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Abstract

Spatial reasoning is essential for both human cognition and machine in-
telligence in understanding and navigating spatial relationships between
objects. Despite significant advances in large language models (LLMs) like
ChatGPT, spatial reasoning remains a challenging area. This thesis aims
to make a contribution to addressing this issue.

Firstly, we analyze the existing benchmarks: bAbI, StepGame, SpartQA,
and SpaRTUN, providing initial LLM evaluations and examining their lim-
itations. Results on StepGame demonstrate LLMs’ proficiency in mapping
natural language to spatial relations, while also highlighting challenges in
multi-hop reasoning tasks. As an alternative approach, this thesis also in-
vestigates using LLMs to translate the spatial reasoning tasks into a logical
format appropriate for an answer set programming reasoner. Experiments
demonstrate that this neuro-symbolic approach results in almost perfect
accuracy scores on StepGame.

Secondly, the thesis investigates advanced prompting strategies, spe-
cifically Chain-of-Thought (CoT) and Tree-of-Thought (ToT) methods, to
enhance LLMs’ spatial reasoning capabilities. These strategies decompose
complex reasoning tasks into manageable steps, significantly improving per-
formance on spatial reasoning benchmarks. CoT and ToT approaches show
substantial improvements in accuracy, particularly with complex, multi-hop
tasks.

Thirdly, the thesis introduces a novel benchmark based on realistic 3D
simulation data, featuring diverse room layouts with various objects and
their spatial relationships. This benchmark encompasses a wide range of
qualitative spatial relationships, such as topological, directional, and dis-
tance relations, and presents scenarios from different viewpoints to reflect
real-world complexities. Alongside the benchmark itself, the code is avail-
able online, thus allowing arbitrary further versions to be created. A further
contribution of this benchmark is the inclusion of a logic-based consistency-
checking tool that evaluates multiple plausible solutions, aligning with real-
world scenarios where spatial relationships often have several valid inter-
pretations.

This thesis advances the spatial reasoning abilities of LLMs by identi-
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fying deficiencies in current benchmarks and proposing practical enhance-
ments. The integrated approach of refining evaluation benchmarks and em-
ploying advanced prompting techniques paves the way for future advances
in AI spatial reasoning capabilities based on LLMs.
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Chapter 1

Introduction

1.1 Motivation

Space is one of the fundamental aspects of our daily life and of our physical world. Spa-
tial reasoning, the ability to understand and navigate spatial relationships in physical
space, is a fundamental aspect of human cognition that significantly influences how we
interact with our environment. The need for spatial representations and spatial reas-
oning is ubiquitous in artificial intelligence (AI) - from robot planning and navigation,
to interpreting visual inputs, to understanding natural language.

Spatial reasoning is leveraged across a multitude of applications, including geo-
graphic information systems (GIS) [2], robot navigation [3], robot manipulation [4, 5],
visual reasoning [6–9], natural language processing (NLP) tasks [10], cognitive systems
[11], simulation of physical environments [12, 13], traffic flow analysis and forecasting
[14], and even biology [15]. These applications demonstrate the pervasive need for
robust spatial representation and reasoning capabilities in AI systems to enrich the
comprehension of their surroundings and response to user interactions, leading to more
advanced user experiences.

Early strides in spatial reasoning in text were marked by the development of formal
structures to represent spatial relationships. A spatial ontology [16] was proposed to
formalize the representation of spatial relationships, laying the foundation for the later
introduction of text-based spatial role labelling (SpRL) [17], which aims to convert
natural language text into formal spatial representations. Building upon this, [18]
further advanced the field by developing the multimodal spatial role labelling (mSpRL)
task. This method extends SpRL by incorporating spatial information from both text
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and accompanying images, offering a richer representation of spatial relationships.

The development of spatial reasoning with natural language has been largely driven
by the creation and refinement of datasets tailored for training and evaluating language
models. The early datasets, such as SpaceEval (SemEval-2015 task 8) [19] and mSpRL,
offered annotated spatial roles and relations, but their small scale underlined the com-
plexity and novelty of the spatial role labelling problem. Recognizing this gap, [20]
developed a question-answering (QA) dataset named StepGame, specifically designed
to evaluate robust multi-hop spatial reasoning in text, with a focus on directional spa-
tial relations [21, 22]. [23] significantly expanded the resource landscape by construct-
ing three new spatial QA datasets: SpartQA, SPARTUN, and RESQ. These datasets
encompass wide-ranging spatial language expressions, rendering them challenging to
address using conventional logical programming. Moreover, they serve as benchmarks
for exploring and evaluating the spatial reasoning capabilities of LMs.

Textual descriptions in these spatial reasoning datasets often employ qualitative rep-
resentations [24] that describe spatial relationships in terms understandable to humans
rather than precise coordinates, mirroring human cognitive processes. Such qualitat-
ive representations might articulate spatial relationships simply as “the park is to the
north of the store,” emphasizing essential spatial knowledge while omitting less critical
details.

The advent of LLMs, such as OpenAI’s ChatGPT, opened up fresh pathways for
spatial reasoning. These models, leveraging transformer architectures, can generate
human-like text and handle complex linguistic structures. Over the past few years, there
has been a significant increase in the scale and complexity of LLMs, including OpenAI’s
GPT series from GPT-1 through GPT-4o [25] and open-source models such as Llama-
1, Llama-2, and Llama-3 [26]. Researchers and developers are continually pushing
the boundaries of LLMs, resulting in improvements in their capabilities, performance,
and the range of tasks they can handle. Advancements in LLMs have significantly
improved their capabilities in understanding and reasoning with textual information
[27]. As LLMs continue to evolve, their capabilities are expanding to include more
complex and nuanced tasks, such as reasoning, problem-solving, and creative writing.

However, their capabilities in spatial reasoning are yet to be fully explored and
exploited. One recent approach to assess these capabilities was taken by [28], who put
ChatGPT to the test using SpartQA and StepGame. Despite the generally advanced
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capabilities of ChatGPT, the model falls short of these tasks. This underscores the
need for ongoing research and refined strategies to enhance spatial reasoning in LLMs,
which would improve their comprehension of complex environments and their overall
performance on spatial reasoning tasks.

In this work, we aim to provide a deeper analysis of LLMs’ performance on spatial
reasoning benchmarks, explore the limitations contributing to these results, and propose
potential avenues for improvement.

1.2 Advancing Spatial Reasoning in LLMs

Over the past decades, various spatial logical reasoning tools [29, 30] have been de-
veloped to solve different reasoning challenges. They typically require symbolic inputs
and necessitate the incorporation of additional reasoning rules or representations to
accommodate new relations. Recent efforts have been made to integrate logical reason-
ers with LLMs. For instance, [31] developed an answer-set programming (ASP) tool
for grid-based directional relations, while [1] formulated spatial reasoning rules. Com-
monly, this approach involves using LLMs to parse natural language descriptions into
symbolic forms that logical reasoners can process.

In this study, we explore the enhancement of spatial reasoning tasks by integrating
LLMs with a highly extendable logical reasoning framework. We employed LLMs to
convert spatial descriptions into symbolic spatial relation representations, subsequently
inputting these into a logical reasoning program. The integration demonstrated by [31]
resulted in significant improvement in StepGame, surpassing the previous state-of-the-
art (SOTA) though not achieving perfect results: around 90% accuracy for lower hops
and 88.3% accuracy for 10-hop reasoning. They attributed 10.7% faults to data-related
issues. We take a step further to delve into the two components, analyzing the perform-
ance of each on refined StepGame dataset. Remarkably, we achieved 100% accuracy
for almost all hops, with only 2 errors among 1000 test examples, which were due
to LLMs’ incorrect semantic parsing. Building on this, we replaced the GPT-3 parser
with our sentence-to-relation mapping method and combined it with the ASP reasoner,
showcasing proficiency in performing qualitative reasoning without encountering any
errors.

We then explore the limit of LLMs as a general problem solver that explores its
own thoughts and guides its own exploration with deliberate reasoning as heuristics. To
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achieve this, we employ Chain-of-Thought (CoT) and Tree-of-Thoughts (ToT) prompt-
ing.

A promising technique known as ‘prompt engineering’ [32] has been making its
mark recently. This approach involves crafting specific prompts to guide the responses
of the models, leading to outputs that are more contextually apt and insightful. This
method demonstrates significant potential in enhancing the capabilities of LLMs like
ChatGPT in various domains, including the challenging area of logical reasoning [33].
For instance, when faced with multi-step reasoning tasks, a method called few-shot
CoT prompting [34] comes into play. These demonstrations enable LLMs to explicitly
generate reasoning steps, thereby improving their accuracy in reasoning tasks. This
technique involves a handful of manually curated step-by-step reasoning demonstra-
tions.

CoT [35] incorporates a sequence of intermediate reasoning steps to facilitate problem-
solving. However, when applied to spatial reasoning tasks, previous studies [31] have
shown that CoT does not consistently improve performance and may even reduce ac-
curacy in complex k-hop reasoning tasks. This observation is attributed to the higher
probability of errors occurring in lengthy CoT processes. On the other hand, research
on other tasks [36, 37] has demonstrated that breaking down complex problems into
simpler subproblems and solving them sequentially can be beneficial. Given the am-
biguity in the decomposition of ‘thoughts’1 Within CoT, we propose refining the CoT
prompt to empower language models to perform better in spatial reasoning tasks.

On the other hand, [38] introduced ToT, a framework enabling LLMs to explore
multiple reasoning paths, and they demonstrated its effectiveness in improving problem-
solving capabilities across tasks like the Game of 24, creative writing, and mini cross-
words. In our work, we customize the ToT approach for object-linking chain building,
a crucial subproblem in addressing spatial reasoning benchmarks.

Our customized CoT method showcases its advantages more prominently in larger
models such as GPT-4 and GPT-3 Davinci, maintaining accuracy even as the tasks
become more complex. Our ToT approach demonstrates its strengths on the three
GPT models: on the largest model, GPT-4, we are able to maintain an accuracy of

1In this thesis we use the word ‘thoughts’ in the same way as is now being used in the literature
on CoT and ToT, whilst noting that these are not thoughts in the human sense but rather generated
coherent units of text, serving as intermediate steps in a problem-solving setting, and without wishing
to ascribe an anthropomorphic meaning to the word.
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around 90% even as the tasks become more complex. On Davinci, the accuracy is
maintained at around 50%, while GPT-3.5 Turbo 1 achieves a lower level of accuracy
at around 30%.

1.3 Benchmarking Spatial Reasoning in LLMs

We analyzed the current benchmarks for spatial reasoning within LLMs - bAbI [39],
StepGame [20], SpartQA [1] and SpaRTUN [23], identifying critical challenges inher-
ent to these tasks. The analysis reveals several problems and limitations with these
benchmarks. The bAbI’s spatial reasoning tasks, for example, provide simplified spa-
tial reasoning tasks by restricting relations to basic cardinal directions and fixed dis-
tances, lacking the complexity of real-world scenarios. StepGame, meanwhile, contains
template errors that could distort model performance evaluations. These errors were
previously overlooked, leading to studies conducted on a flawed benchmark, inaccur-
ately assessing the capabilities of the LLMs [28], [31]. While SpartQA and SpaRTUN
attempt to incorporate more complex spatial relations such as topological and distance
relations, their descriptions often lack logical flow and clarity, undermining their ef-
fectiveness. Additionally, these benchmarks typically concentrate on two-dimensional
spatial relations and are confined to textual modalities.

In response, we have developed a new spatial reasoning benchmark, RoomSpace2,
for evaluating LLMs. This benchmark utilizes the 3D simulation tool Procthor [13] to
generate interactive room scenes. RoomSpace enhances the spatial reasoning evaluation
context by offering flexibility in defining spatial relations. It incorporates images from
multiple viewpoints, including top-down and agent-specific perspectives. Additionally,
it creates textual narratives for reasoning tasks. This provides a flexible framework for
assessing the capabilities of advanced LLMs like GPT-4, enhancing the benchmark’s
effectiveness in probing the depths of spatial reasoning. An example of RoomSpace
data is depicted in Figure 1.1.

With 3D simulation, RoomSpace offers two key advantages. First, the inclusion
of visual components future-proofs the benchmark - ensuring it remains relevant, ex-

1There are four versions of GPT-3.5 Turbo models: gpt-3.5-turbo, gpt-3.5-turbo-0125, gpt-3.5-
turbo-1106, and gpt-3.5-turbo-instruct. For all subsequent experiments, we use gpt-3.5-turbo, referred
to simply as Turbo hereafter.

2https://github.com/Fangjun-Li/RoomSpace
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Figure 1.1: One evaluation example in our RoomSpace benchmark includes images,
textual spatial reasoning stories, and questions designed to evaluate LLMs.

tensible, and well-aligned with the rapid progression of multimodal AI systems. As
multimodal large language models (MLLMs) like GPT-4V, Gemini Pro, and Claude 3.5
Sonnet continue to evolve, the ability to jointly reason over text and visual inputs is be-
coming a core aspect of AI research and deployment. RoomSpace is designed with this
trajectory in mind, supporting richer, more comprehensive evaluations across diverse
use cases. Second, 3D simulation enhances the ecological validity of the benchmark.
Unlike earlier datasets that relied on overly simplified or repetitive object identifiers,
RoomSpace introduces a diverse array of realistic objects reflective of real-world en-
vironments. A wide array of objects is introduced that more closely mirror real-world
scenarios than previous benchmarks, which often used repetitive, lengthy object names
or simple identifiers. In RoomSpace, objects are identified by their type, and numeric-
ally distinguished when multiple instances are present, eliminating the need to specify
attributes such as color, size, or shape.

The benchmark also offers significant flexibility in defining spatial representations
and crafting specialized reasoning tasks to meet various research needs. The metadata
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generated for each scene in RoomSpace allows researchers to tailor spatial represent-
ations to their specifications, incorporating point-based cardinal direction relations,
varying levels of granularity in distance relations, and topological relations between
objects within a room.

Moreover, the adaptability extends to the formulation of spatial reasoning tasks.
Our approach to constructing constraint satisfaction problems is a prime example,
where the question posed assesses the feasibility of object arrangements within a defined
domain that meets all specified constraints. A positive arrangement results in a ‘Yes’,
and if no such arrangement exists, the answer is ‘No’. The complexity of these narratives
can be adjusted by varying the number of objects, the nature and scope of constraints,
the domain size, and the specific types of constraints utilized.

Lastly, RoomSpace includes a logical reasoner for generating gold labels for each
problem, acknowledging the potential for multiple valid solutions in scenarios with
limited qualitative spatial information. This feature ensures that our benchmark can
more accurately reflect the complexities and ambiguities inherent in real-world spatial
reasoning, providing a comprehensive platform for evaluating LLMs.

This section of the work not only highlights the limitations of current benchmarks
but also introduces a robust framework for more comprehensively assessing the spatial
reasoning capabilities of LLMs. Through the development and deployment of Room-
Space, we provide a valuable tool for advancing research in this critical area of AI
development.

1.4 Thesis Structure

This thesis is structured into five main chapters, each addressing specific aspects of
spatial reasoning with Large Language Models (LLMs). Below is a concise outline of
each chapter:

In this opening chapter, we introduced the motivation for studying spatial reasoning
with LLMs and discussed the significance of developing benchmarks to evaluate their
spatial reasoning capabilities.

In Chapter 2, we provide a comprehensive review of the development of LLMs. It
traces the evolution from pre-training to various enhancements such as supervised fine-
tuning, reinforcement learning from human feedback, and model quantization. The
chapter also explores the development of qualitative spatial representation and reas-
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oning, highlighting the particular challenges and previous efforts to integrate spatial
reasoning with LLMs.

In Chapter 3, various benchmarks, including bAbI, StepGame, and SpartQA/S-
paRTUN, are discussed. It provides an in-depth examination of these benchmarks,
detailing the creation of textual stories and questions, and discussing the inherent lim-
itations and problems. Additionally, the evaluation methods and performance of LLMs
on these benchmarks are critically analyzed.

In Chapter 4, we explore methods to enhance the spatial reasoning capabilities of
LLMs. It discusses the integration of logical reasoners with LLMs, the deployment of
CoT prompting, and ToT strategies. Experimental results are presented to demonstrate
the effectiveness of these methods in improving the performance of LLMs on spatial
reasoning tasks.

Chapter 5 introduces RoomSpace, a new benchmark designed to rigorously test the
spatial reasoning capabilities of LLMs. It describes the detailed process of construct-
ing 3D room environments, specifying spatial representations, and formulating spatial
reasoning problems. The chapter concludes with an evaluation of LLMs’ performance
on this benchmark, highlighting its utility and the insights it provides.

In Chapter 6, we present the key findings of our work and the contributions we offer
in the field of spatial reasoning with LLMs. We also discuss the main limitations of
this work and suggest a number of research directions for future work.
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Chapter 2

Related Work

2.1 Development of LLMs

The evolution of language models has seen significant transformation from the 1950s
to the present day. Initially, from the 1950s to the 1990s, language processing was
dominated by rule-based systems, where machines executed tasks based on algorithms
predefined by humans. In the 1990s, this approach evolved with the rise of statistical
machine learning, shifting from human-written rules to models that learned from data,
focusing on understanding the statistical distribution of language. As the calendar
turned to 2013, deep learning began to gain prominence, particularly influencing fields
like computer vision and language processing. During this period, language models
incorporated innovative architectures such as encoder-decoder structures, Word2Vec
embeddings, and attention mechanisms. These developments allowed for words and
phrases to be transformed into high-dimensional representations. The labelled data
size reached the billion scale. The period from 2018 to 2022 marked the advent of pre-
trained language models (PLMs) [40] that utilized vast amounts of unlabeled data. This
era introduced foundational models like GPT and BERT, followed by more advanced
models such as T5 and GPT-3. The pre-training and fine-tuning paradigm became
a cornerstone, significantly enhancing model performance across various tasks. Since
2020, the development of LLMs has been at the forefront of AI research, reaching a
notable milestone in 2022 with the launch of ChatGPT. These models are trained on
increasingly diverse and extensive datasets, including user-generated content, to benefit
from reinforcement learning through human feedback. This phase marks a significant
advancement in language modelling techniques, aiming to fully leverage AI’s capabilities
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to comprehend and generate text that closely mimics human language.

In this section of the literature review, we focus on language models developed after
2018, emphasizing the most prominent LLMs. This includes OpenAI’s GPT series
[25, 41–44], Google’s Transformer and PaLM series [45, 46], DeepMind’s Gemini series
[47, 48], and Meta’s Llama series [26, 49], among others. The progression from early
models like BERT [50] and GPT-1 [41] to the latest GPT-4 [25] exemplifies substantial
enhancements in training and fine-tuning methodologies.

Initially, models such as BERT and GPT-1 depended heavily on extensive pre-
training using unlabeled data, followed by fine-tuning for specific tasks, which posed
challenges in efficiency and task generalization. Innovations like prompt-tuning [51], p-
tuning [52], and prefix-tuning [53] introduced more streamlined fine-tuning techniques
by adjusting only a minimal set of parameters, yet they continued to grapple with
generalizing across diverse tasks. The transition from GPT-3 to ChatGPT [44] marked
a significant shift with the adoption of Reinforcement Learning from Human Feedback
(RLHF), which dramatically refined response accuracy and relevance by integrating
direct human feedback into the model’s training regimen. GPT-4 has further refined
this approach with the implementation of the Mixture of Experts (MoE) [54] technique,
improving scalability and efficiency by selectively activating pertinent model compon-
ents for specific tasks. This allows for specialized model behaviour while minimizing
computational overhead. These developments highlight ongoing efforts to enhance the
performance, scalability, and efficiency of LLMs. We will delve deeper into these de-
velopmental stages in the following part, providing a comprehensive overview of the
progression and impact of these technologies.

Figure 2.1: The three main development stages for LLMs.
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2.1.1 Pre-training

Pre-trained language models follow the pipeline: first self-supervised learning with
large unlabeled data (e.g., Wikipedia). Then, for task-specific datasets (e.g., QA and
translation), fine-tune the models on these data to get the final model, then test data
on the final model. There are three types of structures in PLMs: encoders (e.g.,
BERT, RoBERTa, ALBERT), decoders (e.g., GPT), and encoder-decoders (e.g., T5,
BART). The period from GPT-1 to GPT-3 witnessed significant expansions in training
corpora and transformer layers. Models like Codex also integrated code pre-training.
A summary of the evolution in terms of parameters and pre-training data volumes for
several seminal language models is presented in Table 2.1.

To develop foundational language models capable of extensive linguistic processing,
vast training datasets are used, comprising billions to trillions of tokens sourced from
publicly available corpora, such as Common Crawl1, RefinedWeb [72], and The Pile
[75]. The primary training objective during this phase is a straightforward “next word
prediction task”, wherein the model predicts subsequent words based on the provided
textual context.

Research by [76] on the influence of pre-training data volume on linguistic capabil-
ities revealed that while language models only need approximately 10M or 100M words
to effectively learn most of the syntactic and semantic features, acquiring sufficient
commonsense knowledge and other skills necessary for excelling in standard natural
language understanding (NLU) tasks requires substantially more data.

Further studies [60] explored the optimal model size and data volume for train-
ing transformer-based language models within specified computational budgets. Their
findings showed that the optimal Gopher compute budget model size is 40B - 70B.
Their experiments showed that Chinchilla-70B, trained on 1.4T tokens, consistently
and significantly outperformed larger LLMs like Gopher (280B) and GPT-3 (175B)
across a broad array of downstream tasks, suggesting more efficient scaling strategies.

Inspired by the Chinchilla scaling laws, the Llama series models were developed,
utilizing 1.4T pre-training data from diverse sources like Common Crawl, the pro-
cessed Colossal Clean Crawled Corpus (C4) [55], GitHub datasets available on Google
BigQuery, Wikipedia dumps, internet-based book corpora [75], arXiv LaTeX files [77],

1https://commoncrawl.org, this and all other cited URLs last retrieved on October 30, 2024.
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Model Providers Time Parameters Tokens Open

GPT-3[43] OpenAI 2020.05 125M to 175B 330B ×
GPT-4[25] 2023.03 1.76T 13T ×
T5[55] Google 2019.10 11B 34B ✓

GLaM[56] 2021.12 1.2T 1.6T+1.7B ×
LaMDA[57] 2022.02 2B, 8B, 137B 1.56T words ×
PaLM[45] 2023.05 8B, 62B, 540B 780B ×
PaLM-2[46] 2023.05 340B 3.6T ×
ERNIE-3.0[58] Baidu 2021.06 11B 4T ×
Gopher[59] DeepMind 2021.12 280B 300B ✓

Chinchilla[60] 2022.03 70B 1.4T ×
Gemini[47] 2023.12 Nano (1.8B, 3.25B) / ×
Gemini-1.5[48] 2024.03 / / ×
Gemma[61] 2024.04 2B, 7B 6T ✓

Gemma-2[62] 2024.07 9B, 27B 8T, 13T ✓

OPT[63] 2022.05 125M to 175B 180B ✓

Llama[26] Meta 2023.02 7B to 65B 1.0T, 1.4T ✓

Llama-2[49] 2023.07 7B to 70B 2T ✓

Llama-3[64] 2024.04 8B, 70B 15T ✓

Claude-2[65] Anthropic 2023.07 / / ×
Claude-3[66] 2024.03 / / ×
GPT-J[67] EleutherAI 2021.04 6B / ✓

GPT-NeoX[68] 2022.04 20B / ✓

BLOOM[69] BigScience 2022.11 560M to 176B 366B ✓

MPT-7B[70] MosaicML 2023.05 6.7B 1T ✓

Mistral-7B[71] Mistral.AI 2023.10 7B / ✓

Falcon-rw[72] TII 2023.11 1B, 7B 5T ✓

Falcon[73] 2023.11 7B, 40B, 180B 5T ✓

Falcon-2[74] 2023.10 2B, 11B 5.5T ✓

Table 2.1: Summary of foundation LLMs.
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and QA sites like StackExchange 1. This approach proved effective, with Llama’s
performance improving steadily with increasing training data volumes, particularly in
QA and commonsense reasoning tasks. Subsequent iterations, Llama-2 and Llama-3,
expanded the training data volumes to 2T and 15T tokens, respectively.

Pre-training LLMs on large-scale training data demands substantial computational
resources, involving thousands of high-performance GPUs, taking weeks to months to
complete the training of deep neural network parameters. For instance, as reported
by [26], training the Llama 65B model required 2048 NVIDIA A100 80GB GPUs over
21 days on 1.4T training tokens. Another example is the GPT model. As reported
by [43], training GPT-3 175B required 3640 PFLOPS-day. The training utilized V100
GPUs within a high-bandwidth cluster and employed 16-bit floating point (FP16) vari-
ables. Assuming training needs to be concluded within 1 month without accounting
for compute resource utilization rates and the significant communication overhead in a
large GPU cluster [78], a GPU cluster capable of achieving 120 PFLOPS is necessary.
Per the NVIDIA V100S Datasheet, a single V100 GPU delivers about 120 TFLOPS
using FP16, indicating a need for at least 1000 V100 GPUs. More practical figures
are provided by the training of the OPT-175B [63] and BLOOM-176B [69], which are
comparable in scale to GPT-3. The OPT-175B training took about 2 months with 992
A100 80GB GPUs, factoring in hardware failures, and achieved a practical GPU util-
ization of 147 TFLOPS per unit. This utilization is slightly below 50% of the NVIDIA
A100 80GB GPU’s theoretical FP16 performance of 312 TFLOPS. The training of the
BLOOM-176B model required 3.5 months using 384 A100 80GB GPUs [69].

