
Long Video Generation using the
VAE-GAN method

Jingbo Yang

PhD

University of York

Computer Science

September 2024

Abstract

Video generation has emerged as a critical area in machine learning, with applications span-
ning entertainment, virtual reality, and surveillance. However, generating realistic and tem-
porally coherent videos, especially for long-term sequences, remains challenging. This thesis
addresses these challenges through novel hybrid models and transformer-based architectures,
improving video quality, efficiency, and duration.

The thesis first analyses limitations of existing generative models. While GANs produce
sharp videos but suffer from computational expense and mode collapse, VAEs are more
efficient but yield blurry outputs. We propose hybrid VAE-GAN models that combine their
strengths by combining the inference ability of the VAE with the generative properties of
the GAN, using a VAE encoder with GAN generators to enhance video consistency and
continuity.

Focusing on temporal modelling, we address the critical challenge of long-duration video gen-
eration under computational constraints. Emphasizing GPU memory efficiency, we develop
a novel recall mechanism that decomposes videos into temporally coherent sub-sequences
with Markovian dependencies. This enables efficient long-term modelling with fixed mem-
ory requirements. Further refinement through auto-regressive modelling enhances temporal
consistency, while our introduction of the Generative Pre-trained Transformer (GPT) archi-
tecture provides global temporal perspective through latent space sequence modelling.

The thesis provides several key contributions: (1) Encoding GAN3 (EncGAN3), integrating
VAE and GAN for high-quality short-term videos; (2) Recall Encoding GAN3 (REncGAN)
with a recall mechanism for efficient long-duration generation, developed through iterative
architectural improvements; (3) Auto-Regressive R2 (AR2) with auto-regressive recall; and
(4) GPT R2 (R3) leveraging transformer architectures. These models achieve minimal, fixed
GPU memory increments regardless of video length.

Experimental results demonstrate significant improvements in both short- and long-term
video generation across multiple benchmarks, showing superior performance in quality, co-
herence, and computational efficiency. This thesis advances video generation techniques,
particularly for applications requiring high-quality extended sequences.

Contents

1 Introduction 1

1.1 Introduction to Video Generation . 1

1.2 Motivation and Research Problem . 2

1.3 Overview of Key Techniques . 4

1.4 Research Objectives . 5

1.5 Contributions of the Research . 6

1.6 Structure of the Thesis . 8

2 Background 10

2.1 Generative Frameworks . 10

2.1.1 Generative Adversarial Networks(GAN) 11

2.1.2 Variational Autoencoder(VAE) . 12

2.1.3 Hybrid methods VAE-GAN . 13

2.1.4 Transformer Network . 15

2.1.5 Diffusion-based Generative Models . 16

2.2 Video Generation . 18

2.2.1 Short-term Video Generation . 18

2.2.2 Long-term Video Generation . 21

2.2.3 Diffusion-based Video Generation . 22

2.3 Related models . 23

2.3.1 G3AN for Video Generation . 23

2.3.2 LSTM for Sequence Modelling . 23

2.3.3 GPT for Sequence Learning . 25

2.4 Conclusion . 26

1

CONTENTS 2

3 EncGAN3: Encoding GAN3 Video Generator 28

3.1 Introduction . 28

3.2 EncGAN3 Structure . 30

3.3 EncGAN3 Running . 32

3.3.1 Training Objective . 33

3.3.2 Training and Inference . 35

3.4 Experiments . 35

3.4.1 Datasets . 36

3.4.2 Implementation . 37

3.4.3 Quantitative Evaluation . 39

3.4.4 Qualitative Evaluation . 43

3.4.5 Ablation Study . 46

3.5 Conclusion . 51

3.5.1 Limitation and further work . 51

4 Longer video generation using REncGAN 53

4.1 Introduction . 53

4.2 LEncGAN: Applying LSTM to Enable EncGAN3 for Long Video Generation 55

4.2.1 LEncGAN Structure . 55

4.2.2 LEncGAN Training . 57

4.2.3 LEncGAN Inference . 57

4.2.4 LEncGAN Implementation . 57

4.3 Transition from LEncGAN to REncGAN . 59

4.3.1 Motivation for REncGAN . 59

4.3.2 Key Innovations . 59

4.4 REncGAN: EncGAN3 with Recall Mechanism 60

4.4.1 REncGAN Structure . 60

4.4.2 Training Objective . 63

4.4.3 Training Procedure . 64

4.4.4 Inference Procedure . 66

4.4.5 REncGAN Implementation . 66

4.5 Experimental Transition from LEncGAN to REncGAN 67

CONTENTS 3

4.5.1 Datasets . 67

4.5.2 From LEncGAN to R Enc . 68

4.5.3 From R Enc to REncGAN . 70

4.5.4 Lessons Learned . 72

4.6 Evaluation of REncGAN . 72

4.6.1 Datasets . 72

4.6.2 Qualitative Evaluation . 73

4.6.3 Quantitative Evaluation . 74

4.6.4 Ablation Study . 76

4.7 Comparison of LEncGAN and REncGAN . 79

4.8 Conclusion . 81

5 Long Video Generation on Less Prior Information 82

5.1 Introduction . 82

5.2 Improved R2: Enhancements to the Base Model R2 83

5.2.1 Generator Modifications . 84

5.2.2 VDrej for Inference . 84

5.3 AR2: Auto-Regressive REncGAN for Unconditional Long Video Generation . 86

5.3.1 Motivation for AR2 . 86

5.3.2 AR2 Structure . 87

5.3.3 Training Objective . 89

5.3.4 Training and Inference . 90

5.3.5 AR2 Implementation . 91

5.4 R3: REncGAN with GPT Directs Long Duration 93

5.4.1 Motivation for R3 . 93

5.4.2 R3 Structure . 94

5.4.3 Training and Inference . 95

5.4.4 R3 Implementation . 96

5.5 Experimental Results . 98

5.5.1 Qualitative Evaluation . 102

5.5.2 Quantitative Evaluation . 103

5.5.3 Ablation of the improved R2 . 105

CONTENTS 4

5.5.4 Ablation of AR2 . 109

5.5.5 Ablation of R3 . 109

5.5.6 Comparison of the Computational Costs 115

5.6 Conclusion . 116

6 Conclusions 118

6.1 Restatement of Research Goals and Contributions 118

6.2 Summary of Key Findings . 118

6.3 Reflection on Key Challenges . 119

6.4 Further Work . 120

6.5 Concluding Remarks . 121

List of Figures

1.1 Developing digraph of our models. 6

2.1 Data flow of GAN. 11

2.2 VAE architecture. 12

2.3 Data flow through the combined VAE/GAN model during training, from [13]. 14

2.4 Architecture of an adversarial autoencoder(AAE) from paper [12]. 15

2.5 Architectures of the Transformer and GPT. (a) shows the original Transformer
architecture including both encoder and decoder, as proposed in [15]. (b)
illustrates the GPT architecture, which is based on the Transformer while
using a decoder-only structure. 16

2.6 A conditional latent diffusion model [53]. 17

2.7 The Roadmap of Video Generation . 18

2.8 VGAN Network Architecture [43]. This only illustrates the generator,
which is the main modification part. 18

2.9 TGAN Network Architecture [60]. The architecture is consist of three
parts, the processing generated video, the real video from the dataset and the
discriminator. And the Video Generator contains two generators, an Image
Generator and a Temporal Generator. 19

2.10 The MoCoGAN framework [61]. The framework is a hierarchical struc-
ture containing LSTM, Generator and Discriminator. 20

2.11 The Roadmap of Long Video Generation . 22

2.12 Overview of G3AN architecture [5]. 23

2.13 The internal structure of the G3 modules within the generator (a) and the
spatial-temporal fusion mechanism used in the G3 module (b). 24

2.14 Long Short-Term Memory (LSTM) structure [30, 32]. 24

3.1 The architecture of EncGAN3: a two-stream Encoder, a three-stream Genera-
tor and a two-stream Discriminator for processing the content and movement
information corresponding to the generated video. 31

5

LIST OF FIGURES 6

3.2 Video FID scores (Left column) and video IS scores (Right column) of Enc-
GAN3 (blue line) and G3AN (yellow line), calculated every 100 epochs for
Weizmann (a), KTH (b), and UvA (d), and every 10 epochs for UCF101 (c).
Lower FID values indicate better visual quality and spatial-temporal consis-
tency, while higher IS values suggest better visual quality and diversity. The
outlier for EncGAN3 on UvA in panel (d) may result from an unexpected
fluctuation during resumed training. 40

3.3 IS components of Inter-entropy H(y) (Left column) and intra-entropy H(y|x)
(Right column) for EncGAN3 (blue line) and G3AN (yellow line), calculated
every 100 epochs for Weizmann, KTH, and UvA datasets (from top to bot-
tom panels). Higher inter-entropy H(y) values (left column) indicate better
diversity, while lower intra-entropy H(y|x) values (right column) suggest bet-
ter visual quality. The outlier for EncGAN3 on UvA in the top panel of both
columns may result from an unexpected fluctuation when resuming training. 42

3.4 Complete generated videos by EncGAN3 at the resolution 128× 128. 43

3.5 Enlarged part of the generated videos. 44

3.6 Generated videos by EncGAN3, of resolution 128 × 128 trained on the Weiz-
mann dataset that show two persons doing similar or different movements
simultaneously. 45

3.7 Generated videos of EncGAN3 on Weizmann (a) and UvA (b) datasets with
the resolution of 64 × 64 pixels. 45

3.8 Comparing EncGAN3 (upper panels, each representing three rows with four
frames sampled from a video) with G3AN (bottom panels) after being trained
on various datasets where the generated videos have a resolution of 64 × 64
pixels. 46

3.9 Video frames generated by EncGAN3 (a) and G3AN (b) on the UvA dataset.
Every even row shows frame difference maps used to represent the movement. 47

3.10 Frames from the first and second rows of (a) and (b) are generated using the
same content latent code with different motion latent codes. 49

3.11 The latent codes used to generate the frames in the third row in each panel
are obtained by summing the latent codes used to generate the frames in the
first and second rows. 50

3.12 Generated frames for EncGAN3 in (a), (c) and G3AN in (b), (d) when using
uniformly or step sampled training sets trained for 100 (top row) and 5000
epochs (bottom row). 50

3.13 Frames in each row are sampled for every 5 frames from 90-frame videos at
128× 128 resolution generated by EncGAN3. 51

4.1 LEncGAN3: a Markov chain consists of multiple EncGAN3 states that are
connected by LSTM in the Encoder part. To maintain clarity and conciseness,
only the connections for the first two states are shown here. 55

4.2 Illustration of the Recall Encoding GAN3 (REncGAN). 61

LIST OF FIGURES 7

4.3 Illustration of REncGAN, showcasing the recall mechanism that integrates
inputs from the two-stream Encoder and the Video Discriminator (VD) to
ensure clip continuity (bottom panel). Each clip has a fixed maximum frame
index Tc = 15 of index starts from 0, while T > 100 for long videos. The
reference frame index r denotes the boundary of the overlapping region, cal-
culated as r = Tc − To, where To is the number of overlapping frames. For
a 50% overlap(To = Tc//2 + 1 = 8), r = Tc//2 + 1 = To. The workflow of
REncGAN, as depicted in this figure, is further detailed in Algorithm 6, with
lines 34 to 40 detailing the main leveraging of VD in the recall mechanism.
For instance, a 24-frame input is split into two 16-frame clips (X1 and X2)
with To = 8 overlapping frames. The first r = 8 frames of their generated

clips are stitched to be a new clip X̂3, and all three clips are fed into VD to
optimize the Generator. 62

4.4 Frames from 256-frame videos generated by LEncGAN, trained with the image
reconstruction error on the first frame (top row), middle frame (bottom row),
and without image reconstruction error (middle row). 69

4.5 Frames sampled from 416-frame videos generated by LEncGAN with no in-
heritance (top row), inheriting the LSTM cell state (middle row), or inheriting
the LSTM output (bottom row). 69

4.6 Frames generated by models using LSTM (a) and FC (b). 69

4.7 Each row from top to bottom shows Taichi frames of 128×128 pixels resolution
from long videos generated by REncGAN, DIGAN and TATS, respectively. . 74

4.8 Each row from top to bottom shows Sky frames of 128× 128 pixels resolution
from long videos generated by REncGAN, DIGAN and TATS, respectively. . 74

4.9 Quantitative Evaluation. FVD of non-overlapping 16-frame clips sliced
from long-term videos generated by REncGAN, DIGAN [7] and TATS [9]
after training on Taichi (a) and Sky (b) datasets. 76

4.10 Frames generated by latent code manipulation. 79

4.11 Comparison of REncGAN and EncGAN3 on generating human action and fa-
cial expression videos. Each row shows 10 frames at 128×128 resolution, with
each frame sampled per 5 frames from generated videos, covering a duration
of 50 frames. 80

4.12 Comparison of REncGAN and LEncGAN on generating Taichi sequence of
videos contains over 300 frames. Frames in each row are sampled per 30
frames from a generated video, covering a duration of 300 frames. Each frame
is at a resolution of 128× 128 pixels. 80

5.1 Generative modes of 3-streams within the G3 block in the Generator. 84

5.2 Illustration of the Auto-Regressive Recall Encoding GAN3 (AR2). 88

5.3 Illustration of the R3. zi indicates a latent space and seq z is the sequence of
latent spaces. T is video length while Tc is clip length. The former length is
arbitrary but longer than 100 frames at least, such as 500, 1000 frames. The
latter length is fixed to 16 frames. 94

LIST OF FIGURES 8

5.4 Taichi frames sampled from generated videos of 128 frames each. For com-
parison of our recall-based methods, improved R2, AR2 and R3, with other
long video generation methods. Frames in each row are sampled starting from
the first frame, with one frame sampled every 16 frames, representing a video
of 128 frames in total. The results of MoCoGAN-HD, DIGAN, StyleGAN-V,
Long-Video-GAN and StyleInV are from [11] at 256×256 resolution while our
recall-based methods are at 128× 128 resolution. 100

5.5 Sampled frames from 128-frame videos generated by our improved R2, AR2
and R3, as well as other methods such as MoCoGAN-HD (ICLR21), DIGAN
(ICLR22), StyleGAN-V (CVPR22) and StyleInV (ICCV23) after training on
the Sky dataset. Frames in each row are sampled starting from the first frame,
with one frame sampled every 16 frames. Frames of other methods are from
[11] at 256×256 resolution while those from our AR2 and R3 are at 128×128
resolution. 101

5.6 Frames sampled from 1000-frame videos at 128×128 resolution. Frames from
top to bottom rows are generated by DIGAN, TATS, AR2 and R3after training
on the Taichi dataset. Frames in each row are sampled every 32 frames from
sequences 0 to 300 (left), 300 to 600 (middle), and 600 to 900 (right). The
results of DIGAN and TATS are from [9]. 102

5.7 Frames from 1000-frame videos at 128×128 resolution generated after training
on the Sky dataset. Frames from top to bottom rows are generated by DIGAN,
TATS, AR2 and R3. Frames in each row are sampled every 32 frames from
sequences 0 to 300 (left), 300 to 600 (middle), and 600 to 900 (right). The
results of DIGAN and TATS are from [9]. 103

5.8 Ablating the usage of latent space at training and test time by plotting FVD
scores across trained model parameters at different training steps. The plot
of FVD results across over 4000 epochs and the FVD scores are calculated for
every 10 epochs. At each calculation, FVD is calculated based on 16 frames
and 128 frames, respectively, denoted as FVD-16f and FVD128f as in (a) and
(b). 105

5.9 Ablating the usage of latent space at test time by plotting the FVD results
across fewer epochs to show in detail. The FVD results cover from 3000 epochs
to 4060 epochs, where the best FVD result was observed, for FVD-16f and
FVD-128f on (a) and (b), respectively. 107

5.10 Ablating the noise generation ability by plotting FVD results of FVD-16f and
FVD-128f on (a) and (b), respectively. 108

5.11 Results when considering different ways for sequencing the latent spaces be-
tween being provided to the GPT. Labels ‘GPT pad0’, ‘GPT padzs’ and
‘GPT:disc+cont’ correspond to the format of GPT input shown in Equation
(5.5), (5.6) and (5.7), separately. FVD results of FVD-16f and FVD-128f are
shown on (a) and (b), respectively. FVD is calculated for every 100 epochs. 111

5.12 Changing the size of the latent space (token vectors) used as input for the
GPT. FVD results of FVD-16f and FVD-128f are on (a) and (b), respectively.
FVD is calculated for every 100 epochs. 113

5.13 Ablating different generation approaches. Curves labeled as ‘GPT faster sam-
ple 5ke’ and ‘GPT faster sample 10ke’ are based on the same setting while
run twice, so as the ‘GPT faster mean 5ke’ and ‘GPT faster mean 10ke’. . . 114

List of Tables

3.1 Datasets used in the short video generation task. †Frame ranges are estimated
from duration and frame rate, with potential variations due to data transfer
losses. 37

3.2 Results for video FID, where * indicates that the results are referred from
[5, 44] and ↓ indicates that lower value is better. We retrain G3AN and
provide the results from [5] in parentheses for a fair comparison. 41

3.3 Results for video IS and its components, where ↑ means that higher value is
better. IS↑ means higher IS representing better visual quality and diversity.
The inter-entropy H(y) measures the diversity among generated videos. A
higher H(y) indicates more diversity. The intra-entropy H(y|x) measures the
visual quality and the lower means better. 41

3.4 Ablating the contribution of various components of the EncGAN3 architecture. 47

3.5 Ablating the contribution of the Encoder and the F-SA module. The first
column indicates whether to use the Encoder during either the training or
testing time or not. 48

3.6 Ablating changes in the loss functions and learning rate. 49

3.7 EncGAN3 training cost on V100 with a memory of 32GiB. 52

4.1 Subsets of Taichi dataset. 68

4.2 Ablating Markov chain structure components with FVD results of different
video lengths. 70

4.3 Ablating variations of loss functions with FVD of different video lengths. . . 71

4.4 Video dataset statistics showing both original videos and their 16-frame seg-
mented versions. †The amount of Segments is approximate. 73

4.5 Evaluation of FVD. Results of other methods (all trained by the same training
video length, as 16 frames.) are from [36, 10] ensuring the same resolution
and video length of FVD. The notation ‘-1282-16f’ means the FVD score is
calculated on 16 frames with each at 128× 128 pixels resolution. 75

4.6 Quantitative evaluation. “*” results are referred from [5]. ↑ means the higher
value is better while ↓ means the lower value is better. 77

4.7 FVD for REncGAN components when considering different input video lengths. 78

9

LIST OF TABLES 10

4.8 Ablating the sampling step of the training set with FVD results of different
video lengths. 79

5.1 Training time cost of AR2. 92

5.2 Time cost of R3 for training from scratch. Values separated by ”/” represent
results on different datasets Taichi and Sky, like Taichi/Sky. 98

5.3 Model size and storage memory of R3. The total memory usage includes
minor overhead from structural indexing. 99

5.4 Video dataset statistics of their 24-frame segmented versions. The amount of
Segments is approximate. 99

5.5 Evaluation of FVD on the generated long-videos, measuring the sub-sequences
of 16 and 128 frames, denoted FVD-16f and FVD-128f. The ratio of FVD-16f
to FVD-128f quantifies the degradation in frame quality over longer durations,
reflecting both the individual frame quality and the temporal coherence of
the generated sequences. Results of other methods are from [36, 10] to ensure
the same resolution (128 × 128) and video length of FVD. The FVD results
available for StyleInV are on a different resolution (256× 256) and hence not
shown here. 103

5.6 Ablating the structure of video stream in the Generator. 107

5.7 Considering or not the availability of the noise component for generating the
long video. 108

5.8 Ablation of different generation methods, including using the mean of the
latent variables, sampling a latent code from the latent space, or sampling
several latent codes from each latent space and using the Video Discriminator
(VD) to select the best generated clip. 109

5.9 Considering different ways to form latent space sequences to be provided to the
GPT. cont and disc mean continuous and discrete variables, respectively. The
corresponding input formats from top to bottom are described as in Equation
(5.5), (5.6) and (5.7), separately. 112

5.10 FVD results of different sizes for the latent space (token vectors) used as input
to the GPT module. 112

5.11 Ablation study for different ways to generate the long video sequences. The
time cost indicates how long it takes to generate a video with 1000 frames. . 115

5.12 Training time comparison across different models and hardware settings. . . . 116

5.13 Time required for generating a 1024-frame video across different models. . . . 116

List of Acronyms

1. Literature Method

GAN Adversarial Generative Networks
AE AutoEncoders
VAE Variational Autoencoder
AAE Adversarial Autoencoder
VQ-VAE Vector Quantised-Variational AutoEncoder
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GPT Generative Pre-trained Transformer
VDM Video Diffusion Model
LDM Latent Diffusion Models
VGAN Generative Adversarial Network for Video
TGAN Temporal Generator
MoCoGAN Motion and Content decomposed Generative Adversarial Network
DVD-GAN Dual Video Discriminator GAN
DIGAN Dynamics-aware Implicit Generative Adversarial Network
TATS Time-Agnostic VQ-GAN and Time-Sensitive Transformer

2. Our Method

EncGAN3 Encoding GAN3
LEncGAN LSTM EncGAN3
REncGAN Recall EncGAN3
R2 REncGAN
Improved R2 An improved version of R2
AR2 Auto-Regressive REncGAN
R3 GPT Recall Encoding GAN3

3. Operation

R 3VD 3-stream Video Discriminator operation in the Recall mechanism
VDrej Video Discriminator Rejection operation

4. Module

1

LIST OF ACRONYMS 2

F-SA Factorized Self-Attention
TSA Convolutional Temporal-wise Self-Attention
SSA Convolutional Spatial-wise Self-Attention
Enc Encoder
CoEnc Content Encoder
MoEnc Motion Encoder
Moenc the part consist of convolutional layers in MoEnc
Mofc the part consist of fully-connected layers in MoEnc
CoLSTM Content LSTM
MoLSTM Motion LSTM
G Generator
VD Video Discriminator
ID Image Discriminator

5. Layer

Conv/conv Convolutional (Layer)
1D 1-Dimensional
Conv2D/conv2d 2-Dimensional Convolutional Layer
fc fully connected
FC fc Layers
BN/bn Batch Normalization (Layer)
maxpool2d 2D Max Pooling (Layer)
ReLU Rectified Linear Unit (Activation Function)
DeConv/deconv Transposed Convolutional (Layers)

6. Loss

KLD Kullback-Leibler Divergence
recon Reconstruction Error
avg Average
concat Concatenation

7. Metric

FID Fréchet Inception Distance
IS Inception Score,

contains two components: Intra-Entropy H(y|x) and Inter-Entropy H(y)
video FID Fréchet Inception Distance for videos (denote as FID in Table)
video IS Inception Score for videos (denote as IS in Table)
FVD Fréchet Video Distance

8. Dataset

FPS Frames Per Second
UvA UvA-NEMO
Weiz Weizmann
Taichi Tai-Chi-HD

LIST OF ACRONYMS 3

Sky Sky-Timelapse

List of Symbols

1. EncGAN3

N the number of videos used for training, i = 1, . . . , N .
Ti the frame index of video i, j = 0, . . . , Ti.

In EncGAN3, Ti = 15 while Ti > 100 in the long-term video generation task.
T simplification of Ti.

xij the j-th frame from the real i-th video.
xj simplification of xij .
x0:T a clip of frames from index 0 to index T .
x̂ij the j-th frame from the generated i-th video.
vij a different map calculated by subtracting adjacent frames, such as xi,j−1 and xi,j .

Here, j = 1, . . . , Ti.
x̂n a frame sampled from the video generated by latent codes.
x̃n a frame sampled from the video generated by Gaussian noises.
idx index.

θx parameters of the Content Encoder.
θv parameters of the Motion Encoder.
zco the content latent space.
zmo the motion latent space.
zx the sampled content latent code.
zv the sampled motion latent code.
z̃x the sampled content noise.
z̃v the sampled motion noise.
N (0, I) standard Gaussian distribution, used to sample random noises.
p(zx) a prior given distribution of zx, generally given as N (0, I).
p(zv) a prior given distribution of zv, generally given as N (0, I).
qθx(zx|x) an approximate posterior distribution of zx given x.
qθv(zv|v) an approximate posterior distribution of zv given v.

2. LEncGAN, REncGAN, AR2 and R3

NL the number of long videos used for training, i = 1, . . . , NL. Same as N .
NC the number of clips within a long video, jc = 1, . . . , NC .

NC is varied for long videos.

1

LIST OF SYMBOLS 2

Tc the frame index of a clip. Here, Tc = 15 for index starts from 0.
To the number of overlapped frames.
r index of the reference frame, r = Tc − To,

denoting the boundary of the overlapping region.
If To = Tc//2 + 1, r = Tc//2 + 1 = To.

xr the binding frame, also called as the reference frame.
X1 former real clip.
X2 latter real clip.

X̂3 stitched generated clip.

x̂stitch X̂3.
⊕ pixel-wise addition
⊖ pixel-wise subtraction

Ec the Content Encoder.
Em the Motion Encoder.
zc Simplification of zco.
zm Simplification of zmo.
ct cell state at time step t.
ht hidden state at time step t.
c + 1 the next state of LSTM.
DV Video Discriminator
DI Image Discriminator

3. Training objectives

DKL Kullback-Leibler Divergence.
LEnc loss function of two-stream Encoder in EncGAN3.
LG training objective function of the Generator in EncGAN3.
LDI

training objective of the image-stream Discriminator in EncGAN3.
LDV

training objective of video-stream Discriminator in EncGAN3.
LEnc,v replacing the reconstruction term of videos to be

the reconstruction of the first frame and frame difference maps in LEnc.
LG,v replacing the reconstruction term of videos to be

the reconstruction of the first frame and frame difference maps in LG.

LEncG loss function for training the Encoder and Generator jointly in REncGAN.
LDI ,R the loss function of the image-stream Discriminator in REncGAN,

after removing the random generator components of LDI
.

LDV ,R the loss function of the video-stream Discriminator,
after removing the random generator components of LDV

.
LDV ,R2 the video-stream Discriminator loss function in REncGAN,

after applying the R 3VD operation to LDV ,R.

LEncG,AR the loss function for jointly optimizing the Encoder and Generator in AR2.
LDV ,AR the training objective of the video-stream Discriminator in AR2.
LGPT the training objective for GPT in R3.

To my parents, whose unwavering support and belief in my abilities have been a constant
source of inspiration throughout this journey.

To my mentor, Dr. Adrian G. Bors, whose guidance and encouragement were crucial in
helping me navigate the challenges of this research.

And to my friends and colleagues, whose camaraderie and constructive feedback made this
work not only possible but enjoyable.

Your support has made all the difference, and I am deeply grateful for your presence in my
life.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to everyone who has sup-
ported me during my four years of PhD research.

I am especially grateful to my supervisor, Dr. Adrian G. Bors. From the beginning of
my PhD journey to its completion, through the remote research period during the COVID-
19 pandemic, the transition back to on-campus life, the challenges of overcoming research
bottlenecks, and finally the intense writing phase, he has always been there to support me.
His advice, guidance, and support were crucial to the progress of my research, and I am
sincerely thankful.

I would also like to thank my internal assessor, Professor Nick Pears. His insightful questions
and feedback on my research opened my eyes to his unique academic perspective and deep
research insights. These have greatly inspired me and had a profound impact on my subse-
quent work. His dedication to research and focus on its purpose left a lasting impression on
me.

Special thanks go to my friends: Fei Ye, Zechao Hu, Guoxi Huang, Qiran Lai, and Nat.
Their support during the remote phase when I started my PhD was invaluable, helping me
quickly acclimate to the PhD journey and greatly easing the sense of isolation that often
accompanies research. Our discussions on various research topics and creative ideas not only
provided me with valuable inspiration but also expanded and deepened my understanding
of other fields.

I am also grateful to the University of York for providing the resources and environment
necessary for this research.

Lastly, I would like to thank my parents, Yuepeng Yang and Meifang Ma, and my dear
sister, Chengyue Yang. Throughout my PhD studies, their unwavering support and care,
both physically and emotionally, have been invaluable to me, and I am deeply grateful.

Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This
work has not previously been presented for an award at this, or any other, University. All
sources are acknowledged as References.

Parts of the research described in this thesis have previously been published in:

• Yang, Jingbo and Bors, Adrian. ”Encoder enabled GAN-based video generators.” In
2022 IEEE International Conference on Image Processing (ICIP) (pp. 1841–1845).
IEEE. [1]

• Yang, Jingbo and Bors, Adrian G. ”Enabling the Encoder-Empowered GAN-based
Video Generators for Long Video Generation.” In 2023 IEEE International Conference
on Image Processing (ICIP) (pp. 1425–1429). IEEE. [2]

Portions of this thesis incorporate material from the aforementioned publications, which have
been cited appropriately throughout the text.

Chapter 1

Introduction

1.1 Introduction to Video Generation

Video generation is a dynamic and rapidly evolving field focused on creating video content
from various inputs, often without explicit guidance on frame-by-frame details. It plays
a critical role in several cutting-edge applications, such as entertainment, virtual reality,
surveillance, and crime scene reconstruction. The field has garnered attention due to its po-
tential to revolutionize how content is produced and visualized, particularly as AI techniques
become more advanced and widely available.

However, generating high-quality, realistic video poses significant challenges, primarily in
maintaining spatial and temporal coherence and dynamics across frames. Videos differ from
images in that they represent movement through changes in consecutive frames, that depend
on the 3D scene structure and lighting, as well as on how these would change their properties
over time, complicating the generation process. Models should balance generating individ-
ual high-resolution frames with ensuring smooth transitions and dynamic, coherent motion
across sequence. As the video length increases, these issues are magnified, especially when
attempting to generate long-term, detailed temporal frame sequences.

Recent advancements have led to two primary categories of video generation: short-term
and long-term. Short-term generation typically involves a few frames, focusing on detailed
visuals and coherent, dynamic short-range motion, while long-term generation aims at pro-
ducing extended sequences, requiring sophisticated techniques to maintain visual consistency,
natural motion dynamics and avoid visual degradation over time.

The applications for video generation are wide-ranging. In entertainment, it offers opportu-
nities for fully automated content creation and special effects. In virtual reality, synthetic
video can create immersive environments, while it is also used in surveillance simulations and
crime scene reconstruction, AI-generated videos can assist in simulating events for analysis.
However, the field remains technically demanding due to its computational complexity, with
ongoing research dedicated to improving efficiency, the diversity of generated content, as well
as with the ability to create longer, higher-resolution videos without loss of quality.

1

CHAPTER 1. INTRODUCTION 2

1.2 Motivation and Research Problem

The task of generating realistic and coherent videos presents substantial challenges due to
the complex interplay between spatial quality and temporal consistency. Existing video
generation models, particularly those based on Generative Adversarial Networks (GANs)
[3] and Variational Autoencoders (VAEs) [4], have made significant strides but still face
critical limitations. These shortcomings underline the need for more advanced approaches,
particularly hybrid models that combine the strengths of different architectures.

Limitations of GANs in Video Generation: GANs have been pivotal in advancing
video generation, yet they encounter several major issues. The primary challenge lies in
their high computational cost. Video generation is inherently more complex than image gen-
eration because it requires the model to capture both spatial coherence (within each frame)
and temporal relationships (across consecutive frames). This added complexity dramatically
increases the demand for computational resources, particularly in unconditional video gener-
ation, where sequences are generated without any guiding input. Furthermore, GANs suffer
from a common issue known as mode collapse, where the generator produces repetitive or
homogeneous outputs, leading to videos that lack variation despite using different random
inputs. Solutions like G3AN [5] attempt to address this by disentangling motion and content,
but the fundamental challenges remain unresolved in many models.

Limitations of VAEs in Video Generation: In contrast to GANs, VAEs are typically
less computationally demanding due to their structured latent space, which aids in efficient
learning. However, their biggest drawback is the fact that their outputs generate blurred
images and videos. VAEs use reconstruction loss to measure the similarity between the
generated and original images, but this often results in smoothed-out, less detailed visuals.
This problem is further exacerbated in the video generation, where maintaining high visual
fidelity across several frames is crucial for producing temporal coherence in the resulting
video. The trade-off between computational efficiency and image sharpness makes VAEs less
suitable for producing the high-quality visuals that GAN-based methods can achieve.

The Need for Hybrid Models: Given these challenges, hybrid models that combine
the strengths of both GANs and VAEs offer a promising solution. Hybrid models, such
as VAE-GAN, leverage the encoder structure of VAEs to maintain efficient learning while
incorporating adversarial training from GANs to generate sharper, more realistic outputs.
This combination aims to address the shortcomings of each approach individually, using
the latent space optimization of VAE for more controlled generation and the adversarial
training of GAN for improved visual quality. These hybrid models have been shown to
have excellent potential in producing more diverse and high-quality video sequences while
managing computational costs more effectively.

Research Gap: Temporal and Spatial Coherence and Dynamic in Long-Duration
Video Generation. While substantial progress has been made in short-term video gen-
eration (generating tens of frames with high visual quality), long-term video generation
(generating hundreds+ frames with high visual quality) remains a significant challenge. As
sequences extend to hundreds or even thousands of frames, maintaining both spatial and
temporal coherence becomes increasingly difficult. Many models, such as MoCoGAN-HD
[6] and DIGAN [7], have demonstrated the ability to generate high-resolution videos over

CHAPTER 1. INTRODUCTION 3

short periods. However, when tasked with generating longer sequences, these models often
struggle to retain motion consistency and visual quality [8]. The underlying causes of these
failures reveal deeper challenges in temporal dynamics modelling. These limitations stem
from fundamental differences in motion generation dynamics across temporal scales. While
the density representation of complex video data has facilitated short-term video generation,
the inherent data complexity grows exponentially with longer temporal scales, making it
increasingly difficult to fully model and generate long-duration videos. As a result, some
approaches attempt to infer future frames by extracting implicit world rules embedded in
the video data, which shifts the challenge from direct sequence modelling to an even more
complex problem.

The inherent challenges of motion generation exhibit distinct characteristics in short-term
versus long-term video generation. Notably, the difficulty of modelling different motion types
(e.g., high-frequency movements like rapid insect wing flapping vs. low-frequency movements
like slow vehicle motion) stems from optimization challenges in handling their fundamentally
different temporal patterns. In short-term generation (tens of frames), methods typically
succeed with regular motions (e.g., human actions like waving or boxing) due to their pre-
dictable periodicity, while struggling with irregular natural phenomena (e.g., fluid dynamics
or cloud movement). Recent advances show that enforcing spatio-temporal pixel coherence
can mitigate these issues for irregular motions [8]. Conversely, long-term generation (hun-
dreds+ frames) presents an inverse difficulty pattern: regular motions become increasingly
challenging due to (1) accumulating errors in each prediction step, (whereas irregular mo-
tions benefit from temporal coherence mechanisms that scale better with duration), and (2)
the lack of modelling for extended durations. Without understanding complete motion cycles
beyond training sequence lengths, models tend to either repeat observed patterns or gener-
ate physically implausible extrapolations, even when frame quality remains acceptable. This
dichotomy manifests clearly in output quality degradation - generated sequences frequently
exhibit repetitive patterns (particularly in regular motions), unrealistic rigid content (when
focusing solely on pixel-wise coherence) and motion discontinuities (if prior to ensure the
frame quality) [9, 10].

The technical bottleneck exacerbating these challenges lies in temporal dimension represen-
tation efficiency. General video generation approaches attempt to increase generation length
by simply extending training video duration, but face prohibitive GPU memory constraints
(see Table 3.7). Our analysis reveals that increasing temporal length incurs much greater
memory overhead than spatial resolution increases, highlighting fundamental limitations in
existing temporal representations. This observation motivates our investigation into novel
video representation paradigms that mitigate the strong correlation between memory re-
quirements and generation duration. Moreover, the computational complexity of long-term
video generation increases as models must capture intricate temporal dependencies, such as
object motion, lighting changes, and scene transitions, across a large number of frames. This
complexity often results in degraded video quality as sequences lengthen, with models often
trained on short-term sequences, failing to scale effectively [9]. Recent advancements have
pushed the boundaries to generate sequences of up to 1024 frames, but challenges in pre-
serving spatial detail and temporal coherence, especially in complex human actions, remain
unresolved [9, 11].

In summary, there is a clear need for more sophisticated approaches to address the limita-

CHAPTER 1. INTRODUCTION 4

tions of current models, particularly in the realm of dynamic long-duration video generation.
Hybrid methods that integrate the strengths of different architectures represent a promising
direction, but further research is needed to fully realize their potential. Specifically, ensur-
ing consistent motion and visual clarity over extended time periods remains a critical and
unsolved research problem.

1.3 Overview of Key Techniques

This section discusses the foundational techniques that underpin the models discussed in this
thesis. We start with core generative models, such as Variational Autoencoders (VAEs) and
Generative Adversarial Networks (GANs), and then discuss their hybrid forms [12, 13, 14].
We also cover more recent advancements, particularly Transformer-based models [15, 16, 17,
18, 19] relevant for long video generation [20, 9, 21].

VAE, GAN, and Hybrid Models. Variational Autoencoders (VAEs) and Generative
Adversarial Networks (GANs) are fundamental to generative modelling. VAEs work by
encoding data into a latent space and reconstructing it, introducing probabilistic latent
variables to ensure smooth transitions between generated data samples. However, VAEs
often produce image or video outputs that lack sharpness, a limitation addressed by GANs.
GANs consist of a generator and a discriminator that compete with each other, resulting in
highly realistic outputs but often suffering from unstable training.

Hybrid models that combine VAEs and GANs leverage the strengths of both approaches.
VAEs are effective at modelling latent space, while GANs excel at generating realistic out-
puts. For instance, the VAE-GAN model proposed by [13] integrates the VAE decoder with
the GAN generator, enhancing both latent space optimization and image quality. Simi-
larly, the Adversarial Autoencoder (AAE) [12] utilizes adversarial learning to refine latent
space representations, crucial for high-quality video generation. These hybrid models offer
a balance between generated sample diversity and quality factors such as the realism of the
representation.

