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Abstract

The TOMCAT 3-D chemical transport model (CTM) has been used to investigate the cause of

recent variations in global atmospheric methane (CH4), focusing on examining changes in the

balance of sources and sinks of the species. The chemical loss, transport and emissions of methane

have been studied and a new 4D-Var inverse version of TOMCAT has been created.

The accuracy of the TOMCAT model transport was investigated by simulatingthe distribution of

the long-lived species SF6. A range of model grid resolutions, boundary layer schemes and ad-

vection schemes were tested. New retrievals from the Atmospheric Chemistry Experiment (ACE)

satellite instrument were used to test the model in the upper troposphere and lower stratosphere.

The standard CTM simulated the observed distribution and growth of SF6 well. However, based

on comparison with ground-based data, the interhemispheric transport in the TOMCAT model was

found to be approximately 20% too slow, with too little temporal variation in southernhemisphere

transport. On the whole, however, tracer transport in the CTM using its standard set-up was accu-

rate. As a basis for the inverse model simpler advection and boundary layer (BL) schemes were

tested. The advection scheme which conserved only up to first-order moments (rather than second-

order moments) did not significantly reduce the accuracy of the model transport. However, use of

a local boundary layer mixing scheme rather than a non-local scheme did degrade the quality of

the transport by reducing the speed of vertical mixing out of the BL.

A number of currently used CH4 emission inventories were used with the forward TOMCAT model

in order to examine the effect they have on the global CH4 budget, and two different estimates of

the OH sink were also tested. A published OH field derived from global CH3CCl3 and a chemical

box model was found to be more consistent with OH observations than the fieldfrom the full

chemistry TOMCAT model. Although both OH fields produced global CH4 lifetimes consistent

with published estimates, the TOMCAT OH field yielded model CH4 which was up to 100 ppb

higher than observations at the surface. Data assimilation was used to improve the estimate of

the stratospheric sink of CH4. Although this sink is small overall, it needs to be represented

realistically in order to accurately reproduce global CH4 to within 10 ppbv.

A new adjoint version of the TOMCAT model was produced by explicit coding, and was thor-

oughly tested. This was incorporated into a new 4D-Var inverse model which can be used to

produce updated CH4 surface flux estimates which are constrained to agree with atmospheric ob-

servations. The inverse model was used to investigate emissions in the Arctic where the forward

TOMCAT model and standard emissions revealed a seasonal cycle out ofphase with surface CH4

observations. It was found that northern hemisphere summertime wetland emissions were overes-

timated in the GISS inventory by up to 100% for the period 2000-2006, and that this was likely due

to the estimates of emission rates and thaw period used when producing that inventory. It was also
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found that increased Asian emissions suggested in the EDGAR V4.0 inventory are not consistent

with observations unless mitigated by a corresponding drop in emissions elsewhere.
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Chapter 1

Introduction

1.1 Motivation

In recent years, our planet’s climate system has been placed under greater scrutiny than ever before

due to the growing concern that human activity has influenced its composition,and hence its

temperature and dynamics, to an unprecedented extent. Anthropogenic activities, such as industrial

processes, agriculture and land use change have resulted in rising atmospheric concentrations of

greenhouse gases such as carbon dioxide (CO2), methane (CH4) and water vapour (H2O), amongst

others. Greenhouse gases are known to absorb and re-emit long-wave infra-red radiation which

would otherwise escape the Earth’s atmosphere, producing a warming effect upon the planet. As

atmospheric concentrations of greenhouse gases rise, this greenhouse effect on the planet also

increases, and may lead to global mean surface temperatures rising by 4± 2 °C by the year 2100

(Meehl et al., 2007).

It is clearly vital that our understanding of the Earth’s atmospheric processes and composition is

as comprehensive and as detailed as possible in order that we may attempt to control our influence

upon the atmosphere and mitigate for climate change. However, the complex andturbulent na-

ture of atmospheric processes, along with the atmosphere’s dependenceupon the planet’s oceanic

and bioterrestrial systems, means that there currently remain large uncertainties in our comprehen-

sion. Attempts to improve our understanding of the composition of the atmospheretake a variety

of forms, including direct measurement of atmospheric concentrations, laboratory experiments of

atmospheric species, and model studies which take advantage of recent improvements in com-

putational power in order to simulate the atmospheric system. While atmospheric modelling is

a powerful tool in reproducing or predicting the composition of the atmosphere at a given time,

every model requires some prior knowledge of certain parameters, suchas surface emission dis-

tributions and atmospheric reaction rates, in order to function accurately and gaps still remain in

1
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Figure 1.1 The concentration (ppb) and associated radiative forcing (W m−2) of CH4 over the
last 20,000 years reconstructed from Antarctic and Greenland ice and firn data (symbols) and
from direct atmospheric measurements (red line). The grey bar displays the reconstructed CH4
concentration range over the past 650,000 years. Taken from Jansen et al. (2007).

our knowledge of such parameters. However, atmospheric models allow usto produce accurate

three-dimensional estimates of atmospheric species without the need for extensive measurement

campaigns, and allow us to predict the effect that anthropogenic activitiesmay have upon the

future climate of our planet.

1.2 Tropospheric Methane

Methane (CH4) is a greenhouse gas which is emitted from a variety of anthropogenic and natural

sources. Figure 1.1 shows the global mean concentration of CH4 over the past 20,000 years. Prior

to the industrial revolution, which was a period of dramatic technological andmanufactural growth

throughout the 18th and 19th centuries, the mean atmospheric CH4 concentration varied between

400 parts per billion (ppb) during glacial periods and 700 ppb in inter-glacial periods (Spahni et al.,

2005). Since industrialisation, however, the mean atmospheric concentration of CH4 has climbed

dramatically, at an unprecedented pace, with an increase of 1000 ppb during the 20th century

(Ferretti et al., 2005). The IPCC report of 2007 (Forster et al., 2007) used measurements from

surface sampling sites to place the the global mean CH4 concentration at approximately 1774 ppb,

a value unprecedented in at least the preceding 650,000 years (Spahni et al., 2005), and since 2007

the global atmospheric CH4 concentration has continued to rise (Rigby et al., 2008; Dlugokencky

et al., 2009).
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Figure 1.2Summary of the principal components of the radiative forcing of climate change. Val-
ues represent the forcings in 2005 relative to the start of the industrial era (around 1750). Errors
correspond to the level of uncertainty around the respective value. Taken from Forster et al. (2007).

This increase in the atmospheric concentration of methane has a direct effect upon the Earth’s

climate due to the high radiative forcing produced by CH4. Radiative forcing is a measure of

how much a factor, such as the changing concentration of a greenhousegas, influences the energy

balance of the Earth’s climate. Figure 1.2 displays the radiative forcing of various atmospheric

constituents, showing that CH4 is the second most important greenhouse gas in terms of radiative

forcing (Denman et al., 2007), behind only CO2 in its influence on the climate. In fact, on a

per-molecule basis, the radiative efficiency of CH4 is approximately 26 times higher than that of

CO2 but the atmospheric concentration of CH4 is far lower, meaning that its total radiative forcing

is approximately 0.48±0.05 W m−2, compared to a value of 1.66±0.17 W m−2 for CO2. This

means that CH4 accounts for approximately 30% of the planet’s total radiative forcing dueto

anthropogenic activity (Forster et al., 2007).

1.3 Inverse Modelling

Surface emissions of CH4 originate from a range of contributing biogenic sources, including wet-

lands, rice agriculture and livestock, and non-biogenic sources suchas the fossil fuel industry and
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biomass burning. It is important that the nature, location and magnitude of these emissions are

fully understood in order for policy-makers to be able to reduce anthropogenic contribution to

climate change, but also so that atmospheric models may use such inventories as boundary condi-

tions in order to accurately reproduce atmospheric concentrations of the species. However, there

are currently large uncertainties in our emission estimates for CH4, especially from natural pro-

cesses such as biogenesis from wetlands or those with varying geographical distributions such as

biomass burning (Forster et al., 2007).

The rate of CH4 emission from a given process can generally be estimated using three methods.

The first of these involves the extrapolation of direct small-scale flux measurements up to a regional

scale, while the second method consists of modelling the underlying processes of CH4 emissions.

While each of these ‘bottom-up’ methods may be accurate up to a limited point, the large spatial

and temporal variation in CH4 emission rates may lead to inaccuracies when these estimates are

extrapolated upwards. The third available option is a ‘top-down’ approach known as inverse trans-

port modelling, which assimilates observed atmospheric concentrations into atmospheric models

in order to constrain emission rates. While top-down methods may help to overcome the weak-

nesses in the bottom-up approaches, inverse models are dependent on good quality, high density

observations and a good understanding of errors in the observation and modelling process in order

to produce accurate results. Ideally, the two approaches work in tandemto create the most robust

emission inventories possible.

One method of inverse transport modelling which is becoming increasingly prevalent due to to

improvements in computational speed and memory is known as the Four-Dimensional Variational

(4D-Var) inverse modelling method. This method uses an adjoint version of an atmospheric trans-

port model to find the sources of discrepancies between model simulations and observations the

distribution of atmospheric species. The aim of the work described in this thesis is to create a new

4D-Var inversion system for the TOMCAT/SLIMCAT model, henceforth known as the TOMCAT

model. This is a Chemical Transport Model (CTM) which has been used in avariety of studies in

the past to simulate the transport and chemistry of active atmospheric trace gases (e.g. Chipper-

field et al. (1993); Arnold et al. (2005); Breider et al. (2010); Hossaini et al. (2010)), and to use

the new inversion system to create updated emission rates for CH4 which are more consistent with

observations, providing information which can help to improve our understanding of the physical

processes of CH4 emission into the atmosphere. An essential step in the model development is an

evaluation of the forward model for the transport of long-lived gases such as CH4.
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1.4 Aims of this Thesis

The main aim of this thesis is to improve our understanding of the growth-rate ofatmospheric

CH4 and the underlying processes contributing to its emission into the atmosphere using observed

atmospheric CH4 concentrations to constrain global surface emission rates using the TOMCAT

CTM. Specifically, this thesis will address the following:

1. Investigate recent variations in the atmospheric CH4 budget using the TOMCAT model

and a range of state-of-the-art CH4 emission inventories. Investigate the ability of the

TOMCAT model to accurately simulate the global CH4 distribution. Assess the accuracy of

a variety of CH4 emission and destruction inventories. Assess the impact that differences in

the emission/destruction inventories have on the simulated CH4 distribution. Investigate the

sources of any discrepancies between the forward model and the observations.

2. Develop a 4D-Var inversion system using the TOMCAT CTM capable of producing

improved global emission inventories of atmospheric species on a model-grid scale

through the assimilation of observed data.Assess the accuracy of the simulated atmo-

spheric transport processes in the TOMCAT model. Produce and validatethe adjoint version

of the TOMCAT model. Incorporate the adjoint model into a 4D-Var optimisation routine.

3. Use the TOMCAT 4D-Var system together with observed CH4 data in order to provide

an updated emission inventory for CH4. Trace the geographical and temporal locations of

discrepancies produced using the inversion model, and assess their physical processes which

are responsible. Deduce possible reasons for the inconsistencies anduse this knowledge to

infer the causes of variations in the atmospheric CH4 budget.

1.5 Thesis Layout

This thesis consists of seven further chapters. Chapter 2 discusses thedynamics and chemistry of

the troposphere with respect to CH4, before describing in detail the various sources and sinks of

the species. Chapter 2 also details recent variations in the atmospheric CH4 budget and discusses

previous studies which have attempted to explain these variations with respectto changes in the

net CH4 flux. Chapter 3 describes and evaluates different methods available to inverse modellers

in order to estimate the fluxes of atmospheric constituents, and briefly discusses the results of

previous inverse modelling studies. Chapter 3 also describes the TOMCAT CTM which is used

in this study. Chapter 4 evaluates the accuracy of the transport in the TOMCAT model using

observations of a chemically inert tracer, and discusses this model’s suitability for use as the basis

of an inverse transport model. Chapter 5 documents the development of a new 4D-Var inversion
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system for the TOMCAT model, giving detailed descriptions of both the methodology used for an

inversion and the extensive testing process undergone by the inverse model in order to validate its

accuracy. Chapter 6 investigates recent variations in tropospheric CH4 by examining the sensitivity

of the TOMCAT model to a variety of estimates of both sources and sinks of methane. Chapter 7

foucuses on the seasonal cycle of CH4 in the Arctic, and examines the results of an inverse model

simulation which aims to produce updated global emission estimates of CH4 during a specific year,

before examining the physical implications of the results of the inversion. Chapter 8 summarises

the results and conclusions of the research in the thesis.



Chapter 2

Methane in the Atmosphere

2.1 Introduction

This chapter is intended to give background on all aspects of atmosphericCH4, as it is clearly nec-

essary to understand the underlying processes of atmospheric transport, chemistry, emission and

destruction of the species in order to accurately simulate its global concentration in an atmospheric

transport model. Section 2.2 describes the structure of the atmosphere andgives a brief descrip-

tion of the underlying transport processes which atmospheric CH4 is subject to, while Section 2.3

describes the chemical destruction processes which CH4 undergoes in the atmosphere. Section

2.4 gives details of the wide range of sources from which CH4 is emitted, along with the inherent

problems encountered when attempting to compile CH4 emission budgets due to difficulties in

quantifying these processes. Finally, Section 2.5 describes recent variations in the global mean

atmospheric CH4 concentration, and discusses previous attempts by other authors to link these

variations to changes in surface emission rates and distributions.

2.2 The Structure of the Atmosphere

The atmosphere is a layer of gases surrounding the Earth’s surface which maintains the planet’s

ability to sustain life. The atmosphere is made up of a huge number of gaseous species, although

most exist only in trace amounts. Only nitrogen (78%), oxygen (21%), argon and water vapour

(<1% each) contribute a substantial proportion to the composition of the atmosphere. Other gases

present in the atmosphere, known as trace gases, may have relatively small atmospheric concen-

trations, but many of them play a large role in the maintenance of the planet’s climate.

7
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Atmospheric pressure is the term given to the force exerted by the weight of the atmosphere, which

decreases exponentially with altitude due to the effects of gravity and temperature. Figure 2.1(a)

shows the typical vertical profile of atmospheric pressure. The temperature of the atmosphere

has a more complex vertical structure, as shown in Figure 2.1(b). The atmosphere is partitioned

vertically into domains separated by reversals of the temperature gradient, with each domain hav-

ing substantially different compositions and physical and chemical properties. The troposphere is

loosely defined as the lowest region, where temperature decreases with height. The tropopause,

which marks the top boundary of the troposphere, sits at around 8 - 18 kmabove the Earth’s sur-

face, the altitude being highly dependent on latitude and season. The troposphere contains around

85% of the total mass of the atmosphere. Close to the surface is a section of thetroposphere

known as the planetary boundary layer (PBL), which extends upwardsto just a couple of kilome-

tres. The PBL is characterised by turbulent and rapid atmospheric mixing due to the orography

and temperature of the surface. The stratosphere sits directly above the tropopause and extends up

to an altitude of around 50 km above the surface of the Earth. The temperature of the stratosphere

increases with altitude due to the absorption of solar radiation by ozone. Together, the strato-

sphere and troposphere contain 99.9% of the total mass of the atmosphere,and the majority of

the chemical processes necessary for life on Earth occur in these two sections of the atmosphere,

although the two domains are chemically and dynamically different. Above the stratopause is the

mesosphere, where temperature decreases with altitude again, although not as steeply as in the tro-

posphere, and the thermosphere sits above the mesopause. The temperature of the thermosphere

rises sharply up to between 500 K and 2000 K due to the strong absoption ofsolar UV radiation by

N2 and O2. This thesis focuses on variations of CH4 in the troposphere only, but the exchange of

air between the stratosphere and troposphere plays an important role in thetropospheric concen-

tration of CH4, so both domains must be modelled and understood. The effect of the mesosphere

and thermosphere on tropospheric CH4 is minimal.

2.2.1 Atmospheric Transport

Atmospheric transport is the term encompassing all large- and small-scale airmovement, which

carries trace gas molecules through the atmosphere. This means that regardless of the location of

their emission, trace gases are eventually mixed throughout the atmosphere.Advection, convection

and boundary layer mixing are three forms of atmospheric transport whichare considered in the

TOMCAT model, and the nature of each of these three processes is described here.
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Figure 2.1 (Left) Typical vertical pressure profile and(Right) typical vertical temperature profile
in the Earth’s atmosphere at 30°N, March. Adapted from Jacob (1999).
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Advection

Transport of atmospheric air, and therefore of species such as CH4 contained in the air, due to

winds is known as advection, and is responsible for most of the large-scale transport of air around

the globe. Wind is the flow of air from areas of high pressure to areas of low pressure, which over

a long time period will mix atmospheric constituents throughout the atmosphere. Advection is

responsible for the transport of trace gases away from the area where they emitted. For example,

since the majority of CH4 sources are in the northern hemisphere (NH), advection is responsible

for transporting atmospheric CH4 into the southern hemisphere (SH). Advection of an atmospheric

tracer at a fixed point satisfies the continuity equation, which states that;

∂ f
∂ t

= −∇( f u) (2.1)

where f (x1,x2,x3) is the tracer mass and u= (u1,u2,u3) is a three-dimensional wind velocity field.

This means that, assuming no sources or sinks, tracer mass is conserved throughout time.

Convection

Convection is responsible for the rapid vertical transport of air in the atmosphere. There are two

types of convection, known as free convection and forced convection. Free convection occurs due
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to the solar heating of the Earth’s surface, which causes a vertical air density gradient known as

a thermal, forcing air to rise. Due to the temperature dependence of free convection, its effect

is generally greatest in tropical latitudes, and it has less of an effect towards the poles. Forced

convection can occur for a number of reasons. It may be due to the orography of the land surface,

weather fronts or the convergence of horizontal winds. This effect causes air to rise in mountainous

areas, for example.

PBL mixing

The Earth’s boundary layer is characterised by turbulent and rapid mixing of air close to the surface

due to changing factors such as orography, soil heat capacity and atmospheric heat conductance.

Species that are emitted from the Earth’s surface quickly become mixed through the boundary

layer before they move into the free troposphere at a slower pace. The height of the PBL changes

according to heating of the Earth’s surface, which affects the rate of venting into the free tropo-

sphere. Deposition of some trace species out of the air and into the Earth’sbiosphere also occurs

in the boundary layer, although methane is not a deposited species.

2.3 Atmospheric Chemistry Relating to CH4

Once emitted into the atmosphere, CH4 either remains resident in the atmosphere, is destroyed

through chemical reactions with other atmospheric species, or is oxidised bythe methanotrophic

bacteria in soils. The major sink of CH4 is reaction with the hydroxyl radical, OH, which is

responsible for approximately 90% of the removal of CH4 from the atmosphere, and occurs in

both the troposphere and in the stratosphere (Denman et al., 2007). Through a number of further

reactions, this process eventually results in the formation of CO and CO2, giving rise to the indi-

rect radiative forcing potential of CH4 due to its role in the formation of these other greenhouse

gases. The oxidation process of CH4 in the troposphere to eventually form CO and CO2 can occur

through a number of pathways, which are mainly dependent upon the localpresence of nitrogen

oxides (NOx) in the atmosphere. NOx, which consists of NO and NO2, is mostly released into the

atmosphere through anthropogenic activity such as fossil fuel combustion and biomass burning,

although it is also released in relatively small amounts from soils and is produced in the atmo-

sphere due to lightning. NO is oxidised to form NO2 in a number of tropospheric reactions, such

as that with O3;

NO+O3 −→ NO2 +O2 (2.2)
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and NO2 is quickly photolysed back to NO during the daytime;

NO2 +hν O2−→ NO+O3 (2.3)

This means that cycling between NO2 and NO takes place on a time-scale of minutes in the tro-

posphere, which means that the NOx budget is generally considered as a whole. In regions with

high local concentrations of NOx, an alternative oxidation pathway is available for CH4, and both

pathways are described here.

When CH4 reacts with OH, it forms the methyl radical CH3, which reacts rapidly with O2;

CH4 +OH −→ CH3 +H2O [kOH = 2.45×10−12exp(−1775/T)] (2.4)

CH3 +O2 +M −→ CH3O2 +M (2.5)

At this point, the presence of NOx is critical, as the methylperoxy radical CH3O2 will react with

NO if it is present, or with HO2 otherwise;

CH3O2 +NO−→ CH3O+NO2 (2.6)

CH3O2 +HO2 −→ CH3OOH+O2 (2.7)

Methylhydroperoxide (CH3OOH), which is formed when NOx levels are low, may react with OH

(with two possible reaction branches), or be photolysed;

CH3OOH+OH −→ CH2O+OH+H2O (2.8)

CH3OOH+OH −→ CH3O2 +H2O (2.9)

CH3OOH+hν −→ CH3O+OH (2.10)

The methoxy radical (CH3O), which is formed during reactions 2.6 and 2.10, reacts rapidly with

O2;

CH3O+O2 −→CH2O+HO2 (2.11)
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Formaldehyde (CH2O) can react with OH or photolyse (with two photolysis branches);

CH2O+OH −→ CHO+H2O (2.12)

CH2O+hν O2−→ CHO+HO2 (2.13)

CH2O+hν −→ CO+H2 (2.14)

and the CHO radical reacts rapidly with O2 to form CO;

CHO+O2 −→CO+HO2 (2.15)

When CO is formed, it reacts with OH to give CO2;

CO+OH −→ CO2 +H (2.16)

H +O2 +M −→ HO2 +M (2.17)

In this way, CH4 is eventually oxidised to form CO and CO2, with differing products depending

on the presence of NOx in the atmosphere. In the high-NOx case, the net reaction is therefore;

CH4 +10O2 −→CO2 +H2O+5O3 +2OH (2.18)

while in case where NOx is low, the net reaction is;

CH4 +3OH+2O2 −→CO2 +3H2O+HO2 (2.19)

The reaction chain is summarised in Figure 2.2. Equations 2.18 and 2.19 indicatethe importance of

CH4, along with the presence of NOx in the atmosphere, in determining the concentration of tropo-

spheric OH. In the presence of NOx, the oxidation of CH4 eventually produces two OH molecules

and 5 molecules of O3, which may be photolysed to form OH. Meanwhile, low atmospheric NOx

concentrations lead to the destruction of three OH molecules and the production of a molecule of

HO2. This process is known as HOx recycling, where the HOx family is comprised almost entirely

of OH and HO2, and means that the balance of CH4, CO, CO2, O3 and NOx are responsible for

the maintenance of the atmospheric concentration of OH.



Chapter 2.Methane in the Atmosphere 13

Figure 2.2 Chemical processes describing the oxidation of CH4 in the atmosphere to eventually
form CO and CO2.

CH4 is also destroyed through reactions with excited oxygen atoms, O(1D), and with atomic chlo-

rine (Cl). These reactions, detailed in Equations 2.20 and 2.21 respectively, occur only in the

stratosphere, and are responsible for approximately 5% of the total loss of CH4 from the atmo-

sphere.

CH4 +O(1D) −→ CH3 +OH [kO(1D) = 1.5×10−10] (2.20)

CH4 +Cl −→ CH3 +HCl [kCl = 7.3×10−12exp(−1280/T)] (2.21)

The remaining 5% of atmospheric CH4 loss is through sequestration into the soils, which is dis-

cussed in more detail in Section 2.4.

2.4 Surface CH4 Fluxes

Surface CH4 emissions have a variety of natural and anthropogenic origins, which stemfrom both

biogenic and non-biogenic processes. Anthropogenic sources include fossil fuel mining and use,

landfill sites, biomass burning, rice agriculture and the increased farming of ruminant animals
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Table 2.1Ranges of CH4 source and sink estimates provided by various contributors to the IPCC
2007 report (Denman et al., 2007), in which the value for total sinks is estimated, and the total
magnitude of the sources is determined from the atmospheric imbalance.

Process Range of Estimates (Tg yr−1)
Natural Sources 145 - 260

Wetlands 100 - 231
Termites 20 - 29
Ocean 4 - 15

Hydrates 4 - 5
Geological sources 4 - 14

Wild animals 15
Wildfires 2 - 5

Anthropogenic sources 264 - 428
Energy 74 - 77

Coal mining 32 - 48
Gas, oil, industry 36 - 68

Landfills and waste 35 - 69
Ruminants 76 - 91

Rice agriculture 39 - 112
Biomass burning 14 - 88
C3 Vegetation 27
C4 Vegetation 9

Sinks
Soils 26 - 34

Tropospheric OH 445 - 507
Stratospheric Loss 30 - 45

TOTAL SOURCES 582
TOTAL SINKS 581
IMBALANCE +1

while natural sources include wetlands, termites, the oceans, geological sources, wild animals

and wildfires. There are large uncertainties, however, in the nature, size and distribution of these

emissions for a variety of reasons which will be discussed later in this section. In total, annual

CH4 emissions are estimated to be approximately 582 Tg yr−1 for the years 2000 - 2004 (Denman

et al., 2007). Details of the genesis, distribution and size of each of these sources is given here, and

a full CH4 budget, including partitioning of the total source into the various emission processes as

estimated in the IPCC report (Denman et al., 2007), is given in Table 2.1. Denman et al. (2007) is

henceforth referred to as IPCC07. Note that in the period 2000 - 2004,the total sources and sinks

of methane were thought to be almost in balance, giving a net atmospheric increase of just 1 Tg

yr−1.
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Figure 2.3 Wetland daily emissions of CH4 (mg m−2 d−1) inferred from fitting a temperature-
groundwater wetland model to SCIAMACHY CH4 concentrations averaged over 2003-2005.
Taken from Bloom et al. (2010).

Wetlands

Wetlands, such as swamps, peatlands, bogs, dry tundra, and Arctic thermokarst (thaw) lakes are

together the largest single source of CH4, and this flux component has the largest uncertainty. Wet-

lands are distributed across the globe, with large contributions from the Amazon Basin, swamps in

the USA, equatorial Asia and Central Africa, and Arctic tundra and thaw lakes in Canada, Scan-

dinavia and Russia. Figure 2.3 shows the distribution of wetland emissions inferred by Bloom

et al. (2010) from a wetland model over the period 2003 - 2005, displaying high wetland sources

throughout tropical areas, and also in the high-latitude NH. Methane is emittedfrom wetlands due

to methanogenic bacteria in the soils under anaerobic conditions (Conrad, 1989), and the rate of

emission is dependent upon a number of factors including soil temperature,water-table depth, the

availability of substrate for bacteria to feed on and the transportation process into the atmosphere.

The dependence of wetland CH4 emissions upon climate-based factors such as soil temperature

and water-table depth could lead to a feedback process in which rising temperatures or precipita-

tion levels due to climate change may lead to increased CH4 flux from wetlands (Gedney et al.,

2004; Bohn et al., 2007).

Early estimates placed total CH4 wetland emissions at around 11 - 57 Tg yr−1 (Matthews and Fung,

1987), while IPCC07 included total wetland emission estimates between 100 Tg yr−1 (Wuebbles

and Hayhoe, 2002) and 231 Tg yr−1 (Hein et al., 1997; Mikaloff Fletcher et al., 2004), indi-

cating the extent of the uncertainty surrounding the size of this CH4 source. Until recently, many
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estimates of wetland CH4 emission rates came from small-scale measurements which were extrap-

olated to regional scales (e.g. Matthews and Fung (1987); Zimov et al. (1997)), or from process-

based models which attempted to simulate the processes of wetland methanogenesis (e.g. Cao

et al. (1996); Christensen et al. (1996); Walter and Heimann (2000)).However, each of these tech-

niques is limited by our knowledge of the spatial and temporal distribution of wetlands, and of the

diversity of CH4 emission rate between and within wetland types. For example, Walter et al. (2007)

found that estimates of CH4 emission from Arctic lakes often did not take account of small lakes,

leading to an underestimation of lake area by a factor of more than 2. Recently, the availability

of high resolution satellite measurements have allowed more accurate estimation ofwetland size

and location. Bloom et al. (2010) used gravity anomaly observations fromthe Scanning Imaging

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument as a proxy

for water table depth, found that surface temperature is the major factor in determining the emis-

sion rate of Arctic wetlands, while the water table depth is the determining factor in tropical and

SH wetlands. Bousquet et al. (2006) suggested that wetlands were responsible for much of the

interannual variability of the atmospheric CH4 budget throughout the 1990s and early 2000s.

Rice Agriculture

Anthropogenic CH4 is emitted from rice paddies due to the same methanogenic bacterial processes

that are responsible for wetland emissions, and our estimates of the total fluxare similarly depen-

dent upon the accuracy of our determination of the spatial and temporal variations in the emission

rate. The management system of a particular rice paddy, which may vary greatly from location

to location, plays a major role in its methanogenic properties. The majority of CH4 emissions

due to rice agriculture originate in East and South-East Asia. IPCC07 estimated that the annual

emission rate due to rice agriculture ranges from 39 (Scheehle et al., 2002) to 112 Tg yr−1 (Chen

and Prinn, 2005). Li et al. (2002) and Kai et al. (2010) suggested that emissions from rice paddies

in China have decreased since 1982 due improved management techniquesand a reduction in the

area used for rice production. Due to the similarity in the emission process involved, wetland and

rice production emissions are often modelled as one (e.g. Bloom et al. (2010)). It is estimated that

70% of emissions from wetlands and rice paddies come from sources in the tropics and SH.

Oceans and Hydrates

Methane is supersaturated in surface ocean waters, where it can outgas into the atmosphere. Some

of this excess CH4, especially around coastal regions, comes from land-based sourcessuch as

petroleum production (Sackett and Brooks, 1975) and methane-rich sediments (Bernard et al.,
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Figure 2.4Global volume of distribution of methane in hydrate at standard temperature and pres-
sure on a 1° grid on all seafloor locations. Taken from Klauda and Sandler (2009).

1978). However, there must also be an ocean source of CH4, since transport alone cannot ac-

count for supersaturated CH4 in some parts of the open ocean (Scranton and Brewer, 1977). This

source is likely to be due to methanogenic bacteria (Brooks et al., 1981) which reside in the deep

ocean, since the surface waters are highly oxygenated, prohibiting methane production (Karl and

Tilbrook, 1994).

Marine gas hydrates are structures composed of crystalline water molecules which can trap gaseous

molecules such as CH4 in cage-like configurations, formed under low temperature and high pres-

sure in the planet’s oceans. If the temperature rises or the pressure decreases, however, the trapped

molecule may be released and emitted into the ocean, and further into the atmosphere. CH4 hy-

drates are the most common from of hydrate (Archer, 2007), but knowledge of the extent to which

they occur globally is ‘very incomplete’ (O’Connor et al., 2010). Figure 2.4 shows the global

volume distribution of methane in hydrate on the sea floor. CH4 hydrate concentration is greatest

in coastal regions in the tropics and in the NH at high latitudes. Like wetlands, methane hydrates

may be subject to a feedback loop due to the temperature dependence of therelease of the trapped

gas. Archer (2007) carried out a model study of hydrate emissions of CH4 and estimated that there

are 1600 - 2000 Pg of carbon in the ocean in the form of CH4 hydrates, and, citing a study by

Dickens (2003), considered that the hydrate source may be a ‘slow but... irreversible tipping point

in the Earth’s carbon cycle’. CH4 emission rates from the oceans are small in comparison to some

other sources. IPCC07 estimated that ocean sources ranged between 4and 15 Tg yr−1, while the

emission rate due to hydrates was estimated to be approximately 5 Tg yr−1.
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Figure 2.5 Anthropogenic fossil fuel emissions of CH4 (Tg year−1) for the period 1970-2005.
Taken from edgar.jrc.ec.europa.eu/partCH4.php.

Fossil Fuels

CH4 is emitted during the extraction processes and burning associated with fossilfuels. Since

industrial processes such as these are generally well documented, the magnitude and distribution

of our estimates are assumed to be fairly well constrained. IPCC07 placed total anthropogenic

emissions due to coal mining, gas, oil and industry at 82 - 106 Tg yr−1. Figure 2.5 shows the

total emissions of CH4 from fossil fuels as estimated by the EDGAR version 4.0 inventory for

the period 1970 - 2005. The EDGAR inventory estimated that coal and oil emissions showed no

overall trend over the period 1970 - 2000, while CH4 emissions due to the natural gas industry

rose steadily throughout that period. There was relatively small interannual variation associated

with each of the three industries between 1980 and 2005. However, Cofala et al. (2007) estimated

that, considering the legislation at the time, anthropogenic CH4 emissions due to industry would

increase by up to 35% by 2010, mostly due to increase emissions from Africaand the Middle East

and from Centrally Planned Asia (e.g. Vietnam, North Korea and Mongolia) and China. EDGAR

estimated that coal and gas emissions had increased by approximately 20 Tg yr−1 between 2000

and 2005. Aydin et al. (2011), however, estimated that fossil fuel emissions had been decreasing

since the 1980s and were still doing so in 2010.

Landfills

CH4 is emitted from anthropogenic soil-covered landfill sites due to biodegradation in anaerobic

conditions of waste. The size of this source was estimated by Bingemer and Crutzen (1987) to be
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30 - 70 Tg yr−1, and this estimate has changed little, with estimates in IPCC07 ranging from 35

- 69 Tg yr−1. As a biogenic source, this reaction is dependent on soil temperature, indicating a

possible future feedback process.

