tabone	et	al.,	 2020;	Tran	et	al.,	 2023).	Furthermore,	by	overlaying	digital	

content	 onto	 the	physical	world,	wearable	AR	helps	 users	maintain	 situational	
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awareness	and	can	swiftly	respond	to	safety	notifications,	making	it	a	critical	tool	

in	managing	complex	traffic	interactions	and	improving	overall	road	safety	(Tong	

et	al.,	2021).	However,	it	may	also	risk	overwhelming	pedestrians	with	information	

presented	from	multiple	sources	or	directions,	a	challenge	that	will	be	discussed	

in	the	following	sections.	

Various	AR	 concepts	 have	 been	 proposed	 to	 convey	 road-crossing	 information		

(Hesenius	et	al.,	2018;	Matviienko	et	al.,	2022;	Prattico	et	al.,	2021;	Tabone	et	al.,	

2023;	Tong	et	al.,	2021;	Tran	et	al.,	2023;	Tran	et	al.,	2022).	Different	from	eHMIs,	

which	are	 typically	attached	 to	 the	AV,	ARs	can	be	more	versatile.	Three	main	

design	 locations	 have	 been	 proposed	 for	 current	 ARs.	 These	 are	 designs	 that:	

follow	 the	 crossing	 path	 (e.g.,	 projections	 of	 zebra	 crossings,	 arrows,	 and	 safe	

paths)	 (Prattico	 et	 al.,	 2021;	 Tran	 et	 al.,	 2022),	 following	 pedestrians’	 head	

movements,	 (e.g.,	 head-up	 displays,	 HUDs)	 (Peereboom	 et	 al.,	 2024),	 and	

following	 the	vehicle’s	movements,	 (e.g.,	 car	overlays)	 (Matviienko	et	 al.,	 2022;	

Tran	et	al.,	 2022).	However,	 research	 to	 suggest	 the	best	placement	 for	AR	has	

been	largely	overlooked.	

As	mentioned,	one	potential	challenge	of	adopting	AR	is	the	increased	cognitive	

effort	 required	 from	 pedestrians,	 as	 they	 need	 to	 process	 additional	 visual	

information.	Research	in	the	fields	of	learning	and	skill	acquisition	has	shown	that	

while	 mobile	 AR	 applications	 can	 reduce	 cognitive	 load	 by	 providing	 direct,	

relevant	information,	it	can	also	overwhelm	users	when	too	much	information	is	

presented	 simultaneously	 (see	 reviews	 from	Buchner	 et	 al.	 (2022);Suzuki	 et	 al.	

(2024)).	In	the	context	of	road	user	interactions,	pedestrians	may	face	cognitive	

and	information	overload	when	confronted	with	an	excess	of	visual	cues,	which	

could	 compromise	 their	 safety	 (Mahadevan	 et	 al.,	 2018;	 Moore	 et	 al.,	 2019).	

However,	 it	remains	unclear	whether	the	use	of	AR	increases	the	cognitive	and	

visual	 demands	 on	 pedestrians,	 as	 this	 has	 not	 yet	 been	 thoroughly	 explored.	

Additionally,	 investigating	how	AR	can	be	designed	to	mitigate	this	overload	is	

important.	 Factors	 such	 as	 the	 placement	 of	 AR	 elements	 and	 other	 design	



1.3	Interactions	with	automated	vehicles	(AVs)	

	

	

29	

considerations	 (e.g.,	 the	 intuitiveness	 of	 the	 design	 and	 consideration	 of	 its	

learnability)	should	be	examined	to	understand	how	they	could	help	alleviate	the	

cognitive	and	visual	burden	on	pedestrians.	

A	useful	approach	to	addressing	these	concerns	is	to	investigate	pedestrians'	visual	

attention	in	these	scenarios.	As	introduced	in	Section	1.2.2,	pedestrians’	gaze	and	

head	movements	can	indicate	how	they	allocate	their	attention	and	their	need	for	

gathering	 additional	 information	 during	 crossing	 tasks.	 Therefore,	 the	 next	

section	 will	 provide	 a	 detailed	 analysis	 of	 pedestrian	 behaviour	 and	 attention	

during	 interactions	 with	 automated	 vehicles,	 to	 examine	 the	 visual	 load	

introduced	by	exposure	to	these	novel	explicit	interfaces.	

1.3.4 Pedestrians’	head	and	gaze	behaviour	

Research	 on	 pedestrians'	 gaze	 behaviour	 provides	 insights	 into	 how	 they	 seek	

information	during	crossing	tasks	when	interacting	with	conventional	vehicles	(de	

Winter	et	al.,	2021;	Dey	et	al.,	2019;	Gruden	et	al.,	2021;	Lévêque	et	al.,	2020;	Zhao	

et	al.,	2023).		Dey,	Holländer,	et	al.	(2020)	showed	that	pedestrians’	gaze	patterns	

in	 front	 of	 an	 AV	 exhibit	 similarities	 to	 those	 observed	 with	manually	 driven	

vehicles,	with	an	increasing	focus	on	the	vehicle	and	windscreen	as	it	approaches.	

In	their	Wizard-of-Oz	experiment,	pedestrians	stood	at	the	curb	and	used	slider	

input	devices	to	indicate	their	willingness	to	cross	as	the	AV	approached,	which	

either	 featured	an	eHMI,	 a	 turquoise	 light	bar	on	 the	grille	 indicating	 yielding	

intent,	or	no	eHMI.	The	results	revealed	that	the	presence	of	the	eHMI	did	not	

significantly	influence	gaze	behaviour,	except	that	pedestrian	displayed	less	gaze	

density	on	the	windscreen	compared	to	manual	driven	vehicles,	likely	because	eye	

contact	was	unnecessary	in	the	absence	of	a	human	driver.	However,	this	study	

involved	stationary	pedestrians	who	pressed	a	button	to	 indicate	 their	crossing	

intention	 rather	 than	making	actual	 crossing	decisions	and	 the	vehicles	 in	 this	

experiment	 always	 yielded	 to	 pedestrians,	 which	 may	 have	 affected	 their	

perception	of	the	situation	(Te	Velde	et	al.,	2005).	Additionally,	while	gaze	on	the	
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vehicle	 was	 analysed,	 attention	 to	 other	 environmental	 cues	 and	 their	 role	 in	

information	gathering	were	not	considered.		

Other	research	on	pedestrians'	gaze	behaviour	in	AV-pedestrian	interactions	has	

predominantly	focused	on	assessing	the	placement	and	design	of	various	eHMIs,	

rather	than	investigating	their	impact	on	visual	load	(Eisma	et	al.,	2020;	Guo	et	al.,	

2022;	Hochman	et	al.,	2020;	Lyu,	Zhang,	et	al.,	2024).	For	example,	in	a	video-based	

eye-tracking	 study,	 Guo	 et	 al.	 (2022)	 evaluated	 different	 eHMI	modalities	 and	

found	that	text,	icons,	and	arrows	centralised	visual	attention,	scored	highest	for	

clarity,	and	led	to	the	shortest	decision	times.	In	contrast,	light	strip-based	eHMIs,	

while	 noticeable,	 did	 not	 significantly	 reduce	 decision	 times	 and	 led	 to	 longer	

fixation	 durations.	 Regarding	 the	 placement	 of	 eHMIs,	 Eisma	 et	 al.	 (2020)	

projected	the	same	textual	eHMIs	in	different	locations	and	found	that	projecting	

them	 on	 the	 windscreen	 effectively	 concentrated	 pedestrian	 gaze,	 whereas	

projections	on	the	road	dispersed	gaze	patterns	between	the	vehicle	and	the	road,	

increasing	 visual	 effort.	 Hochman	 et	 al.	 (2020)	 examined	 pedestrians'	 gaze	

fixations	across	multiple	trials	to	assess	the	learnability	of	various	eHMI	designs.	

Their	findings	revealed	that	learning	occurred	regardless	of	the	specific	design,	as	

gaze	 fixation	 durations	 decreased	 with	 increasing	 exposure	 to	 each	 eHMI.	 A	

common	limitation	of	these	studies	is	their	reliance	on	desktop-based	video	setups,	

which	may	not	accurately	reflect	how	pedestrians'	gaze	is	dispersed	in	the	real-

world,	or	within	3D	environments	where	multiple	environmental	cues	are	present	

simultaneously.		

As	 for	 pedestrians’	 head	 movements	 in	 AV-pedestrian	 interactions,	 only	 one	

recent	 study	 has	 investigated	 this	 aspect.	 Lyu,	 Lee,	 et	 al.	 (2024)	 conducted	 a	

distributed	simulation	study	integrating	a	CAVE-based	pedestrian	simulator	with	

a	 desktop	 driving	 simulator	 to	 explore	 pedestrian	 road-crossing	 decisions	 and	

head	movement	responses	to	various	vehicle	kinematics	at	un-signalized,	single-

lane,	 roads.	 Pedestrians	 either	 encountered	 predefined	 automated	 braking	

behaviours,	including	soft	braking	at	a	deceleration	of	2.5	m/s²	when	the	vehicle	
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was	40	metres	away	from	the	pedestrian,	that	stopped	when	it	was	4	meters	away,	

or	hard	braking	at	a	deceleration	of	3.2	m/s²	stopping	12	meters	away	from	the	

pedestrian.	A	series	of	non-braking	trials,	with	the	vehicle	maintaining	a	speed	of	

30	mph	were	also	introduced.	In	another	set	of	trials,	pedestrians	interacted	with	

human-driven	vehicles,	when	a	human	driver	(hidden	from	them)	was	asked	to	

take	 control	 of	 the	 driving,	 when	 the	 vehicle	 was	 60	 meters	 away	 from	 the	

pedestrian.	The	driver	had	to	decide	whether	or	not	to	brake.	Pedestrians’	head-

turning	rate	and	frequency	before	and	during	the	crossing	was	measured.	Results	

indicated	 that	 head-turning	 behaviour	 could	 reliably	 signal	 crossing	 intent,	

highlighted	 by	 a	 significant	 increase	 in	 head-turning	 rate	 during	 the	 last	 two	

seconds	 before	 beginning	 the	 crossing	 as	 a	 final	 safety	 check,	 in	 line	 with	

observations	 in	 interactions	 with	 conventional	 vehicles	 (Hassan	 et	 al.,	 2005).	

Moreover,	 there	 was	 a	more	 frequent	 and	 greater	 head-turning	 rate	 when	

pedestrians	 intended	to	cross,	compared	to	when	they	did	not,	 suggesting	 that	

head-turning	 behaviour	 could	 serve	 as	 an	 indicator	 for	 predicting	 pedestrians’	

crossing	intent	(Hassan	et	al.,	2005).	The	study	also	revealed	differences	in	head-

turning	behaviour	based	on	vehicle	kinematics:	pedestrians	increased	their	head-

turning	frequency	when	facing	automated	vehicles	which	exhibited	hard	braking	

compared	to	soft	braking,	a	lower	frequency	of	head	turns	during	the	automated	

soft	 braking	 conditions,	 compared	 to	 conditions	 controlled	 by	 the	 human.	

However,	 this	 study	was	 limited	 to	 a	 single-lane	 scenario	with	 a	 single	 vehicle	

always	 approaching	 either	 from	 the	 right.	 Future	 research	 could	 explore	more	

dynamic	 situations,	 such	 as	 crossroads	 (Hamaoka	 et	 al.,	 2013),	 where	 vehicles	

approach	 from	 various	 directions.	 Moreover,	 there	 is	 currently	 no	 research	

investigating	 pedestrians’	 head-turning	 behaviour	 when	 exposed	 to	 AVs	

employing	explicit	communication	methods.		

Overall,	pedestrians'	gaze	and	head-turning	behaviour	during	 interactions	with	

AVs	 exhibit	 similarities	 to	 those	 observed	 with	 conventional	 vehicles,	 though	

significant	gaps	remain	in	understanding	these	patterns	across	different	contexts.	

Additionally,	 repeated	exposure	 to	AV	 interactions	may	 further	 influence	 these	
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behavioural	changes	(de	Clercq	et	al.,	2019;	Hochman	et	al.,	2020;	Lee	et	al.,	2022),	

a	topic	that	will	be	explored	in	detail	in	the	following	section.	

1.4 REPEATED	AV-PEDESTRIAN	INTERACTIONS	

1.4.1 The	effect	of	learning	

Exposures	 to	novel	 or	 unfamiliar	 information	 can	 initiate	 a	 learning	process,	 a	

topic	extensively	explored	in	human-computer	interaction	research	(Grossman	et	

al.,	2009).	These	studies	demonstrate	that	learning	occurs	when	users	engage	with	

new	 interfaces	 and	 novel	 interaction	 approaches.	 It	 is	 suggested	 that	 such	

exposure	facilitates	the	formation	and	adjustment	of	mental	models	(Kahneman,	

2011;	 Zhang	 &	 Xu,	 2011),	 which	 are	 conceptual	 frameworks	 representing	 users'	

understandings	 of	 external	 objects,	 systems,	 and	 the	 broader	 environment,	

including	 the	 dynamics	 between	 actions	 and	 environmental	 events	 (Carroll	 &	

Olson,	 1987;	Durso	&	Gronlund,	 1999).	These	models	are	continuously	updated	

with	 novel	 information,	 thus	 enhancing	 the	 efficiency	 of	 user	 interactions	

(Grossman	et	al.,	2009).	Mental	models	are	also	important	for	making	predictions	

in	a	task,	acting	as	hierarchical	generative	models	that	become	more	accurate	with	

repeated	exposures	(Clark,	2013;	Engström	et	al.,	2018).	Regular	interaction	with	

new	information	not	only	strengthens	these	models	but	also	enhances	knowledge	

accumulation,	which	may	be	declarative,	acquired	through	formal	education,	or	

procedural,	developed	 through	practical	 experience	 (Endsley,	 2000;	Nersessian,	

2009;	Shiffrin	&	Schneider,	1977).	Both	modes	of	knowledge	acquisition	contribute	

to	 the	 refinement	 of	 mental	 models	 and	 memory	 formation,	 leading	 to	

behavioural	 adjustments.	 However,	 learning	 through	 practical	 experience	 can	

sometimes	 occur	 unintentionally	 and	 implicitly,	 yielding	 knowledge	 that	 is	

difficult	 to	 express	 (Berry	 &	 Dienes,	 1993;	 Ivanchei,	 2014).	 Nevertheless,	 the	

outcomes	 of	 this	 implicit	 learning	 can	 be	 observed	 through	 the	 level	 of	

automaticity	 in	 behaviour,	 occurring	 without	 a	person’s	 conscious	 decision-

making.		
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Previous	research	has	indicated	that	when	an	individual	consistently	reacts	in	the	

same	manner	to	a	social	stimulus,	their	response	becomes	automatic	over	time.	

This	automaticity	arises	because	the	mental	representations	associated	with	the	

stimulus	 are	 frequently	 and	 consistently	 activated,	 eventually	 becoming	

preconsciously	triggered	by	the	stimulus,	thereby	bypassing	conscious	decision-

making	processes	(Bargh	et	al.,	1996;	Shiffrin	&	Schneider,	1977).	Consequently,	if	

a	person	regularly	exhibits	the	same	behavioural	response	to	specific	situational	

features,	 this	 behaviour	 becomes	 automatically	 associated	 with	 those	 features,	

indicating	the	application	of	acquired	knowledge	(Mischel	et	al.,	1995;	Shoda	et	

al.,	1994).	This	association,	although	not	intentionally	learned,	becomes	integrated	

into	 an	 individual's	 response	 patterns.	 Therefore,	 by	 observing	 and	measuring	

changes	 in	 behaviour	 across	 repeated	 exposures,	 researchers	 can	 capture	 such	

implicit	learning	processes,	even	if	the	individual	is	not	actively	and	consciously	

trying	to	learn.		

To	quantify	the	learning	process	in	relation	to	time	and	exposures	across	various	

activities	such	as	decision-making	and	problem-solving,	the	concept	of	the	"power	

law	of	practice,"	also	known	as	the	"power	law	of	learning,"	has	been	introduced.	

This	 psychological	 theory	 establishes	 a	 relationship	 between	 the	 amount	 of	

practice	 and	 task	 performance	 (Newell	 &	 Rosenbloom,	 1981),	 where	 there	 is	 a	

sharp	 initial	 improvement	 in	 performance,	 followed	 by	 a	 stabilization	 as	 the	

number	of	trials	and	practice	sessions	increases.	This	pattern	aligns	with	empirical	

observations	in	diverse	learning	contexts	like	skills	training,	memory,	perception,	

and	problem-solving,	where	significant,	rapid	improvements	are	initially	evident,	

but	the	rate	of	improvement	decelerates	as	one	gains	proficiency.	However,	there	

is	a	debate	concerning	the	method	of	applying	this	power	function	when	averaging	

scores	across	participants	rather	than	analysing	individual	differences	(Brown	&	

Heathcote,	 2003).	 To	 tackle	 this,	 it's	 important	 to	 account	 for	 individual	

differences	in	studies.	
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In	 the	 driving	 domain,	 the	 power	 law	 has	 been	 applied,	 for	 example,	 to	

understanding	how	drivers	learn	to	use	regenerative	braking	in	electric	vehicles	

(Cocron	 et	 al.,	 2013)	 and	 how	 they	 acquire	 skills	 in	 operating	 in-vehicle	

information	 systems	 (Jahn	 et	 al.,	 2009).	 It	 has	 also	 been	 applied	 to	 study	 how	

drivers	develop	mental	models	and	become	accustomed	to	autonomous	functions,	

such	as	Adaptive	Cruise	Control	(ACC)	(Beggiato	&	Krems,	2013;	Beggiato	et	al.,	

2015;	Forster	et	al.,	2019,	2020).	In	the	following	session,	we	will	review	the	research	

about	learning	in	autonomous	driving	with	long-term	studies,	and	how	it	can	be	

developed	for	road	user	interactions.	

1.4.2 Repeated	exposures	for	learning	

Research	 on	 pedestrians'	 learning	 in	 AV	 interactions	 is	 limited,	 whereas	

substantial	work	has	focused	on	how	drivers	adapt	to	advanced	driver	assistance	

systems	(ADAS)	such	as	Adaptive	Cruise	Control	(ACC)	and	Lane	Keeping	Systems	

(LKS),	 as	well	 as	 to	AVs.	Although	 longitudinal	 studies	 in	 this	 context	 vary	 in	

duration,	ranging	from	one	week	(Miller	&	Boyle,	2019)	to	two	months	(Beggiato	

&	Krems,	2013),	with	intermediate	durations	of	two	weeks	(Simon,	2005)	and	four	

weeks	 (Weinberger	 et	 al.,	 2001),	 findings	 consistently	 show	 that	 significant	

learning	 and	 behavioural	 changes	 can	 stabilise	 within	 just	 a	 few	 repeated	

exposures	(Forster	et	al.,	2020;	Martens	&	Fox,	2007).	For	instance,	using	a	moving-

base	driving	simulator,	Forster	et	al.	(2020)	observed	that	drivers’	mental	models	

towards	several	driving	use	cases	in	automated	vehicles	(Level	2	and	3)	stabilised	

after	 five	 repeated	 interactions,	 with	 the	 most	 significant	 learning	 occurring	

during	the	first	block	of	trials.	Similarly,	in	a	low-cost	simulation	driving	setup,	

Martens	and	Fox	(2007)	noted	that	drivers’	gaze	durations	on	designated	traffic	

signs	decreased	sharply	on	the	first	day,	suggesting	rapid	adaptation	to	repeated	

visual	stimuli.	

Similar	 findings	 were	 obtained	 in	 longitudinal	 research	 from	 pedestrians’	

research.	In	a	Wizard-of-Oz	experiment,	Joisten	et	al.	(2022)	assessed	pedestrians'	
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perceived	safety	across	different	crossing	scenarios	during	three	sessions	across	

five	days.	The	results	indicated	that	perceived	safety	was	higher	when	crossing	in	

front	of	an	AV	compared	to	a	conventional	vehicle	on	the	first	day	and	increased	

with	subsequent	sessions,	although	the	difference	between	Day	2	and	Day	3	was	

not	statistically	significant.	Despite	limitations	such	as	sequence	effects,	this	study	

demonstrated	 that	 pedestrians'	 learning	 could	 stabilize	 after	 the	 initial	 day	 of	

exposure,	suggesting	that	experiments	involving	repeated	measures	may	require	

only	a	single	day	visit	per	participant.	

Since	pedestrians	are	not	the	primary	intended	users	of	AVs	and	typically	do	not	

receive	 manuals	 or	 instructions	 about	 AV	 features,	 their	 understanding	 and	

interpretation	of	these	vehicles'	behaviours	or	external	interfaces	(eHMIs	and	ARs)	

are	likely	to	improve	only	through	repeated	exposures.	This	scenario	is	an	example	

of	implicit	learning,	a	process	where	learning	occurs	unintentionally	and	without	

explicit	instruction,	leading	to	gradual	adaptations	in	behaviour.	Moreover,	road	

users’	interactions	typically	require	rapid	reactions	from	pedestrians	(0.5	–	6.5	s)	

to	accurately	understand	AV’s	driving	intention	from	Liu	et	al.	(2020).	Given	that	

learning	 tends	 to	 stabilise	 quickly	 after	 initial	 exposures	 (Forster	 et	 al.,	 2020;	

Joisten	et	al.,	2022;	Martens	&	Fox,	2007),	this	study	focuses	on	capturing	learning	

effects	within	a	single	visit,	within	a	few	repeated	exposures.	By	measuring	such	

behavioural	changes	and	 the	 learning	process	when	pedestrians	are	exposed	 to	

various	communicative	strategies	employed	by	AVs,	we	aim	to	provide	knowledge	

on	 the	 creation	 of	 more	 efficient,	 safe,	 and	 less	 distracting	 mechanisms	 for	

developing	communication	cues	by	future	AVs.	

1.4.3 The	effect	of	learning	on	pedestrians’	behaviour	over	repeated	

exposures	

Research	on	the	 impact	of	 learning	 in	AV-pedestrian	 interactions	has	primarily	

focused	 on	 evaluating	 various	 eHMI	 designs	 to	 inform	 design	 guidelines	 (de	

Clercq	et	al.,	2019;	Faas	et	al.,	2020;	Hochman	et	al.,	2020;	Lee	et	al.,	2022).	In	a	
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head-mounted	display	 study,	de	Clercq	et	 al.	 (2019)	 assessed	 the	percentage	of	

"feeling	 safe"	 responses	 from	 pedestrians,	 who	 pressed	 handheld	 buttons	 to	

indicate	their	feeling	of	safety	across	multiple	eHMI	designs,	each	repeated	nine	

times:	(1)	baseline	without	eHMI,	(2)	front	brake	lights,	(3)	Knight	Rider	animation,	

(4)	 smiley,	 and	 (5)	 text	 ("WALK").	 The	 results	 indicated	 that	 pedestrians	 felt	

significantly	safer	when	interacting	with	AVs	equipped	with	eHMIs	compared	to	

those	without	any	eHMI.	Additionally,	learning	effects	were	observed	in	all	eHMI	

types	except	for	the	text-based	eHMI,	with	safety	perceptions	increasing	initially	

and	then	stabilising	after	several	exposures.	However,	text-based	interfaces,	while	

intuitive,	have	other	disadvantages	such	as	a	shorter	visual	range	and	significant	

cross-cultural	barriers	due	to	language	dependencies	when	compared	to	graphical	

eHMIs	 (Zheng	 et	 al.,	 2023).	 This	 underscores	 a	 critical	 limitation	 of	 the	 study:	

evaluations	 that	 depend	 solely	 on	 learning	 effects	 and	 self-reported	 safety	

perceptions,	rather	than	direct	behavioural	measurements,	which	may	not	yield	a	

comprehensive	understanding	of	 eHMI	effectiveness	 (Te	Velde	 et	 al.,	 2005).	 In	

contrast,	Hochman	et	al.	(2020)	observed	learning	effects	with	text-based	eHMIs	

using	 desktop-based	 video	 simulations.	 These	 simulations,	 which	 measured	

pedestrians'	 gaze	 fixations	 across	 100	 trials,	 featured	 eHMIs	 with	 varying	

background	colours	(red/green),	message	types	(status/advice),	and	presentation	

modalities	 (text/symbol).	 The	 authors	 suggest	 that	 the	 complexity	 of	 these	

elements	 could	 potentially	 lead	 to	 information	 overload,	 with	 participants	

needing	some	time	to	learn	and	interpret	the	designs,	including	those	with	text-

based	eHMI.		

Lee	et	al.	(2022)	corroborated	the	importance	of	intuitive	designs	in	a	CAVE-based	

simulator	study.	They	compared	a	novel	eHMI	design	(SPLB:	slow	pulsing	light	

band)	with	a	more	familiar	one	(FH:	 flashing	headlights)	within	three	repeated	

blocks.	Results	showed	that	participants	quickly	grasped	the	meaning	conveyed	

by	the	FH	within	the	first	block	of	trials,	whereas	understanding	the	message	from	

the	SPLB	required	exposure	to	12	eHMI	trials	(one	block).	On	average,	crossings	

with	the	FH	occurred	approximately	800	ms	earlier	than	with	the	SPLB.	However,	
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the	between-subjects	design,	where	different	groups	of	pedestrians	were	exposed	

to	different	eHMIs,	may	have	 introduced	 individual	differences	 that	 influenced	

the	results.	Despite	this,	novel	eHMI	concepts	may	require	time	for	road	users	to	

fully	comprehend	their	meaning,	posing	a	challenge	for	AV	manufacturers	who	

need	 to	 communicate	 clear	 messages	 to	 pedestrians.	 This	 underscores	 the	

importance	of	considering	long-term	exposure	and	familiarity	when	introducing	

new	eHMI	messages.	

Using	a	longitudinal	video	study	spanning	three	sessions	with	intervals	of	seven	

to	nine	days	between	each	session,	Faas	et	al.	(2020)	assessed	the	effectiveness	of	

eHMIs,	including	(i)	no	eHMI	(baseline),	(ii)	status	eHMI,	and	(iii)	status	+	intent	

eHMI.	Measurements	included	pedestrian	crossing	onset	time,	perceived	safety,	

trust,	 acceptance,	 and	 user	 experience,	 which	 encompassed	 learnability.	 As	

exposure	to	the	eHMIs	increased,	pedestrians	demonstrated	higher	trust,	greater	

reliance,	and	faster	crossing	times.	Both	eHMI	types	(status	and	status	+	intent)	

improved	 understanding	 of	 the	 surrounding	 environment,	 thus	 facilitating	

quicker	crossing.	Notably,	the	status	+	intent	design	proved	more	influential	than	

the	 status-only	 design.	 However,	 there	 is	 potential	 that	 providing	 more	

information	to	pedestrians	may	raise	workload,	which	remains	a	research	gap	in	

this	context.	

Overall,	 most	 research	 investigating	 pedestrians’	 learning	 processes	 when	

interacting	with	AVs	 focuses	 on	 the	use	 of	 eHMIs,	 leaving	 a	 significant	 gap	 in	

understanding	other	communication	mechanisms,	such	as	the	learning	value	of	

implicit	 driving	 cues	 or	 AR	 as	 a	 communication	 tool	 for	 AVs.	 Furthermore,	

evaluations	 predominantly	 rely	 on	 self-reports	 or	 crossing	 decision	 times	 (de	

Winter	 &	 Dodou,	 2022;	 Rasouli	 &	 Tsotsos,	 2020),	 while	 studies	 examining	

pedestrians’	 attention	 allocation	 over	 repeated	 exposures	 remain	 largely	

overlooked.	
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1.5 RESEARCH	GAPS	AND	QUESTIONS	

Understanding	AV-pedestrian	 interactions	 is	 vital	 for	 ensuring	 safer	 and	more	

effective	 road-sharing	 environments.	 The	 growing	 body	 of	 literature	 has	

investigated	various	 implicit	 (e.g.,	 vehicle	kinematics)	and	explicit	 (e.g.,	 eHMIs	

and	AR	displays)	communication	strategies	to	bridge	the	gap	left	by	the	absence	

of	a	human	driver.	However,	several	critical	aspects	of	these	interactions	remain	

underexplored,	limiting	the	current	understanding	of	how	pedestrians	interpret	

and	adapt	to	AV	communication	methods	over	repeated	encounters.	To	address	

these	 gaps,	 this	 thesis	 focuses	 on	 three	 key	 research	 areas	 that	 require	 further	

investigation	to	enhance	AV	design	and	pedestrian	safety.	

Firstly,	 while	 extensive	 studies,	 as	 discussed	 in	 Section	 1.3,	 have	 explored	 the	

influence	of	zebra	crossing	(Clamann	et	al.,	2017;	Havard	&	Willis,	2012;	O'Dell	et	

al.,	 2022;	 Velasco	 et	 al.,	 2019) and	 vehicle	 kinematics	 (Ackermann	 et	 al.,	 2018;	

Bindschädel	et	al.,	2022;	Dey,	Matviienko,	et	al.,	2020;	Domeyer,	Lee,	Toyoda,	et	

al.,	2020;	Fuest,	Michalowski,	et	al.,	2018;	Lee	et	al.,	2022;	Rettenmaier	et	al.,	2021;	

Risto	et	al.,	2017;	Várhelyi,	1998;	Zach	Noonan	et	al.,	2023) on	pedestrians’	crossing	

decisions	 and	 behaviours	 in	 current	 traffic,	 few	 has	 examined	 their	 interactive	

effects.	For	instance,	drivers	may	exhibit	different	kinematic	patterns	depending	

on	 the	presence	or	absence	of	a	zebra	crossing	 (Dabrowska-Loranc	et	al.,	 2021;	

Várhelyi,	 1998;	Zhang	et	al.,	2020),	which	could,	 in	turn,	prompt	corresponding	

adjustments	 in	 pedestrians’	 decisions	 and	 behaviours.	 However,	 it	 remains	

unclear	which	factor,	zebra	crossings	or	vehicle	kinematics,	is	more	influential	in	

shaping	pedestrians’	crossing	decisions,	and	little	is	known	about	their	effects	on	

attention	allocation,	such	as	head-turning	behaviours.	

Most	 existing	 research	 typically	 involves	 a	 single	 actor	 (a	 pedestrian)	 and	

examines	 their	 reactions	 to	 preprogrammed	 driving	 behaviours	 rather	 than	

investigating	 dynamic,	 interactive	 scenarios	 involving	 both	 pedestrians	 and	

drivers	(Ezzati	Amini	et	al.,	2021;	Rasouli	&	Tsotsos,	2020).	Although	naturalistic	

observations	have	been	employed	to	study	these	interactions,	they	are	limited	in	
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their	ability	to	establish	causal	relationships	or	support	repeated	measurements	

under	 controlled	 conditions	 (Dozza,	 2013).	 This	 highlights	 a	 critical	 gap	 in	

understanding	 how	natural	 driving	 responses	 serve	 as	 implicit	 communication	

with	 pedestrians	 and	 how	 pedestrians’	 crossing	 decisions	 are	 shaped	 by	 the	

interplay	 between	 zebra	 crossings	 and	 vehicle	 kinematics	 (e.g.,	 time	 gaps	 and	

drivers’	 responses).	 Addressing	 this	 gap	 requires	 a	 controlled	 and	 repeatable	

experimental	 environment	where	 both	 parties	 can	 dynamically	 interact	 in	 real	

time,	such	as	a	distributed	simulation	(Kearney	et	al.,	2020;	Lyu,	Lee,	et	al.,	2024;	

Sadraei	et	al.,	2020).	These	considerations	lead	to	the	following	research	question:	

• RQ	 1:	How	 do	 zebra	 crossings	 and	 vehicle	 kinematics	 (e.g.,	 time	 gap,	

yielding	 decision	 and	 behaviours,	 and	 lateral	 deviation),	 influence	

pedestrians’	 crossing	decisions	and	attention	allocation,	 such	as	head-

turning	behaviours?	

Another	notable	 research	gap	exists	 in	understanding	how	pedestrians	allocate	

their	attention	during	crossing	tasks	when	AVs	are	in	their	vicinity,	particularly	

with	explicit	communication	strategies,	such	as	eHMIs	or	AR	displays.	While	most	

existing	studies	focus	on	real-world	observations	of	conventional	vehicles,	little	is	

known	about	whether	pedestrian	head-turning	(Avineri	et	al.,	2012; Hamaoka	et	

al.,	 2013; Hassan	 et	 al.,	 2005; Kalantarov	 et	 al.,	 2018) and	 gaze	 behaviours	 (de	

Winter	 et	 al.,	 2021; Dey	 et	 al.,	 2019; Lévêque	 et	 al.,	 2020)	 observed	 in	 driver-

pedestrian	interactions	persist	or	change	in	AV	contexts.	Explicit	cues	from	eHMIs	

or	AR	displays	may	further	influence	attention	allocation	(Dey,	Matviienko,	et	al.,	

2020;	Eisma	et	al.,	2020;	Guo	et	al.,	2022),	raising	concerns	about	potential	visual	

overload	if	such	visual	stimuli	would	distract	pedestrians	from	critical	vehicular	

or	environmental	signals.	

Currently,	the	evaluation	of	explicit	communication	strategies	relies	primarily	on	

measuring	 pedestrians’	 crossing	 initiation	 times	 and	 self-reported	 trust	 or	

acceptance	(Ezzati	Amini	et	al.,	2021;	Rasouli	&	Tsotsos,	2020).	However,	head-

turning	and	gaze	behaviours,	which	are	closely	linked	to	situational	awareness	and	
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uncertainty/need	to	gather	more	information	(Endsley,	1995; Grasso	et	al.,	1998; 

Kooij	et	al.,	2014; Patla	et	al.,	1999),	offer	a	valuable	yet	underexplored	means	of	

assessing	 the	 effectiveness	 of	 these	 cues	 in	 communicating	 AV’s	 intent.	 These	

considerations	motivate	the	following	research	question:	

• RQ	2:	How	do	explicit	communication	strategies	(eHMI	and	AR	displays)	

from	 AVs	 influence	 pedestrians’	 crossing	 decisions	 and	 attention	

allocation,	such	as	head-turning	and	gaze	behaviours?		

A	third	research	gap	exists	 in	understanding	how	repeated	exposures	 influence	

pedestrians’	 learning	and	adaptation	to	communication	strategies	used	by	AVs.	

Most	 studies	 focus	 on	 single	 encounters	 (Ezzati	 Amini	 et	 al.,	 2021;	 Rasouli	 &	

Tsotsos,	 2020),	 neglecting	 the	 learning	 processes	 that	 occur	 as	 pedestrians	

repeatedly	 interact	 with	 implicit	 cues	 (e.g.,	 vehicle	 kinematics)	 and	 explicit	

strategies	(eHMI	and	AR	displays).	While	pedestrians	may	become	more	adept	at	

interpreting	these	cues	over	time	(de	Clercq	et	al.,	2019; Faas	et	al.,	2020; Hochman	

et	 al.,	 2020; Lee	 et	 al.,	 2022),	 poorly	 designed	 strategies	 can	 increase	 task	

complexity,	 frustrate	 users,	 and	 undermine	 their	 effectiveness,	 potentially	

requiring	pedestrians	to	rely	more	on	head-turning	or	gaze	to	search	for	relevant	

information	 (Mahadevan	 et	 al.,	 2018; Moore	 et	 al.,	 2019).	 Understanding	 how	

pedestrians’	 decision	 and	 attention	 allocation	 adapt	 to	 these	 communication	

methods	 is	 crucial	 for	 designing	 AV	 systems	 that	 dynamically	 adjust	 their	

strategies	 to	 evolving	 pedestrian	 behaviours.	 Such	 insights	 are	 essential	 for	

fostering	 safer	 and	 more	 efficient	 interactions	 between	 AVs	 and	 pedestrians.	

These	rationales	give	rise	to	the	following	research	question:	

• RQ	3:	How	do	 repeated	 exposures	 to	 vehicle	 kinematics	 (e.g.,	 yielding	

decision	 and	 behaviours,	 time	 gap,	 and	 lateral	 deviation)	 and	 explicit	

communication	strategies	(eHMI	and	AR	displays)	influence	pedestrians’	

crossing	 decisions	 and	 attention	 allocation,	 such	 as	 head-turning	 and	

gaze	behaviours?	
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Understanding	the	pedestrians’	crossing	behavioural	patterns	in	these	situations	

over	repeated	exposures	is	valuable	for	traffic	safety,	planning	and	management.	

At	 the	 same	 time,	 these	 investigations	 can	 facilitate	 the	 development	 of	more	

realistic	 computational	 models	 of	 pedestrian	 crossing	 decisions	 as	 well	 as	 the	

design	of	the	corresponding	AV	communication	strategies.	

1.6 THESIS	OBJECTIVES	AND	OUTLINE	

This	thesis	investigates	AV-pedestrian	interactions,	focusing	on	how	pedestrians	

learn	and	adapt	their	behaviours	to	implicit	and	explicit	communication	strategies	

through	repeated	exposures.	In	this	context,	learning	and	behavioural	adaptation	

refer	 to	 pedestrians’	 short-term	 changes	 in	 crossing	 decisions	 (e.g.	 crossing	

probabilities)	 and	 attention	 allocation	 (e.g.	 gaze	 and	 head-turning	 behaviour)	

observed	 across	 three	 repeated	 exposures	 to	 AVs	within	 a	 single	 experimental	

session	in	this	study.	Although	intuitive	communication	strategies	are	desirable,	

as	they	impose	minimal	cognitive	demand	and	can	be	readily	interpreted	based	

on	 prior	 experience,	 novel	 cues	 introduced	 by	 AVs	 may	 not	 be	 immediately	

intuitive.	 This	 research	 therefore	 considers	 the	 learnability	 of	 such	 cues	 by	

evaluating	how	easily	pedestrians	adapt	to	them	over	repeated	exposures.		