In our first proposed method Encoding GAN3 (EncGAN3), we use a combination of VAE
and GAN to model video data effectively, generating frames that maintain both temporal
coherence and visual fidelity [1]. Models such as TwoStreamVAN [22] and G3AN [5] have
also contributed by incorporating multi-stream architectures to address both spatial and
temporal dimensions in video [23, 24, 25, 26, 27, 28].

Transformer-Based Models for Video Generation. The advent of Transformer archi-
tectures has greatly enhanced the capabilities of generative models, especially for sequence-
based tasks like video generation [15]. Unlike traditional sequence models such as Recurrent
Neural Networks (RNNs) [29] or Long Short-Term Memory (LSTM) networks [30, 31, 32],
Transformers use a self-attention mechanism to capture dependencies across an entire se-
quence simultaneously. This makes them particularly effective in modelling long-term de-
pendencies, which is crucial for generating coherent long-duration videos.

Generative Pre-trained Transformers (GPTs), originally developed for text generation, have
also proven effective for video generation [18, 19]. Their ability to handle sequential data with

CHAPTER 1. INTRODUCTION 5

long-term context allows models like GPT to auto-regressive generate future video frames
based on previously generated ones, ensuring temporal consistency and mitigating issues like
frame drift. This approach outperforms older models that struggle to maintain visual and
temporal coherence over extended sequences.

In this work, Transformer-based architectures are central to the models designed for long
video generation. For example, the proposed GPT Recall Encoding GAN3 (R3) model
adapts GPT, a decoder-only Transformer to video generation tasks, using self-attention to
model latent space sequences and maintain continuity over extended time intervals for the
generated videos. By focusing on continuous latent variables, this approach avoids the video
repetition issues common in models relying on discrete latent spaces.

Hybrid and Transformer-Based Methods in Long Video Generation. For long
video generation, traditional methods such as VAEs and GANs, even hybrid forms, face
challenges when scaling to handle hundreds or thousands of frames [8, 9, 10]. The integration
of Transformers addresses these limitations by leveraging self-attention to preserve temporal
coherence across longer sequences [9]. Additionally, models like R3 extend the capabilities of
earlier hybrid models by incorporating Transformer-based latent space modelling, enabling
the generation of long, dynamic video sequences with fewer artifacts and modelling more
variation in motion and content.

Newer Developments and Trends. While this thesis primarily explores VAE-GAN hy-
brids and Transformer-based methods, it is important to note emerging developments, par-
ticularly the integration of Diffusion models [33, 34, 35, 36, 37] with Transformer architec-
tures [21, 38]. Diffusion models, which have shown impressive results in image and video
generation [34, 35], represent a distinct framework from VAEs and GANs. These models
generate high-quality, temporally consistent video sequences by denoising data over time, a
technique that complements the sequence-learning capabilities of Transformers. Although
these approaches are not covered in this thesis, they offer promising directions for future
research.

1.4 Research Objectives

The main objective of this research is to advance video generation by addressing key chal-
lenges related to the computational complexity, output quality, and temporal coherence,
particularly for long-duration videos.

Enhancing Video Generation Models: This thesis introduces and evaluates several
models designed to improve video generation. EncGAN3 combines VAE and GAN technolo-
gies to enhance short-term video generation by incorporating a dual-stream encoder, which
aids in producing videos with improved spatial and temporal coherence [1]. This model aims
to achieve high visual quality and diversity in the generated videos, as demonstrated by
performance metrics.

Improving Long-Duration Video Generation: To tackle the limitations of existing
models in generating long-duration videos, this thesis introduces Recall EncGAN3 (REnc-
GAN), which incorporates a recall mechanism to model temporal relationships between video

CHAPTER 1. INTRODUCTION 6

clips [2]. This approach significantly reduces memory requirements during computation while
improving coherence over extended video sequences. The goal is to generate long videos ef-
ficiently while maintaining high visual quality and spatial-temporal consistency.

Advancing Temporal Modelling: Building on the advancements of REncGAN (R2),
Auto-Regressive REncGAN (AR2) and R3 introduce new strategies for modelling long-term
temporal relationships. AR2 adapts the recall mechanism to an auto-regressive setting, while
R3 integrates a GPT module to handle long-duration sequences more effectively. These
models aim to reduce the reliance on prior information and improve the overall quality and
consistency of generated videos.

Overall, the research seeks to balance computational demands with the generated video
output quality, ultimately contributing to the development of robust and efficient video
generation models capable of producing high-quality, coherent long-duration videos.

Figure 1.1: Developing digraph of our models.

1.5 Contributions of the Research

This thesis presents several advancements in video generation, focusing on improving both
the quality and length of generated video sequences through innovative model architectures
and mechanisms. The diagram in Figure 1.1 illustrates the models proposed in this thesis
and their relationships. The key contributions of this research are detailed below:

1. EncGAN3: Enhancing Generative Performance with Encoder-enabled Ar-
chitecture
EncGAN3 represents a significant advancement in video generation by integrating a
multi-stream architecture that leverages the strengths of both Variational Autoen-
coders (VAEs) and Generative Adversarial Networks (GANs). Key contributions in-
clude:

• VAE-GAN Hybrid Model: EncGAN3 combines the generative capabilities
of GANs with the inference strength of VAEs. This hybrid approach allows the

CHAPTER 1. INTRODUCTION 7

model to generate high-quality videos by incorporating a VAE-based encoder that
provides a representative latent space for the GAN generator, thus improving
training stability and video fidelity.

• Quantitative and Qualitative Improvements: Extensive experiments on
benchmark datasets demonstrate that EncGAN3 achieves competitive results in
terms of video Fréchet Inception Distance (FID) [39, 40] and video Inception Score
(IS) [9, 41, 42] metrics. These results highlight the model’s ability to generate
coherent and high-quality video sequences, setting a new standard for generative
performance in video generation.

2. REncGAN (R2): Enabling Long-Duration Video Generation with the Re-
call Mechanism.
REncGAN builds upon the foundation laid by EncGAN3, advancing the ability to
generate long-duration videos efficiently. This development stems from our initially
developed model LSTM EncGAN3 (LEncGAN), which is our earlier attempts that in-
troduced LSTM for long video generation. While LEncGAN marked an important step
forward, the reliance on LSTM made it less efficient and often led to discontinuities
in video generation due to the inherent limitations of its memory mechanism when
handling extended temporal dependencies.

REncGAN addresses these limitations by removing the LSTM module and introducing
the more efficient Recall mechanism. This mechanism enables the model to handle long-
duration video generation by focusing on the temporal relationships between successive
short clips rather than modelling each frame individually. The core contributions of
REncGAN can be summarized as follows:

• Temporal modelling via Recall Mechanism: By leveraging the Recall mech-
anism, REncGAN models temporal dependencies between consecutive short clips,
reducing the memory footprint significantly while still capturing the long-term
dynamics required for generating extended video sequences. This allows for the
generation of long videos without the computational overhead of frame-by-frame
processing.

• Markov Chain-Based Inter-Clip Relationships: Unlike LEncGAN, which
depended on LSTM, REncGAN employs a Markov chain approach to model inter-
clip relationships, sharing weights across chain states. It models Markovian de-
pendencies of sub-sequences, that is clips. This strategy ensures the continuity
and consistency in the generated videos, improving efficiency without sacrificing
the quality or coherence of long video sequences.

• Advanced Loss Function and Evaluation: The new loss function developed
for REncGAN ensures better synchronization between the encoding and genera-
tion processes, leading to superior performance in the long-duration video gen-
eration task. The experimental results demonstrate that REncGAN excels in
generating videos with higher visual quality and stronger spatial-temporal consis-
tency than the previous approaches.

By replacing the LSTM with the Recall mechanism, REncGAN not only it improves
upon the efficiency and performance of LEncGAN but also offers a more robust solution
for generating coherent and continuous long-duration videos.

CHAPTER 1. INTRODUCTION 8

3. AR2 and R3: Reducing Reliance on Prior Information while Maintaining
Quality.
The introduction of AR2 and R3 further extends the capabilities of the REncGAN
framework by addressing the reliance on prior information and enhancing long-duration
video generation. Key contributions include:

• AR2 - Auto-Regressive Recall Mechanism: AR2 adapts the recall mecha-
nism to an auto-regressive setting, reducing the dependency on prior inputs while
maintaining proper-quality long video generation. This approach improves the
model’s ability to handle long video sequences without relying heavily on prior
video clips.

• R3 - Long-Duration Modelling with GPT: R3 introduces a Generative Pre-
trained Transformer (GPT) module to model long-duration sequences within the
latent space. This global perspective mechanism ensures the generation of more
dynamic and diverse video content, reducing repetitive patterns and enhancing
the overall quality of long videos.

• Comprehensive Temporal Modelling: This research development provides
three key temporal modelling approaches: intra-clip relationship modelling (Enc-
GAN3), Markov-chain-based inter-clip modelling (R2), and long-duration mod-
elling within the latent space (R3). This comprehensive strategy provides a frame-
work for generating longer and more temporally complex video sequences while
maintaining efficient training requirements.

Together, these contributions advance the field of video generation by improving the quality,
coherence, and efficiency of generated videos across varying lengths and complexities.

1.6 Structure of the Thesis

The thesis is structured as follows:

1. Chapter 1: Introduces the topic, outlining the key research objectives and contribu-
tions.

2. Chapter 2: Provides the necessary background by reviewing related work, including
generative models like GANs and VAEs, hybrid approaches, and transformer-based
generative models.

3. Chapter 3: Focuses on EncGAN3, presenting the design of the model and its contri-
butions to video generation.

4. Chapter 4: Introduces REncGAN (R2), highlighting its recall mechanism and im-
provements over earlier models in generating long, coherent video sequences.

5. Chapter 5: Covers the AR2 and R3 models, detailing their advancements in latent
space modelling and the integration of GPT-based architectures for enhanced perfor-
mance.

CHAPTER 1. INTRODUCTION 9

6. Chapter 6: Concludes the thesis by summarizing the key findings, contributions, and
potential future research directions.

Chapter 2

Background

This chapter reviews the literature relevant to our research, focusing on generative models
and their applications in video generation. Section 2.1.1 introduces Generative Adversarial
Networks (GAN), covering its foundational principles, common uses, and specific limitations
in video generation. In Section 2.1.2, we discuss Variational Autoencoders (VAE), highlight-
ing their distinctions from GAN and potential advantages. Section 2.1.3 examines hybrid
models that combine VAE and GAN, aiming to harness the strengths of both frameworks.
Furthermore, Section 2.1.4 explores the use of Transformer-based models, emphasizing their
utility in sequential data processing, particularly for video generation.

The review then transitions to video generation techniques in Section 2.2, outlining the
field’s progression from conditional to unconditional video generation methods. We explore
how early methods leveraged prior information, such as initial frames or semantic maps,
to simplify video generation. As models evolved, unconditional video generation emerged,
generating videos from minimal input like random noise, offering advantages in flexibility
and representation. Building on these developments, we examine innovations in long video
generation, focusing on maintaining temporal consistency and video quality over extended
sequences.

Finally, Section 2.3 reviews the specific models considered for the research undertaken in this
thesis. We start with model G3AN [5] and TwoStreamVAN [22] frameworks, which are pre-
sented together with other video generative models relying on VAE and GAN architectures.
Then we introduce the transformer, which represents the basis for the GPT.

This section highlights the advancements and unique contributions of these models in the
context of generating coherent and high-quality video sequences.

2.1 Generative Frameworks

In this section, we review the basic generative deep learning architectures.

10

CHAPTER 2. BACKGROUND 11

2.1.1 Generative Adversarial Networks(GAN)

The Generative Adversarial Network (GAN) framework, introduced by Goodfellow et al.
in 2014 [3], revolutionized the field of image generation by providing a novel adversarial
structure based on the game theory for training generative deep learning networks. GANs
consist of two key components: a Generator (G) and a Discriminator (D), where G creates
new images, and D attempts to distinguish between real images from a dataset and those
generated by G. This adversarial process drives the Generator to create increasingly realistic
images over time.

The success of GANs in image generation led to their application in video generation tasks,
where the goal is to generate a sequence of coherent images with temporal consistency. Early
video GAN models, such as VGAN [43], introduced a two-stream architecture that separated
content and motion to generate realistic videos, effectively imposing temporal restrictions on
the output.

Figure 2.1: Data flow of GAN.

Background. As shown in Figure 2.1, the core idea behind GANs is the adversarial rela-
tionship between the Generator and Discriminator. The Generator learns to produce data
(images or videos) that mimic real data, while the Discriminator attempts to correctly clas-
sify the input as either real or fake. This relationship is formalized through the adversarial
loss function:

min
G

max
D

V (D,G) = Ex∼Pdata(x)
[logD(x)] + Ez∼Pnoise(z)

[log(1−D(G(z))] (2.1)

where the minimization of weights in G affects the loss component [log(1−D(G(z))], which
forces the weights in G optimized for the direction on generating more realistic images so
that could confuse D. While the maximization of weights in D affects the values in loss
components [logD(x)] and [log(1 − D(G(z))] that directs D learns to identify generated
images from real images. The training of D considers the real images x from the real data
distribution Pdata(x) and the images generated from G while the training of G considers
solely the random noises z come from a given distribution Pnoise(z), which generally given
as a standard Gaussian distribution (N (0, I)). The training on random noises is to ensure
that the Generator G does not simply memorize and reproduce a single image but instead
generates a variety of plausible outputs.

Limitations of using GANs in video generation. Despite its initial success, applying

CHAPTER 2. BACKGROUND 12

GANs to video generation introduces new challenges. The first major limitation is the high
computational cost. Unlike image generation, video generation requires learning not only
spatial coherence but also temporal relationships between frames. This additional complexity
demands significantly more computational resources, particularly for unconditional video
generation, where the model generates entire video sequences from random noise without
any guiding input.

Another common issue is the mode collapse, where the Generator fails to produce diverse
outputs, even with a random noise input. In video generation, this leads to a lack of vari-
ation in the generated video sequences. Solutions such as G3AN [5] address this by using
disentangled representations of content and motion, effectively mitigating mode collapse and
enhancing control over the generated videos.

2.1.2 Variational Autoencoder(VAE)

The Variational Autoencoder (VAE) was introduced in 2014 by Kingma and Welling [4]
for image generation tasks. Like GANs, the VAE framework has been applied in the video
generation domain by treating videos as sequences of images, where each frame is generated
using the preceding frame and motion information. This enables the sequential generation
of video frames, thus forming a video clip. For instance, models like VideoVAE [42] fall
under the conditional video generation category, where each subsequent frame is conditioned
on previous ones. Unlike GANs, which rely heavily on adversarial learning, VAEs focus on
learning latent representations of data, making them a popular alternative for generative
tasks.

Figure 2.2: VAE architecture.

Background. As illustrated in Figure 2.2, the VAE consists of two key components: the
encoder and the decoder, transferring a set of latent variables between them. The en-
coder compresses the input data into a latent distribution, typically a Gaussian distribution
N (µ,Σ), while preserving the most critical information from the input. The decoder then
samples from this latent space and reconstructs the input data. The goal of the encoder is to
map the input into a latent representation, from which the decoder can generate a realistic
reconstruction.

To make backpropagation possible in deep learning, VAEs employ the reparameterization
trick [4], which enables gradients to flow through the latent space. Instead of directly sam-
pling from the distribution, the model first samples from a standard normal distribution

CHAPTER 2. BACKGROUND 13

N (0, I), then scales this sample by the learned variance Σ and shifts it by the mean µ.
This operation ensures that the latent space remains differentiable, allowing gradients to be
propagated through both the encoder and decoder.

The loss function of VAE consists of two components: the reconstruction error and a regu-
larization term (Kullback–Leibler divergence or KLD), defined as:

L = − 1

L

∑
l

E∼qθ(z|xi)[log p(xi|z(i,j))]−
J∑

j=1

1

2
[1 + log(Σ)−Σ− µ2] (2.2)

where the first term represents the reconstruction loss, which encourages the latent space
distribution to accurately capture the input, and the second term is the Kullback–Leibler
divergence (KLD), acting as a regularization term. KLD pushes the latent space distribution
toward a standard normal distribution N (0, I), ensuring that the latent space is smooth and
is characterized by sufficient variation. This regularization helps maintain the variation in
the latent space and avoids the collapse of the latent distribution, which can occur in simpler
AutoEncoders (AE), where the model tends to produce similar outputs for the same or even
different inputs.

Comparing VAE with GAN. In contrast to GANs, VAEs benefit from the capability
to probabilistically represent the features of learned data. This often leads to more effi-
cient learning compared to the adversarial framework of GANs, making VAE models less
computationally intensive and faster to train. However, a significant drawback of VAEs is
their tendency to produce blurry images. This happens because the reconstruction loss pri-
oritizes an averaged similarity between the generated and input images but struggles with
fine-grained details, especially at pixel-level resolution.

While GANs use adversarial training to enforce sharper and more realistic outputs, VAEs
rely on reconstruction, which can introduce uncertainty in the decoding process. As a result,
even though VAEs are designed to handle variations in output images through latent space
sampling, the generated images may not match their inputs. This limitation becomes even
more evident in video generation, where temporal coherence and clarity are essential. GAN-
based models typically generate sharper images compared to VAE-based models due to the
adversarial loss function, which is more effective at producing visually sharper outputs.

2.1.3 Hybrid methods VAE-GAN

The hybridization of VAE and GAN can take various forms, with components of one model
being incorporated into the other. For instance, VAE/GAN [13] offers a hybrid approach by
merging the decoder and generator into a unified module. This model balances VAE and
GAN equally, combining their strengths in latent space optimization and image generation.
Another approach is represented by the Adversarial Autoencoders (AAE) [12], which inte-
grate adversarial learning to enhance the latent space of VAE. Below, we discuss the detailed
workings of VAE/GAN and AAE as two representative hybrid models.

VAE/GAN. The VAE/GAN model [13] combines the strengths of VAE and GAN into a
single framework, as illustrated in Figure 2.3. The process begins with an input image x,

CHAPTER 2. BACKGROUND 14

Figure 2.3: Data flow through the combined VAE/GAN model during training, from [13].

which is encoded into a latent space. From this space, latent codes z are sampled from this
space, along with samples zp from a prior distribution p(z) (a standard normal distribution).
Both z and zp are then passed through the Decoder/Generator and compete with real images
in the discriminator. This results in a three-stream data flow in the discriminator, optimizing
both the latent space and the reconstructed images.

The inclusion of zp provides sufficient positive samples during optimization, balancing the
generation of latent space with image reconstruction. Without zp, the discriminator would
primarily focus on image reconstruction, neglecting the quality of the latent space. By
including zp, the VAE/GAN model ensures better regularization of the latent space.

The VAE/GAN loss function is defined as:

Loss = Lprior + LDisl
like + LGAN , (2.3)

which includes three components: Lprior (the KLD regularization term), LGAN (the standard

GAN loss), and LDisl
like . The term LDisl

like computes feature-level reconstruction error between
real images and their generated counterparts, where the superscript Disl denotes features
extracted from the l-th layer of the Discriminator, and the subscript like indicates similarity
measurement. This design allows assessing visual perception similarity beyond pixel-level
comparisons. Additionally, the inclusion of zp balances optimization between latent space
regularization and image reconstruction. These properties have been crucial in developing
models [44, 22, 1].

Adversarial Autoencoders (AAE). In contrast, AAE [12] introduces adversarial learning
to improve the latent space encoding, as shown in Figure 2.4. In this model, the latent code
sampled from the latent space q(z) competes with samples drawn from a standard normal
distribution p(z) in a discriminator, encouraging the encoder to produce a latent space that
closely resembles the prior distribution. This adversarial process replaces the KL-Divergence
(KLD) regularization term commonly used in VAE, offering better-encoded latent spaces but
at the cost of higher computational complexity.

CHAPTER 2. BACKGROUND 15

Figure 2.4: Architecture of an adversarial autoencoder(AAE) from paper [12].

Figure 2.4 illustrates the typical VAE structure where latent codes generated by the encoder
are further processed in the adversarial learning module. The latent codes q(z) and the prior
samples p(z) are fed into a discriminator to distinguish between the two distributions. The
adversarial loss effectively replaces the KLD term, resulting in superior encoding performance
but requiring more resources. Such a latent processing mechanism have been shown in several
models [45, 46, 47, 48].

2.1.4 Transformer Network

The Transformer model, introduced by Vaswani et al. in 2017 [15], has become a founda-
tional architecture in sequence modelling tasks, particularly excelling in natural language
processing. Unlike recurrent models such as RNNs [29] and LSTMs [30], which process
sequences step by step, the Transformer leverages self-attention mechanisms to capture de-
pendencies between all elements of the input sequence simultaneously. This enables it to
model long-term dependencies effectively, which is critical for many generative tasks, while
delivering outstanding performance [49, 50].

The core innovation of the Transformer is the Self-Attention mechanism. In this mechanism,
each element in the sequence attends to every other element through a series of weighted con-
nections computed via the Query, Key, and Value operations. The attention weights measure
the relevance of one element to another, allowing the Transformer to capture relationships
between distant elements in a highly parallelizable manner.

As illustrated in Figure 2.5 (a), the Transformer architecture consists of two primary com-
ponents: an Encoder and a Decoder. The Decoder employs a Masked Self-Attention mecha-
nism, ensuring that each element in the sequence only attends to preceding elements, thereby
preventing future information leakage during sequence generation. A notable application of
the Transformer Decoder is in the GPT, which utilizes only the decoder portion to model
sequences and generates sequences in an auto-regressive manner [16, 17, 18]. GPT has
demonstrated remarkable success in generating long, coherent text sequences by learning
from vast amounts of text data [19]. Compared to traditional sequence models like LSTMs,

CHAPTER 2. BACKGROUND 16

(a) Transformer [15] (b) GPT [17]

Figure 2.5: Architectures of the Transformer and GPT. (a) shows the original Transformer
architecture including both encoder and decoder, as proposed in [15]. (b) illustrates the
GPT architecture, which is based on the Transformer while using a decoder-only structure.

the Transformer-based GPT model offers significant advantages, including the ability to
handle long-range dependencies and improved parallelization, both of which are crucial for
generating long video sequences.

2.1.5 Diffusion-based Generative Models

Diffusion models have emerged as a powerful paradigm for generative modelling, leveraging
a progressive denoising process to synthesize data through iterative refinement [33]. Unlike
GANs that rely on adversarial training, diffusion models learn to reverse a predefined forward
diffusion process — a Markov chain that gradually corrupts data by adding the random noise
— thereby enabling high-quality and diverse sample generation [34].

CHAPTER 2. BACKGROUND 17

Figure 2.6: A conditional latent diffusion model [53].

Recent advances have extended this framework to video generation by incorporating tempo-
ral modelling techniques. Key innovations include frame-wise noise scheduling to maintain
inter-frame consistency and spatio-temporal attention mechanisms to capture long-range de-
pendencies across video sequences [36, 51]. For example, Video Diffusion Models (VDMs)
[35] adapt the standard 2D U-Net architecture to 3D convolutions, explicitly modelling tem-
poral dynamics by treating video as a volumetric data structure. Concurrently, CogVideo
[52] combines diffusion with large-scale transformer architectures, achieving text-to-video
synthesis through hierarchical generation and cross-modal alignment.

Compared to GANs, diffusion models mitigate mode collapse and produce samples with
higher fidelity, though at increased computational costs and less straightforward controlla-
bility. To address efficiency, recent methods often perform denoising in a compressed latent
space rather than directly on pixels, named as Latent Diffusion Models (LDMs) [54, 55]. As
illustrated in Figure 2.6, an LDM comprises three core components:

1. Variational Autoencoder (VAE) (left box): Maps pixel space to a lower-dimensional
latent space.

2. Diffusion Process (middle box): Operates in the latent space, where the forward
process (upper part) adds noise via fixed equations, and the reverse process (bottom
part) learns to iteratively denoise using a U-Net conditioned on control signals.

3. Conditioning Mechanisms (right box): Cross-attention layers inject guidance
from modalities like text or semantic maps, enabling controlled generation.

This framework significantly reduces computational demands while preserving generation
quality, making it particularly suitable for high-resolution video synthesis.

CHAPTER 2. BACKGROUND 18

2.2 Video Generation

Video generation is a rapidly evolving field that focuses on synthesizing video content from
various inputs, including latent variables or prior information [56]. This section reviews the
advancements in video generation methods, divided into short-term and long-term video
generation.

2.2.1 Short-term Video Generation

Short-term video generation typically involves creating videos consisting of a limited number
of frames, often focusing on achieving high-quality visuals and coherent motion over a brief
duration. Early methods in this area utilized extensions of image generation models to handle
the temporal dimension, such as 3D convolutions [57, 58, 59]. However, this approach proved
computationally intensive and was not found as being practical in many applications.

Figure 2.7: The Roadmap of Video Generation

Roadmap of Video Generation. As illustrated in Figure 2.7, one of the pioneering
models in short-term video generation was VGAN (2016) [43], which introduced a two-
stream architecture to handle motion and content separately. This model represented an
important step forward in video dynamics modelling but was limited by the simplicity of its
motion-handling mechanism.

Figure 2.8: VGAN Network Architecture [43]. This only illustrates the generator,
which is the main modification part.

CHAPTER 2. BACKGROUND 19

1. VGAN: Two-Stream Generation (2016). VGAN (generative adversarial network
for video) introduced the use of independent foreground and background streams, where
the foreground stream captured the dynamic components of the video, while the back-
ground stream focused on the static elements. These two streams were then combined
using a mask generated by the motion stream to produce the final video, as illustrated
in Figure 2.8. Although this model brought forth the idea of separating motion and
content, it was constrained by the limited resolution (64×64) and short video sequences
(32 frames) it could generate. Despite these limitations, VGAN laid the foundation for
future work in video generation by introducing the concept of dual streams for video
reconstruction.

Figure 2.9: TGAN Network Architecture [60]. The architecture is consist of three
parts, the processing generated video, the real video from the dataset and the discriminator.
And the Video Generator contains two generators, an Image Generator and a Temporal
Generator.

2. TGAN: Temporal Generator (2017). Building upon the two-stream idea, Tem-
poral Generative Adversarial Net (TGAN) [60] extended it further by introducing two
separate generators, that is a temporal generator and an image generator, as seen
in Figure 2.9. The temporal generator transforms an input noise into a sequence of
temporal latent codes, which are then used by the image generator to reconstruct the
individual frames of the video. By decoupling the generation of temporal and spatial
components, TGAN improved the temporal coherence of the generated video, address-
ing one of the main shortcomings of VGAN. This method allowed for the generation
of more complex and temporally consistent video sequences.

3. MoCoGAN: LSTM-enhanced Temporal Modelling (2018). Motion and Con-
tent decomposed Generative Adversarial Network (MoCoGAN) [61], introduced in
2018, marked a significant advancement by incorporating LSTM networks to enhance
the temporal modelling of video sequences. This model employed a convolutional
LSTM to encode the motion latent code, which, when combined with the content la-
tent code, generated each video frame sequentially. As illustrated in Figure 2.10, this
approach allowed MoCoGAN to generate videos with longer, more fluid sequences,
overcoming the limitation of short video length seen in earlier models.

4. DVD-GAN: Large-scale Dataset Training (2019). Dual Video Discriminator
GAN (DVD-GAN) [62] pushed the boundaries of video generation by training on large
and complex datasets, such as Kinetics-600. This model leveraged high-capacity archi-
tectures to generate high-quality videos. However, despite its scalability, DVD-GAN

CHAPTER 2. BACKGROUND 20

Figure 2.10: The MoCoGAN framework [61]. The framework is a hierarchical structure
containing LSTM, Generator and Discriminator.

faced challenges in maintaining object shape consistency across frames during temporal
variations, limiting its practical applicability in certain use cases.

5. G3AN: Multi-scale Motion and Content Handling (2020). G3AN [5] introduced
a three-stream generator that processed motion and content at multiple scales, offering
finer control over both spatial and temporal aspects of the generated video. This model
improved temporal and spatial coherence by allowing the generator to fuse motion
and content information at different resolutions. G3AN addressed both the resolution
limitations of earlier models and the challenges of maintaining temporal consistency,
making it a significant contribution to the field.

6. TGAN v2: Memory-efficient Video Generation (2020). TGAN v2 [63] further
refined the original TGAN by introducing multiple sub-generators to address GPU
memory limitations, enabling the generation of higher-resolution videos. While this
model improved the handling of spatial resolution, its primary focus remained on en-
hancing resolution rather than extending the temporal length of generated videos.

Refined Directions and Technological Developments. As video generation models
matured, researchers began to explore more refined directions by integrating classic neural
architectures, including LSTMs and VAEs, with GAN-based frameworks to enhance both
video quality and temporal consistency.

1. LSTM and VAE Integration in Video Generation. Following MoCoGAN, which
introduced LSTM into the video generation process, subsequent models also combine
GANs with other well-established neural network modules such as LSTM, VAE and
Transformer. For example, VideoVAE [42] used LSTM to generate control signals
for steering the generation of video sequences. These control signals, along with the
outputs of an encoder, helped create latent codes, enabling better handling of video
dynamics. While these techniques are no longer considered cutting-edge, they continue
to offer robust solutions for managing temporal coherence in video generation.

CHAPTER 2. BACKGROUND 21

2. Development of Dual-Stream Discriminators. The dual-stream discriminator
structure, initially introduced by MoCoGAN and further refined by DVD-GAN, re-
mains a foundational approach in video generation. By separately evaluating spatial
and temporal features, dual-stream discriminators ensure that generated videos main-
tain coherence both within frames and across time. Although the technique has become
a more conventional part of the video generation toolkit, it is continually being opti-
mized for better realism and consistency in video sequences.

From VGAN to G3AN, the development of video generation models has progressively evolved
from simple image-based extensions to more sophisticated approaches for modelling complex
video dynamics. Future research continue to seek a balance between generation quality,
temporal coherence, and computational efficiency to further enhance the effectiveness of
video generation, particularly those GAN based methods [64, 65, 66, 67, 68].

2.2.2 Long-term Video Generation

Long-term video generation focuses on creating video sequences with extended temporal
durations, often requiring sophisticated modelling techniques to ensure the continuity and
consistency over many frames. The challenge in this area lies in maintaining high visual
quality and coherent motion across a longer span of time, while dealing with significant
computational complexity and memory constraints [69].

Extending video generation in spatial and temporal dimension. Initially, video gen-
eration models focused on relatively short sequences, typically around 16 frames, prioritizing
high-resolution frame generation while being constrained by computational limits. As tech-
nology progressed, researchers developed more efficient video representations, enabling the
generation of videos with increasingly higher resolutions. Contemporary methods can pro-
duce videos with resolutions ranging from 64 × 64 [5, 70, 35] to 128 × 128 [71, 63, 20, 7, 9, 36],
256 × 256 [8, 10, 72, 11], and even 1024 × 1024 [8, 6] pixels in special cases. For example,
TGAN v2 [63] addresses GPU memory limitations by employing multiple sub-generators,
thus efficiently managing higher resolutions.

Despite these advancements, generating long temporal video sequences remains a significant
challenge. Producing longer videos requires accurate modelling of temporal dependencies
while ensuring consistency in movement, lighting, and perspective changes. Models trained
on shorter sequences often struggle when they are extended to longer durations, leading to
rapid quality degradation and loss of temporal coherence, according to the results from [9, 8].

Recent developments have made notable progress in this area, with models now generating
sequences of 64 frames [6], 128 or 256 frames [7, 11], and even up to 1024 frames [9] or longer
[8, 10, 73], while previously the number of generated frames for videos have been around 10
to 32 frames [22, 5, 43, 60, 61, 74]. Although these advancements mark significant progress,
challenges in preserving the quality and coherence of long video sequences remain.

Roadmap of Long Video Generation. As shown in Figure 2.11, MoCoGAN-HD [6],
introduced in 2021, tackled the challenges of generating higher-resolution and longer video
sequences. However, it faced difficulties in maintaining realistic structural changes in motion,

CHAPTER 2. BACKGROUND 22

often resulting in videos that resembled ordered sequences of similar images.

Figure 2.11: The Roadmap of Long Video Generation

Dynamics-aware implicit generative adversarial network (DIGAN) (2022) [7] represents a sig-
nificant advancement in long-term video generation by incorporating spatio-temporal mod-
elling to produce videos of up to 128 frames without notable quality degradation. DIGAN
effectively handles both spatial and temporal aspects, resulting in more realistic and coherent
videos of human actions.

StyleGAN-V (2022) [8] aimed for ”infinite” video generation by employing a computation-
ally cheaper video representation. While it achieved the capability to generate videos with
resolutions of up to 1024× 1024, it struggled with complex movements and often resulted in
repetitive patterns due to the reuse of motion information.

Time-Agnostic VQ-GAN and Time-Sensitive Transformer (TATS) (2022) [9] advanced the
field by generating long video sequences through capturing temporally related frame latent
codes, achieving generating up to 1024 frames. Despite its success in extending generated
video lengths and improving temporal smoothness, TATS encountered difficulties in gener-
ating complex human movements, often repeating initial frames.

StyleInV (2023) [11] utilizes a similar approach to MoCoGAN-HD by training a motion gen-
erator based on latent codes from a pre-trained StyleGAN2 image generator. It incorporates
non-autoregressive training and supports style transfer through fine-tuning, enhancing its
ability to generate high-resolution, long videos.

This progress in video generation underscores a growing focus on enhancing the tempo-
ral coherence and resolution of long video sequences. The shift from handling short-term
sequences to generating long-term videos reflects the increasing sophistication in internal
representations and reduced reliance on prior information.

2.2.3 Diffusion-based Video Generation

Recent advances in diffusion models have significantly impacted video generation [35, 36,
75, 37]. By extending image diffusion frameworks to the temporal domain, models like
Imagen Video [76] generate high-fidelity videos through cascaded diffusion processes, while
Make-A-Video [77] leverages text-image alignment for zero-shot text-to-video synthesis. A
key innovation is the use of 3D U-Net architectures with spatio-temporal attention [35], en-
abling efficient modelling of frame dependencies. For long-term generation, latent diffusion

CHAPTER 2. BACKGROUND 23

approaches (e.g., LVDM [75]) reduce computational costs by operating in compressed latent
spaces. Despite their advantages in quality, diffusion models face challenges in real-time gen-
eration due to iterative sampling, prompting research into accelerated inference techniques
while maintaining the generation quality [54].

2.3 Related models

In this section, we examine the details of several models that have laid the groundwork for
the development of the models proposed in this thesis.

2.3.1 G3AN for Video Generation

G3AN is a GAN-based video generation model using factorized spatio-temporal convolution
techniques to process video data in multiple streams [5].

Figure 2.12: Overview of G3AN architecture [5].

Architecture Overview. As shown in Figure 2.12, G3AN employs a three-stream genera-
tor, where each stream processes motion, content, and video data separately. It is paired with
a two-stream discriminator that evaluates both image and video data. This structure allows
the model to effectively capture both spatial and temporal information, which is critical for
generating coherent and realistic video sequences [6, 5, 62].

G3 Modules. The generator in G3AN uses specialized G3 modules, which are based on fac-
torized transposed spatio-temporal convolutions. These modules allow the model to process
motion and content information separately, fusing spatial and temporal features to enhance
the overall video stream. Figure 2.13 illustrates the internal structure of the G3 modules and
their spatial-temporal fusion mechanism, which enables the model to produce high-quality
video sequences that maintain temporal consistency across frames.

2.3.2 LSTM for Sequence Modelling

Long Short-Term Memory (LSTM) networks are widely used for modelling long-term de-
pendencies in sequential data, making them an important tool in video generation [30, 32].

CHAPTER 2. BACKGROUND 24

(a) G3 module structure [5] (b) Spatial-temporal fusion [5]

Figure 2.13: The internal structure of the G3 modules within the generator (a) and the
spatial-temporal fusion mechanism used in the G3 module (b).

LSTM excels at capturing temporal dynamics across frames, which is essential for gener-
ating temporal coherent video sequences. The architecture includes memory cells that can
retain information over extended sequences, allowing the model to learn long-range temporal
dependencies.

Figure 2.14: Long Short-Term Memory (LSTM) structure [30, 32].

As depicted in Figure 2.14, LSTM networks employ memory cells that contain input, output,
and forget gates to regulate the flow of information. This mechanism enables the model to
learn which information to remember or discard, effectively mitigating the vanishing gradient

CHAPTER 2. BACKGROUND 25

problem that often plagues traditional recurrent neural networks (RNNs) [29].

While LSTM is effective for sequential data, it tends to face scalability issues, particularly
when handling very long sequences or sequences consisting of items with complex content. To
address these limitations, ConvLSTM was introduced. ConvLSTM integrates convolutional
operations into the LSTM framework, allowing it to capture both spatial and temporal
information simultaneously [31]. This is particularly beneficial for video data, where spatial
features across frames are critical for generating coherent sequences. The use of convolutional
layers enables ConvLSTM to efficiently process high-dimensional data, such as video frames,
while maintaining the temporal dependencies learned by traditional LSTMs.

In video generation, several models leverage LSTM and ConvLSTM architectures to pro-
cess sequential information. For instance, MoCoGAN utilizes a ConvLSTM to disentangle
motion and content representations, allowing for the generation of realistic video sequences
with controlled motion dynamics. Similarly, VideoVAE employs LSTM networks to model
temporal dependencies in the latent space, facilitating the generation of high-quality video
sequences. Another notable approach is TwoStreamVAN, which combines ConvLSTM with
a two-stream architecture to effectively capture both spatial and temporal features in video
data. By employing LSTM or ConvLSTM, these models can effectively model the sequential
nature of video data, enabling them to generate long and coherent video sequences.

Recent advancements in LSTM and ConvLSTM architectures have significantly enhanced
their ability to handle sequential data, solidifying their role as essential components in the
video generation domain. Through the combination of memory retention and spatial fea-
ture extraction, these models continue to set the foundation for innovative approaches in
generating realistic and coherent video content.

