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Abstract

In this thesis we first define a certain magma. This magma is an attempt to pass

into mathematical form some aspects of human ‘pictorial (and geometric) thinking’

(the elements are mathematical versions of ‘pictures’). We then generalise this

magma in a natural way to ‘higher dimensions’. And then we study aspects of the

representation theory and structure of these magmas. In particular we investigate

associative quotients, by a variety of means. And also sub-magmas that pass closer

to some classical mathematical structures such as braid groups.

Our core definition is for the magma itself: 3.1.20. But while everything depends

on this, it is relatively straightforward. Our main results are 4.3.19, 5.4.22 and 6.2.2.
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Chapter 1

Introduction

Let [0, 1] ⊂ R denote the unit interval, and [0, 1]d the unit d-dimenionsal box. In

this thesis, we define a ‘stack/shrink’ composition � on the power set P([0, 1]d) for

each d ∈ N (and some other power sets), focusing in particular on d = 2. We show

that the initial composition � is closed but not associative, so for each d we have a

magma - in particular M = (P([0, 1]2),�). See Proposition 3.1.20 and 3.2.4.

We look for subsets of these magmas closed under the composition. See Proposi-

tion 4.1.5 for example, but in particular guided by the idea of braid-like structures,

for example in cases d = 2, 3. See proposition 4.3.19. (In general this seems a hard

problem, and it is not our aim here to solve completely. But the results like 4.3.19

indicate interesting first steps.) The construction itself can be found in Chapter 4

onwards.

We then investigate congruence relations on this magma (and its submagmas)

with associative (even unital) quotient. See Theorem 5.4.22 and 6.2.2 and 6.2.5.

The construction itself can be found in Chapters 5 and 6 onwards.

1.1 Thesis Introduction

This work is about so-called ‘passport photo’ magmas. It is motivated in part by

the magmas and ‘magmoids’ introduced in Torzewska et al’s paper [TFMM23] on

motion groupoids.

The basic passport photo (pp) magma is P([0, 1]2) made into a magma by the

operation, denoted �, of stacking elements and then shrinking the stack.

1



1.1. Thesis Introduction 2

Figure 1.1: An element of P([0, 1]2), that is, a subset of [0, 1]2.

This magma has many interesting substructures and quotient structures.

Roughly speaking, an element of P([0, 1]2) is a black-and-white picture (see figure

1.1 for example - for an element p ∈ P([0, 1]2) we think of black in position x in [0, 1]2

if x ∈ p, and white otherwise). And there are many algebraic structures that have

picture realisations of elements (braid groups [CF63, KT08, Kas12] and partition

algebras such as Temperley–Lieb algebras [Mar94, Ban13, DM06], for example),

and where composition is represented by stacking pictures. In many cases these

realisations make strong implicit use of the properties of [0, 1]2 as an Euclidean metric

topological space. In the construction of structures derived from the pp magma,

then, a role can be given to paths in the space and its subspaces a ∈ P([0, 1]2). (Or,

more precisely, to the question of existence of paths between given points in a. The

details of parameterisation of paths are generally less important in practice.)

A key property here is that if a, b ∈ P([0, 1]2) and f is a path (from f(0) to f(1)) in

a then f has an image in the stack-shrink composition a� b that is a path in a� b

from the image in a� b of f(0) to the image of f(1).

Another key property is that if a and b above both contain paths, and these paths

have suitable endpoints, then a � b may contain a path that joins the individual

paths together.

These properties are often taken for granted in pictures of braids for example

(where the paths represent strings in the braid). The idea for this thesis is to not

take such things for granted, but instead to look at them carefully. (The motivation

is that mathematical braids, which live in a space such as Rd, are models of physical

structures where neither the real string nor the physical space is exactly the same as

its mathematical model. For example a real string is made of molecules and hence
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atoms, and in this sense is not strictly continuous.)

Remark: Here we are not talking about ‘braid diagrams’, where a braid in 3d

is projected into 2d but drawn with broken rather than crossing lines when the

projection forces a ‘crossing’. In our setting the ‘picture’ of a braid in 3d would

belong to our d = 3 case (think more of a 3d printer than a conventional printer!);

and our d = 2 case corresponds to braids that really lie only in the plane, without

projection. Note that in the 2d case there is not really enough space for strings to

braid in the sense of tangling. But our main interest here is in the mathematical

structure of the strings themselves rather than ambient topological properties (see

Chapter 4).

As noted, most pictures that arise as representations of algebraic structures

are pictures of embedded manifolds - typically paths (see e.g. [KT08]). But by

considering underlying sets such as P([0, 1]2) we allow for much more general kinds

of pictures. This generalisation raises many questions and possibilities. And it is

these aspects that we try to start to address in this thesis.

Let us now discuss in more detail the main motivations, main aims, and the

context of this work.

As noted above, this project is essentially motivated by interest in questions

arising in, and from, Torzewska et al’s motion groupoids paper [TFMM23]. That

paper introduces and studies motion groupoids and mapping class groupoids, but

(with Physics applications in mind) starting from more general magmas and mag-

moids. These arise from the non-associative ‘stack-shrink’ composition of certain

subsets of a suitable ambient interval - typically [0, 1]d for some d. In Torzewska’s

case the subsets are the images of subsets of [0, 1]d−1 - typically submanifolds such as

points and loops - under ‘time-evolution’ into the dth dimension. Thus elements of

P([0, 1]d−1) are generalised ‘particles’ (or field configurations with particle content, in

the sense that P([0, 1]d−1) is equivalent to the set of functions hom([0, 1]d−1, {0, 1}),

which Torzewska interprets in the Introduction to [TFMM23] as a set of ‘Z2-valued

field configurations’ on the space [0, 1]d−1, cf. e.g. [Kog79, Mar91]) and evolutions

of these are particle trajectories - composed by stacking to make longer particle

trajectories. Taking d − 1 = 2 and finite point-set subsets this yields ‘braids’ - ex-
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cept that so far with a non-associative composition. Torzewska et al rapidly pass

to equivalence classes of evolutions under equivalences that are natural from a low-

dimensional geometric topology perspective. This allows them to make contact with

and generalise classical constructions such as braid groups and loop braid groups.

At this point the interest in [TFMM23] comes from the kind of particles considered.

But for us it is an interesting question why to use equivalence essentially under

the geometric-topological notion of ‘ambient isotopy’ as they do. Mathematically

the reason is that it leads to beautiful groups and groupoids. But from a Physics

perspective one can observe (even as a mathematician knowing nothing about any

relevant experiments!) that the prevailing choice should be for organisational power

in Physics, not simple mathematical beauty (although cf. e.g. [LM77, Bai80] and

references therein). So with this in mind, we are motivated to consider much more

general notions of ‘particle evolution’ and in particular other notions of equivalence.

In practice both departures lead quickly to unrealistically hard thesis problems, so

the constructions we attempt are relatively very modest. But at least this context

explains our ambit, and starts to set up the more general class of problems, which

is our aim.

Let us now discuss, in overview, our main results.

We built the magma M, then we would like to ‘understand’ this magma, by

studying magma maps to and from M — so for example to study submagmas (Chap-

ter 4); and to do Representation theory of this magma (Chapters 5-6). We have

first a general question: What does the representation theory of magmas look like?

Representations are structure preserving maps, but representation theory is about

organisation - compared to the representation theory of groups, with the notion of

irreducible representations for example. So, in this case, we study quotient magmas,

by defining a congruence relation. In particular we can aim for associative quotients

(to move us closer to classical group representation theory).

In one approach, looking for congruences, we construct equivalences on the under-

lying set P([0, 1]2) up to certain transformations in the y-direction. We start with

transformations, which are necessary for associativity, and which, coincidentally, lie

in the Thompson group F (for a review of group F see e.g. [CFP94]), but do not

generate the whole of F . To develop this into a congruence we first put a new com-
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position rule (in (5.6)) on the underlying set of the Thompson group F (then we

consider, is this associative? - It is not! but we can take the closure of the subset

of F that we have so far under this composition, and then take the group closure).

(See e.g Section 5.2.3).

In §5.3-5.4 we take a different approach. We construct another equivalence rela-

tion on our underlying set of the magma M using paths in elements (see definition

5.4.9). We call it Rα in 5.4.2, and this relation reaches the congruence (see 5.4.3).

Finally, we arrive at the magma quotient by Rα ( see definition 5.4.21) that leads us

to get the Monoid which is M(α, α)/Rα (see theorem 5.4.22). We return to discuss

interesting properties of this monoid in Chapter 6.

In Chapter 6, we aim to build a map from our magma M to a Partition Alge-

bra, specifically a Partition Monoid (see for example [HR05]). There is a pictorial

representation of the defining basis of the partition algebra. This pictorial represen-

tation can be seen as elements of our magma. Suppose for example we indicate a

partition of six vertices. It is also an element of the passport photograph magma,

what we mean by this is we allow that there is a closing box, which is the unit

square [0, 1]2. It is not yet clear where the vertices would go. But if we decide

where the vertices would go, then we would definitely say that this element of the

passport photograph magma can be used to determine a partition, according to

the connected components (see figure 1.2). This is practically complicated because

.
.
..

..

1 2 3

1′ 2′ 3′

Figure 1.2: An example of a partition of six vertices

that passport photograph could be any ‘picture’, who knows what this is as precise

element in [0, 1]2. We may need to know a lot of information before we can figure

out whether there are paths or not. When is there a path between two points in

an element of the passport photograph magma (in [0, 1]2)? In Chapter 6 we discuss

these points before coming to the mathematical construction. Again this is related

to the paper of Torzewska in [TFMM23]. Furthermore, we may say if there are



1.1. Thesis Introduction 6

paths, and they have tangents, and paths cross, and the tangents are different at

the crossing point then we may try to refine the path-connected rule. Then we don’t

follow the kink path. We only follow the non-kink - so we don’t change the tangent

at the point. Recall, in our original setup, we are trying to construct congruences

as we can in principle make lots of choices about what the map would be from the

whole of (P([0, 1]2)) down to the quotient. So that is the playground of Chapter 6.

We just tried to construct maps from the magma to a nicer (in the sense of known)

algebraic structure, which is the partition algebra, because it already has a pictorial

realisation similar to the one indicated above.

1.1.1 Outline of the Thesis

We give a brief overview of this thesis:

In Chapter 2: We recall the basic notation and definition. We review some

definitions such as relation, partition, topological space,... also, we look at the

Jordan curve theorem, Magma definition and Category.

In Chapter 3: We define a ’Passport Photograph Magma’ which is Magma M,

where the underlying set is P([0, 1]2) with the binary operation a stack/shrink com-

position.

In Chapter 4: We describe submagmas in two different ways. The first one is

generating this magma by a certain subset of P([0, 1] × [0, 1]). Then we look at

braid-like submagma.

In Chapter 5: We consider several kinds of equivalence relation on P([0, 1]2 that

may become congruences in our magma, or in certain submagmas. We look at

relations and congruences generally, but we are particularly interested in associative

quotients.

In Chapter 6: We use our magma to represent the partition then we use the

partition to describe an equivalence relation on our magma.



Chapter 2

Basic notation and definitions

In this chapter, we introduce some notations and constructions that will be useful

later.

2.1 Basic definitions

Definition 2.1.1. Given a set S, the power set of S is the set of subsets, denoted

by P(S).

Example 2.1.2. If S = {1, 2} then P({1, 2}) = {S, ∅, {1}, {2}}.

(2.1.3) Fix a set S. We observe that the usual union operation on sets defines a

binary operation on P(S) by (a, b) 7→ a ∪ b .

(2.1.4) Notation (see e.g. [Gre80, Mar21]): Let n ∈ N. We use the notation n to

denote the set with n elements

n := {1, 2, 3, ..., n}. (2.1)

and similarly, n′ := {1′, 2′, ..., n′}, and so on.

2.2 Equivalence relation and Partition of set

Definition 2.2.1. Let A and B be sets. A relation R from set A to set B is a set

such that R ⊂ A×B.

7



2.2. Equivalence relation and Partition of set 8

Definition 2.2.2. An equivalence relation on set A is a relation on A to A that is

reflexive, symmetric and transitive.

Definition 2.2.3. For A a set, let Equ(A) be the set of equivalence relations on A.

Example 2.2.4. Consider 2 = {1, 2}. Then the set Equ(2) consists of {(1, 1), (2, 2)}

and {(1, 1), (2, 2), (1, 2), (2, 1)}.

(2.2.5) Given a relation ρ then we may write a ρ b to mean that (a, b) ∈ ρ.

Definition 2.2.6. (e.g [Mar11, How72]) Let ρ be an equivalence relation on A and

x ∈ A, Then an equivalence class of x defined as

[x] = {a ∈ A | aρx}.

Definition 2.2.7. For ρ ⊆ A × A a relation on set A to A we define ρ for the

smallest equivalence relation containing ρ.

We will use this in section 5.1.2.4. We talk about how to construct ρ in section

5.1.2.5.

Definition 2.2.8. For A a set let ParA be the set of partitions of A. A partition of

a set A is a set of non-intersecting subsets whose union is A.

Example 2.2.9. Consider 2 = {1, 2}. Then the set Par2 consists of {{1}, {2}} and

{{1, 2}}.

Note that: In the partition of A, each subset is referred to as a ’part’ or ’an

element’,

such as {1} is a part of the partition{{1}, {2}} in the above example.

(2.2.10) Note that there is a natural bijection between a set of equivalence relation

on n and a set of partition on n.

Equn Parn

(For the proof see e.g. [PMF, Lecture 17]).
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2.3 Some basic topology

Definition 2.3.1. (see e.g. [Mar21, Arm13]) A topological space is a set X with

a collection τ of subsets of X (called ’open’ sets) such that: any union of open sets

is open; any finite intersection of open sets is open; and the empty set ∅ and whole

set X are open.

Note that: A set X with the collection τ (the topology on it) is called a topo-

logical space (X, τ).

Example 2.3.2. 1. For any set X the collection τ1 = {X, ∅} is a topology on X

called the trivial topology or indiscrete topology.

2. The power set τ2 = P(X) is topological space on X, called discrete topology.

3. The collections τ3 = {{1, 2, 3}, ∅, {1}} and τ4 = {{1, 2, 3}, ∅, {1}, {1, 3}} are

topologies on the set {1, 2, 3}.

(2.3.3) We assume familiarity with the metric topology on a metric space. In

particular if we say R is a topological space, we will mean with the Euclidean metric

topology, unless we say otherwise.

Similarly, if we say R is a topological space with the ‘standard’ topology, we will

mean with the Euclidean metric topology.

That is, a set V ⊂ R is open if, for every v ∈ V , there exists an ε > 0 such that

(v − ε, v + ε) ⊂ V .

(2.3.4) Similarly, R2 and other such sets with a natural metric space structure will

be understood to be topological spaces with the metric topology.

Definition 2.3.5. (see e.g. [Mar21, Arm13]) Let X and Y be two topological spaces.

A function f : X → Y is continuous if the preimage (or inverse image) of each open

set of Y is an open set in X.

Example 2.3.6. Let X = {1, 2, 3} and Y = {a, b, c}. Then τX = {X, ∅, {1}, {1, 2}}

and τY = {Y, ∅, {a}, {a, b}} are topologies on X and Y respectively.

1. Let f : X → Y given by f(1) = a, f(2) = b and f(3) = c.

Then for any open set U ⊂ Y , f−1(U) is open in X. So in this example, the

preimage of each open set in Y is an open set in X.
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Therefore,f is the continuous map.

2. Let g : X → Y given by g(1) = a, g(2) = c and g(3) = b. Then g is not

continuous since

g−1({a, b}) = {1, 3} /∈ τX

is not open set in X.

Example 2.3.7. Let X = [0, 1] ⊂ R with the subspace topology, and consider the

map id : [0, 1]→ [0, 1], given by id(x) = x.

Consider any open set U in [0, 1], since id(x) = x, the preimage id−1(U) is exactly

U . Because U is open in the topology of [0, 1], id−1(U) is open. Therefore, the map

id is continuous.

Lemma 2.3.8. Let X = R with the Euclidean metric topology. Let a, b ∈ R, a 6= 0

and consider the map f : R→ R, given by f(x) = ax+ b. Then f is continuous.

Proof. Let U ⊂ R is any open set, then for every u ∈ U there is ε > 0 such that

(u− ε, u+ ε) ⊂ U . We want to prove the preimage f−1(U) ⊂ R is open.

f−1(U) = (f−1(u− ε), f−1(u+ ε)) = (u−b−ε
a

, u−b+ε
a

) is open in R . Since U is open in

the topology of R, f−1(U) is open on R. Therefore, the map f is continuous.

Note that: proofs of the following propositions or lemmas are in [Mar21], unless we

write the proof.

Definition 2.3.9. (see e.g. [Mar21, Arm13]) Let X be a topological space with

topology τ and let L is a subset of X (L ⊂ X). The subspace topology on L is the

set

τL = {L ∩ U |U ∈ τ}.

(2.3.10) Note the previous definition (2.3.9) effectively claims that τL is a topology

.

Note that: the topological space (L, τL) above is called a subspace of (X, τ).
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Example 2.3.11. 1. Let (X = {1, 2, 3}, τ4) as in example (2.3.2) and L ⊂ X

where L = {1, 2}. Then τL = {L, φ, {1}}.

2. Let (R, τ) be the set of real numbers with τ being the Euclidean metric topology

on R as in (2.3.3). Let L = [0, 1], hence a subset of R. Then (L, τL) is the subspace

topology on [0, 1] induced from R.

Note that any sets as [0, y) and (x, 1] are not open in R. But they are open in the

subspace topology of [0, 1]. Since there exists an open set such as(−x, y) and (x, y+1)

in R. Then we have (−x, y)∩ [0, 1] = [0, y) when y < 1 and (x, y+ 1)∩ [0, 1] = (x, 1]

when x > 0. So both intervals are open on [0, 1].

Proposition 2.3.12. (See e.g. [Mar21, Proposition 7.32, p(73)]) Let X, Y and Z

be topological spaces and let f : X → Y and g : Y → Z be continuous functions.

Then g ◦ f : X → Z is continuous.

Proposition 2.3.13. (See e.g. [Mar21, Proposition 7.33, p(74)]) Suppose that A

is a subspace of a topological space X. Then

(a) the inclusion map ιA : A→ X, x 7→ x is continuous.

(b) if Y is any topological space and f : X → Y is continuous, the restriction

f |A: A→ Y of f to A is continuous.

(c) if Z is any topological space and f : Z → X satisfies f(Z) ⊂ A, then f : Z → X

is continuous ⇔ f : Z → A is continuous.

Proposition 2.3.14. (See e.g. [Mar21, Proposition 7.34, p74]) Let X and Y be

two topological spaces. Then

(a) the projection maps πX : X×Y → X, (x, y) 7→ x and πY : X×Y → Y, (x, y) 7→

y are continuous.

(b) if Z is any topological space then f : Z → X × Y is continuous if and only if

πX ◦ f and πY ◦ f are both continuous.

Example 2.3.15. Consider X = [0, 1]2 be a subset of R2 with the subspace topology.

Then let f : [0, 1] → [0, 1]2, defined as f(x) = (x, 0). (Note care is needed with the

notation here: (x, y) means a vector or an open interval, depending on context.)

For a single point such as (u, 0) ∈ R2 the preimage is f−1((u, 0)) = {x ∈ [0, 1] :

f(x) = (x, 0) = (u, 0)} = {u}. Now we look for any point such as (u, v) where u, v ∈

(0, 1). Then the preimage is f−1((u, v)) = {x ∈ [0, 1] : f(x) = (x, 0) = (u, v)} = ∅.
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Let U ⊂ [0, 1]2 be an open set in [0, 1]2. We want to show that f−1(U) is an open

set in [0, 1]. Before we show f−1(U) is open, I will prove the projection map is

continuous. Let

π1 : [0, 1]× [0, 1]→ [0, 1],

(x, y) 7→ π1(x, y) = x

π2 : [0, 1]× [0, 1]→ [0, 1],

(x, y) 7→ π2(x, y) = y

Suppose V is an open set of [0, 1]. Then π−1
1 (V ) = V × [0, 1] this is an open

set in [0, 1] × [0, 1]. Since V ⊂ [0, 1] and [0, 1] ⊂ [0, 1] are open. These for all

(x, y) ∈ V × [0, 1]. Then we have (x, 0) ∈ V × [0, 1] ⊂ V × [0, 1]. Thus π1 is

continuous.

Suppose U is an open set of [0, 1]. Then π−1
1 (U) = [0, 1] × U this is an open set

in [0, 1] × [0, 1]. Since U ⊂ [0, 1] and [0, 1] ⊂ [0, 1] are open. These for all

(x, y) ∈ [0, 1] × U . Then we have (x, 0) ∈ [0, 1] × U ⊂ [0, 1] × U . Thus π2 is

continuous.

Now let us assume π1 ◦ f and π2 ◦ f are continuous by 2.3.14 , and Let U be open

subset [0, 1]× [0, 1]. We can write U = W × V where W,V ⊂ [0, 1] then

f−1(U) = f−1(W × V )

= {x ∈ [0, 1] | f(x) ∈ W × V }

= {x ∈ [0, 1] | π1 ◦ f(x) ∈ W and π2 ◦ f(x) ∈ V }

= (π1 ◦ f)−1(W ) ∩ (π2 ◦ f)−1(V )

Since πx◦f and πy◦f are continuous by proposition 2.3.14 this set is the intersection

of two open sets and hence it is open. Thus f−1(U) is a union of open sets, hence

open on [0, 1]. Therefore f is continuous.

Lemma 2.3.16. (See e.g [Mar21, glue lemma, p75]) Let X and Y be two topological

spaces and let A and B be subsets of X such that X = A ∪ B. Let g : A → Y and
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h : B → Y be two continuous functions such that g(x) = h(x) for all x ∈ A ∩ B.

Define f : X → Y by

f(x) =


g(x) if x ∈ A

h(x) if x ∈ B

Then

(a) if A and B are both open subsets of X then f is continuous; and

(b) if A and B are both closed subsets of X then f is continuous.

Definition 2.3.17. (See e.g. [Mar21, Definition 9.1, p87]). Let X and Y be two

topological spaces and let f : X → Y . Then f is called a homeomorphism if it is

bijective and both f and f−1 are continuous.

In this case, X is homeomorphic to Y , denoted by X ∼= Y .

We will use homeomorphisms for example in section 5.2.1.

Example 2.3.18. Consider f : R → R given by f(x) = x + 1/2. The inverse is

f−1(x) = x− 1/2.

(2.3.19) Notation. Since a group is a set with a closed binary operation (obeying

some axioms) then we may write a group just as G, or write G = (G, ◦), say, meaning

that the set is G and the operation is ◦.

(2.3.20) Recall that in 2.3.17 we defined homeomorphism between topological spaces.

Given topological spaces A and B, we write Homeo(A,B) for the set of homeo-

morphisms between them. We note that Homeo(A,A) is a group under function

composition (See e.g. [Wen15, Definition 1.2.8, p13]).

(2.3.21) (See e.g. [Moi13, Ch.1].) Let A be a topological space. Two points a, b ∈ A

are path-connected if there is a path from a to b in A, i.e. a continuous map

f : [0, 1]→ A with f(0) = a and f(1) = b.

Example 2.3.22. Let (X = {1, 2, 3}, τ3) be the topological space as in example

(2.3.2).

Then the function f : [0, 1] → X defined as f(t) = 1 ∀ t ∈ [0, 1]. It gives a path

from 1 to 1. Since the open sets in X are X,∅ or {1}. Then the preimages are [0, 1],

∅ and [0, 1].These are all open in [0, 1].
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Example 2.3.23. 1. The id map in example 2.3.7 has id(0) = 0 and id(1) = 1, so

it gives a path from 0 to 1 in [0, 1].

2. The f map in example 2.3.15 has f(0) = (0, 0) and f(1) = (1, 0), so it gives a

path from (0,0) to (1,0) in [0, 1]2.

(2.3.24) A space A is path-connected if for every a, b ∈ A there is a path from a to

b.

Example 2.3.25. 1. Let X = R with the usual Euclidean metric topology. Then

for any x, y ∈ R we can define a function η : [0, 1]→ R by

η(t) = x+ t(y − x).

— Note that this formula gives a well-defined function to the given codomain (and

cf. the following example).

This η is a continuous map by (2.3.8). We have η(0) = x and η(1) = y.

So this is a path from x to y.

Thus R is path-connected.

2.Let X = [0, 1] ∪ [2, 3] ⊂ R with the subset topology. This is not path-connected.

There is no continuous map η : [0, 1]→ X with η(0) = 1/2 and η(1) = 2.5.



2.3. Some basic topology 15

Lemma 2.3.26. Let X be topological space and q, p and r ∈ X. Suppose there

are paths γ, σ : [0, 1] → X with γ(0) = q, γ(1) = σ(0) = r and σ(1) = p. Then

there is a path in X from q to p.

Proof. Let γ : [0, 1] → X is path from q to r. Thus γ(0) = q, γ(1) = r. And let

σ : [0, 1]→ X is path from r to p. Thus σ(0) = r, σ(1) = p. Since γ(1) = σ(0) = r,

we have a well-defined function h : [0, 1]→ X given by

h(t) =


γ(2t) t ∈ [0, 1

2 ]

σ(2t− 1), t ∈ [1
2 , 1]

For t = 1/2 we have γ(1) = σ(0) = r. To see h(t) is a continuous function we proceed

as follows. The restrictions to the closed subsets [0, 1/2], [1/2, 1] are continuous

because t 7→ 2t and t 7→ 2t − 1 are continuous by 2.3.8. And the composition

between two continuous functions is a continuous function by 2.3.12.Then we have

[0, 1] = [0, 1/2] ∪ [1/2, 1]. So by the glueing Lemma 2.3.16 h is continuous. Since

h(0) = γ(0) = q and h(1) = σ(1) = p. Therefore it is a path from q to p.