While	this	thesis	involves	the	investigation	of	explicit	interfaces	(e.g.	eHMI	and	

AR),	it	does	not	focus	on	the	specifics	of	interface	design.	Rather,	it	contributes	

methodologically	 by	 proposing	 and	 applying	 an	 evaluation	 approach	 that	 uses	

gaze	 and	 head-turn	metrics	 across	 repeated	 exposures	 to	 assess	 how	 different	

communication	strategies	affect	pedestrian	behaviour.	

The	 research	 addresses	 three	 key	 gaps	 and	 answers	 the	 associated	 research	

questions	 across	 three	 empirical	 studies,	 each	 constituting	 a	 chapter	 either	

published	or	under	review	in	peer-reviewed	journals.		

Chapter	 2	 presents	 a	 published	 paper	 that	 develops	 a	 distributed	 simulation	

environment	that	connects	a	driver’s	lab	and	a	pedestrian’s	lab	to	capture	dynamic,	

real-time	interactions	in	a	virtual	and	controlled	setting.	This	study	addresses	RQ1	
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by	exploring	how	zebra	crossings	and	vehicle	kinematics	(e.g.,	time	gaps,	drivers’	

yielding	 behaviours	 and	 lateral	 deviation)	 influence	 pedestrians’	 crossing	

decisions.	 Additionally,	 it	 addresses	RQ3	 by	 examining	 how	 pedestrians	 adapt	

their	crossing	decisions	through	repeated	exposures	to	these	 implicit	cues.	The	

findings	contribute	to	designing	human-like	AV	driving	behaviours	for	effective	

implicit	communication.	

Chapter	 3	 comprises	 a	 published	 study	 examining	 pedestrians'	 head-turning	

behaviour	at	 a	 virtual	UK	crossroad	 in	 front	of	 an	AV	across	different	 crossing	

scenarios	 in	 a	 CAVE-based	 simulator.	 It	 addresses	 RQ1	 by	 analysing	 how	

infrastructure	cues	such	as	zebra	crossings	and	vehicle	yielding	decisions	affect	

head-turning	 behaviours,	 RQ2	 by	 examining	 pedestrians’	 head-turning	

behaviours	 in	 response	 to	 eHMI	 cues,	 and	RQ3	 by	 exploring	 changes	 in	head-

turning	behaviours	over	repeated	exposures.	

Chapter	4	consists	of	a	paper	currently	under	review	that	investigates	pedestrians’	

gaze	behaviours	and	decision-making	when	encountering	AVs	with	various	AR	

displays	signalling	their	intent.	Using	a	CAVE-based	simulator,	it	addresses	RQ2	

by	analysing	how	AR	displays	influence	pedestrians’	gaze	behaviours	and	crossing	

decisions,	 and	RQ3	 by	 exploring	 how	 repeated	 exposures	 shape	 gaze	 fixation	

patterns.	

While	the	study	presented	in	Chapter	2	introduces	a	distributed	simulation	setup	

to	 investigate	 pedestrians’	 crossing	 decisions	 in	 response	 to	 varying	 implicit	

driving	behaviours,	it	does	not	directly	involve	automated	vehicles.	Although	not	

an	 AV–pedestrian	 interaction	 per	 se,	 the	 findings	 provide	 valuable	 insights	 to	

inform	AV	design	by	revealing	how	pedestrians	react	to	diverse	non-verbal	cues.	

In	 contrast,	 the	 studies	 in	 Chapters	 3	 and	 4	 involve	 the	 evaluation	 of	 explicit	

communication	 strategies	 of	 AVs.	 Since	 the	 vehicle	 behaviour	 was	 pre-

programmed	 and	 consistent	 in	 these	 two	 studies,	 a	 distributed	 setup	 was	 no	

longer	required,	and	the	studies	relied	solely	on	the	pedestrian	simulator.	While	

the	methodological	approaches	vary	across	chapters,	the	studies	are	connected	by	
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a	shared	objective	of	examining	how	pedestrians	interpret	and	adapt	to	different	

vehicle	communication	strategies	across	repeated	exposures.	

Chapter	 5	 includes	 the	 discussion	 and	 conclusion	 section	 of	 the	 thesis.	 It	

summarises	 the	 main	 findings,	 highlights	 both	 theoretical	 and	 practical	

contributions,	discusses	the	research	limitations,	and	provides	recommendations	

for	future	research.	
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ABSTRACT	

As	we	move	towards	a	future	with	Automated	Vehicles	(AVs)	incorporated	in	the	

current	traffic	system,	it	is	crucial	to	understand	driver-pedestrian	interaction,	in	

order	 to	 enhance	 AV	 design	 and	 optimization.	 Previous	 research	 in	 this	 area,	

which	has	primarily	used	naturalistic	observations	or	single-actor	virtual	reality	

simulations,	has	been	limited	by	its	inability	to	draw	causal	conclusions,	also	due	

to	a	lack	of	real	human-human	interactions.	Our	study	addresses	these	limitations	

by	employing	a	high-fidelity	distributed	simulation	setup	that	links	drivers	in	a	

motion-based	 simulator	 with	 pedestrians	 in	 a	 CAVE-based	 environment.	 This	

method	allows	for	the	examination	of	real-time	and	reciprocal	interactions	across	

a	 range	 of	 road-crossing	 scenarios.	 Using	 thirty-two	 pairs	 of	 drivers	 and	

pedestrians,	we	investigated	how	different	factors,	such	as	the	presence	of	zebra	

crossings	 and	 varying	 time	 gaps	 of	 the	 approaching	 vehicle,	 influence	 driver	

behaviour	and	pedestrian	crossing	decisions.	The	effect	of	drivers’	control	of	the	

vehicle	during	such	crossings	(e.g.,	braking	behaviour	and	 lateral	deviation)	on	

pedestrians'	crossing	decisions	were	also	analysed.		

We	found	that	the	distribution	of	drivers’	average	deceleration	values	was	bimodal,	

where	drivers	either	markedly	yielded	to	pedestrians,	or	continued	in	their	path,	

with	very	few	instances	of	intermediate	behaviour.	We	also	found	that	pedestrian	

decisions	were	seemingly	influenced	by	the	different	braking	strategies	adopted	

by	the	driver,	with	pedestrians	crossing	before	the	vehicles	in	response	to	soft	and	

early,	or	late	and	hard	braking,	while	late	and	soft	braking	often	resulted	in	the	

vehicle	passing	 first.	We	also	observed	a	slight	 lateral	movement	of	 the	vehicle	

away	 from	 pedestrians	 when	 drivers	 were	 not	 yielding,	 but	 more	 of	 a	 lateral	

deviation	 towards	 them	 when	 yielding.	 This	 may	 be	 because	 drivers	

subconsciously	transfer	their	walking	interaction	habits	to	their	driving	behaviour,	

to	 avoid	 a	 collision	 with	 pedestrians.	 Finally,	 our	 results	 showed	 a	 stronger	

influence	 of	 these	 kinematic	 cues	 on	 pedestrian	 crossing	 decisions,	 when	
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compared	to	zebra	crossings.	As	well	as	highlighting	the	value	of	a	novel	approach	

for	investigating	vehicle-pedestrian	interactions,	this	study	illustrates	how	vehicle	

cues	can	assist	pedestrian	decisions,	adding	new	knowledge	in	the	development	

of	human-like	behaviour	for	future	AVs.	

Keywords:	AV,	Distributed	simulation,	Implicit	communication,	Lateral	deviation,	

Behavioural	adaptation,	Gap	acceptance,	Zebra	crossing	
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2.1 INTRODUCTION	

Technological	 advancements	 in	 driving	 systems	 are	 paving	 the	 way	 for	 the	

imminent	arrival	of	highly	automated	vehicles	(HAVs,	Level	4	and	5)	(SAE,	2021),	

with	promised	improvements	in	traffic	safety	and	efficiency	(Litman,	2021).	When	

compared	to	human-operated	vehicles,	AVs	are	expected	to	increase	road	safety	

by	 removing	human	error,	which	 is	 thought	 to	contribute	 to	over	90%	of	 road	

crashes		(Highway	Traffic	Safety	Administration	&	Department	of	Transportation,	

2015).	However,	as	AVs	begin	to	share	road	space	with	other	humans,	including	

other	drivers,	and	vulnerable	road	users	(VRUs),	such	as	pedestrians	and	cyclists,	

we	see	the	emergence	of	a	“substitution	myth”	(Parasuraman	et	al.,	2000),	with	

new	 types	 of	 human	 error,	 leading	 to	 new	 and	 previously	 unknown	 safety	

concerns.	This	may	be	because	these	new	forms	of	transport	do	not	yet	conform	

to	the	social	norms	of	our	current	traffic	system,	leading	to	confusion	for	other	

road	users	 sharing	 the	 same	 space.	 For	 example,	 higher	 level	AVs	 that	 are	not	

controlled	by	 a	 human	 cannot	 currently	 use	 any	 explicit	 or	 implicit	 cues	 from	

other	road	users	to	predict	their	intentions	(Brown	et	al.,	2023).	These	vehicles	are	

also	 able	 to	 provide	 any	 explicit	 messages	 to	 communicate	 their	 intention	 to	

surrounding	traffic,	which	can	result	in	frustrating	stand-offs	between	the	AV	and	

other	road	users,	for	example	at	unsignalised	junctions	(Madigan	et	al.,	2023).	This	

is	because	 the	 right	of	way	 is	not	clear	at	 such	crossings,	and	 the	absence	of	a	

human	in	the	AV,	or	formal	traffic	infrastructure	such	as	traffic	lights,	precludes	

any	other	form	of	communication	and	right	of	way.	

Recent	studies	suggest	that	the	robotic	behaviour	of	AVs,	which	conforms	to	the	

rules	 of	 the	 road,	 but	 is	 perhaps	 unexpected	 by	 humans,	 can	 lead	 to	 crashes.	

Recent	real-world	examples	include	an	increase	in	the	number	of	human-driven	

vehicles	rear-ending	AVs	(Brown	et	al.,	2018;	Goodall,	2021).	Although	the	ethical	

and	moral	debate	about	how	AVs	should	behave	in	traffic	is	not	the	focus	of	the	

current	study,	it	has	been	argued	that	they	should	at	least	negotiate	the	road	in	
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the	same	way	as	(good)	human	drivers,	who	obey	the	designated	rules	of	the	road	

(Dietrich	et	al.,	2020;	Schneemann	&	Gohl,	2016).	On	the	other	hand,	standoffs	

between	AVs	and	humans	are	one	example	of	a	situation	where	AVs	can	benefit	

from	understanding	and	adopting	some	of	the	more	subtle	(implicit)	cues	used	by	

humans	when	interacting	with	each	other	on	the	road.	This	will	likely	lead	to	a	

good	flow	of	movement	between	all	actors	on	the	road.		

Therefore,	as	AVs	are	introduced	on	our	roads,	it	may	be	beneficial	for	them	to	

use	 these	 existing	 implicit	 cues	 for	 communicating	 intention,	 since	 they	 are	

already	well-known	to,	and	regularly	used	by,	humans.	Research	has	also	shown	

that	humans	are	more	 likely	 to	 accept,	 trust,	 and	understand	 the	behaviour	of	

robots	or	automated	systems	that	exhibit	more	human-like	motions	(Duffy,	2003;	

Waytz	 et	 al.,	 2014).	 This	 is	 because	 these	 anthropomorphic	 behaviours	 are	

perceived	as	more	natural,	and	the	robot	considered	more	competent,	leading	to	

a	higher	level	of	acceptance	and	perceived	safety	(Huang	&	Mutlu,	2013).	To	date,	

a	range	of	control	algorithms	have	been	proposed	for	creating	human-like	driving	

by	AVs,	including	human-like	car	following	(Fu	et	al.,	2019),	human-like	driving	

trajectories	(Kolekar	et	al.,	2020),	and	human-like	reasoning	for	navigation	(Amini	

et	al.,	2019).		

One	approach	for	creating	AVs	that	provide	more	intuitive,	human-like,	behaviour	

is	 to	 study	 the	 interaction	 and	 communication	 patterns	 portrayed	 between	

humans	in	current	traffic,	which	can	then	be	used	to	train	the	algorithms	used	to	

guide	future	AVs.	Pedestrians	are	seen	to	mostly	use	implicit	kinematic	cues	from	

the	vehicle	in	these	interactions,	such	as	its	yielding	behaviour	(Rothenbucher	et	

al.,	2016).	Other	examples	of	implicit	cues	include	vehicle	speed	(Ackermann	et	

al.,	2019;	Lee	et	al.,	2019),	distance	(Simpson	et	al.,	2003),	 time	to	arrival	(TTA)	

(Beggiato	et	al.,	2017;	Petzoldt,	2014;	Schmidt	et	al.,	2020),	time	gaps	(Tian	et	al.,	

2022),	deceleration	rate	(Ackermann	et	al.,	2019;	Dietrich	et	al.,	2020;	Risto	et	al.,	

2017),	brake	timing	(Beggiato	et	al.,	2018),	and	vehicle	pitch	angle	(Bindschädel	et	
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al.,	2022;	Dietrich	et	al.,	2020).	Lateral	movements	are	also	thought	to	serve	as	a	

potential	 implicit	 cue	 in	driver-pedestrian	 interactions.	 In	a	 focus	group	 study,	

Sucha	(2014),	found	that	drivers	reported	moving	toward	the	centre	of	the	road,	

in	 order	 to	 prevent	 pedestrians	 from	 crossing.	 Similarly,	 58%	 of	 the	 drivers	

surveyed	 by	 Fuest	 et	 al.	 (2018)	 reported	 that	 they	 indicate	 their	 non-yielding	

intentions	by	adopting	a	lateral	deviation	towards	the	road	centre.	Using	a	Wizard	

of	Oz	study,	Fuest	et	al.	(2018)	found	that	pedestrians	recognised	the	AV’s	yielding	

intent	more	quickly	when	 it	was	 accompanied	by	a	 lateral	deviation.	Finally,	 a	

video-based	 simulation	 study	by	 Sripada	 et	 al.	 (2021)	 revealed	 that	 pedestrians	

found	the	behaviour	of	non-yielding	AVs	more	intuitive	when	they	moved	laterally	

away	rather	than	towards	them.	Therefore,	lateral	movements	of	the	vehicle	do	

seem	 to	 provide	 pedestrians	 with	 some	 form	 of	 message	 about	 the	 vehicle’s	

intentions.	Pedestrians	themselves	are	also	known	to	use	 implicit	cues,	such	as	

changes	in	walking	speed	or	stepping	on	the	kerb	to	indicate	their	crossing	intent	

(Beggiato	 et	 al.,	 2017).	 However,	 to	 date,	 most	 research	 on	 vehicle-pedestrian	

interactions	has	focused	on	observing	the	behaviour	of	one	of	these	actors,	rather	

than	 investigating	 how	 the	 behaviour	 of	 one	 actor	 affects	 the	 other	 in	 a	 truly	

interactive	way.		

Naturalistic	 observations,	 where	 datasets	 are	 complex	 and	 uncontrolled,	 have	

shed	some	light	in	this	context	(Lee	et	al.,	2020;	Risto	et	al.,	2017;	Schneemann	&	

Gohl,	2016),	but	it	is	challenging	to	disentangle	single	factors	that	influence	each	

actor,	 and	 understand	 how	 they	 influence	 the	 final	 outcome.	 Moreover,	

naturalistic	studies	do	not	allow	repeated	measurements.	Alternatively,	human-

in-the-loop	 simulation	provides	 a	 controlled	 and	 repeatable	 setup,	with	 recent	

developments	in	distributed	simulation	enabling	us	to	observe	the	simultaneous	

interaction	of	two	actors	in	Virtual	Reality,	assessing	how	the	response	of	one	actor	

affects	the	other	(Bazilinskyy	et	al.,	2022;	Kalantari	et	al.,	2023;	Kearney	et	al.,	2020;	

Lyu	et	al.,	2024;	Mok	et	al.,	2022;	Sadraei	et	al.,	2020).	For	example,	using	data	from	

the	 same	 study,	 Kalantari	 et	 al.	 (2023)	 examined	 how	 the	 initial	 timing	 gap	
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between	pedestrians	and	drivers	and	the	crossing	locations	influence	who	crosses	

first	 in	 a	 vehicle-pedestrian	 crossing	 study.	 The	 current	 study	 builds	 on	 their	

results,	 and	 extends	 the	 state-of-the-art,	 by	 examining	 the	 mutual	 interactive	

behaviour	between	drivers	and	pedestrians,	investigating	if	the	behaviour	of	one	

actor	 is	 likely	to	 influence	the	response	of	 the	other,	and	whether	this	changes	

over	repeated	interactions.		

Observational	(Budzynski	et	al.,	2021)	and	simulation	(Kearney	et	al.,	2020)	studies	

have	 shown	 that	 as	 well	 as	 influencing	 each	 other’s	 behaviour	 in	 a	 crossing	

scenario,	drivers'	and	pedestrians'	road-crossing	behaviour	can	be	influenced	by	

different	road	infrastructures.	For	example,	results	from	a	distributed	simulation	

study	conducted	by	Kearney	et	al.	(2020)	showed	that	pedestrians	were	more	likely	

to	cross	(and	drivers	yielded	more)	at	intersections,	than	midblock	crossings.	In	

terms	of	the	influence	of	infrastructure	on	pedestrian	behaviour,	studies	suggest	

that	pedestrians	are	more	willing	to	cross,	make	quicker	crossing	decisions,	and	

feel	safer,	at	zebra	crossings,	when	interacting	with	both	conventional	(Clamann	

et	al.,	2017;	Havard	&	Willis,	2012;	Velasco	et	al.,	2019),	and	automated	vehicles	

(Madigan	et	al.,	2023).	However,	it	is	not	currently	known	how	different	kinematic	

cues	 from	 the	 vehicle,	 such	 as	 how	 variable	 time	 gaps	 for	 its	 approach	 to	 the	

pedestrian	 affect	 subsequent	 pedestrian	 behaviour.	 An	 understanding	 of	 how	

different	 road	 infrastructures,	 such	as	unsignalised	 sections	 and	zebra	 crossing	

affect	the	behaviour	of	each	actor	in	this	interaction	is	also	lacking.		

Finally,	as	AVs	are	 introduced	on	our	 roads,	 in	addition	 to	understanding	how	

pedestrians	interpret	their	behaviour	during	a	crossing	scenario,	it	is	important	to	

establish	whether	this	interpretation	is	improved	over	time,	and	what	contributes	

to	 this	 learning	 behaviour.	 There	 is	 currently	 some	 evidence	 that,	 following	

repeated	encounters	with	AVs,	pedestrians	learn	to	interpret	the	meaning	of	novel	

explicit	 cues	 provided	 by	 approaching	 AVs	 (in	 the	 form	 of	 explicit	 Human	

Machine	Interfaces,	or	eHMIs)	(Bindschädel	et	al.,	2022;	de	Clercq	et	al.,	2019;	Faas	
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et	al.,	2020;	Hochman	et	al.,	2020;	Lee	et	al.,	2022;	Madigan	et	al.,	2023).	This	is	

reflected	by	a	faster	decision-making	time	(Lee	et	al.,	2022;	Madigan	et	al.,	2023),	

an	 adjustment	of	 crossing	behaviour	 (Hochman	et	 al.,	 2020),	 and	an	 increased	

feeling	of	safety,	trust	or	acceptance	(Bindschädel	et	al.,	2022;	Faas	et	al.,	2020).	

However,	understanding	how	pedestrians	use	implicit	cues	from	vehicles	to	aid	

their	 crossing	 behaviour	 and	 how	 these	 change	 over	 time,	 is	 not	 yet	 well-

understood.	 Yet,	 this	 information	 is	 valuable	 for	 improving	 the	 implicit	 cues	

provided	by	AVs.	As	with	any	multi-actor	interaction,	understanding	how	and	if	

any	changes	in	pedestrian	behaviour	affects	drivers’	response	over	time	can	help	

to	 develop	 more	 effective	 communication	 strategies	 between	 drivers	 and	

pedestrians	interacting	with	automated	vehicles	in	the	same	road	space.	

2.1.1 Research	questions	

In	light	of	the	above	discussions,	the	following	research	questions	were	addressed	

in	this	study:		

1. How	do	infrastructural	elements	(such	as	zebra	crossings),	and	kinematic	

cues	 (i.e.,	 time	 gaps),	 influence	 drivers'	 deceleration	 and	 lateral	 vehicle	

control?	

2. Does	this	behaviour	change	over	repeated	interactions?		

3. How	does	driver	behaviour	(i.e.,	deceleration	and	lateral	vehicle	control)	

affect	pedestrians'	crossing	decisions,	and	does	this	change	over	repeated	

interactions?	

To	 address	 these	 questions,	 the	 current	 road	 crossing	 study	 examined	 the	

behaviour	of	pairs	of	pedestrians	and	drivers	who	interacted	with	each	other	in	

real	 time,	 by	 means	 of	 a	 distributed	 simulation	 environment.	 Each	 actor	 was	

encouraged	to	cross	in	front	of	the	other	across	a	different	set	of	scenarios,	also	

differentiated	by	a	range	of	infrastructural	settings,	as	outlined	below.	In	addition	

to	 enhancing	 our	 understanding	 of	 how	 road	 infrastructure	 and	 vehicle	
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kinematics	 affect	 pedestrian	 and	 driver	 interactions,	 we	 investigated	 the	

reciprocal	and	interactive	effect	of	driving	patterns	on	pedestrian	response,	and	

vice	 versa.	 This	 research	 aims	 to	 identify	 driving	 patterns	 that	 contribute	 to	

human-like	behaviours	and	responses,	enabling	future	AVs	to	achieve	safer	and	

more	efficient	interactions	in	urban	environments.	

2.2 METHOD	

2.2.1 Participants		

Following	approval	from	the	University	of	Leeds	Ethics	Committee	(Reference	No	

AREA	21-022),	we	recruited	thirty-two	pairs	of	pedestrians	(aged	19	–	34,	M	=	25.09,	

SD	=	0.87)	and	drivers	(aged	19	–	50,	M	=31.53,	SD	=	1.72),	using	the	University	of	

Leeds	Driving	Simulator	Database.	Gender	was	balanced	by	including	8	pairs	of	

male-male,	 male-female,	 female-female,	 and	 female-male,	 pedestrian-driver	

participants.	Eligibility	criteria	stipulated	that	pedestrians	should	have	resided	in	

the	UK	for	over	a	year,	while	drivers	were	required	to	possess	a	minimum	of	three	

years	of	regular	driving	experience	in	the	UK/EU.	Participants	were	compensated	

£20	for	taking	part	in	the	study.	

2.2.2 Distributed	simulation	setup	

The	experiment	was	carried	out	by	connecting	a	CAVE-based	pedestrian	simulator	

to	a	high-fidelity	driving	simulator,	enabling	concurrent	interaction	of	driver	and	

pedestrian	 participants	 within	 the	 virtual	 environment	 (for	 a	 more	 detailed	

methodology	see:	Kalantari	et	al.	2023	and	Yang	et	al.	2023).		

The	University	of	Leeds	Driving	Simulator	 (UoLDS)	consists	of	 a	 Jaguar	S-type	

cabin	situated	within	a	4-meter	diameter	sphere.	This	sphere	incorporates	a	300°	

field-of-view	projection	system	and	operates	on	an	8-degree	of	freedom	motion	

platform	 (Figure	 2.1A).	 The	 CAVE-based	 pedestrian	 simulator	 (the	 Highly	
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Immersive	 Kinematic	 Experimental	 Research	 or	 HIKER	 pedestrian	 laboratory)	

provides	a	9	meters	long	×	4	meters	wide	walking	area.	Virtual	scenes	are	projected	

on	the	floor	and	four	glass	walls	(Figure	2.1B).		

For	 pedestrian	 detection,	 a	 body	 tracking	 suit,	 equipped	 with	 fourteen	 body	

markers,	 was	 worn	 along	 with	 a	 pair	 of	 stereoscopic	 motion-tracking	 glasses	

(Figure	2.1C).	Pedestrian	movement	in	the	HIKER	setup	was	monitored	with	ten	

VICON	infrared	cameras.	This	provides	the	driver	with	graphical	representations,	

depicting	 the	 pedestrian's	 body	 motions	 (Sadraei	 et	 al.,	 2020)	 (Figure	 2.1D).	

Pedestrians	could	see	the	traffic	but	not	the	driver,	although	they	were	informed	

they	were	interacting	with	a	real	human	driver.	

	 	

(A)	University	of	Leeds	Driving	Simulator	
(UoLDS)	

(B)	Pedestrian	simulator	(HIKER)	

	
(C)	Pedestrian's	view	of	the	approaching	

vehicle	(in	the	HIKER)	

	
(D)	Driver’s	view	of	the	pedestrian	(in	the	

UoLDS)	

Figure	2.1.	Set	up	of	the	distributed	simulation,	showing	the	pedestrian	in	the	

HIKER	and	the	drivers’	view	of	the	pedestrian.		
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2.2.3 Experimental	design		

Participants	 assuming	 the	 driver’s	 role	 were	 asked	 to	 navigate	 a	 two-lane	

contraflow	road,	each	with	a	width	of	4.5	meters,	while	adhering	to	the	posted	

speed	 limit	 of	 30	 mph	 (48	 km/h).	 This	 road	 included	 pedestrian	 refuges,	

positioned	in	the	centre	of	the	two	lanes	(the	yellow	block	in	Figure	2.2),	which	

is	 a	 raised	 island	 in	 the	 centre	 of	 the	 road,	 providing	 a	 safe	 waiting	 area	 for	

pedestrians	 to	 cross	 one	 direction	 of	 traffic	 at	 a	 time	 (see	 in	Figure	 2.1C	 and	

Figure	2.1D).	

The	 road	design	was	 illustrated	 in	Figure	2.2,	 showing	 the	pedestrian	crossing	

location:	with	zebra	crossing	(left	two	blue	crosses)	and	without	zebra	crossing	

(right	two	blue	crosses).	The	bottom	cross	was	used	to	align	the	standing	position	

for	all	pedestrians,	who	were	hidden	behind	an	obstacle	(e.g.,	bus	stop),	which	is	

depicted	as	the	grey	block	on	the	right	hand	of	each	crossing	location.	These	were	

used	to	ensure	pedestrians	and	drivers	were	concealed	from	each	other	prior	to	an	

interaction	(not	all	bus	stops	had	a	concealed	pedestrian).	Pedestrians	stepped	out	

to	the	top	cross	when	they	heard	a	beep,	signifying	the	start	of	a	crossing	trial,	and	

stopped	at	 the	pedestrian	refuge	(the	yellow	block	 in	the	middle	of	 the	street),	

before	returning	to	the	blue	crossed	as	the	end	of	the	trial.			

	

Figure	2.2.	A	bird’s	eye	view	of	the	road,	developed	using	Unity		

The	 auditory	 cue’s	 activation	was	 determined	 by	 the	 temporal	 distance	 of	 the	

approaching	vehicle	to	the	centre	of	the	pedestrian	refuge,	and	the	vehicle’s	speed.	
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This	 synchronization	 enabled	 pedestrians	 to	 step	 onto	 the	 crossing	 area	 and	

initiate	interaction	with	the	driver	when	the	approaching	vehicle’s	time	gap	was	3	

s,	4	s,	5	s,	6	s,	and	7	s.	Drivers	did	not	hear	the	auditory	tone,	but	they	needed	to	

react	to	the	pedestrians	after	they	stepped	out	on	the	road.	This	setup	allowed	us	

to	investigate	how	each	time	gap	influenced	drivers’	responses	and	pedestrians’	

crossing	decisions.		

2.2.4 Procedure	

Before	 attending	 the	 study,	 drivers	 and	 pedestrians	 were	 provided	 with	 their	

respective	information	sheets,	which	included	details	of	the	study,	and	their	role	

in	 the	experiment.	Upon	arrival,	 they	were	directed	 to	 their	 respective	briefing	

area	within	the	driver	or	pedestrian	simulator.	Here,	they	reviewed	and	signed	the	

consent	 form,	 with	 another	 opportunity	 to	 read	 the	 information	 sheet.	 Both	

parties	were	informed	about	the	presence	of	the	other	participant,	but	never	met	

them	in	person.	

At	the	start	of	the	study,	both	participants	were	told	they	would	interact	with	each	

other	 in	 a	 series	 of	 road	 crossing	 scenarios,	 in	 a	 virtual	 reality	 distributed	

simulation	 experiment.	 They	 were	 instructed	 to	 imagine	 being	 late	 for	 an	

important	meeting,	and	asked	to	avoid	unnecessary	delays	during	this	interaction,	

while	ensuring	their	safety.	Additionally,	drivers	were	reminded	that	pedestrians	

hold	priority	in	scenarios	involving	zebra	crossings.	

To	facilitate	familiarity	with	the	tasks	and	the	virtual	environment,	two	practice	

sessions	were	conducted.	The	initial	session	focused	on	drivers,	allowing	them	to	

familiarise	themselves	with	vehicle	control	and	speed	management.	Once	drivers	

expressed	 comfort	 with	 the	 virtual	 environment,	 the	 second	 practice	 session	

commenced.	 This	 involved	 interaction	 between	 the	 driver	 and	 pedestrian,	

exposing	each	to	the	task	and	the	virtual	environment	through	ten	randomized	
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trials.	Subsequently,	the	actual	experiment	began,	featuring	two	identical	blocks,	

each	comprising	of	20	randomized	trials.	

Drivers	 received	 instructions	 to	navigate	a	 two-lane	 road,	with	 two-way	 traffic,	

which	included	other	virtual	vehicles.	Drivers	were	asked	to	respond	to	crossing	

to	 pedestrians	 who	 were	 concealed	 behind	 the	 bus	 stop.	 Pedestrians	 were	

equipped	with	motion	tracking	markers	on	their	body	and	a	pair	of	glasses.	They	

were	asked	to	stand	on	the	 first	blue	cross	marked	on	the	CAVE’s	 floor,	which	

obstructed	 their	 view	 of	 approaching	 vehicles.	 Upon	 hearing	 a	 short	 auditory	

beep,	pedestrians	were	 instructed	to	move	to	the	second	blue	cross,	enhancing	

their	 visibility	 of	 the	 approaching	 vehicle	 (see	Figure	 2.2).	 From	 this	 position,	

pedestrians	were	asked	to	assess	the	situation	and	make	a	crossing	decision	if	they	

felt	it	was	safe	to	do	so.	Drivers	did	not	hear	this	auditory	beep	and	only	reacted	

to	the	pedestrian.	

After	concluding	the	experiment,	participants	were	requested	to	complete	a	post-

session	 questionnaire	 regarding	 their	 encounters	 within	 the	 virtual	 reality	

environment.	Additionally,	 they	were	 tasked	with	providing	 their	demographic	

details	and	offering	insights	into	their	interactions	with	their	fellow	participant,	

particularly	 regarding	 factors	 that	 influenced	 their	 decisions	 to	 either	 proceed	

first,	or	not,	during	the	interaction.	These	results	are	reported	in	Kalantari	et	al.	

2023.	

2.2.5 Data	analysis	

Each	pair	of	participants	experienced	ten	unique	interactions,	consisting	of	two	

types	of	crossing	(with	or	without	a	zebra	crossing)	across	five	different	time-gaps	

ranging	from	3	to	7	seconds.	Each	of	these	scenarios	was	repeated	four	times,	and	

the	 sequence	 of	 encounters	 (1st	 /2nd	 /3rd	 /4th)	 was	 treated	 as	 an	 independent	

variable	 for	 evaluating	 the	 influence	 of	 exposures	 on	 learning	 patterns	 for	

pedestrians.	Overall,	the	data	was	collected	from	32	participant	pairs,	each	having	
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40	 interactions.	 Out	 of	 these	 1280	 trials,	 1279	 were	 analysed,	 as	 one	 trial	 was	

omitted	due	to	technical	issues.	A	generalised	linear	mixed-effects	model	(GLMM)	

was	used	to	analyse	the	data	collected	in	the	repeated	measures	design.		

To	answer	the	first	and	second	research	question,	we	examined	the	influence	of	

factors	such	as	zebra	crossings,	approaching	vehicle	time	gaps,	and	the	sequence	

of	 encounters	 on	 drivers'	 behaviour	 (see	 Figure	 2.3,	 GLMM	 1-3).	 Drivers’	

behavioural	data	was	collected	from	the	start	of	the	auditory	tone.	If	pedestrians	

crossed	before	the	vehicle	passed,	the	driving	behaviour	data	used	for	the	analysis	

ended	 when	 pedestrians’	 crossing	 initiation	 began.	 If	 the	 pedestrian	 had	 not	

crossed	by	the	time	the	vehicle	had	reached	the	central	refuge,	vehicle	data	was	

collected	until	after	the	car	passed	this	refuge.		

A	decrease	in	speed	can	represent	driver’s	intent	to	give	pedestrians	the	right	of	

way	(Ackermann	et	al.,	2019;	Dietrich	et	al.,	2020;	Risto	et	al.,	2017).	Consequently,	

we	recorded	average	deceleration	rates	to	capture	this	aspect	of	driver	response.	

Meanwhile,	braking	behaviour	 is	 also	 typically	 considered	 to	be	 indicative	of	 a	

driver's	intention	to	yield	and	pedestrians’	crossing	decisions	can	be	influenced	by	

brake	 timing	 (Beggiato	 et	 al.,	 2018).	To	 study	 the	 relationship	between	drivers’	

braking	 behaviour	 at	 different	 pedestrian	 positions,	 we	 created	 the	 "Vehicle	

Proximity	 to	 Pedestrian	 at	 Peak	 Braking"	 (PPPB)	 metric.	 This	 identified	 the	

distance	of	the	vehicle	to	pedestrians,	when	maximum	brake	force	was	applied.	

Previous	studies	have	used	braking	distance	to	evaluate	an	early	or	late	brake	time	

(Bella	&	Silvestri,	2015)	with	drivers	simply	reacting	to	a	crossing	pedestrian.	In	

our	study,	this	relationship	was	more	interactive,	causing	variable	driving	patterns,	

such	as	intermittent	and	repeated	braking	(Bella	&	Silvestri,	2016).	Additionally,	

traditional	measures	 such	 as	Time-to-Collision	 (TTC)	were	not	 suitable	 in	 this	

context,	as	slow	vehicle	speeds	in	this	study	(e.g.	creeping	forward)	often	led	to	

highly	extreme	TTC	values,	making	interpretation	difficult.	The	PPPB	was	used	to	

signify	the	timing	of	drivers’	first	decision	to	yield,	or	not.	A	lower	PPPB	signified	
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a	 later	 brake	 response.	 Additionally,	 we	 examined	 the	 vehicle’s	 average	 lateral	

deviation	 during	 the	 interaction,	 as	 this	 has	 been	 used	 in	 previous	 studies	 to	

represent	drivers’	yielding	intent	(Fuest	et	al.,	2018).	

To	address	the	third	research	question,	 the	GLMM	was	applied	to	examine	the	

impact	 of	 drivers’	 responses	 on	 pedestrians’	 crossing	 decisions	 (Figure	 2.3).	 A	

binary	response	variable	indicating	interaction	outcomes	(1	=	pedestrian	crossed,	

0	=	pedestrian	did	not	cross,	and	vehicle	passed),	was	used.	A	forward	selection	

regression	modelling	approach,	 commonly	 referred	 to	as	a	 stepwise	 regression,	

was	employed,	to	allow	for	a	structured	and	hierarchical	understanding	of	the	data	

and	avoid	overfitting	(James	et	al.,	2013).	This	stepwise	approach	was	utilised	to	

disentangle	direct	and	indirect	effects	(Harrell,	2001),	since	drivers’	behaviour	was	

likely	to	be	influenced	by	presence	of	the	zebra	or	the	approaching	time	gap,	which	

was	then	likely	to	have	influenced	pedestrians’	crossing	decisions.	In	the	Step	1,	

Model	1	(GLMM	4)	integrated	factors	such	as	the	presence	of	zebra	crossings,	time	

gaps,	and	the	number	of	encounters	 to	establish	 the	baseline	understanding	of	

how	 these	 factors	 directly	 influenced	 pedestrians’	 crossing	 decisions.	 Building	

upon	the	foundation	of	Model	 1,	Model	2	(GLMM	5)	 in	step	2	extended	this	by	

incorporating	 drivers'	 behaviour	 and	 the	 interactive	 effects	 of	 zebra	 crossings,	

time	 gaps,	 and	 encounters,	 to	 identify	 the	 key	 factors	 influencing	 pedestrian	

crossing	decisions.	Apart	from	these	fixed	effects,	participants	were	considered	as	

a	random	effect.	This	stepwise	approach	was	utilised	to	disentangle	these	direct	

and	 indirect	 effects	 (Harrell,	 2001)	 and	account	 for	 individual	differences	 in	all	

models.	The	analysis	was	carried	out	using	the	lme4	function	of	the	R	package.	
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Figure	2.3.	Procedure	used	for	the	data	analysis.	Drivers’	behaviour	and	

pedestrians’	crossing	decisions	are	reported	in	section	2.3.1	and	2.3.1,	

respectively.	

	

2.3 RESULTS	

2.3.1 Drivers’	behaviour	

Mean	deceleration	rate	

As	shown	in	Table	2-1,	the	GLMM	revealed	a	significant	effect	of	zebra	crossing	

on	drivers’	average	deceleration	(p	<	0.001),	compared	to	scenarios	without	zebra	

crossings	(M	=	0.68,	SE	=	0.04	vs	M	=	0.18,	SE	=	0.03).	Additionally,	the	drivers’	

mean	deceleration	decreased	with	the	 increasing	time	gaps	(p	<	0.001)	 (Figure	

2.4).		

