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Abstract

Graph states form a class of entangled quantum states that have multiple useful
applications within quantum computing and quantum communication protocols.
The stabilizer formalism offers an efficient mathematical description of graph states
and the effect of operations acting on such states. Here, we consider three sce-
narios where the stabilizer formalism can be utilised to investigate the structure,
manipulation and generation of graph states. First, we propose a method to cal-
culate the purity of reduced states of graph states entirely within the stabilizer
formalism, using only the stabilizer generators for a given state and apply this
method to find the Concentratable Entanglement of graph states. Next, we re-
duce the number of qubits required within a graph state used as a resource for
the measurement based implementation of a general two-qubit unitary, using the
stabilizer formalism to track supplementary operations that are required. Finally,
we examine spin-photon interactions followed by single-qubit measurements as a
process to probabilistically generate states described by the stabilizer formalism,
particularly when the phase shift induced is small.
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Chapter 1

Introduction

1.1 Quantum Information

Quantum computers have the potential to perform specific tasks far more effi-
ciently than their classical counterparts. For example, the Variational Quantum
Eigensolver (VQE) [1, 2] is a quantum algorithm that provides a polynomial speed-
up in finding the ground state of a system, Grover’s algorithm [3] offers a quadratic
speed-up in unstructured searches and Shor’s algorithm [4] is exponentially faster
in factoring integers than classical methods. Other quantum algorithms used
within quantum machine learning [5] range from quadratic [6, 7] to exponential
speed-ups [8, 9] over the best equivalent classical algorithms. Additionally, prov-
ably secure Quantum Key Distribution (QKD) algorithms [10, 11] rely solely on
quantum mechanical properties rather than the sheer computational complexity of
classical protocols. The concept of ‘quantum supremacy’ has been suggested [12],
wherein it may be possible for quantum computers to solve problems that cannot
be approached classically, however this is yet to be decisively demonstrated.

In the simplest case, a quantum computer can consist of a single quantum bit
or qubit. This is any two-level quantum mechanical system where the state of the
system can be either of the two possible states or in some superposition of them.
The concept of superposition, in which a qubit can simultaneously be in more than
one state is an entirely quantum property and is one of the contributing factors to
the additional ‘power’ of a quantum computer. A computation can be performed
by applying quantum operations or gates to the qubit and by measuring the state of
the qubit. To enact more complex quantum computations, a quantum computer
may consist of multiple qubits that undergo quantum gates and measurements.
Further, these qubits may be prepared in such a way that they are said to be
entangled [13, 14], where the state of an individual qubit is dependent on the state
of the other entangled qubits, even when there is spatial separation. This quantum
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phenomenon of entanglement is an additional provider of the time and security
advantages that quantum computers can provide over classical computers.

One proposed implementation of quantum computing is via the one-way quan-
tum computer [15, 16], which consists of a lattice-like structure of entangled qubits,
and is capable of performing quantum circuits and algorithms via measurements
of individual qubits within the lattice in a process known as Measurement Based
Quantum Computing (MBQC). The states of entangled qubits belong to a class
of quantum states known as graph states [17], which are an important resource
within many quantum computing procedures.

Rather than operating quantum computers in isolation, quantum networks aim
to connect multiple quantum computers to establish communication channels ca-
pable of transmitting quantum information. In time, this could provide a quantum
internet [18, 19] on a global scale with the aid of technologies such as quantum
satellites [20]. For practical, real-world communication, the distance quantum in-
formation must be shared across is of the order of thousands of kilometres. Simply
sending individual qubits across such large distances is not feasible. Often qubits
for use within communication protocols are realised physically as photons that are
sent along optical fibres. However, the probability of a photon being absorbed in-
creases exponentially as the length of the fibre it is sent along increases. Further,
if a photon is successfully transmitted, the fidelity of the shared entangled state
decreases exponentially as the distance increases.

Quantum teleportation [21] is used in quantum communication to transfer the
information encoded within the state of single qubit held by one party to a differ-
ent party at another location. In teleportation the qubit itself is not sent between
the parties and a copy cannot be produced and transmitted due to the No-Cloning
Theorem [22, 23]. Instead, teleportation relies on the two parties sharing an entan-
gled resource state in the form of a Bell pair. The first party measures the qubits
they hold and sends information regarding the outcome of this measurement via a
classical communication channel, which is used by the second party to perform a
corrective operation to their qubit that will subsequently be in the desired state.
This demonstrates the need for shared entangled resource states within quantum
communication protocols.

Quantum repeaters [24, 25] are used to generate entangled pairs over large dis-
tances. The full distance is split into shorter sections where entangled pairs are
established. This entanglement can be ‘swapped’ [26] in an extension of quantum
teleportation to combine two entangled pairs across a greater distance. Purifica-
tion protocols [27, 28] are used on multiple copies of noisy pairs established via
entanglement swapping to probabilistically increase the fidelity of the shared state.
Several repeater designs have subsequently been put forward including schemes
that perform entanglement generation and swapping using atomic ensembles and
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single-photon detectors [29], or two-photon detectors [30, 31]. Other proposals use
multiplexing [32], which offers multiple opportunities to establish entanglement
connections, and several schemes make use of spin states within Nitrogen-Vacancy
(NV) centres [33–35]. Graph states can be used as a resource within quantum
repeaters, including in the repeater designs of [36, 37].

Another method to address errors in quantum states due to noise or decoher-
ence, where information is ‘leaked’ to the environment, is through Quantum Error
Correction (QEC) [38, 39]. QEC encodes a quantum state within a larger entan-
gled state that can be measured without disturbing the information to determine
and correct any errors. The stabilizer formalism was first introduced by Gottes-
man [40] to provide a convenient and concise mathematical description of certain
QEC codes. However, the stabilizer formalism can also be applied to graph states,
which is the focus of this work.

1.2 Thesis Outline

Chapter 2 covers the mathematical framework of quantum mechanics, with an
emphasis on the class of entangled states known as graph states [17] and their
concise description using the stabilizer formalism [40]. The subsequent chapters
address different scenarios where graph states and the stabilizer formalism are
utilised. These chapters are independent of one another and each should be com-
prehensible with the aid of the background material of Chapter 2; the presented
arrangement simply corresponds to the order in which the work was completed.

In Chapter 3 we analyse the entanglement structure of graph states by calcu-
lating the purity of reduced states of graph states entirely within the stabilizer
formalism, using only the stabilizer generators for a given state. We use these
results to evaluate the Concentratable Entanglement [41] for several graph state
examples, since this is an entanglement measure defined in terms of reduced state
purities.

Chapter 4 presents an adapted version of Measurement Based Quantum Com-
putation (MBQC) [15, 16], in which a graph state with specified additional oper-
ations is used as an entangled resource state to perform a two-qubit unitary. The
stabilizer formalism and rules for graph state measurement are applied to reduce
the number of qubits required to implement the protocol.

In Chapter 5 we study how spin-photon interactions in a cavity [42, 43] can
be used to generate stabilizer states probabilistically even when the phase shift
induced by the interaction is small. The scheme acts as a heralded Bell state source
and can be used to produce larger photonic states that are locally equivalent to
graph states. We note that only certain aspects of the interaction and subsequent
measurement can be tracked using the stabilizer formalism.
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Finally, we summarise the work, discussing how the stabilizer formalism was
utilised in the three scenarios and we consider future extensions of each project.
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Chapter 2

Mathematical Background

2.1 Postulates of Quantum Mechanics

Quantum Mechanics requires rules, or postulates, in order to mathematically for-
mulate descriptions of physical systems [44].

States: A state |ψ⟩ of a physical system is a ray within a Hilbert space H over
the complex numbers C.

A ray is the set of all vectors describing the same state. Vectors that differ by
a phase factor λ ∈ C, λ ̸= 0 are elements of the same ray.

A qubit is a two-level system, with two-dimensional Hilbert space H = C2. A
general qubit state is written in the form

|ψ⟩ = α |0⟩+ β |1⟩ , (2.1)

where α, β ∈ C, |α|2 + |β|2 = 1 to normalise the state, and the states |0⟩ and |1⟩
form an orthonormal basis known as the computational basis.

Observables: A physical quantity of a system corresponds to an observable,
which is a self-adjoint or Hermitian operator A in Hilbert space.

An operator is Hermitian if A = A†. A Hermitian operator has a complete set
of eigenstates that form an orthonormal basis for H and real eigenvalues, which
are the possible values of the physical quantity associated with the observable.
An eigenvalue is degenerate if it is associated with multiple eigenstates. Each
eigenstate |ϕjk⟩ of A is related to its corresponding eigenvalue aj ∈ R by

A |ϕjk⟩ = aj |ϕjk⟩ . (2.2)
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Furthermore, each eigenvalue aj is associated with a projection operator Pj on a
d-dimensional subspace spanned by the eigenstates |ϕjk⟩,

Pj =
d∑

k=1

|ϕjk⟩ ⟨ϕjk| , (2.3)

where d is the multiplicity of the eigenvalue. The spectral decomposition of the
operator A is

A =
∑
j

ajPj. (2.4)

Measurements: i. When an observable is measured the possible outcomes
are the eigenvalues. The probability of obtaining outcome aj is

p(aj) = ⟨ψ|Pj|ψ⟩ . (2.5)

The expectation value of the observable A for a system in the state |ψ⟩ is

⟨A⟩ = ⟨ψ|A|ψ⟩ =
∑
j

ajp(aj). (2.6)

When measuring a single qubit, the possible outcomes are often labelled as 0 and
1 according to the index and listed order of the eigenstates of the measured ob-
servable, rather than the corresponding eigenvalue. This assigns the eigenvalues a
bit value.

ii. Following a measurement with outcome aj, the state of the system is pro-
jected onto the normalised state

|ψ⟩ → Pj |ψ⟩√
⟨ψ|Pj|ψ⟩

. (2.7)

Time Evolution: The time evolution of a closed quantum system is given by
a unitary transformation, which is defined in terms of the Hamiltonian H of the
system

U(t, t0) = e−iH(t−t0)/ℏ. (2.8)

An operator is unitary if UU † = U †U = I. A state |ψ(t0)⟩ at an initial time t0
is transformed by the unitary operator U(t, t0) to the state |ψ(t)⟩ at time t;

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ . (2.9)
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Figure 2.1: The Bloch Sphere showing a general single-qubit state |ψ⟩ and the
eigenstates of the Pauli operators.

2.2 Quantum States

2.2.1 Single-qubit states

One way to parameterise a single-qubit state satisfying the conditions of Eq. (2.1)
is

|ψ⟩ = cos(θ/2) |0⟩+ eiφ sin(θ/2) |1⟩ , (2.10)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π. A state corresponds to a point on the unit
sphere in R3 by using θ and φ as the parameters for spherical coordinates where

x = sin(θ) cos(φ),

y = sin(θ) sin(φ), (2.11)

z = cos(θ).

This representation of states is known as the Bloch sphere, shown in Fig. 2.1.

The Pauli matrices are Hermitian, traceless and unitary 2× 2 matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2.12)
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X acts as a bit flip operation and Z as a phase flip operation. Occasionally the
identity matrix

I =
(
1 0
0 1

)
(2.13)

is included in the set of Pauli matrices, as the four form a basis for 2×2 Hermitian
matrices. Each Pauli matrix has eigenvalues ±1 and the eigenstates for each
operator are

X : |+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

,

Y : |+i⟩ = |0⟩+ i |1⟩√
2

, |−i⟩ = |0⟩ − i |1⟩√
2

, (2.14)

Z : |0⟩ , |1⟩ .

Note that the Z eigenstates form the computational basis.
The Bloch sphere and Pauli matrices come hand-in-hand, as the eigenstates of

each Pauli matrix correspond to the points on the Bloch sphere that intersect the
x, y and z axes, shown in Fig. 2.1. Further, when exponentiated, the Pauli matrices
are generators of single-qubit rotations around the corresponding Cartesian axis
of the Bloch sphere by an angle θ,

UX(θ) = e−iθX/2 =

(
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

)
,

UY (θ) = e−iθY/2 =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (2.15)

UZ(θ) = e−iθZ/2 =

(
e−iθ/2 0
0 eiθ/2

)
.