2.3.3 GPT for Sequence Learning

GPT have significantly impacted sequence learning, providing a robust alternative to LSTMs
for capturing long-term dependencies. Unlike LSTM, which processes sequences step-by-step,
the transformer-based architecture in GPT employs a self-attention mechanism, allowing the
model to attend to all elements in a sequence simultaneously. This makes GPT highly effec-
tive in modelling complex temporal relationships, which is essential for generating realistic
and temporally coherent video sequences over extended periods [17].

As shown in Figure 2.5 (b), GPT processes input sequences through tokenization, map-
ping discrete words into continuous vectors known as tokens. In the Natural Language
Processing field, these tokens are passed through positional encoding to preserve the order
of the sequence. When adapted for video generation, as seen in models like VideoGPT,
the tokenization process is handled through a Vector Quantised-Variational AutoEncoder
(VQ-VAE) [78], which learns discrete latent representations of raw video frames using 3D
convolutions and axial self-attention. Instead of directly tokenizing individual video frames,
VideoGPT compresses the video into downsampled discrete latent sequence, which are then
modelled auto-regressively. By incorporating spatio-temporal position encodings, these la-
tents are passed through a GPT-like architecture to generate new video frames. This ap-
proach reduces the computational cost compared to predicting each pixel by a GPT [79]

CHAPTER 2. BACKGROUND 26

while maintaining both temporal coherence and high visual fidelity across video sequences.

Building upon this, TATS further enhances GPT-based video generation [9]. TATS addresses
the challenge of generating long video sequences by modifying the padding mechanism during
GPT training, using replicated initial 16 frames instead of padding with zeros. It maps pixels
to discrete latent representations of video frames using a 3D (2D space and 1D time) VQ-
GAN [80], and trains GPT on those representations. This hierarchical approach allows
TATS to maintain both long-term temporal consistency and high-resolution frame quality
over extended video durations [9]. By padding with replication, TATS efficiently models local
temporal dynamics within short clips while ensuring global consistency for longer sequences,
outperforming earlier models like VideoGPT in generating temporally coherent and visually
appealing long videos. Compared to VideoGPT, TATS enhances the ability to generate
longer video sequences, optimizing for extended temporal consistency rather than providing
frames with empty content.

Recent advances in video generation leveraging GPT highlight the model’s strengths in main-
taining high-quality temporal consistency, particularly in long-term video prediction tasks.
By refining latent spaces through auto-regressive processes, GPT-based models have achieved
state-of-the-art results in producing smooth and temporally coherent video sequences [21, 81].

2.4 Conclusion

In this chapter, we have explored the foundational frameworks, techniques, and models cen-
tral to the development of generative models for video generation. Beginning by exploring
the core generative frameworks that underpin the models discussed in this thesis, including
Generative Adversarial Networks (GAN), Variational Autoencoders (VAE), and their hybrid
forms, VAE-GAN. These models offer distinct advantages in terms of generating high-quality
visual content, with GAN excelling at sharp image generation and VAE providing better la-
tent space representations. Hybrid methods aim to balance the strengths of both frameworks,
achieving more robust and coherent generative results, particularly in the context of video
generation.

We then transitioned to the specific challenges and advancements in video generation. Sec-
tion 2.2 outlined the evolution of techniques from short-term to long-term video generation,
focusing on how the field has progressed to address the issues of temporal consistency and
video quality over extended sequences. Conditional methods, which leverage additional input
information, have proven effective for short-term generation, while unconditional approaches
offer more flexibility for longer video generation. However, generating long videos with high
temporal and spatial fidelity remains a significant challenge, requiring innovative solutions.

Challenges and Future Directions. Despite significant progress in the field of video
generation, there remain several key challenges. One of the primary obstacles is the gen-
eration of long, high-resolution videos that maintain realism both in content and motion
in longer duration with temporal dynamics. While models have improved in producing co-
herent short-term sequences, long-term generation still struggles with issues such as loss of
temporal consistency and degraded video quality over time. Moreover, computational de-
mands remain high, with training times stretching over days, which limits the scalability of

CHAPTER 2. BACKGROUND 27

these approaches. Additionally, current evaluation metrics such as Fréchet Inception Dis-
tance (FID) [39, 40, 82] and Inception Score (IS) [41, 42], while useful for assessing content
quality, are not fully reliable for evaluating the motion and dynamics of generated videos.

Future research will likely focus on refining these models to improve both the quality and
efficiency of video generation, while exploring new evaluation metrics. The rise of diffu-
sion models offers promising alternatives to GANs, particularly in generating high-fidelity
and temporally consistent videos, though their computational demands remain a bottleneck
[54, 55]. Meanwhile, advances in controllable generation frameworks, such as CLIP [83] and
ControlNet [84] provide new avenues for improving generation precision. Additionally, the
integration of Transformer-based models like GPT into video generation has also shown po-
tential in capturing long-range dependencies and producing coherent sequences over extended
durations. These emerging technologies collectively hold significant potential for overcoming
current limitations in video generation.

In summary, this chapter has laid the groundwork for understanding the current state of
video generation and its key challenges, providing the context for my contributions. My
research builds on the foundations of GAN, VAE, and Transformer models, with a focus on
addressing the difficulties of long-term video generation and advancing the capabilities of
generative frameworks in this evolving field.

Chapter 3

EncGAN3: Encoding GAN3 Video
Generator

Recently, video processing has gained significant attention in the field of machine learning,
particularly in deep learning. Video generation is a critical area in computer vision with
applications ranging from entertainment to surveillance, including video synthesis for enter-
tainment purposes, data augmentation for training other networks, movie production, video
reconstruction for advertising, and crime scene reconstruction, among others. However, gen-
erating high-quality, diverse videos that maintain spatial and temporal coherence remains
a challenging task. Unlike video classification, video generation involves more complexity
due to the need to predict information under a high degree of uncertainty. Additionally, it
poses more challenges than image generation, as it requires the estimation of spatio-temporal
information rather than merely scene reconstruction. The generated videos should exhibit
smoothness and coherence in motion. This chapter introduces a hybrid VAE-GAN approach
for video generation, which incorporates an encoder to infer video information, thereby en-
hancing the generative architecture of the video GAN.

3.1 Introduction

Despite considerable progress, generating videos that maintain both spatial and temporal
coherence remains a formidable challenge. Existing methods often struggle to balance these
aspects, leading to videos that either lack visual fidelity or exhibit temporal inconsistencies.
In this chapter, I combine the inference properties of Variational Autoencoders (VAEs) with
the generation capabilities of Generative Adversarial Networks (GANs), proposing a hybrid
VAE-GAN model for video generation.

The Generative Adversarial Network (GAN) [3] and the Variational Autoencoder (VAE)
[4], together with diffusion networks [34], represent the main deep generative frameworks
developed so far. GANs can generate images that show sharp visual results but require
computationally expensive training, and sometimes their results show unexpected artifacts.
Meanwhile, VAEs use inference mechanisms requiring relatively less computational cost and

28

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 29

offer more stable training, but tend to produce comparatively blurry results. Hybrid VAE-
GAN models in image generation attempt to combine the complementary characteristics of
GAN and VAE while reducing their weaknesses [12, 13, 45]. However, none of these methods
can be used directly for video generation, which requires temporal synchronization between
sequences of frames with moving objects and moving regions permanently changing the
information from frame to frame. In this chapter, we propose to combine the complementary
characteristics of VAEs and GANs and use them for video generation.

In this work, we propose EncGAN3, which represents a VAE-GAN hybrid generative net-
work specifically designed for video generation. EncGAN3 introduces a dual-stream encoder
to enhance the generation process by increasing training stability, improving generation
performance, and enabling the creation of realistic videos at various resolutions, which are
afterward synthesized into a coherent video stream. EncGAN3 employs an encoder to pro-
vide a representative latent space for the GAN generator, replacing the random seed used in
the classical GAN model. The encoder processes content and motion through two separate
streams, which are then fed into a three-stream generator to ensure spatial, temporal, and
spatio-temporal consistency. A two-stream discriminator evaluates the quality of the images
and videos, ensuring coherence and realism.

Many existing GAN-based models for the video generation task either consider nested gener-
ators to achieve video generation unconditionally [43, 60, 61, 62, 63], or associate additional
modules that can provide prior information from ground truth as conditions to achieve video
generation conditionally [44, 22]. For the former unconditional generative models, the typ-
ical nesting idea is to use a sequence generator to generate a sequence of noises, with each
noise as input or part of the input to an image generator for generating sequential images
as a video sequence. However, such a generation way accumulates errors twice, due to two
generation step, increasing the generation difficulty. In contrast, the conditional generation
using conditions from ground truth, such as images [44, 40] or class type [22], provides useful
prior information. The useful information could benefit the generator instead of accumulat-
ing errors and thus, reduce the generation difficulty. But it also makes the generation rely on
the condition inputs. Most conditional generative models are designed to combine the extra
condition provided module with the generator, such as using skip connections between the
encoder and generator [44]. Such a design makes the generator lose generation independence
at testing time. Different from both generation ways, our proposed EncGAN3 addresses
these limitations by avoiding dependency on conditions while still benefiting from prior in-
formation. EncGAN3 is trained with an Encoder, which provides useful prior information
from ground truth to benefit the learning of the generator. With the direction of prior infor-
mation, the GAN generator can learn better and more stable at training time, as shown in
Table 3.5 for the improved performance and the ablation of sampling strategy for the more
stable learning in Section 3.4.5. This architecture supports both conditional and uncondi-
tional video generation by optionally using the encoder at test time. The hybrid generation
capability is achieved through a training objective function that considers generation from
both random noise and latent codes, as detailed in Section 3.3.1. Besides, EncGAN3 trains
the encoder and generator separately to enhance the generation independence of the video
generator. Moreover, the conditional generation for EncGAN3 just indicates the usage of
real video as input, the generation content is irrelated to the input condition. The generated
videos of EncGAN3 could be visually totally different from their input real videos.

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 30

Video representation through dual-stream decomposition is initially generally employed in
video-related tasks, such as video recognition [24, 26, 28], video classification [23], object
detection and action recognition [85, 25, 27]. Subsequently, this representation mechanism
has been adopted generally in video generation methods [43, 60, 61, 62, 5, 74]. This struc-
ture allows for more precise modelling of content and motion, resulting in higher-quality
video generation. EncGAN3 implements a dual-stream architecture in both the encoder and
discriminator for video information compression and classification. For the more complex
task of video generation, we utilize a three-stream approach in the generator. The generator
employs a primary video stream to produce video outputs and two auxiliary streams, content
and motion streams, that extend from the encoder. These auxiliary streams provide crucial
information to the main video generation stream by fusing at multiple scales, following the
method described in [5].

Our extensive experiments on four benchmark datasets—UvA-NEMO, Weizmann, KTH, and
UCF101—demonstrate that EncGAN3 achieves competitive results in terms of video FID
and video IS metrics when compared to earlier models. This work contributes to the field
by providing a viable model for generating high-quality videos, paving the way for future
research and applications.

The contributions of this chapter are as follows:

1. Enabling a video GAN generator with an inference mechanism using a VAE-based
Encoder.

2. Developing a multi-stream video generative model, EncGAN3, enabled with inference
mechanisms for two different streams processing content and movement, respectively.

3. Demonstrating through quantitative and qualitative results the advantages of Enc-
GAN3 in terms of the visual quality and diversity of generated videos.

The rest of this chapter includes the description of the EncGAN3 structure in Section 3.2. In
Section 3.3.1, we present the training algorithm and loss functions used for training the video
EncGAN3 model. The experimental results are provided in Section 3.4 and the conclusions
of this chapter are drawn in Section 3.5.

3.2 EncGAN3 Structure

In this section, we introduce EncGAN3, a VAE-GAN hybrid video generation model that in-
tegrates an encoder-enabled Generative Adversarial Network (GAN) to enhance the quality
and realism of generated videos. EncGAN3, similar to other deep learning video processing
architectures, decomposes video content into separate streams of content and movement, pro-
viding a robust framework for generating high-quality video sequences. This model leverages
the complementary generative capabilities for GANs and inference abilities for VAEs, allow-
ing both conditional and unconditional video generation modes, while providing significant
improvements in both the spatial and temporal consistency of the generated videos.

The EncGAN3 model architecture, shown in Figure 3.1, comprises three primary compo-
nents: the Encoder, the Generator, and the Discriminator. Each component is designed to

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 31

handle specific tasks within the video generation pipeline, ensuring that both content and
motion are accurately processed and synthesized. The Encoder processes input video frames
to extract latent representations of content and motion. The Generator utilizes these latent
representations to generate realistic video frames, ensuring consistency across both spatial
and temporal dimensions. The Discriminator evaluates the realism of the generated frames,
guiding the Generator through adversarial training.

Figure 3.1: The architecture of EncGAN3: a two-stream Encoder, a three-stream Generator
and a two-stream Discriminator for processing the content and movement information cor-
responding to the generated video.

The Encoder in EncGAN3 features a dual-stream architecture, designed to separately handle
content and motion information from video frames. This separation allows for a more precise
representation of video dynamics, as utilized in previous video processing methods [85, 43,
5, 22]. The content stream processes the first frame of the input video to generate a latent
space (mean and variance) representing static content features. It consists of convolutional
layers followed by fully connected layers to compress the spatial information. The motion
stream processes the difference maps between consecutive frames to generate a latent space
representing motion features. The difference maps are calculated by subtracting consecutive
frames and thus, the number of difference maps is equal to the input video length minus
one. Each difference map is first processed by a network structure similar to the content
stream, with convolutional layers for feature extraction followed by fully connected layers for
compression. The output features of each difference map would then be further compressed
to produce a latent space through a block consisting of several fully connected layers.

The Generator in EncGAN3 generates video frames by combining content and motion latent
codes. The generation operates through three parallel streams: content, motion and video.
The content stream reconstructs the static content features from the content latent code.
The motion stream reconstructs the dynamic motion features from the motion latent code.
The video stream integrates outputs of the content and motion streams at the end of each G3

module, ensuring spatial and temporal consistency across the generated frames at different
scales. This integration involves adding temporal features and concatenating spatial features
after size matching. Additionally, the video stream incorporates a factorized self-attention
(F-SA) module to enhance the coherence of the generated video. The F-SA module consists
of a temporal-wise self-attention followed by a spatial-wise self-attention, enabling the Gen-
erator to utilize cues from all spatio-temporal features while modelling relationships between
distinct regions.

The Discriminator in EncGAN3 comprises two parallel streams, each focusing on different

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 32

aspects of the generated video. The Image Stream Discriminator (DI) assesses the real-
ism of individual frames by sampling one frame from each generated video and comparing
it to frames sampled from real videos. The Video Stream Discriminator (DV) evaluates
the temporal coherence of the entire video sequence by analysing the transitions between
frames. Each stream employs convolutional layers to extract relevant features and outputs
a probability score indicating the authenticity of the input.

In the following, we describe the video data processing by the EncGAN3. EncGAN3 has two
processing streams representing content and motion. During the training phase, EncGAN3
processes input videos through the Encoder, generating latent codes that represent both
content and motion. These latent codes, together with random noise, are then fed into the
Generator to produce realistic video frames. The Discriminator evaluates these generated
videos, providing feedback to the Generator to improve its performance over time.

In the inference phase, EncGAN3 supports both unconditional and conditional video gener-
ation modes. For unconditional video generation, random noise is used as the input for the
Generator. For conditional video generation, the Encoder first processes a video to create a
latent space. From this latent space, latent codes are sampled. Each of these latent codes
can then be used to generate an entire video through the Generator. Different from the re-
construction, due to the adversarial loss term, the videos generated from these latent codes
are entirely different from the input videos used to create the latent space. To improve the
performance, the ability of generating from random noises is further removed when only need
to generate from the latent space, such as LEncGAN, REncGAN and R3. It is maintained
in AR2, which generates from the random noise.

Unlike the auto-regressive generation models, the Generator in EncGAN3 produces the entire
video at once. This approach leverages the comprehensive latent codes to ensure spatial and
temporal coherence in the generated videos, allowing for efficient and high-quality video
generation across content and motion dimensions.

3.3 EncGAN3 Running

In the following, we present how we train the EncGAN3 model. While the training has
similar characteristics to VAE-GAN hybrid architectures used for processing images [13,
45], it has also specific video generation characteristics. Such characteristics refer mainly
to the ability to represent movement in video and the EncGAN3 has a dual generation
pipeline corresponding to the content (scene representation) and movement. Each of these
is generated individually while at the end they are combined to create the video. Each
of the three modules in EncGAN3, which have been described in Section 3.2, visualized
in Figure 3.1, has its own objective function and is trained and optimized individually in
the following order: Discriminator, Encoder and Generator. We remove the noise-based
generation loss term from the objective function for LEncGAN, REncGAN and R3 models,
while this is kept for EncGAN3 and AR2, similarly with GAN models.

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 33

3.3.1 Training Objective

First, the loss function of the two-stream Encoder for content and motion LEnc is defined
as:

LEnc =
N∑
i=1

Ti∑
j=0

∥xij − x̂ij∥+ DKL(qθx(zx|x)||p(zx)) + DKL(qθv(zv|v)||p(zv)) (3.1)

where the first term represents the reconstructions of the video frames and the other two
terms represent the Kullback-Leibler divergences (KLD) ensuring that the latent spaces of
the images zx and video zv are consistent with their priors.

The {xij} and {x̂ij} are the j-th frame from the real i-th video and its corresponding
reconstruction, respectively. In this context, j = 0, . . . , Ti, where Ti indicates the frame index
of video i (starting from 0). Thus, the length of video i is Ti + 1. Additionally, i = 1, . . . , N ,
where N represents the number of videos used for training. The reconstructions {x̂ij}Ti

j=0

are made as close as possible to their corresponding original video sequences {xij}Ti
j=0 by

the mean absolute error, called the reconstruction term. The reconstructions {x̂ij}Ti
j=0 are

generated by the inferred latent space estimated by the encoder:

x̂i,0:Ti =G(Enc(vi,1:Ti ,xi0)) (3.2)

where v1:Ti = {v1, . . . ,vTi} represent difference maps that are calculated by subtracting
adjacent frames, as:

vij = xi,j−1 ⊖ xij , j = 1, . . . , Ti (3.3)

where Ti + 1 video frames {xij}Ti
j=0 could produce Ti difference maps {vij}Ti

j=1. Therefore,
during the training, the input video is split into one video frame xi0, corresponding to its
first frame, and Ti difference maps vij , j = 1, . . . , Ti, where Ti = 15 for a total of 16 frames.

The Kullback–Leibler divergence DKL components in Equation (3.1) ensure that the prob-
abilities of the latent variable associated with the content zx and with the motion zv are
generated by the two encoders of parameters θx and θv, respectively, and are consistent with
their Gaussian priors. Minimizing LEnc leads to better encoding of both content and motion
by the two encoders, implementing the variational distributions qθx(zx|x) and qθv(zv|v).
Both p(zx) and p(zv) are enforced as normal distributions in order to force the encoders to
implement the variational distributions as close to the standard normal distribution. Equa-
tion (3.2) characterizes the relationship between the streams of content and motion, processed
by the two Encoders. Considering the two-stream process in Encoder, we perform an ab-
lation study in section 3.4.5 where replacing the reconstruction term from Equation (3.1)
and (3.4) with a content reconstruction term of first frame

∑N
i=1 ∥xi0 − x̂i0∥ and a motion

reconstruction term of all difference maps
∑N

i=1

∑Ti
j=1 ∥vij − v̂ij∥, as in Equation (3.9) and

(3.10).

The second Generator objective LG is the key part linking the VAE and GAN structures,
representing actually the Decoder to Encoder and Generator to Discriminator. This defines
the Generator as the quintessential integrator block for the VAE and GAN structures in the
EncGAN3 model. Hence, the loss function LG contains both VAE and GAN components,

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 34

representing the most complex of the three objectives. LG is given by:

LG =Ex̂n∼G(zx,zv) log[D(x̂n)] + Ex̃n∼G(z̃x,z̃v) log[D(x̃n)]

+ Ezx∼p(zx),zv∼p(zv) log[D(G(zx, zv))]

+ Ez̃x∼N (0,I),z̃v∼N (0,I) log[D(G(z̃x, z̃v))]−
N∑
i=1

Ti∑
j=0

∥xij − x̂ij∥
(3.4)

where the last term in the right side of Equation (3.4) is the same as the first term in
Equation (3.1), representing the reconstruction error between the real data xij and its cor-
responding reconstruction x̂ij . The other LG components belong to the GAN objective,
based on Binary Cross Entropy loss for the binary classification task of the Discriminator.
These GAN objective terms consider the latent space of the content zx ∼ p(zx) and of move-
ment zv ∼ p(zv) modelled by corresponding encoders, and considering the random noises of
z̃x ∼ N (0, I), for the content and z̃v ∼ N (0, I), for the movement. The reconstruction of
the video frames x̂ is made considering the latent codes created by the encoder, zx and zv
corresponding to the image x and the video v. The 2nd and 4th components use the normal
GAN generator objective terms, where the codes z̃x and z̃v are sampled from the normal
distributions for content and motion, respectively. LG represents an optimization proce-
dure guiding the model not only to create realistic videos but also to enforce the standard
distribution for the encoding latent space used for generating data.

The third objective function of the two-stream Discriminator is an adversarial loss, similar
to those used in [61, 22]. The two streams, representing the content and the movement
information, each with its own Discriminator, are trained in parallel. The objective function
of the image-stream Discriminator LDI

is :

LDI
=Exn∼p(x) log[D(xn)] + Ex̂n∼G(zx,zv) log[1−D(x̂n)]

+ Ex̃n∼G(z̃x,z̃v) log[1−D(x̃n)]
(3.5)

where xn ∼ p(x) is the real image content, x̂n is generated from the latent codes presenting
the image content, and x̃n is the image generated using the standard Gaussian random noise.
Images x̂n and x̃n are randomly sampled from their video clips, where n indicates a sampled
value from {0, . . . , T}.

The objective function of video-stream Discriminator LDV
is considered in a similar way to

LDI
, as :

LDV
=Ex0:T∼p(x0:T) log[D(x0:T)] + Ex̂0:T∼p(x̂0:T) log[1−D(x̂0:T)]

+ Ez̃x∼N (0,I),z̃v∼N (0,I) log[1−D(G(z̃x, z̃v)]
(3.6)

where x0:T = {x0, . . . ,xT } and x̂0:T = {x̂0, . . . , x̂T } represent the real videos and their recon-
structions, while p(x0:T) and p(x̂0:T) are their probabilities. The second term represents the
results generated by the Generator together with the latent codes provided by the Encoder,
while the third term represents the results by the Generator with random noise inputs.

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 35

3.3.2 Training and Inference

During the training, first the Discriminator is updated by optimizing LDI
and LDV

using
(3.5) and (3.6), then the Encoder using LEnc as in (3.1), and eventually the Generator LG

according to (3.4). The training procedure is shown in Algorithm 1.

Algorithm 1 EncGAN3 Training Procedure

1: Required: Content Encoder (CoEnc), the part consist of convolutional layers in Motion
Encoder (Moenc), the part consist of fully-connected layers in Motion Encoder (Mofc),
Clip Generator (G), Image Discriminator (ID), Video Discriminator (VD)

2: Input: A short video x0:T

3: Output: Discrimination results of True or False T/F
4:

5: Content and Motion Encoding:
6: zco ← CoEnc(x0)
7: for t = 1→ T do
8: vt ← xt−1 − xt

9: embt ← Moenc(vt)
10: end for
11: zmo ← Mofc(emb1:T)
12: Latent Space Sampling:
13: zx ← sample(zco)
14: zv ← sample(zmo)
15: Clip Generation:
16: x̂0:T−1 ← G(zx, zv)
17: Discrimination:
18: T/F ← VD(x̂0:T−1)
19: idx← random(0 : T − 1)
20: T/F ← ID(x̂idx)

At inference time, there are two ways for EncGAN3 to generate videos. One generates
from random noises, while the other generates from sampled latent codes. The inference
procedure is shown in Algorithm 2. Since EncGAN3 does not consider to constrain the
content of output by the inputs, clips generated from latent codes are vastly different from
their input clips.

3.4 Experiments

In this section, we present a series of experiments conducted to evaluate the performance
of the EncGAN3 model in video generation tasks. These experiments demonstrate the
effectiveness of EncGAN3 in producing high-quality, realistic videos. The results provided
by EncGAN3 are better than those of the baselines used for comparison. This section is
organized as follows: we begin with a detailed description of the datasets used, followed by
the experimental setup. We then present both quantitative (including the description of
used evaluation metrics) and qualitative results, provide an in-depth analysis, and conclude

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 36

Algorithm 2 EncGAN3 Inference Procedure

1: Required: two-stream Encoder (Enc), Clip Generator (G)
2: Input: A short video x0:T or two random noises.
3: Output: A generated short video x̂0:T or x̃0:T

4:

5: Phase 1: Generation by latent codes
6: (zx, zv)← sample(Enc(x0:T))
7: x̂0:T ← G(zx, zv)
8:

9: Phase 2: Generation by random noise
10: (z̃x, z̃v)← sample(N (0, I))
11: x̃0:T ← G(z̃x, z̃v)

with ablation studies to understand the contributions of different components of the model.

3.4.1 Datasets

We utilized four commonly used datasets for our experiments: UvA-NEMO [86], Weiz-
mann [87], KTH [88] and UCF101 [89]. Each dataset contains videos of varying complexity
and motion patterns, providing a comprehensive benchmark for evaluating our model. The
UvA-NEMO dataset (UvA) focuses on spontaneous facial expressions with detailed annota-
tions. We consider the preprocessed version from [5], consisting of 1240 videos at a resolution
of 128x128 pixels, each with over 100 frames. The Weizmann dataset comprises 90 video
sequences, featuring nine subjects performing ten different actions. Videos have a duration
of 1 to 3 seconds with a frame rate of 25 frames per second (FPS), with a resolution of
180 × 144 (weight by height) pixels. The KTH dataset contains 599 video sequences of 25
subjects performing six types of actions (walk, jog, run, box, hand-wave, and hand-clap)
in various scenarios (indoor, outdoor, outdoor with scale variation, outdoor with different
clothing). Most videos are 10 60 seconds long at 25 FPS, with a resolution of 160 × 120
pixels. The UCF101 dataset includes 13320 realistic videos covering 101 human action cate-
gories, collected from YouTube. Most videos last 5 10 seconds at 25 FPS, with a resolution
of 320× 240 pixels. The characteristics of the datasets used in the experiments are provided
in Table 3.1. For the generation task, we do not split data into training, validation and
testing sets as in classification tasks unless the dataset is already split into such sections. We
use the entire dataset as the training set and use the entire dataset to calculate the metrics
during testing.

Data Preprocessing. The videos used in the training are firstly sampled both spatially and
temporally in order to reduce the data size used for training and implicitly reduce the training
time. Temporal processing involves sampling a certain number of frames from each video,
while spatial processing includes resizing frames to a uniform resolution and normalizing
pixel values. Firstly, we do temporal processing by randomly sampling 16 frames from
each video. The video generation task generally samples 16 frames from each video for the
training, because the GPU memory requirement increases exponentially with the length of
the training video. The first frame was selected randomly, and consider a fixed time step
for the next frames, varying randomly from 1 to 3 or 1 to 6, depending on the dataset’s

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 37

Dataset
Video Specifications Categories

Videos Resolution Frame Range† Subjects Actions

UvA-NEMO [86] 1,240 128×128 (100-400) 564 1
Weizmann [87] 93 180×144 (20-75) 9 10
KTH [88] 599 160×120 (200-1,025) 25 6
UCF101 [89] 13,320 320×240 (26-2,060) 2,525 101

Table 3.1: Datasets used in the short video generation task. †Frame ranges are estimated
from duration and frame rate, with potential variations due to data transfer losses.

general video lengths. This sampling strategy is called step sampling, to identify from the
other video sampling strategies adopted in order to extract the 16 frames from each video
used for training. We do an ablation study of various video sampling strategies in Section
3.4.5 and decide to use step sampling. Next, we do spatial processing by resizing sampled
video frames to a uniform resolution. We scale the frames such that we preserve their aspect
ratios, ensuring that the minimum height or width is 64 pixels. Then, those scaled frames are
cropped to 64×64 pixels. For the Weizmann dataset, to balance frame sharpness and object
completeness, we cropped 20 pixels from the edges before scaling. We consider centered
cropping to ensure that the entire moving object was captured. Finally, we normalize pixel
values by first scaling the pixel values to the range of 0 to 1. Then, to accelerate training
convergence, we normalized the scaled pixel values using a mean and variance of 0.5, mapping
the pixel values to the range of -1 to 1.

3.4.2 Implementation

The EncGAN3 model consists of an Encoder, a Generator, and a Discriminator. The Encoder
is built with multiple convolutional (conv) layers to extract features representing content and
motion from input videos and ends with several fully connected (fc) layers to produce latent
spaces [57]. Compared to the content latent space, the motion latent space is made by more
fully connected layers to compress features from a sequence of difference maps. In detail,
the content encoder consists of six two-dimensional (2D) convolutional (conv2d) layers and
one fully connected (fc) layer. Each conv2d or fc layer is followed by a batch normalization
(bn) layer and a Rectified Linear Unit (ReLU) activation function [90, 91]. The bn layer is
to speed up training and improve the generalization performance of the model. We name
the structure composed of a conv2d layer followed by a bn layer and then, a ReLU activation
function as a conv2d layer set, similar to a fc layer set. Meanwhile, the motion encoder
first processes each difference frame map vij through the same sub-network to produce an
embedding. Similar to the content encoder, the sub-network of the motion encoder contains
six conv2d layers and one fc layer. Different from the content encoder, a 2D max pooling
(maxpool2d) layer is applied after every two conv2d layer sets. So, the sub-network also
contains three maxpool2d layers. The embeddings from every two frame difference maps are
compressed through one fc layer. The last embedding is not compressed if there is an odd
number of embeddings. After the compression, all embeddings are concatenated and further
compressed through two fc layer sets. The output of the content encoder will pass through
one fc layer to produce the mean vector and another fc layer to produce the variance vector.

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 38

The mean and variance vectors represent the content latent space. The output of the motion
encoder passes through two fc layers to produce the mean vector and another two fc layers
to produce the variance vector. The mean and variance vectors present the motion latent
space.

The Generator consists of transposed convolutional (deconv) layers to produce realistic video
frames from the latent codes and random noise (G3), with a small block doing the attention
operation on the outputs of convolutional layers, named as F-SA module. The Generator
contains four G3 blocks and one F-SA module. Each G3 block contains two conv2d and
two 1D convolutional (conv1d) layer sets. The layer set in the GAN generator and below
discriminator uses the spectral normalization layer instead of the batch normalization layer,
to better stabilize the training of adversarial object [92]. Those layer sets within the G3

block are organized as shown in Figure 3.1. The F-SA module is used on the video stream
output of the fourth G3 block. The module contains a convolutional temporal-wise self-
attention (TSA) followed by a convolutional spatial-wise self-attention (SSA). TSA contains
three 3D convolutional (conv3d) layers. SSA also contains three conv3d layers [5]. The
Discriminator uses a series of convolutional layers to evaluate the generated videos. In
detail, the Video Discriminator contains ten conv3d layer sets and the Image Discriminator
contains five conv2d layer sets. Different from the Encoder and Generator, the layer set of
the Discriminator uses Leaky ReLU instead of the ReLU as the activation function. The
Leaky ReLU function allows negative values to pass through by multiplying them with a
negative slope instead of setting them as zero as in the ReLU function. Hence, it avoids the
problem of gradient vanishing, helps the discriminator better utilize the information in the
negative area, and improves the expressiveness of the model [93].

EncGAN3 is able to generate higher-resolution videos by adding extra convolutional and
transposed convolutional layers. For example, the Generator shown in Figure 3.1 consists of
five G3 blocks to generate videos at a resolution of 64 × 64 pixels. By adding one more G3

block to the end of the Generator, and incorporating appropriate extra convolutional layers
in both the Encoder and Discriminator, the model can generate higher resolution (128× 128
pixels) videos, as shown in Figure 3.4 and 3.5. Every time the resolution doubles, such as
from 64 × 64 pixels to 128 × 128 pixels, the EncGAN3 model should add more layers. In
detail, the Encoder should add two sets of conv2d layers and one set of fc layers to both the
content and motion stream encoders. The Generator should add an additional G3 block. The
Discriminator should add one more set of conv layers to both the Image Stream Discriminator
and the Video Stream Discriminator.

The EncGAN3 model is implemented in PyTorch and uses the ADAM optimizer [94] with
the exponential decay rate of first-order and second-order moment estimation of β1=0.5 and
β2=0.999, and consider a training rate of 2e−4 for all modules: Discriminator, Encoder and
Generator. For EncGAN3 we consider the same hyper-parameter initialization as for G3AN.

For the training time cost, we provide a rough time cost account when training on the UvA
dataset and using a single V100 GPU with 32 GiB GPU memory (actually 31.75 GiB memory
total capacity in practice, if considering the other system storages). With a proper batch
size (here is 10 for EncGAN3 and 25 for G3AN) to make full usage of the GPU memory,
EncGAN3 trains the beginning 100 epochs for about two and a half hours, and the baseline
model G3AN trains the beginning 100 epochs for two hours. Though EncGAN3 takes more
time to train the same epochs due to the extra encoder module, EncGAN3 needs to be

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 39

trained for fewer epochs than G3AN to reach its best performance due to the benefit of the
extra encoder module. In detail, EncGAN3 performs well after training 3000 epochs but
G3AN needs to train for 5000 epochs. EncGAN3 trains 3000 epochs for about three days
with six and a half hours (3d and 6.5h) to four and a half days (4.5d), and 5000 epochs for
five and a half to six and a half days (5.5 to 6.5d). The G3AN trains 5000 epochs for about
four days and nineteen hours (4d and 19h). So, considering the total training time to reach
the best performance, EncGAN3 takes significantly less training time than G3AN, about one
day less.

We train the EncGAN3 model, according to the methodology from Section 3.3. First, we
optimize loss functions LDI

from Equation (3.5) and LDV
from Equation (3.6), for the

Discriminator. Then we optimize LEnc from Equation (3.1) for the Encoder. Thirdly, we
run the model again with the optimized Discriminator and Encoder modules and optimize
the loss LG from Equation (3.4) for the Generator. The training proceeds with a new batch
of data for each iteration, optimizing the Encoder, Generator, and Discriminator, until the
validation results indicate stable results.

3.4.3 Quantitative Evaluation

Evaluation Metrics. To quantitatively assess the performance of the EncGAN3 model,
we employed the video-level extensions of two commonly used metrics in image generation:
Fréchet Inception Distance (FID) [39] and Inception Score (IS) [41], known as video FID and
video IS [62, 5, 22, 9, 36]. These metrics were adapted for the video generation by modifying
the Inception Network from 2D to 3D pre-trained classifiers [95] to serve as the feature
extractor. For the video FID, similar to [5, 40], we utilized a single pre-trained 3D CNN as
the Inception network across all datasets. For video IS, following the settings in [42, 22], we
employed the same network structure but used different parameters that were pre-trained
individually on each dataset. The class amount of the network output is adjusted based on
the number of classes in each dataset, such as action classes or actor classes. Both metrics
are computed as distance measures between distributions of real and generated videos. To
simplify, all results below that described as FID or IS indicate video FID or video IS.

The video FID quantifies the similarity between the distributions of generated and real
videos by computing the distance between their feature distributions, obtained from a pre-
trained video recognition model. A lower video FID score indicates better visual quality and
spatio-temporal consistency in the generated videos. The FID score is calculated as follows:

FID = ∥µr − µg∥2 + Tr(Σr + Σg − 2(ΣrΣg)1/2) (3.7)

where µr and µg are the means, and Σr and Σg are the covariances of the feature represen-
tations of the real and generated videos, respectively.

The video IS evaluates the quality and diversity of the generated videos based on the en-
tropy of their predicted class distributions. Higher video IS values reflect higher quality and
diversity. The Inception Score is calculated as:

IS = exp (Ex [DKL(p(y|x)∥p(y))]) (3.8)

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 40

(a) Weizmann

(b) KTH

(c) UCF101, video FID (d) UvA, video IS

Figure 3.2: Video FID scores (Left column) and video IS scores (Right column) of EncGAN3
(blue line) and G3AN (yellow line), calculated every 100 epochs for Weizmann (a), KTH (b),
and UvA (d), and every 10 epochs for UCF101 (c). Lower FID values indicate better visual
quality and spatial-temporal consistency, while higher IS values suggest better visual quality
and diversity. The outlier for EncGAN3 on UvA in panel (d) may result from an unexpected
fluctuation during resumed training.

where p(y|x) is the conditional label distribution given the generated video x, simplified from
{xij}Ti

j=0 in Section 3.3.1, and p(y) is the marginal label distribution over all generated videos.
Besides, the two components in video IS, Intra-Entropy H(y|x) [42] and Inter-Entropy H(y)
[42], are used to separately measure the visual quality and diversity of generated videos. A
higher H(y) indicates better diversity, while a lower H(y|x) means better visual quality.

Additionally, due to the absence of a universally accepted Inception Network for calculating
the video IS, we pre-train the network individually on each dataset. This pre-training can be
based on either the action classes or the actor classes within the dataset. The UvA dataset for
facial expressions contains only one action class, smiling, but several actor classes. Therefore,
we compute the video IS based on the Inception Network pre-trained on the actor classes of
the UvA dataset. The human action datasets Weizmann, KTH, and UCF101 are primarily
used for action recognition and contain a rich variety of action classes. Thus, we compute
the video IS based on their action classes. As these three datasets also contain multiple actor

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 41

classes, we further provide the video IS results for the Weizmann and KTH datasets based
on the network pre-trained on their actor classes in the ablation study, as shown in Table
3.4.