Table	2-1.	Results	of	three	GLMM	estimates	analysing	the	impact	of	zebra	

crossing,	time	gap	and	encounter	on	driver	behaviour 

	 Deceleration	

Predictors	 EST	 SE	 t	 CI	(L-U)	 p	

Intercept	 0.90		 0.07		 12.14		 (0.75,	1.04)	 <0.001	

Zebra	crossing	[Presence]	 0.50		 0.03		 17.13		 (0.44,	0.55)	 <0.001	
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Gap		 -0.14		 0.01		 -12.86		 (-0.16,	-0.12)	 <0.001	

Encounter	 0.00		 0.01		 -0.06		 (-0.02,	0.02)	 .953	
	 Proximity	to	pedestrian	at	peak	braking	

Predictors	 EST	 SE	 t	 CI	(L-U)	 p	

Intercept	 -23.85	 2.18	 -0.93	 (-28.13,	-19.57)	 <0.001	

Zebra	crossing	[Presence]	 -8.21	 0.86	 -9.51	 (-9.90,	-6.52)	 <0.001	

Gap		 14.35	 0.31	 46.99	 (13.75,	14.94)	 <0.001	

Encounter	 0.37	 0.39	 0.95	 (-0.39,	1.12)	 .341	
	 Lateral	deviation	

Predictors	 EST	 SE	 t	 CI	(L-U)	 p	

Intercept	 0.25		 0.05	 4.91	 (0.15,	0.34)	 <0.001	

Zebra	crossing	[Presence]	 -0.09		 0.01	 -8.00	 (-0.12,	-0.07)	 <0.001	

Gap		 -0.01		 0.00	 -3.35	 (-0.02,	-0.01)	 <0.001	

Encounter	 0.02		 0.01	 3.39	 (0.01,	0.03)	 <0.001	

	

Drivers’	average	deceleration	rates	across	different	time	gaps	were	visualized	using	

a	violin	plot	(Figure	2.4).	This	combines	elements	of	a	box	plot	and	a	density	plot,	

using	 Kernel	Density	 Estimation	 (KDE)	 to	 create	 empirical	 probability	 density	

curves	 that	 show	the	data's	central	 tendency,	density,	distribution,	and	spread.	

The	width	of	the	violin	at	any	point	represents	data	density,	with	wider	sections	

indicating	higher	concentrations	of	data	points.	The	shape	of	the	violin	shows	the	

overall	distribution.	For	instance,	a	bimodal	distribution	appears	as	two	bulges.	

The	vertical	boundaries	indicate	the	data	range	and	variability,	with	longer	violins	

suggesting	greater	variability	and	shorter	ones	indicating	consistency	

As	shown	in	Figure	2.4,	the	spread	of	the	violin	decreased	with	the	increasing	time	

gaps.	This	 indicates	 that	drivers	 tended	 to	decelerate	at	a	more	consistent	 rate	

when	they	had	more	time,	where	the	most	common	deceleration	rates	were	0.033	

𝑚/𝑠!at	6	s	and	0.042	𝑚/𝑠!at	the	7	s	time	gaps.	Meanwhile,	a	bimodal	distribution	

was	 identified	 when	 the	 time	 gap	 was	 smaller	 than	 5	 s.	 Drivers	 showed	 two	
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primary	 deceleration	 rates	 at	 shorter	 time	 gaps:	 these	 were	 close	 to	 0.053	

𝑚/𝑠!	and	 3.61	𝑚/𝑠!at	 3	 seconds,	 approximately	 0.17	𝑚/𝑠!	and	 3.00	𝑚/𝑠!	at	 4	

seconds,	and	around	0.16	𝑚/𝑠!	and	2.59	𝑚/𝑠!	at	5	seconds.		

The	 number	 of	 encounters	 did	 not	 present	 a	 statistically	 significant	 effect	 on	

deceleration	rates	(p	=	0.953).		

	

Figure	2.4.	The	impact	of	time	gaps	on	the	drivers’	average	deceleration	rate.	A	

bandwidth	(bw)	setting	of	0.2	is	applied	in	the	KDE,	providing	moderate	

smoothing	that	enhances	the	visibility	of	underlying	data	trends	while	

smoothing	over	minor	fluctuations.	The	boxplots	show	the	quartiles,	where	the	

bottom	and	top	of	each	box	represents	the	first	(Q1)	and	third	(Q3)	quartile.	

The	white	lines	inside	the	box	denote	the	median	and	means	(in	black	dots),	

connected	by	the	dashed	lines.	

	

Proximity	to	pedestrian	at	peak	braking	

The	 outcomes	 obtained	 from	 the	 GLMM	 analysis	 revealed	 that	 peak	 braking	

occurred	at	much	closer	distances	to	pedestrians	during	the	zebra	crossing	trials	
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(M	=	40.6,	SE	=	1.05),	than	the	no	zebra	crossing	trials	(M	=	48.8,	SE	=	1.02)	(p	<	

0.001)	(Table	2-1).	This	pattern	remained	the	same	across	the	four	encounters	(p	

=	0.341).	Conversely,	as	the	time	gap	increased,	peak	braking	occurred	at	further	

distances	 from	 pedestrians	 (p	 <	 0.001)	 (Figure	 2.5).	 Additionally,	 as	 shown	 in	

Figure	 2.5,	 as	 the	 time	 gap	 increased,	 the	 spread	 of	 the	 vehicles’	 proximity	 to	

pedestrian	at	peak	braking	became	wider	(generally	indicating	more	variability).		

	

Figure	2.5.	The	violins	and	box	plots	show	the	impact	of	time	gaps	on	drivers’	

average	proximity	to	pedestrian	at	peak	braking.		

	

Mean	lateral	deviation	

The	GLMM	analysis	(Table	2-1)	exhibited	a	significant	impact	of	the	presence	of	

zebra	 crossings	 (p	<	0.001)	on	 the	vehicle’s	 lateral	deviation.	Drivers	 tended	 to	

exhibit	greater	lateral	deviation	away	from	pedestrians	(M	=	0.22,	SE	=	0.04)	in	the	

no	zebra	crossing	trials,	compared	to	those	with	zebra	crossings	(M	=	0.13,	SE	=	

0.04).	There	was	also	an	effect	of	time	gap	(p	<	0.001),	with	more	lateral	deviation	

away	from	the	pedestrian,	at	closer	distances.	There	was	also	a	significant	effect	of	
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encounter	 (p	 <	 0.001),	 with	 a	 minor	 increase	 in	 lateral	 deviation	 away	 from	

pedestrians,	over	time.		

In	 the	next	 section,	we	 report	on	how	this	behaviour	 from	the	vehicle	affected	

pedestrian	behaviour.		

2.3.1 Pedestrians’	crossing	decisions	

Data	from	Table	2-2	shows	that	the	presence	of	zebra	crossings	(p	<	0.001)	and	

larger	time	gaps	(p	<	0.001)	led	to	a	higher	likelihood	of	pedestrians	crossing	in	

Step	1	(Model	1),	where	the	number	of	encounters	showed	no	effect	(p	=	0.768).		

However,	for	Step	2	of	the	model,	where	drivers'	behaviours	were	included,	there	

seems	to	be	no	effect	of	zebra	crossing	(p	=	0.117).	This	shows	that	pedestrians’	

crossing	 decisions	 were	 influenced	 by	 drivers’	 behaviour.	 There	 was	 also	 an	

interaction	between	time	gaps	and	zebra	crossing	(Figure	2.6A),	whereby	larger	

approaching	 time	 gaps	 continued	 to	 be	 associated	 with	 a	 significantly	 higher	

likelihood	of	crossings	by	pedestrians	(p	<	.001),	especially	in	the	absence	of	zebra	

crossings.	 Although	 zebra	 crossings	 increased	 the	 likelihood	 of	 pedestrian	

crossings,	 this	 was	 only	 the	 case	 for	 the	 lower	 time	 gaps	 of	 3-	 and	 4-seconds	

(Figure	 2.6A).	 The	 likelihood	 of	 pedestrians	 crossing	 also	 increased	 with	 the	

number	of	encounters,	especially	for	the	3	and	4	s	time	gaps	(Figure	2.6B).			

Table	2-2.	Results	of	the	GLMM	estimates	for	pedestrians’	crossing	decision.		

	 Pedestrian	crossing	decision	
	 Model	1	

Predictors	 EST	 SE	 z		 OR	 p	 CI	(L-U)	

(Intercept)	 -
10.08	

0.00	 -
12.62	

0.00	 <0.001	 0.00	–	0.00	

Zebra	Crossing	
[Presence]	

5.53	 92.17	 15.21	 253.25	 <0.001	 124.09	–	516.82	

Gaps	 1.86	 0.82	 14.46	 6.41	 <0.001	 4.98	–	8.24	
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Encounters	 -0.03	 0.09	 -0.30	 0.97	 0.768	 0.82	–	1.16	

Observations	 1279	

Marginal	R2	/	Conditional	R2	 0.696	/	0.843	

AIC	 720.09	
	 Model	2	

Predictors	 EST	 SE	 z		 OR	 p	 CI	(L-U)	

(Intercept)	 -17.61	 0.00		 -7.87	 0.00	 <0.001	 0.00	–	0.00	

Zebra	Crossing	
[Presence]	

-3.53	 0.06	 -1.62	 0.03	 0.105	 0.00	–	2.08	

Gaps	 2.50	 4.88		 6.21	 12.3	 <0.001	 5.52	–	26.67	

Encounters	 1.35	 2.25		 2.32	 3.86	 0.021	 1.23	–	12.0	

Vehicle	Average	
Deceleration	

3.5	 7.63		 9.62	 23.31	 <0.001	 12.27	–	44.28	

Proximity	to	Ped	at	
Peak	Braking	

0.07	 0.01		 5.91	 1.07	 <0.001	 1.05–	1.10	

Lateral	Deviation	 -1.29	 0.18		 -1.99	 0.28	 0.046	 0.08	–	0.98	

Gaps	×	Encounters	 -0.24	 0.09		 -2.20	 0.78	 0.028	 0.63	–	0.97	

Zebra	Crossing	
[Presence]	×	Gaps	

1.95	 3.92	 3.48	 7.01	 <0.001	 2.34	–	2.00	

Observations	 	 1279	

Marginal	R2	/	Conditional	R2	 	 0.832/0.94	

AIC	 	 425.953	
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Figure	2.6.	Predicted	probabilities	of	pedestrians	crossing	as	a	function	of	(A)	

zebra	crossings	and	time	gaps	(B)	time	gaps	and	encounters.	The	shaded	area	

represents	95%	confidence	intervals.	

In	addition,	pedestrians	demonstrated	a	higher	probability	of	crossing	in	front	of	

the	vehicle	when	it	exhibited	greater	deceleration	rates	(Cross:	M	=	1.03	m/s2,	SE	

=	0.05;	Not	 cross:	M	=	 .09	m/s2,	 SE	=	0.02,	p	<	 .001).	Figure	2.7A	presents	 the	

density	spread	of	vehicle	average	deceleration	rate	when	pedestrians	crossed	and	

did	 not	 cross.	 When	 pedestrians	 crossed	 (blue	 shaded	 area),	 vehicle	 average	

deceleration	rate	shows	a	bigger	spread,	ranging	from	-1.38	m/s2	to	5.70	m/s2,	with	

a	 bimodal	 distribution,	 peaking	 at	 0.18	 m/s2	 and	 2.88	 m/s2.	 However,	 when	

pedestrians	 did	 not	 cross	 (red	 shaded	 area),	 vehicle	 average	 deceleration	 rate	

shows	a	smaller	spread,	ranging	from	-2.17	m/s2	to	3.03	m/s2,	peaking	at	0.02	m/s2.			

Similarly,	the	proximity	to	pedestrian	at	peak	braking	also	predicted	pedestrians’	

crossing	decision.	As	shown	in	Figure	2.7B,	when	pedestrians	crossed,	the	average	

vehicle	 proximity	 to	 pedestrian	 at	 peak	 braking	 was	 at	 a	 significantly	 further	

distance	(M	=	50.54	m,	SE	=	0.95),	compared	to	when	they	did	not	cross	(M	=	33.60	

m,	SE	=	0.95,	p	<	.001).	The	figure	also	shows	a	bimodal	distribution	for	the	peak	
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braking	 values	 at	 22.15	 m	 and	 72.15	 m,	 from	 pedestrians,	 when	 they	 crossed.	

However,	when	they	did	not	cross,	the	proximity	to	pedestrian	at	peak	braking	

was	at	31.89	m.	

We	 further	 examined	 the	 bimodal	 relationship	 between	 the	 vehicle’s	 average	

deceleration	and	the	proximity	to	pedestrian	at	peak	braking	when	pedestrians	

crossed	in	Figure	2.7C.		When	pedestrians	crossed,	they	were	more	likely	to	cross	

either	when	the	driver	presented	a	deceleration	rate	of	around	0.18	m/s2,	initiating	

a	peak	braking	behaviour	around	72.15	m	away	from	them,	or	when	there	was	a	

deceleration	rate	around	2.88	m/s2,	with	peak	braking	at	around	22.15	m	away	from	

them.	When	pedestrians	did	not	 cross,	 drivers	 drove	 at	 near-zero	deceleration	

rates	(max:	0.02	m/s2)	throughout	the	interaction.		

Finally,	we	 also	 found	 that	 the	 vehicle	 exhibited	 greater	 lateral	 deviation	 away	

from	the	pedestrian	path	when	pedestrians	did	not	cross	(p	<	.001),	with	a	mean	

lateral	deviation	of	0.24	m	(SE	=	0.01),	compared	to	when	pedestrians	crossed	(M	

=	0.15	m,	SE	=	0.02).		
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Figure	2.7.	Visualisations	of	vehicle’s	kinematics	and	pedestrian	crossing	

decisions	(A)	The	distribution	of	the	vehicle’s	deceleration	rate	when	

pedestrians	crossed	(blue)	and	pedestrian	did	not	cross	(vehicle	passed	first,	

red).	(B)	The	distribution	of	the	vehicle’s	proximity	to	pedestrian	at	peak	

braking	when	pedestrians	crossed	(blue)	and	pedestrian	did	not	cross	(vehicle	

passed	first,	red).		(C)	The	scatterplot	matrix	illustrates	the	relationship	

between	vehicles’	deceleration	and	proximity	to	pedestrian	at	peak	braking,	

categorised	by	pedestrian’s	crossing	decision.		

	

2.4 DISCUSSION	

The	aim	of	this	distributed	simulation	study	was	to	explore	the	complex	dynamics	

of	vehicle-pedestrian	interactions	in	a	scenario	which	encouraged	both	to	beat	the	

other	 in	 a	 road	 crossing	 scenario.	We	 investigated	 the	 effect	 of	 infrastructural	

differences	and	the	time	gap	between	the	vehicle	and	the	pedestrian	on	drivers’	
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behaviour	and	whether	these	changed	over	time.	We	then	examined	how	these	

responses	from	the	driver,	in	turn,	affected	pedestrians’	crossing	decisions.	

Results	 showed	 that	 drivers	 applied	 harder	 deceleration	 in	 approach	 to	 zebra	

crossings,	when	 compared	 to	 sections	without	 this	 infrastructure.	 This	 finding	

aligns	with	road	safety	norms	associated	with	zebra	crossings	in	the	UK,	where	

drivers	are	expected	to	be	more	cautious	and	considerate	of	crossing	pedestrians	

who	have	the	right	of	way	(Zhang	et	al.,	2020).	Previous	studies	have	found	that	

non-yielding	 intent	by	drivers	 is	often	characterised	by	maintaining	a	 constant	

speed,	 or	 even	 accelerating,	 on	 approach	 to	 pedestrians	 at	 zebra	 crossings	

(Várhelyi,	 1998).	However,	 in	 this	 study,	where	 the	driver	 and	pedestrian	were	

encouraged	to	prioritise	their	own	progress	in	the	crossing	task,	because	they	were	

both	late	for	a	meeting,	some	interesting	observations	were	made.	For	example,	a	

subtle	brake	was	seen	around	20	m	from	pedestrians	(Appendix	to	Chapter	2),	for	

the	no	zebra	crossing	trials.	Based	on	regulations	in	the	real	world,	drivers	do	not	

need	to	yield	in	these	conditions.	However,	since	the	pedestrians’	task	was	also	to	

cross	if	they	felt	safe	to	do	so,	drivers	are	seen	to	apply	a	gentle	brake,	in	order	to	

avoid	 colliding	 with	 the	 pedestrian.	 This	 driving	 pattern	 was	 also	 clearly	

understood	by	pedestrians,	who	used	the	vehicle’s	overall	dynamics	and	refrained	

from	crossing.		

Our	data	also	indicates	an	interesting	relationship	between	braking	patterns	and	

lateral	deviation.	For	example,	at	zebra	crossings,	when	drivers	illustrated	harder	

deceleration	rates,	they	were	also	seen	to	apply	peak	braking	at	closer	distances	to	

pedestrians	(Appendix	to	Chapter	2,	Figure	6.2a).	This	deceleration	pattern	was	

accompanied	 by	 a	 simultaneous	 lateral	 shift	 towards	 pedestrians	 (Appendix	 to	

Chapter	 2,	 Figure	 6.2b).	 However,	 in	 the	 absence	 of	 zebra	 crossings,	 drivers	

showed	softer	deceleration	and	their	peak	braking	occurred	earlier	(Appendix	to	

Chapter	2,	Figure	6.2a),	while	shifting	laterally	away	from	pedestrians	at	the	same	

time	 (Appendix	 to	Chapter	2,	Figure	6.2b).	Similar	patterns	have	been	seen	 in	
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real-world	studies	(Fuest	et	al.,	2018),	where	drivers	chose	to	drive	laterally	away	

from	pedestrians,	which	the	authors	suggest	was	an	attempt	to	indicate	their	non-

yielding	intent.	However,	the	Fuest	et	al.	(2018)	study	is	based	on	a	survey,	whereas	

we	believe	 that	 our	 study	 is	 the	 first	 to	 empirically	 document	 the	 existence	 of	

lateral	 movements	 in	 driver-pedestrian	 interactions,	 also	 demonstrating	 the	

correlation	of	lateral	movements	and	braking	behaviours.	The	lateral	movements	

seen	 in	 this	 study	 showing	 a	 clear	 difference	 between	 proactive	 and	 reactive	

driving,	with	 later	 and	harsher	braking	 likely	 associated	with	 a	desire	 to	 avoid	

colliding	 with	 pedestrians	 when	 approaching	 at	 a	 higher	 speed	 in	 the	 zebra	

conditions.		

These	 lateral	 movements	 have	 also	 been	 observed	 in	 pedestrian-pedestrian	

interactions.	When	pedestrians	encounter	each	other	on	intersecting	paths,	they	

must	quickly	decide	who	will	pass	 first	 and	who	will	 yield,	 in	order	 to	 avoid	a	

collision.	As	detailed	by	the	study	of	Olivier	et	al.	(2013),	the	pedestrian	who	is	to	

pass	first	will	adjust	their	trajectory	forward	relative	to	the	other	(A	veers	in	front	

of	B),	while	the	yielding	pedestrian	shifts	their	path	to	move	behind	(B	veers	to	

the	 back	 of	 A).	 Results	 of	 our	 study	 demonstrate	 that	 drivers,	 transfer	 their	

navigational	habits	into	their	driving,	particularly	in	interactions	involving	right-

of-way	decisions	with	pedestrians.	

In	line	with	Angioi	and	Bassani	(2022),	drivers’	mean	deceleration	decreased	with	

the	 increasing	time	gaps.	When	they	had	more	time,	drivers	tended	to	drive	at	

near-zero	deceleration	rates.	 In	contrast,	when	the	time	gap	was	smaller,	 there	

was	a	bimodal	distribution	of	deceleration,	where	drivers	either	tended	to	drive	at	

near-zero	deceleration	rates	or	at	2.59	to	3.61	m/s2,	depending	on	the	time	gap.	

This	bimodal	pattern	reflected	drivers’	intentions,	where	near-zero	rates	suggest	

a	 non-yielding	 behaviour	 and	 the	 other	 cluster	 of	 average	 deceleration	 rates	

indicate	 a	 yielding	 intent.	 In	 addition,	 as	 the	 time	gap	 increased,	drivers’	 peak	

braking	occurred	at	further	distances	from	pedestrians,	and	there	was	less	lateral	
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deviation	away	from	pedestrians.	These	results	highlight	the	diverse	patterns	in	

drivers'	behaviour	in	response	to	different	time	gaps	and	different	yielding	intents,	

providing	 valuable	 insights	 for	 the	 design	 of	 AVs	 that	 mimic	 human	 driving	

behaviours.	Additionally,	understanding	these	patterns	can	assist	pedestrians	in	

accurately	estimating	vehicle	movements,	thereby	enhancing	safety	for	crossing	

pedestrians.	

In	terms	of	pedestrians’	responses,	in	line	with	previous	research	(Clamann	et	al.,	

2017;	Havard	&	Willis,	2012;	Lee	et	al.,	2022;	Madigan	et	al.,	2023;	Tian	et	al.,	2023;	

Velasco	 et	 al.,	 2019),	 our	 results	 from	 the	 Model	 1	 analysis	 showed	 a	 higher	

likelihood	of	crossings	by	pedestrians	in	the	presence	of	zebra	crossings,	and/or	

when	there	was	a	higher	time	gap	for	the	approaching	vehicle.	In	addition,	there	

was	a	significant	interactive	effect	between	zebra	crossing	and	time	gaps	from	the	

Model	 2	 analysis,	which	 showed	 that,	 at	 zebra	 crossings,	 pedestrians	 appeared	

more	willing	 to	 cross	during	 shorter	 time	gaps,	 compared	 to	 locations	without	

such	markings.	However,	this	distinction	between	zebra	and	non-zebra	locations	

became	negligible	when	the	time	gaps	exceed	5	seconds,	or	more.	This	suggests	

that,	 for	 smaller	 time	 gaps,	 pedestrians	 relied	 on	 the	 zebra	 for	 their	 crossing	

decisions,	 but	were	more	willing	 to	 engage	 in	 jay	walking	behaviour	when	 the	

vehicle	was	further	away,	reducing	the	relative	value	of	the	zebra	crossings	as	a	

safety	aid	for	these	conditions.	However,	the	main	effect	of	zebra	crossings	became	

non-significant	in	Model	2,	when	the	effect	of	driver	behaviour	and	its	interactive	

effects	between	time	gaps	and	road	infrastructure	were	introduced.	We	found	that	

the	effect	of	zebra	crossing	on	pedestrians’	crossing	behaviour	was	also	influenced	

by	 the	 driver’s	 actions,	 which	 then	 subsequently	 shaped	 pedestrians’	 crossing	

decisions.	 This	 suggests	 that	 drivers’	 responses,	 particularly	 their	 braking	

behaviour,	was	a	crucial	intermediary	factor	which	supersedes	any	infrastructure-

based	cues.		
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Using	Model	2	we	also	found	that	pedestrians	were	able	to	use	the	different	types	

of	braking	patterns	to	inform	their	crossing	decisions.	For	example,	aggressive	and	

late,	or	soft	and	early	braking	patterns	led	to	more	crossings,	when	compared	to	

soft	 and	 late	 braking	 patterns.	 Results	 also	 showed	 that	 a	 higher	 rate	 of	

deceleration,	applying	peak	braking	earlier,	and	less	lateral	deviation	away	from	

pedestrians	were	all	easily	perceived,	increasing	the	likelihood	of	crossings.	This	

supports	 findings	 from	 previous	 studies	where	 early	 and	 assertive	 braking	 can	

foster	a	greater	propensity	to	cross	in	both	virtual	(Ackermann	et	al.,	2019;	Dietrich	

et	al.,	2020;	Tian	et	al.,	2023)	(Ackermann	et	al.,	2019;	Dietrich	et	al.,	2020;	Risto	et	

al.,	2017;	Tian	et	al.,	2023),	and	real-world	observations	(Risto	et	al.,	2017).		

We	 also	 found	 some	 behavioural	 adaptation	 by	 pedestrians	 and	 drivers	 across	

trials.	 As	 the	 experiment	 progressed,	 while	 drivers’	 mean	 deceleration	 and	

proximity	to	pedestrians	at	peak	braking	remained	the	same,	there	was	an	increase	

in	lateral	deviation	away	from	pedestrians,	indicating	that	drivers	were	less	willing	

to	 yield	 (Fuest	 et	 al.,	 2018;	 Sripada	 et	 al.,	 2021).	 At	 the	 same	 time,	 pedestrians	

demonstrated	 a	 trend	 of	 increasing	 their	 intention	 to	 cross	 as	 the	 experiment	

progressed.	This	trend	was	particularly	pronounced	at	shorter	time	gaps	of	3	and	

4	seconds,	implying	that	pedestrians	adopted	riskier	crossing	behaviour,	over	the	

trials.	This	adaptive	behaviour	likely	reflects	pedestrians'	evolving	comprehension	

of	how	drivers	reacted	to	their	presence,	and	may	illustrate	an	increased	sense	of	

trust	or	safety,	that	they	would	not	be	hit	by	the	vehicle.	Meanwhile,	the	results	

indicate	how	both	road	users	managed	to	“win”	 the	crossing,	by	adapting	their	

interactive	behaviours.	

2.4.1 Limitations	and	future	work	

In	terms	of	 limitations,	 this	study	only	 investigated	pedestrian	 interaction	with	

one	 type	 of	 vehicle,	with	 regards	 to	 its	 size	 and	 direction	 of	 approach.	 Future	

studies	with	more	realistic	 interactions	of	pedestrians	with	vehicles	of	different	

size	(Beggiato	et	al.,	2017),	approaching	from	different	directions	(Madigan	et	al.,	
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2023)	would	provide	a	better	understanding	of	how	crossing	decisions	are	affected	

by	 such	ecologically	 valid	 scenarios.	To	understand	how	AVs	 should	behave	 in	

different	 regions,	 studying	 the	 interaction	 of	 drivers	 (Özkan	 et	 al.,	 2006)	 and	

pedestrians	(Lee	et	al.,	2021)	from	different	cultural	backgrounds	may	also	be	of	

value.	Additionally,	this	study	primarily	focused	on	the	impact	of	driver	behaviour	

on	pedestrian	crossing	decisions,	assuming	that	drivers	have	greater	control	over	

these	 interactions.	 However,	 in	 certain	 cases,	 actions	 by	 pedestrians,	 such	 as	

stepping	into	the	roadway,	could	have	triggered	the	observed	driver	deceleration	

(Guéguen	 et	 al.,	 2015),	 indicating	 that	 causality	 might	 also	 originate	 from	

pedestrian	to	driver.	This	bidirectional	influence	was	not	extensively	explored	and	

requires	 further	 investigation	 to	 fully	 comprehend	 the	 dynamics	 of	 driver-

pedestrian	 interactions.	 Furthermore,	 this	 study	 offers	 insights	 into	 implicit	

driving	 behaviours	 observed	 for	 interactions	 between	 pedestrians	 and	 drivers.	

Therefore,	further	work	is	warranted	to	study	the	reciprocal	interaction	between	

pedestrians	and	real	AVs,	to	study	how	humans	adapt	to	the	driving	behaviour	of	

these	 vehicles	 over	 time.	 Additionally,	 the	 driver	 was	 not	 visually	 rendered	 to	

pedestrians,	which	may	have	reduced	face	validity	and	led	some	to	perceive	the	

vehicle	as	automated,	despite	being	 told	 it	was	human-driven.	This	could	have	

influenced	 responses	 to	 vehicle	 behaviour,	 and	 future	 studies	 could	 examine	

whether	framing	the	vehicle	as	an	AV	would	affect	pedestrian	behaviour.	Finally,	

due	to	technical	limitations,	the	VR	representation	of	pedestrians	to	drivers	in	our	

labs	 is	 currently	 achieved	 via	 a	 set	 of	 spherical	 and	 cuboidal	 markers.	 While	

functional	for	movement	tracking,	this	results	in	a	non-human-like	‘pink	bubble’	

appearance,	which	may	limit	face	validity	as	the	pedestrian	does	not	resemble	a	

typical	human	form.	Investigating	driver	response	to	more	anthropomorphic	and	

photorealistic	avatars	would	be	interesting	in	this	context.	
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2.4.2 Conclusions		

This	research	contributes	to	a	deeper	understanding	of	the	complex	interaction	

between	road	infrastructure	and	vehicle	kinematics	when	pedestrians	and	drivers	

are	 interacting	 in	 a	 distributed	 simulation	 VR	 study,	 also	 illustrating	 how	

behaviour	 changes	over	 time	 in	 this	 type	of	 short	duration	 study.	The	 insights	

gained	 from	 the	 examination	 of	 kinematic	 cues	 from	 the	 vehicle,	 and	 their	

influence	 on	 pedestrian	 behaviour	 underscores	 the	 potential	 of	 incorporating	

these	cues	into	the	design	of	automated	vehicles'	behaviour	to	aid	decisions	of	a	

crossing	 pedestrian,	 which	 could	 work	 in	 harmony	 with	 other	 means	 of	

communication,	such	as	externally	presented	HMI.	By	incorporating	human-like	

behaviours	 and	 responses	 into	 an	 automated	 vehicle’s	 kinematic	 cues,	 we	 can	

enhance	 its	 communication	with	pedestrians,	 thereby	 fostering	 safer	 and	more	

harmonious	interactions	in	dynamic	urban	environments,	improving	traffic	flow.		
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ABSTRACT	

In	 the	 future,	Automated	Vehicles	 (AVs)	may	be	 able	 to	use	pedestrians’	 head	

movement	patterns	to	understand	their	crossing	intentions.	This	ability	of	the	AV	

to	predict	pedestrian	crossing	intention	will	improve	road	safety	in	mixed	traffic	

situations	 and	may	 also	 enhance	 traffic	 flow,	 allowing	 the	 vehicle	 to	 gradually	

reduce	its	speed	in	advance	of	a	yield,	eliminating	the	need	for	a	complete	and	

erratic	halt.	To	date,	most	of	 the	work	conducted	on	studying	pedestrian	head	

movements	has	been	based	on	observation	studies.	To	further	our	understanding	

in	this	area,	this	study	examined	pedestrians'	head	movements	when	interacting	

with	 AVs	 during	 a	 range	 of	 road	 crossing	 scenarios,	 developed	 in	 a	 VR	

environment.	Thirty-eight	participants	took	part	in	this	CAVE-based	pedestrian	

simulator	 study.	 Head	 movements	 were	 recorded	 using	 stereoscopic	 motion-

tracking	 glasses,	 as	 pedestrians	 crossed	 the	 road	 in	 response	 to	 an	 AV	 which	

approached	from	the	right	(UK-based	road).	A	zebra	crossing	was	included	in	half	

of	 the	 trials	 to	 understand	 how	 it	 affected	 crossing	 behaviour.	 The	 effect	 of	

different	approaching	speeds	of	the	AV,	and	the	presence	of	an	external	Human-

Machine	Interface	(eHMI),	on	head	movements	and	crossing	behaviour	was	also	

studied.	 Results	 showed	 that	 the	 absolute	 head-turning	 rate	 (change	 in	

pedestrians'	head-turning	angle,	per	frame)	increased	significantly	at	around	1	s	

before	 a	 crossing	 initiation,	 reaching	 a	 peak	 at	 the	 crossing	 initiation,	 where	

pedestrians	presented	a	“last-second	check”	before	the	crossing	decision.	Another	

increase	 in	 absolute	 head-turning	 rate	 to	 the	 right	was	 seen	 at	 the	 end	 of	 the	

crossing	 (~	 1.5	 s	 after	 crossing	 initiation),	 to	 check	 the	 proximity	 of	 the	

approaching	 vehicle.	 A	 higher	 rate	 of	 head-turning	was	 also	 seen	 for	 AV-non-

yielding	scenarios.	Finally,	the	least	number	of	head	turns	was	seen	for	the	yielding	

conditions	which	included	an	eHMI,	in	the	presence	of	the	zebra	crossing.	These	

results	 show	 the	 value	 of	 infrastructural	 and	 vehicle-based	 cues	 in	 assisting	

pedestrians’	 crossing	 decisions	 and	 provide	 an	 insight	 into	 how	 head-turning	

behaviour	can	be	used	by	AVs	to	better	predict	pedestrians’	crossing	intentions	in	

urban	settings.		
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3.1 INTRODUCTION	

More	than	half	of	the	road	casualties	worldwide	involve	Vulnerable	Road	Users	

(VRUs)	(WHO,	2018),	among	which	pedestrians	are	one	of	the	most	vulnerable	

groups,	 accounting	 for	 27%	 of	 total	 road	 fatalities	 in	 the	 UK	 (Department	 for	

Transport,	2020).	Automated	Vehicles	(AVs)	are	expected	to	protect	VRUs	from	

traffic	accidents	(Anderson	et	al.,	2016),	as	they	can	promptly	respond	to	obstacles	

and	 critical	 situations,	 without	 some	 of	 the	 delayed	 judgements	 caused	 by	

humans.	However,	while	the	AV’s	radars	and	sensors	may	be	better	than	humans	

for	 such	 obstacle	 detection,	 they	 are	 not	 currently	 able	 to	 predict	the	 crossing	

intention	of	pedestrians,	especially	in	the	absence	of	clear	external	cues,	such	as	

head	and	hand	movements.	At	the	same	time,	there	is	currently	no	standard	or	

globally	adopted	form	of	externally	presented	form	of	communication	by	higher	

level	AVs.	For	these	AVs,	the	human	inside	the	vehicle	is	no	longer	in	charge	of	

the	driving	task	and	may	not	even	be	seated	in	the	traditional	driver’s	seat	(Level	

4	 and	 5)	 (SAE,	 2021).	 This	 creates	 new	 challenges	 for	 human	 factors	 experts,	

including	how	AVs	should	safely	interact	with,	and	communicate	their	intent	to,	

vulnerable	road	users	that	share	the	same	road	space	(Schieben	et	al.,	2019).		

Externally	presented	Human-Machine	Interfaces	(eHMI)	have	been	proposed	as	

one	 solution	 for	 facilitating	 the	 mutual	 understanding	 and	 safe	 interaction	

between	 AVs	 and	 VRUs.	 It	 is	 argued	 that	 these	 new	 forms	 of	 communication	

might	assist	VRUs	by	replacing	the	explicit	communication	cues	traditionally	used	

by	drivers.	eHMIs	can	be	sound-based	or	visual,	with	a	wide	range	of	locations	and	

designs	used	 for	presenting	visual	 information,	either	on	the	vehicle,	or	on	the	

road,	 including	 lights,	 texts,	 and	 symbols	 (Bazilinskyy	 et	 al.,	 2019;	 Carsten	 &	

Martens,	2019;	Dey	et	al.,	2020).	Research	has	shown	that	the	adoption	of	an	eHMI	

can	increase	pedestrians'	trust,	acceptance,	and	perceived	safety	of	AVs	(Faas	et	

al.,	2020;	Holländer	et	al.,	2019).	These	interfaces	also	lead	to	a	greater	willingness	

to	cross	and	faster	crossing	decisions	from	pedestrians	(Lee	et	al.,	2022;	Löcken	et	

al.,	 2019).	 However,	 research	 in	 this	 area	 is	 not	 conclusive,	 with	 some	 also	



3.1	Introduction	

	

	

119	

suggesting	 that	 eHMIs	 merely	 provide	 supplementary	 information,	 because	

implicit	 cues,	 such	 as	 the	 vehicle's	 yielding	 and	 stopping	 behaviour	 are	 more	

informative	(Dey,	Martens,	et	al.,	2019;	Lee	et	al.,	2020).		

Additionally,	 some	argue	 that	eHMIs	can	cause	visual	 and	mental	overload	 for	

pedestrians,	as	the	meaning	of	these,	mostly	novel,	messages	may	not	be	intuitive	

and	needs	to	be	correctly	interpreted	and	learnt	over	time	(Lee	et	al.,	2022).	In	the	

context	 of	 pedestrian-AV	 interactions,	 workload	 pertains	 to	 the	 cognitive	

resources	required	by	pedestrians	to	perform	the	crossing	task	(Young	&	Stanton,	

2004).	Kaß	et	al.	(2020)have	proposed	that	incorporating	eHMIs	could	improve	

communication	and	significantly	reduce	pedestrian	mental	workload.	However,	

contrary	 evidence	 has	 been	 reported	 by	 Gruenefeld	 et	 al.	 (2019),	 suggesting	 a	

negative	effect	of	eHMIs	on	mental	workload.		

One	 method	 used	 to	 investigate	 pedestrian	 attention	 and	 workload	 during	

crossings	is	an	overview	of	their	gaze	behaviour	(Dey,	Walker,	et	al.,	2019;	Eisma	

et	 al.,	 2020;	Guo	et	 al.,	 2022;	Hochman	et	 al.,	 2020).	For	 example,	pupil	 size	 is	

shown	 to	 increase	with	 increased	workload,	 and	 fixation	duration	 is	 known	 to	

correlate	with	the	level	of	processing	required,	while	the	location	of	a	fixation	is	a	

strong	 indicator	 of	 the	 location	 of	 visual	 attention.	 Research	 into	 pedestrians’	

attention	 allocation	 shows	 that	 both	 the	 frequency	 and	 duration	 of	 fixations	

increase	when	the	AV’s	intention,	and	the	meaning	of	its	eHMIs,	are	ambiguous	

(Guo	 et	 al.,	 2022;	 Liu	 et	 al.,	 2020).	 Studies	 also	 suggest	 that	 gaze	 patterns	 and	

pedestrian	behaviour	adapt	and	change	with	increased	exposure	to	AVs	or	eHMIs.	