Ruminants and Termites

Methane is a by-product of the microbial breakdown of carbohydratessuch as cellulose in the

digestive systems of most herbivores, with ruminants producing the highest ratio of CH4 produc-

tion (Blaxter and Czerkaws, 1966; Wolin, 1981). This source of CH4 appears to be fairly well

constrained thanks to agricultural data provided by each country and published methane yield esti-

mates for different species, and IPCC07 estimates that the annual CH4 emission due to ruminants

ranges between 76 (Scheehle et al., 2002) and 91 Tg yr−1 (Mikaloff Fletcher et al., 2004). Russia,

Brazil, Western Europe, Africa, India and the US produce the highest CH4 emissions due to cattle

agriculture (Johnson and Ward, 1996), and the distribution due to all other ruminants is similar.

Animal manure also produces small methane emissions, especially if stored (Bogner et al., 1995).

CH4 is emitted from the digestive systems of termites. This source is difficult to model and esti-

mate, due to the differences in emission rates from various termite families (Sugimoto et al., 1998)

and the uncertainties in the location of major termite colonies. In fact, the emission rate from

workers may vary from colony to colony even within the same species (Wheeler et al., 1996).

IPCC07 estimates that the global methane source due to termites sits between 20 (Wuebbles and

Hayhoe, 2002; Houweling et al., 1999) and 29 Tg yr−1 (Mikaloff Fletcher et al., 2004).

Biomass Burning and Wildfires

Anthropogenic biomass burning and natural wildfires are a source of a number of atmospheric trace

gases, including methane. Although burning in oxygen-rich environments releases mostly CO2,

the smouldering phase of fires releases CH4, CO and other hydrocarbons (Lobert et al., 1991).

Depending on the fuel burnt, 2.3 - 10.7 g CH4 are emitted per kilogram of dry matter burned

(Andreae and Merlet, 2001), and IPCC07 placed estimates of biomass burning CH4 emissions

between 14 (Scheehle et al., 2002) and 88 Tg yr−1 (Mikaloff Fletcher et al., 2004), while wildfires

produced 2 - 5 Tg yr−1. Around 85% of CH4 released from biomass burning is from tropical

regions, with small contributions from temperate and boreal regions (Hao and Ward, 1993). Due to

the difficulties in estimating burned areas and vegetation types, and the ever-changing distribution

of emissions, there are large uncertainties in our estimates of biomass burningand wildfire CH4

emissions, and recent studies such as Duncan et al. (2003) and Edwards et al. (2006) attempt

to constrain trace gas emissions using satellite observations of fires. Duncan et al. (2003), who
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studied the distribution of CO emissions due to biomass burning from 1979 to 2003, found that

although there was no significant trend in biomass burning emissions over that time period, there

was large interannual variation on a regional and global scale. van derWerf et al. (2006) confirmed

this over the period 1997 - 2004. As indicated by the range of estimates provided in IPCC07,

biomass burning is one of the less constrained sources of CH4, and further study is necessary in

order to quantify its influence.

Other sources

There are other, possibly large, natural sources of CH4 which are not well understood. IPCC07

estimated that geological sources of methane contribute between 4 and 14 Tgyr−1. CH4 is formed

in the Earth’s crust, mainly by bacteria and thermogenic processes (Denmanet al., 2007), and

released into the atmosphere through faults, fractured rocks and mud volcanoes (Milkov et al.,

2003; Kvenvolden and Rogers, 2005), and the total geological source of CH4 may be as high as

40 - 60 Tg yr−1 (Denman et al., 2007). Kvenvolden and Rogers (2005) estimated the geological

source to be approximately 45 Tg yr−1, which is accounted for as part of the fossil fuel budget.

Many of these geological sources have been subject to detailed measurements only in recent years.

For example, measurements from mud volcanoes began in 2001 (Etiope and Milkov, 2004), and

the number of mud volcanoes may range between 100 and 10,000 (Milkov et al., 2003). Geologic

sources require far greater investigation before we can begin to understand the extent of their

influence upon the atmospheric methane budget.

Another natural source which is poorly understood is the natural flux from some plants, which was

suggested only recently by Keppler et al. (2006), who found that livingC3 and C4 category plants,

such as broadleaf trees, sugarcane and maize, release methane in situ. This study estimated that

the global source from living plants is 62 – 236 Tg yr−1, mostly from the tropics, although the top

limit of this estimate was revised down to 85 - 125 Tg yr−1 by Houweling et al. (2006) using a

transport model. Total CH4 emissions from plants was most recently estimated at 20 - 69 Tg yr−1,

with a best estimate of 36 Tg yr−1, by Butenhoff and Khalil (2007), who suggested that around

24% of these emissions may already be accounted for in the wetland emission budget. However,

this reasoning still meant that approximately 28 Tg yr−1 CH4 were unaccounted for in the methane

budget. IPCC07 allowed for 27 Tg yr−1 and 9 Tg yr−1 for C3 and C4 category plants respectively,

in agreement with Butenhoff and Khalil (2007).

Soil Sink

The oxidation of CH4 by aerobic methanotrophic bacteria in the soils occurs in most types of oxic

soils. Most estimates of the soil sink from process models (Ridgwell et al., 1999) and top-down



Chapter 2.Methane in the Atmosphere 21

studies (Bousquet et al., 2006) indicate that it accounts for approximately30 Tg yr−1 CH4, or

about 5% of the total methane sink.

2.4.1 Isotopic Composition of CH4 Emissions

13C is an isotope of carbon containing an extra neutron, and atmospheric methane containing13C

can be monitored independently from the vast majority of CH4, which contains12C. This provides

a useful diagnostic for locating the origin of atmospheric CH4, since different methane sources

produce different ratios of13C to 12C. Finding this ratio for an air sample containing methane can

therefore constrain the nature of its emission. The valueδ 13C for an air sample provides a measure

of the13C to 12C ratio, and is defined as;

δ 13C =







(

13C
12C

)

sample
(

13C
12C

)

standard

−1






×1000h (2.22)

While ambient background air typically hasδ 13C≈-47‰, CH4 formed by combustion is generally

enriched in13C while CH4 from biogenic sources is depleted.δ 13C can also change according

to the source location. For example,δ 13C for methane emitted from wetlands at high northern

latitudes varies between -70‰ and -60‰, while tropical wetlands produce CH4 with δ 13C varying

from -60‰ to -50‰ (Dlugokencky et al., 2011). Although monitoring ofδ 13C for methane is

currently limited to not much more than a very small number of locations in the Arctic, amore

extensive measurement network would be a powerful tool in future investigation into the methane

emission budget. For example, Mikaloff Fletcher et al. (2004) used isotopicmeasurements as

further constraints in an inverse model study for CH4 emissions in 1998.

2.5 Recent Variations in the Atmospheric CH4 Budget

Since the 1980s, the rate of increase of the atmospheric CH4 burden has been slowing down dra-

matically. Figure 2.6 shows the global mean CH4 mixing ratio for the period 1983 - 2006 and the

instantaneous CH4 growth rate. The growth of CH4 since the 1980s has four distinct phases, with

some interannual variability within these phases. The first phase is from thestart of the observation

period until approximately 1992. During this period, the growth rate of CH4 is reasonably high -

approximately 10 ppb yr−1 - but decreasing. After a sharp rise in 1991 followed by a significant

drop in 1992, which will be discussed later in this section, the second phasebegins, in which the

rate of increase remains small until 1998. A large increase in 1998 preceded the third phase, in

which the net increase was approximately zero (≈0.4 ppb yr−1) between 1999 and 2007. Finally
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Figure 2.6 (Top) Global mean tropospheric CH4 (ppb) derived from surface sites operated by
NOAA/GMS for the period 1983-2011. (Bottom) Annual growth rate (ppb yr−1) in global atmo-
spheric abundance. Taken from Heimann (2011).
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the fourth phase, which covers the period between 2007 and the present day, in which concentra-

tions have again started to increase. The global mean CH4 increase was 8.3± 0.6 ppb in 2007 and

4.4± 0.6 ppb in 2008 (Dlugokencky et al., 2009), a significant increase on that of the preceding

years, and the atmospheric burden has continued to increase up until the present day (Heimann,

2011).

The atmospheric CH4 burden depends on a delicate balance between the sources and sinks, and

the observed deceleration of the atmospheric CH4 budget increase has implications for our under-

standing of CH4 emission and destruction. Before the recent renewed increases in the budget, there

was fierce debate as to whether the period of stability was a temporary pausein the increase or a

new steady state for atmospheric CH4 (Dlugokencky et al., 1998; Simpson et al., 2002; Wuebbles

and Hayhoe, 2002; Dlugokencky et al., 2003). However, the recentreturn to rising global methane

levels is a possible indication that the levelling-off was only a temporary respite. A number of

attempts have mean made to link the variations in the global methane budget to changes in the

sources and sinks of the species, and a brief summary of some of the hypotheses is given here.

The sudden drop in the increase rate in 1992 came the year after two major global events – the

collapse of the former Soviet Union (fSU) and the eruption of Mount Pinatubo, a volcano in South

Asia. It has been argued (e.g. Dlugokencky et al. (1994b)) that these two events were responsible

for decreased CH4 emissions in 1992, which led to a small decrease in the atmospheric CH4 budget
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that year (≈ -1.5 ppb). During the peak years of the fSU, government calls for large-scale, rapid

extraction of gas from the West Siberian basin meant that long gas pipelineswere quickly built

with little regard for reducing leakage, emitting 29 to 50 Tg yr−1 in ‘lost’ CH4 (Reshetnikov et al.,

2000). The fall of the fSU in 1991 meant a stabilisation in the amount of gas extraction and a fall

in the amount of coal mining in the area, while repairs had been carried out on the pipelines since

1989. These factors may have contributed to a decrease of up to 37 Tg yr−1 (Dlugokencky et al.,

1994a), although this estimate was later revised down to 10 Tg yr−1 (Dlugokencky et al., 2003).

The eruption of Mount Pinatubo on June 15, 1991, may also have had a suppressing effect on CH4

emissions. The eruption, which was the second largest of the 20th century, reduced the surface air

temperature in the NH by up to 0.7 °C (Dutton and Christy, 1992). Since the biogenic emission of

CH4 from sources such as the northern wetlands is temperature dependent, this may have further

decreased emissions in 1992 by around 2 Tg (Dlugokencky et al., 1994a). It was also found that

the eruption may have been responsible for decreased tropospheric OHin the short term due to

increased sulfur and aerosol emissions, which may explain the sharp increase in the 1991 growth

rate of atmospheric CH4 before the decline in 1992 (Dlugokencky et al., 1996).

After the reduction of fossil fuel emissions produced by the fall of the fSU, global CH4 concentra-

tions continued to rise slowly until 1998, when there was an anomalously high atmospheric growth

rate of approximately 12.7 ppb yr−1, compared to an average of 3.9 ppb yr−1 in 1995 - 1997 (Dlu-

gokencky et al., 2001). This was due to the strong El Niño meteorological event in 1998 which

made that year the warmest on record (Hansen et al., 1999) and produced increased precipitation

in the high northern latitudes (north of 30°). Dlugokencky et al. (2001) found that these conditions

increased CH4 emissions from wetlands and biomass burning in the NH by up to 31 Tg that year.

Bousquet et al. (2006) suggested that decreased OH concentrationsdue to reaction with increased

CO emissions from biomass burning may have also produced increased CH4 concentrations.

Aside from the anomalous CH4 growth rates in 1991-92 and 1998, the period 1983 - 2000 was

characterised by a gradual decrease in the rate of growth for atmospheric CH4. During the third

phase, which lasted from 2000 until 2007, the net year-on-year increase of the atmospheric CH4

budget was approximately zero, meaning that the sources and sinks of methane must have been

in balance. An exception is in 2002-03, when increased biomass burning due to an El Nĩno event

produced a year of growth (Simpson et al., 2006). Whether the stability meant that emissions and

sinks had both stabilised at a constant value, or that the two were varying inunison, was questioned

(e.g. Dlugokencky et al. (2003)), and the key issue in discerning the cause of the stability of the

global concentration of CH4 is whether there is significant variation in the concentration of OH.

The OH radical is difficult is measure in situ, and its concentration must often be found using a

proxy such as methyl chloroform (MCF). Constant OH concentrations throughout the period imply

that the global methane source was also near constant, although the partitioning and distribution

of the source may of course have varied.
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Bousquet et al. (2006), investigating the interannual variability of atmospheric CH4 using an inver-

sion model, confirmed that the slowdown of the growth rate through the 1990swas due to decreas-

ing fossil fuel emissions. The study found that as emisisons due to fossil fuels began to rise again

after 1999, especially in North Asia, the effect was masked by decreasing wetland emissions until

2003, keeping the system in balance. This study also suggested that OH had been slightly decreas-

ing throughout the period. The increase in North Asian emissions is likely dueto the booming

Chinese economy, and agree with the estimates in the EDGAR inventory. The decrease in wetland

emissions between 1999 and 2003 was likely to be due to dryer conditions in theNH and tropics.

However, Bloom et al. (2010) estimated that wetland emissions increased between 2003 and 2007

by 7%, mostly in the NH mid-latitudes (45°N - 67°N). Since the global atmosphericCH4 budget

did not increase during this period, the increase in wetland emissions must have been mitigated

by some other factor. Fiore et al. (2006) and Monteil et al. (2011) both suggested the OH concen-

trations were rising moderately throughout the previous two decades (by alevel of 1.2% and less

than 5% per decade respectively), and this finding agreed with that of Dentener et al. (2003), who

claimed that OH had a positive trend of 2.4% per decade for the period 1979- 1993. Prinn et al.

(2005) suggested the OH concentrations were rising between 1998 and 2003, but the study period

ended before 2004. If OH concentrations were rising in this period, it mayhelp to account for

the stability during the period in which wetland emissions were reportedly rising.Montzka et al.

(2011b) agreed that the interannual variability of the OH radical in the atmosphere was small, but

claimed that OH concentrations were in fact decreasing in the period 2004 -2007. If, as is claimed

by Olivier (2002) and Bousquet et al. (2006), fossil fuel emissions were also increasing over this

period, it is difficult to reconcile the stable atmospheric budget with increased wetland and fossil

fuel emissions and a decrease in the major CH4 sink.

In the final phase, which runs from 2007 until the present day, the atmospheric budget is again

rising. As an aside, a study by Khalil et al. (2007) hypothesised that large increases in the atmo-

spheric CH4 budget (up to 8 ppb) occurred every 7.7 years – in 1984-85, 1991-92 and 1999-2000

– but that these three examples did not form a large enough sample from which to draw the con-

clusion of periodicity. It is interesting that the next increase of a comparable size came in 2007-08,

continuing the cycle. Rigby et al. (2008) examined the most recent increase in terms of two sce-

narios; the first in which the OH concentration did not change in 2007 and 2008, and the second

in which OH variability was included. With constant OH, it was found that a substantial increase

in emissions in both the NH and the SH between 2006 and 2007 was necessaryto explain the

increase. If a small decrease in the OH radical occurred, however, only an NH increase was nec-

essary. It was reasoned that this was the more reasonable scenario. Dlugokencky et al. (2009),

however, suggested that anomalously high temperatures in the Arctic and increased tropical pre-

cipitation led to increased wetland and biomass burning emissions in this period, and that a change

in the OH radical was not necessary to explain the increase. That study,like Dlugokencky et al.
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(2011), warned that although the most recent increases did not appear to be influenced by the large

CH4 store in Arctic hydrates, that this may become a possibility in the future.

2.6 Summary

Although our understanding of the overall atmospheric budget and growth rate of CH4 is well

constrained, understanding of the specific contributions of different source and sink processes

is limited, and this impedes our ability to predict the effects of future changes in climate and

anthropogenic activity on the global CH4 concentration. Major uncertainties surround a number

of the parameters of CH4 emission, especially those from natural sources such as wetlands, rice

paddies and biomass burning. It has been suggested that wetland emissionsare responsible for

much of the interannual variability of the atmospheric CH4 budget (Bousquet et al., 2006), but

our knowledge even of the size and distribution of global wetlands is limited, and emission rates

may vary greatly depending on the temperature, water table depth and wetlandtype. Likewise,

biomass burning emissions vary greatly in time and location, and are generally poorly constrained.

Even anthropogenic sources, such as fossil fuel emissions, have uncertainty surrounding their

partitioning. The main questions surrounding the methane budget are therefore;

• How is the decrease, pause and subsequent rise of the atmospheric CH4 growth rate since

the 1980s related to variations in the emission and destruction rates of the species?

• What is responsible for the large interannual variability in the growth rate of CH4?

• What are the location and size of natural, geographically varying CH4 sources such as wet-

lands and fires?

Bottom-up inventories are therefore limited by our understanding of the underlying processes.

However, top-down emission inventories are not restricted by our estimationof emission pro-

cesses, and inverse modelling can provide emission inventory which is constrained by observa-

tions. Inverse methods can provide an accurate geographical distributionof emissions, which

together with bottom-up inventories can increase our understanding of variability in CH4 emission

rates. The next chapter describes some of the inverse methods available for source estimation, and

describes the findings of previous top-down CH4 source studies.





Chapter 3

Inverse Modelling Techniques and

TOMCAT Model Description

3.1 Introduction

This chapter provides a background to the field of inverse transport modelling, which comprises a

variety of different techniques with a common goal; to find an optimised constraint on a parameter,

such as the surface emission of an atmospheric species, through the assimilation of observations

into a model which maps between the parameter and the observed data. This chapter also de-

scribes the TOMCAT model, which is further developed and used throughout this work. Section

3.2 describes the rationale behind inverse transport modelling, and brieflydiscusses the various

techniques available, examining the advantages and disadvantages of each. Section 3.3 discusses

the findings of previous inverse modelling studies. Section 3.4 describes theTOMCAT model,

theth atmospheric transport model which is the basis for the inversion systemdeveloped in this

thesis.

3.2 Inverse Modelling Techniques

The term ‘inverse modelling’ actually encompasses a number of techniques,with each technique

providing a different route to the same goal of assimilating observations into amodel in order to

constrain a parameter controlling the model representation of the observations. Three techniques

which have been used in published studies to constrain surface emissions of atmospheric gases

are the synthesis inversion, the Kalman Filter inversion and the 4D-Var inversion. Each of these

methods is discussed in turn here. A discussion of the advantages and disadvantages of each

methodology is provided in Section 3.2.5.

27
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3.2.1 General Inversion Methodology and Notation

This section briefly outlines the generalised methodology of atmospheric inversions and describes

the notation used to describe each specific inversion process in the following sections. An inversion

process assimilates a set ofmobservations,y, of the atmospheric concentration of a trace gas, and

has the aim of optimising the state vectorx, which in this case is the surface flux of the species

and has dimensionn. This is generally done by making changes to an initial estimate of the

fluxes, known as thea priori estimate. The a priori is generally the previous best estimate of

the surface fluxes, and is divided spatially and temporally depending on themethodology, the

required accuracy and the available computational power. The a priori has an associatedn× n

error matrixB, which contains the uncertainty associated with the fluxes along the diagonal,and

the correlation between these errors elsewhere. An analogousm×m error matrixR contains the

uncertainty associated which each observation, and also the correlation between them. Regardless

of the inversion methodology, the aim is to minimise the difference between the observationsy

and the representation of the observations produced using a CTM by altering the fluxes used in

the model. Model errors may also be included in the observation error matrixR. The optimised

state vector is known as thea posteriori, labelledxp. In each inversion, the results from model

simulations are compared with the observations,y. In this case the atmospheric model is described

asT(x), and an observation operatorH maps the 3D output from the model onto the location and

time of the observations, so thatH(T(x)) has the same dimension asy. The following sections

will provide an outline of three specific inversion types.

3.2.2 Synthesis Inversion Technique

The synthesis inversion is derived from Bayesian theory, and was described by Tarantola and

Valette (1982a,b). The flux field is decomposed into a number,S, of individual components,

x j , j = 1, ...,S, such as source regions or emission processes, where the source strength of each

component is normalised to a unit strength. These are known as basis functions (Kaminski et al.,

2001). Individual model simulations are then carried out for each basisfunction, in which the

spatial and temporal distributions within each are prescribed. The atmospheric mixing ratio of

the trace gas produced by the model can therefore be described as a linear combination of the

concentrations produced using the basis functions, i.e.;

H(T(x)) =
S

∑
j=1

α jH(T(x j)) (3.1)

whereαi is the individual regional/process source strength. IfH(T(x)) is linear, it is now possible

to write;
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H(T(x)) = Gx (3.2)

whereG is anm×Smatrix andGi j is the contribution of sourcej to observationi. The state vector

is estimated by minimising the cost functionJ;

J(x) =
1
2
(x−xa)B−1(x−xa)+

1
2
[y−H(T(x))]R−1[y−H(T(x))] (3.3)

The cost function measures the difference between the model output produced using the current

flux estimate and the observations, summed with the difference between the current flux estimate

and the a priori, each weighted by its associated error matrix. From Tarantola and Valette (1982a),

using Equations 3.2 and 3.3, we therefore have;

xp = xa +{GTR−1G+B−1}−1GTR−1(y−Gxa) (3.4)

which can be solved through Singular Value Decomposition (SVD) as described in Tarantola and

Valette (1982a), or by Cholesky decomposition. This technique has been used for inversions of

CO by Bergamaschi et al. (2000), for CO2 by Bousquet et al. (1999) and for CH4 by Fung et al.

(1991), Hein et al. (1997) and Bousquet et al. (2006).

3.2.3 Kalman Filter Technique

The Kalman Filter was originally described by Kalman (1960), and can be extended to a wide

range of data assimilation problems in oceanography, meteorology and inverse modelling. The

Kalman Filter inversion method assumes that ifH is an observation operator which maps the fluxes

x onto the observationsy, usually consisting of a CTM simulation and some form of interpolation

or averaging onto the observation field, then the Kalman Filter method attempts to minimise the

cost function of the problemJ as described in Equation 3.3. Kalman (1960) showed that the state

vectorxp which minimisesJ is;

xp = xa +K [y−H(xa)] (3.5)

K = BHT [HBHT +R]−1 (3.6)

whereK is known as the Kalman gain matrix andH is the Jacobian matrix of the observation

operator. Finding the values inK creates difficulties for two reasons. The first is that the Jacobian
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matrix H is difficult to calculate explicitly, and the second is that if the matrix[HBHT + R] has

large dimension, its inversion becomes computationally prohibitive.

One way to circumvent these problems is to use a method similar to that used in the synthesis

inversion. The size of the state vector is reduced by aggregating emissionsinto regions, and the

Jacobian matrixH may be explicitly produced by running a number of individual sensitivity simu-

lations, equal to the number of basis functions, over the experiment time period. This technique is

useful only for a relatively small number of observations and basis functions, otherwise the num-

ber of sensitivity simulations and the size of the inversion becomes too great. This technique was

used to examine CO2 fluxes by Bruhwiler et al. (2005) and in a study of CH4 emissions by Chen

and Prinn (2005).

The methodology which is commonly used for large-scale atmospheric inversion problems is

known as the Ensemble Kalman filter (En-KF), and produces optimised surface fluxes by running

a number,P, of perturbed forward simulations (known as the ensemble) in unison and updating

them to better represent observations at the end of each assimilation time step.This reduces the

burden of the Kalman Filter technique firstly as it allows the use of the forwardmodel to findH

implicitly rather than explicitly, and secondly due to the fact that the covariancematrixR is repre-

sented by the spread of the ensemble, but the number of simulationsP may be much smaller than

the dimension ofR while still being representative. This allows the assimilation of large amounts

of data, which is not possible without the ensemble. This method still requires the aggregation of

the surface emissions, however. The a priori error matrix can be approximated using an ensemble

of perturbation states∆X = [∆x1,∆x2, ...,∆xP] which are representative of the background error

matrix, i.e.;

B = ∆X(∆X)T (3.7)

This means that the Kalman gain matrixK in Equation 3.6 can be approximated by an ensemble

gain matrixKe;

Ke = ∆X(∆Y)T [∆Y(∆Y)T +R]−1 (3.8)

∆Y = H(xa +∆X)−H(xa) (3.9)

This approach means that the Jacobian matrixH does not need to be explicitly calculated, and

also has the advantage that the error covariance of the updated state vector is updated by the

assimilation. The En-KF technique was used in a study by Peters et al. (2005) in a CO2 flux study
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which assimilated surface station flask measurements, and by Feng et al. (2009) to estimate surface

CO2 fluxes using synthetic satellite measurements, a problem with high dimension.

3.2.4 4D-Var Inversion Technique

The 4D-Var technique, which has been chosen as the inversion method for use with the TOMCAT

model in this thesis, is described in full in Section 5.2, but a brief description isgiven here for

comparison with other methodologies. The 4D-Var method iteratively minimises the cost function

given in Equation 3.3, improving the estimate of the state vectorx with each iteration. The cost

function is minimal when its gradient,∇J(x), is equal to zero, and it is at this point that the state

vector is optimal with respect to matching both the observations and the a prioriestimate. This

method requires the creation of the adjoint modelHT , which is described in full in Section 5.2.

The development of a linear version of the transport model may also be necessary if the model is

not already linear, since the adjoint model is defined as the transpose of the Jacobian matrix of a

linear model. Also, the adjoint model requires trajectories produced in the forward model, which

generally means that large amounts of data must be saved when running the forward model. The

4D-Var method has been used previously to for CO2 fluxes by Chevallier et al. (2005), and for

CH4 fluxes by Meirink et al. (2008a), Bergamaschi et al. (2009) and Bousquet et al. (2011).

3.2.5 Evaluation of Inversion Methods

The three methods described here each have advantages and disadvantages which make them

suited to different purposes. This section evaluates the strengths and weaknesses of each method,

and justifies the use of the 4D-Var method for the work carried out in this study.

The key component to the synthesis inversion method is that the matrix[GTR−1G+B−1]−1 shown

in Equation 3.4 must be invertible, which means that both the number of observations and the

number of basis functions must be relatively small, and this fact brings both advantages and dis-

advantages. The main advantage is a reduction in the computational burden.While this technique

does require a number of forward simulations equal to the number of basis functions, the extra

computational burden that this brings is more than offset by the fact this method does not require

multiple iterations of the simulation and that there is no large memory requirement forsaving data,

both of which are necessary for the 4D-Var method. However, this necessarily large size for the

source regions brings aggregation errors, which are explored in Kaminski et al. (2001) and En-

gelen et al. (2002). The source distribution within each basis function mustbe prescribed, which

allows for no spatial or temporal variation within the aggregated source region. This means that

observations have an artificially large region of influence. Despite this, thesynthesis inversion
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method has the advantage that it allows for simple inversions in terms of individual source pro-

cesses. The synthesis inversion technique can provide a good first estimate of emission rates from

different source processes on a regional basis, but does not generally allow enough flexibility to

produce truly accurate solutions.

Evaluating the advantages and disadvantages of the Kalman Filter method against the 4D-Var

method is more complicated, and generally comes down to a matter of practicality. The major

advantage of the Kalman Filter method is in its relative simplicity. If the En-KF is used, then

the method is capable of assimilating large amounts of data, such as that provided by satellites,

and there is no need for the development of any additional model since onlythe standard forward

model is used. While use of the En-KF method may necessitate a large number ofensemble

simulations, the extra computational burden that this requires is more than offset by the fact that

multiple iterations of the simulations are not required, unlike in 4D-Var. The main problem of

the En-KF method is due to the necessary aggregation of the state vector into large flux regions,

providing little information of the distribution within these regions. However, if there exist large

areas which have only a small influence on the atmospheric distribution of the species in question,

such as the oceans for methane, these areas may be treated as single largeemission regions so that

areas with large spatial differences may be treated separately. In Feng et al. (2009), for example,

there were 99 land emission regions and only 44 oceanic regions since the ocean variability was

much smaller. The Kalman filter method also produces results that are strongly dependent on the

a priori state vector, which is generally only slightly changed by the Kalman gain matrix.

It is true that the 4D-Var method requires both a much higher degree of initialwork and a larger

computational burden than the other methods described here. The initial development of the linear

and adjoint versions of the transport model may take time and resources, and the fact that, for

longer simulations, a large number of forward model trajectories must be either saved as model

parameters or written to files which are then read back into the adjoint model, often leads to a

very large computer memory requirement. However, if these issues can be overcome, the 4D-

Var method can easily assimilate large amounts of data and deal with a large state vector without

the requirement for large inversions. Temporal variations in the state vector are automatically

accounted for by the adjoint model, which can easily be adapted for different atmospheric species

once it has been created. It is for these reasons of accuracy, high data content and versatility that

the 4D-Var inversion method was chosen for use in this thesis.

3.3 Previous CH4 4D-Var Inverse Modelling Studies

There have previously been only limited inverse modelling studies with the aim of improving CH4

inventories. Hein et al. (1997) carried out a synthesis inversion for CH4 emissions for the year 1987
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and Bergamaschi et al. (2000), Bergamaschi et al. (2005) and Bergamaschi et al. (2007) carried

out multiple CH4 synthesis inversions for time periods throughout the late 1990s and early 2000s

Bousquet et al. (2006) also used the synthesis inversion technique to look at CH4 emissions over

the previous two decades. Chen and Prinn (2005) studied CH4 emissions for the period 1996-2001

using the Kalman Filter.

Previous studies of CH4 emissions which use the 4D-Var inversion method are extremely limited.

Meirink et al. (2006) first used the 4D-Var system for the TM4 CTM to constrain CH4 emissions

using synthetic satellite data, concluding that the observation accuracy of 1- 2% provided by the

satellite CH4 observations was high enough to reduce uncertainty in monthly mean subcontinen-

tal source strengths. The same system, by this point being used in the TM5 CTM, was used by

Meirink et al. (2008a) in order to assimilate real satellite data from the Scanning Imaging Ab-

sorption Spectrometer for Atmospheric Chartography (SCIAMACHY) in order to constrain CH4

emissions for the period September to November 2003. While this is a relatively short period, the

zoom capability of the TM5 model allowed for detailed 1°× 1° inversions of South American

emissions. This study found that the 4D-Var inversions produced large uncertainty reductions in

tropical and sub-tropical regions, and that the results produced by assimilating the satellite data

were consistent with independent global surface station observations and Brazilian airborne ob-

servations of CH4. Meirink et al. (2008b) also compared results produced using the TM5 4D-Var

system to those of an analogous CH4 synthesis inversion carried out by Bergamaschi et al. (2007),

finding that the two methods produced results with a high degree of consistency when the spatial

correlation length of the 4D-Var system was high. However, it was foundthat the 4D-Var sys-

tem had much greater potential for reducing aggregation errors by reducing the spatial correlation

lengths in the model.

Bergamaschi et al. (2009) continued to use the TM5 4D-Var system in order to produce updated

global CH4 emissions for the year 2004 from SCIAMACHY data, with high resolution 1°×

1° emissions inventories provided for South America, Africa and South Asia. This study also

showed the ability of the 4D-Var system to take account of individual source processes. The

inversions in this study considerably changed the distribution of emissions compared with the a

priori, with large increases in wetland emissions in South America and Africa being produced by

the assimilation. Bergamaschi et al. (2010) used the TM5 4D-Var system in order to examine

the trend in European CH4 emissions over the period 2001 - 2006 by assimilating surface station

data, following a study by Villani et al. (2010) which concluded that the sensitivity of the model

to the European surface station network was high enough to constrain emissions in North West

Europe. Bergamaschi et al. (2010) found that European emissions were 21% higher than those

in the EDGAR version 4.0 inventory and 40% higher than those reported to theU.N. Framework

Convention on Climate Change. The study also concluded that the constraintsprovided by the
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European observational network are high enough to produce updatedemission inventories that are

independent from bottom-up CH4 inventories.

Finally, and most recently, Bousquet et al. (2011) compared CH4 emission estimates produced by

a 4D-Var inversion system based on the LMDZt transport model version4 to those of a synthesis

inversion carried out using the same model, finding the two to be consistent ona global scale. The

results of the 4D-Var inversion indicated that global CH4 emissions increased by 21 Tg in 2007

and 18 Tg in 2008, compared with the 1999-2006 period. The increased emissions, found to be

located mostly in the tropics and high latitudes, were thought to be mostly due to increased wetland

fluxes due to high temperatures, although the level of agreement on a regional scale between the

two inversions varied.

The research carried out as part of this thesis is intended to continue from, and add to, the results

of the work discussed in this chapter, first by assessing the accuracy of our current CH4 estimates

and then by producing new, updated flux estimates using the 4D-Var inversion method. These aims

require the use and extensive development of the TOMCAT CTM, which is described in full in the

next section.