Evaluation Results. In Table 3.2, we compare the video FID for EncGAN3 with G3AN [5],
ImaGINator [44], VGAN [43], TGAN [60] and MoCoGAN [61]. EncGAN3 consistently has
the lowest FID scores on all these datasets, indicating that videos generated by EncGAN3
perform better in both visual quality and spatio-temporal consistency. Table 3.3 presents IS
and its corresponding Inter-Entropy and Intra-Entropy. EncGAN3 has the best results for
those metrics in both Weizmann and KTH datasets, suggesting that the video generated by
EncGAN3 performs best in visual quality and diversity in the generation of Human action
videos. Note that all Tables in this thesis that shows FID and IS indicates the metrics of
video FID and video IS, respectively, for simplification.

UvA Weizmann KTH UCF101
FID↓ FID↓ FID↓ FID↓

VGAN*[43] (NeurIPS 2016) 235.01 158.04 - 115.06
TGAN*[60] (ICCV 2017) 216.41 99.85 - 110.58
MoCoGAN*[61] (CVPR 2018) 197.32 92.18 - 104.14
ImaGINator*[44] (WACV 2020) - 99.80 - -
G3AN [5] (CVPR 2020) 91.77(119.22) 98.27(86.01) 111.99 108.36(91.21)
EncGAN3 (ours) [1] (ICIP 2022) 86.21 78.93 66.62 91.18

Table 3.2: Results for video FID, where * indicates that the results are referred from [5, 44]
and ↓ indicates that lower value is better. We retrain G3AN and provide the results from [5]
in parentheses for a fair comparison.

IS↑ Inter- Intra- Dataset
Entropy ↑ Entropy ↓ (classes type)

85.44 6.041 1.593 UvA (actor)
G3AN [5] 25.54 3.924 0.684 Weizmann (action)
(CVPR 2020) 24.19 4.538 1.352 KTH (action)

30.01 6.903 3.501 UCF101 (action)

571.29 6.499 0.151 UvA (actor)
EncGAN3 (ours) [1] 42.60 3.959 0.207 Weizmann (action)
(ICIP 2022) 50.48 4.812 0.891 KTH (action)

33.87 6.699 3.177 UCF101 (action)

Table 3.3: Results for video IS and its components, where ↑means that higher value is better.
IS↑ means higher IS representing better visual quality and diversity. The inter-entropy H(y)
measures the diversity among generated videos. A higher H(y) indicates more diversity. The
intra-entropy H(y|x) measures the visual quality and the lower means better.

In addition, the metrics video FID and video IS are sensitive to the generated videos. Their
scores change when computed on different generated video sets, even if those sets are pro-
duced by the same model. For a more robust measurement, we compute FID and IS after
training the model for a specified number of epochs. The variation of FID during training is
shown in Figure 3.2, which combines the FID scores for the Weizmann, KTH, and UCF101
datasets on the left column, and the IS scores for the UvA, Weizmann, and KTH datasets

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 42

on the right column. These results indicate that EncGAN3 performs better than G3AN,
with lower FID scores and a more stable and smoother convergence throughout the training.
Notably, the initial FID scores on the UvA dataset are lower than those in later epochs;
however, the quality of the generated videos is poorer during the initial training phases com-
pared to the later epochs, when the model better learns from the data and consequently
generates higher-quality videos.

(a) UvA

(b) Weizmann

(c) KTH

Figure 3.3: IS components of Inter-entropy H(y) (Left column) and intra-entropy H(y|x)
(Right column) for EncGAN3 (blue line) and G3AN (yellow line), calculated every 100
epochs for Weizmann, KTH, and UvA datasets (from top to bottom panels). Higher inter-
entropy H(y) values (left column) indicate better diversity, while lower intra-entropy H(y|x)
values (right column) suggest better visual quality. The outlier for EncGAN3 on UvA in
the top panel of both columns may result from an unexpected fluctuation when resuming
training.

In Figure 3.3, we present the results of IS components: Inter-Entropy and Intra-Entropy. The
results for EncGAN3 are shown in solid blue lines, while the results for G3AN are indicated
by dashed yellow lines. The left column displays the Inter-entropy values for the UvA,
Weizmann, and KTH datasets, while the right column shows the results of Intra-Entropy.
All panels in Figure 3.3 demonstrate substantially better results for EncGAN3. In the middle
and bottom panels of left column in Figure 3.3, the inter-entropy H(y) of EncGAN3 gradually
goes better than G3AN, which implies that EncGAN3 gradually provides more diverse video

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 43

results than G3AN during the training. The outlier of EncGAN3 on UvA in Figures 3.2 (d)
and 3.3 (a) may come from an unexpected fluctuation when resuming the training.

3.4.4 Qualitative Evaluation

For the qualitative evaluation, we provide results of videos generated by EncGAN3 trained
on KTH, Weizmann and UvA-NEMO datasets with the resolution 128× 128. The baseline
model G3AN is designed to generate videos at 64 × 64 pixel resolution. We provide videos
generated by EncGAN3 at 64× 64 pixel resolution for a fair comparison.

Figure 3.4: Complete generated videos by EncGAN3 at the resolution 128× 128.

In Figure 3.4, the first and third rows show the frames of the generated videos while the sec-
ond and fourth rows show their corresponding difference maps (calculated by Equation (3.3)),
indicating the content and movement separately, after training on the KTH dataset. Simi-
larly, the next four rows and the last four rows show results corresponding to generated video
data after training on the UvA and Weizmann datasets, respectively. As can be observed
from the first row in Figure 3.4, the body of the person exercising the movement is well
generated and the frame differences from the second row indicate a sharp representation of
the movement. The frames from the third row also show the clear movement of the two
moving hands in the boxing action. The fifth and seventh rows show well generated faces
with well defined facial features indicating smiling and nodding of the head. The movement
can be identified through their corresponding difference maps in the sixth and eighth rows,

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 44

Figure 3.5: Enlarged part of the generated videos.

respectively. Moreover, we can observe that the last eight frames in the seventh row perform
a delicate movement of eyesight, which shows a good modelling ability of subtle expressions
by EncGAN3. Such results indicate good potential for modelling and generating facial ex-
pressions displaying micro-expressions [96, 97]. The ninth and eleventh rows show persons
waving their hands and bending, respectively. On the ninth row, it can be observed that
the moving hand and the head of the person are well defined in the generated video clip.
From the eleventh row, it can be observed that the hand that does not touch the ground is
also well synthesized. For more details, the enlarged part in Figure 3.5 highlights specific
features of the generated videos.

In Figure 3.6, we provide four examples, one on each row, of generated videos with two per-
sons in the scene. Those generated frames show two persons moving independently from each
other, of moving direction and movement type. The generation of two-object videos started
from training EncGAN3 on the Weizmann dataset after training for rather many epochs, over

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 45

Figure 3.6: Generated videos by EncGAN3, of resolution 128 × 128 trained on the Weizmann
dataset that show two persons doing similar or different movements simultaneously.

9000 epochs actually. Such results do not replicate anything seen in the training datasets.
However, the results show realistic representations of the two persons, performing similar or
different activities. We consider that this behaviour may result from the deep compression
of content and motion information through the encoder. The deep compression allows the
generator to learn richer representations by combining information from different videos.
Additionally, the model’s large size and efficient representation mechanism, relative to the
small training data, seems to create sufficient representation redundancy. This redundancy,
guided by the two-stream encoder, allows the model to represent more than one content
type simultaneously. For different contents, the motion information directs distinct types
of movements, enabling the generation of videos that exhibit complex interactions between
multiple moving objects. Notably, such multi-object dynamics were not observed in the re-
sults produced by G3AN, even when trained for a similar or longer duration. These findings
suggest that EncGAN3 can generate videos displaying intricate motions and interactions
among multiple objects.

(a) EncGAN3, Weizmann

(b) EncGAN3, UvA

Figure 3.7: Generated videos of EncGAN3 on Weizmann (a) and UvA (b) datasets with the
resolution of 64 × 64 pixels.

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 46

Figures 3.7, 3.8 and 3.9 show more generated video results at lower 64 × 64 resolution,
for comparing to G3AN. Firstly, we provide the full video frames generated by EncGAN3
after training separately on Weizmann and UvA datasets, to show the generation ability of
Human body action and Facial expressions, as in Figures 3.7 (a) and (b). In detail, the
rows in Figure 3.7 (a) contain the frames from the video showing body movements such as
bending, jumping up, waving one hand and waving two hands, respectively. Figure 3.7 (b)
displays various people smiling and changing their facial expressions.

(a) KTH (b) UvA (c) Weizmann (d) UCF101

Figure 3.8: Comparing EncGAN3 (upper panels, each representing three rows with four
frames sampled from a video) with G3AN (bottom panels) after being trained on various
datasets where the generated videos have a resolution of 64× 64 pixels.

Next, we compare the visual results of EncGAN3 with G3AN in Figure 3.8. In the upper
panels of Figure 3.8 (a), (b), (c) and (d), we show on each row four frames from videos
generated by EncGAN3 following the training with KTH, UvA, Weizmann and UCF101
datasets, respectively. While the videos generated by G3AN1 are provided in the bottom
four panels of Figure 3.8. The video frames generated by EncGAN3 entail fewer artifacts with
less distortion while displaying smooth movement when compared to the frames generated
by G3AN. The fewer artifacts can be observed from the first and second row of Figure 3.8
(a), the second row of Figure 3.8 (b) and in Figure 3.8 (c) when compared to the frames
generated by G3AN from underneath.

Then, we compare the movement generation results of EncGAN3 with G3AN in Figure 3.9,
after training on the UvA dataset. The generated movement of facial expressions displays
micro-expressions. The movement is shown by the difference between successive frames in
the second and fourth rows in Figure 3.9, indicating our EncGAN3 preserves well the face
structure through the facial movement.

3.4.5 Ablation Study

In this section, we provide the ablation studies to explore: the contributions of various
components within the EncGAN3 architecture in Figure 3.1, the effect of different ways
to assess the video reconstruction term in training objectives, the relationships between

1The code used is provided at https://github.com/wyhsirius/g3an-project.

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 47

(a) EncGAN3,UvA (b) G3AN3,UvA

Figure 3.9: Video frames generated by EncGAN3 (a) and G3AN (b) on the UvA dataset.
Every even row shows frame difference maps used to represent the movement.

input latent codes and generated videos, as well as the impact of training video frames from
different sampling strategies.

Architecture UvA Weizmann KTH
FID↓ IS↑ (actor) FID↓ IS↑ (actor) FID↓ IS↑ (actor)

no GC , GT 95.500 63.926 101.638 2.244 73.220 2.867
no GC 88.058 133.352 89.004 7.020 75.309 3.853
no GT 90.713 537.852 97.554 5.564 74.963 4.966
no F-SA 87.526 - 82.821 - 73.792 -
no Enc 93.258 148.216 98.564 6.303 75.388 2.328
EncGAN3 86.210 571.29 78.935 8.906 66.621 5.986

Table 3.4: Ablating the contribution of various components of the EncGAN3 architecture.

Contribution of various components within EncGAN3 model. We ablate the En-
coder and the three-stream processing pipeline, F-SA module in the Generator to test the
contribution of those components to EncGAN3. In this ablation study, we consider three
datasets for the training, UvA, Weizmann and KTH. We provide the ablation results using
two metrics, the video FID and video IS, in Table 3.4. The video IS on the Weizmann and
KTH datasets is computed based on the Inception Network pre-trained on actor classes of
the corresponding dataset, instead of on action classes as in the quantitative evaluation.
Consequently, the IS values on Weizmann and KTH datasets on Table 3.4 are different from
those on Table 3.3. From Table 3.4, we observe that the presence of two auxiliary streams
GS and GT , as well as the Encoder and F-SA module, benefit the performance of EncGAN3.
In detail, the Generator without the temporal stream GT generates static images without
movement while the Generator without the spatial stream GS generates frames with bad
content.

Furthermore, EncGAN3 can generate videos using just random noise or using the latent code
provided by the Encoder. Considering the diverse generation capabilities of EncGAN3, we
further ablate the impact of the Encoder and F-SA modules in detail with results provided
in Table 3.5. In Table 3.5, we provide the video FID scores of our model trained without
the Encoder in the first and second rows, trained with the Encoder but tested without the

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 48

Encoder FSA UvA Weizmann KTH
(yes/no) FID↓ FID↓ FID↓

no no 95.47 89.98 79.36
no yes 91.77 98.27 111.99
train no 89.46 88.00 62.53
train yes 93.65 102.36 83.51
train, test no 87.52 82.43 73.79
train, test yes 86.21 78.93 66.62

Table 3.5: Ablating the contribution of the Encoder and the F-SA module. The first column
indicates whether to use the Encoder during either the training or testing time or not.

Encoder in the third and fourth rows, and using the Encoder at both training and testing
time in the last two rows. We alternatively show the results when considering or not the
F-SA module. From Table 3.5, we observe that the best FID results all come from the usage
of Encoder at training or testing time, indicating the advantages of using the Encoder.

Changing the way how the video reconstruction is assessed. We study the perfor-
mance difference when assessing the reconstruction error term used in the training objectives
described in Section 3.3.1. As the two-stream Encoder uses the first frame and frame dif-
ference maps as the input to the content and motion streams, we consider replacing the
reconstruction term of videos to be the reconstruction of the first frame and frame difference
maps for a more detailed match. The replacement changes the objective function of the
Encoder and Generator. The loss function of the Encoder in this case is :

LEnc,v =

N∑
i=1

∥xi0 − x̂i0∥+

N∑
i=1

Ti∑
j=1

∥vij − v̂ij∥

−DKL(qθx(zx|x))||p(zx))−DKL(qθv(zv|v))||p(zv)),

(3.9)

where the first and second term represents the error in the first frame and the difference maps
in the ith sequence of Ti frames and N video sequences. Similarly, the objective function of
the Generator in this case becomes:

LG,v =Ex̂n∼G(zx,zv) log[D(x̂n)] + Ex̃n∼G(z̃x,z̃v) log[D(x̃n)]

+ Ezx∼p(zx),zv∼p(zv) log[D(G(zx, zv))]

+ Ez̃x∼N (0,I),z̃v∼N (0,I) log[D(G(z̃x, z̃v))]

−
N∑
i=1

∥xi0 − x̂i0∥ −
N∑
i=1

Ti∑
j=1

∥vij − v̂ij∥

(3.10)

where the last term is the replacement term, measuring the reconstruction error between
real and generated frame difference maps.

In this study, we consider the replacement of the reconstruction term only in the Encoder,
as LEnc,v in Equation (3.9), or in both Encoder and Generator, marked as LEnc,v + LG,v

where LG,v is in Equation (3.10). Besides, we consider decreasing the learning rate from 2e−4

to 4e−5 when training all modules, allowing the model to focus on finer details with fewer
oscillations. The learning function described in Section 3.3.1 is regarded as the baseline.

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 49

Variants Learning rate FID↓
Baseline 2e-4 86.21
LEnc,v 2e-4 90.77
LEnc,v+LG,v 2e-4 95.02
LEnc,v+LG,v 4e-5 89.71
Baseline 4e-5 88.68

Table 3.6: Ablating changes in the loss functions and learning rate.

As shown by the results from Table 3.6, the baseline version of the objective functions de-
scribed in Section 3.3.1 achieves better video FID scores than LEnc,v +LG,v on both learning
rates considered, indicating that it is important to consider the full frame reconstruction in
the training objective functions instead of the expressions from the Equations (3.9) and
(3.10). The training objective functions such as LEnc from Equation (3.1) and LG from
Equation (3.4) do not only optimize the motion stream reconstruction, but they also con-
sider how the movement representation is employed to reconstruct realistic video streams,
frame after frame. As for the learning rate, a decreased learning rate causes a worse video
FID result for the baseline objective while causing a better FID result for training objective
LEnc,v + LG,v, indicating that the setting of the learning rate depends on specific training
objectives.

Video generation effects following latent code manipulation. To explore the rela-
tionship between latent codes and generated frames, we interchange the latent codes of the
movement and combine them with different content latent codes, observing the changes in
the generated video clips, as displayed in Figure 3.10 and 3.11. As shown in Figure 3.10 (a),
we fixed the content latent code zc1 while combining with different motion latent codes zm1 ,
zm2 as inputs for the Generator, with the video results shown on top and bottom of Fig-
ure 3.10 (a), respectively. From Figure 3.10 (a) and (b), we can observe that the generated
frames display the same subject clapping hands while having different particular movements.

(a) zc1 ,zm1 (top) and zc1 ,zm2 (bottom) (b) zc3 ,zm3 (top) and zc3 ,zm4 (bottom)

Figure 3.10: Frames from the first and second rows of (a) and (b) are generated using the
same content latent code with different motion latent codes.

Meanwhile, we consider summing another two latent codes (zc1 ,zm1) and (zc2 ,zm2) of both
their content and motion parts with the results provided in Figure 3.11. The first and second
rows are frames generated by latent codes (zc1 ,zm1) and (zc2 ,zm2), respectively. The third
row corresponds to the frames generated by their summations, as zc1 + zc2 and zm1 + zm2 of
content and motion latent codes. From Figure 3.11 (a) and (b), We observe that the frames
generated using the sum of the two latent codes inherit and combine some properties of the
two video sequences corresponding to the two latent codes.

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 50

(a) zc1 ,zm1 (top), zc2 ,zm2 (middle) and their sum (bottom), respectively of the left and right panels.

Figure 3.11: The latent codes used to generate the frames in the third row in each panel are
obtained by summing the latent codes used to generate the frames in the first and second
rows.

Sampling strategies for selecting data to produce training set. We conducted an
ablation study on two sampling strategies to create training sets with different complexity
levels and trained the model with and without using the Encoder, in order to explore whether
the usage of the Encoder improves the learning ability of the model to learn efficiently from
more complex data. We trained on the UvA dataset using these sampling strategies. The two
sampling strategies are step sampling and uniform sampling. The step sampling randomly
selects a starting frame and then samples the following video frames with a sampling step of 2
or 3 for the entire number of frames sampled. The sampling step is randomly selected at each
sampling time. The uniform sampling divides a video clip into 16 sets with equal numbers of
frames, and then sample randomly one frame from within each set. Hence, frames sampled
from uniform sampling contain more complex temporal information due to the fluctuation
of the frame rate. Compared to the step sampling, the uniform sampling records better the
movement happening throughout the video clip while making the data more complex.

(a) with Encoder, uniform sampling (b) without Encoder, uniform sampling

(c) with Encoder, step sampling (d) without Encoder, step sampling

Figure 3.12: Generated frames for EncGAN3 in (a), (c) and G3AN in (b), (d) when using
uniformly or step sampled training sets trained for 100 (top row) and 5000 epochs (bottom
row).

According to the results from Figure 3.12 (a) and (b), when considering the uniformly sam-
pled training set, the model trained when considering the Encoder generates good video

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 51

results soon after training for 100 epochs while the one when not considering the Encoder
generates bad results even after training for 5000 epochs, indicating that the Encoder ben-
efits the learning ability of the model to learn more efficiently on more complex data. The
first and second rows of all panels in Figure 3.12 are the results achieved after training for
100 and 5000 epochs, respectively. Comparing Figure 3.12 (a) and (c), frames generated by
the model trained when considering the step sampled training set show smoother movement
and better content after training for 5000 epochs, indicating the benefits of maintaining the
frame rate for the training video. As a consequence of these results, for all other experiments,
we use step sampling and Encoder during the training.

3.5 Conclusion

In this research chapter, we introduced an encoder-enabled method to enhance GAN-based
video generation models with an inference mechanism. This proposed method combines the
inference capabilities of the Encoder with the generative abilities of a video GAN. Following
this method, we proposed EncGAN3, a VAE-GAN hybrid network specifically designed for
high-quality video generation. EncGAN3 leverages an inference mechanism to stabilize learn-
ing and improve the video GAN generator’s performance, enabling the generation of realistic
videos at resolutions of 64× 64 and 128× 128 pixels. The generated videos can depict single
or sometimes even two moving objects without additional restrictions on multi-object gen-
eration. Our experiments demonstrated that EncGAN3 achieves competitive performance
on several benchmark datasets, including UvA-NEMO, Weizmann, KTH, and UCF101, in
terms of video FID and video IS metrics. The results indicate that EncGAN3 produces
videos with superior visual quality and diversity compared to other models discussed in this
chapter. Future work will focus on enhancing the temporal representation efficiency to enable
the generation of longer videos.

(a) Weizmann

(b) UvA

Figure 3.13: Frames in each row are sampled for every 5 frames from 90-frame videos at
128× 128 resolution generated by EncGAN3.

3.5.1 Limitation and further work

EncGAN3 is designed to generate 16-frame videos and is specifically trained for this fixed
duration. While it is possible to extend the video length by increasing the size of the motion
latent code, as shown in Figure 3.13, this approach goes beyond the original design of the
model. Forcing EncGAN3 to generate videos longer than its training duration leads to a
significant decline in frame quality compared to the standard generation method. This degra-
dation is especially evident in human action videos. For example, in Figure 3.13 (a), the hand

CHAPTER 3. ENCGAN3: ENCODING GAN3 VIDEO GENERATOR 52

is rendered poorly, compared to the more detailed frames in Figure 3.5. Additionally, facial
expressions in longer videos show unnatural distortions, such as the structural deformation
of the left eye in Figure 3.13 (b), resulting in unrealistic and awkward movements.

Video length Resolution Batch size
(frames) (pixels) (16-frame videos)

16 64× 64 10
16 128× 128 1
20 64× 64 CUDA-OOM

Table 3.7: EncGAN3 training cost on V100 with a memory of 32GiB.

Simply extending the training video length to capture longer sequences would cause a steep
rise in GPU memory requirements. As detailed in Table 3.7, increasing spatial resolution
leads to a relatively moderate increase in memory usage. In contrast, even a small increase in
video length results in an exponential rise in memory demand, highlighting the inefficiency
of temporal representation compared to spatial representation. This inefficiency motivates
further research into developing a more efficient video representation mechanism for the
temporal dimension, which could preserve the ability to model diverse types of video data
while reducing the substantial cost of such dense temporal representations.

These challenges lead to the development of the recall mechanism, which is introduced in
the next chapter. This mechanism allows the model to generate much longer videos, up to
hundreds of frames, while achieving better temporal dynamics and maintaining high visual
quality without increasing the training video length.

Chapter 4

Longer video generation using
REncGAN

4.1 Introduction

Recent advancements in deep learning have significantly improved video generation, leading
to a wide range of applications from virtual reality to artistic production and scientific
research. Traditional approaches to video generation have predominantly relied on models
such as GANs, VAEs and their hybrids. These models have proven effective for generating
short video sequences, typically up to 16 frames, which correspond to less than a second of
video at standard frame rates [5, 43, 60, 61, 42, 62, 98, 99].

While recent diffusion models have shown remarkable progress in generating high-quality
images and short video clips, generating long-duration videos with high fidelity remains
a significant challenge [33, 34, 35, 36]. Current industry products like Sora (1 minute),
Open-Sora (16 seconds), Runway (4 to 16 seconds), Stable Video (4 seconds), and Pika (3
seconds) highlight the state-of-the-art capabilities in video generation using diffusion models
[100, 51, 81, 21]. Most of them use 8 to 30 frame-per-second (FPS), reaching mostly tens of
frames, such as CogVideo [52] allows to generate maximum 64 frames for 8 FPS from our
experiment. Despite their success in producing high-resolution and complex content, these
models often face limitations in generating long videos due to challenges in maintaining
temporal consistency, avoiding content repetition, and managing increased computational
demands.

In Section 3.5.1 of the previous chapter, we discussed potential directions for further devel-
oping EncGAN3. One direction focuses on the spatial dimension, such as expanding the
frame resolution or increasing the complexity of generated content (e.g., multi-object move-
ments). The other direction focuses on the temporal dimension, specifically extending the
generated video length. Considering that the temporal dimension is the most distinctive
aspect of video generation compared to image generation, we decided to prioritize enhanc-
ing the long-duration video generation capabilities of VAE-GAN-based models with minimal
computational overhead in this work.

53

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 54

While models like EncGAN3 [1] excel at generating sharp and coherent short-term video clips,
their performance deteriorates significantly when tasked with sequences beyond their training
length, as discussed in Section 3.5.1. This limitation is not unique to EncGAN3; many state-
of-the-art models face similar challenges when generating longer videos. For instance, models
such as VGAN [43], TGAN [60], and MoCoGAN [61] exhibit severe frame quality degradation
when generating sequences exceeding 100 frames. Even models specifically designed for long
video generation, such as TATS [9], struggle to maintain temporal dynamics and avoid
content repetition, particularly in complex scenarios like human body movements [7, 8].
These issues often stem from the models’ limited understanding of temporal progression
beyond their training data, leading to blurred or repetitive content in longer sequences.

To address these challenges, we propose two novel methods to enhance the long-duration
video generation capabilities of EncGAN3. The first method, LEncGAN, integrates Long
Short-Term Memory (LSTM) networks [30, 31] to model temporal dependencies across longer
sequences, preserving diversity and coherence. The second method, Recall EncGAN (REnc-
GAN), shifts the focus from individual frames to short-term clips, modelling temporal rela-
tionships between these clips. While LEncGAN represents an initial model that we developed
for long-term video generation, later we developed a better and more efficient REncGAN
model. Both approaches reduce computational demands while enabling the generation of
extended sequences with consistent quality and diversity.

Both methods significantly extend the capabilities of EncGAN3, enabling it to generate
hundreds or even thousands of frames, whereas most existing methods struggle to generate
even one hundred frames [6, 7]. Moreover, our methods achieve this with minimal additional
computational overhead. For instance, training REncGAN with a batch size of one requires
GPU memory comparable to training EncGAN3 with a batch size of 2.5. In contrast, directly
increasing the training video length of EncGAN3 from 16 to 20 frames results in GPU out-
of-memory errors. By leveraging the recall mechanism, our approach REncGAN achieves a
substantial increase in frame generation capacity—from tens to hundreds or thousands of
frames—with only a marginal increase in GPU memory requirements.

The main contributions of this research are as follows:

1. We introduce REncGAN, a novel model incorporating a recall mechanism into a VAE-
GAN framework, facilitating the generation of long-duration videos with hundreds or
even thousands of frames.

2. We extend EncGAN3 with an LSTM-based architecture (LEncGAN) to produce longer,
temporally diverse videos of hundreds of frames.

3. We propose new loss functions for LEncGAN and REncGAN that enhance synchro-
nization between encoding and generation modules, improving long-video generation
performance while minimizing memory requirements.

4. We conduct extensive quantitative and qualitative evaluations, demonstrating the su-
perior performance of REncGAN and LEncGAN in generating long videos with high
visual quality and spatial-temporal consistency compared to existing methods.

In this chapter, we detail these approaches and their effectiveness in generating long videos

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 55

Figure 4.1: LEncGAN3: a Markov chain consists of multiple EncGAN3 states that are
connected by LSTM in the Encoder part. To maintain clarity and conciseness, only the
connections for the first two states are shown here.

with hundreds of frames, marking a significant advancement over traditional short-term video
generation methods.

4.2 LEncGAN: Applying LSTM to Enable EncGAN3 for Long
Video Generation

4.2.1 LEncGAN Structure

The development of LEncGAN focuses on integrating Long Short Term Memory (LSTM)
modules into the EncGAN3 framework to facilitate long video generation by capturing tem-
poral dependencies between video frames. EncGAN3 utilizes a VAE-GAN hybrid approach
with a two-stream encoder, a three-stream generator and a two-stream discriminator, capable
of producing 16-frame video clips after training on a corresponding dataset while challenging
to generate longer videos. The structure of LEncGAN is depicted in Figure 4.1.

In LEncGAN, the fully connected (fc) layers (FC) of the Motion Encoder (MoEnc) in the
original EncGAN3, show as a gray cube at the end of Em, are replaced by LSTM modules.
This modification allows the model to learn temporal information from the difference maps
of input video clips. Specifically, the final cell state ct and hidden state ht of the Motion
LSTM (MoLSTM) are passed to the next state c+1, maintaining temporal continuity across
video clips.

Similarly, the Content Encoder in the LEncGAN includes an LSTM module that processes

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 56

the sequence of video frames. The output states ct and hidden state ht from the Content
LSTM (CoLSTM) are used as the initial states for the subsequent EncGAN3 state c + 1,
ensuring that content features are temporally coherent across clips.

LEncGAN retains the original generator and discriminator components of EncGAN3 without
significant modifications. The key innovation lies in the incorporation of LSTM-enhanced
encoders, which provide temporally enriched latent spaces to the generator, enabling it to
produce coherent video sequences over extended lengths of time.

This structure aims to utilize the sequential modelling advance of LSTM to capture long-
term dependencies, ensuring that the generated video sequences are both temporally and
contextually consistent.

Algorithm 3 LEncGAN Training Procedure for the First Clip of a Long Video

1: Required: Content Encoder (CoEnc), Content LSTM (CoLSTM), Motion Encoder
(MoEnc), Motion LSTM (MoLSTM), Clip Generator (G), Video Discriminator (VD),
Image Discriminator (ID)

2: Input: The first clip of a video x0:Tc

3: Output: Discrimination results of True or False T/F
4:

5: (h0, c0)← (0, 0)
6: Tc ← 15
7:

8: Content Encoding:
9: for t = 1→ Tc do

10: (h0:t, (ht, ct))← CoLSTM(CoEnc(xt−1), (ht−1, ct−1))
11: end for
12: zc ← ct
13: Motion Encoding:
14: for t = 1→ Tc do
15: vt ← xt−1 − xt

16: (h0:t, (ht, ct))← MoLSTM(MoEnc(vt), (ht−1, ct−1))
17: end for
18: zm ← ct
19: Latent Space Sampling:
20: zx ← sample(zc)
21: zv ← sample(zm)
22: Clip Generation:
23: x̂0:Tc ← G(zx, zv)
24: Discrimination:
25: T/F ← VD(x̂0:Tc)
26: idx← random(0 : Tc)
27: T/F ← ID(x̂idx)

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 57

4.2.2 LEncGAN Training

The LEncGAN inherits the training objective functions of EncGAN3, as detailed in Section
3.3.1. The key difference lies in the integration of LSTM modules, resulting in different
Encoder inputting. LSTM has three inputs: the hidden state, the cell state, and the current
input frame embedding. The hidden state is the output from the previous input frame
embedding, while the cell state, representing memory, is calculated based on all previous
input frame embeddings. Therefore, LEncGAN uses the cell state of the last input frame as
the latent space, encapsulating information from all input frames.

In LEncGAN, a long video is split into several 16-frame clips, with each clip serving as
the input for EncGAN. The data processing in the Encoder differs between the initial clip
and subsequent clips. The process for the subsequent clips is the same as for the second
clip. Figure 4.1 illustrates the data flow for the first two clips, showcasing both processing
methods.

For the initial clip, the hidden state and cell state of each LSTM module are initialized to
zero. The calculation process for the two-stream Encoder for the initial clip is detailed in
the lines 5 to 18 of Algorithm 3, where Tc indicate clip length and T is the length of entire
video.

For the subsequent clips, the initial hidden and cell states of the LSTM inherit the state
from the previous clip. The calculation process for these non-initial clips is provided in
Algorithm 4. The inherited state and current clip are calculated on the model with the
same parameters. The .detach() in lines 14 and 15 means the backpropagation for gradient
calculation stops on the inherited state (hTc , cTc). The subsequent clips are processed the
same as the second clip with an updated frame range for t.

As shown in Algorithm 1 in Chapter 3, in EncGAN3, the Encoder uses the first frame as the
content frame instead of all frames to process the content stream and fc layers (the Mofc)
instead of MoLSTM to process the motion stream. Except for the Encoding part, LEncGAN
uses the same processing pipeline as EncGAN3, while targeting the long video generation.

4.2.3 LEncGAN Inference

At inference time, LEncGAN generates clip-by-clip with inherited states to ensure consistent
of generated clips for stitching them to be a long video. The inference procedure of LEncGAN
is shown in Algorithm 5, where diversity in the generated clips is introduced by sampling from
the latent space, a feature inherited from EncGAN3, where clips generated from sampled
latent codes differ significantly from their input clips.

4.2.4 LEncGAN Implementation

LEncGAN utilizes the same hyper-parameter settings as EncGAN3, including the learning
rate and the configuration of the ADAM optimizer. The training is conducted on an Ubuntu
system using a single V100 GPU with 32 GB of memory. For the experiments, we use videos

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 58

Algorithm 4 LEncGAN Training Procedure for Subsequent Clips of a Long Video

1: Required: Content Encoder (CoEnc), Content LSTM (CoLSTM), Motion Encoder
(MoEnc), Motion LSTM (MoLSTM), Clip Generator (G), Video Discriminator (VD),
Image Discriminator (ID)

2: Input: A video segment x0:2×Tc

3: Output: Discrimination results of True or False T/F
4:

5: (co h0, co c0)← (0, 0)
6: (mo h0,mo c0)← (0, 0)
7: Tc ← 15
8:

9: Initial Content and Motion Encoding:
10: for t = 1→ Tc do
11: (co h0:t, (co ht, co ct))← CoLSTM(CoEnc(xt−1), (co ht−1, co ct−1))
12: (mo h0:t, (mo ht,mo ct))← MoLSTM(MoEnc(xt−1 − xt), (mo ht−1,mo ct−1))
13: end for
14: co hTc , co cTc ← co ht.detach(), co ct.detach()
15: mo hTc ,mo cTc ← mo ht.detach(),mo ct.detach()
16: Subsequent Content and Motion Encoding:
17: for t = Tc + 1→ 2× Tc do
18: (co h0:t, (co ht, co ct))← CoLSTM(CoEnc(xt−1), (co ht−1, co ct−1))
19: (mo h0:t, (mo ht,mo ct))← MoLSTM(MoEnc(xt−1 − xt), (mo ht−1,mo ct−1))
20: end for
21: Latent Space Sampling:
22: zx ← sample(co ct)
23: zv ← sample(mo ct)
24: Clip Generation:
25: x̂Tc:2×Tc ← G(zx, zv)
26: Discrimination:
27: T/F ← VD(x̂Tc:2×Tc)
28: idx← random(Tc, 2× Tc)
29: T/F ← ID(x̂idx)

Algorithm 5 LEncGAN inference Procedure for Long Video Generation

1: Input: A video x0:m×Tc

2: Output: A generated video x̂0:m×Tc

3: Initialize: (h0, c0)← (0, 0)
4: prev state← (h0, c0)
5: for jc = 1→ m do
6: h(jc−1)×Tc:jc×Tc

, c(jc−1)×Tc:jc×Tc
← LSTM(Enc(x(jc−1)×Tc:jc×Tc

), prev state)
7: prev state← (hjc×Tc , cjc×Tc)
8: (zx, zv)← sample(cjc×Tc)
9: x̂(jc−1)×Tc:jc×Tc

← G(zx, zv)
10: end for

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 59

from the Tai-chi-HD (Taichi) [101] dataset that contains hundreds of frames, such as about
400 frames, to benefit the modelling of long duration. The batch size is set to one due to
the varying lengths of videos and the requirement for uniform batch elements. LEncGAN
employs the same training objectives as EncGAN3. The differences in the training procedures
are detailed in Section 4.2.2.

The LEncGAN model is composed of an Encoder, a Generator, and a Discriminator. The
structure of the Generator and Discriminator in LEncGAN is identical to that in EncGAN3.
However, LEncGAN introduces two LSTM modules for the content and motion streams of
the Encoder. Specifically, the LSTM in the motion stream replaces the fc layers (FC) used
for compressing the motion information in EncGAN3. In detail, the content stream encoder
of LEncGAN includes six two-dimensional convolutional (conv2d) layers and one fc layer,
each followed by a batch normalization layer and a ReLU activation function, similar to
EncGAN3. The final fc layer is succeeded by an LSTM module with one recurrent layer.
Both the input size and internal feature size of the LSTM module are 512, matching the
output feature size of the final fc layer. The motion stream encoder of LEncGAN mirrors
the structure of the content stream encoder but processes frame difference maps recursively
instead of individual frames.

4.3 Transition from LEncGAN to REncGAN

4.3.1 Motivation for REncGAN

The development of the Recall Encoding GAN3 (REncGAN) was driven by several limita-
tions of LEncGAN. Although LEncGAN successfully introduced temporal coherence through
LSTM modules, it faced significant computational and hardware challenges. Specifically, the
use of multiple EncGAN3 models resulted in prohibitive GPU memory requirements for
training on high-resolution videos, making the model difficult to scale for practical applica-
tions.

Moreover, the design of LEncGAN, which involves connecting multiple EncGAN3 states
with LSTMs, leads to redundancy and inefficiency. Managing numerous states increased
both memory usage and training time. Consequently, there was a need for a more efficient
and scalable approach that could retain or enhance the performance achieved by LEncGAN
while reducing its computational overhead.

4.3.2 Key Innovations

REncGAN offers several key improvements over LEncGAN, including simplified state man-
agement, a novel recall mechanism, and enhanced visual quality.

Firstly, REncGAN simplifies state management by reducing redundancy. It achieves this by
sharing weights across different EncGAN3 states, allowing for the optimization of a single
state at a time rather than handling multiple states concurrently. This approach significantly
decreases memory requirements and improves training efficiency.

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 60

Secondly, the recall mechanism in REncGAN replaces the LSTM connections used in LEnc-
GAN. This mechanism overlaps video clips by 8 frames between consecutive states, ensuring
temporal coherence and diversity while minimizing memory usage.

In terms of temporal coherence, REncGAN utilizes the middle frame of a short clip se-
quence (16 frames in our experiments) along with corresponding difference maps as inputs.
This method enhances temporal continuity between clips, ensuring smoother transitions and
reducing visual inconsistencies. By leveraging inherited state information, the recall mecha-
nism improves the overall coherence of long video sequences.

Furthermore, REncGAN enhances visual quality by addressing both memory and redun-
dancy issues. The improvements in the recall mechanism enable the model to handle more
complex training data, resulting in videos with better resolution and smoother transitions.