For	example,	using	a	desk-based	simulation	study	Hochman	et	al.	(2020)	showed	

that	 pedestrians’	 gaze	 fixations	 and	 crossing	 response	 time	 (based	 on	 button	

presses)	 changed	 after	 repeated	 exposure	 to	 approaching	 AVs	 with	 different	

eHMIs,	regardless	of	eHMI	design.	

Although	 eye-tracking	 studies	 provide	 useful	 information	 about	 pedestrians’	

information-seeking	 behaviour	 and	 are	 useful	 for	 guiding	 optimal	 eHMI	

placement	 (de	Winter	 et	 al.,	 2021;	 Dey,	Walker,	 et	 al.,	 2019),	 the	 value	 of	 this	
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methodology	may	be	limited	if	vehicles	are	positioned	too	far	from	pedestrians,	

leading	 to	 inaccurate	 calibrations,	 or	 challenges	 with	 missing	 data,	 due	 to	

changing	 light	conditions.	One	solution	may	be	a	better	understanding	of	how	

pedestrians’	 head	movements	 can	 be	 used	 to	 understand	 the	 decision-making	

process,	and	ultimately	the	attention	and	workload	of	a	crossing	pedestrian.	Head	

orientation	patterns	are	thought	to	be	as	equally	informative	as	gaze	behaviour	to	

interpret	 pedestrians'	 information-seeking	 and	 attention-allocation,	 since	

pedestrians'	gaze	behaviour	and	realignment	are	constantly	 initiated	with	head	

orientation	(Hollands	et	al.,	2002;	Melvill	Jones	et	al.,	1988).			

Previous	studies	have	shown	that,	with	repeated	exposure,	pedestrians	gradually	

learn	the	meaning	of	messages	portrayed	by	AV	eHMIs,	based	on	faster	decision	

times	for	crossing	and	learnability	scores,	and	decreased	gaze	fixations	(Faas	et	al.,	

2020;	Hochman	et	al.,	2020;	Lee	et	al.,	2022).	There	is	also	a	general	increase	in	

trust,	feelings	of	safety,	and	acceptance	with	repeated	exposure	(Faas	et	al.,	2020).	

Based	on	these	results,	 it	 is	reasonable	to	assume	that,	with	repeated	exposure,	

pedestrians’	head-turning	behaviour	may	also	change	over	time	and	correlate	with	

a	better	understanding	of	AV	behaviour	and	eHMI	messages.		

Finally,	while	an	understanding	of	the	AV’s	behaviour	by	pedestrians	is	important,	

it	is	also	valuable	for	the	AV	to	correctly	interpret	pedestrians’	intent	and	situation	

awareness.	Non-verbal	cues	such	as	head	movements	are	typically	used	by	drivers	

as	a	key	indicator	of	pedestrians’	intention	to	initiate	a	crossing	(Hariyono	et	al.,	

2016;	Kooij	et	al.,	2014;	Kwak	et	al.,	2017),	and	their	situation	awareness	(Hassan	et	

al.,	2005;	Hollands	et	al.,	2002;	Rasouli	et	al.,	2018).	According	to	these	real-world	

observation	 studies,	 pedestrians'	 crossing	 intent	 can	 be	 predicted	 from:	 i)	 the	

direction	of	head	movements,	ii)	the	frequency	of	head	turns,	and	iii)	body	gait.	

For	 example,	 studies	 have	 shown	 that	 at	 the	 start	 of	 a	 crossing	 initiation,	

pedestrians	tend	to	turn	their	heads	first	in	the	direction	of	an	approaching	vehicle	

(Grasso	 et	 al.,	 1998;	 Imai	 et	 al.,	 2001;	 Patla	 et	 al.,	 1999),	 which	 indicates	 an	

awareness	of	its	approach,	reducing	the	likelihood	of	an	unsafe	crossing	(Kooij	et	
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al.,	2014).	Observations	from	roundabouts	and	intersections	have	shown	that,	for	

a	vehicle	approaching	from	the	right,	pedestrians	tend	to	turn	their	heads	to	the	

left	before	stepping	off	the	curb	and	then	to	the	right	before	crossing	(Geruschat	

et	al.,	2003).	In	terms	of	head-turning	frequency,	these	tend	to	increase	around	4	

s	before	a	 crossing,	 reaching	a	peak	during	 the	 last	 second	before	 the	crossing	

begins	(Hassan	et	al.,	2005).	Observations	also	show	that	the	highest	number	of	

head	turns	occur	at	the	start	and	middle	of	the	crossroad,	to	confirm	the	vehicle's	

proximity	and	ensure	a	safe	crossing	(Hamaoka	et	al.,	2013).	Finally,	pedestrians	

are	 found	 to	 turn	 their	heads	 first	 just	before	a	crossing	 initiation,	 followed	by	

movement	of	the	rest	of	the	body	(Kalantarov	et	al.,	2018).		

As	indicated	above,	most	of	the	research	in	this	area	has	focused	on	investigating	

the	interactions	between	pedestrians	and	manually	driven	vehicles,	and	findings	

are	mainly	 based	 on	 observation	 studies.	 However,	 little	 is	 known	 about	 how	

pedestrians	 might	 interact	 with	 future	 AVs,	 especially	 those	 without	 a	 driver	

(Level	 4;	 SAE,	 2021).	 In	 addition,	 a	 large	 proportion	 of	 studies	 investigating	

pedestrian	interaction	with	AVs	have	used	a	single-lane	road	environment,	with	

little	known	about	more	complex	settings,	such	as	a	4-way	crossroad.	In	terms	of	

the	 effect	 of	 traffic	 infrastructure	 on	 crossing	behaviour,	 previous	 studies	 have	

shown	that	pedestrians	are	more	willing	to	cross,	make	quicker	crossing	decisions,	

and	 feel	 safer	 at	 zebra	 crossings	 (Clamann	 et	 al.,	 2017;	 Havard	 &	Willis,	 2012;	

Velasco	et	al.,	2019).	Regarding	interactions	with	AVs,	both	a	VR	study	by	Velasco	

et	al.	 (2019),	and	a	naturalistic	 study	by	Clamann	et	al.	 (2017),	have	 found	that	

pedestrians	 had	 a	 higher	willingness	 to	 cross,	 and	 spent	 less	 time	 on	 crossing	

decisions,	at	zebra	crossings.		

3.1.1 The	current	study	

Based	on	the	current	state	of	the	art,	the	main	aim	of	the	present	study	was	to	

close	the	research	gap	in	this	area,	by	investigating	the	head-turning	behaviour	of	

a	group	of	pedestrians,	who	crossed	the	road	in	front	of	AVs,	which	approached	a	
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four-way	crossing	from	the	right.	To	understand	how	crossing	behaviour	and	head	

turns	were	affected	by	different	infrastructures,	a	zebra	crossing	was	included	in	

half	of	the	trials.	We	also	investigated	the	effect	of	different	yielding	patterns	from	

the	AV,	 the	presence	of	an	eHMI,	and	repeated	exposures	 to	 the	AV,	on	head-

turning	 behaviours.	 In	 addition	 to	 furthering	 our	 understanding	 of	 how	 these	

different	conditions	affect	pedestrians’	head-turning	behaviour,	we	hoped	that	the	

use	 of	 a	 head-tracking	 device	 in	 a	more	 controlled	 virtual	 environment	would	

allow	 us	 to	 provide	 more	 knowledge	 to	 developers	 and	 designers	 wishing	 to	

enhance	their	intent-recognition	algorithms	for	future	AVs.		

3.2 METHOD	

3.2.1 Participants	

Thirty-eight	participants	(20	female,	 18	male)	were	recruited	for	the	study	(Age	

range	22-58	years,	M=33.82,	SD=10.30),	using	the	University	of	Leeds	database,	and	

reimbursed	 £30	 for	 their	 participation.	 All	 participants	 were	 required	 to	 be	

residing	in	the	UK	for	at	least	one	year	and	provided	written	consent	to	take	part	

in	the	study.	Participants	reported	normal	or	corrected-to-normal	vision	and	were	

free	from	any	head	or	upper/lower	ailments	that	could	impair	their	walking	ability.	

The	 study	 was	 approved	 by	 the	 University	 of	 Leeds	 Ethics	 Committee	 (Ref:	

LTTRAN-107)	 and	 complied	 with	 all	 guidelines	 set	 out	 in	 the	 declaration	 of	

Helsinki.		

This	 study	 used	 the	 head-tracking	 data	 collected	 as	 part	 of	 a	 virtual	 reality	

experiment	developed	for	the	EC	project	interACT	(Grant	Agreement	No.	723395)	

to	investigate	the	impact	of	road	infrastructure	and	eHMIs	on	pedestrian	crossing	

decisions	at	a	residential	crossing	(see	(Madigan	et	al.,	2023)).	



3.2	Method	

	

	

123	

3.2.2 Apparatus	and	the	virtual	environment				

The	experiment	was	conducted	in	a	CAVE-based	pedestrian	simulator:	the	Highly	

Immersive	Kinematic	 Experimental	 Research	 (HIKER)	 lab,	 at	 the	University	 of	

Leeds	(Figure	3.1).	The	lab	provides	a	9	m	long	×	4	m	wide	walking	space,	and	the	

virtual	scene	is	reproduced	by	eight	4K	projectors	behind	glass	panel	walls	and	

adjusted	constantly	in	line	with	the	pedestrian’s	head	position	(using	trackers	on	

a	pair	of	glasses),	to	ensure	the	projection	fits	the	pedestrian’s	visual	perspective.	

As	shown	in	Figure	3.1,	the	scenario	was	created	using	the	Unity	game	engine.	It	

consisted	of	a	residential	4-way	crossing	with	a	single	lane	(3.6	m	wide)	in	each	

direction.		

	

Figure	3.1.		Interaction	between	the	pedestrian	at	the	zebra	crossing	and	the	AV	

approaching	from	the	right,	with	the	eHMI	on,	in	the	HIKER	lab.	The	yellow	

cross	indicates	the	pedestrian’s	starting	position.		
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3.2.3 Study	Design		

A	fully	within-participant	experimental	design	was	 implemented	 for	 this	study,	

with	participants	experiencing	52	trials	involving	four	variables.	The	independent	

variables	 were:	 (i)	 the	 presence/absence	 of	 a	 zebra	 crossing,	 (ii)	 the	 vehicle’s	

approaching	 direction	 (oncoming/right),	 (iii)	 vehicle	 yielding	 behaviour	

(yielding/non-yielding/no	encounter),	and	(iv)	the	presence/absence	of	an	eHMI,	

when	it	was	yielding.	The	52	trials	were	divided	into	two	counterbalanced	blocks.	

To	 minimise	 participant	 confusion,	 the	 zebra/no	 zebra	 crossing	 trials	 were	

blocked.	Each	block	included	26	trials,	with	AVs	approaching	from	the	oncoming	

direction	 (13	 trials)	 or	 the	 right	 (13	 trials).	Also,	within	 each	block,	 pedestrians	

came	across	 six	yielding,	 six	non-yielding	and	one	no-encounter	AV	 from	each	

direction.	The	“no	encounter”	AV	trial	was	used	as	a	ghost	trial,	such	that	the	AV	

did	not	pass	the	pedestrian’s	path	(depicted	by	the	black	arrows	in	Figure	3.2).	If	

the	AV	approached	from	the	right,	the	“no	encounter”	AV	would	turn	to	the	left.	

If	 the	 AV	 approached	 from	 the	 oncoming	 road,	 the	 “no	 encounter”	 AV	would	

continue	 to	drive	straight	 through	the	 intersection.	Finally,	half	of	 the	yielding	

AVs	displayed	an	eHMI	indicating	its	intent.	There	was	no	sound	associated	with	

the	approaching	AV	and	order	of	trials	in	each	block	was	randomised.	

The	vehicle’s	trajectory,	speed	profile	and	timings	for	each	driving	behaviour	are	

shown	in	Figure	3.2.	For	each	right-approaching	trial,	the	AV	drove	from	point	A	

(27.4	m	from	the	pedestrian)	at	a	speed	of	25	mph,	and	decelerated	to	stop	after	3	

s	at	the	junction	(point	B,	9.4	m	from	the	pedestrian).	If	it	was	a	non-yielding	AV,	

it	would	accelerate	instantly	(to	point	D)	at	a	rate	of	0.89	𝑚/𝑠!.	For	yielding	trials,	

the	AV	took	4	seconds	to	edge	forward	between	point	B	and	C,	and	stopped	before	

the	zebra	crossing	(point	C,	3.42	m	from	the	pedestrian)	for	3	s,	before	accelerating	

away.	The	“edging”	behaviour	was	used	to	mimic	real-world	yielding	behaviour	at	

junctions	(Dietrich	et	al.,	2018),	providing	an	implicit	form	of	communication	by	

the	AV.		
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Figure	3.2.		A	birds’	eye	view	of	the	crossroad	(left)	and	the	speed	profiles	used	

for	the	yielding	and	non-yielding	AVs	(right).	Note	that	the	eHMI	

onset	occurred	at	the	same	time	as	the	“edging”	behaviour	started.	The	compass	

in	the	left	figure	indicates	that	the	head-turning	angle	was	180°	when	

pedestrians	were	facing	the	front	and	270°	when	turning	to	the	right.	

	

In	 half	 of	 yielding	 trials,	 an	 eHMI	 was	 displayed	 in	 addition	 to	 the	 “edging”	

behaviour	 to	 indicate	 the	 intent.	The	eHMI,	which	was	designed	as	part	of	 the	

interACT	project,	was	a	Slow	Pulsing	Light	Band	(SPLB)	–	a	cyan-coloured	light	

placed	on	the	front	side	of	the	vehicle’s	windscreen	(see	Figure	3.1),	which	when	

turned	on,	pulsed	at	a	rate	of	0.4	Hz,	to	indicate	the	vehicle’s	intent	‘I	am	giving	

way’	(Lee	et	al.,	2019).	However,	the	meaning	of	the	eHMI	was	not	mentioned	to	

pedestrians,	 as	 one	 aim	 of	 the	 study	 was	 to	 establish	 if	 pedestrians	 learnt	 its	

meaning	 over	 time	 and	 if	 the	 presence	 of	 this	 eHMI	 sped	 up	 their	 crossing	

decisions.		

3.2.4 Procedure	

Before	 attendance,	 and	due	 to	 the	Covid-19	pandemic,	pedestrians	were	 sent	 a	

copy	of	an	online	consent	form,	an	information	sheet	describing	the	study,	and	a	

questionnaire	collecting	their	demographic	information.	If	selected	for	the	study,	
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participants	were	invited	to	the	lab,	and	provided	with	brief	instructions	about	the	

study	by	the	experimenter.	After	wearing	the	head-tracking	glasses,	they	started	

with	a	practice	block	of	eight	crossings,	to	become	familiar	with	the	overall	set-

up.		

All	 participants	 were	 aware	 that	 the	 approaching	 vehicles	 were	 driven	

automatically	in	the	virtual	environment.	For	both	the	practice	and	experimental	

trials,	 pedestrians	 stood	 at	 the	 edge	 of	 the	 crossroad,	 on	 a	 yellow	 cross	 (see	X	

marked	in	Figure	3.1)	and	were	asked	to	cross	when	they	felt	safe.	A	short	beep	

was	used	to	notify	the	start	of	each	trial,	after	which	participants	were	free	to	look	

around	 and	 could	 cross	 either	 before	 or	 after	 the	AV.	After	 crossing	 the	 road,	

participants	had	to	walk	back	to	the	yellow	cross	to	start	the	next	trial.	Participants	

were	 offered	 a	 short	 break	 after	 the	 first	 block	 of	 trials.	 The	 experiment	 took	

approximately	30	minutes	to	complete.		

3.3 DATA	ANALYSIS	-	MEASURING	HEAD-TURNING	BEHAVIOUR	

Participants	wore	a	pair	of	stereoscopic	motion-tracking	glasses	(see	Figure	3.3)	

to	 track	 their	 head	movements,	 which	 were	 captured	 by	 10	 VICON	 Vero	 v2.2	

(2.2MP)	cameras	at	100Hz.	The	head's	yaw	(turning	γ	degrees	around	the	Z-axis,	

left/right	head-turning	behaviour),	pitch	(rotating	β	degrees	around	the	Y-axis,	

looking	up/down)	and	roll	(turning	α	degrees	around	the	X-axis,	tilting	left/right)	

movement	around	the	torso	were	collected	in	quaternion	format	and	converted	

into	Euler	angle	for	analysis.	This	study	focused	on	horizontal	head	movements	

(yaw),	reflecting	how	pedestrians	turned	their	heads	from	left	to	right	(and	back)	

to	collect	information	from	the	environment	and	the	approaching	vehicle	(Lyu	et	

al.,	2024).	

The	 infinite	 impulse	 response	 (IIR)	 filter	was	employed	 to	 smooth	 the	discrete	

data	and	filter	any	noise	from	the	tracked	head-turning	angle,	using	the	MATLAB	

Signal	Processing	Toolbox	8.6.	A	low	pass	filter	with	a	cut-off	frequency	of	3Hz	

was	designed	to	filter	the	higher	frequency	signals,	based	on	a	study	showing	that	
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the	 head-turning	 rotation	 is	 normally	 lower	 than	 2.6	 Hz	 during	 locomotion	

(Grossman	et	al.,	1988).		

	

Figure	3.3.		A	schematic	of	a	pedestrian	wearing	the	stereoscopic	motion-

tracking	glasses,	showing	the	three	dimensions	of	the	head	movement	in	the	

HIKER.		

 

This	paper	only	reports	the	head-turning	behaviour	for	trials	which	included	an	

AV	approaching	from	the	right,	since	pedestrians	did	not	need	to	move	their	head	

to	see	the	AVs	which	approached	the	junction	from	the	oncoming	direction	(point	

E	in	Figure	3.2)	to	gather	information	for	the	crossing	task.	Data	were	excluded	if	

(1)	 AVs	 had	 no	 interaction	 with	 pedestrians	 (76	 no	 encounter	 trials),	 (2)	

pedestrians	crossed	after	the	AV	had	passed	(431	trials),	and	(3)	missing	due	to	

technical	 issues	(1	 trial).	A	total	of	480	(357	yielding	trials	and	123	non-yielding	

trials)	were	included	in	the	final	analysis.	Table	3-1	provides	a	detailed	list	of	the	

trials	 in	each	condition,	also	showing	the	average	crossing	initiation	time	(CIT)	

and	crossing	duration	time	(CDT).	

Table	3-1.	Overview	of	the	dataset,	for	each	condition	which	involved	an	AV	

approaching	from	the	right 
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Vehicle	
behaviour	

Zebra	
crossing		

eHMI	 No.	of	
trials	
(per	
ped)	

Total	
trials	
(missing	
data)		

Trials	
ped	
cross	
after	
AV		

Trials	
ped	
cross	
before	
AV	

Mean	
CIT	
(s)	

Mean	
CDT	
(s)	

Yielding	 Present	 Present	 3	 114		 14	 100	 6.11	 4.64	

Absent	 3	 113(1)		 16	 97	 6.17	 4.44	

Absent	 Present	 3	 114	 29	 85	 8.28	 4.69	

Absent	 3	 114	 39	 75	 9.35	 4.59	

	 Total	 	 12	 456	 98	 357	 	 	

Non-
yielding	

Present	 	 6	 228	 135	 93	 5.35	 4.63	

Absent	 	 6	 228	 198	 30	 6.97	 4.73	

	 Total	 	 12	 456	 333	 123	 	 	

No	
encounter	

	 	 2	 76	 /	 /	 /	 /	

Total	 	 	 26	 988	 431	 480	 	 	

	

3.3.1 The	absolute	head-turning	rate		

Research	from	cognitive	psychology	suggests	that	we	use	both	head	movements	

and	 eye-gaze	 to	 automatically	 and	 swiftly	 guide	 attention	 to	 specific	 areas,	 for	

gathering	information	about	our	surroundings	(Frischen	&	Tipper,	2006;	Kleinke,	

1986).	 Real-world	 observation	 studies	 have	 also	 shown	 that,	 in	 complex	 and	

hazardous	environments	such	as	road	crossings,	humans	turn	their	heads	to	widen	

their	scanning	field,	compensating	for	the	limited	range	of	eye	movements	(±55°)	

(Avineri	 et	 al.,	 2012).	 Therefore,	 the	 speed	 at	 which	 head-turning	 shifts	 occur	

potentially	 reflects	 the	 intensity	 of	 active	 scanning,	 and	 information	 seeking	

during	a	crossing.	This	metric	has	been	used	in	a	CAVE-based	simulation	study	

(Lyu	et	al.,	2024),	and	also	an	eye-tracking	study	which	investigated	pedestrians’	

crossing	behaviour	in	a	parking	garage	(de	Winter	et	al.,	2021).	Results	from	de	

Winter	 et	 al.	 (2021)	 showed	 a	 higher	 rate	 of	 head-turns	 to	 the	 left	 and	 right,	

looking	at	other	cars	and	humans	during	a	crossing.	Results	from	Lyu	et	al.	(2024)	

found	 pedestrians	 presented	 a	 higher	 rate	 of	 head-turning	 around	 crossing	
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initiations	 in	 response	 to	 a	 human	 driven	 braking	 vehicle	 compared	 to	 a	 soft-

braking	AV.	

Therefore,	 the	 absolute	 head-turning	 rate	 was	 calculated	 in	 this	 study,	 to	

investigate	how	actively	pedestrians	were	turning	their	heads	to	the	left	and	right	

during	 the	 crossing,	 to	 understand	 how	 the	 different	 conditions	 affected	 their	

attention	 seeking	 behaviour.	 Head-turning	 rate	 was	measured	 as	 the	 absolute	

change	 in	 head-turning	 angle	 between	 the	 current	 and	 subsequent	 frame	 and	

divided	by	the	sampling	frequency	(0.01	s).	The	change	in	head-turning	angle	per	

frame	(0.01	s)	fluctuated	around	0	degrees,	where	the	positive	and	negative	angle	

change	represented	the	right	and	left	turn	from	the	previous	frame	to	the	adjacent	

frame,	respectively.	This	measure	used	the	absolute	value,	to	avoid	the	positive	

and	negative	values	cancelling	each	other	out.		

In	 the	 subsequent	 statistical	 analyses,	 an	 average	 value	 of	 the	 absolute	 head-

turning	rate	was	tallied	every	0.2	s,	calculating	the	average	absolute	head-turning	

rate	of	the	previous	and	next	ten	frames,	to	reduce	the	overall	volume	of	data.	This	

metric	provided	a	 sensitive	and	accurate	approach	 to	 identify	any	minor	head-

turning	 behaviour	 and	 how	 pedestrians	 turned	 their	 heads	 over	 time.	 The	

Generalised	 Estimating	 Equation	 (GEE)	 was	 used	 to	 analyse	 changes	 in	 the	

absolute	head-turning	rate,	over	time.	This	method	is	suitable	for	analysing	non-

normally	distributed,	repeated	measurements	(Liang	&	Zeger,	1986).	The	impact	

of	vehicle	yielding	behaviour,	zebra	crossing	presence,	time,	and	their	interactive	

effects	 on	 the	 absolute	 head-turning	 rate	 was	 analysed	 (N=480).	 The	 model	

examined	 the	 absolute	 head-turning	 rate	 by	 employing	 a	 Gamma	 distribution	

coupled	with	a	log	link	function.	Crossing	behaviour	was	analysed	for	the	period	

starting	10	s	before	and	3	s	after	the	crossing	initiation,	to	enable	the	inclusion	of	

sufficient	data.	This	period	was	used	because	as	99.4%	of	pedestrians	had	initiated	

the	crossing	at	10	s	and	95%	of	pedestrians	were	still	crossing	3	s	after	the	initiation.		
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A	second	GEE	model	was	established	to	investigate	the	impact	of	eHMI,	and	its	

interactive	 effects	with	 time,	 on	 the	 absolute	head-turning	 rate	 in	 the	 yielding	

trials	(N=123).	The	level	of	statistical	significance	was	set	to	be	lower	than	5%.	

3.3.2 Head-turning	frequency	

Head-turning	frequency	was	used	to	understand	head-turning	behaviour	in	the	

crossing	 task,	 by	 tallying	 the	 number	 of	major	 head	 turns	 before	 the	 crossing	

initiation	 time	 (CIT,	 which	 is	 the	 time	 from	 the	 start	 of	 the	 trial,	 until	 the	

pedestrian	 started	 crossing)	 and	 during	 the	 crossing	 (from	 the	 moment	 the	

crossing	started	to	the	end	of	the	crossing),	respectively.	In	a	test	track	study	by	

Hamaoka	 et	 al.	 (2013),	 more	 frequent	 head	movements	 by	 pedestrians	 during	

crossings	 were	 associated	 with	 a	 higher	 need	 to	 establish	 the	 proximity	 of	

approaching	 vehicles.	Therefore,	we	 assumed	 in	 this	 study	 that	 a	higher	head-

turning	frequency	implies	a	greater	demand	for	information	acquisition	about	the	

approaching	vehicle.	

An	 example	 plot	 of	 a	 pedestrian’s	 head-turning	 angle	 in	 one	 trial	 is	 shown	 in	

Figure	3.4,	where	two	major	head	turns	were	detected	in	blue	lines	before	the	CIT,	

and	two	during	the	crossing.	To	calculate	head-turning	frequency	before	the	CIT,	

firstly,	a	baseline	was	selected	as	 the	head-turning	angle,	which	was	where	 the	

pedestrian’s	 head	 was	 mostly	 oriented,	 before	 the	 CIT.	 A	 detection	 area	 was	

chosen	 (baseline	 ±	 standard	 deviation	 -	 the	 shaded	 green	 area	 in	 Figure	 3.4)	

before	the	CIT.	One	head	turn	was	counted	if	the	head-turning	angle	was	beyond	

the	detection	area	before	the	CIT.		

Similarly,	head-turning	frequency	during	the	crossing	was	collected	by	selecting	

the	 baseline	 of	 the	 head-turning	 angle	 during	 the	 crossing	 and	 defining	 a	

detection	area	(baseline	±	standard	deviation	-	the	shaded	pink	area	in	Figure	3.4).	

A	head	turn	during	the	crossing	was	counted	if	the	head-turning	angle	was	beyond	

the	pink	detection	area.		
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Figure	3.4.		Example	plot	of	pedestrian's	head-turning	angle	(Pedestrian	#1,	

Block	#NoZebra,	Trial	#26,	right-approaching	AV	yielding	without	eHMI)	

plotted	in	a	continuous	red	line	from	the	start	of	the	trial	to	the	end	of	the	

crossing,	where	the	crossing	initiation	time	is	the	zero	point	on	the	x-axis.	The	

highlighted	green	and	pink	areas	represent	the	detection	area	(Baseline	±	SD)	

before	CIT,	and	during	the	crossing,	respectively.	For	this	trial,	two	major	head	

turns	were	detected	before	the	crossing	initiation,	and	two	during	the	crossing	

(blue	dashed	lines).	

	

The	non-parametric	Wilcoxon-signed-rank	test	was	used	 to	compare	 the	head-

turning	frequency	before	and	during	the	crossings,	for	the	two	yielding	behaviours	

(N	=	123	for	non-yielding	behaviour	and	N	=	357	for	yielding	behaviour,	see	Table	

3-1).	 A	 Generalised	 Linear	Mixed	Model	 (GLMM)	 was	 applied	 to	 estimate	 the	

effects	of	the	zebra	crossing,	eHMI,	and	the	number	of	encounters	on	pedestrians'	

head-turning	frequency,	in	yielding	trials	(N	=	357),	before	the	crossing	initiation.	

As	discussed	in	the	Introduction,	pedestrians	will	need	to	learn	to	interpret	the	

meaning	of	eHMIs	through	repeated	exposures.	Therefore,	an	interactive	effect	of	

the	eHMI	and	the	number	of	encounters	(1st	/	2nd	/	3rd)	was	also	included	in	the	

model.	The	GLMM	is	recommended	for	repeated	measures	analysis	of	data	that	is	
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not	 normally	 distributed	 (Stroup,	 2012).	 The	 analysis	 applied	 a	 Poisson	

distribution	to	assess	the	head-turning	frequency	using	a	log	link	function.	The	

level	of	statistical	significance	was	set	to	be	lower	than	5%.	

3.4 RESULTS	

3.4.1 The	absolute	head-turning	rate		

As	 shown	 in	Table	 3-2,	 there	was	 a	main	 effect	 of	 time	on	 the	 absolute	head-

turning	rate	(Wald	χ²	(38)	=	1.248E+	14,	p	<	.001).	As	shown	in	Figure	3.5(A-C),	

pedestrians	showed	a	significant	increase	in	absolute	head-turning	rate	around	1	s	

before	 the	 crossing	 initiation,	 which	 reached	 a	 peak	 at	 1.5	 s	 after	 they	 started	

crossing.	This	peak	in	the	head-turning	rate	between	-10	s	and	-6	s	was	caused	by	

the	rapid	right-turning	behaviour	at	the	start	of	each	trial.	

Table	3-2.		Results	of	the	GEE	model	analysing	the	impact	of	a	zebra	crossing,	

vehicle	yielding	behaviour,	and	time	on	the	absolute	head-turning	rate	for	trials	

where	pedestrians	crossed	before	the	AV	had	passed.	

 Wald Chi-Square df Sig. 

(Intercept) 450.363 1 .000 

Time 1.248E+ 14 38 .000 

Zebra 10.550 1 .001 

Yielding behaviour 8.042 1 .005 

Zebra * Time 4.361E+ 12 38 .000 

Yielding behaviour * Time 2724.289 32 .000 

 

The vehicle’s yielding behaviour had a significant impact on pedestrians’ absolute head-

turning rate (Wald	 χ²	 (1)	 =	 10.550,	 p	 <	 .001).	 Pedestrians	 showed	 a	 significantly	

higher	average	absolute	head-turning	rate	for	the	non-yielding	conditions	(M	=	

0.436,	SE	=	0.032),	compared	to	the	yielding	conditions	(M	=	0.247,	SE	=	0.017).	A	

significant	interaction	was	also	seen	between	yielding	behaviour	and	time	(Wald	
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χ²	(32)	=	2724.289,	p	<	.001).	Post-hoc	analysis,	with	Least	Significant	Difference	

(LSD)	corrections,	indicated	that	the	absolute	head-turning	rate	was	significantly	

later	 for	 the	non-yielding	conditions,	highest	around	~3.4	s	before	 the	crossing	

initiation	until	~0.4	s	after	the	crossing	initiation	(see	Figure	3.5A).	
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Figure	3.5.		Pedestrians'	absolute	head-turning	rate	with	95%	CI	in	the	shaded	

area	across:	(A)	yielding	behaviour,	(B)	zebra	crossing	presence/absence,	and	

(C)	eHMI	presence/absence	(yielding	trials	only).	The	dashed	line	at	zero	

indicates	crossing	initiation	times.	

	

Results	also	showed	a	significant	influence	of	the	zebra	crossing	on	the	average	

absolute	head-turning	rate	(Wald	χ²	(1)	=	10.550,	p	<	.001),	with	a	lower	absolute	

head-turning	rate	 in	 the	presence	of	 the	zebra	crossing	(M	=	0.275,	SE	=0.016),	

compared	to	the	no	zebra	crossing	trials	(M	=	0.324,	SE	=0.023).	The	GEE	analysis	

showed	a	significant	interaction	between	the	presence	of	zebra	crossings	and	time	

(Wald	 χ²	 (38)	 =	 4.361E+	 12,	 p	 <	 .001).	 Post-hoc	 analysis	 (LSD)	 showed	 that	

pedestrians	exhibited	a	significantly	higher	absolute	head-turning	rate	from	-10	s	

to	-8	s,	at	3.6	s	and	2.4	s	before	crossing,	and	at	1.4	s	after	the	CIT,	for	the	trials	

without	a	zebra	crossing	(see	Figure	3.5B).		

Results	 from	the	second	GEE	analysis	 investigating	 the	 impact	of	eHMI	on	 the	

absolute	head-turning	rate	in	yielding	trials	showed	that	the	presence	of	eHMIs	

had	a	significant	impact	on	the	absolute	head-turning	rate	(Wald	χ²	(1)	=	4.609,	p	

<	.05).	Pedestrians’	head-turning	rate	was	significantly	higher	for	AVs	approaching	

without	an	eHMI	(M	=	0.318,	SE	=0.025)	than	those	with	an	eHMI	(M	=	0.277,	SE	
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=0.023).	There	was	also	a	significant	interaction	between	eHMI	and	time	(Wald	χ²	

(37)	=	7.228E+14,	p	<	.001).	Post-hoc	analysis	(with	LSD	corrections)	showed	that	

pedestrians	showed	a	significantly	higher	head-turning	rate	around	2.2	s	before	

CIT	 when	 the	 eHMI	 was	 present,	 compared	 to	 the	 no-eHMI	 conditions	 (see	

Figure	3.5C).		

3.4.2 Head-turning	frequency	

Results	 from	the	Wilcoxon	signed-rank	 test	 showed	 that	pedestrians	presented	

significantly	 more	 head	 turns	 during	 the	 crossings,	 than	 before	 crossing	

initiations,	for	both	yielding	(z	=	-2.001,	p	<	0.05,	N	=	357,	r	=	0.11)	and	non-yielding	

conditions	(z	=	-6.284,	p	<	.001,	N=	123,	r	=	0.57),	as	seen	in	Figure	3.6.		In	addition,	

there	 were	 significantly	more	 head	 turns	 for	 the	 yielding	 trials	 than	 the	 non-

yielding	trials	before	a	crossing	initiation	was	made	(z	=	-5.199,	p	<	.001,	N	=	123,	r	

=	0.47),	while	the	difference	in	head	turns	during	the	crossing	was	not	significant	

for	the	yielding	and	non-yielding	trials	(z	=	-1.620,	p	>	0.05	N	=	123,	r	=	0.15). 

	

Figure	3.6.		Pedestrians'	head-turning	frequency	across	the	yielding	behaviour	

and	crossing	status.	The	error	bar	indicates	standard	error. 
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Results	 from	 the	GLMM	model	 (see	Table	 3-3)	 showed	 a	 significant	 impact	 of	

zebra	crossing	on	pedestrians’	head-turning	frequency	before	crossing	initiations	

in	front	of	a	yielding	AV	(F	(1,352)	=	9.463,	p	<	0.01),	with	pedestrians	presenting	

significantly	fewer	head	turns	in	the	presence	of	a	zebra	crossing	(M	=	1.601,	SE	=	

0.099,	vs	M	=	1.861,	SE	=	0.119).	The	eHMI	presence	also	influenced	pedestrians’	

head-turning	frequency,	before	crossing	 initiations	(F	(1,352)	=	6.493,	p	<	0.05),	

with	a	lower	head-turning	frequency	in	the	eHMI	trials	(M=1.601,	SE	=	0.098)	than	

without	an	eHMI	(M	=	1.861,	SE	=	0.121).	

Finally,	 in	 terms	 of	 learning	 the	 pattern	 of	 behaviour	 of	 the	 AV,	 a	 significant	

negative	 relationship	 was	 found	 between	 the	 number	 of	 exposures	 and	

pedestrians’	head-turning	behaviour	(F	(1,352)	=	4.110,	p	<	0.05),	where	pedestrians’	

head-turning	frequency	decreased	with	increased	exposures	to	AVs	(see	Figure	

3.7).	 The	 interaction	 between	 the	 number	 of	 encounters	 and	 eHMI	 was	 not	

significant	(F	(1,352)	=	3.157,	p	>	0.05).	

Table	3-3.		Results	of	GLMM	estimations	for	pedestrians'	head-turning	

frequency	before	crossing	initiations	towards	a	yielding	AV. 

Probability	distribution:	Poisson				Link	Function:	Log	

Predictors	 Coefficient	 SE	 t-
statistics	

p-
value	

Exp	
(Coefficient)	

95%	
CI	
Lower	

95%	CI	
Upper	

Intercept	 .411	 .1032	 3.982	 .000	 1.508	 1.231	 1.847	

Zebra	
Crossing	
[Absence]	

.150	 .0489	 3.076	 .002	 1.162	 1.056	 1.279	

eHMI	
[Absence]	

.363	 .1424	 2.548	 .011	 1.437	 1.086	 1.902	

Exposure	 -.008	 .0391	 -.197	 .043	 .992	 .919	 1.072	

Exposure	 *	
[eHMI	
Absence]	

-.107	 .0600	 -1.777	 .076	 .899	 .799	 1.011	
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Figure	3.7.		Pedestrians'	head-turning	frequency	in	response	to	repeated	

encounters.	The	shaded	area	represents	the	standard	error.	

	

3.5 DISCUSSION	

This	study	utilised	a	CAVE-based	pedestrian	simulation	environment	to	examine	

pedestrians'	head	movements,	when	interacting	with	AVs	at	a	virtual	road	crossing	

scenario.	The	effects	of	a	vehicle's	yielding	behaviour,	zebra	crossing,	and	eHMIs	

on	head-turning	behaviour	were	investigated	to	understand	how	each	condition	

affected	pedestrians’	attention	allocation	and	information	acquisition	during	the	

crossings.	Pedestrians’	ability	to	learn	the	behaviour	of	the	AV	was	also	examined,	

by	comparing	head-turning	patterns	with	repeated	exposures	to	the	approaching	

AVs.		