3.4 TOMCAT Model Description

The TOMCAT/SLIMCAT model is an Eulerian, grid-point off-line three-dimensional (3D) Chem-

ical Transport Model (CTM) which was created in the early 1990s at theCentre National de

Recherches Ḿet́eorologiques (CNRM), Toulouse, in order to study the polar stratosphere. The

first use of the model was described in Chipperfield et al. (1993). The model previously existed

as two separate models, known as TOMCAT and SLIMCAT, which were used for modelling the

troposphere and stratosphere, respectively. The two models were thencombined to form the uni-

fied TOMCAT/SLIMCAT model (Chipperfield, 2006b), which has since been used and validated

in a number of tropospheric studies (e.g. Monge-Sanz et al. (2007); Breider et al. (2010); Hossaini

et al. (2010); Feng et al. (2011)). Since the majority of this thesis focuses on the troposphere, the

model will henceforth be referred to as the TOMCAT model. The model meteorology, including

winds, temperature and pressure data, is read in from analyses provided by the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF, http://www.ecmwf.int) and transformed onto

the TOMCAT model grid. The model uses a ‘process split’ method, in which separate advection,

convection, boundary layer mixing and chemical routines are carried outin sequence.
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3.4.1 Model Grid

The standard horizontal model grid in the TOMCAT model is a variable Gaussian grid in which

the longitudinal spacing is regular, although the latitudinal spacing of the gridpoints may be

irregular. The model may use non-Gaussian latitudes if required. Model grids used in this study

are associated with typical spectral truncations, ranging from T10 (a grid of 11.25°× 11.25°) up

to T106 (1.125°× 1.125°). The forcing meteorological analyses are provided by the ECMWF

as spectral coefficients, and can be converted to grid-point fields forany prescribed latitudinal

grid by a spectral transform using associated Legendre functions. The analyses may be read into

the model at various intervals, usually set to be every six hours. The TOMCAT vertical grid is

formulated usingσ − p vertical coordinates. This means that the model levels vary from purely

terrain-following σ coordinates near the surface to pressure levels at high altitudes. A model

vertical grid box interfacepk+ 1
2

is given by the formula;

pk+ 1
2
= Ap0 +Bps (3.10)

whereps is the surface pressure andp0 is a reference pressure of 100,000 Pa. In this study, vertical

grids vary from 29 model levels with a top level at 10 hPa to 60 model levels witha top level at

0.1 hPa. The model dynamical time step is chosen according to the model grid resolution in order

to satisfy the Courant-Friedrichs-Lewy (CFL) stability condition;

∆t
ui

∆xi
≤ 1, 1≤ i ≤ 3 (3.11)

whereui is the wind speed in theith dimension,xi is the grid box length in that dimension and∆t

is the dynamical time step. The model time step in this study ranges from 15 minutes upto 1 hour,

depending on the model resolution.

3.4.2 Advection Schemes

Advection schemes in CTMs aim to accurately reproduce the atmospheric advection of tracers

by parameterising the tracer mass continuity equation (Equation 2.1), whilst maintaining mass

conservation and monotonicity and keeping numerical diffusion and dispersion to a minimum. In

practice, however, no advection scheme is able to fulfil all of these properties. This study imple-

ments two Eulerian finite volume advection schemes which are available for use inthe TOMCAT

model. Unlike Lagrangian advection schemes, which consider the trajectories of individual tracer

masses, Eulerian advection schemes evaluate the exchange of tracer massbetween boxes of a
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model grid which is fixed in space. The first Eulerian scheme is the conservation of second-order

moments (SOM) advection scheme described by Prather (1986), whilst the second scheme is the

conservation of first-order moments scheme (FOM), which is equivalent tothe ‘slopes’ advection

scheme described in Russell and Lerner (1981).

The SOM advection scheme acts separately for advection in the zonal, meridonal and vertical

directions, and conserves the total tracer mass in the model (zeroth-order moment), the tracer

distribution gradient in each of the three dimensions (first-order moments) and curvature of this

gradient, including cross terms (six second-order moments). This means that the scheme has a

large computational storage requirement. However, it conserves tracermass exactly, is stable for

large time steps, and was found to produce very low numerical diffusion in comparison with other

advection schemes (Prather, 1986), although it is not monotonic. These properties mean that the

SOM scheme is the default advection scheme for use in TOMCAT model studies. The TOMCAT

model also allows use of the FOM scheme which follows the same principle to that of the SOM

scheme, but only conserves zeroth-order and first-order moments. This reduces the necessary

computational storage compared with the SOM scheme, but also slightly increases the diffusivity

(Prather, 1986). Prather (1986) found that use of the SOM advectionrather than the FOM scheme

was equivalent to increasing the resolution of the model grid by more than a factor of two while

the corresponding increase in computational resources and time incurreddue to the use of the

scheme were smaller than they would be if doubling the resolution of the grid. Inthis study, the

SOM advection scheme is used for tracer studies using the forward TOMCAT model. However,

the FOM scheme’s relative simplicity and smaller computational burden mean that itis, at least

initially, the preferred option for use in the TOMCAT 4D-Var inversion scheme. The accuracy of

the FOM advection scheme in comparison to the SOM scheme is investigated in Chapter 4.

Vertical advection in the TOMCAT model is diagnosed from the divergenceof the horizontal

mass fluxes, maintaining continuity in order to eliminate the need for interpolation onto the model

vertical grid. This method of determining the vertical advection may lead to differences between

the grid box mass calculated on-line in the model and those produced by the ECMWF pressure

analyses read in at each meteorological time step. In order to prevent discrepancies arising due to

this error, the total grid box mass is overwritten each time the analyses are read in to the model

(i.e. every 6 hours), and the tracer mass in each grid box is scaled according to the change from

the calculated mass to the analysed mass. This has the effect of preservingtracer mixing ratio

rather than tracer mass, and this function may be switched on or off as required. It is important to

note that there is no continuity condition imposed on tracer distribution at the interface of the grid

boxes in either of the advection schemes.

Difficulties arise when considering tracer transport at the poles when using an Eulerian grid. Due

to the small size of polar model grid boxes in the east-west direction, an extremely small time step
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would be necessary in order for the advection scheme to be stable. Therefore, in both the SOM and

the FOM advection schemes, zonal advection is carried out at high latitudesby grouping multiple

grid boxes in the same latitude band together so that the CFL condition in Equation3.11 is satisfied

(i.e. ∆x is increased). These grouped grid boxes were named ‘extended polarzones’ in Prather

et al. (1987). The number of grid boxes to be grouped together depends upon the latitude, the grid

box size, the model time step and the wind strength. After the advection step hastaken place, the

original grid boxes are reformed. An issue also arises when dealing with transport across the pole,

due to the fact that a singularity is created by the convergence of the grid boxes neighbouring each

pole. The TOMCAT model overcomes this problem by determining the mass of each grid box

which would be transported to its diametric opposite box due to the wind vector. For more details

see Chipperfield (2006a).

3.4.3 Convection Scheme

The parameterised moist convection scheme in the TOMCAT model described by Stockwell and

Chipperfield (1999), is based upon the scheme developed by Tiedtke (1989), which diagnoses mass

fluxes from the large-scale ECMWF meterological fields, although there are some modifications to

Tiedtke’s scheme. The scheme includes cumulus updraughts in the vertical direction and turbulent

and organised entrainment and detrainment. However, mid-level convection and convective down-

draughts are not included in the TOMCAT model. The model uses the mass fluxes diagnosed from

the meteorological fields to determine the effect of convection on the tracer field. Feng et al. (2011)

found that the diagnosed convection rates in TOMCAT are underestimated when compared with

archived ECMWF convective flux rates, and that the inclusion of mid-level convection improved

the comparison only moderately. Feng et al. (2011) found that the verticalextent of convection

was also smaller in the TOMCAT model, reaching only around 200hPa, compared with 100hPa in

the archived data. However, Hossaini et al. (2010) deduced from astudy of the transport of the

short-lived species CHBr3 and CH2Br2 that vertical transport in the TOMCAT model is too rapid

overall. This indicates that the slow convection rate is more than compensated for by rapid vertical

advection rates in the TOMCAT model.

3.4.4 Planetary Boundary Layer Schemes

Two Planetary Boundary Layer (PBL) mixing schemes are available for use in the TOMCAT

model, and both are used within this study. The first is the local boundary layer diffusion scheme

described by Louis (1979), while the second is a non-local scheme developed by Holtslag and
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Boville (1993). The Louis scheme is a first-order local diffusion scheme inwhich the eddy dif-

fusivity coefficient is based upon the local Richardson number, which isdependent on wind gra-

dients and potential temperature. Due to the local nature of this scheme, however, it may not

take full account of large eddy transportation and entrainment into the PBL. The Holtslag and

Boville scheme, which was developed for the National Center for Atmospheric Research (NCAR)

Community Climate Model Version 2 (CCM2), does take account of non-localeffects, and al-

lows for counter-gradient transport. The implementation of the Holtslag and Boville scheme in

the TOMCAT model is described in Wang et al. (1999), who used the schemein a similar CTM,

finding that the Holtslag and Boville scheme provided stronger tracer transport out of the PBL and

into the free troposphere, giving a better match with observations of radon, methyl chloroform

and CFC-11. Stockwell and Chipperfield (1999) found that the TOMCATmodel produced large

tracer concentrations near the surface and weak vertical mixing when theLouis scheme was im-

plemented. Since the Holtslag and Boville scheme is a far more complicated piece ofcomputer

code, however, this made its use in the TOMCAT 4D-Var inversion scheme prohibitive. TOMCAT

experiments are carried out in Chapter 4 which investigate the accuracy ofthe Louis scheme in the

TOMCAT model and therefore its suitability for use in the inversion scheme. Inorder to attempt

improve the vertical mixing rate into the free troposphere when using the Louisscheme, it is pos-

sible to increase the depth of the model layer closest to the surface, and theeffectiveness of this

technique is examined in Chapter 4.

3.4.5 Chemistry

The TOMCAT model has the option of a full tropospheric chemistry scheme based on the ASAD

chemistry package (Carver et al., 1997), which integrates 62 chemical species, 42 of which are

advected. The tropospheric chemistry scheme includes reactions for the Ox, HOx and NOx fami-

lies, along with HNO3, N2O5, HNO4, H2O2, CO, HONO, H2O, CH4, HCHO, CH3OOH, C2H6,

C3H8, CH3COCH3, C2H5OOH, CH3CHO, C2H5CHO, iCH3H7OOH, nC3H7OOH, CH3CO3NO2

(PAN), C2H5CO3NO2 (PPAN) and CH3ONO2. Prior to this thesis, due to the lack of an accurate

available CH4 emission inventory and since CH4 simulations had previously been short, the CH4

tracer in the TOMCAT full chemistry scheme used only anthropogenic CH4 emissions, which were

then scaled to a mean surface mixing ratio of 1800 ppb in order to approximatelyreplicate global

emission totals. The full chemistry scheme is not used in this study, except in order to produce

monthly mean concentration fields for the hydroxyl radical OH for investigation of the impact of

the OH distribution on the CH4 concentration. For more details of the full chemistry scheme and

emissions of chemical tracers in the scheme, see Arnold et al. (2005).

The model also allows the option of using simplified parameterised chemistry schemes in place

of the full tropospheric chemistry scheme. In the case of the CH4 simulations carried out in this
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thesis, this allows the model to read in off-line monthly mean OH distributions and stratospheric

CH4 destruction rates instead of calculating them on-line. This method both increases the speed of

simulations and allows us to choose the OH distribution according to preference, instead of relying

on the distribution provided by the full chemistry scheme, which is highly dependent on the model

performance in estimating concentrations of a large number of troposphericspecies.

In order to evaluate the accuracy of the TOMCAT atmospheric transport schemes discussed in this

section, it is necessary to compare the performance of the transport model against observations of

atmospheric trace gases. This can help to improve our understanding of themodel’s limitations,

and to investigate the variations in results produced using different transport schemes and model

grids. The following chapter therefore evaluates the transport in the TOMCAT model by compar-

ing the results of a number of model simulations of an inert atmospheric tracer toobservations and

to each other, allowing us to justify the model’s use as the basis for a 4D-Var inversion system, in

which accurate representation of atmospheric transport is key.





Chapter 4

Evaluating Simulated Tropospheric

Transport in the TOMCAT Model using

SF6

4.1 Introduction

This chapter examines the ability of the TOMCAT model to accurately replicate atmospheric trans-

port by comparing the model distribution of an inert tracer, sulfur hexafluoride (SF6), against ob-

servations. This is an important step when using a CTM as part of the 4D-Var inversion method,

as modelling errors can lead to inaccuracies in the surface flux estimation produced using the in-

version method (Tremolet, 2007). An awareness of the nature and size ofthese modelling errors is

also necessary in order to estimate the error reduction of a 4D-Var inversion. This chapter also as-

sesses the impact of changing the resolution of the model grid and the advection and PBL schemes

on the model transport. In order to evaluate the tracer transport in the TOMCAT model, and to

compare the different transport schemes available for use, a number ofsimulations of SF6 were

carried out using different model set-ups.

Section 4.2 gives background on the nature of SF6 emissions and the recent atmospheric budget

of the species. Section 4.3 give details of the model set-up and the observational data used for

comparison in the chapter. Section 4.4 evaluates the accuracy of the transport in the TOMCAT

model using SF6 comparisons to observed data and investigates the effect of changes in the model

grid, PBL scheme and advection scheme, while Section 4.5 summarises the results of this chapter.

41
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Figure 4.1 (Left) Total atmospheric burden of SF6 (Gg) for the period 1978 - 2008, as estimated
in Levin et al. (2010) and(Right)Total global emissions of SF6 (Gg year−1) for the period 1988 -
2008 from the EDGAR version 4.0 inventory. The years 1988 to 2008 areshaded grey.

a) b)

4.2 SF6 as Diagnostic for Model Transport

Sulfur hexafluoride (SF6) is a potent greenhouse gas which is inert in the troposphere and strato-

sphere, giving it an extremely long atmospheric lifetime which has been estimatedto be between

800 and 3200 years (Morris et al., 1995; Ravishankara et al., 1993).The only atmospheric sinks

of SF6 are a relatively slow photochemical destruction process and electron capture, both of which

only occur in the atmosphere above 60km, therefore having only a small impact on its tropo-

spheric concentration (Reddmann et al., 2001). The low solubility of SF6 means that oceanic

uptake is negligible, and there is no known uptake by soil or plants (Maiss and Brenninkmeijer,

1998). Assuming an atmospheric lifetime of 3200 years means that SF6 has a Global Warming

Potential (GWP) 23,900 times that of CO2 over 100 years (Solomon et al., 2007), making it the

most potent greenhouse gas that the IPCC has evaluated, and its atmospheric concentration, whilst

relatively low compared to other greenhouse gases, has increased by around two orders of mag-

nitude since it was first industrially produced in 1953 (Maiss and Brenninkmeijer, 1998). Figure

4.1(a) shows the total global SF6 inventory for the period 1978-2008, as estimated by Levin et al.

(2010), indicating that by 2008 the total atmospheric burden had reached160 Gg SF6, more than

ten times what it had been in 1978.

SF6 has many properties which make it a useful tracer for testing the simulated long-term atmo-

spheric transport in CTMs. First, the fact that it is inert in the troposphere and stratosphere mean

that there is no need to include chemical processes in the model. The lack of any tropospheric reac-

tions also means that we can accurately infer annual increase in atmospheric burden by measuring

the concentration of SF6 at remote surface sites. Second, the release of SF6 into the atmosphere

is almost entirely anthropogenic in nature. This means that emissions are fairlyconstant in time

within 10% (Levin et al., 2010), with negligible seasonal cycle (Olivier and Berdowski, 2001),
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Table 4.1Details of model grid, time step and PBL scheme used in each TOMCAT SF6 simulation.

Name
Longitudinal
Spacing (°)

Latitudinal
Spacing (°)

Vertical
Levels

Time step PBL scheme

T106 L 1.125 1.125 60 15 mins Louis
T42 L 2.8 2.8 60 30 mins Louis
T21 L 5.6 5.6 31 60 mins Louis
T10 L 11.25 11.25 31 60 mins Louis

T42 HB 2.8 2.8 60 30 mins
Holtslag &

Boville

T21 HB 5.6 5.6 31 60 mins
Holtslag &

Boville

and that we can produce spatially accurate surface emission estimates by distributing national

sales numbers spatially within each nation according to electrical energy use(Olivier, 2002). This

procedure is discussed in more detail in Section 4.3.1.

In order to test the atmospheric transport in TOMCAT, multiannual simulations of global SF6

concentrations have been carried out with the model. These simulations provide an indication how

well the advection scheme, analysed winds and other transport schemes used in the TOMCAT

model represent the long-range transport of the atmosphere, such asinterhemispheric transport,

zonal transport and seasonal large-scale atmospheric variations.

4.3 Model Set-up

20-year simulations of global SF6 were carried out using TOMCAT. The 3-D concentration field

was initialised on January 1 1988, with values provided as an auxiliary partof the TransCom

CH4 intercomparison (Patra et al., 2011). Two years were then allowed for themodel spin-up,

after which model data was output every 90 hours. The simulations were carried out using four

different model grid resolutions, detailed in Table 4.1. The simulations at all four resolutions used

the Louis boundary layer scheme, and were also repeated with the Holtslag and Boville scheme

where possible. Winds were forced using ECMWF ERA-Interim meteorological fields with a

temporal resolution of 6 hours. The model dynamical time step was chosen to be suitable to the

simulation’s spatial resolution, and is also given in Table 4.1. Two further simulations, T21L29

and T21HB FOM, were carried out, which will be discussed in Section 4.4.4, which examined

the effect of using the model advection scheme which conserves up to first-order moments only,

and of changing number of vertical model levels when using the Louis PBL scheme.
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Figure 4.2Mean global distribution of SF6 emissions (molecules cm−2 s−1) for 1988-1995(Left)
and for 1996-2008(Centre). (Right)Change in distribution of emissions between the two periods.

4.3.1 SF6 Emissions

As discussed Section 4.1, emissions of SF6 are almost entirely anthropogenic in nature. Trace

amounts of SF6 are produced in the Earth’s crust, but these emissions are only enough tosustain

atmospheric background levels of up to 0.01 ppt (Harnisch and Eisenhauer, 1998). SF6 was first

emitted anthropogenically in 1953, when it was used as an insulating gas for electrical switch-gear.

It has since found further uses in the magnesium production industry andduring the manufacture

of semi-conductors. Due to leakage and venting during these industrial processes, the atmospheric

concentration of the gas has risen from approximately zero in 1953 to a global mean of around 6.7

parts per trillion (ppt) by the end of 2008 (Levin et al., 2010). The nature of these emissions mean

that a nation’s SF6 emissions are closely related to its level of industrialisation. After the 1950s,

emissions continued to grow until the mid-1990s. In 1995 a voluntary protocol suggested by the

United Nations Framework Convention of Climatic Change (UNFCCC) promoted adrop in SF6

emissions in Europe and Japan, and total emissions decreased by around17% over the following

two years. Since then, however, increased emissions in the USA and newlyindustrialised countries

in Eastern Europe and South-East Asia have led to global emission totals rising again.

This work uses SF6 emissions provided by the Emission Database for Global Atmospheric Re-

search (EDGAR), Version 4.0 (Olivier and Berdowski, 2001). Globalconsumption data for SF6

and its distribution by country was estimated from sales statistics. These totals were spatially

distributed over individual countries using information such as electrical consumption, semicon-

ductor production and Chlorofluorocarbon (CFC) usage per country. Surface emission maps are

available for 1980, 1990, 1995, 2000 and 2005, and estimates for all other years were scaled from

these values. Figure 4.1(b) shows total global SF6 emissions for the period 1988 - 2008. Total

annual emissions reached a high of 6 Gg year−1 in 1995, before falling to 5 Gg year−1 two years
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Figure 4.3 Locations of NOAA ESRL sampling stations (dots) and of vertical aircraft profiles
(diamonds) used for SF6 comparisons in Chapter 4.

later, after which emissions began to increase again. Emissions have recently surpassed their 1995

levels, reaching approximately 6.3 Gg year−1 in 2008. Figure 4.2 shows the mean spatial distribu-

tion of the EDGAR 4.0 SF6 emissions for 1988 - 1995 and 1996 - 2008, as well as the difference

between the two. Emissions in the early 1990s were mostly localised in Western Europe, Japan

and the USA, with smaller contributions from South Africa, India and South-East Europe. After

1995 emissions in Western Europe and Japan decreased, while contributions increased in the USA,

Eastern Europe and South-East Asia.

4.3.2 SF6 Destruction

Sinks of SF6 are confined to relatively slow destruction processes occurring only in the meso-

sphere, and are negligible in comparison to its sources. Hall and Waugh (1998) found that ignoring

the effect of mesospheric destruction of SF6 may lead to over-estimation of SF6 concentration in

the high-latitude middle stratosphere (above 30 km), but has only a small effect elsewhere. There-

fore in this study, as in most previous SF6 model studies (Denning et al., 1999; Peters et al., 2004;

Gloor et al., 2007), the mesospheric destruction process is neglected, and SF6 is treated as inert in

the atmosphere.

4.3.3 SF6 Flask Observations

Model output was compared with observed atmospheric SF6 concentrations from a range of sources.

Flask data from a number of surface sites from the National Oceanic and Atmospheric Adminis-

tration, Earth System Research Laboratory (NOAA ESRL, USA) provideweekly records of SF6

concentrations from 1995 onwards. The locations of these sites are shown as dots in Figure 4.3,
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Table 4.2Details of NOAA ESRL surface and vertical profile sampling sites used for SF6 com-
parisons in Chapter 4.

Station
Code

Station
Location

Longitude (°) Latitude (°) Altitude (m)
Observation

Type

ALT Alert, Canada 62.5W 82.5N 210
surface
flask

BRW Barrow, Alaska 156.6W 71.3N 11
surface
flask

MHD
Mace Head,

Ireland
9.9W 53.3N 8

surface
flask

LEF
Park Falls, WI,

USA
90.3W 45.9N N/A

vertical
profile

HVF
Harvard Forest,

MA, USA
72.3W 42.9N 340

surface
flask and
vertical
profile

CAR
Briggsdale, CO,

USA
104.8W 40.9N N/A

vertical
profile

NWT
Niwot Ridge,

CO, USA
105.5W 40.9N 3021

surface
flask

MLO
Mauna Loa,
HA, USA

155.6W 19.5N 3397
surface
flask

TUT
Tutuila,

American
Samoa

170.6W 14.2S 42
surface
flask

RTA
Rarotonga,

Cook Islands
159.8W 21.3S N/A

vertical
profile

CGR
Cape Grim,
Australia

144.7E 40.7S 94
surface
flask

SPO South Pole 24.8W 90.0S 2810
surface
flask

and further station characteristics are given in Table 4.2. The accuracyof such flask measurements

is approximately 0.04 ppt. This data can be used in order to test long-range tropospheric transport

in the TOMCAT model, such as inter-hemispheric and zonal transport, and seasonal variations.

In order to compare model output to flask observations at surface sites,the 3-D modelled SF6

concentration field is linearly interpolated to the latitude, longitude and altitude of the station site.

However, it is necessary to remove the effect of numerical diffusion ofEuropean surface emissions

on the model estimate at station at Mace Head, Ireland (MHD). Therefore,instead of interpolating

along longitude to the station’s location, the concentration at the centre of the grid box immedi-

ately to the west of that containing MHD is used. Interpolation to the correct latitude and altitude

is still carried out, however.

As part of the NOAA ESRL Carbon Cycle Greenhouse Gases (CCGG) group’s aircraft project,
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Figure 4.4Sampling locations of the ACE satellite, 2004-2009.

vertical profiles of CO2, CO, CH4, H2, N2O and SF6 were measured using aircraft at a number of

station sites across the USA and the surrounding oceanic area. Samples were also taken at some

SH sites such as Rarotonga, the Cook Islands (RTA). These flask measurements have been taken

once or twice a week for various time periods since 1999, with the aim of capturing seasonal and

interannual changes in trace gas mixing ratios throughout the boundary layer and free troposphere.

Locations of these vertical profile sites are shown as diamonds in Figure 4.3.

4.3.4 SF6 from the ACE Satellite Instrument

The Atmospheric Chemistry Experiment (ACE) is a satellite mission on-board the Canadian satel-

lite SCISAT-1, which was launched in high-inclination (74°) circular low-earth (650 km from the

surface) orbit on August 13, 2003. This orbit gives it a good coverage of polar and mid-latitude re-

gions, with reasonable tropical coverage also provided. The main instrument on-board SCISAT-1

is the ACE-FTS, a high spectral resolution Fourier Transform Spectrometer (FTS), which mea-

sures absorption spectra at sunrise and sunset in the limb viewing solar occultation mode. Limb

views sample spectra through a slice of the atmosphere, from which verticalprofiles of tempera-

ture, pressure and trace gases can be estimated. The ACE-FTS has retrieved SF6 vertical profiles

since 2004, and provides a comparison for the model simulations in the uppertroposphere and

lower stratosphere (UTLS) (10 - 25 km). Figure 4.4 shows the ACE sample locations for SF6 for

the period 2004-2009. These SF6 retrievals will enable us to examine the model representation of

vertical transport through the upper troposphere and lower stratosphere in TOMCAT.
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Figure 4.5 Annual zonal mean simulated SF6 (ppt) for 2006 for the eight model simulations de-
scribed in Tables 4.1 and 4.5.(Top Left)shows the annual zonal mean SF6 for the T42HB sim-
ulation, while each of the other plots shows the difference between the labelled simulation and
T42 HB (ppt).
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4.4 Comparisons of Modelled SF6 to Observations

Figure 4.5 shows the annual zonal mean distribution of SF6 in each model simulation for the

year 2006, highlighting differences in the vertical and latitudinal transport of the model grids

and PBL schemes. In each simulation, the value of the model-observation difference at the SPO

station in January 2000 is removed from each simulation in order to remove the effect of variations

in the simulation initialisation. The model set-up described by T42HB simulation is generally

the default scheme for tropospheric studies, but for simplicity it is requiredthat the Louis PBL

scheme is initially used for the TOMCAT 4D-Var inversion system. Due to the large computational

burden of the inversion, it would be favourable to use as low a grid resolution as possible, while

still maintaining the integrity of the model results. It is important, therefore, to understand the

differences in the model transport produced by changes in the PBL scheme and grid resolution.

Since the majority of sources of SF6 are in the NH, atmospheric concentrations of the species

are greatest there, and this is reproduced in the T42HB simulation. Concentrations peak at ap-

proximately 6.2 ppt in the PBL at approximately 45°N, and decrease with altitude. Since vertical

transport is faster than interhemispheric transport, the concentration in theupper troposphere in

the NH is greater than the concentration throughout the SH. The modelled concentration of SF6 is

approximately 5.7 ppt throughout the SH, where the species is fairly well mixed. The concentra-

tion of SF6 decreases rapidly in the stratosphere. The T42L scheme displays the effect of using

the Louis scheme rather than the Holtslag & Boville scheme. As discussed by Wang et al. (1999),

the Louis scheme mixes emissions through the PBL at a slower rate than the Holtslag & Boville

scheme, and this is confirmed by the T42L simulation. Compared to the T42HB simulation,

concentrations are much greater in the NH emission region (30°N - 60°N) near the surface. Mean-

while, concentrations are a little lower in the NH mid-troposphere since emissionsof the species

are trapped close to the surface at these latitudes, although differenceshere are less than 0.1 ppt.

The effect of decreasing the resolution of the model grid is shown by the results of the T21HB

simulation. The decrease in resolution alone has little effect on concentrations throughout the

atmosphere, with differences less than 0.1 ppt almost everywhere. The effect of having deeper

model layers is seen, however, as vertical mixing in the tropics appears to increase as emissions

mix upwards at a more rapid rate due to numerical diffusion through the grid boxes. The T21L

simulation shows the effect of decreasing the model grid resolution coupledwith changing the

PBL scheme, and shows similar results to the T42L simulation. Increased concentrations close

to the surface in the NH are again seen, with a corresponding decrease inconcentration higher

up. There are also slight increases in the low to mid troposphere in the NH, which may be due to

increased polar transport due to the increased size of the model grid. Comparing the T42L and

T21 L schemes again shows that the main effect of decreasing the resolution is aslight increase

in high latitude NH concentrations. The comparison of the T42HB and T21L plots shows that
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if the T21 L set-up were to be used for the TOMCAT 4D-Var inversion system, the main issue

would be due slow boundary layer mixing, which has little effect away from emission regions.

The effect of increasing the resolution of the model grid is shown by the T106 L simulation, which

shows increased SF6 concentration throughout the atmosphere. This is likely to be due to a com-

bination of the very small grid boxes and the rescaling of the tracer mass performed by the model

every 6 hours. As emissions are released into the surface boxes, they create high mixing ratios due

to the size of the grid box. However, each time the wind reanalyses are readinto the model, the

rescaling of the air mass in each grid box performed by the model to match the analyses conserves

tracer mixing ratio rather than tracer mass, creating artificially high concentrations throughout the

atmosphere. The very low resolution T10L simulation shows the usual increased NH concentra-

tions due to the use of the Louis scheme and also an increased effect of large grid boxes spreading

the tracer towards to pole at a rapid rate. Concentrations are decreasedthroughout the SH and

tropics, however, as the boundary layer mixing is extremely poor with the low-resolution grid.

Although it would be desirable to use the T10L model set-up for the TOMCAT 4D-Var inversion

system, it would appear from Figure 4.5 that the resolution is too low to accurately reproduce

atmospheric transport.

4.4.1 Surface Flask Comparisons

Annual growth rate of SF6

Figure 4.6 shows comparisons of modelled and observed monthly mean SF6 concentration at a

number of station sites for the time period 2000 - 2006. For each model simulation, the model-

observation difference at SPO in January 2000 has been subtracted everywhere in order to elim-

inate the effect of differences in the initialisations of the different simulations. Table 4.3 shows

the yearly increase of SF6 for each of the simulations, estimated by linear regression. The in-

crease at SPO shows the annual SF6 increase without the effect of local emissions, and each of

the simulations is within 0.005 ppb of the observations by this measure. This indicates that the

total SF6 emissions used in the model over the period 2000-2006 are accurate. Table 4.3 also

shows the mean annual increase over all of the station sites and the mean totalincrease over the

period. There is more variation between the models by this measure, which is affected more by the

transport of emissions than the SPO increase is, but each simulation matches the 6 year increase to

within 0.08 ppt. At stations away from SF6 source regions, such as ALT, BRW, CGR and SPO, the

observations show little deviation from the linear increase due to emissions. This is captured well

in the model using both PBL schemes. However, at stations close to source regions, such as HVF,

a greater range of variation from the linear trend is observed, and this is simulated to some extent

using the Holtslag & Boville PBL scheme. When using the Louis scheme, the modelpredicts
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Table 4.3Rate of increase for SF6 (ppt yr−1) over the period 2000 - 2006 for observations and
for each simulation. Growth rate given for the SPO station and averaged over all stations, Mean
increase over the whole period is also shown.

OBS T42 HB T21 HB T42 L T21 L T106 L T10 L
SPO SF6

increase (ppt
yr−1)

0.224 0.229 0.222 0.229 0.221 0.228 0.219

Mean SF6

increase (ppt
yr−1)

0.237 0.233 0.226 0.234 0.227 0.236 0.224

Mean SF6

increase
2000-2006

(ppt)

1.422 1.398 1.356 1.404 1.362 1.416 1.344

mixing ratios which are far too high in comparison to the observations, due to thelimitations of

the Louis scheme already discussed. This has a much smaller effect away from the source regions,

however, where the two PBL schemes produce similar results. When using the Holtslag & Boville

scheme, the choice of resolution had little effect on the SF6 concentration at each station. However,

when using the Louis scheme, the varying resolutions produced different results at stations close

to the source regions, with the simulated mixing ratio being highly dependent on the depth of the

grid-box into which the SF6 emissions are deposited. In fact, the higher resolution runs generally

produce higher mixing ratios at these stations, due to the emission of SF6 into the smaller grid

boxes producing a high concentration, which is then not mixed out by the PBL scheme.

SF6 Seasonal Cycle

Figure 4.7 shows the observed and modelled seasonal cycle of SF6 at the station sites. In order

to display only the seasonal cycle due to transport, the linear trend displayedby SF6 at the South

Pole station (SPO), the furthest point from the source regions, was removed from all data. The

modelled and observed SF6 was averaged over the years 2003 to 2006, in order to only include

years with observations provided for every month, and the mean value at each station over this

time period was subtracted. Table 4.4 shows the correlation, r, and root mean square difference

(RMSD) between the modelled and observed seasonal cycle at each stationfor each simulation,

where;

=

√

((xsim−xobs)2) (4.1)
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Figure 4.6 Monthly mean SF6 concentration (ppt) at NOAA surface station sites, 2000 - 2006.
Solid coloured lines(Left) represent TOMCAT simulations using the Holtslag & Boville PBL
scheme, while dashed coloured lines(Right) represent model simulations using the Louis PBL
scheme. Different model resolutions are depicted in different colours,and observations are shown
in black.
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Here,xsim represents the simulated SF6 mixing ratio andxobs represents the observed concentra-

tion. The over-bar represents the mean. When using the Holtslag & Boville scheme, the model

captures the inter-seasonal variation well at the majority of the sites. SH sitessuch as CGR and

SPO have very little seasonal cycle, and the model shows extremely little variation around the

mean in the SH. In fact, some SH seasonal variation may be missing in the model, asCGR dis-

plays slightly negative and positive anomalies in March and September, respectively, which are not

reproduced in the model. This means that correlations and RMSDs are small at these SH stations.

TUT displays positive anomalies in December through to March and negativeanomalies for the

rest of the year due to its position relative to the Intertropical Convergence Zone (ITCZ), which

is the physical (rather than the notional 0°) boundary between the NH andSH. As the position

of the ITCZ varies throughout the year due to the changing location of the sun’s zenith point,

TUT alternates between sampling NH and SH air. This oscillation is produced well in each of

the model simulations, with correlations greater than 0.8 produced by each, and RMSD less than

0.01 for each resolution apart from T10L. MLO displays positive anomalies in both MAM and

SON, due to the increased influence of SH air at MLO during the NH summer and winter (Lintner

et al., 2006), and, excluding the T10 resolution, the model produces the same semi-annual vari-

ation, with correlations greater than 0.65 and RMSD less than 0.012. NH high-latitude stations

ALT and BRW show an annual seasonality with minimum concentrations produced in NH autumn,

and a recovery period throughout the NH winter before concentrationspeak around February. The

negative anomaly is due to increased convection during JJA, while the recovery period is due to

northward transport of SF6 from NH emission regions during NH winter, increased stability of the

boundary layer and the related pollution trapping in the Arctic during this time. The model repro-

duces the correct seasonal cycle at these Arctic stations when the Holtslag & Boville scheme is

used, with positive correlations, although model anomalies are not as largeas observed anomalies.