Finally, REncGAN advances the representation of temporal dimension within and between
clips. It models intra-clip and inter-clip relationships to generate long videos with lower GPU
memory requirements. This approach maintains continuity and coherence while effectively
managing temporal diversity, addressing the challenge of exponential memory growth with
video length.

4.4 REncGAN: EncGAN3 with Recall Mechanism

4.4.1 REncGAN Structure

Recall Encoding GAN3 (REncGAN) builds upon the empirical study of LEncGAN, intro-
ducing a recall mechanism that enhances the continuity and consistency of generated long
videos. The structure of REncGAN is depicted in Figure 4.2. This mechanism overlaps
input clips between consecutive states, enabling further the continuity and consistency of
generated clips with their connected counterparts. The recall mechanism allows each clip
state to inherit the temporal context from the previous clip state, maintaining the continuity
across the video sequence. Unlike LEncGAN, which incorporates LSTM modules to capture
temporal dependencies, REncGAN achieves temporal coherence without altering the inter-
nal structure of EncGAN3. Instead, it modifies the training objective and employs a shared
weight configuration across all EncGAN3 states. This approach significantly reduces the
memory footprint and enhances training efficiency, particularly for high-resolution videos.

The recall mechanism in REncGAN focuses on relationships between adjacent clips. It follows
the Markov chain property, which simplifies long video generation by managing temporal
coherence between each pair of consecutive clips, rather than across the entire video. This
approach allows REncGAN to generate long videos without needing to increase the training
length, which would be impractical. For instance, without the recall mechanism, extending
the training length of EncGAN3 from 16 frames to 20 frames would lead to GPU memory
overflow, as shown in Table 3.7. Additionally, the memory requirement of REncGAN remains
constant, as it depends only on the length of the clips used in training, not the total length of
the video. In terms of GPU memory usage, REncGAN requires nearly the same amount of
memory as EncGAN3 when both are trained with a batch size of one. Although REncGAN

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 61

Figure 4.2: Illustration of the Recall Encoding GAN3 (REncGAN).

processes two clips simultaneously, it does not include the noise input processing found in
EncGAN3. However, the memory needed to process the second clip, which includes an extra
pass through the Encoder, along with the overhead of handling the merged clip through
the Video Discriminator (VD), results in REncGAN demanding slightly more memory than
EncGAN3. The details of the recall mechanism in REncGAN are illustrated in Figure 4.3.

In practice, REncGAN segments a long video sequence into overlapping short clips. The
overlap ensures that each generated clip shares some frames with the next, creating a seam-
less narrative. A reference frame, often the middle frame of the overlapping segment, is used
by the Content Encoder (CoEnc) to maintain continuity and consistency. This frame, along
with corresponding difference maps, helps the encoders capture and leverage temporal in-
formation, ensuring smooth transitions and coherence in the final output. This operation is
built up on the VAE structure and mainly changes the input of the Encoder, named R Enc.

In addition, the recall mechanism introduces a three-stream video discriminator (3VD) op-
eration, named R 3VD, which processes overlapping video clips. Since R Enc generates two
video clips as input, R 3VD constructs a third clip by combining 8 frames from each of the
two generated clips around their overlapping region, representing half of the total frames in
each clip. This third clip captures the transition between the two generated clips, ensuring
temporal coherence. The Video Discriminator (D V) then evaluates the three generated
clips individually, assessing both their visual quality and the smoothness of their transitions.
The outputs of D V for the three clips are aggregated (e.g., averaged, summed, or otherwise
combined. Here is averaged.) to provide learning signals to the generator. This process
is crucial for maintaining temporal consistency and visual quality in the generated videos.
This operation R 3VD builds upon the traditional GAN framework and mainly modifies the
input structure of the Video Discriminator.

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 62

Figure 4.3: Illustration of REncGAN, showcasing the recall mechanism that integrates inputs
from the two-stream Encoder and the Video Discriminator (VD) to ensure clip continuity
(bottom panel). Each clip has a fixed maximum frame index Tc = 15 of index starts from
0, while T > 100 for long videos. The reference frame index r denotes the boundary of the
overlapping region, calculated as r = Tc−To, where To is the number of overlapping frames.
For a 50% overlap(To = Tc//2 + 1 = 8), r = Tc//2 + 1 = To. The workflow of REncGAN, as
depicted in this figure, is further detailed in Algorithm 6, with lines 34 to 40 detailing the
main leveraging of VD in the recall mechanism. For instance, a 24-frame input is split into
two 16-frame clips (X1 and X2) with To = 8 overlapping frames. The first r = 8 frames of
their generated clips are stitched to be a new clip X̂3, and all three clips are fed into VD to
optimize the Generator.

In the generation of long videos, REncGAN leverages latent space to provide prior infor-
mation and does not require the generation of clips from random noise. By removing the
noise generation process used in EncGAN3, REncGAN saves GPU memory and better fo-
cuses on the core task of generating coherent long videos. This focus is further enhanced
by the joint optimization of the encoder and generator in REncGAN, unlike the separate
training approach used in EncGAN3. This integrated training improves synchronization
between components, leading to higher-quality video outputs. Combined with the efficient
use of GPU memory and shared weight configuration, REncGAN can produce long-duration
videos with improved coherence and quality, even for high-resolution content.

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 63

4.4.2 Training Objective

After implementing the recall mechanism, the loss functions of REncGAN differ from those
of the original EncGAN3, introduced in Section 3.2, through the joint training setting of
two consecutive video clips, removal of random noise generation terms and processing of
the merged video clip for ensuring the video continuation and consistency, resulting in the
concatenation of two consecutive short video clips.

In the recall mechanism, the consecutive video clips are all considered to be of the same size
or Tc = 15 each, while for the sake of continuity and consistency, we consider that they have
a number of overlapping frames, defined by the binding frame xr, which eventually will make
up the synthesized long video :

y =
⋃
{x0:Tc ,xr:r+Tc ,x2r:2r+Tc , . . . ,x(NC−1)r:(Nc−1)r+Tc

} (4.1)

where y represents a training long video sequence, r is the index of the binding frame, used
as a reference for connecting clips (hence, the binding frame also called as reference frame),
and NC represents the number of video clips used for synthesizing the long video, which is
varied for videos of different lengths.

The generation of clips is adapted to fit the change of the reference frame index r, from 1
in EncGAN3 to r ∈ [1, Tc]. The generated content frame x̂jc,r together with the generated
movement are considered for reconstructing all other generated frames from the video clip
jc :

x̂jc,j = x̂jc,j+1 ⊖ v̂jc,j+1, j = r − 1, . . . , 0 (4.2)

x̂jc,j = x̂jc,j−1 ⊕ v̂jc,j , j = r + 1, . . . , Tc (4.3)

where Equation (4.2) and (4.3) utilize pixel-wise addition ⊕ and subtraction ⊖ operations
to generate the preceding and succeeding parts of a video clip, respectively, centered around
the reference frame of index r.

The following loss function LEncG is used for training the Encoder and Generator together
in REncGAN :

LEncG =

NL∑
i=1

NC∑
jc=1

∥xi,jc,r − x̂i,jc,r∥+

NL∑
i=1

NC∑
jc=1

Tc∑
j=0

∥xi,jc,j − x̂i,jc,j(v̂i,jc,j , x̂i,jc,r)∥

+ DKL(qθx(zx | x)∥p(zx)) + DKL(qθv(zv | v)∥p(zv))

− Ezx∼qθx (zx|x),zv∼qθv (zv|v) log[D(G(zx, zv))]− Ex̂n∼G(zx,zv) log[D(x̂n)]

(4.4)

where we consider NL long videos, each splits into NC overlapped clips with each clip con-
taining Tc+1 frames with r identifying the reference frame. xi,jc,j represents an image frame
while x̂i,jc,j is its reconstruction, v̂i,jc,j the reconstruction of the movement, as the difference
between consecutive frames, associated with the frame j form clip jc from the long video i.
Meanwhile, {zx, zv} represent the latent spaces of the content and movement, modelled by
the encoders Ec and Em, respectively. They are forced to be probabilistically close to their
prior distributions through the Kullback-Leibler Divergence DKL.

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 64

The loss function of the image-stream Discriminator LDI ,R in REncGAN is similar to the
one used in EncGAN3, after removing the random generator components due to enabling
the joint training. The same applies for the loss function of the video-stream Discriminator
LDV ,R before applying the R 3VD operation. Their loss functions are :

LDI ,R = −Exn∼p(x) log[D(xn)]− Ex̂n∼G(zx,zv) log[1−D(x̂n)], (4.5)

LDV ,R = −Ex0:Tc∼p(x0:Tc)
log[D(x0:Tc)]− Ex̂0:Tc∼p(x̂0:Tc)

log[1−D(x̂0:Tc)], (4.6)

where xn is a frame sampled from the real video clip and x̂n is from the video generated by
the latent codes, while x0:Tc and x̂0:Tc represent the original and generated image sequences
forming clips.

After applying the R 3VD operation which merges two successive short video clips, the
video-stream Discriminator loss function LDV ,R2 is defined according to :

LDV ,R2 = Ex0:Tc∼p(x0:Tc)
log[D(x0:Tc)] + Ex̂0:Tc∼p(x̂0:Tc)

log[1−D(x̂0:Tc)]

+ Ex̂stitch∼p(x̂stitch) log[1−D(x̂stitch)] (4.7)

where x0:Tc = {xi}Tc
i=0 and x̂0:Tc = {x̂i}Tc

i=0 represent the real two video inputs and their
reconstructions, while p(x0:Tc) and p(x̂0:Tc) are their probabilities. The reconstructions are
stitched together to form x̂stitch. By using the discriminator LDV ,R2 for reconstructing
x̂stitch enforces the generator to learn the temporal relationships of synthesized clips between
consecutive states, defined by the reference frame x̂r, thereby enabling the generation of long
videos.

As for the numbers of overlapped frames To, we consider that only when having half of
all frames from a video clip overlapping between two consecutive video clips, that is To =
Tc//2 + 1, the boundary index r of consecutive clips are them similar (To = r), allowing to
use the same generator with the same reference index to generate clips that is connectable
to both its former and latter clips. Thus, extending the continuous and coherent between
successive clips to the entire video. Furthermore, in the experimental results, we provide
an ablation study with results when changing the location of the reference frame r in the
sequence of frames defining the number of overlapping frames between consecutive video
segments.

4.4.3 Training Procedure

During the training, the Discriminator is updated by optimizing LDI
and LDV ,R2 using

equations Equation (4.5) and (4.7). If the R 3VD operation is not applied, LDV ,R of Equa-
tion (4.6) is used instead of LDV ,R2 from (4.7). Then the Encoder and Generator loss LEncG

are optimized together according to Equation (4.4). After applying the R 3VD operation,
each loss function introduced in Section 4.4.2 (except for LDV ,R) is used to pairs of successive
clips and the resulting loss values are combined (such as averaged) for back-propagation.

The training procedure of REncGAN is provided in Algorithm 6, showing the continuation in
the processing by two consecutive clips. Hence, REncGAN is trained to generate connectable
clips for those that come from the latent spaces provided by successive clips. When being

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 65

Algorithm 6 REncGAN Training Procedure for Long Videos

1: Required: Content Encoder (CoEnc), convolution part of the Motion Encoder (Moenc),
fc part of the Motion Encoder (Mofc), Clip Generator (G), Image Discriminator (ID),
Video Discriminator (VD)

2: Input: A video x0:T , where T > 100
3: Output: Discrimination results of True or False T/F
4:

5: Tc ← 15
6: r ← Tc//2 + 1
7:

8: Former Clip Encoding:
9: zco ← CoEnc(xr)

10: for t = 1→ Tc do
11: vt ← xt−1 − xt

12: zvt ← Moenc(vt)
13: end for
14: zmo ← Mofc(zv1:t)
15: Latent Space Sampling:
16: zx ← sample(zco)
17: zv ← sample(zmo)
18: Former Clip Generation:
19: x̂1

0:Tc
← G(zx, zv)

20:

21: Latter Clip Encoding:
22: zco ← CoEnc(xr)
23: for t = r + 1→ Tc + r do
24: vt ← xt−1 − xt

25: zvt ← Moenc(vt)
26: end for
27: zmo ← Mofc(zv1:t)
28: Latent Space Sampling:
29: zx ← sample(zco)
30: zv ← sample(zmo)
31: Latter Clip Generation:
32: x̂2

0:Tc
← G(zx, zv)

33:

34: Merge Generated Clips:
35: x̂3 ← concat(x̂1

0:r, x̂
2
0:r)

36:

37: Discrimination:
38: T/F ← avg(VD(x̂1),VD(x̂2),VD(x̂3))
39: idx← random(0, Tc)
40: T/F ← avg(ID(x̂1

idx), ID(x̂2
idx))

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 66

tested, REncGAN follows a similar process for generating connectable clips and merging
them into long videos. The temporal diversity within the video is guided by the sequence
of latent spaces, preventing repetition in the generated content. Meanwhile, the diversity
across different long videos is achieved through sampling from different points in the latent
space. As shown in ablation studies of REncGAN, latent codes sampled from the same latent
space can provide different generation results.

4.4.4 Inference Procedure

At inference time, REncGAN generates long videos by generating sequential clips with solely
sequential input clips, without any extra sequential information, such as the inherit state
information in LEncGAN. The inference procedure of REncGAN is shown in Algorithm 7,
where the clips generated from sampled latent codes significantly differ from their corre-
sponding input clips as observed in its baseline model EncGAN3.

Algorithm 7 REncGAN Inference Procedure for Long Videos

1: Required: the two-stream Encoder (Enc), Clip Generator (G)
2: Input: the entire input video x0:T

3: Output: Generated long video x̂long

4:

5: x̂long ← ∅
6: Tc ← 15
7: r ← Tc//2 + 1
8: m← T//r
9:

10: for jc = 1→ m− 1 do
11: zco, zmo ← Enc(x(jc−1)×r:(jc+1)×r)
12: zx, zv ← sample(zco, zmo)
13: x̂(jc−1)×r:(jc+1)×r ← G(zx, zv)
14: if jc == 1 then
15: x̂long ← x̂(jc−1)×r:jc×r

16: else if jc == m− 1 then
17: x̂long ← concat(x̂long, x̂(jc−1)×r:(jc+1)×r)
18: else
19: x̂long ← concat(x̂long, x̂(jc−1)×r:jc×r)
20: end if
21: end for

4.4.5 REncGAN Implementation

Similar to LEncGAN and EncGAN3, REncGAN is implemented using the ADAM optimizer
with exponential decay rates for the first-order and second-order moment estimations set to
β1 = 0.5 and β2 = 0.999. The learning rate is set to 2× 10−4 for all modules: Discriminator,
Encoder, and Generator. The training is conducted on an Ubuntu operation system using
a single V100 GPU with 32 GB of memory for ablation studies with the Taichi dataset and

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 67

other short-term datasets. For generating 128 × 128 pixel videos, training is done on the
Taichi [101] and Sky-Timelapse (Sky) [71] datasets using one A40 GPU with approximately
46 GB actually available memory of 48 GB total memory on an Ubuntu system.

For evaluation, the model is trained on the Taichi and Sky datasets to generate long videos
of arbitrary lengths at 128 × 128 pixel resolution, and the results are compared with other
baseline models. In the ablation study, the model is trained on subsets of the Taichi dataset
for long video generation at 64×64 pixel resolution, and on other well-known video datasets
such as Weizmann [87], KTH [88], UvA [86], and UCF101 [89] for standard video-length
generation of 16 frames at 64× 64 pixel resolution.

The evaluation of video generation results uses the Fréchet Video Distance (FVD) [82], Video
Fréchet Inception Distance (FID) [5], and Video Inception Score (IS) [22].

As for the GPU memory increment after applying the recall mechanism, train REncGAN
on batch size of 1 would require the GPU memory smaller than to train EncGAN3 on batch
size as 3. For details, in the implementation, to use the R 3VD operation, the GPU memory
should be sufficient to train EncGAN3 with a batch size of at least two. Specifically, to match
R 3VD, REncGAN uses two consecutive clip segments as one input and processes these
clips in parallel with EncGAN3. While REncGAN removed the noise generation process, it
requires GPU memory capable of training the EncGAN3 model with a batch size of over
one. Since the clip generation process needs to pass the Encoder while the noise process
does not, applying only the R Enc operation would require a batch size of still a bit over
one. But the requirement would be smaller than that of REncGAN, since not consider the
merged clip part.

4.5 Experimental Transition from LEncGAN to REncGAN

This section presents the experiments that guided the transition from LEncGAN to R Enc,
the initial version of REncGAN, and finally to the full version of REncGAN described in
Section 4.4.

4.5.1 Datasets

In the following, we implement long-term video generation on the Tai-Chi-HD (Taichi) [101]
dataset, which features videos with hundreds of frames and the moving object remains con-
sistently in view, benefiting the model to capture extended temporal dependencies of the
motion.

Taichi dataset contains 2882 videos of 252 actors playing the Taichi action in its training set.
However, due to internet connectivity issues during the download process, some videos were
either not successfully downloaded or are no longer available. As a result, we currently have
a total of 2,718 videos for this dataset. Although all actors perform Taichi movements, the
specific routines and actions they exhibit vary significantly. Videos feature actors performing
Taichi motions in simple or complex backgrounds, with frames at 256 × 256 resolution and

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 68

lengths ranging from 128 to 1024 frames.

Different models employ varied sampling strategies for long video generation, depending on
their specific approaches. For instance, DIGAN [7] and StyleGAN-V [8] repeatedly sample
16 frames at different frame rates to cover longer durations of up to 128 frames. StyleInV
[11] directly samples 128 frames as the training length, while TATS [9] splits the entire video
into multiple 16-frame clips.

In our approach, to capture long-term temporal dependencies, we use as many frames as
possible from the entire video by splitting each video into several 16-frame clips. To save
computational costs, we resize frames into 64× 64 resolution while maintaining their aspect
ratio, and randomly sample videos from the Taichi dataset, focusing on those with lengths
between 100 and 500 frames. Table 4.1 presents the relevant information of the video data
used in the experiments. For the LEncGAN to R Enc experiments, we exclusively used
videos of Subject A. The R Enc to REncGAN experiments utilized all subjects listed in the
table.

Subject ID Long-term videos Video length (s) 16-frame segments

A 8 (217, 430) 246
B 7 (140, 335) 158
C 14 (160, 560) 441
D 2 (272, 392) 81

Total 31 (140, 560) 926

Table 4.1: Subsets of Taichi dataset.

4.5.2 From LEncGAN to R Enc

This section describes the ablation studies that guided the step-by-step development from
LEncGAN to R Enc, the initial version of REncGAN.

Ablating the image reconstruction error. This study ablates the target of the image
reconstruction error in LEncGAN, since LEncGAN inherits the middle cell state ct in LSTM
from the previous clip input. We experiment with three settings: (1) using the first frame
xi0 of the current input video clip as the target, as in EncGAN3; (2) using its middle frame
xi7 as the target, corresponding to middle state (mid-state); and (3) removing the image
reconstruction error entirely.

To evaluate the impact of these settings, we conducted experiments by generating videos in
three separate runs. In each run, we generated 64 to 100 videos, with each video containing
approximately 200 to 300 frames. Qualitative analysis was performed by visually inspecting
the generated videos to assess the consistency and quality of the reconstructed frames, since
the results are obvious at the beginning stage of the development.

As shown in Figure 4.4, the frames generated by training with the middle frame xi7 as the
target are better, showing fewer red artifacts, better preservation of the moving object and
better defined movement.

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 69

Figure 4.4: Frames from 256-frame videos generated by LEncGAN, trained with the image
reconstruction error on the first frame (top row), middle frame (bottom row), and without
image reconstruction error (middle row).

Ablating the Inheritance Mechanism. This study investigates the impact of the mid-
state inheritance mechanism in LEncGAN. This mechanism addresses the issue that clip-
by-clip training can disrupt the sequence continuity learned by the LSTM. Specifically, we
examine the effects of using either the LSTM cell state ct, the LSTM output xt (both up to
the middle frame), or removing the inheritance step entirely on long video generation.

Figure 4.5: Frames sampled from 416-frame videos generated by LEncGAN with no inheri-
tance (top row), inheriting the LSTM cell state (middle row), or inheriting the LSTM output
(bottom row).

As shown in Figure 4.5, frames generated by inheriting the LSTM output xt exhibit the best
quality, showing better preservation of the moving object with more consistent and clearer
movement.

Ablating the LSTM module. We test the impact of using either the LSTM module or
FC. FC means fully connected layers. Since the LSTM module relies on sequence continuity,
FC might be better suited for handling the Markovian relationships within the clips.

(a) LSTM.

(b) FC.

Figure 4.6: Frames generated by models using LSTM (a) and FC (b).

As shown in Figure 4.6, both LSTM and FC produce frames with comparable quality in

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 70

terms of content and movement that no significant differences observed between the two
approaches. However, using LSTM requires setting the batch size to 1, as each video must
be processed as a single batch element to preserve sequence continuity, which limits the
batch size due to varying video lengths. This results in an inefficient use of computational
resources. In contrast, the FC layers do not have this restriction and can handle multiple
clips in a batch efficiently. Therefore, given the comparable results, we decided to use FC
layers. We conducted additional experiments based on the model using FC, named R Enc,
which ultimately led to the development of REncGAN.

4.5.3 From R Enc to REncGAN

This section outlines the step-by-step development from R Enc, the initial version of REnc-
GAN, to the final REncGAN model described in Section 4.4. While most generated frames
in R Enc are clear and have good contrast, the model struggles with realistic subject move-
ment. In many cases, the moving subject either fades away or exhibits abrupt changes in
motion, which motivates the development of our enhanced model, REncGAN.

Following this idea of enhancing the connection between states through the GAN structure,
we develop the R 3VD operation as described in Section 4.4 and employ it to build an initial
model of REncGAN. We then conduct several experiments to explore the most suitable
settings for the model.

In the following experiments, we ablate the Markov chain structure components, loss func-
tions, the number of overlapping frame numbers To for the recall mechanism, and the dimen-
sions of the motion latent code of REncGAN, which generates long-term videos of 64 × 64
pixel resolution. In these ablation studies, we use the Frechet Video Distance (FVD) [82] as
the evaluation metric, which follows the same calculation as the Frechet Inception Distance
(FID) described in Equation (3.7), but with the FVD calculated based on the output of
a pre-trained 3-dimensional (3D) video classifier instead of a 2D image classifier. Because
long-term videos have different sizes, we sample sets of frames from each long-term video for
computing the FVD score.

length
recall components

R Enc R 3VD R Enc, R 3VD

10 2254.30 322.91 199.98
16 2452.01 359.60 230.31
32 3052.51 340.69 283.20
64 2242.24 312.77 259.97
96 2505.06 288.66 243.44
100 2523.67 289.96 232.93
128 2717.66 326.78 252.51
136 2967.59 - 241.25

Table 4.2: Ablating Markov chain structure components with FVD results of different video
lengths.

The ablation results when considering variations in the components of the Markov chain
structure are shown in Table 4.2. As introduced in Section 4.4, the Markov chain is built

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 71

based on two operations, R Enc and R 3VD. Hence, we ablate the model using only R Enc
or R 3VD. As shown in Table 4.2, both operations are needed in REncGAN to generate
long-term videos.

length
loss

v1 v2 v3 v4 v5

10 199.98 104.84 97.67 67.81 2525.70
16 230.31 111.87 107.54 81.68 2522.76
32 283.20 131.40 106.10 83.54 2737.70
64 259.97 114.16 125.99 78.91 3041.56
96 243.44 116.19 128.19 88.42 3206.97
100 232.93 118.36 125.92 90.73 3224.24
128 252.51 149.29 128.07 101.26 3299.62
136 241.25 138.17 140.56 104.04 3379.64

Table 4.3: Ablating variations of loss functions with FVD of different video lengths.

We ablate five variations of the loss function and provide the results in Table 4.3. In this
ablation study, we set the dimension of motion latent codes zv to 10, as in the original
EncGAN3, and the number of overlapping frames between the two consequent video clips
for the recall to 8. X̂3 is the result of merging X̂1 and X̂2 in the second step of the recall
mechanism. Due to the video reconstruction error terms of X̂1 and X̂2, we consider the
necessity of computing the video reconstruction error of X̂3, resulting in two versions of
loss functions, denoted as v1 and v2 in Table 4.3. Both v1 and v2 follow the original loss
function of EncGAN3, which trains the Encoder and Generator separately. The loss function
v1 computes the video reconstruction term of the third video clip X̂3 while v2 does not.

As observed in the second and third columns of Table 4.3, v2 has better FVD scores than
v1 on all generated videos, irrespective of their length, indicating that there is no need to
compute the video reconstruction error of X̂3.

The comparison of loss functions v1 and v2 motivates the ablation of video reconstruction
error terms for long-term video generation, resulting in the loss function v3 that does not
consider any of the video reconstruction error term. As shown in Table 4.3, FVD results of
REncGAN using loss v3 are more competitive than those using the loss v2.

The losses v1, v2, v3 and v5 all follow the original loss function of EncGAN3, which trains
the Encoder and Generator separately to maintain the independent generation ability of a
single generator without the encoder during training. While long-term video generation in
REncGAN relies on both Encoder and Generator, it does not need the independent gener-
ation ability of a single generator. Hence, we develop the loss v4, which trains the Encoder
and Generator jointly and removes the term constraining the generating from random noise
to reduce the randomness. As shown in Table 4.3, the loss v4 achieves the best FVD results
for the videos generated of any of the lengths considered in this ablation study, which is used
for REncGAN and detailed in Section 4.4.2.

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 72

4.5.4 Lessons Learned

Based on the above studies, we propose a method to represent long videos by splitting them
into two parts: intra-clip and inter-clip. For intra-clip modelling, the relationships between
frames within a single clip are captured in a conventional way, with the model trained on all
frames within the clip to understand their dependencies. For inter-clip modelling, we apply
the Markov chain principle, where each clip is linked only to its immediate predecessor, rather
than to all previous clips. This approach is applied to the short video clips generated by
EncGAN3, allowing us to focus on connecting clips rather than individual frame sequences.

As a result, REncGAN, which utilizes a recall mechanism, can generate long videos consisting
of hundreds or even thousands of frames, while maintaining a GPU memory footprint similar
to that of its backbone EncGAN3, during training. This is achieved by efficiently managing
relationships between clips instead of handling extensive frame sequences.

4.6 Evaluation of REncGAN

In the previous section, we presented the results for LEncGAN, when considering the LSTM
network in conjunction with EncGAN3 to generate long-term videos. Nevertheless, the
results have been rather poor for the sequences of about 200-300 frames generated after
training on the Taichi dataset. While most generated frames are clear and have good contrast,
the subject lacks proper movement and in many cases, the moving subject fades away in the
video, or changes its movement too suddenly.

In this section, we report the results from several experiments, including a series of video gen-
eration ablations on REncGAN of hundreds of frames on videos of 128×128 pixel resolution.
Additionally, as the visual quality of generated long-term video sequences depends on the
video clips generated from the EncG module states, we measure the quality of video results
from a single EncG state under the short-term video generation setting, which consists of
using only a single EncG state with the two-stream Discriminator.

4.6.1 Datasets

We trained REncGAN on various datasets for both short-term and long-term video gen-
eration. For short-term generation, we used UvA-NEMO [86], Weizmann [87], KTH [88],
and UCF101 [89] datasets, which contain videos typically under 100 frames. For long-term
generation, we utilized the Taichi subset [101] and Sky dataset [71], featuring videos with
hundreds to thousands of frames to capture extended temporal dependencies. As detailed in
Table 4.4, REncGAN was trained on the 16-frame segmented versions of two datasets: the
Taichi subset (hereafter Taichi) and Sky dataset. The UvA-NEMO dataset includes facial
expression videos, while the Weizmann, KTH, UCF101, and Taichi datasets focus on human
actions in various background settings. The Sky dataset contains sky views, capturing nat-
ural phenomena such as cloud movement and light changes. The Sky dataset contains over
5000 videos of frames at the resolution of 640×360 pixels. Details of datasets for short-term
video generation are introduced in Section 3.4.1 and of the Taichi dataset is introduced in

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 73

Section 4.5.1.

We sampled T = 16 frames as input clips from each folder or video file, then cropped and
resized the frames to 64× 64 and 128× 128 pixels, preserving their aspect ratios. For short
video generation, we sampled 16 frames from each video with a temporal step size of 1 to
3, depending on the video length, and resized the frames to 64 × 64 pixels. For long video
generation, we used as many frames as possible by splitting each video into multiple 16-frame
clips, resizing the frames to 128 × 128 pixels. In the Taichi dataset, we follow the setting
in Section 4.5.1 while resizing frames to 128 × 128 rather than 64 × 64 pixels. For the Sky
dataset, which includes videos ranging from 3 to 3000 frames, we excluded those shorter than
24 frames, as they did not meet the minimum training requirements for REncGAN. During
training on the Taichi dataset, we found that the quality of generated clips was sub-optimal,
impacting long video evaluation. To focus on developing the recall mechanism, which aims
to generate long videos while maintaining the training video length and not changing the
internal structure of the model, we chose a subset of the Taichi dataset to keep the training
set size comparable to that used in short video generation tasks. This helps mitigate the
impact of training set size on clip quality. Additionally, since REncGAN requires a minimum
of 24 frames and some videos in the Sky dataset are shorter than this, we excluded those
shorter videos.

Original Video Datasets

Dataset Videos Train Test

UvA-NEMO [86] 1,240 1,173 67
Weizmann [87] 93 83 10
KTH [88] 599 569 30
UCF101 [89] 13,320 12,567 753
Tai-Chi-HD [101] 2,882 2,594 288
Sky-Timelapse [71] 2,618 2,080 232
16-frame Segmented Datasets†

Dataset Segments Train Test

Tai-Chi-HD 68,023 61,923 6,100
Taichi subset (used) 926 626 300
Sky-Timelapse (used) 101,340 95,215 6,125

Table 4.4: Video dataset statistics showing both original videos and their 16-frame segmented
versions. †The amount of Segments is approximate.

4.6.2 Qualitative Evaluation

In the following, we evaluate the visual quality of the video generated. In Figures 4.7 and
4.8, we show sequences of frames of resolution 128× 128 pixels resolution, sampled from the
videos generated by REncGAN, DIGAN [7], and TATS [9], after training on Taichi and Sky
datasets1.

1Baseline results are obtained from the TATS [9] website: https://songweige.github.io/projects/

tats/.

https://songweige.github.io/projects/tats/
https://songweige.github.io/projects/tats/

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 74

Figure 4.7: Each row from top to bottom shows Taichi frames of 128× 128 pixels resolution
from long videos generated by REncGAN, DIGAN and TATS, respectively.

Figure 4.8: Each row from top to bottom shows Sky frames of 128 × 128 pixels resolution
from long videos generated by REncGAN, DIGAN and TATS, respectively.

In Figure 4.7, the frames displayed on each row are sampled from generated videos of lengths
424, 1024, and 1024 frames, respectively. These frames are extracted with a step size of 8
from the following sets of frames: 0 to 130 (left), 130 to 260 (middle), and 260 to 400 (right).
The frames shown on each row in Figure 4.8, frames are sampled from generated videos of
lengths 1324, 1024, and 1024 frames respectively, with a step size of 8 from sets of frames 0
to 300 (left), 300 to 600 (middle), and 600 to 900 (right).

The results from Figure 4.7 indicate that REncGAN generates realistic Taichi movements
with a natural speed, whereas TATS output results in videos with movements that look as
being too fast, repetitive and less realistic. Additionally, REncGAN maintains the quality
of the video generated over longer periods of time without noticeable degradation, outper-
forming DIGAN in this aspect.

In Figure 4.8, the frames generated by REncGAN show clouds progressively covering the
trees in the left panel with minimal noise and without unrealistic artifacts. In contrast, the
results of DIGAN, shown in the second row, exhibit some noticeable artifacts and distortions.

4.6.3 Quantitative Evaluation

For the quantitative evaluation, we use FVD, a widely accepted metric for assessing long
video generation tasks [8, 9, 11]. Similar to the video FID discussed in the previous chapter on
EncGAN3, a lower FVD score indicates better visual quality and spatio-temporal consistency.
FVD uses a pre-trained Inception Network different from the one used in video FID, resulting
in the measures from different visual perception perspectives.

The FVD results for REncGAN and other models are provided in Table 4.5 when applying
on Taichi and on Sky datasets. The results provided consider generating shorter and longer
video sequences of 16 and 128 frames, respectively, as indicated on the upper-left side of the
dataset name. Table 4.5 shows that REncGAN outperforms other models in terms of FVD

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 75

for longer videos on the Taichi sequence, as in Taichi-1282-128f, highlighting its strength
in generating extended video sequences of regular movement. As mentioned in [10], FVD
is sensitive primarily to the quality of individual frames and the smoothness of the small-
scale motion. Unlike other methods, REncGAN stitches every 8 frames from generated
clips. The stitch affects the temporal coherence in the short duration of the 16-frame,
resulting in worse performance on FVD-16f. Compared to other methods [6, 7, 8, 9], which
prioritize ensuring temporal coherence when generating long videos, our REncGAN model
not only takes temporal coherence into account but also focuses on preserving the physical
structure of moving objects. This results in weaker FVD performance when generating cloud
movement, which consists of irregular motions. However, as shown in Figure 4.8, frames of
cloud movement generated by REncGAN perform comparable results to other methods in a
long duration of 1000 frames, indicating the advance of our REncGAN in the generation of
longer lengths.

MoCoGAN-HD [6] DIGAN [7] StyleGAN-V [8] TATS [9] REncGAN [2]
(ICLR 2021) (ICLR 2022) (CVPR 2022) (ECCV 2022) (ICIP 2023)

Taichi-1282-16f 144.7 128.1 143.5 94.6 113.5
Taichi-1282-128f - 748.0 691.1 - 145.9
Sky-1282-16f 183.6 114.6 - 132.5 360.9
Sky-1282-128f 635.6 228.6 - 435.0 587.0

Table 4.5: Evaluation of FVD. Results of other methods (all trained by the same training
video length, as 16 frames.) are from [36, 10] ensuring the same resolution and video length
of FVD. The notation ‘-1282-16f’ means the FVD score is calculated on 16 frames with each
at 128× 128 pixels resolution.

Since REncGAN can be used to generate videos longer than 128 frames, we also assess
the quality of long-term videos by analysing short consecutive segments from the generated
videos. This method allows us to evaluate the continuity and consistency of video quality
across the longer generated videos. We compute FVD for consecutive non-overlapping 16-
frame clips extracted from these long-term videos, as shown in Figure 4.9, to evaluate the
consistency in the quality of the generated video.

Given that the Taichi dataset includes only a few videos exceeding 1024 frames (specifically,
4 such videos), whereas the Sky dataset contains over 200 videos longer than 1024 frames,
we adopt different frame length thresholds for FVD calculation on the two datasets. For
the Taichi dataset, we calculate FVD for videos longer than 400 frames, as this threshold
captures a sufficient number of videos for meaningful evaluation. In contrast, for the Sky
dataset, we calculate FVD for videos longer than 1024 frames, given the abundance of such
videos in this dataset.

The differences in the FVD values between Table 4.5 and Figure 4.9 arise from the variations
in the ground truth video lengths used for evaluation. Specifically, Table 4.5 reports FVD
values for 16-frame and 128-frame videos, where the ground truth videos are filtered to
include only those exceeding 12 and 128 frames, respectively. In contrast, Figure 4.9 evaluates
FVD for 400-frame and 1024-frame videos, which requires filtering out a significant portion
of the dataset. This discrepancy in the ground truth video lengths leads to differences in the
FVD values between the two results.

The FVD results calculated on 16-frame segments from the longer generated videos by REnc-

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 76

(a) Taichi (b) Sky

Figure 4.9: Quantitative Evaluation. FVD of non-overlapping 16-frame clips sliced from
long-term videos generated by REncGAN, DIGAN [7] and TATS [9] after training on Taichi
(a) and Sky (b) datasets.

GAN, DIGAN, and TATS are shown in Figures 4.9 (a) and 4.9 (b) for the Taichi and Sky
datasets, respectively. The results in Figure 4.9 (a) demonstrate that REncGAN outperforms
DIGAN and TATS in generating longer video sequences with complex human body move-
ments, such as those in the Taichi dataset. This is because the design of REncGAN involves
stitching independently generated clips, which is well-suited for handling rigid movements
and reduces frame quality degradation over time. However, in Figure 4.9 (b), the perfor-
mance of REncGAN on the Sky dataset, particularly for irregular cloud movements, is less
competitive compared to DIGAN and TATS. This is due to the emphasis on smooth tran-
sitions between frames in irregular movements, which is affected by the stitching operation
in REncGAN. Despite this, as shown by the FVD scores in Figure 4.9 (b), the quality
of segments generated by REncGAN gradually approaches that of DIGAN and TATS as
the sequence length increases, demonstrating its stronger resistance to quality degradation
over time. Overall, the ability of REncGAN to generate long and intricate human action
sequences, such as those in the Taichi dataset, highlights its broader applicability and effec-
tiveness. While it faces challenges in scenarios requiring highly smooth transitions, such as
cloud movements in the Sky dataset, potential improvements to the stitching process—such
as incorporating frame interpolation techniques—could further enhance its performance in
these scenarios.