Concluding the pre-training phase, these models are adept at predicting subsequent
tokens in textual sequences and are believed to implicitly contain factual knowledge and
commonsense knowledge. These foundation models learn powerful, general represent-
ations and can be prompted into completing tasks; an example of their success in
action-effect prediction tasks can be found in our previous research [27].

2.1.2 Supervised Fine-tuning Stage

The training goal during the pre-training phase of LLMs is primarily focused on pre-
dicting the next word in a sequence. This foundational stage does not inherently train
the model to comprehend or respond to complex human instructions. To bridge this

1https://stackexchange.com/
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gap, a subsequent phase known as instruction tuning [79] is implemented to align the
models more closely with human-like interaction and responsiveness for a variety of
functional tasks. The resulting fine-tuned models, often referred to as supervised fine-
tuning (SFT) models, gain the ability to perform complex tasks such as open-domain
questioning, reading comprehension, translation, and code generation. These models
can subsequently be deployed effectively as interactive assistants.

Many ChatGPT-like models, referenced in Table 2.2, are of this type. Due to its
openness and effectiveness, Llama has attracted significant attention from the research
community, and many efforts have been devoted to fine-tuning Llama’s different pre-
training versions for implementing new models or tools. Examples include Alpaca-7B
[80], which was fine-tuned from the Llama-7B on 52K instruction-following demon-
strations, and Vicuna [81], which was also fine-tuned from Llama but used a different
dataset of 70K user-shared conversations. Many of these models work very well, even
achieving 90% of ChatGPT’s performance in some reviews.

Model Providers Time Parameters Base Model Data Open

T0[82] Hugging Face 2021.10 11B T5 P3 ✓

BLOOMZ[83] 2022.11 176B BLOOM xP3 ✓

InstructGPT[44] OpenAI 2022.03 1.3B, 6B, 175B GPT-3 / ×
FLAN[84] Google 2021.09 137B LaMDA-PT Flan2021 ×
Flan-T5[85] 2022.10 11B T5 Flan2022 ✓

Flan-PaLM[85] 2022.10 540B PaLM Flan2022 ×
Bard[86] 2023.03 340B PaLM-2 / ×
OPT-IML[87] Meta AI 2022.12 30B, 175B OPT OPT-IML ✓

LIMA[88] 2023.05 65B Llama LIMA ✓

Alpaca[80] Stanford 2023.03 7B Llama Alpaca ✓

Gorilla[89] UC Berkeley 2023.05 7B Llama / ✓

Vicuna[81] LMSYS 2023.10 7B, 13B Llama / ✓

Table 2.2: Summary of emblematic SFT models.

During this phase, high-quality, prompt-response pairs meticulously crafted by hu-
mans are used to fine-tune the foundational models obtained from the initial pre-
training stage. This data, although smaller in scale, is rich in diversity, covering a
wide range of tasks, including question-answering (QA) and casual conversations. An
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Datasets Providers Time Size Tasks Construction Open

Sup-NatInst v1[90] Allen Institute 2021.06 193K 61 Crowdsourcing ✓

Sup-NatInst v2[91] for AI 2021.10 5M 1.6K ✓

P3[83] Brown University 2021.10 12M 62 ✓

xP3[83] Hugging Face 2022.11 81M 71 ✓

Flan 2021[84] Google 2021.09 4.4M 62 Manually composed ✓

Flan 2022[85] 2022.10 15M 1835 templates + ✓

Flan Collection [92] 2023.02 378M / Compiled datasets ✓

MetaICL[93] University of 2021.10 3.5M 142 ✓

Self-Instruct[94] Washington 2022.12 52K 175 LLM-synthetic ✓

UnnaturalInst[95] Meta AI 2023.04 64K 117 ✓

LIMA[88] Meta AI 2023.05 1K / ✓

OpenAssistant[96] LAION 2023.10 161K 625K ✓

Dolly[97] Databricks 2023.04 15K 7 Human-generated ✓

Alpaca Data[80] Stanford 2023.03 52K 175 + Filtering ✓

Table 2.3: An overview of instruction fine-tuning datasets.

overview of some prominent instruction-following datasets is presented in Table 2.3.
Super-Natural Instruction (Sup-NatInst) v1 [90], Flan 2021 [84], and the Public Pool
of Prompts (P3) [98] have been instrumental in aggregating large NLP task collections,
which are templatized with instructional prompts to train models for generalizing to
new, unseen instructions. Additionally, MetaICL [93] employs a different setup utiliz-
ing few-shot prompting, concentrating on “in-context” learning, where models adapt
to new tasks from a few input-output (IO) examples. Recent work [92] demonstrated
that training models using a combination of zero-shot and few-shot prompts markedly
improves performance in both settings.

The computational demands for instruction tuning are considerably lower compared
to the initial pre-training phase due to the smaller size of the training corpora required.
Depending on the size of the model and the amount of training data, it usually takes
several GPUs from several hours to a few days to complete the training. For instance,
the Vicuna model [81] was fine-tuned on roughly 70K user-shared conversations from
ShareGPT.com using 8 A100 GPUs in one day.

Recent developments in this field have focused on expanding prior resources by com-
bining more datasets and tasks into one resource, such as Super-Natural Instructions
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v2 [91] and OPT-IML [87]. Innovations also include multilingual instruction tuning
as seen in xP3 [83], and the integration of Chain-of-Thought training prompts in Flan
2022 [85]. Both Flan Collection [92] and OPT-IML feature an extensive array of tasks
previously represented in other collections.

Building instruction data manually is a costly process that demands significant
human effort. Consequently, researchers have been exploring more efficient alternat-
ives to manual data generation. A promising strategy for expanding task diversity is
the production of synthetic data through the use of LLMs, particularly in domains
requiring creativity and open-ended dialogue. Methods such as self-instruct [99] and
unnatural instructions [95] are examples of this approach. The self-instruct [94] method
utilizes the generation capacity of LLMs to fabricate a plethora of instructional con-
tent. This technique was employed by researchers at Stanford to generate a corpus
for instruction data. Alpaca-7B [80], which was fine-tuned using supervised learning
from a Llama-7B model on 52K instruction-following demonstrations generated from
OpenAI’s text-davinci-003, showed many behaviours similar to text-davinci-003, but is
also surprisingly small and cost-effective to replicate.

Moreover, research conducted by [88] demonstrates that with a strong PLM, re-
markably strong performance can be achieved by simply fine-tuning on a carefully
selected set of 1,000 training examples. They suggest that the vast majority of know-
ledge in LLMs is acquired during the pre-training phase, and minimal but targeted
instruction tuning is sufficient to enhance the model’s ability to produce high-quality
outputs.

2.1.3 Reinforcement Learning from Human Feedback

Through SFT, LLMs have initially been equipped with the ability to comprehend and
follow human instructions across various types of NLP tasks. However, SFT requires a
large number of instructions paired with corresponding standard responses. Generating
such a volume of high-quality responses requires significant human resources and time
investment. Furthermore, SFT typically employs cross-entropy loss, aiming to fine-tune
the model parameters so that its outputs match the standard answers exactly. This
approach, however, does not take into account the holistic quality of model outputs,
nor does it accommodate the natural diversity of language or the nuances of minor
textual variations. This limitation has driven researchers to seek methods to better
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align AI outputs with human values and expectations.
In this context, [44] advocated for model outputs that adhere to the principles of

Helpfulness, Honesty, and Harmlessness (3H), which reflect prevalent human values.
However, it is challenging to simultaneously fulfil all three principles. To integrate
these principles, reinforcement learning from human feedback (RLHF) has been in-
corporated into the training process of general dialogue models. Unlike traditional
supervised methods, RLHF evaluates the entire output text, optimizing for the gen-
eration of high-quality responses. This method does not rely solely on predefined,
high-quality responses; instead, it employs a reward model to assess the quality of re-
sponses generated by the model under varying instructions. This allows the model to
explore multiple answer possibilities and learn from feedback on the quality rankings
of its outputs, making RLHF particularly well-suited for generative tasks and a crucial
component in the development of advanced LLMs.

The RLHF framework typically unfolds in two phases: 1) Reward Model Training:
This involves training a classifier within the language model to distinguish between
‘good’ and ‘bad’ responses, akin to giving a ‘thumbs up’ or ‘thumbs down’ rating to
the responses. 2) RLHF Fine-Tuning: This stage utilizes the trained reward mode to
align the model’s outputs to better match human judgments, enhancing the relevance
and appropriateness of the responses generated by the LLM.

Reward Modeling

The reward modelling stage aims to develop a model that can assess and rank the
textual outputs produced by the SFT model in response to the same prompt. This
model, typically built on a PLM with Transformer architecture, is trained to assign
rewards to each generated text, with human-assigned rankings serving as the ground
truth. The process of training this model often requires the use of dozens of GPUs
over several days. The accuracy and reliability of the reward model are crucial for the
effectiveness of the subsequent reinforcement learning (RL) phase, where the model’s
outputs are fine-tuned to maximize the perceived quality of responses.

The development of datasets for training the reward model is critical to its success.
The focus of data collection shifts towards comparative evaluations, where human as-
sessors are tasked with determining the relative quality of multiple outputs generated
by the SFT model. In recent years, some high-quality, open-source datasets have been
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made available that aim to align LLMs with core human values like the 3H principle.
Table 2.4 lists some prominent datasets used for alignment tuning.

Datasets Providers Time Size Open

Summarize from Feedback[100] OpenAI 2020.09 194K ✓

SHP[101] Stanford 2020.10 385K ✓

WebGPT[102] OpenAI 2021.11 19.6K ✓

HH-RLHF[103] Anthropic 2022.04 169K ✓

H4 Stack Exchange Preferences [104] HuggingFace 2023. 10.8M ✓

Sandbox Alignment Data [105] DeepMind 2023. 10.8M ✓

PKU-SafeRLHF[106] Peking University 2024.06 83.4K ✓

Table 2.4: An overview of datasets for alignment tuning.

Introduced by OpenAI in 2020, the Summarize from Feedback dataset1 integrates
RLHF technology into the task of summary generation. This dataset is divided into
two parts. The first part, the comparisons part, has 179K instances of training and
validation splits. In this part, human annotators were tasked with choosing the better
summary between the two presented options. The second part, known as the axis part,
consists of 14.9K instances allocated for testing and validation, where the quality of
summaries is assessed by human annotators using a Likert scale.

WebGPT2 I was designed to tackle the task of responding to long document-based
questions, aligning the answers with human preferences. This dataset includes 19,000
instances, each featuring two model-generated responses to a question, accompanied
by relevant metadata. Human evaluators assign preference scores to these answers,
facilitating the identification of the superior response among the pair.

HH-RLHF3 encompasses approximately 169,000 instances, segmented into two parts
emphasizing the helpfulness and harmlessness of LLMs. Each instance involves an open-
ended conversation between a crowdworker and a chat model, centered around seeking
help, advice, or task completion. For each user query, the chat model generates two
responses. Annotations are applied to these responses to identify which one is more

1https://huggingface.co/datasets/openai/summarize_from_feedback
2https://huggingface.co/datasets/openai/webgpt_comparisons
3https://huggingface.co/datasets/Anthropic/hh-rlhf
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helpful or less harmful, based on the context of the query.

The Stanford Human Preferences (SHP) dataset1 prioritizes the helpfulness of re-
sponses and serves as a resource for training RLHF reward models and evaluating
natural language generation (NLG) models. This dataset contains 385,000 instances
reflecting collective human preferences for responses to questions or instructions, cov-
ering 18 varied topics from cooking to legal advice. Each instance comprises a Reddit
post that includes a question or instruction accompanied by two top-level comments;
Reddit users have evaluated these comments, identifying one as more helpful and the
other as less so. Unlike HH-RLHF, where responses are generated by models, all entries
in SHP consist of naturally occurring, human-authored text.

The PKU-SafeRLHF dataset2 comprises 83,400 entries, each annotated for harm-
lessness and helpfulness. Each entry features two responses to a question, each with
safety meta-labels and user preference. Responses are considered harmless if they are
rated as risk-neutral across all 19 identified harm categories3. The helpfulness attrib-
ute evaluates how effectively a response addresses the prompt, with emphasis on the
quality, clarity, and relevance of the information provided.

The H4 Stack Exchange dataset4 is centered around the helpfulness of answers
sourced from Stack Overflow, featuring approximately 10 million questions and their
corresponding answers. Each dataset entry includes a question paired with multiple
answers. The helpfulness of each answer is quantified through a scoring system derived
from user votes, and each answer is also marked with a label indicating whether it was
the selected response.

The Sandbox Alignment Data5 comprises 169,000 instances of interaction data suit-
able for alignment training of language models. This dataset originates from a virtual
environment known as SANDBOX, a simulated human society inhabited by numerous
language model-based social agents. These agents operate under a defined set of rules,
enabling the detailed collection of social interaction data among language models. Each
data entry includes a societal query, a range of responses generated by the models, and
corresponding evaluations provided by the models themselves.

1https://huggingface.co/datasets/stanfordnlp/SHP
2https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF
3https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-QA
4https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences
5https://github.com/agi-templar/Stable-Alignment
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Reinforcement Learning Stage

Following the development of the reward model, the LLM undergoes fine-tuning through
reinforcement learning. OpenAI employs the Proximal Policy Optimization (PPO) al-
gorithm for this purpose. This method optimizes the model’s outputs based on evaluat-
ive feedback from the reward model, adjusting the generation of completions according
to the assessed rewards. Over multiple iterations, the model enhances its ability to
produce responses that more closely align with human evaluative standards.

This stage requires fewer computational resources and is typically completed within
a few days, often yielding superior performance compared to SFT. However, this method
introduces complexities due to its potential instability and the need to manage the
extensive number of hyperparameters, which may affect the convergence of the model.

Models Providers Time Size Base Open

text-davinci-003 OpenAI 2022.09 175B text-davinci-002 ×
gpt-3.5-turbo-instruct 2023.09 20B gpt-3.5-turbo ×

Llama2-Chat Meta 2023.07 7B, 34B, 70B Llama-2 ✓

Llama3-Instruct Meta 2024.04 8B, 70B Llama-3 ✓

Table 2.5: Summary of LLMs enhanced with RLHF.

Table 2.5 outlines several representative models that have been enhanced using
RLHF. For example. text-davinci-003 and gpt-3.5-turbo-instruct introduced by OpenAI.
Despite the groundbreaking nature of the GPT-3 models, they had a propensity to gen-
erate responses that could be untruthful or harmful due to their training on a diverse
and extensive corpus of internet-sourced data. To mitigate these issues and better tailor
these models to user needs, OpenAI implemented SFT and RLHF techniques. The res-
ulting model, text-davinci-003, significantly improved its ability to follow instructions
and reduce the production of inaccurate or harmful content. Introduced in September
2022, text-davinci-003 was later deprecated on January 4, 2024, with gpt-3.5-turbo-
instruct recommended as its replacement1. gpt-4 and gpt-3.5-turbo were introduced in
March 2023. By September of the same year, OpenAI launched gpt-3.5-turbo-instruct2,
a model distinct from its predecessors by being specifically fine-tuned for direct query

1https://platform.openai.com/docs/deprecations
2https://platform.openai.com/docs/models/gpt-3-5-turbo
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responses and text completion, shifting away from the conversational simulation focus
of earlier models.

Similarly, Llama-2 has seen significant developments in both SFT and RLHF, lead-
ing to the creation of a chat-specific iteration, Llama2-Chat [49]. This model has been
released in various configurations, including 7B, 13B, and 70B parameters. Initially
trained using SFT, Llama2-Chat underwent subsequent refinements through RLHF
employing techniques like rejection sampling and PPO. In general, Llama-2 outper-
forms other open-source models on numerous benchmarks assessing helpfulness and
safety. Further, the Llama3 instruction-tuned versions, Meta-Llama-3-8B-Instruct1 and
Meta-Llama-3-70B-Instruct2, have been optimized for dialogue use cases using SFT and
RLHF to align more closely with human preferences for helpfulness and safety. These
versions surpass many available open-source chat models in common industry bench-
marks, demonstrating the effectiveness of these advanced training methodologies.

2.1.4 Model Quantization

Quantization technology plays a crucial role in deploying (LLMs on constrained com-
puting resources. It primarily involves reducing the precision of data representation,
aiming to retain as much information as possible. Typically, this technique converts
model parameters from higher-bit representations to lower-bit formats. For example,
converting model weights from 32-bit floating-point numbers (Float32) to 16-bit ver-
sions (Float16) can reduce the model’s memory footprint by half, decreasing GPU
memory usage significantly. Further quantization to 8-bit integers (Int8) or even to
4-bit floating-point numbers (Normal Float4, NF4) can decrease memory requirements
to about a quarter and one-eighth, respectively. Such reductions in data precision facil-
itate faster computations and lower memory usage, thereby enhancing inference speed
without substantially degrading model performance.

Among the notable quantization strategies, GPTQ [107] effectively quantizes GPT
models, maintaining their accuracy while enabling their operation within a single GPU
for generative tasks. Another approach, Activation-aware Weight Quantization (AWQ)
[108], provides a hardware-friendly method for LLM low-bit weight-only quantization.

1https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
2https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
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2.2 Spatial Representation and Spatial Reasoning

Spatial reasoning is inherently complex, involving multiple dimensions, making it chal-
lenging to encapsulate with a single scalar measure. This complexity extends beyond
what is typically evaluated in current spatial reasoning benchmarks/datasets.

Natural language descriptions of spatial tasks typically utilize qualitative repres-
entations of spatial relationships. This approach involves using a limited vocabulary
to denote qualitative relationships between entities or to categorize numerical values
qualitatively [109]. This qualitative approach is preferred for its closeness to human cog-
nitive processes, where commonsense knowledge is predominantly represented through
qualitative, rather than quantitative, spatial expressions. For instance, in everyday
communication, one might say “the park is to the north of the school, at a short dis-
tance” rather than providing precise measurements like “ Supposing the park is at (0,0),
the school is at coordinates (0, 121).” This qualitative method allows for handling in-
complete knowledge and reflects the natural way humans interpret spatial information.

Qualitative reasoning is an approach that manages commonsense knowledge without
reliance on numerical computation and allows for handling incomplete knowledge ef-
fectively. The inherent multi-dimensionality of qualitative spatial representation allows
for a higher degree of freedom in describing spatial relationships between entities. Con-
sequently, considerable effort has been devoted to developing various qualitative spatial
calculi, which provide a foundational framework for representing spatial knowledge in
a qualitative manner, as detailed by [24].

Over the years, a broad spectrum of qualitative calculi has been developed to address
specific aspects of spatial knowledge, e.g., Point-Based Ternary Calculus (LR)[119],
Ternary Point Configuration Calculus (TPCC), [125], StarVars [127], Single/Double
Cross Calculus (1-,2-cross) [128], 3-D Orientation Model (OM-3D) [129], Elevated
Point Relation Algebra (EPRA) [136], Qualitative Trajectory Calculus (QTC) [141], Di-
pole Calculus (DRA) [120], Cyclic Ordering (CYC) [126], Closed Disk Algebra (CDA)
[134], Alg. of Bipartite Arrangements (ABA) [124], Calculus Based Method (CBM)
[132], Dipole connnectivity (DRA-con) [130], Nine-Intersection Model (9-Int) [133], 9+-
Intersection Calculi (9+-Int) [135], Region Occlusion Calculus (ROC) [137], Occlusion
Calculus (OCC) [138], LOS Lines of Sight (LOS) [139], VRCC-3D+ [140], Visibility
Relations (VR) [121], Rectangular Cardinal Direction Calculus (RCD) [115], Block
algebra/Rectangle Algebra/Rectangle Calculus (BA), [117, 118].
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Point Curve, Line Region

Direction

Cardinal CDC [110, 111] CI [112] CDR [113]
STAR [114] RCD [115]

PC [116] BA [117, 118]
Relative LR [119] DRA [120] VR [121]

OPRA [122, 123] ABA [124]
TPCC [125] CYC [126]

StarVars [127]
1-,2-cross [128]
OM-3D [129]

Toplogy DRA-con [130] RCC [21, 131]
CBM [132] 9-Int[133]
CDA [134]
9+-Int [135]

Distance EPPRA [136] ROC [137]
OCC [138]
LOS [139]

VRCC-3D+ [140]

Table 2.6: Classification of Qualitative Spatial Reasoning (QSR) Calculi Based on
Primary Base Entities and Captured Spatial Aspects

Figure 2.6 outlines some of these calculi, organized by relation types such as dir-
ectional (cardinal, relative), topological, and distance relationships. Moreover, spatial
representations generally comprise fundamental spatial entities, including points, lines,
line segments, rectangles, cubes, or arbitrary regions across various dimensions. The
figure introduces several point-based systems, such as Star Calculi (STAR) [114] and
Oriented Point Relational Algebra (OPRA) [122, 123]. It also highlights curve/line-
based systems like Algebra of Cyclic Intervals (CI) [112] and the Nin-Intersection Model
(9-Int) [133], alongside region connection theories including the Region Connection
Calculus (RCC), Region Occlusion Calculus (ROC) [137], and VRCC-3D+ [140]. Each
system provides a distinctive methodology for conceptualizing and analyzing the spatial
relationships between entities.
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The practical utility of these spatial representations is deeply contingent on their
integration into real-world applications across diverse fields such as GIS, robotics, and
cognitive science. For instance, the representation of a road varies by dimensionality
depending on the application: it is one-dimensional in trip planning, two-dimensional in
scenarios of planning overtaking behaviour, and three-dimensional in contexts requiring
3D robotic navigation [142]. In the following part, we provide a detailed overview of
three calculi frequently utilized in current datasets to construct spatial relationships.

Figure 2.2: Base Relations of the CDC: Projection-Based Relations on the Left and
Cone-Based Relations on the Right

The Cardinal Direction Calculus (CDC) [110, 111] is a binary relational calculus
utilized for defining the cardinal directions between two points in a 2D plane. Within
the CDC framework, the Euclidean plane is segmented into distinct regions centered
around a reference point. This division delineates each point’s location into one of
nine possible cardinal relations: north (N), south (S), east (E), west (W), northeast
(NE), southeast (SE), southwest (SW), northwest (NW), or coincident (EQ). There are
different segmentation methods, like cone-based and projection-based, as depicted in
Figure 2.2.

The calculi within the Region Connection Calculus (RCC) family, such as RCC-8
[131] and RCC-5 [21], facilitate reasoning about connections and part-of relationships
between regions. RCC-8 distinguishes between eight fundamental relations: discon-
nected (DC), externally connected (EC), partially overlapping (PO), equal (EQ), tan-
gential proper part (TPP), non-tangential proper part (NTPP), tangential proper part
inverse (TPPi), non-tangential proper part inverse (NTPPi), as depicted in Figure 2.3.

Cardinal Direction Relations (CDR) [113] identify nine primary directional base
relations. As shown in Figure 2.4, The space around the reference region b is divided
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Figure 2.3: Base Relations of the RCC

into nine areas (tiles) by the axes that form its minimum bounding box. These tiles
correspond to eight peripheral tiles representing the cardinal directions: S(b), SW (b),
W (b), NW (b), N(b), NE(b), E(b), SE(b), and the central tile, B(b), corresponding to
the region’s minimum bounding box itself. A cardinal direction relation is denoted as
R1 : · · · : Rk (1 ≤ k ≤ 9), ranging from single-tile relations like S to composite relations
such as NE : E or the encompassing B : S : SW : W : NW : N : E : SE. For clarity,
when articulating single-tile components of a cardinal direction relation, the sequence
is organized as follows: B, S, SW , W , NW , N , NE, E, and SE.

Figure 2.4: Cardinal Directions Relations in CDR. (i) a S b: a is south of b; (ii)
a NE : E b: a is partly northeast and partly east of b; (iii) a B : S : SW : W : NW :
N : E : SE b: a is distributed across all cardinal directions except northeast relative
to b.

The 1- and 2-cross calculi [128] and TPCC [125] are representative calculi for relat-
ive orientation and distance. The 1-cross calculus includes basic spatial terms such as
‘front’, ‘back’, ‘left’, and ‘right’. TPCC, derived from the 1-cross calculus, introduces
finer distinctions, incorporating terms like ‘straight’ and distinguishing between nu-
anced orientations such as ‘front-left’ and ‘left-front’, while also combining these with
distance relations like ‘distant’ and ‘close’.
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Despite the development of a wide array of spatial calculi over the past decades,
contemporary datasets used to evaluate the spatial reasoning abilities of LLMs are
limited in their scope. Typically, these datasets focus on point-based spatial repres-
entation, such as the CDC for defining cardinal directions and RCC for topological
relationships. However, even within these systems, there is a tendency to employ grid-
based approaches that define relationships with specific distances, which deviates from
the more general definitions found in traditional spatial reasoning studies. This re-
stricts the potential to explore more complex spatial interactions. The broader range
of spatial calculi, including region-based, line-based, and other complex calculi, re-
mains unexplored in evaluating LLMs. This restricts the depth of analysis possible in
understanding how LLMs handle intricate spatial relationships.