The T42HB simulation performs well at these Arctic stations, but the performance of the T21L

scheme is not as good, with lower correlations and RMSD at this resolution than in T42 HB. The

high Arctic concentration of SF6 during the NH autumn implies that some form of model transport

is incorrect during this season. This may indicate strong transport into the Arctic, or slow transport

away from it.

Use of the Louis PBL scheme has a small effect at the SH sites and at MLO, where transport is the

main influence on the seasonal cycle, and at resolutions greater than 11.25° the seasonal cycle is

reproduced by the model at these stations with high correlations. The 11.25°model grid produces

seasonal variations different to those found in the observations due to effect of interpolation across

the large grid boxes. The Louis scheme produces poor results at the MHDstation, especially at

low resolutions. This is likely to be due to poor vertical mixing of European emissions out of the

PBL. Even at higher resolutions, modelled seasonal anomalies at MHD areup to six times greater

than observed anomalies, although the T42L simulation produces the smallest seasonal variations,
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Table 4.4Correlations and RMSDs (ppb) for monthly mean observed and modelled SF6 concen-
tration at selected remote surface sites averaged over the period 2003 - 2006 for each of the model
simulations. The simulation producing the highest correlation or lowest RMSD at each station is
shown in bold.

Simulation
T42 HB T21 HB T42 L T21 L T106 L T10 L

ALT: r 0.82 0.38 0.06 0.11 -0.31 -0.28
RMSD (ppb) 0.0124 0.0164 0.0214 0.0309 0.0231 0.0811

BRW: r 0.70 0.58 0.54 0.33 0.50 -0.04
RMSD (ppb) 0.0145 0.0157 0.0170 0.0218 0.0181 0.0516

MHD: r 0.44 0.42 -0.36 -0.04 -0.45 0.06
RMSD (ppb) 0.0244 0.0247 0.0445 0.0709 0.0641 0.0978

MLO: r 0.75 0.78 0.70 0.70 0.67 0.06
RMSD (ppb) 0.0100 0.0094 0.0108 0.0107 0.0114 0.0225

TUT: r 0.88 0.87 0.90 0.90 0.88 0.83
RMSD (ppb) 0.0085 0.0100 0.0084 0.0099 0.0086 0.0211

CGR: r 0.21 0.11 0.24 0.10 0.00 -0.15
RMSD (ppb) 0.0102 0.0105 0.0108 0.0107 0.0143 0.0141

SPO: r 0.29 0.25 0.41 0.19 -0.03 0.65
RMSD (ppb) 0.0079 0.0080 0.0075 0.0084 0.0105 0.0063

with large positive anomalies only in March and October. Generally the model performs poorly at

this station when the Louis scheme is used, with lower correlations and larger RMSD than when

the Holtslag & Boville scheme is used, which places some doubt on the model’s abilityto perform

accurately near emission regions when using the local PBL scheme.

Figure 4.8 shows the mean annual interhemispheric difference (IHD) of the background SF6 level

for each year. In this case, the interhemispheric difference was defined as the difference between

the NH and SH background SF6 mixing ratios, where the NH background concentration was rep-

resented by the mean of the mixing ratios at BRW and MLO, and the SH background was similarly

defined using CGR and SPO. These station sites were chosen as they are far from source regions

and had a near-complete observational record over the chosen time period. All model runs pro-

duce a IHD which is too large (previously indicated by the modelled NH positivebias). However,

the trend of the IHD over time shows good agreement with the observations, with smaller IHD

during 1997 - 2004 due to the decrease in emissions during these years (see Figure 4.1(b)). The

PBL scheme used in the model makes little difference to the value of the IHD, as the background

concentration does not vary much between the two PBL schemes, but the IHD decreases as the

resolution of the model grid increases. While there is a large improvement between the T10L

and T21L resolutions, however, the improvement between T21L and T42L is much smaller,

and there is no significant improvement in IHD gained by running the simulation at T106 L. Al-

though, as seen in Figure 4.5, the T106L simulation produces mixing ratios which are consistently

higher than the T42L simulation, the rate of interhemispheric transport appears to be the same.
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Figure 4.7 Mean detrended SF6 seasonal cycle at NOAA surface station sites, 2003-2006 using
the Holtslag & Boville scheme(Left)anf the Louis scheme(Right). Data is detrended as described
in the text, and lines are coloured as in Figure 4.6. Note the different axis scales.



Chapter 4.Evaluating Simulated Tropospheric Transport in the TOMCAT Model usingSF6 56

Figure 4.8 Annual mean SF6 interhemispheric difference (ppt) for the period 1995 - 2008 using
the Holtslag & Boville scheme(Left) and the Louis scheme(Right). IHD is defined as in the text.
Lines are coloured as in Figure 4.6

Figure 4.5 showed that interhemispheric mixing was slowest the T10L simulation and increased

as the model grid resolution decreased, but comparison with the observation shows that even at

the highest resolution, the IHD is approximately 20% too high. Since the majority of SF6 sources

are in the NH, this indicates either that interhemispheric transport time is too slow inthe model or

that the NH emissions used are too high.

4.4.2 Aircraft Comparisons

Figure 4.9 shows the comparison of the model simulations with monthly mean verticalSF6 profiles

described in Section 4.3.1. Note that while LEF, CAR and RTA are sampled during 2003, HVF was

compared during 2001 in order to maximise the amount of available flask data. Model profiles are

provided for the T42HB, T42 L, T21 HB and T21L simulations. The NH bias seen at the surface

sites propagates through the lower troposphere at each site, but the distribution of the profiles and

the seasonal increase in SF6 is simulated well. At the remote site RTA, the PBL scheme does not

significantly alter the model distribution. The resolution of the model also makes littledifference

to the profiles at this SH station. However, the USA stations LEF, CAR and HVF, which are close

to a source region, the slow vertical mixing of the Louis scheme can be seen.At these sites, the

T42 L and T21L profiles show a clear two-level divide, where the poor vertical mixing ofSF6

emissions lead to a high mixing ratio up to an altitude of 1-2 km, above which the concentration

decreases to a level lower than that produced using the Holtslag & Boville simulations. At LEF,

the observations show an almost constant vertical profile throughout theyear except during MAM,

when concentrations increase in the boundary layer. Both T42HB and T21HB reproduce this

seasonal cycle. Throughout most of the year at CAR, modelled mixing ratios decrease above 4

km, while observed concentrations remain constant. During MAM, however, observed mixing

ratios decrease with altitude across all levels, which is reproduced in the T42 HB simulation but
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not in T21HB. At HVF, T42 HB and T21HB match the observed vertical profiles well during

all seasons, although concentrations are slightly high at the surface. Inthe SH station RTA, the

observations display a large amount of variation around the profile, whichgenerally increases with

altitude. Generally the vertical transport in the model is good, but once again the Louis scheme

produces high surface concentrations.

4.4.3 Comparisons to Satellite Data

For model comparisons with the ACE satellite, SF6 retrievals were filtered by removing any re-

trievals with errors larger than 0.5 ppt. Model SF6 was interpolated to each remaining retrieval

location and pressure so that direct comparisons could be made. Only the T42 HB simulations

were compared to the satellite data, and the same SPO bias was removed from thedata as with the

surface flask comparisons. Figure 4.10 shows a comparison between ACE retrieved SF6 and mod-

elled SF6 for each retrieval in 2006, divided into latitude bins. At each level, the SF6 mixing ratios

estimated by the satellite display a greater range than those of the model, but the model captures

the variation with altitude well. The majority of the satellite measurements are at a pressure level

of 100 - 200 hPa, and this is where the agreement is best.

Figure 4.11 shows the latitudinal distribution of the vertical profile of SF6 in the model and satellite

retrievals over the period 2004-2009. The model reproduces the vertical profile of the satellite

well. The standard deviation of the satellite retrievals is around 0.5 ppt, and themodel falls well

within these limits. There a few satellite measurements below 200 hPa, and the agreement is poor

below this altitude. Agreement is greatest between 30°N and 30°S above 200 hPa. Brown et al.

(2011) compared modelled SF6 from the SLIMCAT model, which was initialised with the results

of this study, to ACE observations in the tropics, finding the two to be in good agreement. The

model performance in the UTLS is consistent with the satellite retrievals, indicating that TOMCAT

troposphere-stratosphere exchange is robust enough to allow assimilation of observed stratospheric

data.

4.4.4 Effect of Changes to the Model Advection Scheme and Vertical Grid

The Louis PBL scheme and the conservation of first-order moments (FOM) advection scheme were

chosen for use in the adjoint TOMCAT model due to the fact that they are computationally simpler

schemes than the Holtslag & Boville scheme and conservation of second-order moments (SOM)

scheme, respectively, and therefore offer a starting point for the development of the adjoint model.

In order to understand the implications of using these simpler schemes on tracer transport, a further

SF6 model simulation, T21HB FOM , was carried using the FOM advection scheme. Results

using the Louis PBL scheme have already been displayed in this chapter, and it was discovered
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Figure 4.9 Seasonal mean vertical SF6 profile mixing ratio in ppt compared with NOAA ESRL
aircraft flask samples for 2003 (LEF, CAR, RTA) and 2001 (HVF). The data has been averaged
into 1km vertical bins. Lines are coloured as in Figure 4.6
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Figure 4.10Comaprison of TOMCAT T42HB simulation of SF6 with ACE retrievals in ppt for
the year 2006. Retrievals are split into latitudinal bins and coloured to represent the altitude of the
retrieval

Figure 4.11Mean vertical profile of TOMCAT T42HB and ACE SF6 for the period 2004 - 2009
split into latitudinal bins. Colours represent the latitude of the retrieval, dashed lines represent
modelled SF6 and solid lines represent satellite retrievals
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Table 4.5 Details of resolution, PBL scheme and advection scheme of further TOMCATSF6

simulations considered in Chapter 4.

Name
Longitudinal
spacing (°)

Latitudinal
spacing (°)

Vertical
Levels

Time
step

(mins)

PBL
Scheme

Advection
Scheme

T21 L29 5.6 5.6

29 (bottom
three levels
of T21 L
merged)

60 Louis
Second
Order

Moments

T21 HB FOM 5.6 5.6 31 60
Holtslag

&
Boville

First
Order

Moments

that the vertical mixing out of the boundary layer was not strong enough,which led to the model

producing extremely large SF6 mixing ratios in grid boxes close to emission regions. In an attempt

to counter this problem, simulation T21L29 was carried out in which the bottom three levels of

the vertical grid were merged together, providing a larger grid box for emissions to be distributed

into and therefore decreasing the mixing ratio. The surface grid box therefore had a depth of∼200

m rather than∼30 m. Both of these simulations were carried out using a grid box resolution of

5.6° and further details of these simulations are displayed in Table 4.5.

Figure 4.5 displays the annual zonal mean modelled distribution of SF6 for the year 2006. Com-

paring the results of the T21L29 simulation with those of the T21L simulation in Figure 4.5 show

that the mixing out of the boundary layer does indeed seem to have improved, with the ‘trapped’

emissions at around 30°N not appearing to the same extent as before. There is a slightly higher

SF6 concentration in the high latitude NH, but the effect is not as great as it wasin T21 L. Con-

centrations are slightly lower in the SH than before but on the whole, the zonal mean distribution

produced by the simulation agrees fairly well with that produced by the default T42 HB simula-

tion. Use of the FOM advection scheme has produced slightly lower concentrations throughout

the troposphere, but the scheme does not appear to have produced a significant change.

Figure 4.12 shows the SF6 trend for the period 2000 - 2006 at NOAA station sites (as in Figure 4.6)

for the T21L29 and T21HB FOM model runs. At the surface, the T21HB and T21HB FOM

simulations are almost identical, indicating that the choice of advection scheme makes no dif-

ference over this long time period. The T21L29 simulation does show improvements upon the

T21 L simulation at MHD, decreasing model over-estimation by up to 50%. However, modelled

SF6 mixing ratio does not improve at HVF, and at both sites the observations are far more consis-

tent with simulations when using the Holtslag & Boville scheme.

Figure 4.13, like Figure 4.7, shows the detrended seasonal cycle at the station sites. Table 4.6

shows the correlation and RMSD for the four T21 simulations. Again it shouldbe noted that there
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Figure 4.12As Figure 4.6, for model simulations T21L29 and T21HB FOM

is extremely little difference between the two advection schemes and that the T21L29 simulation

offers no improvement over T21L at most sites. In fact, the agreement with observations at

ALT, BRW, MLO and TUT is worse in T21L29. At MHD, the surface site closest to an emission

region, the large positive model anomaly in March is reduced in T21L29. However, a new positive

anomaly is produced in October.

Figure 4.14 shows model comparisons to observed vertical profile data aspreviously seen in Figure

4.9. Once again, the FOM advection scheme does not alter the performanceof the model. In this

case, however, the improvement offered by the T21L29 simulation over the T21L scheme can be

seen. At the USA sites, LEF, CAR and HVF, the SF6 mixing ration in the boundary layer (up to 2

km) and upwards is reduced when using the T21L29 scheme than in the standard Louis scheme,



Chapter 4.Evaluating Simulated Tropospheric Transport in the TOMCAT Model usingSF6 62

Figure 4.13As Figure 4.7, for model simulations T21L29 and T21HB FOM

Table 4.6Further correlations and RMSDs (ppb) for monthly mean observed and modelled SF6
concentration at selected remote surface sites averaged over the period2003 - 2006 for each of
the model simulations. The simulation producing the highest correlation or lowest RMSD at each
station is shown in bold.

Simulation
T21 HB T21 L T21 L29 T21 HB FOM

ALT: r 0.38 0.11 -0.30 0.35
RMSD (ppb) 0.0164 0.0309 0.0432 0.0167

BRW: r 0.58 0.33 -0.13 0.53
RMSD (ppb) 0.0157 0.0218 0.0328 0.0164

MHD: r 0.42 -0.04 -0.44 0.29
RMSD (ppb) 0.0247 0.0709 0.0707 0.0263

MLO: r 0.78 0.70 0.69 0.74
RMSD (ppb) 0.0094 0.0107 0.0111 0.0102

TUT: r 0.87 0.90 0.92 0.87
RMSD (ppb) 0.0100 0.0099 0.0134 0.0100

CGR: r 0.11 0.10 0.29 0.11
RMSD (ppb) 0.0105 0.0107 0.0101 0.0105

SPO: r 0.25 0.19 0.24 0.21
RMSD (ppb) 0.0080 0.0084 0.0084 0.0081
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bringing the modelled mixing ratio closer to those observed on the aircraft missions. At the remote

site RTA, T21L29 produces a small decrease in concentration.

4.5 Summary

TOMCAT model comparisons with SF6 observations have provided a validation of the atmospheric

transport in the model, and indicated its potential for use as part of a 4D-Var inversion process.

These comparisons have also provided an understanding of the differences that each transport

scheme and model grid resolution available for use in the model produces in terms of large scale

transport, vertical mixing and seasonal variations. Since the 4D-Var inversion process uses simpli-

fied advection and PBL mixing schemes, it is important to understand the effect that this will have

on a surface flux inversion produced using the model. Comparisons of thetwo different advection

schemes indicate that the FOM scheme does not produce significantly different results to the SOM

scheme. The Louis PBL scheme, however, does produce different tropospheric distributions to

model simulations using the Holtslag & Boville scheme, with slightly slower vertical transport

and much less vertical mixing within the boundary layer. This is only partly compensated for

by introducing a vertical model grid with a larger surface grid box. The resolution of the model

grid can have a large effect on vertical and meridional transport, but the T42 and T21 resolutions

perform well in comparison with observations.

When run using its ‘optimum’ set-up, T42HB, the model performs well in comparisons with

observed SF6. Comparisons with flask samples at stations sites provide a validation of the large-

scale transport in the model such as interhemispheric and zonal transport and representation of

seasonal large-scale atmospheric variations such as the ITCZ. The T42HB simulation reproduces

the annual increase at each station site compared with observations, and also predicts the phase and

amplitude of the seasonal cycle at many stations. Some SH seasonal transport variations are not

reproduced in the model, and model transport in the Arctic may not be strongenough during the

NH autumn. However, the observation accuracy of 0.04 ppt at these stations is close to the absolute

seasonal variation in many places, so the model is always with in the observational accuracy. Any

model transport errors may be taken account of when producing the 4D-Var inversion. Vertical

transport up to the lower stratosphere is also simulated accurately when using the optimum model

set-up.

The 4D-Var inversion uses the T21L29 resolution with the Louis PBL scheme and the FOM

advection scheme. As already discussed, the two advection schemes do not produce significantly

different transport in the model, so the FOM advection scheme may be used with confidence.

However, use of the Louis scheme may produce underestimation of fluxes,since tracers are not

mixed vertically through the boundary layer, even when the size of surface-layer grid boxes is
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Figure 4.14As Figure 4.9, for model simulations T21L29 and T21HB FOM
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increased. Vertical transport into the upper troposphere is slower when using the 5.6° model grid

than when using the 2.8° grid, which may also lead to underestimation of surface fluxes during

using the inversion process. Theses issue will have to be taken accountof when the modelling

error term of the inversion is created. Modelled interhemispheric transport is slightly slower than

indicated by observations, but within the range found by Denning et al. (1999), and the annual

variation of the cross-hemispheric transport is reproduced in the model. The large-scale seasonal

variation of the ITCZ is also produced in the model.

A key assumption when the 4D-Var inversion method is used in data assimilation is that all errors,

including model errors, are unbiased and Gaussian in nature. While the optimum set-up of the

TOMCAT model performs consistently with observations, it is clear that the introduction of the

Louis PBL scheme produces a systematic error into the model, which cannot be comprehensively

handled in any potential 4D-Var inversion performed with this PBL scheme. For the purposes of

the development of the TOMCAT 4D-Var inverse model, however, the decision has been taken to

persevere with the T21L29 set-up described in this chapter. While this introduces bias into the

model error term of the inversion, the relative simplicity of the Louis scheme compared to the

Holtslag and Boville scheme makes it the preferred option in the short-term future. However, the

development of the adjoint version of the Holtslag and Boville scheme will clearly be necessary

when there is opportunity.





Chapter 5

Inverse Modelling using the 4D-Var

Method: Development and Testing for

the TOMCAT Model

5.1 Introduction

Chapter 4 assessed the quality of the representation of atmospheric transport in the TOMCAT

model in order to validate the model’s capability for use in the 4D-Var inversionmethod of esti-

mating surface fluxes of atmospheric species. The model’s performance insimulating the global

distribution of the long-lived tracer SF6 was accurate when using the optimum set-up. Although

the quality of the model performance deteriorated due to the use of the Louis PBL scheme, extend-

ing the depth of the bottom model layer improved the results, and it was decidedthat the benefits of

the Louis scheme in terms of computational simplicity out-weighed the inaccuraciesproduced in

the results. This chapter therefore introduces the 4D-Var data assimilation method in detail before

discussing the development and testing of the TOMCAT 4D-Var system.

Section 5.2 provides details on the modelling steps involved in the 4D-Var method and provides

information on its derivation. Section 5.3 describes the development of the TOMCAT 4D-Var

system, after which the chapter describes results from a series of idealised model experiments

which test the 4D-Var scheme and demonstrate its performance. Section 5.6 details results of a

simple inversion performed with the 4D-Var system which replaces observed data with synthetic

‘observations’ provided by the forward TOMCAT model before Section5.7 summarises the results

of the chapter.

67
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5.2 Background Theory to the 4D-Var Method

The 4D-Var data assimilation technique is derived from Bayesian theory, and uses iterative meth-

ods in order to reduce as far as possible the value of a function measuringthe difference between

model predictions and observations. The method has previously been used in studies discussed

in Chapter 3. 4D-Var requires the use of an adjoint model in order to evaluate the sensitivity of

model-observation differences to boundary conditions and parameters.Within the scope of this

work, this entails the construction of an adjoint version of the TOMCAT model,which integrates

model-observation differences in the atmospheric mixing ratio of a species, such as CH4, back-

wards in time in order to estimate the sensitivity to its surface fluxes. This section gives an outline

of the 4D-Var method, with all notation specified as in Ide et al. (1997), described in Section 3.2.1.

Generally, ifx is a vector requiring optimisation, known as the state vector, and observationsy and

observation operatorH(T(x)) : x −→ y exist, then the aim of the 4D-Var method is to minimise,

in a least square sense, the model-observation difference[y−H(T(x))]. Since the number of

observations over time[t0, tn] is usually far less than the dimension ofx, the minimisation is further

constrained using ana priori estimate,xb, of the state vector. The cost functionJ(x), a weighted

measure of the model-observation difference combined with information fromthe a priori, is

therefore defined as

J(x) =
1
2
(x−xb)

TB−1(x−xb)+
1
2
(y−H(T[x]))TR−1(y−H(T[x])) (5.1)

whereR−1 represents the inverse of the error covariance matrix of the observations, which can

also include model error, andB−1 represents the inverse of the error covariance matrix ofxb. If m

is the dimension of the state vector andn is the number of observations, thenH(T) is a matrix of

sizen×m representingH(T), which mapsx ontoy.

In order to find the optimal state vector, it is necessary to minimise the value of thecost function.

The minimum ofJ(x) is found when the gradient ofJ with respect to the state vector is equal to

zero;

∇xJ(x) = B−1(x−xb)+TT [

R−1(y−H(T[x]))
]

= 0 (5.2)

In order to find a solution to Equation 5.2 it is therefore necessary to computeTT , the transpose of

the observation operator matrix, known as the adjoint operator. For this work, the state vector,x, is

the 2D surface flux field of CH4 at a given time, which is used in the TOMCAT model,T. H is the

observation operator which maps the 3D concentration field produced byT onto the observations,

y.
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In reality, the observation operator matrix,H(T) is not found explicitly, but is replaced with the

forward model, which outputs model concentration fields at each point in time,i, where obser-

vations exist. These fields are then interpolated to the locations of the observations. The adjoint

matrixHT can be replaced with an adjoint version of the model, which is created directlyfrom the

forward model. Further details on adjoint modelling are given in Section 5.2.1.The cost function

is minimised through an iterative process which computes the value ofJ(x) and∇xJ(x) at each

iteration, a process which entails a large computational burden in terms of bothcomputer memory

and processing time. During each iteration, the gradient of the cost function is computed using the

adjoint and forward models, and an appropriate descent direction is chosen along which to min-

imise the cost function. Once the minimum along this direction has been found, thestate vector

is updated according to the minimisation so far, and the process is repeated using the new state

vector as an initial guess. Eventually the value of the norm of the gradient of the cost function will

decrease past a threshold value chosen by the modeller, indicating that a close-to-optimal state

vector has been produced. This threshold value is known as the convergence criteria. The iterative

process of minimisation will be discussed further in Section 5.3.2.

5.2.1 Adjoint Modelling

As discussed in Section 5.2, atmospheric CTMs can be viewed as numerical operators,T, acting

on the state vectorx. In practice,T consists of parametrisations of various transport processes

such as advection, turbulent mixing and convection, and each of these parametrisations is made up

of a finite number of mathematical operations,Tj ;

T = ∏
j

Tj (5.3)

EachTj may be linear or non-linear, and differentiable or non-differentiable. Assuming that the

operatorT is differentiable, its first derivative, or Jacobian, can be represented by a tangent linear

model (TLM),T ′. The TLM is linear, simulates the propagation of perturbations withinT and is

dependent upon the trajectory ofT at which the linearisation took place. If the forward modelT

is defined such that, for a concentration fieldc at timeti ;

c(ti+1) = T[c(ti)] (5.4)

Then the TLM is defined such that;

δc(ti+1) = T ′[c(ti)]δc(ti) =
∂T[c(ti)]

∂c
δc(ti) (5.5)
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Figure 5.1 Atmospheric transport of a local perturbation in the TLM at timest0 (Left) and tn
(Right). Adapted from Giering (2000).

Note that the model operator is differentiated with respect to the concentration field c, and not the

perturbationδc. In practice, this means that the trajectories of the forward model must be stored

in order to run the TLM. Each mathematical operationTj must be individually differentiated to

createT ′
j ;

δc(ti+1) = ∏
j

T ′
j [c(ti)]δc(ti) = ∏

j

∂Tj [c(ti)]
∂c

δc(ti) (5.6)

Of course, if the modelT is already linear, then the TLM is identical to the forward model. From

the TLM, the adjoint model (ADM),T ∗, can also be developed. The adjoint model is the represen-

tation of the transpose of the matrix representing the TLM and propagates sensitivities backwards

through time. The ADM is defined such that, for an inner product〈 , 〉 and for vectorsx andy, it

holds that;

∀x,∀y 〈T ′x,y〉 = 〈x,T ∗y〉 (5.7)

Figures 5.1 and 5.2 illustrate the difference between the TLM and the ADM. Figure 5.1 shows a

local perturbation at timet0 being transported downwind and broadened by diffusion at timetn. If

the initial perturbation is small, the TLM can therefore be used in order to investigate the impact

of this small disturbance later in time. Figure 5.2, meanwhile, shows the processmodelled in the

ADM. A local difference at timetn could be due to an anomaly further upwind. The ADM finds

the sensitivity of this local difference to other locations at timet0. Again, the anomaly undergoes

diffusion as it travels upwind, indicating that the possible origin of the anomalyis located in a

broad region. This adjoint transport process is clearly not the same as integrating the forward

model backwards through time.
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Figure 5.2Adjoint atmospheric transport of a local anomaly in the ADM at timestn (Right)andt0
(Left). Adapted from Giering (2000).

In practice, the forward model consists of numerous lines of computer code, each carrying out a

mathematical operation or creating a conditional statement or loop. TLM and ADM codes can

therefore be created from the forward code by hand or through the use of automatic code genera-

tors. A variety of these are available, such as TAMC (http://www.autodiff.com/tamc) and TAPE-

NADE (http://tapenade.inria.fr), which create an TLM or ADM from a suppliedforward model

without the need for the time-consuming hand-coding process. Both of these methods may pro-

duce errors or inconsistencies in the adjoint code however, whether due to human error or through

bugs produced by the automatic coding process (Nehrkorn et al., 2006), and it can often be more

efficient to code by hand in the first place.

5.3 Development of the 4D-Var Method for the TOMCAT Model

5.3.1 Creating the Adjoint TOMCAT Model

As discussed in Chapter 3, the TOMCAT model simulates horizontal and vertical advection, moist

convection, PBL mixing and chemical processes in order to produce mixing ratios of atmospheric

species. A choice of schemes exists for many of the transport processes, and each scheme is con-

tained in a separate model subroutine so that it may be included or omitted as required. Schemes

may be linear or non-linear, and in order to create the adjoint version of theTOMCAT model, it

is necessary to create the adjoint version of each subroutine independently. For this work, and as

a first step in the construction of a full adjoint version of the TOMCAT model,it was important

to find a balance between accuracy and simplicity when choosing appropriate transport schemes

for the adjoint model. Consequently, the conservation of first-order moments (FOM), or ‘slopes’,

scheme was chosen to simulate advection, while the Louis scheme was chosen as the PBL scheme.

As seen in Chapter 4, there is little difference between results produced using the slopes scheme

and those using the conservation of second-order moments (SOM) advection scheme, and there
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is little structural difference between the codes of the two schemes. Producing an adjoint SOM

scheme would be a small step forwards once the adjoint slopes scheme exists. However, the SF6

simulations discussed in Chapter 4 also showed that the Louis PBL scheme produces significantly

different results to those produced using the Holtslag & Boville scheme on thedefault verticval

boundary layer grid. The decision to use the Louis scheme was taken due tothe complex nature of

the Holtslag & Boville PBL scheme, which precluded the creation of its adjoint atthis stage. It was

shown in Chapter 4 that increasing the depth of the model layer nearest to the surface improved

results when using the Louis scheme (e.g. Figure 4.14), and this alteration was therefore made to

the adjoint TOMCAT model.

Creation of the adjoint TOMCAT model was carried out by hand instead of using an automatic dif-

ferentiation program, with each separate adjoint subroutine being coded individually. The slopes

advection scheme is made up of three subroutines, namedADVX1, ADVY1 andADVZ1, which carry

out zonal, meridional and vertical advection, respectively. Convectionand Louis scheme PBL

mixing are both carried out in theCONVEC subroutine, while the simple chemistry scheme used in

the model is part of theCHIMIE subroutine. Surface emission is also carried out inCHIMIE. In

order for the adjoint TOMCAT model to integrate backwards through time, it was also necessary

to make changes to initialisation subroutinesINIEXP, INICYCL, INITER and output subroutine

FINITER. Altogether, nine subroutines of the TOMCAT model were required to be rewritten or

changed in order to create the adjoint version of the model. Each of these subroutines was found

to be completely linear (see Section 5.4.1), so there was no need for a TLM to be created. Ad-

joint versions of the TOMCAT model and of individual subroutines of the TOMCAT model will

henceforth be denoted with the ‘AD’ prefix, e.g. AD TOMCAT, AD ADVX1, etc.

5.3.2 The TOMCAT 4D-Var Optimisation Program

The forward and adjoint versions of the TOMCAT model were incorporated into the TOMCAT

4D-Var optimisation program. This program was adapted from a 1D-Var optimisation program

provided by F. Chevallier of the Laboratoire des Sciences du Climat et l’Environnement (LSCE),

Paris. This program had previously been used for the retrieval of cloud profiles using the RTTOV

model (see Chevallier et al. (2002) and Courtier et al. (1994)) for moredetails). Figure 5.3 shows

a flow-chart depicting the 4D-Var optimisation system, which consists of a number of subroutines

briefly explained in Table 5.1 and in more detail here.

TheMAIN outer program initialises all variables in the system, including the error covariance ma-

trices, observations and a priori surface flux estimate, and passes theminto 4DVAR. MAIN also finds

the eigenvectors and eigenvalues ofR, along with its inverse.4DVAR then calls the forward TOM-

CAT modelT and the observation operator,H in order to produceH(T(x)), the mapping of the 3D

tracer field produced by TOMCAT onto the observations. The program then callsSIMUL, which
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Figure 5.3Flow chart depicting the TOMCAT 4D-Var inversion process. Optimisation programs
are displayed in orange, while TOMCAT routines are in blue. 2D flux fields are shaded red,
atmospheric mixing ratios are light grey and variables relating to the cost function are coloured
green. The large dark grey box indicates all the processes which are repeated iteratively until the
output is found to fulfil pre-defined criteria. See the main text for furtherdetails on each program
or variable.

works out the current value of the cost function and its gradient before finally passing these vari-

ables through to the minimisation program,M1QN3. This program, which is explained in detail in

Section 5.3.3, iteratively finds the value of the state vector (the surface flux)which minimises the

value of the cost function using theMLIS0 step-minimisation program which is explained further

in Section 5.3.4. After each iteration,M1QN3 checks the convergence criteria and performs another

iteration if the criteria is not yet met. If the solution has converged, the current value of the state

vector is output as the a posteriori estimate of the surface flux.
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Table 5.1Details of each subroutine within the TOMCAT 4D-Var optimisation program

SUBROUTINE
NAME

DESCRIPTION

MAIN

• Initialises all variables

• Sets up error covariance matricesR and B , finds R−1 and
finds eigenvalues and eigenvectors ofR

• Reads observations and a priori flux estimate

4DVAR

• Calls forward TOMCAT model with a priori fluxes to produce
3D atmospheric mixing ratio field

• Calls transformation operator to map 3D field onto observations

• CallsSIMUL to evaluate cost function and cost function gradient

Forward TOMCAT
model,T

• Produces 3D atmospheric mixing ratio field from supplied flux
field

Transformation
operator,H

• Maps 3D tracer field onto observations

SIMUL

• Finds value of cost function

• Calls AD TOMCAT

• Finds gradient of cost function with respect to flux field

AD TOMCAT, T∗ • Finds 2D flux sensitivity field to model - observation anomalies

M1QN3

• Finds optimal descent direction for minimisation of cost func-
tion

• CallsMLIS0 to find minimum along this descent direction only

• Calls SIMUL to evaluate new cost function and cost function
gradient

• Checks convergence criteria

MLIS0
• Finds minimum of cost function along chosen descent direction

using step-minimisation process
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5.3.3 TheM1QN3 Minimisation Program

The M1QN3 minimisation procedure uses a limited memory quasi-Newtonian (QN) method and

was developed at Institut National de Recherche en Informatique et en Automatique (INRIA). The

procedure will be briefly outlined here, but for more details see Gilbert and Lemarechal (1989).

TheM1QN3 routine solves unconstrained minimisation problems of the form;

min{J(x) : x ∈�m} (5.8)

where the functionJ is supposed continuously differentiable. The method is based upon an al-

gorithm proposed by Nocedal (1980). QN methods are used in optimisation programming as

more practical versions of conjugate gradient (CG) methods, which solveminimisation problems

through iterative descent using exact line searches. CG methods produce faster convergence than

the simple steepest descent (SD) method due to the fact that the descent direction at each iteration

in a CG method is chosen to be orthogonal to each of those used previously (Daniel, 1967). Figure

5.4 shows the difference between the SD and CG methods of descent. The SD method requires

many steps to converge to the minimum due to the fact that each subsequent descent direction

must be perpendicular to the last. The CG method has no such limitations and generally converges

within m steps (Shewchuck, 1994). The CG method uses only a small amount of computer mem-

ory to find the descent direction, but requires an exact line search in order to find the minimum

along each descent vector, which is computationally expensive. QN methodsare similar to CG

methods but have the converse features, with no need for exact line searches but a large memory

requirement (Gilbert and Lemarechal, 1989). QN methods use the value ofthe Hessian of the

function, ∇2J(x), to find the next descent direction, and it has been shown that the QN andCG

methods are equivalent if an exact line search is used in each (Nazareth, 1979). If an inexact line

search is used, however, the QN produces a faster rate of convergethan CG methods (Gilbert and

Lemarechal, 1989). The QN method is therefore chosen for use here and details of the method

used to find the descent vector is described later in this section.