4.6.4 Ablation Study

The impact of the recall mechanism in the performance of short-term video gen-
eration. The implementation of the recall mechanism extends the capability of EncGAN3
from generating short-term videos of 16 frames to producing long-term videos spanning at
least hundreds of frames. However, this adaptation may not be as efficient when aiming to
generate short videos. Here, we analyze this effect by video FID and video IS, which were
considered in Chapter 3 for the evaluation of EncGAN3. Lower video FID scores indicate
better visual quality and spatio-temporal consistency, while higher video IS values indicate

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 77

(a) FID results

UvA Weizmann KTH UCF101
FID↓ FID↓ FID↓ FID↓

VGAN*[43] (NeurIPS 2016) 235.01 158.04 - 115.06
TGAN*[60] (ICCV 2017) 216.41 99.85 - 110.58
MoCoGAN*[61] (CVPR 2018) 197.32 92.18 - 104.14
G3AN*[5] (CVPR 2020) 91.77 98.27 111.99 108.36
EncGAN3 [1] (ICIP 2022) 86.21 78.93 66.62 91.18
REncGAN [2] (ICIP 2023) 70.14 70.85 66.97 95.36

(b) IS and its components

IS↑ H(y)↑ H(y|x)↓ Dataset (class type)

571.29 6.499 0.151 UvA (actor)
EncGAN3 [1] 42.60 3.959 0.207 Weizmann (action)
(ICIP 2022) 50.48 4.812 0.891 KTH (action)

33.87 6.699 3.177 UCF101 (action)

87.007 4.656 0.190 UvA (actor)
REncGAN [2] 35.329 3.804 0.239 Weizmann (action)
(ICIP 2023) 11.477 4.087 1.647 KTH (action)

57.121 5.827 1.782 UCF101 (action)

Table 4.6: Quantitative evaluation. “*” results are referred from [5]. ↑ means the higher
value is better while ↓ means the lower value is better.

better visual quality and diversity. We also provide Inter-Entropy H(y) and Intra-Entropy
H(y|x) as components of the video IS calculation, measuring the diversity and visual quality
of the generated videos, respectively [42]. Higher H(y) indicates better diversity, while lower
H(y|x) indicates better visual quality. The video FID and video IS results for short-term
video generation at a resolution of 64 × 64 pixels are provided in Table 4.6. As shown in
Table 4.6 (a), REncGAN and EncGAN3 yield comparable video FID scores across the four
datasets, suggesting that the recall mechanism has a minimal impact on the performance of
short video generation when considering the spatial-temporal coherence. However, as shown
in Table 4.6 (b), REncGAN exhibits lower IS and H(y) scores compared to EncGAN3 on
three datasets. This reduction in diversity can be attributed to the removal of the noise
generation term (such as the last term in Equation (3.6)) from the training objectives of
REncGAN, which enhances visual quality but reduces diversity. Interestingly, REncGAN
achieves better IS and H(y|x) scores on the UCF101 dataset, which is larger and more com-
plex than the other three datasets. This indicates that the closer integration between the
Encoder and Generator, achieved when training them together, improves the ability of the
model to handle more complex datasets.

Ablating the recall components in long video generation. The results of the ab-
lation study on the recall mechanism components are shown in Table 4.7. As described in
Section 4.4, the recall mechanism consists of two main operations: R Enc and R 3VD. R Enc
refers to the process of feeding video clips considering as having half of frames, overlapped
with half of all the generated frames, determined by the reference frame which defines the
number of overlapping frames, into the Encoder. R 3VD involves enabling overlaps between

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 78

consecutive video clips as a condition for training the Discriminator. In this chapter, the
proposed method REncGAN, combining both operations, is referred to as R Enc + R 3VD
as it was explained the structure and training of REncGAN in Section 4.4. The results in-
dicate that both components are essential for REncGAN to effectively generate long videos.

Length 10 16 32 64 96 100 128 136

R Enc 2254.30 2452.01 3052.51 2242.24 2505.06 2523.67 2717.66 2967.59
R 3VD 322.91 359.60 340.69 312.77 288.66 289.96 326.78 -
R Enc+R 3VD 199.98 230.31 283.20 259.97 243.44 232.93 252.51 241.25

Table 4.7: FVD for REncGAN components when considering different input video lengths.

Effects of Manipulating Latent Codes on Video Generation. To study the impact
of latent code manipulation on generated video frames, we sampled two pairs of latent codes
from the same latent space, of (z1x, z1v) and (z2x, z2v). Figure 4.10 illustrates the frames
generated by these latent codes and their manipulated versions. Each row in Figure 4.10
shows frames sampled every two frames from a video clip. Note that frames in Figure
4.10 show subtle movement, as the cloud movement is relatively slow and may not exhibit
significant changes within the 16-frame clip.

Figure 4.10 (a) and (b) display the frames generated by (z1x, z1v) and (z2x, z2v), respectively.
As seen in these figures, the frames generated by different latent codes from the same latent
space exhibit distinct content. When exchanging their motion latent codes, as shown in
Figure 4.10 (c) and (d), frames generated by the same content latent code retained the
same content, such as the cloud structure and the land. For example, in Figure 4.10 (d),
frames generated by latent code (z2x, z1v) preserve the cloud structure from z2x, as shown
in Figure 4.10 (b), and the lighting changes from z1v, as seen in Figure 4.10 (a). Figure 4.10
(e) shows the frames generated by the summation of the two latent codes, which incorporate
features from both. For instance, the cloud structures in these frames are a combination of
characteristics from the frames in Figure 4.10 (a) and (b).

Ablating the sampling step for the training set. By default, we sample every frame
from the video (step size of 1) to capture as much detail as possible. The frame rate of the
training videos is 29.97 frames per second. In video processing, temporal sub-sampling is
often applied to reduce redundancy in the frame sequence. Table 4.8 shows an evaluation of
FVD scores using a temporal sampling step of 4. The results demonstrate that using a step
size of 1 performs better than sampling every fourth frame, as it preserves the finer details of
movement. However, using larger temporal sampling steps introduces additional challenges.
For instance, when sampling every 4 frames to obtain 64 frames, the original video must
be over 256 frames long. This requirement is too restrictive and excludes a large portion of
ground truth videos, making the FVD calculation unreliable. Therefore, when using a step
size of 4, we limit the evaluation to 32 sampled frames instead.

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 79

(a) (z1x, z1v)

(b) (z2x, z2v)

(c) (z1x, z2v)

(d) (z2x, z1v)

(e) (z1x + z2x, z1v + z2x)

Figure 4.10: Frames generated by latent code manipulation.

step
FVD of certain video length

10 16 32 64 96 100 128 136

1 199.98 230.31 283.20 259.97 243.44 232.93 252.51 241.25
4 1256.66 1923.33 2403.67 - - - - -

Table 4.8: Ablating the sampling step of the training set with FVD results of different video
lengths.

4.7 Comparison of LEncGAN and REncGAN

In this section, we conduct a comparative analysis between REncGAN and LEncGAN in
the context of long video generation, also considering the performance of EncGAN3 as a
reference.

Figure 4.11 presents frames sampled from videos longer than 16 frames generated by both
REncGAN and EncGAN3. The results demonstrate that REncGAN outperforms EncGAN3
in generating long-duration videos, particularly in terms of maintaining high-quality details,
such as sharp human actions and clear facial expressions with noticeable blinking. A compar-

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 80

(a) REncGAN

(b) EncGAN3

Figure 4.11: Comparison of REncGAN and EncGAN3 on generating human action and
facial expression videos. Each row shows 10 frames at 128× 128 resolution, with each frame
sampled per 5 frames from generated videos, covering a duration of 50 frames.

ative analysis of REncGAN and EncGAN3 on short video generation (16 frames) is provided
in Table 4.6.

(a) REncGAN

(b) LEncGAN

Figure 4.12: Comparison of REncGAN and LEncGAN on generating Taichi sequence of
videos contains over 300 frames. Frames in each row are sampled per 30 frames from a
generated video, covering a duration of 300 frames. Each frame is at a resolution of 128×128
pixels.

Given that the videos in trained datasets are typically around 100 frames in length, and most
methods that expand the latent code size struggle to maintain frame quality beyond this
range [7, 8], our primary comparison between EncGAN3 and REncGAN involves generating
videos of approximately 100 frames. However, when comparing REncGAN with LEncGAN,
which are both specifically designed for long video generation, we extend the generated video
length based on the two models to over 400 frames. The Taichi dataset, used for training,
offers longer duration video data, which aids the models in learning and generating extended
sequences. As shown in Figure 4.12, although both REncGAN and LEncGAN successfully
generate videos with hundreds of frames, REncGAN consistently produces higher quality

CHAPTER 4. LONGER VIDEO GENERATION USING RENCGAN 81

videos, such as the generation of face and hands, showcasing its superiority in long video
generation tasks.

4.8 Conclusion

In this chapter, we introduced REncGAN and LEncGAN, designed to tackle the challenges
of generating long-duration videos, building upon the foundation of EncGAN3. LEncGAN
extends the capability of the model from generating short video clips to producing coherent
long-term sequences by incorporating an LSTM module. In contrast, REncGAN removes
the LSTM module and implements a recall mechanism to enhance long video generation
performance. Both models efficiently reduce memory requirements by modelling temporal
relationships between short video clips instead of individual frames, resulting in significant
improvements in video consistency and quality.

The recall mechanism in REncGAN offers notable advantages, achieving good temporal
coherence by simulating a Markov chain for modelling temporal relationships between clips.
This approach allows for the effective generation of long-duration videos while addressing
challenges posed by datasets with varying video lengths. REncGAN can generate long videos
with hundreds of frames while maintaining realistic content and movement.

However, REncGAN has limitations. While it excels on datasets featuring human actions,
such as Taichi, it struggles with coherence and sharpness in simpler or more dynamic datasets,
like sky movements. This indicates a need for improved fine-tuning between clips, especially
when dealing with videos that exhibit high movement complexity. Future work should ex-
plore advanced fine-tuning techniques to enhance this aspect.

Additionally, the recall mechanism requires optimization to lessen its dependency on prior
information, potentially bringing REncGAN closer to an unconditional setting while main-
taining high performance. To further address sharpness and movement consistency issues,
integrating advanced generative techniques, such as diffusion models or updating the gener-
ator architecture, may be beneficial.

In conclusion, REncGAN marks a significant advancement in long-term video generation by
combining effective temporal modelling with reduced computational overhead. Its ability
to generate high-quality long videos with realistic movements establishes a new benchmark
in the field. Future research will focus on refining these techniques, addressing current
limitations, and exploring new methods to enhance long-duration video generation across
diverse datasets.

Chapter 5

Long Video Generation on Less
Prior Information

5.1 Introduction

Generating high-quality, long videos is a complex task, requiring both spatial detail and
temporal coherence. In this chapter, we introduce two advanced methods built upon the
REncGAN framework: AR2 and R3. These methods address key challenges in long video
generation, particularly the reliance on prior information and maintaining consistency over
extended video sequences.

Background and Motivation. Generating long videos with high quality and temporal
coherence presents significant challenges. While generating short videos, such as 16 frames,
has been attempted by several models, extending the duration significantly increases memory
demands. The previously developed REncGAN (R2) model tackled this by introducing a
recall mechanism, which efficiently manages the required memory by focusing on local clip-
level relationships rather than modelling the entire video sequence at once. This allowed R2
to generate long videos without increasing the memory requirement for training.

However, despite its success in long video generation, R2 has limitations. The model relies
heavily on the prior information from the training data to maintain temporal coherence
and video quality, which restricts the diversity of the generated content and caps the video
length. Moreover, this reliance on local relationships results in a local bias over long-term
coherence, meaning the model captures clip-level interactions well but struggles to represent
global video sequences. While the prior information in R2 mitigated these issues, its removal
revealed significant repetition problems during long video generation.

This motivates the need for new methods that can overcome the reliance on prior information
while maintaining high-quality video generation over extended sequences. To address these
challenges, we propose two methods: AR2 and R3.

Problem Definition and Objectives. The key problem addressed in this chapter is
the trade-off between reducing the reliance on prior information and ensuring long-term

82

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 83

coherence in video generation. AR2 aims to generate long videos without prior inputs but
results in repetitions of short sequences of frames due to the lack of global feature guidance
during the training. To resolve this, R3 incorporates global guidance through a GPT module
while preserving the memory efficiency of the recall mechanism. While AR2 performs fully
unconditional video generation by predicting each clip based on the previous one, R3 requires
the first clip as input to ensure that the generated sequence maintains higher quality from
the outset. Although R3 is developed to address the repetition problem encountered by AR2,
the two models are both built on an improved version of REncGAN (improved R2).

Contributions. This chapter makes the following contributions:

1. Auto-Regressive Mechanism in AR2: AR2 modifies the recall mechanism to an
auto-regressive setting, removing the reliance on prior video information and enabling
the generation of long videos. However, sometimes it produces unrealistic repetitions
of short sequences of frames, caused by the local focus of the recall mechanism.

2. Global Feature Guidance in R3: R3 introduces a GPT-based module to gener-
ate latent space sequences with global feature guidance. This addresses the repetition
issue present in the output of AR2 and provides long-term coherence, while still re-
quiring only the first clip as input, maintaining a balance between quality and memory
efficiency.

3. Enhanced Base Model (improved R2): Improved R2 serves as the foundation
for both AR2 and R3, featuring two key enhancements: (1) an optimized generator
architecture for handling complex data, and (2) the Video Discriminator Rejection
(VDrej) operation, which ensures consistent video quality over extended durations by
filtering low-quality frames during auto-regressively generation.

Chapter Outline:

• Improved R2, AR2 and R3 Methods: A detailed explanation of Improved R2,
AR2 and R3. The latter two also including their innovations and how they address the
challenges of R2.

• Experimental Results: Qualitative and quantitative evaluations of AR2 and R3,
demonstrating their performance.

• Summary and Discussion: A summary of findings and potential directions for future
research in long video generation.

5.2 Improved R2: Enhancements to the Base Model R2

Before introducing AR2 and R3, we first describe the enhancements made to the base R2
model, referred to as improved R2. These modifications were initially developed during the
implementation of AR2 and R3 but were later found to significantly improve the performance
of R2 itself. The key enhancements include: 1) the modifications of the Generator; and 2)
the VDrej operation.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 84

5.2.1 Generator Modifications

The improved R2 introduces two key modifications to the Generator, aimed at enhancing its
ability to generate high-resolution and long-duration videos. These modifications are also
incorporated into AR2 and R3.

(a) g mode: 3d (b) g mode: 1p2d

Figure 5.1: Generative modes of 3-streams within the G3 block in the Generator.

Additional G3 Block for Higher Resolution. To enable the generation of video frames
at a higher resolution of 128 × 128 pixels, we introduce an additional G3 block, named G3

5,
at the end of the Generator (G) module. This modification is accompanied by extra layers
in the Encoder and Discriminator, as described in the third paragraph of Section 3.4.2. The
addition of G3

5 allows the model to produce higher-resolution frames, whereas the original
R2 structure illustrated in Figure 4.2 was limited to generating frames at a lower resolution
of 64× 64 pixels. The placement of G3

5 block is illustrated in Figure 5.2.

3D Convolutions for Enhanced Spatial-Temporal Processing. The second modi-
fication involves changing the internal structure of all G3 blocks. Each G3 block consists
of three streams: temporal, video, and spatial. In the original R2, the video stream used
a combination of 1-dimensional (1D) convolutional layers followed by 2D convolutions, as
depicted in Figure 5.1 (b). While this approach was effective for short video generation, as
demonstrated in EncGAN3 (Chapter 3), it struggles to handle the increased complexity of
spatial-temporal information required for long-duration videos.

To address this limitation, we replace the 1D and 2D convolutions in the video stream with
3D convolutions, as shown in Figure 5.1 (a). The use of 3D convolutions allows the model to
process spatial and temporal features in a unified manner, improving its ability to manage
the intricate relationships in long-duration videos. This adjustment not only provides more
trainable parameters but also enhances the capacity of model to generate high-resolution,
long video sequences with better spatial-temporal coherence.

5.2.2 VDrej for Inference

During the video generation phase, the original R2 stitches generated clips sequentially to
assemble longer videos. However, the randomness introduced by sampling latent codes for
diversity in R2 can disrupt temporal coherence when connecting successive clips. To mitigate

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 85

these issues, the improved R2 employs the VDrej operation at Inference time, resulting in a
new Inference procedure shown in Algorithm 8.

Algorithm 8 REncGAN Inference Procedure for Long Videos

1: Required: the two-stream Encoder (Enc), Clip Generator (G)
2: Input: the entire input video x0:T

3: Output: Generated long video x̂long
4:

5: x̂long ← ∅
6: Tc ← 15
7: r ← Tc//2 + 1
8: m← T//r
9: num← 10

10:

11: for jc = 1→ m− 1 do
12: zco, zmo ← Enc(x(jc−1)×r:(jc+1)×r)
13: for jvd = 1→ num do
14: zxjvd

, zvjvd
← sample(zco, zmo)

15: x̂jvd,(jc−1)×r:(jc+1)×r ← G(zxjvd
, zvjvd

)
16: end for
17: if jc == 1 then
18: x̂best,(jc−1)×r:(jc+1)×r ← max

jvd∈[1,num]
VD(x̂jvd,(jc−1)×r:(jc+1)×r)

19: x̂long ← x̂best,(jc−1)×r:jc×r

20: else
21: x̂best,(jc−1)×r:(jc+1)×r ← max

jvd∈[1,num]
VD(concat(prev best, x̂jvd,(jc−1)×r:jc×r))

22: if jc == m− 1 then
23: x̂long ← concat(x̂long, x̂best,(jc−1)×r:(jc+1)×r)
24: else
25: x̂long ← concat(x̂long, x̂best,(jc−1)×r:jc×r)
26: end if
27: end if
28: prev best← x̂best,(jc−1)×r:jc×r

29: end for

Unlike the original R2, which generates one clip per latent space, VDrej generates multiple
clips (e.g., 20 clips) from the same latent space and selects the best one based on visual
quality and connectivity to the previously selected generated clip. Specifically, the clip with
the highest Video Discriminator (VD) output—indicating the greatest likelihood of being
perceived as real (i.e., the highest value approaching 1)—is chosen. To evaluate connectivity,
each newly generated clip is concatenated with the previously selected clip (using the first
8 frames of each), and the stitched clips are input into the VD for assessment. This process
significantly improves the quality and stability of the generated videos, ensuring that the
majority of long videos maintain high quality while reducing the proportion of poor-quality
clips.

In implementation of VDrej, for the first clip, it is directly input into the VD for qual-
ity assessment. For subsequent clips, all newly generated clips are concatenated with the

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 86

previously selected clip and evaluated by the VD to ensure connectivity and quality. This
approach alleviates the impact of errors arising from stitching clips, resulting in more stable
and higher-quality video generation.

VDrej specifically targets quality degradation errors and mitigates temporal incoherence
while preserving desirable temporal dynamics. By leveraging the VD, which is trained dur-
ing the training phase and repurposed for testing, this method effectively utilizes existing
resources without requiring additional components.

5.3 AR2: Auto-Regressive REncGAN for Unconditional Long
Video Generation

Auto-Regressive Recall Encoding GAN3 (AR2) was developed as an extension of REncGAN
(R2) to overcome the limitations associated with the reliance on prior information for long
video generation. The main design goal of AR2 is to enable unconditional video generation
starting from random noise, while still maintaining the efficient internal video representation
mechanism established by REncGAN.

To achieve this goal, AR2 introduces an auto-regressive setting within the recall mechanism,
which allows for auto-regressive prediction, thereby reducing the dependency on the prior
information from an entire video to just a single clip. Additionally, AR2 incorporates a noise
generation constraint at the training phase, enabling the generation of clips directly from
random noise, similar to traditional GANs. Consequently, AR2 initiates video generation by
using noise to produce the first clip, and then auto-regressively predicts each subsequent clip
based on the previously generated one. These generated clips are then sequentially stitched
to form a long video.

Further modifications include the modification of the Generator to enhance spatio-temporal
feature learning ability, as well as the use of a Video Discriminator (VD) at the generation
stage to filter and refine the generated clips for improved performance and for ensuring video
continuity.

5.3.1 Motivation for AR2

While REncGAN (R2) successfully extended the EncGAN3 model for long video generation,
it still presents significant limitations, particularly in its reliance on prior information and
its tendency to generate repetitive sequences. The R2 model, with its recall mechanism,
models intra-clip relationships using the original EncGAN3 structure and introduces inter-
clip relationship modelling through a Markov chain-based approach. This allowed R2 to
generate hundreds or even thousands of frames, overcoming the limitations of short video
generation.

However, R2 also has notable constraints. One of the primary issues is that R2’s video gen-
eration is heavily conditioned on the training data, requiring prior information from training
video clips to provide the corresponding latent spaces. This reliance on prior information

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 87

significantly limits the diversity and length of generated videos. As shown in the ablation
studies that we pursued on latent code manipulation, although videos generated from the
same latent space exhibit some diversity, the extent of this diversity remains constrained by
the model’s reliance on specific latent spaces. Additionally, R2 struggles to generate videos
beyond the length of the training data, which hinders its potential for truly long-duration,
unconditional video generation.

Another limitation arises from the fact that the inter-clip relationship modelled by the re-
call mechanism is inherently local. This Markov chain-based approach allows the current
clip to depend only on the preceding clip, which leads to the issue of generating repetitive
sequences over long video durations. Since the model does not account for global video
features, it struggles to maintain coherence and lacks in providing novel information across
long sequences of clips.

To address these limitations, we propose AR2 (Auto-Regressive REncGAN), a novel ap-
proach designed to reduce dependency on prior information and enable unconditional long
video generation. AR2 enhances the ability of the model to process temporal dependencies
over extended sequences, thereby addressing the repetition problem and improving the di-
versity of generated videos. By eliminating the need for explicit training clips as priors, AR2
offers a more flexible and scalable solution for long-duration video generation.

In the following sections, we introduce the AR2 structure, training methodology, and imple-
mentation details, demonstrating how it overcomes the challenges faced by R2.

5.3.2 AR2 Structure

AR2 builds upon the foundational architecture of improved R2, as described in Section 5.2,
aiming to advance the ability of the model to generate long videos without relying on prior
real video information. This section explores the structural innovations that AR2 incorpo-
rates to achieve this goal, focusing on the integration of an auto-regressive recall mechanism
and adaption on the VDrej operation. These changes collectively enable AR2 to generate
video sequences without conditioning on prior clips, thereby achieving true unconditional
generation.

Auto-regressive recall mechanism. As shown in Figure 5.2, AR2 retains the R Enc and
R 3VD operations of REncGAN but adapts them for an auto-regressive setting. R Enc and
R 3VD are core components of the original recall mechanism in REncGAN. By maintaining
the two core operations, AR2 inherits Markov chain based inter-clip relationship modelling,
which allows the model to generate long videos of arbitrary lengths from short training clips.
Since the training video length is fixed as the short clip length, this approach mitigates the
increase in GPU memory requirements typically associated with increasing the length of the
training videos.

The R Enc and R 3VD operations, along with their modifications, are illustrated in the top
and bottom green dashed boxes in Figure 5.2. For R Enc, similar to REncGAN, the long
video is divided into overlapping clips, where each pair of adjacent clips forms an input pair,
as shown in the left top green dashed box in Figure 5.2. For example, Clip 1 and Clip 2
form one input pair, and Clip 2 and Clip 3 form another. In AR2, only the ”former” clip

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 88

Figure 5.2: Illustration of the Auto-Regressive Recall Encoding GAN3 (AR2).

(e.g., Clip 1 in the pair) is fed into the internal EncGAN3 model, whereas in REncGAN,
both clips in the pair were used as inputs. The ”latter” clip (e.g., Clip 2 in the pair) is
utilized to evaluate the continuation of the video by considering the sequence of the two
segmented clips, enabling the prediction of the long video, as shown in the right part of the
bottom green dashed box in Figure 5.2. This reconstruction error is calculated using Smooth
L1 loss, which combines the benefits of both L1 loss (absolute error) and L2 loss (squared
error), offering robustness to outliers while maintaining smoothness.

Such modifications as those detailed above in R Enc allow AR2 to perform longer video
predictions while preserving the Markov chain property between clips. As a result, AR2 can
generate long videos by recursively predicting subsequent clips, starting with an initial clip
during the video generation stage, while maintaining the training length as a clip length con-
sidered of 16 frames in the experiments. Despite reducing the reliance on prior information
from the entire video to just an initial clip, AR2 still requires to be provided with an initial
clip as input, as the starting frames. To achieve unconditional generation, where the process
begins from random noise, AR2 introduces an additional step. It considers noise sampled
from a standard Gaussian distribution as input to the Generator, enabling the creation of
the initial clip directly from random noise, as shown in the left part of the bottom green
dashed box in Figure 5.2.

In conjunction with these changes, the merging process in R 3VD is adapted to align with
the new structure of R Enc. Unlike in REncGAN, where both clips from the input pair were
used to generate the stitched clip, AR2 no longer utilizes the latter clip in the generation
process. Instead, R 3VD in AR2 constructs the stitched clip by concatenating the first 8
frames of the former clip input with the first 8 frames of its corresponding generated clip,
as shown in the middle part of the bottom green dashed box in Figure 5.2. This approach
leverages the VD to ensure continuity and address blending issues between clips, preserving
the original functionality of R 3VD within the auto-regressive setting in AR2 and hence
could be connected as shown in the right top green dashed box in Figure 5.2.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 89

The modifications in both R Enc and R 3VD enable AR2 to generate long videos without
relying on prior information, while maintaining temporal consistency. AR2 starts the video
generation process by using noise to generate the initial clip and then recursively predict
subsequent clips, facilitating unconditional video generation from scratch. This approach not
only preserves the memory efficiency advantages of REncGAN but also extends its capability
to produce long, coherent video sequences without requiring real video data. In fact, the
memory efficiency of AR2 is closer to that of EncGAN3 than REncGAN. This is because
AR2 restores the noise generation pathway removed in REncGAN, which only requires the
Generator and Discriminator, bypassing the Encoder entirely. Unlike REncGAN, which
processes two clips simultaneously and requires additional memory for handling the second
clip through the Encoder, AR2 processes only one clip at a time and incorporates the noise
generation function, which does not involve the Encoder.

Additionally, AR2, like REncGAN, processes a stitched clip through VD to ensure temporal
consistency. However, since AR2 no longer requires simultaneous processing of two clips and
does not need to run a second clip through the Encoder, its overall GPU memory require-
ments are lower than those of REncGAN. Consequently, the GPU memory requirement to
train AR2 is much closer to that of EncGAN3, making AR2 more memory-efficient than
REncGAN for long video generation tasks.

VDrej in AR2: Adaptations for Auto-Regressive Generation. While the VDrej
operation in improved R2 focuses on improving clip quality and connectivity during sequen-
tial clip generation, AR2 adapts VDrej to better suit its auto-regressive generation process.
In AR2, the generated clip selected by VDrej operation is not only used for connectivity
assessment but also as input to predict the next clip, enabling the VDrej operation to miti-
gate the error occurred at each prediction step. Therefore, VDrej could alleviate the quality
degradation errors accumulated through the auto-regressive process, preserving the desirable
temporal dynamics while reducing the impact of prediction errors on clip quality.

5.3.3 Training Objective

After implementing the auto-regressive setting, the training objectives of AR2 differ from
those of REncGAN. The differences result from AR2 employing the random noise generation
terms and removing the generator process of the latter clip. Similar to REncGAN, AR2
optimizes the encoder and generator jointly to enhance their cooperation. AR2 follows the
same process as R2 for generating clips, as shown in Equations (4.2) and (4.3), and connects
them as described in Equation (4.1). The binding frame is considered as in R2 as the middle
frame of a generated small clip, which corresponds to the index r = 8 in the experiments.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 90

The training loss function for jointly optimizing the Encoder and Generator is given by :

LEncG,AR =

NL∑
i=1

NC∑
jc=1

∥xi,jc+1,r − x̂i,jc,r∥+

NL∑
i=1

NC∑
jc=1

Tc∑
j=0

∥xi,jc+1,j − x̂i,jc,j(v̂i,jc,j , x̂i,jc,r)∥

+ DKL(qθx(zx | x)∥p(zx)) + DKL(qθv(zv | v)∥p(zv))

− Ezx∼qθx (zx|x),zv∼qθv (zv|v) log[D(G(zx, zv))]− Ex̂n∼G(zx,zv) log[D(x̂n)]

− Ez̃x∼N (0,I),z̃v∼N (0,I) log[D(G(z̃x, z̃v))]− Ex̃n∼G(z̃x,z̃v) log[D(x̃n)]
(5.1)

where considering NL long videos, each split into NC overlapped clips with each clip contain-
ing Tc +1 frames with r identifying index of the binding frame of each clip. The clip amount
NC is varied for each long video, depending on their lengths. Frames x̂i,jc,j , including j = r,
are generated from xi,jc,j of clip jc in video i. In the first two loss terms on the right side
of the equal sign, these generated frames are used to compute the reconstruction error with
frames xi,jc+1,r of clip jc +1 in video i, to enable the prediction function. In contrast, frames
x̃i,jc,j in the last two terms on the right side of the equation are generated from random noise,
to enable the function of generating clips from random noise enabled by the generator and
discriminator modules. These terms deriving from using random noise enables the synthesis
of diverse sections of the long video, whose viability is confirmed by the video discriminator
VD in both image frames as well as in the latent space domain. The middle four loss terms
take similar role as the terms from Equation (4.4).

Due to the reintroducing of the noise generation term characteristic to GAN generators, the
training objective of the image-stream Discriminator in AR2 is different from the one used
in R2 (LDI ,R in Equation (4.5)) but the same as the one used in EncGAN3 (LDI

in Equation
(3.5)). Meanwhile, the training objective of the video-stream Discriminator in AR2, named
as LDV ,AR, builds upon the one used in R2 while introducing the auto-regressive setting and
noise generation term, defined as :

LDV ,AR = Ex0:Tc∼p(x0:Tc)
log[D(x0:Tc)] + Ex̂0:Tc∼p(x̂0:Tc)

log[1−D(x̂0:Tc)]

+ Ex̂stitch∼p(x̂stitch) log[1−D(x̂stitch)]

+ Ez̃x∼N (0,I),z̃v∼N (0,I) log[1−D(G(z̃x, z̃v)]

(5.2)

where the stitched clip x̂stitch consists of frames from input clip jc and its generated clip.
The last loss term provides learning signals for noise generation ability.

5.3.4 Training and Inference

During the training, the Discriminator is updated by optimizing LDI
and LDV

using equa-
tions Equation (3.5) and (5.2). Then, based on the optimized Discriminator, the Encoder
and Generator loss LEncG are optimized jointly according to Equation (5.1). We show the
Training and Inference procedure of AR2 as pseudo code on Algorithm 9 and 10, respectively.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 91

Algorithm 9 AR2 Training Procedure

1: Required: Encoder (Enc), Generator (G), Image Discriminator (ID), and Video Dis-
criminator (VD). Operations of concatenation (concat), computing reconstruction error
(recon), random sample (sample) and average (avg)

2: Input: Adjacent clips xjc,0:Tc and xjc+1,0:Tc of clip length Tc, Random Noise z̃
3: Output: Discrimination results of True or False T/F
4:

5: Tc ← 15
6: r ← Tc//2 + 1
7:

8: Generation:
9: z← sample(Enc(xjc,0:Tc))

10: x̂jc,0:Tc ← G(z)
11: x̃jc,0:Tc ← G(z̃)
12: recon error ← recon(xjc+1,0:Tc − x̂jc,0:Tc)
13:

14: Stitch Clip:
15: x̂stitch ← concat(xjc,0:r, x̂jc,0:r)
16:

17: Discrimination:
18: T/F ← avg(ID(sample(x̂jc,0:Tc)), ID(sample(x̃jc,0:Tc)))
19: T/F ← avg(VD(xjc,0:Tc),VD(x̂j,0:Tc),VD(x̂stitch),VD(x̃jc,0:Tc))

Algorithm 10 AR2 Inference Procedure

1: Required: Encoder (Enc), Generator (G) and Video Discriminator (VD). Operations
of the random sample (sample), stitch clips (stitch) and VDrej shown in Algorithm 8.

2: Input: Normal distribution N (0, I), generated clip number (num).
3: Output: Generated video x̂0:T

4:

5: Tc = 15
6:

7: x̂1,0:Tc ← VDrej(G(sample(N (0, I))))
8: prev clip← x̂1,0:Tc//2+1

9: for jc = 1→ num do
10: x̂jc+1,0:Tc ← VDrej(G(sample(Enc(x̂jc,0:Tc))), prev clip)
11: end for
12: x̂0:T ← stitch(x̂jc,0:Tc for jc from 1 to num)

5.3.5 AR2 Implementation

For the structure details, AR2 is based on the improved R2 without altering the internal
structure. Compared to the structure used by EncGAN3 when generating 128 × 128 pixel
resolution frames, the Generator in AR2 also includes five G3 blocks and one F-SA module.
However, since the improved R2 enhances model performance by replacing 1D+2D convo-
lutions with 3D convolutions in the video stream of the Generator, each G3 block in AR2
contains one 3D convolution, one 2D convolution, and one 1D convolution, instead of the

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 92

original two 2D and two 1D convolutions. The F-SA module remains unchanged, as do the
other Encoder and Discriminator modules. The Hyper-parameters such as the learning rate
and used optimizer are the same as those used in REncGAN.

Computation cost. At training time, the training video data is split into several batches.
The model optimizes its trainable parameters once based on the learning signals from one
batch instead of one video input, saving time. The model after optimized on one batch is
called one iteration. Train for one epoch means to feed the entire training set once to the
model.

AR2 is trained on Taichi and Sky datasets. For the Taichi dataset, in practice, AR2 is trained
on 3 A40 GPUs with 48 GB, which costs about 64 hours to train for 5000 epochs. The GPU
memory of A40 allows a batch size of 10. With such a batch size, the training set produces
10 batches. When batching video data, it does not drop videos that are not enough to form
a batch. Here, train one epoch means the model is optimized for 10 iterations. For the Sky
dataset, in practice, AR2 is trained on 2 H100 GPUs with 80 GB, which costs about 72
hours to train for 75 epochs. The Sky database has been pre-divided into training sets and
test sets. AR2 is trained on the train set provided in the Sky dataset. The GPU memory of
H100 allows a batch size of 55. With such a batch size, the used training set could produce
1284 batches and also not drop out videos that are not enough to form a batch.

Due to the usage of adversarial loss, the loss curve is unstable and not useful for finding out
the best training epoch. To find out the best version of the model parameters, we calculate
the FVD sores based on sequences of both 16 frames and 128 frames sampled from the
generated videos, to measure the generation quality in both short and long duration. To
reduce fluctuations of the score, we sample the initial certain frames with a sampling step
as 1.

For the Taichi dataset, we calculate the FVD sores for every 10 epochs, which is about 100
iterations. The best FVD results appeared around 550 to 700 epochs, about 7000 iterations
maximum. Hence, the training time cost to reach the best performance of AR2 on the Taichi
dataset should be 64 × 3 × (700 ÷ 5000) ≈ 27 hours if trained on one A40 GPU. For the
Sky training set, we compute the FVD scores for every 1 epoch, which is 1284 iterations.
The best FVD results appeared around 5 to 13 epochs, about 13× 1284 = 16692 iterations
maximum. Hence, the training time cost to reach the best performance of AR2 when training
on the Sky training set should be 72× 2× (13÷ 75) ≈ 25 hours if trained on one H100 GPU.

AR2 Time unit GPU type (num=1) batch size batch num

Taichi 27 hours A40 10 10
Sky 25 hours H100 55 1284

Table 5.1: Training time cost of AR2.

Video generation time. We generate long videos and then compute the FVD. Each time,
we generate 64 long videos, with each video of 1000 frames in length. In practice, after
training on the Sky dataset, it takes 87.5 minutes to generate videos in this way 8 times and
we compute FVD 29 times. Each time we compute FVD for sequences of 16 frames and 128
frames. Roughly, regardless of the time cost for computing the FVD score, the generation
of one 1000-frame video takes about 87.5 ÷ (8 × 64) ≈ 0.17 minutes, about 10 seconds. In

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 93

addition, applying the VDrej mechanism would require more time for the video generation.
Because VDrej generates a certain number (such as 20) of clips from each latent space and
uses VD to pick up the best one. In practice, after training on the Taichi dataset, it takes
309.5 minutes to generate 64 long videos of 1000 frames with using the VDrej mechanism
9 times and compute FVD 500 times. Roughly, regardless time cost of computing FVD,
the generation of one 1000-frame video takes about 309 ÷ (8 × 64) ≈ 0.6 minute, about 36
seconds.

5.4 R3: REncGAN with GPT Directs Long Duration

5.4.1 Motivation for R3

The development of R3 is primarily motivated by the need to address the limitations of R2,
specifically its reliance on prior information and lack of global perspective of entire long video
sequences. In R2, the VAE loss constrains the latent spaces of different clips to approximate a
standard normal distribution N (0, I), which makes those latent spaces similar. However, the
recall mechanism in R2 ensures that the latent space of each clip encodes specific temporal
information. This approach intentionally introduces subtle differences between the latent
spaces of different clips, which makes those latent spaces to be different. These differences
allow the sequence of these latent spaces to carry the necessary temporal information for
generating extended videos. The trade-off, however, is that this approach inherently depends
on the availability of training videos. To address this dependency, R3 incorporates a GPT
module that learns long-duration temporal information directly from sequences of latent
spaces [16, 17, 18, 19]. This GPT module generates the latent spaces required for producing
long videos, effectively eliminating the need for training data.

The internal video representation in R3 is structured to address different temporal relation-
ships: non-Markov chain based intra-clip relationships within each clip, Markov chain based
inter-clip relationships between adjacent clips, and long-duration features that span and in-
tegrate all clips within the entire video. The non-Markov chain based intra-clip relationships,
which model the connections between frames within a clip, are managed by EncGAN3. This
non-Markov chain based representation way is commonly used in video generation models,
particularly for short video generation tasks. Though provide good generation results, it is
inefficiency in temporal dimension, represented as the GPU memory requirements exponen-
tially increased by the training length. The inter-clip relationships, modelled using a Markov
chain approach, are handled by the original recall mechanism in R2. This Markov chain-
based representation is a key aspect of R2, enabling memory-efficient generation of long
videos with arbitrary lengths from a fixed short training length. Finally, the long-duration
features that span all clips within a video are captured by the GPT module. This representa-
tion is crucial in R3, as it provides the global perspective that R2 lacks. The first two types
of relationships are learned from pixel-wise information to capture finer details, while the
long-duration feature modelling by GPT uses latent-wise information to save computational
costs.