Lemma 2.3.27. Recall from 2.3.9 that we consider [0, 1] × [0, 2] as a topological

space with the Euclidean metric topology. Suppose γ : [0, 1]→ [0, 1]× [0, 2] is a path

from γ(0) to γ(1) in [0, 1]× [0, 2] (i.e. a path as defined in 2.3.21). Then there is

a path from the image of γ(0) to the image of γ(1) in Shrink2(γ([0, 1])) as defined

as a set in 3.1.17, and with the subspace topology.

Proof. Let γ : [0, 1]→ [0, 1]× [0, 2] be a path, and write it as γ(t) = (γx(t), γy(t)).

Since γ is a path, it is continuous. Thus γx is continuous by Proposition(2.3.14 (if

part)). Also, γy is continuous by the same argument.

Define function γ̃ : [0, 1]→ [0, 1]× [0, 1] given by γ̃(t) = (γx(t), γy(t)
2 ). This function

is continuous by the same Proposition (2.3.14 (if part)). noting that f : x 7→ x/2 is

continuous (by 2.3.8)so the y-component is continuous by proposition 2.3.12 Thus

γ̃ is path from γ̃(0) to γ̃(1) in [0, 1]× [0, 1].

In particular γ̃(0) = (γx(0), γy(0)
2 ) and γ̃(1) = (γx(1), γy(1)

2 ).

Altogether Shrink2({γ(t)|t ∈ [0, 1]}) = {(γx(t), γy(t)
2 )|t ∈ [0, 1]} = {γ̃(t)|t ∈ [0, 1]}

so the path γ̃ in [0, 1]2 is also a path in Shrink2(γ([0, 1])).
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2.4 Definitions for spaces of the form [0, 1]d

In this section, we will start by providing some preliminary definitions which are

piecewise-linear function and the Jordain curve theorem and friends.

2.4.1 Piecewise-linear functions

Our main object of study is the set P([0, 1]2). Many specific elements of this set,

i.e. many subsets of [0, 1]2, are undefinable (in the sense that there are elements for

which I cannot give you enough information to determine the element - compare for

example [Gow]). Here we recall some tools for giving some special specific elements.

A relatively simple subset would be a curve drawn in this box [0, 1]2. And a

relatively simple curve would be a straight line. So let us start with some tools built

using straight lines.

(2.4.1) Another relatively simple curve would be the graph of a suitable function,

that is a function with domain [0, 1] and the same codomain.

(2.4.2) (see e.g [Abr15]) The general form of a linear function f : R → R is given

by f(x) = mx+ c where m ∈ R represents the slope of the linear function, and c is

the constant value ( y-intercept) .

Definition 2.4.3. A linear function in d-dimensions is a function

f : [a, b] → Rd

x 7→ (f1(x), f2(x), ..., fd(x))

where fi : [a, b]→ R are linear functions as in (2.4.2).
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Definition 2.4.4. A piecewise linear function on interval [α, β] is a continuous map

from [α, β] to Rd given by

f(x) =



h1(x) if x ∈ [α = α1, α2]

h2(x) if x ∈ [α2, α3]
... if ...

hi(x) if x ∈ [αi, αi+1]
... if ...

hj(x) if x ∈ [αj, αj+1 = β]

Where α = α1 6 α2 6 ... 6 αj+1 = β are breakpoints and each hi = (hi1, hi2, ...hid)

is linear function from [α, β]to R as in 2.4.3. Note that hi(αi+1) = hi+1(αi+1) for

1 6 i 6 j.

Example 2.4.5. Suppose g : [0, 3]→ R, given by

g(x) =


3x+ 4, if 0 6 x 6 1

5x+ 2, if 1 6 x 6 3.

In this example a2 = 1. Then f1(x) = 3x + 4 and f2(x) = 5x + 2 both are linear.

We have f1(1) = f2(1) = 7.

Example 2.4.6. Consider the function f : [0, 1] → [0.1] given by f(x) = x2 that

satisfies the domain and range conditions. This is NOT piecewise-linear, since there

is no suitable choice of breakpoints.

(2.4.7) Note that if we have two points α, β in Rd then there is a straight line

between α and β. In this case, we can write [α, β] for the straight line, regarded as

a subset of Rd.

Example: For α = (1, 2, 3) and β = (4, 5, 6) then

[α, β] = {α + t(β − α)|0 ≤ t ≤ 1}
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(2.4.8) Note that the set visited by a PL function f can be made by union of

intervals like [α, β], specifically [αi, αi+1] where each αi is the evaluated breakpoint

f(ai).

Example 2.4.9. Consider h : [0, 1]→ [5, 9] with a breakpoint at a2 = 1/2 given by

h(x) =


6x+ 5 , 0 6 x 6 1

2

2x+ 7 , 1
2 6 x 6 1.

The evaluation breakpoint is h(1
2) = 8 . Thus the piecewise linear function h(x) is

made by [5, 8] ∪ [8, 9].

(2.4.10) Note that the set visited by PL function f does not determine f . To

determine the function f from the f(ai) = αi data, we need also to keep the ai
values.

Example 2.4.11. From example (2.4.9) α2 = 8, h(a2) = h(1
2) = 8.

(2.4.12) Notation: Let a < b ∈ R. We write PL(a, b) for the set of all PL functions

of the form f : [a, b]→ [a, b].

We will use this for example in section 4.3.1.

2.4.2 The Jordan curve theorem and friends

We will use some of the techniques in this section for example in §5.4.3. (Mainly

this section is exploring some of the properties of the real line (and the real plane

and its subset [0, 1]2) that are sometimes taken for granted, but which we will need

later to treat carefully.)

Here we assume some basic notions of topology (see also section 2.3 or for example

[Mar21]).

Euclidean metric topology has much in common with real analysis, and in par-

ticular, the Jordan curve theorem (JCT) below is related to, for example, the Inter-

mediate value theorem (IVT: if f : [a, b] → R is continuous then f([a, b]) is also a

closed interval). Our construction of the PP magma does not require any geometric

or topological structure on P([0, 1]2), but some of the equivalence relations that we

will put on it do require such extra structures.
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There is not in general a unique way to understand geometric properties of the

plane. And ‘intuitive’ methods seem to correlate with hard proofs. So there are

some choices to be made in how to do proofs. Here, I try to give ‘enough’ exposition

for what I need to do later.

(2.4.13) Recall that an open subset of R2 (as a topological space with the metric

topology) is connected if and only if it is path-connected (as defined in 2.3.24).

The Jordan curve theorem says that if J is a Jordan curve in R2 (a topological

circle, such as a simple polygon) Then R2 \ J is disconnected, with two connected

components. Let us call these components E and I, exterior to and interior to J ,

respectively.

Note that R2 = E t I t J and R2 \ J = E t I.

This theorem also says that for a point in E and a point in I then every path

between them in R2 intersects J . For suppose there is a path that does not intersect

J . Such a path is also a path in EtI, so then R2\J is connected — a contradiction.

Example 2.4.14. Consider J to be the rectangular boundary of the rectangular

region [−10, 10] × [−1, 1/2]. Then for a ∈ [0, 1] × (1/2, 1] and b ∈ [0, 1] × [0, 1/2]

every path between a and b intersects J .

(2.4.15) Observe that if A is a simple connected region of R2 (such as a disk or rect-

angle, or in particular such as [0, 1]2) and J lies in A then A\J is again disconnected;

and every path in A between the two components intersects J .

(2.4.16) Fix a Jordan curve J in R2, and hence (by the Theorem) a partition of

R2\J into E and I. Let R be a subset of R2. Observe that R\J = (R∩E)t(R∩I).

If neither part is empty then every path between them (i.e. path between a point

in (R ∩E) and a point in (R ∩ I)) in R intersects R ∩ J . (For if there is a path not

intersecting J then this is also a path in R2 not intersecting J , contradicting the

Theorem.)

(2.4.17) In our case, we take the [0, 1]2, not the R2 her we can see the J curve is a

line inside [0, 1]2 not a circle. So we can see the topology because [0, 1]2 lives inside

R2. However, we can have a close curve or circle which comes around half of our
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space to make the J line closed in the ends as in Figure 2.1. But of course, we allow

paths to be inside [0, 1]2 from top to bottom.

J

I

E

.p

.
q

R2

Figure 2.1: JCT

2.4.2.1 The sheep, the ring-fence and the Jordan Curve Theorem

This Theorem can help us to formalise the connections between pictures and mathe-

matical geometry, so we recall it briefly here. One way of saying the Theorem is that

if there is a field with a sheep-proof ring-fence inside it, and a water-hole (oasis?)

at the edge of the field, then if a sheep is inside the fence it cannot get to the water

- as in Figure 2.2

∗∗∗∗∗∗∗
∗

Figure 2.2: Field with a sheep-proof ring-fence

More mathematically we can say this as follows.

Theorem 2.4.18. (See. [Moi13, The Jordan curve theorem, p(31)]),

Let J be a topological 1−sphere in R2. Then R2 − J is the union of two disjoint

connected sets I and E, such that J = FrI = FrE.

Instead of the JCT we could use the IVT:

(2.4.19) Suppose we have a point p on the top edge of [0, 1]2 and a point q on the

bottom edge. Now suppose we have a continuous path σ : [0, 1]→ [0, 1]2 from p to

q in [0, 1]2. Then by the IVT there is a value s for which σ(s) = (x, 1/2) for some

x.
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2.5 Magma preliminaries

Definition 2.5.1. A magma is a pair consisting of a set with a closed binary oper-

ation on that set.

(See for example [Bou89], where this is perhaps first called ‘magma’ in print; and

also for example [Kan02, Sch99, Mar08]).

We write (A, ∗) for set A with operation ∗ : A× A→ A. We may give a name,

such as M = (A, ∗), for this pair.

In many texts, the term groupoid is used instead of magma. But the term

groupoid is also used (in other places) for a special kind of category — so these two

uses of ‘groupoid’ are not compatible. For this reason, we will use ‘magma’. We will

do this even when referring to texts that call magmas groupoids.

Example 2.5.2. Every group gives a magma.

(2.5.3) Given a magma (A, ∗), then every subset B of A that is closed under ∗ gives

a magma, (B, ∗) (where the domain and codomain of ∗ are understood as restricted

in the obvious way to B).

(2.5.4) A magma on a finite set A may be given by a multiplication table. For

example

∗ a b

a a b

b a a

(2.2)

Example 2.5.5. A magma is given by M = (Z,−), where Z is the set of integers

and − is the subtract operation.

Remark 2.5.6. A magma does not necessarily need to be associative.

Example 2.5.7. The magma in example 2.5.5 is not associative because

(3− 2)− 6 6= 3− (2− 6).
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2.5.1 An extended example

The next few paragraphs contribute to an extended example of a magma, which we

will not use later as such, but which will help to establish some terms.

(2.5.8) Here we write S for the class of all sets.

Given a property p, we can define a subclass Sp of S by T ∈ Sp if each element

t of T has the property p. Depending on the property p, Sp may be a full class (i.e.

not a set, in the Russell’s Paradox sense), or it may be a set. For example, if p for

some element t is: t is a set and t has order 4 (which can be either true or false),

then Sp is a class that is too big to be a set. But (for a different example) if property

p is: t is a subset of some fixed set U containing some fixed subset V ⊂ U , then Sp

is a set.

(2.5.9) The intersection of two sets is a set by definition, so if we have a subset Sp
of the class S as in next example then Sp is closed under intersection, and hence

has a smallest element - a unique element contained in every other element.

Example 2.5.10. Consider a set S of sets. This is a subset of the class of all sets

S. On the class of all sets, a cartesian product is defined, and the cartesian product

of any two sets is a set. So the ‘set’ of all sets would be a magma, except that it is

not a set, by Russell’s paradox! [How72, ID95] However, from this, we see that the

cartesian product of two sets is a set. So we can think about a magma constructed as

follows. We start with a set T of sets, such as T = {A}, where A is some non-empty

set. We have

× : T × T → S

but this does not close on T .

Then we ask, formally, what is the smallest magma containing T . Let us call it

ST . As well as A, this set must contain A×A, because A 6= A×A, and we require

closure. We also need to include in ST the products A×(A×A) and (A×A)×A. Note

that these are not the same (see also below). And we need to contain the products

(A× (A× A))× A, (A× A)× (A× A), A× (A× (A× A)), A× ((A× A)× A),

and ((A× A)× A)× A. Also, these are not the same. Next, we need to involve

the products ((A× A)× A)× (A× A), (A× A)× (A× (A× A)), ...and the rest of

the 12 ways, because these are not the same. And so on.
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(These different ways of inserting n pairs of brackets in word with n+1 letters comes

from Catalan numbers (see [Pak, Sta13]) which is given by Cn = 1
n+1

(
2n
n

)
.)

As a result, we can continue this process to create an infinite magma. By containing

all of these sets we get closed magma under the cartesian product.

Now we can ask if such a magma S{A} is associative.

So, we need to check if (A× A)× A = A× (A× A).

Let A = {a} ∈ T .

L.H.S = (A× A)× A = {((a, a), a)}.

However, R.H.S = A× (A× A) = {(a, (a, a))}.

Where, (a, a) ∈ A× A.

Hence, (a, a) 6= a.

Therefore (A× A)× A 6= A× (A× A).

We have shown that the magma is not associative.

2.5.2 Magma homomorphisms and representations

(2.5.11) A magma homomorphism f : S → T is a set map which commutes with

the binary operation. That is,

f(s ∗S s′) = f(s) ∗T f(s′)

where ∗S is the composition in S, and so on.

Example 2.5.12. Consider

f : M → {1}

m 7→ 1

Then

f(m ∗M m′) = 1 = 1 ∗{1} 1 = f(m) ∗{1} f(m′).

(2.5.13) The category of magmas and magma homomorphisms is sometimes called

Mag (see for example 2.6.8).

(2.5.14) A representation of a magma is, in a general sense, the same thing as a
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magma homomorphism. However, for a representation we sometimes restrict the

target T to be some magma that is relatively well understood, so that S has an

image that may be better understood than S itself, but which is a ‘model’ of S. For

example, we may take T to be a monoid. This is analogous to representation theory

of groups, where we choose the target to be a full matrix group.

We will give examples later.

For group representations, non-injectivity (non-faithfulness) can be characterised

in terms of a kernel - the set of elements that are mapped to the identity. But for a

magma we do not generally have an identity element. One alternative approach is

to talk about a representation f : S → T inducing a congruence on S: we say a ∼ b

if f(a) = f(b).

Every set map ψ : S → T induces an equivalence relation on S in this way. But

not every equivalence relation is a congruence. We talk about relations generally in

§2.2, 5.1.26, 5.4.2.

Again we will give examples later, when we try to study representations of the

magmas that we introduce in 3.1.
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2.6 Categories and Functors

In this section, we introduce Category theory, see e.g [Lei14, Lei16, ML13]. This

section contains a category 2.6.1 and functor 2.6.2.

2.6.1 Categories

Definition 2.6.1. A (locally small) Category may be defined as a quadruple

C = (A,B, ◦, id)

where

• A is a collection such as a set;

• B is a collection of pairwise disjoint sets: a set C(x, y) for each pair (x, y) in

A× A;

• ◦ is a composition for every triple (x,y,z) in A which means we have a binary

operation ◦ : C(x, y)× C(y, z)→ C(x, z);

• id is a map from A to B taking a ∈ A to an element ida of C(a, a).

This quadruple verifies:

– Associativity axioms:

for each quadruple (x, y, z, t) of elements in A, and for each b1 ∈ C(x, y),

b2 ∈ C(y, z) and b3 ∈ C(z, t) we have

(b1 ◦ b2) ◦ b3 = b1 ◦ (b2 ◦ b3)

– Unity axioms: for C(a1, a2)× C(a2, a2)→ C(a1, a2) this require

(b, ida2) 7→ b = b ◦ ida2 and C(a1, a1) × C(a1, a2) → C(a1, a2) this also,

require (ida1 , b) 7→ b = ida1 ◦ b.
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Example 2.6.2. Consider a quadruple

MR = (N,MR(n,m), ◦, id)

where

• N is the set of all natural numbers,

• R is the commutative ring of real numbers,

• MR(n,m) is the set of n×m real matrices,

a composition ◦ : MR(n, k)×MR(k,m)→MR(n,m) is given by (A,B) 7→ AB

meaning matrix multiplication where A =
(
A11 A12 ...
A21 A22 ...
... ...

)
, B =

(
B11 B12 ...
B21 B22 ...
... ...

)
such that (AB)ij = ∑k

p=1 AipBpj, and

•

idk =
( 1 0 0 ...

0 1 0 ...
... ... ...
0 ... ... 1

)

Proposition 2.6.3. MR is a category.

Proof. Notice that our quadruple has the right kind of components to be a category.

So, to show MR is a category, we need it to satisfy the axioms.

• Associativity axiom:

Let (n, k,m, t) ∈ N and A1 ∈ MR(n, k), A2 ∈ MR(k,m), A3 ∈ MR(m, t) we

need to proof (A1 ◦ A2) ◦ A3 = A1 ◦ (A2 ◦ A3)

L.H.S = (A1 ◦ A2) ◦ A3

= (A1A2) ◦ A3

= (A1A2)A3

= A1(A2A3)

= A1 ◦ (A2A3)

= A1 ◦ (A2 ◦ A3) = R.H.S
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• Unity axiom:

Let MR(n, k)×MR(k, k)→MR(n, k), we need to show (A1, idk) 7→ A1, so A1◦

idk = A1 and MR(k, k)×MR(k, n)→MR(k, n), we need to show (idk, A2) 7→

A2, so idk ◦ A2 = A2

Thus MR is a category.

We see that the construction of our example had two stages. Firstly we gave a

quadruple with components ‘like a category’; and then we checked the axioms. This

is a useful scheme in general. So let us make it systematic, as follows.

Definition 2.6.4. A precategory maybe defined as a quadruple

C = (A,B, ◦, id)

where

• A is a collection such as a set;

• B is a collection of pairwise disjoint sets, a set C(x, y) for each pair (x, y) in

A× A;

• ◦ is a composition for every triple (x,y,z) in A3 which means we have a binary

operation ◦ : C(x, y)× C(y, z)→ C(x, z);

• id is a map from A to B taking a ∈ A to an element of C(a, a).

Definition 2.6.5. The precategory of sets is the quadruple of

Set = (A,B, ◦, id)

where

• A is the collection of all sets,

• B is a collection of disjoint sets hom(X, Y ) for each pair (X, Y ) ∈ A×A given

by the set of mappings/functions from X to Y (X → Y ),

• ◦ is a composition of morphism for every three objects X, Y, Z

of the form ◦ : hom(X, Y )× hom(Y, Z)→ hom(X,Z)
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such that for f : X → Y and g : Y → Z we have h : X → Z given by

h(x) = g(f(x))

• id is a map from A to B taking X ∈ A to the element idX (the identity map)

of hom(X,X).

Proposition 2.6.6. The quadruple Set is a category.

Proof. To show Set is a category, we need to satisfy the axioms of a category.

• Associativity axiom:

Let (X, Y, Z, T ) ∈ A and f1 ∈ hom(X, Y ), f2 ∈ hom(Y, Z)

and f3 ∈ hom(Z, T ).

We need to proof (f1 ◦ f2) ◦ f3 = f1 ◦ (f2 ◦ f3).

L.H.S = (f1 ◦ f2) ◦ f3

= (f1f2) ◦ f3

= (f1f2)f3

= f1(f2f3)

= f1 ◦ (f2f3)

= f1 ◦ (f2 ◦ f3) = R.H.S

• Unity axiom:

Let hom(X, Y )× hom(Y, Y )→ hom(X, Y ), we need to show

(f, idY ) 7→ f ,so f ◦ idY = f and

hom(X,X)× hom(X, Y )→ hom(X, Y )

we need to show (idX , f) 7→ f ,so idX ◦ f = f .

Thus Set is a category.
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Example 2.6.7. The quadruple Grp is

Grp = (Grp0,Grp(−,−), ◦, id)

where

• Grp0 means the class of all groups;

• Grp(−,−) means for every pair of groups the set of group homomorphisms;

• ◦ is the same as in Set;

• id is the same as in Set.

We can check that the quadruple Grp is a category.

Note that for groups G,G′ we have underlying sets. We can also call them G,G′.

Then we can compare Grp(G,G′) and Set(G,G′).

For example consider G = G′ = Z2 — the group of order 2: Z2 = ({1,−1},×).

Then Grp(Z2, Z2) is a subset of Set(Z2, Z2). In particular f ∈ Set(Z2, Z2) given

by f(1) = f(−1) = −1 is NOT a group homomorphism.

Moreover, g ∈ Set(Z2, Z2) given by g(1) = g(−1) = 1 is a group homomorphism.

Example 2.6.8. The quadruple Mag is

Mag = (Mag0,Mag(−,−), ◦, id)

where

• Mag0 means the class of all magmas;

• Mag(−,−) means for every pair of magmas the set of magma homomor-

phisms;

• ◦ is the same as in Set;

• id is the same as in Set.

We can check that the quadruple Mag is a category.
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Example 2.6.9. Consider categories given by

C = (A,B, ◦, id, ..., axioms)

and

C
′ = (A′ , B′ , ◦′ , id′ , ..., axioms)

. Then there is a product category defined as the following:

C × C ′ = (A× A′ , B ×B′ , ◦ × ◦′ , id× id′ , ..., axioms)

where

• A× A′ means a collection of all pairs of objects. It is given by pairs (a, a′),

where a ∈ A and a
′ ∈ A′.

• B × B′ is a class of all maps which are pairs (f, g) : (a, a′) → (b, b′), where

f : a→ b ∈ C and g : a′ → b
′ ∈ C ′.

• ◦ × ◦′ is a composition of morphism for every morphism of the form ◦ × ◦′ :

(a, a′)→ (c, c′), (f ′ , g′)◦(f, g) = (f ′◦f, g′◦g),where f : a→ bandf ′ : b→ cinC

, g : a′ → b
′andg′ : b′ → c

′inC ′. f
′ ◦ f : a → candg′ ◦ g : a′ → c

′. More

explicitly,

(a, a′) (b, b′) (c, c′)(f, g)

(f ′◦ f , g′◦ g)

(f ′ , g′ )

• id× id′ are pairwise identities 1(a,a′ ) : (a, a′)→ (a, a′), 1(a,a′ ) = (1a, 1a′ ) where

1a : a→ a and 1a′ : a′ → a
′.

To show C × C ′ is a category, we need to satisfy the axioms of the category which

are Associativity and unity axioms.

• Associativity axiom:

For each ((a, a′), (b, b′), (c, c′), (d, d′)) of pairs in A× A′ and for each

(f, g) : (a, a′)→ (b, b′),
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(f ′ , g′) : (b, b′)→ (c, c′),

(f ′′ , g′′) : (c, c′)→ (d, d′).

We need to prove ((f ′′ , g′′) ◦ (f ′ , g′)) ◦ (f, g) = (f ′′ , g′′) ◦ ((f ′ , g′) ◦ (f, g)).

L.H.S = ((f ′′ , g′′) ◦ (f ′ , g′)) ◦ (f, g)

= (f ′′ ◦ f ′ , g′′ ◦ g′) ◦ (f, g)

= ((f ′′ ◦ f ′) ◦ f, (g′′ ◦ g′) ◦ g)

= (((f ′′(f ′))(f)), (g′′(g′))(g))

= (f ′′((f ′)(f)), g′′((g′)(g)))

= (f ′′(f ′ ◦ f), g′′(g′ ◦ g))

= (f ′′ ◦ (f ′ ◦ f), g′′ ◦ (g′ ◦ g))

= (f ′′ , g′′) ◦ ((f ′ ◦ f), (g′ ◦ g))

= (f ′′ , g′′) ◦ ((f ′ , g′) ◦ (f, g)) = R.H.S

Thus the associative axiom is hold.

• Unity axiom:

Let (f, g) : (a, a′) → (b, b′)and (1b, 1b′ ) : (b, b′) → (b, b′) we want to show

(1b, 1b′ ) ◦ (f, g) 7→ (f, g), so (1b, 1b′ ) ◦ (f, g) = (1b ◦ f, 1b′ ◦ g) = (f, g).

Also,

(1a, 1a′ ) : (a, a′) → (a, a′)and (f, g) : (a, a′) → (b, b′) we want to show

(f, g) ◦ (1a, 1a′ ) 7→ (f, g), so (f, g) ◦ (1a, 1a′ ) = (f ◦ 1a, g ◦ 1a′ ) = (f, g).

Thus the unity axiom is hold.

So, C × C ′ is the category.
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2.6.2 Functor

A functor is a map between two categories (see for example [Lei14]).

Definition 2.6.10. Let A = (ob(A), homA(−,−), ◦A, id) and B = (ob(B), homB(−,−), ◦B, Id)

be categories. A functor F : A→ B consists of

• A function

F0 : ob(A) −→ ob(B)

A 7 −→ F0(A)

• For each A1, A2 ∈ A, a function

F1 : homA(A1, A2)→ homB(F0(A1), F0(A2))

f 7 −→ F1(f)

satisfying the following axioms:

– F1(f ′ ◦ f) = F1(f ′) ◦ F1(f)

whenever A1
f−−−−→ A2

f
′

−−−−→ A3 in A.