2.2.2 Density Matrices

The quantum state |ψ⟩ can also be associated with a density operator ρ, which
can be defined as

ρ = |ψ⟩ ⟨ψ| . (2.16)

However, there are cases where the state of a system may not be known and
cannot be written as a vector due to incomplete information, for example due to
uncertainty in the state preparation procedure or when describing a subsystem
of a larger system. Here, a density operator is used to describe the system as a
probabilistic mixture of states

ρ =
∑
i

pi |ψi⟩ ⟨ψi| , (2.17)
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where pi is the probability that the system is prepared in the state |ψi⟩. The
decomposition in Eq. (2.17) is not unique. Such a state is known as a mixed state.
For a bipartite system with density operator ρ made up of two subsystems A and
B, the density operator for the reduced state of one subsystem is found by tracing
out the other subsystem, i.e. ρA = TrBρ.

Example. A state of two qubits is described by the density operator

ρ =
1

7
|00⟩AB⟨00|+

3

7
|01⟩AB⟨01|+

1

7
|10⟩AB⟨10|+

2

7
|11⟩AB⟨11| . (2.18)

The system is made up of two subsystems A and B, which consist of the first qubit
and second qubit respectively. The density matrix for the reduced state of qubit
1 is found by tracing out qubit 2,

ρA = TrBρ =
4

7
|0⟩A⟨0|+

3

7
|1⟩A⟨1| . (2.19)

Similarly, the density matrix for the reduced state of qubit 2 is found by tracing
out qubit 1,

ρB = TrAρ =
2

7
|0⟩B⟨0|+

5

7
|1⟩B⟨1| . (2.20)

The purity of a quantum state with density matrix ρ is Trρ2. A state is pure
if Trρ2 = 1. Otherwise a state is a mixed state where the purity is bound below
by 1/d, where d is the dimension of the Hilbert space of the state.

The von Neumann entropy for a quantum state with density matrix ρ is

S(ρ) = −Tr(ρ ln ρ). (2.21)

This is easily calculated for a density matrix ρ written in the diagonal form of Eq.
(2.17) where it reduces to the classical entropy

S = −
∑
i

pi ln pi. (2.22)

The von Neumann entropy provides a measure of the amount of missing informa-
tion that would be required to make ρ a pure state. The measure can also be
applied to reduced states.

2.3 The Stabilizer Formalism

A quantum system may consist of n qubits, with a Hilbert space given by the tensor
product of the Hilbert spaces of each individual qubit, H = (C2)⊗n. Writing the
state of n qubits as a linear combination of computational basis states requires up
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to 2n terms. This can lead to lengthy calculations when considering operations on
the state. Instead, certain quantum states can be described fully by n terms by
using the stabilizer formalism, first introduced by Gottesman to describe Quantum
Error Correction (QEC) codes [40].

An n qubit state |ψ⟩ is a stabilizer state if it can be associated with a stabilizer
group Sψ with elements S ∈ Sψ that satisfy

S |ψ⟩ = |ψ⟩ . (2.23)

Each stabilizer element S is also an element of the n-qubit Pauli group. The Pauli
group for a single qubit is

G1 = {±1,±i} × {I, X, Y, Z}, (2.24)

which is the group generated by the Pauli matrices. For n qubits, the Pauli group
is Gn = G⊗n

1 . The stabilizer forms an Abelian group under multiplication and the
product of any two elements is itself an element of the stabilizer.

An Abelian group (G, ∗) is a set G and a binary operation ∗ on G satisfying
the group axioms and an additional condition of commutativity:

• The group is closed under the operation ∗, i.e. a ∗ b ∈ G for all a, b ∈ G.

• The operation ∗ is associative, i.e. a ∗ (b ∗ c) = (a ∗ b) ∗ c for any a, b, c ∈ G.

• An identity element e ∈ G exists and satisfies e ∗ a = a = a ∗ e for all a ∈ G.

• There exists an inverse element a−1 ∈ G for each a ∈ G such that a ∗ a−1 =
e = a−1 ∗ a.

• The operation ∗ is commutative, i.e. a ∗ b = b ∗ a for all a, b ∈ G.

The stabilizer Sψ for an n qubit state contains 2n elements, which does not
appear to simplify the description of an n qubit state. However, the stabilizer and
therefore the associated quantum state can be fully specified by n terms known
as stabilizer generators. These n generators together with the group operation of
multiplication can be used to recover the full stabilizer.

When an operator U is applied to the stabilizer state |ψ⟩, the elements of the
stabilizer S ∈ Sψ are updated according to

S → USU †. (2.25)

The updated stabilizer element stabilizes the state where the operator U is applied
since

[USU †]U |ψ⟩ = US |ψ⟩ = U |ψ⟩ , (2.26)
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using Eq. (2.23). Only the stabilizer generators for the state |ψ⟩ need to be updated
when U is applied, as they can be used to generate the full stabilizer for U |ψ⟩. In
order for the updated state to be a stabilizer state in itself, the operator U must
be an element of the Clifford group. The Clifford group Cn contains all unitary
operators that result in an element of the Pauli group when applied to an element
of the Pauli group. Every element U ∈ Cn satisfies

UPiU
† = Pj, (2.27)

where Pi, Pj ∈ Gn. The Clifford group is generated by the Hadamard, phase and
Controlled-Z (CZ) gates. The Hadamard gate, H, transforms the computational
basis states to the X eigenstates and vice-versa,

H =
1√
2

(
1 1
1 −1

)
. (2.28)

The phase gate, Φ, is a rotation by π about the z axis,

Φ =

(
1 0
0 i

)
. (2.29)

The CZ gate is a two-qubit gate and applies a Pauli Z operation to the target
qubit only when the control qubit is in the state |1⟩,

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (2.30)

An important theoretical result relating to operations and measurements that
can be managed and described by the stabilizer formalism is the Gottesman-Knill
Theorem [45], which is itself derived from and proved by the construction of the
formalism and Clifford group.

Gottesman-Knill Theorem. A quantum computer acting on a stabilizer state
applying only measurements of Pauli group operators and Clifford operations that
may depend on previous measurement outcomes can be perfectly simulated in
polynomial time on a probabilistic classical computer.

The stabilizer formalism allows for quantum computations involving stabilizer
states, Clifford operations and Pauli measurements to be efficiently tracked. A
stabilizer state of n qubits is specified by n(2n + 1) classical bits. Each of the n
generators requires 2 bits to determine the n Pauli matrices (including the identity)
and a further bit for the phase ±1. The effect of a Clifford operation U is tracked
by updating each generator using Eq. (2.25), which results in another stabilizer
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state. Similarly, a quantum computation involving a Pauli measurement of a
stabilizer state can be treated using only the stabilizer generators by manipulating
the generators for the remaining state to commute with the Pauli operator. This
is discussed in more detail in Section 2.5.

An n qubit state requires n stabilizer generators to be fully described, as each
generator halves the dimension of the remaining subspace until only one possible
state remains. However stating fewer than n stabilizer generators defines a sub-
space of the n qubit Hilbert space with dimension larger than 1. The states that
span this subspace all satisfy Eq. (2.23) for each of the stated stabilizer genera-
tors. In QEC — the original proposed application for the stabilizer formalism, a
state that requires protection from errors can be encoded within the states that
span such a subspace. Since Eq. (2.23) is satisfied, measurement of any of the
stabilizer generators should result in the outcome +1. However if an error occurs,
measurement of certain generators can result in the outcome −1. The pattern of
the minus signs within the measurement outcomes, known as the error syndrome,
identifies the error that has occurred, which can subsequently be corrected. To
demonstrate a stabilizer code, consider the simple example of a three qubit code
to detect a single bit flip error [46].

Example. A single qubit state is encoded into a state of three physical qubits,

α |0⟩+ β |1⟩ encode−−−→ α |000⟩+ β |111⟩ . (2.31)

The stabilizer generators for the two-dimensional subspace spanned by the states
|000⟩ and |111⟩ are Z1Z2 and Z2Z3. By measuring these generators and recording
the outcomes, the qubit that has been affected by a bit flip error can be identified.

Error Syndrome
None +1,+1
X1 −1,+1
X2 −1,−1
X3 +1,−1

2.4 Graph States

One class of quantum states to which the stabilizer formalism can be applied is
graph states [17]. These are associated with mathematical graphs and have a
wide range of applications, including QEC [40, 47, 48] and the One-Way Quantum
Computer [15, 16].

A graph G = (V,E) consists of a set of vertices V and a set of edges E that
connect pairs of vertices. When used to visualise quantum states, each vertex
represents a qubit in the state |+⟩, and edges denote CZ operations between pairs
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of qubits. The case where a graph state forms a regular lattice in one or more
dimensions is known as a cluster state.

The neighbourhood n(a) of a vertex a ∈ V is the set of vertices connected to
the selected vertex by a single edge. In a graph state this identifies the qubits that
jointly undergo a CZ operation with qubit a. For a graph state consisting of n
qubits, an n×n adjacency matrix A can also be used to define the neighbourhoods
within a graph, with entries Aij = 0 where vertices i and j are not connected and
Aij = 1 where i and j are joined by an edge.

To describe graph states within the stabilizer formalism, each vertex a within
the graph can be associated with a stabilizer generator of the form

Sa = Xa

∏
b∈n(a)

Zb. (2.32)

Example. Fig. 2.2 shows a graph with four vertices that represents a quantum
state of four qubits. By observation of the edges within the graph, the neighbour-
hood n(a) for each vertex a ∈ V is found and the qubits that jointly undergo CZ
operations are determined.

Qubit a Neighbourhood n(a)
1 {2}
2 {1, 3, 4}
3 {2, 4}
4 {2, 3}

The sets of neighbouring qubits for each qubit within the graph are used in
Eq. (2.32) to find the stabilizer generators of the four qubit state:

S1 = X1Z2

S2 = Z1X2Z3Z4

S3 = Z2X3Z4

S4 = Z2Z3X4.

(2.33)

2.5 Pauli Measurements

Performing a measurement of a Pauli operator on a single qubit of a graph state
can be considered within the stabilizer formalism. As an immediate consequence
of such a measurement, the measured qubit is removed from the graph state.

The simplest measurement to describe on a graph state is that of the Pauli Z
operator on a single qubit. Depending on the measurement outcome with possible
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Figure 2.2: A four qubit graph state.

values +1 or −1, the individual qubit is in one of the two eigenstates of the Z
operator, |0⟩ or |1⟩ with stabilizer generator Z or −Z respectively.

Though the measured qubit is disconnected from the graph state, it still affects
the remaining state due to its entanglement prior to the measurement. When qubit
a ∈ V is measured the graph becomes G′ = G − {a} where all edges to vertex
a are removed. The state of the remaining qubits is U |G− {a}⟩ where U is a
unitary operator determined by the measurement outcome. For the outcomes ±1
the unitaries are [17]

U+ = I and U− =
∏
b∈n(a)

Zb. (2.34)

In the stabilizer formalism a stabilizer generator S ′
b for each remaining vertex

b ∈ V ′ is determined using Eq. (2.32). Then the unitary operator corresponding
to the outcome is applied to each generator as US ′

bU
† to give the generators for

the state U |G− {a}⟩.
An alternative method, which will be used more prominently in this work, is to

take the original set of stabilizer generators for |G⟩ and set the stabilizer generator
for the measured qubit to ±Za depending on the measurement outcome. The
generators for qubits that were not within the neighbourhood of qubit a remain
unchanged. However the generators for qubits within the neighbourhood of the
measured qubit, which contain the term Za, are multiplied by the new generator
±Za, allowed by the group structure of the new stabilizer. This enables the new
stabilizer generators to be found without explicitly drawing the graph representing
the quantum state.

Similar rules and unitary operators are given [17, 49] for measurements in the
X and Y directions, which are considered to be more complex. An X direction
measurement results in a graph and unitary operators that depend on a selected
qubit b0 in the neighbourhood of a. A Y measurement of qubit a inverts the
subgraph containing the qubits in n(a), which removes qubit a. Within the sta-
bilizer formalism the stabilizer generators for the remaining state following an X
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or Y measurement are found by setting the generator for the measured qubit to
correspond to the appropriate eigenstate of the X or Y Pauli operator and using
the group structure of the stabilizer to find the generator associated with each
remaining qubit. Pauli X and Y measurements are explained in more detail and
applied in Chapter 4.