In	 this	 study,	 pedestrians’	mean	 crossing	 speed	 was	 calculated	 to	 be	 1.16	m/s,	

which	 is	 consistent	 with	 average	 values	 reported	 in	 real-world	 observations,	

approximately	1.2	m/s	(Montufar	et	al.,	2007).	Although	slightly	lower,	this	value	

falls	within	a	realistic	range	and	may	reflect	the	cautious	behaviour	induced	by	the	

vehicle	approach	in	the	simulation.	This	finding	supports	the	ecological	validity	of	

pedestrian	behaviour	observed	in	the	virtual	environment.	
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3.5.1 Pedestrians’	head-turning	behaviour	and	crossing	intent		

Results	 identified	 an	 increase	 in	 the	 absolute	 head-turning	 rate	 from	

approximately	1	s	prior	to	crossing	initiations,	which	reached	a	peak	value	at	1.5	s	

after	the	crossing	(see	Figure	3.5A-C).	This	behaviour	pattern	has	been	termed	

the	“last-second	check”	in	previous	real-world	observation	studies	(Hassan	et	al.,	

2005;	 Tom	 &	 Granié,	 2011),	 where	 pedestrians	 presented	 a	 more	 active	 head-

turning	behaviour	in	the	last	4	s	before	commencing	a	crossing,	with	the	number	

of	head	turns	being	highest	during	the	last	second.	A	“last-second	check”	was	also	

found	 in	 a	 CAVE-based	 pedestrians	 simulation	 study,	 where	 there	 was	 a	

significant	increase	in	head-turning	rate	in	the	last	2	s	before	a	crossing	initiation	

(Lyu	et	al.,	2024).	The	reason	these	head	turns	were	not	observed	as	early	as	4	s	or	

2	s	before	the	CIT	in	this	study	may	be	due	to	the	experimental	design	used,	with	

a	 relatively	 short	 time	 between	 the	 start	 of	 the	 approaching	 vehicle	 and	

pedestrians’	 crossing	 initiation.	While	 the	 time	at	which	 this	 increase	 in	head-

turning	 rate	 before	 a	 crossing	 is	 seen	 is	 scenario	 dependent,	 our	 results	

demonstrate	that	such	a	surge	in	head-turning	rate	could	be	a	good	indicator	of	

pedestrians’	intention	to	cross,	which,	if	identifiable	by	an	AV’s	sensor,	could	be	a	

good	 cue	 for	 speed	 reduction	 by	 the	 approaching	 AV,	 before	 it	 comes	 to	 a	

complete	stop	in	front	of	a	pedestrian.			

We	also	saw	a	surge	in	absolute	head-turning	rate	1.5	s	after	the	crossing	initiation.	

Both	 head-turning	 frequency	 and	 head-turning	 rate	 were	 higher	 during	 the	

crossing	than	before	crossing	initiations.	This	finding	is	in	line	with	results	from	a	

test-track	 study	by	Hamaoka	 et	 al.	 (2013)	which	 showed	 that	 the	head-turning	

frequency	was	 the	highest	 at	 the	 start	 and	middle	of	 the	 crossing,	 a	behaviour	

which	 is	used	to	confirm	the	proximity	of	an	approaching	vehicle.	This	 finding	

shows	the	natural	tendency	of	pedestrians	to	be	safe	when	crossing	in	front	of	a	

vehicle,	continuing	 to	observe	 their	 surroundings,	even	 in	an	artificial	and	safe	

virtual	reality	environment.		
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3.5.2 The	impact	of	kinematic	and	infrastructure	cues	

Our	results	showed	that	the	behaviour	and	dynamics	of	the	vehicle,	as	well	as	the	

zebra	crossing	played	a	significant	role	in	influencing	pedestrians'	head-turning	

behaviour,	 during	 interactions	 with	 AVs.	 Previous	 studies	 have	 shown	 that	

pedestrians	 increase	 their	 head-turning	 behaviour	 to	 compensate	 for	 their	

oculomotor	 limitation,	 when	 scanning	 the	 environment	 during	 high-risk	 tasks	

such	as	road	crossings	(Avineri	et	al.,	2012).	In	our	study,	such	behaviours	were	

predominantly	 seen	 during	 the	 non-yielding	 trials	 (Figure	 3.5A),	 where	

heightened	risk	and	time	constraints	resulted	 in	more	 frequent	and	rapid	head	

movements.	Conversely,	in	the	yielding	trials,	where	AV	intentions	were	clearer,	

thanks	to	both	kinematic	and	eHMI	messages,	there	was	a	notable	decrease	in	the	

rate	of	head-turnings	before	crossings.		

We	also	found	a	significantly	higher	frequency	of	head	turns	and	a	greater	head-

turning	rate	before	crossing	initiations,	for	trials	without	a	zebra	crossing.	This	is	

likely	due	 to	 the	 increased	 risk	 associated	with	 these	 situations	 (Avineri	 et	 al.,	

2012).	 The	 fewer	 head	 turns	 observed	 in	 the	 zebra	 crossing	 trials	 might	 be	

associated	with	 greater	 confidence,	 and	 less	 uncertainty,	 about	 the	decision	 to	

cross,	as	pedestrians	are	aware	of	their	right	of	way	for	this	type	of	setting.	These	

findings	 align	with	 other	 research	 emphasizing	 the	 role	 of	 road	 infrastructure,	

such	as	zebra	crossings,	 in	 shaping	pedestrian	behaviour	 (Clamann	et	al.,	 2017;	

Havard	&	Willis,	 2012;	 Sakamoto	 et	 al.,	 2019;	 Velasco	 et	 al.,	 2019),	 and	 further	

illustrate	 how	 head	 turns	 can	 serve	 as	 an	 indicator	 of	 confidence	 in	 decision-

making	during	crossing	events.		

3.5.3 The	impact	of	an	eHMI	and	learning	effects	

Since	higher	head	movements	imply	a	greater	demand	for	information	acquisition	

(Hamaoka	et	al.,	2013),	the	reduced	frequency	of	head	movements	in	the	presence	

of	 eHMI	 suggests	 that	 pedestrians	 used	 the	 message	 to	 establish	 the	 AV’s	
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intention,	reducing	the	need	for	information	gathering.	This	reduction	in	visual	

search	during	the	eHMI	trials,	denoting	a	better	understanding	of	the	AV's	intent,	

is	also	noted	by	Liu	et	al.	(2020).	However,	Kaleefathullah	et	al.	(2020)	found	that	

over	a	 series	of	 trials,	pedestrians	began	 to	over-trust	 the	eHMI,	which	 lead	 to	

unsafe	crossings	and	collisions	in	a	CAVE-based	study,	if	the	eHMI’s	message	was	

misleading	-	 i.e.	 the	AV	did	not	yield	when	the	eHMI	(incorrectly)	 indicated	 it	

would.	This	suggests	that	pedestrians	may	over-trust	such	messages,	 leading	to	

unsafe	crossings.	

This	study	identified	a	learning	effect,	evident	by	the	decreased	frequency	of	head	

movements	over	repeated	trials,	regardless	of	the	presence	of	eHMIs	(as	illustrated	

in	 Figure	 3.7).	 Previous	 research	 has	 indicated	 that	 pedestrians	 gradually	

comprehend	the	messages	displayed	by	AV	eHMIs	(Faas	et	al.,	2020;	Hochman	et	

al.,	 2020;	 Lee	 et	 al.,	 2022).	 Sometimes	 trusting	 these	 more	 than	 the	 implicit	

message	provided	(Kaleefathullah	et	al.,	2020).	In	this	study,	we	observed	learning	

of	the	AV’s	implicit	driving	behaviours	when	intentions	were	ambiguous	through	

edging	forward.	This	observation	highlights	the	necessity	to	ensure	that	messages	

from	 AV	 eHMI	 are	 not	 in	 contrast	 to	 the	 AV’s	 driving	 behaviour,	 to	 reduce	

ambiguity	in	the	AV’s	intentions,	as	suggested	by	Hochman	et	al.	(2022).			

3.5.4 Limitations	and	future	work	

This	 study	 investigated	 head-turning	 behaviour	 in	 response	 to	 one	 vehicle	

approaching	from	the	right.	It	is	acknowledged	that	head-turning	patterns	might	

differ	in	more	elaborate	scenarios,	as	noted	by	Hamaoka	et	al.	(2013).	Therefore,	

more	complex	and	dynamic	scenarios	should	be	designed	in	the	future	to	explore	

more	realistic	head-turning	behaviour	during	crossings.	For	example,	 including	

more	vehicles,	approaching	from	different	directions,	with	varying	time	gaps	may	

help	us	understand	interactions	relevant	to	real-world	traffic	scenes	(Meir	&	Oron-

Gilad,	2020).	This	will	also	help	us	understand	how/if	user	response	to	automated	

vehicles	 may	 be	 different	 to	 that	 of	 human-driven	 vehicles.	 Additionally,	
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considering	the	study’s	UK	location,	future	research	should	account	for	variations	

in	traffic	directionality,	present	in	other	countries.	

A	further	limitation	lies	in	the	diversity	of	the	participants,	specifically	concerning	

those	 with	 different	 walking	 abilities,	 such	 children	 and	 older	 adults.	 This	

understanding	 is	 crucial	 if	 head-turning	 metrics	 are	 to	 be	 used	 for	 intention	

recognition	by	AVs.	For	example,	 results	 from	Tapiro	et	 al.	 (2016)	 showed	 that	

older	adults	tend	to	engage	in	fewer	head	turns	towards	the	extremities	of	the	road,	

focusing	more	centrally	on	their	crossing	path.	This	suggests	that	head	movement	

assessment	techniques	for	intent	recognition	should	be	tested	on	a	wider	range	of	

users	 in	 the	 lab,	 including	 children,	 younger	 adults	 and	 those	 with	 mobility	

impairments.	

3.5.5 Conclusions	

This	VR-based	study	provides	novel	insights	into	pedestrian	head	movements	in	

response	to	AVs	approaching	a	junction	with	and	without	a	zebra	crossing,	and	

how	these	are	affected	by	implicit	behaviour	and	eHMIs.	Although	it	remains	to	

be	seen	if	these	results	are	relevant	to	a	more	complex	traffic	environment	and	a	

wider	range	of	users,	this	study	confirms	the	similarity	of	head-turning	behaviours	

between	real-world	and	virtual	environments	before	and	during	a	crossing	for	a	

simple	scenario.	The	value	of	CAVE-based	pedestrian	simulators	for	testing	these	

behaviours	in	a	safe	and	repeatable	VR-set	up	is	highlighting,	allowing	studies	on	

human	response	to	fully	driverless	AVs,	not	yet	available	in	the	real	world.	The	

study	 demonstrates	 that,	 as	 an	 alternative	 but	 complementary	measure	 to	 eye	

movements,	head	motion	can	serve	as	a	reliable	indicator	of	crossing	intentions,	

and	a	measure	of	pedestrians'	information-seeking	and	risk-taking	behaviour.	
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ABSTRACT	

The	 investigation	of	Augmented	Reality	(AR)	 implementation	 in	transportation	

has	been	growing	rapidly,	with	potential	applications	such	as	communicating	the	

intentions	of	approaching	automated	vehicles	(AVs)	to	other	road	users.	However,	

it	remains	unclear	whether	AR	increases	pedestrians’	visual	load	during	crossing	

decisions	by	presenting	additional	information.	This	study	addressed	this	research	

gap	 by	 examining	 pedestrians’	 gaze	 behaviour	 and	 crossing	 decisions	 when	

interacting	with	AVs	featuring	AR	interfaces	placed	in	various	locations	(on	the	

AV’s	 travel	 path,	 on	 the	 pedestrian’s	 crossing	 path,	 or	 as	 a	 heads-up	 display	

[HUD]).	Thirty	participants	took	part	in	the	study,	conducted	in	a	CAVE-based	

virtual	 reality	 (VR)	 pedestrian	 simulator.	We	measured	 pedestrians’	 total	 gaze	

fixation	duration	on	AR	 interfaces	 and	 the	 vehicle	before	 crossing	decisions	 to	

assess	attentional	demands.	Results	showed	that	the	presence	of	an	AR	reduced	

total	 gaze	 fixation	duration	 compared	 to	 trials	without	 an	AR	before	 crossings	

were	 initiated,	 indicating	 lower	 attentional	 demands	 for	 crossing	 decisions.	

Intuitive	AR	designs	and	repeated	encounters	to	the	AR	further	reduced	fixation	

duration.	Among	 the	AR	 locations,	HUD	ARs	yielded	 the	greatest	 reduction	 in	

total	gaze	fixation	duration	compared	to	no	AR,	followed	by	ARs	on	the	crossing	

path,	and	 then	 those	on	 the	AV’s	 travel	path.	However,	HUD	ARs	appeared	 to	

distract	pedestrians	when	the	AV	was	more	than	10	metres	away,	as	participants	

frequently	looked	away	to	avoid	them.	Additionally,	analysis	of	pedestrians’	gaze	

heat	maps	 revealed	 that,	 regardless	 of	AR	presence	or	 location,	 their	 attention	

focused	 more	 on	 the	 vehicle	 as	 it	 approached,	 correlating	 with	 an	 increased	

likelihood	of	crossing.	When	AR	was	present,	pedestrians	 initiated	crossings	at	

greater	 distances	 compared	 to	 scenarios	 without	 an	 AR,	 suggesting	 an	 AR	

effectively	conveys	AV	intent,	particularly	when	the	vehicle	is	farther	away.	These	

findings	 highlight	 AR’s	 potential	 to	 reduce	 attentional	 demands	 and	 promote	

earlier	 crossing	 decisions,	 offering	 valuable	 insights	 for	 designing	 effective,	

distance-based	AR	interfaces	to	enhance	AV-pedestrian	interactions.	
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4.1 INTRODUCTION	

The	introduction	of	automated	vehicles	(AVs)	leads	to	a	significant	transition	in	

transportation,	promising	many	benefits,	including	a	major	reduction	in	accidents	

involving	 vulnerable	 road	 users	 by	 eliminating	 human	 errors	 (Anderson	 et	 al.,	

2016).	 However,	 higher-level	 AVs,	 which	 operate	 without	 human	 drivers,	 are	

currently	unable	to	effectively	communicate	their	own	intentions	to	surrounding	

traffic.	This	limitation	can	lead	to	frustrating	standoffs,	particularly	in	ambiguous	

situations	where	both	the	AV	and	other	road	users	are	trying	to	occupy	the	same	

space	but	are	uncertain	about	who	has	the	right	of	way,	such	as	at	unsignalised	

crossings	 (Brown	et	al.,	 2023;	Loke,	2019;	Maurer	et	al.,	 2016;	Schwarting	et	al.,	

2019;	Vinkhuyzen	&	Cefkin,	2016).	The	absence	of	a	human	driver	or	traffic	signals	

at	 these	 crossings	 prevents	 clear	 communication,	 further	 complicating	 the	

determination	of	priority	and	increasing	the	likelihood	of	hesitation	or	hazardous	

interactions.			

External	Human-Machine	Interfaces	(eHMIs)	have	been	proposed	as	a	solution	

for	bridging	this	communication	gap	by	externally	displaying	information	about	

AV	intentions	to	pedestrians	(Faas	et	al.,	2020;	Guo	et	al.,	2022;	Hochman	et	al.,	

2020;	Holländer	et	al.,	2019;	Lee	et	al.,	2022;	Lyu	et	al.,	2024;	Wilbrink	et	al.,	2021).	

Although	eHMIs	can	help	pedestrians	make	quicker	decisions	and	increase	their	

perceived	safety	(Faas	et	al.,	2020;	Holländer	et	al.,	2019),	they	face	challenges	in	

scalability,	 particularly	 for	 managing	multiple	 interactions	 simultaneously	 and	

effectively	communicating	across	various	distances	and	directions	(Colley	et	al.,	

2020;	Dey	et	al.,	2021;	Holländer	et	al.,	2022;	Lyu	et	al.,	2024;	Wilbrink	et	al.,	2021).	

These	 challenges	 raise	 concerns	 about	how	 an	AV	 communicates	with	 specific	

pedestrians	among	many	road	users	and	the	visibility	of	eHMIs	in	complex,	real-

world	traffic	scenarios	(Dey,	Habibovic,	et	al.,	2020).	

Given	these	challenges,	personalized	interaction	strategies	like	Augmented	Reality	

(AR)	 are	 being	 explored	 as	 a	 complementary	 approach	 in	 assisting	 with	
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communication	for	AV-pedestrian	interactions	(Calvi	et	al.,	2020;	Matviienko	et	

al.,	2022;	Tabone	et	al.,	2020;	Tabone	et	al.,	2023;	Tabone	et	al.,	2024;	Tabone	et	

al.,	 2021;	 Tran	 et	 al.,	 2023).	 AR	 allows	 for	 simultaneous	 communication	 with	

multiple	 road	 users,	 providing	 precise,	 customized	 visual	 information	 to	

pedestrians	(Dey,	Habibovic,	et	al.,	2020).	By	overlaying	digital	content	onto	the	

physical	world,	this	approach	offers	several	benefits,	such	as	resolving	language	

barriers	through	person-specific	feedback	(Tabone	et	al.,	2020),	and	maintaining	

users’	situational	awareness	(Tong	et	al.,	2021).	Although	the	use	of	AR	for	road	

user	 communication	may	 seem	 futuristic	 and	 raise	 concerns	 about	 reliance	on	

costly	headsets	(Tabone	et	al.,	2020),	advancements	 in	wearable	AR	technology	

(e.g.,	Microsoft	HoloLens,	Google	Glass,	Apple	Vision	Pro)	are	making	its	adoption	

in	AV-pedestrian	communication	increasingly	feasible.		

Despite	these	potential	benefits,	there	are	concerns	that	AR	might	overly	burden	

pedestrians	 with	 additional	 visual	 elements	 (Tabone	 et	 al.,	 2020).	 Research	 in	

learning	 and	 skill	 acquisition	 domains	 has	 shown	 that	 while	 mobile	 AR	 can	

decrease	cognitive	 load	by	providing	direct	 information,	 it	 can	also	overwhelm	

users	when	 presenting	 excessive	 information	 simultaneously	 (see	 reviews	 from	

Buchner	et	al.	(2022);	Suzuki	et	al.	(2024))	.	In	road	user	interactions,	pedestrians	

may	experience	cognitive	and	 information	overload	with	 too	many	visual	 cues,	

posing	safety	risks	(Mahadevan	et	al.,	2018;	Moore	et	al.,	2019).	Eye-tracking	offers	

a	method	to	measure	pedestrians'	visual	attention,	helping	to	assess	whether	they	

are	 visually	 overloaded	 by	 these	 cues.	 Additionally,	 research	 examining	 gaze	

fixations,	defined	as	periods	when	the	eyes	remain	relatively	still	and	focus	on	a	

specific	element,	helps	to	gain	deeper	insights	into	how	pedestrians	engage	with	

visual	 information	 (Salvucci	&	Goldberg,	 2000).	 Longer	 fixation	 durations	may	

indicate	increased	visual	efforts	(He	&	McCarley,	2010;	Herten	et	al.,	2017;	Jacob	&	

Karn,	2003)	or	difficulty	in	processing	the	visual	information	(Kotval	&	Goldberg,	

1998;	 Milton	 et	 al.,	 1950),	 while	 shorter	 fixations	 suggest	 quicker	 information	

absorption.	However,	investigations	assessing	pedestrians’	gaze	behaviour	when	

exposed	to	AR	interface	signalling	the	intentions	of	AVs	are	overlooked.		
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Research	into	pedestrians’	gaze	behaviour	can	guide	the	placement	and	design	of	

AR	interfaces	(de	Winter	et	al.,	2021;	Dey	et	al.,	2019),	although	most	current	eye-

tracking	 research	 in	 AV-pedestrian	 interactions	 has	 been	 focused	 on	 eHMIs	

(Eisma	et	al.,	2020;	Guo	et	al.,	2022;	Hochman	et	al.,	2020;	Lyu	et	al.,	2024).	For	

instance,	Eisma	et	al.	 (2020)	 found	that	windscreen-mounted	eHMIs	effectively	

focused	 pedestrian	 gaze,	 while	 road	 projections	 dispersed	 gaze	 patterns	 and	

increased	visual	effort,	making	them	less	ideal.	Also,	this	study	used	a	desktop-

based	 2D	 simulation	 setup,	 which	 may	 not	 have	 accurately	 reflected	 gaze	

behaviour	 in	 a	 3D	environment.	Using	a	Wizard-of-Oz	 study,	Dey	et	 al.	 (2019)	

observed	that	pedestrians’	gaze	shifted	from	the	surrounding	environment	to	the	

car’s	 bumper	 and	 gradually	 to	 the	windshield	 as	 the	 vehicle	 approached.	They	

recommended	distance-based	eHMIs	considering	these	visual	attention	patterns	

from	pedestrians.	However,	Dey	et	al.	(2019)	study	involved	the	use	of	stationary	

pedestrians	 pressing	 a	 button	 to	 indicate	 their	 crossing	 intention,	 rather	 than	

making	real	crossing	decisions,	possibly	limiting	insights	into	natural	behaviour	

in	dynamic	environments	(Te	Velde	et	al.,	2005).	Additionally,	this	work	mainly	

examined	 gaze	 directed	 towards	 the	 vehicle’s	 approach	 while	 overlooking	

pedestrians’	attention	to	surrounding	environmental	cues	and	the	crossing	path.	

While	 the	 above	 studies	 suggest	 that	 vehicle	 distance	 and	 eHMI’s	 display	

placement	affect	pedestrian	gaze,	it	remains	unclear	whether	AR	displays	are	likely	

to	influence	gaze	patterns	in	a	similar	manner,	and	whether	the	pattern	is	likely	

to	 be	 the	 same.	 Addressing	 these	 gaps	 could	 significantly	 inform	 AR	 location	

strategies	 and	 potential	 use	 cases,	 as	 AR	 can	 be	more	 versatile	 in	 its	 location	

compared	to	eHMIs,	which	are	typically	fixed	to	the	vehicle.	

In	 AV-pedestrian	 interactions,	 longer	 gaze	 durations	 on	 AVs	 are	 linked	 to	

uncertainty	about	the	AV’s	intentions	and	increased	feelings	of	danger	(Liu	et	al.,	

2023).	Similarly,	longer	gaze	duration	on	eHMIs	designs	indicates	lower	perceived	

clarity	 in	 communicating	AV	 intent	 to	pedestrians	 (Guo	et	 al.,	 2022).	Research	

suggests	that	intuitive	eHMI	designs	can	reduce	confusion	and	ease	pedestrians’	

information	load	(Moore	et	al.,	2019),	with	repeated	exposures	fostering	greater	
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trust,	 faster	 crossing	 decisions,	 fewer	 gaze	 fixations,	 and	 reduced	 attentional	

behaviours	like	head-turning	(Faas	et	al.,	2020;	Hochman	et	al.,	2020;	Yang	et	al.,	

2024).	 Intuitive	AR	 designs	may	 offer	 similar	 benefits,	 potentially	 streamlining	

decision-making	by	enabling	pedestrians	 to	assess	crossing	safety	more	quickly	

(Tabone	et	al.,	2024),	especially	with	repeated	exposures.	This	increased	efficiency	

in	comprehension	could	lead	to	shorter	gaze	fixation	durations	on	both	AV	and	

AR	 elements	 in	 AR-present	 versus	 no-AR	 trials,	 indicating	 reduced	 visual	

demands.	However,	 the	 correlation	 between	 intuitive	 design	 and	 gaze	 fixation	

patterns,	 particularly	 with	 repeated	 exposures,	 remains	 underexplored.	

Investigating	this	relationship	could	significantly	inform	AR	design	for	safer	and	

more	efficient	AV-pedestrian	interactions.	

Additionally,	 if	 pedestrians’	 gaze	 patterns	 could	 be	 influenced	 by	 different	 AR	

locations	at	different	AV’s	distances,	one	can	assume	that	their	crossing	decisions	

could	 also	 change	 correspondingly,	 as	 gaze	 behaviour	 often	 correlates	 with	

decision-making	in	value-based	choice	experiments	(Anderson,	2013;	Gluth	et	al.,	

2020;	Gluth	et	al.,	2018;	Krajbich	et	al.,	2010;	Krajbich	&	Rangel,	2011;	Shimojo	et	

al.,	 2003;	 Thomas	 et	 al.,	 2019).	 Research	has	 shown	 that	 pedestrians	 presented	

higher	 crossing	 probabilities	 with	 the	 presence	 of	 eHMI	 communicating	 AV’s	

intentions	at	greater	AV	distances	before	fully	stopping	(Dey,	Matviienko,	et	al.,	

2020;	Lee	et	al.,	2022;	Pekkanen	et	al.,	2022;	Schneemann	&	Gohl,	2016).	AR	could	

have	 a	 similar	 effect,	 potentially	 leading	 pedestrians	 to	 decide	 to	 cross	 earlier,	

while	the	AV	is	still	at	a	greater	distance.	However,	the	effect	of	AR	location	on	

both	gaze	and	the	timing	of	crossing	decisions	remains	unexplored.	Investigating	

this	 relationship	 could	 provide	 critical	 insights	 into	 where	 AR	 should	 be	

positioned	to	optimise	AV-pedestrian	communication	at	various	distances.	

4.1.1 Research	questions	

In	 response	 to	 these	 considerations,	 our	 study	 posed	 the	 following	 research	

questions:		
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1. How	do	the	locations	of	AR	interfaces	affect	pedestrians'	gaze	patterns	at	

various	distances	as	AV	approach?	

2. How	do	the	 location,	 intuitiveness	and	repeated	encounters	of	AR	affect	

pedestrians’	 change	 in	 fixation	 duration	 compared	 to	 no	 AR	 condition	

before	crossing	decisions?		

3. How	 do	 the	 locations	 of	 AR	 affect	 pedestrians'	 crossing	 probabilities	 at	

various	distances	as	AVs	approach?		

To	address	these	questions,	our	road	crossing	study	examined	pedestrians'	gaze	

behaviour	 while	 exposed	 to	 a	 variety	 of	 AR	 concepts,	 which	 was	 proposed	 in	

Tabone	 et	 al.	 (2023)	 and	 Tabone	 et	 al.	 (2024),	 in	 a	 CAVE-based	 pedestrians	

simulator	environment.		

4.2 METHOD		

4.2.1 Participants	

Thirty	participants	were	recruited	for	this	study	through	the	University	of	Leeds	

Driving	Simulator	Database,	social	media	and	university	mailing	lists.	Among	the	

participants,	 20	 were	males,	 nine	 were	 females,	 and	 one	 was	 unspecified	 (age	

range	22-53	years,	M	=	31.50,	SD	=	7.98).	All	participants	were	required	to	be	aged	

18	 and	 above,	 possess	 proficient	 English	 language	 skills,	 and	 be	 free	 from	

significant	 mobility	 limitations,	 epilepsy,	 claustrophobia,	 or	 proneness	 to	

disorientation.	To	compensate	 for	 their	 time	 in	taking	part	 in	the	study	(60-90	

minutes),	each	participant	received	a	£15	Amazon	gift	voucher.	The	study	received	

ethical	 approval	 from	the	University	of	Leeds	Research	Ethics	Committee	 (Ref:	

LLTRAN-150).		

4.2.2 Apparatus	and	the	virtual	environment	

The	 study	 was	 conducted	 in	 the	 Highly	 Immersive	 Kinematic	 Experimental	

Research	(HIKER)	simulator,	a	9	×	4	m	CAVE	environment	at	the	University	of	
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Leeds	(as	shown	in	Figure	4.1).	It	comprised	eight	4K	projectors	and	10	Vicon	Vero	

2.2	 IR	 cameras,	 managed	 via	 Vicon	 Tracker	 3.9.	 The	 experimental	 virtual	

environment,	designed	in	Unity,	replicated	a	residential	one-way	street	featuring	

a	single	lane	3.6	meters	wide,	which	was	the	same	as	Lee	et	al.	(2022).		Eye-tracking	

data	were	captured	at	a	frequency	of	50	Hz	using	the	Tobii	Pro	Glasses	2,	operated	

and	calibrated	with	Tobii	Controller	Software.	

 

Figure	4.1.	A	participant	in	the	HIKER	lab	waits	for	the	start	of	a	trial.	In	the	

coordinate	system,	the	'Y'	axis	aligns	with	the	participant's	height,	the	'Z'	axis	

aligns	with	the	pedestrian's	intended	path,	and	the	'X'	axis	aligns	with	the	AV	

approaching	trajectory.	The	cyan	circle	in	front	is	an	attention	attractor	used	to	

control	the	direction	of	pedestrians’	initial	focus.	It	appears	randomly,	

counterbalanced	to	the	left,	front,	or	right	of	the	pedestrian.	Pedestrians	were	

required	to	look	at	this	area,	to	trigger	the	start	of	each	trial.	
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4.2.3 Study	design	

This	study	built	on	the	experiment	conducted	in	Tabone	et	al.	(2024),	a	within-

participant	experimental	design,	where	each	participant	experienced	10	blocks	of	

12	trials	each.	There	were	three	independent	variables.	(1)	Each	block	featured	a	

single	AR	condition,	covering	nine	AR	designs	and	one	baseline	without	AR.	(2)	

To	 simulate	 real-life	 situations	 where	 pedestrians	 may	 be	 looking	 in	 different	

directions	 before	 crossing,	 they	 were	 asked	 to	 focus	 on	 an	 attention-attractor	

circle	at	the	start	of	the	trial	(the	cyan	circle	shown	in	Figure	4.1),	located	on	either	

the	 left,	 centre,	 or	 right.	They	were	only	 allowed	 to	 look	 freely	 after	 the	 circle	

disappeared.	 (3)	 There	 were	 three	 trials	 of	 yielding	 AVs	 and	 one	 trial	 of	 non-

yielding	AV,	 all	 approaching	 from	 the	 right.	 The	 blocks	 and	 trials	within	 each	

block	were	counterbalanced	and	presented	in	a	randomised	order.	

The	AR	designs	 included	 in	 this	 study	 are	 illustrated	 in	Table	 4-1	 and	 further	

categorised	 based	 on	 its	 location.	 Four	 ARs	 following	 Car	 Path	 directed	

pedestrians’	attention	to	the	area	that	constantly	following	the	AV’s	travel	path	

and	adjusted	based	on	its	movements.	Two	ARs	on	the	pedestrian’s	Crossing	Path	

directed	pedestrians’	attention	to	the	area	in	front	of	them	overlapping	with	the	

intended	crossing	path.	Two	HUD	ARs	directed	pedestrians’	attention	to	a	fixed	

area	following	their	heads	movements	and	always	in	their	visual	field	regardless	

of	AV’s	movements.	A	ninth	design	 in	 the	original	study	design	(Tabone	et	al.,	

2023;	Tabone	et	al.,	2024)	was	excluded	from	the	analysis	because	it	featured	Fixed	

Pedestrian	Traffic	Lights	positioned	still	in	front	of	the	crossing	path,	which	was	

not	directing	pedestrians’	attention	to	the	vehicle’s	travel	path,	crossing	path	or	

following	their	heads,	making	it	distinct	in	location	from	the	other	AR	designs.	

Table	4-1.Description	of	AR	concepts	with	categorizations	based	on	its	

locations	

Category	 Design	 AR	concept	
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Car	Path	

	

Planes	on	Vehicle	

A	 plane	 displayed	 on	 the	 vehicle's	

windshield	area	

	

Conspicuous	Looming	Planes	

A	 scalable	 plane	 that	 changed	 size,	

growing	in	the	non-yielding	state	or	

shrinking	in	the	yielding	state	as	the	

vehicle	approached	the	pedestrian	

	

Field	of	Safe	Travel		

A	projection	on	the	road	 in	 front	of	

the	 vehicle	 indicating	 a	 safe	 travel	

area	

	

Phantom	Car		

Showed	 the	 vehicle’s	 predicted	

future	motion	

Crossing	

Path	

	

Augmented	Zebra	Crossing		

A	 conventional	 zebra	 crossing	

displayed	on	the	ground	
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Virtual	Fence		

Semi-translucent	 walls	 around	 the	

zebra	 crossing	 with	 a	 gate	 that	

opened	during	the	yielding	state	

HUD	

	

Nudge	HUD		

Text	and	icons	displayed	in	the	user’s	

field	of	view	

	

Pedestrian	Lights	HUD		

A	head-locked	version	of	pedestrian	

traffic	lights	

	

At	 the	beginning	of	each	 trial,	participants,	positioned	at	Point	E	 (Figure	4.2),	

were	instructed	to	focus	on	the	attention-attractor	circle.	After	maintaining	their	

gaze	 on	 the	 circle	 for	 one	 second,	 the	AV	 began	 its	 journey	 from	 a	 concealed	

starting	point	(Point	A,	Figure	4.2),	travelling	at	a	constant	speed	of	48	km/h	(30	

mph).	Seven	seconds	after	leaving	point	A,	the	AV	reached	a	location	43	meters	

from	 the	 participant	 (Point	 B,	 Figure	 4.2),	 marking	 the	 activation	 of	 the	 AR	

interfaces	in	non-baseline	trials.		

In	yielding	trials,	 the	AV	began	to	decelerate	0.8	seconds	after	 leaving	Point	B,	

starting	at	Point	C,	33	meters	away	from	the	participant.	Its	yielding	behaviour	was	

the	same	from	the	research	by	Kaleefathullah	et	al.	(2020),	with	a	deceleration	rate	

of	2.99	m/s².	The	AV	reached	a	full	stop	four	seconds	later,	at	Point	D	(Figure	4.2.	
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),	and	3	meters	from	the	participant.	Precisely	0.2	seconds	after	the	deceleration	

began	(1	seconds	after	AV	leaving	Point	B),	the	stationary	attention-attractor	circle	

disappeared,	allowing	pedestrians	to	freely	observe	their	surroundings	and	make	

a	crossing	decision	as	the	AV	was	30	meters	away.	

In	non-yielding	trials,	the	stationary	attention-attractor	also	disappeared	1	seconds	

after	AV	leaving	Point	B	and	the	AV	maintained	its	initial	speed	throughout	the	

trial.		

	

Figure	4.2.	A	bird's-eye	view	of	the	virtual	road	layout.	Point	A	marks	the	

starting	position	of	the	AV.	Point	B	denotes	the	activation	of	the	AR	interfaces	

in	non-baseline	trials.	Points	C	and	D	represent	the	onset	of	deceleration	and	

the	stopping	point	of	the	AV,	respectively,	during	yielding	trials.	Point	E	shows	

the	initial	standing	position	of	pedestrians	at	the	beginning	of	each	trial.	

	

After	completing	a	crossing	or	allowing	the	AV	to	pass	if	they	chose	not	to	cross,	

participants	answered	a	question	displayed	on	the	front	screen.	In	yielding	trials	

with	AR	presence,	they	rated	their	agreement	on	a	scale	from	1	(Strongly	disagree)	

to	7	(Strongly	agree)	to	the	statement:	“The	interface	was	intuitive	for	signalling:	



4.2	Method	

	

	

164	

‘Please	cross	the	road’”.	This	collects	the	perceived	self-report	intuitiveness	of	the	

AR	for	each	trial.	

4.2.4 Procedure	

Upon	 arrival	 at	 the	 lab,	 participants	 were	 provided	with	 an	 information	 sheet	

detailing	the	study	and	were	given	a	consent	form	to	sign	after	their	queries	were	

addressed.	They	then	completed	questionnaires	 to	provide	 information	such	as	

demographics,	nationality,	and	experience	with	AR/VR	etc,	with	details	reported	

in	Tabone	et	al.	(2024).	

Before	 starting	 the	 trials,	 the	 eye	 tracker	 was	 calibrated.	 Pedestrians	 were	

instructed	 to	 stand	 on	 a	 blue	 marker	 at	 the	 beginning	 of	 each	 trial.	 Once	

positioned,	 they	 initiated	 the	 trial	 by	 focusing	 on	 a	 stationary,	 cyan-coloured	

circle.	 A	 continuous	 one-second	 gaze	 on	 this	 attention-attracting	 circle	 was	

required	to	start	the	trial.	If	participants'	attention	deviated,	an	automatic	beeping	

sound	 reminded	 them	 to	 refocus	 on	 the	 circle.	 Successful	 adherence	 to	 this	

instruction	 triggered	 the	start	of	 the	 trial,	with	 the	AV	entering	 the	simulation	

from	a	concealed	position.	Participants'	primary	task	was	to	safely	cross	the	virtual	

road	from	one	curb	to	another	when	they	felt	safe.	After	providing	their	answer	to	

the	perceived	intuitiveness	verbally,	participants	returned	to	the	starting	point	to	

begin	the	next	trial.	

Two	practice	trials	were	conducted	before	the	main	experiment:	one	with	a	non-

yielding	 vehicle	 and	 another	 with	 a	 yielding	 vehicle.	 The	 study	 began	 after	

participants	confirmed	their	understanding	of	the	environment	and	the	task	and	

provided	consent	to	take	part.	Upon	completion,	participants	were	thanked	for	

their	involvement	and	received	compensation	for	their	time.	
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4.2.5 Data	analysis	

In	the	current	study,	non-yielding	trials,	where	the	AV	maintained	its	speed	were	

excluded	in	the	further	analysis,	because	pedestrians	did	not	initiate	crossings	in	

these	scenarios,	and	no	learning	could	be	assessed	with	only	a	single	repetition	of	

non-yielding	AVs.	As	a	result,	this	study	analysed	81	trials	per	participant,	covering	

nine	AR	conditions	(three	location-based	groups	covering	eight	AR	designs	plus	

one	baseline),	with	each	condition	 further	subdivided	by	 three	 initial	attention	

directions	and	three	yielding	AVs,	totalling	2430	trials.	The	order	of	each	yielding	

AV	within	the	initial	attention	directions	and	within	each	AR	conditions	was	also	

labelled	as	the	1st/2nd/3rd	encounter	to	analyse	behaviour	changes	with	repeated	

exposures.	

In	this	study,	the	positions	of	vehicles	and	pedestrians	were	consistently	logged	at	

a	frequency	of	120	Hz	and	pedestrians’	gaze	data	were	recorded	at	50	Hz.	Raw	gaze	

data	were	 selected	 for	 analysis	 from	 the	moment	 the	 attention-attractor	 circle	

disappeared	until	either	the	pedestrian	initiated	a	crossing,	or	the	AV	passed,	for	

trials	where	pedestrians	chose	not	to	cross.	This	period	captured	the	interaction	

phase	between	the	pedestrian	and	AV.	