– F1(idA) = IdF0(A) whenever A ∈ A

Just like we introduced precategory to help with construction of categories, so

we can introduce ‘prefunctor’ to help construct functors. A prefunctor will be a

pair: a map between object classes; and a collection of maps between morphism sets

— this is just as in a functor, except that we do not (yet) check the axioms.

Example 2.6.11. Consider a ‘map’ F : Grp→ Set between

Grp is a category of all groups and

Set is a category of all sets. A function

F0 : ob(Grp)→ ob(Set)

G 7→ F0(G)

Where F0(G) is the underlying set and
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for each G1, G2 ∈ Grp, a function

F1 : homGrp(G1, G2)→ homSet(F0(G1), F0(G2))

f 7→ F1(f)

Proposition 2.6.12. The map F : Grp→ Set is a functor.

Proof. To show F is a functor, we need to satisfy the axioms of functor.

• Let f1 : G1 → G2 and f2 : G2 → G3, where G1, G2, G3 ∈ Grp ,

f1, f2 are functions of a group homomorphism and F1(f1), F1(f2) are the un-

derlying set.

We need to Proof F1(f2 ◦ f1) = F1(f2) ◦ F1(f1).

L.H.S = F1(f2 ◦ f2) = F1(f2(f1)),

however, R.H.S = F1(f2) ◦ F1(f1) = F1(f2)(F1(f1)) = F1(f2(f1)).

Therefor, F1(f2 ◦ f1) = F1(f2) ◦ F1(f1)

• Let G ∈ Grp then F1(idG) = IdF0(G).

Therefor F : Grp→ Set is the functor.

(2.6.13) Note that (see e.g [Che02, DF04]) this functor F : Grp → Set called

forgetful functor that means forget a group structure .

Example 2.6.14. Let U : Mag→ Set is a map between

Mag means a category of all magmas and

Set means a category of all sets. A function

U0 : ob(Mag)→ ob(Set)

M 7→ U0(M)
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Where U0(M) is the underlying set and

for each M1,M2 ∈Mag, a function

U1 : homMag(M1,M2)→ homSet(U0(M1), U0(M2))

u 7→ U1(u)

Proposition 2.6.15. The map U : Mag→ Set is a functor.

Proof. To show U is a functor, we need to satisfy the axioms of functor.

• Let u1 : M1 → M2 and u2 : M2 → M3, where M1,M2,M3 ∈ Mag , u1, u2

are magmas homomorphism and U1(u1), U1(u2) are the underlying set.

We need to Proof U1(u1 ◦ u2) = U1(u1) ◦ U1(u2).

L.H.S = U1(u1 ◦ u2) = U1(u1(u2)),

however, R.H.S = U1(u1) ◦ U1(u2) = U1(u1)(U1(u2)) = U1(u1(u2)).

Therefor, U(u1 ◦ u2) = U(u1) ◦ U(u2)

• Let M ∈Mag then U1(idM) = IdU0(M).

Therefor U : Mag→ Set is the functor.

Note that the functor U : Mag → Set is also a forgetful functor because it is

forgetting the magma structure.



Chapter 3

Constructing a ‘passport photo’

magma

In this chapter, we put an algebra structure on a fairly general idea, that is, bringing

two pictures together to make a new picture.

So the underlying idea here is a ‘demand side’ one: that humans have ways of

doing this operation of bring-together of pictures that extend the possible extraction

of ‘meaning’ from the pictures separately. (Obviously, the extraction of meaning

itself is a separate hard problem. We will not address this problem directly here.

One hope is that progress can arise in an analogous way to that arising via the study

of the PageRank algorithm - see e.g. [Gle15, Mar11] - on the ‘importance’ of web

pages.)

For example, there may be a natural way of bringing two pictures together -

composing them - if they were created by cutting a single picture into two pieces

in the first place. But specifically because of the demand-side perspective, we want

to focus on construction and the choices made in the construction of our algebraic

structure. In construction, we may start with a binary operation on a set - where

the construction of the binary operation leads, rather than the wish for it to satisfy

any specific axioms (a ‘supply side’ driver). For this reason, we start with algebraic

structures having few (or no) axioms ab initio. Thus magmas.

We can then use magmas to frame choices for congruences which lead to ‘associative-

isation’ (congruences that make associative) and other target axioms.

A congruence on an algebraic structure starts with a relation (for example ‘iden-

35
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tifying’ some elements that must be equal if some axiom is to be imposed). The

initial relation, then, can be characterised by some set of identifications. Thus it

is immediately reflexive and symmetric. But for an initial relation characterised

in this way to become a congruence, it may have to be larger than this initial set

- the initial set may not manifest transitivity, for example. Part of our project is

to investigate congruences ‘seeded’ by various initial identifications. Around this,

there are both general issues and issues associated to our specific case, as we address

below.

In §3.1 we give our basic definition. In §3.2 we give generalizations.

3.1 Passport photo magma

In this section, we construct a magma by stacking and shrinking ‘passport pho-

tographs’. We will explain exactly what all these terms mean. We will also explain

why we have chosen ‘passport photo’ for our magma elements, and discuss why

‘stack-shrink’ for composition.

3.1.1 Aside on other motivating ideas behind our setup

It is fair to say that we do not have a single coherent motivating aim guiding our

construction choices here. Apart from the notably vague ‘bringing pictures together’

mentioned above, the closest to a coherent aim is perhaps to understand the possible

emergence of topological phenomena in certain physical materials. But our grasp of

any such physics is essentially zero, so at heart, ours is a pure-mathematical exercise.

With that caveat, we can ‘mathematicise’ the physical ideas as follows.

The square lattice Ising model is a ‘two-dimensional’ model of a system like a

ferromagnet arising in statistical mechanics (see e.g. [Bax82]). A ferromagnet is

a piece of solid metal material sitting in physical space, made of metal molecules

with many physically important properties, among which is that each is a tiny

magnet, with a magnetic-field orientation. So to describe the configuration of the

material we should give the orientation of each molecule. The molecules sit in a

lattice pattern. So their positions can be given (in the two-dimensional (2d) case)

by pairs of coordinates. The coordinates can be taken to be integers by choosing
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units where the molecule spacing is 1. In real terms, the whole piece might lie in a

1cm-by-1cm square in the (2d) laboratory, and there might be N = 1010 molecules

in each direction. Recall that we write n = {1, 2, ..., n}, so the set of coordinates of

all molecules can be given by N × N . Then if S is the set of possible orientations

of a single molecule, the set ς of configurations of the whole magnet is

ς = hom(N2, S)

- where hom(A,B) means the set of all maps from set A to B. In our case, we

choose |S|= 2 - for example S = {1, 2} or S = {0, 1}.

Now we have the standard bijection

ι : hom(R, {0, 1})→ P(R)

where ι(f) is given by r ∈ ι(f) if f(r) = 1. Therefore our configuration set is given

by

ς ∼= P(N2)

The set N2 is of course finite but very large. It is a useful approximation to it

to consider the interval [0, 1]2 inside which it sits (the underlying physical space,

instead of just the molecule points in that space). So this brings us to consider

P([0, 1]2).

... And in this setting, joining two such intervals corresponds (loosely) to bringing

two sets of molecules together ...

3.1.2 The power set P([0, 1]2)

We defined the power set function in 2.1.1. The underlying set of the magma we will

construct is P([0, 1]2). That is, the elements are subsets of the unit square [0, 1]2.

This is a well-defined set. But as we have noted in 4.2 most of its elements

cannot be described explicitly (in the same sense as this is true for the real line or

the unit interval — see for example [Gow].

The set P([0, 1]2) is not hard to manipulate as an abstract set - describing func-

tions to and from this set for example. But it will also be useful to give some specific
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elements, and work with some individual elements. Just as for the real line, there

are many elements, and collections of elements, that can be given explicitly. Next

we discuss this.

3.1.3 Representations of elements of P([0, 1]× [0, h])

We say that a monochrome picture in a region R ⊂ R2 is an assignment of a

colour, either black or white, to each point in R. That is, it is a function p : R →

{black, white}. (There are many potential mathematical subtleties to this, but we

will pass over most of them for now. We address some of them in this Section.)

Definition 3.1.1. For h ∈ R (usually h ≥ 0) we define

Sh := P([0, 1]× [0, h]).

(3.1.2) Because Sh includes all subsets of [0, 1]× [0, h] it includes all monochrome

‘pictures’ in a frame of this size, by assigning black at point x if x is included, and

white otherwise. Hence we think of ‘passport photographs’ and other images of such

size.

(3.1.3) Next we consider how drawings of such functions p : R → {black, white}

can be achieved in practice - specifically in the context of this document. And hence

how some such functions can be communicated by drawings.

(Note in particular that we are using the word ‘picture’ in a mathematical sense,

but using the word ‘drawing’ in the dictionary sense. It will be a main point of this

Section to investigate the connection between these ideas.)

Note that: In some drawings here, a blue frame is used to indicate a framework

for R = [0, 1]2 when the frame is not part of the picture (i.e. white not black). See

for example 4.2.10
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(3.1.4) Next, we draw some examples. Here we use a scale for pictures on our page

which is given by:

x

y

(1,1)

.

Just as most individual real numbers are undefinable, so it is for elements of

S1. So the examples we can give explicitly are limited. But just as, in practice, the

undefinability problem is easily circumvented (in various senses - see for example

[Moi63, Moi13]), so it will be (up to a point) for us.

(3.1.5) We write the ‘subset’ [0, 1]2 of [0, 1]2 explicitly by

[0, 1]2 = {(x, y) : x ∈ [0, 1], y ∈ [0, 1]}

(3.1.6) The picture for the element [0, 1]2 ∈ P([0, 1]2) has the drawing

Example 3.1.7. Consider a picture given by a drawing

PA = ∈ S1 (3.1)

We have drawn this picture in an ‘equation’ PA = something above. By doing

this, the writer is trying to convey a specific element of S1 to the reader (as well

as to give it the convenient and portable name PA). It is an interesting question:
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What element does the reader ‘see’? Most of the time, for us, it will be fine if the

reader sees approximately the same element (in the sense, say, of [Moi63, Moi13] -

with a tolerance corresponding to the natural quantisation in the medium of this

LaTex document!), but sometimes later we will need to be more careful.

3.1.3.1 Simple tools for building elements of P([0, 1]2)

Before we describe any pictures we will define some operations which help to write

a mathematical form of creating any pictures.

(3.1.8) The simple union operation ∪ (see e.g. [Cam99, uno]) (from 2.1.3) may

be used to combine or merge more than one picture to create a composite picture

within the same space.

(3.1.9) The difference (see eg[Cam99, uno]) A \B is used to define the elements in

set A (first picture) not in set B (another picture).

(3.1.10) Note that the coordinate-flip map τ : (x, y) 7→ (y, x) takes a point in [0, 1]2

to another such point, and hence also takes an element of P([0, 1]2) to another

element.

(For examples of this see 4.2.)

3.1.3.2 Back to the pictures

Here we describe the picture PA in (3.1) with mathematics and pictures as follows:

• First, consider the ‘mathematical frame’ subset

SF = {(x, 0) : x ∈ [0, 1]}
⋃
{(x, 1) : x ∈ [0, 1]}

⋃
{(0, x) : x ∈ [0, 1]}

⋃
{(1, x) : x ∈ [0, 1]}

We can ask: what is the picture for this set? It is a set of mathematical lines, but

these lines are very thin so, strictly speaking, they are too thin to see. There are a

few different ways we can address this problem.

Let e = 0.001. We will use this to make lines into thick lines, with thickness e.



3.1. Passport photo magma 41

Then

Se = {(x, y) : x ∈ [0, 1], y ∈ [0, e]} ∪ {(x, y) : x ∈ [0, 1], y ∈ [1− e, 1]}

∪ {(x, y) : x ∈ [0, e], y ∈ [0, 1]} ∪ {(x, y) : x ∈ [1− e, 1], y ∈ [0, 1]},

has the picture:

• We represent the face in PA (3.1) by using circles. To start with, consider

{(x− 1
2 , y −

1
2) : x2 + y2 <

1
16},

This has a picture:

For annulus:

{(x− 1
2 , y −

1
2) : 1

16 + e
< x2 + y2 <

1
16},

the picture is:

The dashed version of a face is the set :

SS =
{

(r cos θ, r sin θ) + (1
2 ,

1
2) : 1

4 + e
< r <

1
4− e, θ ∈ [n9π,

2n+ 1
18 π], n = 0, ..., 17

}
.

The picture is:
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• Then the sets of left and right eyes are

SL = {(x− 1
4 , y −

3
4) : x2 + y2 6 1/10000},

SR = {(x− 3
4 , y −

3
4) : x2 + y2 6 1/10000}

respectively.

The picture is:

SL ∪ SR =

• However, the set of nose is

SNose = {(x, y) : 1
2 6 x 6

1
2 + 2e ,

1
2 6 y 6

5
8}.

The picture is :

• Then, the set of the mouth in PA is

SM = {(x, y) : 2
5 6 x 6

13
20 ,

2
5 6 y 6

2
5 + 2e}.

The picture is :

Finally, the mathematical form of the whole picture PA is

PA = Se ∪ SS ∪ SL ∪ SR ∪ SNose ∪ SM .

How can we decide if two elements of S1 are equal or not? If their pictures here

do not ‘look the same’ then they are unequal. But in all other cases, we may have

to be careful. We will return to this point later.
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Example 3.1.11. Consider a picture

PB = ∈ S1.

Then

PB =

= Se ∪ {(x−
1
2 , y −

1
2) : 1

16 + e
6 x2 + y2 6

1
16} ∪ SL ∪ SR ∪ SNoes ∪ SM .

3.1.4 Binary operation � on P([0, 1]2)

In this section we define a binary operation. The key points will be that it is well-

defined and closed. These properties will probably be ‘inutitively clear’, but the

construction is crucial for us, so we will proceed carefully.

In our construction there are various ‘Definitions’. In some cases it is (perhaps

implicitly) an assertion that these constructions-by-definition are well-defined. In

other words some of our definitions are Proposition-Definitions. In these cases we

will make sure to give whatever proof is needed before the Definition.

(For example it is formally possible to claim to ‘define’ a function f : [0, 1]→ [0, 1]

by x 7→ x+ 1, but of course this is not well-defined because the codomain does not

contain the image.)

Recall from Defn.2.1.1 that for a set S then P(X) means the power set of X —

the set of all subsets.

(3.1.12) Convention: Given a function f : A→ B, we understand

f : P(A) → P(B)

by

S ⊂ A 7→ f(S) = {f(s)|s ∈ S}
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(3.1.13) Observe that for (x, y) ∈ R2 and h ∈ R we have (x, y + h) ∈ R2, because

R is closed under addition. Therefore the following functions are well-defined.

Definition 3.1.14. For h ∈ R define

shifth : R× R→ R× R

(x, y) 7→ (x, y + h)

In the following, we define a stack operation between two pictures by glueing one

picture above another (here ‘above’ means higher up the page).

Observe that for x ∈ [0, h] and y ∈ [0, h′] then x+ y ∈ [0, h+ h′]. Therefore the

following functions are well-defined.

Definition 3.1.15. For h, h′ ∈ R:

stack : P([0, 1]× [0, h]) × P([0, 1]× [0, h′]) → P([0, 1]× [0, h+ h′])

(a, b) 7→ shifth(a) ∪ b.

and stack with the same domain and codomain, given by

(a, b) 7→ a ∪ shifth′(b).

Example 3.1.16. Consider

a = , b = ∈ P([0, 1]2)

Then,

stack(a, b) = shift1(a) ∪ b =
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and

stack(a, b) = stack(b, a) = a ∪ shift1(b) = .

Now we define a shrink function (or scale function) to squeeze (or rescale) the

size of a passport photo.

Definition 3.1.17. For h > 0,

shrinkh : P([0, 1]× [0, h]) → P([0, 1]× [0, 1])

a 7→ shrinkh(a)

where

shrinkh(a) := {(x, y
h

)|(x, y) ∈ a}.

Example 3.1.18. Consider

A = ∈ P([0, 1]× [0, 2]).

Then,

shrink2(A) = .
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Definition 3.1.19. The binary operation � on P([0, 1]2) (which is a ‘stack and

shrink’ of the photos from S1) is defined by commutativity of the following diagram:

P([0, 1]2)× P([0, 1]2) P([0, 1]2)

P([0, 1]× [0, 2])

�

stack shrink2
.

Thus, we have the following proposition.

Proposition 3.1.20. The pair

M := (P([0, 1]2),�)

is a magma.

Proof. The operation is closed by construction as in Def.3.1.19.

(3.1.21) Note that both stack’s in 3.1.15 give magmas in this way, but these are

different.

In the following we use the stack with shifth(a).

Example 3.1.22. Consider

,

∈ P([0, 1]2)

Then,
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� stack−→ shrink2−→ .

(3.2)

In this example the power set of interval square P([0, 1]2) is closed under the

binary operation �.

(3.1.23) Note that the stack function takes a union of two pictures which is ‘mainly’

a disjoint union, but which can have overlap where the two square regions meet.

This fact does not look significant when we look at pictures by eye. But we will see

later that it becomes significant when we consider submagmas, which are of course

defined mathematically and not ‘by eye’ (see for example 4.1). For example, when

two pictures are joining, then if we have two strings from top to bottom in each,

the number of intersection points with the horizontal mid-point line could be four

after composition. The result will no longer be two ‘strings’ in general, and will

not satisfy certain more general notions of ‘stringy-ness’ either. We discuss this in

Chapter 4.

3.1.5 Some computations in the magma M = (P([0, 12]),�)

In this part, we examine the composition operation � on S1 to see if it is associative

- to see if our magma is a semigroup. (We will show that it is not.)

Consider

, and ∈ S1.

We want to check for an associative law: Why? To get a monoid from this magma

that requires an associative algebraic structure. Then we can use representation
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theory (which has an associative target.)

(
�

)
� ?= �

(
�

)

Here we do both sides together. First, we start by stack then shrink pictures in

brackets, we get

� ?= �

Then, we apply a stack on both sides, we get

stack−→ 6=

Finally, we apply shrink both sides , we get

shrink2−→ 6= (3.3)

Therefore S1 is not associative with �.

In chapter 5 we will discuss several relations on P([0, 1]2) that might be or might

not be congruences on our magma (in the sense defined in section 5.1), aiming to

make an associative quotient 5.4.1.
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3.2 Generalisations: magma on P([0, 1]d × [0, 1])

This section will construct magmas generalising the passport photograph magma

(PP Magma). One aim is to construct a magma that will contain a submagma of

‘braids’ or braid-like elements. For this, we consider varying the underlying set from

P([0, 1]× [0, 1]) to P([0, 1]d× [0, 1]), where d is some fixed ‘dimension’. Thus the PP

Magma is d = 1; while the sculpture magma will be d = 2. It is also interesting to

consider d = 0.

Next, we show how to define the composition for general d, generalising � from

3.1.19.

We do the generalisation by upgrading the underlying set S1 to

Sd
1 := P([0, 1]d × [0, 1]) = P([0, 1]d+1)

and adjusting the composition accordingly.

3.2.1 Representations of elements of P([0, 1]3)

Here we want to draw [0, 1]3 but there are at least two problems here. Firstly, a new

problem - how do we draw a 3D object in 2D? Then we have the other problem -

more similar to the problem in ordinary PP Magma - of how to draw ”all black” for

the object [0, 1]3.

For the first problem, we will ‘project’ 3d onto 2d. We can do this in various

ways, but roughly we project so that (1, 1, 1) is close to (0, 0, 0).

For the second problem we may draw just a framework - the same idea as for 2d

above. Altogether then, [0, 1]3 is represented by figure 3.1.

3.2.2 Binary operation � on P([0, 1]d+1)

In this part, we define a stack-operation, shrink-function then the binary operation.

Definition 3.2.1. Fix d ∈ N0. The stack binary operation stack given by

stack : P([0, 1]d+1)× P([0, 1]d+1)→ P([0, 1]d × [0, 2])

(a, b) 7→ shift1(a) ∪ b
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x

y

z

Figure 3.1: Picture of containing box for sculpture magma

and stack with the same domain and codomain, given by

(a, b) 7→ a ∪ shift1(b).

Definition 3.2.2. Fix d ∈ N0. Define a function of shrink2 by

shrink2 : P([0, 1]d × [0, 2]) → P([0, 1]d+1)

a 7→ shrink2(a) = {(x1, x2, ..., xd,
z

2)|(x1, x2, ..., xd, z) ∈ a}.

Definition 3.2.3. The binary operation � on P([0, 1]d × [0, 1]) (which is a ‘stack

and shrink’ of the photos from Sd
1) is defined by the commutativity of the following

diagram:

P([0, 1]d+1)× P([0, 1]d+1) P([0, 1]d+1)

P([0, 1]d × [0, 2])

�

stack shrink2

Proposition 3.2.4. Fix d ∈ N0, and let � be defined as in Defn.3.2.3. The Pair

Md = (P([0, 1]d+1),�).

is a magma.

Proof. The operation is closed by construction as in Def.3.2.3
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Example 3.2.5. 1. Consider d = 1. Then M1 = (P([0, 1]2),�) is the magma in

3.1.20.

2. Consider d = 2. Then

• The stack binary operation is

stack : P([0, 1]3)× P([0, 1]3)→ P([0, 1]2 × [0, 2])

(a, b) 7→ shift1(a) ∪ b

where

shift1(a) = {(x1, x2, z + 1) | (x1, x2, z) ∈ a}

(See figure 3.2a).

• The shrink function is

shrink2 : P([0, 1]2 × [0, 2]) → P([0, 1]3)

a 7→ {(x1, x2,
z

2)|(x1, x2, z) ∈ a}

(See figure 3.2b).

• Followed by the binary operation on P([0, 1]2 × [0, 1]) that is given by the

commutativity

P([0, 1]3)× P([0, 1]3) P([0, 1]3)

P([0, 1]2 × [0, 2])

�

stack shrink2
.

Thus we get the magma M2 = (P([0, 1]3),�).

(3.2.6) Note that: in the example above (see 2), we refer to M2 as the ’sculpture

magma’.

(3.2.7) The stack and shrink representation of the sculpture magma is given in the

following figure (3.2).
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x

y

z

(a) Stack sculpture

x

y

z

(b) Shrink sculpture

Figure 3.2: Stack and Shrink sculpture- frame only



Chapter 4

Submagmas of passport

photograph magma

In this chapter, we address some submagmas of our magma M defined in 3.1.20.

One ‘direction of travel’ is to look for submagmas that are somehow like the braid

groups (but without the heavy layers of equivalence used in actual braid groups -

see later). But before this we will look at possible submagmas more generally.

Given a subset of P([0, 1]2) we can ask if it is closed under �, and thus search

for submagmas this way. If the subset is not closed, we can ask what is the smallest

submagma that contains our subset: the submagma ‘generated’ by the subset. For

subset S this is sometimes written 〈S〉 or 〈S〉M.

(4.0.1) For a simple example, let Pf (S) denote the subset of P(S) of finite subsets.

Consider the subset Pf ([0, 1]2) of our magma. Since the magma product is a kind

of (almost) disjoint union, the subset Pf ([0, 1]2) is closed under the product, and

hence gives a submagma.

(4.0.2) For another example consider (Q × Q) ∩ [0, 1]2 ⊂ [0, 1]2. Note that this is

an infinite but countable subset. The corresponding subset P((Q × Q) ∩ [0, 1]2) of

the magma is not countable, but note that it is closed under the product. So this

gives another submagma.

(4.0.3) Indeed for any uncountable subset S of [0, 1]2 it is interesting to consider

the countable (but dense) subset Q2 ∩ S. However we will mainly leave this aspect

for later investigation.

53
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This chapter contains three sections. Section 4.1 considers a submagma gener-

ated by P([0, 1] × [0, 1)). Then section 4.2 concerns the “#t function” — another

device for introducing relatively tame subsets. Finally, the goal of section 4.3 is to

study braid-like submagmas.

4.1 Submagma of M generated by P([0, 1]× [0, 1))

In this section, we define a new submagma called MS from the magma M in Def

3.1.20.This example of a submagma is relatively straightforward, but it will be useful

in 4.2.5 later.

(4.1.1) Note that if S is a set and S ′ is a subset of set S then P(S ′) is a subset of

P(S).

For example P([0, 1]× [0, 1)) ⊂ P([0, 1]× [0, 1]).

(4.1.2) Let D,C be sets. Let D′ be a subset of D. Note that a function f : D → C

(here D stands for Domain; C for Co-domain) gives a function from D′ to C by

restriction of domain. We will also write f as the name for this function, where no

ambiguity arises. Thus we have immediately f : D′ → C as well as for the original

domain.

(4.1.3) For example all our Stack and Shrink functions from 3.1.19 restrict to func-

tions on subsets of their domains.

(4.1.4) Recall from 2.1.1 that S1∗ := P([0, 1]× [0, 1)).

Proposition 4.1.5. The subset P([0, 1]× [0, 1)) of P([0, 1]× [0, 1]) is closed under

�. Therefore MS = (P([0, 1]× [0, 1)), �) is a submagma of M.

Proof. We require to show that a, b ∈ S1∗ =⇒ a� b ∈ S1∗. Observe from 3.1.19

that in general the ‘top’ of a� b, i.e. a� b ∩ [0, 1]×{1}, agrees with the top of a.

For a ∈ S1 we have a ∈ S1∗ if and only if this top is empty.

We introduce the following example to indicate the stack-shrink operation in this

case.
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Example 4.1.6. Consider

, ∈ S1∗.

Then

� stack−→ shrink2−→ .

From 4.1.6, we can see schematically that the ‘semi-open’ passport photo sub-

magma is closed under the binary operation �. Notice that the blue dashed line

represents the open end of the second element after the Stack operation; and then

after Shrink.