2.6 Quantum Entanglement

Entanglement [13, 14] is a phenomenon where spatially separated systems exhibit
correlated behaviour and is not present within the classical description of the
physical world. It is an essential resource for quantum communication in protocols
such as teleportation [21], quantum computing and Quantum Key Distribution
(QKD) [10, 11]. Entanglement measures can be used to analyse the structure
of entanglement within a quantum state and determine states that can be used
within quantum information transmission.

Entanglement measures must satisfy two standard postulates [50]:

1. Any measure must be monotonic.

The value of the measure cannot increase under Local Operations and Clas-
sical Communication (LOCC), where results from operations on one part of
a system would be transmitted and used to determine further operations on
another subsystem.

2. Any measure must be zero for separable states.

A separable state can be written as the product of the individual states of
any subsystems.

Entanglement across the two subsystems within a bipartite quantum state is
well understood. A widely used quantitative measure is entanglement of forma-
tion [51], which for pure states coincides with the von Neumann entropy of the
reduced state of either subsystem [52, 53], known as the entropy of entanglement.
The definition of entanglement of formation can be extended to mixed states by
considering ensembles of pure states.

Concurrence is an entanglement measure for a two-qubit state [54]. It is given
by

C(ψ) = | ⟨ψ|ψ̃⟩ |, (2.35)

where |ψ̃⟩ = Y |ψ∗⟩ is the spin flip state with |ψ∗⟩ denoting the complex conjugate
of the state |ψ⟩ [55]. On the Bloch sphere, complex conjugation is equivalent to
reflection in the x-z plane and applying the Pauli Y operator is a rotation by π
about the y-axis.
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Though it would appear that concurrence provides a new measure of the en-
tanglement of two qubits, it is related to the entanglement of formation by a
monotonic function [54]. Concurrence can be generalised from two qubit states to
apply to pure states with bipartite entanglement [56].

For two-qubit states, there is only one type of entanglement, seen in the max-
imally entangled Bell states:

|Φ±⟩ = |00⟩ ± |11⟩√
2

,

|Ψ±⟩ = |01⟩ ± |10⟩√
2

.

(2.36)

Together these states form the Bell basis, an orthonormal basis for the four dimen-
sional Hilbert space for two qubits. Entanglement of formation can be interpreted
as an upper limit on how many Bell pairs can be distilled from a state, or equiv-
alently, how many were consumed in forming the state. Bell states are stabilizer
states with stabilizer generators:

State S1 S2

|Φ+⟩: X1X2 Z1Z2

|Φ−⟩: −X1X2 Z1Z2

|Ψ+⟩: X1X2 −Z1Z2

|Ψ−⟩: −X1X2 −Z1Z2.

(2.37)

Though the Bell pairs are not graph states, since their stabilizer generators are
not of the form of Eq. (2.32), they are Local Unitary (LU) equivalent. The Bell
states can be transformed to the two-qubit graph state by applying specific Clifford
group operators to single qubits within each state.

Entanglement in multipartite states is more difficult to characterise and quan-
tify, as the ways in which a state can be entangled increases with the number of
parties involved. A widely cited example of different kinds of entanglement, first
discussed by Dür et al. [57], is demonstrated when considering three party entan-
glement, as the entanglement present in a three qubit GHZ state 1 differs from that
in a three qubit W state 2. It is not possible to transform either state to the other
using LOCC. Several existing multipartite measures are functions of bipartite en-
tanglement measures [58–60], sometimes considered over multiple bipartitions of
the state. Multipartite entanglement measures that are computationally simple
are often favoured.

1|GHZ⟩ = (|000⟩+ |111⟩)/
√
2

2|W⟩ = (|100⟩+ |010⟩+ |001⟩)/
√
3
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The Greenberger-Horne-Zellinger (GHZ) state [61, 62] is of further interest as
it is a stabilizer state. The GHZ state for n qubits is

|GHZ⟩ = |0⟩⊗n + |1⟩⊗n√
2

, (2.38)

and has stabilizer generators [63]

S1 = X1X2X3 · · ·Xn−1Xn

S2 = Z1Z2

S3 = Z2 Z3 (2.39)

...

Sn = Zn−1Zn.

The GHZ state is LU equivalent to the star graph state, in which a central qubit
jointly undergoes a CZ operation with each outer qubit. To transform between the
star graph and GHZ state a Hadamard operation is applied to each of the outer
qubits.
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Chapter 3

Concentratable Entanglement of
Graph States

The entanglement present in graph states makes them a useful resource in quantum
information processing. When used for Measurement Based Quantum Computa-
tion (MBQC) [64] and the One-Way Quantum Computer [15, 16], the specific
computation dictates the structure of the graph state. Conversely, the entangle-
ment structure of a graph state determines its effectiveness in applications such as
the quantum repeater [24, 36, 37], QEC codes [40, 47] and quantum secret shar-
ing [65]. An entanglement measure is required to investigate the structure of the
multipartite entanglement within a graph state.

A recently proposed multipartite entanglement measure is Concentratable En-
tanglement [41]. This is shown to be a valid pure state entanglement measure
[41], as it satisfies the two standard postulates for entanglement measures [50]
concerning monotonicity under LOCC and vanishing on separable states. Further
properties of the measure are demonstrated including subadditivity and conti-
nuity. When defined for different cuts of qubits within a state, Concentratable
Entanglement relates to several existing measures [54, 56, 58–60, 66, 67], making
it a candidate for adoption as the universal multipartite entanglement measure
of pure states. Like other measures, one approach to calculating Concentratable
Entanglement is to consider bipartitions of the multipartite quantum state. The
purities of the corresponding reduced density matrices are required to evaluate the
Concentratable Entanglement.

The multipartite entanglement of graph states has previously been investigated
in terms of Schmidt measure and Schmidt rank [17, 68], which can be challenging to
compute. Concentratable Entanglement offers a new measure that can be applied
to graph states. Using the stabilizer formalism, we have developed a method reliant
only on the stabilizer generators for determining reduced state purities and thus
Concentratable Entanglement for graph states. This allows for calculation of the
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Concentratable Entanglement for examples such as single qubits in graph states,
for subsets of qubits within graph states proposed for use in quantum repeaters
and as a measure of the overall entanglement for any graph state.

This chapter is largely based on [69] with any mathematical background infor-
mation covered within Chapter 2 omitted to avoid repetition and an update to the
discussion regarding mixed states.

3.1 Concentratable Entanglement

Concentratable Entanglement [41] can be used as a measure of multipartite en-
tanglement of a pure quantum state |ψ⟩. For a state of n qubits with labels in
S = {1, . . . , n}, the Concentratable Entanglement can be calculated for the full
set to determine the overall entanglement, or it can be applied to any non-empty
subset s ⊆ S to investigate the structure of the entanglement within the state.
Operationally, the Concentratable Entanglement corresponds to the probability of
producing Bell pairs in a SWAP test [70]. The Concentratable Entanglement of |ψ⟩
can be defined in terms of SWAP test outcomes, making it possible to efficiently
calculate its value using quantum computers and two copies of |ψ⟩.

However, without the physical resource of a quantum computer, the definition
of the Concentratable Entanglement in terms of purities still offers a method to
determine the entanglement of a (subset of a) state. For a non-empty set of qubit
labels s ⊆ S, the Concentratable Entanglement is [41]

C|ψ⟩(s) = 1− 1

2|s|

∑
α∈P(s)

Trρ2α, (3.1)

where ρα is the density matrix of the reduced state with qubits labelled by the set
α, which is a subset of the power set P(s). This requires the calculation of up to
2n purities, including the trivial case Trρ2∅ = 1.

3.2 Purities of Reduced Graph States

Calculating the purities required within the Concentratable Entanglement relies on
the reduced states of different subsets of qubits. Within the stabilizer formalism,
a reduced state can be described as a mixture of several pure states, each of which
has its own set of stabilizer generators. We show that the number of distinct sets
of stabilizer generators corresponds to the purity of the reduced state that the sets
of generators collectively describe.
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Consider a bipartition (A,B) of qubits within the graph G. The reduced state
of the qubits in B is found by tracing out the qubits in A

ρB = TrA(|G⟩ ⟨G|). (3.2)

This partial trace is equivalent to measuring the qubits in A and discarding the
outcome. These measurements can be performed in the Z direction, where the
outcomes ±1 each occur with probability 1/2.

Through repeated application of the Z measurement rule and unitaries given
in Eq. (2.34), and considering all possible outcomes, the density operator for the
reduced state of the qubits in B is

ρB =
1

2|A|

∑
z∈FA

2

U(z) |G− A⟩ ⟨G− A|U(z)†, (3.3)

where F2 is the finite field of two elements {0, 1}. An element of the finite field FA2
is a bitstring z of length |A|. In FA2 addition and subtraction are equivalent and
performed modulo 2 without carry. The local unitaries are [17]

U(z) =
∏
a∈A

( ∏
b∈n(a)∩B

Zb

)za

, (3.4)

where za = 0 represents the outcome +1 and za = 1 for −1. Within the unitaries,
only qubits in the neighbourhood of measured qubits which are also in B need
to be considered. This is because the individual qubits in A can be measured in
any order, making it possible for neighbourhood qubits to already be disconnected
from the graph. Further, Zb for b ∈ A has no effect on the state |G− A⟩, which
does not contain qubits in A.

For completeness, we prove the following properties of these unitary operators
that have previously been stated and applied [17], as they provide the basis for
proving our own result regarding the purities of reduced states.

Lemma. (Hein-Eisert-Briegel)

1. For different measurement outcomes z and z′ to give the same unitary
operator, i.e. U(z) = U(z′), the bitstrings must satisfy [17]

U(z− z′) = I. (3.5)

2. If U(z) ̸= U(z′) then the states U(z) |G− A⟩ and U(z′) |G− A⟩ are
orthogonal.
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Proof. 1. Using the definition of the unitary operator in Eq. (3.4),

U(z− z′) =
∏
a∈A

( ∏
b∈n(a)∩B

Zb

)za−z′a

=
∏
a∈A

( ∏
b∈n(a)∩B

Zb

)za ∏
a′∈A

( ∏
b′∈n(a′)∩B

Zb′

)−z′
a′

=
∏
a∈A

( ∏
b∈n(a)∩B

Zb

)za ∏
a′∈A

( ∏
b′∈n(a′)∩B

Z−1
b′

)z′
a′

= U(z)U(z′)†.

(3.6)

This is equal to the identity

U(z− z′) = U(z)U(z′)† = I (3.7)

and by right multiplying by U(z′), this gives U(z) = U(z′).

2. If U(z) ̸= U(z′) then U(z)U(z′)† ̸= I using the above proof. U(z)U(z′)†

is a product of Pauli Z operators, as shown in Eq. (3.6), which in the
simplest case consists of a single operator Zj where j ∈ B. Qubit
j in the remaining graph G′ = G − A is associated with a stabilizer
generator S ′

j in the form of Eq. (2.32) that satisfies S ′
j |G′⟩ = |G′⟩. The

inner product of the states U(z) |G− A⟩ and U(z′) |G− A⟩ is

⟨G′|U(z′)†U(z) |G′⟩ = ⟨G′|Zj |G′⟩
= ⟨G′|ZjS ′

j |G′⟩
= ⟨G′|ZjXj

∏
b∈n(j)Zb |G′⟩

= ⟨G′| (−XjZj)
∏

b∈n(j)Zb |G′⟩
= −⟨G′| (Xj

∏
b∈n(j)Zb)Zj |G′⟩

= −⟨G′|S ′†
j Zj |G′⟩

= −⟨G′|Zj |G′⟩
= −⟨G′|U(z′)†U(z) |G′⟩ .

(3.8)

This is satisfied only when ⟨G′|U(z′)†U(z) |G′⟩ = 0 so the states U(z) |G− A⟩
and U(z′) |G− A⟩ are orthogonal.

