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Abstract

Faster, more efficient electronic devices are in constant demand in computing.

Increasing climate change pressure makes energy efficiency paramount in modern

technology. Current materials research includes investigation into spintronics to re-

duce energy usage and increase switching speed in memory technology. To increase

device density, antiferromagnetic materials, with zero magnetization meaning re-

sistance to external magnetic fields, are used. Antiferromagnetic spin orbit torque

devices are considered excellent candidates for spintronic memory bits. Antifer-

romagnetic materials are explored in this thesis using ab-initio density functional

theory to predict material properties, including structural, electronic and mag-

netic properties like magnetocrystalline anisotropy. Properties of several Mn-alloy

collinear L10 and noncollinear L12 and D019 antiferromagnets were calculated. The

magnetocrystalline anisotropy energy calculated for noncollinear antiferromagnets

is restricted to specific high symmetry planes. Calculations show Mn-Ir alloys’ im-

mense magnetocrystalline anisotropy with 4.187 meV/FU and 6.26 meV/FU for

L10 and L12 Mn-Ir, indicating these Mn-Ir alloys are materially and energetically

efficient antiferromagnets for use in spintronic devices.

We investigate straining effects on D019 materials, finding distinct structural and

magnetic property changes under ±6% (001) planar expansion strain. Weyl points

appear consistently, shifting within D019 strained materials, by 0.22 eV in Mn3Ge.

This consistency maintains the electron mobility, maintaining switching speeds.

We determine Weyl points are conserved in D019 antiferromagnets Mn3Ge and

Mn3Sn.

We determined interface effects on D019 noncollinear antiferromagnets, including

charge density changes, projected density of states, structural effects and electronic

properties, characterising surfaces and platinum interfaces. We calculate Mn3Ga

surface magnetic moments cant significantly, to 44.66◦ , and platinum interface

charge transfer of 1.795 e for Sn in Mn3Sn, indicating major charge polarization at

the interface. We see changes to manganese density of states by 0.4 eV at platinum

interfaces, likely due to heterostructure straining. We conclude significant charge

transfer helps stabilise interfaces magnetically, resulting in altered conductivity.
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Chapter 1

Introduction

1.1 Introduction to spintronics

Spintronics, a technology utilising both the intrinsic spin and charge of an elec-

tron for device functionality as opposed to only charge, is a relatively new avenue

of research [1]. Initial spintronics research began in the 1970s [2]. The major

discoveries to facilitate spintronic applications occurred in the 1980s; injection of

a spin-polarized current between ferromagnetic and normal metals [3] as well as

the discovery of giant magnetoresistance, the property of a material defining the

change of its electrical resistance within an external magnetic field [4, 5]. Modern

technologies based on spintronics include hard drive read heads, which use giant

and tunnelling magnetoresistance effects to read the data by measuring resistance

across the read head, and magnetoresistive random access memory (MRAM) de-

vices, which use ferromagnet based magnetic tunnel junctions [6].

The change from resistive charge-based devices to purely spin-based devices would

deliver a large increase in energy efficiency by reducing losses to electrical resis-

tance, resulting in the general improvement overall for a device using this type of

architecture in terms of energy usage [7]. This is beneficial to both the reduced

environmental contribution by information and communication technology indus-

tries to global climate change and to costs of processing and storage, the former

of which continues to increase [8].

Silicon integrated spintronic devices have many explicit benefits over equivalent

integrated silicon devices that make them favourable to research. One of the

most extreme advantages is the switching speed increase from silicon architec-

ture to spintronic architecture, increasing switching speed from 0.5 THz to well

over 1 THz speed [9, 10, 11]. This massive improvement in switching speed is

thanks to the rapid nature of spin fluctuations, which progresses extremely quickly

compared to charge dynamics. This would result in significant improvements in

computational switching speeds and thus faster processing capability.
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Alongside ferromagnetic materials in devices, there is a newer form of spintronic

technology that focuses on antiferromagnetic materials [10]. These materials,

whilst more complex to measure experimentally due to the antiferromagnet pro-

ducing no resultant magnetization, are more likely to be useful in dense networks of

devices due to their minimal stray fields and insensitivity to external fields [12, 13].

As such, investigation into antiferromagnetic spintronic devices, particularly the

antiferromagnetic materials, may provide increased advantages over ferromagnetic

devices in future computation architecture [14]. We acknowledge that a large array

of materials and methods are used in this research, and take particular notice of

the rare nature of components of several popular candidate alloys such as MnPt

and MnIr. Being able to find less materially costly alloys would be of great benefit,

both economically and environmentally, and is an ongoing aspect of research.

Alongside this, the low magnetic field sensitivity of antiferromagnetic spintronic

systems is highly advantageous. Due to the high field resistance of antiferromag-

netic systems, on local scales these devices will not interfere with adjacent devices,

making the potential density of spintronic devices very high compared to silicon

and ferromagnet-based spintronic devices [15, 7]. The resistance to external mag-

netic fields also brings significant benefits, drastically improving the retention of

data in memory devices and permitting the realisation of high-field applications.

1.2 MRAM devices

Many differing spintronic technologies are on the market currently. We focus here

on memory devices, as these are currently one of the largest potential commercial

applications for spintronic devices. We will specifically discuss the architecture of

the most common spintronic memory device in production, MRAM, in order to

highlight current capabilities. We will also highlight improvements the antiferro-

magnetic spintronic devices can provide.

MRAM is based on magnetoresistive phenomena, specifically tunnelling magne-

toresistance (TMR). TMR is a quantum mechanical effect in a system of two

ferromagnets separated by an insulator whereby, should the insulating layer be

thin enough, the electron may “tunnel” through the insulating layer between the

ferromagnets. The simplest form of MRAM device utilises this phenomena through

the difference in resistive state of a current across two ferromagnetic (FM) layers,

separated by a thin insulator. One layer has a magnetisation direction that will

not be changed in the device, the “pinned” layer, which is pinned using an antifer-

romagnetic layer [16]. The other will be changed during device use relative to the
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fixed layer (and will be called the “write” layer); the ability to reorient this direction

under current application makes this device writeable [17]. The energy difference

between specific directions of magnetic quantisation axis (a separate quantity to

the magnetic moment, whereby the quantisation axis defines the relative directions

of the magnetic moment) within a crystalline material is called the magnetocrys-

talline anisotropy energy, and leads to “preferred” orientations that are energetic

minima. After a pair of orthogonal fields, generated from the Biot-Savart law from

two orthogonal currents, are applied to orient the (ferro)magnetic field in the write

layer to rotate the magnetization axis, the electrical resistance can be measured

through both to determine the state (via TMR) [17]. The change in the relative

magnetization direction delivers a resistance difference between the differing mag-

netic states of the material due to the differing magnetic interaction with the spin

polarization between the materials. This difference in resistance is based on the

energy barrier to electrons tunneling through the material and entering differing

polarization states at the Fermi energy, reducing the tunneling probability in states

of dissimilar polarization and forming the magnetoresistance. The resistive state in

most MRAMs is normally a difference in magnetization orientation of 180◦. Usu-

ally, a low resistance state corresponds to parallel magnetisation as the tunneling

probability is highest in this system. To understand the reasoning for this, we may

write the difference in the resistive state between these parallel and anti-parallel

states as a ratio,

TMR =
RAP − RP

RP
, (1.1)

where RAP is the antiparallel state resistance and RP is the parallel state resistance.

By defining the spin-polarization of the tunnelling electrons to be the fractional

difference in the spin dependent density of states (D) at the Fermi energy, EF ,

Pn =
D↑(EF )− D↓(EF )

D↑(EF ) + D↓(EF )
, (1.2)

where n is the index for the region of interest, the spin-up configuration in-

dicates electrons with alignment parallel to the external field and down repre-

sents anti-parallel alignments. We may use Equation 1.1 and the relations RP =

D↑1(EF )D↑2(EF )+D↓1(EF )D↓2(EF ) and RAP = D↑1(EF )D↓2(EF )+D↓1(EF )D↑2(EF )

to produce the following relation,

TMR =
2P1P2

1− P1P2
, (1.3)
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where we see the TMR becomes infinite if the materials are fully polarized into

parallel and anti-parallel alignments, and zero for identical alignments. The un-

fortunate consequence of using current-generated magnetic fields to reorient the

ferromagnetic axis in the materials is that the fields may affect neighbouring de-

vices that are in close enough proximity to be influenced by said magnetic field, a

significant consequence in dense architecture, resulting in the need for low com-

ponent density due to these stray field interactions [7]. For all practical MRAMs,

spin transfer torque (STT) is used to rotate the ferromagnetic axis of magneti-

zation via polarised electron currents [18, 19]. STT is the process whereby the

magnetic orientation of a material is modified by an injected spin-polarised cur-

rent, whereby the mismatch in the magnetic orientation and the spin polarisation

induces a torque on the magnetic moments within the write layer. This reduces

the field leak problem, which allows for denser arrays due to the lower magnetic

field influence, and lower currents are used in device operation due to the lower

energy cost of rotating the magnetic moments. The detriment to the STT-MRAM

is a reduced TMR ratio compared to non-STT-MRAMs, due to the bias voltage

needed to achieve high switching speeds [7].

Other devices operate using spin-orbit torque (SOT) operations, another spin-

torque phenomenon. Whilst STT-MRAM uses the same current path for read and

write lines, the SOT-MRAM uses a separate write line under the pinned layer to

alter the quantisation axis direction using the torque from a polarised current in

the write layer, using the spin-orbit torque to switch the magnetic moments; the

spin density originates from the spin-orbit coupling, and magnetic forces between

the spin-orbit coupling from the spin current in the write line and the magnetic

moments transfers angular momentum to the moments, resulting in their rotation

[20]. For parallel and anti-parallel systems, this corresponds to the direction of

current in the write line. This method usually results in faster switching and lower

power consumption, as well as having the inherent benefit of separating the read

and write lines [19].

A variant of STT/SOT-MRAM that shows a lot of promise is a version that

uses antiferromagnetic (AFM) read and write layers as opposed to FM layers.

AFM-based memory devices are comparatively similar to the STT/SOT-MRAM

systems, in that they also use STT or SOT to alter their AFM domain orientation.

However, we may note that the simplest AFM device is rather different to a

simple STT/SOT-MRAM device in its construction. Instead of two FM layers,

two AFM layers are used, separated by a nonmagnetic layer [21]. In this case,

the quantisation axis of the AFM configuration in the write layer is rotated using
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a polarised current, and the resistance state is measured to determine the logic

state of the device (Figure 1.1). This means the AFM-MRAMs have a very small

footprint in comparison to the FM-MRAM device clusters, and a very compact

and dense configuration of memory devices can be produced.

Figure. 1.1: A Simple STT-AFM magnetic memory. The write spin current can

reorient the magnetic configuration in accordance to its polarization, which alters

the resistance state of the device.

AFM materials do however come with the complexity that measurement of mag-

netic properties, such as the exact magnetic ordering, within the material is ex-

tremely difficult due to the nature of the magnetic structure. This makes mea-

surement and control of these properties more difficult in practice, and so can be

difficult to directly alter in some devices. Alongside this, developing AFM ma-

terials and devices can be significantly more difficult due to the AFM nature of

the materials making changes and measurement of certain properties extremely

difficult. For the magnetoresistance, the AFM devices must match high-resistance

configurations with low-resistance configurations, a situation that can be more

complex than for FM devices as configurations with magnetic moments at 180◦

from each other are often degenerate in energy. Orientation of these magnetic

moment configurations can be difficult to determine experimentally. The TMR

ratio is lower in SOT-AFM devices than for MRAM devices, with devices having

a TMR ratio up to 110% [21].

1.3 Mn-based AFM materials

From previous studies, we note that a specific group of materials, namely Mn-

based AFM materials, have shown particular promise in spintronic applications,
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such as the anomalous (and topological) Hall effects, anomalous Nernst effect,

spin-Hall effects and terahertz electrical responses [22]. This includes the work by

Shi et al [21], whereby Mn3Pt was used to facilitate an all-AFM memory device,

and Yan et al’s study on strained MnPt devices, which reached a TMR ratio of

11.2% [23].

We note that there are two major classifications for the Mn-based AFM alloys we

will be discussing. The first are collinear AFM materials, where the quantisation

axis, and therefore direction, of the magnetic moments can be defined as parallel to

all magnetic moments in the system. The second classification is the noncollinear

AFM materials. These materials cannot be defined by making the magnetic quan-

tisation axis (anti-)parallel to the direction of all magnetic moments; either some

moments, or all moments, exist at some differing angle to any selection of quan-

tisation axis of the material. The configurations of magnetic moments maintain

zero magnetic moment overall. The collinear materials have a simpler magnetic

ordering than the noncollinear materials, though the noncollinear materials are

common in nature and can generate unconventional behaviour magnetically [24].

Structurally, the collinear and noncollinear materials can be broken down into three

classifications based on Strukturbericht notation; L10, L12, and D019 [25, 26]. The

L10 materials are tetragonal, the L12 materials are cubic and the D019 materials

are hexagonal (Figure 1.2). The variation of these material structures will affect

the magnetic orientations and thus magnetic configurations of these materials.

The different AFM configurations, during use in the write layer of a memory bit,

may have varying relative orientations of the magnetic moments that are symmet-

rically equivalent, producing a difference in energetic variation for tunneling and

magnetic anisotropy effects [21]. This difference in energy is a huge benefit to

potential device applications in terms of controlling the magnetoresistance of a

device. Consequentially, it is then possible to screen for materials with optimal

magnetic anisotropy energy barriers between resistance states by finding the mag-

netic anisotropy energies for specific magnetic configurations. Consequentially, the

materials can then be tuned to access specific resistance states based on material

selection and magnetic moment configuration, augmenting device performance.

1.4 Computational modelling

There are many competing methods and tools that can be used for simulating

materials. We first note that the modelling of electronic systems is a complex

task. The inclusion of multiple electron states and multiple atoms in large num-
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Figure. 1.2: The three major groups of materials, based on Strukturbericht nota-

tion. a) L10, b) L12, and c) D019, all shown in the (001) plane
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bers means the capability to directly compute a property of a system to an exact

level is limited, and approximations must be made. Alongside this, the need for

the inclusion of spin properties adds further complexity. Methods that take reason-

able approximations to solve the systems they calculate can be deployed, including

simplified dipole equations based on nearest-neighbour approximations. There are

many methods used to simulate a material, including atomistic methods, whereby

the system is modelled on a discrete (atom-level) scale, commonly used for more

numerous systems of magnetic ions; micromagnetic methods, where the length-

scale of simulation is on the order of micrometres, and is used for simulations

requiring larger-scale simulation; and all-electron methods, where electrons are

considered explicitly without potential approximations, used for more precise cal-

culations and radiation interaction simulations. The tool that is most commonly

used for these applications, however, is ab initio density functional theory (DFT).

The benefit of ab initio DFT is the predictive nature of the ab initio methodology,

allowing us to predict the properties of materials and therefore allow for screening of

materials to enable more targeted work in future by eliminating candidate materials

that need to be tested [27]. This not only saves time but also saves further

resources by eliminating undesirable candidates, as well as meaning experimental

results may be estimated from the outset, determining necessary measurements

and the region of experimental observation needed for certain characteristics. An

example of this is the work by Park et al [28], where multiple members of the

manganese binary alloys have their antiferromagnetic properties predicted using

ab initio methods.

Theoretical approaches also offer the ability to model accurate representations of

systems with a level of flexibility that is difficult to achieve in experiment. Atomistic

simulations in particular allow for more specific initialisation than experiment may

easily allow for. This includes identifying properties of specific atoms in a system

and varying thickness of substrates. As such, specific applications can be explored

that may supplement experimental work and help to provide additional support

for experimental results, like that in Dutta et al’s study of Ba2CoGe2O7 [27],

where the magnetic moment of Ba2CoGe2O7 Co2+ ion was calculated alongside

the band gap in the antiferromagnetic state, as well as the work by Niazi et al

[29], where MnNi was investigated as to the layer dependence of the magnetic

moment of the Mn species. This allows for rapid characterisation of materials in

timeframes that wouldn’t be plausible experimentally. Calculation of properties

that are difficult to probe, such as the magnetic anisotropy energy, may be carried

out [30]. Fewer precious metals therefore need to be used up during research,
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lessening environmental impact.

As previously mentioned, DFT modelling is an ab-initio approach. There are many

DFT programs like the Vienna ab-initio simulation program (VASP) [31, 32, 33,

34], a plane wave basis set DFT solver that uses the projector augmented wave

method, or the Cambridge serial total energy package (CASTEP) [35], a density

functional theory solver using the plane-wave pseudopotential method that can

use norm-conserving and Vanderbilt ultrasoft pseudopotentials also. For VASP,

the major benefit is the additional data processing options it has such as projected

density of states (PDOS) evaluation (CASTEP requires a secondary program,

OPTADOS, for this), whereas CASTEP would be better for calculations that

may also investigate perturbation effects like phonon exploration as per the work

by Ngobe et al [36]. CP2K may also be used, which is able to perform DFT

calculations (based on the Gaussian and plane wave approaches and atomic orbital

basis sets) with local density approximation (LDA) and GGA, as well as Moller-

Plesset and random phase approximation. This makes CP2K better suited to

quantum chemistry applications which require more resources to do this type of

calculation [37]. These software packages are well-established and have support for

both serial and parallel calculation. VASP is often preferred due to this program

having the best balance of good parallelisation and a wide array of post-DFT

options.

DFT is used to calculate a wide variety of properties in this work, however some

properties we are interested in are not calculated via DFT applications due to their

small contribution or due to an approximation. For the magnetic dipole-dipole

interaction contribution to the magnetic anisotropy energy, described as the in-

teraction of neighbouring dipoles with each other and therefore the change in

energy induced by the rotation of these dipoles, we use simplistic micromagnetic

approaches instead to calculate this property. Vampire is an example of a calcu-

lation package that may use a micromagnetic approach [38], using the Stochastic

Landau-Lifshitz-Gilbert equation and (constrained) Monte-Carlo metropolis algo-

rithms to solve for properties of systems [39] that is able to calculate the magnetic

dipole-dipole interaction contribution. Similarly, Just Another Magnetic Simula-

tor (JAMS) [40], a simple magnetic system calculator, determines the magnetic

dipole-dipole energy by calculating the dipole interaction as a sum over dipoles in-

side a sphere with a cutoff radius, which may be used to find the magnetic dipole

anisotropy contribution to the magnetic anisotropy. In the theoretical work by

Jenkins et al [41], dipole-dipole interaction is used to determine the stray fields in

a simulated CoFeB ferromagnetic layer. Micromagnetic dipole-dipole calculations

9



CHAPTER 1. INTRODUCTION

will not make the same approximations as atomistic simulations due to their exclu-

sive use of magnetic moments and position and thus are used to resolve magnetic

dipole-dipole contributions to the magnetic anisotropy energy. As we need only

the dipole-dipole contribution and no additional micromagnetic information, we

may elect to use JAMS as our main tool for this format of calculation.

1.5 Aims and objectives

We aim to investigate whether simulation methods can be used for directly com-

paring AFM materials to each other, in a way that is predictive and comparable to

experiment. On top of this, for desirable materials, understanding stress and strain

typically applied to heterostructures of these materials and what their effect is on

the electronic properties is a crucial predictive aspect for experimental comparison

that we will undertake for D019 materials. We aim to determine the relationship

between stress and electronic properties (such as band structure) and structural

properties. Also, to understand the boundaries of these materials, we aim to in-

vestigate the material properties at a surface and interface with a nonmagnetic

metal, in order to effectively predict its behaviour. The specific objectives of the

work presented in this thesis are:

1. To employ theoretical methods to calculate properties of bulk AFM L10, L12,

and D019 materials, specifically the structural properties, magnetic properties and

select electronic properties like the band structure and charge distribution for cer-

tain materials. The main theoretical methods are ab initio approaches to determine

the structural and magnetic properties including magnetocrystalline anisotropy en-

ergy, with supplementary use of specific solvers for this avenue of research to

calculate the magnetic dipole-dipole contribution to the magnetic anisotropy.

2. To expand on the calculation of properties and develop a comparable and

consistent approach based on theoretical methods to characterise the L10, L12,

and D019 Mn-alloy materials. By using a consistent approach, the comparability

of the properties of these materials suffers no difference in systematic errors and

can thus be compared directly and can be used to compare configurations of

differing magnetic ordering. In order to have a reasonable size of sample AFM

materials, we limit this investigation to a subset of Mn-alloys. We will characterise

the L10, L12, and D019 materials, including determining the energetic changes

related to magnetic anisotropy and investigate the relationships between certain

practical effects and the properties of these materials.

3. Alongside the characterisation of the material in ground state, we will simulate
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D019 materials under strain. The D019 materials are assessed for the changes in

properties whilst under compressive and extensive strain up to ±6%, with the band

structure being assessed across the strains for changes in the electronic properties.

We will determine the change in Weyl points on the band structure to track the

changes.

4. We will also assess the properties of materials at their surfaces and interfaces to

determine the interface properties to be expected from thin films or heterostruc-

ture couplings of these materials, which will be necessary knowledge for potential

use in a device. To fully understand the interaction between two materials as

heterostructures, we aim to characterise a heterostructure of each of the D019

materials and a non-magnetic metal, platinum. By doing this, we can examine

the predicted properties of such a union, including Bader charge analysis of charge

distribution and the partial density of states. This will elucidate on the interface

interaction within SOT memory devices and valves.

1.6 Outline of thesis structure

This thesis has the following structure. In Chapter 2, the theoretical background

and methods for the work collated within this thesis is discussed; the underlying

principles used to calculate the properties of manganese alloys are detailed. In

Chapter 3, results for the L10 material investigation are presented, giving a full

determination of the various structural and magnetic properties of this set of

materials and noting their similarities and dissimilarities. We use these materials

to act as comparison for our method to experiment and theory. After the L10

materials we discuss the L12 and D019 materials in Chapter 4, results for D019 and

L12 noncollinear materials are also presented and discussed. We also add into this

section the various discussions on band structure and strain, relevant properties for

potential device application. We note that the noncollinear materials operate with

similar structural effects under strain but differ greatly electronically. Chapter 5

includes the discussion of the surfaces and heterostructures of the D019 materials,

discussing optimal surface layers and the effect of substrates on these materials.

Finally, the conclusions are presented in Chapter 6.
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Chapter 2

Theory

2.1 Introduction

The calculation of properties of materials is a useful tool in a wide array of scientific

pursuits, particularly in systems or conditions that would be expensive or imprac-

tical to create, and for properties that are challenging to probe experimentally.

Due to their zero net magnetisation, the magnetic properties of antiferromagnetic

materials studied in this thesis are challenging to determine experimentally, and

so predictive material modelling can provide an expedient method for evaluating

and comparing multiple materials that are candidates for further research due to

their potential magnetic properties [42, 43, 44, 45]. For antiferromagnetic ma-

terials, which have an inherently difficult magnetic structure to assess, materials

simulation provides a far easier way of evaluating said structure by evaluating

atomic-level magnetic properties directly. There are several modelling approaches

for modelling magnetic materials, including ab-initio (a first-principles approach

without any prior parameterization) [28], semi-empirical (using established data,

usually in a database, to parameterize the calculation like micromagnetic simula-

tion [46]) [43] and empirical methods (calculations that are fully parameterized

by existing data) [47]. In this thesis the majority of results are obtained using

ab-initio modelling. We note various types of approximations can be used for

ab-initio calculations, including GW approximation, density functional perturba-

tion theorem (DFPT), and time-dependent density functional theory (DFT). The

work in this thesis focuses on the application of DFT to model the properties of

antiferromagnetic (AFM) materials.

There are a wide array of methods for modelling magnetic materials. In particular,

examples include micromagnetic approaches, atomistic approaches and quantum

mechanical approaches. Micromagnetic approaches are a more simple method

of magnetic simulation, with the purpose of solving for the spatial distribution

of magnetization distribution within a system. These approaches are normally
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used to determine the magnetic properties of systems on length scales where

atomic structure interaction is averaged out, i.e. on the order of cubic nanometres,

averaging over the magnetic properties within. This allows for the simulation of

magnetic structures and domains in a high-level manner obeying the continuum

approximation. Examples of micromagnetic simulation tools include the object-

oriented micromagnetic framework project (OOMMF) [48].

In a similar way, atomistic simulation maintains the method of averaging out the

contribution from atomic structure interaction. However, the magnetic proper-

ties are instead calculated though using a model that considers atomic magnetic

moment rather than averaging over some length scale, resulting in a simulation

method that is able to model structures like ferrimagnetic and antiferromagnetic

materials. However, these simulations are normally more costly in terms of re-

sources and take more time to run. Examples of tools that use this type of

simulation include Vampire [38].

Quantum mechanical approaches to modelling magnetic materials aim to solve

(by approximation) the many-body Schrödinger equation in order to determine

the properties of a system, both structural and electronic. The inclusion of cal-

culating the structural properties provides a more in-depth theoretical approach.

Whilst utilising several approximations, the results are still very accurate and the

quantum mechanical method has become very popular for use in computational

chemistry, though it should be cautioned this approach limits simulation size to

hundreds of atoms due to CPU requirements [49]. Examples of tools that use

quantum mechanical approaches include DFT based programs such as Vienna ab-

initio simulation program (VASP) [31, 32, 33, 34] and the Cambridge serial total

energy package (CASTEP) [35].

The primary aim of this work is to predict the properties of antiferromagnetic

materials. Predicting the magnetic properties theoretically using ab initio methods

can be especially useful for screening candidate materials for purposes such as

spintronic memory devices and spin valves [50, 51].

This theory chapter starts with a discussion of some basic concepts important for

ab initio materials modelling, for example the Schrödinger equation and crystal

structure, in section 2.2. We then proceed onto an introduction to DFT, includ-

ing the work by Hohenberg, Kohn and Sham, as well as exchange-correlation (XC)

functionals and generalised gradient approximations, and Hubbard U theory in sec-

tion 2.3. Discussion on the use of DFT in our calculations, as well as discussing

additional important theory that must be understood in order to use DFT programs

such as k-point sampling, planar augmented wave methodology, pseudopotentials,
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use of spin-orbit and noncollinear magnetic moments, and Hubbard U implemen-

tation is undertaken in section 2.4. Finally, we discuss magnetism and the nature

of magnetic materials to provide a basis for understanding of the simulation work

presented in this thesis in section 2.5, summarizing the chapter in section 2.6.

2.2 Schrödinger equation

The understanding of crystal structure and the properties thereof forms the basis

of the work performed in this thesis. In this section, we present an overview of

the key approaches and approximations employed to obtain the results presented

in this thesis.

2.2.1 Schrödinger equation for many particle systems

The Schrödinger equation forms the basis for effective calculation of the properties

of a quantum system [52]. It represents a Hamiltonian that can describe the

dynamics of the system. In many particle systems, there can be considerable

difficulty solving these equations exactly, often leading to very resource- and time-

intensive calculations or outright inability to calculate the solution. This is due

to the interacting nature of multiple particles; where single particles rely only on

their position and momentum, the many-particle system requires the interaction

of particles within the system to be taken into account, including electromagnetic

interactions and spin effects.

The time-independent Schrödinger equation for the electronic and ionic compo-

nents of a system is simply expressed as,

Ĥψ(r1, ..., ri, ...rN, R1, ..., Rj..., RM)

= [T̂e + T̂n + V̂ext + Ûee + Ûnn + Ûne ]ψ(r1, ..., ri, ...rN, R1, ..., Rj..., RM)

= Eψ(r1, ..., ri, ...rN, R1, ..., Rj..., RM),

(2.1)

where T̂e is the electron kinetic energy operator, T̂n is the ionic kinetic energy

operator, Ûee is the electron-electron interaction potential operator, Ûnn is the

ion-ion interaction potential operator, Ûne is the ion-electron interaction potential

operator, V̂ext is the external potential operator, Rn are the atomic coordinates of

M ions and ri are the electron coordinates of N electrons [53]. This equation is

antisymmetric with respect to both the spin and spatial electron coordinates and
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adheres to the Pauli exclusion principle.

2.2.2 Born-Oppenheimer approximation and the Schrödinger
equation

The Born-Oppenheimer approximation is where we begin to deal with specific

atomistic/electronic approximations. Consider here a system of atoms that are

interacting [54]. The mass of the nucleus of an ion is far larger than that of the

electron. This allows us to decouple the dynamics of electrons and ions. The

Born-Oppenheimer approximation sets the wavefunction as a product of ionic and

electronic wavefunctions, ψ = ϕeϕN [55]. Due to the short timescale producing a

”clamped-nuclei” approach, the potential term related to the nucleus interaction,

Unn , may be neglected as in this case R is simply a parameter, meaning Unn

becomes a constant that simply shifts the eigenvalues by some constant amount.

Re-applying to the respective particles, we find the time-independent Schrödinger

equations for the electron and the nucleus (such as Equation 2.1) may be separated

into electronic and nucleic contributions. These equations then become

Ĥe(r1, ..., ri, ...rN, R1, ..., Rj..., RM)ψe(ri ;RN)

= Ee(r1, ..., ri, ...rN, R1, ..., Rj..., RM)ψe(r1, ..., ri, ...rN, R1, ..., Rj..., RM),

(2.2)

(T̂n + Ee(R1, ..., Rj..., RM))ψn(R1, ..., Rj..., RM) = Eψn(R1, ..., Rj..., RM),

(2.3)

where Ĥe = T̂e + Ûee + V̂ext [56].

DFT aims to solve Equation 2.2 for many-electron systems. It is very hard to solve

this equation as the inter-electronic potential prevents the separation of the equa-

tion to single-particle equations, making the solution far more challenging. Whilst

it is possible to solve this Hamiltonian explicitly for trivial cases, it is unfeasible for

large systems due to computational resources needed.

2.3 The theoretical basis of density functional theory

2.3.1 Hartree-Fock method

The Hartree-Fock method is one of the foundational steps to the approach in

DFT [57]. This method allows us to represent, via Slater determinant, the wave
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function of an N-particle system as N spin-orbitals. We begin with the original

wavefunction, ψ(r1, r2, ...rn), where rn is the nth electron coordinate; we note we

need to produce a wavefunction that is represented by the separate spin-orbital

wavefunctions. To obey antisymmetry requirements, we define the wavefunction

as a Slater determinant,

ψ(r1, r2, ...rn) =
1√
N!


ϕ1(r1) ϕ2(r1) ... ϕn(r1)

ϕ1(r2) ϕ2(r2) ... ϕn(r2)
...

...
. . .

...

ϕ1(rn) ϕ2(rn) ... ϕn(rn)

 , (2.4)

maintaining antisymmetry via Pauli exclusion [56]. We may then apply the varia-

tional principle in order to obtain the Fock equation,

ϵiϕi = h1(ri)ϕi(ri) + J(ri)ϕi(ri)− K (ri)ϕi(ri) (2.5)

where the one-electron Hamiltonian, h1(ri) =
1
2
∇2 + Vext(ri), J is the Coulomb

term and K is the energetic exchange term, the term that determines the exchange

energy arising from the exchange statistics of the electrons occupying the same

orbit, both defined as

J(ri) =
N∑
j=1

∫
drj

ρ(rj)

|ri − rj |
, (2.6)

where ρ(rj) is the electron density and

K (ri)ϕi(ri) =
N∑
j=1

ϕj(ri)

∫
drj

ϕ∗
j (rj)ϕi(rj)

|ri − rj |
. (2.7)

Exchange itself can be defined as the constraint on the states of two indistin-

guishable particles, in particular the effects of the exchange of two bodies in a

system.

It is then a matter of reformulating this into a typical single-electron wavefunction.

Expressing a new operator, the Fock operator, as a sum of one-electron operators

(represented with a (1)),

F̂ (1)ϕj = Ĥcore(1)ϕj +

N/2∑
j=1

[2Ĵj(1)− K̂j(1)]ϕj . (2.8)

The Hartree-Fock wave functions (for one electron) may be determined by setting

the Fock operator as an eigenfunction equation,
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F̂ (1)ϕi = ϵiϕi(1), (2.9)

where all ϕi(1) are one-electron wave functions.

We note that the exclusion of electron correlation in this method has been ac-

counted for in post-Hartree-Fock methods, as Hartree-Fock does not account for

electron correlation beyond Pauli exchange [58].

2.3.2 Hohenberg-Kohn

The Hohenberg-Kohn theory provides a connection between ground-state electron

density and external potential of a many-body system, which will allow the many-

body problem to be vastly simplified by expressing the ground state energy in terms

of a functional of the ground state density [59]. Consider the Hamiltonian for two

many electron and nuclei systems with differing external potentials in terms of

component operators,

Ĥ = T̂e + V̂ee + V̂ext ,

Ĥ′ = T̂e + V̂ee + V̂ ′
ext .