We have illustrated that the power set of [0, 1]× [0, 1), (the set P([0, 1]× [0, 1)))

is closed under the binary operation �.
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4.2 The #t function for subsets

In this section we return to the problem of characterising specific kinds of elements

of our magmas, so elements of the set P([0, 1]d+1) (in particular with d = 1). Sets of

such elements are then candidates for submagmas. Here we have in mind elements

built from components that are “low-dimensional”, such as lines....

Just as there are many undefinable elements of P([0, 1]2), so there are many

undefinable functions f : [0, 1] → [0, 1]. However, we have many tools for giving

some such functions (expressions such as f(x) = x2 for example). So it is useful

to be able to build elements of P([0, 1]2) from functions. On way to do this is as

follows.

(4.2.1) Given a function f : [0, 1]→ [0, 1] we may define an element

f ∗ := {(x, f(x)) | x ∈ [0, 1]}

in P([0, 1]2). See also 4.3.1.

A graph of a function f : [0, 1] → [0, 1] is a drawing of the element f ∗ (possibly

with the blue frame to give coordinate axes).

(4.2.2) For A,B sets, let us write hom(A,B) for the set of all functions from A to

B.

Example: We are interested in f ∈ hom([0, 1], [0, 1]).

We can define a subset of P([0, 1]2) by

D1 = {f ∗ | f ∈ hom([0, 1], [0, 1])}

There is also the subset given by applying the flip map from 3.1.10:

D∗1 := τ(D1).

(4.2.3) We can now ask if subset D1 is closed under �.

It will be clear that the answer is no.

It will also be clear that the submagma generated by D1 is a proper submagma.

This leads us to consider an alternative characterisation of D1.
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(4.2.4) If S is an infinite set then we may write |S|=∞ for the order. Thus the set

of possible orders of a set is N0 ∪ {∞}.

Definition 4.2.5. Consider an element p ∈ P([0, 1]2) and define the number of

intersection points with any horizontal line y = t as

#t(p) = |{(x, y) ∈ p : y = t}| (4.1)

Example 4.2.6. Consider

p1 = = {(x, y) : x = 2− y
3 }.

Then

#t(p1) = |{(2− y
3 , y) ∈ p1 : y = t}|

We consider several values of t as the following:

#0(p1) = |{(2− y
3 , y) ∈ p1 : y = 0}|= |{(2/3, 0)}|= 1.

and

# 1
2
(p1) = |{(2− y

3 , y) ∈ p1 : y = 1
2}|= |{(

1
2 ,

1
2)}|= 1.

Finally,

#1(p1) = |{(2− y
3 , y) ∈ p1 : y = 1}|= |{(1

3 , 1)}|= 1.

(4.2.7) Now we can define subsets Em,n of P([0, 1]2) for m,n ∈ N by

Em,n := {p ∈ P([0, 1]2) | m ≤ #t(p) ≤ n ∀t ∈ [0, 1]}

and similarly

Em,n := τ(Em,n)

- this bounds the number of intersections with any vertical line.

For example E0,0 = {∅}.

(4.2.8) Note that an element of P([0, 1]2) is also a relation on [0, 1]. A function
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f : A→ B is a subset of A×B with the property that every a ∈ A appears exactly

once as the left-hand side of a pair (x, y) ∈ ρ. In this sense, f = f ∗. But we will

avoid this identification in our notation.

Note from this that we have

D1 = E1,1

Note that for most elements a, b ∈ D1 = E1,1 we have a� b ∈ E2,2, which verifies

that D1 is not closed.

The corresponding question for D∗1 is more interesting. (Because � treats the x

and y directions differently.) If we consider a, b ∈ D∗1 then #t(a� b) = 1 for almost

all t. Only t = 1/2 may have value 2. Here then, we are close to a submagma.

There are two quick ways to make submagmas here. One is to modify D∗1 slightly

to remove the point with y = 1 in each element, so that #1(p) = 0. Let us call the

corresponding subset D∗10. This is similar to considering P([0, 1]× [0, 1)) as in 4.1.

We have that the subset D∗10 is closed under �.

(4.2.9) Another way to proceed is to consider a subset of elements of D∗1 where

the subset of the picture restricted to y = 0 and y = 1 is fixed. Let us consider

the subset of D∗1 where the points (1/2, 0) and (1/2, 1) are present. Let us call this

subset D∗0.5.

(We will return to this kind of construction in 5.4.1.)

We have that the subset D∗0.5 is closed under �.

4.2.1 An extended example for #t

(4.2.10) In the following there is an example to understand calculating how many in-

tersection points with any horizontal lines that go through any element in P([0, 1]2).That

is, we calculate #t(p) as in 4.1 where p ∈ P([0, 1]2).

Consider

p =

(1)(2)

(3)
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Here the black circle (label (1)) represents f ∗1 = {(x − 1
2 , y −

1
2) : x2 + y2 6 1

16}.

Then the first small white circle (label (2)) represents f ∗2 = {(x− 3
8 , y−

5
8) : x2 +y2 6

1/100}.Finally, the second white circle (label (3)) represents f ∗3 = {(x − 5
8 , y −

5
8) :

x2 + y2 6 1/100}.

Then,

p = = f ∗1 \ (f ∗2 ∪ f ∗3 )

Now we look at different cases of a horizontal line y = t.

1. When a horizontal line y = t = 0 cut through p the calculation of #t(p) is

#0(p) = |{(x− 1
2 , 0−

1
2) : x2 + y2 6

1
16} \ ({(x− 3

8 , 0−
5
8) : x2 + y2 6 1/100}∪

{(x− 5
8 , 0−

5
8) : x2 + y2 6 1/100})|

= |{(x− 1
2 ,
−1
2 ) : x2 + y2 6

1
16} \ ({(x− 3

8 ,
−5
8 ) : x2 + y2 6 1/100}∪

{(x− 5
8 ,
−5
8 ) : x2 + y2 6 1/100})|

= |{(x− 1
2)2 + (−1

2 )2 6
1
16} \ ({(x− 3

8)2 + (−5
8 )2 6 1/100}∪

{(x− 5
8)2 + (−5

8 )2 6 1/100})|

= |{(x− 1
2)2 6

−3
16 } \ ({(x− 3

8)2 6
−605
100 } ∪ {(x−

5
8)2 6

−605
100 })|

= 0

there is no square number less than or equal to a negative number which mean

there is no intersection point between p and the horizontal line t = 0 as seen

in the graph 4.2 below.

2. When a horizontal line y = t = 0.1 cut through p the calculation of #t(p) is

#0.1(p) = |{(x− 1
2 , 0.1−

1
2) : x2 + y2 6

1
16} \ {(x−

3
8 , 0.1−

5
8) : x2 + y2 6 1/100}

∪ {(x− 5
8 , 0.1−

5
8) : x2 + y2 6 1/100}|

= 0

this means there is no intersection point between p and the horizontal line



4.2. The #t function for subsets 60

t = 0.1 as seen in the graph 4.2 below.

3. When a horizontal line t = 1
4 cut throw p the calculation of #t(p) is

# 1
4
(p) = |{(x− 1

2 ,
1
4 −

1
2) : x2 + y2 6

1
16} \ {(x−

3
8 ,

1
4 −

5
8 : x2 + y2 6 1/100}

∪ {(x− 5
8 ,

1
4 −

5
8) : x2 + y2 6 1/100}|

= |{(1
2 ,

1
4)}|

= 1

this mean there is a one intersection point between p and the horizontal line

t = 1
4 as seen in the graph 4.2.

4. When a horizontal line t = 1
2 cut through p the calculation of #t(p) is

# 1
2
(p) = |{(x− 1

2 ,
1
2 −

1
2) : x2 + y2 6

1
16} \ {(x−

3
8 ,

1
2 −

5
8) : x2 + y2 6 1/100}

∪ {(x− 5
8 ,

1
2 −

5
8) : x2 + y2 6 1/100}|

=∞

this means there are many intersection point between p and the horizontal

line t = 1
2 as seen in the graph 4.2.

In graph 4.2, We draw a picture with horizontal lines indicated in teal and inter-

section points in red.

t = 0t = 0.1t = 1
4

t = 1
2

(4.2)
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4.3 ‘Braid-like’ Submagma

In this section, we aim to construct a braid-like substructure in the passport pho-

tograph magma M (as defined in 3.1.20 above). The first question here is: what is

braid-like? A lot of geometric topology is used in the definitions of braid groups —

see for example [KT08, Kas12].

Can we find a subset of the passport photograph magma with elements that we

may call braid-like? In general a braid contains many strands of hair in a certain

configuration. We can start with a single strand, or ‘string’. That means we may

look at a string as a ‘braid’. So, roughly speaking, a mathematical string is a line

or curve or path that joins two points in R3. However, in our construction, we need

to look at strings to be elements in our magma M.

We will look for string that start at the top and ends at the bottom of [0, 1]2.

Now we describe what function we will use in our construction. (In general, hair

strands have several types including straight, wavy and curly. For all of these types

of hair, people just care about how they style it. Except mathematicians, who are

looking for mathematics seeds that lead them to connect life with math.) So this is

a reason for us to choose piecewise linear functions 2.4.12 for making strings inside

our magma.

As an example from real life is the process of braiding hair (changing the hair

configuration from unbraided to braided), the hair moves to the right or left and

also pushes up.

We can look at this case mathematically by using our composition: combining hair

configurations such as weaves is like stacking; and pushing the weaves up towards

the scalp is like shrinking.

This section is about finding the subset of elements which are like braids - then

we will do some math on it in our magma setting.

So here we are interested in the subset that has at least one string (line) going from

top to bottom.
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4.3.1 Submagma: Braid-like elements in two dimensions

Here we make some experiments with various forms of string-like or similarly special

elements in P([0, 1]d+1) with d = 1.

(4.3.1) Consider a function f ∈ PL(0, 1) as in 2.4.12. Observe that the set

{(f(y), y) : y ∈ [0, 1]} is a subset of [0, 1]2.

Definition 4.3.2. The set L1 is defined as

L1 = {{(f(y), y) : y ∈ [0, 1]} | f ∈ PL(0, 1)} (4.3)

(4.3.3) Observe that L1 is a subset of P([0, 1]2). We will prove this in 4.3.8 below.

(4.3.4) Notation: If we write f∗ for an element of L1, we mean

f∗ = {(f(y), y) : y ∈ [0, 1]} where f ∈ PL(0, 1) (2.4.12).

Example 4.3.5. Using our pictures as in 3.1.3 consider

f∗ = = {(y + 1
3 , y) : y ∈ [0, 1]} ∈ L1.

g∗ = = {(g(y), y) : y ∈ [0, 1]} ∈ L1.

where

g(y) =


5y+1

3 , y ∈ [0, 1
4 ]

7−y
9 , y ∈ [1

4 , 1].
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Proposition 4.3.6. If f∗ ∈ L1 as in (4.3) we have #t(f∗) = 1, ∀t ∈ [0, 1].

Proof. Let h∗ ∈ L1 ⊂ P([0, 1]2), and let t ∈ [0, 1]. So,

#t(h∗) = |{(x, y) ∈ {(h(u), u) : u ∈ [0, 1]} : y = t}|

= |{(h(t), t)}|

= 1 ∀ t

(4.3.7) Now let us ask if L1 gives a submagma of the (PPM) under the composition.

To be a submagma we need to see

(1) if L1 ⊂ P([0, 1]2); then need to check

(2) if L1 is closed under the composition of binary operation �.

(4.3.8) First, we want to prove L1 ⊂ P([0, 1]2) , that means we need to show that

every element of L1 is also an element in P([0, 1]2). Suppose h∗ ∈ L1 this implies

h∗ ⊂ f∗ . Then h∗ ⊂ [0, 1]2. Thus h∗ ∈ P([0, 1]2), Therefore L1 ⊂ P([0, 1]2).

(4.3.9) Second, we use the next example to see if L1 is closed under the composition.

Example 4.3.10. Consider f∗ ∈ L1 as in 4.3.5. Then

h∗ = f∗ � f∗ =

= {(2y + 1
3 , y) : y ∈ [0, 1

2]} ∪ {(2y
3 , y) : y ∈ [12 , 1]}.

Now I will show how many intersection points with the horizontal line y = t = 1
2 .

So, I will use 4.3.6 to calculate how many intersection points

#t= 1
2
(h∗) = |{(2y + 1

3 , y) : y = 1
2} ∪ {(

2y
3 , y) : y = 1

2}|

= |{(2
3 ,

1
2)} ∪ {(1

3 ,
1
2)}|

= |{(1
3 ,

1
2), (2

3 ,
1
2)}|

= 2
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There are two intersection points. By 4.3.6 this means h∗ /∈ L1. This implies L1 is

not closed under �.

So, here we proved L1 is not closed under �. Thus L1 is not submagma.

(4.3.11) There are several ways we could have shown this non-closure. We will look

at some others later (consider the gluing lemma in 2.3.16 for example). But the #t

machinery will also be useful later.

Definition 4.3.12. The set L2 is defined as

L2 = {{(f(y), y) : y ∈ [0, 1]} | f ∈ PL(0, 1) , f(0) = f(1) = 1/2}. (4.4)

where the set PL(0, 1) is as in 2.4.12

(4.3.13) Note from the definitions that L2 ⊂ L1.

(4.3.14) Notation: Given a function γ in PL(0, 1) with γ(0) = γ(1) = 1
2 , then if we

write (γ) for an element of L2, we mean (γ) = {(γ(y), y) : y ∈ [0, 1]}.

Example 4.3.15. Consider

(f) = = {(f(y), y) : y ∈ [0, 1]}

∈ L2

where

f(y) =


1
2 −

y
2 , y ∈ [0, 1

2 ]
y
2 , y ∈ [1

2 , 1]

Lemma 4.3.16. The set L2 as in 4.3.12 is subset of P([0, 1]2).

Proof. To prove L2 ⊂ P([0, 1]2), we need to show every element of L2 is an element

in P([0, 1]2). But L2 ⊂ L1 so we are done.

Next, we want to prove that (L2,�) is a submagma. First, we will give a Lemma

that we will use in the proof.
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The following is a variation on the glue lemma, which can be found for example

in [Mar21, §7.4]. The glue lemma considers two topological spaces, X and Y , say.

It then considers subsets A,B of X so that A∪B = X. On these subsets it considers

functions f : A → Y and g : B → Y , having the property that f(x) = g(x) for

all x ∈ A ∩ B. So far here it is possible that A and B are disjoint. But in any

case we can make a new function h : X → Y by setting h(x) = f(x) for x ∈ A

and h(x) = g(x) otherwise. The lemma then considers conditions under which h is

continuous on X, if given that f and g are continuous on their domains.

It is helpful (and most relevant to us) to think of X above as some subset of

R, with the usual topology. For example if X is a closed interval and A and B are

also closed intervals then the union property implies that they intersect. This is the

usual ‘intuitive’ setting for continuity. This is the setting that we will consider, and

we will go further and suppose that f and g are piecewise linear.

Definition 4.3.17. Let A,B, Y be sets. Consider functions f : A → Y and g :

B → Y . If

(I) f(x) = g(x) for x ∈ A ∩B

then we define a ‘union’ function of f and g,

f ∪ g : A ∪B → Y given by

x 7→


f(x) if x ∈ A

g(x) if x ∈ B \ A.

Lemma 4.3.18. (Piecewise linear glueing lemma) Let α < δ ∈ R and let d ∈ N.

Let f : [α, β] → Rd and g : [γ, δ] → Rd be piecewise linear functions, as defined in

2.4.3 Then the union f ∪ g exists and is a piecewise linear function if β ≥ γ and the

functions agree on the intersection of domains.

Proof. The intersection condition (I) is satisfied so f ∪ g exists. In particular here

[α, β]∪ [γ, δ] = [α, δ]. We want to show that f ∪ g is a piecewise linear function on

[α, δ].

Let us define a new function

h := f ∪ g : [α, δ]→ Rd.
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Since f is PL it takes the form f : [α, β]→ Rd

f(x) =



f1(x) if x ∈ [α = α1, α2]

f2(x) if x ∈ [α2, α3]
... if ...

fi(x) if x ∈ [αi, αi+1]
... if ...

fj(x) if x ∈ [αj, αj+1 = β]

.

Similarly, since g is PL it takes the form g : [γ, δ]→ Rd

g(x) =



g1(x) if x ∈ [γ = γ1, γ2]

g2(x) if x ∈ [γ2, γ3]
... if ...

gi(x) if x ∈ [γi, γi+1]
... if ...

gk(x) if x ∈ [γk, γk+1 = δ]

.

Since β ∈ [γ, δ] there is an l so that β ∈ [γl, γl+1]. Here we add a breakpoint β, so

we break gl into two linear pieces with domains [γl, β] and [β, γl+1]. Now we have

h(x) =



f1(x) if x ∈ [α = α1, α2]

f2(x) if x ∈ [α2, α3]
... if ...

fj(x) if x ∈ [αi, αi+1 = β]

gl(x) if x ∈ [β, γl+1]
... if ...

gk(x) if x ∈ [γk, γk+1 = δ]

Thus h is a Piecewise linear function.
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4.3.1.1 Submagma proof

Proposition 4.3.19. Consider L2 ⊂ P([0, 1]2), from (4.3.12). The set L2 gives a

submagma of (P([0, 1]2),�).

Proof. We want to check if L2 is closed under the binary operation �.

Let us take two elements (h) (notation as in 4.3.14) and (g) in L2. We want to show

that (h)� (g) is in L2 ⊂ P([0, 1]2). We compute:

(h)� (g) = shrink2(stack((h), (g))) by definition 3.1.19 (this uses 3.1.15, 3.1.17)

= shrink2((h) ∪ shift1((g)))

= shrink2({(h(y), y) : y ∈ [0, 1]} ∪ {(g(y), y + 1) : y ∈ [0, 1]})

= {(h(y), y2) : y ∈ [0, 1]} ∪ {(g(y), y + 1
2 ) : y ∈ [0, 1]}

In the first part of the last result we will re-write y
2 = x, which implies y = 2x.

Then (h(y), y2) change to be (h(2x), x) when x ∈ [0, 1
2 ].

In the second part

we will re-write y + 1
2 = x, =⇒ y = 2x− 1.

then (g(y), y + 1
2 ) change to be (g(2x− 1), x) when x ∈ [12 , 1].

We have:

(h)� (g) = {(h(2x), x) : x ∈ [0, 1
2]} ∪ {(g(2x− 1), x) : x ∈ [12 , 1]}. (4.5)

Note that this element of P([0, 1]2) is the union of a piece which is a function on

[0, 1/2] and a function on [1/2, 1].

Since h and g are PL(0, 1) they are linear in each segment. Therefore, h and g

are continuous on [0, 1].

Next, we want to see if h(2x) and g(2x − 1) are continuous or not. Note that

γ : x 7→ 2x is continuous. Since it is a linear on [0, 1
2 ]. Then h(γ(x)) is continuous.

Since its composition of two continuous functions 2.3.12. Similarly, g(2x − 1) is

continuous. Thus we observe [0, 1] = [0, 1
2 ] ∪ [1

2 , 1].

So, in this case, we can use the Glueing Lemma 2.3.16 to decide if the union in (4.5)
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agrees with a continuous function on [0, 1]. The Gluing Lemma says this union of

continuous functions is continuous if they agree on their intersection (at x = 1/2).

We have a slight strengthening of this glueing lemma, to the Piecewise linear glueing

lemma 4.3.18).

Note that the axioms of this Lemma 4.3.18 are satisfied by the union given by

our (h)� (g). So by this Lemma (h)� (g) agrees with a piecewise linear function on

[0, 1]. Note also that this function evaluates to 1/2 at the beginning and the end.

So we are done.

Example 4.3.20. Consider (g) and (f) ∈ L2 given by

(g) = = {(1/2, y) : y ∈ [0, 1]}

(f) = = {(f(y), y) : y ∈ [0, 1]}

∈ L2

where

f(y) =


1
2 −

y
2 , y ∈ [0, 1

2 ]
y
2 , y ∈ [1

2 , 1]

Then

� stack→ shrink2→ ∈ L2
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(g)� (f) =



1
2 − y if y ∈ [0, 1/4]

y if y ∈ [1/4, 1/2]

1/2 if y ∈ [1/2, 1].

Definition 4.3.21. The set L3 is defined as

L3 := {{(f(y), y) : y ∈ [0, 1]} | f any function from [0,1] to itself} (4.6)

(4.3.22) Notation: If we write f ′ for an element of L3, we mean

f ′ = {(f(y), y) : y ∈ [0, 1]} where f any function (f : [0, 1]→ [0, 1]).

Example 4.3.23. Using our picture as in 3.1.3 consider f ′ ∈ L3 given by

f ′ = = {(f(y), y) : y ∈ [0, 1]},wheref(y) = y.

(4.3.24) Let us ask is L3 give submagma of M under �. To be submagma we would

need to check the following:

1. Is L3 ⊂ P([0, 1]2)? (next lemma answers.)

2. Is L3 closed under the composition �?

Lemma 4.3.25. The set L3 as in 4.3.21 is subset of P([0, 1]2.

Proof. We want proof L3 ⊂ P([0, 1]2). Suppose h′ ∈ L3 this implies h′ ⊂ f ′ . Then

h′ ⊂ [0, 1]2. Thus h′ ∈ P([0, 1]2), Therefore L3 ⊂ P([0, 1]2).

(4.3.26) Now we check if L3 is closed under composition�. So the following example

is used to verify it is not.
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Example 4.3.27. Consider f ′ ∈ L3 as 4.3.23. Then

f ′ � f ′ =

= {(2y, y) : y ∈ [0, 1
2]} ∪ {(2y − 1, y) : y ∈ [12 , 1]}

Now I will show how many intersection points with the horizontal line y = t = 1
2 .

So, I will use 4.3.6 to calculate how many intersection points

#t= 1
2
(f ′ � f ′) = |{(2y, y) : y = 1

2} ∪ {(2y − 1, y) : y = 1
2}|

= |{(1, 1
2)} ∪ {(0, 1

2)}|

= |{(1, 1
2), (0, 1

2)}|

= 2

There are two intersection points. By 4.3.6 this means f ′ /∈ L3. This implies L3 is

not closed under �. So, here we proved L3 is not closed under �. Thus L3 is not

submagma.

Definition 4.3.28. The set L4 defined as

L4 := {{(f(y), y) : y ∈ [0, 1]} | f(0) = f(1) = 1/2}. (4.7)

Lemma 4.3.29. The set L4 as in 4.3.28 is subset of P([0, 1]2).

Proof. To prove L4 ⊂ P([0, 1]2), we need to show every element of L4 is an element

in P([0, 1]2). But L4 ⊂ L3 so we are done.

(4.3.30) Note that

L3

⊃
L1

⊃

⊃

L4

⊃
L2
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4.3.2 Generalisations

(4.3.31) There are many other subsets of [0, 1]2 of these kinds that we could try. We

will leave most of these for future work. But we note that L2 is, in a sense, a subset

of ‘single strings’. We can make a generalisation to more strings. In particular if we

consider a subset of E2,2 made from PL functions, just as L1 is for E1,1 then we will

get elements of our magma that look like braids with n strings.

(4.3.32) We may define subsets of [0, 1]2 with 2-strings as

B1 = { (f) ∪ (g) | f, g ∈ PL(0, 1), f(0) = f(1) = 1/3, g(0) = g(1) = 2/3 }

But B1 is not in E2,2 as shown in the next example.

Example 4.3.33. Consider b1 ∈ B1 given by

b1 =

where

f(y) =


5
6y + 1

3 if 0 ≤ y ≤ 1
2

7
6 −

5
6y if 1

2 ≤ y ≤ 1

and

g(y) =


2
3 −

5
6y if 0 ≤ y ≤ 1

2

5
6y −

1
6 if 1

2 ≤ y ≤ 1

(4.3.34) The set B2 define as

B2 = { (f)∪(g) | f, g ∈ PL(0, 1), f(0) = f(1) = 1/3, g(0) = g(1) = 2/3 , g(y) > f(y), y ∈ [0, 1]}
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Example 4.3.35. Consider b2 ∈ B2 given by

b2 =

where

f(y) =


y+1

3 if 0 ≤ y ≤ 1
2

2−y
3 if 1

2 ≤ y ≤ 1

and

g(y) =


4
15y + 2

3 if 0 ≤ y ≤ 1
2

14
15 −

4
15y if 1

2 ≤ y ≤ 1

Here B2 is a subset of E2,2 and closed under �.

(4.3.36) Note that B2 is closed under �. Therefore, it is a submagma.

(4.3.37) If we use the same idea we can make n-string subsets of En,n.

Note that when d=1 the strings can not be touch or intersect, so they cannot

twist around each other, but in d=2 strings can twist around each other.

We can also consider generalisations to higher d, and in particular to d = 2.

Again we will leave these generalisations for future work.



Chapter 5

Quotients on passport photograph

magma

This chapter will consider equivalence relations on the set P([0, 1]2) of passport

photographs. And hence congruences, and hence quotients, on the magma. Broadly

we are aiming for associative quotients, as a first step in doing representation theory.

We discuss magma congruences in general in section 5.1.

In section 5.1 (containing 5.1.18) we look at minimal relations that would be

enough to make an associative quotient.

A quotient using the Thompson group F is in section 5.2. The idea here is that

F is a subgroup of the group Homeo([0, 1], [0, 1]), and its action contains the action

in 5.1.18.

The quotient under a relation Rα (which arranges elements into classes indexed

by set partitions) is in 5.4.1 .

73
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5.1 Generalities

5.1.1 Congruence

In this section we define magma congruence.