Gaze	data	were	 collected	using	 a	Tobii	Glasses	 2	 (firmware	 1.25.6-citronkola-0;	

head	unit	0.062)	mobile	eye-tracker,	which	was	operated	and	calibrated	using	the	

Tobii	 Controller	 Software	 v.1.114.20033,	 with	 thorough	 calibration	 procedures	

conducted	 before	 data	 collection	 to	 ensure	 accuracy	 and	 precision.	 However,	

factors	such	as	frequent	blinking	or	missing	data	could	reduce	the	gaze	sample	

rate.	To	ensure	the	quality	of	gaze	data	analysis,	we	identified	gaps	in	the	recorded	

eye-movement	data,	considering	any	gap	longer	than	400	milliseconds	as	missing	

data	rather	than	a	short	interruption	like	blinking,	which	typically	lasts	between	

100	and	400	milliseconds,	with	an	average	duration	of	260	milliseconds	(Bartoshuk	

&	Schiffman,	1977;	Caffier	et	al.,	2003;	Fatt	&	Weissman,	2013). Trials	with	more	

than	30%	missing	data	were	excluded,	as	well	as	data	from	Participants	6,	17,	and	
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18,	where	over	30%	of	their	trials	contained	more than 30% missing	data,	resulting	

in	the	exclusion	of	396	trials	(Bindschädel	et	al.,	2022).	After	further	exclusion	of	

51	trials,	where	pedestrians	did	not	cross,	the	final	analysis	included	data	from	1983	

trials,	comprising	1768	AR-present	trials	and	215	no-AR	(Baseline)	trials. 

Pedestrian	gaze	patterns		

To	 analyse	 pedestrians’	 gaze	 behaviour	 during	 interactions	 with	 AVs	 in	 a	 3D	

HIKER	environment,	we	visualized	heat	maps	of	their	gaze	points	on	the	Y-Z	plane	

(see	coordinate	system	in	Figure	4.1)	as	the	AV	approached	at	different	Distance	

Intervals	along	the	X-axis.	Grouping	gaze	data	into	intervals,	rather	than	using	raw	

continuous	 distance,	 ensures	 sufficient	 data	 points	 per	 interval	 for	meaningful	

visualisation,	reducing	noise	and	creating	smoother	and	more	interpretable	gaze	

heat	 maps.	 This	 method	 also	 highlighted	 distance-specific	 shifts	 in	 gaze	

behaviour,	making	it	easier	to	track	attention	changes	as	the	AV	approached.		

Once	 the	 attention	 attractor	 disappeared,	 allowing	 pedestrians	 to	 observe	 the	

situation	and	begin	their	interaction	with	the	AV	at	a	distance	of	30	meters,	gaze	

data	were	grouped	into	10-meter	Distance	Intervals	 for	the	remaining	approach	

time,	with	intervals	defined	as	(-30,	-20),	(-20,	-10),	and	(-10,	0)	meters	away	from	

the	pedestrians.	These	 intervals	were	chosen	based	on	 findings	 from	Dey	et	al.	

(2019),	which	 suggest	 significant	changes	 in	pedestrians'	gaze	patterns	every	 10	

meters	as	a	vehicle	approaches.	Starting	the	interaction	at	30	meters,	with	a	time	

gap	of	less	than	3	seconds	between	the	pedestrian	and	the	AV,	has	been	shown	in	

previous	 research	 to	 be	 a	 situation	 of	 higher	 uncertainty	 (Tian	 et	 al.,	 2023),	

necessitating	explicit	 communication	mechanisms	 for	 right-of-way	decisions	 to	

ensure	safe	and	smooth	interactions.	

For	 each	 Distance	 Interval,	 the	 coordinates	 of	 pedestrians’	 gaze	 points	 were	

visualized	on	 the	Y-Z	plane,	 and	heat	maps	were	 created	using	Kernel	Density	

Estimation	 (KDE),	 a	 statistical	method	 that	 smooths	 data	 points	 to	 produce	 a	

continuous	density	surface.	The	resulting	heat	map	uses	a	colour	gradient	from	
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blue	(lower	density)	to	red	(higher	density)	to	illustrate	how	heavily	pedestrians	

scanned	the	environment,	elements	of	the	AV	or	AR,	at	different	distances	as	the	

AV	 approached.	 All	 data	 processing	 and	 visualization	 were	 conducted	 using	

Python	3.	

Change	in	Fixation	Duration	(ΔFD)	

Longer	gaze	fixations	are	associated	with	higher	visual	effort	and	greater	difficulty	

in	processing	 the	 visual	 information	 (He	&	McCarley,	 2010;	Herten	et	 al.,	 2017;	

Jacob	&	Karn,	2003;	Kotval	&	Goldberg,	1998;	Milton	et	al.,	1950).	To	investigate	

how	AR	would	influence	pedestrians’	visual	load,	we	analysed	their	gaze	fixations	

on	specific	area-of-interest	(AOI)	by	tracking	the	gaze	location	frame	by	frame,	

starting	from	when	the	attention-attractor	circle	disappeared	until	the	pedestrian	

initiated	crossing.	The	AOIs	investigated	in	this	study	were:	(1)	Car	body:	The	AOI	

for	the	car	body	was	defined	by	its	moving	3D	spatial	boundaries,	with	the	car’s	

centre	position	(XYZ	coordinates)	and	its	dimensions	(length,	width,	and	height)	

being	updated	for	each	frame.	(2)	AR	interface:	The	AOI	for	the	AR	interface	was	

represented	by	a	moving	plane	in	the	3D	environment,	with	its	centre	position	and	

size	defined	in	the	virtual	space	each	frame.	Gaze	points	that	did	not	fall	within	

either	of	these	two	AOIs	were	classified	as	falling	into	the	"other"	AOI.	A	fixation	

was	 considered	 valid	 if	 the	 gaze	 remained	 within	 any	 AOI	 for	 more	 than	 100	

milliseconds	 (12	 frames)	 (Salvucci	 &	Goldberg,	 2000),	 although	 typical	 fixation	

durations	can	range	from	50	to	500	milliseconds	depending	on	the	task	(Negi	&	

Mitra,	2020;	Rayner,	2009).	The	total	 fixation	duration	for	both	the	car	and	AR	

AOIs	was	calculated	during	AR-present	trials,	and	solely	on	the	car	during	no-AR	

baseline	trials	for	further	analysis.		

To	assess	the	impact	of	AR	on	pedestrian	visual	load,	we	introduced	the	“Change	

in	Fixation	Duration	(ΔFD)”	metric.	We	first	established	a	baseline	by	averaging	

each	participant's	total	gaze	fixation	duration	on	the	vehicle	during	no-AR	trials,	

representing	 their	 average	 visual	 load.	 In	 each	 AR-present	 trial,	 the	 ΔFD	 was	

calculated	by	subtracting	each	corresponding	participant's	baseline	fixation	time	
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from	the	 total	 fixation	duration	on	both	 the	AR	 interface	and	the	vehicle.	This	

metric	 quantified	 the	 additional	 attention	 required	 by	 the	 AR,	 accounting	 for	

individual	differences	in	visual	load,	and	addressed	the	challenge	of	distinguishing	

gaze	 focus	 between	 AR	 interfaces	 and	 the	 vehicle	 when	 AR	 elements	 were	

integrated	into	the	vehicle.	A	positive	ΔFD	indicated	an	increased	visual	load	and	

attentional	 demand,	 while	 a	 negative	 ΔFD	 suggested	 a	 reduced	 visual	 load,	

compared	to	baseline,	during	crossing	decisions.	

To	 answer	 the	 second	 research	 questions,	 we	 conducted	 a	 Generalized	 Linear	

Mixed	Model	(GLMM)	considering	repeated	measures	analysis	(Stroup,	2012)	on	

ΔFD.	The	model	applied	a	linear	distribution	with	an	identity	link	function	and	

included	the	following	variables	to	answer	the	second	research	question:	(1)	AR	

Location	 (Car	Path,	Crossing	Path,	or	HUD),	 (2)	 Intuitiveness	Rating	 (post-trial	

scores	 verbally	 provided	 by	 pedestrians),	 and	 (3)	 Encounter	 (number	 of	

interactions	within	each	condition:	1st/2nd/3rd).	

Crossing	probabilities		

A	GLMM	was	conducted	to	analyse	the	likelihood	of	pedestrians	deciding	to	cross	

when	the	AV	was	at	different	Distance	Interval	((-30,	-20),	(-20,	-10),	and	(-10,	0)	

meters),	 due	 to	 the	 time	 sequential	 nature	 of	 these	 distance	 intervals	 (Stroup,	

2012).	The	analysis	involved	a	binary	logistic	regression	with	a	logit	link	function,	

including	the	main	effect	of	Distance	Interval	and	its	interaction	with	AR	Location	

(Baseline/	 Car	 Path/	HUD/	 Crossing	 Path)	 to	 investigate	 how	 are	 pedestrians'	

crossing	probabilities	at	various	AV	approach	distances	influenced	by	different	AR	

locations	in	answering	the	third	research	question.	

In	 this	 paper,	 all	 GLMM	 analyses	 included	 participant	 as	 a	 random	 effect	 to	

account	 for	 individual	 differences,	with	 Least	 Significant	Difference	 (LSD)	 test	

used	 for	 post-hoc	 analyses.	 The	 analysis	was	 conducted	 using	 SPSS	 28,	with	 a	

significance	level	set	at	p	<	.05.	



4.3	Results	

	

	

169	

4.3 RESULTS		

4.3.1 Gaze	heat	map	

In	 the	 Baseline	 condition	without	AR,	Figure	 4.3	 from	 the	 left	 to	 right	 shows	

pedestrians’	 gaze	heat	map	as	 the	AV	approached.	When	 the	AV	was	 30	 to	 20	

meters	away,	pedestrians’	gaze	was	more	on	the	environment	in	front	of	them	or	

on	 the	 ground.	 When	 the	 vehicle	 was	 closer	 to	 20	 to	 10	 meters,	 pedestrians	

increasingly	focused	on	the	car	itself.	Finally,	when	the	AV	was	within	10	meters,	

their	gaze	concentrated	predominantly	on	the	AV,	particularly	on	the	windscreen.	

This	gaze	pattern,	where	pedestrians’	attention	shifted	from	the	environment	to	

the	car	and	driver’s	seat	as	the	AV	approached,	was	also	observed	with	different	

AR	locations	(Figure	4.4,	Figure	4.5,	Figure	4.6),	with	slight	variations	depending	

on	the	design.	

	

Figure	4.3.	In	Baseline	trials	with	no	AR	concepts,	from	left	to	right	are	

pedestrians’	gaze	heat	map	on	Y-Z	plane	when	the	AV’s	distance	to	pedestrians	

(Car_x)	was	-30	to	-20,	-20	to	-10,	and	-10	to	0,	metres.	

	

With	AR	on	 the	Car	Path	 (Figure	4.4a-d),	 pedestrians’	 gaze	patterns	 generally	

resembled	the	Baseline	(Figure	4.3)	when	the	AV	was	30	to	20	meters,	focusing	

mainly	 on	 the	 environment.	However,	when	 a	 Phantom	Car	 appeared	 (Figure	

4.4d),	 their	 gaze	 shifted	more	 towards	 the	 vehicle’s	 position	 in	 the	 Y-Z	 plane	
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(likely	 focusing	 on	 the	 approaching	 Phantom	Car)	 between	 30	 and	 20	meters,	

before	concentrating	on	the	windscreen	as	the	AV	approached	within	20	meters.	

In	contrast,	the	other	ARs	on	the	Car	Path	(Figure	4.4a-c)	notably	altered	gaze	

behaviour	as	the	AV	moved	closer,	especially	between	20	and	10	meters.	Compared	

to	the	Baseline	(Figure	4.3,	pedestrians	focused	more	on	the	car	and	windscreen	

when	the	AR	was	projected	onto	the	windscreen,	such	as	Planes	on	Vehicle	(Figure	

4.4a)	and	Conspicuous	Looming	Planes	(Figure	4.4b),	with	less	attention	paid	to	

the	grill	area	as	the	AV	was	nearly	10	meters	away.	When	AR	was	projected	onto	

the	 road,	 as	with	 the	 Field	 of	 Safe	 Travel	 (Figure	 4.4c),	 pedestrians'	 attention	

shifted	towards	the	road	between	20	and	10	meters	but	became	more	dispersed	

across	the	vehicle	and	the	ground	as	the	AV	closed	within	10	meters.	
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Figure	4.4.	In	AR	on	Car	Path,	pedestrians’	gaze	heat	maps	for	designs:	(a)	

Planes	on	Vehicle,	(b)	Conspicuous	Looming	Planes,	(c)	Field	of	Safe	Travel,	

and	(d)	Phantom	Car.	

	

In	HUD	conditions	(Figure	4.5a	and	b),	when	the	AV	was	30	to	10	meters	away,	

pedestrians	focused	less	on	the	environment	than	in	Baseline	trials,	concentrating	

instead	on	two	areas:	the	HUD	AR	and	another	area	likely	on	the	car.	As	the	AV	

came	within	10	meters,	their	gaze	on	the	windscreen	became	more	dispersed,	but	

there	was	less	focus	on	the	grill	compared	to	the	Baseline	(Figure	4.3).	

	

Figure	4.5.	In	AR	HUD	trials,	pedestrians’	gaze	heat	maps	for	designs:	(a)	

Nudge	HUD,	and	(b)	Pedestrian	Lights	HUD.	

	

As	to	AR	on	Crossing	Path	(Figure	4.6a	and	b),	with	an	Augmented	Zebra	Crossing	

(Figure	4.6a),	pedestrians	focused	more	on	the	ground	and	less	on	the	car	when	

the	AV	was	beyond	10	meters,	but	their	gaze	became	more	dispersed	across	the	

vehicle	and	towards	the	ground	as	the	AV	approached	within	10	meters,	compared	

to	Baseline	(Figure	4.3).	With	a	Virtual	Fence	added	(Figure	4.6b),	pedestrians’	
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gaze	remained	concentrated	on	the	fence's	edge,	regardless	of	the	AV's	distance.

	

Figure	4.6.	In	AR	Crossing	Path	trials,	pedestrians’	gaze	heat	maps	for	designs:	

(a)	Augmented	Zebra	Crossing,	and	(b)	Virtual	Fence.	

	

4.3.2 Change	in	Fixation	Duration	(ΔFD)	

A	GLMM	analysis	was	conducted	to	 investigate	 the	effects	of	AR	Location	 (Car	

Path,	Crossing	Path,	or	HUD),	Intuitiveness	Rating	and	Encounter	on	pedestrians’	

Change	in	Fixation	Duration	and	results	were	shown	in	Table	4-2.	

Results	revealed	significant	main	effects	of	AR’s	Intuitiveness	Rating	(F	(6,	1717)	=	

33.549,	p	<	.001),	as	shown	in	Figure	4.7.	In	trials	with	the	highest	Intuitiveness	

Rating	 (rated	 7),	 ΔFD	 was	 significantly	 more	 negative,	 indicating	 a	 greater	

reduction	in	visual	load	compared	to	the	baseline,	than	in	trials	with	lower	ratings,	

including	those	rated	6	(p	<	.001),	5	(p	<	.001),	4	(p	<	.001),	3	(p	<	.001),	2	(p	<	.001),	

and	1	(p	<	.001).		

Trials	 with	 the	 lowest	 Intuitiveness	 Rating	 (rated	 1),	 ΔFD	 became	 positive,	

indicating	an	increase	in	visual	load	compared	to	the	baseline.	Post	hoc	analysis	

indicated	that	compared	to	these	trials,	ΔFD	was	significantly	more	negative	in	
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trials	with	higher	ratings,	including	those	rated	2	(t	=	3.90,	p	<	.001),	3	(t	=	4.75,	p	

<	.001),	4	(t	=	5.18,	p	<	.001),	5	(t	=	5.49,	p	<	.001)	and	6	(t	=	6.16,	p	<	.001),	suggesting	

a	greater	reduction	in	visual	load	compared	to	the	baseline.	

Additionally,	post	hoc	analysis	also	showed	that,	compared	to	trials	rated	6,	ΔFD	

was	significantly	less	negative	in	trials	rated	5	(t	=	6.31,	p	<	.001),	4	(t	=	5.50,	p	<	

.001),	3	 (t	=	5.51,	p	<	 .001)	and	2	(t	=	4.67,	p	<	 .001).	Furthermore,	 trials	rated	5	

resulted	in	a	significant	more	negative	ΔFD	compared	to	those	rated	3	(t	=	2.10,	p	

<	.05).	

	

Figure	4.7.	The	bar	plots	and	error	bars	(SE)	for	the	impact	of	Intuitiveness	

Rating	of	AR	on	the	Change	in	Fixation	Duration.	

	

The	GLMM	analysis	also	showed	significant	main	effects	of	AR	Location	(F	(2,	1717)	

=	31.060,	p	<	.001)	on	pedestrians’	Change	in	Fixation	Duration,	as	shown	in	Figure	

4.8.	Among	the	AR	Location,	HUD	resulted	in	the	most	negative	ΔFD,	signifying	

a	 greater	 decrease	 in	 fixation	 duration	 time	 compared	 to	 the	 baseline,	

consequently,	a	more	substantial	reduction	in	visual	load	compared	to	other	AR	
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Location:	 Crossing	 Path	 (p	 <	 .001)	 and	 Car	 Path	 (p	 <	 .001).	 Post	 hoc	 pairwise	

comparisons	 indicated	 that	 the	 ΔFD	 was	 significantly	 less	 negative	 with	 AR	

Location	Crossing	Path	compared	to	Car	Path	(t	=	1.189,	p	<	.05).	

Table	4-2.	Results	of	GLMM	estimations	for	Change	in	Fixation	Duration.	

Predictors	 Coef.	 Std.	Error	 t	 Sig.	 CI	(L–U)	 M	 SE	
(Intercept)	 -1.338	 .1231	 -

10.873	
.000	 -1.580	–	-

1.097	
	 	

Intuitiveness	Rating	 	
1	 1.422	 .1824	 7.798	 <.001	 1.064	–	

1.780	
0.395	 0.210	

2	 .876	 .1253	 6.988	 <.001	 0.630	–	
1.122	

-0.152	 0.163	

3	 .964	 .1233	 7.823	 <.001	 0.723	–	
1.206	

-0.063	 0.161	

4	 .798	 .0929	 8.586	 .000	 0.615	–	
0.980	

-0.230	 0.139	

5	 .707	 .0666	 10.614	 .000	 0.576	–	
0.837	

-0.321	 0.124	

6	 .292	 .0523	 5.578	 <.001	 0.189	–	
0.394	

-0.736	 0.118	

7	[ref]	 0	 .	 .	 .	 .	 -1.028	 0.116	
AR	Location	 	
Crossing	Path	 .326	 .0563	 5.789	 <.001	 0.215	–	

0.436	
-0.216	 0.125	

Car	Path	 .385	 .0501	 7.688	 <.001	 0.287	–	
0.483	

-0.157	 0.119	

HUD	[ref]	 0	 .	 .	 .	 .	 -0.542	 0.125	
Encounter	 	

1	 .204	 .0498	 4.105	 <.001	 0.107	–	
0.302	

-0.175	 0.123	

2	 .017	 .0467	 .370	 .712	 -0.074	–	
0.109	

-0.362	 0.122	

3	[ref]	 0	 .	 .	 .	 .	 -0.379	 0.122	
Probability	distribution:	Normal				Link	function:	Identity	

There	was	also	a	significant	main	effect	of	the	number	of	Encounters	(F	(2,	1717)	=	

9.814,	p	<	.001)	on	pedestrians’	Change	in	Fixation	Duration.	Compared	to	the	1st	

Encounter,	 ΔFD	was	 significantly	more	 negative	 during	 the	 3rd	Encounter	 (p	 <	

.001),	 suggesting	 a	 smaller	 reduction	 in	 visual	 load.	 There	 was	 no	 significant	

difference	between	the	2nd	Encounter	(p	>	.05)	and	3rd	Encounter.	Post	hoc	pairwise	

indicated	 that	 the	 ΔFD	 was	 significant	 more	 negative	 during	 2nd	 Encounter	
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compared	 to	 1st	Encounter	 (t	=	3.698,	p	<.001),	 reflecting	a	greater	 reduction	 in	

visual	load	with	repeated	exposure	to	the	AR.	

	

Figure	4.8.	The	bar	plots	and	error	bars	(SE)	for	the	impact	of	AR	Location,	and	

the	number	of	Encounter,	on	the	Change	in	Fixation	Duration.		

	

4.3.3 Crossing	probability	at	different	AV	approach	distances		

A	GLMM	was	conducted	to	analyse	the	likelihood	of	pedestrians	deciding	to	cross	

when	 the	 AV	 was	 at	 different	 Distance	 Interval	 and	 its	 interaction	 with	 AR	

Location.	

The	analysis	revealed	significant	effects	of	Distance	Interval	of	AV	(F	(2,5937)	=	

237.630,	p<.001)	and	interaction	with	AR	Location	(F	(9,	5937)	=	51.553,	p	<	.001)	on	

the	probability	of	crossing,	as	shown	in	Table	4-3.		

As	shown	in	Figure	4.9a,	compared	when	AV	was	(-30,	-20)	meters	away	(,	the	

likelihood	 of	 pedestrians	 crossing	 significantly	 increased	 as	 the	 vehicle	

approached	closer	to	(-20,	-10)	meters	(p	<	.001)	and	(-10,	0)	meters	(p	<	.001).	Post	

hoc	analysis	using	LSD	showed	that	crossing	probabilities	significantly	increased	
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as	the	AV	approached	closer,	from	(-20,	-10)	meters	to	(-10,	0)	meters	(t	=	-18.981,	

p	<	.001).	However,	further	post	hoc	analysis	of	the	interaction	effect	revealed	that	

this	 increasing	 tendency	was	 significant	 only	 in	 the	 Baseline	 and	AR	Car	 Path	

conditions.	In	contrast,	crossing	probabilities	did	not	differ	significantly	between	

the	Distance	 Interval	 of	 (-20,	 -10)	 meters	 and	 (-10,	 0)	 meters	 in	 both	 the	 AR	

Crossing	Path	(t	=	-0.824,	p	>	.05)	and	HUD	conditions	(t	=	-0.620,	p	>	.05).	

When	the	AV	was	at	both	(-30,	-20)	and	(-20,	-10)	meters,	the	Baseline	condition	

showed	significantly	 lower	crossing	probabilities	 compared	 to	 the	AR	Car	Path	

condition	(p	<	.001;	p	<	.001).	Additionally,	the	crossing	probabilities	in	both	the	

Baseline	and	AR	Car	Path	conditions	were	significantly	lower	than	those	in	the	AR	

Crossing	Path	condition	(p	<	.001;	p	<	.001)	and	the	AR	HUD	condition	(p	<	.001;	

p	 <	 .001).	 The	 differences	 between	 AR	 Crossing	 Path	 and	 AR	 HUD	 were	 not	

significant	in	these	two	intervals	(t	=	-1.597,	p	>	.05;	t	=	-1.399,	p	>	.05).	

When	 the	 AV	 was	 (-10,	 0)	 meters	 away,	 the	 Baseline	 condition	 showed	

significantly	higher	crossing	probabilities	compared	to	the	AR	Car	Path	condition	

(p	<	.001).	Both	conditions	had	significantly	higher	crossing	probabilities	than	the	

AR	Crossing	Path	condition	(p	<	.001	and	p	<	.001	respectively),	and	the	AR	HUD	

condition	 (p	 <	 .001	 and	 p	 <	 .001	 respectively),	 with	 no	 significant	 difference	

between	AR	Crossing	Path	and	AR	HUD	(t	=	-0.046,	p	>	.05).	

Table	4-3.	Results	of	GLMM	estimations	for	crossing	probability	at	different	AV	

approach	distances.	

Predictors	 Coef.	 Std.	
Error	

t	 Sig.	 CI	
(L–U)	

Odds		
Ratio	

M	 SE	

Intercept	 -1.144	 .1106	 -
10.342	

.000	 -1.361	–	
-0.927	

.319	 	 	

Distance	 	 	 	 	 	 	 	 	
(–10,	0)	 .693	 .1472	 4.711	 <.001	 .405	–	

.982	
2.001	 0.643	 0.016	

(–20,	–10)	 .608	 .1479	 4.112	 <.001	 .318	–	
.898	

1.837	 0.233	 0.014	

(–30,	–20)	[ref]	 0	 .	 .	 .	 .	 .	 0.094	 0.012	
Location	×	Distance	 	 	 	 	 	 	
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Baseline	
(–10,	0)	

2.784	 .2594	 10.734	 .000	 2.276	–	
3.293	

16.185	 0.912	 0.019	

Crossing	Path		
(–10,	0)	

-.006	 .1378	 -.046	 .963	 -.277	–	
.264	

.994	 0.388	 0.023	

Car	Path	
(–10,	0)	

1.369	 .1225	 11.173	 .000	 1.129	–	
1.609	

3.932	 0.715	 0.015	

HUD	
(–10,	0)	[ref]	

0	 .	 .	 .	 .	 .	 0.389	 0.023	

Baseline	
(–20,	–10)	

-2.054	 .2854	 -7.199	 <.001	 -2.614	–	
-1.495	

.128	 0.070	 0.017	

Crossing	Path		
(–20,	–10)	

.192	 .1378	 1.397	 .162	 -.078	–	
.463	

1.212	 0.197	 0.019	

Car	Path	
(–20,	–10)	

-.767	 .1281	 -5.990	 <.001	 -1.018	–	
-0.516	

.464	 0.214	 0.014	

HUD	
(–20,	–10)	[ref]	

0	 .	 .	 .	 .	 .	 0.369	 0.023	

Baseline	
(–30,	–20)	

-2.822	 .5172	 -5.456	 <.001	 -3.836	–	
-1.808	

.060	 0.019	 0.009	

Crossing	Path		
(–30,	–20)	

-.260	 .1630	 -1.592	 .111	 -.579	–	
.060	

.771	 0.197	 0.019	

Car	Path	
(–30,	–20)	

-1.419	 .1714	 -8.279	 <.001	 -1.755	–	
-1.083	

.242	 0.072	 0.009	

HUD	
(–30,	–20)	[ref]	

0	 .	 .	 .	 .	 .	 0.242	 0.020	

Probability	distribution:	Binomial			Link	function:	Logit	
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Figure	4.9.	(a)	Results	from	GLMM	showing	bar	plot	of	pedestrians'	crossing	

decision	probabilities	across	different	Distance	Interval	of	AV,	clustered	by	the	

AR	Location.	Error	bar	stands	for	the	standard	error.	(b)	Density	plots	of	

crossing	probabilities	using	KDE,	depicting	their	relationship	to	AV	distance	in	

each	AR	design.	The	colour	scheme	matches	that	of	panel	(a):	blue	for	Baseline,	

orange	for	AR	Car	Path,	green	for	AR	HUD,	and	red	for	AR	Crossing	Path,	

regarding	the	AR	Location.	

	

4.4 DISCUSSIONS		

This	study	used	a	CAVE-based	virtual	reality	pedestrian	simulator	to	investigate	

the	pedestrians’	gaze	patterns	and	crossing	probabilities	at	various	distances	as	an	

AV	approached,	under	different	AR	locations.	It	also	examined	the	effects	of	AR	

location,	intuitiveness	and	repeated	encounters	on	pedestrians’	change	in	fixation	

duration	compared	to	no	AR	condition	before	crossing	decisions.	

Results	 showed	 that	 AR	 facilitated	 pedestrians’	 understanding	 of	 the	 vehicle’s	

intent,	 as	 indicated	 by	 increased	 crossing	 probabilities	 before	 the	 vehicle	 fully	

stopped,	 regardless	 of	 AR	 locations	 (Figure	 4.9a	 and	 b).	 Prior	 studies	 (Dey,	

(b)	
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Matviienko,	 et	 al.,	 2020;	Lee	et	 al.,	 2022;	Pekkanen	et	 al.,	 2022;	 Schneemann	&	

Gohl,	 2016)	 identified	 a	 bimodal	 distribution	 of	 crossing	 decisions,	 where	

pedestrians	typically	crossed	either	when	the	vehicle	came	to	a	complete	stop	or	

when	it	was	still	at	distances.	In	scenarios	where	the	initial	time	gaps	between	AVs	

and	 pedestrians	 were	 less	 than	 three	 seconds,	 crossing	 decisions	 were	

predominantly	made	when	the	AV	had	stopped	(Lee	et	al.,	2022;	Tian	et	al.,	2023).	

This	 trend	was	 confirmed	 in	our	baseline	 condition	without	AR.	However,	 the	

introduction	of	AR	led	to	a	notable	increase	in	crossing	decisions	even	when	the	

AV	was	farther	away.	This	effect	aligns	with	findings	on	the	effectiveness	of	eHMI	

(Dey,	Matviienko,	et	al.,	2020;	Lee	et	al.,	2022;	Madigan	et	al.,	2023),	underscoring	

AR’s	 ability	 to	 facilitate	 earlier	 crossing	 decisions	 by	 clarifying	 right-of-way	

ambiguities	before	the	vehicle	fully	stops.	

Gaze	heat	maps	(Figure	4.3,	Figure	4.4,	Figure	4.5,	Figure	4.6)	revealed	a	distinct	

pattern	as	the	vehicle	approached,	consistent	with	eye-tracking	studies	involving	

manually	driven	vehicles	(de	Winter	et	al.,	2021;	Dey	et	al.,	2019).	When	the	vehicle	

was	 distant,	 pedestrians	 primarily	 scanned	 the	 environment	 or	 focused	 on	 the	

crossing	 path	 or	 road	 surface	 ahead	 of	 the	 vehicle.	 This	 natural	 visual	 search	

behaviour	 likely	 occurred	 because	 a	 distant	 car	 posed	 no	 immediate	 threat.	

However,	 when	 an	 immediate	 threat	 appeared,	 such	 as	 a	 phantom	 car	

approaching	to	pedestrians	ahead	of	the	AV,	pedestrians’	attention	was	captured	

immediately	 (Figure	4.4d).	While	prior	 studies	mainly	examined	gaze	directed	

towards	 the	 vehicle’s	 approach	 (Dey	 et	 al.,	 2019),	 this	 work	 proposed	 a	 novel	

method	of	mapping	gaze	density	on	a	Y-Z	plane	across	various	distance	intervals	

along	the	X-axis.	This	approach	captured	not	only	pedestrians’	focus	on	the	vehicle	

but	also	their	attention	to	environmental	cues	and	the	crossing	path,	providing	a	

more	comprehensive	understanding	of	their	information-seeking	processes.	

The	presence	of	AR	displays	 significantly	 influenced	pedestrians’	 gaze	patterns	

and	crossing	probabilities,	depending	on	its	location	and	the	AV's	distance.	In	AR	

Crossing	Path	(Figure	4.6)	and	HUD	(Figure	4.5)	trials,	pedestrians’	gaze	patterns	
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changed	notably	compared	to	the	Baseline	condition	(Figure	4.3)	when	the	AV	

was	30	to	20	meters	away.	Pedestrians	directed	more	gaze	towards	the	AR	displays	

during	 this	 interval,	 which	 corresponded	 to	 increased	 crossing	 probabilities	

compared	to	Baseline.	In	contrast,	significant	gaze	shifts	in	AR	Car	Path	(Figure	

4.4)	 trials	 were	 observed	 when	 the	 AV	 was	 within	 20	 meters,	 where	 crossing	

probabilities	 also	 increased	 relative	 to	 Baseline.	 These	 findings	 highlight	 AR's	

potential	 to	 enhance	 AV-pedestrian	 communication	 through	 distance-based	

strategies.	Specifically,	AR	on	Crossing	Path	and	HUD	proved	particularly	effective	

when	the	AV	was	farther	away,	helping	pedestrians	interpret	the	vehicle’s	intent	

earlier.	Meanwhile,	AR	on	Car	Path	was	most	suitable	at	close	distances,	where	it	

facilitated	immediate	crossing	decisions.	

Among	the	AR	designs,	HUD	facilitated	earlier	crossing	decisions	(Figure	4.9)	and	

led	to	the	greatest	decrease	in	fixation	duration	compared	to	baseline	(Figure	4.8).	

This	aligns	with	findings	from	Tabone	et	al.	(2023),	where	a	HUD	was	preferred	

over	cues	projected	on	the	road	or	the	approaching	vehicle.	However,	the	HUD	

seemed	to	distract	pedestrians	when	the	AV	was	more	than	10	meters	away,	as	

they	looked	aside	to	avoid	it	(Figure	4.5).	Peereboom	et	al.	(2024)	found	similar	

results,	where	HUD	received	 lower	 ratings	and	was	 less	preferred	compared	 to	

baseline,	potentially	causing	discomfort,	especially	at	close	distances.	While	this	

study	highlights	the	potential	of	HUD	for	scenarios	involving	distant	AVs,	future	

designs	 must	 account	 for	 potential	 visual	 distractions	 and	 their	 impact	 on	

pedestrians’	 attention	 and	 safety.	 Achieving	 a	 balance	 between	 effective	

communication	 and	minimising	 unintended	 distractions	 is	 essential	 to	 ensure	

HUD's	practicality	in	real-world	applications.	

Additionally,	previous	research	suggested	that	embedding	AR	in	the	environment	

could	 divide	 pedestrians’	 attention	 from	oncoming	 vehicle	 to	 the	 road	 instead	

(Peereboom	et	al.,	2024;	Tabone	et	al.,	2023).	However,	this	study	showed	that	this	

was	not	the	case	when	the	AV	was	farther	away.	Even	with	an	Augmented	Zebra	

Crossing	on	the	Crossing	Path	(Figure	4.6a),	pedestrians’	attention	pattern	did	
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not	change	much	compared	to	Baseline	(Figure	4.3)	when	the	AV	was	30	to	10	

meters	away,	as	they	were	not	focused	on	the	vehicle	during	this	phase.	On	the	

other	 hand,	 Virtual	 Fence	 led	 to	 a	 more	 concentrated	 gaze	 patterns	 from	

pedestrians	(Figure	4.6b).	This	suggests	that	AR	on	the	Crossing	Path	may	be	best	

used	when	the	AV	is	farther	away	to	avoid	distracted	attention	as	it	approaches.	

Some	 research	 has	 highlighted	 that	 visually	 demanding	 tasks	 and	 distractions	

pose	significant	risks	to	pedestrians	(Tapiro	et	al.,	2020).	This	raises	concerns	that	

the	addition	of	external	interfaces,	such	as	AR	and	eHMIs	could	exacerbate	these	

issues,	 particularly	 when	 pedestrians	 rely	 primarily	 on	 kinematic	 cues	 from	

vehicles	 to	make	crossing	decisions	 (de	Winter	&	Dodou,	2022;	Li	 et	 al.,	 2018).	

However,	our	findings	reveal	that	the	presence	of	AR	concepts	did	not	increase	

pedestrians’	fixation	 duration	 on	 the	 AR	 and	 the	 vehicle	 in	 AV-pedestrian	

communication,	 provided	 these	 are	 intuitively	 designed	 (Figure	 4.7).	 As	

illustrated	 in	 Figure	 4.7,	 the	 ΔFD	 was	 negative	 when	 the	 AR	 concept	 was	

perceived	 as	 intuitive,	 indicating	 a	 reduction	 in	 visual	 load	 compared	 to	 the	

baseline	scenario	with	no	external	messages.	This	aligns	with	prior	eHMI	research,	

which	 recommends	 designing	messages	 that	 are	 both	 intuitive	 and	 familiar	 to	

pedestrians	(de	Clercq	et	al.,	2019;	Hensch	et	al.,	2019;	Lee	et	al.,	2022).		

Moreover,	 repeated	 exposure	 to	 AR	 interfaces	 significantly	 enhanced	 their	

effectiveness	 in	 communicating	AV’s	 intent	 to	 pedestrians	 as	 demonstrated	 by	

greater	 reduction	 in	ΔFD	across	 all	 three	 locations	 (Figure	4.8).	Notably,	ΔFD	

decreased	 even	 after	 the	 first	 encounter,	 suggesting	 a	 rapid	 learning	 process	

through	 which	 pedestrians	 become	 familiar	 with	 these	 interfaces.	 This	

observation	 is	 consistent	 with	 studies	 indicating	 that	 pedestrians	 can	 quickly	

adapt	to	novel	types	of	eHMIs	after	several	encounters	(de	Clercq	et	al.,	2019;	Eisele	

&	Petzoldt,	2022;	Hensch	et	al.,	2019;	Lee	et	al.,	2022;	Yang	et	al.,	2024).	However,	

the	increasing	reliance	on	AR	might	lead	to	potential	hazards,	such	as	over-trust	

(Holländer	et	al.,	2019;	Kaleefathullah	et	al.,	2020).	This	highlights	the	need	for	
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further	 investigation	 to	 ensure	 the	 safe	 and	 effective	 integration	 of	 AR	

technologies	into	pedestrian	environments	

4.4.1 Limitations	and	future	works	

While	 this	 study	 offers	 insights	 for	 designing	 AR	 interfaces	 in	 AV-pedestrian	

communication,	it	also	has	limitations	that	suggest	areas	for	future	research.	First	

of	all,	while	ARs	have	the	advantage	of	communicating	with	multiple	road	users	

over	 eHMIs,	 this	 research	 involves	 simple	 one-to-one	 interactions,	 leaving	

uncertainty	about	how	the	presence	of	multiple	vehicles	might	impact	visual	load	

for	 some	 designs,	 particularly	 those	 associated	 with	 the	 AV	 (Car	 Path).	 For	

instance,	 with	 multiple	 AVs,	 each	 vehicle	 could	 project	 different	 information,	

potentially	overwhelming	pedestrians	with	competing	signals.	In	contrast,	HUD	

and	Crossing	Path	designs	are	intended	to	provide	consistent,	situationally	aware	

guidance	that	doesn’t	change	with	each	individual	vehicle.	This	discrepancy	in	AR	

concepts	could	have	a	significant	effect	on	visual	load,	especially	as	pedestrians	

attempt	to	process	information	from	multiple	sources	simultaneously.	