(2.10)

It can be proved that there is a singular electron density that corresponds with the

ground state energy for a given Vext via reductio ad absurdum, or proof by self-

contradiction (the first Hohenberg-Kohn theorem). In a system where the energy

E ̸= E ′,

E < ⟨ψ′| Ĥ |ψ′⟩ = ⟨ψ′| Ĥ′ |ψ′⟩+ ⟨ψ′| Ĥ − Ĥ′ |ψ′⟩ (2.11)

E < ⟨ψ′| Ĥ |ψ′⟩ = E ′ + ⟨ψ′| T̂ + V̂ee + V̂ext − T̂ − V̂ee − V̂ ′
ext |ψ′⟩ (2.12)

E < E ′ +

∫
ρ(r)(V̂ext − V̂ ′

ext)dr (2.13)

E ′ < E −
∫
ρ(r)(V̂ext − V̂ ′

ext)dr. (2.14)

We then combine Equations 2.13 and 2.14 via addition,

E + E ′ < E + E ′. (2.15)
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The result is a contradiction, so there are no two Vext that have the same ground

state. Vext is uniquely defined by ground state electron density. We may then

assign a unique electron density to the ground state, ρ0(r), making E a functional

of ρ0 (whereby a functional is a specific type of function that maps a space into

the field of real or complex numbers),

E [ρ0] = T [ρ0] + Eee [ρ0] + Ene [ρ0]. (2.16)

Here, Ene is the energy associated with the new external potential, where the new

external potential is the nuclei attraction-defined potential as the potential is fully

defined by this in this case. T (ρ0)+Eee(ρ0) is universally valid (not dependent on

the system under study due to the dependent components being isolated to the

external potential) and will be combined into one term, FHK (ρ0). We may then

express this ENe energy term as a function of the electron density,

Ene [ρ0] =

∫
ρ0(r)V̂ne(r)dr. (2.17)

We may then note the overall equation for the energy,

E [ρ0] = FHK [ρ0] +

∫
ρ0(r)V̂ne(r)dr, (2.18)

defines the ground state energy for some external potential, which we may write

as Vext . As the Hamiltonian operator is uniquely determined by the ground state

density, all properties of all states are determined by the ground state density. We

may then use this conclusion, as well as noting FHK (ρ) delivers the lowest energy

if and only if ρ0 is used as the input. By variational principle, this results in the

second Hohenberg-Kohn equation,

E [ρ′] = FHK [ρ
′] + EVext [ρ

′] ≥ E0 = E [ρ0], (2.19)

whereby the functional that determines the ground state energy gives the lowest

energy if and only if ρ0 is used [60].

2.3.3 Kohn-Sham

The Kohn-Sham equation expands on the work by Hohenberg and Kohn by demon-

strating the many-body hamiltonian can be simplified using “non-interacting elec-

trons” to take the many-body system and make it into many one-body systems

parameterized by an augmented potential alone [61]. The derivation begins by

re-establishing the energy terms; we split the Eee(ρ) and ENe(ρ) terms into contri-
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butions from the exchange correlation energy (defined as the energy of an electron

interacting with the exchange-correlation hole charge density at some coordinate

r′) and the Hartree energy (the classical electrostatic energy),

E [ρ] = T [ρ] + EH [ρ] + Exc [ρ] +

∫
ρ(r)V̂ext(r)dr, (2.20)

where T [ρ] is the kinetic energy component of the total energy functional, Exc [ρ]

is the exchange correlation energy, and EH [ρ] is the Hartree energy. Next, it is

useful to combine potentials as a single effective potential, Veff ,

Veff (r) = Vext(r) + e2
∫

ρ(r′)

|r − r′|
dr′ +

δExc [ρ]

δρ(r)
, (2.21)

where δExc [ρ]
δρ(r)

is the XC potential.

Using a Lagrange multiplier, µ, to constrain the number of electrons to N , we may

write the total energy as a functional of the electron density,

δ

δρ(r)
[E [ρ(r)]− µ

∫
ρ(r)dr] = 0, (2.22)

and so we can write µ as

µ =
δT [ρ]

δρ(r)
+ Veff (r) =

δE [ρ(r)]

δρ(r)
, (2.23)

which is the equation for a group of non-interacting particles moving in an equiv-

alent potential to Veff [62]. We can then solve the single-electron Schrödinger

equations,

ϵiϕi(r) = (Ti + Veff )ϕi(r). (2.24)

Note that this system is restricted, in that there are an equal number of up- and

down-spins.

This should be solved self-consistently with

ρ(r) =
N∑
i=1

|ϕi(r)|2. (2.25)

The result is an energy (Equation 2.24) constructed from single-electron equations

dependent on the electron density; so, we can solve for the energy of the system

as a sum orbital energies,

19



CHAPTER 2. THEORY

E [ρ(r)] =
N∑
i

ϵi −
e2

2

∫
ρ(r)ρ′(r)

|r − r′|
drdr′ + Exc [ρ(r)]−

∫
Vxc [ρ(r)]ρ(r)dr. (2.26)

Unrestricted Kohn-Sham can be solved by splitting the electron density into spin-up

and spin-down components, and solving the Kohn-Sham equations for the separate

contributions of the kinetic and XC interactions from the spin-up and spin-down

components of the electron density. As the two contributions and their respective

Hamiltonians are coupled via the total density, they must be solved simultaneously

via the self-consistent field (SCF) procedure, an iterative method of solving the

Kohn-Sham equations.

2.3.4 Exchange-correlation functionals

Despite the combined effective potential being a very useful tool in the theory of

DFT, we do still need to approximate the exchange-correlation (XC) potential in

order to calculate the effective potential [63]. The local density approximation

(LDA) to the XC energy is given by

Exc [ρ(r)] =

∫
ρ(r)ϵxc [ρ(r)]d

3r, (2.27)

where ϵxc [ρ] is the XC energy per particle of a homogeneous electron gas of charge

density equal to ρ [64]. The XC energy, ϵxc [ρ], can be decomposed into exchange

and correlation contributions,

ϵLDAxc [ρ] = ϵLDAx [ρ] + ϵLDAc [ρ], (2.28)

with the exchange component for a homogeneous electron gas, ϵLDAx , becoming

ϵLDAx [ρ(r)] =
3

4
(
3

π
)
1
3

∫
[ρ(r)]

4
3d3r. (2.29)

The correlation term is then approximated by fitting to various calculations, mostly

quantum Monte-Carlo simulations to within 2 milli-Hartree; many variations exist

of the approximation, such as the high- and low-density limits [65]. Several inter-

mediate density calculations have been reported also [66]. For the spin-polarized

system, where ρ = ρ↑ + ρ↓, we may write the exchange term as

ϵLDAx [ρ↑(r), ρ↓(r)] =
3

4
(
3

π
)
1
3

∫
(ρ↑(r)

4
3 + ρ↓(r)

4
3 )d3r. (2.30)
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2.3.5 Generalized gradient approximation

The generalized gradient approximation (GGA)s improve upon the local density

approximation (LDA) by expressing the exchange-correlation (XC) energy per par-

ticle ϵxc as a functional of two parameters; the electron density ρ, and its gradient

|∇ρ|, such that

EGGA
xc [ρ(r)] =

∫
ρ(r)ϵxc [ρ(r), |∇ρ(r)|]dr, (2.31)

where EGGA
xc [ρ] is the GGA XC energy [64]. There are a wide array of different gen-

eralized gradient approximation (GGA)s that differ in the parameterisation of ϵxc .

It is therefore wise to use the GGA that most effectively replicates the properties

of the material under investigation.

GGAs can be more accurate than LDAs at calculating the exchange and corre-

lation energies due to the dual dependence on both the electron density and its

gradient, which can improve on ground state energies. GGAs tend to underbind

the molecules and crystals compared to local density approximation (LDA)s typ-

ically overbinding. The GGA approximations PW91 [67, 68], Perdew, Burke and

Ernzerhof (PBE) [69] and revised PBE (rPBE) [70], for example, produce fairly

similar results and describe metals and calculations within the bulk of solids fairly

well. GGA can form a correction term for the LDA functional,

ϵGGAxc [ρ] = ϵLDAxc [ρ] + ∆ϵxc

(
|∇ρ|
ρ

4
3

)
, (2.32)

improving upon the overbinding inherent in the LDA approach by reducing it. For

spin-polarized calculations, this is modified as a straightforward generalization for

ρ = ρ↑ + ρ↓,

EGGA
xc [ρ↑(r), ρ↓(r)] =

∫
ρ(r)(ϵxc [ρ

↑(r), |∇(ρ↑(r))|] + ϵxc [ρ
↓(r), |∇(ρ↓(r))|])d3r,

(2.33)

altering the Kohn-Sham equation to be
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E [ρ(r)] =
N∑
i

ϵi −
e2

2

∫
ρ↑(r)ρ↑′(r)

|r − r′|
drdr′ − e2

2

∫
ρ↓(r)ρ↓′(r)

|r − r′|
drdr′

−
∫

VXC [ρ
↑(r)]ρ↑(r)dr −

∫
VXC [ρ

↓(r)]ρ↓(r)dr

+

∫
ρ(r)(ϵxc [ρ

↑(r), |∇(ρ↑(r))|] + ϵxc [ρ
↓(r), |∇(ρ↓(r))|])d3r.

(2.34)

2.3.6 DFT with Hubbard U

Hubbard potential

The self-interaction error (SIE) results from the spurious interaction of a particle

with itself in approximate DFT. The SIE comes from the non-zero sum of the

Hartree term for a single-electron in Kohn-Sham DFT, which is of course non-

physical [71]. This interaction should be cancelled out by the XC energy in exact

DFT, but for approximate XC functionals it is not [72]. This error is not signifi-

cant in Hartree-Fock approaches as the Coulomb term cancels completely, but the

Hartree-Fock neglects the electron correlation entirely based on approximation.

In DFT, correction of the self-interaction error is needed for accurate predictions.

The density functional theory with Hubbard U (DFT+U) method aims to approx-

imately correct for SIE by augmenting components of the Coulomb contribution

and exchange contribution in the Hamiltonian [73, 74]. The DFT+U method is

used to improve the prediction of electron localisation. This is especially impor-

tant for this work as the DFT+U method will significantly affect the magnitude

of magnetic moments and magnetic anisotropy energies.

Description of the model

To implement the correction into DFT, we can apply the local Hubbard U term

to the d and f group electrons within the ions. We separate the d and f groups

from the s and p groups, which can be adequately described without the DFT+U

approximation. The method of implementation used in VASP here is the formalism

of Dudarev et al [75], a method that effectively adds a penalty functional to the

semilocal total energy expression to alter the electron localisation, insofar as the

potential becoming repulsive for electrons occupying a state by less than half, and

attractive otherwise. This functional causes changes to calculated properties of the

system based on the magnitude of the correction, such as the magnetic moment
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of Mn of the system (Figure 2.1). The electron localisation is combined here as

U , for an energy of

EDFT+U = ELSDA +
U

2

∑
σ

[(∑
m1

nσm1,m1

)
−

(∑
m1,m2

nσm1,m2
nσm2,m1

)]
, (2.35)

where nσ is the idempotentic on-site occupancy matrix, m1 and m2 are the particles

of significant magnetic moment, and ELSDA is the energy of the system in the

local spin density approximation (an extension of LDA that takes into account the

relative spin projections of the electrons). nσ may be written as

nσm1,m2
=
∑
n,k

f σn,k
〈
ψk,σ
n

∣∣Pm1,m2

∣∣ψk,σ
n

〉
, (2.36)

where f σn,K is the occupation of a Kohn-Sham state, with values between 0 and 1

for the system with electronic spin, and Pm1,m2 are the projection operators acting

on a localised state [76]. These projection operators will be discussed further in

section 2.4.2.

Figure. 2.1: MnGa in the ferromagnetic state will have varying magnetic moment

with U. The dashed line provides a guide to the eye.
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2.3.7 Crystal structure

A crystal structure is defined as a solid structure, within which the atoms are ar-

ranged in a highly ordered microscopic structure across all directions, forming a

crystal lattice. The long range order may be represented by an array of discrete

points (the basis) that repeat infinitely and crystals are generated by a set of

translation (primitive) vectors applied to these points. A Bravais lattice is gener-

ated from the symmetry of the infinitely-repeating primitive vectors. There are 14

Bravais lattices that are symmetrically feasible [77, 78]. By repeating the trans-

lation of these points across a space using the primitive vectors, a lattice may be

generated, which may then be populated by the basis, generating a structure.

Structural parameters determine the geometry of unit cells in a crystal. Usually,

there are three length parameters, representing the three basis vectors of the Bra-

vais lattice, usually labelled a, b and c respectively, and three angular parameters,

α, β, and γ, shown in Figure 2.2. The structures may also be organised into 219

separate space groups, defined as the symmetry group of a set of points that repeat

in (three-dimensional) space. These groups are collated based on the symmetry

of the structural configuration of a material.

Figure. 2.2: A monoclinic Bravais lattice, illustrating the structural parameters

a, b, c ,α, β and γ that define the Bravais lattices
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2.3.8 Born von Karman boundary conditions and Bloch’s theo-
rem

The Born von Karman boundary conditions, are a set of periodic boundary condi-

tions that restrict a wavefunction to be periodic on a certain Bravais lattice [78].

Each cell is approximated to repeat infinitely along the basis vectors and tessellates

into a full crystal structure. Periodicity is assumed here throughout this work for

bulk structures.

Bloch’s theorem builds on the Born von Karman boundary conditions. The theorem

postulates solutions to a Schrödinger equation in a crystal can be expressed as plane

waves modulated by periodic functions over the basis vector [79]. This theorem

and subsequent work will assume Born von Karman boundary conditions,

ψ(r + Niai) = ψ(r), (2.37)

where Ni is an integer in direction i representing a number of primitive cells below

the maximum extent in some direction and ai is a primitive vector of the crystal.

We may define Bloch’s theorem, stating that the Schrödinger equation with pe-

riodic potential is defined by plane waves modulating periodic functions. This is

represented by the following equation,

ψmk(r) = e ik·rumk(r), (2.38)

where m is the band index, k is the wave vector, and umk(r) is a function with the

same periodicity as the crystal.

2.4 Computational implementation of density functional
theory

2.4.1 Plane-wave basis set and k-point sampling

Plane-wave basis sets

A plane-wave basis set (PWBS) can be used as a set of functions to expand elec-

tron wavefunctions at each k-point [80]. The exponent of such a wavefunction’s

oscillating term includes wave vectors, and is described as above in Equation 2.38.

One useful component of a PWBS is the ability to limit the basis set size by plac-

ing a limit on the kinetic energy Ej =
|Gj |2
2
; the cutoff energy defines the largest

wave vectors in the basis set, whereby G is the reciprocal lattice vector, a vector

constructed of translation vectors Tn such that G · Tn = 2π × integer [81, 82].
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We also benefit from the same basis set for molecules and solids, making this

calculation scalable for supercell calculations.

k-point sampling

Sampling over the Brillouin zone (the first Brillouin zone is defined as the locus/set

of points in reciprocal space that is closer to some specified point, normally the

gamma point, than any other set of reciprocal lattice points, and without crossing

Bragg planes [83]) is necessary to calculate many properties. As such, we must

integrate properties at each k-point over this zone. However, this can become a

very complex integral to solve, and would be approximated well by a (weighted)

sum over specific k-points. We may note that the occupancy of states f (E )

according to Fermi-Dirac statistics, expressed as

f (E ) =
1

1 + e
E−EF
KBT

, (2.39)

tends to zero in the lower temperature regimes for E > EF and to one for E < EF

[80, 81]. Noting Pauli exclusion, we note that no two electrons can be in the

same set of quantum numbers, and the temperature limit means electrons cannot

change state. We therefore acknowledge the electron enthalpy must be minimal

and all lowest states are filled. As such, the k-points that are allowed are only

those that have a corresponding energy value below the Fermi energy, represented

in momentum space by the according momentum value kF . To calculate a func-

tion with complete lattice symmetry, f (k), we make use of symmetrized plane

waves. We may then make further generalisations in the crystal, insofar as having

a periodic system [82],

ψnk(r) =
1√
V

∑
G

Cn,k,G(G)e
i(k+G)·r, (2.40)

and the electron density ρ(r) is

ρ(r) =
1

Ωk

∫
|ψmk(r)|2d3k ≈ 1

Nk

∑
k

|umk(r)|2. (2.41)

The other properties can be calculated by summing over k for these properties

at each k-point for the result of calculating these properties at each k-point. We

use the density calculated via Equation 2.41 alongside the SCF method to self-

consistently solve the Kohn-Sham equations.

The discrete nature of the k-points being used to generate the sampling grid, as
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Figure. 2.3: 2D k-point sampling grid over a square Brillouin zone, the extent

of which is 2π
a
, where a is the lattice spacing. The Γ-point is the k-point where

k = (0, 0, 0)

shown in Figure 2.3 which is an example of a gamma-centred grid [84], means we

can sample the Brillouin zone as a sum at these specific points mentioned earlier.

A Monkhorst-Pack k-point grid, defined as a uniform grid of k-points within a

Brillouin zone with no set centering, will not necessarily include the gamma point

for all selections of k-point density, instead being homogeneously distributed along

the lattice vectors in the Brillouin zone [85]. The periodic lattice needs a finite

number of k-points in periodic directions in order for the variation in energy term

coefficients to be calculated, so we need to ensure a discrete evaluation grid is

developed for these calculations. We therefore may specify a set number in specific

directions to facilitate varying geometries and periodicities of lattices, with a high

enough number of k-points to specify a consistent result. As the lattice is periodic

and symmetric, it is worth noting many k-points are equivalent, and as such the

number of k-points needed to fully assess a Brillouin zone is reduced.
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2.4.2 PAW methodology and Pseudopotentials

To fully discuss pseudopotentials, we must first discuss core electron orbitals.

Core electron orbitals are filled orbitals deep within the orbital structure close to

the nucleus. The orbitals are approximated to be localised around one atom. The

core and valence electron orbitals are orthonormal. The valence orbitals are only

included in calculation as the core orbitals are located about the nucleus in order to

augment the electrostatic properties correctly such as the resultant charge (this is

the frozen core approximation, whereby the core electrons are considered as being

a non-polarizable and rigid component of the ionic core) [86].

Pseudopotentials are an attempt to alter the potential to produce a system where

core sites are frozen and the core states eliminated whilst also describing the

valence electrons with a set of altered pseudo-wavefunctions with fewer nodes.

Figure. 2.4: The approximation of the pseudopotential as a function of r . rc is the

cutoff radius under which the approximation is no longer valid. Here, the dashed

lines represent pseudopotential wavefunctions and potentials ψPS and VPS .

The projector augmented wave (PAW) pseudopotentials are a generalisation of

pseudopotentials and the linear augmented plane wave method [87]. Rapidly oscil-

lating wavefunctions exist near the core region due to orthogonality requirements,

resulting in the need for high-Fourier-order description to be accurate, as shown

in Figure 2.4. To describe the addition of pseudopotentials, a transformation that
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allows all-electron properties to be found using a pseudo-wavefuction |ψ′⟩, based
on a pseudo-potential [87] is developed. The rapid oscillations need to be changed

to smooth variations in order to reduce expense when using PWBS. We begin with

an augmentation of the wavefunction,

|ψ⟩ = τ̂ |ψ′⟩ = τ̂
∑
i

|ϕ′
i⟩ ci , (2.42)

where τ̂ is the linear translation operator. We may then write

ci = ⟨pi |ψ′⟩ , (2.43)

where pi are projector functions defined by
〈
pi
∣∣ϕ′

j

〉
= δij . The all-electron partial

waves, |ϕi⟩ = τ̂ |ϕ′⟩, are typically solutions to the isolated atom’s Kohn-Sham

equation [88]. τ̂ is governed by the sets of |ϕi⟩, |ϕ′⟩ and |pi⟩, and may be written

as

τ̂ = 1 +
∑
a

τ̂ ′a = 1 +
∑
i

(|ϕi⟩ − |ϕ′
i⟩) ⟨pi | , (2.44)

where τ̂ ′a is non-zero only within some spherical augmentation region called Ωa

that encloses atom a, and |ϕi⟩ is a pseudo partial wave and |ϕi⟩ = τ̂ |ϕ′
i⟩. Note

|ψ′⟩ is fictitious and |ψ⟩ is the all-electron (single particle) wavefunction. The

pseudo-partial waves are equal to the all-electron partial waves outside the region

Ωa and are smoothly varying within. The result is a projector augmentation of

the wavefunction that preserves the orthogonality whilst altering purely the rapidly

oscillating region.

2.4.3 Spin-orbit coupling and noncollinear calculations

The spin-orbit coupling (SOC) can be defined as the relativistic interaction between

the spin of a particle within the atom and the potential of the nucleus. Normally we

exemplify this via the orbital electrons interacting with the electrostatic potential

of the nucleus and the magnetic dipole and orbital motion of the electron. As

such, to correct for the SOC, we add the following term to the Hamiltonian:

Ĥαβ
soc ∝ σ̂ · L̂, (2.45)

where σ is the Pauli spin operator, α and β are the relative spins of the two coupled

particles, generally electrons in this thesis, and L̂ is the angular momentum operator

[89]. This relationship is determined from the Dirac equation for a free particle in
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a potential,

i h̄
∂ψ(r, t)

∂t
= (cα ·

(
h̄

i
∇− eA(r)

)
+ βmc2 + V (r))ψ(r, t) (2.46)

where A is the vector component of the field, V (r) is the scalar potential, and

α and β are the invariant matrices, modifications of the Pauli spin matrices to

4-space and a modified identity matrix respectively [90]. We can expand this in

the non-relativistic limit to produce the (relativistically corrected) Dirac equation,

Eψ =

(
(P̂ − e

c
Â)2

2m
− Ze2

4πr
− P̂4

8m3c2
+

Ze2h̄σ̂ · L̂
16πm2c2r 3

+
Ze2h̄2

8m2c2
δ3(r)− eσ · B

2m
+ eϕ

)
ψ,

(2.47)

where P̂ is the momentum operator, Z is the number of electrons, δ3(r) is

the three-dimensional delta function at position (r), Â is the electromagnetic

4-potential, B is the magnetic field, σ is the Pauli matrix vector, ϕ is the electric

potential and c is the speed of light [91]. The fourth term,
(

Ze2h̄σ̂·L̂
16πm2c2r3

)
ψ, is the

vector spin-orbit contribution. The scalar nature of the other terms allows for

them to be included even in noncollinear calculations.

Next, we restrict SOC to the PAW sphere, with the relativistic correction becoming

Eij
soc = δRiRj

δli lj
∑
nk

wk fnk
∑
αβ

⟨ψα
nk |pi⟩ ⟨ϕi | Ĥαβ

soc |ϕj⟩
〈
pj

∣∣∣ψβ
nk

〉
(2.48)

and wn, fnk are k-point and Fermi weights respectively [92]. ψα
nk is the spinor of

pseudo orbital with alpha determining spin-up or down, and ϕi are partial waves.

The relativistic correction to the SOC in a noncollinear configuration has a spinor

nature. The mixing of spin-up and spin-down states provides for the noncollinear

arrangement of spins, and by extension magnetic moments, within the material

[93]. The wavefunction may be chosen as an eigenfunction of σ̂, with the spin

magnetization becoming an expectation value of the wavefunction, and we develop

an uncompensated spin density [94], as seen in Figure 2.5.

In VASP, in order to model the spins on each atom, we initialise a set of magnetic

moments and their configuration as a real-space 3-vector relative to some axis,

known as the quantisation axis, as the starting point for a calculation. The choice

of quantisation axis is best taken with some degree of commonality to the magnetic

moment vectors, allowing for ease of directional definition. Including magnetic field
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Figure. 2.5: 3D representation of noncollinearity. The red arrows represent the

canting magnetic moments.

interactions, we can then generate a Kohn-Sham equation of the form

E [ρ(r)] =
N∑
i

ϵi −
e2

2

∫
ρ↑(r)ρ↑′(r)
|r − r′|

drdr′ − e2

2

∫
ρ↓(r)ρ↓′(r)
|r − r′|

drdr′

−
∫

VXC [ρ
↑(r)]ρ↑(r)dr −

∫
VXC [ρ

↓(r)]ρ↓(r)dr

+

∫
ρ(r)(ϵxc [ρ

↑(r), |∇(ρ↑(r))|] + ϵxc [ρ
↓(r), |∇(ρ↓(r))|])d3r

+
∑
i

∑
j

δRiRj
δli lj
∑
nk

wk fnk
∑
αβ

⟨ψα
nk |pi⟩ ⟨ϕi | Ĥαβ

soc |ϕj⟩
〈
pj

∣∣∣ψβ
nk

〉
+
∑
i

σi · B(ri).

(2.49)

2.4.4 Band structure

Band structure plots are useful for illustrating the electronic properties of a sys-

tem. By using the equation for the band energy En(k) (Equation 2.47 and the

correction, Equation 2.48), plotted against the reciprocal lattice vector (with par-
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ticular high symmetry points noted on this axis to highlight the unique properties

in these regions), we can develop a spectrum of energetic variation with location

in reciprocal space, which identifies the energy bands a system has (as well as

identifying forbidden bands) [95], such as in Figure 2.6.

Figure. 2.6: Band structures calculated using GGA for a) silicon, a semiconductor,

b) platinum, a transition metal.

We may use this band structure to determine specific properties of the system

such as band gaps and the population of conduction and valence bands, which can

illustrate the conductivity properties of a system (Figure 2.7). We can use specific

high-symmetry points of the lattice of reference to determine the points of interest

in reciprocal space, and use these points to determine a path in K-space to follow.

This allows for important routes of points to be explored throughout the material.

2.5 Magnetism

A magnetic material is a material that has significant spin/magnetic moment

on atoms within the configuration, has a significant exchange interaction and

magnetic moments that are of regular orientation [78]. Examples of magnetic

orders include ferromagnetism, in which all magnetic moments align in parallel in

the ground state, or antiferromagnetism, where the overall magnetisation is zero,

and the material exhibits microscopic ordering of magnetic moments that sum to

give zero magnetisation.

Magnetic moments are the magnitude and orientation of magnetic field produced

by local spin configuration, e.g. ions, electrons and groups thereof [78]. Magnetic

moment here is the prevailing spin combination of electrons in electronic orbitals
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Figure. 2.7: Band structure for L12-Mn3Ir over a range of 2 eV. Note the x-axis

contains four high-symmetry k-points.

of the atom. The magnetic dipole moment of an atom (without nuclear magnetic

moment) can be defined mathematically using quantum mechanics,

matom = gJµB
J

h̄
, (2.50)

where gJ is the Landé g-factor, µB is the Bohr magneton, and J is the total

angular momentum [96]. For a crystal, the magnetic moment is the integral of

the spin density over a single atom; the total magnetisation is the integral of the

spin density over the volume of the crystal being analysed.

2.5.1 Exchange interaction

Throughout this chapter, we have mentioned the exchange interaction. In a mag-

netic material, this exchange interaction is governed by the Pauli exclusion prin-

ciple, noting that identical spin states/quantum numbers prevent identical spatial

states. As such, when orbitals overlap, some materials have preferences for rela-

tive orientations. For example, certain materials will have a relative preference to
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align spins when the electrostatic energy is reduced by the increased distance of

the parallel spins from each other. For other materials, the antiparallel configura-

tion (or some other noncollinear configuration of magnetic moments) reduces the

electrostatic energy [97].

2.5.2 Magnetic order

Magnetic orders are a consequence of the magnetic moments forming regular

repeated patterns of orientations. Depending on how they orient, the classification

of the material differs; some will find an overall magnetic moment and become

ferri- or ferromagnetic, or find no field overall and be antiferromagnetic. Magnetic

structure is a consequence of the magnetic moments and magnetic order. The array

of magnetic moments influence each other, and will settle on relative orientations

that minimize the energy of the configuration. This structure will repeat within

the bulk, much like the ionic structure. In order to determine the nature of the

magnetic order of a configuration, we may use the quantum Heisenberg model

(with the two key assumptions being aligned magnetizations produce minimum

energy and the use in a one-dimensional periodic lattice to simplify this model) to

determine the nature of the ordering [98, 99], whereby the Hamiltonian is given as

Ĥ = −
(
h̄

2

)2
 N∑

⟨i ,j⟩

Jijσi · σj

 , (2.51)

where Jnn is the coupling constant between neighbouring dipoles n, N is the number

of dipoles in the system and σj are the spins of dipole j , represented using Pauli spin

matrices (whereby S = h̄
2
σ) with periodic boundary conditions, i.e,. σN+1 = σ1,

σx =

[
0 1

1 0

]
,σy =

[
0 −i

i 0

]
,σz =

[
1 0

0 −1

]
. (2.52)

We note that both conductors and insulators may gain a magnetic ordering; in

itinerant electron magnetic metals like Ni, for example, a ferromagnetic order is

observed. This is due to the exchange interaction in the partially filled d-shell,

whereby like spins may form. Whilst NiO should seemingly form an antiferromag-

netic structure and remain a conductor, it is due to the Coulomb repulsion in the

d-shell that we see it remain a (Mott) insulator [100]. We can reformulate the

Hamiltonian in Equation 2.51,
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Ĥ = −
(
h̄

2

)2
(

N∑
j=1

Jxσ
x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
j σ

z
j+1 + hσz

j

)
, (2.53)

where Jx , Jy , Jz are all real-valued and h is the spin constant of the external mag-

netic field. By setting Jx = Jy = Jz = J , known as the Heisenberg “XXX” model,

we can define ferromagnetic models as those with with a positive value of J , and

antiferromagnetic models with a negative value of J [99].

AFM materials are a long-range ordering phenomenon, and have no prevalent

total magnetic moment at zero magnetization despite significant individual atomic

magnetic moment. The moments may align collinearly, with atomic moments

aligning antiparallel to eachother, parallel to some quantization axis. The moments

may also align noncollinearly, whereby the magnetic moments of the atoms do not

share a common quantization axis that is parallel/antiparallel to each moment.

To give more detail on the two key magnetic phases with respect to the crystal

structure, ferromagnetic (FM) transition metal materials are defined as having

prevailing collinear atomic moments, all oriented in the same direction, with long-

range ordering phenomenon to generate a macroscopic magnetic field at zero

external field, and obey the Stoner criterion (determined from the effect of the

Pauli exclusion principle on the energetic cost for spins near the Fermi level to

order in a parallel manner, i.e. in a ferromagnetic formation of like moments),

ID(EF ) > 1, (2.54)

where I is the Stoner parameter, and D(EF ) is the density of states at the Fermi

energy, EF [101, 102]. Transition metals such as cobalt, iron, manganese gallium

(1:1 alloy), and nickel are ferromagnetic.

We mainly focus on ferromagnetic, antiferromagnetic and very low magnetisation

ferrimagnetic materials in this work.

2.5.3 Temperature effects

There are many temperature-dependent aspects to magnetic properties. For the

materials we study, it is worthwhile outlining the temperature effects and properties

associated with these effects. Magnetic materials may change the magnetic phase

they take based on the temperature of the system in which they exist. This

change of magnetic ordering is called a magnetic phase transition. As such, these

phase changes exhibit changes in the magnetization, which we will use here as our

ordering parameter (a parameter that is defined as the ratio of a quantity in two
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phases [103]).

With regard to the change in magnetic moment with temperature, the general

excitation of electrons as well as spin-excited phenomena with increased thermal

energy causes a reduction and outright breakdown of prevailing magnetic moment

at certain temperature ranges. We can define the temperatures at which this

magnetic phase change occurs as the Curie and Néel temperature, which deter-

mine the temperature below which a material may maintain its ferromagnetic and

antiferromagnetic nature respectively in the absence of an external field [78].

The Curie temperature for a ferromagnet can be defined mathematically for an

approach in the temperature range just below the Curie temperature approximately

as

Ms(T ) ≈ C |Tc − T |β, (2.55)

where C is a constant, Tc is the Curie temperature, Ms(T ) is the magnetiza-

tion of the system (or for the Néel temperature, the sublattice magnetization),

and β is specific to the magnetic model. For 3D Heisenberg and Ising models,

the values of β are approximately 0.365 and 0.325 respectively [104]. The Néel

temperature for antiferromagnets, the temperature below which a material may

retain antiferromagnetic ordering, can be represented in much the same way as

the Curie temperature, albeit with differing constants and values of β (Figure 2.8).

We can map the effect of the change in temperature by using the molar magnetic

susceptibility, χρ, defined as

χρ =
M |M|
|H|ρ

, (2.56)

where M is the magnetic moment per unit volume, M is the molar mass, ρ is the

material density and H is the magnetic field strength [105].

2.5.4 Noncollinear antiferromagnets

Noncollinear antiferromagnetic materials can simply be defined as a material with

antiferromagnetic ordering (no resultant magnetic moment for the material in bulk)

where the moments do not exhibit long-range collinear ordering, instead exhibiting

local arrangements with zero net magnetization and no common quantization

axis parallel to the moments. As the arrangement of the magnetic moments

does not align with a common quantisation axis, instead they align in a manner

befitting their magnetic phase, such that there is no overall magnetic moment in

antiferromagnets, but with significant angular deviation between each magnetic
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Figure. 2.8: The Néel temperature TN , shown here as a point on a magnetic

susceptibility vs temperature graph.

moment [106]. This ordering locally forms a regular series of angular distributions,

sometimes with a common perpendicular axis such as those in the L12 and D019

distributions. Many magnetic orders may exhibit noncollinear ordering, including

ferrimagnets and antiferromagnets (Figure 2.9).

2.5.5 Anisotropy

The magnetocrystalline anisotropy is the tendency for magnetic moments to align

along some particular axis, whereby there is a distinct energy difference for mag-

netization in different orientations of the field, defined by the difference in energy

between the easy axis (lowest energy) and hard axis (highest energy) [107]. This

phenomenon is a consequence (to first order) of the spin-orbit interaction insofar as

the electronic orbitals are coupled to the electronic spin and tend to follow it when

the magnetization changes, and depend on the interaction between the orbital

motion of the (d- or f-) charge cloud and the crystal electric field, the charge dis-

tribution surrounding the cloud. When the charge coupling dominates, the energy

changes as a function of the spin-orbit energy, and when the spin-orbit coupling

dominates, the energy varies with the electronic wavefunction in the crystal field

[108]. This is expressed mathematically in spherical polar coordinates as
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Figure. 2.9: A hexagonal noncollinear antiferromagnetic arrangement. The mag-

netic moments lie in-plane with differing angles.

∆EMCA = Eθ,ϕ − E0, (2.57)

where EMCA is the magnetocrystalline anisotropy energy, Eθ,ϕ is the energy at

some polar direction with parameters θ,ϕ, and E0 is the energy at the most

stable orientation of spin.