TheM1QN3 subroutine is first called once the initial value and gradient of the cost function have

been found. It is then repeated iteratively until the cost function or its gradient have met the

pre-defined convergence criteria, when the program returns the a posteriori state vector. At each

iterationk, k ≥ 1, the program determines a descent direction,dk, of J at xk. Newton’s equation

states that this descent direction has the formdk = −Wkgk, whereWk represents the current value

of the inverse Hessian,[∇2J(xk)]
−1, of J atxk, andgk is the gradient of the cost function atxk. Once

this descent direction is chosen, the step-size,αk, to be taken along this direction is determined by

the by the line-search procedureMLIS0, described in Section 5.3.4. At the next iteration the state

vector has the formxk+1 = xk +αkdk.
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Figure 5.4 Results of using the steepest descent method (red lines) and the conjugate gradient
method (green lines) in order to find the minimum of a function of which lines of constant value
are shown in blue. The conjugate gradient method produces faster convergence than the steepest
descent.

This QN method reduces the necessary amount of computational memory by dealing only with

the local Hessian — at each stepWk is found using only

{(yi ,si) : k−m≤ i ≤ k−1} (5.9)

wherem is chosen according to the available computer memory. An approximation of the value of

∇2J(xk) is obtained by updating a diagonal matrixDk using the inverse of the Broyden - Fletcher -

Goldfarb - Shanno (BFGS) formula, given in Equation 5.13, which uses the vectorssi = xi+1−xi

andyi = gi+1−gi . D0 is initialised asδ1I whereI represents the identity matrix and

δk =
〈yk,sk〉

||yk||
2 (5.10)

where the inner product,〈 , 〉 is defined in the Euclidean sense as the dot product of the two vectors,

i.e;

〈a,b〉 = aTb =
n

∑
i=1

aibi (5.11)

and the vector norm|| || is defined such that;

||a|| = 〈a,a〉
1
2 (5.12)
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The inverse BFGS formula is as follows;

Wk+1 = Wk +
(sk−Wkyk)⊗sk +sk⊗ (sk−Wkyk)

〈yk,sk〉
−

〈sk−Wkyk,yk〉

〈yk,sk〉2 sk⊗sk (5.13)

where the tensor product⊗ is defined such that;

[a⊗b]i j = (baT)i j = bia j (5.14)

The matrixWk is not stored in the computer memory, but instead the productWkgk is formed by

an efficient algorithm. This choice ofWk ensures that the Hessian is positive definite, ensuring

thatdk is always a descent direction.

5.3.4 TheMLIS0 Step-Minimisation Process

As discussed in Section 5.3.3, at each iteration ofM1QN3, the state vector is updated to bexk+1 =

xk + αkdk, wheredk is the descent direction andαk is the step length along this descent direction

necessary to minimise the cost function alongdk. αk is given by theMLIS0 line search algorithm,

which computesαk though iterative testing of the Wolfe condtions, which are as follows;

J(xk +αkdk) ≤ J(xk)+ω1〈gk,dk〉 (5.15)

〈g(xk +αkdk),dk〉 ≤ ω2〈gk,dk〉 (5.16)

where it is necessary to have 0< ω1 < 1
2 and ω1 < ω2 < 1. For this study,ω1 = 0.0001 and

ω2 = 0.9. MLIS0 iteratively finds the maximum value ofαk for which Equations 5.15 and 5.16

hold.

5.4 Validation of the Adjoint TOMCAT Model

The quality of results produced using the 4D-Var method is highly dependent upon the accuracy

of the adjoint model used in the inversion process. It is therefore importantto thoroughly test the

adjoint model once it has been written to make sure that the transport produced by the adjoint is an

accurate representation of the transpose of the forward model. This section will provide details of
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a number of tests performed on ADTOMCAT in order to validate its use in the TOMCAT 4D-Var

inversion process.

5.4.1 Confirming the Linearity of the Forward Model

Each atmospheric transport scheme chosen for use in the adjoint versionof the TOMCAT model

is linear, which means that the ADM can be directly inferred from the forward model without

the need for an intermediate TLM. However, it is necessary to confirm, in a numerical sense, the

linearity of the forward model before production of the adjoint model is begun, as any unseen

non-linearities in the forward model would lead to errors in the adjoint model. For each individual

subroutine of the TOMCAT model intended for use in the adjoint it must be confirmed that;

∀λ , λT ′(δx) = T ′(λδx) (5.17)

whereλ is a scalar quantity. The result shown in Equation 5.17 was verified individually for the

subroutinesADVX1, ADVY1, ADVZ1 andCONVEC, and also for the full TOMCAT model. The input

variables,XIN , for each subroutine consist ofS0, the mass of tracer in each model grid box, and the

first-order moments ofS0 as described in Chapter 3 labelledSX, SY andSZ. The output variables,

XOUT, are the updated values ofXIN . One iteration of each subroutine was carried out in turn,

in which each variable ofXIN was defined as a normally distributed random array. The linearity

identity shown in Equation 5.17 was checked using ten different random initialisations and for

λ = 1×10n, wheren = −10,10. For every subroutine, including the full TOMCAT model, the

value of λT ′(XIN)
T ′(λXIN) was equal to 1.0 within 8 decimal places, the accuracy of the machine used to

carry out the test, irrespective of the value ofλ or the initialisation ofXIN . This indicated that the

TOMCAT model is perfectly linear, and there was no need to create a TLM.

5.4.2 Numerical Validation of the Adjoint Model

After ensuring the linearity of the forward TOMCAT model, the adjoint version of each transport

subroutine was produced. Due to the fact that the sensitivities in the ADM are dependent upon

the trajectory of the forward model at each time step, a new version of the TOMCAT model was

also developed which saved the necessary trajectories at every iterationso that they may be found

later by the adjoint model. Since both of these models were coded by hand, there was a possibility

of errors being introduced, whether due to mistakes in the transposition of the forward code or

merely typographical errors. In order to ensure the accuracy of the ADM, it was verified that each

adjoint subroutine satisfied the adjoint identity given in Equation 5.7, i.e. that;
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∀x,∀y
〈T ′x,y〉
〈x,T ∗y〉

= 1 (5.18)

Equation 5.18 was tested for the subroutinesADVX1, ADVY1, ADVZ1, CONVEC and for the full TOM-

CAT model. The input and output variables for the forward subroutines,XIN , were defined as

normally distributed random variables as in Section 5.4.1, and in the input variables for the adjoint

subroutines were defined to be equal to the output from the corresponding forward subroutine,

XOUT. The identity in Equation 5.18 therefore becomes;

||XOUT||
2

〈XIN ,M∗(XOUT)〉
= 1 (5.19)

Equation 5.19 was tested for ten different random initialisations for one iteration of each subrou-

tine. For each subroutine and each initialisation, the identity given in Equation 5.19 holds up to

the accuracy of the machine used to carry out the tests, strongly indicating that the adjoint model

has been accurately coded from the forward model. It is not, of course, possible to check that the

identity holds for all input vectors and so the test of the adjoint model is not exhaustive, but the

level of accuracy of the results of the tests implies that the adjoint model is likelyto be correct.

Additional tests of the adjoint model were therefore carried out in order tofurther examine the

model’s accuracy, which will be discussed in Sections 5.4.3 and 5.4.4.

5.4.3 Sensitivity conservation in the Adjoint Model

Measurements of sensitivity in the adjoint TOMCAT model are analogous to mass in the forward

model. Therefore, if total mass is conserved in the forward model then, in certain cases, the sum

of all the sensitivities within the adjoint model must also be conserved. In order to investigate the

conservation of sensitivity in the ADM, it is first necessary to fully understand the nature of adjoint

transport. This is most clearly illustrated with a simple example in which transport isinvestigated

in a 2D model with four grid boxes, as shown in Figure 5.5.

In the forward model, which transports tracer mass around the model grid,the total tracer mass

in the model is conserved over time. The grid boxes, labelledA, B, C andD each contain a mass

of tracer at timet0 labelledmt0
A, mt0

B, mt0
C andmt0

D respectively. Similarly, if the forward model is

integrated over the period [t0, tn], then the mass in each grid box at timetn is mtn
A, mtn

B, mtn
C and

mtn
D. The model transport over this time period can be seen as a 4×4 matrix which distributes the

original tracer mass in each grid box into each of the four grid-boxes, i.e.;
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Figure 5.5 Example of the model grid for a simple four-box transport model used to illustrate
adjoint transport properties in Sections 5.4.3 and 5.4.4.
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where, assuming no mass is created or destroyed;

4

∑
i=1

ai j = 1 1≤ j ≤ 4 (5.21)

In this case, the total mass in the model at timetn is equal to;

mtn
A +mtn

B +mtn
C +mtn

D = (a11+a21+a31+a41) mt0
A

+ (a12+a22+a32+a42) mt0
B

+ (a13+a23+a33+a43) mt0
C

+ (a14+a24+a34+a44) mt0
D

= mt0
A +mt0

B +mt0
C +mt0

D (5.22)

and therefore, the total mass is conserved.

The adjoint model, however, does not transport mass around the model grid, but measures sen-

sitivities between grid boxes. Total model sensitivity is not necessarily conserved, and is in fact
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unlikely to be conserved except in certain circumstances. To provide an example, the simplified

four-box model described previously is integrated over the time period [tn, t0] and initialised with

valuesstn
X, whereX = A,D andstn

X is initialised to be equal tomt0
X, the initial mass placed in the

forward model in the previous example. The adjoint transport is defined as the transpose of the

forward transport, which means that;
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(5.23)

wherest0
X is the sensitivity in grid boxX at timet0. The total sensitivity in the model at the end of

the adjoint simulation is therefore equal to;

st0
A +st0

B +st0
C +st0

D = (a11+a12+a13+a14) stn
A

+ (a21+a22+a23+a24) stn
B

+ (a31+a32+a33+a34) stn
C

+ (a41+a42+a43+a44) stn
D (5.24)

which indicates that total model sensitivity is only conserved either if

4

∑
j=1

ai j = 1, 1≤ i ≤ 4 (CASE1) (5.25)

or if

stn
A = stn

B = stn
C = stn

D (CASE2) (5.26)

Case 1 is true only if the forward model evenly distributes the tracer among themodel grid boxes

(the homogeneous transport case), while Case 2 is true if the model is initialised with the same

tracer mass in every grid box at the start of the adjoint simulation (the homogeneous initialisation

case). In order to test sensitivity conservation of the ADTOMCAT model, the homogeneous
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Figure 5.6 Forward model transport of a tracer mass in simplified model initialised with mass
only in grid boxA time t0 (Left). At time tn, (Right), the tracer is mixed throughout all model grid
boxes. The tracer mass in a grid box is indicated by its colour. Darker grid boxes contain more
tracer.

initialisation test was used, since the homogeneous transport case does not examine physically

realistic atmospheric transport. An adjoint simulation was carried out in which each grid box was

initialised with a value of 1 and the model was integrated over one month. The totalsensitivity

value remained perfectly constant throughout the simulation, implying that the transport in the

ADM is consistent with that of the forward model.

5.4.4 Reciprocity of Adjoint Transport

In order to further test the accuracy of the adjoint transport in ADTOMCAT, the property of reci-

procity was investigated. It has been previously discussed (e.g. Hourdin and Talagrand (2006a,b))

that for a linear model, transport in the adjoint model is reciprocal to transport in the forward

model. This property is best illustrated using the simplified model described in Section 5.4.3.

Consider a simulation using the forward model in which a massmt0
A is placed into grid boxA at

time t0. All other grid boxes are initialised with zero mass. If the tracer transport isrepresented in

matrix form as in Equation 5.20, then the tracer mass in, say, grid boxD at timetn is

mtn
D = a41 mt0

A (5.27)

This process is illustrated in Figure 5.6. Now, if the adjoint model is integrated over the period

[tn, t0] with values which are zero in each grid box apart from grid boxD, in whichstn
D=mt0

A, then it

holds that;

st0
A = a41 stn

D (5.28)
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Figure 5.7As Figure 5.6 but for adjoint transport. The simplified adjoint model is initialisedwith
a sensitivity only in grid boxD at timetn (Right) and the model is integrated back to timet0 (Left).
Note that the sensitivity in grid box A at timet0 is equal to the tracer mass in grid boxD at timetn
in Figure 5.6.

and therefore;

st0
A = mtn

D (5.29)

i.e. the transport between the two grid boxes is reciprocal. This process isillustrated in Figure 5.7.

For more information on this result and its use in inverse modelling, see Hourdinand Talagrand

(2006b). This result implies that the accuracy of the adjoint transport in the AD TOMCAT model

may be tested by examining the reciprocity of its transport.

Due to the high computational burden of adjoint modelling and the increased simulation time

required to carry out both forward and adjoint simulations, the reciprocityof tracer transport in the

AD TOMCAT model was examined on two different time scales. The adjoint transport over one

day was examined from every surface grid box, while longer simulations were carried out which

investigated adjoint transport from selected grid boxes only.

In order to test the short-term reciprocity of the ADM transport, separateforward simulations

were carried out in which one surface grid box,S, was initialised with an (arbitrary) tracer mass of

100, with zero mass elsewhere. One separate simulation was performed foreach surface grid box.

After the simulation period of one day was complete, the locationD and valuemD of the maximum

tracer concentration in each simulation was noted. Figure 5.8(a) shows the value of the maximum

tracer concentration associated with each single grid box simulation, which for display purposes

has been placed atSrather thanD, irrespective of the maximum’s actual location. Following this,

separate adjoint simulations were carried out in which a value of 100 was placed into each boxD

and the ADM was integrated backwards over the day. Figure 5.8(b) shows the sensitivity value

mS in eachSat the end of the adjoint simulation. Figure 5.8(c) shows the difference betweenmD

andmS, indicating that at almost every grid box the short-term reciprocity of the adjoint transport
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Figure 5.8 (Top Left) Value ofmD for each model surface grid box at the end individual forward
model simulations in which one grid box had been initialised with a tracer mass of 100, with
all others having zero tracer mass, and integrated over one day. For clarity, the value ofmD is
displayed in the initial grid boxS. (Top Right) Value ofmS for each model surface grid box at the
end of corresponding adjoint model simulations. Here, the value ofmS is displayed in the initial
grid boxS. mD andmS should be equal if the adjoint transport is correct. (Bottom Left) Difference
betweenmD andms. (Bottom Right) Difference betweenmD andms as a percentage ofmD.

is correct. There is a very small difference betweenmS andmD at some high polar latitude grid

boxes, which is likely to be due to the fact that the TOMCAT model groups high-latitude grid

boxes together during the zonal transport, as discussed in Chapter 3. The error at these grid boxes

is less than 0.01% of the expected value, however, so over short time periods at least, this issue is

insignificant.

In order to test the reciprocity of adjoint transport in the ADTOMCAT model over a longer time

period, simulations were carried out in which the reciprocity experiment wasrepeated over a time

period of one month instead of one day, for ten surface grid boxes only.This test was carried

out only at certain locations due to the computational burden which a more large-scale test would

necessitate. The initial locations,Sn, 1≤ n≤ 10 are shown in Figure 5.9, and details of the sites

are given in Table 5.2. Again, at the end of the forward simulation the grid box Dn with the largest

mass of tracermn
D was found and chosen to be the initial grid box for an adjoint simulation also
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Figure 5.9Locations ofSn, the initial locations of tracer release in the forward model simulations
used for reciprocity testing over one month.

of length one month. Figure 5.10 shows an example of the forward and adjoint mixing over one

month for the FLO tracer, which is emitted from Florida (markedS in the figure) at timet0 in

the forward simulation. Figure 5.10(a) shows the mass of tracer on one model level after one

month, with the location of the maximum tracer mass, markedD, at the north coast of Africa.

The tracer has been transported vertically, and the maximum tracer concentration is at a height

of approximately 1300m. The FLO tracer in the adjoint simulation was thereforeinitialised at

locationD, and the distribution of the tracer sensitivity at the beginning of the month is shown

in Figure 5.10(b). This figure shows that a tracer at locationD is most sensitive to areas in the

Caribbean and the Eastern USA, including Florida. Table 5.2 shows the values ofmn
D andmn

S for

each site. The results show that even after a month, the tracer transport inthe AD TOMCAT model

is consistent with that of the forward model, withmn
D andmn

S within 2% of each other at every site.

When it is considered that each initial grid box was initialised with a value of 100, the fact that

each of the final values is within 0.0015 of its reciprocal suggests that over a long time period the

adjoint model is representative of the forward model transport to a high level of accuracy.

5.5 Validation of the TOMCAT 4D-Var System

In order to validate the TOMCAT 4D-Var system, a number of tests were carried out in which

the assimilated observations were replaced with modelled fields produced with known flux fields.

This provides an indication of the ability of the system to optimise the state vector to ahigh a level

of accuracy and also gives an indication of its efficiency in doing so. Thefact that the synthetic

‘observations’ provided by the model are produced using a known fluxfield allows quantification

of the accuracy of the optimised a posteriori fluxes from the resulting inversion. This also provides

some indication of the model error, which is necessary when compiling the error covariance matrix

R.
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Table 5.2Results of the one-month reciprocity tests, showing the locationsSnof the original tracer
release,mn

D andmn
S and the difference betweenmn

D andmn
S as a percentage ofmn

D. The values of
longitude and latitude indicate the centre of the corresponding grid box.

SITE, n NAME
LONGITUDE

(°)
LATITUDE

(°)
mn

D
(×10−2)

mn
S

(×10−2)
% diff

1 FLO 84.4E 30.5N 6.544 6.616 +1.10
2 CAL 123.8E 36.0N 6.800 6.844 +0.65
3 BRA 39.4E 2.8S 5.869 5.873 +0.068
4 TDF 67.5E 52.6S 2.263 2.259 -0.177
5 SAF 16.9W 30.5S 4.757 4.756 -0.021
6 NZE 168.8W 36.0S 1.426 1.433 +0.491
7 ESP 5.6E 41.6N 7.368 7.482 +1.547
8 RUS 101.3W 80.3N 8.685 8.645 -0.461
9 GNL 45.4E 74.8N 7.693 7.742 +0.637
10 BRW 163.1E 63.7N 9.277 9.233 -0.474

Figure 5.10(Left) Tracer mass at approximately 1300m after one month forward model simulation
initialised with a tracer mass of 100 at the surface at locationS. D represents the location of
maximum tracer mass. (Right) Tracer sensitivity at the surface after one month adjoint model
simulation initialised with a sensitivity of 100 approximately 1300m above locationD.

A simple experiment was first carried out in which the synthesised observations were produced

from an idealised forward model simulation in which the fluxes,xtrue, were initialised to be zero

everywhere except in model grid boxes centred at a longitude of 62°E,where they were set to

be 100 kg grid-box−1 timestep−1. Advection was not carried out using ECMWF analyses, with

a solid-body rotation (SBR) advection system being used instead. This replaces the analysed

horizontal mass fluxU with

U =
2Reπ

5×86400
(5.30)
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whereRe is the radius of the Earth. This removes all meridional transport and produces purely

zonal advection which transports an air mass around the globe in five days. The forward sim-

ulation was run for six hours only, to minimise the impact of model error on the result, the 3D

concentration field produced at the end of the simulation then represented the observations,y. The

TOMCAT 4D-Var system was then used to attempt to retrieve the original flux bandxtrue from

an a priori,xa, containing no information about the emission field (in which each grid box is set

as zero). The initial 3D model field was also initialised as zero everywhere.The observation er-

ror covariance matrixR was diagonal, with each element along the diagonal being initialised as

1.0×10−10 ppb. This small value was partly reflective of the small mixing ratio produced by the

forward model and partly in order to help constrain the solution towards the observations rather

than the a priori. The a priori error covariance matrixB was also diagonal, with elements set to be

200% ofxtrue. The optimisation process was carried out until 40 iterations had been completed.

Figure 5.11 shows the gradual retrieval of the true fluxes in one dimensionat a latitude of 2.8°N,

while Figure 5.12 shows the gradual retrieval of the the full 2D flux field. The two figures show

that after one iteration of the optimisation process, only a small change to the a priori has been

produced, although the approximate location of the flux has been found bythe inversion. After five

iterations, however, there has been a large improvement to the a priori field, with fluxes of 50-80

kg grid-box−1 timestep−1 estimated at the correct location, albeit with some noise in adjacent grid

boxes. The 2D retrieval displays some variation with latitude, which is likely to bedue to factors

such as the varying orography and dimensions of the surface grid boxes. After 10 iterations the

solution is close to being correct, with the updated flux field estimating 75 - 95 kg grid-box−1

timestep−1 in the correct location, with a much smaller ‘halo’ of emissions from surrounding grid

boxes. After 20 iterations, the solution has converged to within 2% everywhere, while after 30 and

40 iterations, the solution is refined, with the solution after 40 iterations almost indistinguishable

from xtrue.

Figure 5.13 shows the value of the cost functionJ and the norm of its gradient||g|| throughout

the optimisation process. The value of the cost function reduces by many orders of magnitude as

the iterative process continues. Initially, the value of the cost function is approximately 1.0×1016,

and is gradually reduced to a value of approximately 3.0×1010. Given the small values in the ob-

servation error covariance matrix (R−1
i j = 1.0×1010), this shows that there is an extremely small

difference between the true fluxes and the a posteriori estimate. The normof the cost function gra-

dient is initially around 1.0×1030, which is extremely large compared to the value ofJ, indicating

that the a priori estimate is far from correct.||g|| decreases dramatically after the first optimisation

iteration to approximately 1.0×1014, which is a similar order of magnitude to the value ofJ. The

TOMCAT 4D-Var system performed well in retrievingxtrue to a high level of accuracy, reaching a

near perfect solution within 40 iterations, although the solution was correctto within 2% after 20

iterations.
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Figure 5.11Retrieval (red line) ofxtrue of 100 kg grid box−1 timestep−1 (black line) starting from
an a priori of zero after(Top Left)1 iteration,(Top Centre)5 iterations,(Top Right)10 iterations,
(Bottom Left)20 iterations,(Bottom Centre)30 iterations,(Bottom Right)40 iterations of the
TOMCAT 4D-Var retrieval system

A second experiment was carried out which was identical to the previous retrieval experiment

aside from the fact that an a priori flux fieldxa was used which had a flux band in the wrong

location, rather than no prior estimate. An incorrect emission band was placed in grid boxes

centred at 285°E. This experiment investigated the optimisation program’s ability to function given

an incorrect starting point. Figures 5.14 and 5.15 show the gradual retrieval of xtrue from xa in one

dimension, at 2.8°N, and two dimensions, respectively. The retrieval process is similar to that

produced when no prior information was given, and the incorrect starting point does not appear to

hamper the inversion. Again, there is little change after one iteration, but after five iterations the are

fluxes of approximately 50 kg grid-box−1 timestep−1 in the correct location, while the incorrect

fluxes have fallen to a similar flux strength. After ten iterations the retrieval is approximately

75% complete, and after 20 iterations the solution is close to being correct. As before, running the

inversion to 30 and 40 iterations refines the result. Figure 5.16 shows the values ofJ and of||g|| for

the retrieval, which both display similar statistics to those produced in the previous experiment.

The value ofJ falls from around 2.0×1016 to 4.0×1010, while the norm of the gradient falls

immediately to a value close to that ofJ and decreases similarly.

5.6 4D-Var Retrievals with Simulated Data

The value of the cost function at the end of an assimilation provides a valuable diagnostic of the

system. As discussed in Dee (1995), if the model used in the inversion is perfect, and all other
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Figure 5.12As Figure 5.11, but in two-dimensions.(Left) xtrue, (Centre)retrievalx of TOMCAT
4D-Var system and(Right)(xtrue−x) for 1, 5, 10, 20, 30 and 40 iterations.
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Figure 5.13 (Left) Value of the cost function and(Right) value of the norm of the cost function
gradient for the retrieval displayed in Figures 5.11 and 5.12.

Figure 5.14 Retrieval (red line) ofxtrue of 100 kg grid box−1 timestep−1 (black line) starting
from an incorrect a priori after(Top Left)1 iteration,(Top Centre)5 iterations,(Top Right)10
iterations,(Bottom Left)20 iterations,(Bottom Centre)30 iterations,(Bottom Right)40 iterations
of the TOMCAT 4D-Var retrieval system

errors (in the observations and a priori) are Gaussian and independent, then the expected value of

of the observation term of the cost function at the end of the minimisation, known as the residual,

r, should be equal to twice the number of observationsnobs (since the cost function is multiplied

by a factor of12). Therefore;

2rmin

nobs
= 1 (5.31)

However, if model error is present (and also Gaussian) then expression 5.31 becomes;
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Figure 5.15As Figure 5.14, but in two-dimensions.(Left) xtrue, (Centre)retrievalx of TOMCAT
4D-Var system and(Right)(xtrue−x) for 1, 5, 10, 20, 30 and 40 iterations.
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Figure 5.16 (Left) Value of the cost function and(Right) value of the norm of the cost function
gradient for the retrieval displayed in Figures 5.14 and 5.15.

2rmin

nobs
= 1+sn (5.32)

wheresn represents the scale of the model error relative to the data error. This termis depen-

dent upon the length of the assimilation window, as any model errors propagate and accumulate

throughout the window, becoming more significant as time goes on. In orderto investigate the

effect of model error of the TOMCAT 4D-Var system, an experiment wascarried out following a

method similar to that of Chevallier et al. (2007), in which the model creates a 3Dconcentration

field, yclim, produced from known surface fluxesxtrue, both of which are then randomly perturbed

in order to create pseudo-observationsy and a priorixa as follows;

y = yclim +VTv
1
2 p (5.33)

xa = xclim +WTw
1
2 q (5.34)

where V and v are the eigenvector and eigenvalue matrices of the observation error covari-

ance matrix R , and W and w are the eigenvector and eigenvalue matrices of the prior error

covariance matrixB , so thatR = VTvV andB = WTwW. p andq are realisations of random

variables with standard normal distributions which are the size ofy andxa, respectively. Correla-

tions between all errors are neglected, which means thatR and B are diagonal matrices, so that

Equations 5.33 and 5.34 reduce to;
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Table 5.3Values ofnobsandrmin at the end of the minimisation, for several lengths of assimilation
window.

Simulation
Assimilation

Window
nobs rmin

2rmin
nobs

Difference
from A6

A6 6 hours (4 cycles) 237568 118417 0.9969 0.0000
A12 12 hours (2 cycles) 118784 58795 0.9899 0.0007

A24 24 hours (1 cycle) 59392 28991 0.9763
0.0206
(≈ 3×
0.0007)

y = yclim +v
1
2 p (5.35)

xa = xclim +w
1
2 q (5.36)

Three inversions, A6, A12 and A24, were carried out in order to constrain the perturbed fluxesx

to the perturbed observationsy by running the model for one day only. The length of the assim-

ilation window in each inversion was set to be 6 hours, 12 hours and 24 hours, respectively. The

inversion was carried out for 24 hours during 1 January 2008, usingan initial CH4 field produced

from output from the CTLS TOMCAT forward model simulation, which is described in Section

6.2. Observation errors were set to be 0.1 ppb at all grid points. In order to allow the inversion

to alter fluxes as necessary to match the mixing ratio perturbations, the prior error was set to be

three times as large as the highest flux rate. The minimisation was continued until the value of the

cost function had been reduced 20 times. This number of iterations was enough for the value of

J to be falling by less than 3 during each reduction. Table 5.3 shows the evolution of 2rmin
nobs

as the

length of the assimilation increases. The fact that the values are less than one indicates that the

background errors are overestimated compared to the observation error, but this was intentional.

Underestimating the background error is dangerous, as it may lead to the solution drifting away

from the observations (Talagrand and Bouttier, 1999). The value of2rmin
nobs

changes as the assimila-

tion window length increases, although the value of the change is extremely small, indicating that

model error does have a small effect on inversion results. From this limited example, the value of

sn, the value of the model error in comparison with the data error, is approximately 0.0031 for a 6

hour assimilation window, with an extra 0.0007 added for every 6 hours added to the assimilation

window. This indicates that the model error would be small even for longer assimilation windows,

and may be neglected for initial inversions using the TOMCAT 4D-Var system.Tremolet (2007)

suggested a method in which the model error is explicitly formulated as part of the control variable,

and this may be a consideration in future inversions.
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5.7 Summary

The adjoint version of the TOMCAT CTM has been developed as part of this thesis, and has

been integrated into the TOMCAT 4D-Var inverse model, which was also developed within this

study. Since the TOMCAT model set-up chosen for use in the 4D-Var system was linear, there

was no need to construct a tangent linear version of the model. The adjointmodel was coded

explicitly, and tested thoroughly in order to validate the adjoint transport. Theadjoint model

passed the numerical identity test for an adjoint model, and the adjoint transport also passed tests

of its conservation and reciprocity against the forward model on a long time-scale.

The TOMCAT 4D-Var model was tested in order to examine its ability to retrieve known surface

fluxes to a high level of accuracy. The 4D-Var system was able to assimilatesynthetic observations

produced using the forward TOMCAT model in order to retrieve the fluxesused to produce the

observations to within 1%, even when given an incorrect a priori flux estimate. The inverse model

was able to reduce the residual of the cost function to the value of the number of observations,

as described in Dee (1995). The system does introduce model error, although it this is found to

have only a small effect as the assimilation window lengthens. The TOMCAT 4D-Var system was

found to be accurate and consistent, and ready to be used to assimilate observations in order to

constrain surface emissions of CH4.



Chapter 6

Investigating Recent Spatial and

Temporal MethaneVariations with the

TOMCAT Forward Model

6.1 Introduction

This chapter explores how well the TOMCAT model and emission inventories come together in

order to accurately reproduce observed concentrations of methane. Assessing the strengths and

weaknesses of current CH4 emission inventories is an essential step in the process of improving

their accuracy. Comparison of the simulated atmospheric concentration of CH4 from TOMCAT

with observational data can provide information on areas where the accuracy of the current best

emission estimates can be improved. In order to produce an improved flux estimate using the

4D-Var inversion process, it is important that the modeller has confidencein the accuracy of the

forward model transport, the atmospheric chemistry scheme used in the modeland the quality of

the emission inventory which will be used as an a priori during the inversion.The quality of the

atmospheric transport in TOMCAT was evaluated in Chapter 4, using the inert tracer SF6, and this

chapter will investigate the effect that the CH4 chemistry and emissions used in the model have

on simulated CH4 atmospheric concentration and will also compare the model output to observed

concentrations.

Section 6.2 gives details of the model set-up used in this work to study tropospheric CH4 con-

centrations, and details the different emission inventories used in the simulations. Section 6.3

discusses the reproduction of atmospheric methane chemistry in the TOMCAT model, and tests

the validity of different tropospheric OH distributions against observations. Section 6.4 compares

95
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the modelled CH4 concentrations to global observed data, while Section 6.5 summarises the re-

sults of this chapter. The simulations of CH4 carried out as part of this chapter were submitted to

the TransCom CH4 model intercomparison project, in which the results of simulating CH4 using

a standardised set of emissions and chemical loss fields produced from avariety of CTMs were

compared to each other and to observations. The results of the comparisonare described in detail

by Patra et al. (2011).

6.2 Model Set-up

The TOMCAT model was used to produce simulated CH4 atmospheric distributions for the period

1988 - 2010. The model was initialised on January 1 1988, with CH4 concentrations provided

as part of the TransCom CH4 experiment (Patra et al., 2011). Two years were allowed for model

spin-up, and three-dimensional modelled CH4 concentration fields were output every 90 hours.

The model grid had a horizontal resolution of 2.8°× 2.8°, with 60 verticalσ -p levels up to a

height above the surface of approximately 60 km. The model time step was 30 minutes, and winds

were provided by ECMWF ERA-Interim re-analyses from 1989 onwards. ECMWF ERA-40 re-

analyses were used for the year 1988. The simulations used the SOM advection scheme and the

Holtslag & Boville PBL scheme.

6.2.1 Emission Inventories

In order to investigate the effect that different emission estimates have on the simulated atmo-

spheric distribution of CH4, six different emission inventories were used, all of which were sup-

plied as part of the TransCom CH4 experiment (Patra et al., 2011). This provided monthly mean

CH4 emissions on a 1°× 1° grid for each year in the simulation up to and including 2008. 2008

emission estimates were repeated for the years 2009 and 2010. Each inventory was made up of

various contributions of different source estimates, from both bottom-up and top-down estimates.

Table 6.1 gives details of the different emission components which contributeto the six TOMCAT

emission inventories.

EDGAR 3.2 anthropogenic emissions

These emissions (IAV ANT) are based on the annual mean 1°× 1° emission maps produced

by the EDGAR, version 3.2 (Olivier and Berdowski, 2001). EDGAR emission inventories are

produced for the years 1990, 1995 and 2000, and inventories for allother years are interpolated
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Table 6.1Details of CH4 emission components used to compile inventories used in simulations
in Chapter 6. IAV indicates emission components which vary year-to-year,while CYC indicates
components which do not vary inter-annually.