2.3 Spatial Reasoning in Text with LLM

The field of spatial reasoning in text with AI has evolved through sustained efforts over
time, with significant advancements achieved through both traditional methods and
modern LLMs.

Early strides in spatial reasoning in text were marked by the development of formal
structures to represent spatial relationships. [16] proposed a spatial ontology, aiming
to formalize the representation of spatial relationships. This work laid the groundwork
for the subsequent introduction of text-based spatial role labelling (SpRL) [17], which
aims to convert natural language text into formal spatial representations. Building
upon this, [18] further advanced the field by developing the multimodal spatial role
labelling (mSpRL) task. This method extends SpRL by incorporating spatial informa-
tion from both text and accompanying images, offering a richer representation of spatial
relationships. These early datasets, such as SpaceEval (SemEval-2015 task 8) [19] and
mSpRL, offered annotated spatial roles and relations, primarily focusing on spatial
representation over reasoning.

To bridge the existing gaps in evaluating text understanding and reasoning capab-
ilities of learning algorithms, [39] developed a synthetic QA benchmark that included
tasks specifically designed to assess spatial reasoning. Building upon this foundation,
the StepGame dataset [20] was introduced, expanding the textual frameworks to encom-
pass a wider array of directional spatial relationships [21, 22], and designed to evaluate
robust multi-hop spatial reasoning in text. [143] significantly expanded the resource
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landscape by constructing three new spatial QA datasets: SpartQA [1], SPARTUN, and
RESQ [143]. Furthermore, [144] introduced the spatio-temporal analysis QA bench-
mark - STBench, which includes over 60K QA pairs across 13 distinct tasks. These
tasks span four critical dimensions: knowledge comprehension, spatio-temporal reas-
oning, accurate calculation, and downstream applications. The wide range of spatial
language expressions contained within these datasets poses significant challenges for
traditional logical programming approaches. Moreover, they serve as benchmarks for
exploring and evaluating the spatial reasoning capabilities of language models. In the
latest development, [145] constructed two datasets aimed at evaluating the cardinal
direction reasoning abilities of LLMs. The first dataset, created in collaboration with
ChatGPT, consists of 100 examples that primarily test the model’s recall of world know-
ledge pertaining to cardinal directions. The second dataset employs a series of designed
templates to form the task of accurately identifying cardinal directions in simple scen-
arios involving movement along or around geographical features. These contributions
significantly advance the exploration and assessment of spatial reasoning in LLMs.

[28] assessed ChatGPT’s performance on the StepGame and SpartQA benchmarks,
uncovering significant limitations in spatial reasoning with success rates of 43.33% for
StepGame and 43.75% for SpartQA. Additionally, [146] explored the capabilities of
ChatGPT-3.5, ChatGPT-4, and Llama2-7B models across various spatial reasoning
tasks, including 2D direction and path labelling, 3D trajectory labelling, and abstract
relationship identification within SpartQA. Their findings indicate reasonable perform-
ance on 2D direction tasks but significant challenges in 3D trajectory tasks. These
studies, while valuable for assessing performance against established benchmarks, do
not offer an in-depth critique of the benchmarks themselves and yield results that are
not wholly satisfactory.

Beyond evaluating benchmarks or datasets, research has expanded to include case-
based analyses assessing the spatial reasoning of LLMs. [147] devised a dialectical
evaluation methodology aimed at meticulously identifying failures and delineating the
limitations inherent in LLM systems. This approach was executed by engaging models
such as GPT-3.5-turbo and GPT-4 in case-based scenarios spanning four distinct areas:
basic spatial relations, dimensions of size, shape, and location, affordances and object
interactions, and object permanence. The evaluation followed an iterative process, ini-
tiating with general inquiries related to a specific topic and followed by more probing
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questions, especially when initial responses were incorrect. This rigorous method was
designed to profoundly test the models’ conceptual understanding and reasoning abilit-
ies, frequently uncovering erroneous or fundamentally flawed responses from ChatGPT.
While this method introduces challenging questions that demand commonsense spatial
reasoning, it is time-consuming and requires substantial human effort to execute com-
prehensively. However, it provides valuable insights into specific reasoning challenges
faced by LLMs and can guide the development of spatial reasoning datasets aimed at
more effectively evaluating LLM capabilities.
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Evaluating Spatial Reasoning in LLMs

The rapid advances in LLMs have sparked extensive discussions about their reasoning
capabilities. Developers of these models assert that AI systems like GPT-3 match or
even surpass human performance in a variety of tasks, with demonstrations of GPT-3’s
proficiency across different benchmarks [43]. However, there is a counter-narrative from
critics who argue that LLMs exhibit limited reasoning abilities. Works such as [148]
and discussions by [28] highlight areas where LLMs consistently fall short compared to
human reasoning, reinforcing critiques like those made by Yann LeCun “they (LLMs)
make a lot of factual errors, logical errors, have inconsistencies, have limited reasoning
abilities, and they are pretty gullible”.

Spatial reasoning is inherently complex [149], which requires both conceptualizing
spatial relations and performing logical deductions over multiple steps. The computa-
tional complexity of solving spatial problems varies depending on the number of objects
involved, the variety of constraints, and the reasoning hops required. To objectively
evaluate these claims in the spatial reasoning domain, several benchmarks have been
developed specifically to assess the spatial reasoning abilities of LLMs. Representative
benchmarks include bAbI, StepGame, SpartQA, and SpaRTUN, each aimed at prob-
ing different facets of spatial reasoning. These benchmarks pose challenges that require
models to infer new spatial relationships from given facts or to check the consistency of
existing relationships, typically through multiple-choice questions with a single correct
answer. The spatial inference ability of different models is judged and compared based
on a straightforward and quantifiable measure - test accuracy. Accuracy is a primary
concern when evaluating LLMs, as referenced in multiple studies [43, 150, 151].

This section delves into the unique aspects of spatial reasoning that these bench-
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marks test, highlighting their inherent challenges and limitations. Through a detailed
examination of these benchmarks, we seek to pinpoint the current limitations in our
assessment methods and gauge how far we are from fully understanding the spatial
reasoning abilities of LLMs. This investigation will enhance our understanding of the
true spatial reasoning ability of these advanced AI systems, offering insights into their
practical applications and potential improvements.

3.1 bAbI

3.1.1 Task Overview

The bAbI benchmark [39], featuring a collection of synthetic tasks, was crafted to eval-
uate learning algorithms in terms of their text understanding and reasoning abilities.
Among its 20 tasks, Tasks 17 and 19 are specifically designed for spatial reasoning
evaluation.

Task 17 tests LMs’ ability to understand and reason about relative spatial relations
‘left’, ‘right’, ‘above’, and ‘below’. The task operates within a 5x5 grid environment. In
this structured setting, three entities are sequentially positioned at specific nodes. The
placement of each entity is determined by its spatial relation to the adjacent nodes.
The narratives distinguish three entities based on their color and shape. Each example
can include up to 10 sentences - 2 describing spatial relations between two pairs of
objects and 8 for generating questions about a different pair, as illustrated in Figure
3.1. These questions are structured in a yes/no format, with answers based on the
entities’ actual positions on the grid.

Task 19 is centred around identifying paths between specified objects, utilizing
the four cardinal directions: north, south, east, and west. The entities are typically
locations such as hallways, offices, and bathrooms. In the ‘en-valid-10k’ version of
bAbI1, each story is structured to include five sentences that detail spatial relationships,
of which two describe the actual path and three serve as decoys, as depicted in the
example in Table 3.1. The primary challenge of this task is to accurately trace a
sequential path from the starting point to the destination. The inclusion of decoy
sentences adds a layer of complexity to the task.

1https://www.kaggle.com/datasets/roblexnana/the-babi-tasks-for-nlp-qa-system
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Figure 3.1: Grid system used in bAbI.

Task 17: Positional Reasoning Task 19: Path Finding

The red square is below the blue square.
The red square is to the left of the pink rectangle. The garden is west of the bathroom.
Is the blue square below the pink rectangle? A: no The bedroom is north of the hallway.
Is the pink rectangle to the left of the blue square? A: no The office is south of the hallway.
Is the blue square to the left of the pink rectangle? A: yes The bathroom is north of the bedroom.
Is the pink rectangle to the left of the blue square? A: no The kitchen is east of the bedroom.
Is the pink rectangle above the blue square? A: no
Is the pink rectangle to the left of the blue square? A: no How do you go from the bathroom to
Is the pink rectangle above the blue square? A: no the hallway?
Is the blue square above the pink rectangle? A: yes A: south, south

Table 3.1: Examples of Task 17 and Task 19 from the bAbI’s envalid-10k dataset
version.

3.1.2 Textual Stories and Question Generation

Each example is constructed using a sequence of clauses and questions, then converted
from abstract representations into human-readable natural language through the use
of specific templates for each type. For each clause and question, a corresponding

31



3. EVALUATING SPATIAL REASONING IN LLMS

template is randomly selected from the pool and filled out to render complete sentences.
These templates are meticulously designed to ensure the sentences produced are both
grammatically correct and contextually appropriate. Directional expressions in the
templates cover cardinal directions such as ‘north’, ‘south’, ‘east’, and ‘west’, along
with relative positions like ‘above’, ‘below’, ‘to the left of’, and ‘to the right of’.

For Task 17, entities are named by combining a randomly chosen color from options
like ‘red’, ‘blue’, ‘pink’, and ‘yellow’, with shapes such as ‘square’, ‘rectangle’, ‘triangle’,
or ‘sphere’. In Task 19, entities are named after locations such as ‘bedroom’, ‘bath-
room’, ‘kitchen’, ‘office’, ‘garden’, and ‘hallway’, randomly selected to fit the context
of the task. The clause template used across tasks is structured as ‘the [object1]

is [candidate position] the [object2]’. For Task 17, the format for questions is
‘Is the [object1] [candidate position] the [object2]?’, requiring a response
of ‘yes’ or ‘no’. In contrast, Task 19 responses are formatted as two words separated
by commas, reflecting the distinct requirements of the task and ensuring clarity in the
evaluation of spatial relations.

3.1.3 Reasoner to Get Label

The bAbI spatial reasoning tasks leverage a width×height grid as a spatial framework,
depicted in Figure 3.1. This grid acts as the spatial reference, with each entity being
assigned to a specific node (position) on the grid where each node is assigned a unique
position, marked by coordinates (x, y) and indexed from 1 to width×height; with Node
1 representing the top-left corner and Node width× height the bottom-right corner.

In Task 17, each example comprises two clauses and eight questions centered around
positioning three objects on the grid, beginning with the first object centrally placed
at position (3,3). The placement of subsequent entities is determined by moving from
this central point using predefined directional commands (north (n), south (s), east
(e), west (w)), where each command corresponds to a specific movement vector on the
grid: n - (0, 1), s - (0,−1), e - (1, 0), w - (−1, 0). This setup ensures that entities are
positioned in adjacent nodes based on randomly chosen directions from these options.

Once the entities are positioned, the system formulates clauses that delineate the
spatial relationships between consecutive entities based on their relative coordinates.
This leads to the generation of yes/no questions that probe the relative positions of the
shapes, such as “Is the red square to the east of the blue triangle?” These questions,
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targeting the relative x (east-west) or y (north-south) coordinates, are structured to
reflect true or false conditions accurately depending on the actual spatial configuration
of the entities. For instance, if one entity occupies the position (3, 3) and another is
at (3, 4), it is established that the former is north of the latter, providing a practical
demonstration of the grid-based spatial reasoning facilitated by this task.

3.1.4 Limitations and Problems

Limited Relations and Restricted Settings

The bAbI tasks, intentionally designed as simplified ‘toy tasks,’ have inherent limita-
tions in thoroughly testing spatial reasoning capabilities. These tasks simplify spatial
relations to basic cardinal directions - north, south, west, and east (referred to as above,
below, left, and right in Task 17) - using fixed distances and angles, which do not reflect
the complexity and ambiguity encountered in real-world spatial scenarios. Addition-
ally, the reasoning required in the spatial tasks is limited to simple 2-hop interactions
involving only three objects, an oversimplification of real-world requirements.

Furthermore, the use of a uniform template for each relation does not adequately
challenge a model’s ability to understand and reason within more nuanced and context-
rich settings. Thus, while beneficial for basic LLM training, and inspiring subsequent
benchmarks and datasets, bAbI tasks do not fully test or equip models to handle the
detailed intricacies of real-world spatial reasoning.

Repeated questions

In each example of Task 17, eight questions are generated; however, many of these
questions are often duplicated, as depicted in Table 3.2. The recurrence of questions
results from both the limited pool of objects available and the random methodology
used for pairing objects and assigning relations. Given that this selection process is
conducted randomly and independently for each iteration, it is possible for the same
pair of shapes and candidate relation to be repeatedly chosen across the eight questions.
To ensure each of the eight questions remains unique, the system could implement a
validation mechanism to identify and eliminate any duplicates by either resampling the
shapes or reformulating the questions whenever a repetition arises.

The bAbI dataset is available in various language and scale formats: English (en):
Tasks are presented in English, suitable for human understanding. Hindi (hn): Tasks
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Stories The pink rectangle is below the red square.
The triangle is to the left of the red square.

Questions Is the pink rectangle below the triangle? yes
Is the pink rectangle below the triangle? yes
Is the pink rectangle to the right of the triangle? yes
Is the triangle to the right of the pink rectangle? no
Is the pink rectangle to the left of the triangle? no
Is the triangle to the right of the pink rectangle? no
Is the pink rectangle to the right of the triangle? yes
Is the pink rectangle to the right of the triangle? yes

Table 3.2: Example in task 17 with duplicate questions. The questions in the same
colorsâ€”blue, green, and redâ€”are identical questions.

are provided in Hindi, also intended for human comprehension. Shuffled: Text with
shuffled letters, rendering it unreadable to humans and forcing the model to rely more
on the provided training data for learning. Each format is available in both standard
and expanded versions: Standard Versions (en, hn, shuffled): Contain 1,000 training
examples. Expanded Versions (en-10k, hn-10k, shuffled-10k): Each features 10,000
training examples for more extensive training opportunities.

Table 3.3 details the question repetition within the en-valid and en-valid-10k sets,
with a focus on Task 17. In the en-valid-10k set, there are 1,000 test questions from
125 examples, with each example contributing 8 questions. Data analysis reveals that
only just over a third of these questions are unique, with the remainder being repeated.
Specifically, about 20% of the questions are duplicated once, while approximately 5%
recur three times. The likelihood of a question being repeated four or five times is
relatively low but not negligible. There are no instances of questions being repeated
seven or eight times. This breakdown helps in understanding the frequency and pattern
of question repetition, which is useful for evaluating the training effectiveness and
potential biases in model learning.

To investigate the impact of question repetition, we conducted experiments using
the Llama-3-8B-Instruct model on two versions of the dataset: the original set, which
contains 1,000 examples, and a filtered set where repeated questions were removed,
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Occurrences en-valid en-valid-10k
train valid test train valid test

Total 904 96 1000 9000 1000 1000
Real 562 65 632 5716 641 632
Distinct 311 42 363 3327 376 363
Repeated 251 23 269 2389 265 269
Repeated - twice 182 15 186 1688 195 186
Repeated - three times 47 8 69 536 50 69
Repeated - four times 22 0 12 142 16 12
Repeated - five times 0 0 2 17 4 2
Repeated - six times 0 0 0 6 0 0
Repeated - seven times 0 0 0 0 0 0
Repeated - eight times 0 0 0 0 0 0

Table 3.3: Summary of Question Repetitions for the en-valid and en-valid-10k Versions
of the Task 17 Dataset. ‘Total’: Overall number of questions across training, validation,
and testing sets. ‘Real’: The sum of both unique and repeated questions within the
dataset. ‘Distinct’: Total number of unique questions with no repetitions. ‘Repeated’:
Total number of questions that appear more than once. ‘Repeated-twice to Repeated-
eight times’: Detailed count of questions repeated a specific number of times, from
twice up to eight times.

resulting in 632 unique examples.

We utilized the input prompt1 “Q:[question]\nA:” conforming to the standard
QA format detailed in [152]. An example of this format is displayed in Table 3.4.
For evaluation purposes, if the final sentence after \n in the output contains ‘YES’,
‘Yes’, or ‘yes’, the predicted answer will be classified as ‘Yes’. If it contains ‘No’ or
‘NO’, the prediction will be classified as ‘No’. Responses indicating uncertainty, such
as ‘We can’t determine’ or ‘We cannot determine’, and containing variations of ‘can’t’,
‘cannot’, ‘we’, or ‘We’, are categorized as ‘DK’ (Don’t Know). In cases where the output
does not clearly indicate the category, we manually review the output to ascertain the
appropriate classification.

The results are presented in Table 3.5. The Llama model performs slightly better
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Prompt Q: The red sphere is above the yellow square. The triangle is to the left
of the yellow square. Is the triangle below the red sphere?
A:

Output The information provided does not give us enough details to determine
whether the triangle is below the red sphere or not.

Table 3.4: Example of Llama-3-8B response of DK.

on the full dataset than on the filtered set of unique examples. Most of the wrong
predictions can be attributed to the ‘DK’ (Do not Know) category, as illustrated by
the example in Table 3.4. The model makes such predictions because the question lacks
information indicating that each relation follows a grid-based system, leading it to rely
on common spatial relations for reasoning instead.

Prompt1 Prompt2
Yes, No, DK Yes, No Yes, No, DK Yes, No

Unique Examples (632) 40.35% 62.66% 61.71% 61.71%
All Examples (1000) 44.90% 63.80% 61.70% 61.70%

Table 3.5: Accuracy of Llama-3-8B-Instruct on the bAbI en-valid-10k dataset under two
prompting settings. Prompt1 uses the standard QA format, while Prompt2 explicitly
instructs the model to answer with either ‘Yes’ or ‘No’. The table reports accuracy both
including and excluding ‘DK’ responses, for all test instances and for unique examples.

Consider cases where some outputs interpret ‘DK’ as ‘No’, such as in the following
generation: “A classic lateral thinking puzzle! The answer is... NO. The statements
only describe the vertical relationships between the shapes, not the horizontal relation-
ships. We know the red square is below the pink rectangle, and the pink rectangle is
below the red sphere, but that doesn’t tell us anything about their left-right positions.”
In addition to treating ‘DK’ as a distinct answer category alongside ‘Yes’ and ‘No’,
we also consider treating all ‘DK’ responses as ‘No’. This adjustment significantly
improves accuracy, as shown in Table 3.5. By reclassifying ‘DK’ as ‘No’, accuracy in-
creased from 40.35% to 62.66% in the unique example set, and from 44.90% to 63.80%
in the complete dataset. Across both methods of response classification, the full set
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yielded slightly higher accuracy compared to the unique set.
For controlling for ‘DK’ responses, we conducted an additional experiment to test

whether explicitly instructing the model to respond only with ‘Yes’ or ‘No’ could reduce
or eliminate the use of uncertain answers like ‘DK’. In this setting, we used Prompt2,
which appends the instruction: “Q:[question] Please answer with either ‘Yes’

or ‘No’.\nA:”. As shown in Table 3.5, the overall accuracy remained largely compar-
able to Prompt1 - only slightly decreasing from 63.80% to 61.70% for all examples, and
from 62.66% to 61.71% for unique examples.

3.2 StepGame

3.2.1 Task Overview

Building upon bAbI, the StepGame benchmark [20] also utilizes a grid-based system to
build the point-based directional spatial reasoning task. It introduces higher complexity
in three key aspects:

1. An expanded set of directional spatial relations is included, encompassing eight
relations: top (north), down (south), left (west), right (east), top-left (north-west),
top-right (north-east), down-left (south-west), and down-right (south-east). Each is
defined by a unique angle and distance, e.g., (1,−1) for down-right. Additionally, an
‘overlap’ relation is included to denote overlapping object locations.

2. Enhanced multi-hop reasoning challenges: Moving beyond the 2-hop reasoning
in bAbI, StepGame increases the complexity to span 1-hop to 10-hop sequences. Here,
the term ‘hop’ quantifies the number of paired relations provided within a narrative,
with the upper diagram in Figure 3.2 showcasing an example of a 10-hop reasoning
sequence. The lower-right diagram of Figure 3.2 illustrates the sequential building of
relational constraints based on k, the number of relationships. This produces a chain
of constraints linking objects in a direct path from o0 to o1, continuing through to ok.
This enhancement allows for a deeper examination of a model’s capacity to navigate
and infer extended relational chains.

3. Employ richer, crowd-sourced sentence templates describing eight possible spatial
relations between two entities, which serve as the basis for generating story-question
pairs. For each spatial relationship, there exists a rich set of crowd-sourced templates,
which enriches the variety and complexity of the generated content.
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Figure 3.2: Overview of StepGame’s reasoning challenges and spatial relationship con-
figurations. Upper: Example of 10-hop reasoning, featuring a question regarding two
entities that are not directly connected in the stories. The diagrams on the right do not
form part of the input to the AI system but are for illustrative purposes only. Lower
Left: Illustration of coordinate settings for the nine spatial relationships, each defined
by a fixed distance and angle. Lower Right: Illustration of test instance constraint
chain building process in StepGame, where relations are sequentially sampled to con-
nect one object to another from the starting to the end objects.

3.2.2 Textual Stories and Question Generation

In a k-hop example within the benchmark, the story consists of k sentences derived
from predefined sentence templates. These sentences are constructed by replacing place-
holder entity names with k + 1 randomly selected letters from ‘A’ to ‘Z’ and assigning
randomly sampled relations from the set of possible directional relations. The question
pertaining to the narrative is formatted using a template: ‘What is the relation of
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the agent [entity1] to the agent [entity2]?’, where [entity1] and [entity2] are
randomly chosen from the k + 1 entities involved in the story. This structure tests the
model’s ability to infer spatial relationships based on the provided narrative.

For the clean (simpler) version, each story is constructed with k relations ranging
from (o0, o1) to (ok−1, ok). In the noise (harder) version, the basic k relational steps
are maintained, but when k > 3, additional non-relevant information, or ‘noise’, is
interspersed within the story to increase the difficulty and test the model’s ability to
distinguish relevant from irrelevant data. There are three types of noise, as depicted in
Figure 3.3: (a) supporting noise, which establishes additional pathways linking objects
in the simple chain; (b) irrelevant noise relations, introducing relations that connect
new objects to those in the existing chain without contributing to the main pathway;
and (c) disconnected noise relations, comprising relations that have no connection to
the simple chain.

Figure 3.3 presents an example with k = 9. The ‘simple relations’ in the figure form
the clean version of the story. The query involves two objects randomly selected from
this sequence (marked as red nodes o2 and o6 in the figure). Irrelevant noise is generated
by establishing relationships between a randomly chosen hop object and an additional
noise object, depicted in dark blue in the figure. Disconnected noise is created between
two noise objects, shown in purple, which do not link back to the main sequence of the
story. Supporting noise starts with an object from the main sequence, extends through
one or more noise objects, and eventually links back to another object in the sequence,
enhancing the complexity of the relationships and the narrative structure.

The idea behind supporting noise is to introduce additional steps between two
entities already in the narrative but not directly linked in the original sequence. To
add this noise, two entities noise1 and noise2 are randomly selected from the k + 1
entities, ensuring they have a Manhattan distance between them of at least 2 and
no more than 7, calculated by the sum of the absolute differences in their x and y

coordinates. Then from the remaining entity name candidates (letters A-Z not used in
the simple story), take distance − 1 entities. Then, iteratively adds new sentences to
the story that describe a sequence of actions moving from noise1 to noise2, with action
only selected from top, down, left, and right (with changing distance only 1). So, in
this way, another line going from noise1 to noise2 is also built. We further categorize
supporting noise into seven distinct types to analyze their impact on spatial reasoning:
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Figure 3.3: Influence of added distracting noise in StepGame. Hop objects and Simple
relations denote the entities and their relationships in the ‘clean’ version of the story,
respectively. Queried objects refers to the two entities targeted in the query. Noise
objects and Supporting/Irrelevant/Disconnected Noise relations represent the elements
exclusively introduced in the ‘noise’ version of the story.

1. Involving both query objects, as shown in scenario (c) in Figure 3.3. Both objects
in the simple chain used to construct supporting noise relations are the query objects.
This introduces an alternative reasoning path from o2 to o6, providing an additional
route to a solution.

2. Involving one query object, scenarios (d) and (e) in Figure 3.3 are of this type.
In (d), the noise relations are deemed irrelevant as they do not affect the relationship
between the queried objects. In (e), similar to scenario (c), the noise introduces a
potential additional reasoning path from o2 to o6 that may enhance the problem-solving
process.
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3. With no query objects, scenarios (f), (g), (h), and (i) are of this type. In (f) and
(h), though the supporting relations do not involve the query objects, they can extend
the reasoning pathway with several additional steps. For instance, in (f) the pathway
extends through several additional steps o2−o1−o0−o10−o11−o12−o7−o6, increasing
the complexity compared to the original four-step chain o2 − o3 − o4 − o5 − o6. In (g),
This type of noise can form another path between two queried objects. In (i), the noise
relations have no connection to the reasoning chain from o2 to o6 and thus do not aid
the resolution of the query.