Additionally,	 the	 experimental	 context	 was	 simplified,	 focusing	 on	 an	 open,	

straight	road	and	future	research	can	be	built	on	a	complex	traffic	scenario	such	

as	 intersections	or	roundabouts,	as	well	as	different	road	infrastructure	such	as	

zebra	 crossings	 (Madigan	 et	 al.,	 2023;	 Yang	 et	 al.,	 2024).	 Additionally,	 further	

research	can	extend	this	study	under	different	kinematic	situations	with	different	

driving	behaviours	and	time	gaps,	which	may	identify	a	different	role	of	explicit	

communication	in	varying	implicit	conditions	(Dey,	Matviienko,	et	al.,	2020;	Lee	

et	al.,	2022;	Madigan	et	al.,	2023).	Furthermore,	the	homogeneity	of	participant	

demographics,	such	as	age	and	gender,	which	are	known	to	influence	attention	

allocation	 (Tapiro	 et	 al.,	 2016),	 can	 be	 further	 explored	 to	 proposed	 more	

personalised	AR.	Future	research	should	aim	to	test	these	AR	interfaces	in	more	

varied	 and	 dynamic	 outdoor	 scenarios	 to	 validate	 their	 effectiveness	 across	

different	pedestrian	populations	and	urban	settings.	
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4.4.1 Conclusions		

This	study	showcases	the	promising	role	of	AR	in	enhancing	pedestrian	safety	and	

decision-making	 in	 AV	 contexts,	 emphasizing	 the	 importance	 of	 intuitive,	

familiar,	and	repeatedly	exposed	AR	interfaces	in	reducing	visual	load.	HUD	and	

Crossing	Path	AR	designs	were	effective	at	greater	distances,	while	Car	Path	AR	

worked	 best	 at	 closer	 ranges,	 highlighting	 the	 importance	 of	 distance-based	

strategies.	 A	 novel	 gaze	 density	 mapping	 method	 provided	 comprehensive	

insights	into	pedestrians’	attention	allocation,	capturing	their	focus	on	both	the	

vehicle	 and	 surrounding	 environmental	 cues.	 However,	 it	 is	 still	 crucial	 to	

continue	refining	these	technologies	through	real-world	testing	and	broader	user	

engagement	 to	 ensure	 that	 they	 meet	 the	 varied	 needs	 of	 all	 pedestrians	 in	

increasingly	automated	urban	environments	
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This	 PhD	 programme	 examined	 pedestrians’	 crossing	 decisions	 and	 attention	

allocation	during	 repeated	 exposures	 to	 a	 set	 of	AV	 communication	 strategies,	

employing	 various	 implicit	 (vehicle	 behaviours)	 and	 explicit	 (eHMI	 and	 AR	

displays).	By	investigating	repeated	interactions	across	diverse	contexts	in	virtual	

simulated	environments,	this	thesis	provides	a	comprehensive	understanding	of	

AV-pedestrian	 interactions	and	offers	design	guidelines	 for	AV	communication	

strategies	in	a	mixed	traffic	setting	with	other	road	users.	This	chapter	discusses	

how	the	main	research	questions	have	been	addressed,	outlines	contributions,	and	

discusses	research	limitations	and	recommendations	for	future	research.	

5.1 PRINCIPAL	FINDINGS		

This	 section	 revisits	 the	 three	 research	 questions	 introduced	 in	 Chapter	 1,	

summarising	 the	 main	 findings	 from	 the	 studies	 conducted	 in	 this	 PhD	

programme.	

• RQ	1:	How	do	zebra	crossings	and	vehicle	kinematics	(e.g.,	time	gap,	

yielding	decision	and	behaviours,	and	lateral	deviation),	influence	

pedestrians’	crossing	decisions	and	attention	allocation,	such	as	head-

turning	behaviours?	

The	study	reported	in	Chapter	2	revealed	that	pedestrian	crossing	decisions	were	

more	strongly	influenced	by	kinematic	cues	(time	gap	and	vehicle	behaviour)	than	

by	the	presence	of	zebra	crossings.	Similarly,	the	study	in	Chapter	3	showed	that	

the	pattern	of	pedestrians’	head-turning	rate	was	significantly	 lower	 in	yielding	
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versus	non-yielding	scenarios,	but	was	minimally	affected	by	zebra	crossings.	This	

finding	aligns	with	Madigan	et	al.	(2023),	who	identified	vehicle	kinematics	as	the	

primary	source	of	information	used	by	crossing	pedestrians,	followed	by	the	traffic	

infrastructure,	although	these	authors’	conclusion	was	based	on	interviews	rather	

than	behavioural	analyses.	The	current	work	extends	this	finding	using	empirical	

results.	The	work	in	Chapter	2	integrated	dynamic	interactions	between	time	gaps,	

zebra	crossings,	and	drivers’	responses	under	these	varied	conditions	to	explore	

how	 they	 influenced	pedestrians’	 crossing	decisions.	Using	 a	 stepwise	 analysis,	

this	work	highlighted	that	the	impact	of	zebra	crossings	existed,	which	is	similar	

to	 results	 from	other	 studies	 (Clamann	 et	 al.,	 2017;	 Crompton,	 1979;	Havard	&	

Willis,	2012;	Velasco	et	al.,	2019),	but	this	was	limited	to	crossing	with	shorter	time	

gaps	between	the	pedestrian	and	the	approaching	vehicle.	This	may	be	due	to	the	

higher	uncertainty	of	the	vehicle’s	intent	in	such	situations,	as	shorter	time	gaps	

reduce	 the	 reaction	 time	available	 for	pedestrians	 to	observe	 and	 interpret	 the	

vehicle's	speed	or	behaviour,	making	it	harder	to	predict	whether	it	will	yield.	In	

these	scenarios,	zebra	crossings	provide	a	clearer	visual	cue	and	a	legal	indicator	

that	supports	pedestrians	to	make	crossing	decisions.	

Given	 pedestrians’	 primary	 reliance	 on	 kinematic	 cues	 for	 crossing	 decisions,	

future	AVs	should	prioritise	 the	use	of	clear	kinematic	 signals	 to	communicate	

their	intent	to	other	road	users.	The	work	in	Chapter	2	also	shows	that	clear	and	

easily	observable	yielding	patterns	(i.e.	‘soft	and	early’	or	‘late	and	hard’	braking),	

and	 non-yielding	 (soft	 and	 late	 braking)	 patterns,	 can	 be	 useful	 for	 providing	



5.1	Principal	findings	

	

	

197	

information	 to	 other	 road	 users	 and	 may	 be	 a	 useful	 consideration	 by	 AV	

designers.	 While	 previous	 studies	 have	 debated	 whether	 early	 braking	 (Pillai,	

2020;	Risto	et	al.,	2017;	Schneemann	&	Gohl,	2016;	Tian	et	al.,	2023)	or	late	braking	

(Schmidt	et	al.,	2020)	is	more	effective	for	conveying	yielding	intent,	these	studies	

often	 rely	 on	 pedestrian	 responses	 to	 pre-programmed	 vehicle	 behaviours,	

limiting	insights	into	real-time	interactions.	Moreover,	they	have	overlooked	the	

need	for	braking	strategies	tailored	to	different	time	gaps	between	the	pedestrian	

and	 the	 approaching	 AV	 (Tian	 et	 al.,	 2023)	 or	 contextual	 factors	 like	 zebra	

crossings	(Zhang	et	al.,	2020).	In	contrast,	our	work	in	Chapter	2	used	real	braking	

patterns	during	real-time	interactions	with	a	human	driver	and	a	pedestrian,	in	a	

distributed	 simulation	 setup.	 However,	 as	 drivers	 exhibited	 intermittent	 and	

repeated	braking	behaviour,	 it	was	 challenging	 to	pinpoint	 the	 exact	 timing	of	

braking	intent.	To	address	this	challenge,	the	research	proposed	a	novel	metric	

using	the	“proximity	to	pedestrians	at	peak	braking”,	which	was	found	to	show	

greater	 variability	 at	 smaller	 time	 gaps	 between	 the	 pedestrian	 and	 the	

approaching	vehicle	but	remained	consistent	at	larger	time	gaps.	This	metric	was	

to	identify	the	timing	of	the	most	obvious	brake	onset	to	depict	yielding	intent	in	

such	dual-actor	interactions.		

In	addition	to	braking	patterns,	this	work	highlighted	the	use	of	lateral	deviation	

as	 an	 implicit	 cue	 to	 communicate	AV	 intent.	Results	 showed	 that	pedestrians	

were	more	likely	to	cross	when	vehicles	yielded	with	a	lateral	deviation	towards	

them,	whereas	deviation	away	from	pedestrians	was	associated	with	non-yielding,	



5.1	Principal	findings	

	

	

198	

reducing	 crossing	 likelihood.	 While	 previous	 studies	 have	 recognised	 lateral	

deviation	away	from	pedestrians	as	a	non-yielding	indicator	based	on	surveys	and	

focus	groups	(Fuest	et	al.,	2018;	Sucha,	2014),	this	work	is	the	first	to	document	

real-time	 yielding	 and	 non-yielding	 behaviours	 linked	 to	 specific	 lateral	

deviations.	A	video	simulation	study	by	Sripada	et	al.	(2021)	further	supports	these	

findings,	 showing	 that	 pedestrians	 preferred	 yielding	 with	 lateral	 deviation	

towards	 them	 and	non-yielding	with	 deviation	 away,	 likely	 because	 this	 aligns	

with	natural	driving	expectations	observed	in	the	current	study.	These	findings	

reinforce	the	importance	of	designing	AV	behaviours	that	mimic	familiar	patterns	

to	enhance	effective	decision-making.			

Despite	the	importance	of	implicit	cues	for	communication	between	road	users,	

there	 remains	 room	 for	 explicit	 cues	 to	 complement	 implicit	 signals,	 resolving	

ambiguity	in	some	situations.	Similar	to	how	zebra	crossings	provide	clear	visual	

guidance	and	support	pedestrians’	crossing	decisions	when	there	is	a	small	time	

gap	between	the	pedestrian	and	the	approaching	vehicle,	explicit	communication	

tools	 such	 as	 eHMIs	 can	 clarify	 vehicle	 intent	 by	 providing	 a	 cue,	 although	

deciphering	their	meaning	 is	not	always	easy	(Dey	et	al.,	2020;	Lee	et	al.,	2022;	

Madigan	et	al.,	2023).	Findings	from	the	work	in	Chapter	4	reinforced	this	proposal	

by	demonstrating	that,	at	small	time	gaps,	AR	displays	communicating	the	intent	

of	an	AV	facilitated	pedestrians'	crossing	decisions	before	it	came	to	a	full	stop.	

This	 suggests	 that	 AR	 displays	 can	 complement	 a	 vehicle’s	 implicit	

communication	by	reducing	uncertainty	in	challenging	scenarios.	However,	while	
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explicit	communication	tools	like	AR	displays	and	eHMIs	have	proven	effective	in	

some	studies,	concerns	remain	about	whether	additional	elements	associated	with	

the	AV	might	visually	overload	pedestrians	during	a	crossing	(de	Winter	&	Dodou,	

2022;	Gruenefeld	et	al.,	2019;	Li	et	al.,	2018).	To	address	this	issue,	we	examined	

pedestrians’	 attention	 allocation,	 by	 recording	 eye	 and	 head	movements.	 This	

prompted	the	next	research	question,	addressed	by	studies	reported	in	Chapters	3	

and	4.	

• RQ	2:	How	do	explicit	communication	strategies	(eHMI	and	AR	displays)	

from	AVs	influence	pedestrians’	crossing	decisions	and	attention	allocation,	

such	as	head-turning	and	gaze	behaviours?	

Results	from	studies	reported	in	Chapter	3	and	4	showed	that,	overall,	pedestrians’	

head-turning	patterns	and	gaze	behaviour	in	response	to	an	AV	which	presented	

explicit	 communication	 cues	 was	 similar	 to	 that	 seen	 in	 real	 world	 studies	

involving	 conventional	 vehicles.	 A	 notable	 observation	 was	 the	 "last-second	

check,"	 characterised	 by	 a	 surge	 in	 head-turning	 rate	 approximately	 1	 s	 before	

crossing	initiation,	which	is	seen	in	both	real-world	(Hassan	et	al.,	2005;	Tom	&	

Granié,	2011)	and	a	CAVE-based	simulation	studies	(Lyu	et	al.,	2024).	These	results	

demonstrate	 the	 high	 fidelity	 of	 pedestrian	 simulators	 for	 replicating	 natural	

behaviours,	in	a	controlled	and	artificial	environment.		

If	detected	by	AV	sensors,	this	head	turning	behaviour	behaviour	could	serve	as	a	

reliable	indicator	of	crossing	intent,	and	enable	early	speed	reductions	by	the	AV,	

enhancing	 crossing	 safety	 and	preventing	 a	 full	 stop	by	 the	 vehicle,	 improving	
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traffic	flow.	However,	our	results	also	showed	that	the	onset	of	this	surge	in	head-

turning	rate	varied	between	scenarios,	highlighting	its	context-dependent	nature	

and	 the	 need	 for	 further	 investigation	 before	 using	 this	 information	 for	 the	

creation	of	algorithms	for	recognition	of	pedestrian	intent.	Compared	to	previous	

studies	 relying	on	manual	 counting	of	 head	 turns	 (Hassan	 et	 al.,	 2005;	Tom	&	

Granié,	 2011),	 the	 current	 research	 introduced	 a	novel	 approach	 for	 calculating	

absolute	head-turning	rates,	quantifying	head-turning	behaviour	in	a	continuous	

time	series	analysis.		

The	study	reported	in	Chapter	4	revealed	a	set	of	distinct	gaze	patterns	towards	

approaching	AVs	approached,	consistent	with	findings	from	studies	on	manually	

driven	vehicles	(de	Winter	et	al.,	2021;	Dey	et	al.,	2019).	Specifically,	pedestrians	

initially	focused	on	the	environment	and	road	surface	when	the	AV	was	far	away,	

gradually	shifting	their	attention	to	the	AV,	particularly	towards	its	windscreen,	

as	it	drew	closer.	Unlike	prior	research,	which	primarily	examined	gaze	directed	

towards	the	approaching	vehicles	(Dey	et	al.,	2019),	the	current	study	introduced	

a	novel	method	to	visualise	pedestrians’	gaze	behaviour.	By	mapping	gaze	density	

on	 a	 Y-Z	 plane	 at	 different	 distance	 intervals	 along	 the	 X-axis,	 the	 method	

captured	 how	 pedestrians	 distributed	 their	 attention	 between	 the	 vehicle,	

environmental	cues,	and	the	crossing	path,	providing	a	more	comprehensive	view	

of	their	information-seeking	process.		

Additionally,	 when	 pedestrians	 gradually	 focused	 more	 on	 the	 AV	 as	 it	

approached,	their	crossing	probabilities	increased	correspondingly.	By	examining	
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the	 relationship	 between	 pedestrians’	 gaze	 patterns	 and	 crossing	 probabilities	

across	different	AV	distances	with	AR	displays,	this	study	highlights	the	potential	

for	distance-based	AR	design	strategies	to	communicate	AV	intent	effectively.	For	

example,	AR	displays	following	pedestrians’	head	movements	(HUD)	or	projected	

onto	 the	 crossing	 path	 drew	 pedestrians’	 attention	 at	 greater	 AV	 distances,	

resulting	 in	 higher	 crossing	 probabilities	 at	 those	 distances	 compared	 to	 trials	

without	AR	displays.	This	indicates	that	these	AR	locations	are	effective	conveying	

AV	 intent	 from	 a	 distance.	 Conversely,	 AR	 displays	 following	 the	 vehicle	 path	

primarily	 influenced	 gaze	 patterns	 at	 shorter	 AV	 distances,	 likely	 due	 to	 their	

greater	 visibility	 at	 close	 range,	 making	 them	 more	 suitable	 for	 intent	

communication	during	closer	interactions.	

Results	 from	 the	 work	 reported	 in	 Chapter	 3	 revealed	 that	 before	 initiating	

crossing	 decisions,	 pedestrians	 exhibited	 significantly	 lower	 head-turning	

frequencies	when	eHMIs	were	present.	Similarly,	the	study	in	Chapter	4	showed	

that	 with	 AR	 displays,	 pedestrians	 demonstrated	 shorter	 total	 gaze	 fixation	

durations	on	both	the	AR	and	the	AV	compared	to	their	fixation	durations	on	the	

vehicle	in	baseline	conditions	without	AR.	These	behaviours	suggest	that	explicit	

communication	 through	 eHMIs	 or	 AR	 reduces	 the	 need	 for	 extensive	 visual	

search,	 allowing	 pedestrians	 to	 rely	 less	 on	 head-turning	 or	 prolonged	 gaze	 to	

gather	information	from	the	vehicle	or	environment.	These	findings	indicate	that	

explicit	communication	channels	do	not	increase	visual	demand	on	pedestrians	

but	 instead	 effectively	 support	 their	 crossing	decisions.	While	 previous	 studies	

primarily	evaluated	the	effectiveness	of	explicit	communication	through	crossing	
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initiation	 times	 and	 self-reported	measures	 (Dey	 et	 al.,	 2020;	 Lee	 et	 al.,	 2022;	

Madigan	 et	 al.,	 2023),	 this	 research	 introduced	 two	 novel	metrics	 using	 head-

turning	 frequency	 and	 changes	 in	 fixation	 duration.	 These	 metrics	 provide	 a	

quantitative	 approach	 to	 evaluate	 how	 explicit	 communication	 influences	

pedestrians’	 attention	 allocation	 and	 reduces	 their	 need	 on	 visual	 search	 for	

information	gathering.	

While	explicit	cues	can	reduce	visual	demand	in	crossing	tasks,	their	effectiveness	

also	 depends	 on	whether	 pedestrians	 can	 interpret	 the	meaning	 of	 these	 cues	

through	 repeated	 exposures.	 Communication	 strategies	 that	 are	 difficult	 to	

understand	may	frustrate	pedestrians	and	increase	the	complexity	of	the	crossing	

task,	 undermining	 their	 intended	 purpose	 as	 an	 aid	 (Mahadevan	 et	 al.,	 2018;	

Moore	et	al.,	2019).	Thus,	evaluating	how	implicit	(vehicle	behaviours)	and	explicit	

(eHMI	 and	AR	displays)	 communication	 strategies	 are	 learned	 and	 adapted	 to	

over	 time	 remains	 critical.	 These	 considerations	 motivated	 the	 subsequent	

research	question	addressed	by	studies	reported	in	Chapters	2,	3,	and	4.	

• RQ 3: How	do	 repeated	 exposures	 to	 vehicle	 kinematics	 (e.g.,	 yielding	

decision	 and	 behaviours,	 time	 gap,	 and	 lateral	 deviation)	 and	 explicit	

communication	strategies	(eHMI	and	AR	displays)	influence	pedestrians’	

crossing	 decisions	 and	 attention	 allocation,	 such	 as	 head-turning	 and	

gaze	behaviours?	

The	work	reported	in	Chapter	2,	3,	and	4	collectively	demonstrates	pedestrians’	

behavioural	 adaptation	 to	 both	 implicit	 and	 explicit	 cues	 through	 repeated	

exposures	 in	 a	 virtual	 environment.	Prior	 research	has	 shown	 that	pedestrian’s	
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interpretation	 of	 eHMIs	 signalling	 the	 AV’s	 intent	 improves	 over	 repeated	

exposures,	with	reduced	duration	of	gaze	fixations,	higher	self-report	scores	for	

learning,	and	quicker	crossing	decisions	(Faas	et	al.,	2020;	Hochman	et	al.,	2020;	

Lee	et	 al.,	 2022).	However,	 these	 studies	 focused	on	 interactions	along	 straight	

roads,	 where	 AVs	 only	 employed	 uniform	 deceleration	 behaviours.	 The	 study	

reported	 in	 Chapter	 3	 extended	 the	 state-of-the-art	 by	 examining	 pedestrians’	

head-turning	behaviour	over	repeated	exposures	to	AVs	at	a	virtual	crossroad.	The	

AVs	 also	 exhibited	 a	 two-step	 yielding	 behaviour,	 involving	 deceleration	 upon	

approaching	the	junction	and	edging	forward	before	fully	stopping.	The	findings	

revealed	 a	 decrease	 in	 head-turning	 frequency	 as	 pedestrians	 gained	 more	

exposure	to	these	AVs	equipped	with	eHMIs,	with	the	learning	effect	becoming	

evident	 after	 the	 first	 exposure.	 A	 similar	 adaptation	 was	 observed	 with	 AVs	

lacking	eHMIs,	where	pedestrians	gradually	 interpreted	the	ambiguous	edging-

forward	behaviour,	resulting	in	reduced	head-turning	frequency	before	crossing.		

The	work	reported	in	Chapter	4	revealed	that	pedestrians	exposed	to	AR	displays	

signalling	 AV	 intent	 exhibited	 reduced	 gaze	 fixation	 durations	 with	 repeated	

exposures,	with	the	most	significant	decrease	occurring	after	the	first	exposure.	

These	findings	highlight	the	effectiveness	of	familiar	and	intuitive	communication	

approaches,	such	as	the	Slow	Pulsing	Light	Bands	(SPLB)	used	 in	Chapter	3,	 in	

facilitating	rapid	learning,	often	beginning	with	the	first	exposure.	However,	truly	

long-term	evaluations	will	be	needed	in	a	range	of	real-world	scenarios	to	 fully	
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understand	 the	 phases	 of	 learning	 and	 adaptation	 to	 such	 newly	 developed	

externally	presented	cues	by	AVs.	

As	outlined	 in	Chapter	 2,	while	 interacting	with	AVs	 that	 showed	a	 consistent	

driving	style,	 i.e.,	unchanged	deceleration	rates	and	proximity	to	pedestrians	at	

peak	braking,	pedestrians	demonstrated	adaptation	over	four	trials	by	showing	an	

increased	willingness	to	cross,	particularly	at	shorter	time	gaps	of	3	and	4	seconds.	

However,	these	results	also	suggest	that	after	learning	the	behaviour	of	the	AV,	

pedestrians	may	develop	riskier	behaviours	in	close	distance	interactions,	such	as	

at	 junctions	 or	 during	 smaller	 time	 gap	 between	 the	 pedestrians	 and	 the	

approaching	vehicle	scenarios.	Over	time,	pedestrians	demonstrated	fewer	head-

turning	checks	and	made	crossed	more	frequently,	potentially	increasing	the	risk	

of	unsafe	interactions.	These	findings	underscore	the	importance	of	researching	

pedestrians’	 behavioural	 adaptation	 as	 AVs	 are	 introduced	 on	 public	 roads,	 to	

mitigate	 the	 risks	 associated	with	 initial	 learning	 phases	 and	 the	 potential	 for	

misinterpretation	 of	 AV	 behaviours.	 They	 also	 illustrate	 that	 any	 sensor	

malfunctions	which	may	lead	to	a	sudden	change	in	the	typical	behaviour	of	the	

AV	may	lead	to	unexpected	conflicts	and	collisions.		

5.2 CONTRIBUTIONS	

This	research	contributes	to	a	deeper	understanding	of	AV-pedestrian	interactions	

by	examining	pedestrians’	crossing	behaviours,	attention	allocation,	and	learning	

processes	 during	 repeated	 exposures	 to	 implicit	 and	 explicit	 communication	

strategies.	 By	 leveraging	 controlled	 experiments	 in	 virtual	 environments,	 this	
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research	 contributes	 to	 theoretical,	methodological	 and	practical	 insights,	with	

implications	for	AV	design	and	road	safety.	Each	of	these	 is	outlined	in	further	

detail	below.		

5.2.1 Theoretical	contributions	

This	 research	 contributes	 to	 the	 deeper	 understanding	 of	 pedestrians-vehicle	

interactions	where	vehicle	kinematics	have	a	more	significant	influence	than	static	

infrastructure	 like	 zebra	 crossings	 on	 pedestrians’	 crossing	 decisions.	 It	 also	

enriches	the	theoretical	framework	of	attention	allocation	by	providing	detailed	

insights	into	how	pedestrians	manage	their	visual	resources	during	interactions	

with	AVs,	particularly	through	head-turning	and	gaze	patterns.	Additionally,	the	

research	 highlights	 the	 role	 of	 learning	 in	 shaping	 pedestrian	 behaviours	 and	

decision-making	 when	 repeatedly	 exposed	 to	 both	 implicit	 and	 explicit	

communication	cues.	These	 insights	add	to	 the	growing	body	of	knowledge	on	

pedestrian	decision-making	and	attention	in	AV-pedestrian	interactions.	

5.2.2 Methodological	contributions	

This	 thesis	 introduces	 innovative	 methodologies	 to	 study	 AV-pedestrian	

interactions	including	newly	developed	metrics,	use	of	distributed	simulations	for	

studying	 driver-pedestrian	 interactions,	 and	 data	 analysis	 techniques	 for	

examining	 learning	 through	 repeated	 exposures.	 New	 metrics	 such	 as	 head-

turning	rate	are	used	 to	capture	continuous	head-turning	behaviour	and	head-

turning	frequency	to	evaluate	uncertainty	in	crossing	tasks,	as	outlined	in	Chapter	



5.2	Contributions	

	

	

206	

3.	The	study	reported	in	Chapter	4	introduces	a	novel	approach	to	visualising	gaze	

density	 in	 a	 3D	 immersive	 environment	 across	 varying	 AV	 distances	 while	

considering	the	environmental	cues,	and	quantifies	changes	in	visual	load	through	

fixation	 duration	 analysis	 while	 accounting	 for	 individual	 differences.	

Additionally,	 a	 vehicle	 kinematics	metric	 based	 on	 proximity	 to	 pedestrians	 at	

peak	 braking	 is	 proposed	 in	 Chapter	 2	 to	 depict	 dynamic	 braking	 behaviour,	

offering	applications	for	analysing	diverse	interactions	in	naturalistic	driving	data	

and	serving	as	an	indicator	of	braking	intent.	

This	 research	 also	 develops	 a	 distributed	 simulation	 setup	 integrating	 a	 high-

fidelity	driving	simulator	and	a	CAVE-based	pedestrian	simulator	to	enable	real-

time,	 reciprocal	 interactions	 between	 the	 two	 agents.	 This	 approach	 addresses	

limitations	 of	 traditional	methods,	 such	 as	 the	 lack	 of	 experimental	 control	 in	

naturalistic	studies	and	the	shortcomings	from	single-agent	simulation	studies	to	

capture	 bidirectional	 interactions.	 The	 distributed	 simulation	 study	 balances	

ecological	validity	and	experimental	precision,	providing	a	controlled	yet	realistic	

environment	 for	 studying	 dynamic,	 mutual	 influences	 between	 drivers	 and	

pedestrians.		

In	 terms	 of	 data	 analysis,	 this	 thesis	 utilises	 Generalised	 Estimating	 Equations	

(GEE)	 to	 handle	 correlations	 in	 repeated	 measures	 and	 longitudinal	 data,	

providing	 population-averaged	 behavioural	 trends,	 such	 as	 changes	 in	 head-

turning	patterns	over	 time.	Complementing	 this,	 the	use	of	Generalised	Linear	

Mixed	Models	 (GLMM)	accounts	 for	 fixed	 and	 random	effects,	 offering	deeper	
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insights	for	considering	individual	variability.	Together,	these	methods	ensure	a	

comprehensive	analysis,	balancing	population-level	and	individual-level	findings.	

Finally,	the	study	reported	in	Chapter	2	introduces	a	forward	selection	regression	

modelling	approach	to	disentangle	the	direct	and	indirect	effects	of	variables	such	

as	 time	 gaps,	 zebra	 crossings,	 and	 driver	 behaviours	 on	 pedestrian	 crossing	

decisions.	 This	 framework	 enables	 clearer	 understanding	 of	 complex	 variable	

relationships	and	supports	analysis	of	large	datasets,	including	naturalistic	driving	

studies.	

5.2.3 Practical	contributions	and	design	implications	

Findings	from	this	thesis	contribute	to	the	enhancement	of	traffic	management	

and	road	safety	for	both	current	and	future	traffic	systems	involving	AVs	in	several	

ways.	Firstly,	the	study	identifies	how	drivers	negotiate	right-of-way	through	their	

braking	 and	 steering	movements	 under	 different	 contextual	 conditions.	 These	

driving	patterns,	which	are	already	familiar	to	pedestrians,	play	a	critical	role	in	

facilitating	 mutual	 understanding	 during	 interactions.	 By	 leveraging	 these	

established	behaviours,	future	AVs	can	emulate	human-like	driving	styles	to	boost	

traffic	efficiency	 in	mixed	traffic	environments.	Secondly,	 the	study	emphasises	

the	value	of	head-turning	behaviour	as	a	reliable	indicator	of	pedestrian	intent	to	

cross.	 Incorporating	 this	 anticipatory	 behaviour	 into	 AV	 systems	 could	

significantly	enhance	their	ability	to	predict	pedestrian	actions	more	accurately,	

improving	decision-making	and	safety.		
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This	research	also	contributes	to	designing	effective	communication	mechanisms	

between	AVs	and	pedestrians.	The	work	reported	in	Chapter	2	identifies	several	

human-like	driving	behaviours,	such	as	braking	patterns	and	 lateral	deviations,	

that	can	be	integrated	into	AV	systems	to	enhance	their	implicit	communication	

strategies	across	various	contexts.	Research	reported	in	Chapters	3	and	4,	although	

not	intended	for	design	development,	highlight	the	importance	of	intuitive	and	

familiar	designs,	as	well	as	context-specific	and	distance-dependent	strategies,	for	

effective	 explicit	 communication.	 By	 evaluating	 explicit	 communication	

strategies,	such	as	eHMIs	and	AR	displays,	through	pedestrians’	head-turning	and	

gaze	behaviours,	these	studies	identified	how	such	cues	can	facilitate	pedestrians’	

crossing	 decisions	 without	 increasing	 their	 visual	 resource	 demands.	 These	

contributions	pave	the	way	for	the	successful	deployment	of	AV	systems,	ensuring	

safe	 and	 efficient	 communication	 with	 pedestrians	 in	 human-centric	 urban	

environments.	

5.3 REFLECTIONS	ON	RESEARCH	LIMITATIONS		

This	thesis	contributes	to	the	current	knowledge	on	AV-pedestrian	interactions,	

with	 a	 particular	 focus	 on	 pedestrians’	 attention	 allocation	 and	 learning	 over	

repeated	 exposures.	 Nonetheless,	 certain	 limitations	 should	 be	 recognised,	

offering	opportunities	for	future	research	to	build	upon	these	findings.	

Firstly,	the	generalisability	of	the	findings	might	be	constrained	by	the	controlled	

scenarios	employed	for	the	empirical	studies.	All	interactions	occurred	in	a	one-

to-one	setting,	where	pedestrians	responded	to	a	single	vehicle	approaching	from	
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the	right.	While	this	setup	ensured	experimental	control,	it	does	not	fully	capture	

the	complexity	of	real-world	traffic	scenarios	involving	multiple	vehicles,	varying	

directions	 of	 approach,	 or	 interactions	 at	 more	 complex	 locations	 such	 as	

roundabouts	 and	 busy	 intersections.	 Exploring	more	 dynamic	 and	multi-agent	

environments	 in	 future	 studies	 will	 enhance	 understanding	 of	 pedestrians’	

attention	and	behaviours	 in	more	complex	settings	 (Meir	&	Oron-Gilad,	2020).	

Moreover,	all	participants	were	based	in	the	UK,	which	may	have	influenced	how	

they	 interpreted	 vehicle	behaviour,	 road	 infrastructure,	 and	pedestrian	priority	

norms.	Cultural	factors	and	local	driving	practices	can	shape	pedestrian	decision-

making,	and	future	studies	should	replicate	this	research	in	other	cultural	contexts	

to	 evaluate	 the	 generalisability	 of	 AV–pedestrian	 interactions	 across	 different	

countries	and	traffic	environments.	Such	research	would	also	help	evaluate	 the	

generalisability	of	these	findings	across	various	real-world	scenarios.		

Secondly,	 a	 limitation	 lies	 in	 the	 reliance	 on	 a	 simulated	 environment	 in	 all	

studies.	 Although	 the	 CAV-based	 pedestrian	 simulator	 offered	 an	 immersive	

environment,	 allowing	 controlled	 and	 repeatable	 studies,	 the	 absence	 of	 real-

world	 risks	 and	 consequences	 may	 have	 influenced	 participants’	 behaviours	

(Dietrich	et	al.,	2018).	For	instance,	repeated	crossing	tasks	in	a	risk-free	setting	

may	 not	 fully	 replicate	 the	 cautious	 decision-making	 exhibited	 in	 natural	

environments.	Validating	these	findings	through	naturalistic	studies	or	real-world	

experiments	will	be	crucial	to	ensure	their	applicability	beyond	the	lab.	



5.4	Future	outlook	

	

	

210	

Thirdly,	 while	 the	 experiments	 achieved	 gender	 balance,	 they	 lacked	

representation	from	broader	demographic	groups,	such	as	older	adults,	children,	

or	 individuals	with	mobility	 challenges.	 These	 populations	may	 exhibit	 unique	

interaction	 patterns	 or	 face	 additional	 barriers	 that	 require	 tailored	

communication	strategies	(Tapiro	et	al.,	2016).	Incorporating	greater	demographic	

diversity	in	future	research	will	ensure	that	AV	systems	are	inclusive	and	meet	the	

needs	of	all	road	users,	particularly	vulnerable	populations.	

Finally,	this	research	focuses	on	highly	or	fully	automated	vehicles,	although	some	

interaction	 patterns	 observed	 may	 also	 be	 relevant	 to	 partially	 automated	 or	

manually	 driven	 vehicles.	 For	 example,	 pedestrians’	 head-turning	 and	 gaze	

behaviours	in	front	of	HAVs	in	this	study	were	similar	to	those	reported	in	real-

world	interactions	with	manually	driven	vehicles.	However,	pedestrian	behaviour	

in	 relation	 to	 other	 levels	 of	 automation,	 such	 as	 SAE	 Level	 3,	 remains	

underexplored.	 Additionally,	 the	 presence	 of	 a	 human	 driver	 may	 influence	

pedestrian	 gaze	 behaviour,	 potentially	 leading	 to	 more	 focused	 attention	

compared	to	interactions	with	driverless	HAVs.	Future	research	could	investigate	

these	differences	to	support	the	development	of	more	accurate	AV	algorithms	for	

pedestrian	intent	recognition.	

5.4 FUTURE	OUTLOOK		

This	 PhD	 project	 has	 explored	 AV-pedestrian	 interactions,	 investigating	

behavioural	changes	in	pedestrian	response	during	repeated	encounters	with	AVs.	

The	research	focused	on	studying	the	effect	of	repeated	exposures	to	approaching	
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AVs	in	the	short-term,	in	a	laboratory	setting,	mainly	due	to	the	absence	of	fully	

developed	HAVs	on	public	roads.	These	findings	provide	a	valuable	basis	for	future	

longitudinal	 studies	 to	 examine	 pedestrian	 adaptation	 to	 AVs	 over	 extended	

periods	in	real-world	settings.	Such	studies	will	be	crucial	in	determining	whether	

the	 behavioural	 patterns	 identified	 in	 this	 thesis	 generalise	 to	 everyday	 traffic	

scenarios	and	persist	as	HAVs	become	widely	integrated	into	traffic	systems.		

When	 HAVs	 become	 commonplace,	 further	 exploration	 will	 be	 needed	 to	

understand	 the	pedestrians’	 interactions	with	AVs	over	 time.	Arising	questions	

will	be	the	length	of	the	initial	learning	phase	required	for	pedestrians	to	adapt	

their	attention	allocation	and	crossing	behaviours	to	different	AV	behaviours	in	

different	contexts.	Additionally,	 it	will	be	essential	to	 investigate	whether	these	

adaptive	 behaviours	 are	 consistent	 across	 different	 population	 groups.	 More	

vulnerable	road	users,	such	as	older	adults	or	those	with	mobility	challenges,	may	

have	unique	needs	that	demand	tailored	approaches.	Addressing	these	questions	

will	 support	 the	development	of	 inclusive	 and	 safer	 environments,	designed	 to	

accommodate	diverse	user	needs	while	reducing	risks	for	vulnerable	populations.		

Furthermore,	 while	 this	 study	 demonstrates	 the	 value	 of	 using	 a	 distributed	

simulation	 to	 examine	 reciprocal,	 real-time	 interactions	 between	 drivers	 and	

pedestrians,	the	current	analysis	primarily	focused	on	pedestrians’	decisions	using	

traditional	 statistical	 approaches,	 without	 modelling	 mutual	 behavioural	

responses.	 Future	 research	 should	 explore	 analytical	 frameworks	 that	 move	

beyond	 stimulus–response	 paradigms	 and	 account	 for	 mutual	 adaptation	 and	
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interdependence,	 such	 as	 joint	 decision	 modelling,	 game-theoretic	 models,	 or	

probabilistic	 frameworks	 such	 as	 dynamic	 Bayesian	 network	 (Kalantari,	 2023;	

Zhang,	2023).	Applying	such	frameworks	would	support	a	more	detailed	analysis	

of	mutual	behaviours	in	AV–pedestrian	interaction.	