More generally U(z)U(z′)† can be written as

U(z)U(z′)† = Zj
∏
c∈C

Zc (3.9)
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where C is a subset of B \j.
∏

c∈C Zc commutes with S ′
j so replacing Zj

by the more general expression for U(z)U(z′)† in Eq. (3.8), the states
U(z) |G− A⟩ and U(z′) |G− A⟩ satisfy ⟨G− A|U(z′)†U(z) |G− A⟩ = 0
and hence are orthogonal. □

The unitary operators U(z) can used within the stabilizer formalism to find
the reduced state of qubits in B. The set of stabilizer generators for each outcome
must be considered separately. The remaining graph G − A can be found by
removing all edges to qubits in A and the stabilizer generator S ′

b for each qubit
b ∈ B is given by Eq. (2.32). Then for each outcome, the corresponding unitary
operator must be applied to each stabilizer generator according to U(z)S ′

bU(z)
†,

giving a new stabilizer for each unitary operator.
An alternative method does not require calculation of the unitary operators

corresponding to each measurement outcome. Instead, in the set of stabilizer
generators for the original graph G, the stabilizer generator for each qubit a ∈ A
can be set to ±Za. Then the group structure of the stabilizer can be used to
determine the stabilizer generators for the remaining graph only in terms of qubits
in B. This process is repeated to give a set of stabilizer generators for each
measurement outcome.

The following theorem provides a link between the sets of stabilizer generators
that describe a reduced state and the purity of that reduced state. This is the
main component in calculating the Concentratable Entanglement.

Theorem 1. Consider a graph state bipartitioned into sets A and B. Let k ∈ N
denote the number of distinct sets of stabilizer generators for the different
measurement outcomes when measuring the qubits in A. The purity of the
reduced state of qubits in B is then

Trρ2B =
1

k
. (3.10)

Proof. When measuring the qubits in A there are 2|A| possible outcomes. Each
outcome is represented by a bitstring z ∈ FA2 , which is associated with a
unitary operator U(z). Therefore there are 2|A| unitary operators. However,
these unitaries need not be unique.

For any graph state and subset A of qubits, the outcome represented by the
bitstring made entirely of zeros leads to the identity operator

U(0) = I. (3.11)

If U(0) is the sole identity operator, operators U(z) and U(z′) are equal when
z − z′ = 0 using the Hein-Eisert-Briegel Lemma. This is solved trivially by
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z = z′ but has no further solutions. Therefore when one operator is the
identity, all remaining unitaries take distinct values.

Consequently, for any unitary to occur more than once, there must be further
operators equal to the identity. If a second operator is the identity, i.e.,
U(w) = I for some w ̸= 0, the remaining elements in the finite field can
be matched into pairs whose difference modulo 2 is w. Therefore there are
2|A|/2 = 2|A|−1 different unitaries, each of which occurs twice.

If a third unitary is set to the identity, U(v) = I for v /∈ {0,w}, then it
follows that a fourth unitary, U(v′) where v′ = v − w, must also be the
identity. Hence

U(0) = U(w) = U(v) = U(v′) = I. (3.12)

For any remaining z ∈ FA2 , U(z) is equal to three other unitaries, those for
which the bitstring differs from z by w, v or v′. There are 2|A|/4 = 2|A|−2

different unitary operators, each occurring 4 times.

More generally, if there are 2j unitary operators that are the identity where
0 ≤ j ≤ |A|, then there are k = 2|A|−j different values for the unitary
operators, each of which has multiplicity 2j.

To find the purity of the reduced state, first the density operator must be
squared. Using Eq. (3.3), this gives

ρ2B =
1

22|A|

∑
z,z′

U(z) |G′⟩ ⟨G′|U(z)†U(z′) |G′⟩ ⟨G′|U(z′)†, (3.13)

where G′ = G−A for brevity. By the Hein-Eisert-Briegel Lemma, if U(z) ̸=
U(z′) then ⟨G′|U(z)†U(z′) |G′⟩ = 0 since the states U(z) |G′⟩ and U(z′) |G′⟩
are orthogonal. In the 2j cases when U(z) = U(z′), including the case z = z′,
⟨G′|U(z)†U(z′) |G′⟩ = 1. This leads to

ρ2B =
2j

22|A|

∑
z∈FA

2

U(z) |G′⟩ ⟨G′|U(z)† = 1

k
ρB. (3.14)

The trace is then taken, resulting in a purity given by

Trρ2B =
1

k
, (3.15)

since TrρB = 1.

If there are k different unitaries, this leads to k different sets of stabilizer
generators to describe the graph state once the qubits inA have been removed
by measurement. Each of the k unitaries is applied to give a set of generators
according to US ′

bU
† for all b ∈ B. □
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For any bipartition, the purities of the reduced states ρA and ρB are related by
[71]

Trρ2A = Trρ2B, (3.16)

due to the Schmidt decomposition theorem. When calculating purities using The-
orem 1, the smaller partition from (A,B) can be traced out, reducing the number
of bipartitions of an n qubit state to consider by one half.

Theorem 1 also applies when using the alternative method of finding sets of
stabilizer generators without calculating the unitary operators, since this method
results in the same sets of stabilizer generators.

3.3 Examples

The result of Theorem 1 can be applied within the stabilizer formalism to calculate
the Concentratable Entanglement for cuts of qubits of graph states with different
designs and applications. We will consider several examples here.

1. Single qubits. The Concentratable Entanglement for a set containing a
single qubit a in an n qubit graph state |G⟩ is

C|G⟩({a}) =
1

4
. (3.17)

To show this, consider any connected graph state of n qubits. To find the Con-
centratable Entanglement for a set s containing a single qubit, the purity of the
reduced state of the single qubit must be calculated. The reduced state can be
found by tracing out the other n− 1 qubits and considering all 2n−1 possible mea-
surement outcomes. However this can be simplified by instead using Eq. (3.16) and
only tracing out the qubit of interest. When bipartioning the set S = {1, . . . , n} of
all qubit labels, the set A = {a} contains a single qubit and B = S \ {a} contains
the remaining n− 1 qubits.

The stabilizer generators for the graph take three forms. Firstly, qubit a has
the stabilizer generator

Sa = Xa

∏
b∈n(a)

Zb. (3.18)

Second, the stabilizer generator for each qubit b ∈ n(a) is

Sb = ZaXb

∏
k∈ñ(b)

Zk, (3.19)

where ñ(b) = n(b) \ {a}. Finally, qubits c ∈ B \ n(a) have stabilizer generators of
the form

Sc = Xc

∏
m∈n(c)

Zm, (3.20)
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where n(c) cannot contain qubit a.
By tracing out qubit a, its stabilizer generator must be updated to ±Za. In

both cases generators in the form of Sc remain valid. However each Sb must be
multiplied by ±Za so the new generator contains only Pauli operators acting on
qubits in B. The possible sets of stabilizer generators are

Za

S ′
b = Xb

∏
k∈ñ(b)

Zk

S ′
c = Xc

∏
m∈n(c)

Zm

−Za

S ′
b = −Xb

∏
k∈ñ(b)

Zk

S ′
c = Xc

∏
m∈n(c)

Zm,

where there is a stabilizer generator in both sets for each b ∈ n(a) and each
c ∈ B \ n(a). The stabilizer generators for qubits in the neighbourhood of qubit a
acquire a minus sign when the measurement outcome is −1.

There are two possible sets of stabilizer generators to describe the reduced
states of qubits in B. Applying Theorem 1 and Eq. (3.16), the purity is

Trρ2B =
1

2
= Trρ2a. (3.21)

Therefore the Concentratable Entanglement for a single qubit within any con-
nected graph state, where s = {a}, is

C|G⟩({a}) = 1− 1

2
(1 + Trρ2a) =

1

4
. (3.22)

2. A six qubit graph. Fig. 3.1 shows a graph state with qubit labels
S = {1, . . . , 6}. This is graph No. 13 according to the standard numbering of graph
state local unitary (LU) equivalence classes [17, 72, 73]. The graph is described
by stabilizer generators

S1 = X1Z2

S2 = Z1X2Z3

S3 = Z2X3Z4 Z6

S4 = Z3X4Z5

S5 = Z4X5

S6 = Z3 X6.

(3.23)

To find the purity of the reduced state of qubits 1, 2, 3 and 5, qubits 4 and 6
must be traced out. The stabilizer generators for qubits 4 and 6 are set to ±Z4

and ±Z6 to account for all possible measurement outcomes, where qubits 4 and 6
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Figure 3.1: A six qubit graph state. The qubit labels can be bipartitioned, with
qubits in set A represented by hollow vertices and qubits in set B by filled vertices.
(a) A = {4, 6}, B = {1, 2, 3, 5}. (b) A = {3, 4, 6}, B = {1, 2, 5}.

collapse into the eigenstates of the Z operator. This results in the following sets
of stabilizer generators to describe the remaining state

{Z4, Z6}

S ′
1 = X1Z2

S ′
2 = Z1X2Z3

S ′
3 = Z2X3

S ′
5 = X5

{Z4,−Z6}

S ′
1 = X1Z2

S ′
2 = Z1X2Z3

S ′
3 = −Z2X3

S ′
5 = X5

{−Z4, Z6}

S ′
1 = X1Z2

S ′
2 = Z1X2Z3

S ′
3 = −Z2X3

S ′
5 = −X5

{−Z4,−Z6}

S ′
1 = X1Z2

S ′
2 = Z1X2Z3

S ′
3 = Z2X3

S ′
5 = −X5.

There are four distinct sets of stabilizer generators and therefore by Theorem 1
the purity of the reduced state of qubits 1, 2, 3 and 5 is

Trρ21235 =
1

4
. (3.24)

Instead, if qubits 3, 4 and 6 are traced out, the stabilizer generators for each of
these qubits must be changed to consider all possible outcomes. Since the stabilizer
generators where qubits 4 and 6 are traced out have already been calculated, only
the stabilizer generator for qubit 3 needs to be updated. The stabilizer generator
for qubit 3 is set to ±Z3 within each set. Therefore the sets of stabilizer generators
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for the remaining qubits are

{Z3, Z4, Z6}, {Z3, Z4,−Z6}

S ′′
1 = X1Z2

S ′′
2 = Z1X2

S ′′
5 = X5

{−Z3, Z4, Z6}, {−Z3, Z4,−Z6}

S ′′
1 = X1Z2

S ′′
2 = −Z1X2

S ′′
5 = X5

{Z3,−Z4, Z6}, {Z3,−Z4,−Z6}

S ′′
1 = X1Z2

S ′′
2 = Z1X2

S ′′
5 = −X5

{−Z3,−Z4, Z6}, {−Z3,−Z4,−Z6}

S ′′
1 = X1Z2

S ′′
2 = −Z1X2

S ′′
5 = −X5.

Though there are eight possible measurement outcomes, this results in only
four distinct sets of stabilizer generators. Therefore by Theorem 1 the purity of
the reduced state of qubits 1, 2 and 5 is

Trρ2125 =
1

4
. (3.25)

This is also the purity of the state ρ346 due to Eq. (3.16) and of the states ρ145 and
ρ236 because of the symmetry of the graph in Fig. 3.1.

This method can be used to find the purities of all possible reduced states of
the graph state. For the six bipartitions where the smaller set contains a single
qubit, the purity is 1/2 from Example 1. When the smaller set in the bipartition
contains two qubits, a purity of 1/4 occurs twelve times and a purity of 1/2 occurs
three times. For the ten bipartitions where each set has three elements, the purity
is 1/8 in four cases, 1/4 in four cases and 1/2 in two cases. These values can be
used to calculate the Concentratable Entanglement of any subset of qubits and
the overall Concentratable Entanglement of the graph state:

C|G13⟩(S) = 1− 1

26

[
1 + 6 · 1

2
+

(
12 · 1

4
+ 3 · 1

2

)
+

(
8 · 1

8
+ 8 · 1

4
+ 4 · 1

2

)
+

(
12 · 1

4
+ 3 · 1

2

)
+ 6 · 1

2
+ 1

]
=

21

32
.

(3.26)

An alternative measure of entanglement with respect to a bipartition (A,B) is
the Schmidt rank, defined as [68]

SRB(ψ) = log2[rank(ρB)]. (3.27)
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Figure 3.2: A sixteen qubit ‘snowflake’ state proposed for use in repeaters [37].
Grey circles represent 1st leaf qubits, each of which is connected to a 2nd leaf
qubit, shown in black.