(5.1.1) Let M = (M, ∗) be a magma and ρ an equivalence relation on M , with the

class of m ∈M written [m]. We can try to define a magma on the set of equivalence

classes of M . The product is given formally by

[m] ◦ [m′] = [m ∗m′], (5.1)

but this does not give a well-defined product in general. Suppose l ∈ [m]. Then

[l] = [m] so we require [l] ◦ [m′] = [m] ◦ [m′] = [m ∗m′] = [l ∗m′] for all m′ ∈M . In

other words, we require that if lρm then (l∗m′) ρ (m∗m′) for all m′. (And similarly

for some other identities.)

Definition 5.1.2. Let a, b, a′and b′ ∈ P([0, 1]2). Then a magma congruence on

magma M is an equivalence relation such that:

a ∼ a′ and b ∼ b′ implies a� b ∼ a′ � b′.

(5.1.3) Given a magma congruence then we can define a quotient magma using

(5.1).

(5.1.4) Now suppose that a group G acts on a set S. We can write gs for the result

of acting with g ∈ G on element s ∈ S. We have in mind an action so that for

g, g′ ∈ G then (gg′)s = g(g′s) (sometimes called a left-action of G on S) and 1s = s,

where 1 is the identity element in G.

This action of a group G on S gives a relation on S by s ∼ gs for all g.

(5.1.5) Note that this G-action relation obeys

reflexive (since s ∼ 1s = s);

symmetric (since s ∼ gs and gs ∼ g−1(gs) = 1s = s;

transitive (since s ∼ gs and gs ∼ g′(gs) implies s ∼ g′(gs) since g′(gs) = (g′g)s).

So this ∼ is an equivalence relation.
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That is, the classes of this relation are the sets [s] = {gs|g ∈ G}.

(5.1.6) Now suppose that we have a group action of a group G on the underlying set

of a magma M = (M, ∗). Since the relation we get from this action is an equivalence

relation, we can ask if it is a congruence. That is we can ask if

[a ∗ b] = [a′ ∗ b′] whenever a′ ∈ [a], b′ ∈ [b]

In this case we know that a′ = ga for some g ∈ G and b′ = g′b for some g′ ∈ G. So

we are asking if a ∗ b = g′′(ga ∗ g′b) for some g′′ ∈ G.

(5.1.7) For example, for our magma (with some group action on it), we are asking

if for every g, g′ there is a g′′ so that a � b = g′′(ga � g′b). Later we will look at

examples of groups acting on our magma, and consider this equality requirement in

these cases explicitly.

The idea is that � is stack-shrink, while a 7→ ga may also correspond to a change

in the y direction. So for some groups G the action will be such that there is an

element which we can write as g � g′, which acts on a� b to take it to ga� g′b.

One quick example of this is if G = Homeo([0, 1], [0, 1]). The action of g can be

‘squeezed’ into the interval [1/2, 1] by rescale and shift. And the action of g′ into

[0, 1/2] similarly. Both new actions, and the composite, are again homeomorphisms.

So we get a congruence this way.

(5.1.8) The above example is close to a common equivalence that is used, some-

times called isotopy (see for example [Kas12]). In this section we will explore away

from this common example, both by considering relations with smaller classes, and

considering relations with bigger classes.

5.1.2 Some relations on the set S1 of ’passport photos’

(aiming for an associative magma)

Here we consider (equivalence) relations that might work as, or become, congruences

on our magma. (We define magma congruences in (5.1.2)).

We can ask what is a relation we can describe such that the two sides of our

associativity test as in (3.3) which are different, are related - for all compositions.
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There are very ‘heavy’ relations that relate many things together. (For example

the relation that has only one equivalence class. But in general there are many

others.)

There are minimal relations that exactly relate as we require but do no more

(and perhaps these are not equivalences??).

And then there might be relations in between ...which are somehow more or less

‘nice’.

5.1.2.1 Experimental relation 1

Here we start to consider some explicit examples of relations on S1.

Definition 5.1.9. For P1, P2 ∈ S1 we have a relation ; on S1 given by P1 ; P2

if P2 obtained from P1 by applying a function f : [0, 1] → [0, 1] to the y values of

elements (x, y) ∈ P1. That is, if

P2 = {(x, f(y)) | (x, y) ∈ P1} (5.2)

for some such function f .

An important question about our relations is if they are equivalence relations.

We require the relations we use to make congruences to be equivalence relations, as

noted in 5.1.1.

(5.1.10) Note that this relation ; is reflexive, because we can use the identity

function for f as in the definition.

But this relation is not symmetric! For proof, we give an example. Consider

P = {(0, 1/3), (0, 2/3)} and consider the function f(x) = 1/2. From this we have

P ; P ′ = {(0, 1/2)}, because we have

{(x, f(y))|(x, y) ∈ {(0, 1/3), (0, 2/3)}} = {(0, 1/2), (0, 1/2)} = {(0, 1/2)}

But the photos P ′′ having the relation P ′ ; P ′′ are all photos with one point because

a function takes one point to one point. Therefore P ′ 6; P , because P has two

points. Thus ; is not symmetric.

(5.1.11) We could ‘fix’ this particular issue for our example by taking the equivalence
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relation closure of ; (as defined in 5.1.2.5). But instead, let us move on to a more

interesting example.

5.1.2.2 Experimental relation 2

Our previous example in 5.1.2.1 was not an equivalence relation. The problem was

related to the kind of functions f that we allowed in the construction. We can try

to fix this by restricting the kind of functions that we allow.

Definition 5.1.12. We define a relation h
; on S1 as follows. For P1, P2 ∈ S1 we

have P1
h
; P2 if P2 obtained from P1 by applying a continuous bijective function

f : [0, 1]→ [0, 1] to the y values of elements (x, y) ∈ P1. That is, if

P2 = {(x, f(y)) | (x, y) ∈ P1} (5.3)

for some such a continuous bijective function f .

Lemma 5.1.13. This relation h
; on S1 from Def.5.1.12 is an equivalence relation.

Proof. We need to check if h
; is reflexive symmetric and transitive.

1. Reflexive:

We want to show that (P, P ) ∈ h
; for all P ∈ S1.

Do we have a continuous bijective f such that P = {(x, f(y))|(x, x) ∈ P}?

Yes, because we can note that the identity function

id : [0, 1]→ [0, 1]

is continuous and bijective, so we can take f(y) = y.

Therefore h
; is reflexive.

2. Symmetric:

Suppose (P1, P2) ∈ h
; then is it true that (P2, P1) ∈ h

;?

By our assumption, we know that there is continuous bijective f such that

P2 = {(x, f(y))|(x, y) ∈ P1}. (5.4)
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Can we show that there is a continuous bijective function — we can call it g

— such that P1 = {(x, g(y))|(x, y) ∈ P2}?

Because f is bijective it has an inverse. That is, we have a function g : [0, 1]→

[0, 1] such that f ◦ g = id. Here, to stop the proof from becoming too long,

we will assume that this g is continuous. If it is, then we can use it to make

two pictures related by h
;. Let us see what happens when we apply g to P2:

{(x, g(y))|(x, y) ∈ P2} = {(x, g(f(y)))|(x, f(y)) for (x, y) ∈ P1}

= {(x, g(f(y)))|(x, y) ∈ P1} = {(x, y)|(x, y) ∈ P1} = P1

where we used (5.4) to rewrite P2. So P2
h
; P1.

3. Transitive:

Suppose (P1, P2) and (P2, P3) ∈ h
;, then it is true that (P1, P3) ∈ h

;?

By our assumption, we know that there are continuous bijective f, g such that

P2 = {(x, f(y))|(x, y) ∈ P1} and P3 = {(x, g(y))|(x, y) ∈ P2}. Substituting for

P2 we obtain

P3 = {(x, g(f(y))) | (x, f(y)) for (x, y) ∈ P1}.

Here g ◦ f : [0, 1]→ [0, 1] is also a continuous bijective, because the composi-

tion of bijections is bijection; and the composition of continuous functions is

continuous. So, P1
h
; P3 . Therefore h

; is transitive.

Thus ; is an equivalence relation.

(5.1.14) Since h
; is an equivalence relation we can move on to the two other ques-

tions:

does it make the two bracketings in the associativity test lie in the same class?

is it a congruence?

(5.1.15) The inequality from 3.3 illustrates that the operation � is not associa-

tive. Here we call P1 = (Q1 � Q2) � Q3 for the left side of this associativity and

P2 = Q1 � (Q2 �Q3) for the right hand side. What we get is P1 6= P2.
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We claim the equivalence class of P1 under relation ( h
;) will be equal to the equiv-

alence class of P2. The class of P1 is denoted by [P1]. So then we claim [P1] = [P2].

That means we claim f(P1) = {(x, f(y))|(x, y) ∈ P1)} = P2 for some bijective

function f for every case of P1 and P2.

Specifically, we claim that in fact the single function fm given in (5.1.18) below

satisfied this identity in all cases; and is a continuous bijection.

5.1.2.3 The function fm

In this section we define a key function in Homeo([0, 1], [0, 1]) and show its proper-

ties.

(5.1.16) Note that if we have a set S and a relation ρ on S then the equivalence

closure of ρ (see e.g. 5.1.2.5) sorts S into classes. Let us call these the ‘classes of ρ’

(strictly they are the classes of the closure). Note that if we have a relation ρ′ ⊃ ρ

as a subset of S × S then the classes of ρ′ are unions of classes of ρ.

In particular, if [s] = [t] in ρ (again we mean in the closure) then [s] = [t] in

ρ′ ⊃ ρ.

(5.1.17) It follows that if a particular relation ρ (a set of relational pairs (s, t))

leads to an identity of classes, then a larger relation (a larger set of relational pairs

- indeed any set containing the elements of ρ) gives the same identity.

For example, if some relation yields the associative identities on classes in a

magma, then a bigger relation will also give these identities.

In our case if we have a single function in our set acting on S1 that leads to the

identities on classes, then our relation will give these identities.

(Of course this does not mean that we have a congruence. But if we do have a

congruence, it will be with a semigroup or monoid as quotient.)

(5.1.18) The function fm is:

fm(x) =



x

2 , 0 6 x 6
1
2

x− 1
4 ,

1
2 < x 6

3
4

2x− 1 ,
3
4 < x 6 1

(5.5)
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The graph of this function fm is:

y

f

(1,1)

fm

id

To see that fm is a bijection consider the function:

gm(x) =



2x , 0 6 x 6
1
4

x+ 1
4 ,

1
4 < x 6

1
2

x+ 1
2 ,

1
2 < x 6 1

We can compute gm ◦ fm by explicit computation, and thus confirm that gm ◦ fm =

id[0,1]. Thus we have shown the following.

Proposition 5.1.19. The function fm : [0, 1]→ [0, 1] is a bijection; and its inverse

is fm−1 = gm given as above.

Proposition 5.1.20. Let Q1, Q2, Q3 ∈ S1, and recall product � from Def.3.1.19.

Let P1 = (Q1 �Q2)�Q3 and P2 = Q1 � (Q2 �Q3). (Remark: recall that � is not

associative; so in general P1 6= P2.) Then the equivalence class of P1 under relation

( h
;, as in 5.1.12) is equal to the equivalence class of P2.

Here the class of P1 is denoted by [P1]. So our statement becomes [P1] = [P2].

That means f(P1) = {(x, f(y))|(x, y) ∈ P1)} = P2 - for some continuous bijective

function f .

In particular:

fm(P1) = P2

Proof. Firstly, we can see from the graph above that this fm is a bijection as required.

Then, for the identity, notice, to begin with, that in P1 the factor of this picture
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coming from Q3 is living in the range of y values y = 0 to y = 1/2. After applying

fm, this range is changed to be from y = 0 to y = 1/4. Similarly, we can see that

fm changes Q2 and Q1 just as we need to change P1 to P2. More explicitly, looking

at the second factor of this picture which is Q2. It is living in the range of y values

y = 1/2 to y = 3/4. After we apply fm, this range is changed to be from y = 1/4 to

y = 1/2. Finally, the last factor in P1 is Q1 which is living in the range of y values

y = 3/4 to y = 1. After we apply fm, this range is changes to be from y = 1/2 to

y = 1.

5.1.2.4 Minimal relation for formal associativity

In Prop.5.1.20 we proved that the presence of fm in a subset of theHomeo([0, 1], [0, 1])

action on S1 is sufficient to have the formal associative identities on classes. (‘For-

mal’ because this does not yet consider congruence.)

Next we consider the necessary (as opposed to sufficient) conditions for such a rela-

tion.

In the inequality from 3.3 we call

A1 = (a� b)� c

for the left side of this inequality and A2 = a� (b� c) for the right-hand side. What

we get is A1 6= A2.

(5.1.21) Now we look for a relation on P([0, 1]2) that will identify the classes of A1

and A2. There are many possibilities - and some of these will be congruences on

our magma. Minimally we can take the equivalence-relation closure of the relation

obtained by identifying for all triples as above. This is easy to say, but not easy

to implement in a controlled way (and it is possibly a lot smaller than the kinds of

equivalences that might appear ‘natural’ in this setting - see later). Or, we could

implement a more conceptual equivalence and see if it is a congruence and achieves

the required identification. This is what we do in 5.1.26. (And this is where we will

pass closer to consideration of the Thompson group.)

(5.1.22) Next we define a relation ρa that we will use to construct an equivalence

relation such that the equivalence classes of A1 and A2 above are equal ([A1] = [A2])
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for all a, b, c. So here we will describe a minimal/necessary relation in order to get

(after that) the smallest equivalence relation containing this relation.

We start with our underlying set P([0, 1]2). For A1, A2 as above we have A1 6=

A2. We want to force [A1] = [A2] in all cases by defining the following:

Let a, b, c ∈ P([0, 1]2) and then define a recipe for making A1 as

f1 : P([0, 1]2)×3 −→ P([0, 1]2)

(a, b, c) 7 −→ f1(a, b, c) = (a� b)� c.

and define making A2 as

f2 : P([0, 1]2)×3 −→ P([0, 1]2)

(a, b, c) 7 −→ f2(a, b, c) = a� (b� c).

(5.1.23) The relation ρa on P([0, 1]2) can now be defined as

ρa = {(x, y) | x = f1(a, b, c) and y = f2(a, b, c) for some a, b, c ∈ P([0, 1]2)}.

(5.1.24) Now we can ask: What is the smallest equivalence relation containing ρa
(in the sense of (2.2.7))?

5.1.2.5 Closure of relation to Equivalence-relation

(5.1.25) For any relation ρ on a set X to itself, we can ask how to construct the

smallest equivalence relation containing ρ. (Then we can apply this, for example,

to relations such as ρa on P([0, 1]2), as in 5.1.23.)

Let’s take any relation ρ on any set X defined as

ρ ⊂ {(x, y) ∈ X ×X | x, y ∈ X}.

Any equivalence relation containing ρ is reflexive, so must contain a reflexive closure.

So first define

ρr = ρ ∪ {(x, x) ∈ X ×X | x ∈ X}
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because we require equivalence relation closure. We also need to include in ρ the

symmetric closure

ρs = ρ ∪ {(y, x)|(x, y) ∈ ρ}.

Next, we need to contain the transitivity closure. We first repeat the transformation

ρ; ρ ∪ {(x, z) | (x, y) ∈ ρ and (y, z) ∈ ρ}.

Then we define ρt as the output of repeating this transformation until there is no

more change.

Finally define

ρe := ρr
st
.

We will next show that the equivalence closure of the relation ρ on the set X is

given by

ρ = ρe = ρr
st
.

(5.1.26) Therefore, in our case the equivalence closure (ρa) of the original relation

ρa on the set P([0, 1]2) is

ρa = ρra
st
.

Proposition 5.1.27. For any relation ρ on a set X to itself as above, the relation

ρe is equivalence relation. And hence ρ = ρe.

Proof.

1. Reflexive: by the reflexive closure, for all x ∈ X this implies all pairs of the

form (x, x) in ρr.

Also, we note that the symmetric and transitive closure only add pairs to this

relation. Therefore, ρe is reflexive.

2. Symmetric (first step): for x, y ∈ X then by the s-closure for each (x, y) in

ρr, we must add (y, x). So ρr
s is symmetric. Note that we need to return to

check the symmetry of ρr
st after we do transitive closure.
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3. Transitive: transitivity follows since we take transitive closure as last step in

the construction. Symmetric (final step): for x, y and z ∈ X then for

each (x, y) and (y, z) in ρr
s we add (x, z) by the t-closure. We also have

(y, x) and (z, y) in ρr
s by symmetric closure. So by transitive closure, we

add (z, x) ∈ ρe. Then we have (z, x) and (x, z), by transitive closure. Thus

ρe is symmetric.

Hence ρe is reflexive, symmetric and transitive. Therefore, ρe is an equivalence

relation. It is the smallest equivalence relation that is containing ρ because, in each

step in 5.1.25, we only add the minimum number of pairs that are necessary to

satisfy the equivalence relation conditions.

(5.1.28) Recall from 5.1.23 that for each pair A1, A2 which are images of the same

triple of elements by the different orders of their composition, we have A1ρaA2. We

claim the equivalence class of A1 under the relation ρa above will be equal to the

equivalence class of A2. The class of A1 is denoted by [A1]. So then we claim

[A1] = [A2].

(5.1.29) Now we want to prove our claim [A1] = [A2]. Since the closure only adds

elements to the relation and does not remove any, A1 and A2 are related by the

closure relation 5.1.26. Therefore, they are in the same class.



5.2. Quotient of M from Thompson Group F 85

5.2 Quotient of M from Thompson Group F

In this section, we introduce the generalities of an action of a homeomorphism group

5.2.1. Then we recall the definition of Thompson Group F in §5.2.2. Then we

introduce properties of the Thompson group action on P([0, 1]2) in §5.2.3. Finally,

We address the subgroup generated by fm in §5.2.4.

5.2.1 Generalities

(5.2.1) Recall 2.3.17. In particular the set Homeo([0, 1], [0, 1]) is a group. There is

an action

∗ : Homeo([0, 1], [0, 1])× P([0, 1]2)→ P([0, 1]2)

of this group on P([0, 1]2) given by

f ∗ p = {(x, f(y)) | (x, y) ∈ p}

(there are other actions, but this is the main one for us).

(5.2.2) For any group action on P([0, 1]2) we can partition P([0, 1]2) into orbits

under the group action. This corresponds to an equivalence relation in the usual

way.

In general an equivalence relation will not be a congruence on our magma. (And

if it is a congruence, the quotient may not be associative.) (For example quotienting

by the trivial group action obviously yields a non-associative congruence.) But we

can investigate which equivalences and actions may lead to congruences.

(5.2.3) The action of Homeo([0, 1], [0, 1]) above yields a congruence with an asso-

ciative quotient.

Here we are interested in finding subgroups which also yield an associative quo-

tient.

A particularly interesting subgroup to consider is Thompson’s F group, which

we recall in §5.2.2. We will also consider even smaller/simpler subgroups that might

yield associative quotients. (See e.g. §5.1.2, where we also consider the requirements

for such a group.)
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5.2.2 Thompson’s group F

In this section, we provide one of three Thompson’s groups called F .

In 5.2.3 we will use this group to make a quotient of our magma M.

We define dyadic rational numbers first then Thompson’s group F .

Definition 5.2.4. (see e.g.[Sti18, Bel07]) A dyadic rational number is a rational

number whose denominator is a power of two. It is of the form a
2b where a ∈ Z and

b ∈ N.

Example 5.2.5. 1. Consider a = 1 ∈ Z and b = 1 ∈ N, the dyadic rational is
1
21 = 1

2 .

2. Consider a = −5 ∈ Z and b = 3 ∈ N, the dyadic rational is −5
23 = −5

8 .

Definition 5.2.6. (see e.g. [Pen17, BM14, Bel07, CFP94, Chm18, Lev19])

A group F = (F, ◦) is called Thompson’s group F if it has the following proper-

ties:

• the underlying set F is the set of all piecewise-linear homeomorphisms from

the close unit interval [0, 1] to itself with finitely many breakpoints satisfying

the following conditions:

1. Every slope is a power of two, and

2. Every breakpoint has dyadic rational coordinates,

• ◦ is representing the composition of functions (thus it is required to be closed

in F - see the references above).

Example 5.2.7. Let f : [0, 1] → [0, 1] given by f(x) =



x
2 , if 0 6 x 6 1

2

x− 1
4 , if 1

2 6 x 6 3
4

2x− 1, if 3
4 6 x 6 1

Then by the definition 5.2.6 f is an element of F .
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Proposition 5.2.8. Thompson group F is closed under composition.

For the proof (see. e.g [CFP94]).

(5.2.9) Note that Thompson group F generated by two functions A and B, given

in next example 5.2.10.

Example 5.2.10. Consider A,B ∈ F . Then A,B : [0, 1]→ [0, 1] given by

A(x) =



x
2 , if 0 6 x 6 1

2

x− 1
4 , if 1

2 6 x 6 3
4

2x− 1, if 3
4 6 x 6 1

and B(x) =



x, if 0 6 x 6 1
2

x
2 + 1

4 , if 1
2 6 x 6 3

4

x− 1
8 , if 3

4 6 x 6 7
8

2x− 1, if 7
8 6 x 6 1

Calculating A ◦B(x) as follows:

Let {0 = x0 6 1/2 6 3/4 6 xn = 1} and {0 = x0 6 1/2 6 3/4 6 7/8 6 xn = 1} be

breakpoints of A and B respectively.

Then since B(0) = 0, A(B(0)) = A(0) = 0, then A(B(x)) = x/2 for 0 6 x 6 3
4

where 1/2 is a power of 2.

Likewise, since A(B(x)) is a dyadic rational number, and A(B(x)) = x − 3/8 for
3
4 6 x 6 7

8 , where 1 = 20 is a power of 2 and 3
8 is a dyadic rational number.

It follows that A(B(x)) = 4x− 3 for 3
8 6 x 6 1, where 4 is a power of 2 and 3 = 3

20

is a dyadic rational number.

Thus A ◦B(x) =



x
2 , if 0 6 x 6 3

4

x− 3
8 , if 3

4 6 x 6 7
8

4x− 3, if 7
8 6 x 6 1

is closed under composition.

5.2.3 Properties of the Thompson group action on P([0, 1]2)

Note that fm ∈ F . It follows that the equivalence relation given by the action of F

gives the associative identities on classes. It remains to check that this relation is a

congruence.

(5.2.11) Given a set M and a set S ⊂ hom(M,M) we can define a relation S
; on

M by m S
; m′ if m′ = f(m) for some f ∈ S.

Observe that if f, f ′ ∈ S but f ◦f ′ 6∈ S (S is not closed under composition in the
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monoid hom(M,M)) then m
S
; f(m) S

; f ′(f(m) but we do not necessarily have

m
S
; f ′(f(m)). That is, S

; is not necessarily transitive. On the other hand, if S is

closed (it is a sub-semigroup of hom(M,M)) then we have transitivity.

Similarly if S includes the identity then we have reflexivity of S
;. And if S

contains inverses then we have symmetricity.

In other words, given S ⊂ hom(M,M), and extending this to the subgroup 〈S〉

that it generates, then the relation determined by 〈S〉 is an equivalence relation.

(Thus it defines classes, which we can then test for congruence if M is in fact a

magma.)

(5.2.12) We have that any function f : [0, 1] → [0, 1] induces a function f :

P([0, 1]d+1)→ P([0, 1]d+1) by

f(p) = {(x, f(y)) | (x, y) ∈ p}.

(5.2.13) Consider a subset S ⊂ hom([0, 1], [0, 1]). We can define a relation S
; on

P([0, 1]d+1) as above. And we see that using the subgroup 〈S〉 will mean that this

is an equivalence relation.

(5.2.14) Note that this is not enough to ensure that the relation is a congruence.

When is a relation of this (a, fa) form a congruence?

For a relation ∼ to be a magma congruence on a magma with composition �, say,

we require firstly that it is an equivalence - so here we write [a] for the class of a.

Then we require that a′ ∼ a (i.e. a′ ∈ [a]) and b′ ∼ b implies a� b ∼ a′ � b′.

Let us check for the (a, fa) kind of relation.

a ∼ a′ implies a′ = fa (for some f ∈ S)

so we must ask if

a� b ?= f ′′(fa� f ′b) for some f ′′ ∈ S, for all f, f ′ ∈ S.

To construct a candidate for f ′′ consider the following.

(5.2.15) Elements f : I→ I of Homeo(I, I) compose by function composition. But

elements in Homeo0(I, I), the connected component of the identity, also compose by

a form of stack-shrink:

� : Homeo0(I, I)×Homeo0(I, I)→ Homeo0(I, I)
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(f � g)(x) =


g(2x)

2 x ∈ [0, 1/2]
1+f(2x−1)

2 x ∈ [1/2, 1]
(5.6)

(note that this puts the first factor ‘over’ the second, as is our convention; and that

being in the identity-component ensures closure/well-definedness). This (Homeo0(I, I),�)

is not associative. (But useful.)

There are a few interesting variations on this construction, but we will keep with

this one here.

(5.2.16) Now we return to the congruence question for our particular S
; kind of

relation, where S = 〈S〉 for some subset/group of Homeo0(I, I). (The idea is that

this S contains at least the piecewise-linear stack-shrink “associativising” function

here denoted fm - which takes [1/2, 3/4] to [1/4, 1/2], and of course the inverse and

indeed the subgroup it generates.)

Proposition 5.2.17. We have (f � g)a � b = fa � gb for all f, g ∈ Homeo0(I, I)

and a, b ∈ P([0, 1]2).