This refined classification aids in understanding how different noise configurations
can either complicate, facilitate, or remain neutral regarding the spatial reasoning re-
quired to solve queries within the dataset.

3.2.3 Problems and Limitations

Hop definition

In StepGame, the term ‘hop’ refers to the number of relations presented within a story;
however, it does not necessarily denote that the reasoning pathway between two queried
objects traverses all k relations. For instance, Figure 3.3 illustrates a scenario where
k = 10, involving ten entities (W, A, F, T, I, N, J, S, M, X, Z), yet the required
reasoning pathway from two queried entities (F, X) comprises only seven steps (F-T,
T-I, I-N, N-J, J-S, S-M, M-X, X-Z).

Table 3.6 details the distribution of reasoning steps for 10,000 stories under each
hop configuration, reflecting the frequency of specific reasoning lengths. According to
the statistical summary, the percentage of irrelevant relations increases as k increases
(from 100% for 1-hop to 40.3% for 10-hop), and the average number of reasoning
steps required as k increases (1.0 for 1-hop and 4.03 for 10-hop). The proportion of
k reasoning steps for k-hop story, which means all k relations in the story are useful
in getting the answer to the question, is quite low. For 10-hop, the proportion is only
1.81%. This setup implies that as k increases, more relations are provided, potentially
increasing the proportion of irrelevant relations.

This analysis underscores that higher k values introduce more relations, which may
include an increased number of irrelevant connections, complicating the reasoning pro-
cess. Therefore, even in the ‘clean’ version of StepGame, particularly in stories with
a higher number of hops, distracting noise elements can obscure the primary pathway
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Hop
Step

1 2 3 4 5 6 7 8 9 10 Average

1 10000 / / / / / / / / / 1.0
2 6610 3390 / / / / / / / / 1.34
3 4988 3334 1678 / / / / / / / 1.67
4 4058 2934 1937 1071 / / / / / / 2.00
5 3368 2696 1979 1279 678 / / / / / 2.32
6 2892 2322 1969 1348 987 482 / / / / 2.67
7 2451 2209 1804 1409 1087 688 352 / / / 2.99
8 2218 1972 1674 1376 1101 832 551 276 / / 3.32
9 2065 1796 1499 1374 1144 837 650 408 227 / 3.62

10 1850 1576 1403 1303 1113 902 697 588 387 181 4.03

Table 3.6: Comparison of reasoning complexity across different hop settings in the Step-
Game test set. ‘ Row 1-10 ’ corresponds to each specific hop scenario, and ‘Column
1-10 ’ represents the total number of examples with reasoning steps equal to the cor-
responding number. ‘Average’ represents the average number of reasoning steps across
10,000 examples for each hop setting.

necessary to derive the answer.

Spatial Relation Configurations

The spatial relationship configuration in StepGame, while detailed, introduces certain
limitations that could impact the accurate assessment of language models’ spatial reas-
oning capabilities. In this benchmark, the basic cardinal directions (top, down, left,
right) are retained from bAbI and new combinational directions are specified with pre-
cise coordinates: down-right as (1,−1), down-left as (−1,−1), top-right as (1, 1), and
top-left as (−1, 1). These relations are visually represented on a grid as shown in the
lower-left diagram of Figure 3.2.

This configuration ensures unique solutions for each instance by starting with the
first object at (0, 0) and sequentially calculating the coordinates for subsequent objects
based on each relation. However, such a setup simplifies the reasoning problem and does
not align with commonsense human understanding, which does not typically confine
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directional relationships to strict distance or angular constraints. For instance, in
everyday language, stating “A is east of B” merely implies that A’s x-coordinate is
greater than B’s, without specifying the degree of separation or exact angular alignment.
Our research [153] suggests that the most challenging aspect for LLMs in StepGame is
not the spatial reasoning itself but constructing the object-linking chain from shuffled
relations. When the reasoning chain is pre-constructed, models like GPT-4 exhibit
considerable capability in handling such tasks.

Template Problems

According to [31], their examination of StepGame revealed significant issues: of 108 ex-
amples with incorrect predictions, 107 suffered from data labelling errors. Our further
investigation of StepGame pinpoints that the core problem resides not in the labelling
method but critically in the textual story generation. The templates designed for story
creation contained errors that misrepresented the intended tasks, leading to wrong la-
bels and, consequently, skewed model performance evaluations. These template errors,
previously overlooked, have led to studies [28], [31] based on this flawed benchmark,
resulting in an inaccurate assessment of LLMs’ capabilities.

We conducted a detailed analysis of errors in the relational text mappings within
the StepGame benchmark. Story generation relies on randomly sampled crowd-sourced
natural language templates corresponding to eight specific spatial relations: top, down,
left, right, top-left, top-right, down-left, and down-right. Prior to February 2024, these
templates1 encompassed 214 different forms, including 24 templates each for left and
right, 28 each for top and down, 27 each for top-right and down-left, and 28 each for
top-left and down-right.

Our findings, as detailed in Table 3.7, show that out of these 214 templates, 14 were
found to be erroneous. The spatial relationships (AA, top, BB) and (AA, left, BB)

were accurately represented without mistakes. Conversely, the mapping (BB, right,

AA) exhibited the highest number of inaccuracies with four incorrect templates, followed
by (BB, down, AA) with two. The question arises as to why there are so many such
errors in the crowd-sourced expressions; presumably, this is down to insufficient quality
control over the crowd worker responses.

A common error was an inversion or misplacement of the labels AA and BB. For
1Following the publication of our AAAI paper, errors in the templates were corrected.
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Mapping Original Incorrect Statement

(BB, right, AA)

AA and BB are parallel, and AA on the right of BB.
AA and BB are parallel, and AA is to the right of BB.
AA and BB are horizontal and AA is to the right of BB
AA and BB are both there with the object AA is to the right of object BB.

(BB, down, AA)
AA is placed at the bottom of BB.
AA is at the bottom of BB and is on the same vertical plane.
AA presents below BB.

(AA, down-left, BB)
BB is there and AA is at the 10 position of a clock face.
BB is positioned below AA and to the left. .

(BB, top-right, AA)
Object A is above object BB and to the right of it, too.
AA is diagonally to the upper right of BB.

(BB, down-left, AA)
BB is to the right and above AA at an angle of about 45 degrees.
BB is diagonally left and above BB.

(AA, down-right, BB) AA is to the right and above BB at an angle of about 45 degrees.

Table 3.7: Incorrect sentence templates in the StepGame dataset

example, the template “AA and BB are parallel, and AA on the right of BB.” was
assigned to the relation (BB, right, AA), but actually corresponds to the relation
(AA, right, BB).

Another type of error arises from incorrect entity naming in statements. For in-
stance:

• The template ‘BB is diagonally left and above BB.” intended for (BB, down-left,

AA), leads to sentences like “I is diagonally left and above I.”. This template fails to
clarify the second entity, rendering it indeterminate from the statement alone.

• The template “Object A is above object BB and to the right of it, too.” for (BB,

top-right, AA). This template results in sentences like “Object A is above object
R and to the right of it, too.” Although this should denote the relationship (K,

top-right, R), the consistent use of ‘Object A’ across instances makes it impossible
to identify the second entity accurately.

Some templates are mistakenly used to describe two different relations, yet they
do not accurately reflect either, making it impossible to determine which relation was
intended based on the sentence alone. For example:
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• The template “AA is to the right and above BB at an angle of about 45 degrees.”
was assigned to the relation (AA, down-right, BB), but actually corresponds to
the relation (AA, top-right, BB).

• The template “BB is to the right and above AA at an angle of about 45 degrees.”
was designed for (BB, down-left, AA), while it actually describes the relation (BB,

top-right, AA).

The first statement error is in the use of ‘above’, which should be “AA is to the right
and below BB”. The second misuses ‘right’ - it ought to be BB is to the left and above
AA. For example, reading the statement “Q is to the right and above P at an angle
of about 45 degrees.” in a narrative would naturally lead one to deduce the relation
as (Q, top-right, P). It would not typically be interpreted as (Q, down-right, P)

or (P, down-right, Q), despite potentially being intended to represent one of these
relations in the original dataset. These errors underscore the need for careful review
and correction of template assignments to ensure that the textual descriptions match
the intended spatial relationships.

Table 3.8 displays the percentage of examples that are incorrect, which hints at a
rising trend in inaccuracies as k increases, suggesting a potential cumulative impact.
To address this issue, we present a refined version of the StepGame dataset for model
evaluation. By removing examples with erroneous templates, this revised dataset allows
for more accurate evaluations of the true capabilities and limitations of the models.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Clean 7.61 15.03 20.87 26.39 32.54 37.66 41.71 47.20 51.50 54.29
Noise 20.43 30.19 34.59 48.18 57.13 61.14 63.60 69.45 72.84 74.21

Table 3.8: Percentage of incorrect instances across 1-hop to 10-hop test sets. Here, k
means k-hop reasoning. There are 10,000 samples for the test set for each k before
correction.

To assess the influence of template errors, we conducted evaluations using Llama
models on both the original and our refined versions of the StepGame dataset. Dif-
fering from the binary yes/no answer format in bAbI, StepGame questions ask for
relationships between two objects through ‘find relation’ queries. To ensure uniformity
in response formatting, we applied a few-shot (5-shot) prompting strategy, providing
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Llama-2-7B Llama-3-8B
Original Refined Original Refined

100 1K 100 1K 100 1K 100 1K

k=1 37 36.4 37 37.8 60 62.6 62 66.2
k=2 17 18.9 18 20.0 34 34.1 33 37.8
k=3 8 12.5 10 12.8 18 20.9 18 22.0
k=4 14 12.1 14 12.5 10 10.6 8 11.2
k=5 15 12.9 18 13.1 23 22.0 24 21.2
k=6 14 12.0 13 12.4 23 15.9 13 17.2
k=7 13 11.5 10 12.0 23 22.8 23 21.7
k=8 13 15.3 14 13.4 20 16.5 18 16.6
k=9 15 11.7 10 12.1 10 9.3 8 7.7

k=10 6 9.1 7 8.7 5 5.0 3 5.1

Table 3.9: Accuracy performance comparison of Llama models on the original and
refined test sets in StepGame, evaluated with varying numbers of test examples.

five exemplars alongside the task description to direct the models’ answer generation.
These evaluations spanned various test subsets, including the first 100, the first 1000 ex-
amples, and the complete dataset. The results are displayed in Table 3.9, both Llama-2
and Llaman-3 show slightly improved performance on the refined dataset compared to
the original in lower-hop settings.

To evaluate the robustness of model performance with respect to temperature vari-
ation, we conducted a series of controlled experiments using the refined 100-question
subset with k=5. The temperature parameter varied from 0.0 to 1.0 in increments
of 0.1. For each temperature setting, ten repeated runs were performed using Llama-
3, and the resulting accuracies were recorded. Figure 3.4 visualizes the distribution,
central tendency (mean and median), and variance of the model’s performance. At
lower temperatures, the model produced more deterministic outputs, leading to min-
imal variance across runs. As the temperature increased, performance became more
volatile: variance rose substantially, and accuracy fluctuated more widely. Although
higher temperatures occasionally led to high-performing individual runs, the overall res-
ults were less consistent. These findings suggest that evaluation outcomes are sensitive
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Figure 3.4: Boxplot of accuracy distribution for Llama-3 across ten runs under differ-
ent temperature settings on the refined-100 data with k=5. The boxes represent the
interquartile range, orange lines indicate the median accuracy, green triangles denote
the mean accuracy, and circles indicate statistical outliers.

to temperature and that lower temperature values tend to yield more stable results.

3.3 SpartQA and SpaRTUN

3.3.1 Spatial Reasoning Tasks

SpartQA [1] and SpaRTUN [23] start from 2D images featuring objects (rectangle,
triangle, square) distributed across distinct square blocks (scenes). They extend beyond
mere directional spatial relationships to include Region Connection Calculus 8 (RCC-8)
[21] and distance (near and far). SpaRTUN is an updated version of SpartQA-Auto
and contains more relation types and rules.

Unlike the previous two grid-based benchmarks, SpartQA and SpaRTUN’s define
spatial relations using a square boundary framework. Each spatial relation is determ-
ined by the (x, y) coordinates of the lower-left points of the square boundary boxes of
two objects and the size of these boxes, as depicted in Figure 3.5.

• For object-to-object relations, EC, NEAR, FAR, LEFT / RIGHT, ABOVE / BE-
LOW are considered;
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Figure 3.5: Spatial relationships and square boundaries with objects in SpartQA and
SparTUN.

• For object-to-scene relations, TPP / TPPi, and NTPP / NTPPi are considered;

• For scene-to-scene relations, DC, EC, PO, TPP / TPPi, and NTPP / NTPPi are
considered.

For the questions, there are four types: (1) FR (Find Relation), which identifies
relationships between two objects; (2) FB (Find Block), where the task is to choose the
block containing specified objects; (3) CO (Choose Object), which requires selecting
one of two objects that fit certain criteria; and (4) YN (Yes/No), a direct test of the
validity of a spatial relationship claim. FR, FB, and CO questions are presented as
multiple choice, while YN questions offer choices of ‘Yes’, ‘No’, or ‘DK’ (Do not Know).

However, the tasks of FR, FB, and CO can also be reinterpreted as consistency-
checking problems. Instead of straightforwardly identifying specific blocks, objects, or
relations, these questions can be reframed to verify whether the spatial configuration
provided in the multiple-choice options is consistent with the location of specified ob-
jects. This adaptability underscores the interconnected nature of different types of
reasoning within intelligent systems.
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3.3.2 Textual Stories and Question Generation

The story and questions for each example were generated from the selected story triplets
using context-free grammar (CFG). They increase the variety of spatial expressions by
using a vocabulary of various entity properties and relation expressions. They map the
relation types and the entity properties to the lexical forms from a specifically collected
vocabulary. Entities within the stories are identified by a combination of size, color, and
shape attributes. If multiple entities share the same attributes, they are differentiated
by appending a number to their name, such as ‘medium orange apple number one’.

Story: Two boxes, named one and two exist in the image. Box one covers a medium
yellow apple. In box two there is this box. Box two has a medium orange apple
which is to the south of a medium yellow apple and touches another medium orange
apple. Box two has the medium yellow apple. Medium orange apple number two is
covered by this box. South of medium orange apple number one there is medium
orange apple number two.

YN Question: Is a medium yellow apple to the south of a fruit? Answer: No
FR Question: Where is the medium yellow apple in box two regarding medium
orange apple number two? Answer: ABOVE

Table 3.10: The first test example in SpaRTUN.

3.3.3 Limitations and Problem

Description Method

Although these two benchmarks include rich spatial relationships, they struggle to
provide effective descriptions. They use simple syntax and word choice but lack logical
flow and content clarity, particularly in two aspects, as can be seen in the story in Table
3.10.

1. The sequence of sentences. The spatial relations are described as a sequence
of randomly selected story triplets, which deviates from the typical human approach to
describing a scene. In the example from Table 3.10, a more natural human description
would typically start with outlining the relationships between two boxes, followed by
detailing the contents of each box and then explaining the relations between the objects.
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However, in their narrative structure, there is a lack of an initial summary of the
objects contained in each box, with objects being introduced individually and somewhat
disjointedly. Additionally, the narrative places the object-to-box relationships prior to
the box-to-box relationships, which further diverges from the typical human method of
spatial description, leading to potential confusion in understanding the overall spatial
layout.

2. Excessive use of detailed and repetitive entity naming. It is a common
way in benchmarks to describe objects through combinations of their shapes, sizes,
and types, like those in bAbI and CLEVR[6]. When applying this naming method to
form long paragraphs of stories, problems appear. The excessive use of detailed and
repetitive entity naming, involving terms like ‘medium yellow apple’, ‘medium orange
apple number one’, and ‘medium orange apple number two’, results in overly lengthy
text. This verbosity transforms a simple description such as ‘South of A is B’ into a
more convoluted one like ‘South of medium orange apple number one is medium orange
apple number two’. Such complexity not only adds confusion but also shifts the focus
from understanding the spatial relationship to deciphering which specific object is being
referred to. This can make it hard for readers to grasp the intended spatial relationships
and hinder smooth comprehension.

Consequently, the narrative’s lack of smooth flow in textual descriptions makes it
difficult for both LMs and humans to form a clear mental image of the entire scene and
to grasp information about specific objects in question. This complexity hinders the
LLMs from engaging in spatial reasoning effectively and drawing conclusive answers
based on the limited information presented.

Labels

The example illustrated in Figure 3.6 from the SpaRTUN datasets demonstrates the
issue with gold label generation for textual spatial reasoning questions.

The question posed is “Is a medium yellow apple to the south of a fruit?” with the
labelled answer being ‘No’. This conclusion is based on a presumed object reference
where ‘a medium yellow apple’, assumed to be the one in box two (1x2), is questioned
in relation to ‘a fruit’, which refers to as the medium orange apple number one (1x0).
The reasoning chain used to derive the answer considers medium orange apple number
two (1x1) located south of the medium orange apple number one (1x0), which in turn
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is south of the medium yellow apple in box two (1x2), leading to the conclusion that
1x1 is south of 1x2. Thus, the system deduces the answer to the query (1x2, south,
1x1) as ‘No’.

The issue stems from the ambiguous references used in question formulations. When
generating questions, each object description begins with ‘the’, ‘a/any’, or ‘all’ (see the
example in Figure 3.7), randomly selected and interpreted to have the same meaning.
In everyday language, however, terms like ‘a fruit’ can refer generically to any fruit
present, including the medium orange apple number one or any other fruit within the
scenario, not exclusively to medium orange apple number one (1x0). Moreover, the
mention of ‘a medium yellow apple’ introduces ambiguity, as the story includes two
medium yellow apples without clarifying which is being referenced in the question.

Figure 3.6: Illustration of labelling issues for the first test example in SpaRTUN. ‘Pos-
sible answers’ presents potential scenarios for the two answers based solely on the text
description. ‘Label Answer’ outlines the reasoning process used to generate the gold
standard label.
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Figure 3.7: A test example in SpaRTUN with questions using object names starting
with ‘all’. Although the story includes four midsize green rectangles, the phrase ‘all
midsize green rectangles’ in the first question Q1 refers to a specific object, 0x3. In
the second question Q2, ‘All things’ refers to a particular object, 0x0, rather than all
entities mentioned in the story.

In human interpretation, without explicit clarification of the objects referred to in
the question and relying solely on the textual story and the question, the answer can
be either ‘Yes’ or ‘No’. This is because, regardless of which medium yellow apple is
considered, there could indeed be a fruit located to the south of it with all the con-
straints mentioned in the story, considering that ‘a fruit’ encompasses more than just
the medium orange apple number one. To better illustrate these ambiguities and their
impact on reasoning, two potential layouts are presented in Figure 3.6. Irrespective of
which medium yellow apple is mentioned, there exists a plausible scenario where a fruit
is indeed to the south of it. The answer can also be ‘No’ if the two yellow apples are
in the same location in the 2D image, as shown in the right figure example. This high-
lights the need for more unambiguous forming of questions in this dataset to improve
the reliability of the derived answers.

In this chapter, we examined several textual spatial reasoning benchmarks and con-
ducted experiments to assess the performance of LLMs, identifying existing problems.
In the next chapter, we will build on these findings and explore ways to enhance LLMs’
performance on spatial reasoning tasks.
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Chapter 4

Enhancement of LLMs’ Spatial Reasoning Ability

Based on evaluations of prominent LLMs on benchmarks like bAbI, StepGame, and
SpartQA, it was observed that these models often struggle with spatial reasoning tasks.
This chapter investigates strategies to enhance LLMs’ capabilities in tackling spatial
reasoning challenges without modifying the underlying model architecture. Specifically,
we explore the potential of enhancing LLMs’ performance on complex spatial reasoning
by integrating them with logical reasoning components, as detailed in Section 4.1.
Here, LLMs are utilized to transform spatial descriptions into symbolic spatial relation
representations, which are subsequently processed by a logical reasoning program.

Furthermore, we explore various prompting techniques, including CoT and ToT
prompting, detailed in Section 4.2 and Section 4.3. CoT [35] incorporates a sequence
of intermediate reasoning steps to facilitate problem-solving. However, when applied
to StepGame, previous studies [31] have shown that CoT does not consistently im-
prove performance and may even reduce accuracy in complex k-hop reasoning tasks.
This observation is attributed to the higher probability of errors occurring in lengthy
CoT processes. Research on other tasks [36, 37] has demonstrated that breaking down
complex problems into simpler subproblems and solving them sequentially can be bene-
ficial. Given the ambiguity in the decomposition of ‘thoughts’ within CoT, we propose
refining the CoT prompt to empower language models to perform better in spatial
reasoning tasks.

On the other hand, ToT [38] was introduced as a framework that enables LLMs to
explore multiple reasoning paths, demonstrating its effectiveness in enhancing problem-
solving capabilities across tasks like the game of 24, creative writing, and mini cross-
words. In our work, we customize the ToT approach for object-linking chain building,
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a crucial subproblem in addressing spatial reasoning benchmarks.
The results of these experimental approaches are presented in Section 4.4.

4.1 Combination with Logical Reasoners

In this part, we explore the integration of LLMs with logical reasoners, as depicted in
Figure 4.1. The process begins with both a story and a question provided in natural
language. The LLM functions as a semantic parser, transforming the textual input into
structured spatial data - logical facts that are then inputted into the logical reasoner.
This reasoner utilizes these facts, applying predefined inference rules to verify their
consistency and to infer the spatial relationships between two objects specified in the
query. Through logical inference, the reasoner produces a definitive answer to the
question posed.

This pipeline leverages the strengths of both components: LLMs are adept at man-
aging linguistic variability, transforming diverse textual inputs into standardized logical
facts - a process referred to as semantic parsing. Logical reasoners, on the other hand,
employ formal logic systems that define spatial properties and relationships through ax-
ioms. These axioms enable the reasoners to deduce conclusions about spatial relations,
thereby deriving answers from the established logical premises.

Figure 4.1: The LLM and logical reasoner integration pipeline.

4.1.1 LLMs for Semantic parsing

The objective of semantic parsing in this context is to interpret and translate nat-
ural language into a structured format that can be efficiently processed by the logical
reasoner. This process is similar to the concept of 1-hop reasoning, which involves de-
ducing or retrieving information based on a single relational link between two objects.
Figure 4.2 provides a comparative illustration of these concepts.
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Figure 4.2: An illustrative example for demonstrating semantic parsing and 1-hop
spatial reasoning.

We employ LLMs to perform semantic parsing using few-shot in-context learning.
This approach enables an LLM to “learn” a new task by being conditioned on a textual
description of the task along with a few input-output examples, eliminating the neces-
sity for extensive task-specific fine-tuning. The process is initiated with a manually
crafted prompt that includes detailed task instructions, as outlined below:

Please parse each sentence into a fact. If the sentence is describing clock-wise

information, then 12 denotes top, 1 and 2 denote top_right, 3 denotes right, 4 and 5

denote down_right, 6 denotes down, 7 and 8 denote down_left, 9 denote left, 10 and 11

denote top_left. If the sentence is describing cardinal directions, then north denotes

top, east denotes right, south denotes down, and west denotes left. If the sentence is

a question, the fact starts with query. Otherwise, the fact starts with one of top,

down, left, right, top_left, top_right, down_left, and down_right.

4.1.2 Logical Reasoner for Spatial Reasoning

The logical facts ν(o0, o1), generated through semantic parsing for all relations in the
story R, are used as input to the logical reasoner for spatial reasoning. We implement
the rules in constraint format.

For the spatial reasoning tasks in bAbI and StepGame, which only incorporate
direction relations based on a grid-based system, it is easy to form such relations in
axioms. It is worth pointing out that the definition of spatial relations in stories is with
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fixed distance, such as offset(right) = (0, 1) and offset(down − left) = (−1,−1). But
in questions, when asked about whether there is a certain relation between two objects,
it is not with a fixed distance. So we give the definition of the relations in the following
ways in our logical reasoner:

Relation Definition Relation Definition

overlap x1 = x2, y1 = y2 is_overlap x1 = x2, y1 = y2

north/top x1 = x2, y1 = y2 + 1 is_north/top x1 = x2, y1 > y2

south/down x1 = x2, y1 = y2 − 1 is_south/down x1 = x2, y1 < y2

east/right x1 = x2 + 1, y1 = y2 is_east/right x1 > x2, y1 = y2

west/left x1 = x2 − 1, y1 = y2 is_west/left x1 < x2, y1 = y2

northeast/top-right x1 = x2 + 1, y1 = y2 + 1 is_northeast/top-right x1 > x2, y1 > y2

northwest/top-left x1 = x2 − 1, y1 = y2 + 1 is_northwest/top-left x1 < x2, y1 > y2

southeast/down-right x1 = x2 + 1, y1 = y2 − 1 is_southeast/down-right x1 > x2, y1 < y2

southwest/down-left x1 = x2 − 1, y1 = y2 − 1 is_southwest/down-left x1 < x2, y1 < y2

Table 4.1: Spatial relations and corresponding definitions in our logical reasoner. The
left section of the table lists the relations defined for facts, while the right section details
the relations defined for questions.