This measure is related to the purity of the reduced state of B according to [68]

SRB(ψ) = − log2[Tr(ρ
2
B)]. (3.28)

The rank index RIm considers all bipartitions where the smaller set contains m
qubits [17]. It lists the number of times the Schmidt rank m, then m− 1, through
to 1 occurs. For graph No. 13 in Fig 3.1, RI2 = (12, 3) and RI3 = (4, 4, 2): for
smaller sets in the bipartition of qubit labels of the graph containing two qubits,
there are twelve sets with a Schmidt rank of 2 and three sets with a Schmidt rank of
1. For smaller sets of three qubits, the Schmidt rank 3 occurs four times, 2 occurs
four times and 1 occurs twice. This corresponds to the occurrences of different
purities of reduced states calculated for the Concentratable Entanglement. Using
Eq. (3.28), the rank index can be used to give the number of splits where the purity
is (2−m, . . . , 1) for bipartitions with a smaller set of m qubits. For any connected
graph of seven or fewer vertices, the Concentratable Entanglement for s = S can
be calculated using the results for the rank index in Table II of [17].

3. Graph states for repeaters. Azuma et al. [37] propose a quantum
repeater design based on graph states; repeater stations create ‘snowflake’ graph
states as shown in Fig. 3.2, to perform entanglement swapping and set up direct
entanglement over larger distances. The inner 1st leaf qubits (grey) form a fully
connected graph so there is a direct path between any two qubits. Each 1st leaf
qubit is further connected to a single 2nd leaf qubit (black).

Consider a snowflake state of 2n qubits where the 1st leaf qubits have la-
bels in the set S1st = {11, 21, . . . , n1} and the 2nd leaf qubit labels are S2nd =
{12, 22, . . . , n2}. Qubit a2 is the 2nd leaf qubit paired with 1st leaf qubit a1. The
stabilizer generator for each 1st leaf qubit a1 ∈ S1 is

Sa1 = Xa1Za2
∏

b∈S1\{a1}

Zb. (3.29)
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Each 2nd leaf qubit a2 ∈ S2 has a stabilizer generator of the form

Sa2 = Xa2Za1 . (3.30)

When measuring a 1st leaf qubit in the Z direction, the outcome −1 introduces
a minus sign to the stabilizer generator for its 2nd leaf qubit partner and in the
stabilizer generators for all other 1st leaf qubits, as they are all in the neighbour-
hood. For a 2nd leaf qubit, the measurement outcome −1 introduces a minus sign
only to the stabilizer generator of its paired qubit in the 1st leaf. Therefore, if a
pair {a1, a2} is traced out, there are only two possible sets of stabilizer generators.
The 1st leaf qubit stabilizer generators either all acquire a minus sign or they do
not.

By allowing for at most one of the qubits in each pair {a1, a2} to be traced
out, the pattern in which minus signs are introduced results in each measurement
outcome giving a unique set of stabilizer generators for the remaining qubits.
m ≤ n non-paired qubits can be treated in this way. The purity of the reduced
state left when tracing out these m qubits is 2−m. Using this result to calculate
each of the purities required, the Concentratable Entanglement for sets s of n
qubits containing no pairings, including the sets containing exclusively 1st leaf or
exclusively 2nd leaf qubits, is

C|G⟩(s) = 1− 1

2n

n∑
m=0

(
n

m

)
1

2m
= 1−

(
3

4

)n
. (3.31)

This is the maximum Concentratable Entanglement possible for a set of n qubits
within a graph state of 2n qubits. Therefore within a snowflake state, all of the 1st
leaf qubits or all of the 2nd leaf qubits exhibit maximal entanglement with respect
to the rest of the state.

4. Limits on overall entanglement. Concentratable Entanglement pro-
vides a measure of the overall entanglement of a state when applied to the set
S. There are theoretical bounds on the maximum and minimum values that the
Concentratable Entanglement can take.

The minimum value of Concentratable Entanglement occurs when the purity
of each possible reduced state is maximised. Since a connected graph represents
an entangled pure state, any reduced state cannot be pure, excluding the reduced
state containing no qubits where Trρ2∅ = 1. The maximum value each of these
purities can take according to Theorem 1 is 1/2, where there are two sets of
stabilizer generators to describe the remaining qubits within the reduced state.
The minimum value of Concentratable Entanglement for a graph state of n qubits
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is therefore

C|G⟩(S) = 1− 1

2n

(
Trρ2∅ + Trρ2S +

n−1∑
i=1

(
n

i

)
1

2

)
=

1

2
− 1

2n
.

(3.32)

This is the Concentratable Entanglement of the GHZ state [41]. The n qubit GHZ
state is LU equivalent to the star graph and the complete graph, which take this
value for Concentratable Entanglement.

If instead the purity of each reduced state is minimised, the Concentratable
Entanglement will be maximised. It is not always possible to minimise the purity
of all reduced states due to the structure of entanglement and the dependent
relationships between different subsets of qubits. The purity of the reduced state
of qubits in A or B is minimised when the number of sets of stabilizer generators
is given by

k = 2min(|A|,|B|). (3.33)

This gives a new set of stabilizer generators for each measurement outcome when
tracing out qubits, up to the number of measurement outcomes possible for the
smaller set of A and B due to Eq. (3.16). Therefore the maximum value that the
Concentratable Entanglement can achieve for a graph state of n qubits is

C|G⟩(S) = 1− 1

2n

n∑
j=0

(
n

j

)
1

2min(j,n−j) . (3.34)

Graph states that maximise the Concentratable Entanglement exist only for
2, 3, 5 and 6 qubits, and an example from each LU equivalence class is shown in
Fig. 3.3. Trivially, a graph state of a single qubit satisfies Eq. (3.34), however it
does not represent an entangled state and subsequently is of little interest. For
graph states of 2 or 3 qubits, the maximum value of Concentratable Entanglement
is equal to the minimum value, as the smaller (non-empty) bipartition always
contains a single qubit, restricting all purities to the same value of 1/2.

An absolutely maximally entangled (AME) state [74] has maximal entangle-
ment in all bipartitions. If B is the smaller set containing j qubits in a bipartition
(A,B), then the bipartition is maximally entangled if the reduced state of qubits
in B can be written as the mixed state

ρB =
1

2j
I2j . (3.35)

The purity of this state is 2−j. An AME state will achieve the maximum value of
Concentratable Entanglement. The states of 2, 3, 5 and 6 qubits that maximise
the Concentratable Entanglement are known AME states.
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Figure 3.3: The LU classes of graph states, numbered according to [17, 72, 73],
where the overall Concentratable Entanglement achieves the maximum theoretical
value.

5. Graphs up to nine qubits. For graph states consisting of nine qubits or
fewer, we have calculated the overall Concentratable Entanglement of the state,
as shown in Fig. 3.4. The respective values of 0 and 1/4 for the Concentratable
Entanglement of the unique graph states of 1 and 2 qubits are not shown. The
theoretical maximum and minimum values of Concentratable Entanglement bound
the area shaded in grey. Star states achieving the minimum Concentratable En-
tanglement, which are LU equivalent to GHZ states lie on the lower boundary of
this area. The states with the greatest Concentratable Entanglement of each size
are shown, and can be seen to achieve the maximum only for states of 3, 5 and 6
qubits.

Figure 3.4 also highlights the Concentratable Entanglement for linear and ring
graph states. Linear cluster states of photons have been experimentally realised
[75, 76]: an important step in developing the two dimensional clusters needed for
MBQC and therefore their overall Concentratable Entanglement is shown. Ring
states are similar to linear states although a further CZ operation is applied be-
tween the first and final qubits in the chain, thus completing a ring. Ring states
have higher Concentratable Entanglement than linear states except for states of
up to four qubits, where a ring and linear state are LU equivalent.

All of the overall Concentratable Entanglement values for graph states of nine
qubits or fewer are shown in Fig. 3.4. Graph states within the same LU class
will have the same overall Concentratable Entanglement, however using Concen-
tratable Entanglement as a measure of the overall entanglement in a state is not
sufficient to identify the LU class of a graph state, as the same value can occur for
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Figure 3.4: The possible values of overall Concentratable Entanglement of graph
states of 3 to 9 qubits. Theoretical bounds on the Concentratable Entanglement
define the area in grey. We consider special classes of states, which are given
different markers, as shown in the legend.

more than one class. For example, for graph states of seven qubits, there are 26
LU equivalence classes, but only 16 possible values of Concentratable Entangle-
ment. If Concentratable Entanglement is calculated using Eq. (3.1), the reduced
state purities can be studied to identify the LU class of a state. However, if a
quantum computer were used to perform a SWAP test, further calculations would
be required, such as performing SWAP tests to calculate the Concentratable En-
tanglement for subsets of qubits within the state to identify the LU class from the
entanglement structure.

The analysis of all graph states up to nine qubits was performed using Python
and the networkx package [77] with graphs in graph6 format from the collections
available at [78].

3.4 Discussion

We have presented a method for calculating the purity of reduced states and hence
the Concentratable Entanglement for graph states entirely within the stabilizer
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formalism, using only the stabilizer generators of a graph state. By evaluating
the Concentratable Entanglement for different graph states we have found closed
forms when considering a single qubit in any graph state and either the inner
or outer leaf qubits in a snowflake state for use in a quantum repeater. We have
also shown how Concentratable Entanglement relates to previous results regarding
Schmidt rank and AME states. However the overall Concentratable Entanglement
of graph states in different LU classes is shown to overlap in certain cases, suggest-
ing that calculation of this version of the measure alone is insufficient to identify
the entanglement structure of a graph state.

Though Concentratable Entanglement was introduced for pure qubit states,
it may be possible to use it as an entanglement measure for pure qudit states.
Further work could then look to extend the definition in terms of purities given
in Eq. (3.1) to graph states of qudits. Extension of the SWAP test to qudits
[79] may allow for calculation of Concentratable Entanglement via test outcomes
when using a quantum computer in a similar manner to the qubit case. Qudit
graph states [80–82] are stabilizer states for qudits of prime dimension d and allow
for weighted or multiple edges. Reduced states could be found by considering
all possible measurement outcomes, setting the stabilizer generators for measured
qubits accordingly, and using the group structure of the stabilizer. The purity of
the reduced state could again be calculated based on the number of unique sets of
stabilizer generators.

It is unlikely that the result for calculating purities using stabilizer generators
within the stabilizer formalism can be applied to hypergraphs. Like qudit graph
states, hypergraphs [83–85] allow for weighted or repeated edges between the same
qudits but hyperedges that can connect any number of qudits are introduced. The
stabilizer generator for each qudit is given in terms of CZ gates on multiple qudits,
which are not within the Pauli group. Therefore hypergraphs with hyperedges
connecting more than two qudits are not true stabilizer states and do not allow for
the group properties of a stabilizer to be used to find updated generators following
a measurement.

More recently, upper and lower bounds on the Concentratable Entanglement
for mixed states have been proposed [79, 86]. Even single qubit errors either in the
generation or transmission of qubits within graph states can result in a mixed state.
The extension of Concentratable Entanglement to mixed states could enable the
study of effects such errors have on the entanglement within graph states, though
it is unclear whether the stabilizer formalism could be used and whether it would
offer a more efficient method to calculate these bounds.
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Chapter 4

A Measurement Based Protocol
for Two-Qubit Unitaries

When performing a quantum computation, the operations to enact the compu-
tation can be visualised using a quantum circuit, where each wire represents a
single qubit to which unitary transformations are applied. To apply operations
to an input state, a set of gates that can be physically implemented within an
experimental set-up are required. Such a set is universal if some combination of
gates from the set can be used to perform all possible operations needed for any
quantum computation.

Another method to achieve universal quantum computation, as proven in [16],
is through Measurement Based Quantum Computation (MBQC) using the one-
way quantum computer [15]. The set-up requires a large entangled resource state
and the computation then proceeds through a series of single-qubit measurements
of qubits within this state. Most importantly within the context of this thesis, the
resource state for MBQC is a graph state, and hence can be described using the
stabilizer formalism.