Proof. Firstly note that for any f, g we have fa = {(x, f(y) | (x, y) ∈ a} and

g(fa) = {(s, g(t)) | (s, t) ∈ {(x, f(y)) | (x, y) ∈ a}} = {(x, g(f(y))) | (x, y) ∈ a}

= {(x, (g ◦ f)(y)) | (x, y) ∈ a} = (g ◦ f)a

so the action is a group action and so f−1(fa) = a. (So our identity implies that

the congruence condition holds whenever S is closed under �.)

Next we have that

a� b =
{

(x, y + 1
2 ) | (x, y) ∈ a

}
∪
{

(x, y2) | (x, y) ∈ b
}

while f � g is as in (5.6). Observe that the first set in this expression for a� b has

x values in [1/2, 1] so in (f � g)a� b it becomes

{
(x,

1 + f(2y+1
2 − 1)

2 ) | (x, y) ∈ a
}

=
{

(x, 1 + f(y)
2 ) | (x, y) ∈ a

}

Observe that this is the same as the image of fa in fa� gb. The second set in a� b
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has x values in [0, 1/2], so here the y coordinates become g(2 y2 )
2 . Since the image of

gb in fa� gb gives y-coordinates g(y)/2, we have the required identity.

(5.2.18) We have shown that a sufficient condition for congruence is closure of the

acting subset - which so far must be a group 〈S〉 containing the associativising map

fm - under �.

So it now becomes a very interesting question to determine this group. (The �

action is not a group action, but we must also close to a group.) Note that fm is in

Thompson’s group F , and � also closes in F , so our group will be some subgroup

of F . In this thesis we study the group generated by fm. But it is easy to see that

the smallest group containing this group and closed under � is bigger. We propose

to continue the study of this group later (just for reasons of time).

5.2.4 The subgroup generated byfm

Here we consider the subgroup of F generated by fm. We know that fm is sufficient

for the associative identities on classes. So we can ask what is the smallest subgroup

that we need that contains fm.

y

f

(1,1)

fm

f−1
m

id

f 2
m

f−2
m

Figure 5.1: Plot of the functions f lm, l ∈ Z

In figure 5.1 we try to take a step towards constructing equivalence classes of S1

under a relation generated by fm. As noted above, we should take the group gener-

ated by fm. First, we need to show if the relation on S1 is an equivalence relation:

it is reflexive since the group contain the identity function ’id’. It is symmetric since
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the group is closed under inverses function which is fm−1 and so on. It is transitive

since the group is closed under multiplication ’fm2’ and so on.

(5.2.19) We already computed the inverse of fm in 5.1.19.

Proposition 5.2.20. A composition of the fm 5.1.18 to itself is given by

(fm ◦ fm)(x) =



x

4 , 0 6 x 6
1
2

x

2 −
1
8 ,

1
2 < x 6

3
4

2x− 5
4 ,

3
4 < x 6

7
8

4x− 3 ,
7
8 < x 6 1

Proof. First, we consider the domain 0 6 x 6 1/2, so we observe fm(x) = x/2

in this domain, but the image is fm([0, 1/2]) = [0, 1/4], It is subset of [0, 1/2], so

fm(fm(x)) = fm(x/2) = x/4 where 0 6 x 6 1/2.

Now we consider the second domain which is 1/2 < x 6 3/4. So, we observe

fm(x) = x − 1/4 in this domain, but the image is fm((1/2, 3/4]) = (1/4, 1/2] and

this range or ’output’ is subset of [0, 1/2]. So, when we apply fm again we use

fm(x) = x/2, so, for 1/2 < x 6 3/4, fm(x− 1/4) = x/2− 1/8.

Finally, we consider the last domain which is 3/4 < x 6 1. So, we observe fm(x) =

2x − 1, but the image is fm((3/4, 1]) = (1/2, 1] = (1/2, 3/4] ∪ (3/4, 1] that means

this range spilt at x = 3/4. So the first range from 1/2 to 3/4 when we apply fm

again we use fm(x) = x− 1/4, so here fm(2x− 1) = 2x− 5/4 where 3/4 < x 6 7/8.

The second range from 3/4 to 1. We use fm(x) = 2x − 1, so fm(2x − 1) = 4x − 3

where 7/8 < x 6 1.

Thus

fm ◦ fm(x) =



x

4 , 0 6 x 6
1
2

x

2 −
1
8 ,

1
2 < x 6

3
4

2x− 5
4 ,

3
4 < x 6

7
8

4x− 3 ,
7
8 < x 6 1

= g(x)
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(5.2.21) Next we compute fm ◦ fm2(x).

First, we consider the domain 0 6 x 6 1/2, so we observe fm
2(x) = x/4 in

this domain, but the image is fm2([0, 1/2]) = [0, 1/8], It is a subset of [0, 1/2], so

fm(fm2(x)) = fm(x/4) = x/8 where 0 6 x 6 1/2.

Now we consider the second domain which is 1/2 < x 6 3/4. So, we observe

fm
2(x) = x/2 − 1/8 in this domain, but the image is fm2((1/2, 3/4]) = (1/8, 1/4]

and this range or ’output’ is subset of [0, 1/2]. So, when we apply fm again we use

fm(x) = x/2, so, for 1/2 < x 6 3/4, fm(x/2− 1/8) = x/4− 1/16.

Next, we consider the third domain which is 3/4 < x 6 7/8. So, we observe

fm
2(x) = 2x−5/4 in this domain, but the image is fm2((3/4, 7/8]) = (1/4, 1/2], this

range is subset of [0, 1/2]. So, when we apply fm again we use fm(x) = x/2, so, for

3/4 < x 6 7/8, fm(2x− 5/4) = x− 5/8.

Finally, we consider the last domain which is 7/8 < x 6 1. So, we observe fm2(x) =

4x−3, but the image is fm((7/8, 1]) = (1/2, 1] = (1/2, 3/4]∪(3/4, 1] that means this

range spilt at x = 3/4. So the first range from 1/2 to 3/4 when we apply fm again

we use fm(x) = x − 1/4, so here fm(4x − 3) = 4x − 13/4 where 7/8 < x 6 15/16.

The second range from 3/4 to 1. We use fm(x) = 2x − 1, so fm(4x − 3) = 8x − 7

where 15/16 < x 6 1.

Thus

fm ◦ fm2(x) =



x

8 , 0 6 x 6
1
2

x

4 −
1
16 ,

1
2 < x 6

3
4

x− 5
8 ,

3
4 < x 6

7
8

4x− 13
4 ,

7
8 < x 6

15
16

8x− 7 ,
15
16 < x 6 1

= fm
3(x)
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(5.2.22) The figure 5.2 below provides various iterated compositions of fm with

itself and gm = fm
−1 - the inverse of fm (using the Maple program).

Figure 5.2: Plot of iterated compositions of fm and gm

(5.2.23) It remains to consider if the group generated by fm gives a congruence.

We will do this in future work.
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5.3 Quotient by a path-relation R on the under-

lying set of M

In this section and section 5.4, we construct some equivalence relations on the un-

derlying set of our magma using paths. We call the new relations Rp
n on P([0, 1]2)

and and Rα on certain subsets. We will define the relation Rp
n on P([0, 1]2) in section

5.3.1 to see if it is congruence, but it fails. Then we introduce Rα in 5.4.2, which is

successful.

5.3.1 The relation Rp
n (for a fixed n ∈ N)

(5.3.1) Fix n ∈ N. Recall from (2.1) that n = {1, 2, ..., n}. Consider the finite sets

P = {( i

1 + n
, 1) : i ∈ n} (5.7)

and

P ′ = {( i′

1 + n
, 0) : i′ ∈ n} (5.8)

(5.3.2) Fix n ∈ N, so that P and P ′ are fixed. Let a, b ∈ P([0, 1]2). The relation

Rp
n on P([0, 1]2) is defined by:

a Rp
n b if for each pair of points x, y ∈ P ∪ P ′ these points are path-connected in a

if and only if they are path-connected in b.

(5.3.3) Note that, we use 99K to indicate passing to a “representative” picture (we

will include examples to show the limitations of such pictures).

Example 5.3.4. Consider n = 3. We can try to draw a picture with P and P ′ in

red ( that represents discrete points in the top and bottom [0, 1]2 ), the frame in blue

and the elements of the magma in black.

a = ∅ 99K ,
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b = {(x+ 1
4 , x) : x ∈ [0, 1]} 99K , (5.9)

c = {(2x+ 1
4 , x) : x ∈ [0, 1

2]} ∪ {(1
2 , x) : x ∈ [12 , 1]} 99K ,

d = {(x+ 1
4 , x) : x ∈ [0, 1)} 99K ,

h = φ 99K ,

and k = {(1
4 , x) : x ∈ [0, 1]} 99K ∈ P([0, 1]2).

Then the relation between these elements in magma is as follows:

• There is no relation between a and b, (a 6Rp
3 b) because no points of P ∪ P ′ are

path-connected in a, but two points are path-connected in b.

• There is no relation between b and h , (b 6Rp
3 h) because two points are path-

connected in b but no points of P ∪ P ′ are path-connected in h.

• There is no relation between b and d, (b 6Rp
3 d) because, both elements look equal

in the picture, but one point is missing mathematically at d.

• There is a relation between b and c, ( bRp
3c) .

• There is a relation between b and k, (bRp
3k).

• There is a relation between a and d, (aRp
3d) because there are no points of P ∪P ′

are path-connected in both a and d.

(5.3.5) Any function f : S → T defines a relation ∼f on S by a ∼f b if f(a) = f(b).

Example: let S be all the people, and f is height. Then person a ∼f b if they have

the same height, i.e. if f(a) = f(b).

Note that every such relation ∼f is an equivalence relation:
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reflexive: because f(a) = f(a);

symmetric: because f(a) = f(b) implies f(b) = f(a);

transitive: because f(a) = f(b) and f(b) = f(c) implies f(a) = f(c).

(5.3.6) Fix n, then we define a map

Hn : P([0, 1]2)→ ParP∪P ′

such that i, j in same part in Hn(a) if they are path-connected in a.

Example 5.3.7. Consider magma element a = ∅ and b = {(x+1
4 , x) : x ∈ [0, 1]}

from (5.3.4). Then

H3(a) = {{(1/4, 1)}, {(1/2, 1)}, {(3/4, 1)}, {(1/4, 0)}, {(1/2, 0)}, {(3/4, 0)}}.

H3(b) = {{(1/4, 1)}, {(1/2, 1), (1/4, 0)}, {(3/4, 1)}, {(1/2, 0)}, {(3/4, 0)}}.

(5.3.8) Thus for each n we have an equivalence relation on P([0, 1]2) given by ∼Hn .

Fix n. We claim ∼Hn is the same relation as Rp
n .

So we conclude that Rp
n is an equivalence relation.

Why is Rp
n same as ∼Hn?

Firstly if a Rp
n b then i, j path-connected in a if and only if i, j path-connected

in b for all i, j. So aRp
nb implies Hn(a) = Hn(b). But also Hn(a) = Hn(b) says i, j

path-connected in a if and only if path-connected in b, so this implies a Rp
n b.

(5.3.9) So, by (5.3.5) we have that ∼Hn is an equivalence relation; and then by

(5.3.8) aRp
nb is an equivalence relation.

(5.3.10) Fix n. Note that if we write [a] for the aRp
nb-class of a, then [a] is also the

set of magma elements that have the same image under Hn.

In other words b ∈ [a] if and only if Hn(b) = Hn(a).

(5.3.11) We will determine if for each fixed value of n then aRp
nb is a congruence

on the PP magma.

Fix n. For the relation aRp
nb to be a congruence under � defined in 3.1.19 we would

need to show the following:
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Claim (false): For a∗ ∈ [a] (meaning a∗ in the same Rp
n class as a), and b∗ ∈ [b],

then [a∗ � b∗] = [a� b].

For convenience let us say that the points of P at the top of [0, 1]2 are just given

the names 1, 2, ..., n. And the points of P ′ are given the names 1′, 2′, ..., n′.

(5.3.12) Unfortunately we can see that this Claim is false for n = 1, as follows.

(Similar examples then show it is false for all n > 0.)

First consider a = {(y/2, y) | y ∈ [0, 1]} ∈ P([0, 1]2). This has H1(a) =

{{1}, {1′}}.

Next put ai = {(x, i) | x ∈ [0, 1]}, for i = 0, 1; and b = {(1/2, y) | y ∈ [0, 1]}.

Now let c = b ∪ a0 ∪ a1. We have H1(b) = H1(c) = {{1, 1′}}. Thus b ∈ [c].

We have H1(a�b) = {{1}, {1′}}. But H1(a�c) = {{1, 1′}}. Thus [a�b] 6= [a�c],

although of course a ∈ [a], and b ∈ [c] (so for congruence we require equality).
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5.4 An alternative approach

An alternative approach is to make the PP magma into a certain magmoid (a mag-

moid is a magma with partial composition — see for example [TFMM23]) and then

try the same equivalence.

5.4.1 A passport-photograph magmoid

(5.4.1) We can make the PP magma into a magmoid by defining subsets M(α, β)

with α, β ∈ P([0, 1]) as follows.

First, define πi : P([0, 1]2)→ P([0, 1]) by

πi(a) = {x|(x, i) ∈ a}

Then for α, β ∈ P([0, 1]) define

M(α, β) = {a ∈ P([0, 1]2)|π0(a) = α; π1(a) = β}

Proposition 5.4.2. For all α, β, γ ∈ P([0, 1]) the PP magma composition restricts

to a composition

� : M(α, β)×M(β, γ)→ M(α, γ)

Proof. Let α, β, γ ∈ P([0, 1]).

We must apply magma composition 3.1.19 to each (a, b) ∈ M(α, β) ×M(β, γ). We

require to show:

{a � b | a ∈ M(α, β), b ∈ M(β, γ)}

⊆ {c ∈ P([0, 1]2) | π0(c) = α; π1(c) = γ} = M(α, γ)

The inclusion is true because, by 3.1.19, the part of a with y = 0 becomes the

part of a � b with y = 0; and the part of b with y = 1 becomes the part of a � b

with y = 1.

Note that the inclusion above is proper because the part of a with y = 1 becomes

the part of a � b with y = 1/2, so this part is always given by β in a � b, whereas
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there are elements f of M(α, γ) where π1/2(f) 6= β.

(5.4.3) In particular, we have a submagma M(α, α) for each α.

5.4.2 Equivalence relations

(5.4.4) Now let us repeat the congruence test (on a path-based relation) on this

submagma. But this time, instead of using n and P ∪P ′, we consider paths between

elements determined by α.

(5.4.5) For α ∈ P([0, 1]) we understand

α t α := {(x, 0), (x, 1) | x ∈ α} ⊂ P([0, 1]2)

(5.4.6) Define

Hα : P([0, 1]2) → Parαtα

by p ∈ [q] in Hα(a) (so note that p, q ∈ α t α) if there is a path between p and q

in a. (Recall the notation ParS is defined in 2.2.8.)

Example 5.4.7. • Let α = {1/2} and consider b from (5.9) (note that the red dots

in the picture are not used here). We have H{1/2}(b) = {{(1/2, 0)}, {(1/2, 1)}}. Note

that b 6∈M(α, α) here.

• Now let α = {0.25, 0.5, 0.75} and consider the following, using representative

pictures as in (5.3.4):

I. a 99K

0.250.50.75

0.25
0.5

0.75

. .

.. ..

.
.

Here, and afterwards, we have a ‘no-tricks’ convention for pictures, so that if it

looks like a continuous line it is a continuous line, unless we say otherwise. And on

the other hand, a small (but not infinitesimal) dot represents a single point, unless

we say otherwise.
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In this example, we give the formula of a which is

a = {{(3− x
4 , x)| x ∈ [0, 1]} ∪ {(x− 1

2 , y + 1
4)| x2 + y2 = 2

16 , y ≥ −1
4 }

∪ {(x− 5
8 , y + 1

4)|x2 + y2 = 5
64 , y ≥ −1

4 }} ∪ {(0.25, 1)} ∪ {(0.75, 1)}.

However, For the rest of the examples, we will use only pictures.

We have H{0.25,0.5,0.75}(a) = {{(0.25, 1)}, {(0.5, 1), (0.25, 0), (0.5, 0), (0.75, 0)}, {(0.75, 1)}}.

II. k 99K

0.250.50.75

0.25
0.5

0.75

. ..

.. . .
.

We have H{0.25,0.5,0.75}(k) = {{(0.25, 1)}, {(0.5, 1), (0.25, 0), (0.5, 0), (0.75, 0)}, {(0.75, 1)}}.

III. g 99K

0.250.50.75

0.25
0.5

0.75

.

..

. .

.
.

Note that: the ‘line’ from (0.25, 1) to (0.75, 0) has a gap, so this line is not contin-

uous. Then we have

H{0.25,0.5,0.75}(g) = {{(0.25, 1)}, {(0.75, 0)}, {(0.5, 1), (0.75, 1), (0.25, 0)}, {(0.5, 0)}}.

IV. h 99K

0.250.50.75

0.25
0.5

0.75

.

..

. .

.
.

We have H{0.25,0.5,0.75}(h) = {{(0.25, 1), (0.75, 0)}, {(0.5, 1), (0.75, 1), (0.25, 0)}, {(0.5, 0)}}.
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• Let α = {0.1, 0, 3, 0.5, 0.7} and consider

c 99K

0.10.30.50.7

0.1
0.3

0.5
0.7.

...

.

.

..
.

We have

H{0.1,0.3,0.5,0.7}(c) = {{(0.1, 1), (0, 3, 1)}, {(0.5, 1), (0.1, 0)}, {(0.7, 1), (0.3, 0), (0.5, 0)}, {(0.7, 0)}}.

• Let α = {0.3, 0.8} and consider

d 99K

0.3 0.8

0.3 0.8

.

.

.

.
.

We have H{0.3,0.8}(d) = {{(0.3, 1), (0.8, 0)}, {(0.8, 1), (0.3, 0)}}.

(5.4.8) The investigation of possible congruence is much harder in principle here,

since α can be uncountably infinite.

Definition 5.4.9. Fix α ∈ P([0, 1]). Let a, b ∈ M(α, α). The relation Rα on

M(α, α) is defined by a Rα b if for each pair of points p, q ∈ α t α these are path-

connected in a if and only if path-connected in b.

Example 5.4.10. Let α = [0, 1/3] and consider

u = {(x, 0) : x ∈ [0, 1/3]} ∪ {(x, 1) : x ∈ [0, 1/3]} 99K

0 1/3

0 1/3

. .

. .
Observe that u ∈ M(α, α).

This example is hard to address because there are infinitely many points between

0 and 1/3 that of the top and the bottom but all of these points are connected in u
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because the whole line is in u and there is a path in u from 0 to 1/3 (α is infinite).

As a first observation, we note that we can focus on the connected components of

α, since for each of them its elements injected in the bottom line (and separately

the top line) are immediately in the same part. This is simplest when α is in fact

finite.

Example 5.4.11. Let α = {0.25, 0.5, 0.75} and consider a and k from (5.4.7). We

have a Rα k.

(5.4.12) For each α we have an equivalence relation on M(α, α) given by ∼Hα as

defined using 5.3.5.

Proposition 5.4.13. Fix α. Then ∼Hα is the same relation as Rα .

Proof. If a Rα b then p, q ∈ α t α path-connected in a if and only if p, q path-

connected in b, for all p, q. So a Rα b implies Hα(a) = Hα(b). But also Hα(a) =

Hα(b) says p, q path-connected in a if and only if path-connected in b, so this implies

a Rα b.

(5.4.14) By (5.3.5) we have that ∼Hα is an equivalence relation; and so then by

(5.4.13) the relation Rα is an equivalence relation.

Fix α. Note that if we write [a] for the Rα -class of a, then [a] is the subset of

magma elements that have the same image under Hα. In other words:

For a ∈ P([0, 1]2), a′ ∈ [a] if and only if Hα(a′) = Hα(a).

5.4.3 Congruences

(5.4.15) In (2.3.21) we defined paths as parameterised by the interval [0, 1]. But note

that for any proper interval [u, v] a function f : [u, v]→ R2 can be re-parameterised

to a path, for example by linearly rescaling the interval. If we refer to an f as above

as a path we will mean the appropriate rescaling.

With this in mind we may call an unrescaled function such as f above a pre-path.

(Cf. for example [CF63].)

(5.4.16) We say α ∈ P([0, 1]) is finitary if it has finitely many connected compo-

nents.
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Proposition 5.4.17. For each finitary α our equivalence Rα (as defined in 5.4.9)

is a congruence on the magma M(α, α).

(Note – We will restrict to cases where α has finitely many connected compo-

nents. Indeed let us start with the cases where α is finite.)

Proof (for finite case): Fix α. Consider a, b ∈ M(α, α); and consider a′ ∈ [a] and

b′ ∈ [b]. We need to investigate the paths between the points of αtα in the magma

product a� b; and compare with a′ � b′.

Suppose p, q ∈ α t α such that are path-connected in a� b. We can divide into

three kinds of cases. Case 1 is when p, q are on different edges (say p on the top

edge); Case 2 is when p, q are both on the top edge; Case 3 is when both are on the

bottom edge.

Let us first consider Case 1.

By assumption, there is a path that starts at q and ends at p on a � b. Let J ′ be

the y = 1/2 line of a� b. Now let

σ : [0, 1]→ a� b (5.10)

be such a path from q to p. We may assume that σ is non-self-crossing (injective),

since given a self-crossing path the ‘loop’ between two crossing points can be removed

to yield a ‘shorter’ path. Consider

C := {s ∈ [0, 1] | σ(s) ∈ J ′}

Observe that by assumption this set is finite, since it corresponds to a subset of α,

which is finite here. By the Jordan curve Theorem (as in §2.4.2) it is also non-empty

— our J ′ can be taken to be the part of a Jordan curve in R2 that intersects [0, 1]2

(it does not matter if the closure of J ′ to make J is taken either above or below -

there are no paths outside of [0, 1]2 anyway). We can write C = {s1, s2, ..., sl} for

some l — thus σ(s1) = (x1, 1/2) (say) is the first point at which the path touches

J ′ and so on.

It follows that there is a path from q to (x1, 1) in b. Note that this means there

is a path between the same points in b′ ∈ [b]. Of course, there may be many such



5.4. An alternative approach 104

paths, but for use later we pick one and call it σ′1. Note that this also yields a

‘shorter’ path in a′ � b′ (for any a′ ∈ [a], or indeed any a′).

Continuing along the path σ from σ(s1) to σ(s2) gives a path from (x1, 1/2) to

(x2, 1/2). Since by construction, the interior of this path does not touch J ′ then by

JCT (or IVT) it lies entirely either in a or b. Hence σ from σ(s1) to σ(s2) gives a

path in either a or b.

Note that this implies a corresponding path, σ′2 say, in either a′ or b′ respectively.

And hence another one in a′ � b′ which composes with the image of σ′1.

Now continuing along the path σ from σ(si) to σ(si+1), with i = 2, 3, ..., l − 1

(we will also understand sl+1 to be sl+1 = 1, and s0 = 0, not in C) gives a path

from (xi, 1/2) to (xi+1, 1/2). Since by construction, the interior of this path does

not touch J ′ then by JCT (or IVT also as in §2.4.2) it lies entirely either in a or b.

Hence σ from σ(si) to σ(si+1) gives a path in either a or b. Indeed note that there

is a last path, from s = sl, that is in a.

Note that this implies a corresponding sequence of paths, σ′i say, in either a′ or

b′ respectively. And hence another sequence in a′ � b′ which composes in sequence.

Note that this latter composite path in a′ � b′ starts at q and ends at p.

We have shown that given a path from q to p in a� b there is a path in a′ � b′.

Since a ∈ [a′] and b ∈ [b′] a path in a′ � b′ yields a path in a � b by essentially the

same argument. That is, the implication goes both ways. See Figures 5.3 and 5.4

(J ′)

σ(1) = p

σ(s1) = r

σ(0) = q

a

� 99K
b

.
.

.
Figure 5.3: Case 1: Simple path where p, q are on different edges
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(J ′)

σ(1) = p

σ(s1) = (r, 1
2) σ(sn)

σ(0) = q

a

� 99K
b .

.. .. .. ..
.

(a) a� b

(J ′)

σ′(1) = p

σ′(s1) = (r, 1
2) σ′(sn)

σ′(0) = q

a′

� 99K
b′

.
.

. .. .. ..
.

(b) a′ � b′

Figure 5.4: Case 1: p, q are on different edges

Cases 2 and 3 are similar. In these cases, C could be empty. But the argument

still works in essentially the same way.

Let us consider case 2.

By assumption, there is a path that starts at q and ends at p on a� b. Then we use

the previous setup except for how a path moves. So, a path start from q to (x1, 0)

in a. Note that this means there is a path between the same points in a′ ∈ [a]. Of

course, there may be any such paths, but for us let us pick one and call it σ′1. Note

that this also yields a ‘shorter’ path in a′ � b′ (for any b′ ∈ [b], or indeed any b′).

Continuing along the path σ from σ(s1) to σ(s2) gives a path from (x1, 1/2) to

(x2, 1/2). Since by construction, the interior of this path does not touch J ′ then by

JCT (or IVT) it lies entirely either in a or b. Hence σ from σ(s1) to σ(s2) gives a

path in either a or b.

Note that this implies a corresponding path, σ′2 say, in either a′ or b′ respectively.

And hence another one in a′ � b′ which composes with the image of σ′1.