EMISSION TYPE DESCRIPTION TIME RESOLUTION

Anthropogenic emission
(IAV ANT)

Based on Edgar 3.2
Annual means; IAV (inter-

/extra-polated using 1990, 1995,
2000 emission maps)

Anthropogenic emission
(IAV ANT E4)

Based on Edgar 4.0
Annual means; IAV (2005 used

for 2006 - 2008).

Natural emission (CYC
NAT)

GISS inventory, REAS
rice, Ocean and Mud

Volcano

Monthly means; CYC. Trends in
rice emission is used to scale

REAS rice
Wetland emission (IAV

WL)
ORCHIDEE model

based
Monthly means; IAV for 1994 -

2000 (CYC for other years)
Wetland emission (IAV

WLe)
VISIT model simulated

wetland and rice
Monthly means; IAV 1988 -

2008
Biomass Burning

emission (IAV BB)
GFED version 2;

Satellite products based
Monthly means; IAV for 1996 -
2008. (CYC for 1988 - 1996)

Inversion flux (IAV
INV)

IPSL optimised flux
(Bousquet et al., 2006)

Monthly means; IAV for 1988 -
2005. (CYC for 2006-2008)

or extrapolated from these as in Patra et al. (2009). Emissions are inter-annually varying monthly

means.

EDGAR 4.0 anthropogenic emissions

These emissions (IAV ANT E4) are based upon the more recent version of the EDGAR database

(version 4.0) (http://edgar.jrc.ec.europa.eu). This provides 1°× 1° emission inventories for each

year up until 2005. These 2005 emissions are repeated for 2006 - 2008. Emissions are interannu-

ally varying monthly means.

GISS inventory natural emssions

These emissions (CYC NAT) include all natural emissions with an annual cycle such as those from

all natural wetlands, from domestic and large-scale biomass burning and from termites, and are

based on the GISS inventory (Matthews and Fung, 1987). Emissions fromrice paddies are taken

from Yan et al. (2009) and all emission components are scaled individuallyas in Patra et al. (2009)

in order to produce an annual total of 273 Tg. Although rice emissions aremostly anthropogenic in

nature, they are included in this category as the seasonal cycle is dependent upon seasonal rainfall
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and temperature. Ocean exchange emissions are distributed over coastalregions (Lambert and

Schmidt, 1993; Houweling et al., 1999), and mud volcano emissions are based upon Etiope and

Milkov (2004). These emissions do not vary annually between years.

ORCHIDEE wetland emissions

These emissions (IAV WL) are derived from the wetland emission module of the ORganizing Car-

bon and Hydrology in Dynamic EcosystEms (ORCHIDEE) terrestrial ecosystem model (Ringeval

et al., 2010), which uses satellite data to derive area of inundation for the period 1994 - 2000 (Pri-

gent et al., 2007). These emissions are scaled by a factor of 0.76 in order to match the wetland

emission component of CYC NAT. An average seasonal cycle is used forall periods not derived

by the ORCHIDEE model.

VISIT wetland emissions

These emissions (IAV WLe) are from the Vegetation Integrative Simulator for Trace gases (VISIT)

terrestrial ecosystem model (Ito, 2010). They provide a different estimate of global wetland and

rice emissions by estimating inundated area through analysed rainfall and temperature (Mitchell

and Jones, 2005). The wetland emission estimates are scaled by a factor of0.69 to match with

CYC NAT, while the rice emissions are similarly scaled by a factor of 0.895.

GFED version 2 biomass burning emissions

Biomass burning emissions (IAV BB) are from the Global Fire Emission Database (GFED) Version

2, and mainly represent forest and savannah burning (van der Werfet al., 2006). This dataset is

available only after 1997, so an average seasonal cycle is used for thepreceding years. This method

produces a global emission total around 35% of that in CYC NAT. It is likely that this method may

overestimate open burning while underestimating closed burning of biomass.

IPSL inversion flux

This complete emission inventory (IAV INV) is obtained through an optimised synthesis inversion

of measured CH4 concentrations using the LMDZ model over the period 1988 - 2005 (Bousquet

et al., 2006), previously discussed in Chapter 3. An average seasonal cycle is used for the years

not provided.
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Table 6.2Deatils of TransCom emission inventories.

INVENTORY NAME DESCRIPTION
CTL CYC NAT + IAV ANT (CYC BB & CYC WL)

CTL E4 CYC NAT + IAV ANT E4
BB CTL - 0.35 CYC BB + IAV BB

WL BB BB - CYC WL + 0.76 IAV WL
INV as in Table 6.1

VISIT BB - CYC WL - Rice + WLe IAV (0.69 Wetland + 0.895 Rice)

Figure 6.1Total annual CH4 emissions for six TransCom emission inventories in Tg yr−1.

From the emission processes described above, six complete emission inventories are compiled,

and are detailed in Table 6.2. Figure 6.1 shows the total annual emissions foreach inventory. Each

emission inventory emits 500 - 580 Tg yr−1, with inventories with inter-annually varying wetland

emissions displaying the widest range of annual emission totals.

Figure 6.2 shows mean global distribution of methane emissions over the period1990 - 2008 for

DJF and JJA for each emission inventory, while Figure 6.3 shows monthly meanemissions for

each inventory for each year individually. The CTL inventory displays high emission rates in DJF

in industrialised areas such as Europe and the USA, and in South Asia where high emissions are

due to large areas of rice paddies and wetlands. In JJA, these emissions continue, while biomass

burning emissions increase in the tropics and wetland emissions begin after thethawing at the

NH high latitudes. Emissions peak at approximately 680 Tg yr−1 in August from 460 Tg yr−1 in

DJF. Since cyclic natural emissions are used for this inventory, all inter-annual variability is due to

anthropogenic trends, leading to a slight year-on-year increase.

The CTL E4 inventory displays a similar seasonal variation to that of CTL. However,the total

annual emissions are more variable than in CTL. Total global emissions are lower than in CTL

until the year 2000, when emissions undergo a rapid and significant increase, reaching a level
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Figure 6.2 Mean geographical distribution of CH4 emissions for six TransCom inventories in
molecules cm−2 s−1 for DJF and JJA for the period 1988 - 2008. Underneath each plot is the
difference from the CTL inventory. The left-hand colour bar corresponds to the top two plots for
each emission inventory and measures total emissions, while the right-hand colour bar corresponds
to the bottom two plots for each inventory and measures the difference fromthe CTL inventory.
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Figure 6.3Monthly mean CH4 emissions for each year in the period 1990 - 2008 for each of the
six TransCom inventories in Tg yr−1.
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approximately 5% higher than that of CTL in the year 2005. The geographical distribution of

emissions is very similar to that in CTL, as only the anthropogenic emissions have been altered.

The BB inventory uses the same anthropogenic emissions as CTL, but introduces an interannual

variability into the biomass burning emissions. This inventory is therefore similar toCTL in DJF,

with only a redistribution of tropical African burning emissions and reducedemissions in South

Asia. In summer, this inventory displays larger CH4 emissions across the high-latitude NH and

in sub-tropical Africa, with lower emission rates in South America. The seasonal cycle of the

emissions is similar to that of CTL, but there is a greater level of inter-annualvariation.

Inventory WL BB introduces interannual wetland variability to the BB inventory. WLBB emis-

sions are increased in Northern Australia and South America during DJF compared to BB, while

Indonesian emissions are reduced. Overall, WLBB are lower in DJF than in BB. During JJA,

WL BB CH4 emissions are up to 150 Tg yr−1 larger than BB, due to increased wetland emissions

in North America and South Asia. Emissions are also redistributed across Siberia, Northern Eu-

rope and South America in JJA, while emissions in Alaska and North-East Canada are reduced.

Aside from a large decrease in annual emissions during 2000 due to drought, annual WLBB

emissions are generally higher than those in CTL.

The top-down emission inventory, INV, displays the greatest interannualvariation of emissions

and a different seasonal cycle to the previous inventories. In 1990, for example, INV showed the

highest emission rate of all the inventories in all months except May and June, while in 1992 it

displayed the lowest emission rates throughout January to July. This inventory displays a dramatic

increase in emission rate later in the year than other inventories, with emission rates in April,

May and June regularly being lower than any other inventory. Total annual emissions are almost

always lower than those of CTL, particularly throughout the period 1992- 1997. Geographically,

emissions are generally higher than those of CTL throughout the year in Europe, USA, East Africa

and much of South Asia. However, South-East Asian emissions are lower inDJF and Canadian

and Russian wetland emissions are reduced during JJA.

Finally, the VISIT dataset also shows large interannual variability compared to CTL. Emission

rates are similar to those in CTL throughout the early- to mid-nineties apart from a summer de-

crease in 1992, which is probably due to the eruption of Mount Pinatubo a year earlier leading to a

decrease in precipitation (Trenberth and Dai, 2007). Excluding a high emission rate in 1997/98 due

to the strong El Nĩno that year, summertime emissions are generally lower than CTL from 1996

onwards. This inventory shows increased wetland emissions throughoutthe year in North America

and central Africa, while Asian rice paddy emissions are lower in winter andhigher in summer.

Northern hemisphere Eurasian polar summer emissions are redistributed away from Scandinavia

towards Siberia.
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Figure 6.4Annual mean distribution of CH4 soil sink in molecules cm−2 s−1.

6.2.2 CH4 Soil Sink

The methane soil sink used in the simulations was supplied by Patra et al. (2011), and was formed

by taking the mean seasonal cycle from the LMDZ atmospheric CH4 inversion (Bousquet et al.,

2006). Figure 6.4 shows the annual mean distribution of the soil sink. The soil sink has a small

seasonal cycle which peaks in October due to the NH Arctic thaw, although the global sink remains

at 27±0.1 Tg CH4 yr−1, approximately 5% of the total annual CH4 sink. Methane uptake is

greatest in the NH high latitudes across Scandinavia and Siberia, and lowest in desert areas.

6.3 Atmospheric CH4 Chemistry

6.3.1 Tropospheric OH Chemistry and Model OH Fields

OH is produced in the troposphere as a product of the reaction of the excited oxygen atom, O(1D)

with water vapour. O(1D) is produced through the photolysis of ozone (O3) by ultraviolet (UV)

radiation with a wavelength of 300 - 320 nm. The production of OH from O3 is as follows;

O3 +hν −→ O2 +O(1D) (6.1)

O(1D)+M −→ O+M (6.2)

O(1D)+H2O−→ 2OH (6.3)

Laboratory studies have indicated that reeaction 6.2 takes place at a much faster rate than reaction

6.3. This fact, together with the fact that much of the UV radiation within the narrow wavelength

band necessary for reaction 6.3 to take place does not reach the troposphere due to high O3 con-

centrations in the stratosphere, means that the probability of a troposphericO3 molecule producing
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OH is fairly small. Since the tropospheric chemical lifetime of OH is very short, tropospheric OH

concentrations are extremely low.

As discussed in Chapter 2, around 90% of CH4 released into the atmosphere is destroyed by

the OH, via Equation 2.4. Due to inherent difficulties in measuring atmospheric OH, three-

dimensional OH fields for use in CTMs are not well constrained, with large uncertainties over

the species’ distribution and abundance in the troposphere (Heard and Pilling, 2003). In order to

investigate the effect of the OH on atmospheric CH4 concentration, two different OH fields were

used in this study. The first was provided as part of the TransCom experiment (Patra et al., 2011),

and was originally derived from Spivakovsky et al. (2000), while the second OH field was taken

from the full chemistry version of the TOMCAT model (Arnold et al., 2005).The Spivakovsky and

TOMCAT OH fields will henceforth be labelled OHS and OHT, respectively. Both of the fields

were averaged in order to create monthly mean OH estimates, and had no interannual variation.

Montzka et al. (2011a) inferred a small interannual variability of atmospheric OH concentrations

using measurements of various atmospheric trace gases. In this work, the rate constant for the

reaction of CH4 with OH, kOH, is specified askOH = 2.45×10−12exp(−1775/T).

The OHS distribution was first developed using observed distributions of O3, H2O, NOX, CO,

hydrocarbons and cloud optical depth together with a set of kinetic and chemical equations in a

photochemical box model by Spivakovsky et al. (2000). This distributionwas then reduced by

8% by Huijnen et al. (2010) in order to reproduce the observed decline of methyl chloroform

(CH3CCl3, MCF) since 2000 in the TM5 transport model. The monthly mean, zonal mean distri-

bution of OH is displayed in Figure 6.5. This field has low OH concentrations near the surface,

and peak concentrations are at approximately 700 hPa. Annually, there isan equal abundance of

OH in the NH and SH (Spivakovsky et al., 2000).

The TOMCAT full chemistry model simulates OH concentrations on-line throughcalculating its

chemical reactions with other atmospheric species as already discussed in Chapter 3. The monthly

mean OH fields used in this study represent the mean OH distribution for each month produced

by the model over a 7-year period (2000-2006).The model grid had a resolution of 2.8°× 2.8° ,

and 31 vertical levels up to a pressure of 10 hPa. Emissions were taken from the 2001 IPCC report

(Houghton et al., 2001), and the Global Fire Emissions Database (GFED) v.2. Chemistry was as

described in Arnold et al. (2005). The resulting monthly mean, zonal mean OH T distribution is

shown in Figure 6.6. The annual global concentration of OH produced by this model is approxi-

mately 10% lower than OHS, with OH concentrations peaking close to the surface, and a strong

bias towards the NH.

Table 6.3 shows the tropospheric mass-weighted mean concentrations for both OH fields used

in this study. Here, the tropopause is defined as per the standardised climatological definition

suggested by Lawrence et al. (2001);
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Figure 6.5OH S monthly zonal mean concentration in molecules cm−3.
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Figure 6.6OH T monthly zonal mean concentration in molecules cm−3.
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Table 6.3Comparison of OHS and OHT mean concentration in molecules cm−3 for 1990. Con-
centrations are mass-weighted unless specified. % difference row represents difference of OHT
compared to OHS.

Global NH SH DJF JJA
CH4-

weighted
MCF -
weighted

OH S 1024800 1031230 1018840 992928 1093550 1208630 1158490
OH T 891639 1024060 760513 791346 1027290 1158490 1087620

% difference 13.0 0.7 25.4 20.3 6.1 4.1 6.1

Figure 6.7Global monthly mean tropospheric OH concentration for OHS and OHT in molecules
cm−3.

ptr = 300−215(cos(φ))2 (6.4)

whereptr is the pressure level of the tropopause in hPa andφ is the latitude. The annual global

mean OHT concentration is 13% smaller than OHS each year, with the majority of the difference

coming in the SH. Annual NH values are within 0.7% of each other, whereas the annual SH

OH T concentration is just 75% of the OHS value. Figure 6.7 shows the monthly global mean

concentration of OH in each field. While total OH in May and June is almost identical in both OH

fields, the values can differ by up to 25% during November through to March. Possible reasons

for the discrepancy between the two distributions is discussed in Section 6.4.

6.3.2 The PEM-tropics Aircraft Campaign

The hydroxyl radical is difficult to observe in the atmosphere due to its short lifetime - and there-

fore its low concentration - and there have been relatively few recent measurement campaigns

to discover more about the atmospheric concentration of the species. Observations are generally
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obtained through spectroscopic methods, and efforts must be made to remove the effect of interfer-

ence that the measurement itself can create (Heard and Pilling, 2003). These inherent difficulties

mean that attempts to validate the two OH fields used in this study are fairly limited in scope.

However, tropospheric OH was measured as part of the NASA-sponsored Global Tropospheric

Experiment (GTE) Pacific Exploratory Mission (PEM) Tropics A and B, during which large num-

ber of hydrocarbons, halocarbons and organic nitrates were quantified in the Pacific area. Carried

out during March and April 1999, the PEM Tropics B mission consisted of around 40 flights on the

P-3B aircraft and OH measurements were conducted using the Selected Ion Chemical Ionization

mass spectrometry (SICIMS) technique. For more information on the aircraft campaign and mea-

surement technique see Raper et al. (2001) and Mauldin III et al. (2001), respectively. For detailed

results of the OH measurements see Tan et al. (2001). Measurements weretaken day and night

over a two month period in the areas surrounding California, Hawaii, Fiji,Tahiti,Easter Island and

Costa Rica. Flight tracks from the mission are shown in Figure 6.8.

Since these measurements have a much higher temporal and spatial resolutionthan the monthly

mean distributions used in this work, measurements were averaged into altitude bins of 100 hPa

in size, and were also separated into those taken in March and those in April.OH is produced

through the photolysis of O3 by sunlight, and its extremely short lifetime, of the order of 0.1 -

1 seconds, means that OH concentrations are high during the day and practically zero at night

(Bloss et al., 2005). In order to compare results from the aircraft campaign to the monthly mean

OH fields used in the model, it is therefore necessary to sample both day-time and night-time

measurements. Since the flights were mostly carried out during daylight hours, all night-time

measurements were removed and the resulting OH concentrations were divided by two in order to

compare with the monthly-mean model fields. As all flights were carried out in thetropics, day

and night are approximately 12 hours each. Whilst this method does not produce accurate monthly

mean OH concentrations for comparison with the model OH fields, it does provide some idea of

the distribution and magnitude of tropospheric OH concentration during the campaign. OHS and

OH T were distributed into the same altitude bins, and only the area surrounding theflight paths

of the missions are considered. This area is shaded in Figure 6.8.

Figure 6.9 shows a comparison of the two model OH fields with the campaign measurements. The

magnitude of the OH concentrations may not be directly comparable, due to the inexact nature

of the data treatment, but the missions do give some information about the natureof the vertical

distribution of the hydroxyl radical. During both March and April, the aircraft measurements show

a vertical profile which peaks at approximately 500 - 600 hPa. This distribution is similar to that of

OH S, which also peaks at about 500 hPa. The magnitude of OHS concentrations are also similar

to the observations, with a background of approximately 1×106 molecules cm−3 at the surface
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Figure 6.8Flight paths of PEM-Tropics B campaign for Missions 5-22. Different flight paths are
represented by different colours, with solid lines representing flights undertaken in March 1999,
while dashed lines represent flights from April of that year. The shaded area represents the area
over which the OHS and OHT fields are averaged.

and above 400 hPa, and a peak at approximately 1.5×106 molecules cm−3. However, OHT con-

centration has a different distribution, peaking at the surface and decreasing with altitude. Surface

concentrations are approximately 1.6×106 molecules cm−3 and fall to 0.5×106 molecules cm−3

above 200 hPa. Away from the surface, OHT concentration is consistently less than both the

observations and OHS, although in the mid troposphere it is often within one standard deviation

of the observations. Although this is a limited comparison, it does imply that use ofthe OHT may

provide slow CH4 loss in the upper troposphere and rapid loss at the surface, and this will affect

the total methane budget.

6.3.3 The ARCTAS Mission

Carried out in 2008, the Arctic Research of the Composition of the Troposphere from Aircraft

and Satellites (ARCTAS) mission was created with the aim of investigating the effect of long-

range transport and boreal fires on pollution in the Arctic. The mission, which was carried out by

the by the Global Tropospheric Chemistry Program and the Radiation Sciences Program of the US

National Aeronautics and Space Administration (NASA), used the DC–8, P–3 and B–200 research

aircraft in order to take measurements of a large number of atmospheric trace species to augment

continuous satellite measurements of the Arctic atmosphere. For details of the mission’s design,

execution, and first results, see Jacob et al. (2010). Of particular interest here is the measurements

of Arctic OH taken on-board the DC–8 aircraft in July 2008. These flightstook place mostly in

Western Canada, as shown in Figure 6.10. The results of these flights were compared to OHS and
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Figure 6.9Monthly mean vertical distribution of OH for PEM Tropics B samples (black), OH S
(blue) and OHT (red) in molecules per cm−3 for March 1999(Left)and for April 1999(Right). All
data is averaged into pressure bins of 100 hPa in size. Error bars represent 1σ of the observations,
and the grey bars display the number of observations in each pressure bin.

Figure 6.10Flight paths of ARCTAS mission for flights 1-8. Different flight paths are represented
by different coloured lines. The shaded area represents the area over which the OHS and OHT
fields are averaged.

OH T in the same way as the results of the PEM–Tropics campaign, described in Section 6.3.2.

For each pressure bin, an average OH concentration is taken for the OHS and OHT fields over

the shaded area in Figure 6.10.

Figure 6.11 shows a comparison between the results of the ARCTAS mission and the OHS and

OH T fields. At this latitude, the two model fields show fairly similar distributions, unlikeat

tropical regions. The OHT distribution again has increased OH near the surface, and also dis-

plays slightly higher concentrations than OHS at pressure levels between 500 and 100 hPa. The
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Figure 6.11 Monthly mean vertical distribution of OH for ARCTAS mission samples (black),
OH S (blue) and OHT (red) in molecules per cm−3 for 2008. All data is averaged into pressure
bins of 100 hPa in size. Error bars represent 1σ of the observations, and the grey bars display the
number of observations in each pressure bin.

observed concentrations are lower than either of the model distributions in this pressure range,

but observed concentrations rise to a similar level to those displayed by the model distributions

towards the surface. However, the standard deviation of the observations towards the surface is

large, and both OHS and OHT fall well within the error range.

6.3.4 Assessment of OH Distributions using Methyl Chloroform

Methyl chloroform (MCF) was widely used as an industrial solvent until 1992, when its role in

the destruction of ozone in the stratosphere led to it being phased out as part of the Copenhagen

Amendment to the Montreal Protocol, with a phase-out date of 1996 for developed countries. This

meant that MCF emissions, which had grown substantially until 1992, rapidly shrank to almost

zero. The annual global emissions of MCF for the period 1988 - 2008 are shown in Figure 6.12,

which shows the sharp decline in MCF emissions after 1990. The major destruction process of

MCF is due to reaction with the OH radical in the troposphere, with over 80% ofthe species being

destroyed through this reaction (Prinn et al., 1995). Stratospheric photolysis and dissolution into

the oceans account for around 13% and 6% of atmospheric destruction,respectively (Butler et al.,

1991). The rapid decrease in MCF emissions in the early nineties, and the lowuncertainty in their

magnitude and distribution, mean that atmospheric MCF concentration is an excellent means for

estimating tropospheric OH distribution (Prinn et al., 1995, 2001; Krol et al.,1998; Montzka et al.,

2000; Spivakovsky et al., 2000).

In order to further assess the validity of each OH field, the TOMCAT model was used to simulate

the atmospheric concentration of MCF. Monthly mean surface fluxes, stratospheric loss rates and
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Figure 6.12Globally integrated MCF emissions in mole s−1 for the period 1988-2008.

oceanic dissolution rates were provided as part of the TransCom project (Patra et al., 2011) and

were represented in the model according to the following reactions:

CH3CCl3 +OH
kOH−−→ Products [kOH = 1.64×10−12exp(−1280/T)] (6.5)

CH3CCl3
JCH3CCl3−−−−→ Products (6.6)

CH3CCl3
DEPCH3CCl3−−−−−−→ Oceanic MCF (6.7)

The oceanic MCF deposition rate,DEPCH3CCl3, is estimated using the method of Kanakidou et al.

(1995), and the loss rate is dependent on ocean temperature and oceansurface fraction. The global

annual mean oceanic MCF deposition rate is approximately 2.7× 10−6m s−1 and the distribu-

tion of oceanic deposition velocities for January and July are displayed in Figure 6.13, indicat-

ing increased deposition rates in each hemisphere in winter. The annual mass-weighted mean of

JCH3CCl3, the stratospheric loss rate of MCF, is approximately 7.98× 10−8 s−1.

The two simulations were identical apart from the OH field. Each simulation was carried out

using the same model grid, timestep, PBL scheme and advection scheme as the CH4 simulations

described in Section 6.2, and stratospheric destruction and oceanic deposition were identical. Both

simulations were initialised with values provided as part of the TransCom CH4 experiment on Jan-

uary 1, 1988. The simulation which used the OHS field will henceforth be referred to as MCFS,

and the simulation using the OHT field similarly referred to as MCFT. Monthly mean 3D MCF

concentration fields were created from model output and were comparedto gas chromatograph

data from the the NOAA/ESRL halocarbons in situ programme. Surface stationdetails are dis-

played in Table 4.2. The global background MCF concentration,µMCF, is estimated each month

as the mean of the MCF concentrations at BRW, MLO, SMO and SPO.
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Figure 6.13 MCF oceanic deposition rates used in TOMCAT simulations in m s−1 for January
(Left)and July(Right).

Figure 6.14 showsµMCFfor the period 2000-2008 and∆µMCF, the monthly change inµMCF. By

2000, global emissions of MCF are approximately zero, and the global MCFconcentration is al-

ready decaying.µMCF falls from around 50 ppt in 2000 to around 15 ppt in 2008. Initially,µMCF S

is approximately 4 ppt lower thanµMCF T , beforeµMCF T decays slightly faster so that the two

quantities are within 1.5 ppt of each other by 2008.∆µMCF in both simulations is approximately

equal to the decay rate estimated from the simulations, falling from 0.6 ppt month−1 to 0.2 ppt

month−1. µMCF T is approximately equal toµMCF OBS, which means thatµMCF S is 2 - 5 ppt lower.

As shown in Table 6.3, the MCF-weighted mean OHT concentration is only around 6% less than

the OHS concentration, which accounts for the small difference in the destructionrates. The low

bias ofµMCF S does not necessarily indicate that there is too much atmospheric OH in that sim-

ulation, since other factors such as the stratospheric destruction or deposition could well be too

strong, but it is clear that during this period, the loss rate of MCF due to OH inboth simulations is

accurate, and can be investigated further in the CH4 simulations carried out later in this section.

6.3.5 Stratospheric Destruction

As discussed in Chapter 2, stratospheric destruction of methane occurs through reactions with

the excited oxygen atom O(1D) and with atomic chlorine (Cl), along with reactions with strato-

spheric OH. This stratospheric sink of CH4 accounts for approximately 5% of the total atmospheric

methane loss. For this work, parameterised loss-rate fields were used in thestratosphere in order to

remove the necessity for complex chemical schemes. The destruction rate used in the TOMCAT

simulations was based upon the Cambridge/RIVM 2-D stratospheric chemistry model (Velders,

1995). The Cambridge 2-D model was originally developed by Harwood and Pyle (1980) and
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Figure 6.14(Left)Monthly mean modelledµMCF in ppt compared withµMCF from NOAA/ESRL
flask observations. MCFS is represented in blue, MCFT is represented in red and observations
are in black.(Right)∆µMCF, the monthly change inµMCF in ppt.

further developments were made by Law and Pyle (1993). The model is Eulerian, and averages

chemical species over longitude at a fixed latitude, altitude and time, up to an altitude of 90 km,

although chemistry is only modelled up to 60 km. The model chemistry includes CH4, OH, O(1D)

and Cl, making it possible to derive monthly mean stratospheric CH4 destruction rates from the

model representation of chemical loss. The stratospheric destruction rates (SD) are shown in Fig-

ure 6.15. Loss rates are greatest in the NH in JJA and in the SH in DJF, sinceO(1D) and Cl are

produced through the photolysis of O3 and Cly photochemistry respectively. The loss rate given in

SD is based upon the following reactions and reaction rates, which give a global mean loss rate of

approximately 3.11× 10−10 s−1.

CH4 +O(1D) −→ CH3 +OH [kO1D = 1.5×10−10] (6.8)

CH4 +Cl −→ CH3 +HCl [kCl = 7.3×10−12exp(−1280/T)] (6.9)

6.3.6 Assimilation of Satellite Data

A model simulation, CTLA, was also carried out which was identical to the CTL simulation, but

at each time step the model stratosphere was over-written with satellite data in order to provide a

different stratospheric boundary condition, and to investigate the effect that changing the strato-

spheric concentration of CH4 has at lower altitudes. Data was assimilated from the Halogen Oc-

cultation Experiment (HALOE) instrument from the period 1992-2003 and the ACE instrument

afterwards. HALOE was launched in 1991 on board the Upper Atmosphere Research Satellite

(UARS). The instrument uses solar occultation to measure vertical profilesof CH4 in the middle
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Figure 6.15Zonal monthly mean CH4 stratospheric destruction rates, SD, used in model simula-
tions in Chapter 6 in s−1.
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Figure 6.16Locations of NOAA/ESRL flask sampling sites (Left) and NDACC FTIR sampling
sites (Right). Flask sites are diaplayed as red dots and NDACC sites as green crosses.

and upper atmosphere with a 1.6 km instantaneous field of view at the Earth’slimb. The ACE

instrument is described in detail in Section 4.3. Although HALOE and ACE both give sparse

coverage, the relatively long lifetime of CH4 means that this should not affect the quality of the

assimilation. The assimilation of the satellite observations into the TOMCAT model is described

in Chipperfield et al. (2002), and was first used to assimilate long-term stratospheric observations

of stratospheric trace gases from HALOE by Gunn (2008). This is the first time that the system

has been used to assimilate data from ACE, however.

6.4 CH4 Model Comparisons

Figure 6.17 shows a comparison between modelled and observed annual mean CH4 mixing ratio

at surface station sites for the period 1990-2008. Modelled data has been linearly interpolated to

the surface sites from the model grid, except at MHD, which was treated as described in Section

4.3.3. Observed concentrations at each station show a period of growth from 1988 until 1999, after

which the concentration remains approximately constant until 2005, when theconcentration begins

to increase again. This pattern was discussed in detail in Chapter 2. The period of levelling off is

most clearly seen at SH stations such as CGR and SPO, where the mixing ratio isnot dependent on

local emissions. At these stations, each of the model simulations apart from CTL E4 reproduces

the pattern of CH4 concentrations increasing throughout the 1990s before remaining stablein the

early 2000s. The recent increase is not picked up by the model simulationsdue to the fact that

most of the emission inventories do not vary beyond 2005. Only the VISIT wetland component

varies annually until 2008, and emissions in this inventory produce only a small increase after

2005. The CTLE4 inventory, which which has elevated emission rates after 2001 synchronised

with Chinese economic growth, produces a rapid increase in CH4 concentration in the 2000s,

contrary to the observational record. This indicates that Asian emissions are unlikely to have
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Table 6.4 Details of NOAA ESRL flask sampling sites and NDACC FTIR sites used for CH4

comparisons in Section 6.4.

Station
Code

Station Location
Longitude

(°)
Latitude

(°)
Altitude (m)

Observation
Type

ALT Alert, Canada 62.5W 82.5N 210 Flask

ZEP Svalbard, Norway 11.9E 78.9N 475
Flask &
NDACC

THU Thule, Greenland 68.8W 76.5N 225 NDACC
SUM Summit, Greenland 38.5W 72.6N 3238 Flask
BRW Barrow, Alaska 156.6W 71.3N 11 Flask
KIR Kiruna, Sweden 204.E 67.8N 419 NDACC
OSM Ocean Station ‘M’ 2.0E 66.0N 5 Flask
HEI Heimaey, Iceland 20.3W 63.4N 100 Flask
HAR Harestua, Norway 10.8E 60.2N 596 NDACC
MHD Mace Head, Ireland 9.9W 53.3N 8 Flask
BRE Bremen, Germany 8.9E 53.1N 27 NDACC
ZUG Zugspitze, Germany 11.0E 47.4N 2964 NDACC

JUG
Jungfraujoch,
Switzerland

8.0E 46.6N 3580 NDACC

PRK Park Falls WI, USA 90.3W 45.9N 868/470 Flask
TOR Toronto, Canada 79.4W 43.7N 174 NDACC

NWT
Niwot Ridge, CO,

USA
105.6W 40.1N 3523 Flask

GRF Grifton, NC, USA 77.4W 35.4N 505 Flask

IZA Izaña, Tenerife 16.5W 28.3N 2367
Flask &
NDACC

MLO Mauna Loa, HA, USA 155.6W 19.5N 3397 Flask
GUI Guam 144.8E 13.4N 2 Flask

BAR
Rugged Point,

Barbados
59.4W 13.2S 45 Flask

SEY Seychelles 55.2E 4.7S 7 Flask
ASC Ascension Island 14.4W 7.9S 54 Flask
CGR Cape Grim, Australia 144.7E 40.7S 94 Flask
LAU Lauder, New Zealand 169.7E 45.0S 370/390 NDACC

FUE
Tierra Del Fuego,

Argentina
68.5W 54.9S 20 Flask

HBA Halley Bay, Antarctica 26.5W 75.6S 33 Flask

ARR
Arrival Heights,

Antarctica
166.7E 77.8S 200 NDACC

SPO South Pole 24.8W 90.0S 2810 Flask
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been increasing at the rate estimated in the EDGAR 4.0 database without a mitigatingdecrease

in emissions elsewhere. The simulation which uses the VISIT inventory, whichincluded a large

wetland emissions increase in 1997 - 1998, produces a mixing ratio peak around the year 2000,

before decreasing and finally levelling off in 2005. This modelled decrease is due to reduced JJA

emissions in the VISIT inventory during these years.

In the NH, modelled concentrations are generally higher than observations, while the opposite is

true in the SH. While this may be in part due to the emission distributions used in the model, Fig-

ure 4.8 indicates that model interhemispheric transport may be slower than observations suggest,

which may also have an effect. Table 6.5 shows the root mean square difference (RMSD) between

the model and the observations for each simulation for the periods 1990 - 1999 and 2000 - 2008.

The RMSD is separated into the period covering the increase in concentration during the 1990s

and the stable period during the 2000s, and is defined as in Equation 4.1. RMSD varies according

to time and station, but model bias is generally largest in the NH during the 1990sand smallest in

the SH during the same period.