4.1.3 Solution for the Corrected Benchmark

Our error-free approach is entirely logic-based, without the use of LLMs. We begin
by performing template-based sentence-to-relation mapping, akin to semantic parsing.
Then, we employ the logical reasoner mentioned previously for position reasoning.
This method parallels the LLM + LR approach but substitutes LLMs with sentence-
to-relation mapping. Illustrative examples of the mapping can be found in Table
4.2. When presented with a natural language relation description r, we first identify
the template used in r through a comparison with the template base. This template
is symbolized as oi_ν_oj . Then, we convert this template form into a structured
representation ν(oi, oj), where oi and oj correspond to the two objects mentioned in
r, and ν signifies the spatial relation between oi and oj . Specifically, for questions
inquiring about relations from the start object o0 to the target object ot, the template
is query_o0_ot, and the corresponding fact is represented as query(o0, ot).

Table 4.2 presents several examples: it compares original sentences from StepGame
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Sentences Template Facts

Y and I are parallel, and Y is on top of I. Y_above_I top(“Y”, “I”)
F is on the left side of and below Q. F_lowerleft_Q down_left(“F”, “Q”)
J is at O’s 6 o’clock. J_below_O down(“J”, “O”)
A is directly north east of B. A_upperright_B top_right(“A”, “B”)
What is the relation of the agent B to the agent J? query_B_J query(“B”, “J”)

Table 4.2: Sentence-to-relation mapping examples.

stories, the template translations reflecting relation expressions for story formalization,
and the resulting facts used by the logical reasoner. If a sentence forms a question,
the fact is prefixed with ‘query’; otherwise, it begins with directional tags such as top,
down, left, right, top_left, top_right, down_left, and down_right.

While this approach offers a solution to the StepGame benchmark challenge, it does
require prior familiarity with the templates and mandates updates to the template base
when confronted with new stories employing novel templates. In contrast, an LLM
approach holds the potential to flexibly adjust to unfamiliar templates. Additionally,
the method’s dependence on customized rules within the logical program constitutes
another aspect to be mindful of.

4.2 CoT Prompting

4.2.1 Method

We devised a customized CoT for the spatial reasoning task. The core idea of CoT
is to introduce a chain of thoughts c1, . . . , ci, . . . , cn to bridge input x and output y,
where i represents i-th step. In our customized CoT for StepGame, x consists of the
task description, few-shot examples, relation story, and question, while y represents the
answer regarding the relations between the queried objects (from the start object oi to
the target object ot). Each thought ci is to identify direct spatial connections between
objects (oi and oi+1). We take CoT a step further by decomposing each step of thought
ci to explore the potential advantages of incorporating a coherent and detailed reasoning
process.

Thought categorisation. Drawing inspiration from the human reasoning process
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Figure 4.3: Example of a 10-hop reasoning story, with a diagram illustration and a
detailed human reasoning process to derive the answer.

depicted in Figure 4.3, we categorize the thought into three types: link establishment
thoughts clink, relation mapping thoughts cmap, and coordinate calculation thoughts
ccalcu. At each reasoning step, these three parts of thought are sequentially sampled as
a continuous language sequence ci = [clink

i , cmap
i , ccalcu

i ] using the LLMs pθ.

1. clink
i : Guide the LLM to examine all relations in the story (R = [r1, . . . , rj , . . . , rk])

and select rj for the i-th step for k-hop reasoning, ensuring it directly describes the
relation with oi and has not been used in any previous step. For the start object
(i = 0), we use the prompt “Start with o0. According to” and for the middle objects
(i ≥ 1), we use the prompt “Then search for oi. According to”. Full details of the
prompts can be found in Section 4.2.2.

2. cmap
i : Map rj to a simple relation description such as “oi is to the ν of oi+1,” where ν

represents the key spatial relation from oi to oi+1. The prompt “This means” helps
the LM perform this mapping.

3. ccalcu
i : Use rj to calculate the coordinates of oi+1. We set oo at (0,0), and each

spatial relation is assigned an offset to determine the positions of the objects. The
prompt “oi+1 = oi + offset(rj) = (xoi , yoi) + (xν , yν) = (xoi+1 , yoi+1)” instructs the
LLM on the calculation process. Therefore, it computes the coordinates of oi+1 and
generates the output like “Therefore, B is at (xoi+1 , yoi+1).”

We provide a 4-shot example in StepGame to illustrate a comparison of our CoT
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prompt with other methods, as shown in Table 4.3.

Story 1. C and M are both there with the object C above the object M.
2. Z is at the bottom and Y is on the top.
3. Z is at a 45 degree angle to M, in the upper left hand corner.
4. Y is placed at the lower left of G.
What is the relation of the agent Z to the agent C?

IO Answer: left
CoT [31] We first link Z and C using the relations in the story. Z is to the upper-left of M. M is

below C. So the answer is left.
Our CoT Reasoning: Let’s suppose Z is at (0,0). We can connect Z and C using the relations

given in the story.
Start with Z. According to 3, “Z is at a 45 degree angle to M, in the upper lefthand
corner.” This means M is to the lower-right of Z. M= Z+ offset(lower-right) = (0,0)+(1,-
1)=(1,-1). Therefore, M is at (1,-1).
Then search for M. According to 1, “C and M are both there with the object C above
the object M.” This means C is above M. C= M+ offset(above) = (1,-1)+(0,1)=(1,0).
Therefore, C is at (1,0). We’ve reached C. So, considering Z(0,0) and C(1,0), Z is to
the left of C.
Answer: left

Table 4.3: Comparison of different prompting methods on a 4-hop test example in
StepGame.

4.2.2 Prompts

Our CoT prompt utilizes a few-shot format, comprising a task description, several
CoT exemplars, and the queried story along with its corresponding question. The task
description prompt is as follows:

Given a story about spatial relations among objects, answer the relation between

two queried objects. Possible relations are overlap, above, below, left, right,

upper-left, upper-right, lower-left, and lower-right. If a sentence in the story is

describing clockwise information, then 12 denotes above, 1 and 2 denote upper-right, 3

denotes right, 4 and 5 denote lower-right, 6 denotes below, 7 and 8 denote lower-left,

9 denote left, 10 and 11 denote upper-left. If the sentence is describing cardinal

directions, then north denotes above, east denotes right, south denotes below, and

west denotes left. In all the spatial relations, assume that all agents occupy a
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position on a grid point of equally spaced points in the vertical and horizontal

directions and that agents occupy the nearest grid point consistent with the spatial

relation. The offsets of 9 spacial1 relations: offset(overlap) = (0,0); offset(above)

= (0,1); offset(below) = (0,-1); offset(left) = (-1,0); offset(right) = (1,0);

offset(upper-left) = (-1,1); offset(upper-right) = (1,1); offset(lower-left) = (-1,-1);

offset(lower-right) = (1,-1).

4.2.3 Example Analysis

CoT provides an interpretable window into model behaviour, hinting at how it might
derive specific answers and offering opportunities to debug errors in reasoning paths
(although fully describing the model’s computations that support an answer remains
an unresolved issue). A key challenge observed in performance is the failure to identify
the correct reasoning chain. For example, in the 10-shot story shown in Figure 4.3,
there is a long reasoning chain from B to Q: B → V (use 2)→ Z(use 3)→ X(use 4)→
C(use 9) → N(use 6) → Q(use 1). LLMs often struggle to find such reasoning chains.
Table 4.4 are two representative failures of LLMs in identifying the chain.

4.3 Tree-of-Thoughts

In this part, we explain how ToT is utilized to address the primary challenge in
this spatial reasoning problem: identifying the reasoning chain. For example, in
the story presented in Table 4.3, our objective is to generate a linking chain such
as “Linking chain: Z → M(use 3) → C(use 1)”. We employ ToT (as illustrated in
Figure 4.4) to generate these reasoning chains before applying CoT for reasoning about
coordinates and relations.

In our ToT implementation (Algorithm 1), we strive to improve the reasoning chain-
building process, enabling LLMs to produce more accurate reasoning chains by con-
sidering different pathways. This is beneficial because, during the search for relations
involving an object, multiple clues may emerge, as shown in Figure 4.3. However, it
is essential to follow a correct sequence to successfully navigate to the target object.

1A spelling mistake here. LLMs are typically effective at correcting such errors, but correcting the
mistake may lead to slightly different results.
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The story does not provide direct spatial information between agents Q and B. It would not be
possible to determine the spatial relationship between Q and B given the information in the story.
We would need additional information that links Q and B either directly or indirectly through other
objects to determine their spatial relationship.
Suppose B is at (0,0). Link Q and B using the relations in the story.
Start from B. According to 5. B is to the left of W horizontally. That means B is to the left of W,
so W is to the right of B. W= B+ offset(right) = (0,0)+(1,0)=(1,0). W is at (1,0)
Then search for W. According to 8. P is diagonally to the upper left of W. That means P is to the
upper-left of W, so W is to the lower-right of P. P= W+ offset(lower-right) = (1,0)+(1,-1)= (2,-1).
P is at (2,-1)
We don’t have any direct relation to P, so we go back to W. We don’t have any other direct relation
to W either. So we go back to B. We don’t have any other direct relation to B as well. So we cannot
find a path from B to Q with the given story.
Answer: The relation of the agent Q to the agent B cannot be determined from the provided story.

Table 4.4: Example of LLM failures in determining spatial relationships due to missing
reasoning chains.

Figure 4.4: Illustration of our ToT method.

If the model mistakenly tracks the wrong sequence, it could get stuck in a dead end,
leading to incorrect reasoning conclusions such as “The story does not provide direct
spatial information.”
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4.3.1 Method

The algorithm begins by initializing the starting tree state s0 = [x, o0, ot, R]. Then it
proceeds to construct the linking tree step-by-step with R, linking from the start object
o0 to the target object ot. R represents all connections between objects from the story,
in the form of object1-object2.

The construction process involves iterative steps, where at the i-th step (1 ≤ i ≤
10), the LLM considers the tree state si = [s0, z1···i] built up to that step, with zi

corresponding to the thoughts generated in step i. Subsequently, the model generates
thought zi+1, searching for potential linking objects oi+1 connected to the current object
oi from the unused relations Runused

i . Furthermore, the model evaluates the state to
determine if the linking chain can proceed with the current object oi+1 based on the
remaining relations Runused

i+1 . Throughout this process, the model ensures it does not
revisit previously visited objects and will conclude the loop if the chain cannot proceed
further.

Thought generation G(pθ, s, j)

Given the current tree state si, we let the LLM propose thoughts zi+1 using the thought

generation prompt g “Use relations listed in unused relations to enumerate all poten-
tial expansions of the chain by considering unused relations that exhibit a direct link to
the last object within the chain.” In our approach, we enable the generation of a max-
imum of three possible candidates by the LLM [z(1)

i+1, · · · , z
(j)
i+1] ∼ ppropose

θ (z(1,··· ,j)
i+1 |si)

for the next thought step i + 1. j denotes the number of potential candidates for each
step, and this value may vary across i, but is capped at 3 to balance generation effect-
iveness. Generating too many candidates increases token usage and prolongs inference
time. zj

i+1 specifies the i− th step chain oi− > oi+1− >, the target object ot, and the
remaining relations Runused. If oi+1 = ot, indicating that the chain has reached the
target object, the linking chain construction prompt is activated to generate the
final linking chain: “Given an input about spatial relations among objects, build the
linking chain between the two queried objects.”

State evaluation Val(pθ, z)

Our approach involves a classification methodology, using the designed value prompt v

“Evaluate whether the chain can reach the target (sure/likely/impossible). If the chain
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Algorithm 1: Our ToT approach

1 Require: LLM pθ, relation set R, start, target object o0, ot, breadth b, number
of thoughts to be generated j

1. s0 ← [x, R, o0, ot] // Initialize the state with input, relation set, start, and target.

2. i = 1 // Initialize the iteration counter.

3. while Si is not at ot do // Repeat until the current state reaches the target object.

(a) S
′
i ← {s · z | Si−1, z ∈ G(pθ, s, j)} // Generate new states by appending j

thoughts from G to the current states.

(b) Vi ← {⟨s · z, Val(pθ, z)⟩ | s · z ∈ Si
′} // Evaluate each new thought using an

evaluation function Val.

(c) Si ← largestb(S
′
i) where largestb(⟨s1 · z1, v1⟩, ⟨s2 · z2, v2⟩ . . .) returns the b

largest elements > 0 according to the values vj // Select the top b states with
positive evaluation values.

(d) i = i + 1 // Increment the iteration counter.

(e) if ¬∃⟨s · z, v⟩ ∈ Si where v > 0 then break // Terminate if no valid states
with positive evaluation value exist.

4. end while // End of the iterative state expansion.

5. l = G(pθ, ⟨sk · zk⟩, 1), where ⟨sk · zk, vk⟩ ∈ Vi−1 ∧ vk = arg maxv⟨sk · zk, vk⟩ ∈ Vi−1 //
Generate a final linking chain l using the state with the highest evaluation value.

6. if “Answer” in l then return the linking chain l; else return Null. // If the final
generated linking chain includes the string “Answer”, return it; Otherwise, return
an empty string.
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has already reached the target, it’s ‘sure’. If the unused relations include the current
object, it’s ‘likely’. If there are no unused relations that include the current object, it’s
‘impossible’.” This prompt guides LLM to sequentially examine all thought candidates
[z(1)

i+1, · · · , z
(b)
i+1]. The classifications ‘sure’, ‘likely’, and ‘impossible’ are mapped to values

of 20, 1, and 0.01, respectively. Additionally, if an answer is derived from the linking
chain with thought generation, the value is set to 200. If no chain information is
provided or the reasoning steps exceed the given relations, the value is 0. Based on the
classification results, the LLM can then determine which states should be disregarded
and which should be further explored with the search algorithm.

The values used to map classification results are heuristically designed to establish
a clear separation between different levels of confidence during reasoning. These values
do not belong to a fixed range but are chosen to ensure that the impact of each classi-
fication type is distinguishable, especially in multi-hop reasoning where the values are
accumulated over steps. The final answer score (200) is set to be ten times that of sure,
accounting for a maximum of 10-hop reasoning steps. This ensures that once a valid
answer is generated, it immediately dominates the candidate pool and terminates the
search.

Search algorithm

The choice between utilizing breadth-first search (BFS) or depth-first search (DFS)
depends on the tree structure. In the StepGame benchmark, the tree depth is limited
(depth ≤ 10), and the number of thought candidates k for each step is also limited
(width ≤ 3 in most cases). However, a deeper search does not necessarily guarantee
better results. In certain scenarios, o0 and ot may be directly connected in one rela-
tion statement, allowing for shorter linking chains between them, which is preferable.
Therefore, we opt for BFS to maintain all promising states. We set the breadth width
b = 3, maintaining the three most promising linking-chain states per step. This ap-
proach resembles a beam search, where only a fixed number of high-scoring candidates
are expanded at each step. As reasoning steps differ across various hops and instances,
we refrain from imposing a fixed step limit for termination. Instead, we establish the
stopping criterion as the linking chain reaching the target object ot.
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Combine with CoT

Our ToT approach enables the construction of the linking chain chain from o0 to ot. We
place the link chain prompt “Linking chain: {chain}” before “Reasoning:{reasoning

process}” before “Reasoning:” in the CoT prompting format. The reasoning process
mirrors the approach used in the CoT prompting method, utilizing cmap and ccalcu to
get the spatial relation between these objects step by step based on their respective
coordinates. Then concludes with an “Answer:” section that presents the final result.

4.3.2 Prompts

Tree state initialization prompt

Provided with a sequence of statements that define the spatial relationships among

various objects, your task is to detail the subsequent actions. This includes

initiating the chain of connections, identifying the target object, and enumerating

all links between objects from the statements.

Input: 1. Q is to the right of O and is on the same horizontal plane. 2. Q is

slightly off center to the top left and M is slightly off center to the bottom right.

3. X and E are next to each other with X on the top and E at the bottom. 4. O is

sitting at the upper right position to E. 5. W is on the right side and below M. What

is the relation of the agent W to the agent E?

Possible next steps:

chain: W ->, target: E, unused: 1. Q-O, 2. Q-M, 3. X-E, 4. O-E, 5. W-M.

· · ·

Input: {input}

Possible next steps:

Thought generation prompt

Use relations listed in unused relations to enumerate all potential expansions of the

chain by considering unused relations that exhibit a direct link to the last object

within the chain.

Input: chain: G ->, target: Q, unused: 1. C-R, 2. L-Q, 3. C-J, 4. J-E, 5.

T-A, 6. G-N, 7. G-A, 8. L-Y, 9. R-Q, 10. Y-T.
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Possible next steps:

The last object within the chain is G, and the unused relations 6. G-N and 7. G-A

include G. relation chain: G -> N (use 6) ->, target: Q, unused: 1. C-R, 2. L-Q,

3. C-J, 4. J-E, 5. T-A, 7. G-A, 8. L-Y, 9. R-Q, 10. Y-T.

chain: G -> A (use 7) ->, target: Q, unused: 1. C-R, 2. L-Q, 3. C-J, 4. J-E, 5.

T-A, 6. G-N, 8. L-Y, 9. R-Q, 10. Y-T.

· · ·

Input: {input}

Possible next steps:

State evaluation prompt

Evaluate whether the chain can reach the target (sure/likely/impossible). If the

chain has already reached the target, it’s ‘sure’. If the unused relations include

the current object, it’s ‘likely’. If there are no unused relations that include the

current object, it’s ‘impossible’.

chain: G -> N (use 6) ->, target: Q, unused: 1. C-R, 4. J-E, 5. T-A, 8. L-Y. The

current object is N, and there are no unused relations involving N.

impossible

chain: F ->, target: X, unused: 1. Y-K, 2. X-Y, 3. I-Q, 4. A-Q, 5. N-W, 6.

N-A, 7. O-F, 8. O-W. The current object is F, there is an unused relation involving F

(7. O-F).

likely

chain: L -> Q (use 2) ->, target: Q, unused: 1. C-R, 3. C-J, 4. J-E, 7. G-A, 8.

L-Y, 9. R-Q. The chain already reaches the target object Q.

sure

{input}

Linking chain construction prompt

Given an input about spatial relations among objects, build the linking chain between

the two queried objects.

Input:
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1. H is above S with a small gap between them. 2. S is positioned below I. 3. P is

on the top side to I. What is the relation of the agent S to the agent P?

Steps:

chain: S ->, target: P, unused: 1. H-S, 2. S-I, 3. P-I.

chain: S -> I (use 2) ->, target: P, unused: 1. H-S, 3. P-I.

chain: I -> P (use 3) ->, target: P, unused: 1. H-S.

Answer: S -> I (use 2) -> P (use 3)

· · ·

Input:

{input}

4.4 Experimental Results

Model Settings. We use the Azure OpenAI Service for ChatGPT (gpt-35-turbo),
GPT-3 Davinci (text-davinci-003), GPT-4 (version: turbo-2024-04-09)1, and GPT-4o
(version: 2024-08-06) API access. To yield more concentrated and deterministic results,
we set the temperature to 0 for CoT experiments and 0.7 for ToT for generating varied
thought proposals. The remaining parameters were left at the standard configurations
for these models.

For Claude-Instant and Claude-3.5-haiku, we accessed them via the Claude API,
using the same temperature settings as GPT, with the stop sequence configured to
“\n\n Story:” and all other parameters set to their default values.

For Llama-2-7B2 and Llama-3-8B3, we accessed these models via the Hugging Face
pipeline. The temperature parameter for these models requires a strictly positive float;
hence, we set it to 0.001, which approximates determinism while complying with the
parameter constraints. Additionally, we set the top_p [154] parameter to 0.9 to enhance
the diversity and reduce the repetitiveness of the responses

4.4.1 Evaluation on StepGame

Influence of Scale of Test Examples.
1https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
2https://huggingface.co/meta-llama/Llama-2-7b-hf
3https://huggingface.co/meta-llama/Meta-Llama-3-8B
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It is common practice in the studies [28, 31] to use a subset of 30 or 100 test
examples from the full set of 10,000 for each k value. While this method helps in
conserving token usage, it could potentially introduce biases or inaccurate estimations
of the model performance.

We examine the effect of the number of test examples. Specifically, we wanted
to determine whether evaluating a limited number of test examples could introduce
inaccuracies. To achieve this, we conducted tests on a clean, filtered test set for k-
hop reasoning (k ∈ [1, 10]), thereby covering a range of task complexities. Tests were
carried out on 30, 100, and 1000 test examples to assess the impact of the number of
test examples on the evaluation.

Figure 4.5: Comparison of Turbo’s 10-shot learning performance across various test
subsets in the refined StepGame, with test set sizes of 30, 100, and 1000 examples. The
experiments were conducted using the clean 10shot prompting setting.

The results are presented in Figure 4.5. Upon evaluation of the expanded test set
comprising 1000 examples, the model shows a more uniform decrement in performance
as the number of reasoning hops k increases from 1 to 10. This trend indicates the
increased complexity and difficulty in maintaining high accuracy as the number of hops
increases.

On the other hand, with smaller test sets of 100 or 30 examples, the trend is less
consistent, and there are occasional increases in performance at certain hop levels. The
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variance in performance, particularly for the 30-example test set, may indeed be larger.
This could be due to the smaller sample size providing less comprehensive coverage of
the potential range of tasks, leading to more fluctuations in performance.

This indicates larger test sets can provide a more stable and reliable indicator of a
model’s performance across different complexity levels (i.e., number of hops).

Influence of Prompting Examples. We created three different few-shot prompt-
ing sets to evaluate the influence of input examples in prompts.

• clean 5shot(1,3,5,7,10): Create a prompt consisting of five examples, with one ex-
ample each from tasks requiring 1-hop, 3-hop, 5-hop, 7-hop, and 10-hop reasoning.

• clean 10shot: Formulate a prompt using ten examples, each one derived from a
distinct k-hop task in the clean set.

• clean 5shot separate: Construct a prompt for each k-hop reasoning task, utilizing
five examples from the corresponding k-hop training set as few-shot examples.

Figure 4.6: Comparison of Turbo’s performance on a test set of 100 across three different
prompting scenarios: clean 5-shot(1,3,5,7,10), clean 10-shot, and clean 5-shot separate.

According to Figure 4.6, while the results vary slightly across different prompting
strategies, the overall performance trends remain largely consistent. Similar to the
previous data, all prompting strategies show a trend of decreasing accuracy as the
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number of hops increases. This trend is consistent and suggests that the complexity of
the tasks grows with the number of hops.

The performances of the three methods are close. While differences exist at specific
hop levels, no single method consistently outperforms the others across all hop levels.
Interestingly, clean 5shot (1,3,5,7,10) performs better than clean 10shot (1∼10) at al-
most every hop level. This suggests that selecting examples from a wider range of hop
levels (1, 3, 5, 7, 10) can be more beneficial than having an example from each hop
level from 1 to 10.

Influence of Models.
Figure 4.7 illustrates the performance comparison between the Turbo and Davinci

models. According to this figure, the Davinci model consistently outperforms the Turbo
model across different task complexities (measured by the number of hops). The differ-
ences in performance between the two models are more significant at lower complexity
levels, but they appear to converge as the complexity increases.

Figure 4.7: Comparison of the performances of different LLMs on a test set of 100 using
the clean 10-shot prompting approach.

As indicated in a recent study [155], Turbo demonstrates comparable performance
to Davinci across many tasks. However, it falls short in the machine reading comprehen-
sion, part-of-speech, and semantic parsing tasks, potentially owing to its smaller model
size. The StepGame spatial reasoning task requires the comprehension of sequential
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spatial connections and the ability to draw deductions from them.

A detailed comparison of additional LLMs, including various versions of Claude,
Llama, and GPT, is presented in Table 4.5.

Figure 4.8: The semantic parsing performance of different LLMs.
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4.4.2 LLM for Semantic Parsing

StepGame is well-suited for assessing the spatial semantic parsing capabilities of LLMs,
offering a variety of rich sentence templates that test the models’ ability to extract
relationships. In contrast, bAbI employs fixed templates that are quite straightforward,
varying only in the names of the objects for each relation. This distinction makes
StepGame a more comprehensive tool for evaluating the nuanced understanding of
LLMs in semantic parsing tasks.

Figure 4.8 displays the semantic parsing performance of five different LLMs: Curie,
Turbo, Davinci, Llama-2-7B, and Llama-3-8B. The results are based on the models’
ability to parse 200 sentence templates from StepGame into symbolic representations,
with a focus on accuracy and error rates. These templates are categorized into four
relational groups: 44 templates for left or right relations, 53 for top or down relations,
50 for down_left or top_right relations, and 53 for down_right or top_left relations.

Among the LLMs, Curie recorded the lowest performance in semantic parsing,
achieving only 40.5% accuracy. Llama-2-7B performed moderately with a 77.0% accur-
acy rate, while Turbo achieved a commendable 96% accuracy. Llama-3-8B and Davinci
both excelled, each attaining 99% accuracy by correctly interpreting 198 out of the
200 templates. Curie, with the highest error rate across various relational categories,
demonstrated significant performance gaps compared to its counterparts. Meanwhile,
Turbo’s results were closely aligned with the top performers, Llama-3-8B and Davinci.
This detailed evaluation highlights the varying capabilities of each LLM in processing
and understanding different types of relational data, crucial for tasks involving semantic
parsing.