Now continuing along the path σ from σ(si) to σ(si+1), with i = 2, 3, ..., l−1 (we will

also understand sl+1 to be sl+1 = 1, and s0 = 1, not in C) gives a path from (xi, 1/2)

to (xi+1, 1/2). Since by construction, the interior of this path does not touch J ′ then

by JCT (or IVT also as in §2.4.2) it lies entirely either in a or b. Hence σ from σ(si)

to σ(si+1) gives a path in either a or b. Indeed note that there is a last path, from

s = sl, that is in a. Note that this implies a corresponding sequence of paths, σ′i say,

in either a′ or b′ respectively. And hence another sequence in a′� b′ which composes

in sequence. Note that this latter composite path in a′ � b′ starts at q and ends at

p.

We have shown that given a path from q to p in a� b there is a path in a′� b′. Since

a ∈ [a′] and b ∈ [b′] a path in a′ � b′ yields a path in a � b by essentially the same
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argument. That is, the implication goes both ways. (see Figure 5.5)

(J ′)

σ(1) = p

σ(s1) = (r, 1
2) σ(sn)

σ(0) = q

a

� 99K
b

.
.
. .. .. ..

.

(a) a� b

(J ′)

σ′(1) = p

σ′(s1) = (r, 1
2) σ′(sn)

σ′(0) = q

a′

� 99K
b′

.
.
. .. .. ..

.

(b) a′ � b′

Figure 5.5: Case 2: p, q are on the top edge

Since we have shown the implication for any pair of points p, q, we have a′� b′ ∈

[a� b] as required.

(5.4.18) Note that we have repeatedly used the finiteness of α above. It is an

interesting question if this condition can be relaxed. We will leave this question for

a later work.

Lemma 5.4.19. Let a, b ∈ P([0, 1]2). Consider qx, px and rx ∈ [0, 1]. If σ is a

path from (rx, 0) to (px, 1) in a and γ is a path from (qx, 0) to (rx, 1) in b then there

is a path from q to p in a� b.

Proof. Let us consider two continuous map σ, γ : [0, 1] → [0, 1]2 to be path from

(qx, 0) to (rx, 1) and from (rx, 0) to (px, 1). Then we want to show there is a path

from q to p in a � b. In order to get a � b, we first stak (a, b) and then shrink it.

By lemma 2.3.26 we have a path in [0, 1] × [0, 2] called h from (qx, 0) to (px, 2) in

stack(a, b) because the image of (rx, 1) in b is (rx, 1) in stack(a, b) and the image of

(rx, 0) in a is (rx, 1) in stack(a, b). Then we apply shrink2 by lemma 2.3.27. We get a

path called g from g(0) to g(1) in [0, 1]×[0, 1]. This is also a path in shrink2(h([0, 1])).

So this is path from (qx, 0) to (px, 1) in a� b.

(5.4.20) We will show in Sec.6 that in each case where the object α has order n

then the quotient is isomorphic to the corresponding partition monoid of rank n.
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Definition 5.4.21. The magma M(α, α) quotient by Rα defined as

M(α, α)/Rα = {[a] : a ∈ M(α, α)}.

with an operation ⊗ : M(α, α)/Rα ×M(α, α)/Rα → M(α, α)/Rα given by

[a]⊗ [b] = [a� b]

Theorem 5.4.22. The magma M(α, α) quotient by Rα is a monoid. The identity

element is given by [ι] where ι = {(x, y) | x ∈ α; y ∈ [0, 1]}.

Proof. We need to show M(α, α)/Rα is associative and it has an identity. Let

[a], [b]and[c] ∈ M(α, α)/Rα.

We want to prove

I. Associative:

([a]⊗ [b])⊗ [c] = [a]⊗ ([b]⊗ [c])

L.H.S = ([a]⊗ [b])⊗ [c] = ([a� b])⊗ [c] = [(a� b)� c]

R.H.S = [a]⊗ ([b]⊗ [c]) = [a]⊗ ([b� c]) = [a� (b� c)].

II. Identity: Let [id], [a] ∈ M(α, α)/Rα. Then

[id]⊗ [a] = [id� a] = [a]

[a]⊗ [id] = [a� id] = [a]

For I we can prove by noting that the drawing of the representative element on

the LHS is the same as the drawing of the element on the RHS, except that the y

direction is transformed (‘stretched’) by our fm function from 5.1.18. But note that

this rescaling does not affect the existence of paths from top to bottom.

And for II we can prove by noting that composition of any picture a with ι

simply extends each path with x ∈ α from the image of the boundary of a to the

boundary of the composite picture.

(5.4.23) In 6.2 we will show that this monoid is isomorphic to a submonoid of the

partition monoid.
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Many interesting properties follow on from this (for example in representation

theory), but we will leave these for a later work.



Chapter 6

Partitions from Passport

photographs

In this section, we will recall the partition monoid, as defined in [Mar94]. We are

going to use it, indirectly, to construct some equivalences on our magma - Which

we hope will be congruences.

Note that we are going to use passport photos to represent partitions. But then

afterwards we are going to use partitions to describe an equivalence on passport

photos! So we will proceed carefully.

In section 6.1 we discuss how to related graphs and set partitions; and relate

pictures and graphs, and hence to relate partitions and pictures. This allows us to

give a ‘graphical’ construction of the partition monoid (i.e. a construction using

elements of P([0, 1]2)).

In section 6.2 we discuss how to relate to the magma M.

Section 6.1 is quite long, so let us give here a brief overview. We begin by

experimenting with various concrete maps from the set of graphs on a given vertex

set to P([0, 1]2). One of our maps D is shown, in 6.1.42, to be injective — meaning

that we can recover the graph from the picture. Of course not every graph can be

embedded in [0, 1]2, so no such D can be entirely straightforward. (For technical

reasons our maps are maps to P([0, 1]2) × P([0, 1]2) rather than just P([0, 1]2),

but the first component is relatively ‘tame’ and we will largely suppress it in this

overview.) We introduce in 6.1.50 a subset C2 of P([0, 1]2)×P([0, 1]2); and on this

give a kind of inverse to D — a map F2 from (‘good’) pictures to graphs. Next we

109
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discuss maps between the set of relations on a given set and the set of graphs on

that set - hence linking partitions to graphs. This allows us, in §6.1.3, to give the

desired careful graphical realisation of the partition monoids.

6.1 Graphs and picture representations of set par-

titions

Let n ∈ N, we define n = {1, 2, ..., n} and n′ = {1′, 2′, ..., n′}.

From 2.2.8 we see that Parn∪n′ is the set of all set partitions on n ∪ n′.

Shortly we will show ways to represent a partition by a graph. First, we discuss

graphs and their representations. (The construction is essentially standard, as for

example in [KMY19], but we will need to be considerably more explicit and specific

here.)

6.1.1 Graphs

(6.1.1) Recall that a graph (see e.g. [But00, Wil79, MCU]) maybe defined as a pair

G = (V,E), where V is a set (called the vertex set) and E is a set of unordered pairs

of elements of V .

(6.1.2) For example, if the set V = {1, 2, 3, 1′, 2′, 3′} and E might be

{{1, 2}, {1, 1′}, {3, 2′}, {1′, 3′}}. Together V and E are a graph G.

(6.1.3) Remark. There are several different definitions using the term ‘graph’ that

are commonly used. All of them have sets of vertices and edges, but the precise

notion of an edge varies from definition to definition. For example, an edge may

be directed - corresponding to an ordered pair of vertices. Our definition above is

convenient for our purpose.

(6.1.4) Fixing a vertex set V , we write ΓV for the set of all graphs on this vertex

set.

(6.1.5) For example

ΓV={1,1′} = {(V, ∅), (V, {{1, 1′}})}
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(6.1.6) A graph (V,E) is a complete graph if E contains every pair of vertices.

Example 6.1.7. 1. Let V = {1, 1′} as above. Then (V, {{1, 1′}}) is complete

graph.

2. Let V = {1, 1′, 1′′} and E = {{1, 1′}, {1, 1′′}, {1′, 1′′}}. Then (V,E) is a com-

plete graph.

3. Let V as above, but E = {{1, 1′}, {1′, 1′′}}. Then (V,E) is not complete. Since

{1, 1′′} /∈ E

(6.1.8) Given a graph G = (V,E), a connected component is a subset S of V such

that for each v, w ∈ V there is a chain of edges {v, v1}, {v1, v2}, ..., {vk, w} ∈ E; and

that there is no chain from v ∈ S to any vertex not in S.

Example 6.1.9. Let V = {1, 2, 3, 4, 1′, 2′, 3′, 4′} and

E = {{1, 2}, {2, 3′}, {4.3′}, {1′, 3}, {3, 2′}, {4, 4′}}.

We have {1, 2}, {2, 3′}, {4.3′}, {4, 4′} ∈ E and {1′, 3}, {3, 2′} ∈ E are two chin of

edges. Then S1 = {1, 2, 4, 3′, 4′} and S2 = {3, 1′, 2′} are subset of V . Therefore,

S1, S2 are two connected components.

(6.1.10) We write Γ for the collection of ‘all’ finite graphs. For us, this can be made

into a set ΓS by prescribing a set S from which vertices can be taken (although we

do not fix this set here). Compare this with our notation ΓV for the subset of graphs

exactly on the vertex set V .

6.1.2 Picture representations of graphs

In this section, we will use some basic topology and geometry. They are not essential

for our construction, but they are convenient. Some of our references are [Mar21],

[Men90], [Arm13], [Moi13], [Bre93] and [RS05]. We will not add specific references

in the text.
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(6.1.11) We may represent a graph (such as the one in (6.1.2) above) as a diagram,

such as the diagram in the figure 6.1.

. .

. ..

. .
.

1′ 2′ 3′

1 2 3

Figure 6.1: graph G

(6.1.12) To describe such diagrams mathematically, we need to make some expla-

nations.

Firstly we consider a diagram as a subset of [0, 1]2. Of course this square is then

embedded in the plane of the page (by choosing a coordinatisation of the page).

Then for a graph G = (V,E):

• each element v ∈ V is denoted by a point D(v) ∈ [0, 1]2. (We enlarge v to a small

disk for visibility.)

• each element {v, w} ∈ E is indicated by a line drawn between D(v) and D(w).

Remark. Instead of using [0, 1]2 we could use another space where lines can be

embedded. We could use [0, 1]3 say. But a 2d space is convenient for inclusion on

the page. We could use the disk D = {(x, y) | x2 + y2 ≤ 1}. But squares can be

stacked, as we will use later for composition.

(6.1.13) The requirement for such a picture is that we can determine the graph just

from the picture.

A potential problem with this is that two drawn lines may meet and then it may

be unclear which path is the image of an edge. Indeed some graphs cannot be drawn

on the plane without lines meeting.

There are various ways around this problem. Here we will arrange for lines only

to meet ‘transversally’.

(6.1.14) Notation. (See e.g. [KM20].) A pair of curves intersect transversally if

both have tangents at the intersection point; and their tangents are not colinear.
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Example 6.1.15. Consider two lines y = 0 and y = x. The intersection point is 0

but a tangent for y = 0 is the line itself and the tangent of y = x is the line itself.

Therefore their tangent are not colinear. Then they intersect transversally.

Lemma 6.1.16. If two straight open lines in Rd intersect at a single point then they

intersect transversely.

(6.1.17) Before proof the previous lemma.Recall that Rd defined in 2.4.7.

Proof. Let α, β ∈ Rd and v = β − α ∈ Rd be vector. Then the infinite line

through α in the direction v is the set L = {vt + α |t ∈ R} = {(v1t + α1, v2t +

α2, ..., vdt + αd)|t ∈ R}. And our open line is the same but replacing R by some

open interval (p, q) say.

So, the function f(t) that represent L as f(t) = (v1t1 +α1, v2t2 +α2, ..., vdtd+αd) and

the gradient ∇f(t) (See e.g. [Mac86, p.170]), is ∇f(t) = ( ∂
∂t1

(v1t1 + α1), ∂
∂t2

(v2t2 +

α2), ..., ∂
∂td

(vdtd + αd)) = (v1, v2, ..., vd) = v. Note that this is a constant vector

independent of t.

Let M = {wt + b | t ∈ R} for w, b ∈ Rd be another infinite line in Rd. So, the

gradient of M is w.

Now we show that if v = w then either L and M never intersect or L = M .

Suppose v = w.

If α = b then L = M .

If α 6= b, suppose L and M intersect at some points. Therefore there are some

t, t′ ∈ R such that vt+α = vt′+b. So b = v(t− t′)+α = vr+α for some r ∈ R. So,

M = {vt + vr + α | t ∈ R} = {vt + α | t ∈ R} = L. It follows that our open lines

intersect like (p, q) ∩ (p′, q′). That is, they either do not intersect or they intersect

in more than one point.

(6.1.18) We now consider some constructions of pictures of graphs, looking for ones

that guarantee the transversal property for all lines.

Giving a construction means giving an explicit function

D : ΓV → P([0, 1]2)

for each vertex set of the type we have described. We can write Di for some i to
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distinguish the various functions we try before fixing D.

(6.1.19) Notation. For A,B ∈ R2,

[A,B] := {A+ t(B − A) : 0 6 t 6 1}

Note this gives a continuous path between A and B.

(6.1.20) Now we need to explain exactly how we will make a picture D(G) ⊂ [0, 1]2

of a graph G with vertices n ∪ n′ as above.

Consider the unit square frame [0, 1]2. Let vertex subset n be embedded on the

top edge (ordered from left to right). Let n′ vertices be placed on the bottom row

of this square.

Consider a graph G = (V,E) with V = n ∪ n′. For each edge e = {v, w}, we

define a path connecting vertices such that there exists a path or arc between v and

w. Specifically we can try:

• an edge between two vertices i, j′ (that is, on top and bottom) is represented by

a direct connection [A,B] where A = D(i) and B = D(j′).

• a curved arc - such as a circle segment avoiding the frame of [0, 1]2 - represents a

connection along the same row (same edge, either top or bottom).

(For now, we will not specify the centre of the circle used to construct such an

arc.)

(6.1.21) Specifically we may represent the top vertex i ∈ n (recall V = n ∪ n′) by

a coordinate pair (xi, 1) where

xi = i

n+ 1 ∈ [0, 1]

and the bottom vertex i′ by (xi′ , 0).

We aim next to describe the edge-path between vertices.

(6.1.22) We will use the interval [A,B] in ( 6.1.19) to denote the path between

A = (xi, 1) and B = (xj, 0).

(6.1.23) Perhaps the construction below works for some choice of curved arcs. This

is not obviously easy here, so we consider some further “less geometrically complex”

constructions. In particular we try piecewise linear constructions.
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The reader may jump to 6.1.32 to pass over our reporting of some interesting

experiments that failed.

(6.1.24) For example we can use a piecewise linear function (see (2.4.4)) to form

an arc in the top edge that goes from (xi, 1) to (xi+l, 1) with evaluated breakpoint

(xi+xi+l2 , t) (at the breakpoint a2 = 1/2, say), where we choose t 6= 1
2 (we will fix the

choice of t later).

Note that: the choice of t determines how higher or low the arc will be.

Example 6.1.25. Consider (xi, 1) = (1/5, 1) , (xi+l, 1) = (2/5, 1) and t = 7/10

then the evaluate breakpoint is (xi+xi+l2 , t) = (3/10, 7/10). Then

f(x) =


−3x+ 8

5 , if 1
5 6 x 6 3

10

3x− 1
5 , if 3

10 < x 6 2
5

We represent this example by the figure 6.2 below.

. ..
xi xi+l

xi+xi+l
2

Figure 6.2: piecewise linear in 2-part to form the top arc

(6.1.26) Note that the above construction works for some choice of t. It does not

has the transversal property we are looking for (6.1.14).

(6.1.27) To define the trial map D2 on a graph G explicitly, we use piecewise linear

curves 2.4.4 in 2-part as:

• For an arc in the top edge from (xi, 1) to (xi+l, 1) we take the evaluated breakpoint

at (xi+xi+l2 , 3
4 −

l
10n).

• For an arc in the bottom edge from (xi, 0) to (xi+l, 0) we take the evaluated

breakpoint at (xi+xi+l2 , 1
4 + l

10n).
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Example 6.1.28. Consider n = {1, 2, 3, 4}, i = 1, l = 2. Then (xi, 1) = (1
5 , 1) and

(xi+l, 1) = (3
5 , 1). The evaluate breakpoint is ( 4

10 ,
7
10).

The piecewise linear curve is

f(x) =


−3

2x+ 13
10 , if 1

5 6 x 6 4
10

3
2x+ 1

10 , if 4
10 < x 6 3

5 .

Note that this D2 (6.1.27) does not work because the images do not have the

transversal property we are looking for (6.1.14 )— see next example.

Example 6.1.29. This example in fig.6.3 shows the possible failure of the transver-

sal property (6.1.14) at the intersection point h.

when i < i′ < i+ l < i′ + l′.

. ..i i+ l. ..i′
i′ + l′

h

Figure 6.3: i < i′ < i+ l < i′ + l′

(6.1.30) Next we try piecewise linear curves (see 2.4.4) in 3-part to define D3(G) as

follow:

• For an arc in the top edge from (xi, 1) to (xi+l, 1) with two evaluating breakpoints

(xi, 1− xi
1000n) and (xi+l, 1− xi

1000n).

• For an arc in the bottom edge from (xi, 0) to (xi+l, 0) . with evaluating break-

points

(xi, xi
1000n) and (xi+l, xi

1000n).

Note that, this method does not work for the same reason above — see the ex-

ample below.
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Example 6.1.31. In figure (6.4), we show for D3 the failure of the transversal

property (6.1.14) at the intersection point h, when i+ l = i′.

. .. .i i+ l. .. .i′ + l′

h

Figure 6.4: i+ l = i′

(6.1.32) From now we use different piecewise linear curves (see 2.4.4) in 3-part to

define D4(G).

• For an arc in the top edge from (xi, 1) to (xi+l, 1) with two evaluating breakpoints

(xi + xi
1000n(2n+1) , 1−

xi
1000n) and (xi+l − xi

1000n(2n+1) , 1−
xi

1000n).

• For an arc in the bottom edge from (xi, 0) to (xi+l, 0) with evaluating breakpoints

(xi + xi
1000n(2n+1) ,

xi
1000n) and (xi+l − xi

1000n(2n+1) ,
xi

1000n).

• For a path from top to bottom use (6.1.22).

Here several choices have been made. For example, where the number 1000 is

used this could be replaced by any sufficiently large number. However, this also

follows the transversal property (6.1.14).

(6.1.33) Here we have various instances that are not done to scale, but are qualita-

tively correct:

. .. .xi xi+l

Figure 6.5: piecewise linear in 3-part to form a top arc.
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. .. .xi
xi+3. ...

xi+1xi+2. .. .
xi+4

Figure 6.6: piecewise linear curves form 3-top arcs each arc in 3-part.

. .. .xi xi+l.

.
xi′

.
.
xi′+l′

Figure 6.7: piecewise linear form a top arc in 3-part and 3-path from top to bottom.

Proposition 6.1.34. For any graph G the paths in D4(G) intersect (excluding

endpoints) at most pairwise transversally.

Proof. The cases to consider are:

1. two paths from top to top;

2. two paths from top to bottom;

3. one path from top to top with one path from top to bottom;

4. one path from top to top with one path from bottom to bottom.

Other cases can then be argued the same as these by symmetry.

? The case 1. from top to top: Suppose we have a curve between vertices i and

i+ l on the top, with l > 0, and between i′ and i′ + l′ with l′ > 0.

We will separate this case into a series of Lemmas, that starts at Lemma 6.1.35

and ends at Lemma 6.1.39. The proofs of all cases are completed by 6.1.40.

Lemma 6.1.35. For any two curves on the top edge within D4(G), if i + l < i′,

then these curves do not touch.
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Proof. If i+ l < i′ then the situation is as represented schematically by Figure (6.8)

. .. .i i+ l. ...i′ i′ + l′

Figure 6.8: i+ l < i′

In order to use the picture as part of a proof (i.e. to help organise a proof) we note

that the ‘drawn plane’, as in the figure, can be a reliable organisational model of

some aspects of plane geometry, at a schematic level. For example, we know that

the range of x values of a curve is an interval, bounded by an upper and lower point.

If the range of x values of one curve does not intersect the range for another curve

‘by eye’ in a figure in which the order (if not the precise value) of such points on the

real line is manifestly respected, then it is safe to assume that they will not meet

when the ‘by eye’ is replaced by a rigourous computation.

Thus we are guided to conclude here that the ranges of x values do not intersect,

and hence that the curves do not touch.

Lemma 6.1.36. For any two curves on the top edge within D4(G), if i < i′ <

i+ l < i′ + l′ , then these curves touch, but transversaly.

Proof. If i < i′ < i + l < i′ + l′ then we claim that the curves must touch for

D4(G) (indeed for any Di that follows the rules of (6.1.12), (6.1.14), (6.1.18)). This

follows for example by the Jordan Curve Theorem (2.4.18), see e.g. [Moi13, p31].

For our specific D4 these curves have 2-breakpoints. For curve(1) the breakpoints

between i and i+ l are (i+ i
1000n(2n+1) , 1−

i
1000n) and ((i+ l)− xi

1000n(2n+1) , 1−
i

1000n)

respectively. Similarly, for curve(2) the breakpoints between i′ and i′ + l′ are (i′ +
i′

1000n(2n+1) , 1−
i′

1000n) and ((i′ + l′)− i′

1000n(2n+1) , 1−
i′

1000n) respectively.

In more detail,

to prove these curves have their tangent. First, we look at curve (1) at its

intersection point h. This curve has a horizontal line segment with a slope of zero.

So at this point, the tangent is the line itself.
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However, curve (2) has a line segment with a slope of (−m). So at this point, the

tangent of this curve is the line itself.

Thus, each curve has its own tangent at the intersection pointh. Therefore, these

tangents are distinct as in Figure (6.9).

This implies that the curves intersect transversely as in (6.1.14).

. .. .i i+ l. .. .i′ i′ + l′.h

Figure 6.9: i < i′ < i+ l < i′ + l′

Lemma 6.1.37. For any two curves on the top edge within D4(G), if i + l = i′,

then the open curves do not touch.

Proof. If i+ l = i′ from our assumption in(6.1.34), we exclude the endpoint of these

curves. Then the open curves do not touch. — see Figure(6.10).

. .. .i i+ l. .. .i′ + l′

Figure 6.10: i+ l = i′

Lemma 6.1.38. For any two curves on the top edge within D4(G), if i < i′ <

i′ + l′ < i+ l, then these curves must touch, but transversaly.

Proof. If i < i′ < i′ + l′ < i+ l then the curves must touch see Figure 6.11.

. .. .i i+ l. .. .
i′ i′ + l′

. .h g

Figure 6.11: i < i′ < i′ + l′ < i+ l
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Lemma 6.1.39. For any two curves on the top edge within D4(G), if i+ l = i′+ l′,

then these curves must touch, but transversaly.

Proof. If i+ l = i′+ l′ from our assumption, we exclude the endpoint so these curves

do not touch.

However, if they do intersect at a point, each curve must have its tangent and these

tangents must be distinct. Hence, this follow (6.1.14), — see Figure (6.12).

. .. .i i+ l. .. .i′

Figure 6.12: i+ l = i′ + l′

? The case 2. Of paths from top to bottom is clear.

In this case, there are two situations:

I. Suppose we have two curves: the first curve from vertices i to j′ (from top to

bottom) and the second curve from i+ l to j′+ l′ with l, l′ > 0 (from top to bottom),

these curves follow (6.1.22).

• If [i, j′], [i + l, j′ + l′] with l = l′, these curves are connected eye-by-eye, which

means they are parallel curves. Moreover, both curves are vertical lines with un-

defined slopes. So the tangents to these curves are the lines themselves. Therefore

these curves do not cross — see Figure (6.13).

.

.
i

j′

.

.

i+ l

j′ + l′

Figure 6.13: [i, j′], [i+ l, j′ + l′]

II. Suppose we have a curve from vertices i to j′+ l′ with l′ > 0 (from top to bottom)

and a curve from i+ l to j′ with l > 0 (from top to bottom).
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• If {{i, j′ + l′}}, {{i+ l, j′}} then the curves must touch.

However, as both curves are line segments with distinct slopes (m,n respectively),

their tangents at point h different. Thus, each curve has its tangent at the intersec-

tion pointh. Therefore, these tangents are distinct.

This implies that the curves intersect transversely as following (6.1.14) and lemma

(6.1.16)— see Figure (6.14).

.
.

i

j′ + l′

.
.

i+ l

j′

.h
Figure 6.14: {{i, j′ + l′}}, {{i+ l, j′}}

? The case 3. One path from top to top with one path from top to bottom.

Suppose we have a curve between vertices i and i+ l on the top edge, where l > 0,

and another curve from top vertex i′ to bottom vertex j follows (6.1.22).

• If i+ l < i′ then the curves do not touch — see Figure (6.15)

. ...i i+ l .
.

i′

j

Figure 6.15: i+ l < i′

• If i + l = i′ then the curves touch. However, from our assumption in 6.1.34,

we exclude the endpoint of these curves – see Figure 6.16.
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. .. .i i+ l.

.
j

.h

Figure 6.16: i+ l = i′

(6.1.40) ? The case 4. One path from top to top with one path from bottom to

bottom.

Suppose we have a curve between vertices i and i+ l on the top, where l > 0, and

between i′ and i′ + l′ on the bottom where l′ > 0„ each with two breakpoints (as in

6.1.32).

• If i < i + l on the top edge and i′ < i′ + l′ on the bottom edge, then the

curves do not intersect. That is because the y-coordainate of the top breakpoints

is 1− i
1000n for the upper curve and the y-coordainate of the bottom breakpoints is

i′

1000n for the lower curve, as shown in (6.1.32) — see Figure (6.17).