Hence, R3 retains the advantages of R2 while addressing its limitations. The key advantage
of R2 is its efficient representation of long videos in the temporal dimension, demonstrated by

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 94

its lower GPU memory requirements during training for long video generation. However, the
reliance of R2 on prior information stems from its focus on local features due to the Markov
chain-based inter-clip relationship modelling, which limits model from having a global per-
spective of the entire video. By integrating GPT, R3 overcomes this limitation, allowing for
both efficient internal representation and a more comprehensive global understanding of the
video content.

5.4.2 R3 Structure

As illustrated in Figure 5.3, the R3 model consists of improved R2 (as described in Section
5.2) and a GPT module [17]. The improved R2 model, which incorporates enhancements
such as the additional G3 block and VDrej, serves as the foundation for R3. The training
of R3 involves two main steps. First, improved R2 is trained according to the procedures
outlined in Section 4.4.3 of the previous chapter, same as the original R2. Once improved
R2 is trained, its Encoder (Enc) is used to encode the training videos into sequences of
latent spaces. These sequences are then fed into the GPT module, which is trained to
learn sequences of video segments representing long-duration information. This allows R3
to generate sequences of latent spaces using GPT, rather than relying on training videos, as
improved R2 does. As a result, R3 reduces the dependency on prior information, and the
maximum length of the generated videos is no longer constrained by the training data.

Figure 5.3: Illustration of the R3. zi indicates a latent space and seq z is the sequence of
latent spaces. T is video length while Tc is clip length. The former length is arbitrary but
longer than 100 frames at least, such as 500, 1000 frames. The latter length is fixed to 16
frames.

The GPT module in R3 is adapted from the original GPT used in natural language process-
ing, where it is trained on discrete data (i.e., text). In that context, GPT maps each discrete
word to a continuous vector, known as a token, through a process called tokenization. The
reverse operation, mapping the vector back to the word, is called de-tokenization. In R3,
since the data consists of continuous latent spaces rather than discrete tokens, the tokeniza-
tion and de-tokenization processes are removed. Instead, each latent space is treated as a
token, with its size corresponding to the size of the latent space. The sequences of latent
spaces, after positional encoding (denoted as posenc in Figure 5.3), are fed directly into

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 95

the GPT module. The positional encoding is crucial because GPT cannot learn sequential
information directly from the sequence of input tokens unless the position information is
embedded within the tokens themselves.

During training, R3 computes the reconstruction error between the input and output se-
quences of latent spaces using the Smooth L1 loss function, similar to EncGAN3, R2, im-
proved R2 or AR2. However, in contrast to those models, where the reconstruction error is
calculated on pixel-wise clips, R3 applies this error to sequences of latent spaces. To manage
sequences of varying lengths, R3 pads all sequences to a uniform length. This allows the
GPT module to process a batch of sequences simultaneously, enhancing training efficiency
and reliability. R3 identifies the maximum sequence length in the training set and pads
all shorter sequences to this length by adding zeroes. A mask within GPT is then used
to ignore these padding values, ensuring that the module focuses only on the actual latent
spaces. During training, the GPT module is trained independently, with the parameters of
the Encoder and other improved R2 modules frozen.

At inference time, R3 utilizes all modules except the Image Discriminator to refine the latent
spaces generated by GPT. This helps to reduce accumulated errors through an auto-regressive
process, thereby maintaining the quality of the generated clips. As described in Algorithm
11, R3 begins by encoding an initial clip into a latent space z, which is then used as input
for GPT to predict the next latent space. The predicted latent space generates several latent
codes, each of which is used to produce a clip via the Generator. Each of these generated
clips is stitched with the previous clip, starting with the initial clip. The merging consists
in stitching together the first 8 frames of the generated clip with the first 8 frames of the
previous clip. The VD then evaluates the quality of these stitched clips, selecting the best
one based on both clip quality and video continuity. This selection process, known as VDrej,
is discussed in improved R2 (introduced in Section 5.2). Unlike the VDrej in improved R2,
where the best clip is selected for continuity only, in R3, the best clip is then encoded into
a latent space, which along with the previous GPT input, is used to predict the next latent
space, continuing the process. This process enables R3 to generate long videos with improved
temporal coherence, less quality degradation and reduced dependency on prior information.

5.4.3 Training and Inference

In brief, R3 is trained in two steps. First, R3 trains inside improved R2 component. Secondly,
R3 trains the GPT module based on latent spaces encoded from clips, using the Encoder
from the trained improved R2. The training objectives and procedure of improved R2 are
the same as the original R2, which is described in Section 4.4.2 and 4.4.3 of the previous
chapter. For GPT, the training focuses on minimizing the difference between the input and
output latent space sequences. The training objective for GPT LGPT is defined as :

LGPT =

NL∑
i=1

NC∑
jc=1

∥zijc − ẑijc∥ (5.3)

where zijc represents the jc-th latent space in the i-th sequence, and ẑijc is the latent space
generated by the GPT module. The training procedure of GPT is as usual GPT, where
inputting a sequence of latent spaces and output a sequence of latent spaces where contains

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 96

the prediction of the next latent space. The inference procedure of R3 is shown in Algorithm
11. The details is described in the last paragraph in the last sub-section.

Algorithm 11 R3 Inference Procedure

1: Required: GPT, Encoder (Enc), Generator (G) and Video Discriminator (VD). Oper-
ations of getting the last token from a sequence (last), sample, concatenation (concat)
and VDrej

2: Input: an initial clip (x0:Tc), numbers of generated clips (num)
3: Output: the generated long video (gen vid)
4:

5: Tc = 15
6: r = Tc//2 + 1
7:

8: z0 ← Enc(x0:Tc)
9: input toks← z0

10: gen vid← x0:r

11: prev clip← x0:r

12: for jc = 1→ num do
13: gen toks← GPT(input toks)
14: zjc ← last(gen toks)
15: x̂jc,0:Tc ← VDrej(G(sample(zjc)), prev clip)
16: gen vid← concat(gen vid, x̂jc,0:r)
17: prev clip← x̂jc,0:r

18: zjc ← Enc(x̂jc,0:Tc)
19: input toks← concat(input toks, zjc)
20: end for

5.4.4 R3 Implementation

Structure details. R3 consists of two main components: improved R2 and an additional
GPT module. The key parts of improved R2 are the modifications of the Generator and
the VDrej operation. Similar to AR2, the modification to the Generator in the improved
R2 compoent are retained in R3 but the VDrej operation is adapted for R3. The retained
modifications includes the replacement of 1D and 2D convolutions with 3D convolutions and
the ability to generate video frames at a resolution of 128× 128 pixels. While the VDrej in
R3 includes extra usage of the selected clip for predicting the next clip, as described in the
last paragraph of Section 5.4.2.

The GPT module integrated into R3 is composed of 48 transformer blocks. Each of these
blocks contains multi-head attention with 24 heads, and each token is represented as a vector
with a dimension of 1536. The GPT module is based on the Transformer decoder architecture
but is simplified, with each transformer block including only one multi-head self-attention
mechanism and two fully connected (fc) layers, removing the cross-attention component as
not required in the auto-regressive setting. The length of the input sequence for GPT is
determined by the longest sequence present in the training video set, corresponding to the
longest video from the dataset used for training.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 97

In terms of the size of the GPT module, the GPT used in R3 is comparable to the GPT-2
[16] and significantly larger than GPT-1 [16]. GPT-1 features 12 transformer blocks, each
with 12 heads in the multi-head attention, and token vectors with a dimension of 768. These
parameters are notably smaller than those used in the GPT module of R3. On the other hand,
GPT-2 consists of 48 transformer blocks, each with 12 heads in the multi-head attention,
and token vectors with a dimension of 1600. Compared to GPT-2, the GPT module in R3
increases the number of heads to 24 to enhance the reconstruction of continuous variables.
This adjustment is crucial as generating continuous variables demands greater sensitivity
to the values within each dimension of the variable. By analysing token relationships from
multiple perspectives, the GPT in R3 is better equipped to generate accurate values across all
dimensions of the variables. Since R3 directly uses the latent space as tokens, the dimension
of the GPT tokens in R3 is determined by the latent space, which is smaller than the token
dimension used in GPT-2.

Training setting. R3 uses a two-step training. The first step is training the improved R2,
following the settings of the original R2 introduced in Section 4.4.5. The second step consists
in the training of the GPT. The training of improved R2 implements the ADAM optimizer
with exponential decay rates for the first-order and second-order moment estimations set to
β1 = 0.5 and β2 = 0.999 [94]. The GPT model is optimized using the AdamW optimizer,
which is a variant of the Adam optimizer that includes weight decay regularization that is
more generally used in Transformer training [102]. This optimizer uses the exponential decay
rates for the first-order and second-order moment estimations are configured to β1 = 0.9 and
β2 = 0.95. Due to their sensitivity to the gradient updates of the Transformer, the learning
rate of GPT is 5 × 10−5, which is smaller than the one used in R2 which was considered
as 2 × 10−4. As the input and output of the GPT used in R3 are continuous variables, R3
uses the Smooth L1 loss to compute the reconstruction error between its input and output
instead of the cross entropy loss used for GPT in natural language tasks. The former loss is
suitable for regression tasks and the latter one is for multi-class classification tasks.

Computation cost. R3 is trained on Taichi and Sky datasets. The training of R3 is split
into two steps: the training of R2 and then, GPT. Details of the definitions such as epoch
or FVD are described when introducing the implementation of AR2.

For the Taichi dataset, the training of R2 takes about 45.5 hours for 3000 epochs on 3
A40 GPUs. We consider a batch size of 25 and split the training set into 12 batches. In
all experiments, we also consider for the training the video segments that are left over after
splitting the original video into batches. By training R2 between 3000 epochs to 5000 epochs
takes 13 hours on 2 H100 GPUs. For the used batch size of 50, the training set is split into
9 batches. The best FVD was obtained at 3970 epochs. Thus, the required training time
cost to reach the best performance is about 45.5 × 3 = 136.5 hours on single A40 and
13× 2× (970÷ 2000) ≈ 12.6 hours on single H100. The training of GPT takes 29 hours for
10,000 epochs on 2 H100 GPUs. We consider a batch size of 30 and split the training set
into 1 batch. The best FVD was obtained at 4800 epochs. Thus, the training time required
to reach the best performance was about 29 × 2 × (4800 ÷ 10000) ≈ 27.8 hours on a single
H100.

For the Sky training set, the training of R2 costs about 12 days on 3 A40 and 6 days hours
on 2 H100 for 234 epochs, which is much longer than the cost training on the Taichi dataset.
For the used batch size of 25 on A40, the training set is split into 1883 batches, where we

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 98

Model GPU Configuration Batch Size/GPU Batch Num Single GPU Time

R3’s R2 2 × H100 (80GB) / (3 × A40 + 2 × H100) 50 / (25, 50) 12 / (1883+1412) 12.6h / (36+3.5)d
R3’s GPT 2 × H100 (80GB) 30 / 5 1 / 187 27.8h / 21d

Table 5.2: Time cost of R3 for training from scratch. Values separated by ”/” represent
results on different datasets Taichi and Sky, like Taichi/Sky.

filter out videos with less than 24 frames to match the training requirement of R2. For the
used batch size of 50 on H100, the training set is split into 1412 batches. The best FVD
was obtained from 215 epochs. Thus, the training time cost to reach the best performance
is about 36 days on a single A40 plus 3.5 days on a single H100. The training of GPT
takes 289.5 hours (a bit over 12 days) for 1470 epochs on 2 H100 GPUs. We consider a
batch size of 5 and split the training set into 187 batches. The best FVD was obtained at
1290 epochs. Thus, the training time required to reach the best performance was about
289.5 × 2 × (1290 ÷ 1470) ≈ 508.1 hours (21 days) on a single H100. In addition, the Sky
dataset contains some extremely long videos (3000 or even over 4000 frames). The training
sequence length depends on the maximum sequence length, although most videos do not
require such a long length. This significantly impacts GPU memory requirements, as the
model size is also affected by the input sequence length, potentially leading to GPU memory
overflow when attempting to process the maximum length. Therefore, we set a threshold for
the maximum training sequence length at 1000 frames, and for videos exceeding this length,
we discard the excess frames.

Model Size and Storage Requirements. The R3 model consists of two major compo-
nents: R2 and GPT. The total number of parameters in R3 is approximately 1.49 billion,
with R2 contributing 128.7 million parameters and GPT contributing 1.36 billion parameters.

Each parameter in the model is stored as a 32-bit floating point number (float32), which
requires 4 bytes of memory. Thus, the storage memory required for a model can be computed
as follows:

Memory (GB) =
Number of Parameters× 4 (bytes)

10243
(5.4)

In addition to the raw parameter storage, the final model size in .pth format may slightly
vary due to factors such as structural indexing and compression differences across different
datasets.

The detailed breakdown of parameter distribution and memory usage is summarized in
Table 5.3.

5.5 Experimental Results

This section presents the experimental results for both qualitative and quantitative evalua-
tions. We have applied our models, when considering different types of the recall mechanisms,
on the long term video generation, after training on the Taichi and Sky datasets, the current
generally used datasets for this task, as introduced in Section 4.6.1. To match the setting of
our AR2 and R3, we use the 24-segmented versions of both datasets, as shown in Table 5.4.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 99

Model Component Parameter Count Storage Memory (GB)

R2 Sub-components
Encoder (Enc) 2.06M 0.008 GB
Generator (G) 90.37M 0.35 GB
Variational Decoder (VD) 29.32M 0.11 GB
Identity Module (ID) 6.96M 0.03 GB
Total R2 128.71M 0.50 GB

GPT Component
GPT 1.36B 5.08 GB (pure)

Total R3 1.49B 5.84 - 6.03 GB

Table 5.3: Model size and storage memory of R3. The total memory usage includes minor
overhead from structural indexing.

Dataset Segments Train Test

Taichi 300 230 70
Sky 47,075 42,075 4,800

Table 5.4: Video dataset statistics of their 24-frame segmented versions. The amount of
Segments is approximate.

For the qualitative evaluation, we show frames sampled at specific intervals to represent
longer durations within a shorter frame count. For quantitative evaluation, we use FVD as
the metric to measure generated videos of 16-frame and 128-frame lengths, denoted as FVD-
16f and FVD-128f, respectively. These metrics assess the quality of short and long-duration
video sequences. We also compute the ratio of FVD between these two lengths to quantify
the degree of quality degradation as video duration increases.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 100

(a) MoCoGAN-HD [6]

(b) DIGAN [7]

(c) StyleGAN-V [8]

(c) Long-Video-GAN [10]

(d) StyleInV [11]

(e) our improved R2

(f) our AR2

(g) our R3

Figure 5.4: Taichi frames sampled from generated videos of 128 frames each. For com-
parison of our recall-based methods, improved R2, AR2 and R3, with other long video
generation methods. Frames in each row are sampled starting from the first frame, with
one frame sampled every 16 frames, representing a video of 128 frames in total. The results
of MoCoGAN-HD, DIGAN, StyleGAN-V, Long-Video-GAN and StyleInV are from [11] at
256× 256 resolution while our recall-based methods are at 128× 128 resolution.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 101

(a) MoCoGAN-HD [6]

(b) DIGAN [7]

(c) StyleGAN-V [8]

(c) Long-Video-GAN [10]

(d) StyleInV [11]

(e) our improved R2

(f) our AR2

(g) our R3

Figure 5.5: Sampled frames from 128-frame videos generated by our improved R2, AR2
and R3, as well as other methods such as MoCoGAN-HD (ICLR21), DIGAN (ICLR22),
StyleGAN-V (CVPR22) and StyleInV (ICCV23) after training on the Sky dataset. Frames
in each row are sampled starting from the first frame, with one frame sampled every 16
frames. Frames of other methods are from [11] at 256× 256 resolution while those from our
AR2 and R3 are at 128× 128 resolution.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 102

5.5.1 Qualitative Evaluation

In this section, we evaluate our recall-based methods, AR2 and R3, on 128-frame videos,
comparing them with other long video generation methods presented in [11] (ICCV23).
We also extend the evaluation to videos of 512-frame, comparing our methods (including
improved R2) with results from other long video generation techniques provided on the
website1 of Ge et al.[9] (ECCV22). Due to the randomness generation setting of our methods,
as well as for those used for comparison, where the generation process starts from a random
noise or an initial clip without fixed constraints, it is not feasible that we consider the exact
same scene or background for direct comparative purposes. Therefore, the quantitative
results should be interpreted in the context of this limitation.

Figures 5.4 and 5.5 show Taichi and Sky frames, respectively. For both Figures, frames on
each row were sampled from 128-frame videos generated by our AR2, R3 at 128× 128 reso-
lution and other long video generation methods at 256× 256 resolution. Although improved
R2, AR2 and R3 have lower resolution compared to other methods, they demonstrate a
superior ability to preserve the physical structure of moving objects during motion in Taichi
movements and clear cloud movement with good frame quality in Sky frames. Besides, the
cloud movement of videos generated by improved R2 sometimes shows sudden changes in the
cloud configuration, as shown in Figure 5.5, while AR2 and R3 generate videos with better
frame quality and temporal coherence.

Figure 5.6: Frames sampled from 1000-frame videos at 128 × 128 resolution. Frames from
top to bottom rows are generated by DIGAN, TATS, AR2 and R3after training on the Taichi
dataset. Frames in each row are sampled every 32 frames from sequences 0 to 300 (left), 300
to 600 (middle), and 600 to 900 (right). The results of DIGAN and TATS are from [9].

Moreover, AR2 and R3 reduce the reliance on prior information as in improved R2, allowing
the generation of videos longer than those in the training set. We further evaluate them on
videos of over 1000 frames, as shown in Figure 5.6 and 5.7. For both Figures, from left to right
columns are frames sampled from sequences 0 to 300, 300 to 600, and 600 to 900. Frames
on each row are sampled for every 32 frames from the same video of over 1000 frames. In
Figure 5.6, the generated frames of AR2 and R3 maintain better physical structure during the
Taichi movement than DIGAN and TATS. And R3 exhibits richer motion content compared
to AR2. In Figure 5.7, all methods except TATS generate videos displaying realistic cloud

1https://songweige.github.io/projects/tats/

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 103

Figure 5.7: Frames from 1000-frame videos at 128× 128 resolution generated after training
on the Sky dataset. Frames from top to bottom rows are generated by DIGAN, TATS, AR2
and R3. Frames in each row are sampled every 32 frames from sequences 0 to 300 (left), 300
to 600 (middle), and 600 to 900 (right). The results of DIGAN and TATS are from [9].

movement in the sky.

prior Taichi-128×128 Sky-128×128

FVD-16f↓ FVD-128f↓ ratio↑ FVD-16f↓ FVD-128f↓ ratio↑
MoCoGAN-HD [6] (ICLR 2021) no 144.7 - - 183.6 635.6 0.28
DIGAN [7] (ICLR 2022) no 128.1 748.0 0.17 114.6 228.6 0.50
StyleGAN-V [8] (CVPR 2022) no 143.5 691.1 0.2 - - -
TATS [9] (ECCV 2022) no 94.6 - - 132.5 435.0 0.30
Long-Video-GAN [10] (NeurIPS 2022) no - - - 107.5 142.6 0.75
VIDM [36] (AAAI 2023) no 121.9 563.6 0.21 - - -

REncGAN (R2) [2] (ICIP 2023) entire video 113.5 145.9 0.77 360.9 587.0 0.61
Improved R2 entire video 101.1 108.9 0.93 293.9 591.5 0.49
AR2 no 1258.5 1986.3 0.63 445.8 840.4 0.52
R3 initial clip 160.4 385.1 0.41 256.9 433.8 0.59

Table 5.5: Evaluation of FVD on the generated long-videos, measuring the sub-sequences
of 16 and 128 frames, denoted FVD-16f and FVD-128f. The ratio of FVD-16f to FVD-
128f quantifies the degradation in frame quality over longer durations, reflecting both the
individual frame quality and the temporal coherence of the generated sequences. Results of
other methods are from [36, 10] to ensure the same resolution (128× 128) and video length
of FVD. The FVD results available for StyleInV are on a different resolution (256×256) and
hence not shown here.

5.5.2 Quantitative Evaluation

In Table 5.5, we evaluate the quality of generated videos for both the AR2 and R3 models
across different durations using FVD metrics, specifically FVD-16f and FVD-128f, which are
calculated using the first 16 frames and the first 128 frames of the generated video sequences,
respectively. Some methods used in the qualitative evaluation are not included here in the
quantitative comparison because their results were directly cited from [11] at a 256 × 256
resolution, while we focus on 128 × 128 resolution for FVD metrics. The FVD calculation
follows Equation (3.7), but instead of using the output of an image classifier, it is now based
on the output of a pre-trained Inception Network for video classification. Additionally, we
calculate the FVD ratio between the results provided for FVD-16f and FVD-128f to assess

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 104

the degree of quality degradation as video duration increases.

As shown in Table 5.5, all methods that apply the recall mechanism, such as the improved
R2 and AR2 models, exhibit a low degree of quality degradation, indicating the effectiveness
of the recall mechanism in preserving video quality over longer durations. AR2 and R3 are
developed based on the improved R2, as described in Section 5.2. R3 is directly incorporating
the improved R2, as described in Section 5.4.2.

The improved R2 model demonstrates competitive performance on the Taichi dataset, achiev-
ing the lowest FVD-128f score (108.9) and the highest ratio (0.93), which indicates superior
temporal coherence and minimal quality degradation over longer durations. However, it does
not achieve the best FVD-16f score, where TATS performs better with a score of 94.6. In
contrast, AR2 and R3 show relatively higher FVD values, primarily due to their reduced re-
liance on prior information. The high absolute FVD values of AR2 can also be attributed to
its model capacity. While the recall mechanism preserves the internal structure of the short
video generation model, maintaining its overall capacity, it introduces additional complexity
by handling noise and managing other long-term video characteristics. This added complex-
ity shifts focus away from short-clip quality, as reflected by the higher FVD-16f scores. As a
result, poorer short-clip quality negatively affects the overall quality of long videos, despite
the low degree of quality degradation as indicated by the FVD ratio.

Similarly, the recall mechanism in the R3 model helps preserve video quality over time by
splitting the long-video generation process into two stages: first, GPT generates a sequence
of latent representations, and second, a short-video generator independently produces each
clip based on these latent representations. The VDrej operation is applied to each generated
clip, refining the output and reducing error accumulation at each step. This mechanism is
evidenced by the generally higher FVD ratios (mostly over 0.5), indicating a lower degree
of quality degradation over longer durations. However, despite the effectiveness of recall
mechanism in the R3 model in mitigating error propagation, the GPT-based auto-regressive
generation in R3 still accumulates more errors than the improved R2 model, leading to higher
overall FVD values. This is further exacerbated by the reduced reliance on prior information
in R3, which contributes to a decline in generated video quality. Although R3’s two-stage
approach—GPT generating latent sequences and the short-video generator producing pixel-
wise clips—reduces complexity, its greater focus on temporal coherence rather than detailed
frame generation results in higher FVD values.

As noted in [10], FVD is particularly sensitive to the quality of individual frames and the
smoothness of small-scale motion. Unlike other methods, REncGAN stitches every 8 frames
from generated clips. This stitching process impacts temporal coherence over short durations,
particularly within 16-frame segments, leading to worse performance on the FVD-16f metric.
Additionally, when generating cloud movement, which involves irregular and less structured
motion, REncGAN struggles to achieve low FVD values, as it prioritizes preserving the
physical structure of moving objects. Consequently, this results in weaker FVD performance
in the videos generated after training on the Sky dataset. However, upon visual inspection
of the generated video frames, the quality is still rather good, particularly in maintaining
content realism and visual consistency.

In summary, while both AR2 and R3 show higher absolute FVD values, these metrics do
not fully capture their capability to generate long videos with complex motion, as evidenced

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 105

by the results in the Qualitative Evaluation section 5.5.1.

(a) FVD-16f

(b) FVD-128f

Figure 5.8: Ablating the usage of latent space at training and test time by plotting FVD
scores across trained model parameters at different training steps. The plot of FVD results
across over 4000 epochs and the FVD scores are calculated for every 10 epochs. At each
calculation, FVD is calculated based on 16 frames and 128 frames, respectively, denoted as
FVD-16f and FVD128f as in (a) and (b).

5.5.3 Ablation of the improved R2

In this section, we test the improved version of R2, with its modifications described in Section
5.2. The improved R2 is the foundation of AR2 and R3. We study the impact of ablating the
usage of latent spaces, model structure, and training objectives of this improved R2 model.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 106

Ablating the usage of latent space at training and testing time. In this ablation
study, we evaluate the impact of using the mean of the latent variables versus sampled
latent codes during training and testing. As illustrated in Figure 5.8, we explore two training
scenarios: one where the mean value of the latent space is used (labeled as train : mean) and
another where latent codes are sampled from the distribution of the latent space (labeled as
train : sample). During testing, we evaluate the models trained under these two scenarios
using both the mean value (test : mean) and sampled latent codes (test : sample) for
generation, as shown in Figure 5.8.

For the video generation using sampled latent codes, we employ the VDrej technique, which is
introduced in Section 5.3.2, to ensure optimal performance, allowing us to effectively compare
the best performance between using the mean or by sampling of the latent space for choosing
the generative code. Figures 5.8 (a) and (b) display the FVD results calculated on video
sub-sequences of 16 frames and 128 frames, respectively. In these figures, the first 16 and 128
frames from each generated video are used to compute the FVD. Although the model trained
with the mean of the latent code (train : mean) initially exhibits a high variability in results
when generating videos considering the mean (test : mean), its (train : mean test : mean)
performance gradually approaches that of the model trained with sampled latent codes.
However, when the train : mean model is tested with sampled latent codes (test : sample),
the FVD results are considerably worse. Given the importance of the diversity among the
generated videos, we decide to use sampled latent codes during both training and testing.

Furthermore, Figure 5.9 presents the results from epochs 3000 to 4060, where the best FVD
scores were observed. This figure provides a clearer comparison of the FVD differences
when the model trained with latent codes is used to generate when considering either the
mean (test : mean) or sampled latent codes(test : sample). It is evident from the figure
that generating videos considering sampling the distribution of the latent codes yields better
FVD results in most cases, due to the use of VDrej. VDrej cannot be used when generating
videos using the mean of the latent space because it works by selecting the best latent code
from multiple samples within a latent space. However, the mean-based approach provides
only a single option per latent space, for which there is no need for selection. Based on the
FVD results shown in Figure 5.9, considering both FVD16f and FVD128f, we selected the
model parameters on epoch 3970 as the best R2 model for further training the GPT.

Ablating the structure of video stream in Generator. In this study, we ablate the
structure of the video stream in the Generator, when using 3D spatio-temporal data repre-
sentation together, or 1D with 2D convolutions, denoted as g mode : 3d and g mode : 1p2d,
separately. The Generator contains several G3 blocks, with each processing three streams:
spatial, video and temporal. The two structures of the video stream are shown in Figure
5.1 (a) and (b). R3 uses the R2 with the structure g mode : 3d that is shown as Figure 5.1
(a). And the structure of g mode : 1p2d, as in Figure 5.1 (b), is used in the original R2
that is introduced in Section 4.4 in Chapter 4. As shown in Table 5.6, R2 with g mode : 3d
provides better FVD results than using g mode : 1p2d structure, whether considering the
generated short videos (FVD-16f), longer videos (FVD-128f), or the degree of frame quality
degradation (FVD ratio).

Ablating the noise generation ability. In this study, we explore the impact of including
or excluding the ability to generate short video clips from random noise in R2. EncGAN3,
as introduced in Chapter 3, incorporates loss terms that constrain the generation of videos

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 107

(a) FVD-16f

(b) FVD-128f

Figure 5.9: Ablating the usage of latent space at test time by plotting the FVD results
across fewer epochs to show in detail. The FVD results cover from 3000 epochs to 4060
epochs, where the best FVD result was observed, for FVD-16f and FVD-128f on (a) and (b),
respectively.

Processing structure Taichi-128×128-16f Taichi-128×128-128f FVD ratio(16f/128f)

3d 101.1 108.9 0.93
1p2d 113.5 145.9 0.77

Table 5.6: Ablating the structure of video stream in the Generator.

from random noise. When applying the original recall mechanism to EncGAN3, resulting in
R2, we remove this noise generation constraint because R2 generates long videos based on
latent spaces and does not require noise. To focus more on modelling long video generation,
we eliminate the redundant functionality of generating clips from noise. In R3, we use
GPT to generate sequences from the latent space. The auto-regressive generation process of
GPT requires an initial input. While we use training clips as the starting input in R3, as
described in Section 5.4.2, we also consider reintroducing the noise generation functionality
to enable unconditional long video generation by generating the first clip from noise. Thus,
in this ablation study, we assess the performance changes of R2 with and without the noise

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 108

generation capability to determine if this feature should be included.

(a) FVD-16f

(b) FVD-128f

Figure 5.10: Ablating the noise generation ability by plotting FVD results of FVD-16f and
FVD-128f on (a) and (b), respectively.

From the results from Figure 5.10, we can observe that by considering the noise generation
function results in a significant drop in the FVD values. To achieve better performance,
we choose to use the R2 model without noise generation. Table 5.7 provides a detailed
comparison of FVD values. Despite the noticeable drop in FVD values, the FVD ratio,
which represents quality degradation, remains superior to other methods compared in Table
5.5 (the FVD ratio of most methods is below 0.5), further demonstrating the advantages of
the recall mechanism in long video generation.

noise gen loss Taichi-128×128-16f Taichi-128×128-128f FVD ratio(16f/128f)

no 101.1 108.9 0.93
yes 766.9 1004.5 0.76

Table 5.7: Considering or not the availability of the noise component for generating the long
video.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 109

5.5.4 Ablation of AR2

In this section, we ablate the AR2 model. AR2 builds upon the improved version of R2
by introducing an auto-regressive generation mechanism to enable unconditional generation.
The ablation studies for the improved R2 were already presented in the previous section, and
the study of the auto-regressive mechanism has been covered in previous evaluation sections.
Here, we focus on the ablation studies of the VDrej mechanism, which is used in both AR2
and R3.

Ablating the VDrej mechanism. This study examines the effects of ablating the VDrej
mechanism by comparing results generated using the mean value of the latent space, ran-
domly sampled latent codes, and sampled latent codes filtered through the VDrej mechanism.
The last one involves sampling 20 latent codes from the latent space and selecting the best
one using the VD module.

As shown in Table 5.8, the VDrej mechanism yields the best performance, highlighting its
superiority. Random sampling can reduce generation quality due to noise and uncertainty,
making the mean value of the latent space a more reliable option in general. However, when
the VDrej mechanism is applied to the sampled latent codes, the quality of the generated sam-
ples improves significantly. The accumulated error through each step in an auto-regressive
manner is also reduced through the VDrej mechanism. Therefore, sampling latent codes
with VDrej achieves the best performance.

mean sample sample+VDrej

Taichi-128×128-16f 1353.5 1266.8 1258.5
Taichi-128×128-128f 2013.1 2087.1 1986.3
Sky-128×128-16f 448.6 455.2 445.8
Sky-128×128-128f 857.4 930.3 840.4

Table 5.8: Ablation of different generation methods, including using the mean of the latent
variables, sampling a latent code from the latent space, or sampling several latent codes from
each latent space and using the Video Discriminator (VD) to select the best generated clip.

5.5.5 Ablation of R3

In this section, we ablate the R3 model. R3 is composed of the GPT module and the
improved R2. The ablation studies for the improved R2 were provided in an earlier section,
and the study on the VDrej mechanism was discussed in the context of AR2. In this section,
we present the ablation studies focused on the adaption of the GPT module in R3 model.
In the following, we consider several ways to provide the latent spaces as the input to the
GPT and how to use GPT in the generation of long videos.

Different ways to format the sequences of latent spaces. In this ablation study,
we investigate the impact of different token sequence formats on the performance of GPT
models. In the R3 model, the latent space of the videos is used as tokens for the GPT input.
Each latent space is obtained by encoding a video clip. By splitting a video into multiple
clips and encoding each, we obtain a sequence composed of latent spaces. When considering

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 110

this sequence as input for GPT, we explore different designs for the GPT input. One major
challenge is that of handling the padding with zeros in order to complete the size of the
sequences. The default padding with zeros for GPT is denoted as pad0. The input format
is specified as:

[seq, padding(0)] (5.5)

where padding(0) means padding with zeros. However, according to TATS [9], padding with
zeros can destroy the temporal consistency, which severely degrades the quality of generated
frames beyond the observed video length. Because these frames are represented with zero
values, which actually implies poor content quality. This explains the poor performance of
VideoGPT [20] when generating long videos. To address this issue, we consider alternative
padding methods. One approach involves padding with other latent sequences, denoted as
padzs, where zs represents the sequence of latent spaces. The input format is specified as:

[seq, padding(seqclassi)] (5.6)

where seqclsi denotes the latent sequence corresponding to the i-th instance that belongs to
the same class as seq. Specifically, we use sequences of latent spaces generated from other
videos with the same moving object for padding, aiming to maintain the frame quality when
generating videos which are longer than the length of the videos used for training. Such an
approach needs to recognize padding when generating longer videos by using VDrej, to avoid
forcing connectivity for the frames displaying transitions between different scenes. However,
GPT is not able to recognize the padding when trained on continuous variables. Therefore,
we design a sequence mixed of discrete and continuous variables as GPT input, aiming to
use the discrete variables to help identify padding positions, denoted as disc + cont, where
disc and cont indicate discrete and continuous variables. The input format is specified as:

[cls, seq1 len, seq1, seq i len, seq i, padding] (5.7)

where seq1 and seq2 are two sequences of latent spaces while they have the same class
cls. And seq1 len, seq2 len are their respective lengths, which helps determine the padding
position. This approach is intended to support the generation of videos having arbitrary
lengths, especially when considering scene transitions involving the same moving person or
object. During the sequence generation, when the model reaches padding, the input sequence
format is updated as:

[cls, seq i len, seq i, seq] (5.8)

allowing the model to continuously generate video content by cycling through different long
video sequences. Since all these sequences pertain to the same actor class, transitions between
different videos can be interpreted as scene changes.

In brief, we designed three different input video sequence formats based on our approach to
latent space sequences for generating video sequences. These formats consider continuous la-
tent variables with no padding as in Equation (5.5), continuous latent variables with padding
(zs) as in Equation (5.6), and also considering both continuous and discrete variables with no
padding with zeros as in Equation (5.7). The results, as shown in Figure 5.11, indicate that
using zeros as padding, the default padding method in GPT, yields the best FVD results.
The best FVD values of plots in this Figure are detailed in Table 5.9. The GPT trained on
pure sequences of latent spaces, without discrete variables, and padding with zero, instead
of other latent space sequences, performs significantly better.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 111

(a) FVD-16f

(b) FVD-128f

Figure 5.11: Results when considering different ways for sequencing the latent spaces be-
tween being provided to the GPT. Labels ‘GPT pad0’, ‘GPT padzs’ and ‘GPT:disc+cont’
correspond to the format of GPT input shown in Equation (5.5), (5.6) and (5.7), separately.
FVD results of FVD-16f and FVD-128f are shown on (a) and (b), respectively. FVD is
calculated for every 100 epochs.

The mixed discrete and continuous variable input for GPT requires tokenization to convert
inputs into a purely continuous variable token form. The tokenization operation also allows
for the adjustment of token dimensions. In the following, we consider changing the size of the
latent space (token size), used as the input for the GPT, and evaluate the impact on the long
video generation results in Figure 5.12. As shown in Figure 5.12, performance deteriorated
when varying token sizes. The corresponding numerical results are provided in Table 5.12.

Results when considering different generation approaches. In this section, we in-
vestigate how different generation methods affect both model performance and generation
time. Given that R3 is trained in two stages, incorporating both the R2 and GPT modules,
we explore two distinct approaches for the generation.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 112

input type pad value Taichi-128×128 Taichi-128×128 FVD ratio
FVD-16f FVD-128f (16f/128f)

cont 0 160.4 385.1 0.41
cont zs 731.3 935.6 0.78
disc + cont 0 2093.1 3929.2 0.53

Table 5.9: Considering different ways to form latent space sequences to be provided to the
GPT. cont and disc mean continuous and discrete variables, respectively. The correspond-
ing input formats from top to bottom are described as in Equation (5.5), (5.6) and (5.7),
separately.

token Taichi-128×128 Taichi-128×128 FVD ratio
dimension FVD-16f FVD-128f (16f/128f)

1536 2093.1 3929.2 0.53
512 2125.8 3815.1 0.55
256 2003.8 3878.1 0.51

Table 5.10: FVD results of different sizes for the latent space (token vectors) used as input
to the GPT module.

The first method, denoted as GPTfaster, involves GPT generating the entire sequence of
latent spaces, which are then passed to R2 to map these latent spaces into clips. These
clips are subsequently stitched together to form a long video. This approach requires auto-
regression only during the latent space generation by GPT, allowing R2 to generate all clips
in parallel. Consequently, this method is faster and more GPU memory-efficient.

The second method, denoted as GPTrobust, takes a different approach. GPT generates one
token at a time, and then R2 generates a clip based on that token. This generated clip
provides a latent space for predicting the next token to the GPT. R2 utilizes the VDrej
mechanism to select the best clip from the generated options, effectively optimizing the
latent space at the pixel level to enhance the realism of the video. Although this method
takes longer for the generation, as it requires auto-regressive generation of each clip and
prevents R2 from generating clips in parallel, it is more robust in maintaining the video
quality over longer sequences.

As shown in Figure 5.13, the FVD scores clearly show that the combined generation approach
of GPT and R2 (GPTrobust) produces superior results compared to the separate generation
method (GPTfaster). Thus, while GPT and R2 are trained separately, the generation process
benefits from their integration (GPTrobust), rather than relying on GPT to generate the entire
latent sequence independently before passing it to R2 to generate clips (GPTfaster).