For the structures featured in this thesis, we investigate the tetragonal and hexag-

onal systems. EMCA for each structural system is expressed as, to sixth order,

ETetr
MCA/V = K1 sin

2(θ) + K2 sin
4(θ) + K ′

2 sin
4(θ) cos(4ϕ)

+K3 sin
6(θ) + K ′′

3 sin6(θ) cos(4θ),
(2.58)
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Figure. 2.10: a) A hexagonal system with the easy axis labelled, b) the minimum

energies of the system, known as an “easy cone”

EHex
MCA/V = K1 sin

2(θ) + K2 sin
4(θ) + K3 sin

6(θ) + K ′′
3 sin6(θ) cos(6ϕ), (2.59)

where Kn and K ′
n are parameters that have the units of energy density and V is

the volume of the system [109]. The minimum energy lies along an axis called

the “easy axis”, and likewise the maximum energy lies along the “hard axis”.

Sometimes, these axes may be degenerate within a plane or surface (Figure 2.10),

and it should be noted cubic systems differ from tetragonal systems by fixing

the ratios such that fourth-order symmetry in lateral axes is obeyed [110]. The

dependence of the magnetocrystalline anisotropy on the spin-orbit interaction is

found in the contribution of the interaction of S · L; for nondominant spin-orbit

coupling, the variation of S with magnetic moment, M, is the main anisotropic

effect. For dominant spin-orbit coupling, L and S follow together, and the variation

of L with the crystal field becomes the major contribution. Both show easy and

hard axes as aspects of this spin-orbit interaction [108]. It should be noted that the

magnetocrystalline anisotropy energy does have some dependence on temperature

and atomic number, Z , as seen in Equation 2.47. Generally, the increase in

temperature toward the Néel temperature results in decreased anisotropy energy

due to the reduced coupling of nearest neighbours. This is evident beyond the

Néel point when the magnetic order changes, thus we see a maximum of magnetic

susceptibility at the Néel temperature.
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2.5.6 Magnetic dipole contributions

The magnetic dipole-dipole interaction is based on the intrinsic magnetism of

fundamental particles (electrons) and their motion about the nucleus, and so it

can be thought of as the pseudo-classical representation of the magnetic effect of

electrons orbiting in a “current” about the nucleus. This “current” the electrons

generate in an orbital generates a magnetic dipole in turn. These may then interact

with other nearby magnetic dipoles [111]. The energies in DFT do not take into

account the magnetic dipole-dipole interaction. As such, a correction is needed

in order to accurately reflect this. The dipole energy for a given system relies on

the classical dipole model. For an array of classical spins in a magnetic field, the

dipoles interact as a function of distance and magnetic moment [112, 113]

Ed =
µ0

8π

∫ ∫
3(m(r1) · r12)(m(r2) · r12)−m(r1) ·m(r2)r 212

r 512
d3r1d

3r2. (2.60)

We note that, as the magnitude of the dipole energy is a small contribution to

the total energy, we may treat it approximately. This is due to the second-order

relativistic nature of the correction. Because of the strong localisation around the

transition metals considered in this work, we may replace the magnetization density

with a magnetic moment of uniform magnitude but varying direction, µi = µm̂i

where m̂i = σiS, and S is a specific discretization axis and σi is the relative

reorientation to this axis of spin i at distance ri from the ion. We can therefore

rewrite Equation 2.60 into

Ed =
µ0µ

2

8πr 31

∑
i

σi [3(S · r̂i)2 − 1](
r1
ri
)3. (2.61)

The SOC magnetic anisotropy energy (MAE) contribution can be expected to be

the largest share for most materials due to the dominating nature of the SOC

effect from the unfilled electron shells.

We use the dipole solving program, Just Another Magnetic Simulator (JAMS) [40],

to calculate these changes in energy. We perform the calculation over a single

timestep and use the DFT-optimised magnetic system and unit cell to determine

the dipole anisotropy of the system. We directly rotate the magnetizations in order

to determine the change in energy with the magnetic structure changes.
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2.5.7 Magnetic frustration and Dzyaloshinskii-Moriya
interactions

Magnetic frustration has a significant but small role in the formation of the mag-

netic structures of manganese-rich materials, such as the ones investigated in this

thesis, as well as the Dzyaloshinskii-Moriya interaction (DMI) [114, 115]. Mag-

netic frustration occurs when magnetic moments have no ability to simultaneously

minimise their magnetic moment with nearest neighbours, resulting in orienta-

tion which provides degenerate energy states. A frustrated magnetic system is

therefore a system of magnetic moments that are not held in a non-degenerate

energetically minimised form. The DMI is based on the canting of magnetizations

in ordered magnetic systems, and primarily governs why the magnetic moments

form in a planar manner without canting out of the plane [116, 47]. For the DMI,

we may define it as the contribution to the total magnetic exchange interaction

between nearest neighbour magnetic spins; the DMI is also therefore known as the

antisymmetric exchange, with the Hamiltonian

ĤDM
⟩| = Dij · (Ŝi × Ŝj), (2.62)

where Dij is a vector defined by the symmetries of nearby ions and Ŝi is the spin

operator of ion i . These systems tend to have magnetizations ordered in multiple

directions, critically only occurring in systems with broken inversion symmetry. In

certain materials, such as Mn3Ir-L12 and D019 Mn3X systems, the magnetizations

sit in the (1-11) plane and (001) plane, with the unit cell having three separate

directions of magnetization within this plane [117, 118]. The resulting structure

can be ferro, ferri or antiferromagnetic. D019 frustrated systems have a significant

magnetic contribution from the DMI insofar as the noncollinear magnetizations are

stabilized at 120◦ from each other. The neighbouring magnetic moments in the

material interact, producing a canting of the moments from an otherwise (anti-

)parallel configuration. Considering the symmetry of the crystal, this interaction

can contribute significantly to determining the magnetic structure, in particular

the stability of the noncollinear ordering [119, 120]. L12 systems form with planes

of atoms of identical species in the (1-11) plane, resulting in the DMI and the

dominant magnetocrystalline anisotropy forming the noncollinear moments along

the (1-11) plane. The magnetic moments form Kagome triangles, trihexagonal

tiling of magnetizations, in this plane [116]. The D019 structures also have planes

of like-species, which means the magnetic moments form planar structures in the

(001)/(00-1) planes.
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Figure. 2.11: a) A three-component triangular antiferromagnet, b) the according

magnetic moments

In this work, we consider a range of Mn-alloys that exhibit a more complex mag-

netic order that is more frustrated than those with a collinear antiferromagnetic

order, and note the contribution of DMI to these materials and their properties in

terms of spin canting in otherwise ordered systems. Systemic frustration is defined

classically by a system with a Hamiltonian that has competing components that

cannot be simultaneously minimised [121]. Magnetic frustration is an example

of systemic frustration, whereby the Hamiltonian of certain systems is frustrated

by inclusion of part or all of the magnetic interaction terms; the combination of

magnetic moment interactions in the Hamiltonian alongside the other exchange

terms means the Hamiltonian cannot be simultaneously minimised. We present

here a Hamiltonian (a simplified Heisenberg-Dirac Hamiltonian) to represent a

simple system of three atoms with prevailing spin configurations S1, S2, and S3,

Ĥ =
J

2
|L̂|2 + c , (2.63)

where the spin summation operator, L̂ = Ŝ1 + Ŝ2 + Ŝ3 and J is the exchange

coupling term [122]. By noting that for antiferromagnetic materials, the exchange

term J in the Heisenberg-Dirac Hamiltonian must be negative, the sum of the local

spins L̂ in the Hamiltonian must be zero for there to be a ground state (and an

antiferromagnetic ground state therefore), and therefore extending to the whole

lattice (for example, by Maxwellian counting argument), we understand that the

local degrees of freedom of the magnetic moments cannot take a collinear ordering

without the system leaving the ground state manifold [123, 124, 125].

For an example, Figure 2.11 shows a triangular combination of three atoms of
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the same species in a lattice. If each atom has an identical magnetic moment,

the magnetic structure of this system cannot minimize collinearly to produce an

antiferromagnet. Noting again a negative J , we must therefore find a configuration

that allows for antiferromagnetism. In Figure 2.11b, we see that the magnetic

moments in the system may alter their direction to be noncollinear to compensate

each other, providing an antiferromagnetic configuration, L̂ = 0. This can be

clarified further by Maxwellian counting argument as explained in Lacroix et al’s

Introduction to Frustrated Magnetism [122], noting that for a system of N classical

Heisenberg spins that are defined in radial polar coordinates with angles θ and ϕ,

the number degrees of freedom, F = 2N for the two angles. For systems with a

number of clusters (groups of spins) equivalent to C, the number of constraints,

K = 3C as L̂ is a three-component operator. Assuming simultaneous solution of

the constraints, the ground-state degrees of freedom, D = F - K. For a triangular

system, normally N = 3C
2
, so D = 0, however specific arrangements may be found

in examples such as Heisenberg antiferromagnets where D = N
9
, an extensive

quantity, thus there are local degrees of freedom which may fluctuate independently

without the system exiting the ground state. Whilst not all noncollinear materials

are frustrated, this explanation provides key insight into understanding noncollinear

antiferromagnetism generally.

The DMI and magnetocrystalline anisotropy alter the symmetry of the planar mag-

netic system, resulting in alterations to the MAE and electronic contributions. Due

to the interaction of these moments in a planar system, we see the materials form

noncollinear magnetic systems within specific planes; for L12, we see triangular

systems form with moments pointing toward each other, and D019 systems simi-

larly form planar orderings of magnetic moments, albeit not in explicit triangular

symmetry (Figure 2.12). All magnetic moments are canted in such a way as to

compensate each other antiferromagnetically, though all are noncollinear.

The variation of MAE for these materials due to the relative angular difference of

the moments might be able to adopt multiple distinct minima that are equally or

similarly stable. This difference may also allow for changes to the magnitude of

the MAE, which is important for implementation into memory devices to find the

ideal the energy of switching memory states.

2.6 Summary

To summarize, we have explored the theoretical underpinning of the approaches

and relevant understanding of the research performed in this thesis in this chapter,
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Figure. 2.12: The magnetic ordering of bulk Mn3Ge. The purple atoms represent

manganese, the grey atoms represent germanium

providing a useful basis for the reader to understand the calculation approaches

and methods of later results chapters.

The first section dealt with the Schrödinger equation and its fundamental contri-

bution to the following chapters. The DFT approach we will use for the majority

of the calculations is based on the second section, where we discussed the un-

derlying physics as well as the approximations used to improve the calculation.

The implementation of the theory was discussed in the third section, in order to

provide a direct understanding to the reader of how the DFT methodology can

be used for our purposes. The fourth section covered the magnetic properties we

aim to explore, an integral part of the investigation into these antiferromagnetic

materials.

The theoretical basis that underpins this work, whilst fairly extensive, is relatively

simple to implement into DFT code. VASP allows easy customisation of inputs as

well as detailed output results, and so we will use this program for our calculations.
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Collinear Mn-alloy
antiferromagnetic materials

3.1 Introduction

Magnetic Mn-alloys have been of interest to the scientific community since the

early 1960s [126]. They form multiple different types of (anti)ferromagnetic ar-

rangement, depending on composition, which range from simple configurations to

highly complex ones[28].

Generally, basic antiferromagnets take collinear antiferromagnetic (AFM) struc-

tures. These systems of collinear antiferromagnets have magnetizations aligned

along a common axis[127]. When altering the common axis direction to change

the magnetic anisotropy, all magnetizations will alter in a similar manner. This

makes characterising the magnetic anisotropy energy (MAE) into a less complex

task as the reorientation requires only the common axis to be considered, rather

than multiple directions of magnetizations as in noncollinear materials [43].

We should therefore characterise the easier collinear materials in order to prop-

erly construct an approach for characterising noncollinear materials. The best

group to begin with would be the L10 Mn-alloys, as these collinear materials form

(anti)ferromagnetic materials with common structure and species (manganese)

[128, 44].

For this chapter, the main motivation is to quantify the accuracy of our calculation

approach to determining the structural and magnetic parameters of these collinear

L10 Mn-alloys. By confirming with these simpler magnetic structures that our

approach can characterise the structural and magnetic properties of these L10 Mn-

alloys, then more complex, noncollinear magnetic structures can be characterised

with a more robust and well-tested methodology.

In this chapter, we aim to discuss the properties of the the L10-Strukturbericht

group Mn-based alloys of 50:50 composition Mn:X, where X represents another
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metal (Ir, Al, Ni, Pt, Ga and Pd) [44, 129, 28, 128, 130, 131, 132]. We focus

on collinear aniferromagnets using ACG notation and one ferromagnet (Figure

3.1). The properties we calculate and compare are the structural parameters, the

magnetic moment on the manganese atom, the magnetic structure, and the MAE,

with a focus on determining the relative magnitudes of the spin-orbit coupling and

magnetic dipole-dipole contributions.

Figure. 3.1: The various magnetic configurations investigated. From top left,

clockwise; a) A-phase antiferromagnetic, b) C-phase antiferromagnetic, c) G-phase

antiferromagnetic, d) ferromagnetic

We compare the calculated results we acquire to existing information from other

studies, both experimental (section 3.2) and theoretical (section 3.3), which use

different methods to determine the same parameters. We can then be confident

in the method if we can retrieve similar results to other theoretical approaches

and experimental studies, which we elucidate on in section 3.4. We will discuss

and compare the previous experimental and theoretical literature to the calculated

results in section 3.5, and will conclude the chapter in section 3.6. We note

that the theoretical approximations will cause differences for some approaches and

parameters when compared to similar studies.

Our method includes a series of simulations operating at 10 × 10 × 10 k-points
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for a single primitive cell in a Monkhorst-Pack sampling grid. We use an energy

cutoff of 350eV, and various density functional theory with Hubbard U (DFT+U)

correction values, varying from 0 to 4 (and specified as to which applies) on the

Mn atoms. We do not use symmetry constraints on the system, and use projector

augmented wave (PAW)-Perdew, Burke and Ernzerhof (PBE) pseudopotentials.

The force tolerance is 10−3 eV/A−1 and the energy tolerance is 10−5 eV/atom.

3.2 Previous experimental results

Previous experimental investigation of L10 Mn alloys has revealed a wealth of

data on the lattice parameters and magnetic structure of these materials (Table

3.1). However, the magnetocrystalline anisotropy energy, a specific aspect of the

MAE based on the symmetry of the crystal, is difficult to measure experimen-

tally in antiferromagnets due to compensated antiferromagnets having zero net

magnetization, producing less reaction to the external magnetic field, and thus

few studies give an experimental value for MAE [43]. The materials we focus on

are stoichiometric materials (alloys with a 50:50 ratio of the two elements). The

lack of stoichiometric antiferromagnetic materials with an exact MAE defined in

experimental literature is a significant issue when seeking to compare information

(Table 3.1). In order to rectify this, one of the main reference materials we use to

confirm the capability of our calculations for this group of materials is MnGa, an

L10-type ferromagnetic (FM) material, as this has experimental studies that give

a figure for the MAE. Because MnGa is an L10 material, we can use it to ensure

the predicted properties are consistent with experiment.

Material
a
(nm)

c
(nm)

Magnetic
structure

Moment on
Mn (µB)

MAE
(meV/FU)

References

MnIr 0.386 0.364 AFM - - [127, 130]
MnAl 0.393 0.359 AFM-A 1.86 (3.86) - [129, 131]
MnNi 0.374 0.352 AFM-C 3.80 - [128]
MnPt 0.403 0.369 AFM-C 4.30 - [128, 133]

MnGa 0.400 0.371 FM 2.32 0.58
[134, 132,
135]

MnPd 0.407 0.358 AFM-C - - [128, 136]

Table 3.1: Experimentally determined properties of L10 Mn-alloys including lattice

parameters, magnetic structure, and MAE.

The experimental results from literature employ a variety of approaches for creating

samples. As such, it is important to describe each experiment and to note the
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important considerations here.

We begin with MnIr. In a study by Umetsu et al, the L10-MnIr sample was

generated by arc-melting high-purity iridium and manganese in argon gas. The

sample was then annealed at 1073K for 72 hours with stoichiometry determined

via inductively coupled plasma mass spectrometry (ICP-MS), where multiple ratios

are used in the study including equiatomic quantities. The lattice parameters were

found to be a=0.386 nm, c=0.364 nm, measured via x-ray diffraction (XRD)

(Table 3.1). An antiferromagnetic configuration of undefined order and easy axis

is found via XRD and identification of the Néel temperature, TN , via temperature-

dependent electrical resistivity calculation [130]. In another study of the magnetic

properties by Pearson et al, a sample of high-purity weighed iridium and manganese

was prepared by melting equal quantities of iridium and manganese followed by a

two-stage annealing process. In this study, it is noted that the easy axis lies in

the (001) plane, determined via x-ray/neutron diffraction [127]. MnIr is included

in many studies of magnetic and structural data, but for the MAE the L10 system

is often difficult or less preferable to measure. This is likely due to the increased

stability of the L12 Mn3Ir system, resulting in more apparent MAE than that of

the L10 system due to the increased MAE magnitude and more stable noncollinear

structure.

Next, we describe the work done with MnAl by Takeuchi et al [131]. Using a

sample preparation method that sputters together the manganese and aluminium

with stoichiometry determined by ICP-MS, the study finds a=0.393 nm, c=0.359

nm measured via XRD. It can also be noted that in the study by Sato et al,

MnAl, measured via neutron diffraction and Rietveld fitting respectively in the

L10-antiferromagnetic phase, has an A-phase structure to the magnetic moments

(Figure 3.1), each of an average 1.86 µB (but a peak value of 3.86 µB) [129].

MnAl is very frequently studied, but mostly into its metastable ferromagnetic

state. As such, this material has remarkably little information on its ground state

antiferromagnetic parameters in experiment.

We now assess the literature regarding MnNi. In the study by Tarnóczi et al, the

sample is prepared by melting nickel and manganese in argon atmosphere, homog-

enizing the sample at 800◦C for 24 hours to ensure uniform material distribution.

The study finds a=0.374 nm, c=0.352 nm, measured via neutron and X-ray pow-

der diffraction with a magnetic moment magnitude of 3.8 µB . The magnetic

structure is also found to be C-phase (Figure 3.1); MnNi has a wealth of research

detailing the magnetic and structural data, but not the anisotropy data[128].

Considering the work on MnPt, Andreas et al use a method of material synthesis
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that sputters together platinum and manganese in an argon atmosphere at 475◦C

followed by annealing for 1 hour at 375◦C with a field strength of 1T and sub-

sequently field cooled. The magnetic moment magnitude is determined using a

sample melted in argon atmosphere, and homogenized at 800◦C for 24 hours. The

study finds a=0.403 nm and c=0.369 nm, measured via neutron and X-ray powder

diffraction. The magnetic easy axis is aligned parallel to the (001) plane and canted

45 degrees to the [100] direction, measured by polarized neutron diffraction [133].

The magnetic moment magnitude is 4.3 µB . In a separate study by Tarnóczi et al,

the sample is prepared by melting platinum and manganese in argon atmosphere,

homogenizing at 800◦C for 24 hours. The magnetic order is found to be C-phase,

measured via neutron and X-ray powder diffraction [128]. Despite the growing

popularity of MnPt as a material in the spintronics community, experimental MAE

results are surprisingly hard to come by.

MnGa is the most experimentally well characterised material for the L10 Mn-alloys

surveyed here. In the study by J.P. Corbett et al, using a sample annealed at

1100◦C and generated via molecular beam epitaxy (MBE), the lattice parameters

are found to be a=0.400 nm, c=0.371 nm [134], measured via scanning tunnelling

microscopy (STM) and XRD. In the study by X.P. Zhao et al, using a sample

that is grown at 250◦C via MBE and cooled to room temperature, it is found

that MnGa has 2.32 µB magnetic moment magnitude and ferromagnetic ordering

[135]. The structure is measured via XRD, and the magnetic properties are mea-

sured via superconducting quantum interference device (SQUID), set to a specific

temperature (5K, 100K, 200K, 280K) and hysteresis loops are measured. In the

study by Z. Jiao et al, the sample was created using arc melting in an argon at-

mosphere and annealed at 723K for 24 hours. MnGa has been determined in this

study to have lattice parameters of a=0.388 nm, c=0.370 nm and an MAE of 0.58

meV/FU with an easy plane of (001) [132]. The lattice parameters were measured

via XRD, and the magnetic properties by vibrating sample magnetometry. Due to

the comprehensive profile of MnGa data, this is the primary experimental reference

point. This material has all the data we will require for evaluation.

Lastly, experimental literature on MnPd is evaluated. MnPd samples that were

created via melting in argon atmosphere, homogenized at 800◦C for 24 hours,

are found to have lattice parameters of a=0.407nm, c=0.358 nm via the work

by Tarnóczi et al [128], measured via neutron and X-ray powder diffraction, and

C-phase antiferromagnetic ordering via the work done by Tang et al [136], where

samples were generated by room-temperature ultra-high vacuum deposition sys-

tems at room temperature. The stoichiometry was confirmed using Auger electron
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spectrometry and magnetic data aquired via magneto-optical Kerr effect (MOKE).

MnPd has structural and some magnetic data, but no data on the MAE (In much

the same position as MnNi). The easy axis is [100], measured in the (001) plane

by neutron diffraction [128].

3.3 Previous theoretical results

Theoretical results for many L10 Mn-alloys and their structural and magnetic pa-

rameters are well-described and determined (Table 3.2). We use these results to

compare to the materials that are without experimental data; whilst not as gen-

erally applicable as an experimental result due to the necessary approximations

used, these theoretical results are important to compare and contrast the results

of differing theoretical methodologies. Here, we summarise the material properties

that have been gathered from these theory-focused studies in Table 3.2, which we

shall compare to the parameters in Table 3.1.

Material
a
(nm)

c
(nm)

Magnetic
structure

Moment
on Mn
(µB)

MAE
(meV/FU)

Easy
axes

References

MnIr 0.385 0.364 AFM-C 3.74
3.370-
3.525

[100] [44, 43]

MnAl 0.392 0.357 AFM-A 3.21 - - [129]

MnNi 0.372 0.352 AFM-C 3.22
0.145-
0.250

[100]
[137, 44,
43]

MnPt 0.383 0.384 AFM-C 3.91 0.255 [001] [138, 44]
MnGa 0.389 0.362 FM 2.58 0.846 [001] [28]

MnPd 0.407 0.358 AFM-C 3.67
0.285-
0.360

[100] [44, 43]

Table 3.2: Theoretical parameters for L10 Mn-alloys, including lattice parameters,

magnetic structure, and MAE.

In a study on multiple L10 materials by Umetsu et al, the approach used to in-

vestigate lattice parameter ratio and MAE/anisotropy constants was that of linear

muffin tin orbital with atomic Sphere approximation, an implementation of density

functional theory (DFT) within the local spin density approximation. They deter-

mine anisotropy energies of -3.53, -0.145, 0.255, -0.285 meV/FU for MnIr, MnNi,

MnPt and MnPd, respectively with easy axes in the [100] direction for MnNi, MnIr

and MnPd and a [001] easy axis for MnPt [44].

In a study by Josten et al, the ab initio simulation data is used to support exper-
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iment on strongly pinned magnetic moments in MnNi in a magnetic field. The

first calculation method includes coherent potential approximation to determine

magnetization direction preference and MAE. Spin and orbital contributions are in-

cluded in this study. The second calculation method used spin polarized relativistic

Korringa-Kohn-Rostoker (KKR) with PBE to evaluate changes in the composition

of the alloy, inducing a defect. The calculated parameters included the magnetic

ordering and magnetic moment of the MnNi system (C-phase, 3.22 µB) as well as

the MAE (-0.154 meV/FU) with easy axis [110] [137].

The study by Mohn et al uses full-potential linear augmented plane-wave (FP-

LAPW) methodology including spin-orbit coupling. Spin and orbital contributions

are included in this study. The study focuses on finding materials parameters

(magnetic moment, MAE, also spin density) for MnNi, MnPd, and MnIr whilst

also evaluating the effect of a change of magnetic moment direction in spin density

distribution; the study finds magnetic moments for the aforementioned alloys of

3.15, 1.56, 3.74 µB per Mn, and -0.250, -0.360, -3.370 meV/FU respectively. Each

MAE minima lies at 45 degrees to the [001] direction [43].

The study by Al-Aqtash and Sabirianov used augmented plane wave PBE with

Blöchl tetrahedron method, along with spin-orbit coupling included[28] to study

MnGa. The study investigated the structure, magnetic order, magnetic moment,

and MAE, as well as band structure calculations. The calculated values for the

lattice constants include a = 0.389 nm, c = 0.362 nm, the magnetic ordering is

ferromagnetic, the magnetic moment is 2.58 µB per Mn, and the MAE is 0.846

meV/FU with an easy axis in the c-direction [28].

Makkaka, Mukumba and Lethole’s study employs DFT calculations with PBE,

using ultrasoft pseudopotentials. Spin and orbital contributions are included in

this study. The study solves for structure, magnetic moment and further electronic

and structural properties of MnPt (as well as CoPt and NiPt), finding a = 0.383

nm, c = 0.384 nm. The magnetic moment is 3.91 µB per Mn and easy axis in the

[001] direction [138].

For MnIr, the calculation methods are linear muffin tin orbital with atomic sphere

approximation (LMTO-ASA) + local spin-density approximation (LSDA) from the

study by Umetsu et al, and FP-LAPW + spin-orbit coupling (SOC) working within

the local spin density approximation from Mohn et al’s work. The MAE is reported

as 3.370 meV/FU-3.525 meV/FU [44, 43], a high MAE overall. The small variation

in MAE between approaches indicates a good agreement between studies, with a

C-axis perpendicular easy axis and easy plane of (001) respectively also indicating

good agreement (Figure 3.2).
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Now using MnAl as a reference material, this study by Sato et al provides both

a quoted and calculated value for for the lattice parameters (0.392 nm and 0.357

nm for a and c respectively), a magnetic structure and a magnetic moment magni-

tude (3.21 µB) as well as stability of configuration and projected density of states

(PDOS), though there’s no MAE prediction given in this study. Using frozen-

core full-potential projected augmented wave method, with Hubbard U that is

determined by matching the calculated lattice parameters to experimental lattice

parameters. However, agreement is found between the experimental lattice pa-

rameters (Table 3.1) and the theoretical lattice parameters (Table 3.2), as well as

on the antiferromagnetic nature and magnetic order of the material [129]. Spin

and orbital contributions are included in this study.

Figure. 3.2: An example of the unit cell we use. Collinear L10-MnIr unit cell

complete with ground-state magnetic moment vectors on display. Purple atoms

represent Mn, green atoms represent Ir

With MnNi, we focus on comparing three studies; Umetsu et al, Josten et al

and Mohn et al. The study by Josten et al uses the CPA calculation method to

determine magnetization direction and MAE with spin-polarized relativistic (SPR)-

KKR using PBE, and PAW-PBE in VASP using a supercell. It identifies the

MAE of MnNi as -0.154 meV/FU. The study by Mohn et al employs FP-LAPW
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methodology including spin-orbit coupling. Both approaches in this study find

a [110] easy axis and -0.25 meV/FU is reported as the MAE. Another study by

Umetsu et al uses LMTO-ASA + LSDA, with -0.145 meV/FU MAE where the

the easy plane is (001). The studies reveal a wide variation of anisotropies, likely

due to the relatively low value of the anisotropy in the material. Whilst this range

of anisotropies is energetically advantageous for experimental use, this can be an

issue for effective comparison [137, 44, 43].

Now for MnPt, the study by Umetsu et al used the methodology LMTO-ASA +

LSDA. The calculated MAE is 0.255 meV/FU, a low value for the MAE, and the

C-axis is the easy axis [44]. The easy axis is the same as that found in experiment

(Table 3.1).

Next, comparing MnGa, the study by Al-Aqtash and Sabirianov involved DFT

with a PAW PBE, with SOC included. The study finds a higher magnitude MAE

than experiment (Table 3.1) with 0.846 meV/FU, and that the lattice parameters

are close, though not identical to experiment. The magnetic moment magnitude

differs by 11%, and the MAE is significantly larger [28].

Lastly, we compare the studies on MnPd, which involve LMTO-ASA + LSDA,

and FP-LAPW + SOC from the studies by Umetsu et al and Mohn et al re-

spectively. These calculations present a range of MAEs; 0.285 meV/FU-0.360

meV/FU, [44, 43], a small variation of anisotropy results indicating reasonable

theoretical agreement between approaches, which is a small MAE overall with a

(001) easy plane.

3.4 Structure and magnetic properties

3.4.1 Supercell for calculation

The supercell used for calculation is a 2 × 2 × 2 expansion of the primitive cell,

containing 8 Mn atoms and 8 atoms of the alloyed metal. The 8 Mn atoms

can be used to describe various magnetic configurations as the Mn site is the

dominant location of the magnetic moments (Figure 3.1). We focus on 4 magnetic

configurations; A, C, and G antiferromagnets based on the ACG notation system

[126], and a ferromagnetic reference configuration (Figure 3.1). We then perform

full supercell optimization calculations to determine the configuration with the

minimum energy. This is done by comparing the total energy for each magnetic

order. We then use the most stable magnetic order and structure for each material

going forward. We provide the magnetic configurations via initial conditions for the

magnetic moment. We also provide estimations of the magnitude of the magnetic
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moment to initialise the calculation, usually overestimating the value of the initial

magnetic moment, which ensures the simulation has ample capability to find the

best magnetic moment and so minimize the energy.

3.4.2 U-value and functional

We select a variety of exchange correlation functionals (generalized gradient ap-

proximation (GGA)s PBE [69], PBE functional revised for solids (PBEsol) [139],

Perdew-Wang (PW91) [67], revised PBE (rPBE) [70], Armiento-Mattsson 2005

(AM05) [140, 141, 142], as well as meta-GGAs like Strongly Constrained and

Appropriately Normed (SCAN) [143], revised SCAN (rSCAN) [144], revised Tao,

Perdew, Staroverov, Scuseria (rTPSS) [145, 146, 147], and Minnesota 2006 local

function (M06-L) [148]), and test each with a range of Hubbard U-values (0 eV,

1 eV, 2 eV, 4 eV) to compare predictions against experimental results. The func-

tional with the best combined estimate of the experimental material parameters

will be selected going forward for use in further simulations.

We begin with L10-MnGa, which has an FM magnetic structure [135]. If a given

exchange correlation functional does not predict a stable FM state, it can be easily

dismissed. In this case, we dismiss all functionals using U=2 and U=4, which do

not produce a stable ferromagnetic configuration (Figure 3.4). For assessment of

functionals, we use three further key factors; the lattice parameters, the magnetic

moment magnitude, and the magnetic anisotropy magnitude (Figure 3.3).

For the lattice parameters, we find that the best match apparent is U=0 with

rPBE, followed by M06-L. It sits near-exactly on the experimental value, whilst

the other (meta-)GGAs with U=0 are further off, by 0.01 nm comparatively for

the next-closest functional, SCAN. However, for U=1, the competitors that are

closest are PBEsol, PW91, PBE (with one lattice parameter underestimated and

one overestimated). AM05, rSCAN and rTPSS, then M06-L are next, and SCAN

dramatically under- and overestimates the two parameters. The best overall agree-

ment with experiment is rPBE (U=0).

For magnetic moment, the best agreement with experiment is U=1 with PBE;

PBEsol, PW91, rTPSS, rSCAN and M06-L underestimate the magnetic moment

slightly, and SCAN and rPBE overestimate it. The PBE calculated magnetic

moment is almost exactly the same as experimental figures and as such is well

within experimental error. Close competitors are, jointly, U=1 PBEsol, and AM05.

All U=0 GGAs underestimate the magnetic moment magnitude considerably (by

a minimum of 0.4 µB for rPBE and M06-L).

For MAE (dipole anisotropy energy (DAE) + SOC anisotropy), the best agreement
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Figure. 3.3: Calculated properties of L10 MnGa using different functionals and

Hubbard U values. a, b) Lattice parameters for various functionals, where the blue

line represents the experimental a lattice parameter and the gold line represents the

experimental c lattice parameter. c, d) Magnetic moments for various functionals,

where the red line is the experimental magnetic moment. e, f) the MAE magnitude,

where the red line is the experimental MAE.
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Figure. 3.4: Calculated magnetic ordering of L10 MnGa using different U values,

in this example using PBEsol as a GGA. Positive values indicate higher-energy

ordering than the FM configuration.

with experiment is for PBEsol, with U=1, though this is an underestimate by 0.12

meV/FU. rSCAN with U=1 is the next closest, (0.13meV/FU below), followed

AM05, then rTPSS then PW91 and PBE. For U=0, rPBE is closest, underesti-

mating by 0.13 meV/FU, followed by PW91 and PBE. All the rest significantly

underestimate the magnetic anisotropy.

On this basis, the best compromise to find accurate parameters for MnGa would

be to use PBEsol with U=1, due to the lattice parameters and moment being quite

close and relative best SOC-MAE prediction, with significant improvement over

PBE for the last category. We use this as the functional in the following sections,

maintaining comparison to both theoretical and experimental parameters in order

to ensure the model maintains a consistent capability.

3.4.3 Calculated properties of L10 materials

Results in Table 3.3 show that the lattice parameters for MnIr are a=0.382 nm,

c=0.360 nm, which are close to the experimental values from the experimental
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study by Umetsu et al, a=0.386 nm (1% difference), c=0.364 nm (1% difference)

[130]. As well as this, MnIr has a small magnetization difference to the figure

given in the theoretical study by Umetsu et al (Table 3.1). The study predicts

L10-MnIr has C-phase magnetic structure, and the magnetization magnitude is

different to calculated results in Table 3.2 by 0.64 µB , or 17% [127]. This C-phase

magnetic structure (Figure 3.1) is identical between the study and the result of

the calculations (Table 3.3).