. ...i i+ l

. ...
i′ i′ + l′

Figure 6.17: i < i+ l and i′ < i′ + l′

All cases for Proposition 6.1.34 are now covered.

(6.1.41) An alternative way to construct arcs for edges. If rather than using

[0, 1]2 as our underlying space, with vertices on the top and bottom edge, we instead

use the unit disk with vertices spaced around the boundary, then we can use the

lines [A,B] for every edge. Here it is clear that every pair of lines meets at most

once, and then transversally in the interior of the disk.

We should not simply leave pictures on the disk, because stack-shrink does not

work well with disks. But there exists a conformal (angle preserving and hence
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transversality preserving) map from the disk to the square. See for example: [Coo]

So we can make a picture on the disk, then transform to the square. This de-

fines pictures D′(G) that are automatically transversal. In general, some vertices

would end up on the vertical sides of the square, but this is easily avoided by clus-

tering vertices near the top and bottom of the disk. (The conformal map is highly

non-trivial, and not very nice to work with. But for us it is enough to have a

construction that is specific and transversal.)

In fact there are many transversality preserving maps (including much simpler

ones - e.g. proportional projection). So there is no shortage of alternative D func-

tions. We specify one - an essentially arbitrary one - because we will often need

concrete constructions later.

Proposition 6.1.42. The map D = D4 is injective.

Proof. By construction, there exists a neighbourhood of each vertex point con-

taining only the images of edges involving this vertex. By transversality, it is pos-

sible to follow each path from one vertex to the other without ambiguity. Thus D

is invertible on its image. Suppose we have two graphs G1 and G2 in ΓV , then

D(G1) = D(G2) =⇒ G1 = G2 based on the construction of the neighbourhood.

Therefore, the map D is injective.

(6.1.43) Note that we can formally apply stack-shrink to images, since they are in

P([0, 1]2). Note however that the image of D4 is not closed under stack-shrink.

(6.1.44) Note that we can formally apply stack-shrink to images, since they are in

P([0, 1]2). Note however that the image of D4 is not closed under stack-shrink.

(6.1.45) Now we need a kind of inverse to D = D4. Note that D has

D : Γn∪n′ → P([0, 1]2)

The pseudo-inverse takes certain subsets of [0, 1]2 as input, and gives a graph as

output. There are several possible choices for this function. We will consider a few

of them. We will need some preparations.
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(6.1.46) Function F1: Fix n. For each picture, we obtain a graph in Γn∪n′ as follows.

For X ∈ P([0, 1]2) we have an edge in F1(X) from v to w if there is a path in X

from D(v) to D(w).

Remarks. Observe that every image is a union of complete graphs. Thus F1 is

not a proper inverse on the image of D. But note also that it is not even an inverse

on the image of the subset of graphs that are disjoint unions of complete graphs.

(These issues will no be a problem when we come to consider partitions.)

Example 6.1.47. Consider n = 3 and

X =

D(1) D(2)D(3)

D(1′)D(2′)D(3′)

∈ P([0, 1]2)

Then the edge set of graph F1(X) is obtained from {{D(1),D(1′)}, {D(2),D(3′)}, {D(3),D(2′)}}.

That is, {{1, 1′}, {2, 3′}, {3, 2′}}.

(6.1.48) For n ∈ N, note that we can make a function

Di2 : Γn∪n′ → P([0, 1]2)× P([0, 1]2)

by adding a first subset recording only the D-images of vertices. That is

Di2(G) = (a, b) where a is the set of vertex images and b = D(G) as considered

before.

Example 6.1.49. Let a set of vertex given by V = {1, 2, 3, 1′, 2′, 3′} and edges

E = {{1, 3′}, {2, 1′}, {3, 2′}}. Then graph G = (V,E) gives

Di2(G) =
(

1 2 3

1′ 2′ 3′

,

1 2 3

1′ 2′ 3′

)
.
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(6.1.50) To define our next function, F2, we will need a subset of P([0, 1]2) ×

P([0, 1]2):

Consider a subset C2 of P([0, 1]2)× P([0, 1]2) as follows.

For (a, b) ∈ C2, the first subset a is finite, with a ⊆ b.

The subset b of [0, 1]2:

• has only finitely many points on the frame ∂[0, 1]2 (just on the top and bottom

row), all belonging also to subset a.

• consist of the images of only finitely many smooth (or piecewise linear) embeddings

of [0, 1], with these intersecting at most transversally or at their endpoints, which

must be elements of a; and only intersecting a at endpoints.

We write (b) ⊆ b for the union of images of (0, 1).

See 6.2.6 and 6.2.7 for some examples.

(6.1.51) The map F2 : C2 → Γ is then given as follows. Consider subsets a, b ⊂

[0, 1]2. Suppose b has n points on the top row and m points on the bottom row.

This will give a graph with

V = n ∪m′ ∪ (a \ ∂[0, 1]2)

We label the top row points 1, 2, ..., n left to right; and similarly for 1, 2, ..,m on

the bottom. Note that the remaining points in a are interior, and left un-relabelled.

We then have an edge {v, w} whenever there is a continuous path in b from v to

w not touching any other element of a, and this path only intersects other paths

transversally or at an endpoint.

Example 6.1.52. Let (a, b) ∈ C2 given by

(a, b) =
(

1 2 3

1′ 2′ 3′

,

1 2 3

1′ 2′ 3′

)
.

Then F2((a, b)) = ({1, 2, 3, 1′, 2′, 3′} , {{1, 3′}, {2, 1′}, {3, 2′}}).
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(6.1.53) Claim. For any n the image of function Di2 is contained in C2 as above.

Proof. Note that each image (a, b) ∈ P([0, 1]2)2 has a finite (in the obvious sense)

- in fact it has just the 2n vertices on the boundary. The interior contains only

piecewise linear non-self-intersecting parts that intersect at most transversaly; and

terminate at points of a.

(6.1.54) Claim. The set C2 is closed under stack-shrink. (This is in the sense that

for (a, b) and (a′, b′) in C2 we have that the product (c, d) is given by d = b� b′ and

c is given by a ∪ a′, which contains the top vertices of a; the bottom vertices of a′;

the interior vertices of both; and the not-necessarily-disjoint union of the bottom of

a with the top of a′.)

Proof. Consider the product (c, d) as above, and consider in particular d = b � b′.

The two parts are disjoint except for the common boundary, so the linear and

transversal properties will be upheld everywhere except possibly at the ‘interior

boundary’ - the middle line. At this middle line paths from above or below either

simply terminate at a vertex (now an interior vertex, coming from above or below),

or, if vertices from above and below coincide, then paths may arrive from above and

below. But they do so at the vertex, so transversality does not need to be checked

here.

(6.1.55) There is an example in 6.1.72 below.

(6.1.56) Since we have given a closed composition on C2 - which composition we

can also call �, we have a magma (C2,�).

Note that we can define a partition of C2, essentially by C2(α, β) = C2∩M(α, β)

(more formally this can be given in terms of the vertex sets of elements of C2).

Observe that we have

� : C2(α, β)× C2(β, γ)→ C2(α, γ)

given by m×m′ 7→ m�m′.

Later we will discuss relations on C2 that give congruences in this setting. These

will be relations derived from F2, but using also maps to sets of partitions as we

review next.
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6.1.2.1 Graph representations of partitions

Recall from (2.2.10) that there is a bijection between the set Equ(S) of equivalence

relations on a set S and the set ParS of partitions of S. Using this we can use

relations to work with partitions. We can also connect graphs and relations. So we

can connect graphs and partitions this way. We consider these connections next.

(6.1.57) Recall from (2.2.1) that a relation on a set S (to itself) is a subset of S×S.

Given a relation ρ ∈ P(S × S) we can define a graph Frg(ρ) = (V,E) in ΓS by

{a, b} ∈ E if (a, b) ∈ ρ. Thus we have

Frg : P(S × S)→ ΓS

Given a graph G = (V,E) in ΓS (so V = S) we can define a relation ρ = Fgr(G)

in P(S × S) by (a, b) ∈ ρ if {a, b} ∈ E. Thus we have

Fgr : ΓS → P(S × S)

Let S be some set and G ∈ ΓS. Note that relation Fgr(G) is always symmetric

and never reflexive.

(6.1.58) A partition a belonging to Parn∪n′ may be represent by a graphGa = (V,E)

as in (6.1.1), where V = n ∪ n′ and E is the set of pairs such that {v, w} ∈ E if

v, w in the same part of a.

Example 6.1.59. Consider a = {{1, 1′}} ∈ Parn∪n′ with n = 1. Here Ga has

V = {1, 1′}. And E = {{1, 1′}}.

Example 6.1.60. Consider a = {{1, 1′, 2′}, {2}} ∈ Parn∪n′ with n = 2. Here

V = {1, 1′, 2, 2′}. And E = {{1, 1′}, {1, 2′}, {1′, 2′}}.

(6.1.61) Remark. Note that Ga is always a union of complete graphs. So for

a ∈ ParV this

G− : ParV → ΓV
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is not surjective on ΓV .

(6.1.62) Next we define a map

fl : ΓV → ParV

from graphs in ΓV to partitions of V . (This map will be a kind of inverse to Ga.)

Given a graph G ∈ ΓV then partition fl(G) is the partition of V according to

the connected components in G.

Example 6.1.63. Here and below we will, for convenience, use pictures to rep-

resent graphs (following enough of our rules to avoid ambiguity). Let graph

G ∈ Γ{1,2,3,1′,2′,3′} have a picture given by

G 7→

1 2 3

1′ 2′ 3′

. .
. .

Then

fl(G) = fl
(

1 2 3

1′ 2′ 3′

. .
. .

)
= {{1, 2}, {3, 1′}, {2′, 3′}}.

(6.1.64) For W ⊂ V we also write a|W for the restriction of a ∈ ParV to ParW by

deleting the elements not in W .

Example 6.1.65. Consider a set of vertices given by V = {1, 2, 3, 1′, 2′, 3′} and the

element of partition ParV given by a = {{1, 2}, {1′, 2′}, {3, 3′}}.

Suppose W = {1, 2, 3, 2′} be subset of V . Then we have a|W= {{1, 2}, {3}, {2′}} is

an element of ParW .

(6.1.66) We notice that the graph G and hence diagram D(G) is not unique for

giving a set partition. That means we may find hundreds of diagrams representing
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the same partition. So we can say two diagrams are ‘equivalent’ if they have the

same partition.

We also have to consider the resolution of the issues arising from a new example

(which is in 6.1.68). This nice example illustrates the possible role of transversality

in this setting.

Example 6.1.67. Consider two graphs with V = 3 ∪ 3′:

1 2 3

1′ 2′ 3′
.
.
.
. .
. .

,

1 2 3

1′ 2′ 3′

.

.
. .
. .

these graphs have the same partition which is {{1, 2, 1′}, {3}, {2′, 3′}} ∈ P3∪3′ .

Example 6.1.68. Consider

1 2 3

1′ 2′ 3′
.
. .. .

. .
So the graph is hopefully clear, and the partition of this graph is P3∪3′ = {{1, 3}, {2, 2′}, {1′, 3′}}.

(6.1.69) Now we combine the Ga-map and the D-map to make diagrams for parti-

tions. For instance, consider the element a ∈ P5∪5′ given by

a = {{1, 1′}, {2, 3, 2′}, {4, 5, 5′}, {3′, 4′}}.
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Then the D4(Ga) as shown in the figure 6.18 (here, as before, we do not take

care to draw D4 with linear segments - just in order to proceed quickly).

1 2 3 4 5

1′ 2′ 3′ 4′ 5′
.

. . ..

.

.

.

. .

. .

.

..

.

Figure 6.18: Sketch of D(Ga) for a partition a ∈ Par5∪5′

6.1.3 The partition monoid

In this section, we introduce the partition monoid in our construction (see also e.g.

[Ban13, FL11, EG21]).

(6.1.70) For n ∈ N the partition monoid is given by the triple of

PMon = (Parn∪n′ , ◦, {{1, 1′}, {2, 2′}, ..., {n, n′}})

where

• Parn∪n′ is the set of all set partitions on n ∪ n′. So, in our construction, we

will represent an element of Parn∪n′ (a ∈ Parn∪n′ by D(Ga)).

• ◦ is a composition of the form

◦ : Parn∪n′ ×Parn∪n′ → Parn∪n′ .

It is given as follows:

To describe a composition of these elements. Let a, b ∈ Parn∪n′ . Note here

a, b represented by D(Ga),D(Gb). Then we stack D(Ga) above D(Gb) by using
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3.1.15 so that the lower vertices of D(Ga) are identified with the upper vertices

of D(Gb). This result a new diagram consists of three parts. Those are a top

row, a bottom row and the part where the boundary is in composition (we call

it the middle row).

Then we apply the Shrink function 3.1.17 to this diagram which gives us

altogether the composition between D(Ga) and D(Gb) of D(Ga) � D(Gb).

Observe that this lies in C2 by 6.1.53 and 6.1.54. We can then apply F2 from

6.1.51 to get the output graph. We apply fl from 6.1.62 to get a partition, and

then restrict as in 6.1.64 to get the partition we need.

We will give examples shortly.

(6.1.71) It will be clear that ◦ is closed. But it may not be clear yet that this

◦ is associative. But this can be verified similar to earlier checks.

• The element {{1, 1′}, {2, 2′}, ..., {n, n′}} is given by diagram as

1 n

1′ n
′

.

.
....
.

.

It will be clear from this that it is the identity of ◦.

Example 6.1.72. Consider a ∈ Par5∪5′ and b ∈ Par5′∪5′′. Where,

a 7→

1 2 3 4 5

1′ 2′ 3′ 4′ 5′
.

. . ..

.

. .

. . .

.
,
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b 7→

1′ 2′ 3′ 4′ 5′

1′′ 2′′ 3′′ 4′′ 5′′

. .

..

. . .

.

.

. .. .
Then the composition of the two partition diagram a and b

a � b
stack−→

1 2 3 4 5

1′′ 2′′ 3′′ 4′′ 5′′

.

. . ..

.

. .

. . .

.

. .

..

. . .

.

.

. .. .

shrink2−→

1 2 3 4 5

1′′ 2′′ 3′′ 4′′ 5′′

.

.
. ..
..

.
. .. .
. ..
..

.. . . .

Therefore, the composition of the partitions is given by

a � b ; {{1}, {2, 3, 1′′}, {4, 5, 4′′, 5′′}, {2′′, 3′′}} ∈ Par5∪5′′ .
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6.2 Relations on P([0, 1]2), derived from above 6.1.70

(6.2.1) Since we have maps F2 : C2 → Γ (from 6.1.50) and fl : Γ → Par

(from 6.1.62 - by Par we mean all the partitions taken together) we can define the

composite map fl ◦ F2. We can define the corresponding equivalence relation ∼fl◦F2

on C2.

It follows essentially directly from 6.1.70 that this is a congruence on each of the

magmas (C2(α, α),�) as in 6.1.56. The quotient is thus given by the following.

Proposition 6.2.2. The quotient magma (C2(α, α)/∼fl◦F2 ,�) is isomorphic to the

monoid PMo|α|.

(6.2.3) Indeed it is possible to lift this quotient so that the C2 magmoid becomes

the basic partition category (the partition category containing partition monoids

rather than partition algebras). But we will not give details here.

(6.2.4) A more interesting question is the relationship between the monoid (C2(α, α)/∼fl◦F2

,�) above and the monoid M(α, α)/Rα from 5.4.21.

Proposition 6.2.5. In fact we have a monoid injection

M(α, α)/Rα ↪→ (C2(α, α)/∼fl◦F2 ,�)

Proof. Observe that the partitions in the image of the map used to define Rα

are precisely the partitions that can be drawn without any crossing paths. These

are a subset of the partitions in the image of the map fl ◦ F2, and in fact the latter

image contains all the partitions.

In the next examples, we figure out how the above monoids look when graph

classes belong to C2(α, α)/∼fl◦F2 (as in 6.2.2) and M(α, α)/Rα (as in 5.4.21). In

particular, we explain why {{1, 2′}, {2, 1′}} cannot arise in M(α, α)/Rα.
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Example 6.2.6. Consider the picture given by

a 99K

1 2

1′ 2′

.
.
.

.
.

-recall the notation 99K as explained in (5.3.3).

Then, the different ‘interpretations’ that we have of this picture yield two different

partitions as follows:

1. When a ∈ C2(α, α), then

a = (a1, a2) =
(

1 2

1′ 2′

. .
..

,

1 2

1′ 2′

.
.
.

.
)
.

If [a]∼fl◦F2 ∈ C2(α, α)/∼fl◦F2, the element of Par is {{1, 2′}, {2, 1′}}.

2. Whereas if [a2]Rα ∈ M(α, α)/Rα, then the element of Par is {{1, 2, 1′, 2′}}.

So far we have shown that {{1, 2′}, {2, 1′}} does not arise from this picture

a when we work in M(α, α)/Rα. To show that {{1, 2′}, {2, 1′}} cannot arise in

M(α, α)/Rα by any picture, we proceed as follows. First note that there must be a

path from 1 to 2′. But then every line from 2 to 1′ must touch it by JCT 2.4.18.

In detail, we are trying to make a partition with 1 in the same path as 2′, there must

be a path from 1 to 2′. Then we try to make a path from 2 to 1′. We do not say

what path we make from 1 to 2′. It can be any. But by the Jordan curve theorem, if

there is a path from 1 to 2′, then every path from 2 to 1′ intersects that path. Now

our relation says all those pictures, all of them are pictures of the {{1, 2, 1′, 2′}} all

together, partition. Because the two bits crossed. And so now there is a path from

everything to everything. If we think of the line from 1 to 2′ as being the fence and
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the sheep at 2 making the other, as it is trying to get to the water or grass in the

place 1′, then the Jordan curve theorem says it cannot, because the fence is there. It

has to go through the fence.

Recall from 6.1.50 that in C2(α, α)/∼fl◦F2 , we just allow a picture which has

lines but in M(α, α)/Rα can be any picture. In the next example we have a different

picture. We see how the partition monoid image element looks like.

Example 6.2.7. Consider the picture given by

b 99K

.
.
.

.
1 2

1′ 2′

1. When we look at this picture ‘as’ an element in C2(α, α), the first question is

if we can interpret it as such an element. We need to figure out all the vertices

and then the path or line between these vertices. So, here we have boundary

vertices which are {1, 2, 1′, 2′} and some other vertices inside, such as eyes.

Note that if we have a ‘trivalent point’ (in the obvious sense), or a ‘univalent’

point, or indeed any odd-valent point, then this must be a vertex. So there are

4 vertices coming from trivalent points; and several from univalent points (the

outer ends of the ‘whiskers’ are a challenge to interpret! - by the C2 frame

rule there can be no points on the vertical edges, so either this picture is NOT

in C2 or else the ‘whiskers’ end close to but not on the frame — so then there

are two more interior vertices coming from these ends — note that it makes

no difference to the final partition exactly where these vertices are). Note also

that lines cannot touch other lines unless they have tangents, so we need a

vertex for each of the ears, where they are touching the head.
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Then

b = (b1, b2) =
(

1 2

1′ 2′

. .
..

. .. .
. .. .. .

... . ,

. .

. .
1 2

1′ 2′

)
.

If [b]∼fl◦F2 ∈ C2(α, α)/∼fl◦F2, then the element of Par is {{1, 2, 1′, 2′}}.

2. If [b2]Rα ∈ M(α, α)/Rα, then the element of Par is {{1, 2, 1′, 2′}}.



Appendix A

Appendix: Background Notes

A.1 Basic definitions

(A.1.1) Note that a function f : S → T is a bijection whenever it is a injection

and surjection.

Injection: if ∀s1, s2 ∈ S, f(s1) = f(s2) =⇒ s1 = s2.

Surjection: if ∀ t ∈ T,∃ s ∈ S such that f(s) = t.

(A.1.2) If f : S → T and g : T → W are function then the composition function

is defined by (g ◦ f)(s) = g(f(s))∀ s ∈ S.

If f and g are injection, then g ◦ f : S → W is injection .

If f and g are surjection, then g ◦ g is surjection.

Then g ◦ f is a bijection.

(A.1.3) A function f : S → T has an inverse function g : T → S if ∀s ∈ S and t ∈

T

g ◦ f(s) = 1s and f ◦ g(t) = 1t.

(A.1.4) A function has an inverse if and only if it is a bijection.

Proof. ⇒ Suppose f : S → T has an inverse f−1 : T → S we will show f is

bijection. First, we show f is a surjection. Suppose t ∈ T , Let s = f−1(t). Then

f(s) = f(f−1(t)) = f ◦ f−1(t) = 1t(t) = t. So f is surjection.

Now show f is injective. Let s1, s2 ∈ S, f(s1) = f(s2). We will show s1 = s2. Let

138
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t = f(s1) and s = f−1(t). Then

s2 = 1S(s2) = f−1 ◦ f(s2) = f−1(f(s2)) = f−1(f(s1)) = f−1(t) = s.

at the same time

s1 = 1S(s1) = f−1 ◦ f(s1) = f−1(f(s1)) = f−1(t) = s.

Therefore s1 = s2, so f is bijection,

⇐ Suppose f : S → T is a bijection. We want to show there is an inverse. Define

g : T → S. Let t ∈ T , Since f is injective , there exist s ∈ S such that f(s) = t. Let

f−1(t) = s. Since f is injective, this s is unique, so f−1is well-defined. Now we must

check that f−1 is the inverse of f . First, we will show that f−1 ◦ f = 1S. Let s ∈ S.

Let t = f(s). Then, by A.1.3, f−1(t) = s. Then f−1◦f(s) = f−1(f(s)) = f−1(t) = s.

Now we show that f◦f−1 = 1T . Let t ∈ T . Let s = f−1(t). Then, by A.1.3 , f(s) = t.

Then f ◦ f−1(t) = f(f−1(t)) = f(s) = t.

A.2 Homeomorphism group

Let A be topological space. Then a set of homeomorphisms from A to A given by

Homeo(A,A) is a group under function composition.

Proof. Let f, g : A → A ∈ Homeo(A,A) we want to show Homeo(A,A) is group

under composition.

1. closed under composition: Let f : A→ A and g : A→ A. Since f, g are bijection

by definition 2.3.17 then f ◦ g is a bijection. However, Since f, g are bijection Then

f−1, g−1 are bijection. So f−1 ◦ g−1 is a bijection. Also, since f, g are continuous by

the definition 2.3.17 then f ◦ g is continuous by2.3.12. Since f, g since f−1, g−1 are

continuous by the definition 2.3.17 then f−1 ◦g−1 is continuous by2.3.12. Therefore,

f ◦ f is closed.

2, The identity: Let idA : A→ A be identity. Consider f : A→ A. Then idA◦f = f

and f ◦ idA = f .

3. Inverse: Let f be homeomorphism means it has continuous bijective and f−1
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is continuous. Then every bijection has the inverse. So, f ∈ Homeo, then f−1 ∈

Homeo.

4. Associativity: Let f, gandh : A → A ∈ Homeo. We want to check f ◦ (g ◦ h) =

(f◦g)◦h. Then f◦(g◦h) = f◦(g(h)) = f(g(h)) = (f(g))(h) = (f◦g)(h) = (f◦g)◦h.

A.3 Thompson Group F

The diagram of composing Thompson Group F.
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[0, 1] [0, 1] [0, 1]

[y0 = 0, y1] [0, β1y1] ∩ [0, x1] [x0 = 0, x1]

... [0, β1y1] ∩ [x1, x2] [0, 1]

... ... ...

... [0, β1y1] ∩ [xi, xi+1] [0, 1]

... ... ...

[y1, y2] [β2y1 + ρ2 = β1y1, β2y2 + ρ2] ∩ [0, x1] [x1, x2]

... [β2y1 + ρ2 = β1y1, β2y2 + ρ2] ∩ [x1, x2] [0, 1]

... ... ...

... [β2y1 + ρ2 = β1y1, β2y2 + ρ2] ∩ [xi, xi+1] [0, 1]

... ... ...

[yk, yk+1] [..., βk+1yk+1 + ρk+1] ∩ [0, x1] [x2, x3]

... ... ...

[ym−1, ym = 1] [..., βm + ρm] ∩ [0, x1] [xn−1, xn = 1]

g f

β1x

g

f◦g(x)=α1β1x

β1x f◦g(x)=α2β1x+η2

β1x f◦g(x)=αi+1β1x+ηi+1

β1x f◦g(x)=...

α1x

f

α2x+η2

αi+1x+ηi+1

β2x+ρ2

β2x+ρ2 f◦g(x)=α1β2x+α1ρ2

β2x+ρ2 f◦g(x)=α2β2x+(α2ρ2+η2)

β2x+ρ2 f◦g(x)=αi+1β2x+(αi+1ρ2+ηi+1)

β2x+ρ2 f◦g(x)=?

α2x+η2

α2x+η2

αi+1x+ηi+1

βk+1x+ρk+1

βk+1x+ρk+1 f◦g(x)=α1βk+1x+α1ρk+1

βk+1x+ρk+1f◦g(x)=α2βk+1x+(α2ρk+1+η2)

f◦g(x)=...

βk+1x+ρk+1f◦g(x)=αnβk+1x+(αnρk+1+ηn)

αk+1x+ηk+1

βmx+ρm

f◦g(x)=αnβmx+(αnρm+ηn)

βmx+ρm f◦g(x)=α1βmx+α1ρm

βmx+ρm f◦g(x)=α2βmx+(α2ρm+η2)

βmx+ρm αk+1βmx+(αk+1ρm+ηk+1)

αnx+ηn

Figure A.1: The composition of Thompson Group F, (f ◦ g)
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