The structure of the resource graph state is determined by the computation
that is performed, with each column representing qubits that are measured within
the same time step and the number of rows corresponding to the number of qubits
within the input state of the computation. An example resource state is shown
in Fig. 4.1. The process is one-way since measurement of a qubit within a graph
state removes it from the graph, thus the resource state is consumed by performing
a computation. The implementation is also feed-forward in nature, as adjustments
to measurement bases are determined by the outcome of previous measurements
within the procedure. The computation also results in byproduct operators, con-
ditional on each measurement outcome, which act on the output state in the form
of corrective Pauli operations due to the probabilistic nature of each measurement.
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Figure 4.1: A lattice-like graph state that can be used as a resource state for
MBQC. The qubits in green form a joint input state of four qubits. Qubits in red
become the output state. The input and central qubits are measured in bases de-
termined by the computation, with adjustments made due to measurement results
at previous time steps in the preceding columns.

In practice, the graph state resource required for MBQC can be large and
difficult to produce with current experimental capabilities. Though the theory
also allows for the resource state to be produced in a rolling manner, where each
column is only generated shortly before it is needed, this is unlikely to occur
deterministically, risking destruction of the state and making operations performed
up to this point redundant. Therefore, a process where a smaller resource graph
state can be produced prior to commencing the single-qubit measurements is a
necessity at present.

Here, we derive a measurement based protocol to implement a two-qubit uni-
tary (up to local unitaries). The two-qubit input state for the unitary operation
may be shared between two distinct parties who cannot perform joint operations.
In MBQC, sharing a pre-existing graph state resource allows the two parties to
perform components of the two-qubit unitary locally using single qubit measure-
ments. The protocol is an adapted version of MBQC using the one-way quantum
computer, since we require an enhanced resource state where Hadamard and phase
gates are needed in addition to CZ operations on qubits that are prepared in the
state |+⟩. We describe each of the gates needed to implement the two-qubit op-
eration, before combining them to determine the full resource state, and we then
consider the impact of theoretical single-qubit Pauli measurements within the sta-
bilizer formalism in order to reduce the number of qubits required. Throughout
construction of the protocol, we keep track of the necessary byproduct operators
and measurement basis adjustments that result from previous measurement out-
comes.
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4.1 Two-qubit Unitary

A two-qubit unitary transformation can be decomposed into eight local unitaries
and three CNOT gates [87]. A CNOT gate acts on two qubits and applies a Pauli
X (or bit flip) operation to the target qubit only when the control qubit is in the
state |1⟩.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (4.1)

The CNOT gate is in the Clifford group and can be written as the product of
Hadamard and CZ gates,

CNOT = HtCZHt, (4.2)

where t denotes that the Hadamard gates are applied to the target qubit.
Using circuit representation, the decomposition of the two-qubit unitary is

We focus on the central components of this circuit, where the two-qubit CNOT
gates are not necessarily performed locally, for example if the joint input state of
two qubits is held by two distinct parties. The local unitaries u1 and v1 can be
performed by each party and are absorbed into the input for this section of the
circuit and the local unitaries u4 and v4 can be accounted for in the output or
can subsequently be performed by the two parties. In circuit representation, the
implementation of the two-qubit unitary up to local unitaries requires seven gates

where [88]

u2 = HeihxX , v2 = eihzZ ,

u3 = HΦ, v3 = e−ihyZ .
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Here H is the Hadamard gate that transforms between the Z and X basis states
and Φ is the phase gate that enacts a rotation of π about the z axis as introduced
in Eqs. (2.28) and (2.29) respectively. The exponentiated Pauli X and Z operators
correspond to rotations around the x and z axes by angles −2hx, −2hz and 2hy
respectively, where the parameters hx, hy and hz are found in the decomposition
of the two-qubit unitary [87, 88]. The two-qubit unitary, up to local unitaries u1,
v1, u4 and v4, is

U = CNOT[HΦ⊗ Uz(2hy)]CNOT[HUx(−2hx)⊗ Uz(−2hz)]CNOT. (4.3)

The measurement based implementations of the gates required for the two-qubit
unitary can be derived from their circuit representations following the method of
Nielsen [89].

Hadamard Gate
The one-bit teleportation circuit [90] is used to teleport the state of a single qubit
from one party to another.

The procedure requires the second party to possess an ancillary qubit in the state
|0⟩, which is the target qubit in a joint CNOT operation between the qubits.
Following this, the first party applies a Hadamard gate to their qubit and then
performs a measurement in the computational basis, i.e. a Pauli Z measurement.
This leaves the second qubit in the state Zm |ψ⟩, wherem ∈ {0, 1} is the outcome of
the measurement. The measurement outcome can be classically communicated to
the second party in order to perform a corrective Z operation if required, therefore
resulting in the state |ψ⟩.

By using the identity of Eq. (4.2), the CNOT gate can be replaced by Hadamard
and CZ operations.

Applying a Hadamard gate to the state |0⟩ is equivalent to using an input qubit
in the state |+⟩. This aligns the circuit with the set-up for MBQC because the
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resource state of a single qubit in the state |+⟩ is entangled with the input state
by a CZ operation. The byproduct operator Zm can be propagated through the
Hadamard gate.

Rather than applying a Hadamard operation to the first qubit followed by a Z di-
rection measurement, the measurement can instead be performed in the X basis,
with outcomes 0 and 1 corresponding to the eigenstates |+⟩ and |−⟩ respectively.
The circuit implements a Hadamard operation with byproduct operator Xm con-
ditional on the measurement outcome.

The MBQC representation for a Hadamard operation on the state |ψ⟩ is:

The single-qubit input is entangled by a CZ gate with a resource graph state con-
taining one qubit and then measured in the X direction, resulting in an output
state XmH |ψ⟩.

CNOT Gate
The measurement based implementation for a CNOT gate can be constructed
using Eq. (4.2) and the above implementation of a Hadamard gate. Firstly, the
target qubit undergoes a Hadamard operation using a single qubit resource state
and an X basis measurement. The output of this operation and the control qubit
are then entangled by a CZ gate, represented by an edge. Finally, the target
qubit undergoes another Hadamard operation using a further resource qubit and
a second X basis measurement.

By performing the three required gates in turn, the output state is

Xm2
t HtCZX

m1
t Ht |ψ⟩ , (4.4)
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where m1,m2 ∈ {0, 1} are the two measurement outcomes respectively. To resolve
this with a CNOT gate, the byproduct Xm1 can be propagated through the CZ
and H operations so the resulting state is ‘

Xm2
t (ZcZt)

m1HtCZHt |ψ⟩ = Xm2
t (ZcZt)

m1CNOT |ψ⟩ , (4.5)

where c denotes a gate acting on the control qubit.

HΦ Operation
AHΦ operation, or a phase gate followed by a Hadamard gate, can be implemented
by applying the circuit for a Hadamard gate to the input state Φ |ψ⟩.

Since the CZ gate and phase gate commute, their order within the circuit can be
swapped.

Instead of applying gates Φ and H to the input qubit then measuring in the Z
basis, the measurement can instead be performed in the Φ†HZHΦ = −Y basis
[89], with byproduct Xm. This can be replaced by a Y basis measurement, which
is the same measurement with outcomes and eigenvalues interchanged, and the
byproduct operator becomes Xm1

⊕
1. The MBQC representation is:

z-axis Rotation
A general rotation about the z-axis is Uz(θ) = e−iθZ/2. The known circuit to
implement a Hadamard operation can be applied to the input state Uz(θ) |ψ⟩.
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Similarly to the previous HΦ gate, the Uz(θ) operation commutes with the CZ
gate and their order can be swapped.

Rather than applying Uz(θ) and H prior to a Z basis measurement, the measure-
ment can be performed in the basis [89]

{U †
z (θ)H |0⟩ , U †

z (θ)H |1⟩} ≡
{
|0⟩+ e−iθ |1⟩√

2
,
|0⟩ − e−iθ |1⟩√

2

}
, (4.6)

where a global phase of eiθ/2 is ignored. This is the measurement M(−θ), where
M(ϕ) denotes measurement in the basis{

|0⟩+ eiϕ |1⟩√
2

,
|0⟩ − eiϕ |1⟩√

2

}
. (4.7)

However, performing the measurementM(−θ) appliesHUz(θ) (with byproduct
Xm) so an additional Hadamard operation must be applied to the output. A
further |+⟩ qubit is entangled with the output qubit via CZ operation and an X
basis measurement is performed. This results in the state

Xm2HXm1HUz(θ) |ψ⟩ = Xm2Zm1HHUz(θ) |ψ⟩
= Xm2Zm1Uz(θ) |ψ⟩ ,

(4.8)

where m1,m2 ∈ {0, 1} are the measurement outcomes in the order they are per-
formed. The MBQC representation for the z-axis rotation is:

x-axis Rotation
A general x-axis rotation Ux(θ) = e−iθX/2 can be written as

Ux(θ) = HUz(θ)H. (4.9)

Therefore an x-axis rotation can be treated as a Hadamard gate followed by a
HUz(θ) operation. These are implemented by entangling the input state with
a two qubit graph state resource and measuring the first qubit in the X basis,
followed by the measurement M(−θ) on the second qubit. This is represented by:
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However, the final state following these measurements is

Xm2HUz(θ)X
m1H |ψ⟩ = Xm2Zm1HUz[(−1)m1θ]H |ψ⟩

= Xm2Zm1Ux[(−1)m1θ] |ψ⟩
(4.10)

In order to perform the rotation Ux(θ), the measurement basis for the second qubit
must be adapted toM [−θ(−1)m1 ], dependent on the outcome m1 ∈ 0, 1 of the first
measurement.

4.2 Measurement Based Implementation

Gates can be concatenated, where the output qubit for a completed operation
becomes the input for the following gate [16]. The CZ gates between qubits can
be applied prior to conducting any of the measurements, allowing for the resource
graph state of 14 qubits to be prepared in advance of the measurements being
performed [16]. By combining the gates required, the circuit for the two-qubit
unitary U in Eq. (4.3) is equivalent to operations on a 16 qubit graph state 1.

The qubits highlighted in green are the input qubits, which jointly are in the state
|ψ⟩ that the unitary operation is to be applied to. All 14 remaining qubits are pre-
pared in the |+⟩ state. The qubits highlighted in red are the output qubits, which
(up to byproduct operators) are in the state U |ψ⟩ following the measurements on
individual qubits. Each θ represents one of the angles −2hx, −2hz and 2hy within
the decomposition of U , with exact measurement bases stated in Section 4.4 once
byproduct operators and previous measurement outcomes are accounted for.

Since a 16 qubit state is large and difficult to produce, efforts must be made to
reduce the resource state required to perform the computation. Two neighbouring
measurements in the X-direction can be treated as wires or equivalently as apply-
ing the identity operator and therefore the graph state required can be simplified
to a state of 12 qubits.

1The 16 qubit state was put forward by Cosmo Lupo, Departimento di Fisica, Politecnico di
Bari.
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To keep track of the graph whilst subsequent measurements are performed, the
qubits are numbered from 1 to 12. Qubits 1 and 2 are the input qubits and 11
and 12 are the output qubits.

Pauli measurements can be performed prior to other operations within the mea-
surement based set-up, since Pauli basis measurements enact Clifford operations,
which can be performed in a single time step [16] 2. In order to further reduce
the resources required, rather than producing the full state of 12 qubits and per-
forming these measurements, an updated initial resource state can be calculated,
as though the measurements have been performed. Each theoretical measurement
affects the topology of the remaining graph state and introduces operations on
qubits neighbouring the measurement site. Therefore the remaining resource state
does not consist only of |+⟩ state qubits and CZ operations, so the procedure is an
adapted form of MBQC on an enhanced resource state. A smaller resource state
has a higher probability of being successfully created.

To use the stabilizer formalism to study the resulting operations on the resource
state, assume qubits 1 and 2 are each in the state |+⟩ [16]. When preparing the
resource graph state, it is probable that operations will fail and multiple attempts
will be required to successfully generate the state. Including the state |ψ⟩ within
this preparation would likely result in the state being destroyed or needing to be
discarded when beginning another attempt at generation. Therefore the state |ψ⟩
can be teleported into qubits 1 and 2 once the resource state is produced and prior
to performing the required single qubit measurements, which can be done using
the one-bit teleportation protocol [90] on both of the individual qubits within the
joint state |ψ⟩. The Pauli X measurements on qubits 1 and 2 are not considered

2By the Gottesman-Knill Theorem, these aspects of the computation can also be simulated
on a classical computer.
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in advance of ‘real’ measurements being performed so that they apply once the
input state |ψ⟩ is present.