We calculate that the MnAl lattice parameters are a=0.391 nm, c=0.348 nm.

This is close to the experimental figures obtained in the study by Takeuchi et

al, a=0.393 nm (0.5% difference), c=0.359 nm (3% difference) [131], indicating

agreement to the experimental structural values. MnAl’s AFM configuration is

that of the A-phase, as predicted in previous theoretical work by Sato et al [129]

(Table 3.2). The magnetic moment is 2.7 µB per Mn, a reasonable agreement to

theory differing by 16% (Table 3.2).

When investigating parameters for MnNi, we calculate that the lattice parameters

are a=0.362 nm, c=0.351 nm. These values are close to the study by Tarnóczi

et al [128], a=0.374 nm (3% difference), c=0.352 nm (0.2% difference), with

c-lattice nearly perfectly matching the experimental value (Table 3.1). The calcu-

lated magnetic moment of MnNi is very similar to Tarnóczi et al’s value for this

parameter. The AFM structure matches the Tarnóczi et al’s magnetic structure,

whereby this study has 3.8 µB and C-phase, compared to the calculated 3.4 µB ,

a difference of 11% [128].

The lattice parameters of MnPt were calculated to be a=0.393 nm, c=0.391

nm. These values differ by 0.01 nm and 0.022nm from the experimental results

obtained by Solina et al’s work (Table 3.1), the study showing that a=0.403 nm

(2% difference) and c=0.369 nm (6% difference) [133]. MnPt has an experimental

value for the magnetic moment of 4.3 µB per Mn and C-phase magnetic structure,

as noted in the study by Pál et al. The calculated magnetic moment we have

determined differs from Pál et al by 12% (3.8 µB per Mn and C-phase) [133, 128].

We calculate the lattice parameters of MnGa to be a=0.380 nm, c=0.364 nm;

these parameters are reasonable when compared to the experimental studies by

Corbett et al (Table 3.1). The study gives figures a=0.400 nm (5% difference),

c=0.371 nm (2% difference) for the experimental value [134]. MnGa has a ferro-

magnetic ordering in both the experimental study and our own calculations, with

2.724 µB as the calculated magnetic moment compared to the experimental value

from Zhao et al of 2.32 µB [135]. This is a reasonable agreement (15% difference)

between the two figures.
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Lastly, for MnPd, we obtain lattice parameters of a=0.395 nm, c=0.363 nm; these

calculated parameters are within 3 % and 1.3% of the experiment parameters given

by Pál et al at a=0.407 nm, c=0.358 nm respectively (Table 3.1) [128]. The

ordering in the theoretical study by Tang et al is C-phase and magnetization of

3.67 µB (Table 3.2) [136]. We find the magnetic moment to be 3.91 µB , with

C-phase magnetic structure, which is within 7%. Identical magnetic structure and

similar magnetic moment indicates a good agreement between calculation and

reference.

The calculated parameters of the materials match the experimental and theoretical

studies well, with differences in the values being as low as 12%. The largest

difference was in MnGa, where its lattice parameter differed from experiment study

by up to 0.02 nm, though all other figures are closer to experimental values (within

0.02 nm or less). This indicates generally strong agreement with experimental

structural values for all materials, and thus a good indication the calculations are

reasonable.

3.4.4 Magnetic anisotropy

Understanding the magnetic anisotropy of the L10 materials gives us an insight into

the spintronic switching capabilities of these alloys. By calculating the magnetic

anisotropy we can predict the easy and hard axes of these materials as well as

determine salient magnetic features in the change of direction of the magnetic

quantization axis of the materials.

Figure. 3.5: Calculated spin-orbit contribution of the magnetic anisotropy of L10

MnIr and MnPt within a supercell of eight primitive cells, where theta (θ) repre-

sents the angle away from the perpendicular to [001], and phi (ϕ) the angle from

[100]
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The dipole contribution to the anisotropy is given in Table 3.4. This is a com-

ponent of the previously displayed MAE, which is determined by the spin dipole

contribution in relation to the magnetic moments.

In the case of MnIr, the calculated MAE, -4.187 meV/FU appears to differ from

the theoretical MAE (compared to theoretical studies by Umetsu et al, which find

-3.5 meV/FU[44]) by -0.687 meV/FU, or 20%. Both the study in Table 3.4 and

our calculations predict an easy plane in the (001) plane as seen in Figure 3.5,

where the minimum at θ = 90◦ indicates the easy axis sits within the (001) plane

(Figure 3.2).

We now discuss MnAl. Our calculation determines the MAE to be +0.215 meV/FU

(Table 3.4), which displays a [001] uniaxial easy axis. There is no theoretical or

experimental reference that discusses the anisotropy contributions, SOC or other-

wise, for AFM MnAl; this is due to the ferromagnetic metastable state of MnAl

being far more thoroughly researched in recent history [149].

MnNi also has no experimentally determined MAE, but does have theoretical fig-

ures with a range of -0.145 to -0.250 meV/FU (Table 3.2). We calculate an SOC

anisotropy of -0.132 meV/FU (Table 3.4); the theoretical reference values in Table

3.2 are quite well-matched, differing by 9% at minimum. We find the easy plane

is in the (001) plane [137, 44, 43].

For MnPt, the calculation is different to the theoretical reference. We find a value

for the MAE of +0.493 meV/FU (Table 3.4) compared to +0.255 meV/FU given

in Table 3.2 [30, 44], a difference of 48%, and the easy direction is calculated

to be uniaxial along the c-axis. In Figure 3.5, we see MnPt’s uniaxial anisotropy

represented by the minimum energy at θ = 0◦ and 180◦. The magnetic easy

direction matches the theoretical reference well.

With the ferromagnetic material MnGa, we note reference MAE is +0.580 meV/FU,

which is close to the calculated value of +0.372 meV/FU [132], (Table 3.4) and

the easy axis is [001] in calculation, in agreement with Table 3.1.

MnPd has no experimental reference MAE, though does have a theoretical MAE

range of -0.285 to -0.360 meV/FU (Table 3.2). In the calculated results the MAE

is determined to be -0.142 meV/FU (Table 3.4). The value from calculation differs

from theoretical reference [44] by a factor of approximately 2. The easy axis is

predicted to lie along [110].

For the majority of these materials there is little in the way of explicit information in

experiment or calculation on dipole anisotropies. The general order of magnitude

of the DAE is often considered to be negligible, and this is generally the case in

the results in Table 3.4. Exceptions include MnPd, and to a lesser extent MnPt
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and MnGa, whereby the DAE is a significant component of the MAE.

3.5 Discussion

To ensure the calculation was optimising to a global minimum rather than finding

a local minimum, the calculations were repeated using a poor set of initial param-

eters, including inaccurate initial lattice parameters and poor magnetic moment

ordering. The result was identical to the initial calculation with far better starting

parameters, indicating that we found the global minimum. We can therefore find

the local energetic minima for a number of L10 systems, as well as determine

the magnetic characteristics of the system to within experimental error. Results

are also comparable to values in theory for both similar and different approxima-

tions/methods.

Material
Experimental
parameters, nm

Theoretical
parameters, nm

Calculated
parameters, nm

- a b a b a b
MnIr 0.386 0.364 0.385 0.364 0.382 0.360
MnAl 0.393 0.359 0.392 0.357 0.391 0.348
MnNi 0.374 0.352 0.372 0.352 0.362 0.351
MnPt 0.403 0.369 0.383 0.384 0.393 0.391
MnGa 0.400 0.371 0.389 0.362 0.380 0.364
MnPd 0.407 0.358 0.407 0.358 0.395 0.363

Table 3.5: Comparison of the structural parameters of each of the materials in

this chapter compared to experimental and theoretical parameters

Predictions are in reasonable agreement with experiment on structural and mag-

netic parameters (Tables 3.5, 3.6). The calculated results are also very similar to

those of reference calculations. For MnIr, the lattice parameters match experiment

to within 0.004 nm. This is an excellent agreement. For magnetic moment, which

we take from LMTO-ASA + LSDA and FP-LAPW + SOC theory, we see some

difference to theory at around ±0.64 µB though the magnetic structure matches

perfectly, and MAE is different by 0.75 meV/FU. Antiferromagnetic MnAl does

not have much information recorded about it. The a-lattice parameter is within

0.001 nm which is again excellent agreement to experiment; the c-lattice param-

eter is off by 0.011 nm, which is still reasonable. The magnetic moment of MnAl

is calculated to be 2.7 µB . The magnetic structure, A-phase antiferromagnetism,

matches well to theoretical reference. The MAE is +0.225 meV/FU (Table 3.7).
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Material
Experimental
moment, µB

Theoretical
moment, µB

Calculated
moment, µB

MnIr - 3.74 3.10
MnAl 1.86 (3.86) 3.21 2.72
MnNi 3.80 3.22 3.41
MnPt 4.30 3.91 3.83
MnGa 2.32 2.58 2.70
MnPd - 3.67 3.91

Table 3.6: Comparisons of the magnetic moments of experimental and theoretical

literature vs. the calculated results

MnNi has calculated differences in the a-lattice parameter of 0.012 nm and c-

lattice parameter of 0.002 nm to reference, both matching experiment well (Table

3.5). Its magnetic moment is off by 0.041 µB . MnNi’s MAE is close to the range

of theoretical values described in Table 3.7. MnPt has lattice parameters that

are 0.01 nm and 0.022 nm different to experiment for a- and c-lattice parameters

respectively, and a magnetic moment that’s within experimental error (Table 3.5),

with matching theory, and matches the magnetic structure well. The MAE differs

by 0.24 meV/FU to theory. MnGa matches experiment and theory well, with

lattice parameters smaller by 0.01 nm, magnetic moment matching structure and

off by 0.38 µB from experiment and is well within theory ranges of magnetic

moment, and MAE within 0.21 meV/FU of experiment. MnPd has reasonable

lattice parameters within 0.012 nm, and magnetic moment differs from theory

by 0.24 µB . Theory matches the calculation, as does the rough experimental

range, though the MAE has some significant difference. We may expect MnPt

and MnIr to differ so greatly in terms of their SOC MAE, despite similar atomic

numbers, formula unit volumes and DAE contributions, due to the nature of the

Mn moment being unsaturated/weakly itinerant. This results in the moments

and MAE contribution from Mn being diminished in MnIr, whereas the moments

are well-localised in other materials like MnPt [43], giving rise to a large MAE

overall. This also goes some considerable way to evaluating differences to the

other materials as well, with additional effects from the differing atomic number

and the orbitals that the unpaired electrons occupy; For example, MnPt has one

unpaired electron in the 5d and 6s cloud, whereas Mn has three unpaired electrons

in the 5d cloud, resulting in a higher angular momentum contribution from the

Mn unpaired electrons.

DAE, a contributing component to the MAE, was often not included in litera-
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Material
Experimental
values

Theoretical
values

Calculated values

MAE
Easy
direc-
tion

MAE
Easy
direc-
tion

SOC
MAE

DAE
MAE

Overall
MAE

Easy
direc-
tion

MnIr - -
3.370-
3.525

[100]
-
4.250

+0.063
-
4.187

(001)
plane

MnAl - - - - +0.225
-
0.010

+0.215 [001]

MnNi - -
0.145-
0.250

[100]
-
0.175

+0.043
-
0.132

(001)
plane

MnPt - - 0.255 [001] +0.400 +0.093 +0.493 [001]

MnGa 0.580 1 0.846 [001] +0.460
-
0.088

+0.372 [001]

MnPd - -
0.285-
0.360

[100]
-
0.240

+0.098
-
0.142

(001)
plane

Table 3.7: Comparisons of the MAE of experimental and theoretical literature vs.

the calculated results

ture (though is still important to calculate explicitly to match the MAE), however

from symmetry arguments we can see that the DAE distribution over a range of

angles should form with opposite sign to the magnetic anisotropy and with the

same distribution shape. This was a convenient phenomenon for assessing the

DAE’s validity with respect to the MAE, and is a fairly logical one considering the

identical reorientation of the magnetizations. In this case, we can see that the

dipole anisotropy is generally on the order of 10−5eV, smaller than the magnetic

anisotropy when non-zero (Table 3.7). This indicates SOC anisotropy is the domi-

nant contribution to the MAE (Figure 3.6). We can consider the dipole anisotropy

contribution to be insignificant for certain materials like MnIr. For other materials,

like MnNi and MnGa, this anisotropy must also be included due to the contribution

becoming comparable to the magnitude of the MAE. However, it should be noted

that in all cases, the largest DAE proportion as a percentage is in MnPd at 41%.

3.5.1 Sources of inaccuracy

One issue with the functional selection may be the coarseness of U-value sampling.

It may be better to use a finer array of U-values to determine more specific optimal

processes. Due to the integer values of U, we may be missing a more refined

observation of the effects of the non-integer values of the Hubbard U on the
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Figure. 3.6: Total density of states for MnIr. We note the effect of simulating

SOC effects has small but significant changes to the density of states, in particular

shifting peaks.

simulation of L10 materials. The optimal U-value for each individual material

varies greatly so it is likely the best U overall may be non-integer in order to

compensate.

Materials used in experiment will not always be perfectly stoichiometric, having

slight differences in the quoted element ratios. Not only this, but defects in the

material are often difficult to fully analyse, resulting in electronic property issues

and differences that may not be apparent in simulations due to the ideal nature of

the materials being simulated. These composition issues can result in sometimes

significant differences to the predicted properties from calculation.

The experimental studies referenced take place at a variety of temperatures. The

calculations take place at 0K for ionic relaxation, and as such will have defined

differences to experiment because of the dissimilar temperatures used. This differ-

ence can affect all properties of the system and cannot be experimentally matched

due to the inability to measure at 0K.

Predictions from different exchange-correlation approximations differ significantly

from each other and experiment, depending on the parameter being compared.

We cannot get DFT to represent every system perfectly using only one U-value.

In addition this, due to limits in accounting for all electronic interactions due to

the approximations needed, the electronic model is not perfect, leading to small

differences in results compared to other models that account for these interactions

differently. This can compound on select figures in simulation, such as smaller

artefacts of dipole anisotropy and its effect on the total anisotropy of the material.

Theoretical approaches to determining parameters also suffer from a lack of com-
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parability when they use different DFT methods and functionals. Due to these spe-

cific limitations in theory, it becomes challenging to use differing DFT approaches

as appropriate references. As such, a number of experimentally unrealised factors,

like the MAE, may be missed due to lack of comparability between the approaches

and between materials consequentially.

3.6 Conclusions

The systematic comparisons presented in this chapter indicate that the best over-

all level of theory for the prediction of lattice parameters, acceptable magnetic

moment and magnetic structure, and MAE is PBEsol at U=1eV (Figures 3.3,

3.4). Differences to MnGa between predicted and experimental lattice parameters

are within 0.02 nm, the experimental error, and the magnetic properties bear the

larger differences, though these are still relatively small at 0.38µB per Mn and

0.208 meV/FU from experiment, both within experimental error (Tables 3.1, 3.3).

We may note that the other calculated structures are very similar to to experimental

values, with the largest difference being 22 pm (0.022 nm) off from experimental

studies (Table 3.5). This important step primarily allows for the effective simulation

of position- and crystallographically-dependent parameters such as the magnetic

moment and MAE, as well as providing an important foundation to compare to

existing literature; we could easily determine the effectiveness of the calculation if

the lattice parameters were to be compared to literature for each material.

MAE was very much comparable to experiment and theory, where studies had

determined an MAE (Tables 3.5, 3.6, 3.7). The implication of this for our work

will be that MAE calculation is very much feasible and therefore can be expanded

to more complex materials. The utility of MAE comparison here is the ability

to cross-compare this material property with a unified approach, which has been

difficult to do for some time. The unique inclusion of DAE means we could detail

the significance to the MAE overall compared to the SOC-MAE contribution,

resulting in the determination that for materials like MnNi and MnPd, DAE is

critical to determining the overall MAE.

We note that the calculated magnetic easy axes agree with the majority of exper-

imental results (Tables 3.1, 3.4). For MnIr, we calculate the easy axis to be in

the a-b plane, with no preferred direction within this plane. This agrees well with

experiment, where the easy axis is undefined within this a-b plane. As for MnPt,

we find the calculations and the experimental and theoretical studies agree that

the main plane of the easy axis is in [001], though the canting component seen in

66



CHAPTER 3. COLLINEAR MN-ALLOY ANTIFERROMAGNETIC MATERIALS

experiment, 45 degrees from the a-b plane in the (100) plane, is not found. The

easy plane of MnGa is agreed as being on the [001] axis. With similar energetic

minimums in the exact angle of MnPd’s easy axis between [100] and [110], we

agree with the easy plane being on the a-b plane and find the [110] axis to be

the easy axis. As such, we can determine reasonably well the general plane of the

easy axes, with only one material not equivalent to experiment. We may therefore

conclude that the predictive methodology is effective at determining the easy axes

of these materials.

As for magnetic order, the experimental and theoretical studies determine similar

results to the calculations (Tables 3.1, 3.4, 3.2). As MnIr is not defined specifically

in experiment further than being an antiferromagnet, the calculations at least

agree on the antiferromagnetic nature of the material. With regard to MnAl,

we get explicit agreement with the A-phase antiferromagnetic structure, which is

also confirmed by separate theoretical approaches. For MnNi, we also retrieve

identical magnetic structure in the C-phase antiferromagnetic order. Similarly,

for MnPt, we retrieve the C-phase antiferromagnetic order, though it is worth

noting we do not retrieve the canting seen in the magnetic anisotropy despite this.

As for MnGa, we retrieve the ferromagnetic nature of the material in agreement

with experiment. Finally, experiment agrees with the calculation that MnPd has

a C-phase antiferromagnetic order. All distributions match experiment in their

ordering, and as such can be used to conclude that magnetic order is calculated

well by our approach.

We may conclude from the calculations that we are able to effectively simulate

and characterise L10 materials. MAE should be considered reasonable due to the

procedurally optimised volume parameters being used rather than the unoptimized

parameters of other studies. Whilst the MAE differs from these studies to some

degree, it is worth noting the initial parameters of a number of studies referenced

here do not optimise structure from first principles. As this is the case, our work

can be taken to be a better prediction of the actual value.

The material parameters we calculate are within reasonable similarity to those

determined in experimental (Table 3.1) and theoretical (Table 3.2) studies, where

the calculated result is within or close to the error tolerance of the experimental

result. The theoretical values for these parameters align with experimental values

and those of the calculations, and as such we have confidence that the calculations

characterise these materials well. As the simulated results optimise the structure

from an initial estimate also, we can be even more confident in the calculations

when considering this match to both theory and experiment.
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As such, from the MAE data given in the MnGa results, we may conclude that

the results here have been successful, and are within 2 × 10−1 meV/FU for the

MAE with the correct shape of variation [132, 150], with a factor of around
√
2

being the main difference. The lattice parameters (10−2 nm) [134] and magnetic

moment (2 × 10−1 µB) [151] are of comparable precision. As we have seen this

effect is similar for the other materials’ lattice parameters and magnetic data, we

can be reasonably confident the calculated MAE is within a similarly reasonable

tolerance.
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Chapter 4

Noncollinear antiferromagnetic
Mn-alloy materials

4.1 Introduction

Due to the utility of spintronic materials in magnetic memory devices [50], such as

the spin-valve [51], research into magnetic materials that can improve on existing

material performance or offer new functionality has been of great interest. This is

especially true in the realm of antiferromagnetic (AFM) spintronic devices, such

as tunnelling spin valves, that are constructed with both active layers of the tunnel

junction made from antiferromagnetic materials (and those with a ferromagnetic

layer of the tunnel junction and antiferromagnetic pinning layer) [152, 21]. Candi-

date materials that are of significant interest are the binary manganese AFM alloys,

such as Mn-transition metal alloys, due to their wide range of AFM properties.

In the previous chapter, we discussed binary alloys of component ratio 1:1 which

exhibit collinear magnetic order. Here, we discuss a set of binary alloys of com-

ponent ratio 3:1 that exhibit noncollinear magnetic order in order to characterise

how these materials may be beneficial to spintronic applications.
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Figure. 4.1: Magnetic moment configuration for L12 Mn3Ir a) viewed from the

side b) viewed along [1-11]. The green atoms are Ir, and the purple atoms are Mn.

An effective spin model Hamiltonian describing the system of magnetic moments

in a material, omitting the Zeeman term, is:

Ĥ = −1

2

∑
i ̸=j

JijSi · Sj + ĤMCA, (4.1)

where Jij is the nearest-neighbour exchange term between atoms i and j , Si is

the spin of atom i and is equivalent to h̄σi , and HMCA is the Hamiltonian for the

specific magnetocrystalline anisotropy energy. The ground state is the spin config-

uration that minimises the energy of the Hamiltonian, however this summation is

only valid for certain magnetic moment orientations with relation to the orientation

of the spin due to the dot product between these spin vectors. This forces only cer-

tain magnetic configurations to become the lowest energy states, with significant

contribution from the anisotropy term. This effective spin model can be applied

to Kagome lattices, such as those sublattices of manganese in Mn3Ir, Mn3Ge,

Mn3Ga and Mn3Sn [122], which have similar symmetry to the example in Figures

4.1 and 4.2. These systems may have magnetic moments in differing orientations

relative to each other due to the on-site anisotropy term, producing considerably

different magnetic properties to simple collinear systems. In the case of Mn3Ir,

Mn3Ge, Mn3Ga and Mn3Sn, the excess manganese permits the manganese sublat-

tices to form hexagonal structures that do not adopt collinear magnetic structures

70



CHAPTER 4. NONCOLLINEAR ANTIFERROMAGNETIC MN-ALLOY MATERIALS

[153, 154]. For a triangular system of three magnetic ions such as those in Mn3Ir,

a simple noncollinear system of nearest neighbours [155, 156] will be directly appli-

cable. Because of the antiferromagnetic nature, the materials’ magnetic moments

must also rearrange themselves in order to minimize the energy, resulting in the

magnetic moments orienting noncollinearly with a more extended system (Figure

4.2) [157].

Noncollinear systems will form the mainstay of the results presented in this chapter.

Four main materials are examined; Mn3Ir, Mn3Sn, Mn3Ge and Mn3Ga. Mn3Ir

takes on an L12 crystal structure [158], and the rest adopt both D019 and D022

structures. The D019 structures are noncollinear antiferromagnets, and the D022

structures are collinear [159, 160, 161, 162]. The differing crystal structures lead

to significantly different magnetic structures. With the L12 material, we find

three-fold rotation symmetry within the (1-11) plane (Figure 4.1) [116]. For the

D019 structures, planar three-fold symmetry is apparent along the (001) plane

[119, 163, 164]. The magnetic moments of these materials align parallel to these

planes.
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Figure. 4.2: a) Atomic configurations for Mn3Ga, Mn3Ge and Mn3Sn, where purple

atoms are the Mn atoms and the grey atoms are the Ga/Ge/Sn (inset; magnetic

moment configuration), b) a magnetic moment configuration of such alloys rotated

by 150◦, where the purple atoms are the Mn and the grey atoms are the Ga/Ge/Sn.

We now present a discussion on why these complex materials are desirable for

spintronics. Due to the different structure and composition of the materials (in-

cluding structural configurations such as the L12 and D019 materials (Figures 4.1,

4.2)), these materials will have properties that are significantly different to the

previous collinear materials investigated in the last chapter due to the noncollinear

magnetic order. Some of these properties, like the on-site anisotropy constants

defined in the second term of equation 4.1, may be advantageous to determine in

order to compare to the previous chapter on collinear systems. They would also

be useful for consideration for practical use in heterostructure devices in order to

determine energetic cost of magnetic order changes [21]. Shi et al use Mn3Pt, a

noncollinear antiferromagnet, to construct an all-AFM memory bit, which utilises

the inverting of the magnetic moment directions as a memory state change. In-
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vestigations of the magnetic structure and anisotropy of the noncollinear systems

[165, 166, 167, 161] reveal interesting electron transport properties via the mate-

rials’ spin-Hall and anomalous Hall conductivity (an important transport property

with its surface spin charge accumulations) [168, 169, 170], with the noncollinear

nature of the material affecting symmetry, including the breaking of symmetry to

induce AHE [170].

The magnetic anisotropy energy (MAE) of a noncollinear material is a complex

consideration, with the full characterisation of the magnetic anisotropy requiring

magnetic moments are compared in every possible angular combination. By using a

uniaxial approach as in equation 4.1, we see the local uniaxial symmetry axes can be

expressed as three differing directions based on local tetragonal symmetry, reducing

complexity significantly by reducing the considered directions of the system. Noting

the rotational symmetry about the [1-11] axis, symmetric constraints on nearest

neighbour interactions can be applied to simplify the Hamiltonian. To simplify this

process, we may assess only symmetrical planes within which the three magnetic

moment axes lie, a similar calculation approach to that outlined in the study

by Szunyogh et al [42]. This approach reduces the calculation to assessing the

magnetic moments rotated about some common axis perpendicular to the plane,

producing a planar change of magnetic moment and thus a form of MAE. This

quantity will be called the ‘planar MAE’ going forward. These properties are

important to determine for these materials to be potentially useful for spintronic

and computational applications such as bit memory devices [21] which rely on

changes to the direction of the magnetizing field to operate. This planar MAE is

useful but does not give a full understanding of the effects of magnetic anisotropy.

We note the materials we discuss can be simulated effectively using a variety of

methodologies [42, 119, 171, 172]. As well as this, the magnetic structure is

critical to determining and predicting magnetic properties such as the anisotropy

energy. The methods used in previous work such as by Szunyogh et al, Yang et al,

Hernandez et al and Pradhan et al, focusing on screened Korringa-Kohn-Rostoker

(SKKR), full-potential linear augmented plane-wave (FP-LAPW) and generalized

gradient approximation (GGA) (Perdew, Burke and Ernzerhof (PBE)), differ such

that direct comparison of results depends on the specifics of the simulation. To

address this, we use a unified approach to simulate all materials we note in this

chapter, and compare to previous studies so that the structural properties are

correctly reproduced and match existing data.

Despite some experimental estimations of the MAE [161, 173, 167, 166, 42, 164],

a more thorough investigation of the magnetic anisotropy is needed in these non-
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collinear materials, especially as there are few theoretical studies based on first-

principles calculation involving relativistic effects using the higher order terms in

the MA hamiltonian. To address these issues in this chapter we determine the

planar MAE for a select range of noncollinear materials.

Though the study of the band structures of stable configurations of noncollinear

materials has been undertaken before [171, 118], strain effects are needed to

understand the change in electronic properties when strain is present, such as

in a heterostructure where lattice parameters do not match perfectly. Struc-

tural changes in materials are common when the materials are placed upon mis-

matched substrates, and the structural changes will induce strain within the ma-

terial [153, 174, 175, 176, 177, 178]. As such, we will later focus on the change in

structural and band structure properties at a variety of strains, in particular examin-

ing the changes in the location of Weyl points within the band structure in order to

track the effects of the change in strain. Weyl points are important aspects of mo-

mentum space, whereby they are specific features of the Berry phase, specifically

the Berry curvature (whereby the former is the phase change of a system during a

cycle and the latter is a gauge transformation associated with this phase), existing

as monopoles (and anti-monopoles) within the Berry curvature. These monopoles

and the associated Weyl fermions can then be understood as topological charges,

resulting in high electron mobility due to the lack of dependence on symmetries

excluding translation symmetry [179]. The inclusion of spin-orbit coupling (SOC)

on the Weyl points sees changes in the band structure, critically splitting at the

Weyl points [180]. It is worth noting the Weyl points are topologically protected,

retaining the same invariant quantities with or without SOC [181]. We assess

the effect of changing strain on these materials, questioning as to how it affects

structural and electronic properties of the material. We aim to use this idea to

determine the magnetic properties of these materials.

Straining a material is an interesting avenue of investigation, as it gives us an

estimate of the effects of growth of this material on a substrate with differing

structural parameters. This straining will alter the structural parameters of the

(antiferro)magnetic material, resulting in an electronic reconfiguration and in our

case may alter the magnetic properties. The work by Xiong et al demonstrates the

practical effect of a strained material, providing us with an example of the method

in action [182]. In Farkous et al’s study, we see the use of density functional theory

(DFT) in determining the effect of strain, and how we can determine directionally

dependent strains [183].

The rest of this chapter is organised as follows. We describe the methodological
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details specific to this chapter in section 4.2. In section 4.3, we then move onto

a survey of previously gathered experimental results in literature. In section 4.4, a

summary of previous theoretical results are presented. In section 4.5.1, we present

results for the structural, magnetic and anisotropic properties of Mn3Ir, Mn3Sn,

Mn3Ge and Mn3Ga, and compare this to the experimental and theoretical results

that are available in the literature in order to ensure the simulations are reasonable.

In subsection 4.5.2, we present results on the effect of strain (both compressive

and extensive strain) on the band structure of these materials. In section 4.6 we

provide a discussion of the results, and a conclusion in section 4.7 summarizes

the major findings of this chapter. We will explore the magnetic anisotropy in the

chapter via study of the planar MAE in Mn3Ir, Mn3Sn, Mn3Ge and Mn3Ga.

4.2 Methods

We optimise the structural parameters, including volume and atomic positions, for

the noncollinear materials. Without proper volume optimization, the subsequent

analysis of other material properties will be inaccurate. The method of optimising

the structure is identical to the previous chapter. As part of the initial conditions

for the DFT calculation, the magnetic moments must be set to be noncollinear in

specific directions for the correct magnetic phase to be obtained in order to avoid

trivial solutions where all moments are zero or highly disordered configurations

that are not well optimised and less stable magnetic phases e.g. ferromagnetic

phases.

One strategy mentioned previously for finding the MAE in a crystal with non-

collinear magnetic moments is to find a common axis about which all magnetic

moments can be rotated coherently within a 2D plane. For example, this approach

was employed by Szunyogh et al [42]. As a particular example, for Mn3Ir the high

symmetry rotation axes [1-11] and [110] were used. Rotation about the [1-11] axis

is illustrated in Figure 4.3. For the other noncollinear materials considered in this

chapter we adopt a similar approach with previously determined magnetic order,

used to evaluate the magnetic high-symmetry planes of the material and therefore

the best axes about which to reorient the magnetic moments (Figure 4.3). We

examine such high-symmetry planes to define a planar anisotropy instead of assess-

ing the unfeasibly large number of possible magnetic moment configurations that

could participate in physical magnetization reversal processes. We begin by cal-

culating the optimal bulk parameters of the material. We use the PBE functional

revised for solids (PBEsol) exchange-correlation (XC) functional with spin-orbit
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Figure. 4.3: Rotation of magnetic moments about the [1-11] axis for Mn3Ir: a)

0◦, b) 90◦ anticlockwise, c) 180◦ anticlockwise. The green atoms are Ir, and the

purple atoms are Mn.
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Figure. 4.4: Example of the effect of the rotation of the quantization axis in-plane

for Mn3Ir.

coupling included and a Hubbard U of 1eV to simulate the cell allowing volume,

ion position and symmetry to change. We allow the magnetic moments to relax

into the calculated optimal directions and magnitudes. Once these are determined,

we may then reset the simulation grid and begin calculating the change in planar

anisotropy energy. By allocating a series of changes to the shared quantisation

axis of the magnetic moments, we can rotate the magnetic moments easily about

a selected axis. By doing this, we preserve the relative magnetic order also. In this

way, we may identify the relation between MAE and the relative rotation about

the axis.

As an illustrative example, Figure 4.4 shows how the spin-orbit contribution to the

anisotropy energy changes with angle in Mn3Ir. As discussed in Szunyogh et al [42],

the magnitude of the oscillation of the planar MAE with angle should be equal to

the on-site anisotropy constant, and the rotation in-plane should produce a smooth

variation of 180◦ symmetry (Figure 4.4). Rotating around lower-symmetry axes

would be less useful due to the high probability of high-energy configurations being

formed. This approach to evaluating MAEs is useful for systematic comparisons

between materials even if the physical process may be different.

To supplement the planar magnetic anisotropy, we also simulate the magnetic

dipole contribution to the anisotropy. Using the same magnetic parameters as the

77



CHAPTER 4. NONCOLLINEAR ANTIFERROMAGNETIC MN-ALLOY MATERIALS

planar anisotropy energy, we run a calculation with a cutoff radius of 50 nm and

a single timestep.

We also calculate the electronic properties of the D019 materials, specifically the

band structure, as well as changes induced by biaxial strain applied in the (001)

plane. This strain necessitates changes of structure and so we alter the lattice

parameters such that we induce a strain, optimise the material in the c-direction,

then determine the band structure. We do this by altering the lattice parameters a

and b by some percentage to induce a strain in this plane. The a and b directions

are constrained and will not be optimised. We then run a similar calculation to

the previous methodology, a volume optimisation with a Hubbard U of 1 eV and

spin-orbit coupling included that only allows the c lattice parameter and magnetic

moments to alter. The band structure is then calculated for this new strained

configuration. We monitor specific points in the band structure, in this case Weyl

points, to track changes with strain in a range of ± 6% strain overall.

Our method includes a series of simulations operating at 5× 5× 5 k-points (due

to the larger primitive cells) in a Monkhorst-Pack sampling grid. We use an

energy cutoff of 350eV, and a density functional theory with Hubbard U (DFT+U)

correction value of 1 eV on the Mn atoms. We do not use symmetry constraints on

the system, and use the projector augmented wave (PAW)-PBEsol pseudopotential.