Additionally,	while	 this	 thesis	explored	how	AVs	can	adopt	human-like	driving	

behaviours,	 real-world	 traffic	 is	 far	more	dynamic,	with	a	much	wider	 range	of	

scenarios	 than	 those	 studied	here.	 Future	 research	needs	 to	 examine	how	AVs	

navigate	 interactions	 involving	 multiple	 agents,	 such	 as	 overtaking	 vehicles,	

stationary	objects,	clusters	of	pedestrians,	or	animals,	in	contexts	like	roundabouts,	

crosswalks,	or	bottlenecks.	Environmental	factors	such	as	lighting,	weather,	and	

road	 conditions	 further	 complicate	 these	 interactions.	 To	 address	 these	

complexities,	future	research	should	leverage	extensive	naturalistic	datasets	that	

capture	 the	 full	 range	 of	 real-world	 traffic	 scenarios.	 The	 methodologies	 and	

insights	 from	this	thesis	pave	the	way	for	analysing	these	datasets	and	creating	

human-like	driving	strategies	for	AVs.	

Overall,	 this	 thesis	not	only	deepens	academic	understanding	of	AV-pedestrian	

interactions	during	repeated	exposures	but	also	addresses	critical	communication	

needs	as	AV	technology	becomes	increasingly	prevalent.	Building	on	this	work,	

future	research	can	further	enhance	road	safety	by	conducting	long-term	studies	

to	inform	the	development	of	intuitive,	predictable,	and	reliable	AV	designs	that	

accommodate	 the	 diverse	 needs	 of	 all	 road	 users,	 particularly	 vulnerable	

populations.	
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6.1 APPENDIX	TO	CHAPTER	2	

Appendix	A	Supplementary	results:	vehicle	kinematics	

This	 section	 provides	 supplementary	 visualizations	 derived	 from	 raw	 vehicle	

kinematics	data	 to	complement	 the	analysis	presented	 in	Chapter	2.	While	 the	

work	presents	average	scores	obtained	through	GLMM,	the	visualizations	below	

depict	 real-time	 dynamics	 of	 vehicle-pedestrian	 interactions	 using	 raw	 data	

processed	in	MATLAB.	

The	data	were	segmented	from	the	start	of	the	interaction	(triggered	by	a	beep	

sound	and	the	pedestrian	stepping	out	to	initiate	interaction)	to	the	trial's	end,	

defined	 as	 either	 the	 pedestrian	 initiating	 crossing	 or	 the	 driver	 passing	 the	

pedestrian’s	intended	path.	Frame-by-frame	visualizations	were	created	to	show	

the	vehicle’s	position	relative	to	the	pedestrian.	At	each	frame,	the	average	driver	

deceleration	and	 lateral	deviation	were	 calculated	 for	 the	 same	distance	 to	 the	

pedestrian.	These	metrics	were	plotted	to	provide	a	continuous	representation	of	

vehicle	dynamics	 throughout	 the	 interaction.	This	 real-time	depiction	enriches	

the	 understanding	 of	 how	 drivers	 adapt	 their	 behaviour	 during	 pedestrian	

encounters	beyond	the	average	trends	discussed	in	the	main	analysis.	

Figure	6.1	illustrates	the	mean	deceleration	and	lateral	deviation	of	a	vehicle	as	it	

approaches	pedestrians	under	two	 interaction	outcomes	regarding	who	crossed	

first:	 pedestrian	 crossing	 first	 (PedCross),	 represented	 by	 solid	 lines,	 and	

pedestrian	 not	 crossing	 but	 vehicle	 passing	 first	 (VehiclePass),	 represented	 by	

dashed	 lines.	 The	 x-axis	 shows	 the	 vehicle's	 distance	 to	 pedestrians	 in	meters,	

while	the	left	y-axis	(blue	lines)	represents	mean	deceleration,	and	the	right	y-axis	

(red	lines)	represents	mean	lateral	deviation.	



6.1	Appendix	to	Chapter	2	

	

	

221	

	

Figure	6.1.	Drivers’	mean	deceleration	and	lateral	deviation	relative	to	the	

distance	to	pedestrians	across	two	interaction	outcomes:	pedestrian	crossing	

first	(PedCross,	solid	lines)	and	vehicle	passing	first	(VehiclePass,	dashed	lines).	

	

In	 trials	 where	 the	 pedestrian	 crossed	 first	 (PedCross,	 solid	 lines),	 the	 mean	

deceleration	(solid	blue	line)	shows	a	sharp	increase	as	the	vehicle	approaches	the	

pedestrian,	peaking	between	10	and	20	meters	from	the	pedestrian.	Meanwhile,	

the	driver's	 lateral	offset	 (solid	 red	 line)	 initially	 shows	a	 slight	deviation	away	

from	 the	 pedestrian	 but	 exhibits	 a	 significant	 lateral	 deviation	 towards	 the	

pedestrian	 starting	 at	 20	 meters,	 accompanying	 the	 increasing	 deceleration	

observed	in	the	solid	blue	line.	

Conversely,	in	trials	where	the	vehicle	passed	first	and	pedestrians	did	not	cross,	

the	driver’s	braking	behaviour	 (dashed	blue	 line)	 shows	minimal	and	 relatively	

stable	 deceleration,	 with	 only	 a	 slight	 braking	 response	 observed	 during	 the	
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approach.	In	terms	of	lateral	deviation,	there	is	an	increasing	deviation	away	from	

the	pedestrians	as	the	vehicle	approaches.		

These	raw	data	visualizations	highlight	distinct	yielding	and	non-yielding	driving	

behaviours	through	longitudinal	and	lateral	vehicle	control.	This	supplements	the	

averaged	 results	 presented	 in	 the	 main	 analysis,	 offering	 a	 frame-by-frame	

depiction	of	driver	responses	in	pedestrian	interactions.	

However,	drivers’	behaviour	is	also	influenced	by	the	road	infrastructures.	They	

are	more	 likely	 to	 yield	 at	 zebra	 crossings	 and	 less	 likely	 to	 yield	 at	 locations	

without	zebra	crossings,	as	shown	in	Figure	6.2	derived	from	the	raw	data.	When	

a	zebra	crossing	is	present,	drivers	exhibit	significantly	higher	deceleration	rates,	

peaking	sharply	at	approximately	10–20	meters	from	the	pedestrian,	as	indicated	

by	the	darker	green	line	in	Figure	6.2a.	In	contrast,	deceleration	rates	for	locations	

without	 zebra	 crossings	 remain	 lower	 and	 more	 gradual,	 represented	 by	 the	

lighter	green	line.	

In	 terms	 of	 lateral	 deviation,	 with	 a	 zebra	 crossing,	 drivers	 display	 significant	

lateral	deviation	towards	pedestrians	starting	from	around	20	meters,	as	shown	in	

Figure	 6.2b.	 Conversely,	 without	 a	 zebra	 crossing,	 lateral	 deviation	 increases	

steadily	 away	 from	 pedestrians,	 reflecting	 reduced	 yielding	 behaviour.	 These	

patterns	underscore	the	impact	of	road	infrastructure	on	driver	behaviours	and	

can	be	further	utilised	to	inform	the	development	of	human-like	driving	behaviour	

models	at	different	road	segments.	
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Figure	6.2.	Driver’s	(a)	average	deceleration	rates	and	(b)	lateral	deviation,	in	

relation	to	distances	to	a	crossing	pedestrian	at	different	road	infrastructures,	

derived	from	the	raw	data.	 

(a)	

(b)	
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6.2 APPENDIX	TO	CHAPTER	3	

Appendix	B	Demographics	information	

The	 demographics	 information	 provided	 below	 was	 collected	 to	 ensure	

participant	diversity	and	to	offer	additional	context	for	the	study.	However,	this	

data	was	not	directly	analysed	in	the	main	body	of	the	research.	

Q1.	Age	
Participants’	ages	ranged	from	22	to	58	years:	22–30	years:	55.26%	(n	=	21),	31–
40	years:	23.68%	(n	=	9),	41	years	and	above:	21.05%	(n	=	8).	

Q2.	Gender	
Male:	47.37%	(n	=	18),	Female:	52.63%	(n	=	20).	

Q3.	Nationality	
British:	65.79%	(n	=	25),	Chinese:	15.79%	(n	=	6),	Other	(e.g.,	Irish,	Iranian,	
South	African,	Algerian,	USA,	French,	Italian/Brazilian):	18.42%	(n	=	7)	

Q4.	How	long	have	you	been	living	in	the	UK?	
Less	than	1	year:	10.53%	(n	=	4),	1–5	years:	21.05%	(n	=	8),	6–10	years:	7.89%	(n	
=	3),	More	than	10	years:	60.53%	(n	=	23).	

Q5.	Do	you	have	a	driving	license?	
Yes:	71.05%	(n	=	27),	No:	28.95%	(n	=	11).	

Q6.	Which	country	issued	your	driving	license?	
UK:	66.67%	(n	=	18),	China:	11.11%	(n	=	3),	Other	countries	(e.g.,	USA,	Iran,	
France,	Germany):	22.22%	(n	=	6).	

Q7.	How	many	years	of	active	driving	experience	do	you	have?	
Less	than	1	year:	20%	(n	=	6),	1–10	years:	40%	(n	=	12),	More	than	10	years:	
40%	(n	=	12).	

Q8.	What	is	your	annual	mileage?	
0–3000	miles:	52%	(n	=	13),	3000–6000	miles:	12%	(n	=	3),	6000–9000	miles:	
24%	(n	=	6),	More	than	9000	miles:	12%	(n	=	3).	

Q9.	Do	you	use	glasses	or	other	instruments	to	improve	your	vision	in	
daily	life?	
Yes:	50%	(n	=	19),	No:	50%	(n	=	19).	
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Appendix	C	Methodology:	head-turning	data	filter	

The	raw	head-turning	data	obtained	in	the	HIKER	pedestrian	lab	was	recorded	in	

quaternion	format,	q	=	(q0,	q1,	q2,	q3),	for	its	efficiency,	robustness	against	gimbal	

lock,	compact	representation,	and	suitability	for	accurate	3D	orientation	tracking	

and	 smooth	 interpolation.	 To	 analyse	 the	 head-turning	 data	 in	 Euler	 angles,	

specifically	pedestrians’	head’s	yawing	(turning	γ	degrees	around	Z-axis),	pitching	

(rotating	β	degrees	around	Y-axis)	and	rolling	(turning	α	degrees	around	X-axis)	

movement	around	the	torso,	we	used	the	following	equation	for	conversion:		

,
𝛼
𝛽
𝛾
/ = 	

⎣
⎢
⎢
⎢
⎢
⎡𝑎𝑡𝑎𝑛2(

2(𝑞!𝑞" + 𝑞#𝑞$)
1 − 2(𝑞"# + 𝑞##)

)

arcsin?2(𝑞!𝑞# − 𝑞"𝑞$)@

𝑎𝑡𝑎𝑛2(
2(𝑞!𝑞$ + 𝑞"𝑞#)
1 − 2(𝑞## + 𝑞$#)

)
⎦
⎥
⎥
⎥
⎥
⎤

	

As	introduced	in	the	Section	3.2,	this	study	only	focused	on	the	horizontal	head	

yaw	angle	(γ	degrees	around	the	Z-axis),	representing	pedestrians’	left/right	head-

turning	behaviour.	To	smooth	the	discrete	data	and	filter	noise	in	the	tracked	head	

yaw	angle,	we	employed	an	Infinite	Impulse	Response	(IIR)	filter	using	MATLAB	

Signal	 Processing	 Toolbox	 8.6,	 with	 the	 filter	 structure	 created	 in	 MATLAB	

Simulink	(Figure	6.3).	The	IIR	filter	uses	a	recursive	structure,	where	the	output	

samples	 depend	 on	 both	 past	 input	 and	 previous	 filtered	 output	 samples	 as	

feedback	 (Regalia,	 2018).	 A	 low-pass	 filter	 was	 designed	 to	 address	 the	 high-

frequency	noise	and	abrupt	artefacts	 in	head	movements,	considering	evidence	

that	spontaneous	head	movements,	as	well	as	those	passively	influenced	by	body	

dynamics	during	walking	and	running,	typically	occur	around	2	Hz,	as	shown	in	

reviews	by	Gresty	and	Halmagyi	(1979).	Based	on	this,	a	cutoff	frequency	of	3	Hz	

was	selected	to	filter	out	signals	above	this	threshold.	The	sampling	frequency	was	

set	 to	 100	 Hz,	 and	 the	 filter	 order	 was	 set	 at	 4,	 optimising	 performance	 in	

preliminary	tests.	
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Figure	6.3.	A	 4th-order	 IIR	 filter,	 in	 a	Direct-Form	 II,	 Second-Order	 Sections	

structure,	with	the	𝑧%"	operator	indicating	a	unit	time	delay.	

Figure	 6.3	 illustrates	 the	 4th-order	 IIR	 filter	 implemented	 in	 a	Direct-Form	 II	

structure,	 divided	 into	 two	 second-order	 sections.	 This	 configuration	 includes	

feedforward	and	feedback	paths,	governed	by	the	following	recursive	equation:	

𝑦(𝑛) = 	0𝑏"𝑥(𝑛 − 𝑘)
#

"$%

−0𝑎&𝑦(𝑛 − 𝑗)
'

&$(

	

Here:	

• 𝑏":	Feedforward	coefficients,	weighting	the	current	and	past	input	samples	

𝑥(𝑛 − 𝑘),	forming	the	numerator	of	the	transfer	function.	

• 𝑎&:	Feedback	coefficients,	weighting	past	output	samples	𝑦(𝑛 − 𝑗),	forming	

the	denominator	of	the	transfer	function.	

• 𝑦(𝑛):	Current	output	

• 𝑥(𝑛):	Current	input.	

The	corresponding	z-domain	transfer	function	is	expressed	as:	

𝐻(𝑧) = 	
𝑌(𝑧)
𝑋(𝑧) = 	

∑ 𝑏"𝑧)"#
"$%

1 − ∑ 𝑎&𝑧)"'
&$(
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In	Figure	6.3,	the	𝑧)(	operators	represent	unit	time	delays,	enabling	the	filter	to	

process	discrete-time	input	and	output	samples.	By	using	these	delays,	the	filter	

computes	the	current	output	𝑦(𝑛)	from	weighted	contributions	of	past	inputs	and	

outputs.	To	enhance	numerical	stability,	the	4th-order	filter	is	divided	into	two	

cascaded	second-order	sections,	with	the	overall	transfer	function	represented	as:	

𝐻(𝑧) = 	
𝑌(𝑧)
𝑋(𝑧) = 𝑘( ×	

𝑏% + 𝑏(𝑧)( + 𝑏!𝑧)!

1 − 𝑎(𝑧)( − 𝑎!𝑧)!
+
𝑏%! + 𝑏(!𝑧)( + 𝑏!!𝑧)!

1 − 𝑎(!𝑧)( − 𝑎!!𝑧)!
× 𝑘!	

Here,	 𝑘(		and	 𝑘!	are	 gains	 introduced	 to	 normalise	 the	 filter	 output	 across	

sections,	ensuring	consistent	amplitude.	Each	second-order	section	includes:			

• A	numerator	with	feedforward	coefficients	(𝑏%, 𝑏(, 𝑏!	for	the	first	section	and	

𝑏%! , 𝑏(! , 𝑏!! 	for	the	second),	

• A	denominator	with	 feedback	coefficients	 (𝑎%, 𝑎( 	for	 the	first	section	and	

𝑎%! , 𝑎(! 	for	the	second).	

The	specific	parameterisation	used	in	this	study	is:	

𝐻(𝑧) = 	
0.00826(1 + 2𝑧)( + 𝑧)!)
1 − 1.833𝑧)( + 0.866𝑧)! +	

0.00755(1 + 2𝑧)( + 𝑧)!)
1 − 1.675𝑧)( + 0.705𝑧)! 	

This	 transfer	 function	 directly	 corresponds	 to	 the	 filter	 structure	 in	Figure	 6.3,	

where	the	connections	between	coefficients	𝑏" 	and	𝑎& ,	gains	𝑘(		and	𝑘!,	and	delays	

𝑧)(	are	visually	represented.	By	adopting	this	design,	the	filter	ensures	precise	low-

pass	characteristics,	smoothing	the	signal	and	removing	high-frequency	noise	for	

accurate	analysis	of	pedestrian	head-turning	behaviour.	

When	 processing	 head	 yaw	 angle	 data,	 one	 significant	 challenge	 is	 the	 phase	

distortion	 introduced	 by	 IIR	 filters	 when	 using	 feedback	 from	 past	 outputs	 in	

addition	to	current	and	past	inputs.	It	results	in	a	non-constant	delay	in	the	time	

domain,	which	can	misalign	important	signal	features.	For	this	reason,	zero-phase	

filtering	was	applied	to	ensure	the	filtered	signal	retained	its	temporal	alignment	

with	the	original	data.	
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This	 sequence	 of	 operations	 zero-phase	 filtering,	 as	 shown	 in	 Figure	 6.4a,	

effectively	 cancels	 out	 the	 phase	 shift	 from	 the	 forward	 and	 backward	 filtering	

steps.	 First,	 the	 raw	 input	 signal	𝑥(𝑛) 	was	 passed	 through	 the	 IIR	 filter	 in	 the	

forward	 direction,	 producing	 an	 intermediate	 output	 𝑢(𝑛) ,	 which	 has	 a	 non-

constant	 delay.	 Secondly,	 this	 filtered	 signal	 was	 reversed	 in	 time,	 effectively	

flipping	it	to	𝑢(−𝑛),	and	passed	through	the	same	IIR	filter	again.	This	backward	

filtering	step	corrected	the	phase	distortion	introduced	during	the	initial	forward	

filtering.	Finally,	the	backward-filtered	signal	was	reversed	again	in	time,	restoring	

the	correct	 temporal	order	and	yielding	 the	 final	zero-phase	 filtered	signal	𝑦(𝑛).	

Figure	6.4b	shows	an	example	of	filtered	data	input	in	the	black	line,	𝑢(𝑛)	in	the	

blue	 line,	 and	𝑦(𝑛)	in	 the	 red	 line	 as	 the	 final	 output	 after	 zero-phase	 filtering	

removing	the	delay.	

	

 

Figure	6.4.	(a)	The	process	of	zero-phase	filtering.	(b)	An	example	of	the	

filtered	head	yaw	angle	of	Participant	#1	in	Trial	#1	at	the	1st	second	of	the	trial,	

with	the	original	signal	x(n)	shown	in	black,	the	IIR	forward-filtered	signal	in	

blue,	and	the	reversed-filtered	signal	in	red,	illustrating	the	final	zero-phase	

filtered	data.	

	

(a)	

(b)	
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Appendix	D	Methodology:	head-turning	behaviour	relative	to	vehicle	

movements	

This	 appendix	 presents	 an	 analysis	 of	 pedestrians'	 head-turning	 behaviour	 in	

relation	to	AVs	and	their	movements	over	time.	The	purpose	of	this	analysis	is	to	

demonstrate	that	pedestrians'	head-turning	behaviour	is	not	merely	the	following	

of	 vehicle	motion	 but	 rather	 an	 active,	 context-sensitive	 response	 to	 the	 AV's	

actions.	The	calculated	yaw	angle	change	rates	are	compared	to	observed	head-

turning	rates	in	different	scenarios	to	support	this	argument.	

Vehicle	Trajectory	

The	vehicle's	motion	 is	divided	 into	 four	phases	 in	yielding	 trials:	decelerating,	

edging,	stopping,	and	accelerating.	During	each	phase,	the	vehicle's	speed	𝑣*	and	

distance	to	the	pedestrian	𝑥*		were	modelled	as	a	function	of	time	(t),	as	shown	

below:	

Decelerating	phase:		

For	0	=<	t	=<3	s,	h	
𝑣* = 𝑣%	 − 𝑎(𝑡 = 11.176 − 3.725𝑡

𝑥* = 𝑥% − 𝑣%	𝑡 + 0.5 ∗ 𝑎(𝑡! = 	27.4 − 11.176𝑡 + 1.8625𝑡!	

𝑣%	:	Initial	vehicle	speed,	11.176	m/s,	𝑥%:	Initial	distance	between	the	

vehicle	and	the	pedestrian,	27.4	m,		𝑎(:	Deceleration	rate,	3.725	m/𝑠!	

Edging	phase:	

For	3	<	t	=<	6.5	s,		h	
𝑣* = 𝑎!	(𝑡 − 3) = 0.3832(𝑡 − 3)

𝑥* = 𝑥( − 0.5 ∗ 𝑎!𝑡! = 	6.1024 − 0.1916(𝑡 − 3)!	

For	6.5	<	t	=<	7	s,		

h	
𝑣* = 𝑣(	 − 𝑎,	(𝑡 − 6.5) = 1.3411 − 2.6822	(𝑡 − 6.5)

𝑥* = 𝑥! − 𝑣!	(𝑡 − 6.5) + 0.5 ∗ 𝑎,(𝑡 − 6.5)! = 	3.7552 − 1.3411(𝑡 − 6.5) + 1.3411(𝑡 − 6.5)!	
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𝑎!	:	Acceleration	rate,	0.3832	m/𝑠!,	𝑎,	:	Deceleration	rate,	2.6822	m/𝑠!,	

𝑥( ∶	6.1024	m,	𝑥! ∶	3.7552	m	

Stopping	phase:	

For	7	<	t	=<	10	s,	𝑣* = 0, 𝑥* =	3.42	m	

Accelerating	phase:	

For	t	>	10	s,		h	
𝑣* = 𝑎-	(𝑡 − 10) = 0.89	(𝑡 − 10)

𝑥* = 𝑥, − 0.5 ∗ 𝑎-(𝑡 − 10)! = 	3.42 − 0.445(𝑡 − 10)!	

	 𝑎- ∶	Acceleration	rate,	0.89	m/𝑠!,	𝑥, ∶ 	3.42	m	

Head-turning	rate	relative	to	vehicle	trajectory/time	(theoretical)	

When	pedestrians	are	visually	 tracking	an	AV	and	continuously	adjusting	 their	

head	yaw	angle	continuously,	their	movements	can	be	analysed	in	terms	of	their	

position,	p(m),	speed,	v(m/s),	and	yawing	rate,	�̇�(°/𝑠).		

According	to	Ward	et	al.	(2015),	the	angular	velocity	�̇�(°/𝑠)	is	influenced	by	the	

motion	of	the	AV	relative	to	the	pedestrian’s	fixed	point	of	reference.	Specifically,	

when	 the	 AV	 is	 rotating	 around	 the	 pedestrian,	 the	 yawing	 rate	 �̇�(°/𝑠)	 is	

calculated	as:	

�̇� = 	 ./")	/#0×2#3333⃗ )./")	/#0×2"3333⃗ 	
5|/#)	/"|5

$ 				

In	this	equation:	

• 𝑝/(0,0,0):	The	pedestrian’s	position,	fixed	at	the	origin.	

• 𝑝2q𝑥* , 𝑤𝑖𝑑𝑡ℎ789:_98<= , 0v :	 The	 AV’s	 position,	 where	𝑥*	is	 the	 longitudinal	

distance	to	the	pedestrian	and	𝑤𝑖𝑑𝑡ℎ789:_98<=	is	the	lateral	distance	(1.8	m	

in	this	study).	
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• 𝑣/wwww⃗ 	(0,0,0) :	 The	 pedestrian’s	 velocity	 before	 the	 crossing	 initiation	 time	

(CIT),	assumed	to	be	stationary.	

• 𝑣2www⃗ 	(𝑣* , 0,0):	The	AV’s	velocity,	determined	by	its	speed	𝑣* .	

Simplifying	 this	 using	 the	 cross-product	 formulation,	 the	 yawing	 rate	 can	 be	

expressed	as:	

�̇� = 	−
q𝑥* , 𝑤𝑖𝑑𝑡ℎ789:_98<= , 0v × (𝑣* , 0,0)

y𝑥*! +𝑤𝑖𝑑𝑡ℎ789:_98<=
!
! 	

�̇� = 	−

z
𝚤	̂															𝚥̂																		𝑘~
𝑥*					𝑤𝑖𝑑𝑡ℎ789:_98<= 		0
𝑣*													0																		0

z

𝑥*! +𝑤𝑖𝑑𝑡ℎ789:_98<=
! 	

�̇� = 	 2%∗?@A*7&'()_('+,
B%$C?@A*7&'()_('+,

$							

This	 equation	 provides	 a	 clear	 relationship	 between	 the	 AV’s	 velocity	𝑣* ,	 its	

distance	 from	 the	 pedestrian	𝑥* ,	 and	 the	 pedestrian’s	 yawing	 rate.	 Using	 the	

vehicle’s	dynamic	phases	described	earlier,	the	yawing	rate	�̇�is	calculated	for	the	

following	time	intervals:	Take	𝑤𝑖𝑑𝑡ℎ789:_98<= = 1.8𝑚,	

�̇� =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝐷𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛:		

1.8(11.176 − 3.725𝑡)
3.24 + (27.4 − 11.176𝑡 + 1.8625𝑡!)! 					𝑡𝜖

[0,3]	

𝐸𝑑𝑔𝑖𝑛𝑔:			
1.8 ∗ 0.3832(𝑡 − 3)

3.24 + (6.1024 − 0.1916(𝑡 − 3)!)!
			𝑡𝜖(3,6.5]

1.8q1.3411 − 2.6822	(𝑡 − 6.5)v
3.24 + (3.7552 − 1.3411(𝑡 − 6.5) + 1.3411(𝑡 − 6.5)!)!

				𝑡𝜖(6.5,7]

𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔:																																		0																																					𝑡𝜖(7,10]

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛:		
1.8 ∗ 0.89	(𝑡 − 10)

3.24 + (3.42 − 0.445(𝑡 − 10)!)!
			𝑡𝜖(10,∞)

	

These	equations	describe	how	the	pedestrian’s	yawing	rate	changes	as	the	vehicle	

transitions	through	its	motion	phases	in	yielding	trials.	The	head	yaw	angle	rate	
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�̇�	when	the	pedestrians’	head	is	simply	following	the	vehicle’s	trajectory,	is	plotted	

as	below:	

	

Figure	6.5.	Pedestrians’	head	yaw	angle	change	rate	in	response	to	time	when	

simply	following	AV’s	motions.	

	

Head-turning	rate	relative	to	vehicle	trajectory/time	(observed)	

While	 the	 previous	 section	 presents	 pedestrians’	 theoretical	 head-turning	 rate	

when	following	the	motion	of	an	AV,	this	section	examines	the	observed	head-

turning	rate	over	time.		Figure	6.6	illustrates	pedestrians’	average	head	yaw	rate	

from	the	start	of	each	trial	to	the	end	of	the	crossing	when	interacting	with	both	

yielding	(top,	darker	green	line)	and	non-yielding	(bottom,	darker	blue	line)	AVs.	

The	 distributions	 of	 crossing	 initiation	 time	 are	 also	 shown	 for	 yielding	 (top,	

lighter	green	line)	and	non-yielding	(bottom,	lighter	blue	line)	trials.	The	orange	

lines	indicate	the	time	at	which	the	AV	passed	the	pedestrian	for	both	yielding	

behaviours.	

A	significant	peak	in	head-turning	rate	is	observed	at	the	beginning	of	the	trial	

and	approximately	1	second	before	the	peak	of	the	crossing	initiation	distribution.	
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This	pattern	highlights	the	effectiveness	of	head-turning	behaviour	as	an	indicator	

of	pedestrians’	crossing	intent	in	both	yielding	and	non-yielding	trials.	

	

Figure	6.6.	Observed	head-turning	rate	in	relation	to	time	in	(a)	yielding	and	

(b)	non-yielding	AV	trials.	

	

Comparing	 the	 observed	 and	 theoretical	 head-turning	 rates	 in	Figure	 6.5	 and	

Figure	 6.6a,	 it	 is	 evident	 that	 pedestrians’	 head-turning	 patterns	 differ	

significantly	from	theoretical	predictions	across	all	yielding	stages	of	the	vehicle’s	

movements.	This	discrepancy	highlights	the	context-dependent	nature	of	head-

turning	 behaviour,	 suggesting	 the	 need	 for	 further	 exploration	 to	 better	

understand	its	underlying	mechanisms	and	contributing	factors.	
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6.3 APPENDIX	TO	CHAPTER	4	

Appendix	E	Demographics	information	

The	 demographics	 information	 provided	 below	 was	 collected	 to	 ensure	

participant	diversity	and	to	offer	additional	context	for	the	study.	However,	this	

data	was	not	directly	analysed	in	the	main	body	of	the	research.	

Q1.	Gender	
Participants	identified	as	60%	(n	=	18)	female	and	40%	(n	=	12)	male.	

Q2.	Age	
Participants’	ages	ranged	from	18	to	58	years:	18–30	years:	50%	(n	=	15),	31–40	
years:	30%	(n	=	9),	41	years	and	above:	20%	(n	=	6).	

Q3.	Nationality	
Participants	included	70%	(n	=	21)	British,	20%	(n	=	6)	from	other	European	
countries,	and	10%	(n	=	3)	from	non-European	countries.	

Q4.	Length	of	Residence	in	the	UK	
Participants	reported	living	in	the	UK	for	less	than	1	year:	30%	(n	=	9),	1–5	
years:	27%	(n	=	8),	5–10	years:	3%	(n	=	1),	and	more	than	10	years:	40%	(n	=	
12).	

Q5.	Familiarity	with	Traffic	Systems	
Familiarity	was	reported	as	43%	(n	=	13)	with	left-hand	traffic	(LHT),	23%	(n	=	
7)	with	right-hand	traffic	(RHT),	and	33%	(n	=	10)	familiar	with	both	systems.	

Q6.	Affinity	for	Technology	Interaction	(ATI)	Scale	
The	mean	Affinity	for	Technology	Interaction	(ATI)	scale	score	was	4.25,	
indicating	moderate	interaction	affinity.	

Q7.	Use	of	VR	Headsets	
A	total	of	73%	(n	=	22)	of	participants	had	used	VR	headsets	before,	while	
27%	(n	=	8)	had	not.	

Q8.	Use	of	AR	Apps	or	Games	
Participants	reported	using	AR	apps	or	games	at	57%	(n	=	17),	with	43%	(n	=	
13)	having	never	used	them.	

Q9.	Participation	in	CAVE-Based	Simulator	Experiments	
A	total	of	43%	(n	=	13)	had	previously	participated	in	CAVE-based	simulator	
experiments,	while	57%	(n	=	17)	had	not.	
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Q10.	Daily	Walking	Time	as	a	Pedestrian	
Participants	reported	daily	walking	times	were	15–30	minutes:	50%	(n	=	15),	
30–45	minutes:	10%	(n	=	3),	45–60	minutes:	23%	(n	=	7),	and	more	than	60	
minutes:	17%	(n	=	5).	

Q11.	Primary	Mode	of	Transportation	
The	primary	mode	of	transportation	was	walking	for	46.7%	(n	=	14),	private	
vehicles	for	23%	(n	=	7),	public	transportation	for	17%	(n	=	5),	and	cycling	for	
13%	(n	=	4).	

Q12.	Possession	of	a	Driving	License	
A	total	of	87%	(n	=	26)	of	participants	reported	having	a	driving	license,	while	
13%	(n	=	4)	did	not.	

Q13.	Year	of	License	Acquisition	
Among	licensed	participants,	77%	(n	=	20)	obtained	their	license	in	the	last	10	
years,	while	23%	(n	=	6)	obtained	it	more	than	10	years	ago,	with	the	earliest	
year	being	1993	and	the	most	recent	being	2020.	

Q14.	Driving	Frequency	
Driving	frequency	for	licensed	participants	was	every	day:	34%	(n	=	9),	
weekdays	only:	4%	(n	=	1),	weekends	only:	8%	(n	=	2),	once	per	week:	8%	(n	=	
2),	once	per	month:	12%	(n	=	3),	never:	27%	(n	=	7),	and	preferred	not	to	
respond:	8%	(n	=	2).	

Q15.	Annual	Mileage	
Participants	with	licenses	reported	annual	mileage	as	0	miles:	12%	(n	=	3),	1–
5,000	miles:	38%	(n	=	10),	5,001–10,000	miles:	23%	(n	=	6),	10,001–15,000	miles:	
12%	(n	=	3),	15,001–20,000	miles:	8%	(n	=	2),	and	preferred	not	to	respond:	8%	
(n	=	2).	

Q16.	Colour	Blindness	Test	
A	total	of	3%	(n	=	1)	of	participants	were	identified	as	colourblind,	based	on	
three	or	more	incorrect	responses	to	the	six-item	Ishihara	test,	while	97%	(n	
=	29)	were	not	colourblind.	

	

Appendix	F	Results:	intuitiveness	ranking	distribution	

This	section	summarises	the	data	distribution	for	intuitiveness	rankings	of	the	AR	

designs	evaluated	in	Chapter	4,	providing	supplementary	descriptive	data	for	the	

analysis	presented	 in	Section	4.3.2.	Furthermore,	 the	correlation	between	these	
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intuitiveness	rankings	and	changes	in	fixation	gaze	for	each	AR	design	is	explored	

to	enrich	the	interpretation	of	the	results.	

Figure	6.7	presents	bar	plots	 illustrating	participant	 ratings	on	a	7-point	 scale,	

where	1	represents	 'strongly	not	 intuitive'	and	7	 indicates	 'strongly	 intuitive'	 for	

each	AR	design.	The	mean	and	standard	error	(SE)	for	each	design	is	annotated	

above	each	plot.	The	plots	are	organised	in	descending	order	of	mean	intuitiveness	

scores,	allowing	for	easy	comparisons	across	the	designs.	

	

Figure	6.7.	The	distribution	of	intuitiveness	ranking	for	each	AR	concept,	in	

descending	order	based	on	their	mean	intuitiveness	scores.	
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Participant	 ratings	 reveal	mean	 intuitiveness	 scores	 ranging	 from	 4.85	 to	 6.24.	

Higher-scoring	AR	designs	exhibit	concentrated	ratings	within	the	higher	range	

(scores	of	5	to	7)	whereas	designs	with	lower	scores	display	broader	distributions,	

with	notable	ratings	in	the	lower	range	(scores	of	1	to	3).	The	'Pedestrian	Lights	

HUD'	AR	design	achieved	the	highest	average	intuitiveness	score	of	6.24,	followed	

closely	 by	 'Virtual	 Fence'	 at	 6.17	 and	 ‘Nudge	 HUD’	 at	 6.14.	 Conversely,	 the	

'Phantom	Car'	design	received	the	lowest	mean	score	of	4.85	and	demonstrated	a	

higher	 SE	 (0.13),	 suggesting	 variability	 in	 participant	 responses,	 potentially	

indicating	confusion	or	divided	opinions	regarding	its	effectiveness.	

Results	in	Section	4.3.2	have	shown	how	pedestrians’	change	in	fixation	duration	

relate	 to	 intuitiveness	 rankings	 and	 AR	 locations.	 To	 provide	 a	 detailed	

examination,	Figure	6.8	illustrates	the	relationship	between	mean	intuitiveness	

ranking	 and	 changes	 in	 fixation	 duration	 for	 each	 AR	 design.	 The	 designs	 are	

classified	 into	 three	 location	 categories:	 Car	 Path	 (orange	 boundary),	 Crossing	

Path	(green	boundary),	and	HUD	(pink	boundary).	The	results	show	a	clear	trend	

where	higher	intuitiveness	rankings	are	linked	with	greater	reductions	in	fixation	

duration,	suggesting	that	more	intuitive	AR	designs	can	enhance	pedestrian-AV	

communication	by	reducing	visual	demands	and	facilitating	efficient	interaction.	
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Figure	6.8.	Relationship	between	mean	intuitiveness	ranking	and	change	in	

fixation	duration	(s)	for	each	AR	design.	

	

Appendix	G	Gaze	distribution	

One	of	the	key	metrics	for	analysing	gaze	behaviour	is	the	distribution	percentage,	

representing	how	much	gaze	is	allocated	to	different	Areas	of	Interest	(AOIs).	In	

this	research,	the	relevant	AOIs	have	been	identified	in	Section	4.2.1,	including	AR	

concepts	and	the	car	body.	Additionally,	this	section	provides	supplementary	data	

on	 gaze	 percentage,	 including	 gaze	 on	 the	 road	 (the	 surface	 on	 the	 ground,	

regardless	of	its	distance	from	pedestrians),	the	front	of	pedestrians	(the	screen	

directly	 in	 their	 line	 of	 sight	 as	 they	 intended	 to	 cross),	 and	 "Other"	 for	 all	

remaining	areas.	Figure	6.9	illustrates	gaze	distribution	across	these	AOIs	for	the	

four	AR	locations,	 in	relation	to	the	time	before	crossing	 initiation,	 to	examine	

how	visual	resources	are	allocated	for	crossing	decisions.	

As	 information	 from	 the	 AR	 and	 vehicle	 is	 crucial	 for	 crossing	 decisions,	 the	

combined	gaze	allocation	on	these	two	AOIs	increases	steadily,	peaking	around	-

6	 and	 -2	 seconds	 before	 crossing	 initiation	 in	 the	AR	HUD	 and	Crossing	 Path	

conditions.	In	contrast,	the	combined	gaze	distribution	on	these	AOIs	in	the	Car	

Path	and	Baseline	conditions	peaks	later,	between	-2	and	0	seconds	before	crossing	

initiation.	These	patterns	align	with	the	distance-based	design	strategy	outlined	

in	the	main	body	of	this	work.	
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Figure	6.9.	Gaze	distribution	across	AOIs	over	time	before	crossing	initiation	

for	four	AR	locations,	from	top	to	bottom:	Crossing	Path,	HUD,	Car	Path,	and	

Baseline.	
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