4.4.3 Resolution for the Benchmark

The results of our resolution for StepGame (sentence-to-relation mapping + LR-based
reasoning) are displayed in the ‘Map+LR’ row of Table 4.5. The numbers in the
table indicate precision scores, with higher values indicating better performance. This
demonstrates the proficiency achieved in spatial relation mapping and multi-hop spatial
reasoning, all without encountering any errors.
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k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
Map+LR 100 100 100 100 100 100 100 100 100 100

Curie+LR 46 43 42 59 67 67 57 56 58 61
Davinci+LR 100 100 99 100 100 99 100 100 100 100

SOTA 92.6 89.9 89.1 93.8 92.9 91.6 91.2 90.4 89.0 88.3

Instant
IO 51 33 19 17 7 9 12 10 10 6

CoT / 50 35 30 28 34 28 31 25 25
ToT / / 30 35 35 35 30 35 30 25

Claude-3.5
IO 76 48 45 45 32 32 25 34 16 22

CoT / 66 69 49 44 39 36 34 27 29
ToT / / 59 56 50 48 35 39 29 33

Llama-2
IO 37 18 10 14 18 13 10 14 10 7

CoT / 23 15 10 17 16 17 13 12 14
ToT / / 8 9 11 9 10 16 13 13

Llama-3
IO 63 32 18 8 21 14 24 17 8 3

CoT / 39 42 31 24 24 29 31 25 22
ToT / / 50 43 33 33 34 31 30 28

Turbo
IO 65 50 27 29 31 27 25 29 12 17

CoT / 34 40 36 28 28 26 31 25 24
ToT / / 46 42 31 40 34 30 37 33

Davinci
IO 77 42 25 29 31 27 24 24 16 22

CoT / 46 49 46 46 45 43 49 41 27
ToT / / 65 50 45 60 50 45 55 50

GPT-4
IO 97 69 48 48 42 41 27 40 30 29

CoT / 91 93 88 87 80 88 77 76 72
ToT / / 92 91 88 93 88 93 89 89

GPT-4o
IO 97 77 58 48 45 37 36 44 30 29

CoT / 97 95 93 90 94 93 85 87 81
ToT / / 93 94 87 94 85 84 83 84

Table 4.5: Performance comparison of LLMs on StepGame using different methods.
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4.4.4 LLM + Logical Reasoner

The previous SOTA results [31] (using GPT-3 for semantic parsing and ASP for reas-
oning) are presented in the “SOTA” row of Table 4.5. They achieve approximately
90% accuracy for lower hops and 88.3% accuracy for 10-hop reasoning. They attribute
10.7% of the inaccuracies to data-related concerns.

We provide an evaluation of their approach on the corrected dataset, with the
results displayed in the “Curie+LR” and “Davinci+LR” rows. Among the 1000 test
examples (100 for each k), only 2 errors were encountered with the Davinci model.
These issues were linked to semantic parsing with Davinci: the sentence “If E is

the center of a clock face, H is located between 2 and 3.” was parsed in-
correctly as right(”H”, ”E”).

4.4.5 CoT and ToT

Table 4.5 and Figure 4.9 present the comparison of the IO, CoT and ToT methods
across various LLMs. All results for the IO and CoT methods, as well as for the
models Claude-3.5 (Haiku), Llama, and GPT-4, are based on evaluations of the first
100 test instances for each k setting. For the Claude-Instant and Davinci (text-davinci-
003) models, ToT results were derived from the first 20 instances per k setting, with
accuracy data sourced from our AAAI paper. Note that text-davinci-003 on Microsoft
Azure was retired in January 20241, and Claude-Instant was deprecated in September
20242.

According to Figure 4.9, the GPT-4 and GPT-4o models exhibit superior perform-
ance across most settings. With basic IO prompting, both models start with 97%
accuracy for k = 1, but their accuracy declines to 29% by k = 10, indicating that
even advanced GPT models struggle to maintain accuracy as task complexity rises.
CoT and ToT prompting show significant improvements for multi-hop reasoning tasks,
consistently outperforming IO. With the CoT method, the GPT-4 model achieves over
70% accuracy at higher hops (from k = 4 to k = 10), even as task complexity rises.
GPT-4o generally performs better than GPT-4 across all hops with CoT prompting,
achieving approximately 80% accuracy at 10-hop. However, ToT provides only a slight
benefit for GPT-4o at 10-hop tasks and, for some lower-hop tasks, performs worse than

1https://platform.openai.com/docs/deprecations
2https://docs.anthropic.com/en/docs/resources/model-deprecations
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Figure 4.9: Comparison of the performance of various models and methods across
multiple hops (3-10).
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CoT. In contrast, with ToT prompting, GPT-4 maintains higher accuracy than CoT for
higher hops, stabilizing around 90% as task complexity increases. For 7-shot reasoning,
GPT-4 has 12 failures and GPT-4o 15, with both models failing on 3 of the same test
examples. For 8-shot, GPT-4 has 7 failures and GPT-4o 16, 2 overlaps. For 9-shot,
GPT-4 has 11 failures and GPT-4o 17, with 3 overlaps. For 10-shot, GPT-4 has 11
failures and GPT-4o has 16, with 3 overlaps.

Figures 4.10, 4.11, and 4.12 illustrate three overlapping error cases for GPT-4 and
GPT-4o in 9-hop reasoning tasks. A common error shared by both models occurs
in the final step, involving an inversion in the interpretation of coordinates into rel-
ative positions. For instance, in Figure 4.10, both models incorrectly concluded that
“considering M(0,0) and X(-1,-1), M is to the lower-right of X”, whereas the
correct answer is ‘upper-right’. Similarly, in Figure 4.11, GPT-4’s final reasoning step
stated, “considering W(0,0) and G(-1,-1), W is to the lower-right of G”, while
the correct conclusion should have been ‘upper-right’. In Figure 4.12, GPT-4o ac-
curately inferred K’s position relative to M but failed to reverse the relationship to
correctly reflect M’s position relative to K, as the question required.

Additionally, case analysis reveals that GPT-4 demonstrates better in-context fol-
lowing, with its reasoning process closely aligning with the examples provided in the
prompt. In contrast, GPT-4o does not strictly follow the reasoning steps shown in the
examples. This can be beneficial when the linking chain derived from ToT is flawed,
as demonstrated in Figure 4.10, where GPT-4o re-examines all relationships in the
narrative and constructs a new linking chain during its reasoning process. However,
this approach risks failing to construct the correct chain and may omit critical reason-
ing components. For example, in Figure 4.10, GPT-4o disregards the provided chain
and instead attempts to “establish the linking chain from T to G”, despite the
question specifically asking for the relationship between W and G. Moreover, it neglects
to compute the coordinates for all relevant objects, ultimately leading to an incorrect
conclusion.

In this spatial reasoning task, the prompts are formatted in a few-shot style, requir-
ing in-context learning. This means that the models need to learn to perform a new
task based on a small set of examples provided in the prompt at inference time. Addi-
tionally, the task involves multi-step reasoning, where breaking down complex problems
into intermediate steps can facilitate problem-solving. As highlighted in [156], larger
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Figure 4.10: Comparison of the reasoning processes of GPT-4 and GPT-4o on one of
the three overlapping failure cases (test index: 5), utilizing the same reasoning chain
derived from ToT methods with GPT-4.
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Figure 4.11: Comparison of the reasoning processes of GPT-4 and GPT-4o on one of
the three overlapping failure cases (test index: 75), utilizing the same reasoning chain
derived from ToT methods with GPT-4.
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Figure 4.12: Comparison of the reasoning processes of GPT-4 and GPT-4o on one of
the three overlapping failure cases (test index: 96), utilizing the same reasoning chain
derived from ToT methods with GPT-4.
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LLMs not only have greater model sizes but also demonstrate superior language un-
derstanding and generation abilities. More importantly, they exhibit emergent abilities
that are absent in smaller models. These emergent abilities include in-context learning
and the capacity for multi-step reasoning.

Claude-3.5-haiku, the fastest variant of the Claude 3.5 models, demonstrates mod-
erate performance. Even when prompted with few-shot examples, it tends to adhere
to its own generation style. For instance, under IO prompting, the example output
format is a simple directional prediction formatted as ‘Answer:’. However, Claude of-
ten begins with a CoT-style response, such as ‘Let me solve this systematically’,
before analyzing the spatial relationships in the story to derive the answer. When using
our few-shot CoT and ToT prompting, the model still starts its generation similarly
to IO, but it successfully incorporates the coordinate information into its reasoning
process. With ToT prompting, Claude also begins with explanations like ‘I’ll help

solve this problem step by step’, but it further integrates coordinate details and
the linking chain into its reasoning process.

For Claude-Instant, under IO prompting, many incorrect predictions result from the
inability to identify a relationship between the starting object and the target object.
For example, one failed generation states, “Based on the information given, there is no
unique relation between agents S and J.” While CoT and ToT significantly alleviate
this issue, the model frequently makes errors in coordinate mapping and calculation.

The smallest Llama-2-7B model underperforms compared to other models in overall
performance. Although the Llama-3 model exhibits moderate performance in lower-hop
tasks, it performs poorly in larger-hop reasoning tasks. For the smallest Llama-2-7B
model, our CoT method yields performance improvements across most hops. Our
ToT methods improve performance on 8-hop, 9-hop, and 10-hop reasoning tasks; the
gains are less significant compared to those achieved with other models. In lower-hop
scenarios, the ToT approach actually reduces performance. For instance, in the 3-hop
task, accuracy drops from 18% with IO prompting to 8% with ToT. This could be
attributed to the long length of our prompts, requiring a nuanced understanding of
coordinates and relations. The Llama-2 model has challenges in producing extended,
coherent text for the complex task.

In our analysis of errors using the CoT and ToT_CoT reasoning methods, we
found that inaccuracies in semantic parsing significantly contribute to failures in reas-
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oning. For example, consider the following error made by Llama-2: “The objects S
and Z are over there. The object S is lower and slightly to the left of the object Z.”
This sentence was interpreted as “Z is to the right of S” leading to the conclusion
“Z= S + offset(right) = (-1,0) + (1,0) = (0,0)” which determines the position
of Z. The correct parsing should indicate “Z is to the upper-right of S.” rather
than “Z is to the right of S.” Additionally, errors frequently occur when map-
ping (x, y) coordinates to spatial relations. For example, “considering X(0,0) and

Y(1,-1), X is to the lower-right of Y.” X should actually be positioned upper-
left of Y. Similarly, in the case of “considering X(0,0) and Y(-3,0), X is to the

lower-right of Y.” The correct parsed relation should indicate “X is right of Y.”
Less capable models, such as Llama-2-7B and Turbo, are more prone to produce the
aforementioned semantic parsing and coordinate mapping errors. These errors can
accumulate during the CoT and ToT thought generation processes, leading to higher
error rates.

In this chapter, we explored methods to enhance the spatial reasoning capabilities
of LLMs. The effective resolution of the StepGame benchmark prompts a need for
more challenging versions. In the next chapter, we will present our new benchmark for
spatial reasoning.
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Chapter 5

New Spatial Reasoning Benchmark - RoomSpace

In light of the issues and limitations of existing benchmarks discussed in chapter 3,
we introduce RoomSpace, a new benchmark specifically designed for evaluating the
spatial reasoning capabilities of LLMs. RoomSpace is notable for several key features
that enhance its utility for assessing these models. These features include:

1. Realistic 3D Room Environments. The benchmark features richly detailed 3D sim-
ulations of indoor environments that closely resemble real-world settings, providing
a higher degree of ecological validity. As highlighted by [157], many existing bench-
marks lack ecological validity; the questions posed often do not reflect the types of
queries end users naturally ask in realistic scenarios. This mismatch can lead to
discrepancies between benchmark performance and real-world user experience. In
RoomSpace, the environments and questions are designed to more closely reflect
how spatial reasoning is applied in everyday human contexts, thereby enhancing the
benchmark’s ecological validity.

2. Multi-Modality Data Integration. We incorporate both text and images for each
example, making our benchmark well-suited for MLLM-based evaluations, where
spatial reasoning tasks will increasingly rely on both natural language and visual
inputs.

3. Flexible and adaptable dataset-building framework. Unlike traditional benchmarks
that rely on static QA datasets, we utilize a dynamic framework that can be tailored
to accommodate different spatial representations and reasoning challenges. This ad-
aptability is valuable for examining the performance of LLMs across various dimen-
sions of spatial reasoning.

83



5. NEW SPATIAL REASONING BENCHMARK - ROOMSPACE

4. Logical reasoning for gold label generation. To address the possibility of multiple
valid answers in spatial reasoning tasks, we implement a logical reasoning tool for
generating gold labels. This ensures that the benchmark can identify all valid solu-
tions to spatial reasoning problems with multiple correct answers, thereby providing
accurate assessments of LLMs’ performance.

The overall design and workflow of this benchmark are depicted in Figure 5.1, which
outlines four key steps: (1) Construction of 3D Rooms, described in Section 5.1; (2)
Establishment of Spatial Representation, detailed in Section 5.2; (3) Creation of Spatial
Reasoning Stories, explained in Section 5.3; and (4) Generation of Gold Labels using
Logical Reasoning Tools, discussed in Section 5.4. This adaptable framework facilitates
a comprehensive evaluation of LLMs’ spatial reasoning capabilities. Our preliminary
assessment of LLMs on RoomSpace is presented in Section 5.5.

Figure 5.1: Summary of the RoomSpace benchmark generation process.

5.1 3D Room Construction

5.1.1 Construction Process

In this section, we discuss the development of virtual house environments for spatial
reasoning challenges utilizing the ProcTHOR framework [13], which is built on top of
AI2-THOR [12]. ProcTHOR facilitates the creation of physics-enabled environments,

84



5.1 3D Room Construction

suitable for simulating various indoor settings. Initially, the ProcTHOR dataset com-
prised simulated houses with multiple rooms. For our research, we have adapted this
framework to focus on single-room configurations to simplify the spatial reasoning tasks.

Figure 5.2: Procedural generation of a room scene with top-down and north-facing
view images.

Figure 5.2 illustrates a high-level schematic of the scene generation process. This
process employs multi-stage conditional sampling to specify room types and select
assets, which include large household objects like fridges, countertops, beds, toilets,
and houseplants, as well as wall objects such as windows and paintings, and surface
objects like cups on a kitchen counter. The scenes are diversified across different room
types, including kitchens, living rooms, bedrooms, and bathrooms, examples of which
are shown in Figure 5.3, displayed in both top-down and egocentric (north-facing)
Views.

Each simulated room is designed with a uniform square shape, enclosed by four
walls (north, south, east, and west) that feature architectural elements like doors and
windows. Despite the structural uniformity, each room type is distinctly outfitted
with varied configurations of household objects and specific environment metadata
that include the dimensions of the scene and reachable grid positions. A key structural
element in each room is a centrally placed door on the south wall, which serves as both
an entrance and a focal point for spatial reasoning tasks.
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Figure 5.3: Sample scenes in RoomSpace featuring four room types.

For each constructed example scene, we create two types of RGB images1 to create
the visual modality for our benchmark data: one from a fixed camera positioned at
the center of the ceiling, providing a top-down view, and another from the agent’s
egocentric perspective. The agent, an AI abstract entity capable of navigating and
interacting within the virtual environment, is incorporated into the scene and located at
the door facing inward. Camera adjustments ensure that the agent’s perspective aligns
with cardinal directions to optimize the room’s visibility. However, this configuration
may result in some objects along the south wall being obscured from view.

5.1.2 Spatial Attributes

Figure 5.5 outlines the various properties associated with a room scene. Each room
is equipped with the floorPolygon attribute, which consists of a list of four x, y, z

dictionaries that specify the coordinates of the room’s four corners, where x and z define
the horizontal coordinates, and y represents the vertical coordinate. This attribute
forms the basis for the spatial structure of the scene.

Each object is described by its type, position, rotation, and bounding box informa-
tion. The object placement annotations guide the placement of objects in the scene, with
attributes inLivingRooms, inKitchens, inBedrooms, and inBathrooms specifying the
room types where the object can be placed. Every object is assigned a room weight for

1The images are for visualization but could be used to test multi-modal LLMs.
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Figure 5.4: Examples of property annotations in a room example. Room type and
floor polygon (highlighted in blue) depicting the room’s four-corner x, y, z coordinates.
Each object is defined with detailed attributes: asset annotations (in green) detailing
objects’ spatial information; and Object placement annotations (in purple) used for
scene construction.

Figure 5.5: Examples of property annotations in a room scene. The room type and
floor polygon (highlighted in blue) display the room’s four-corner x, y, z coordinates.
Each object is defined with detailed attributes: asset annotations (in green) detailing
objects’ spatial information; and Object placement annotations (in purple) used for
scene construction.

each room type. For example, for the inBathrooms attribute, a ClothesDryer has a
weight of 1, indicating suitability, whereas a CoffeeMachine has a weight of 0, indic-
ating unsuitability. This weighting system filters objects for placement, ensuring only
those with positive weights are included in the corresponding room type.

Additionally, the onFloor or onWall attributes, marked as True or False, determ-
ine whether an object can be placed on the floor or mounted on the wall. Only certain
objects, like doorways, door frames, hand towel holders, light switches, and toilet paper
holders, can be mounted on walls due to their functional nature, while items like dining
tables, beds and countertops are placed on the floor. Each floor object can support
specific surface items, such as vases, pans, or laptops, which enhances the scene’s real-
ism and functionality. This is accomplished through a detailed receptacle list for each
floor object, specifying both the quantity and the probability of the surface objects
items being included. Additionally, the attributes of inCorner, inMiddle, and onEdge
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influence both the location and orientation of the objects. Objects near walls or corners
are oriented for user access, such as making appliances easy to operate, while those in
the center allow for more flexible orientation to optimize spatial arrangement.

The position of an object is provided in coordinates using an x, y, z dictionary,
ensuring precise placement within the virtual environment. The rotation attribute,
applied primarily around the y axis, adjusts the object’s orientation, as shown in Figure
5.6. The bounding box, essential for estimating the space an object occupies, is repres-
ented by the smallest aligned box that can fully enclose the object. This box remains
fixed regardless of object movement or rotation, The dimensions of the bounding box
(length, height, and width) are also stored in an x, y, z dictionary, providing a rough
estimate of the object’s volume.

Figure 5.6: Visualization of object rotation along the x-axis, y-axis, and z-axis.

Additionally, while objects in RoomSpace can possess material attributes such as
Metal, Wood, Plastic, and Glass, these characteristics are not currently utilized in the
spatial reasoning tasks within our framework. We focus on the spatial and physical
properties relevant to the challenges posed in our scenarios.

5.2 Specify Spatial Representations

The metadata from the previous step is leveraged to create spatial representations us-
ing various spatial calculi, which allows for the customization of spatial relationships
in spatial reasoning tasks. In the following part, we detail the application of the CDC
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calculus for point-based cardinal direction relations, the use of 1-cross for relative dir-
ection relations, the TPCC for combining point-based distance with direction relations,
and the RCC for forming region-based topology relations. We demonstrate the process
of mapping object metadata to these spatial relations, which are then employed to
construct diverse spatial narratives.

5.2.1 Cardinal Direction Relations

In Figure 5.7, we present an example of a room projected onto the 2D ground plane,
utilizing the CDC calculus [111] to express cardinal direction relations - North (N),
West (W), East (E), South (S) - and their combinations, North-West (NW), North-
East (NE), South-West (SW), and South-East (SE). Two methods are illustrated: the
projection-based method (middle of Figure 5.7) and the cone-based method (right of
Figure 5.7). Additionally, we use directional relations to partition the space, dividing
the room into nine sections, with an object’s position determined by the segment in
which the center of its bounding box falls. For instance, (bed, NE, room) indicates
the bed’s location in the northeast part of the room, (bed, NE, chair) describes the
spatial relationship between the bed and the chair.

Figure 5.7: Overview of constructing directional relations within the room scene on a
2D plane. Left: room partition using directional relations. Middle: establishing object
relations using projection-based CDC. Right: establishing object relations using cone-
based CDC.

We utilize the x− z plane to determine directions, as the y axis represents vertical
height. To partition the room into areas corresponding to cardinal directions, we divide
the room based on thirds of its width (w). This segmentation creates nine distinct zones,
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with the central zone defined by the region where w
3 ≤ x ≤ 2w

3 and w
3 ≤ z ≤ 2w

3 . This
one-third partitioning evenly divides the room into nine segments.

For the projection-based CDC, the directional relationship from A to B is determ-
ined by calculating the differences in their central points’ x and z coordinates. A
negative ∆x indicates that B is west of A, while a negative ∆z indicates that B is
south of A.

∆xAB = xb − xa, ∆zAB = zb − za

For the cone-based CDC, the relations are derived by calculating the angle θ from
the positive x-axis to the line connecting the central point of A to the central point of
B using the arctangent function, which considers the full range of 360 degrees.

θAB = atan2(∆z, ∆x)

5.2.2 Relative Direction Relations

According to [136], the most intuitive method to express relative direction involves
using ternary relations that indicate the position of object C in relation to object B
from the perspective of point A (where A, B, and C are considered points on a plane).
In the room scene, we use A to represent the central position of the agent, serving
as the viewpoint of an observer who visually perceives the environment. Object B
is the chair, specifically its center point for the point-based representation. Object
C represents other items in the room. The center of Object C in certain areas will
define specific relative direction spatial relations in relation to Object B, such as (bed,
right/back, chair) for 1-cross, and (bed, distant/right/back, chair) for TPCC.

In Figure 5.8, we present two distinct methods for constructing relative directional
relations: 1-cross and TPCC, both of which are point-based calculi for modelling re-
lative direction relationships. Compared with 1-cross, TPCC distinguishes between
right/back, right-back, and back-right and also includes direct orientations like straight
right and straight front.

5.2.3 Distance Relations

In addition to directional relations, TPCC incorporates distance information by de-
fining concentric circles around the reference point, assigning qualitative distances to
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Figure 5.8: Building relative direction relations using single cross calculus (left) and
TPCC without (middle) and with distance(right). The abbreviations f , b, l, r, s, c,
and d represent front, back, left, right, straight, close, and distant respectively.
sam represents the same position.

the second point B. For qualitative distance assessment, various sets of distance rela-
tions offer different levels of granularity, as outlined by [158]. The simplest distinction
is between close and far. More granular levels include distinctions such as close,
medium, and far, while a finer level introduces terms like very close, close, medium,
far, and very far, as shown in Figure 5.9. These terms can vary, such as far being
labelled as distant in Figure 5.8, though they convey the same meaning.

Figure 5.9: Various granularity configurations of distance relations distinctions. The
abbreviations cl, fr, md, vc, vf , and cm represent close, far, medium, very close,
very far respectively. More distinctions can be introduced as needed.

In Figure 5.9, each set of distance relations is delineated by distinct boundaries,
defined by intervals δ0, δ1, . . . , δn. In real-world scenarios, these boundaries might ex-
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hibit fuzziness, allowing for heuristic interpretation with overlapping intervals, as sug-
gested by [159]. For simplicity, we demonstrate how to construct distance relations
with clear, sharp boundaries. We determine the distance between objects by calculat-
ing the Euclidean distance between the centers of their bounding boxes (points A and
B), projected onto a 2D plane.

dAB =
√

(xA − xB)2 + (zA − zB)2

Suppose w represents the length and width of a square room, then
√

2w would
correspond to the room’s diagonal length.

√
2w represents the maximum possible

distance. Boundaries between close and far could be defined using boundary values
such as w

2 or
√

2w
2 . For dividing distances into i distinct categories, a straightforward

approach is to use ratios such as w
i or

√
2w
i .

5.2.4 Topological Relations

Region-based object representation is more suitable for establishing topological rela-
tions, as it allows for the analysis of an object’s three fundamental components: its
interior, boundary, and exterior. In our room scene, relying solely on objects’ central
points may not accurately capture their topological relationships. For example, a large
object like the bed in Figure 5.10 has a central point that is relatively distant from any
wall, despite the object itself being adjacent to the wall.

In 3D environments, topological relations become significantly more complex, re-
quiring a deeper understanding of how spatial relations are defined and how objects
interact. However, for broader accessibility and practical use, 2D representations of-
fer a more intuitive approach, distilling complex spatial interactions into clearer visual
forms that are easier to understand and apply in everyday scenarios. For example, in
the simulated scenario in Figure 5.10, in a 2D context, the room’s boundary is defined
by square-shaped walls, with the interior set comprising the space within those walls.
Objects like the bed, dresser, and bin typically exhibit a TPP relation to the room,
meaning they are located inside, touching the room’s boundary walls. In contrast, ob-
jects such as the table and chair, which do not touch the boundary walls, exhibit an
NTPP relation. In a 3D context, the room’s boundary includes not only the walls but
also the floor and ceiling, with the interior set encompassing all the space within these
expanded boundaries. Objects like tables and chairs, which only touch the floor in 2D,
still maintain a TPP relation in 3D, as they remain fully within the room’s boundaries.
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Figure 5.10: Visualization of topological spatial relations using RCC-8 in a 2D projected
room scene.