The force tolerance is 10−3 eV/A−1 and the energy tolerance is 10−5 eV/atom.

4.3 Previous experimental results

4.3.1 L12 materials

Values of the lattice parameter reported in literature (Table 4.1) range between

0.377 nm and 0.380 nm. In particular, the study by Taylor et al used magnetron

sputtering to grow Mn3Ir films. The component ratio of the sputtered materials

was 72:28, determined via Rutherford backscattering spectrometry (RBS) and x-

ray diffraction (XRD). The study finds a cubic lattice parameter of 0.380 nm via

XRD [165]. A separate study by Tomeno et al used a 3:1 ratio of materials to

grow a crystal via Bridgman method with a 1000 K, three-week annealing period.

In this case the lattice constant measured via neutron scattering was 0.377 nm.

Between the two studies discussed above is the lattice parameter result from the

study by Mao et al, where the epitaxial growth of 15 nm of Mn3Ir on MgO [111]

at 600 ◦C resulted in lattice parameters of 0.379 nm and 0.380 nm for the bulk

and film respectively (measured via XRD). The overall agreement is remarkably

clear, with results differing by 0.003 nm, with an average value of a=0.378 nm.
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This indicates the structure is well-known, and would be a useful parameter to

compare to.

Mn3Ir adopts an L12 crystal structure with a planar magnetic moment configura-

tion, whereby all moments lie within the (1-11) plane. The planes within which the

magnetic moments lie are formed of a unit cell of three manganese atoms forming

a triangle of magnetic moments that all point toward or away from the centre of

said triangle, as in Figure 4.3. The studies in Table 4.1 agree on the magnetic

ordering, finding an antiferromagnetic magnetic order with moments parallel to

the (1-11) planes. Particularly in Tomeno et al’s study, the strong exchange in-

teraction seen within the (111) plane indicated orthogonal magnetic moments. In

the study by Kohn et al, neutron diffraction measurements on a 200 nm ordered

Mn3Ir film revealed the L12 structure had antiferromagnetic ((1-11) plane) mag-

netic structure, making for an excellent agreement to the study by Tomeno et al

and indicating a good consensus on the magnetic structure of this material.

4.3.2 D019 materials

We consider Mn3Ga, Mn3Ge and Mn3Sn as examples of D019 materials. The

magnetic moments sit parallel to the (001) plane, with two distinct sublattices

offset vertically. The two arrays of three manganese atoms produce the triangular

sublattices of atoms with antiferromagnetic ordering (Figure 4.2).

Mn3Ga

In Kurt et al’s work on Mn3Ga (Table 4.1), the sample of Mn3Ga is produced

via sputtering deposition, with XRD and tunnelling electron microscopy (TEM)

being used to determine the structural and magnetic properties of the sample

which has a species ratio of 3:1 [185]. Films of Mn3Ga are grown on Si wafers

and sputtered Ru index-matching layers. The lattice parameters for Mn3Ga are

noted to be 0.531 nm and 0.435 nm for a and c respectively. Kurt et al’s study

references the work by Kren and Kadar. This study generates the sample via metal

melt technique using two high-purity species, producing a sample of 2.85:1.15

stoichiometry, determined by chemical analysis [186]. The lattice parameters this

work determined are a=0.536 nm and c= 0.432 nm and were determined by

XRD. In Liu et al’s study, a sample of Mn3Ga is heat-treated at 893K and the

lattice parameters are measured via XRD at room temperature [169]. The lattice

parameters are found to be a= 0.540 nm and c=0.439 nm. The results from

this study agree well with Kurt et al’s study, differing by less than 0.01 nm. This
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indicates a strong structural agreement for the lattice parameters to be within a=

0.531-0.540 nm and c=0.435-0.439 nm.

This work by Kurt et al also finds the magnetic moment to be 2.4 µB/Mn. Neutron

diffraction is used for property characterisation. The magnetic moments lie parallel

to the (100) plane. Identical results are found in the work by Kren et al. Wu et

al find an estimation of the MAE to be 0.03meV/FU from the frequency and

grain size relation of the temperature-dependent exchange bias, using a sample

grown on a silicon substrate with energy dispersive x-ray (EDX) measurements to

characterise stoichiometry of 2.8:1.2, and vibrating sample magnetometer (VSM)

is used to confirm magnetic properties [166].

Mn3Ge

For Mn3Ge, the study by Chen et al used metal melting to construct the sample,

with the constituent species melted at a 3:1.025 ratio, heated to 1050 ◦C for

two days then cooled to 740 ◦C and annealed at this temperature for seven days

[163]. The properties were determined via XRD and neutron diffraction. The

study determined that the lattice parameters are a= 0.533 nm and c= 0.430 nm

(Table 4.1). In the work by Kiyohara et al, purified manganese and gallium was

arc-melted and annealed at 860 ◦C for three days, then quenched in water [187].

scanning electron microscopy (SEM) EDX probing in this study concludes the

material ratio is 3.05:0.95 Mn:Ge and hexagonal. XRD measurements show the

lattice parameters are a= 0.534 nm and c= 0.431 nm, which agree remarkably

well with Chen et al and indicate a very strong structural agreement. Similar

studies include Rai et al, where the Mn3Ge material was prepared in a 3.09:0.91

ratio via induction melting, heated in quartz to 1273K for 10 hours, cooled by

2K/hour to 1073K then quenched [187]. The material composition was assessed

by inductively coupled plasma optical emission spectroscopy (ICP-OES), and the

lattice parameters were found to be a=0.533 nm and c=0.431 nm via XRD.

The magnetic moment of Mn3Ge is determined by the study by Chen et al to

be 2.21 µB/Mn. The magnetic moments are all parallel to the (001) plane. In

Rai et al’s study, the magnetic moment was assessed by neutron diffraction to

be 2.25 µB on each Mn atom, two very similar magnetic moments. In the work

by Liu et al, metal melting of equal quantities of metals for Mn3Ge was used to

generate the sample using the Bridgman-Stockbarger technique, with properties

determined via piezoresistive torque magnetometer [167]. The study notes the

magnetic anisotropy Hamiltonian gives a six-fold symmetry term of 0.01 meV

calculated from the torque magnetometry the study undertakes, making for a
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useful indirect comparison to the magnetic anisotropy calculations.

Mn3Sn

Mn3Sn is characterised in the work by Yang et al (Table 4.1) [189, 190]. The study

by Yang et al uses the Sn-flux growth method to produce their samples, as per the

work of Sung, Ronning, Thompson and Bauer [192]. This work used a magnetic

property measurement system (MPMS) to determine structural information, and

found that the lattice parameters are a= 0.568 nm, c= 0.452 nm. Brown et al’s

study on Mn3Sn reveals similar information on Mn3Sn’s structural and magnetic

properties (Table 4.1) [173]. The study finds a= 0.559 nm, c= 0.450 nm.

Sakamoto et al’s work uses magneto-optical Kerr effect (MOKE) to measure the

magnetic properties of Mn3Sn [188]. Mn3Sn is produced via metal melting under

vacuum at 1050 ◦C. Single crystals were generated by crushing the Mn3Sn and

heating under 1080 ◦C. Inductively coupled plasma spectroscopy showed a material

ratio of 3.07:0.93 Mn:Sn. The magnetic moment is found to be around 3 µB/Mn

via MOKE. The magnetic moments lie parallel to the (001) plane.

The magnetic moment from the study by Brown et al was found to be 3.00 µB/Mn,

similar to Sakamoto et al’s approximate value, and the moments are parallel to

the (001) plane also. The sample properties are measured via neutron scattering.

In the study by Low et al, the sample is generated by powder melt in argon

atmosphere, with a ratio of species of 7:3. The sample is heated to 1000 ◦C, cooled

to 900 ◦C, and air quenched [191]. XRD and energy dispersive x-ray spectroscopy

(EDXS) measurements confirm the composition. electrical transport option (ETO)

and VSM are used to measure the magnetic properties. It is determined that the

magnetic moment is 3 µB/Mn.

Miwa et al’s study uses bulk single-crystal Mn3Sn as a sample, with time-resolved

magneto-optical Kerr effect (TR-MOKE) used to measure properties [161]. This

work supports the previously discussed studies by finding the magnetic moment on

Mn to be 3µB . This is in excellent agreement to the studies by Sakamoto et al and

Brown et al, and the six-fold MAE found from torque measurements when rotating

the magnetic field around the (0001) axis is estimated as 0.0003meV/FU. In the

work by Duan et al, the sample was prepared by melting metal species together to

form polycrystalline Mn3Sn, then melted at 1273 K in a quartz tube with argon gas

to form monocrystalline Mn3Sn, crushed and a hexagonal (D019) sample selected

[190]. Quantitative electron probe microanalysis (EPMA) analysis showed that the

composition of the single crystal is 3.13:1 Mn and Sn. Cu-K-alpha (XRD), scan-

ning electron microscopy (SEM, XL30, PHILIPS), and EPMA (1610, SHIMADZU)

82



CHAPTER 4. NONCOLLINEAR ANTIFERROMAGNETIC MN-ALLOY MATERIALS

were used to determine the structural properties, and magnetic properties were de-

termined via VSM, torque-magnetometer and heat capacity systems, and the study

calculates a periodic MAE in the (0001) plane from torque measurements to be

0.0002meV/FU, similarly low to Miwa et al.

4.4 Previous theoretical results

4.4.1 L12 Mn-alloys

Similar to the experimental results in Table 4.1, Szunyogh et al identify, in their

study, that Mn3Ir is a cubic structure of lattice parameter a= 0.379 nm [42].

The study uses self-consistent SKKR with a local spin density approximation as

parameterized by Vosko et al. In Opahle et al, the lattice parameter is determined

to be 0.371nm, using DFT, with a PBE GGA to exchange correlation with spin-

orbit coupling included [45]. The agreement is strong, putting the lattice parameter

in the range of 0.371-0.379nm (a very tight range). Comparing these predictions

(Table 4.2) to those in Table 4.1, we can see the lattice parameters differ by 0.26%

and 1.8% for lower and upper ranges respectively.

In the study by Szunyogh et al, the manganese atoms have a magnetic moment

of 2.66 µB/Mn, in a triangular configuration in the (1-11) plane. The anisotropy

about (1-11) is 10meV.

4.4.2 D019 Mn-alloys

Mn3Ga

For lattice parameters, Hernandez et al’s study of Mn3Ga gives a useful pair of

values (Table 4.2) [119]. The study uses DFT, with a PBE GGA to exchange

correlation. Spin-orbit coupling was included, and a supercell of 9 to 10 stacked

layers separated by vacuum (a thin film calculation). The lattice parameters found

for Mn3Ga in the study by Hernandez et al are a= 0.525 nm, c= 0.424 nm. The

magnetic moment is 2.48 µB/Mn, in the (001) plane. Compared to the results

in Table 4.1, the lattice parameters differ by 1.1% for a and 2.6% for c, and

the magnetic moment differs by 3%. This is an excellent agreement between

theoretical and experimental studies.

Mn3Ge

From the study by Yang et al, the theoretical study of Mn3Ge determines that the

lattice parameters of Mn3Ge are a= 0.535 nm, c= 0.431 nm [171]. The study
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uses DFT, with a PBE GGA to exchange correlation. In the work by McCoombs

et al, which also uses DFT (specifically using a PBE GGA to exchange correlation

with spin-orbit coupling included [193]), the lattice parameters of Mn3Ge are a=

0.535 nm and c= 0.431 nm (Table 4.2). The theoretical studies by Yang et al

and McCoombs et al bear remarkable agreement, indicating the lattice parameters

are well understood for the theoretical approach they share. They also are very

close to the determined experimental lattice parameters, differing by 0.001 nm.

We compare data on Mn3Ge (Table 4.1), and see minor differences in lattice

parameters,by 0.75% for a, a very small difference, and matches near-perfectly for

c.

The magnetic moment is calculated to be 2.70 µB/Mn in Yang et al’s study,

with all moments parallel to the (001) plane (Table 4.2). The magnetic moment

also differs by 10% to that in Table 4.1, which is in reasonable agreement to the

experimental study. The work by McCoombs et al retrieves a magnetic moment of

2.29 µB/Mn, a fairly significant difference. This indicates there is some uncertainty

as to the magnetic moment between studies. Both differ from experiment (Table

4.1), with Yang et al’s study differing from experiment by 21% and McCoombs et

al’s study differing by 2.7%.

Mn3Sn

Also from Yang et al’s work, the study into the properties of Mn3Sn contains

results that note the lattice parameters are a= 0.567 nm, c= 0.453 nm (Table

4.2) [171]. The study uses DFT, with a PBE GGA to exchange correlation. In

Pradhan et al’s study, they used DFT codes based on both FP-LAPW and PAW,

using experimental lattice parameters 0.566 nm and 0.452 nm [194] for a and c

respectively [172]. The theoretical studies match well with the upper end of the

experimental lattice parameter determination for a (Table 4.1). Comparing the

theoretical predictions to experimental average we find the difference of lattice

parameters is 0.33% and 0.49%, excellent agreement for a and c respectively.

The study by Yang et al also determines that the magnetic moment is 3.17 µB/Mn,

parallel to (001) plane (Table 4.2). A 6.7% difference in terms of the magnitude of

the magnetic moment to Table 4.1 indicates that these theoretical predictions are

a very good match to experiment. Pradhan et al’s study of the magnetic moment

on Mn in Mn3Sn has resulted in a magnetic moment magnitude of 3.12 µB , a 4%

difference to the experimental average. The studies by Yang et al and Pradhan et

al are well-matched, and match well to experiment (Table 4.1).
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4.5 Results

4.5.1 Structure, magnetic and bulk properties

Firstly, Mn3Ir is simulated in a bulk configuration. We determine that the lattice

parameter is 0.364 nm for Mn3Ir, for a cubic face-centred configuration. We also

determine a spin-orbit contribution to the planar MAE of 6.29 meV/FU when

rotating about (1-11), and a magnetic dipole contribution of -0.003 meV/FU, for

a total planar MAE of 6.26meV/FU. The magnetic structure is given in Figure

4.5, and the magnetic moments are parallel to planes perpendicular to [1-11].

Figure. 4.5: Mn3Ir simulated structure with magnetic moments, positioned along

the [1-11] axis.

We investigate the simulated parameters of Mn3Ga (Table 4.3). We find that the

structure forms hexagonally, and determine that the lattice parameters are 0.525

and 0.428 nm for a and c respectively as in Figure 4.6. The magnetic moment

on the manganese atoms is determined to be 3.18 µB , and all form a magnetic

structure that’s parallel to the (001) plane. The planar MAE is 0.0289 meV/FU

from the spin-orbit contribution and -0.0012 meV/FU from the magnetic dipole

contribution, resulting in a total planar MAE of 0.0277meV.

We now consider the results for Mn3Ge (Table 4.3). We determine that the lattice

parameters are 0.514 and 0.426 nm for a and c respectively. The magnetic moment

on the manganese atoms is determined to be 3.09 µB and the magnetic structure
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Figure. 4.6: Mn3Ga simulated structure with magnetic moments, viewed in the

(001) plane. The green atoms are Ga, the purple atoms are Mn.

is an offset planar structure in (001) (Figure 4.7). The simulated planar MAE has

a 0.0019 meV spin-orbit contribution, though this is higher than the total planar

MAE after DAE compensation of +0.0008 meV.

Figure. 4.7: Mn3Ge simulated structure with magnetic moments, viewed in the

(001) plane. The grey atoms are Ge, the purple atoms are Mn.

We then look at results for the simulation of Mn3Sn (Table 4.3). We determine

that the lattice parameters are 0.567 nm and 0.446 nm for a and c, and the

magnetic moment on the manganese atoms is determined to be 3.37 µB from the

calculations, visualised in Figure 4.8. The magnetic structure is an offset planar
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structure with moments all parallel to the (001) plane. The planar MAE is -0.0029

meV/FU.

Figure. 4.8: Mn3Sn simulated structure with magnetic moments, viewed in the

(001) plane. The grey atoms are Sn, the purple atoms are Mn.

4.5.2 Strain and band structure

A common effect when creating heterostructures from materials that do not have

perfectly matching lattices is that some level of strain is introduced, which will

have significant impact on the electronic properties of the material. This impact

is manifested in changes to the structure, magnetic properties, and bulk properties

like band structure. We will evaluate the change in structural, magnetic and

electronic properties during this straining procedure on the D019 AFM materials,

in order to see the effect heterostructure-induced straining would have on these

antiferromagnets.

Strain

To properly investigate the strain, we first determine a region of strain that is

reasonable to use that will not be likely to change the phase of the material; we

determine a ±6% change in lattice parameters in the a and b direction results

in purely a planar strain without any risk of phase change, and analyse every

percentage point of strain in-between. The lattice parameters change enough to

be significant in effect at these strain limits. We must also determine how these
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samples are ”grown”; in this case, we can note that these materials generally form

an alternately layered system in the c-direction, so we may allow only the c-axis

to alter during optimisation. We may then define strain in a,b via altering the

lattice parameters directly in the calculation. Comprehensive optimisation will be

needed at each strain to adequately determine the ground-state configuration of

the magnetic material with these new lattice parameters. Because we are not

altering the phase of the material, we assume identical magnetic orders between

each phase. Otherwise, we use identical settings other than a change in lattice

parameters for all calculations of this type. We complete changes in strain for

noncollinear materials Mn3Ga, Mn3Ge and Mn3Sn, and each strain value for these

materials. We expect to see a minimum at 0% strain and a linear change in c; an

energy minima forming at 0% strain would be a necessary consequence of proper

optimisation and a useful indicator of the calculations’ validity. The linear change

in c lattice parameter will correspond with the linear change in a and b.

Effects on magnetic configuration are unlikely to be useful as we consider the

magnetic system to remain unchanged in the Strukturbericht notation in the range

of strains we use, though not strictly the magnetic moment itself (Figure 4.9).

Whilst we expect to see fractional changes in the angle of magnetic moments,

we would largely be concerned with ensuring the magnetic ordering remains the

same. We need to be aware of phase changes occurring as this will result in the

strain data becoming incomparable; this should largely be avoided by the choice

of strain range, however it is important to be aware of any potential changes to

avoid irrelevant data. Phase changes may be signified by departure from a smoothly

varying strain curve, and represent alterations of standard cell structure or magnetic

phase. Good estimates for c-lattice parameter are critical in determining the proper

c-lattice value post-strain. These estimates can be determined formulaically by

changing the c-lattice parameter by the negative of the percentage change of a

and b.

We determine further band structure changes and changes in the density of states

in order to track the changes in electronic properties, focusing on specific points for

each material. This will be done as a function of strain. The strain calculations can

then be used to identify thin-film or near-boundary effects, and so tune material

heterostructures to produce desired effects via choice of substrate. We can use

the changes in structure to develop strain-related models of the planar MAE and

DAE also, to determine how strain alters key magnetic properties and therefore

how they can be altered by the choice of substrate.

Three primary materials are tested in the hexagonal D019 order; Mn3Sn, Mn3Ge,
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Figure. 4.9: Variation of magnetic moment with strain for the D019 materials.

Mn3Ga. All materials form a minimum within the expected strain range of ±6%.

The distribution of energy of formation will not be exactly symmetric; positive and

negative strains will affect the material in different ways, and as such may not do

so equally. All materials form a minima of formation energy vs. strain at 0% strain;

this is is a useful confirmation of the method, and an expected result as straining a

material should perturb the optimal equilibrium structure (Figure 4.10). Magnetic

structure is largely the same across all strains, with minimal distortion in the D019

structures. This indicates the range of strains is adequate for the calculations. We

can determine from the low magnetic distortion that the materials remain stable

in their current structural and magnetic phase. We note the magnetic moments

increase with strain, though not strictly linearly (Figure 4.9).

Mn3Ga has an amplitude of 0.7 eV for the smoothly varying change in formation

energy (Table 4.4). The alteration of the c-lattice parameter is linear. Similarly,

Mn3Ge has an amplitude of 0.8 eV, and the c-lattice parameter varies equally

smoothly. Mn3Sn has an amplitude of 0.6 eV, and the change in the c-lattice

parameter is mostly smooth, with some small oscillations present.
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Figure. 4.10: Energy of formation trends and c lattice parameter variation for

strained D019 materials a,b) Mn3Ga, c,d) Mn3Ge, e,f) Mn3Sn.

Material Energy of formation change, eV Strain minima, % c (nm)
Mn3Ga 0.7 0 0.428
Mn3Ge 0.8 0 0.427
Mn3Sn 0.6 0 0.446

Table 4.4: Calculated parameters for D019 materials under strain, extracting data

from Figure 4.10. The resultant amplitude of the energy of formation, the energy

of formation minimum of the strain and the c-lattice parameter at the minimum

are given to elucidate on the primary effects of the strain.

Band structure

Band structures contain information on many electronic properties and are there-

fore important to evaluate. For changing strains, the properties will alter signifi-

cantly. Tracking these changes will be important to understand the evolution of

these systems under mechanical changes.
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To determine the effect of this strain on these electronic properties, we evaluate

band structure changes at a range of different strains, as the band structure can

be used to determine a wide array of properties.

After the optimization process from the calculated strain effects, a band structure

calculation is performed in order to generate the band structure. We determine

set k-points to compare to the band structure at 0% strain in order to determine

whether the additional strain provides desirable outcomes.

Certain noncollinear structures have Weyl points; these are consistent features

in the band structure that seem to remain apparent for a number of strains, so

tracking changes to these features is an excellent way of tracking band structure

change. These Weyl points are a useful reference point that could be mapped

across the strain to determine trends of changes in the band structure. We evaluate

the changes to the Weyl points and see if they can be found in literature and also

see if they prevail across the strain distribution.

We perform this series of calculations from -6% strain through to +6% strain,

altering the a and b lattice parameters by the according strain percentile to induce

lateral strain as before. We gather the band structure and assess the change in

pre-selected Weyl points. We may then produce a comparative path of strain vs.

Weyl point of band structure (Figure 4.11).
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Figure. 4.11: Band structures for various strains and materials. The red circles

indicate the Weyl points present in these band structures.

In Mn3Ga’s band structures, we note that no point corresponds to a Weyl point.

We can instead note the changes to the bands visible around the M point, which

has an indirect bandgap 0% strain. at -6%, we note the bandgap closes together

somewhat, and at +6% strain the bandgap fully closes (Figure 4.11).

In Mn3Ge, we track a single Weyl point on K. At -6%, we see the Weyl point settle

at -0.15eV in relation to the Fermi energy. At 0%, the Weyl point is 0.07eV under

the Fermi energy, and retains the rising limb and falling limb of its band structure

on the right. At +6%, the Weyl point has shifted to +0.07eV, and the rightmost

upper band has collapsed. The total magnitude of change is 0.22eV. The Weyl

point changes at +6% to have two falling limbs on the right (Figure 4.11).

The k-points at M and K have features near the Fermi energy that resemble Weyl

points in Mn3Sn (Figure 4.11). We assess their change in energy, position and

nature throughout the straining process, and find that the Weyl point rises with

respect to fermi energy for the Weyl point close to K. The amplitude of the rise

in energy is small, mustering around 0.01 eV overall from -6% to 0% and 0.01eV
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from 0% to 6%. The Weyl point nature at +6% changes with the rightmost rising

limb becoming a falling limb. There is also a change for the M points with strain,

increasing by around 0.01 eV from -6% to 0%, however the M Weyl point reduces

in energy above 0%.

The Weyl point has a chiral nature, which coincidentally affects the conductivity of

a material whilst within a magnetic field. We would therefore expect to maintain

the electron mobility due to the consistent number of Weyl points remaining across

our strain distribution.

4.6 Discussion

The material structures we have calculated are highly comparable to previous stud-

ies, and the lattice parameters and magnetic parameters match well to experiment

and theory studies to within a few percentage points for each lattice parameter

value. With such close results, we can be confident the simulated model is cor-

rect for the structure of the material. We will now elaborate further on these

comparisons.

Material
Experimental
parameters, nm

Theoretical
parameters, nm

Calculated
parameters, nm

- a b a b a b

Mn3Ir 0.378 0.378
0.371-
0.379

0.371-
0.379

0.364 0.364

Mn3Ga
0.531-
0.540

0.435-
0.439

0.525 0.424 0.530 0.428

Mn3Ge 0.533 0.431 0.535 0.431 0.514 0.426

Mn3Sn
0.559-
0.568

0.451 0.567 0.453 0.559 0.446

Table 4.5: Comparison of the structural parameters of each of the materials in

this chapter compared to experimental and theoretical parameters

L12-Mn3Ir has been studied theoretically using the planar MAE approach described

earlier in the study by Szunyogh et al (Table 4.2). This gives us a useful theoretical

comparison. We therefore use the L12-Mn3Ir to determine how well the method

works. We find the calculated results (Table 4.5) very comparable to the theoretical

study by Szunyogh et al, in terms of the periodic variation and the magnitude

of the MAE as well as general properties of the material. We determine that

the lattice parameter is 0.364 nm, similar to Szunyogh et al’s study’s 0.379 nm.

The experimental studies by Taylor et al and Tomeno et al also find a similar
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lattice parameter very close to the calculated result (Table 4.5). Ophale et al’s

theoretical study finds the lattice parameter to be 0.371 nm, differing by 1.9%. The

simulated magnetic characterisation includes a magnetic moment per Manganese

atom of 2.79 µB compared to Szunyogh et al’s study’s 2.66 µB (Table 4.6), and the

magnetic structure takes a noncollinear AFM arrangement parallel to the (1-11)

plane, in excellent agreement with the study. The experimental work by Tomeno

et al and Kohn et al finds similar magnetic structure with the magnetic structure

with (111) and (1-11) planes of magnetic moments. The calculated planar MAE

of 6.26 meV/FU is similar to the planar MAE in Szunyogh et al’s study of 10

meV/FU (Table 4.6).

Material Experimental Theoretical Calculated
Magnetic
moment,
µB

MAE,
meV/FU

Magnetic
moment,
µB

MAE,
meV/FU

Magnetic
moment,
µB

MAE,
meV/FU

DAE,
meV/FU

Mn3Ir - - 2.66 +10 2.79 +6.2900 -0.00300
Mn3Ga 2.40 0.03 2.48 - 3.18 +0.0289 -0.00115

Mn3Ge 2.23 0.01
2.29-
2.70

- 3.09 +0.0019 -0.00110

Mn3Sn 3.00
0.0002-
0.0003

3.12-
3.17

- 3.37 +0.0029 -0.00590

Table 4.6: Comparisons of the magnetic moments and MAE of experimental and

theoretical literature vs. the calculated results

We determine that the lattice parameters for Mn3Ga are a=0.525 nm and c=0.428

nm; comparing to the results in Table 4.5, we see that the lattice parameters from

Kurt et al’s experimental work are predicted to be a= 0.531 nm and c= 0.435

nm, differences of 1% and 1.6% respectively. We find that the experimental

work by Kren and Kadar finds similar lattice parameters to our own (a=0.536

nm and c= 0.432 nm, a difference of 2% and 0.9% respectively), though Liu et

al’s experimental study finds lattice parameters that are slightly further from ours

(a= 0.540 nm and c=0.439 nm, a difference of 2.9% and 2.6% respectively). For

theoretical studies (Table 4.5), we find Hernandez et al’s study gives a= 0.525

nm, c= 0.424 nm, a perfect match for a and a difference of 0.94% for c. The

magnetic moment on the manganese atoms is found to be 3.18 µB , differing from

Kurt et al’s experimental study, which retrieved 2.40 µB (Table 4.6), a difference of

32.5%, and the magnetic structure is an offset planar structure in the (001) plane,

implying that simulation finds stronger field than experiment. We note therefore

there are still significant differences between the magnetic effects modelled in our
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work and the reality of the experiment. In the theoretical work by Hernandez et

al, we find the magnetic moment to be 2.48 µB , a difference of 28%, a difference

likely due to the lack of U-value and the thin-film approach taken in Hernandez

et al’s model. The planar MAE is 0.0289 meV/FU, comparable to Wu et al’s

experimental value of 0.03 meV/FU, a difference of 3.8% (Table 4.6).

We determine that the lattice parameters of Mn3Ge are 0.514 and 0.426 nm

for a and c respectively (Table 4.3), which differ from Chen et al’s experimental

study’s lattice parameters (Table 4.5) by 3.6% for a (0.533 nm) and by 0.9% for

c (0.430 nm), and similar still to the experimental work by Kiyohara et al (a=

0.534 nm, c= 0.431 nm). Yang et al’s theoretical work (a= 0.535 nm, c= 0.431

nm) and McCoombs et al’s theoretical work (a= 0.534 nm and c= 0.431 nm),

which calculate remarkably similar lattice parameters that differ from the calculated

values by 4% for a and 1.1% for c respectively (Table 4.5). The magnetic moment

on the manganese atoms is determined to be 3.09 µB compared to Chen et al’s

experimental study’s 2.21 µB , a difference of 28.5%, and the magnetic structure

is an offset planar structure in (001). Yang et al’s study finds a value of 2.7 µB , a

difference of 14%. We find closer agreement to theory, which is to be expected as

the method is quite similar, and again find a significant difference to experiment.

McCoombs et al’s work finds a magnetic moment very similar to that of Chen

et al’s study. The planar MAE found by Liu et al’s experimental work is 0.010

meV/FU, significantly larger than the calculated planar MAE of 0.0019 meV/FU

(0.0008 meV/FU after DAE compensation) (Table 4.6).

We then look at Mn3Sn. We determine that the lattice parameters are 0.567

and 0.446 nm for a and c respectively (Table 4.3), differing from the theoretical

work by Yang et al (Table 4.2). Yang et al’s experimental study determines the

lattice parameters to be a= 0.568 nm and c= 0.452 nm, differing by 0.17% and

1.3% respectively. Brown et al’s experimental work is similarly close (Table 4.5),

with lattice parameters (a= 0.559 nm, c= 0.450 nm) differing by 1.4% and 0.8%

respectively. Pradhan et al’s theoretical study finds a=0.566 nm and c=0.452 nm,

differing by 0.27% and 1.4%. The magnetic moment on the manganese atoms

is determined to be 3.37 µB from the calculations, differing from Yang et al’s

theoretical work by 6%, with their value of 3.17 µB (Table 4.6). This result also

differs from Sakamoto et al, Brown et al, Lowe et al and Miwa et al’s experimental

work, finding 3 µB each, by 12%. The work done by Pradhan et al finds a magnetic

moment of 3.17 µB for Mn in Mn3Sn, a difference of 8%. The magnetic structure

is an offset planar structure in (001). The planar MAE is -0.0029 meV/FU, which

is comparably low as per the work of Miwa et al, where a value of 0.0003meV/FU
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was found, and in a similar position to Duan et al’s work, finding 0.0002meV/FU

(Table 4.6).

Predicted magnetic properties are consistent with previous studies (Tables 4.5,

4.6); the calculated magnetic moments are within 33% of values in previous stud-

ies at most, and the calculated magnetic structures match the theoretical and

experimental studies well. This indicates the first-principles approach can more

than capably deal with the magnetic structure evident in these materials.

Reference planar MAEs for these materials differ to varying degrees, likely due to

differences in definition or procedure as well as very low value (Tables 4.1, 4.3).

The former is a very reasonable consideration, as our exploration of anisotropic

trends is significantly limited by only considering the magnetically symmetric plane.

In addition to this, we note the anisotropy energy for Mn3Sn from the experimental

studies is a calculation based on the experimental parameters retrieved from the

torque measurements, indicating direct measurement is still quite a challenge to

compare to [161, 190]. The high MAE of Mn3Ir and significant difference to the

D019 materials’ MAE may be attributed to the high spin-orbit coupling between

Mn and Ir. However, there is some attribution to the method of determining the

MAE for why the MAE is so high; per Jenkins et al [11], the rigid rotation method

we employ may well miss the local minima of the free-energy surface. We may

therefore consider the potential for further MAE minimisation.

Straining alters properties in a logical manner (Figures 4.9 and 4.10), with relatively

small magnitude of energy change with strain but consistent 0% minima in energy,

and for all materials we see linear changes of the c lattice parameter with strain. We

note that Mn3Ge has the largest change in energy with strain, closely followed by

Mn3Ga, whilst Mn3Sn has the lowest amplitude of energy. The c lattice parameters

decrease linearly, a logical consequence to compensate for for the change in volume.

The c lattice parameter at zero strain matches previous calculations (Table 4.4).

For the strain calculations, we see the band structures alter with strain (Figure

4.11). The number of Weyl points vary for each D019 material. For example,

Mn3Ga has no Weyl points in the band structures we calculate, but Mn3Ge and

Mn3Sn have 1 and 2 respectively. The changes of the Weyl points, particularly

energy changes, vary both linearly (Mn3Ge) and nonlinearly (Mn3Sn) with strain

changes. Changes to the nature of the Weyl points remain fairly few, indicating

generally consistent Weyl point migration with energy. Due to the potential high

mobility of the Weyl fermion, the changes in Weyl point energy within the band

structure mean a great deal for a spintronic device using read and write currents

at their inherently high switching frequencies. As such, the combination of high
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mobility electrons in Weyl points and spintronic applications can be viewed as

crucial to work in tandem together in a high-frequency memory device.

4.6.1 Sources of inaccuracy

The simulations show considerable difference to experiment for the magnetic mo-

ment magnitudes. It is possible this difference may cause properties we have

calculated, such as the anisotropy in plane and the strains, to be less accurate

than desired. However, we note that the simulated magnetic moments match

existing theoretical studies well. This indicates the difference is an artefact of

approach, and thus is likely a systematic error.

We make an assumption regarding changes in properties in relation to strain;

we assume they come about from the optimization of the c-lattice parameter.

We assume the lack of optimization in the other axes will not cause issues due

to uniform straining, and due to the repeating nature of the cell (and rarity of

dislocations) it is unlikely any relaxation should occur.