The stabilizer generators for the graph state of 12 qubits are

S1 = X1 Z3Z4

S2 = X2Z3

S3 = Z1Z2X3 Z5

S4 = Z1 X4 Z6

S5 = Z3 X5 Z8

S6 = Z4 X6Z7

S7 = Z6X7Z8 Z11

S8 = Z5 Z7X8Z9

S9 = Z8X9Z10

S10 = Z9X10Z11Z12

S11 = Z7 Z10X11

S12 = Z10 X12.

(4.11)

4.2.1 X direction Measurements

The outcome for each of the X measurements can be assumed to be 0 since it is a
fictitious measurement, reducing the byproduct operators corresponding to these
measurements. We refer to these measurements as fictitious since they are only
being performed in theory in order to calculate the resulting state that the system
collapses to, which is the actual state that will be produced. This is effectively post-
selection of outcome 0. Therefore the state of the measured qubit a collapses to |+⟩,
associated with stabilizer generator Xa, and the qubit is removed from the graph.
To measure a qubit a within a graph in the X direction, a neighbourhood qubit
of a, i.e. b ∈ n(a), is selected. Despite not actually performing the measurements,
to respect the feed-forward nature of the one-way quantum computer, the selected
qubit b will always be to the right of the measured qubit a within the graph state.
Since all of the Pauli measurements can take place in a single time step, the order in
which the fictitious measurements are considered corresponds to their numbering,
with the X direction measurements prior to the Y direction measurement. Much
like in the case of a Z direction measurement, there are multiple methods to
approach the X direction measurements.

To visualise the effect of the measurement on a graph state, firstly the subgraph
G1 with edges between b and the other qubits in the neighbourhood of a is drawn.
Next, the subgraph G2 has edges between qubits that are in the neighbourhoods
of both a and b. The final subgraph G3 is constructed by drawing edges between
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each qubit in a’s neighbourhood and each qubit in b’s neighbourhood. Lastly, the
graph following the measurement is found by adding G1, G2 and G3 to the original
graph modulo 2 [49]. The stabilizer generators for the new graph state are found
using Eq. (2.32) and applying the unitary Ux,+ for measurement outcome 0 [17]

Ux,+ = (iZb0)
1/2

∏
b∈n(a)−n(b0)−{b0}

Zb. (4.12)

It is perhaps simpler to to set the stabilizer for qubit a to Xa and using the group
structure of the stabilizer to find new stabilizer generators that commute with Xa.

Measure Qubit 3: a = 3, b = 5. The subgraphs are:

Following this measurement, the remaining graph state is:

The updated stabilizer generator for qubit 3 is X3. The generators for qubits 4, 6,
7, 8, 9, 10, 11 and 12 remain valid as they commute with X3. Due to the group
structure, multiplying S3 by X3 provides another generator — S ′

5 = Z1Z2Z5, as
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do the products S1S5 = X1Z4X5Z8 = S ′
1, S2S5 = X2X5Z8 = S ′

2 and S8S
′
5 =

Z1Z2Z7X8Z9 = S ′
8. The full set of generators for the remaining state is

S ′
1 = X1 Z4X5 Z8

S ′
2 = X2 X5 Z8

S ′
4 = Z1 X4 Z6

S ′
5 = Z1Z2 Z5

S ′
6 = Z4 X6Z7

S ′
7 = Z6X7Z8 Z11

S ′
8 = Z1Z2 Z7X8Z9

S ′
9 = Z8X9Z10

S ′
10 = Z9X10Z11Z12

S ′
11 = Z7 Z10X11

S ′
12 = Z10 X12.

(4.13)

Writing out the set of stabilizer generators in full allows them to be easily com-
pared to the form of Eq. (2.32) and it can be seen that these are the generators
for the graph once qubit 3 is measured, with a Hadamard gate applied to qubit 5.

Measure Qubit 6: a = 6, b = 7. The subgraphs are:

Following this measurement, the remaining graph state is:
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The generator for qubit 6 becomes X6. Through manipulation of the existing
generators, updated generators can be brought to the form of Eq. (2.32).

S ′′
1 = X1 Z4X5 Z8

S ′′
2 = X2 X5 Z8

S ′′
4 = Z1 X4 X7Z8 Z11

S ′′
5 = Z1Z2 Z5

S ′′
7 = Z4 Z7

S ′′
8 = Z1Z2Z4 X8Z9

S ′′
9 = Z8X9Z10

S ′′
10 = Z9X10Z11Z12

S ′′
11 = Z4 Z10X11

S ′′
12 = Z10 X12

(4.14)

These are the stabilizer generators for the remaining graph state of 10 qubits where
a Hadamard operation is applied to qubits 5 and 7.

Measure Qubit 8: a = 8, b = 9. The subgraphs are:

47



Following this measurement, the remaining graph state is:

By tracking the state using the stabilizer formalism, the measurement applies a
Hadamard operation to qubit 9, in addition to the previous Hadamard operations
on qubits 5 and 7. The stabilizer generators are

Ŝ1 = X1 Z4X5 X9Z10

Ŝ2 = X2 X5 X9Z10

Ŝ4 = Z1 X4 X7X9Z10Z11

Ŝ5 = Z1Z2 Z5

Ŝ7 = Z4 Z7

Ŝ9 = Z1Z2Z4 Z9

Ŝ10 = Z1Z2Z4 X10Z11Z12

Ŝ11 = Z4 Z10X11

Ŝ12 = Z10 X12.

(4.15)

Measure Qubit 10: a = 10, b = 12. The subgraphs are:
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Following this measurement, the remaining graph state is:

Using the stabilizer formalism, the generator for qubit 10 is set to X10.

Š1 = X1 Z4X5 X9 X12

Š2 = X2 X5 X9 X12

Š4 = Z1 X4 X7X9Z11X12

Š5 = Z1Z2 Z5

Š7 = Z4 Z7

Š9 = Z1Z2Z4 Z9

Š11 = Z4 X11X12

Š12 = Z1Z2Z4 Z11Z12

(4.16)

The generators for the remaining qubits correspond to the graphical representation
of the state where a Hadamard is applied to qubit 12 in addition to qubits 5, 7
and 9.
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4.2.2 Y direction Measurement

For a Y direction measurement, the subgraph of the measured qubit and its neigh-
bours is inverted [49]. The outcome can be assumed to be 1 to reduce the byprod-
uct operators, and the state of the measured qubit a collapses to the state |−i⟩,
associated with stabilizer generator −Ya. The unitary associated with outcome 1
is [17]

Uy,− =
∏
b∈n(a)

(iZb)
1/2, (4.17)

however it is again favourable to utilise the group structure of the stabilizer to find
updated stabilizer generators, rather than applying Uy,− to the generator in the
form of Eq. (2.32) for each vertex in the visual representation of the graph state
following the measurement.

Measure Qubit 7: By inverting the subgraph between qubits 4 and 7, the edge
between these qubits is removed from the graph and the remaining graph state is:

Figure 4.2: The graph state required to perform the two qubit unitary. A
Hadamard operation must be applied to qubits 5, 9 and 12 and a phase gate
to qubit 4.

Following this measurement, the set of stabilizer generators for the remaining
qubits within the graph state is

S̃1 = X1 Z4X5X9 X12

S̃2 = X2 X5X9 X12

S̃4 = Z1 Y4 X9Z11X12

S̃5 = Z1Z2 X5

S̃9 = Z1Z2Z4 Z9

S̃11 = Z4 X11X12

S̃12 = Z1Z2Z4 Z12.

(4.18)
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These are the stabilizer generators for the graph state shown in Fig. 4.2, where
a Hadamard gate has been applied to qubits 5, 9 and 12, and a phase gate Φ is
applied to qubit 4.

4.3 Byproduct Operators

The graph state from Fig. 4.2 with Hadamard and phase corrections is set-up.
Pauli X measurements are performed on input qubits 1 and 2 and the mea-
surements on qubits 4, 5 and 9 are M(−θ4(−1)m1), M(−θ5) and M(−θ9), where
θ4 = −2hx, θ5 = −2hz and θ9 = 2hy. This results in the output state

CNOT[HΦ⊗ Zm9
t Uz(θ9)]CNOT

[HXm4
c Zm1

c Ux(θ4)⊗ Zm5
t Uz(θ5)t][Z

m2
c ⊗ Zm2

t ]CNOT |ψ⟩ ,
(4.19)

where c and t denote the first and second qubit within the output state (these
are the roles each qubit would have as control or target qubit within the applied
CNOT gates). The outcomes 0 for X direction measurements and 1 for Y direction
measurements accounted for in the set-up of the resource state ensure that the
byproduct operators are reduced. For example, the full byproduct for the first
CNOT gate is Zm2

c ⊗ Xm3
t Zm2

t , but since m3 = 0 when considering the X basis
measurement of qubit 3, the term Xm3

t has no effect.
The byproduct operators can be propagated through the state to apply only to

the output qubits following the measurements. The following relations are required
[16, 91]

HX = ZH, HZ = XH,

ΦX = Y Φ, ΦZ = ZΦ,

Uz(ϕ)X = XUz(−ϕ), Ux(ϕ)Z = ZUx(−ϕ),
CNOTZc = ZcCNOT, CNOTXc = XcXtCNOT,

CNOTZt = ZcZtCNOT, CNOTXt = XtCNOT.

To show how the byproduct operators propagate, firstly they are brought up
to the second CNOT gate

CNOT[HΦ⊗ Zm9
t Uz(θ9)]CNOT

[Zm4
c Xm1

⊕
m2

c HUx(θ4(−1)m2)⊗ Z
m2

⊕
m5

t Uz(θ5)]CNOT |ψ⟩ .

Next, the byproducts are brought through the second CNOT gate

CNOT[HΦZm2
⊕
m4

⊕
m5

c Xm1
⊕
m2

c ⊗ Zm9
t Uz(θ9)X

m1
⊕
m2

t Z
m2

⊕
m5

t ]

CNOT[HUx(θ4(−1)m2)⊗ Uz(θ5)]CNOT |ψ⟩ .
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Then the byproduct operators are collected up to the third CNOT gate

CNOT[Xm1
⊕
m4

⊕
m5

c Zm1
⊕
m2

c HΦ⊗X
m1

⊕
m2

t Z
m2

⊕
m5

⊕
m9

t Uz(θ9(−1)m1
⊕
m2)]

CNOT[HUx(θ4(−1)m2)⊗ Uz(θ5)]CNOT |ψ⟩ .

Finally, the byproduct operators are brought through the third CNOT gate so
that they act only on the output qubits following all the necessary operations to
apply the two-qubit unitary

[Xm1
⊕
m4

⊕
m5

c Zm1
⊕
m5

⊕
m9

c ⊗X
m2

⊕
m4

⊕
m5

t Z
m2

⊕
m5

⊕
m9

t ]

CNOT[HΦ⊗ Uz(θ9(−1)m1
⊕
m2)]CNOT[HUx(θ4(−1)m2)⊗ Uz(θ5)]CNOT |ψ⟩ .

Comparing this output to U in Eq. (4.3), the two-qubit unitary is applied up to
the byproduct operators if the measurement bases of qubits 4 and 9 are adjusted
following the measurements of qubits 1 and 2. An additional factor of (−1)m2 is
required in the measurement of qubit 4, so the measurement isM(−θ4(−1)m1

⊕
m2).

Similarly, the measurement of qubit 9 is updated to M(−θ9(−1)m1
⊕
m2).

4.4 Summary

The protocol to apply U given by Eq. (4.3) to a two-qubit state |ψ⟩ is as follows:

• Prepare the state represented by the graph

where vertices represent qubits in the state |+⟩ and edges denote CZ oper-
ations between qubits. Qubits 1 and 2 are jointly in the input state |ψ⟩,
though this may be achieved by teleporting in the state following the full
process of resource state preparation.

• Apply a Hadamard operation H to qubits 5, 9 and 12 and a phase gate Φ
to qubit 4 in the graph state.
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• Measure qubits 1 and 2 in the Pauli X direction. Record the outcomes as
m1 and m2.

• Perform measurements on qubits 4, 5 and 9 of M(2hx(−1)m1
⊕
m2), M(2hz)

and M(−2hy(−1)m1
⊕
m2) respectively. M(ϕ) represents a measurement in

the basis {
|0⟩+ eiϕ |1⟩√

2
,
|0⟩ − eiϕ |1⟩√

2

}
.