In the NH during the 1990s, the model bias is large at the Arctic stations ALT and BRW, where

the lowest RMSD is approximately 10 ppb and the highest is 19 ppb at ALT and30 ppb at BRW.

The BB simulation produces the largest RMSD at both of these stations, and Figure 6.2 shows that

this inventory has increased emissions in the NH during JJA, which these Arctic stations will be

sensitive to. RMSD at NIW and MLO during 1990 - 1999 is smaller, ranging between 4 and 15

ppb. At SH stations SEY, CGR and SPO, the range of RMSD is smaller still. While the CTL E4

and INV simulations produce SH mixing ratios which are 8 - 13 ppb lower than observations, the

BB inventory is within 5 ppb of observations at all SH stations. The fact thatthe BB inventory

performs well in the SH and poorly in the NH, when combined with the fact that the TOMCAT

model’s IHD was found to be higher than inferred from observations in Chapter 4, indicates that

the NH biomass burning estimates in JJA in BB are likely to be too high.

During the period 2000 - 2008, the CTLE4 inventory produces large RMSDs at each station as it

does not stabilise in the same way as the observations. Among the other simulations in the NH,

RMSDs decrease at ALT, BRW and MLO as the modelled and observed concentrations level out

within 15 ppb of the observations while at NIW the simulations underestimate the steady mixing

ratio by around 11 - 17 ppb. At each of these stations, the WLBB simulation produces the smallest

RMSD, although since the inventory uses cyclic wetland emissions throughout this period, this is

not due to any variation in the emissions that were not already captured in theBB inventory. The

total emissions during this period, which are approximately 5 Tg/year larger than BB, may be more

realistic, however. In the SH, the BB simulation again produces the smallest RMSD, stabilising

with 3 - 6 ppb of the observations at each station, while other simulations are within 7 - 17 ppb of

the observations.
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Figure 6.17Annual mean modelled and observed CH4 mixing ratio in ppb at surface station sites
for the period 1990 - 2008. Coloured lines represent the emission inventory used in the model
simulation, while the black line represents NOAA/ESRL surface flask observations.

MLO

Figure 6.18 shows the annual mean surface level modelled mixing ratio of CH4 for the year 2006

for each emission inventory, and the difference between the modelled and observed concentrations.

2006 was chosen to represent the last year in which the global CH4 mixing ratio remained stable

before increasing from 2007 onwards. By this point, the CTLE4 simulated mixing ratios were up

to 50 ppb higher than observations in the NH and around 10 ppb higher in theSH. Each of the other

simulations displays similar global distributions with high mixing ratios close to emission regions

with a NH - SH background concentration difference of approximately 150ppb. Examining the

model - observation differences reveals the influence of the variations inthe emission inventories.

Every simulation produces high concentrations at MHD, which must be due toeither high Euro-

pean anthropogenic emissions in the EDGAR databases or over-estimated model transport to this

station. Modelled concentrations are too high at the Arctic stations ALT, ZEP,OSM and HEI in

each simulation. This may be due to high local emissions from Canada and Scandinavia. VISIT
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produces mixing ratios closest to the observed data, which may be due to decreased JJA emissions

in these two regions in the VISIT inventory. SUM, which is in the same region asthe other Arctic

stations, is underestimated in the model simulations. This is likely to be due to its high altitude

of approximately 3200m, since it was posited in Chapter 4 that vertical transport in this region

is too slow during SON. BRW mixing ratios are overestimated in simulations CTL, BB and INV

and underestimated in WLBB and VISIT, which both produce lower JJA emission totals local to

BRW. In the SH, CTL and BB show the smallest model - observation difference, and both display

increased mixing ratios in the South Atlantic and South-western Pacific Oceansdue to increased

emissions south of the inter-tropical convergence zone (ITCZ, described in Chapter 4) in South

America and Indonesia.

Figure 6.19 shows the average monthly mean CH4 at station sites for the period 2000-2006 for

each emissions scenario, while Table 6.6 shows the Pearson correlation coefficients, r, between

the modelled and observed seasonal cycle at selected stations. The seasonal cycle at a station is

dependent upon the transport, atmospheric chemistry and local emissions.The model reproduces

the observed seasonal cycle well at remote southern hemisphere (SH) sites. At SPO, all six emis-

sion scenarios reproduce the observed seasonal cycle, in which concentration is lowest in February

and highest in September, with correlations to the observations of 0.995 or larger. However, the

range of the seasonal variation is much higher in each of the model simulations than in the ob-

servations. The seasonal variation is due to the oscillation of troposphericOH, and therefore of

peak CH4 destruction, between the SH in DJF and the NH in JJA. Results are similar at CGR,

with model correlations with observations between 0.98 and 1.0, although the seasonal range is

again larger in the model than in the observations. This increased model seasonal range in the SH

may be due to OH concentrations being too high in the SH summer or too low in the SH winter.

At SEY, the seasonal cycle is mainly due to the island’s position near the ITCZ. As with the SF6

measurements at TUT discussed in Section 4.4, the SEY station samples NH air witha high CH4

concentration during DJF, and lower concentration SH air for the rest ofthe year. The data shows

a second, smaller concentration peak in August and September which is dueto the OH oscillation.

The model correlation with observations is 0.99 or above in each simulation.

Stations in the NH display the opposite seasonal cycle to those in the SH, since CH4 destruction

due to OH is lowest during DJF and highest during JJA. NH concentrationsof CH4 therefore peak

in the NH winter and are lowest in summer. At these NH stations the influence of atmospheric

transport and emissions on the seasonal CH4 cycle becomes greater. At NIW, IZA, MLO and

BAR, the smooth cycle due to OH oscillation is disrupted by the influence of atmospheric trans-

port, altering the seasonal cycle in different ways depending on the station’s location. For example,

comparing the seasonal cycle at MLO to that displayed for SF6 in Figure 4.7, which is dependent

only on transport from anthropogenic source regions, reveals that increased CH4 concentrations
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Figure 6.18 Annual mean modelled surface CH4 mixing ratio in ppb for the year 2006 for six
emission inventories. Triangles represent difference between model and NOAA/ESRL surface site
flask observations. Upright triangles represent stations at which the model estimates are higher
than observed, while inverted triangle represent stations where the modelestimate is lower than
observations. The size of the triangle indicates the magnitude of the model/observation difference.
For station names, see Figure 6.16.
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Table 6.5RMSD for annual mean observed and modelled CH4 concentration at selected surface
sites for six emission inventories. Observations are NOAA/ESRL surface flask estimates. RMSD
is given separately for the periods 1990 - 1999 and 2000 - 2008, and the smallest RMSD at each
station is highlighted in bold.

STATION LAT LON Inventory RMSD 1990 - 1999 RMSD 2000-2008
ALT 82.4N 62.5W CTL 17.309 8.110

CTL E4 9.201 23.702
BB 19.137 10.887

WL BB 15.329 4.257
INV 14.553 6.206

VISIT 12.266 10.865

BRW 71.3N 156.6W CTL 27.970 17.562
CTL E4 14.000 29.172

BB 30.204 19.987
WL BB 11.989 3.737

INV 19.380 5.776
VISIT 11.084 9.133

NIW 40.1N 105.6W CTL 5.706 12.671
CTL E4 7.846 11.496

BB 4.392 12.693
WL BB 6.783 11.262

INV 11.583 17.346
VISIT 7.445 12.074

MLO 19.5N 155.6W CTL 10.557 4.298
CTL E4 5.175 18.009

BB 11.107 5.091
WL BB 14.125 3.826

INV 11.436 8.130
VISIT 15.695 11.170

SEY 4.7S 55.2E CTL 7.037 6.477
CTL E4 13.709 12.128

BB 4.516 5.849
WL BB 6.862 9.821

INV 12.120 15.920
VISIT 5.342 7.022

CGR 40.7S 144.7E CTL 3.713 4.791
CTL E4 8.835 13.392

BB 2.154 3.235
WL BB 7.250 12.330

INV 8.183 14.840
VISIT 4.717 5.777

SPO 90.0S 24.8W CTL 5.146 7.378
CTL E4 11.090 13.890

BB 3.071 5.719
WL BB 9.163 14.501

INV 8.372 16.550
VISIT 6.460 7.319
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during March and April and the sharp minimum during August are both due toatmospheric trans-

port rather than emissions or chemical destruction. Similar high concentrations at IZA in March

and April are likely to be due to increased transport to the station from source regions. Model-

observation correlations at these stations are 0.9 or above using every emission inventory, although

a larger range is displayed by the six simulations as local emissions start to become an influence

upon the seasonal cycle. The VISIT simulation is an outlier at these stations, producing concen-

trations that are too high in the NH spring at each of the four stations, possibly due to increased

NH winter emissions in this inventory.

At the NH stations MHD, BRW and ALT the seasonal cycle is strongly dependent on all three

of the contributing factors. As well as OH and transport dictating the seasonal variations, the

influence of the timing and magnitude of local NH emissions is also important. The concentration

at MHD peaks during April, although there are also high concentrations in December and January

which are likely to be due to transport from anthropogenic source regions, as they also appear in

the seasonal cycle of SF6 (see Figure 4.7). The model generally does a poor job of reproducing the

seasonal cycle at this station, although this is likely to be due to the distribution ofCH4 emissions

used in each simulation due to the wide range of results produced. The INV simulation reproduces

the correct seasonal cycle with a range similar to that of the observations,especially during the NH

summer, while the CTL, CTLE4, BB and VISIT simulations produce a weak cycle that does not

have a minimum concentration during JJA. The modelled range is much smaller (∼15 ppb) in these

simulations than the observed range (∼35 ppb). Finally the WLBB simulation’s seasonal cycle

peaks in September and has a minimum in May and June, putting it almost exactly outof phase

with the observations. This is likely to be due to the influence of increased wetland emissions in

the USA during JJA in the WLBB inventory. At both BRW and ALT, CH4 concentrations peak

in February and reach their minimum during July with smooth transitions between the two, aside

from a sharp concentration increase in September. Model simulations are again largely dependent

upon the emission distribution used. In Section 4.4 it was suggested that modelvertical transport

in the Arctic was too strong in DJF and not strong enough during September and October, so we

would expect concentrations to be low in NH winter and high in autumn. The INVsimulation

performs well, producing correlations of 0.908 at ALT and 0.505 at BRW,although the seasonal

variations at BRW are not large enough, and concentrations decreasethroughout November and

December, when the observed concentrations increase. At BRW, the VISIT simulation produces a

seasonal cycle with very little variation apart from a slight decrease in August, while the WLBB

inventory is out of phase with the observations by around three months, asit peaks in September

and reaches its minimum in May. At ALT, the VISIT inventory reproduces thecorrect seasonal

cycle with a correlation of 0.935, although the magnitude of the seasonal variations are far too

small. However, the CTL, CTLE4 and BB inventories perform extremely poorly at both stations,

producing a seasonal cycle which is completely out of phase with the observations. Correlations
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Figure 6.19Monthly mean modelled and observed CH4 concentration in ppb, averaged over the
period 2000 - 2006, at surface station sites for six emission inventories and NOAA/ESRL flask
observations. Lines are coloured as in Figure 6.17.

MLO

range from -0.214 to -0.320 at ALT and from -0.760 to -0.773 at BRW, indicating inaccuracies in

the emission distributions in the NH. Examining the seasonal cycle at these NH stations indicates

the importance of having the correct geographical and temporal distribution of emissions in the

model, and the influence of emissions on Arctic methane concentrations will be studied in more

detail in Section 7.2.

In order to examine the distribution of CH4 at higher altitudes, modelled CH4 was compared to data

from the Infrared Working Group (IRWG), part of the Network for theDetection of Atmospheric

Composition Change (NDACC (http://www.ndsc.ncep.noaa.gov/)) which provides information on

total column CH4 at a number of station sites using Fourier Transform Spectrometers recording

direct solar spectra in the near-infrared spectral region to produce total column CH4. Figure 6.16

shows the location of NDACC station sites.
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Table 6.6Correlations for monthly mean observed and modelled CH4 concentration at selected
remote surface sites averaged over the period 2000 - 2006 for each ofthe six emission inventories.

Station

In
ve

nt
or

y

ALT BRW NIW MLO SEY CGR SPO
CTL -0.214 -0.768 0.976 0.966 0.990 0.984 0.999

CTL E4 -0.320 -0.773 0.972 0.966 0.993 0.989 0.997
BB -0.230 -0.760 0.978 0.969 0.992 0.982 0.999

WL BB -0.008 0.082 0.982 0.978 0.995 0.998 0.999
INV 0.908 0.505 0.982 0.976 0.993 0.998 0.995

VISIT 0.935 0.689 0.931 0.909 0.992 0.989 0.999

Figure 6.20 Monthly mean observed and modelled total column CH4 in molecules cm−2 at
NDACC FTIR sites. Lines are coloured as in Figure 6.17. Shaded area represents observational
error range supplied with data.
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Figure 6.20 shows comparisons of TOMCAT total column CH4 for the six emission inventories and

observations from NDACC stations for the period 2000-2008. Since FTIR spectrometers require

daylight in order to take measurements, only summer-time measurements are available for stations

at polar latiudes (ZEP, THU, ARR). Many of the NDACC stations (KIR, HAR, BRE, ZUG and

JUG) are in Western Europe, with sparse coverage elsewhere. Thereis little difference between

the total column CH4 predicted by the model using most of the emission inventories, indicating

that the geographical distribution of emissions has little effect on the seasonal cycle of the total

column. The CTLE4 inventory does produce a significantly larger column mixing ratio than the

other inventories in the late 2000s. At each station the observed total column CH4 is well matched

by the model, which is consistently within the observational error range, although modelled values

are high at the Arctic station ZEP and low at the Antarctic station ARR, which is likely to be due to

the slow interhemispheric transport of the model. Modelled values are within 0.1× 1019 molecules

cm−2 of observations at each of the stations in the tropics and mid-latitudes, and produce excellent

matches at each of the European stations, TOR, IZA and LAU. However,the timing and, especially,

the magnitude of seasonal variations at many of the stations is not reproduced well in the model,

indicating that modelled high-altitude transport is too homogeneous.

Figure 6.21 shows a comparison of stratospheric CH4 in CTL, the model simulation using the CTL

emission inventory and the Spivakovsky OH field, and CTLA, which assimilates stratospheric

mixing ratios from the HALOE and ACE instruments into the simulation. CTL annual mean

CH4 mixing ratio is comapred to CTLA for the years 1998, when HALOE data is assimilated

into CTL A, and 2004, when ACE data has been assimilated. In both years, the concentration of

CH4 in the upper stratosphere (1.0 - 0.1 hPa) in CTL is lower by up to 400 ppb thanin CTL A,

indicating that the stratospheric rate of vertical mixing in the TOMCAT model simulation is too

slow, or that the stratospheric destruction rate due to OH, O(1D) or Cl is too high. Monge-Sanz

et al. (2007) found that the use of ERA-Interim ECMWF winds in the TOMCAT model, which

are used in all of these simulations, performed well in comparison with age-of-air measurements.

This indicates that the Brewer-Dobson circulation, which is the large-scalemotion responsible for

stratospheric transport of air, is modelled well. It is likely, therefore, thatthe rate of stratospheric

loss of CH4 is too high in the upper stratosphere. There are few model levels at pressures less than

10 hPa, and this may account for the discrepancies. However, a key point is that both the HALOE

and the ACE assimilations produce low CH4 values at the poles at 100 hPa compared with the

CTL simulation. There is large-scale subsidence of air into the troposphereat mid-high latitudes

(Holton et al., 1995), and decreased CH4 mixing ratios above the polar tropopause, as seen in

CTL A, will decrease tropospheric CH4. Figure 3 in Patra et al. (2011) shows a similar result for

a range of CTMs which took part in the TransCom CH4 intercomparison. Each model used the

same OHS and SD fields that are used in this study, and the majority of them produce high CH4

concentrations at 50 - 100 hPa in the NH compared with observations from the ACE satellite.
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Figure 6.21 Annual mean stratospheric methane mixing ratio in ppb for CTL (Top Left) and
CTL A (Top Right) for 1998 (with assimilated HALOE data) and for CTL (bottom left) and CTLA
(bottom right) for 2004 (with assimilated ACE data).

Figure 6.22 shows the annual mean CH4 concentration at surface sites from NOAA flask measure-

ments and for model simulations CTL, CTLT and CTLA. CTL T, which has approximately 10%

less tropospheric OH than CTL, does not produce the correct CH4 mixing ratio at the surface, and

by the end of the simulation period over-estimates surface CH4 by approximately 100 ppb, having

not yet reached the steady state in the 2000s, unlike the observations andthe CTL simulation. This

indicates that the tropospheric sink in CTLT does not balance the emissions in the second half

of the studied period in the same way that the OHS field does. Since the OHT field is produced

from the TOMCAT model with the full chemistry scheme, this implies that there some sources

or sinks of OH in that model are incorrect. Comparison with the OHS field suggests that the

discrepancy may be in the SH in DJF. Discussing the reasons for this inconsistency is beyond the

scope of this study, but it seems that if the total CH4 emission estimate of 500 - 580 Tg year−1 is

correct, then the OH field produced by the full chemistry TOMCAT model is inaccurate.

There are a number of possible causes for the discrepancies between the OH T and OHS distribu-

tions. As discussed in Section 6.3.1, OH concentrations are driven by the photolysis of ozone (O3)

and the reaction of the excited O(1D) molecule with water vapour. OH is lost through reactions

with other trace species such as CH4 and CO. The fact that the OHT distribution is much more
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weighted towards the surface and the NH than that of OHS implies that there is some discrep-

ancy between the two models which were used to produce the two distributions.In TOMCAT, the

atmospheric H2O distribution is read in from ECMWF re-analyses, which are likely to be accu-

rate. However, there may be inaccuracies in the photolysis scheme or the O3 distribution. The O3

distribution is in turn dependent upon the model’s ability to simulate tropospheric NOx. The dis-

tribution of OH in the TOMCAT model is therefore sensitive to the accuracy ofthe anthropogenic

and soil emissions of NOx and also to the model representation of atmospheric NOx emissions due

to lightning. Furthermore, errors in the model’s vertical transport may also be responsible for the

high OH concentrations towards the surface. As discussed in Chapter 3,vertical convection in the

TOMCAT model is known to occur at too slow a rate, and does not extend upto a high enough

altitude, which may mean that the controlling chemistry for OH occurs too close to the surface.

Further investigation is necessary in order to assess the accuracy of thecomplex processes which

control the model’s OH distribution, although it is beyond the scope of this thesis.

The CTL A simulation produces mixing ratios around 10-20 ppb lower than CTL, illustrating

the effect that stratospheric air can have at the surface as it subsidesat the poles. Surface CH4

concentrations in the CTLA simulation rise after 1993 until 2001, when they begin to decrease

slightly, while the observations stabilise. The CTLA simulation concentrations are more consis-

tent with observations than CTL at BRW and MHD, but are generally 10 - 20ppb lower elsewhere,

especially in the SH. Assuming that the CTLA simulation stratosphere is more consistent with

observations than that of the CTL simulation, this implies that some tropospheric sink of CH4 may

in fact be too large or that emissions may be too small, although it is not possible tosay which.

Figure 6.23 shows the mean seasonal cycle at surface sites for CTL, CTL T and CTLA compared

with NOAA flask data over the period 2000-2006. Leaving the various biases of the three simula-

tions aside, the seasonal variation of each modelled concentration is extremely similar, indicating

that neither the distribution of the model OH nor the influence of stratosphericair has a significant

influence on the seasonal cycle of surface methane, which is thus largelydependent on transport

and emissions. Although the OHT field has lower OH concentrations throughout much of the

year, the NH-SH oscillation of OH is captured, and so the seasonal cycle at those stations at which

OH is the contributing factor is unchanged, although the annual range is slightly altered at some

locations.

Figure 6.24 displays statistics on the rate of CH4 destruction and the balance between destruction

and emissions in the model simulations CTL and CTLT. Figure 6.24(a) shows the annual atmo-

spheric burden increase for the two simulations, confirming that the destruction and emission of

CH4 fluctuates around a steady state from 2001 onwards in the OHS simulation, while the atmo-

spheric burden is still increasing by around 10 Tg year−1 in 2008 when the OHT field is used. The

burden increase of the CTL simulation compares favourably with the annualgrowth rate shown
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Figure 6.22As Figure 6.17, but for runs CTL, CTLT and CTLA.

MLO

in Figure 2.6(b), which also fluctuates around zero after 2001 (note the different units of the two

plots). Figure 6.24(b) shows that in each simulation, the amount of CH4 destroyed as a percentage

of the total atmospheric burden does not change over the two decades simulated, remaining at

approximately 11.1% of the total burden for CTL and 10.4% for CTLT. Variations in this value

will be due to changes in temperature and emissions. Figure 6.24(c) shows the annual global mean

CH4 lifetime, τ in each simulation, which is estimated as

τ =
∑MCH4

∑kOH[OH](MCH4)
(6.10)

whereMCH4 is the mass of CH4, [OH] is the OH concentration in molecules cm−3 andkOH is

reaction rate of CH4 with OH used in the model.τ has a mean value of 9.9 years for the CTL

simulation and 10.8 years for the CTLT simulation. This is close to the model-mean CH4 lifetime

of 9.99 years estimated by Patra et al. (2011), in which eleven CTMs used the OH S field and CTL
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Figure 6.23As Figure 6.19, but for CTL, CTLT and CTLA.

MLO

Figure 6.24Annual CH4 burden increase in Tg year−1 (Left), annual CH4 destruction as a per-
centage of total atmospheric CH4 burden(Centre)and CH4 life time in years(Right)for the period
1988 - 2008 for the model simulations CTL (solid line) and CTLT (dashed line).

a) b) c)
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emission inventory to simulate tropospheric CH4 concentrations. It is also within the range of 7.79

- 10.25 years found by Lawrence et al. (2001) in a study of the effectof different OH fields upon

CH4 lifetime, and it is just within the estimate of 8.7±1.3 years years supplied in the 2007 IPCC

report (Solomon et al., 2007) Note that the CH4 lifetime decreases by approximately 0.1 years

during 1998 due to the strong El Niño that year, and that, comparing with Figure 6.24(a), this

small decrease in the lifetime leads to around a 9 Tg increase in the atmospheric burden compared

with the surrounding years 1997 and 1999.

6.5 Summary

This chapter examined recent variations in the atmospheric CH4 budget through the comparison

of the results of model simulations to observed data. It was found that it waspossible for the

atmospheric growth rate of the species to decrease during this time due to a decrease in the growth

of surface emissions of the species, regardless of whether there werechanges in the loss rate of the

species.

Although the two OH fields used in this comparison performed similarly in producing the correct

loss rate of MCF, the OHS field was more consistent with observations and produced CH4 concen-

trations similar to those seen at surface station sites and in total column observations. The OHT

field was found to have the incorrect distribution in comparison with observations, and produced

model results which overestimated CH4 concentrations by up to 100 ppb.

It was found that assimilation of satellite observations of stratospheric CH4 produced significant

effects on surface CH4 concentrations. Assimilation from the HALOE and ACE satellites re-

duced surface concentrations by around 10 ppb, due to subsidence of stratospheric air through the

tropopause at the poles. indicating the importance of accurate estimation of thestratospheric CH4

sink despite its relatively small size compared to the OH sink.

A number of emission inventories were used in order to examine the effect ofemissions on the

atmospheric CH4 budget. Many of the emission inventories captured the decline the atmospheric

growth rate of CH4 well. However, the EDGAR V4.0 inventory of anthropogenic emissions, which

estimated that CH4 emissions rose throughout the 2000s in line with Asian economic growth, sig-

nificantly overestimates the growth rate of CH4 throughout the last decade. This implies that for

the estimated growth of anthropogenic CH4 emissions to be correct, there must have been a corre-

sponding decrease in some other emission process to mitigate the growth. Bousquet et al. (2006)

suggested that wetland emissions may have decreased during the early years of the 2000s, which

may be the necessary mitigating factor. The VISIT model, however, produced CH4 concentrations

which decreased throughout the 2000s, indicating that CH4 emissions were larger than 530 Tg

year−1 during the last decade.
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The TOMCAT model captured the seasonal cycle of CH4 at stations south of 50°N well, with

correlations greater than 0.9 with all inventories. However, at stations north of 50°N, some of the

model simulations perform poorly. This is likely due to discrepancies in the emission budgets,

since some simulations do capture the seasonal variation well, and this is further investigated in

Chapter 7.



Chapter 7

Revised Estimates of Northern

Hemisphere High Latitude CH4

Emissions

7.1 Introduction

This chapter investigates the seasonal cycle of CH4 in the Arctic produced by the TOMCAT model

using the emission inventories described in Chapter 6. Some of these inventories produced elevated

atmospheric concentrations during the NH summer at Arctic stations. Since the simulated transport

in TOMCAT has been validated using SF6 observations, and changes to the chemical sinks had

little effect on the observed seasonal cycle, this indicates that inconsistencies in the emissions are

likely to be responsible for the discrepancy. It should be noted, however, that the two OH fields

examined in Chapter 6 are fairly similar at high latitudes, as shown in Figure 6.11. The possibility

that the seasonal variability of Arctic OH may not be modelled correctly therefore does exist. This

chapter attempts to locate the source of the error using various forward and adjoint modelling

techniques, before using the TOMCAT 4D-Var inverse model to producean updated emission

inventory which is consistent with observations. Section 7.2 examines the seasonal cycle of CH4

at a number of Arctic stations, and examines the likelihood that emissions are responsible for the

discrepancies between the model output and the observations, while Section 7.3 uses the adjoint

version of the TOMCAT model, which was described in Chapter 5, to examine the sensitivity of

the Arctic to transport of emissions from other regions. Section 7.4 uses theTOMCAT forward

model to investigate the influence of emissions from large NH wetland areas onthe Arctic CH4

concentration, while Section 7.5 describes the results of an inverse simulation carried out with

133
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the aim of constraining surface CH4 emissions and improving the consistency between the model

simulations and observations in the Arctic. Section 7.6 summarises the findings of this chapter.

7.2 Seasonal cycle at Arctic Stations

Chapter 6 found that although the TOMCAT model can accurately reproduce the inter-annual

variation of CH4 in the troposphere, there are substantial discrepancies between observations and

simulations which point to substantial misattributions of surface emissions. Section 6.4 showed

that different emission inventories produced large variations in the seasonal cycle of CH4 mixing

ratio at a number of NH surface sites, and that some inventories producedmodelled concentrations

which were completely out-of-phase with a site’s observational record. In this chapter model

simulations will be carried out with the aim of closely examining the relationship between the

seasonal cycle of the mixing ratio of CH4 at NH polar station sites and the magnitude and timing of

surface CH4 fluxes. Investigating how differences in the emission inventories lead to discrepancies

in the atmospheric concentration can help us to improve our surface flux estimates.

The major contributing factors to producing the distinctive CH4 seasonal cycle at a specific station

are the atmospheric transport, the seasonal oscillation of the OH field, and the magnitude and

timing surface fluxes of the species, all of which must be accurately simulatedin the model in order

to reproduce the observed concentrations. Examination of the modelled seasonal cycle of SF6 in

Section 4.4 indicated that model transport is unlikely to be the cause of the poor representation

of CH4 seasonal cycle at these stations, as modelled SF6 does not display discrepancies to the

same extent as those produced in the CH4 simulations. Changes in the distribution and magnitude

of CH4 destruction due to OH and changes to the stratospheric loss in Section 6.4 produced no

alteration in the seasonal cycle, indicating that the problem is also unlikely to bedependent on

the chemistry used in the model. However, the two OH fields examined in the previous chapter

displayed similar distributions at Arctic latitudes, meaning that further investigation into the effect

of OH on the seasonal cycle of CH4 may be necessary before chemistry can be discounted as a

contributing factor. It is likely, however, that the distribution, timing or magnitude of the CH4

emission inventories may be the root of the problem. This hypothesis is backedup by the fact

some scenarios perform much better than others, with the INV inventory, which was developed

using assimilated data from these stations, producing output which was much more consistent with

observations. The VISIT inventory also produced the correct seasonal cycle at the NH stations,

although the range of the annual variation was usually smaller than in the observations.

In order to confirm that the problem was indeed due to inconsistencies in theemission inventories,

two TOMCAT CH4 simulations were carried out which removed the seasonal cycle of the emis-

sions globally (CTLMN) and north of 60°N only (CTLMN60). The total annual CH4 emissions
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in each of these simulations was the same as in CTL. These simulations were otherwise identical

to CTL. Figure 7.1 shows the seasonal cycle produced by these simulationsat surface sites along

with CTL and NOAA flask data. At remote SH stations such as CGR and SPO, and as far north at

SEY, there was no change to the monthly mean distribution of CH4, confirming that the seasonal

cycle at these stations relies almost entirely upon the quality of the long-rangemodel transport and

chemistry, with little contribution from emissions, which are mixed out and have nolocal impact.

At stations in tropical and mid-latitudinal locations such as NIW, IZA, MLO andBAR, differences

appear in CTLMN. These stations are not highly sensitive to changes in emissions north of60°,

and so CTLMN60 displays little deviation from CTL at these stations. CTLMN does display

differences, however, indicating that these stations are dependent onthe accuracy of the emission

inventory. At IZA, for example, there is a large increase in CH4 during MAM in the CTL MN

inventory, signifying that the station usually samples air from a location with decreased CH4 emis-

sions during these months. MHD, at a latitude of 53.3°N, is sensitive to emissions north of 60°,

as the seasonal cycle here in the CTLMN60 simulation is different to that of CTL, displaying a

minimum during August and a maximum during May. This is much closer to the seasonal cycle

displayed by the observations at this station, which have an April maximum anda July minimum.

This suggests that inaccurate emissions in the inventory are degrading the CTL simulation.

Figure 7.1 also displays results for six Arctic stations, each of which show asimilar observed

seasonal cycle. The observed seasonal cycle, and that producedby CTL, are similar at each of

ALT, ZEP, OSM and HEI, with the observations peaking in January and reaching a minimum

during July while the model produces maxima in September or October and minima around June.

Removing the seasonality of the model emissions above 60° produces a cyclewhich is much closer

in distribution to that of the observations, confirming that polar NH emissions are responsible

for the incorrect seasonality in CTL. At BRW the same effect is seen, as alarge peak in CH4

concentration in July in CTL becomes a minimum in CTLMN60. SUM is a special case due

its high altitude of 3200m. This means that the station is less directly reliant on the seasonality

of emissions than the other polar stations, with vertical mixing in the boundary layer being a

more important factor. The seasonality is still shifted slightly at this station, however. Table

7.1 shows the correlation between the observations and the CTL, CTLMN, CTL MN60, INV S

and VISIT S simulations. At each station apart from SUM, the CTL simulation produces either

a very small or a negative correlation with the observations. At these stations, however, both

the CTL MN and CTL MN60 simulations produce a correlation greater than 0.7, indicating both

these stations are highly sensitive to changes in local emissions and that, in reality, local NH

summertime emissions may be too large, creating discrepancies in the seasonal cycle of CH4

mixing ratio at sites above 60°N. At SUM, removing the seasonality of the emissions reduces the

model correlation with the emissions, which was already close to 0.6. The INVS and VISITS

may provide better estimates of these Arctic emissions, as they produce high correlations with the
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Table 7.1Correlations for seasonal cycle of observed and modelled CH4 concentration at selected
remote surface sites for CTL, CTLMN and CTL MN60, INV S and VISITS. The highest corre-
lation for each station is shown in bold.

Station

In
ve

nt
or

y ALT ZEP SUM BRW OSM HEI
CTL -0.214 0.058 0.581 -0.768 0.078 0.126

CTL MN 0.842 0.981 0.300 0.852 0.935 0.969
CTL MN60 0.761 0.985 0.129 0.732 0.922 0.827

INV S 0.908 0.983 0.932 0.505 0.937 0.970
VISIT S 0.935 0.973 0.659 0.689 0.931 0.756

observed data at each station. The INV inventory in particular producescorrelations greater than

0.9 at each station apart from BRW, at which the correlation is almost 0.7.

7.3 Adjoint Modelling of Arctic CH 4

In order to investigate the differences of the emission estimates, the CTL and INV inventories

were compared in more detail. The adjoint version of the TOMCAT model, described in detail

in Chapter 5 can be used as tool to provideχ =

(

∂c
∂ f

)T

, the sensitivity of a concentration to

a change in a surface flux elsewhere. This means that if the adjoint model is initialised with a

concentration field which is zero everywhere except for the grid box containing the surface station

in which we are interested, a simulation will indicate the sensitivity of that station to the surface

flux at each of the surface grid boxes. This sensitivity field may be multiplied by a 2D flux field to

obtainχ f , the sensitivity of the station to actual fluxes. This process was carried out for the two

Arctic stations ALT and BRW, investigating each station’s sensitivity in July andAugust to both

the CTL and INV surface flux fields over the preceding two months. Resultsfrom ALT are shown

in Figure 7.2 and for BRW are shown in Figure 7.3.