As before with the L10 systems, the experimental studies we reference are per-

formed at a variety of temperatures. We cannot match these experimental tem-

peratures exactly as we do not consider temperature effects, therefore we may

note some difference to these studies. This may affect all parameters simulated.

Real materials may also have defects within the sample. As we model an ideal

material in DFT simulations, different results are expected to the experimental

studies because of this. Whilst all properties are potentially affected, significant

deviations will occur in the magnetic and electronic properties.

4.7 Conclusion

The calculations of structural properties of the investigated materials (Table 4.3)

match well to previous studies (Tables 4.1, 4.2), indicating that we successfully

use a calculated approach to comprehensively characterise these materials. This

also maintains a consistent and comparable approach between materials, and so

we have successfully generated a comparable methodology for characterising these

materials from first principles. We note the structure of each material matches

the experimental and theoretical studies, which allows us to conclude that the

structure is well-represented in the simulated data and can be predicted using our

methodology.

The novel findings of this structural research reveal linear variation in lattice prop-

erties across moderate strain within D019 materials (Figures 4.9 and 4.10). These

99



CHAPTER 4. NONCOLLINEAR ANTIFERROMAGNETIC MN-ALLOY MATERIALS

varied properties indicate the effects of applied strain will have a predictable ef-

fect on the properties of these materials, with particular utility to heterostructure

devices.

The ground state calculations of magnetic structure of the investigated materials

(Table 4.3) are very much comparable to previous experimental studies (Tables

4.1, 4.2). Use of a common approach to comprehensively characterise the non-

collinear materials has yielded magnetic structures that are precisely aligned with

the theoretical and experimental studies, indicating strong agreement. As such,

the conclusion is that the magnetic structure is simulated with reasonable agree-

ment to experiment. The calculated magnetic parameters of the materials are also

found to be reasonably close to experimental studies, and closer still to theoretical

studies. The material with the largest consistent difference in magnetic moment

to theoretical studies is Mn3Ga, with Mn3Ge differing the most from experimental

works. Mn3Sn’s magnetic moment is largely very similar to previous experimental

and theoretical studies.

From the planar MAE calculations (Table 4.3), we can see the calculated values for

the in-plane MAE match well with those from previous experimental and theoretical

studies, indicating a universally applicable exploration of these values (Tables 4.1,

4.2). This implies the planar MAE of noncollinear magnetic materials may be

predicted well using this method, and that the variation of the planar MAE may

be predicted with confidence.

Novel findings note the peak of magnetic moment resides at maximum strain

(Figure 4.9). Alongside this, the change in planar anisotropy energy for the D019

materials steadily decreases with strain (Table 4.4). We conclude that the applied

strain will therefore increase the magnetic moment, and will result in lower MAE

if strain is extensive. The band structures acquired for the ground state match

well to studies of the non-strained environment (Figure 4.11). The strained band

structures are sensible with regard to the Weyl point changes, with the number of

Weyl points determined and clear Weyl points in the band structure. In particular,

the alterations to Weyl points in these systems are reasonable, with the number

of Weyl points remaining consistent, indicating well-determined band structure,

which we can conclude reflects the topological nature of the Weyl point. The

changes to the energy of the Weyl point vary in different ways, though we can

note this variation alters with strain; we may conclude therefore that low strain will

affect only the energetic properties of the Weyl points and thus maintain electron

mobility of these materials, maintaining the high-frequency conductive properties.
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Chapter 5

Interface effects on
antiferromagnets

5.1 Introduction

In any nanoscale device, accounting for the effects of the nearby boundaries of a

material is crucial for proper characterisation [195]. Alongside this, most nanoscale

devices are designed to interface various layers of materials in a heterostructure

in order to modify the properties of the device overall, such as certain types of

transistor [196, 197]. We may expect the interaction of these interfaces to have

some local electronic effect that will alter properties of the device as a whole, such

as local polarisation affecting conductivity [198, 199]. As such, it is important to

understand the effects of these interfaces on the properties of a thin slab of mate-

rial in order to determine the changes these interfaces produce when compared to

the bulk materials [200]. Surfaces and interfaces of materials can exhibit interest-

ing and unique properties that differ greatly from bulk materials, such as altered

charge densities, changes to magnetic ordering and structural changes, such as the

changes seen through varying thickness of Mn3Ge in the work by Wang et al [201].

These are important to characterise for devices with heterostructure configurations

and thin film natures as the terminations of the materials can significantly alter

the magnetic and electronic properties of the heterostructure as a whole. Surfaces

are of course encountered in nearly any material, however interfaces are impor-

tant for device construction due to the effects substrate materials can have on the

films above them, such as the variation in platinum substrate thickness, shown in

Jiang et al’s work [202]. For most memory devices using spin-orbit torque (SOT)-

antiferromagnetic (AFM) architecture, we expect to interface the AFM materials

with nonmagnetic conductors like platinum. As such, it is crucial to be able to

predict these interface properties. A large number of possible surfaces and com-

binations are available for us to explore, however we will focus on epitaxial-like
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combinations of materials in order to provide combinations that may be grown

together.

The magnetic properties, structural properties and electronic properties of a ma-

terial all differ at an interface or surface region. An important question is how

the material properties change; for example, by altering the magnetic moment

orientation or shifting atoms at the interface or surface, which would result in the

properties deviating from the material bulk at this localised interface area [203].

Specifically, it may be queried what the most energetically stable interface is, and

which material deviates the least structurally from bulk in order to preserve unifor-

mity. Correspondingly, it is important to ask what material has the most bulk-like

magnetic structure at the interface in order to maintain bulk-like SOT variation.

To this end, it is necessary to establish how the magnetic moments are affected

by the introduction of an interface and whether there is a breakdown in magnetic

ordering, and how the surface magnetic moments are affected. In addition to this,

because of the potential mismatch between materials epitaxially grown onto each

other, strain is applied to the materials [153]. This will result in significant struc-

tural changes at the interface of materials. The electronic properties will of course

differ with these changes; we can even predict the change in the density of states

within the bulk-like, surface and interface regions.

When considering the finite nature of a material, it is important to question

whether the surfaces of this material have some effect on the material proper-

ties at large; specifically, how does an interface affect conductivity via charge

transfer and electronic state redistribution. The change in charge across such a

surface needs to be assessed for potential charge transfer, which will affect con-

ductivity. We assess the surfaces of three D019 materials, and the interface of

platinum with the D019 materials. We will calculate the expansion per unit layer,

formation energy for specific terminations that are symmetrically inequivalent, the

Bader charge analysis and the partial density of states. Evaluating the epitaxial-

like construction of two-layer systems is critical to characterising heterostructures

of antiferromagnets and nonmagnetic metals, a very important part of any SOT-

AFM spintronic device. The interaction at such an interface will have significant

effect on the charge formation and density of states, resulting in significant alter-

ation of performance. We aim to evaluate the magnetic and electronic properties

of a D019 material on a platinum layer, such as the change in projected density of

states (PDOS) and the charge transfer at the interface, and assess the magnetic

order changes associated with the layer interface.

We note the D019 materials have a hexagonal structure, with the materials forming
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in layer-like systems with metallic bonds. This manner of structure indicates a wide

array of symmetric systems. We will investigate the symmetrically inequivalent

systems of the D019 materials in order to fully compare the interfaces.

In section 5.2, the theory and methodology for this work is introduced. Section

5.3 will contain data from previous studies, allowing us to compare the calculated

properties. In section 5.4, we discuss the results of the calculations, both for single-

material films and for heterostructures. Lastly, we will discuss the calculated results

in section 5.5 and conclude the chapter in section 5.6.

5.2 Theory and methodology

5.2.1 Surface energy

Within the bulk, we expect the ions and magnetic moments to position and align

in a perfectly periodic manner. At the surface, however, the discontinuity of the

crystal will see structural and magnetic properties change in the material. To

simulate a surface interface, we take the approach of using a large vacuum gap,

more than 10 Å , between 2 surfaces of the material, thereby breaking down the

infinite periodicity of the material in one direction. These semi-infinite “slabs” of

material are used to calculate surface effects over a set area.

To find the surface energy (Esurf ), for realistic surfaces, it is necessary to simulate

cases of stoichiometric and non-stoichiometric slabs. For the latter, two conditions

are given; manganese-rich, whereby the manganese chemical potential is used to

calculate the non-manganese elements chemical potential, and manganese-poor,

where the non-manganese element is used to calculate the manganese chemical

potential. The surface energy is defined as

Esurf =

Etot −
∑
i

Niµi

2A
, (5.1)

where A is the cross-sectional area of the semi-infinite slab being calculated, Etot

is the total energy of the slab over A, Ni is the number of atoms of species i , and

µi is the chemical potential of species i [204]. In this case, µi will be different for

manganese rich and poor cases, resulting in two limits for the surface energy.

Our method includes a series of simulations operating at 5 × 5 × 5 k-points (for

each primitive cell, with alterations for larger slab sections) in a Monkhorst-Pack

sampling grid. We use an energy cutoff of 350eV, and a density functional theory

with Hubbard U (DFT+U) correction value of 1 eV on the Mn atoms. We do not

use symmetry constraints on the system, and use the projector augmented wave
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(PAW)-PBE functional revised for solids (PBEsol) pseudopotential. The force

tolerance is 10−2 eV/A−1 and the energy tolerance is 10−3 eV/atom.

5.2.2 Magnetic moment alignment

The surface moments are expected to significantly reorient compared to the bulk

orientation. The depth of the reorientation varies between materials. This is due

to the lack of bulk-like ordering on one side of the configuration, resulting in the

relaxation of the ordering out of the plane. The magnetic moments near or at the

interface/surface are no longer constrained on one side due to the lack of mag-

netic moments applying the magnetic constraint to them, and will begin to reorient

in such a way that they further minimise their energy. This reorientation occurs

mechanically via the minimisation of energy and thus applied torque from the mag-

netic structure, whereby the minimum energy is only achieved by the reorientation

of the moments to reduce the spin-torque that evolves from the altered system.

However, this reorientation at the interface/surface will cause deeper magnetic

moments to adjust to compensate and further lower their energy, resulting in a

system with some depth to the reorientation and distortion of magnetic moment.

We also expect in-plane reorientation of the magnetic moments, again to com-

pensate for the out-of-plane reorientation and to minimise energy. The centre of

the Mn-alloy layer should appear bulk-like, with minimal distortion. It is possible

to use density functional theory (DFT) to simulate the magnetic configuration in

the layer and compare the trend in angular displacement to the bulk configuration

to find the point at which the material becomes approximately bulk-like. We may

then analyse the changes as a function of the direction of interest, resulting in the

determination of the change in angle from the bulk-like region at the surface and

how deeply the surface influences the alteration of the magnetic configuration.

In terms of optimisation of magnetic moments, we determine two distinct types

of optimisation. Local optimisation (whereby initial configurations of magnetic

moments are initialised and optimised only for local perturbations from the default)

is used for the majority of this chapter. However, locally optimised ordering does

not determine the effect of more disorganised surface configurations. In our case,

comprehensive global optimisation (whereby the magnetization remains zero but

the moments are initialized in differing configurations) for every magnetic moment

would be excessively time-consuming. Instead, restricting changes to the most-

likely affected magnetic moments, namely those at the surface, and providing a

limited region of randomization of direction will be more efficient. To do this, a fully

random direction with a magnitude scaled to a set fraction of the magnetic moment
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Figure. 5.1: Randomisation procedure for magnetic moments within a limit. a)

vector sum of random vector (gold) and bulk moment (red), with resultant moment

(blue). b) new moment rescaled to correct magnitude in limited region, θ; in this

work, θ is limited to ±16◦.

is added to the magnetic moment (Figure 5.1). The new magnetic moment is then

normalized and re-scaled to the original magnetic moment, providing a limited

range of potential directions within a boundary set by the ratio of magnitudes

of the two vectors. This “randomization” will be quantized by the size of the

magnitude of the randomized vector with relation to the magnitude of the original

magnetic moment, such that

Randomisation =
|vran|
|m|

, (5.2)

where vran is the randomised vector and m is the magnetic moment.

5.2.3 Bader charge analysis

Bader charge analysis is an aspect of Richard Bader’s work into the quantum theory

of atoms in molecules (QTAiM) [205]. It is a method of assessing charge and

charge density across a system by using localised charge distributions within Bader

volumes (defined as the volume enclosed within a surface of vanishing gradient

flux at every surface, within which a virial relation for the atomic subsystem is

found). By integrating the charge density within the Bader volume, we can find

the localised charge at an atomic point in the system. We may then use this to

map the changes for atomic charge throughout the system. The code used here
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is by the Henkelman Group, which partitions charge density grids from Vienna ab-

initio simulation program (VASP) into Bader volumes using steepest ascent paths

up to a maximum charge density [206, 207, 208]. Subsequently, these maxima are

assigned grid points. Further paths terminate at these grid points. This code is

remarkably efficient over the large charge density grids generated in VASP.

5.2.4 Projected density of states

Three Mn3X systems studied in this chapter and all are Weyl semimetals [209].

This is a key feature of the electronic structure of these materials, as has been seen

in Chapter 4, and is a major contributor to the topological effects this material

displays whilst otherwise acting as a metal. We note that Mn3Ge and Mn3Sn

are reported to be, unusually, Weyl semimetals of low carrier mobility [210]. We

therefore would benefit from an investigation into the density of states in order to

determine the electronic effects on these Weyl semimetals. We define the density

of states to be the number of allowed states per unit energy range. The density of

states can therefore be represented as a function of energy. As such, we may see

how this density of states varies for differing combinations of materials. However,

it should be understood that the contributions from the orbitals of certain elements

and atoms can be determined, and so contributions from specific elements may

also be projected as part of this density of states, and at differing positions, in

order to determine the differences in contributions to the density of states, such

as the decomposition of Mn3Ge contributions seen in the study by Changdar et

al [211]. The density of states is read in from the output of a VASP calculation,

then plotted against the corresponding energy, as in Figure 5.2.

5.3 Previous experimental and theoretical data

It is worthwhile to analyse data from previous studies to compare the surface/

interface interactions of the D019 materials that we simulate to previous experi-

mental and theoretical studies. In particular, we focus on the theoretical, namely

the total density of states (DOS) of the bulk material, and the experimental ex-

pansion and strain characteristics of these materials, whereby the latter focuses

on applications on platinum. We will evaluate and compare these studies for each

material. For the film expansion, we take the measured thickness of the film and

find the difference in height from the measured c-lattice parameter.

For Mn3Ga (Table 5.1), we see the major PDOS peaks, as compared to theoretical

work by Khmelevskyi, Ruban and Mohn using an local spin-density approximation
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Figure. 5.2: Projected density of states of Mn3Ge in bulk. The density of states

is broken down into the various electronic cloud contributions for Mn and Ge. As

can be seen in the figure, the largest contribution to the density of states is the

Mn d-cloud.

Material
Lattice mismatch
with Platinum, %

Major bulk
PDOS peaks,
eV

Estimated layer
expansion in
(001), pm/layer

References

Mn3Ga 2.45 -2.72, 1.36 0.317 [212, 153]

Mn3Ge 4.15 1, -2, -3 0.831
[160, 175,
177]

Mn3Sn 1
-2.5, 0.5, 0.4 |
-3, -2.5, -2.1,
1.4

0.253-1.860
[213, 174,
164, 214,
215]

Table 5.1: Summary of the data from previous experimental and theoretical studies
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(LSDA) approach with Korringa-Kohn-Rostoker (KKR) using atomic sphere ap-

proximation (ASA), appear at -2.72 eV and 1.36 eV [212]. The expansion per layer

over a layer grown on MgO(001)/Pt(111) in the study by Holguin-Momaca et al

sees a value of 0.317 pm/layer over a critical thickness of 10nm in a layer 50nm

thick, measured by 30kV reflection high-energy electron diffraction (RHEED). On

Pt, the work by Holguin-Momaca et al shows a lattice mismatch of 2.45% mea-

sured using 30kV RHEED on a material grown via radio-frequency magnetron

sputtering, with a temperature of 400◦C and a growth pressure of 3 mTorr [153].

For Mn3Ge, we see that the major PDOS peaks, as compared to the theoretical

work by Wang et al, appear at -2.64 eV and 1 eV. The calculation uses DFT; a

Perdew, Burke and Ernzerhof (PBE)-generalized gradient approximation (GGA) at

a cutoff of 350 eV and a k-point grid of 7×7×8 [160]. The expansion per layer over

a layer grown on LaAlO3 in the study by Hong et al sees a value of 0.831 pm/layer

with the lattice constants measured via x-ray diffraction (XRD) over a 20nm layer

measured using AFM. Crystals are grown using molecular beam epitaxy (MBE)

at 570◦C [175]. On Pt, the work by Olayiwola et al shows a lattice mismatch of

4.15% measured via XRD on a sample grown via magnetron sputtering [177].

For Mn3Sn, we see that the major PDOS peaks, as compared to the theoretical

work by Zhang et al, appear at -2.5 eV and 0.5 eV using DFT, a PBE-GGA+U

with a cutoff of 450 eV [213] and U−J value of 0.78 eV. Yang et al’s study, based

of DFT using GGA and a 7× 7× 5 k-point grid, sees peaks at -2.5 eV and 1.4 eV

[215]. The expansion per layer over a layer grown on MgO(110)[001] in the study

by Liu et al sees a value of 1.860 pm/layer on a 12nm film grown via MBE at 420◦C

at 3×10−9 mbar and measured using both RHEED and high-resolution XRD. This

is compared to Markou et al’s work which had an expansion of 0.253 pm/layer

on MgO (10-10) over 10 nm, with crystals grown via magnetron sputtering at

3×10−9 mbar and a temperature of 500◦C, lattice parameters measured by XRD

and the thickness measured by quartz crystal microbalance and z-ray reflectivity

[174, 164]. On Pt, the work by Cheng et al shows a lattice mismatch of 1%, with

the crystal grown at 260◦C for Pt and 210◦C for Mn3Sn via off-axis sputtering and

measured by XRD [214].

5.4 Results

5.4.1 Layer optimisation at the surface

Differing surface terminations arise from different material planes, such as the

(100), (010) and (001) planes, as well as from differing atomic configurations
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Figure. 5.3: Mn3Sn, (100)-A, with two surfaces exposed to vacuum. The grey

atoms represent Sn, and the purple atoms represent Mn

at these surfaces. Because of these differing terminations for the same surface,

the aforementioned surfaces will be the focus of investigation, along with the

specific symmetrically nonidentical terminations they have. We will begin with an

initial optimisation of slabs of the materials with magnetic moments initialised in

a hexagonal planar configuration (such as that in Figure 5.3) to best mimic the

bulk, then discuss the effects of the surface terminations.

Structural optimisation of a film must be monitored to not only determine the

change of structure a surface causes but to ensure the expansion of the surface,

defined as the difference in length along some axis between a continuous bulk

and a slab of the same number and configuration of atoms, within the calculation

is of a reasonable value. As such, the key results we need to determine for the

structural characterisation of the surface are the expansion per unit layer, defined

as the expansion of the slab divided by the number of material layers (Figure

5.4), and the surface relaxation, defined as the displacement of atoms out of bulk-

like positioning at or near the surface; this may be from single surfaces expanding

from the bulk, or the surface rumpling (defined as single atoms displacing from the

average position at the surface). It is also worth noting the overall slab expansion

to see how far the surface deviates from bulk in order to determine the extent of

the surface changes. In this section, we use DFT to determine the properties of

surfaces on a D019 material slab for a variety of surfaces in planes (100), (010)

and (001) (Figure 5.5), over a slab of material with a vacuum gap over 10 Å wide

(Figure 5.3).
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Figure. 5.4: The change in thickness, marked by a red arrow, at the surface over

each layer for the (001)-Mn3Sn termination. The ellipsis indicates continuation of

the supercell.

Material
Surface
normal

Surface
index

Surface layer (1)
expansion, Å

Layer 2 ex-
pansion, Å

Layer 3 ex-
pansion, Å

Mn3Ga (001) A 0.069 0.012 0
Mn3Ga (100) A 0.119 0.050 0
Mn3Ga (100) B 0.041 0.064 0.040
Mn3Ga (010) A 0.079 0.038 0.023
Mn3Ga (010) B 0.311 0.155 0.075
Mn3Ge (001) A 0.240 0.031 0
Mn3Ge (100) A 0.072 0.030 0
Mn3Ge (100) B 0.001 0 0
Mn3Ge (010) A 0.105 0.072 0
Mn3Ge (010) B 0.038 0.024 0.010
Mn3Sn (001) A 0.253 0.065 0.007
Mn3Sn (100) A 0.005 0.010 0.008
Mn3Sn (100) B 0.004 0.008 0.004
Mn3Sn (010) A 0.195 0.152 0.043
Mn3Sn (010) B 0.080 0.032 0

Table 5.2: Expansion length for the first three layers of each material and surface.
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Figure. 5.5: The surface terminations for the D019 materials with Mn3Sn used

as an example. a) and b) are the (100) terminations, respectively called (100)-A

and (100)-B, c) and d) are the (010) terminations, labelled (010)-A and (010)-B

respectively, and e) is the (001) termination, called A. The grey ellipsis indicates

the continuation of the supercell of atoms and the green box indicates the surface

layer.

Mn3Ga

The (001) surface has a small expansion of an average of 0.876 pm per layer of

material over 1.82 nm, with the maximum surface displacement of 0.069 Å from

bulk (Tables 5.3, 5.2). As the calculation involves two surfaces, we can note this

is the overall expansion of this slab. The calculated energy of formation is 0.106

eV/Å2. For the surface rumpling, we see minimal deviation from bulk, with the

Ga species at the surface forming more prominently than Mn by 5 pm. (Figure

5.6).

For the (100) surface, we use two inequivalent surface terminations (100)-A and

(100)-B (Figure 5.5). The expansions of the two different terminations of surfaces

resulted in 0.119 Å and 0.041 Å of expansion for (100)-A and (100)-B respectively

at the surface layer, with (100)-B having deeper expansion at lower layers (Table

5.2). The energies of formation of the surfaces are 0.0950 and 0.138 eV/Å2 for

Mn-rich and Mn-poor respectively for (100)-A and 0.159 and 0.116 eV/Å2 for

(100)-B (Table 5.3). This indicates the surface with minimum overall energy is

the Mn-poor configuration of the (100)-A surface (Figure 5.7). Surface rumpling

shows for both surfaces that the Mn species is displaced relative to the Ga species;

for (100)-B this is seen in the layer below the surface with 9 pm of space between
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Figure. 5.6: Mn3X slabs with (001) surfaces, pictured in the (100) plane to show

surfaces from the side, to observe the displacement from the surface. a) Mn3Ga,

where the green atoms represent Ga, b) Mn3Ge, where the dark grey atoms rep-

resent Ge, c) Mn3Sn, where the light grey atoms represent Sn. Purple atoms

represent Mn. The grey ellipsis indicates the continuation of the supercell of

atoms and the green box indicates the surface layer.

the Ga and Mn, though only (100)-A sees significant rising at the surface by Mn

by 6 pm (Figure 5.8). As such, we see the lowest energy surface termination is the

Mn-rich (100)-A and the termination of lowest expansion per layer is the (100)-B

surface.

For the (010) surface, we consider two inequivalent surface terminations (010)-

A and (010)-B. For these surface terminations, we see expansions of 0.079 Å

and 0.311 Å for the surface layer, with (010)-B expanding further at lower layers

(Table 5.2). For each configuration’s surface energy, we see 0.115 eV/Å2 and

0.111 eV/Å2 for the (010)-A and (010)-B surfaces respectively, and as such the

latter is the more energetically stable surface (Table 5.3). The surface rumpling

is largely unremarkable for both surfaces (Figure 5.9). As such, we see the lowest

energy termination is the (010)-B and the termination of lowest expansion per

layer is the (010)-B surface.

Mn3Ge

For the (001) surface, the expansion is 3.39 pm per layer for two surfaces over

1.84 nm with expansion at the first layer up to 0.240 Å , which is significantly

larger than for Mn3Ga, and a surface energy of 0.012 eV/Å2 (Tables 5.3, 5.2).

This exceptionally low surface energy of formation is far lower than Mn3Ge’s (001)

configuration. Surface rumpling shows the Ge at the surface rises above the Mn
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Figure. 5.7: The variation of the chemical potential µ with the surface termination

and Mn-richness on the (100)-Mn3Ga surface. The blue region indicates the stable

chemical potential values. a) the variation in the chemical potential in Ga, b) the

variation in chemical potential for Mn.
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Figure. 5.8: Mn3X slabs with (100) surfaces, pictured in the (001) plane to show

surfaces from the side, to observe the displacement from the surface. a) Mn3Ga

(100)-A, b) Mn3Ga (100)-B, c) Mn3Ge (100)-A, d) Mn3Ge (100)-B, e) Mn3Sn

(100)-A, f) Mn3Sn (100)-B. Grey atoms represent Ga, Ge and Sn, purple atoms

represent Mn. The grey ellipsis indicates the continuation of the supercell of atoms

and the green box indicates the surface layer.
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Figure. 5.9: Mn3X slabs with (010) surfaces, pictured in the (001) plane to show

surfaces from the side, to observe the displacement from the surface. a) Mn3Ga

(010)-A, b) Mn3Ga (010)-B, c) Mn3Ge (010)-A, d) Mn3Ge (010)-B, e) Mn3Sn

(010)-A, f) Mn3Sn (010)-B. The grey ellipsis indicates the continuation of the

supercell of atoms and the green box indicates the surface layer. Green atoms

represent Ga, grey atoms represent Ge/Sn, and purple atoms represent Mn.

Material
Surface
normal

Surface
index

Expansion
per layer
(pm)

Formation energy, eV/Å2

Mn3Ga (001) A 0.876 0.106
Mn3Ga (100) A 1.050 Mn-rich: 0.095, Mn-poor: 0.138
Mn3Ga (100) B 0.872 Mn-rich: 0.159, Mn-poor: 0.116
Mn3Ga (010) A 0.207 0.115
Mn3Ga (010) B 0.505 0.111
Mn3Ge (001) A 3.390 0.012
Mn3Ge (100) A 0.887 Mn-rich: 0.144, Mn-poor: 0.073
Mn3Ge (100) B 0.010 Mn-rich: 0.091, Mn-poor: 0.163
Mn3Ge (010) A 1.475 0.109
Mn3Ge (010) B 0.655 0.097
Mn3Sn (001) A 1.320 0.083
Mn3Sn (100) A 1.490 Mn-rich: 0.136, Mn-poor: 0.071
Mn3Sn (100) B 5.870 Mn-rich: 0.103, Mn-poor: 0.168
Mn3Sn (010) A 0.166 0.106
Mn3Sn (010) B 0.715 0.096

Table 5.3: Calculated results for structural and magnetic properties of the D019

materials

115



CHAPTER 5. INTERFACE EFFECTS ON ANTIFERROMAGNETS

by 23 pm (Figure 5.6).

For the (100) direction, the expansion at the surface is 0.072 Å and 0.001 Å

respectively. From this, we see dramatically different expansions, and can conclude

that (100)-B is more bulk-like to the smaller expansion (Table 5.2). Energetically,

we see the (100)-A configuration reach 0.144 eV/Å2 in the Mn-rich phase and

0.0728 eV/Å2 in the Mn-poor phase, and for the (100)-B configuration, we see

0.0914 eV/Å2 for Mn-rich and 0.163 eV/Å2 for Mn-poor configurations, indicating

the first configuration in the Mn-poor category is most stable (Table 5.3). Surface

rumpling shows for (100)-B, the Mn species is displaced slightly above the Ga

species at the layer below the surface by 7 pm, though only (100)-A sees significant

rising at the surface by Mn by 7 pm (Figure 5.8). As such, we see the lowest energy

surface termination is the Mn-poor (100)-A and the expansion is the same for both

surfaces.

For the (010) direction, the surface expansion is 0.105 Å and 0.038 Å for (010)-A

and (010)-B respectively (Table 5.2). Again, the expansion differs by a significant

factor between the two terminations, indicating (010)-B to be less unstable. For

the first and second configurations, we see surface energies of 0.109 eV/Å2 and

0.0969 eV/Å2, indicating the second surface is the most stable (Table 5.3). The

surface rumpling is largely unremarkable for both surfaces (Figure 5.9). As such,

we see the lowest energy surface termination is the (010)-B and the termination

with the lowest expansion per layer is the (100)-B surface.

Mn3Sn

For the (001) direction, the expansion is 1.32 pm per layer for two surfaces over

4.38 nm with surface expansion of 0.253 Å maximum, and is relatively comparable

to Mn3Ge, though still larger than the surface layer expansion of Mn3Ga (Tables

5.3, 5.2). Energetically, we have a low energy of formation at 0.0827 eV/Å2, lower

than for Mn3Ga but higher than Mn3Ge. Surface rumpling shows the Sn at the

surface displaces above the Mn by 31 pm (Figure 5.6).

For the (100) surface, the surface layer expansion is 0.005 Å and 0.004 Å for (100)-

A and (100)-B, smaller than Mn3Ga and indicating that the (100)-A configuration

is more bulk-like than the (100)-B as it expands less (Table 5.2). The energy

of formation for the surface is, for the (100)-A surface, 0.136 eV/Å2 and 0.071

eV/Å2 for the Mn-rich and Mn-poor system respectively. For the (100)-B surface,

the surface energies of formation are 0.103 eV/Å2 and 0.168 eV/Å2 for the Mn-

rich and Mn-poor system respectively (Table 5.3). The most stable is the (100)-A

surface termination in the Mn-poor system, similar to Mn3Ge. Surface rumpling
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shows for the (100)-B surface that the Mn species displaces slightly above the

Ga species in the layer below the surface by 13 pm, though only (100)-A sees

significant displacement at the surface by Ga by 16 pm (Figure 5.8). As such,

we see the lowest energy termination is the Mn-poor (100)-A and the termination

with the lowest expansion per unit area is the (100)-A surface.

For the (010) direction, the surface layer expansion is 0.195 Å and 0.080 Å for the

(010)-A and (010)-B surfaces respectively, comparable to Mn3Ge and confirming

that the (010)-A is more structurally comparable to bulk (Table 5.2). The surface

energies of formation for the (010)-A and (010)-B surfaces are 0.106 eV/Å2 and

0.0963 eV/Å2, whereby the (010)-B surface is more energetically stable (Table

5.3). The surface relaxation is largely unremarkable for both surfaces, though

(010)-B has an Mn displace below the surface by 46 pm (Figure 5.9). As such,

we see the lowest energy termination is the (010)-B and the termination with the

lowest expansion per unit area is the (010)-A surface.

5.4.2 Magnetic and electronic effects at the surface

Figure. 5.10: The angles θ and ϕ used to describe the canting of magnetic mo-

ments, projected onto a (001) Mn3X surface. The green arrow is an example of

a magnetic moment with significant variation in θ and ϕ, where the green dashed

lines illustrate the displacement.

The magnetic and electronic properties at the surface are also important to assess;
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Material
Surface
normal

Surface
index

Average θ,
degrees

Average
ϕ, degrees

Maximum
θ, degrees

Maximum
ϕ, degrees

Mn3Ga (001) A 0.58 2.06 1.79 4.80
Mn3Ga (100) A 0.77 10.66 4.88 29.35
Mn3Ga (100) B 0.49 11.75 3.61 44.66
Mn3Ga (010) A 0.17 1.63 0.76 4.61
Mn3Ga (010) B 0.33 6.66 2.14 12.79
Mn3Ge (001) A 1.46 3.22 4.12 6.20
Mn3Ge (100) A 0.26 8.63 0.31 34.31
Mn3Ge (100) B 0.37 8.76 2.71 22.55
Mn3Ge (010) A 0.16 3.26 0.63 13.02
Mn3Ge (010) B 0.24 1.86 1.46 3.26
Mn3Sn (001) A 0.56 2.76 2.58 4.88
Mn3Sn (100) A 0.38 7.99 2.94 30.07
Mn3Sn (100) B 0.42 10.19 3.15 29.00
Mn3Sn (010) A 0.34 1.76 1.94 4.64
Mn3Sn (010) B 0.82 2.25 6.46 4.69

Table 5.4: Angular deviation at the surfaces from bulk.

the distortion at the surface of the magnetic moments tells us how the surface

affects ordering within its proximity. The electronic properties at the surface can

be mapped via the use of PDOS and Bader charge analysis, which allow us to

assess the specific positions close to the surface. We will examine the magnetic

canting, the PDOS, and the Bader charge analysis at the surface. We describe

the angular deviation as a combination of two angles; θ, the deviation normal to

the (001) plane, and ϕ, the deviation in the (001) plane (Figure 5.10).

Mn3Ga

For the (001) surface, very little deviation of the magnetic moments at the sur-

face occurs. There is very little deviation out of plane, with the most significant

deviation being in ϕ (Figure 5.12). Notably θ raises to 2.06◦ at the surface and ϕ

peaks at 4.80◦ (Table 5.4). The Bader charge analysis (Table 5.5) shows that Mn

atoms see a decrease in charge from the bulk average by 0.056 e at the surface,

whereas Ga atoms see an increase by 0.115 e at the surface and 0.030 e at the

second layer over bulk average (Figure 5.13). The standard deviations for the two

species are 0.012 e for Mn and 0.003 e for Ga atoms. For the Mn-PDOS (Figure

5.11a), we see peaks in the Mn bulk at -3.66 eV, -2.95 eV, -1.92 eV, 0 eV, 1.74

eV and 3 eV. At the surface, we see peaks shift; the peak at -3.66 eV merges with
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Figure. 5.11: PDOS graphs in the (001) direction. a) Mn3Ga, b) Mn3Ge, c)

Mn3Sn. The red boxes indicate the regions of interest for PDOS analysis, due to

the peaks contained within.

the peak at -2.95 eV, the peak at -2.95 eV shifts to -3.24 eV, the peak at -1.92

eV merges into the main peak at -3.24 eV, the 0 eV peak simply sees a small

reduction in magnitude, and the peak at 1.74 eV retains its position.