Additionally, in Figure 5.13, we also compare the performance of generation based on the
mean value of latent spaces versus sampled latent codes from their corresponding distri-
bution. It is named as GPTfaster, since the usage of VDrej in GPTrobust requires to use
sampled latent codes. In the first part of the generated video, the results based on sampled
latent codes are worse, gradually approaching the FVD results of the generated videos corre-
sponding to using the mean of the latent space for the generation. This suggests that GPT
progressively learns to capture key values from the input latent space, mapping to a region
within the latent space rather than merely learning how to map to a single value.

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 113

(a) FVD-16f

(b) FVD-128f

Figure 5.12: Changing the size of the latent space (token vectors) used as input for the GPT.
FVD results of FVD-16f and FVD-128f are on (a) and (b), respectively. FVD is calculated
for every 100 epochs.

Table 5.11 presents a detailed comparison of FVD scores and their corresponding generation
times. As indicated in the table, videos generated using the GPTrobust approach achieve
significantly better FVD results compared to GPTfaster, especially in terms of FVD-128f,
which measures the quality over longer durations. The ratio of the FVD calculated on
16 frames over the FVD calculated for 128 frames, in GPTfaster compared to GPTrobust

highlights the robustness of the GPTrobust method when considering the quality degradation
when generating longer sequences.

Regarding the generation time, as shown in Table 5.11, the use of VDrej incurs the highest
time consumption, increasing from 0.06 minutes to 0.5 minutes, a nearly tenfold jump. This
is followed by the purely auto-regressive generation in GPTrobust, where the removal of

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 114

(a) FVD-16f

(b) FVD-128f

Figure 5.13: Ablating different generation approaches. Curves labeled as ‘GPT faster sample
5ke’ and ‘GPT faster sample 10ke’ are based on the same setting while run twice, so as the
‘GPT faster mean 5ke’ and ‘GPT faster mean 10ke’.

parallel generation in R2 increases the processing time from 0.5 minutes to 0.72 minutes.
Specifically, the time-consuming nature of VDrej stems from the need to sample a specified
number of latent codes from each latent space (20 in this study) for each clip generation.
Since generating each clip is time-intensive, directly increasing the number of clips generated
naturally leads to a significant increase in the time cost. However, likely due to the GPU
parallel processing, despite a 20-fold increase in the number of clips generated, the time cost
only increases by about tenfold.

Moreover, since we generate multiple videos in parallel in practice, we offer an approximate
measure of the time required to generate a 1000-frame video. The time costs shown in Table
5.11 are calculated as follows:

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 115

ways VDrej Taichi-128×128 Taichi-128×128 FVD ratio generation time cost
FVD-16f FVD-128f (16f/128f) (minutes)

faster yes 291.2 1287.7 0.22 0.06
faster no 301.7 1311.5 0.22 0.5
robust yes 160.4 385.1 0.41 0.72

Table 5.11: Ablation study for different ways to generate the long video sequences. The time
cost indicates how long it takes to generate a video with 1000 frames.

• For GPTfaster, GPT generates the latent sequences, and then R2 generates all clips
in parallel. The generation time for the latent spaces by GPT, based on experiment
records, is approximately 30 minutes for 26 runs, each generating 64 latent space
sequences corresponding to 1000-frame videos. Thus, the generation time for each
video by GPT is about 0.02 minutes. The time for R2 to generate clips from latent
spaces is measured in two ways: using the mean value from each latent space, or
by sampling several values from the latent space distributions, employing the VDrej
mechanism. Generating clips by using the mean value takes about 1.3 hours for 31
runs, each generating 64 videos, resulting in 0.04 minutes for each generated video.
However, when using VDrej with 20 sampled latent codes, the time cost increases to
about 0.48 minutes per video, based on an experiment duration of 26 hours for 51 runs.

• For GPTrobust, which uses both GPT and R2 for each clip and the VDrej mechanism
to refine each generated clip, the total generation time is approximately 69.5 hours
for 90 runs, each producing 64 long videos of 1000 frames each. The average time
cost per video is 0.72 minutes. Clearly, GPTrobust (0.72 min) requires a longer time
for generating videos than GPTfaster (0.5 min), with the VDrej mechanism being the
primary contributor to the increased generation time (VDrej: 0.5 min versus no VDrej:
0.06 min).

5.5.6 Comparison of the Computational Costs

Table 5.12 compares the training time required to train models from scratch. Both TATS and
R3 are computationally expensive, requiring weeks and would be months if considering the
single-GPU training time. Additionally, our AR2 model takes longer to train on the Taichi
dataset compared to R3’s R2 component, despite having the same model structure. This is
primarily due to the introduction of auto-regressive mechanisms, which require additional
iterations to converge. In contrast, on the Sky dataset, AR2 exhibits a significantly shorter
training time than R3’s R2 component. This discrepancy arises from the different numbers
of training epochs required for convergence. Specifically, the base model EncGAN3, used in
R3’s R2, was found to have limited capacity for further improvement at that stage, making
prolonged training inefficient.

Table 5.13 evaluates the time required to generate a single 1024-frame video across different
methods. Our AR2 and R3 models achieve significantly faster generation times (0.6 minutes
and 0.72 minutes, respectively) compared to TATS-Base (30 minutes) and TATS-Hierarchical
(7.5 minutes + 23 seconds) (23 sec for interpolation), while maintaining comparable gener-
ation quality. Although some methods, such as DIGAN and MoCoGAN-HD, exhibit faster

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 116

Table 5.12: Training time comparison across different models and hardware settings.

Model Actual Time GPU Configuration Batch Size/GPU Batch Num Single GPU Time

TATS’s VQ-GAN 57h 8 × V100 (32GB) 2 - 19d
TATS’s GPT 10d 8 × V100 (32GB) 3 - 80d
TATS total 12.37d - - - 99d

AR2 13.5h / 12.5h 3 × A40 (48GB) / 2 × H100 (80GB) 10 / 55 10 / 1284 27h / 25h
R3’s R2 6.3h / (12+1.75)d 2 × H100 (80GB) / (3 × A40 + 2 × H100) 50 / (25, 50) 12 / (1883+1412) 12.6h / (36+3.5)d
R3’s GPT 13.9h / 10.5d 2 × H100 (80GB) 30 / 5 1 / 187 27.8h / 21d
R3 total 20h/(12+12.25)d - - - 40h/(36+24.5)d

Note: ”h” is hours and ”d” is days, ”GB” is Gigabit. Values separated by ”/” represent the
resource cost (e.g., training time, GPU) on different datasets Taichi and Sky, like Taichi/Sky. ”+”
indicates cumulative training time across different GPU types. Training time is reported until
convergence or when exceeding a reasonable training duration.

generation times (4.2 seconds and 28.5 seconds, respectively), the quality of extended gen-
erated frames for our models ourperform theses methods as well as others like VideoGPT.

Model DIGAN MoCoGAN-HD VideoGPT TATS-Base TATS-Hierarchical AR2 R3

Time (sec/min) 4.2s 28.5s 42min 30min 7.5min + 23s 0.6min 0.72min
GPU - - - 1 P6000 1 A40 or H100

Table 5.13: Time required for generating a 1024-frame video across different models.

5.6 Conclusion

Summary of Findings. In this research chapter, we introduce two methods, AR2 and R3,
designed to enhance long video generation by reducing reliance on prior training data as in
R2. AR2 implements an auto-regressive framework, while R3 incorporates a GPT module
to autonomously generate latent space sequences. Both methods significantly improve video
diversity and temporal coherence, and employ the VDrej to maintain high video quality over
extended durations.

Experimental results show that both AR2 and R3 inherit the effectiveness of the recall
mechanism in preserving video quality over longer time durations and can generate videos
of arbitrary lengths. However, AR2 struggles with long-term coherence due to the lack of a
global view, while the performance of R3 depends on the effectiveness of the GPT module.

Limitations and Future Work. Despite these advancements, some limitations remain.
Firstly, the quality of generated long videos is influenced by the quality of the underlying
short clips. While the recall mechanism is designed to handle long video generation with
short training videos, it does not inherently enhance the capacity of model to process more
complex data. Future work could explore integrating diffusion-based short video generation
models with the recall mechanism to improve short clip quality and study its performance
on more complex data.

Another limitation is the lack of control over generated content. Future research could
enhance the GPT component in R3 to link video generation with text features, enabling
more precise control based on text input. Additionally, applying the recall mechanism to

CHAPTER 5. LONG VIDEO GENERATION ON LESS PRIOR INFORMATION 117

diffusion-based generators may improve both the diversity and quality of generated content,
while broadening the scope of controllable features.

In summary, future work should focus on improving short video inputs and exploring methods
for more controllable and diverse content generation. Specifically, if we were to approach this
study differently, we would prioritize upgrading the short-video generator model using the
latest generative technologies (e.g., VQ-GAN [80] or DiT [38] for videos [9, 52]) to achieve clip
quality comparable to state-of-the-art methods. This would enable a fairer evaluation of the
recall mechanism’s performance in generating longer video sequences. We would also design
experiments to better isolate the impact of recall on long video generation and explore recall-
based implementations using diffusion models, which could further enhance the robustness
and flexibility of long video generation frameworks.

Chapter 6

Conclusions

6.1 Restatement of Research Goals and Contributions

This thesis explores and advances the research in the area of generative video modelling,
focusing on long-duration video generation using generative adversarial networks (GANs),
variational auto-encoders (VAEs), and Transformer-based models. Specifically, three major
contributions: (1) the introduction of EncGAN3, a VAE-GAN hybrid for stabilized video
generation, (2) the development of REncGAN and LEncGAN, which incorporate a recall
mechanism to extend short-term video generation into long-term, and (3) the creation of
AR2 and R3, which leverage auto-regressive and GPT-based architectures to further enhance
long video generation while reducing the dependence on prior training data.

These contributions address key challenges in video generation, such as improving the tempo-
ral consistency of generated videos, maintaining high video quality over extended sequences,
and reducing computational overhead. The innovations introduced through these research
results provide a basis for future work in generative video modelling, particularly in handling
the complexities of long-duration video generation.

6.2 Summary of Key Findings

Contribution 1: EncGAN3. In the first part of this thesis, we introduced the EncGAN3, a
VAE-GAN hybrid network designed for video generation. EncGAN3 incorporates an encoder
to stabilize the training process, which improved the quality and diversity of generated
videos at resolutions of 64 × 64 and 128 × 128 pixels. The model successfully generates
videos depicting single or occasionally two moving objects across several benchmark datasets.
However, EncGAN3 struggled to maintain high video quality when tasked with generating
sequences longer than 16 frames, resulting in visual artifacts and inconsistencies in motion
over extended durations.

This limitation led to the development of more advanced architectures, which aimed to
address the challenges of long-term video generation.

118

CHAPTER 6. CONCLUSIONS 119

Contribution 2: REncGAN (R2) and LEncGAN. In order to extend video generation
to longer sequences, the second contribution introduced REncGAN and LEncGAN, both
built on the foundation of EncGAN3. LEncGAN incorporated an LSTM module, allowing it
to generate coherent long-term sequences by modelling temporal dependencies across video
clips. REncGAN removed the LSTM and introduced the recall mechanism, which modelled
temporal relationships between video clips more efficiently.

The recall mechanism, acting as a form of temporal memory (i.e., how the model remembers
temporal things: Markov-chain-based inter-clip relationships), significantly improved the
consistency and coherence of generated long videos. REncGAN demonstrated the ability to
generate hundreds of frames while maintaining visual fidelity. However, the model exhibited
performance limitations on datasets with simpler, non-structured content, such as movements
of clouds in the sky, highlighting the need for improved fine-tuning between clips and more
dynamic adaptation to varied content.

Contribution 3: AR2 and R3. In the third contribution, two advanced methods were
introduced to address the reliance on prior training data observed in earlier models. AR2
employed an auto-regressive framework, while R3 incorporated a GPT module to generate
long video sequences in a more autonomous manner. These methods leveraged the previously
introduced recall mechanism and combined it with the advantages of Transformer-based
architectures.

AR2 and R3 significantly enhanced video diversity and temporal coherence in the generated
long-term videos. However, AR2 struggled with long-term coherence due to its lack of a
global view of the generated sequences. R3, which benefited from the ability of GPT module
to model long-range dependencies, displays improved performance in generating arbitrary-
length videos. Nonetheless, the performance of R3 was closely tied to the effectiveness of the
GPT module and still required refinement in terms of content control.

6.3 Reflection on Key Challenges

Despite the advancements presented in this thesis, several challenges remain in the field of
generative video modelling, particularly when aiming to generate long-duration sequences:

1. Temporal Consistency and Video Quality: The generation of long, high-resolution
videos that maintain both visual realism and motion consistency over time represents
a challenge. While the recall mechanism improved the temporal coherence of videos,
maintaining this quality over hundreds of frames, especially when generating more
complex content, remains difficult.

2. Computational Overhead: Video generation, particularly long-term generation, re-
quires significant computational resources. While the proposed models reduced mem-
ory usage by modelling relationships between video clips rather than individual frames,
further optimization is needed to reduce training time and improve scalability.

3. Evaluation Metrics: A major challenge in video generation lies in the evaluation
metrics. Fréchet Video Distance (FVD), an extension of FID, aligns well with human

CHAPTER 6. CONCLUSIONS 120

perception for video consistency and coherence but lacks the ability to assess the struc-
tural stability of moving objects. Meanwhile, a standardized version of the Inception
Score (IS) for videos remains undeveloped, making it unclear how to measure the di-
versity of generated videos, whether to be calculated across different videos or within
a single video over time.

In this thesis, EncGAN3 used video FID and video IS following previous models, while
REncGAN incorporated FVD-16f and FVD-128f for better alignment with visual per-
ception. For the final research chapter, only FVD metrics were used, with the FVD
ratio assessing quality degradation over longer sequences. Video IS was omitted due
to the complexity of retraining models for comparison.

4. Dataset Complexity: Models like REncGAN had performance drops when generat-
ing videos from datasets with simpler or rapidly changing content, highlighting the need
for models that are more adaptable to varied types of motion and scene complexity.

6.4 Further Work

Several promising directions for future research emerged from the results presented in this
thesis:

1. Integration of Diffusion Models: Diffusion models, which have recently shown
strong performance in image and video generation, offer a potential solution to the
limitations encountered in generating long-term videos [33, 34, 35, 36]. Integrating
diffusion-based short video generation with the recall mechanism could enhance both
the quality of short clips and the temporal consistency of longer sequences.

2. Controllable Generation: Future research could focus on enhancing the control over
generated content, particularly through the use of text-conditioned generation frame-
works like CLIP or ControlNet [83, 84, 103]. The incorporation of these frameworks
could allow for more precise control of generated video content, linking it more closely
to textual descriptions or user input.

3. Refinement of the Recall Mechanism: While the recall mechanism was shown to
be effective for long-term video generation, further optimization is needed to reduce its
dependency on prior information and improve its adaptability across various datasets.
Potential improvements include integrating insights from other video generation models
or applying the recall mechanism in more advanced generative frameworks.

4. New Evaluation Metrics: Future research should also address the need for more
robust and standardized evaluation metrics. While FVD is currently the most used
video quality assessment measure, it does not properly evaluate the structural stability
of moving objects and their complex interactions. Additionally, the lack of a unified
video Inception Score (video IS) limits the ability to assess the diversity of generated
videos. Research should aim to develop a reliable video IS variant or alternative met-
ric that can more comprehensively assess both diversity across videos as well as the
temporal consistency within videos. Moreover, better metrics that capture long-term

CHAPTER 6. CONCLUSIONS 121

quality degradation and object dynamics more effectively can be developed, especially
as generative models begin to handle increasingly complex video sequences.

5. New Dataset for Long Video Generation: The datasets used for long video
generation requires some of the following properties. The first requirement is that the
videos should be long enough, such as covering at least minutes, in a single shot. Then,
videos containing several shots better contain labels, such as text descriptions of the
logical relationships across those shots and their switches, which could benefit semantic
coherence. Video sequences with branches in different time steps would benefit from
the diversity in the temporal dimension. This could be achieved by videos with many
redundancies and similarities, which allow the jumps to different movement sequences,
such as the videos showing cloud movement or the records of 2D video games that take
place in a simple, fixed background.

6.5 Concluding Remarks

This thesis presents a series of advancements in generative video modelling, particularly for
synthesizing long-duration videos. By introducing EncGAN3, LEncGAN, REncGAN (R2),
AR2, and R3, this research contributes significantly to improving the temporal consistency,
efficiency, and diversity of generated videos. The recall mechanism, in particular, stands out
as an important innovation, enabling more effective long-term video generation.

While challenges remain, especially regarding content control and computational efficiency,
the techniques developed in this thesis pave the way for future exploration in this rapidly
evolving field. Emerging approaches like Diffusion models and advanced Transformer ar-
chitectures hold great promise for overcoming existing limitations and further pushing the
boundaries of generative video technology.

List of References

[1] J. Yang and A. G. Bors, “Encoder enabled gan-based video generators,” in 2022 IEEE
International Conference on Image Processing (ICIP), pp. 1841–1845, IEEE, 2022.

[2] J. Yang and A. G. Bors, “Enabling the encoder-empowered gan-based video generators
for long video generation,” in ICIP, pp. 1425–1429, IEEE, 2023.

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” in Advances in Neural
Information Processing Systems (NeurIPS), p. 2672–2680, 2014.

[4] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in 2nd International
Conference on Learning Representations (ICLR), 2014.

[5] Y. Wang, P. Bilinski, F. Bremond, and A. Dantcheva, “G3AN: Disentangling Ap-
pearance and Motion for Video Generation,” in Proc. IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 5264–5273, 2020.

[6] Y. Tian, J. Ren, M. Chai, K. Olszewski, X. Peng, D. N. Metaxas, and S. Tulyakov,
“A good image generator is what you need for high-resolution video synthesis,” in Int.
Conf. on Learning Representations (ICLR), 2021.

[7] S. Yu, J. Tack, S. Mo, H. Kim, J. Kim, J.-W. Ha, and J. Shin, “Generating videos
with dynamics-aware implicit generative adversarial networks,” in ICLR, 2022.

[8] I. Skorokhodov, S. Tulyakov, and M. Elhoseiny, “Stylegan-v: A continuous video gen-
erator with the price, image quality and perks of stylegan2,” in IEEE/CVF conference
on computer vision and pattern recognition (CVPR), pp. 3626–3636, 2022.

[9] S. Ge, T. Hayes, H. Yang, X. Yin, G. Pang, D. Jacobs, J.-B. Huang, and D. Parikh,
“Long video generation with time-agnostic vqgan and time-sensitive transformer,” Eu-
ropean Conference on Computer Vision (ECCV), 2022.

[10] T. Brooks, J. Hellsten, M. Aittala, T. chun Wang, T. Aila, J. Lehtinen, M.-Y. Liu,
A. A. Efros, and T. Karras, “Generating long videos of dynamic scenes,” in NeurIPS,
2022.

[11] Y. Wang, L. Jiang, and C. C. Loy, “Styleinv: A temporal style modulated inversion
network for unconditional video generation,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pp. 22851–22861, 2023.

122

LIST OF REFERENCES 123

[12] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoen-
coders,” in arXiv preprint arXiv:1511.05644, 2015.

[13] A. Larsen, S. Sønderby, and O. Winther, “Autoencoding beyond pixels using a learned
similarity metric,” in Int. Conf. on Machine Learning (ICML), pp. 1558–1566, 2016.

[14] F. Ye and A. G. Bors, “Learning latent representations across multiple data domains
using lifelong VAEGAN,” in ECCV, vol. LNCS 12365, pp. 777–795, 2020.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in NeurIPS, 2017.

[16] A. Radford, “Improving language understanding by generative pre-training,” 2018.
https://openai.com/index/language-unsupervised/.

[17] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Lan-
guage models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9,
2019. https://cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf.

[18] “Language models are few-shot learners,” 2020. https://proceedings.neurips.cc/
paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[19] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al., “Gpt-4 technical report,” arXiv
preprint arXiv:2303.08774, 2023.

[20] W. Yan, Y. Zhang, P. Abbeel, and A. Srinivas, “Videogpt: Video generation using
vq-vae and transformers,” arXiv preprint arXiv:2104.10157, 2021.

[21] Z. Zheng, X. Peng, T. Yang, C. Shen, S. Li, H. Liu, Y. Zhou, T. Li, and Y. You,
“Open-sora: Democratizing efficient video production for all,” March 2024. https:

//github.com/hpcaitech/Open-Sora.

[22] X. Sun, H. Xu, and K. Saenko, “TwoStreamVAN: Improving motion modeling in
video generation,” in Proc. IEEE/CVF Winter Applic. in Computer Vison (WACV),
pp. 2744–2753, 2020.

[23] H. Ye, Z. Wu, R.-W. Zhao, X. Wang, Y.-G. Jiang, and X. Xue, “Evaluating two-
stream cnn for video classification,” in Proceedings of the 5th ACM on International
Conference on Multimedia Retrieval, pp. 435–442, 2015.

[24] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for video recogni-
tion,” in Proceedings of the IEEE/CVF international conference on computer vision,
pp. 6202–6211, 2019.

[25] Y. Wan, Z. Yu, Y. Wang, and X. Li, “Action recognition based on two-stream convo-
lutional networks with long-short-term spatiotemporal features,” IEEE Access, vol. 8,
pp. 85284–85293, 2020.

[26] F. Xiao, Y. J. Lee, K. Grauman, J. Malik, and C. Feichtenhofer, “Audiovisual slowfast
networks for video recognition,” arXiv preprint arXiv:2001.08740, 2020.

https://openai.com/index/language-unsupervised/
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/hpcaitech/Open-Sora
https://github.com/hpcaitech/Open-Sora

LIST OF REFERENCES 124

[27] A. Nebisoy and S. Malekzadeh, “Video action recognition using spatio-temporal optical
flow video frames,” arXiv preprint arXiv:2103.05101, 2021.

[28] S. Yan, X. Xiong, A. Arnab, Z. Lu, M. Zhang, C. Sun, and C. Schmid, “Multiview
transformers for video recognition,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 3333–3343, 2022.

[29] M. I. Jordan, “Serial order: A parallel distributed processing approach,” in Advances
in psychology, vol. 121, pp. 471–495, Elsevier, 1997.

[30] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation,
vol. 9, pp. 1735–1780, 11 1997.

[31] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W. kin Wong, and W. chun Woo, “Convolu-
tional LSTM network: A machine learning approach for precipitation nowcasting,” in
Advances in Neural Inf. Proc. Systems (NeurIPS), p. 802–810, 2015.

[32] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks: Lstm cells
and network architectures,” Neural computation, vol. 31, no. 7, pp. 1235–1270, 2019.

[33] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsuper-
vised learning using nonequilibrium thermodynamics,” in International conference on
machine learning, pp. 2256–2265, Proceedings of Machine Learning Research (PMLR),
2015.

[34] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 33, pp. 6840–6851, 2020.

[35] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet, “Video
diffusion models,” arXiv:2204.03458, 2022.

[36] K. Mei and V. M. Patel, “Vidm: Video implicit diffusion models,” in Proceedings of
the AAAI conference on artificial intelligence, 2023.

[37] W. Weng, R. Feng, Y. Wang, Q. Dai, C. Wang, D. Yin, Z. Zhao, K. Qiu, J. Bao,
Y. Yuan, et al., “Art-v: Auto-regressive text-to-video generation with diffusion mod-
els,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7395–7405, 2024.

[38] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4195–4205,
October 2023.

[39] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained
by a two time-scale update rule converge to a local nash equilibrium,” in Advances in
Neural Information Processing Systems (NeurIPS), pp. 6626–6637, 2017.

[40] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz, and B. Catanzaro,
“Video-to-video synthesis,” in Advances in Neural Information Processing Systems,
vol. 31, 2018.

[41] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and
X. Chen, “Improved techniques for training gans,” in Advances in Neural Informa-
tion Processing Systems, vol. 29, 2016.

LIST OF REFERENCES 125

[42] J. He, A. Lehrmann, J. Marino, G. Mori, and L. Sigal, “Probabilistic video genera-
tion using holistic attribute control,” in Proc. European Conf. on Computer Vision
(ECCV), vol. LNCS 11209, pp. 466–483, 2018.

[43] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating Videos with Scene Dynam-
ics,” in Advances in Neural Information Processing Systems (NeurIPS), pp. 613–621,
2016.

[44] Y. Wang, P. Bilinski, F. Bremond, and A. Dantcheva, “ImaGINator: Conditional
Spatio-Temporal GAN for Video Generation,” in Proc. IEEE/CVF Winter Conf. on
Applic. of Computer Vision (WACV), pp. 1160–1169, 2020.

[45] F. Ye and A. G. Bors, “Learning joint latent representations based on information
maximization,” Information Sciences, vol. 567, no. 8, pp. 216–236, 2021.

[46] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” Int. Conf.
on Learning Representations (ICLR), 2017.

[47] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and
A. Courville, “Adversarially learned inference,” Int. Conf. on Learning Representations
(ICLR), arXiv preprint arXiv:1606.00704, 2017.

[48] C. Li, H. Liu, C. Chen, Y. Pu, L. Chen, R. Henao, and L. Carin, “Alice: Towards
understanding adversarial learning for joint distribution matching,” in Proc. Advances
in Neural Information Processing Systems (NeurIPS), pp. 5495–5503, 2017.

[49] K. Tian, Y. Jiang, Z. Yuan, B. Peng, and L. Wang, “Visual autoregressive modeling:
Scalable image generation via next-scale prediction,” Advances in neural information
processing systems, vol. 37, pp. 84839–84865, 2024.

[50] J. Han, J. Liu, Y. Jiang, B. Yan, Y. Zhang, Z. Yuan, B. Peng, and X. Liu, “Infinity:
Scaling bitwise autoregressive modeling for high-resolution image synthesis,” arXiv
preprint arXiv:2412.04431, 2024.

[51] A. Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian, D. Lorenz, Y. Levi,
Z. English, V. Voleti, A. Letts, et al., “Stable video diffusion: Scaling latent video
diffusion models to large datasets,” arXiv preprint arXiv:2311.15127, 2023.

[52] W. Hong, M. Ding, W. Zheng, X. Liu, and J. Tang, “Cogvideo: Large-scale pretraining
for text-to-video generation via transformers,” arXiv preprint arXiv:2205.15868, 2022.

[53] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution
image synthesis with latent diffusion models,” 2021.

[54] Z. Xing, Q. Feng, H. Chen, Q. Dai, H. Hu, H. Xu, Z. Wu, and Y.-G. Jiang, “A survey
on video diffusion models,” ACM Computing Surveys, vol. 57, no. 2, pp. 1–42, 2024.

[55] A. Melnik, M. Ljubljanac, C. Lu, Q. Yan, W. Ren, and H. Ritter, “Video diffusion
models: A survey,” Transactions on Machine Learning Research (TMLR), 2024.

[56] N. Aldausari, A. Sowmya, N. Marcus, and G. Mohammadi, “Video generative adver-
sarial networks: a review,” ACM Computing Surveys (CSUR), vol. 55, no. 2, pp. 1–25,
2022.

LIST OF REFERENCES 126

[57] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[58] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” Advances in neural information processing systems, vol. 25,
no. 2, 2012.

[59] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace the history
of 2d cnns and imagenet?,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pp. 6546–6555, 2018.

[60] M. Saito, E. Matsumoto, and S. Saito, “Temporal Generative Adversarial Nets With
Singular Value Clipping,” in Proc. IEEE/CVF Int. Conf. on Computer Vision (ICCV),
pp. 2830–2839, 2017.

[61] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz, “MoCoGAN: Decomposing motion
and content for video generation,” in Proc. IEEE/CVF Computer Vision and Pattern
Recognition (CVPR), pp. 1526–1535, 2018.

[62] A. Clark, J. Donahue, and K. Simonyan, “Adversarial video generation on complex
datasets,” in Int. Conf. on Learning Representations (ICLR), 2019.

[63] L. Sheng, J. Pan, J. Guo, J. Shao, and C. C. Loy, “High-quality video generation
from static structural annotations,” International Journal Computer Vision, vol. 128,
no. Nov, pp. 2552–2569, 2020.

[64] F.-T. Hong, , L. Shen, and D. Xu, “Dagan++: Depth-aware generative adversarial
network for talking head video generation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2023.

[65] S. Gupta, A. Keshari, and S. Das, “Rv-gan: Recurrent gan for unconditional video gen-
eration,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2024–2033, 2022.

[66] L. Kumar, D. K. Singh, and A. Srivas, “Performance evaluation of video-to-video
synthesis gan models on cityscapes dataset,” in 2023 14th International Conference on
Computing Communication and Networking Technologies (ICCCNT), pp. 1–6, IEEE,
2023.

[67] L. Kumar and D. K. Singh, “Pose image generation for video content creation using
controlled human pose image generation gan,” Multimedia Tools and Applications,
vol. 83, no. 20, pp. 59335–59354, 2024.

[68] A. Mittal, B. Kaur, and N. Kaur, “Design and development of gan model for video
frame interpolation,” in 2024 International Conference on Integrated Circuits, Com-
munication, and Computing Systems (ICIC3S), vol. 1, pp. 1–5, IEEE, 2024.

[69] C. Li, D. Huang, Z. Lu, Y. Xiao, Q. Pei, and L. Bai, “A survey on long video generation:
Challenges, methods, and prospects,” arXiv preprint arXiv:2403.16407, 2024.

[70] W. Menapace, S. Lathuiliere, S. Tulyakov, A. Siarohin, and E. Ricci, “Playable video
generation,” in CVPR, pp. 10061–10070, 2021.

LIST OF REFERENCES 127

[71] J. Zhang, C. Xu, L. Liang, M. Wang, X. Wu, Y. Liu, and Y. Jiang, “DTVNet: Dy-
namic time-lapse video generation via single still image,” in European Conference on
Computer Vision (ECCV), pp. 300 – 315, 10 2020.

[72] X. Shen, X. Li, and M. Elhoseiny, “Mostgan-v: Video generation with temporal motion
styles,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5652–5661, 2023.

[73] Q. Zhang, C. Yang, Y. Shen, Y. Xu, and B. Zhou, “Towards smooth video composi-
tion,” in The Eleventh International Conference on Learning Representations, 2023.

[74] A. Munoz, M. Zolfaghari, M. Argus, and T. Brox, “Temporal shift gan for large scale
video generation,” in Proc. of the IEEE/CVF Winter Conf. on Applications of Com-
puter Vision (WACV), pp. 3179–3188, January 2021.

[75] Y. He, T. Yang, Y. Zhang, Y. Shan, and Q. Chen, “Latent video diffusion models for
high-fidelity long video generation,” arXiv preprint arXiv:2211.13221, 2022.

[76] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole,
M. Norouzi, D. J. Fleet, et al., “Imagen video: High definition video generation with
diffusion models,” arXiv preprint arXiv:2210.02303, 2022.

[77] U. Singer, A. Polyak, T. Hayes, X. Yin, J. An, S. Zhang, Q. Hu, H. Yang, O. Ashual,
O. Gafni, D. Parikh, S. Gupta, and Y. Taigman, “Make-a-video: Text-to-video gener-
ation without text-video data,” in The Eleventh International Conference on Learning
Representations, 2023.

[78] A. Van Den Oord, O. Vinyals, et al., “Neural discrete representation learning,” Ad-
vances in neural information processing systems, vol. 30, 2017.

[79] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever, “Generative
pretraining from pixels,” in International conference on machine learning, pp. 1691–
1703, PMLR, 2020.

[80] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-resolution image
synthesis,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12873–12883, 2021.

[81] T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing, D. Schnurr,
J. Taylor, T. Luhman, E. Luhman, C. Ng, R. Wang, and A. Ramesh, “Video
generation models as world simulators,” 2024. https://openai.com/research/

video-generation-models-as-world-simulators.

[82] T. Unterthiner, S. van Steenkiste, K. Kurach, R. Marinier, M. Michalski, and S. Gelly,
“Towards accurate generative models of video: A new metric & challenges,” arXiv
preprint arXiv:1812.01717, 2018.

[83] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from natu-
ral language supervision,” in International conference on machine learning, pp. 8748–
8763, PMLR, 2021.

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

LIST OF REFERENCES 128

[84] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image
diffusion models,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 3836–3847, 2023.

[85] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the
kinetics dataset,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pp. 6299–6308, 2017.

[86] H. Dibeklioǧlu, A. A. Salah, and T. Gevers, “Are you really smiling at me? sponta-
neous versus posed enjoyment smiles,” in Proc. European Conf. on Computer Vision
(ECCV), vol. LNCS 7574, pp. 525–538, 2012.

[87] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and M. Basri, “Actions as space-time
shapes,” in Proc. IEEE Int. Conf. on Computer Vision (ICCV), pp. 1395–1402, 2005.

[88] C. Schüldt, I. Laptev, and B. Caputo, “Recognizing human actions: A local SVM
approach,” in Proc. Int. Conf. on Pattern Recog. (ICPR), vol. 3, pp. 32 – 36, 2004.

[89] K. Soomro, A. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions classes
from videos in the wild,” Technical report, CRCV-TR-12-01, 12 2012.

[90] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in International conference on machine learning,
pp. 448–456, pmlr, 2015.

[91] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint
arXiv:1803.08375, 2018.

[92] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for
generative adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.

[93] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., “Rectifier nonlinearities improve neural
network acoustic models,” in Proceedings of the International Conference on Machine
Learning (ICML), Atlanta, GA, 2013.

[94] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int.
Conf. on Learning Representations (ICLR), arXiv preprint arXiv:1412.6980, 2015.

[95] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace the history of
2d cnns and imagenet?,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[96] P. Ekman and D. Cordaro, “What is meant by calling emotions basic,” Emotion Re-
view, vol. 3, no. 4, p. 2672–2680, 2011.

[97] X. Li, X. Hong, A. Moilanen, X. Huang, T. Pfister, G. Zhao, and M. Pietikäinen, “To-
wards reading hidden emotions: A comparative study of spontaneous micro-expression
spotting and recognition methods,” IEEE Trans. on Affective Computing, vol. 9, no. 4,
pp. 563–577, 2018.

[98] A. Blattmann, T. Milbich, M. Dorkenwald, and B. Ommer, “ipoke: Poking a still
image for controlled stochastic video synthesis,” in ICCV, pp. 14707–14717, October
2021.

LIST OF REFERENCES 129

[99] P. Ardino, M. De Nadai, B. Lepri, E. Ricci, and S. Lathuilière, “Click to move: Con-
trolling video generation with sparse motion,” in ICCV, pp. 14749–14758, October
2021.

[100] P. Esser, J. Chiu, P. Atighehchian, J. Granskog, and A. Germanidis, “Structure and
content-guided video synthesis with diffusion models,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7346–7356, 2023.

[101] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, and N. Sebe, “First order motion
model for image animation,” Advances in Neural Information Processing Systems,
vol. 32, pp. 7137 – 7147, 2019.

[102] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International
Conference on Learning Representations, 2019. https://openreview.net/forum?id=
Bkg6RiCqY7.

[103] Y. Pan, Z. Qiu, T. Yao, H. Li, and T. Mei, “To create what you tell: Generating videos
from captions,” in 2017 ACM on Multimedia Conference, MM 2017, Mountain View,
CA, USA, October 23-27, 2017, pp. 1789–1798, 10 2017.

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

	Introduction
	Introduction to Video Generation
	Motivation and Research Problem
	Overview of Key Techniques
	Research Objectives
	Contributions of the Research
	Structure of the Thesis

	Background
	Generative Frameworks
	Generative Adversarial Networks(GAN)
	Variational Autoencoder(VAE)
	Hybrid methods VAE-GAN
	Transformer Network
	Diffusion-based Generative Models

	Video Generation
	Short-term Video Generation
	Long-term Video Generation
	Diffusion-based Video Generation

	Related models
	G3AN for Video Generation
	LSTM for Sequence Modelling
	GPT for Sequence Learning

	Conclusion

	EncGAN3: Encoding GAN3 Video Generator
	Introduction
	EncGAN3 Structure
	EncGAN3 Running
	Training Objective
	Training and Inference

	Experiments
	Datasets
	Implementation
	Quantitative Evaluation
	Qualitative Evaluation
	Ablation Study

	Conclusion
	Limitation and further work

	Longer video generation using REncGAN
	Introduction
	LEncGAN: Applying LSTM to Enable EncGAN3 for Long Video Generation
	LEncGAN Structure
	LEncGAN Training
	LEncGAN Inference
	LEncGAN Implementation

	Transition from LEncGAN to REncGAN
	Motivation for REncGAN
	Key Innovations

	REncGAN: EncGAN3 with Recall Mechanism
	REncGAN Structure
	Training Objective
	Training Procedure
	Inference Procedure
	REncGAN Implementation

	Experimental Transition from LEncGAN to REncGAN
	Datasets
	From LEncGAN to R_Enc
	From R_Enc to REncGAN
	Lessons Learned

	Evaluation of REncGAN
	Datasets
	Qualitative Evaluation
	Quantitative Evaluation
	Ablation Study

	Comparison of LEncGAN and REncGAN
	Conclusion

	Long Video Generation on Less Prior Information
	Introduction
	Improved R2: Enhancements to the Base Model R2
	Generator Modifications
	VDrej for Inference

	AR2: Auto-Regressive REncGAN for Unconditional Long Video Generation
	Motivation for AR2
	AR2 Structure
	Training Objective
	Training and Inference
	AR2 Implementation

	R3: REncGAN with GPT Directs Long Duration
	Motivation for R3
	R3 Structure
	Training and Inference
	R3 Implementation

	Experimental Results
	Qualitative Evaluation
	Quantitative Evaluation
	Ablation of the improved R2
	Ablation of AR2
	Ablation of R3
	Comparison of the Computational Costs

	Conclusion

	Conclusions
	Restatement of Research Goals and Contributions
	Summary of Key Findings
	Reflection on Key Challenges
	Further Work
	Concluding Remarks