Figure 7.2 shows the mean sensitivity fieldχ for the ALT station site for July and August 2008, at

points 10 days (t10), 30 days (t30) and 60 days (t60) previous to the starting point. This shows that

most air sampled at ALT is from local regions such as Greenland and North-east Canada which has

arrived at ALT within ten days. The majority of air which has arrived at ALT within one month is

also from these regions, although there is also a greater influence from Eastern Siberia and North

America. Att60, the influence of Siberian air becomes comparable to that of North America, and

air arrives at ALT from much of the NH. Also shown in Figure 7.2 isχ f at ALT for the CTL

and INV surface flux fields. This shows that ALT is highly sensitive to recent local emissions

from Canada, Alaska and Eastern Siberia in the CTL inventory, which arenot as large in INV, and

that there is also a smaller influence from Scandinavian emissions. Att30, emissions from North
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Figure 7.1 As Figure 6.19, but for runs CTL, CTLMN (with the seasonal cycle of emissions
removed globally) and CTLMN60 (with the seasonal cycle of emissions removed only above
60°N). Additional panels showing Arctic sites are displayed.

MLO
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America still have a large influence when the CTL inventory is used, which are again much lower

in INV. The influence of anthropogenic emissions from the USA and Europe also begin to have an

influence at this time scale, more so in the INV inventory than in CTL. Att60, the sensitivity of the

station to local emissions is much smaller, with emissions from the Ural region of Russia, South

East Asia and the USA being the most important regions to ALT’s CH4 concentration in both

emission inventories. In summary, the modelled JJA concentration increase atALT when using

the CTL inventory is likely to be due to local emission increases in North America and Eastern

Siberia, which do not occur to the same extent in the INV inventory.

Figure 7.3 displays the sensitivity of the BRW station to emissions in the CTL and INV inventories.

Although the distribution ofχ at this station is similar to that of ALT, BRW is much more sensitive

to changes in surface fluxes in the NH. The majority of air sampled at BRW att10 andt30 has come

from North America and Siberia, and from throughout much of the NH att60. BRW is much more

sensitive than ALT to emissions from the USA, Canada and Siberia than ALT,which may explain

why the large increase in CH4 mixing ratio during JJA produced using the CTL inventory is more

pronounced at BRW than at other stations. These regions still important atthe t30 time scale, but

the influence is more dispersed att60. χ f indicates that BRW is sensitive to high emissions in

North America and Eastern Siberia, which are larger in the CTL inventory than in INV. At t30, the

CH4 concentration at the station is influenced strongly by emissions throughout North America,

Russia, Scandinavia and South-East Asia, the majority of which are largerin the CTL inventory

than in INV. Anthropogenic emissions from the East Coast of the USA and from Europe are larger

in INV, however. At thet60 time scale, BRW is still sensitive to the majority of NH emissions,

and emissions from the large wetland area in the Ural region of Russia are increasingly important,

while the influence of Eastern Siberian and Canadian emissions decreases. The dramatic increase

in CH4 concentration at BRW during June - September is therefore likely to be due toincreased

emissions from North America and East Siberia which are influencing BRW airsamples on a time

scale of around one month.

7.4 Sensitivity of Arctic CH4 to Regional Emissions

As discussed in Chapter 2, the majority of sub-annual variations in CH4 emissions above 60°N are

due to wetlands created by large-scale winter freeze and summer thaw of polar water. Summer-

time emissions increase greatly in Siberia, Scandinavia, Canada and Alaska due to the northern

retreat of ice, leaving behind vast boggy areas which release large amounts of CH4. However,

difficulties arise when trying to measure the extent and distribution of this summerflux increase,

and our emission inventories are therefore most inaccurate at these wetland areas. Figures 7.2 and

7.3 showed the influence that emissions from these areas can have on Arctic CH4 concentrations.

In order to quantify the effect that the NH polar emissions are having in the model, two simulations
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Figure 7.2 (Left column)Mean sensitivity field to surface fluxes,χ, for July and August at ALT
surface station 10 days(Top), 30 days(Middle)and 60 days(Bottom)previously.(Centre column)
showsχ f for CTL emission inventory and(Right column)showsχ f for INV emission inventory.

were carried out which traced emissions from the largest NH emission regions separately. In these

simulations, CTLWL and INV WL, emissions from the Western Siberian Plain (WSP), to the

east of the Ural mountains in Russia, from the North East of Siberia (ESIB) and from Alaska

and Canada (ALCAN) were treated separately from other regions (ROW), and were alsosplit by

season. The distribution of the emission regions are displayed in Figure 7.4.

Figure 7.5 shows the total monthly emissions in 2008 from each of the regions defined in Figure

7.4 for the CTL and INV inventories. At ESIB, the CTL inventory produces a high emission

rate of approximately 1.3 Tg month−1 in June - September. Emissions are negligible throughout
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Figure 7.3As Figure 7.2 but for BRW station site.

the rest of the year. The INV inventory produces emissions which are slightly larger than CTL

during February to April but which remain low until June, when they increase to a peak rate of

approximately 1.0 Tg month−1. The emission rate then decreases , reaching a similar rate to that of

CTL in October. Not only is the peak emission rate lower in INV than in CTL, therefore, but the the

emission period also begins one month later. At ALCAN, the CTL emission rate shows a similar

timing and magnitude to that of ESIB, with high emission rates of approximately 1.5 Tg month−1

during June - September. The INV inventory, however, displays a gradual increase in emission

rate throughout May - August, peaking at just 0.8 Tg month−1, before decreasing to a negligible

rate in October. At WSP, total annual emissions are much higher than at the other regions for

both emission inventories, peaking at approximately 3.0 Tg month−1. In CTL the emission rate is
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Figure 7.4Emission regions separated in CTLWL and INV WL. E SIB is shaded blue, WSP is
shaded green, ALCAN is shaded red and ROW is shaded grey.

Figure 7.5Total emissions in Tg month−1 for CTL WL (purple lines) and INVWL (orange lines),
and also for the VISIT inventory at the same locations (red lines) at each of the regions defined in
Figure 7.4.(Left)E SIB, (Centre)WSP,(Right)AL CAN.

steady at approximately 0.5 Tg month−1 until it steadily rises from May - July before decreasing

back to the background emission rate in November. The INV inventory is similaruntil May, when

the region becomes a small CH4 sink before increasing up to the peak emission rate in July a

remaining similar to CTL for the rest of the year. This distribution may be slightly flawed due

to inaccuracies in the inverse modelling procedure used to create the inventory, but the emission

season clearly begins later in INV than in CTL. Total emissions in each of these wetland regions

is smaller in INV than in CTL, and this can affect both the global CH4 total and the seasonal cycle

of CH4 concentration at Arctic stations sites.

Figure 7.6 displays the contribution of each region’s emissions to the total CH4 mixing ratio at
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Figure 7.6Monthly mean CH4 mixing ratio in ppb at each of the Arctic station sites for CTLWL
(Top six plots)and for INV WL (Bottom six plots), displaying the contribution from each region
in a different colour, as in Figure 7.4, while the contribution from each season is cross-hatched
differently.
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each of the Arctic station sites shown in Table 7.1. Since the total annual emissions of each re-

gion are lower in the INV inventory than in the CTL inventory, one would expect that the total

contribution of emissions from each of these regions would be lower when the INV inventory is

used, and this is indeed true. At ALT, for example, emissions from these three regions when using

the CTL inventory contribute approximately 100 ppb, or 5%, of the total CH4 concentration in

January and 120 ppb, or 7%, of the total during July. When using the INVinventory, however, the

totals are 80 ppb (4%) and 100 ppb (5%), respectively. The contributionat each of these stations

from the rest of the world is similar for both inventories, having the same seasonal cycle as ob-

served data. At each station apart from BRW, contributions from ESIB, WSP and ALCAN then

remain approximately constant throughout the year in INVWL, producing the observed seasonal

cycle. However, CTLWL indicates that the concentration increases at these stations from July

onwards due to the contribution of emissions during the NH summer and autumn from E SIB,

WSP and ALCAN. The huge increase in mxing ratio at BRW during June - October when using

the CTL inventory is due to local emissions from the ALCAN region. Although NH summer-time

emissions are the main contributing factor to the increase, autumnal emissions also have an effect

later in the year. This implies that these emissions from this region are far too high in the CTL

inventory. At the same station, the INV inventory shows a similar sensitivity to these local emis-

sions. However increased DJF emissions from the region increase the winter mixing ratio, and the

decreased JJA emissions brings down the concentration during the summer.However, Figure 6.19

shows that the concentration of CH4 at BRW during JJA in the INVS simulation is also too high,

which suggests that even the decreased ALCAN emissions in this inventory shown in Figure 7.5

may be excessive.

7.5 Inverse Modelling of Arctic CH4 Emissions

7.5.1 Model Set-up

The TOMCAT 4D-Var system was used to produce a new CH4 emission inventory for the year

2008. Due to time and computational limitations, it was not possible to include any spin-up for

the inversion which runs from January 1, 2008 to January 3, 2009, and produces updated monthly-

mean emission estimates for each month of 2008. In order to constrain NH emissions, and to

keep to a minimum the number of data to be assimilated, observations were taken only from six

station sites in the NOAA/ESRL measurement network. These stations are shown in Figure 7.7,

and further details are given in Table 7.2.

Since this is the first inversion to be completed using the TOMCAT 4D-Var system, many of the

parameters of the inversion were chosen for their simplicity, with a coarse temporal resolution

for the observations and uncorrelated error covariance matrices. However, the results from this
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Figure 7.7Locations of NOAA/ESRL station sites with flask observations available for assimila-
tion into the TOMCAT 4D-Var inversion system in Chapter 7.

BRW

ALT

ICE

STM

ZEP

PAL

Table 7.2Details of NOAA ESRL flask sampling sites used in inversions performed in Chapter 7.

Station
Code

Station Location
Longitude

(°)
Latitude

(°)
Altitude (m)

Observation
Type

ALT Alert, Canada 62.5W 82.5N 210 Flask
ZEP Svalbard, Norway 11.9E 78.9N 475 Flask
BRW Barrow, Alaska 156.6W 71.3N 11 Flask
PAL Pallas, Finland 24.1E 68.0N 565 Flask
STM Ocean Station ‘M’ 2.0E 66.0N 5 Flask
ICE Heimaey, Iceland 20.3W 63.4N 100 Flask

initial inversion will indicate the system’s potential for producing accurate high resolution flux

inventories in the future. The inversion was carried out using the T21L model set-up, described

in Chapter 4. Observations were averaged temporally over 8 days, whichgives 46 assimilated

observations at each station over the course of the one-year inversion. Due to the fact that there

was missing data at some stations, however, there were in fact only 244 assimilated data points,

rather than 276. During assimilation into the adjoint model, if there were multiple stations inside

the same model grid box, a mean value was used. For simplicity, the errors between observations

were assumed to be uncorrelated and equal to 3 ppb for every measurement, as this is the value

suggested as the accuracy of CH4 flask observations by the NOAA/ESRL measurement network.

For this study, since there is a large disparity in scale between the model-observation differences

(≈102 ppb) and the changes made to the emission rates in order to correct these differences (≈106

kg grid box−1 hr−1), a scaling factorγ was introduced to the cost function as follows;

J(x) =
1
2
(x−xb)

TB−1(x−xb)+
1
2γ

(y−H(T[x]))TR−1(y−H(T[x])) (7.1)

whereγ = 1×10−4. A similar ‘scaling’ method was used in Henze et al. (2007). This means that

model-observation errors and changes to the emission rate both have a similar‘cost’. The gradient



Chapter 7.Revised Estimates of Northern Hemisphere High Latitude CH4 Emissions 145

of the cost function is then evaluated as;

∇xJ(x) = B−1(x−xb)+
1
γ

TT [

R−1(y−H(T[x]))
]

= 0 (7.2)

This choice of constraint allows the inversion to make fairly large alterations tothe emission rate in

order to match the observations, without the possibility that a poorly defined error covariance for

the a priori may mean that the system will not converge (F. Chevallier, personal communication).

Negative emission rates were not allowed in the inversion, and any negative values were set to zero

before evaluation of the cost function. The CTL emission inventory for 2008 was used as the a pri-

ori flux estimate, and the inversion was initialised using output from the CTL simulation described

in Chapter 6. The OHS and SD chemical fields were used to represent atmospheric chemistry

in the model, and the 2-D soil sink used in the forward CH4 simulations was also included. The

optimisation procedure was repeated until four consecutive iterations hadpassed without minimi-

sation. The inversion code has not yet been parallelised so the local serial machines were used for

the simulations. This meant that individual iterations required a significant amount of computa-

tional time due the large amount of reading and writing to files necessary to perform the adjoint

transport.

7.5.2 Inversion Results

Figure 7.8 shows the results of the inversion as updates to the monthly-mean CTL emission inven-

tory for 2008. Changes are small in the NH winter. In January – April andNovember – December,

updates are generally limited to relatively small increases in emission rates in oceanic regions

around North America, with extremely small decreases over land-based NHregions. There are

more substantial updates in May – October, however, with significant decreases in high-latitude

NH land-based regions throughout these summer months. The largest decreases were in Alaska,

Canada, Eastern Siberia and Scandinavia in JJA, with reductions of up to 100% in some grid boxes

in these regions. The influence of SH emissions on the Arctic stations is insignificant on the one-

year time-scale of the inversion, although this may not be true for a longer inversion. In total,

the annual emissions have fallen from 543.4 Tg yr−1 in the CTL inventory to 521.6 Tg yr−1, a

decrease of 21.8 Tg yr−1.

Figure 7.9 shows the changing values of the cost function and the norm ofthe gradient of the cost

function, ||g||, throughout the iterations of the inversion Only three iterations were carried out,

and the value ofJ was reduced by approximately 70% at the end of the third iteration, while the

value of||g|| has been decreased by approximately 85%. There were relatively few minimisations

required for a significant reduction of the cost function due to the fact that a large step size along
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Figure 7.8 CH4 emissions for the CTL inventory(Left) and the difference between the updated
TOM inventory and CTL(Right) (kg grid box−1 hr−1) for January, February and March(Top-
Bottom).
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Figure 7.8As previous page, but for April, May and June.
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Figure 7.8As previous page, but for July, August and September.
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Figure 7.8As previous page, but for October, November and December.
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Figure 7.9(Left)Value of the cost functionJ at each iteration of the 2008 inversion and(Right)the
norm of the gradient ofJ.

each minimisation vector was chosen. Also shown are the contribution of the background term,

CF B, and the observation term, CFO, to the total value of the cost function, where;

CF B = (x−xb)
TB−1(x−xb) (7.3)

and;

CF O =
1
γ
(y−H(T[x]))TR−1(y−H(T[x])) (7.4)

where all terms are defined as in Equation 7.1. By the end of the minimisation the observational

cost term, CFO, which is a measure of the differences between the model output and the observa-

tions, has in fact been reduced to approximately 15% of the initial cost function value. However,

the background term is becoming significant by the final iteration, and also contributes a value ap-

proximately 15% the size of the initial cost function, or 50% of the final value of J. It is interesting

to note that the cost function can be reduced by up to 40% with minimal background contribution

to the cost function.

In order to compare the updated emission inventory produced by the inversion, which is on the

model’s 5.6°× 5.6° grid, to the CTL, INV and VISIT inventories, it was necessary to map the 1°

× 1° inventories onto the model grid. Figure 7.10 shows the ALCAN, WSP and ESIB regions,

previously described in Section 7.4 on the coarser grid. The emission inventory produced by the

inversion is henceforth referred to as TOM.

Figure 7.11 shows the total monthly emissions from the ALCAN, WSP and ESIB regions in the

emission inventories on the 5.6° emission grid. The TOM inventory produces wetland emissions

which have been reduced by up to 50% in the NH summer in the ALCAN and ESIB regions,
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Figure 7.10As Figure 7.4, but for the 5.6° emission grid.

Figure 7.11Total emissions (Tg month−1) for the E SIB, WSP and ALCAN regions in 2008 for
the CTL, INV, VISIT and TOM inventories on the 5.6° emission grid shown in Figure 7.10.

when compared to the a priori CTL inventory. These changes are in goodagreement with the

INV and VISIT inventories. In particular, the INV and TOM inventories have both favoured a late

summer peak in wetland emissions in the ALCAN region, with relatively low emissions in May

and June. The emissions in the WSP region are relatively unchanged, meanwhile.

Figure 7.12 shows the results of a forward simulationcarried out using the TOM emission inven-

tory. The simulation was initialised at January 1, 2008 using output from the CTL simulation

described in Chapter 6. The model grid was identical to the T21L29 set-up described in Chapter

4, which was also used for the inversion which produced TOM. This set-up uses a grid resolution

of 5.6° × 5.6° and 29 vertical levels. The simulation used the FOM advection scheme andthe

Louis boundary layer scheme, so that the results of this simulation are the sameas those prodused

when the forward model is run during the inversion. At each station, the TOM inventory gives
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Figure 7.12CH4 concentration (ppb) at Arctic surface station sites in 2008 from flask measure-
ments (black lines) and a TOMCAT forward model simulation using the Louis PBLscheme and
the CTL emission inventory (purple lines) and the TOM emission inventory produced using the
TOMCAT 4D-Var inversion system (grey lines).

a smaller RMSD (as defined in Section 6.4) than that produced when the CTL inventory is used,

largely due to the decreased atmospheric concentrations produced by TOM in June–November.

The RMSD has been decreased by 23.9–67.4 ppb by the use of the TOM inventory, which corre-

sponds to an improvement of 51.1%–72.5%. However, some observations are still over-estimated

by up to 150 ppb by the model, indicating that changes to the emission inventory may still lead to

improved model results if more flexibility around the a priori were to be allowed inan inversion.

7.5.3 Limitations of the Inversions

Although the TOM emission inventory produced by the inversion described inthis chapter has led

to improved results when a forward model simulation carried out with the new inventory uses the

same set-up as the inversion system, this clearly does not guarantee improvements when the model

set-up is altered. To further investigate the accuracy of the TOM inventory, a one-year simulation

identical to that which produced the results shown in Figure 7.12 was performed, but with the

SOM advection scheme and the Holtslag & Boville boundary layer scheme usedinstead of their

simpler counterparts. The results of this simulation are shown in Figure 7.13. In this case, the

TOM inventory has provided no improvement upon the CTL inventory in terms of the accuracy

of the modelled CH4 concentration at the Arctic stations. The RMSD has in fact increased at
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Figure 7.13As Figure 7.12, but for a TOMCAT forward model simulation using the Holtslag&
Boville PBL scheme rather than the Louis scheme.

three of the stations due to the use of TOM, while there is no significant improvement at the

remaining three station sites. It seems that the inversion has underestimated thenecessary increase

in emissions during the NH winter months, while the decrease in summertime emissions islarger

than necessary to bring modelled concentrations in line with observations.

The limitations of the Louis boundary layer scheme have already been discussed in Chapters 3

and 4, and the fact that the scheme ‘traps’ emissions close to the surface has led to inaccurate

results in the inversion, assuming that the Holtslag & Boville scheme is the more accurate of the

two available schemes. The inverse system is attempting to decrease artificially high summertime

concentrations of CH4 produced by the use of the Louis scheme, which leads to over-compensation

when the Holtslag & Boville scheme is used in the forward model. This implies that thedecreased

emissions in the ESIB and AL CAN regions shown in Figure 7.11 may be exaggerated. In order

to accurately find an updated emission inventory which is consistent with the use of the Holtslag

& Boville scheme and adjoint version of this boundary layer scheme will needto be developed

and used in future inversions.

7.5.4 Differences in the Process-based Models

Clearly, the estimation of the magnitude of NH wetland fluxes differ greatly in the CTL, INV and

VISIT inventories used in this study. As already discussed, the INV inventory is from a synthesis
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inversion, and so contains no diagnosis of the underlying processes ofCH4 emission. However,

the natural emissions in the CTL inventory and the VISIT inventory both come from process-based

bottom-up models, and so the large differences in emission estimates at NH wetlands indicates that

the two may use very different methods to produce their estimates.

The natural wetland emissions from the CTL inventory are provided by the GISS natural emis-

sions inventory using a wetland model described in Matthews and Fung (1987), while the VISIT

inventory estimates wetland emissions using the Vegetation Integrative Simulator for Trace gases

(VISIT) (Ito, 2010). The GISS inventory estimated NH wetland emissions, classified as forested

and non-forested bog, using the fairly crude assumptions, based on thesmall amount of mea-

surements available at the time, that the CH4 emission rate is constant everywhere in this type

of wetland and that the length of the production emission season is 100 days.The VISIT in-

ventory, meanwhile, used a one-dimensional multi-layer scheme for CH4 emission from wetlands

developed by Walter and Heimann (2000), in which CH4 emission was dependent upon diffusive

flux, ebullition (bubbling), plant mediated flux and CH4 production and oxidation in soils. In turn

CH4 production was calculated as a function of biome type, substrate availability, temperature

and inundation. This meant that although the wetland map used by Matthews andFung (1987)

estimated a smaller wetland area in the ALCAN region that that of Ito (2010), emissions were

far greater in the GISS inventory due to the lack of variation in the emission rate and thaw season

length. The VISIT inventory produces atmospheric concentrations whichare more consistent with

observations in the NH summer in the Arctic.

7.6 Summary

This chapter examined the sensitivity of Arctic concentrations of CH4 to surface emissions of the

species, particularly to those in the high latitude NH, and investigated the accuracy of our current

CH4 emission inventories. It was found that surface concentrations of CH4 in the Arctic are highly

sensitive to local emissions such as those from wetlands and thaw lakes in Siberia, Alaska, Canada

and Scandinavia, and that inaccuracies in our estimates of emissions from these sources can greatly

impair our ability to model atmospheric CH4. Using the adjoint TOMCAT model it was found that

in the NH summer, the stations at BRW and ALT are highly sensitive to CH4 emissions from across

the NH on a time scale of at least two months, with large contributions from wetlandregions. The

forward TOMCAT model was then used to find the extent of the influence oflarge seasonal wetland

emissions from Eastern Siberia, the West Siberian Plain and Alaska and Canada in the CTL and

INV inventories. It was found that the CTL inventory, which uses natural emissions from the GISS

inventory, must overestimate the scale of these emissions by up to a factor of 2. In particular, the

emissions in the ALCAN and ESIB regions appear to be responsible for large increases in the

CH4 concentration at BRW and ALT during the NH summer.
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The TOMCAT 4D-Var system was used in order to assimilate Arctic surface measurements of CH4

so that the emission inventory could be constrained to let the model results matchthe observations.

A one-year inversion was performed for 2008, and it was found that, compared with the CTL

inventory, the inversion reduced emissions in the ALCAN and ESIB regions by up to 0.6 Tg

CH4 month−1 during the wetland emission season, a result which is is good agreement with the

INV and VISIT inventories. These reductions corresponded to a decrease in modelled atmospheric

concentrationof CH4 of up to 150 ppb when using the Louis boundary layer scheme and 50 ppb

when using the Holtslag & Boville scheme. There is little change in emissions from the WSP

region.

The 4D-Var inversion system displayed its potential for producing revised estimates of emissions

through the assimilation of observations, although the use of the Louis schememay be responsible

for inaccuracies in the results of the inversion. The creation and use of an adjoint version of

the Holtslag & Boville boundary layer scheme may lead to more accurate updatesto the CH4

emission inventory. Also, an inversion with a long time period of multiple years, allowing for

a spin-up period either side of the inversion period, would produce temporally consistent and

accurate results.





Chapter 8

Summary

8.1 Completion of Aims

The objective of this thesis was to investigate recent variations in the global atmospheric methane

budget using the TOMCAT CTM. As discussed in Chapter 2, the atmosphericCH4 budget is con-

trolled by the balance of a number of sources and sinks, and our understanding of changes to the

global atmospheric growth rate of methane is therefore highly dependent upon a full awareness of

the natures, locations and magnitudes of these fluxes. This study aimed to improve our understand-

ing of this balance through a combination of forward model simulations and inverse modelling.

Through use of these two complementary techniques, the sensitivity of the atmospheric methane

budget to various estimates of emission and destruction processes was revealed, with a specific

focus on the nature of high-latitude northern hemisphere emissions of methanefrom wetlands.

An important first step in the process of modelling the atmospheric concentration of CH4 is to

examine the accuracy of the simulated model transport. This was achieved through comparison of

simulated atmospheric concentrations of SF6 to surface measurements and satellite observations.

The standard model set-up used a 2.8° model grid, an advection scheme which conserved up to

second-order moments (SOM), and a non-local boundary layer mixing scheme. It was found that

with this set-up, the model performed well in comparison to the observations, capturing both the

annual increase and the seasonal cycle at a number of surface stations. This indicated that both

the simulated transport and SF6 emissions in the model are accurate. There is a possibility that

the interhemispheric transport in the model may be slow, however, and thereis too little temporal

variation throughout the southern hemisphere. Although reducing the resolution of the model grid

to 5.6° and changing to an advection scheme which conserved only first-order moments (FOM)

did not significantly reduce the accuracy of the model transport, use of alocal boundary layer

mixing scheme reduced the accuracy of the model in regions close to SF6 emissions. The scheme
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in question has been found in the past to produce slow vertical mixing out ofthe PBL, leading to

a build up of emissions near the surface (Wang et al., 1999), and this was confirmed in this thesis.

Increasing the depth of the surface model layer improved the issue to some extent, although surface

concentrations were still too high in some locations. The standard model set-up also compared

favourably with measurements in the lower troposphere taken on aircraft flights and also with

satellite observations from the ACE satellite in the upper troposphere and lower stratosphere.

Once the accuracy of the transport model had been investigated, a number of forward simulations

of CH4 were carried out. These simulations investigated the effect of changes to the emission

inventory, the atmospheric OH sink and the stratospheric concentration on the tropospheric con-

centration of methane. Two OH fields were examined, provided by Spivakovsky et al. (2000)

and the TOMCAT full chemistry model. The total tropospheric OH provided in the Spivakovsky

field was approximately 13% higher than that from TOMCAT, with a distribution weighted to-

wards the mid-troposphere rather than the surface. Due to the lack of extensive tropospheric OH

observations the two available model OH fields were compared to measurementstaken on the

PEM-Tropics campaign. It was found that the OH field produced by Spivakovsky et al. (2000)

was more consistent than the TOMCAT full chemistry field with the limited observations provided

by the aircraft campaign. The two OH fields performed similarly to one anotherin simulations

of the destruction of atmospheric methyl chloroform, producing similar destruction rates for the

period 2000-2008. However, in forward CH4 simulations, the total TOMCAT OH appeared to be

too low, producing CH4 concentrations that were approximately 100 ppb too high at the surface.

For the period 1995-2005, a simulation was carried out in which stratospheric satellite observa-

tions of CH4 were assimilated into the forward model. Observations were assimilated from the

HALOE satellite until 2003, after which ACE observations were assimilated. This was the first

time that ACE data had been assimilated into the TOMCAT model. It was found that although

assimilated stratospheric CH4 was overall higher than in the standard simulations, assimilation

produced decreased CH4 concentration at the surface, most likely due to subsidence of polar CH4

near the tropopause, which had a lower concentration in the assimilated simulation. This empha-

sises the importance of representing a realistic stratospheric sink for the accurate simulation of

surface CH4.

Forward CH4 simulations were carried out using six emission inventories, each with varyingcon-

tributions from anthropogenic, biomass burning and wetland emissions. Thiswas the first time

that long-term simulations of CH4 with full emission inventories had been carried out using the

TOMCAT model, so that the CH4 distribution was fully determined by the model emissions, trans-

port and chemistry. Each of the emission inventories captured the decrease in the atmospheric

growth rate of CH4 throughout the 1990s to some extent, and five of the six inventories captures

the period of stability in the early 2000s. The CTLE4 inventory, in which anthropogenic CH4
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emissions were provided by the EDGAR V4.0 emission inventory estimated that anthropogenic

emissions had greatly increased since 2002 in line with Asian economic growth.However, it was

found that this meant that the model overestimated the global CH4 concentration in the 2000s.

This implies that for anthropogenic emissions to have risen to the extent estimatedin the CTL E4

inventory, they must have been mitigated by a corresponding decrease in some other emission

process. The VISIT inventory, which used natural CH4 emissions provided from the Vegetation

Integrative Simulator for Trace gases, produced CH4 concentrations which decrease throughout

the 2000s, indicating that emissions throughout this decade was higher thanthe∼530 Tg yr−1

estimated in this inventory.

The seasonal cycle of atmospheric CH4 at a number of surface stations was investigated. At

stations south of 50°N, each emission inventory produces similar results, in very good agreement

with observations (correlations with observations greater than 0.9). This indicates that the seasonal

cycle in the tropics and SH is dependent more upon transport and chemicaldestruction than on

the distribution of emissions. The results at high latitude NH stations vary between inventories,

however, with those using natural emissions provided by the GISS process-based emission model

performing poorly. Since the model transport and OH chemistry had been previously validated,

it was deduced that it was likely that discrepancies in the emission inventorieswere responsible

for the poor representation of the seasonal cycle. Using separate simulations for different regional

emissions, it was found that wetland emissions in Alaska, Canada and Siberiawere likely to be

overestimated in the GISS inventory by up to 100%. The overestimation is likely due to simplified

estimates of emission rates and thaw periods, and emphasises the importance ofreducing the

potential for ‘scaling-up’ errors in bottom-up models.

In order to produce an updated CH4 emission estimate, a 4D-Var inverse version of the TOMCAT

model was developed as part of this study. The inversion system was produced with the aim

of assimilating atmospheric CH4 measurements in order to constrain surface emissions. First, the

adjoint version of the TOMCAT model was coded explicitly, and thoroughly and extensively tested

in order to validate the accuracy of the adjoint transport. The TOMCAT adjoint model was tested

numerically using the adjoint identity test, before the conservation and reciprocity of the adjoint

transport were also tested. The adjoint model was then incorporated into a4D-Var optimisation

code, which could be used in order to assimilate atmospheric observations. The optimisation code

was tested using synthetic observations produced by the TOMCAT model, and it was found that

model error had only a small effect on optimisation of the surface fluxes.

The 4D-Var system was used in order to to assimilate Arctic CH4 observations from a small sample

of surface sites, producing updated monthly-mean surface flux estimates for the year 2008. The

inverse model performed well, reducing the value of the cost function by over 60%, producing

an updated ‘TOM’ CH4 emission inventory which improved upon the CTL inventory when used
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in the TOMCAT model with the Louis boundary layer scheme applied. The inversion confirmed

that wetland fluxes in Alaska, Canada and Eastern Siberia in the GISS inventory needed to be

reduced in order to produce model results consistent with observations,although the extent of the

reductions is unconfirmed due to the inconsistencies produced by the use of the Louis scheme in

the inverse model.

Recent variations in the growth rate of CH4 have highlighted our lack of understanding of the

source and sink processes which contribute to the atmospheric CH4 budget. While a number of

theories have been put forward as to the nature of the steady state reached in the 2000s, and the

subsequent increase in the growth rate in recent years, there is currently no consensus as to the

reasons for the variations. This study has illustrated the difficulties of modelling atmospheric

CH4 and highlighted the importance of a thorough understanding of each process contributing

to variations in the atmospheric CH4 budget. Accurate representation of emissions, destruction

processes and transport are all necessary in order to produce model estimates that are consistent

with observations. The machinery developed within this thesis will provide insight into spatial

and temporal variations in the methane emission cycle, and together with complementary bottom-

up models, will improve our understanding of the processes which controlthe atmospheric CH4

budget.

8.2 Future Work

The 4D-Var system developed as part of this work lends itself to a range of future applications.

A necessary first step, however, is to optimise the speed and memory requirements of the inverse

model, which currently makes long simulations prohibitive. As the system has been explicitly

coded, it will be possible to parallelise it to allow it run on non-local, high-speed computers. The

system can then be applied to a well constrained inversion with a long simulation period. This re-

quires a well-defined background covariance matrix and a large, well filtered observation set. The

resulting inversion should be for one year, after a year of spin-up in order that model-observation

bias does not influence the updated emissions. Repeating this process formultiple years will

provide an idea of how CH4 emissions are varying interannually, and how this influences the at-

mospheric budget. The results of such inversions may be compared to thoseof bottom-up models

in order to provide an indication of the reason for the recent reduction and subsequent increase in

the atmospheric CH4 growth rate. Pre-conditioning of the variable which is minimised in the cost

function, discussed in Courtier et al. (1994), can lead to faster convergence to an optimal solution,

and should be added to the TOMCAT 4D-Var system. The system allows for the assimilation

of large amounts of satellite data, and this provides a high resolution constraint for the assimila-

tion. Satellites such as SCIAMACHY, ACE, HALOE and GOSAT all produce CH4 measurements

which may be assimilated into the TOMCAT 4D-Var model.
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It is likely that the boundary layer scheme in the inverse model will need to be upgraded to the

Holtslag & Boville scheme, as the Louis scheme generally produces poor results. In the inverse

model, slow mixing through the boundary layer towards the surface may lead toan underestimation

of surface fluxes. Although the Holtslag & Boville PBL scheme is a more complicated, non-linear

piece of code, it is possible to produce its adjoint and include it in the inversemodel.

As mentioned in Chapter 3, the isotopic composition of atmospheric CH4 provides information

on its emission, and including this in the inverse and forward models will allow partitioning of

surface fluxes into emission types. This can also provide information on sinks of CH4, such as the

tropospheric OH distribution.

Finally, the inverse model may be extended to other atmospheric species. 4D-Var inversions have

been carried out in the past for CO, CO2, NOX and H2 (e.g. Hooghiemstra et al. (2011); Chevallier

et al. (2005); Yver et al. (2011); Chai et al. (2009)), and now thatthe adjoint transport subroutines

are in place, creating the necessary adjoint chemistry routines is a small step. Palmer et al. (2006)

examined the possibility of inverse modelling of CO2 by coupling its emissions with those of CO,

and this would be a good first step for the new inverse model.
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