The (100) configuration has significant canting. There is canting present down to

the fifth layer from the surface. For the (100)-A surface, the angular deviation is

up to 29.35◦ out-of-plane in ϕ at the surface, which falls quickly after the second

layer to the bulk configuration. The (100)-B surface sees canting to 44.66◦ in ϕ

at the layer below the surface, a similarly severe amount of angular deviation of

the moment (Figure 5.15). As such, the minimum deviation is seen in (100)-A

(Table 5.4). For the (100)-A surface, the surface Mn layer drops by 0.204 e in

terms of Bader charge then rising to 0.085 e over the bulk average for the layer

below the surface, with the Ga species remaining largely unchanged (Table 5.5).

The standard deviation for this surface termination for each species is 0.039 e for

Mn, and 0.028 e for Ga. The (100)-B surface shows a drop by 0.109 e, then a rise

over bulk charge by 0.155 e under Bader analysis, with the centre region falling

to the bulk average for Mn. For Ga, the (100)-B surface sees a rise by 0.108 e on

average at the surface layer. The standard deviations for the bulk-like regions were
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Figure. 5.12: The magnetic moments and PDOS selection regions for Mn3X alloys

along the (001) direction. a) Mn3Ga, b) Mn3Ge, c) Mn3Sn. The grey ellipsis

indicates the continuation of the supercell of atoms. The gold box represents the

surface layer, and the blue box represents the bulk layer.

Figure. 5.13: Bader charge deviation from bulk average for the Ga atoms within

the (001) surface slab.
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Material Surface normal Termination Bader charge variation, e
Mn3Ga (001) A Mn: -0.056 to +0.013, Ga: 0.115
Mn3Ga (100) A Mn: -0.204 to +0.085, Ga: +0
Mn3Ga (100) B Mn:-0.109 to +0.155, Ga: 0.108
Mn3Ga (010) A Mn: -0.075 to +0.044, Ga: +0.130
Mn3Ga (010) B Mn: -0.078 to +0.041, Ga: +0.054

Mn3Ge (001) A
Mn: -0.045 to -0.015, Ge: -0.010
to +0.037

Mn3Ge (100) A Mn: -0.214 to +0.130, Ge: -0.1

Mn3Ge (100) B
Mn:-0.088 to +0.169, Ge: -0.027
to +0.134

Mn3Ge (010) A
Mn:-0.059 to +0.023, Ge: -0.008
to +0.043

Mn3Ge (010) B Mn:-0.045 to +0.027, Ge: -0.0048

Mn3Sn (001) A
Mn:-0.053 to +0.016, Sn: -0.010
+0.048

Mn3Sn (100) A
Mn:-0.177 to +0.082, Sn: -0.026
to +0.025

Mn3Sn (100) B
Mn:-0.099 to +0.088, Sn: -0.008
to +0.107

Mn3Sn (010) A
Mn:-0.078 to +0.014, Sn: -0.025
to +0.134

Mn3Sn (010) B
Mn:-0.061 to +0.026, Sn: -0.018
to +0.024

Table 5.5: Bader charge variation for the differing terminations of surfaces
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Figure. 5.14: The PDOS of the Mn3Ga (100) surface in comparison to the bulk

for a) (100)-A and b) (100)-B. The red boxes indicate the regions of interest for

PDOS analysis, due to the peaks contained within.

0.029 e and 0.034 e for Ga and Mn respectively. As such, the minimum deviation

is seen in (100)-B for Mn and (100)-A for Ga. PDOS of the bulk system shows

peaks at -2.95 eV, 0.0 eV and 1.61 eV. For the (100)-A surface, PDOS shows

little translation of the peaks at -2.95 eV, 0.00 eV and 1.61 eV (Figure 5.14), with

the former splitting (-3.15 eV and -2.79 eV). PDOS for the (100)-B surface shows

that the bulk and surface differ; the peak at -2.95 eV shifts to -3.22 eV, the peak

at 0.00 eV shifts to 0.41 eV, and the peak at 1.61 eV splits to 1.33 eV and 1.79

eV.

For the (010) surface, we see some angular deviation from the bulk configuration

down to the second layer of material for both surfaces for the (010)-A surface

termination, up to 4.61◦ in ϕ (Table 5.4). The (010)-B surface has more in-plane

canting with an angular maximum of 12.79◦ in ϕ (Figure 5.17). The minimum

deviation of moments is seen in (010)-A. Bader charge analysis shows the (010)-A

surface has a drop of 0.075 e compared to the average bulk Bader charge, then a

rise to 0.044 e above bulk on the second layer, moving to a drop of 0.06 e on the

next layer, before returning to the bulk value (Table 5.5). An increase of 0.130

e from bulk occurs for Ga at the (010)-A surface. The standard deviations for

each species is 0.008 e and 0.015 e for Ga and Mn respectively. For the (010)-B

surface, the Mn species drops by 0.078 e below bulk at the surface, then increasing

by 0.041 e above bulk on the layer below, and the Ga species increasing by 0.054

e at the surface, with standard deviations of 0.009 e and 0.013 e for Ga and Mn

respectively. As such, the minimum deviation is seen in (010)-B, but both surfaces

are very similar. For the PDOS in the Mn-bulk, we see major peaks located at

-2.95 eV and 1.61 eV (Figure 5.16). At the surface layer for the (010)-A surface,
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Figure. 5.15: The magnetic moments and PDOS selection regions for Mn3X alloys

along the (100) direction. a) Mn3Ga (100)-A, b) Mn3Ga (100)-B, c) Mn3Ge (100)-

A, d) Mn3Ge (100)-B, e) Mn3Sn (100)-A, f) Mn3Sn (100)-B. The grey ellipsis

indicates the continuation of the supercell of atoms. The gold box represents the

surface layer next to vacuum, and the blue box represents the bulk layer. The

grey atoms represent Ga. Ge and Sn. The purple atoms represent Mn. The

surfaces for secondary materials (X) with the same chemical group have similar

surface magnetization formation angles, indicating surface canting has some direct

dependence on the group electronic structure.
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Figure. 5.16: The PDOS of the Mn3Ga (010) surface in comparison to the bulk

for a) (010)-A and b) (010)-B. The red boxes indicate the regions of interest for

PDOS analysis, due to the peaks contained within.

which exhibits peaks in the same regions, the -2.95 eV peak does shift to -2.93

eV and splits to -3.12 eV and -2.64 eV. The peak at 1.61 eV shifts to 1.2 eV. The

(010)-B surface differs, with a splitting of the -2.95 eV peak to -3.36 eV and -2.89

eV and the 1.61 eV peak splits to 1.27 eV and 1.73 eV. The 0 eV peak shifts to

0.34 eV.

Mn3Ge

For the (001) surface, we see the small amounts of significant canting of the

surface extend down to the third layer. The surface canting is mostly in-plane,

though there is some small amounts of out-of-plane canting in the top three layers

(Table 5.4). The maximum angle is in θ, raising to 4◦ at the surface (Figure

5.12). For Bader charge analysis, we see a decrease in charge by 0.045 e at the

surface for Mn. For Ga, we see an decrease in charge at the surface and increase

at the second layer by 0.010 e and 0.033-0.037 e respectively (Table 5.5). The

standard deviations are 0.010 e and 0.007 e for Mn and Ga respectively. The

difference in PDOS between the bulk and the surface is relatively minor (Figure

5.11b), with the major peaks at -3.04 eV and 1.55 eV having some shift, with the

former shifting slightly to -2.67 eV and the latter shifting to 1.82 eV. The peak

at -3.49 eV remains in the same place, and the peak at -1.85 eV merges with the

peak at -2.67 eV.

For the (100) direction, we see no significant canting of either configurations below

the surface. The (100)-A surface sees significant canting at the surface layer, up

to 34.31◦ in ϕ. The (100)-B surface sees high angular deviation for the surface

layer and the third layer below, up to 22.6◦ ϕ rotation, followed by up to 13.28◦ for
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Figure. 5.17: The magnetic moments and PDOS selection regions for Mn3X alloys

along the (010) direction. a) Mn3Ga (010)-A, b) Mn3Ga (010)-B, c) Mn3Ge (010)-

A, d) Mn3Ge (010)-B, e) Mn3Sn (010)-A, f) Mn3Sn (010)-B. The grey ellipsis

indicates the continuation of the supercell of atoms. The gold box represents the

surface layer next to vacuum, and the blue box represents the bulk layer.

Figure. 5.18: The PDOS of Mn3Ge’s (100) surface in comparison to the bulk for a)

(100)-A and b) (100)-B. The red boxes indicate the regions of interest for PDOS

analysis, due to the peaks contained within.
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Figure. 5.19: The PDOS of Mn3Ge’s (010) surface in comparison to the bulk for a)

(010)-A and b) (010)-B. The red boxes indicate the regions of interest for PDOS

analysis, due to the peaks contained within.

the third layer, then flattening out to bulk configuration (Figure 5.15). From the

average deviation (Table 5.4), the minimum deviation is seen in (100)-A. For the

(100)-A surface, Bader charge analysis shows a drop from bulk average by 0.214

e at the surface, followed by an increase of 0.130 e on the layer below for Mn, and

for Ge, we see a drop by 0.105 e, with the species’ standard deviations of Bader

charge being 0.024 e and 0.030 e for Mn and Ge respectively (Table 5.5). For the

(100)-B surface, we see the surface layer has an Mn Bader charge reduction of

0.088 e, and an increase by 0.169 e on the next layer, returning to within 0.05 e

of the bulk average on the third layer onward, with an increase in Ge charge by

0.134 near the surface. The standard deviation for the (100)-B surface was 0.023

e and 0.020 e for Mn and Ge respectively. As such, the minimum deviation is seen

in (100)-B. For the Mn-bulk, PDOS shows peaks around -3.04 eV, -2.08 eV and

1.56 eV (Figure 5.18). PDOS analysis shows similar peaks at -3.37 and 1.48 eV at

the (100)-A surface, however the (100)-B surface has peaks of similar position at

-3.21 eV and 1.34 eV. In both cases, the peak at -2.08 eV merges with the peak

at -3.37 and -3.21 eV. The PDOS shows the two surfaces exemplify remarkably

similar distributions.

For the (010) surfaces, the (010)-A surface has some canting on the first surface

layer, up to 13.02◦ out-of-plane in ϕ (Table 5.4). We also see some canting in ϕ

at the (010)-B surface, but this is only up to 3.26◦ at maximum, and is as such

marginal (Figure 5.17). As such, the minimum deviation is seen in (010)-B. Bader

analysis for Mn shows the (010)-A surface charge density dropping by 0.059 e at

the surface layer then peaking by 0.023 e on the second layer compared to the

bulk, and raising by 0.043 e for Ge at the surface (Table 5.5). Standard deviations
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are 0.008 e and 0.004 e for Mn and Ge respectively. The (010)-B surface shows a

drop of 0.045 at the surface for Mn, followed by an increase by 0.027 e, and a drop

for Ge of 0.005 e. All other points are within 0.02 e of the mean, at a standard

deviation of 0.009 e and 0.005 e for Mn and Ge from the mean respectively. As

such, the minimum deviation is seen in (010)-A, but (010)-B deviates least at the

surface itself. For the Mn PDOS, we see the main two Mn-bulk peaks emerge at

-3.04 eV and 1.56 eV (Figure 5.19), with two additional peaks at -2.08 eV and

-0.34 eV. The (010)-A surface shows virtually no shift, only a splitting of the peak

at -3.04 eV, to -3.20 eV and -2.85 eV. The (010)-B surface showing shifts of these

peaks to -3.31 eV and 1.72 eV. The peak at -2.08 eV merges with the main peak

at -3.20 and -3.31 eV, and the peak at -0.34 eV diffuses into the distribution.

Mn3Sn

We see for the surface perpendicular to (001) that the magnetic moments cant

out-of-plane. This canting persists down to the second layer, after which the angle

of the canting is below 2.60◦ in θ, yet also has larger variation in ϕ, at 4.88◦ (Table

5.4). This repeats symmetrically on the other surface of the supercell. Notably,

θ raises to 1.31◦ at the surface and 2.60◦ at the layer below the surface (Figure

5.12). The Bader charge analysis shows a decrease at the first layer below bulk

charge of between 0.053 e and 0.030 e for Mn (Table 5.5). All other layers sit

evenly about the bulk average. For Sn, the first two layers see elevated charge

at 0.037 e above the bulk average. The standard deviations for both species are

0.008 and 0.004 e respectively. PDOS of the surface and bulk shows that the Mn

density of states are only minorly affected, with splitting of the major peak at -3

eV and shifting to -3.30 eV, splitting into peaks at -3.47 eV and -3.14 eV, and the

unifying of the split peak at 1.47 eV (Figure 5.11c). The peak at -2.34 eV merges

with the peak at -2.67 eV. The peak at 0 eV shifts to -0.2 eV.

We see canting of the magnetic moments at the (100) surfaces as well. For the

(100)-A surface, we see the surface layer moments cant at a high angle to two

layers below on both surfaces (30.07◦ and 6.7◦) in ϕ before dropping below the

average. For the (100)-B surface, we see the surface moments cant in ϕ as low

as three layers down, with the surface layer canting by 29.00◦, the second layer

by 7.64◦, then the third layer cants by up to 21.56◦ (Figure 5.15). The minimum

deviation is seen in (100)-A (Table 5.4). For the (100)-A surface, the PDOS we

retrieve for this surface shows a significant difference between the number of peaks

for bulk Mn3Sn and the upper layers of Mn3Sn. The bulk has peaks around -3.96

eV, -3.11 eV and -2.34 eV, showing the triple peak, as well as a split peak at 1.38
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Figure. 5.20: The PDOS of Mn3Sn’s (100) surface in comparison to the bulk for a)

(100)-A and b) (100)-B. The red boxes indicate the regions of interest for PDOS

analysis, due to the peaks contained within.

eV, with peaks at 1.10 eV and 1.58 eV. The surface has dominating peaks at -3.39

eV and 1.38 eV, showing the peaks around -3.11 eV have shifted or merged at

the surface, and that the 1.38 eV peaks have merged. The (100)-B surface shows

remarkably similar PDOS peaks to the (100)-A termination; PDOS shows the two

surfaces have the almost the same location of peak, with the peaks on the (100)-B

surface appearing at -3.32 eV and 1.28 eV (Figure 5.20). Bader analysis shows a

reduction in charge at both surfaces (Table 5.5). For the (100)-A surface, we see

a drop from bulk value of charge for the surface layer for Mn by 0.177 e followed

by an increase to 0.082 e above the bulk charge average, with no major change

for Sn; standard deviations of the charges are 0.020 e and 0.014 e for Mn and Sn

respectively. For the (100)-B surface, we see a drop from the bulk charge value

by 0.099 e at the surface layer, followed by an increase by 0.088 e the layer below

for Mn with Sn increasing by +0.107 e at the surface. The (100)-B surface has

a standard deviation for Mn and Sn of 0.023 e and 0.006 e respectively. As such,

the minimum deviation is seen in (100)-B.

For the (010) surfaces, we see very little canting for the (010)-A surface, indicating

a very stable magnetic surface; the most canting occurs at the surface layer, up

to 4.64◦ in ϕ. The (010)-B surface cants significantly only in the first layer, with

a maximum of 4.69◦ in ϕ and 6.46◦ in θ. The magnetic moments remain virtually

uncanted throughout the films otherwise (Figure 5.17). As such, the minimum

deviation is seen in (010)-B (Table 5.4). In terms of Bader charge analysis, the

(010)-A surface sees a drop by 0.078 e from bulk average for Mn, with Sn seeing

a rise at the surface by 0.14 e above the average bulk charge, decreasing to a

rise of 0.041 e above the surface at the next layer (Table 5.5). The standard
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Figure. 5.21: The PDOS of Mn3Sn’s (010) surface in comparison to the bulk for a)

(010)-A and b) (010)-B. The red boxes indicate the regions of interest for PDOS

analysis, due to the peaks contained within.

deviations of the charges are 0.017 e for Sn and 0.007 e for Mn. The (010)-B

surface sees virtually no change for either species, with Mn dropping the charge

by 0.061 e from average bulk charge at the layer below the surface, and for Sn a

very gradual dispersion from 0.024 e at the surface dropping to the bulk average is

seen. Standard deviations for the two species are 0.013 and 0.014 for Sn and Mn

respectively. As such, the minimum deviation is seen in (010)-B. For the PDOS

in the bulk, we see peaks at -3.96 eV, -3.11 eV and -2.34 eV in bulk, as well as a

split peak centred at 1.38 eV, with peaks at 1.10 eV and 1.58 eV. At the surface,

whilst both terminations exhibit peaks in the similar regions, the (010)-A surface

sees only the 3.11 eV peak shift to 3.34 eV, whereas the split peak centred at 1.38

eV unifies at 1.27 eV; the (010)-B surface sees the centre of the group of peaks at

-3.11 eV shift, with distributions moving from -3.11 eV to -3.34 eV and a unified

peak shifting from 1.38 to 1.62 eV (Figure 5.21).

5.4.3 Randomised magnetic moments at the surface

Whilst the ideal magnetic moments are useful to use for these materials, it is

worthwhile trying to determine what potential surface distortions for the magnetic

moments might result in a lower energy per unit area. Here, we find the formation

energy for partially randomised magnetic moments at the surface and compare this

to the ordered ground state energy, with variations of 30%, which allow for up to

16◦ variation from the original moment (Figure 5.22). 90 different configurations

were trialled for the randomisation, in order to determine the best arrangement

and to find a configuration that converged effectively.
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Figure. 5.22: Example of 30%, or up to 16◦ randomized magnetic moment at the

surface of a (100) Mn3Sn slab. The moments in the gold circles are those that are

randomized. The grey ellipsis indicates the continuation of the supercell of atoms.

Mn3Ga

The moments at the surface of the Mn3Ga were randomized to 30%. The result of

the most-stable randomized configuration for Mn3Ga was no major improvement

on the energetic minimum for Mn3Ga. The difference in energy between the bulk-

like configuration and the most stable randomized moments was +1.48 meV. This

energy difference indicates there is no randomized configuration for these materials

more stable than the bulk-like ordering.

Mn3Ge

For Mn3Ge, the result of the randomized magnetic moments for Mn3Ga was no

major improvement of the energetic minimum for Mn3Ge. Whilst the random-

ized magnetic moments generally converged, we see a significant difference in the

minimum energies of +0.05 to +1.66 eV.

Mn3Sn

Mn3Sn was similarly randomised, and the result of the randomised magnetic mo-

ments for Mn3Sn was no major improvement of the energetic minimum for Mn3Sn.
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These randomised results had a minimum energy that differed to the standard con-

figuration by +0.15 to +1.67 eV, indicating no better stability.

5.4.4 Comparison of substrate interfaces

The interface, when two materials interact, normally has some ionic displacement

due to the differing lattice constants between the two materials. The mismatch

may result in stress or strain applied to the new material it interfaces with, and

conversely applies to the material itself. The result of this strain is the shifting of

ions to compensate for this strain, and thus the electronic reorganisation within

the material as a consequence. At this interface the properties of the two materials

will differ greatly from bulk. We may use these interface properties to induce a

change in the behaviour of the materials in the heterostructure. Analysing this

effect is a key contribution to the effective simulation microscale devices in future.

In this calculation, we add a metallic, nonmagnetic material layer (platinum) to

the antiferromagnetic films. The aim is to determine the changes in the magnetic

interaction at such an interface. We will explore the Bader charge, partial density of

states (such as Figure 5.23) and the magnetic moment per atom at this interface,

with translations to define the most stable combination of the heterostructure.

In our case, due to the similar symmetry of the systems we use, we trialled five

different translations of the platinum and the D019 relative to each other along

the crystallographic a,b axes.

In terms of the lowest energy configuration of the various translations between the

Mn3X materials and platinum, it can be noted that, despite the small magnitude of

difference in energy per unit area from configuration I, configuration II is the lowest

energy state for all materials, by a difference of 0.08 J/m2, 0.15 J/m2, and 0.10

J/m2 for Mn3Ga, Mn3Ge and Mn3Sn respectively. This will be the configuration

we use going forward (Figure 5.24).

Mn3Ga

For Mn3Ga, we see the Bader charge has significant variation at the boundary with

charge being heavily affected by the heterostructure (Table 5.6). The boundary

between the Mn3Ga and the Pt sees a change in Pt, Mn and Ga charges, by

0.388-0.699 e, -0.441 e and -1.544 e respectively. This indicates a charge transfer

across the two materials.

The Mn-PDOS of the most stable configuration shows major peaks in the bulk

at -3.02 eV, -2.24 eV and 1.36 eV. These shift at the interface, with the peak at
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Figure. 5.23: Platinum DOS. We can see the most significant region of this density

of states exists below 0 eV.

-3.02 eV merging with the peak at -2.34 eV, the peak at -2.24 eV shifting to -2.34

eV and the peak at 1.36 eV shifting to 1.65 eV. This indicates a significant change

in the density of states, giving a shift by -0.1 eV and +0.29 eV respectively. The

PDOS of the deeper bulk-like layers compared to that of a continuous bulk are

the same, indicating no shift of the Fermi level (Figure 5.25).

For the heterostructure, the magnetic moments were virtually planar (Table 5.7).

Average out-of-plane deviation, θ, is 1.03◦, peaking at 2.10◦. In-plane, ϕ, average

deviation is 4.31◦ with a peak value of 5.42◦ at the interface (Figure 5.26).

Mn3Ge

For Mn3Ge, we see the Bader charge has significant charge transfer at the interface

(Table 5.6). The boundary between the Mn3Ga and the Pt sees an increase in Pt

charge and a decrease in Mn and Ga charges, by 0.386 e, -0.342 e and -0.757 e

respectively.

The heterostructure modelled shows some changes in the PDOS at the surface,

with peak translation of -2.35 eV down to -2.51 eV, and from 1.22 up to 1.54

eV from bulk to interface. The peak at -3.15 eV reduces dramatically. Using the

shifted peak value as the reference, this indicates the overall shift of -0.16 eV and

+0.32 eV respectively, similar to Mn3Ga. The deeper bulk-like layers compared
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Figure. 5.24: Translations of the D019 (purple and grey atoms) materials relative

to platinum (white). a) the zero translation configuration, I. b) configuration II

and c) configuration III, translations along the b-direction. d) configuration IV

and e) configuration V along the a-direction.

133



CHAPTER 5. INTERFACE EFFECTS ON ANTIFERROMAGNETS

Figure. 5.25: The Mn-PDOS graphs of the D019 materials interfacing with plat-

inum. a) is Mn3Ga, b) is Mn3Ge, and c) is Mn3Sn. The red boxes indicate regions

of interest for PDOS analysis, due to the peaks contained within.

Figure. 5.26: Magnetic moments and PDOS regions for the Pt-Mn3X heterostruc-

ture models. a) Mn3Ga (green and purple atoms), b) Mn3Ge (grey and purple

atoms), c) Mn3Sn (grey and purple atoms). The gold boxes represent the PDOS

bulk region within the Mn3X material, and the green boxes represent the PDOS

interface region for the Mn3X material.
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Material
Mn charge
difference, e

Pt Bader charge
difference, e

Metal X charge
difference, e

Mn3Ga -0.441 0.388-0.699 -1.544
Mn3Ge -0.342 0.386 -0.757
Mn3Sn -0.381 0.394-0.773 -1.795

Table 5.6: Bader charge difference at the interface with platinum, where metal X

represents Ga, Ge and Sn.

to a continuous bulk have peaks in the same position, indicating no shift of the

Fermi level (Figure 5.25).

In terms of magnetic moments in this heterostructure (Table 5.7), this system

has very little angular deviation. The average rotation in-plane, ϕ, is 3.84◦ and

out-of-plane, θ, is 0.95◦, with the peak out-of-plane change being 3.15◦ at the

interface (Figure 5.26).

Mn3Sn

For Mn3Sn, the Bader charge analysis shows significant deviation at the boundary

(Table 5.6). Charge at the boundary layer for platinum sees a significant increase

by 0.394-0.773 e, and decreases for Mn and Sn at the boundary of 0.381 e and

1.795 e respectively.

For the PDOS, the heterostructure analysis shows the comparison of bulk to the

interface layer has a slight deviation of the peak at -2.30 eV to -2.50 eV, and

the peak split at 1.43 eV (1.24 and 1.63 eV) combines and shifts to 1.53 eV.

This indicates a shift by -0.20 eV and on average +0.1 eV respectively, differing

significantly from Mn3Ga and Mn3Ge. The deeper bulk-like layers compared to a

continuous bulk are the same, indicating no shift of the Fermi level (Figure 5.25).

For the magnetic moments, we see distinct canting at the interface (Table 5.7).

The average in-plane canting, ϕ, is 4.95◦ with the interface seeing a 6.69◦ max-

imum at the interface, and out-of-plane we see an average of 3.58◦ with out-of-

plane canting, θ, at the interface reaching 4.85◦ as a maximum (Figure 5.26).

5.5 Discussion

The properties calculated in this chapter are compared to the previous data (Table

5.1). For surface expansion, we calculate 0.876 pm/layer for Mn3Ga and compare

that to the value found in Holguin-Momaca et al’s experimental work of 0.317

pm/layer, whereby the experimental value is 36% of the calculated value [153].
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Material
Average θ,
degrees

Average ϕ,
degrees

Maximum θ,
degrees

Maximum ϕ,
degrees

Mn3Ga 4.31 1.03 5.42 2.10
Mn3Ge 3.84 0.95 6.04 3.15
Mn3Sn 4.95 3.58 6.69 4.85

Table 5.7: Angular deviation at the interface with platinum.

Slab thickness and lattice parameter evolution were measured using RHEED in

Holguin-Momaca et al’s study. This difference in quantity shows the simulation

approach is potentially allowing the system to expand significantly more than ex-

perimentally observed.

However, for Mn3Ge and Mn3Sn, we calculate expansions of 3.390 pm/layer and

1.320 pm/layer respectively. The expansion for Mn3Ge is contrasted by the re-

sults from the study by Hong et al of 8.310 pm/layer (measured using XRD and

AFM) [175]. For Mn3Sn, experimental studies find expansions of 0.253-1.860

pm/layer. These studies are by Liu et al (and measured using both RHEED and

high-resolution XRD) and Markou et al (lattice parameters measured by XRD

and the thickness measured by quartz crystal microbalance and z-ray reflectivity)

[174, 164] respectively. We can see that the calculated expansion for Mn3Ge is

24% of value in Hong et al’s study. This indicates that the calculation may limit

expansion of this surface, in contrition to the calculation for Mn3Ga.

Liu et al’s study shows an expansion that is 5.21 times smaller than the calculated

value for Mn3Sn, whereas the expansion from Markou et al is 1.41 times larger,

giving a wide range of values; this indicates experimental approaches have some

disagreement, though the calculated expansion is within the region of agreement

for the two expansion values. However, we may contend that the expansion from

experiment is measured over one surface whereas the calculated expansion is taken

over two surfaces, meaning the expansion may not align perfectly over the two

surfaces, which will affect the comparison to calculation by a factor of 2. As well

as this, noting how the thickness of the calculated surfaces is different to that of

the experimental surfaces will affect the expansion due to the wider bulk region,

affecting the scaling.

With the calculation method, we’re able to directly compare several materials using

an identical approach to determine relative property differences, a unique aspect

to this research. As such, the simulated comparison of PDOS peaks allows us

to see the relative changes of the density of states between materials. As well

as this, determining the PDOS at the interface and surface of these materials
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allows for comparison of specific regions within these materials. For the following

comparisons, we compare bulk regions to theoretical studies in literature. The

major PDOS peaks identified in literature (Table 5.1) may be compared to the

calculated peaks in bulk. We see that the major peaks for Mn3Ga from the

theoretical work by Khmelevskyi, Ruban and Mohn match very well to the peaks

we calculated in terms of their energetic location [212]. However, the nature of

the peaks should be noted to be slightly different around -3 eV, as Khmelevskyi,

Ruban and Mohn’s study indicates a largely featureless and wide peak. We see

several individual peaks that are well-isolated. This indicates reasonable agreement

between the KKR-LSDA and PBEsol-DFT methodologies used in the reference and

calculation respectively, though the results from each are not identical.

For Mn3Ge, we see major peaks at -3, -2 and +1 eV from Wang et al’s theoretical

work [160]. This correlates well with the simulated PDOS in bulk, with major

peaks at -3.09 eV, -2.35 eV and 1.19 eV. The nature of the peaks is largely the

same, and as such is in reasonable agreement to Wang et al’s study in bulk in the

(001) direction, confirming the validity of our approach; as seen in chapter 3, we

note the similarity of PBE and PBEsol GGAs in characterisation, and so we may

determine the agreement here is to be expected to some extent, though we should

note the novel approach we take using a GGA+U method will provide differences

in the PDOS distribution.

For Mn3Sn, Zhang et al’s theoretical study predicts peaks at -2.50 eV, 0.51 eV

and 0.4 eV, and Yang et al’s work predicts peaks at -3, -2.51, -2.10 and 1.41

eV[213, 215]. Whilst these studies disagree somewhat, there is notable agreement

for features around -2.50 eV. The calculated results indicate peaks at -3.87, -3.09

and -2.30 eV, as well as a positive peak that flattens around 1.24-1.63 eV. Whilst

shifted significantly in the negative region of energy, these results are largely similar

in nature to those of Yang et al’s study, indicating a reasonable agreement for most

peaks. Zhang et al’s work is mostly dissimilar in the positive region of energy. Our

own approach differs slightly from both, with a PBEsol-GGA+U with U=1 eV. The

comparatively similar methodology for each piece of literature provides distinctly

different answers to each other, yet the agreement is quite strong between Yang

et al’s theoretical study and the calculated results, which is to be expected from

the somewhat similar approach. However, the combination of a differing GGA, a

differing U-value and a higher cutoff seems to have a distinct effect on the positive

region of the PDOS in the work by Zhang et al; this produces distinct differences

between the calculated results and Zhang et al’s theoretical study.

The shift in PDOS peaks at the surface are generally small, but most are shifted
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away from the Fermi surface. We note that the largest shift on Mn3Ga is 0 eV

to 0.41 eV at the (100)-A surface, a very large shift in peak position, indicating

comparatively radical changes in Mn electronic structure at the surface. This

material also sees comparatively large shifts on other surfaces. For Mn3Ge, less

radical shifts of peaks occur, with both (100) surface terminations shifting by 0.33

eV, with shifts on other surfaces reaching similar quantities. For Mn3Sn, the shift

is even smaller at 0.28 eV for the (100)-A surface termination, with other surfaces

struggling to approach the same magnitude of shift. However, though the shifts

are relatively small, it should be noted all are still significant shifts, indicating the

surfaces produce significant changes to the Mn electronic structure.

Formation energy for Mn3Ga is largely very similar across all surfaces investigated.

The variation in energy across the various surfaces is small, with a range of 0.064

eV. The lowest energy surface is the first configuration of Mn-rich surface in the

(100)-A configuration at 0.095 eV/Å2, and the highest is the second Mn-rich

(100)-B direction configuration at 0.159 eV/Å2. This is indicative of the surface

formation being similarly stable for all orientations, and as such having no majorly

preferred orientation.

Mn3Ge has a remarkably stable (001)-direction termination at 0.012 eV/Å2, 12.4

times lower than the least stable configuration of the Mn-rich phase of the (100)-

A configuration at 0.144 eV/Å2. This indicates a departure from Mn3Ga in that

there is a dedicated most stable direction, (001), which is also orthogonal to that

of Mn3Ga.

Formation energy in Mn3Sn has a similarly small variation of energy to Mn3Ga, with

minimum energy being 0.071 eV/Å2 and maximum of 0.168 eV/Å2 at the (100)-B

Mn-poor configuration, however in this case the minimum energy configuration is

the (100)-A type for the Mn-poor region. Whilst the range is larger than that

of Mn3Ga at 0.097 eV/Å2, it’s still a small enough range to determine no major

preference in direction.

For the alteration of magnetic ordering at the surface, we note that in general

the configurations have very varied canting in-plane and out-of-plane (Table 5.8).

For θ and ϕ for Mn3Ga, we see average canting of 0.49◦ and 11.75◦ for (100)-

B, 0.17◦ and 1.63◦ for (010)-A. From the data we calculated, we can determine

the most bulk-like surface of the magnetic ordering is the (010)-A direction. The

largest deviation is the (100)-B surface at 44.66◦ in ϕ at the surface, indicating

this surface is particularly heavily affected by the breakdown in periodicity. For

θ and ϕ for Mn3Ge, we see average canting of 0.26◦ and 8.63◦ for (100)-A,

0.24◦ and 1.86◦ for (010)-B. From this, we can determine the most bulk-like
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surface of the magnetic ordering is the (010)-B direction. The largest deviation

is the (100)-A surface at 34.31◦ in ϕ at the surface, indicating this surface is

again particularly heavily affected by the breakdown in periodicity, maintaining a

consistently deviated magnetic order. For θ and ϕ for Mn3Sn, we see average

canting of 0.38◦ and 7.99◦ for (100)-A, 0.34◦ and 1.76◦ for (010)-A. From this,

we can determine the most bulk-like surface of the magnetic ordering is the (010)-

A direction. The largest deviation is the (100)-A surface at 30.07◦ in ϕ at the

surface, indicating the (100) surface is of remarkable deviation across all materials

to a consistent extent.