In our benchmark, complexities in defining topological relationships arise when an
object’s shape deviates from a rectangular bounding box and when non-standard rota-
tions (i.e., not at 90, 180, or 270 degrees) cause the bounding box edges to misalign with
the boundary walls, as shown in Figure 5.6. For example, in Figure 5.10, objects like
houseplants and bowls have round shapes, and the bin is semi-circular. These shapes
influence how objects are perceived in relation to each other within the space, necessit-
ating careful consideration to accurately determine their topological relationships. The
chair exemplifies the non-standard rotation, having been rotated at a y-axis angle of
338 degrees.

Each object’s metadata includes details about the center point, rotation, and bound-
ing box size, but lacks shape information, which limits the depth of topological relations
that can be established. Given that all objects are considered with rectangular bound-
ing boxes, we define two approaches to represent topological relations between objects
and the room’s boundary wall:

• Uniform Inclusion. All objects are considered within the room, with no specific
topological distinctions made.

• TPP and NTPP. This setting defines the topological relations between objects and
the room by considering the walls as the boundary, excluding the floor and ceiling.
This is accomplished by comparing each vertex of the object’s bounding box to the
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room’s boundary walls, using the bounding box data in conjunction with the central
point data. We calculate four boundary values: xo +xb, xo−xb, zo +zb, and yo−yb,
where zo and zo are the coordinates of the object’s central point, and zb and zb are
the dimensions of the bounding box. If any of these values equals 0 or w (the width
of the room), the object is classified as TPP to the room; otherwise, it is classified
as NTPP.

5.3 Spatial Reasoning Problem Construction

5.3.1 Problem Definition

Various spatial reasoning tasks can be developed to evaluate an intelligent system,
such as deriving new knowledge from provided information, verifying the consistency
of the information, or updating existing knowledge. While these tasks differ, they can
often be transformed into one another, allowing algorithms designed for one reasoning
problem to be adapted to others. Therefore, much of the research on spatial reasoning
has focused on the constraint satisfaction problems (CSP), which determines whether
the given spatial information is consistent or inconsistent [24].

These types of queries mirror the kinds of spatial reasoning humans perform during
everyday tasks such as navigation, giving instructions, interpreting floor plans, or inter-
acting with household robots and virtual assistants. Unlike synthetic benchmarks that
use abstract or overly simplified language, RoomSpace embraces more naturalistic lan-
guage patterns and real-world spatial configurations. This alignment allows for a better
assessment of how well LLMs and MLLMs can support real-world applications such as
assistive technologies, robotics, and multimodal dialogue systems, where understanding
space and context is critical.

A CSP is defined by a finite set of variables V , a domain D for these variables and
a set of constraints θ. Each constraint restricts the values that a subset of variables
can simultaneously take. The objective is to find an assignment of values to the vari-
ables such that all constraints are satisfied or, in some cases, to identify all possible
valid assignments. In our CSPs, each object in a room is treated as a variable, with
the room’s dimensions forming the domain. The spatial relations between entities, as
discussed earlier, serve as constraints that govern the spatial properties of the objects,
as illustrated in Figure 5.11.
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Figure 5.11: Core elements (variables, domain, constraints) in our CSP framework.

A spatial reasoning problem can be framed within a constraint network framework:
consider a network of n spatial variables V = {o1, ..., on} within a domain Dn. Each
node represents a variable oi, and each directed edge is labelled with a relation con-
straint. The relation constraining a pair of variables ⟨oi, oj⟩ is denoted by rij . A relation
constraint in the set θ can therefore be written as rij(oi, oj) or (oi, rij , oj). Given a set
of k relations and a query (oa, ?, ob), LLMs are tasked with predicting the relation
rab. If all constraints in the story, including the predicted relation (oa, r′

ab, ob), can be
simultaneously satisfied, the prediction r′

ab is considered a valid solution.

To bridge CSPs with ecologically valid task design, the spatial reasoning tasks in
RoomSpace are crafted to closely emulate real-world settings and interactions. These
tasks reflect the kinds of spatial queries that naturally arise in daily life, thereby en-
hancing the benchmark’s relevance to practical applications. For example: locating
items in a room (e.g., “Where is the cup relative to the microwave?”), which simulates
how a user might query a household robot or virtual assistant; verifying arrangements
or consistency checking (e.g., “Is the chair between the table and the wall?”, “Is this
room configuration feasible given the following constraints?”), which resembles spatial
planning, such as arranging furniture or validating room layouts. These questions are
derived from structured CSPs but are translated into naturalistic narratives and queries
that align more closely with human expectations and behaviour. In this way, Room-
Space connects the formal rigour of logical reasoning with the flexibility and realism of
real-world spatial cognition, making it a more practical and comprehensive benchmark
for evaluating the spatial reasoning capabilities of LLMs.
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5.3.2 CSP Example Generation

Our test sets are available in varying sizes: RoomSpace-100 includes a sample of 100
rooms. RoomSpace-1K consists of 1,000 rooms, and RoomSpace-10K comprises
10,000 rooms. The initial 100 rooms in RoomSpace-1K (ID 0-99) are identical to those
in RoomSpace-100. Similarly, the first 1,000 rooms in RoomSpace-10K (ID 0-999)
match those in RoomSpace-1K. For each room scene, we create various story series of
stories with varying levels of complexity, achieved by adjusting four key parameters,
each corresponding to specific elements of the constraint network. These configurations
are represented by the tuple ⟨n, d, m, p⟩, where:

• n is the number of objects used to form the story in the scene, which correspond
to the nodes in a constraint graph. In this part of the work, we focus on selecting
floor and wall objects for story formation rather than smaller supporting objects
that occupy less space in the room. For instance, in the scenario of ‘an apple on a
desk’, the desk would take priority over the apple.

• d is the number of square tiles in a width× length tessellation whose centres define
possible positions for the centres of objects on the floor plane. In the dataset, width

and lenghth are always equal, yielding square rooms.

• m is the number of binary constraints over n objects. The maximum possible number
of constraints on n variables is C2

n = n(n−1)
2 , where each variable is constrained by

all other variables, forming a complete graph. For instance, a complete graph with
5 objects yields in total C2

5 = 10 constraint pairs. From all possible pairs of objects,
one pair is selected to form the question, while the remaining C2

n − 1 pairs are used
to establish the graph based on the parameter m.

• p is the constraint tightness. For constraints that restrict the direction of objects in
a room, p ranges from 0 to d, while for constraints between two objects, p ranges
from 0 to d × d, where d is the domain size for each variable. The total number
of possible value pairs between two variables is d × d. For each constraint between
two objects, the number of disallowed value pairs is given by p× (d× d). The value
of p depends on the specific type of constraint. We provide a detailed analysis of
constraint tightness in Section 5.4.
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5.3.3 Generate Textual Descriptions

Following the previous steps of node and constraint selection, the constraint networks
for each instance are established. For evaluating LMs, these networks are then converted
into textual format, where the elements are organized into coherent narratives and the
reasoning tasks are framed using natural language. During this phase, the spatial logic
expressions Cl and Co are transformed into natural language sentences like Sl and SO2,
a process referred to as logic-to-text generation.

We develop specific logic-to-string templates using context-free grammar (CFG)
[160], as illustrated in Table 5.1. It shows the structure decomposition for each story
variant St,v, where t ∈ {L, TPP, O2, O2+D2, O2+D3, O2+L, O2+D2+L, O2+D3+L}
denotes the content type and v ∈ {T, N} indicates the view perspective (Top-down
or North-facing). Each story series is composed of specific combinations of layout
components ⟨Si

l ⟩ and object-object relation components ⟨Si
O2⟩. Sl serves as the in-

troductory sentence, outlining the objects present in the room and varies across three
types: Sl_O2, which lists the objects; Sl_Layout, which adds information about object
layout; and Sl_T P P , which includes topological relationships between the objects and
the room’s walls. SN and ST describe relationships from north-facing and top-down
views, respectively. SO2 details directional relationships between objects, while SO2+D2

and SO2+D3 combines these with binary and ternary distance information.
When forming stories, the logical components such as ⟨xi⟩,⟨xj⟩, ⟨rDir

i ⟩,⟨rT P P
i ⟩,

⟨rDir
ij ⟩, ⟨rDis

ij ⟩ are substituted with corresponding textual expressions, enabling the cre-
ation of varied descriptions of spatial relationships. The term ⟨room⟩ refers to one of
several room types: ‘kitchen’, ‘living room’, ‘bathroom’, or ‘bedroom’. The placeholders
⟨xi⟩ and ⟨xj⟩ represent objects such as ‘chair ’, ‘coffee machine’, or ‘desk’. The details
of the spatial expressions rT P P

i , rDir
ij , rDir_N

ij , rDis
ij are provided in Table 5.2.

We develop eight narrative series across two viewpoint settings, each designed to
emphasize different aspects of spatial relationships, as presented in Table 5.1.

• Layout Narratives (Sl_Layout): Focus on the spatial arrangement of objects within
the room, referred to as Layout.

• Topological Narratives (Sl_T P P ): Detail both the layout and the topological
relationships between objects and the room’s structural elements, referred to as
TPP since all four topological relations used include this character string.
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Story Components
Sl ⇒ Imagine a square-shaped ⟨room⟩, bordered by four walls. This room contains
a collection of furniture, including ⟨S0

l ⟩, ⟨S1
l ⟩, . . . , ⟨Sn

l ⟩.
Si

l_Layout ⇒ ⟨xi⟩ placed in the ⟨rDir
i ⟩

Si
l_T P P ⇒ ⟨xi⟩ placed in the ⟨rDir

i ⟩, ⟨rT P P
i ⟩ the wall

Si
l_O2 ⇒ ⟨xi⟩

ST
O2 ⇒ ⟨ST 01

O2 ⟩. ⟨ST 12
O2 ⟩. . . . . ⟨ST ij

ot ⟩.
ST ij

O2 ⇒ ⟨xi⟩ is placed to the ⟨rDir
ij ⟩ of ⟨xj⟩

ST ij
O2+D2, ST ij

O2+D3 ⇒ ⟨xi⟩ is placed to the ⟨rDir
ij ⟩ of ⟨xj⟩, ⟨rDis

ij ⟩
SN

O2 ⇒ Imagine yourself at the southern wall’s door, looking inwards. From this
perspective, ⟨SN01

O2 ⟩. . . . .⟨SNij
O2 ⟩.

SNij
O2 ⇒ ⟨xi⟩ is ⟨rDir

ij ⟩ ⟨xj⟩
SNij

O2+D2, SNij
O2+D3 ⇒ ⟨xi⟩ is ⟨rDir_N

ij ⟩ ⟨xj⟩, ⟨rDis
ij ⟩.

Story St,v

Story ⇒ Expansion Format of ⟨Si
l ⟩ Format of ⟨Si

O2⟩
SL ⇒ Sl Si

l_Layout /
STPP ⇒ Sl Si

l_T P P /
SO2,T ⇒ Sl ST

O2 Si
l_O2 ST ij

O2

SO2,N ⇒ Sl SN
O2 Si

l_O2 SNij
O2

SO2+D2,T ⇒ Sl ST
O2 Si

l_O2 ST ij
O2+D2

SO2+D2,N ⇒ Sl SN
O2 Si

l_O2 SNij
O2+D2

SO2+D3,T ⇒ Sl ST
O2 Si

l_O2 ST ij
O2+D3

SO2+D3,N ⇒ Sl SN
O2 Si

l_O2 SNij
O2+D3

SO2+L,T ⇒ Sl ST
O2 Si

l_Layout ST ij
O2

SO2+L,N ⇒ Sl SN
O2 Si

l_Layout SNij
O2

SO2+D2+L,T ⇒ Sl ST
O2 Si

l_Layout ST ij
O2+D2

SO2+D2+L,N ⇒ Sl SN
O2 Si

l_Layout SNij
O2+D2

SO2+D3+L,T ⇒ Sl ST
O2 Si

l_Layout ST ij
O2+D3

SO2+D3+L,N ⇒ Sl SN
O2 Si

l_Layout SNij
O2+D3

Question Q
Qfr ⇒ Where is the xi positioned in relation to the xj?
Qyn ⇒ Could the xi be placed to the rq of the xj?

Table 5.1: Our designed grammar for forming spatial reasoning stories and questions.
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Relation Type Symbols Relations Expressions

Topological rT P P
i

TPP in, against the wall, hanging on the wall
NTPP in, away from walls
TPPi contains

NTPPi contains

Directional

rDir
ij

N north
S south
E east
W west
NE north-east
SE south-east
NW north-west
SW south-west

rDir_N
ij

Left to the left of
Right to the right of
Front in front of

Behind behind
Front-Left in front of and to the left of

Front-Right in front of and to the right of
Behind-Left behind and to the left of

Behind-Right behind and to the right of

Distance rDis
ij

Close at a short distance
Medium at a moderate distance

Far at a far distance

Table 5.2: Spatial relation types and examples of spatial language expressions.

• Directional Overview (Sl_O2 + SO2): Provide a general description of all objects
and their directional relationships, referred to as O2.

• Directional and Binary Distance Narratives (Sl_O2 + SO2+D2): Include an
overview of all objects, outlining both directional and binary distance (close, far)
relationships, referred to as O2+D2.

• Directional and Ternary Distance Narratives (Sl_O2 + SO2+D3): Expand the
previous series by incorporating three levels of distance (close, moderate, far) along
with directional relationships, referred to as O2+D3.
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• Layout with Direction (Sl_O2 + SO2): Merge layout descriptions with directional
relationships, referred to as O2+Layout.

• Layout with Binary Distance and Direction (Sl_Layout + SO2+D2): Merge
layout descriptions with binary distance and directional relationships, referred to as
O2+D2+Layout.

• Layout with Ternary Distance and Direction (Sl_Layout + SO2+D3): Com-
bine layout information with three-level distance and directional relationships, of-
fering a comprehensive depiction of spatial dynamics within the room, referred to
as O2+D3+Layout.

We build two types of questions for each CSP example:

• Find Relation (FR): This type of question requires identifying the directional
spatial relationships between two specified objects. The answers are presented as a
list of possible relationships.

• Yes/No (YN): These questions aim to ascertain the validity of a statement re-
garding the spatial relationship between objects. A directional relation is randomly
selected as the assertion. If this selected relation aligns with all relations in the
story, the response is ‘Yes’; if not, the answer is ‘No’.

FR questions are more complex, as they focus on identifying all possible valid assign-
ments of constraints between two variables. In contrast, YN questions are simpler,
aiming to verify whether a specific constraint assignment holds, ensuring that all con-
straints are satisfied.

5.4 Logical Reasoner for Gold Label Construction

In this section, we outline the rationale behind the design of our logical reasoner and
explain its operational framework.

5.4.1 Motivation

Generating ground-truth answers for spatial relations between objects oi and oj from
the simulation system can be automated by comparing their coordinates, represented
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as (xi, yi, zi) and (xj , yj , zj) which could get from meta simulation data. However, key
considerations arise: Given the stories formed with limited qualitative relations, can
we definitively deduce the answer? Is there a possibility of multiple valid solutions?
For example, given the description ‘A is to the left of B, and C is to the left of A.’ the
position of A relative to C is ambiguous based on the information provided. A could
be to the right, left, or overlapping with C.

The stories in our benchmark provide only a partial depiction of spatial layouts.
Given the limited qualitative descriptions, a single, definitive answer may not al-
ways be achievable. For instance, as shown in Figure 5.12, consider four constraints:
(x1, NE, x2), (x2, SW, x3), (x3, NW, x4), and (x4, NE, x5). When asked for R13 (the
relation between x1 and x3), R14, or R15, the possible answers span all nine relation
candidates, meaning all nine options are consistent with the four given constraints.

Figure 5.12: An example illustrating the potential for multiple valid answers.

According to [161], a key component of spatial intelligence is the flexibility to select
appropriate strategies for solving spatial problems. Different methods can be used to
automatically address spatial reasoning tasks, each presenting distinct advantages and
challenges depending on the task’s context and complexity:

• Composition Reasoning Tables [162]. Utilizing tables to systematically ana-
lyze and decompose problems into components, examining the relationships and
interactions between them.

• Reasoning Rules [1]. Using predefined rules to automate the reasoning process,
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N NE E SE S SW W NW O
N N NE NE E,NE,SE S, N, O W,NW,SW NW NW N
NE NE NE NE E,NE,SE E, NE, SE N,NE,E,

SE,S,SW,
W,NW,C

N,NW,NE N,NW,NE NE

E NE NE E SE SE S,SW,SE W,E,O N,NW,NE E
SE E, NE, SE E, NE, SE SE SE SE S,SW,SE S,SW,SE N,NE,E,

SE,S,SW,
W,NW,C

SE

S S, N, O E, NE, SE SE SE S SW SW W,NW,SW S
SW W,NW,SW N,NE,E,

SE,S,SW,
W,NW,C

S,SE,SW S,SE,SW SW SW SW W,NW,SW SW

W NW N,NW,NE W,E,O S,SE,SW SW SW W NW W
NW NW N,NW,NE N,NW,NE N,NE,E,

SE,S,SW,
W,NW,C

N,NW,SW N,NW,SW NW NW NW

O N NE E SE S SW W NW O

Table 5.3: The composition table for O2 directional relations. The composition of
different relations along a single axis (e.g., S and N, E and W) generally leads to
multiple possible relations, highlighted in blue and green in the table.

as applied in SpartQA and SpaRTUN for label generation.

Ojects Relation Premises Conclusion
Not ∀(X, Y ) ∈ E R ∈ Dir ∨ P P IF R(X, Y ) ⇒ ¬(Rr(X, Y ))
Inverse ∀(X, Y ) ∈ E R ∈ Dir ∨ P P IF R(Y, X) ⇒ Rr(X, Y )
Symmetry ∀(X, Y ) ∈ E R ∈ Dir ∨ (RCC − P P ) IF R(Y, X) ⇒ R(Y, X)
Transitivity ∀(X, Y, Z) ∈ E R ∈ Dir ∨ P P IF R(X, Z), R(Z, Y ) ⇒ R(X, Y )
Combination ∀(X, Y, Z, H) ∈ E R ∈ Dir, ∗P P ∈ P P IF ∗P P (X, Z), R(Z, H),

∗P P i(Z, Y )
⇒ R(X, Y )

Table 5.4: General reasoning rules established in [1] to infer relationships between
objects. Dir: Directional relations (e.g., LEFT). Dis: Distance relations (e.g., FAR).
PP: all Proper parts relations (NTPP, NTPPi, TPP, TPPi). RCC - PP: All RCC8
relation except proper parts relations. *PP: one of TPP or NTPP. *PPi: one of
NTPPi or TPPi

• Mental Diagrams or Images [163, 164]. According to [161], people utilize
mental simulation processes involving spatial working memory, rather than solely
relying on verbally encoded rules when imagining each ‘link’ in a causal chain. Using
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diagrams or images to visualize problems helps simplify the understanding of spatial
relationships and aids in conceptualizing solutions. For instance, the upper-right
diagram in Figure 3.2 provides a visual representation of the problem.

In our benchmark, the Composition Reasoning Tables method requires significant
time to design, and new tables must be created when incorporating new relations. The
reasoning rules method, while simple and efficient, is limited in its application, as it
only works under specific conditions. For example, transitivity can infer (A, left, C)
from (A, left, B) and (B, left, C). However, if RAB and RBC involve different relations,
this method cannot deduce RAC . Since most combinations in our benchmark involve
different relations, it becomes challenging to derive answers using predefined rules alone.
So we developed a logical reasoner to simulate mental diagrams for spatial reasoning
problems, with the implementation workflow detailed in the following section.

5.4.2 Method

We turn the problem to a problem of placing n points on a (d1, d2) board, as depicted
in Figure 5.13. A valid solution is achieved when all m constraints are satisfied. In
our reasoner, we explore two settings for domain size: d = 9 × 9 and d = 12 × 12,
corresponding to the room’s square configuration. For simplicity, all the analysis in
this section is illustrated using d = 9 × 9. The reasoning system consists of two core
components.

Figure 5.13: Abstraction of grid-based spatial representation. Left: objects represented
as grid slots. Right: objects represented as points within the grid.
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Establishing the Fundamental Relations

The spatial relationships in our reasoning tool are defined according to the coordinate
comparison, as detailed in Table 5.5.

Relation Definition Relation Definition

N x1 = x2, y1 > y2 NR d1
3 ≤ x < 2d1

3 , y ≥ 2d2
3

S x1 = x2, y1 < y2 SR d1
3 ≤ x < 2d1

3 , y < d2
3

E x1 > x2, y1 = y2 ER x ≥ 2d1
3 , d2

3 ≤ y < 2d2
3

W x1 < x2, y1 = y2 WR x < d1
3 , d2

3 ≤ y < 2d2
3

NE x1 > x2, y1 > y2 NER x ≥ 2d1
3 , y ≥ 2d2

3

NW x1 < x2, y1 > y2 NWR x < d1
3 , y ≥ 2d2

3

SE x1 > x2, y1 < y2 SER x ≥ 2d1
3 , y < d2

3

SW x1 < x2, y1 < y2 SWR x < d1
3 , y < d2

3

O x1 = x2, y1 = y2 CR d1
3 ≤ x < 2d1

3 , d2
3 ≤ y < 2d2

3

CL3 ∥pos1 − pos2∥ ≤ d1
3 INR 0 ≤ x < d1, 0 ≤ y < d2

MD3 d1
3 < ∥pos1 − pos2∥ ≤ 2d1

3 TPP x ∈ {0, d1 − 1} or y ∈ {0, d2 − 1}
FR3 ∥pos1 − pos2∥ > 2d1

3 NTPP 0 < x < d1, 0 < y < d2

FR2 ∥pos1 − pos2∥ > d1
2

CL2 ∥pos1 − pos2∥ ≤ d1
2

Table 5.5: Relations and their corresponding definitions in logical reasoners.

Constraint tightness (p) is the fraction of variable assignments from the variables’
domains that are disallowed by the constraint. Formally, given a constraint C involving
variables V = {X1, X2, . . . , Xk}, each with domain size d, the tightness p of constraint
C is defined as:

p = Number of disallowed assignments by C

dk
.

Constraint tightness significantly influences the difficulty of solving CSPs. Higher con-
straint tightness reduces the solution search space, potentially decreasing computational
complexity. Conversely, constraints with lower tightness yield larger search spaces, thus
increasing computational overhead during the search for a valid solution.

I have explicitly clarified the definition, properties, importance, and detailed calcu-
lations of p on page 104 (marked in red).
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We provide an analysis of constraint tightness p for all spatial relations, which
indicates how restrictive a constraint is. A tighter constraint eliminates more values
from the domains of the variables it involves, thus reducing the search space. This
influences the complexity of solving a CSP with our logical reasoning tool, directly
affecting the CPU runtime. For example, in Figure 5.14, consider the constraint (house

plant, ER, room) applied to the variable ‘house plant’ within a domain of 9 = 3× 3
possibilities. Introducing constraint (house plant, ER+TPP, room) further reduces the
domain to only 5 possible pairs: [(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)].

Figure 5.14: Example of assigning possible position candidates for different relations
between objects and room.

This is the reason, as depicted in Figure 5.16, that there is a marked decrease
in CPU times when we transition from a ‘Layout’ configuration to a ‘TPP’ setting.
Figure 5.16 demonstrates that incorporating distance relations ‘O2+D2 ’ leads to a rise
in the average CPU time when contrasted with the ‘O2 ’ configuration. In the narrative
setting of Layout+O2, where layout info is combined with directional info, the search
area for each object is more restricted compared to O2, where all info about object
placement is INR. Although Layout+O2 involves more constraints, the reduced search
space speeds up the backtracking process as fewer possibilities need to be explored.

Layout Constraints. These constraints are not represented in constraint graphs;
rather, they are utilized directly to refine the domain of the variable they constrain.
Though in the form (xi, Ri, Room), they function as unary constraints.

• InR (In Room): p = 0, all possible values from the domain of the one variable are
allowed and the constraint is always satisfied.

• NR, SR, WR, ER, NER, NWR, SER, SWR, CR: p = 8
9 , Each relation

pertains to a specific section of the room, dividing the room into nine parts.
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• TPP, NTPP: NTPP corresponds to the inner side of the room, with pNT P P =
(
√

d−2)2

d , TPP corresponds to the border of the grid space, with pT P P = 1−pNT P P =
(
√

d−1)×4
d

Inter-Objects Constraints. Involving two variables to represent the relationships
between objects, which can be illustrated in constraint graphs.

• N, S, W, E, NE, NW, SE, SWR, O: Directions between Objects. For N, S, W,
E, p = 1− d(

√
d−1)

2d2 , for NE, NW, SE, SWR, p = 1− (d−
√

d
2d )2. For O, p = 1− 1

d

• CL2, FR2: Objects are considered close (CL2) if they are within half of the max-
imum distances for one dimension (width or length). We approximate this using a
circle with radius r1 =

√
d−1
2 , so AreaCL2 = π(

√
d−1
2 )2, AreaF R2 = d − π(

√
d−1
2 )2

The p calculation for distance in terms of the grid dimension d is complex. The
number of cells within this area (pF R2) for the central object can be approximated
by: pF R2 ≈ AreaCL2

d , pCL2 ≈ 1− AreaCL2

d . For each central object, the actual count
of possible variable values is limited by the number of cells that fit into this area.

• CL3, MD3, FR3: more restrictive than the previous two-category distances. Ob-
jects are considered close (CL3) if they are within one-third of the maximum dis-
tances within the grid, and moderate distance (MD3) if within two-thirds of the
maximum distances within the grid. We approximate this using a circle with ra-
dius r1 =

√
2(

√
d−1)

3 , r2 = 2
√

2(
√

d−1)
3 . AreaCL3 = πr2

1, AreaMD3 = π(r2
2 − r2

1)
AreaF R3 = d− πr2

2. pF R3 ≈ 1− AreaF R3

d , pMD3 ≈ 1− AreaMD3

d pCL3 ≈ 1− AreaCL3

d .

Solver to Get Answer - Consistency Checking

We built a consistency-checking tool using the python-constraint package1, which
employs a backtracking algorithm to determine whether a plausible configuration of
object relationships can exist to meet all specified constraints. Backtracking is a system-
atic method of solving problems that incrementally builds candidates to the solutions
and abandons a candidate as soon as it determines that this candidate cannot possibly
be completed to a valid solution. In the context of our spatial reasoning problem, this
method can be demonstrated as follows:

1https://github.com/python-constraint/python-constraint
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Figure 5.15: Soving one spatial reasoning problem with search tree using backtracking.

One example of getting solution process with backtracking is shown in Figure 5.15.
When solving a reasoning problem, the solver begins by assigning potential position
candidates to each variable within the defined domain, based on the constraints related
to the objects’ positions relative to the room. Once the candidate positions for each ob-
ject are established, the constraints between pairs of objects are evaluated sequentially.
This process involves checking each pair of variables’ position candidates to ensure they
can coexist without violating any of the specified constraints.

To determine answers to YN questions, the final constraint analyzed is the two
queried objects and their proposed relationship as specified in the question. If a valid
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Figure 5.16: The percentage of single, multiple, and no solution occurrences (Rows 1,
2) and the average CPU time (seconds) for solution searches (Rows 3, 4).
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solution is identified that conforms to this relationship, the answer is ‘Yes’. Conversely,
if no valid solutions are found, the answer is ‘No’. For FR questions, the solver iterat-
ively evaluates each potential relationship. This process mirrors the evaluation method
used in YN questions, examining each candidate relationship to see if a valid solution
exists. All candidate relationships that result in a valid solution are then incorporated
into the answer list.

In Figure 5.16, we analyze the occurrence of single, multiple, and no solution pos-
sibilities under various constraint settings. For Rows 1 and 3, n varies while m = n−1;
for Rows 3 and 4, m varies with n constant at 5. Spatial relation settings include Lay-
out: The basic setting with directional object layout relations. TPP: Enhanced object
layout with topological relations TPP and NTPP. O2 : Pure inter-object directional
relations. O2+D2 : O2 expanded with two distance relations; O2+D3 : O2 expan-
ded with three distance relations; O2+D2+Layout and O2+D3+Layout: Combining
inter-objects relations with object layout relations.

The complexity of backtracking grows as the domain size increases, as demonstrated
by the higher average GPU runtime in the 12× 12 setting compared to the 9× 9 set-
ting, due to the greater number of potential candidate positions that must be evaluated.
With a smaller domain size of 9× 9, the Layout and O2 relation settings consistently
yield solutions; however, the likelihood of no solution is significantly higher compared
to the larger domain size of 12×12 when incorporating distance constraints. Addition-
ally, the search cost (CPU time) required to find solutions with a larger domain size is
considerably higher than with a smaller one. We examine the search costs associated
with finding solutions for FR and YN questions. FR questions generally involve mul-
tiple answers and require evaluating all nine direction relations to identify all potential
solutions that meet the constraints. In contrast, YN questions involve checking only
one relational candidate, resulting in lower search costs.

As n increases, CPU time (the search cost to find a solution) shows an upward trend
across all six relational configurations. Here, n and m are parameters for the random
generation of instances. According to previous research [165], the ratio of constraints
to variables is more important than the number of variables (n) itself. Empirically,
complexity is expected to rise with an increasing ratio, peak at a certain point, and
then decline. The O2 setting offers a clear example: in Row 3, with m = n − 1, the
ratio is n−1

n . Although this ratio increases as n grows, it remains below 1, and the
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search cost rises accordingly. In Row 4, with n fixed at 5, the ratio becomes m
5 . The

search cost peaks at m = 6 (ratio of 1.2), after which it declines.

5.5 LLMs Evaluation on RoomSpace

5.5.1 Model Settings

We access GPT-3 (Davinci) [43], GPT-3.5 (Turbo), and GPT-4 [25] via the Azure
OpenAI Service, using the API version “2023-09-15-preview” for all three models. To
yield deterministic results, we set the temperature to 0 in all experiments. The remain-
ing parameters were left at the standard configurations for these models.

For Llama-3.1-8B-Instruct1 and Llama-3.2-3B-Instruct2, we accessed these models
through the HuggingFace pipeline. Unlike other Llama 3 and Llama 2 models, Llama
3.1 and 3.2 allow the temperature to be set to 0. Thus, to maintain consistency with the
GPT models, we configured the temperature to 0. Additionally, the top_p parameter
[154] was kept at its default value of 1.0, allowing for the full range of token choices.

5.5.2 Evaluation of LLMs on RoomSpace

Prompting. We conduct experiments with two sets of prompts. One set directly
presents stories and questions to LLMs, while the other incorporates task descriptions
and details about relationship definitions, to guide LLMs’ responses. Experiment res-
ults in Figure 5.17 illustrate a slight improvement in the performance of gpt-35-turbo
with the Layout, O2+D2, and O2+D2+Layout settings. However, incorporating task
description prompts results in a decrease in accuracy within the TPP settings. There-
fore, although the added prompts about task description provide valuable insights into
the spatial reasoning problem, the minimal variation in performance suggests that
for subsequent experiments, we maintain a straightforward story and question format
prompt.

• Task: Analyze the spatial relationships between specified objects in a room, treating
each object as a point within a 12×12 grid.

1https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
2https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
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Figure 5.17: Performance of gpt-35-turbo on the RoomSpace-100 test sets with n = 5
and m = 4 using top-down view YN questions. The ‘No’ bar shows results ob-
tained without introductory prompts; the ‘With’ bar presents results with introductory
prompts included.

• Distance-2: Distances between objects in the room are determined using the room’s
width. A ‘short distance’ is defined as any distance up to half of the room’s width.
A ‘far distance’ refers to any distance that exceeds half of the room’s width.

• Distance-3: Distances between objects in the room are determined based on the
room’s diagonal length. A ‘short distance’ refers to a distance that is up to one-third
of the diagonal. A ‘moderate distance’ spans from one-third to two-thirds of the
diagonal. A ‘far distance’ is any distance that exceeds two-thirds of the diagonal.

• North-Facing View: “When answering, use terms ‘left’, ‘right’, ‘front’, ‘behind’,
or their combinations joined by a hyphen (‘-’).”

• Top-Down View: “When answering, use terms ‘west’, ‘east’, ‘north’, ‘south’, or
their combinations joined by a hyphen (‘-’).”

Variation with Parameters (n and m). In Table 5.6, the ‘Total’ column represents
the number of room scenes for each setting. For n = 3 and n = 4, the total is 100 in the
RoomSpace-100 dataset. However, for n = 5, it drops to 96 (the four scenes with only 4
floor and wall objects are illustrated in Figure 5.18), and for n = 6, it further decreases
to 92. This reduction is attributed to certain room scenes, particularly bathrooms,
having fewer wall and floor objects, making it difficult to meet the required count of 6
or 5 in some configurations.

There is a decline in accuracy as n increases from 3 to 6 with m = n−1, suggesting
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n m d Total Correct Accuracy (%)

3 2 144 100 50 50.0
4 3 144 100 22 22.0
5 4 144 96 12 12.5
5 5 144 96 21 21.88
5 6 144 96 19 19.79
5 7 144 96 43 44.79
5 8 144 96 51 53.12
5 9 144 96 61 63.54
6 5 144 92 4 4.35

Table 5.6: Performance of Llama-3-8B-Instruct on different settings of O2 questions.

Figure 5.18: Four room scenes in RoomSpace-100 containing only four floor and wall
objects.

that larger n values create more complex and challenging scenarios (see Figure 5.20,
left). This trend aligns with the observations in Figure 5.16 - the time taken by the
CPU to find solutions increases with higher n values.

For LLMs’ responses to different m values with a fixed n, refer to the right plot
in Figure 5.20. Generally, increasing m leads to higher accuracy. Larger m values
result in more densely interlinked spatial relationships, which, despite increasing text
length, reduce the number of hops needed and thus tend to improve model performance.
With m = n − 1, each example is an m-hop reasoning problem and the story follows
the structure: (o_1, o_2), (o_2, o_3), ..., (o_n-1, o_n). To derive the final
conclusion, all constraints in the story must be considered, making this configuration
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the most challenging scenario. However, for the same n, as m increases, the story
becomes longer, providing more relationships and reducing the required number of
hops to reach the answer, as shown in Figure 5.19. In these cases, the difficulty shifts
to identifying the relations pertinent to the answer while ensuring that all constraints
are satisfied.

Figure 5.19: Example story and question pairs of two configurations. Left: m = n− 1,
Right: m = C2

n − 1

Figure 5.20: Performance of LLMs using the top-down view O2 setting under different
parameter variations (n and m) on RoomSpace-100. Left: varying n with m = n − 1;
Right: varying m with a fixed n = 5.

Model Comparison. Figure 5.20 displays the comparative results across models,
relational settings, and parameters n and m, highlighting several key insights: GPT-4
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consistently outperforms Turbo and Davinci in almost all categories and perspectives.
Turbo demonstrates significantly lower accuracy compared to the other models, even
dropping to zero accuracy when n = 6 and m = 5.

For Llama models, Llama-3-8B-Instruct demonstrates performance comparable to
the Davinci model. Llama-3.2-3B-Instruct and Llama-3.1-8B-Instruct outperform Llama-
3-8B in various scenarios, suggesting advancements in model architecture or train-
ing strategies. Notably, Llama-3.1-8B-Instruct and Llama-3.2-3B-Instruct outperform
GPT-4 in higher-hop reasoning tasks, such as n = 5 and n = 6 with m = n − 1.
Llama-3.1 shows exceptional performance in scenarios with higher hops and smaller m

values. For instance, it surpasses GPT-4 for n = 5 when m = 4, 5, 6, but its perform-
ance becomes average for m = 7, similar to other models. When m increases to 8 or 9,
its accuracy is worse than other LLMs including the Turbo model.

n m d
Llama-3.1-8B-Instruct Llama-3.2-3B-Instruct
Wrong Wrong - DK Wrong Wrong - DK

5 4 144 65 0 75 0
5 5 144 52 3 71 0
5 6 144 61 3 63 2
5 7 144 53 5 51 2
5 8 144 56 9 47 1
5 9 144 42 6 38 2

Table 5.7: Comparison of ‘DK’ error occurrence between Llama-3.1-8B-Instruct and
Llama-3.2-3B-Instruct on RoomSpace-100 O2 test set.

Analysis suggests this is primarily due to ‘DK’ (Do Not Know) errors, as illustrated
in Figure 5.21. In these cases, the answer is marked as ‘DK’ because the response
reaches the maximum token limit without reaching a conclusion. As m increases and
more constraints are introduced into the narrative, both Llama-3.1-8B-Instruct and
Llama-3.2-8B-Instruct tend to produce ‘DK’ errors, where the model reiterates the
constraints without progressing through the reasoning process. This suggests a struggle
in efficiently extracting relevant information and identifying the correct path between
the queried objects in longer, more complex narratives. A detailed summary of the
frequency of these errors can be found in Table 5.7. Compared to Llama-3.1, Llama-
3.2 exhibits a significantly lower frequency of ‘DK’ errors, resulting in a more consistent
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Figure 5.21: Example of a ‘DK’ reasoning error with Llama-3.1-8B-Instruct with n = 5
and m = 9.

improvement in accuracy as m increases for n = 5.

We compare the errors made by different LLMs, aiming not only to pinpoint the
model’s current limitations but also to guide future enhancements. For the Llama-
3-8B model, the generation follows a CoT-like process with step-by-step reasoning,
as illustrated in Figure 5.22. Most errors stem from incorrect inferences, which can
occur at each small step of reasoning. The relationship (sofa, north-west, TV stand)
was incorrectly inferred statements 1 and 2, causing this flawed reasoning to cascade
through subsequent steps, resulting in further errors. The generation produced by
GPT models varies across different versions and is much simpler compared to that of
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Figure 5.22: Example of reasoning errors with Llama-3-8B-Instruct and GPT models
on O2 setting with n = 5 and m = 4.
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Llama-3-8B.

Viewing Perspective Influence. In Figure 5.23, we present a performance compar-
ison of Llama-3.2-3B-Instruct across two different viewing perspectives. Unlike Turbo’s
performance shown in Figure 5.24, Llama-3.2 demonstrates noticeably better results
with the top-down view under the O2 setting at m = 5, n = 4, where accuracy is
21.88% for the top-down view compared to only 13.54% for the north-facing view.

Figure 5.23: Performance of Llama-3.2-3B-Instruct on the RoomSpace-100 test sets
with varied n and m using top-down view and north-facing view on YN questions.

For Llama-3.2, the top-down view generally yields superior results across different n

and m values. The performance gap is small for n = 3, 4, m = n−1 and n = 5, m = 8, 9,
but becomes pronounced in other configurations, where the top-down perspective con-
sistently outperforms the north-facing view. This suggests that Llama-3.2 struggles
more with spatial descriptions from a north-facing perspective, highlighting the addi-
tional difficulty it encounters in comprehending this orientation.

For the Turbo model, as shown in Figure 5.24, the north-facing view descriptions
do not significantly impact the results when the narrative already includes descriptions
from that view, as in the O2 setting and its combinations with distance or layout,
where accuracy remains comparable to the top-down view. However, under the Layout
setting, which includes directional descriptions from the top-down view, introducing
north-facing view descriptions in the questions complicates comprehension for LLMs,
leading to a decline in accuracy.
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Figure 5.24: Performance of Llama-3.2-3B-Instruct gpt-35-turbo on the RoomSpace-100
test sets with n = 5 and m = 4 using top-down view and north-facing view on YN
questions.

In Figure 5.25, we present an example of an incorrect prediction by Llama-3.2-3B-
Instruct. Although the example is correctly answered using the top-down view, it results
in an error here. We analyze Llama-3.2’s output here for two reasons: (1) its step-by-
step reasoning process provides detailed generation, making it easier to pinpoint issues
in spatial reasoning, and (2) Llama-3.2 shows strong performance in the top-down view
compared to other LLMs.

Impact of Spatial Reasoning Settings. We present the performance across dif-
ferent spatial reasoning settings to illustrate the impact of each configuration on the
Llama-3.2-3B-Instruct and GPT-3.5-Turbo models.

Layout vs. O2 : In the Layout setting, for Turbo, the introduction of TPP does not
markedly affect accuracy. Even with n = 5, Turbo performs well, efficiently extracting
and analyzing information. However, when dealing with only the relationships between
objects in multi-object scenes, i.e., the O2 setting, the task becomes challenging for both
Turbo and Llama, highlighting the model’s limitations in multi-hop spatial reasoning.

Distance Settings (D2, D3 ): Interestingly, despite the inclusion of more complex
descriptions combining distance and directional relations, both Llama and Turbo mod-
els exhibit a slight performance improvement with the addition of distance constraints,
as evidenced by their higher accuracy on O2+D2 and O2+D3 compared to O2.

Combination of Layout, O2 and Distance: The combined settings typically yield
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Figure 5.25: Example of a north-facing view reasoning errors with Llama-3.2-3B-
Instruct with n = 5 and m = 4.
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performance that is on par with the best-performing individual setting, in this instance,
aligning with the results observed in the layout setting.
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Chapter 6

Discussion and Conclusion

6.1 Conclusions

This thesis provides an in-depth analysis of the spatial reasoning capabilities of LLMs
using existing benchmarks and datasets, explores various methods for enhancing LLMs’
spatial reasoning ability, and introduces a novel benchmark, RoomSpace.

Through a thorough evaluation of existing benchmarks such as bAbI, StepGame,
SpartQA, and SPARTUN, we identified several limitations. For example, bAbI suffers
from repeated questions, limited relation coverage, and only low-hop reasoning tasks.
StepGame has template errors and inconsistencies in its hop definition. SpartQA and
SPARTUN face issues in their description methods and labelling, which restricts their
ability to assess LLMs’ spatial reasoning performance accurately.

In the case of StepGame, we provide a refined version that resolves template errors
and explore methods to improve LLMs’ spatial reasoning abilities through a combina-
tion of logical reasoning and advanced prompt engineering. Specifically, we employed
CoT and ToT prompting strategies, which, when adapted to StepGame, have shown
significant performance improvements for advanced models like GPT-4, Llama-3, and
Claude-3.5 in multi-hop reasoning tasks. However, less powerful models such as Llama-
2 faced challenges, particularly in handling more complex tasks due to accumulating
errors in semantic parsing and coordinate mapping.

This study also introduces RoomSpace, a new benchmark specifically designed to
evaluate more complex spatial reasoning tasks that integrate topological, directional,
and distance-based relationships. RoomSpace better mirrors real-world applications by
incorporating various spatial representations and building consistency-checking reason-
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ing tasks across multiple hops. Additionally, the development of the logical reasoner to
generate gold labels ensures accurate reflection of multiple valid answers in tasks with
multiple solutions.

Overall, this research contributes to a deeper understanding of the strengths and
limitations of current LLMs in interpreting and processing spatial relationships, offering
a pathway to more advanced benchmarks for more accurate evaluations.

6.2 Limitations

Below are the key limitations identified in the CoT/ToT methods and the context of
the RoomSpace benchmark.

In Chapter 4, the CoT and ToT methods were designed specifically for point-based
objects and grid-based relations. While these methods have proven effective on Step-
Game, spatial reasoning is a broad and complex field field with many unexplored chal-
lenges. Adjustments are needed to adapt these techniques to more complex scenarios
and datasets, including those involving topological and distance-based relationships.

The RoomSpace benchmark primarily focuses on point-based relations and reason-
ing rules, limiting its ability to comprehensively evaluate LLMs’ understanding of and
reasoning about various spatial relations. For instance, the dataset does not fully ad-
dress the impact of objects with varying rotational attributes on topological relations.
Additionally, it overlooks the influence of object sizes, which could introduce greater
complexity to spatial descriptions and reasoning tasks. Incorporating size-based de-
scriptions (e.g., large, small) would create more challenging scenarios. Integrating
region-based stories into RoomSpace would broaden its scope, allowing comparisons
between stories constructed with diverse spatial calculi and better aligning RoomSpace
with real-world applications.

Another limitation of RoomSpace is that its stories are generated using predefined
grammar. Developing methods to generate stories that better reflect how humans
naturally express spatial reasoning problems is a key area for improvement. Identifying
which types of descriptions most closely align with human understanding remains an
open question.

In summary, while this work makes meaningful strides in spatial reasoning with
LLMs, future research must address these limitations to develop more robust, versatile,
and accurate models. RoomSpace provides a strong foundation, but further expansion
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is necessary to explore the full range of spatial reasoning challenges faced by intelligent
systems.

6.3 Future Directions

This thesis establishes a foundation for further advancements in evaluating and enhan-
cing the spatial reasoning capabilities of LLMs. Future work could focus on several key
areas, including developing more cohesive methods for integrating LLMs with logical
reasoners, extending CoT and ToT prompting strategies to handle a broader range
of spatial reasoning tasks, exploring the full potential of the RoomSpace benchmark
for comprehensive LLM evaluation, such as assessing the capabilities of modern mul-
timodal large language models on multimodal data that combines visual inputs and
text descriptions.

Currently, the integration of LLMs with logical reasoning components is conducted
in a segmented manner; future studies could investigate more cohesive methods to fully
harness the combined strengths of both approaches.

Regarding the CoT and ToT prompting strategies, this work has focused on their
effectiveness in addressing directional relations. Future efforts could extend these
strategies to handle region-based, topological, and distance relations and apply them
to other benchmarks, such as SpartQA and SpaRTUN, to broaden their applicability
and effectiveness. Additionally, our CoT and ToT experiments were conducted only
once for each test example. Given that LLMs are stochastic and do not always produce
deterministic answers [166], a potential approach to quantify uncertainty would involve
repeating experiments multiple times. Future efforts could incorporate repeated runs
to improve the robustness of the results. Beyond CoT and ToT, recent advancements
in prompting techniques, such as graphs of thoughts [167], have emerged. Continually
exploring and adapting these new approaches for spatial reasoning tasks holds great
potential for enhancing LLM performance in this domain.

The RoomSpace benchmark presents numerous research opportunities to enhance
both the benchmark itself and the broader understanding of LLM capabilities in spa-
tial reasoning. The current version includes examples of constructing spatial reas-
oning problems using point-based spatial relations, focusing exclusively on TPP and
NTPP for topological relations. Future research could aim to include additional spa-
tial calculi, such as line-based or region-based approaches, to enrich the relationship
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dynamics. Further extensions could explore 3D relationships and incorporate factors
like object size, shape, and rotation, which significantly impact topological relations
and add complexity to reasoning tasks. The benchmark inherently interacts with cer-
tain layout-related commonsense knowledge, which might influence model performance.
Specifically, typical furniture placement conventions, such as dressers generally posi-
tioned against walls, dining tables generally located centrally away from walls, and
chairs generally near dining tables, constitute implicit spatial priors acquired by lan-
guage models during pre-training. Future experiments could explicitly compare typical
versus atypical spatial layouts, checking whether models tend to perform better when
the scenarios align with these common spatial priors. Moreover, the current data-
set version utilizes static narratives. Expanding this to include dynamic navigation
scenarios, where an agent interacts within room settings, could greatly enhance the
benchmark’s depth. Adjusting the agent’s position to offer varying perspectives bey-
ond the current top-down and north-facing views would necessitate more sophisticated
spatial reasoning, thus broadening the benchmark’s applicative scope and complexity.
Furthermore, LLMs have been evaluated on YN questions, each with a single answer.
However, more complex FR problems, which may have multiple valid solutions, remain
a challenge. Traditional logical reasoners face substantial increases in processing time
for large spaces with multiple solutions, while LLMs generate answers more quickly but
often lack accuracy. Exploring LLMs’ capability to identify all possible solutions and
developing strategies to handle the complexities of multiple solutions represents a prom-
ising research direction. Lastly, although the visual modalities are not yet utilized in
the textual evaluation tasks, their inclusion is not peripheral but a forward-compatible
design choice, positioning the benchmark for future integration with:

• Future MLLM evaluations, where spatial reasoning tasks will increasingly rely on
both natural language and visual inputs - much like how humans interpret spatial
scenes. This includes tasks such as verifying whether a description matches a scene
(e.g., “Is the chair in front of the window as described?”) or answering spatial ques-
tions directly from an image (e.g., “Which object is to the left of the bed?”). These
image-based queries may diverge from purely text-based ones, as textual narratives
used in current LLM evaluations often include redundant details that are already
evident from the visual input.

• Embodied AI and robotics applications, where agents must perceive, navigate, and
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interact with visually grounded environments. In such applications, spatial reasoning
is predominantly derived from visual perception rather than symbolic or textual
input. For instance, a task like “Can I walk from the door to the bed without
crossing the table?” represents a form of visual path reasoning essential for domestic
robotics and real-world planning.

The journey to fully harness LLMs for professional-level spatial reasoning tasks is
far from over. Ongoing research is needed to integrate advancements in reasoning tech-
niques, prompt engineering, and multimodal capabilities, all of which will be essential
for lifting LLMs’ spatial reasoning abilities to a higher level.

From a broader perspective, spatial reasoning is not merely a benchmark challenge
- it is a fundamental component of human cognition and is deeply intertwined with
our ability to perceive, navigate, and interact with the world. Humans naturally and
effortlessly handle complex spatial challenges, such as recognizing 3D objects from dif-
ferent viewpoints, understanding spatial hierarchies, and adapting to dynamic spatial
environments. In contrast, current LLMs still struggle with even basic spatial trans-
formations like viewpoint shifts and often fail at tasks that humans find intuitive -
such as inferring the position of partially occluded objects, interpreting implicit spatial
cues from context, or combining spatial reasoning with temporal and causal under-
standing. Furthermore, integrating information across modalities - visual, linguistic,
and embodied - is still a significant hurdle. A truly spatially-enabled Artificial Gen-
eral Intelligence (AGI) [168], should not only parse textual spatial descriptions but
also reasoning about spatial uncertainty, inferring hidden regularities, and integrating
motion, prediction, and aesthetics into spatial understanding. These remain largely
open problems. Thus, advancing spatial reasoning in AI is not merely about improving
benchmark scores, but about closing a critical gap between current AI systems and the
flexible, embodied intelligence that defines AGI.
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