Bader charge variation indicates the charge redistribution at the surface of a mate-

rial (Table 5.8). This alteration in charge will affect the interface polarization of a

material at a given thickness. For Mn3Ga, we see that the largest change in charge

at a given surface is for the (100) direction of the (100)-A type. Specifically, the

charge on Mn atoms varies by 0.289 e over two surfaces. This is followed closely

by the (100)-B termination at 0.255 e change for Mn over two surfaces. The

major differences for the (010) surfaces are small Mn variations of 0.119 e. For

the charge on Ga at the surface, the (010)-A increases by 0.066 e on the (010)-A

termination over the (010)-B termination, and for the (001) configuration we see

similar Ga variations to (010) by 0.115 e and very small Mn differences of -0.068

e, opposite in variation to (010). We can therefore say the (001) direction is the

most consistent with bulk at the surface for Mn and of reasonably small charge

variation for Ga, making (001) useful orientation for terminating thin films (Table

5.8).

For Mn3Ge, we find the (100) direction’s (100)-A has a very large variance of

charge over the first two layers of 0.227 e for Mn, with at 0.100 e drop for Ge. For

the second termination, we find an Mn difference of 0.259 e and an increase in Ge

of 0.161 e. For (010), the magnitudes of the Mn charge variations are 0.082 e and

0.072 e for the (010)-A and (010)-B terminations, with Ge varying far less in the

(010)-B termination. For the (001) direction, we see a maximal charge variation

of 0.060 e for Mn and 0.047 for Ge, varying over two layers (Table 5.8). Overall,

the (001) layer is the least varied orientation for thin films charge-wise.

For Mn3Sn, we note the (100) terminations’ charge variations of 0.259 e and 0.187

e for the (100)-A and (100)-B respectively for Mn, with no significant Sn charge

deviation. The (010) direction has less charge variation at the surface than (100)

with the terminations varying by 0.092 e and 0.087 e for the for the (010)-A and

(010)-B respectively for Mn. For Sn, variations are 0.156 e and 0.042 e for the

(010)-A and (010)-B respectively, larger than any (100) change for Sn. For (001),
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the first layer has charge variation up to 0.069 e for Mn, with Sn variation up

to 0.058 e, bucking the trend for these materials and making the (001) direction

fractionally more variable in terms of surface charge than the (010)-B for (010)

(Table 5.8).

Substrate interaction is then the next point of interest. We determine that the

lowest energy relative translation state for the platinum and the D019 materials

is configuration II. It should be noted that, as the D019 materials are all similar

in structure, the fact they all share the same minimum energy translation is not

a point of concern, moreso a point of useful comparison and confirmation. The

energy minimum differences from configuration I are all sufficiently low, on the

typical order of configurational differences in DFT at around 0.1 J/m2.

For Mn3Ga on Pt, the interface sees a shift in the magnetic moments of up to

8.12◦ in-plane (θ) and 2.10◦ out-of-plane (ϕ) (Table 5.8). This matches the

surface interaction out of plane insofar as the change of magnetic moments is

small. In-plane magnetization changes are significantly higher by a factor of 4.

Mn3Ge has a much lower in-plane rotation maintaining a peak near the average

(3.84◦), and out-of-plane only peaking at 3.15◦, somewhat similar to Mn3Ga. For

Mn3Sn, however, the angle of canting is between both Mn3Ga and Mn3Ge with an

in-plane peak of 6.69◦, but exceeds both Mn3Ga and Mn3Ge out-of-plane with a

4.85◦ maximum. The indication here is that Mn3Sn sees the most effect from the

substrate and as such is more sensitive to changes in the substrate; those materials

with very small canting are minimally affected by the substrate and as such will

have a more consistent SOT contribution than those with higher canting angles.

Bader charge analysis shows some significant charge transfer occurring at the in-

terface of materials. For Mn3Ge, we see a far lower change in the charge transfer

from the interface Ge atoms than for the Ga and Sn atoms of the other het-

erostructures, at 0.757 e vs 1.544 e and 1.795 e for Ge, Ga and Sn respectively

(Table 5.8). The changes for platinum and manganese remain largely the same

between the heterostructures, as would be expected, making these useful compar-

isons. The charge transfer produces an electronic polarisation across the interface

by generating regions of high and low charge. We may therefore note that Mn3Ge

has the least charge transfer making it the least polarised, with Mn3Sn being the

most polarised. This correlates with the magnetic moment canting, insofar as the

minimal canting and minimal charge transfer occur in the same material, Mn3Ge.

The PDOS shows significant effect by platinum to affect the density of states.

Generally we see the centre of the peak shift further toward the extremes. Mn3Ga

sees a shift by up to -0.1 eV and +0.29 eV compared to bulk. For Mn3Ge, the
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PDOS sees shifts by up to -0.16 eV and +0.32 eV. Mn3Sn sees shifts by -0.2 eV

and +0.1 eV. The platinum therefore moves the states further from the Fermi

energy on epitaxial combination. As the larger peaks shift away from each other,

we note the conductivity will decrease due to the reduction in conductive bands

proximable to each other. It should be noted that the presence of platinum does

not shift the Fermi energy in any of the DO19 materials, indicating it does not

affect the conductivity of the material for the heterostructure to be involved.

We note that the surfaces see minimal charge transfer at the interface and have

very significant canting of the moments, whereas the heterostructure interface with

Pt has significant charge transfer with smaller canting. We note that the (100)

surfaces for all three materials generally incur the largest maximum and average

canting, with the (010) surfaces following, then the (001) surfaces, and that the

lowest charge transfer is at the (001) surface, with larger charge transfer at the

(100) and (010) surfaces. The only exceptions to this trend are surfaces of similar

charge transfer. For the Pt interface, the largest charge transfer does take the

largest average moment canting in Mn3Sn, and similarly the lowest charge transfer

sees the lowest canting in Mn3Ge. The ordering does significantly mitigate canting

in the (001) surfaces, where we see lower moment canting for both systems.

5.5.1 Sources of inaccuracy

For the structural calculations, as well as the calculations of the layer expansion,

the sources of potential error may come from the limitations of VASP due to

the thickness the layer. There is a limited number of atoms VASP can efficiently

simulate based on the computing power available, resulting in the limitation of

thickness of the layer. This makes comparison to some studies using thicker ma-

terials difficult. Similarly, magnetic ordering may have some error attributed to

the layer sizing and periodic nature of the simulation. By using a far thicker layer,

we may assess a more reasonable bulk-to-surface progression of magnetic order-

ing. Other limitations in the calculated approach may be the approximate nature

of DFT; the exchange-correlation functional cannot be computed exactly, and as

such may result in a systematic error when comparing to experimental data.

Bader charge analysis may have significant differences to comparable studies due

to the potential difference in the number of charge centres to be integrated over.

Assessment closer to the surface should still be reasonable as the distribution of

charge should compare well locally but for nonlocal comparisons or for assessing

effects over wider bulks this effect can become significant. As well as this, the

charge centering may differ based on the method used and thus dramatically af-
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fect the charge localisation of the materials, resulting in configurations that are

unrealistic. Whilst this should only be a minor error in this work, it is important

to note the contribution charge localisation may provide to this calculation.

For the PDOS, the difference in simulation methodology in comparison to other

studies may be responsible for the mismatch in peak location due to the differing

treatment of electronic state calculation. As well as this, the selection of sym-

metrically inequivalent layers will dramatically change the result of the simulation,

as well as differences in the supercells between the reference study and the cal-

culation. On this basis, whilst we choose to do single-layer projections for most

comparisons, multilayer comparisons may find differing peak locations and magni-

tude, thus this discrepancy should be taken into account. As we mainly reference

the largest peaks, this shouldn’t be of major significance.

Temperature effects have also been ignored. The calculations we perform operate

under the zero temperature condition, and therefore may not duplicate systems of

higher temperature well. As such, we will have a systematic error associated with

comparison to higher temperature systems.

The interface between materials has also been idealised. Due to the semi-infinite

nature of our model slab, the interface is restricted to a small infinitely-repeating

cell which cannot be extended to encounter point defects such as vacancies or

extended defects such as dislocations. Consequentially, effects unique to these

defects will not be taken into account and may therefore provide distinct electronic

and structural differences to experiment.

5.6 Conclusion

We note that the findings of previous research (Table 5.1) match well to the

calculated values for the expansion of the D019 materials, within picometres of

experimental value for expansion (Table 5.3). The PDOS of the bulk of the

D019 materials generally match well, with exception of Zhang et al [213] with the

positive region differing by 0.9 eV. We can therefore conclude that the calculated

properties of the D019 materials at a surface, such as the layer expansion, are

reasonable, and can go forward with the rest of the surface characterisations.

We have determined here the properties of interfaces in anticipation for potential

optimisation of heterostructure devices.

The material properties deviate from bulk at the surface both structurally and

magnetically. We see the surface rumpling alter the positions of atoms significantly,

with the most extreme rumpling being Mn3Sn’s (001) configuration at 31 pm
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displacement of Sn (section 5.4.2). The least affected are the (010) configurations,

which had less that 1 pm displacement of any atom. This allows us to conclude

the (010) configurations are the most similar to bulk in terms of structure, which

should preserve the structural properties up to the surface. However, the most

energetically stable surface is Mn3Ge’s (001) configuration (Table 5.3), and as

such the relaxed surfaces with more significant displacement may still be the most

stable. Expansion perpendicular to the surfaces is also calculated, with the largest

expansion being Mn3Sn’s (100)-B surface at 5.87 pm/layer, though all expansions

are relatively low, indicating the layer expansion does not play a significant role at

the surface. Novel findings of this section include the variation in the magnetic

moments immediately at the surface, whereby the least affected surfaces are the

(001) configurations for Mn3Ga and Mn3Sn, and the (010)-B surface for Mn3Ge.

These values are all below 5◦ average variation, with some variation being less that

1◦, indicating significant similarity to bulk and thus similar SOT variation. We can

compare this to the PDOS changes at the surface and note that the changes to

the magnetic moment support the conclusion that the electronic structure must

be significantly affected by the surface, with PDOS shifts in Mn3Ga of up to 0.41

eV.

For the platinum-substrate D019 heterostructures, we have evaluated the magnetic

and electronic properties as well as confirming the structural ordering preference

of the two materials with respect to each other via translation. We can conclude

that the presence of the platinum layer significantly affects the magnetic moment,

particularly in-plane, causing all materials to deviate from bulk significantly. We

note that Mn3Sn had the largest in-plane change of magnetic moment angle at

4.85◦ at the surface, nearly double Mn3Ga’s value of 2.10
◦(Table 5.7). This implies

significant magnetic effects come from the interface and so thicker films of Mn3Sn

will be needed than the other D019 materials in order to preserve bulk-like SOT

variation. Novel findings include the charge transfer at the interface. The charge

transfer details the significance of the near-interface electric field and the depth to

which the resistive nature of the combination may be affected; we see the smallest

charge transfers at the surface of order 0.1 e, implying charge redistribution at the

surface is not responsible for significant conductivity effects. However, the largest

charge transfer exists at the interface of Pt and Mn3Sn for Sn at 1.795 e, with all Pt

interfaces showing significant charge transfer, resulting in charge polarization of the

interface (Table 5.6). As well as this, the bulk PDOS is affected by the interface.

For the Pt interface, we see little effect on the bulk implying the Fermi energy

is not affected by the platinum layer and thus conductivity is largely unaffected,
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but at the interface we see the shifts in peaks become significant, deviating away

from the Fermi energy by up to 0.32 eV, indicating the Mn structure becomes

strained somewhat and shifts slightly at the interface due to the heterostructure

being formed.
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Chapter 6

Conclusion

To conclude this thesis, we will summarize the major results of the research chap-

ters and discuss the future research opportunities. This thesis covers a deep range

of results and so we will dedicate discussion and comparison of these to this section.

We firstly recap on the overall impetus of this research. For spin-orbit torque

(SOT)-antiferromagnetic (AFM) memory devices, we are interested in the screen-

ing of AFM Mn-alloys to determine their material properties and the effects of

interfaces for their application in AFM read and write layers for spintronic memory

devices. We begin with discussing the results for the bulk L10 materials. We then

discuss how these materials compare and what the calculations determine may be

useful as applications for these materials. After this, we discuss the L12 and D019

bulk properties, with care to elaborate on the utility of investigating the strain. We

compare these to the L10 materials in order to compare and contrast the utility in

an SOT-AFM device. Finally, we discuss the further D019 calculations, and their

application to device-specific properties so that it is seen as to how this research

best relates to more practical designs of SOT-AFM devices.

In chapter 3, six L10 Mn-alloys were characterised for their structural and magnetic

properties in order to determine the most effective characterisation approach using

density functional theory (DFT). We compare the simulated results to a wealth

of experimental and theoretical data as well as making predictions as to the prop-

erties of the materials that do not have existing literature. The L10 materials

are all collinear, with MnGa being the only ferromagnet of the six alloys. The

remaining materials were all collinear antiferromagnets. Using MnGa to form the

basis of comparison to experimental and theoretical literature (Tables 3.1, 3.2), we

determined the optimal calculation methodology to be PBE functional revised for

solids (PBEsol)+U and U=1 eV respectively. Comparison of structural properties

to previous studies (Table 3.3) shows general agreement to the calculations to

within 0.02 nm or less for lattice parameters, which reinforces the correct selection
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of the method and the predictive capability of the simulated approach. It therefore

indicates we can use this to structurally characterise and compare each material

using this unified approach. Magnetic ordering shows general agreement across

the board to experiment to within 0.5 µB , down to the ordering configuration for

the antiferromagnets (Table 3.4). Whilst some materials do not reconcile with the

exact magnetic moment ordering in terms of the ground state orientation that are

determined in previous studies, such as MnPt’s 45◦ canting from the (001) plane

as in Andreas et al’s study [43], we can conclude that magnetic properties can be

predicted using the simulated approach; we can predict exact ordering and values

of the magnetic moments to within 0.5 µB .

We see a large value of the magnetic anisotropy energy (MAE) for MnIr at -

4.187 meV/FU, compared to more typical values of MAE of around one order

of magnitude less, such as 0.372 meV/FU for MnGa (Table 3.4). Easy axes are

identified that align with previous studies though some experimentally observed

features are not seen due to low energy, such as the 45◦ canting for MnIr seen

in the theoretical study by Mohn et al and for MnPt seen in the experimental

study by Andreas et al [133, 43]. We may conclude from the comparable results

to previous theoretical and experimental studies that the simulated method has

a reliable predictive capability for the MAE. The calculated prediction for MnIr’s

MAE was within 0.69 eV/FU, or 20% of the reference value from the study by

Umetsu et al [44]. Other characteristics of Mn-alloy antiferromagnets can be

predicted with similar degrees of precision.

In chapter 4, the L12 and D019 noncollinear antiferromagnets were investigated.

For these materials, we investigate the structural and magnetic properties like

the MAE, as well as further electronic properties like the band structure; we also

investigated the effects of strain on the materials to investigate the effects on

the structural, magnetic and electronic properties. We restrict this to strain to

the (001) plane in order to maintain symmetry and support comparison with ex-

isting literature. Both the D019 and L12 materials were simulated to determine

the structure, magnetic ordering, magnetic moment, and plane-restricted magne-

tocrystalline anisotropy energy. D019 materials were also simulated to determine

the effects of planar straining, specifically the structure, formation energy and the

changes in band structure with particular focus on the shifting of Weyl points.

We find the calculated structural properties compare to experimental and theo-

retical findings well (Tables 4.1, 4.2), with experimental and theoretical literature

volunteering structural parameters differing by 10’s of pm at most (Table 4.3).

Magnetic properties are of some significant disagreement though, with experimen-
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tal studies like that of Chen et al showing up to 40% difference from the calculated

value for Mn3Ge (2.21 µB from the experimental study by Chen et al vs the calcu-

lated value 3.09 µB), though we may also note that the literature also has a wide

range of values, such as Yang et al’s theoretical study (2.7 µB). We note that the

MAE is predicted to be of far lower magnitude for the evaluated D019 materials

than for the L12 material (e.g. 6.26 meV/FU for Mn3Ir vs. 27.70 µeV/FU for

Mn3Ga), a likely consequence of the high atomic number of Ir, indicating that

switching the magnetic ordering between high and low energy states would be less

energetically expensive for the D019 materials per formula unit, though the func-

tionality at room temperature will depend on the volume of the material used. We

calculated the effects of straining the D019 lattices (Table 4.4), which is necessary

to simulate epitaxial growth on a substrate material, such as in a heterostructure

device. For each material, this strain results in an asymmetric change in formation

energy of the strained structure (with a minimum at 0% strain) and reduction in

the c-lattice parameter with increasing strain (Figure 4.10). The existence and

change in location of Weyl points is then determined from band structure calcu-

lations at 0% strain and ±6% strain (Figure 4.11). We note that Mn3Ga has no

Weyl points in our band structures, but Mn3Ge and Mn3Sn do have 1 and 2 Weyl

points respectively. Mn3Ga does however show significant variation with strain

in terms of band structure. In Mn3Ge, the Weyl point steadily rises in energy

with an increase in strain by +0.220 eV. In Mn3Sn, the Weyl points both follow

differing trends, with the Weyl point nearest the K k-point rising very slightly in

energy above 0% strain, but the number of Weyl points remains the same across

the strain range. For the Weyl point closest to the M k-point, the energy varies

greatly, rising before 0% and then falling with strain, though retaining the same

nature throughout. We also see the magnetic moment magnitude changes con-

sistently with strain, though not strictly linearly, indicating strain may be used to

adjust this magnetic property. As well as this, the number of the Weyl points will

not be affected by low strain, maintaining the potential high mobility and thus

high switching speeds within the noncollinear antiferromagnets.

In chapter 5, the surface and heterostructure interface effects for D019 materials

were investigated. We selected to use a simulation of epitaxially combined Mn-

alloy and platinum. We characterised the magnetic distortion, charge transfer and

densities of states at the surface, as well as the structural properties and deviations

from the bulk. The expansion of materials matched reasonably well to the exper-

imentally predicted expansion (Table 5.1), whereby we find the calculated results

(Table 5.3) to be within the order of magnitude of experimental expansion, with
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individual layer expansions at the surface (Table 5.2) rarely exceeding 0.2 Å, and

for calculated expansion of Mn3Sn to be within the range of experimental results

from Markou et al and Liu et al [174, 164]. We may conclude the simulated model

can predict overall expansion to within tens of picometres per layer and that the

surface relaxation is reasonable for these materials. We determined the magnetic

distortion at the surfaces was generally quite significant (Table 5.4), with the max-

imal canting up to 44.66◦ in ϕ for Mn3Ga’s (100)-B termination. This is likely

to affect changes in the MAE at the surface and at material interfaces, meaning

limitations to minimum thickness may be necessary to avoid MAE variations away

from bulk behaviour. This is very important in nanoscale thin film devices to

ensure effective switching with predictable states.

The Bader charge analysis revealed significant charge transfer at the material

interface between D019 materials and platinum (Table 5.6), with up to -1.795 e

charge transfer in Sn for Mn3Sn on Pt and up to -0.441 e charge transfer in Mn in

Mn3Ga on Pt across the first layers of Pt and Mn3Ga. Large charge transfer implies

electric field generation at the boundary which will affect conductivity through the

boundary, altering the resistive state of any heterostructure. At the surface (Table

5.5), whilst some charge effects are visible, the surface charge deviation is fairly

minimal with a maximum charge variation of 0.344 e over the first two layers in Mn

for Mn3Ge compared to the larger charge transfer at the material interface. The

depth of significant charge transfer at the surface is useful to determine a minimum

thickness of the D019 material to maintain bulk-like behaviour and determine the

reduction in conductivity at interfaces; we may conclude that interfaces beyond 2

layers deep are commonly very bulk-like in terms of charge distribution.

The projected density of states (PDOS) shows significant effects of both the sur-

face and platinum interface on the density of states, with shifts up to 0.41 eV at

the surface for Mn3Ga (section 5.4.4). The shift at the surface indicates a signifi-

cant electronic relocation within the Mn system, which is important to understand

as the Mn is the species with non-zero magnetic moment and often has a signifi-

cantly smaller rumpling than the non-Mn species, making structural changes hard

to identify. Whilst the Fermi energy remains the same for the platinum layer and

the D019 material, indicating no major change in the conductivity of the interface,

the shift of densities of state by up to 0.32 eV reinforces the Mn does have some

rumpling, with state densities becoming significantly more disparate.

This research supplies significant data on the predictive capability of simulating

antiferromagnets and comparing them directly. Whilst a wide array of materials

have been considered, further research could be generalised for an even wider ar-
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ray of antiferromagnets. It would be advantageous to generate a large database

of comparable antiferromagnets for use in characterising and tuning AFM experi-

ments and devices, specifically noncollinear antiferromagnets when considering the

interesting changes in MAE found in this research such as strain sensitivity, charge

polarization at Pt interfaces and Weyl fermion effects. Further antiferromagnet

characterisation is also a useful aspect of any continued research. The data on

interface interaction gathered in this research will influence the understanding of

the boundary effects in SOT-AFM devices so that these devices may be better op-

timised in their construction and in the understanding of the underlying electronic

effects. Further research into the specific interactions at an interface would there-

fore be a useful avenue of exploration, especially when considering the findings

regarding conductivity and Weyl points for heterostructures in this thesis.

Further research into the effects of different nonmagnetic metals as substrates

for the Mn-alloys, and to complete anomalous Hall effect calculations [22] into

the AFM materials and interface heterostructures for more comprehensive device-

based characterisation, would further expand on the interface research within this

thesis. It would also provide further insight into potential low-cost substrates and

substrate tuning.

Overall, we have successfully produced a method of predictively characterising

AFM materials for their structural, magnetic and electronic properties. We have

investigated both collinear and noncollinear Mn-alloy AFM materials, investigated

strain effects and interface effects, and determined the magnetocrystalline anisotropy

and the nature of the anisotropy from this model. This thesis provides a useful

platform for developing comprehensive data on AFM materials for potential use in

heterostructure devices, with evaluation of strain and interface properties calcu-

lated for a range of materials. This research will aid in the screening and charac-

terisation of antiferromagnets and heterostructures with a view to implementation

in future SOT-AFM devices.
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Acronyms

AFM antiferromagnetic. 4–6, 10, 12, 35, 45, 47, 50, 57, 58, 60, 69, 72, 79, 84,

87, 89, 96, 101, 102, 108, 136, 146, 150

AM05 Armiento-Mattsson 2005. 54, 56

CASTEP Cambridge serial total energy package. 9

DAE dipole anisotropy energy. 54, 60–64, 66, 87, 88, 90, 96, 97

DFT density functional theory. 8, 9, 12, 13, 15, 20, 22, 40, 44, 50, 51, 53, 65,

66, 74, 75, 83, 85, 99, 104, 108, 109, 138, 141, 142, 146

DFT+U density functional theory with Hubbard U. 22, 47, 78, 103

DMI Dzyaloshinskii-Moriya interaction. 41–43

DOS density of states. 106, 132, XIII

EDX energy dispersive x-ray. 81

EDXS energy dispersive x-ray spectroscopy. 82

EPMA electron probe microanalysis. 82

ETO electrical transport option. 82

FM ferromagnetic. 2, 4, 5, 35, 47, 50, 54, 57

FP-LAPW full-potential linear augmented plane-wave. 51–53, 62, 73, 85

GGA generalized gradient approximation. 9, 21, 32, 54, 73, 83, 85, 108, 138,

VIII

ICP-MS inductively coupled plasma mass spectrometry. 48

ICP-OES inductively coupled plasma optical emission spectroscopy. 81
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Acronyms

JAMS Just Another Magnetic Simulator. 9, 10, 40

KKR Korringa-Kohn-Rostoker. 51, 52, 108, 138

LDA local density approximation. 9, 20, 21, 23

LMTO-ASA linear muffin tin orbital with atomic sphere approximation. 51, 53,

62

LSDA local spin-density approximation. 51, 53, 62, 106, 138

M06-L Minnesota 2006 local function. 54

MAE magnetic anisotropy energy. 40, 43, 45–54, 56, 60–64, 66–68, 73–75, 77,

79, 81–84, 86–90, 95–98, 100, 147–150, XIV, XV

MBE molecular beam epitaxy. 49, 108

MOKE magneto-optical Kerr effect. 50, 82

MPMS magnetic property measurement system. 82

MRAM magnetoresistive random access memory. 1–5

PAW projector augmented wave. 28, 30, 47, 52, 53, 78, 103

PBE Perdew, Burke and Ernzerhof. 21, 47, 51–54, 56, 73, 83, 85, 108, 138

PBEsol PBE functional revised for solids. 54, 56, 66, 75, 78, 104, 138, 146

PDOS projected density of states. 9, 52, 102, 106–108, 118, 122, 124, 126–129,

131, 132, 135, 136, 138, 141–144, 149

PW91 Perdew-Wang. 54, 56

PWBS plane-wave basis set. 25, 29

RBS Rutherford backscattering spectrometry. 78

RHEED reflection high-energy electron diffraction. 108, 136

rPBE revised PBE. 21, 54, 56

rSCAN revised SCAN. 54, 56
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Acronyms

rTPSS revised Tao, Perdew, Staroverov, Scuseria. 54, 56

SCAN Strongly Constrained and Appropriately Normed. 54

SCF self-consistent field. 20, 26

SEM scanning electron microscopy. 81, 82

SIE self-interaction error. 22

SKKR screened Korringa-Kohn-Rostoker. 73, 83

SOC spin-orbit coupling. 29, 30, 40, 51, 53, 54, 56, 60–66, 74, IX

SOT spin-orbit torque. 4, 11, 101, 102, 141, 144, 146, 150

SPR spin-polarized relativistic. 52

SQUID superconducting quantum interference device. 49

STM scanning tunnelling microscopy. 49

STT spin transfer torque. 4

TEM tunnelling electron microscopy. 80

TMR tunnelling magnetoresistance. 2–6

TR-MOKE time-resolved magneto-optical Kerr effect. 82

VASP Vienna ab-initio simulation program. 9, 13, 22, 30, 44, 106, 142

VSM vibrating sample magnetometer. 81–83

XC exchange-correlation. 13, 19–22, 75

XRD x-ray diffraction. 48, 49, 78, 80–82, 108, 136
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[1] Jamie H. Warner, Franziska Schäffel, Alicja Bachmatiuk, and Mark H.
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[115] Tôru Moriya. Anisotropic superexchange interaction and weak ferromag-

netism. Physics Review, 120:91–98, 1960.

[116] Hua Chen, Tzu-Cheng Wang, Di Xiao, Guang-Yu Guo, Qian Niu, and Al-

lan H. MacDonald. Manipulating anomalous hall antiferromagnets with mag-

netic fields. Physics Review B, 101:104418, 2020.

[117] A. Kohn, A. Kovács, R. Fan, G. J. McIntyre, R. C. C. Ward, and J. P. Goff.

The antiferromagnetic structures of IrMn3 and their influence on exchange-

bias. Scientific Reports, 3(1):2412, 2013.

[118] Yang Zhang, Yan Sun, Hao Yang, Jakub Železný, Stuart P. P. Parkin, Clau-
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Carlos R. Santillán-Rodŕıguez, José A. Matutes-Aquino, C.V. Tomy, and

Sion F. Olive-Méndez. Tuning the ferromagnetism of epitaxial-strained D019-

Mn3Ga thin films. Journal of Magnetism and Magnetic Materials, 471:329–

333, 2019.

[154] J Kubler, K H Hock, J Sticht, and A R Williams. Density functional theory

of non-collinear magnetism. Journal of Physics F: Metal Physics, 18(3):469,

1988.

[155] Ronald Wiesendanger. Noncollinear spins, via Nanostructure and Solid State

Physics: Universität Hamburg, 2020.

[156] A.T. Melo, D.M.S. Brito, A.F. Lima, and M.V. Lalic. Non-collinear spin

DFT study of the ground state magnetic structure, optical and electronic

properties of the hexagonal LuFeO3 multiferroic. Journal of Alloys and

Compounds, 813:152227, 2020.

[157] T. Nan et al. Controlling spin current polarization through non-collinear

antiferromagnetism. Nature Communications, 11(1):4671, 2020.

[158] M.-T. Suzuki, T. Koretsune, M. Ochi, and R. Arita. Cluster multipole theory

for anomalous Hall effect in antiferromagnets. Physics Review B, 95:094406,

2017.

[159] Fanghai Hu et al. Tunable magnetic and transport properties of Mn3Ga thin

films on Ta/Ru seed layer. Journal of Applied Physics, 123:103902, 2018.

[160] Xiaolei Wang, Chen Zhang, Qianqian Yang, Lei Liu, Dong Pan, Xue Chen,

Jinxiang Deng, Tianrui Zhai, and Hui-Xiong Deng. Manipulation of crys-

talline structure, magnetic performance, and topological feature in Mn3Ge

films. APL Materials, 9(11):111107, 2021.

[161] Shinji Miwa, Satoshi Iihama, Takuya Nomoto, Takahiro Tomita, Tomoya

Higo, Muhammad Ikhlas, Shoya Sakamoto, Yoshi Chika Otani, Shigemi

Mizukami, Ryotaro Arita, et al. Giant effective damping of octupole oscilla-

tion in an antiferromagnetic weyl semimetal. Small Science, 1(5):2000062,

2021.

169



BIBLIOGRAPHY

[162] Takahiro Ogasawara, Jun young Kim, Yasuo Ando, and Atsufumi Hiro-

hata. Structural and antiferromagnetic characterization of noncollinear D019

Mn3Ge polycrystalline film. Journal of Magnetism and Magnetic Materials,

473:7–11, 2019.

[163] Y. Chen et al. Antichiral spin order, its soft modes, and their hybridiza-

tion with phonons in the topological semimetal Mn3Ge. Physics Review B,

102:054403, 2020.

[164] A. Markou, J. M. Taylor, A. Kalache, P. Werner, S. S. P. Parkin, and

C. Felser. Noncollinear antiferromagnetic Mn3Sn films. Physics Review

Mater., 2:051001, 2018.

[165] James M. Taylor et al. Epitaxial growth, structural characterization, and

exchange bias of noncollinear antiferromagnetic Mn3Ir thin films. Physics

Review Materials, 3:074409, 2019.

[166] Haokaifeng Wu, Iori Sudoh, Ruihan Xu, Wenshuo Si, C A Vaz, Jun-young

Kim, Gonzalo Vallejo-Fernandez, and Atsufumi Hirohata. Large exchange

bias induced by polycrystalline Mn3Ga antiferromagnetic films with con-

trolled layer thickness. Journal of Physics D: Applied Physics, 51:215003,

2018.

[167] Y.S. Liu, H. Xiao, A.B. Yu, Y.F. Wu, K. Manna, Claudia Felser, C.M.

Schneider, Hong-Yi Xie, and T. Hu. Probing magnetic anisotropy in Kagome

antiferromagnetic Mn3Ge with torque magnetometry. Journal of Magnetism

and Magnetic Materials, 563:170018, 2022.

[168] Ajaya K. Nayak et al. Large anomalous Hall effect driven by a nonvan-

ishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Science

Advances, 2(4):e1501870, 2016.

[169] Z. H. Liu, Y. J. Zhang, G. D. Liu, B. Ding, E. K. Liu, Hasnain Mehdi

Jafri, Z. P. Hou, W. H. Wang, X. Q. Ma, and G. H. Wu. Transition from

Anomalous Hall Effect to Topological Hall Effect in Hexagonal Non-Collinear

Magnet Mn3Ga. Scientific Reports, 7(1):515, 2017.

[170] Satoru Nakatsuji, Naoki Kiyohara, and Tomoya Higo. Large anomalous

hall effect in a non-collinear antiferromagnet at room temperature. Nature,

527(7577):212–215, 2015.

170



BIBLIOGRAPHY

[171] Hao Yang, Yan Sun, Yang Zhang, Wu-Jun Shi, Stuart S P Parkin, and

Binghai Yan. Topological Weyl semimetals in the chiral antiferromagnetic

materials Mn3Ge and Mn3Sn. New Journal of Physics, 19(1):015008, 2017.

[172] Subhadip Pradhan, Kartik Samanta, Kush Saha, and Ashis K. Nandy.

Vector-chirality driven topological phase transitions in noncollinear antifer-

romagnets and its impact on anomalous Hall effect, 2023.

[173] P. Brown, V Nunez, F Tasset, J Forsyth, and P Radhakrishna. Determination

of the magnetic structure of Mn3Sn using generalized neutron polarization

analysis. Journal of Physics: Condensed Matter, 2(47):9409, 1990.

[174] Jiahui Liu et al. The anomalous Hall effect controlled by residual epitax-

ial strain in antiferromagnetic Weyl semimetal Mn3Sn thin films grown by

molecular beam epitaxy. Results in Physics, 52:106803, 2023.

[175] Deshun Hong, Changjiang Liu, Jianguo Wen, Qianheng Du, Brandon Fisher,

J. S. Jiang, John E. Pearson, and Anand Bhattacharya. Synthesis of anti-

ferromagnetic Weyl semimetal Mn3Ge on insulating substrates by electron

beam assisted molecular beam epitaxy. APL Materials, 10(10):101113, 2022.

[176] Deshun Hong, Naween Anand, Changjiang Liu, Haihua Liu, Ilke Arslan,

John E. Pearson, Anand Bhattacharya, and J. S. Jiang. Large anoma-

lous Nernst and inverse spin-Hall effects in epitaxial thin films of kagome

semimetal Mn3Ge. Physics Review Mater., 4:094201, 2020.

[177] Idris Opeyemi Olayiwola, Carlos R. Santillán-Rodŕıguez, José A. Matutes-
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