• The joint state of qubits 11 and 12 is

[Xm1
⊕
m4

⊕
m5Zm1

⊕
m5

⊕
m9 ⊗Xm2

⊕
m4

⊕
m5Zm2

⊕
m5

⊕
m9 ]U |ψ⟩ . (4.20)

We have derived a protocol for applying a two-qubit unitary using an adapted
version of MBQC, wherein the resource state is prepared using CZ operations on
single qubits in the state |+⟩, as allowed in the definition of graph states, but with
additional Hadamard and phase gates required. Once this state is prepared, the
standard process of MBQC resumes, with single qubit measurements applied and
feed-forward basis adjustments being made once previous measurement outcomes
are accounted for.

Though the Pauli X measurements are treated in the stabilizer formalism by
assuming the input state is |+⟩ ⊗ |+⟩, the protocol still applies the operation U
up to byproduct operators for a general two qubit input state. To truly apply a
general two-qubit unitary of the form (u4 ⊗ v4)U(u1 ⊗ v1), the local unitaries u1
and v1 can be applied to the input prior to teleporting the state |ψ⟩ into qubits 1
and 2 and performing the required measurements. The operators u4 and v4 can be
accounted for in interpretation of the output including the necessary byproduct
operators, or can be undertaken locally once the Pauli corrections are applied.

An experimental demonstration of the implementation of U using the seven
qubit resource state with five single-qubit measurements would be an important
stage in being able to perform general two-qubit unitaries. Producing a seven qubit
graph state is within current experimental capabilities. Members of the Laing
research group at Quantum Engineering Technology (QET) Labs, University of
Bristol, including Emilien Lavie, Molly Thomas, Imogen Forbes, Naomi Solomons
and Patrick Yard are investigating on-chip implementation of the protocol.
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Chapter 5

Graph States from Spin-Photon
Interactions

Large graph states consisting of only photons have a multitude of applications, with
examples including MBQC [15, 16, 89] and quantum repeaters [24, 25, 36, 37], due
to the vital quantum resource provided by entanglement contained in such states.
From a theoretical perspective, the appeal of graph states is boosted by their
concise mathematical description using the stabilizer formalism and their graphical
representation. Therefore the ability to be able to produce large photonic graph
states efficiently is highly desirable.

Since, in general, photons do not interact with one another, the interaction
between photons and a single-electron spin within a cavity can be used as a means
to generate entangled states. The spin-photon interaction has applications within
quantum networks [18], for example to enact quantum gates [92], for quantum
teleportation and entanglement swapping [93] or for syndrome measurements in
QEC [94]. A scheme to utilise spin-photon interactions as a photon entangler was
proposed in [43], where the interaction can induce a phase shift of φ = π/2 de-
pending on the state of both the photon and single-electron spin. This interaction
combined with subsequent measurements of the spin can produce graph states and
GHZ style states deterministically.

Here, we instead focus on a set-up in which the phase shift induced by spin-
photon interactions is constrained by 0 < φ < π/2. We show that we can produce
heralded Bell pairs probabilistically using the interaction and measurement of the
spin and describe a layered scheme to generate larger photonic GHZ style states
probabilistically. We utilise the stabilizer formalism to track the interaction and
the following measurements although it cannot be utilised in full due to the non-
Clifford nature of the state evolution.
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Figure 5.1: (a): A single photon is sent into and reflects out of a cavity containing a
single-electron spin in a quantum dot. (b): The optical transitions of a negatively
charged exciton (X−) for left (σL) and right (σR) circularly polarized incident
photons.

5.1 The Interaction

A single-electron spin in a quantum dot is contained within a microcavity as shown
in Fig. 5.1(a), in a similar set-up to the scheme given by Hu et al. in [42] and [43].
The cavity is single-sided, allowing light to be reflected out of the cavity, but not
transmitted. Light, treated as single photons, is sent in to the cavity to interact
with the single-electron spin. This interaction induces phase shifts dependent on
the states of both the photon and the spin.

A quantum dot is a three dimensional confinement of electrons such that the
possible energy levels are discretised and may be constructed from a layer of one
semiconductor within another such as InGaAs within GaAs. Consider a quantum
dot containing a single excess electron in the spin state |↑⟩ or |↓⟩. The electron may
absorb an incident photon, exciting it to a state with higher energy and hence it
transitions from the valence band to the conduction band. This leaves a positively
charged electron hole within the valence band, which can lie in the spin state |⇑⟩
or |⇓⟩. A negatively charged exciton X− can be formed by this excitation, made
up of two electrons and the electron hole together in a bound state. Fig. 5.1(b)
show an energy level diagram for the optical transitions of X− in the quantum dot.
An electron in the state |↑⟩ is only excited by left circularly polarized light and
similarly an electron in the state |↓⟩ is only excited by right circularly polarized
light.

The cavity is said to be hot if the quantum dot couples to the cavity due to the
optical transitions of the exciton, and cold if coupling does not occur or is much
reduced. In the case of a hot cavity, interaction results in a phase shift of φh.
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This occurs if the photon is left circularly polarized and the spin state is |↑⟩, or if
the photon is right circularly polarized and the spin state is |↓⟩. Similarly, a cold
cavity induces a phase shift of φ0, which is the case if the photon is left circularly
polarized and the spin state is |↓⟩, or if the photon is right circularly polarized
and the spin state is |↑⟩. Assume, as in [42, 43], that the reflection coefficients for
hot and cold cavities are equal (and ideally ≃ 1). Let φ = φh − φ0. Thus the
interaction is described up to a global phase of eiφ0 by the phase shift operator

U(φ) = eiφ(|L⟩⟨L|⊗|↑⟩⟨↑|+|R⟩⟨R|⊗|↓⟩⟨↓|). (5.1)

Therefore, depending on the input state of the photon and single-electron spin,
the phase shift operator transforms the state according to:

|L, ↑⟩ → eiφ |L, ↑⟩ , |L, ↓⟩ → |L, ↓⟩ ,
|R, ↑⟩ → |R, ↑⟩ , |R, ↓⟩ → eiφ |R, ↓⟩ .

(5.2)

Such a set-up can be used to generate multiparticle GHZ states and graph states
consisting of photons through repeated interactions and subsequent measurements
of the spin when the angle of the phase shift is φ = π/2 [42, 43], achieved through
frequency detuning. If instead, the phase shift is constrained by 0 ≤ φ < π/2,
which may be the case due to experimental limitations making it difficult to pro-
duce stronger interactions in the system, or due to an alternative set-up resulting
in the same phase shift operator as Eq. (5.1), it is still possible to generate graph
states probabilistically. This proposed scheme will be explored in part using the
stabilizer formalism, requiring bases for both the photon and spin components of
the interaction.

5.2 Spin-Photon Interaction

The Hilbert space for the interaction of a single photon and the spin is H =
Hp ⊗Hs. The computational basis for Hp is {|0⟩p , |1⟩p}, physically realised by a
circularly polarized photon

|0⟩p ≡ |L⟩ , |1⟩p ≡ |R⟩ . (5.3)

In similar fashion, the computational basis for Hs is {|0⟩s , |1⟩s}, physically realised
by a spin up or spin down electron

|0⟩s ≡ |↑⟩ , |1⟩s ≡ |↓⟩ . (5.4)

Each basis has a set of Pauli operators, enabling the phase shift operator of Eq.
(5.1) to be written as

U(φ) = eiφ(ZpZs+I)/2. (5.5)
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The cavity shown in Fig. 5.1 is prepared with the electron in the superposition
state |+⟩s = (|↑⟩ + |↓⟩)/

√
2; the state stabilized by Xs. The single photon that

enters the cavity to interact with the spin is also prepared in a superposition state,
|+⟩p = (|L⟩+ |R⟩)/

√
2, which in turn is stabilized by Xp. The overall state of the

system prior to any interaction is

|+⟩p ⊗ |+⟩s =
1

2
(|L, ↑⟩+ |L, ↓⟩+ |R, ↑⟩+ |R, ↓⟩), (5.6)

with stabilizer generators Xp and Xs.
Following the interaction, the photon is reflected out of the cavity and the

overall state is

U(φ)(|+⟩p ⊗ |+⟩s) =
1

2
(eiφ |L, ↑⟩+ |L, ↓⟩+ |R, ↑⟩+ eiφ |R, ↓⟩). (5.7)

To find the stabilizer generators for this state, the pre-interaction generators are
updated according to U(φ)XpU

†(φ) and U(φ)XsU
†(φ). These new generators can

be calculated using the Baker-Campbell-Hausdorff Formula

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . . (5.8)

for A = iφ(ZpZs + I)/2 and B ∈ {Xp, Xs}. This results in the new stabilizer
generators

Xp → Xp cos(φ)− YpZs sin(φ),

Xs → Xs cos(φ)− ZpYs sin(φ).
(5.9)

There are three cases of interest:

• φ = 0. The stabilizer generators are Xp and Xs. As the interaction does
not result in a phase shift, or any change to the input state, the generators
remain unchanged.

• φ = π/2. The stabilizer generators become −YpZs and −ZpYs. These are
the generators for the maximally entangled graph state between the photon
and spin with S† applied to each particle in the relevant basis, where S
is the phase gate. The phase shift operator can be written as U(π/2) =
i(S†

p ⊗ S†
s)CZ, which is in the Clifford group and thus produces a stabilizer

state. This result is expected, as for this value of φ, the interaction produces
maximally entangled states [42, 43].

• 0 < φ < π/2. The stabilizer generators are no longer within the Pauli
group as the phase shift operator is not a Clifford operator and the state
is not a true stabilizer state. The interaction results in a non-maximally
entangled state with generators weighted between the generators for the
separable state and the maximally entangled state, with weights of cos(φ)
and sin(φ) respectively.
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5.3 Multiple Interactions

It would appear that a simple solution to ensure that a maximally entangled state
is produced between the photon and spin even when φ ≪ π/2 would be to allow
for the photon to enter the cavity and interact multiple times. For n interactions
this would result in a phase shift of nφ, which could be repeated until the phase
shift was π/2. However, it is usually not possible to send the same photon into the
cavity to interact over and over again due to the one-directional routing within
experimental set-ups and the accumulation of noise.

In order to use the set-up to generate photonic graph states, multiple photons
must enter and interact with the single-electron spin inside the cavity. The simplest
case to consider is where two photons interact with the spin successively within
the decoherence time of the spin.

The photons, labelled p1 and p2, are each prepared in the photonic |+⟩ state
and are associated with stabilizer generators Xp1 and Xp2 respectively. The spin
is again prepared in the state |+⟩s, with stabilizer generator Xs. Each interac-
tion is described by a phase shift operator, U1(φ) = eiφ(Zp1Zs+I)/2 and U2(φ) =
eiφ(Zp2Zs+I)/2. Applying U1 and U2 to the stabilizer generators gives the post-
interaction generators as

Xp1 → Xp1 cos(φ)− Yp1Zs sin(φ),

Xp2 → Xp2 cos(φ)− Yp2Zs sin(φ),

Xs → Xs cos
2(φ)− (Zp1Ys + Zp2Ys) sin(φ) cos(φ)− Zp1Zp2Xs sin

2(φ).

(5.10)

These stabilize the post-interaction state

U2U1(|+⟩p1 ⊗ |+⟩p2 ⊗ |+⟩s) =
1

2
√
2
(e2iφ |LL↑⟩+ |LL↓⟩+ eiφ |LR↑⟩+ eiφ |LR↓⟩

+ eiφ |RL↑⟩+ eiφ |RL↓⟩+ |RR↑⟩+ e2iφ |RR↓⟩).
(5.11)

To produce a graph state between the two photons in the case where 0 < φ <
π/2, the single-electron spin is measured. Results that would be of interest include:

• A two-qubit graph state or LU equivalent state is generated deterministically,
regardless of the measurement outcome.

• A two-qubit graph state or LU equivalent state is generated probabilistically,
dependent on the measurement outcome.

• The resulting two-qubit state is stabilized by generators that are weighted
between a separable and maximally entangled state, similar to Eq. (5.9),
where the weights are less than cos(φ) and greater than sin(φ) respectively
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so that the measurement has performed some form of ‘refinement’ and the
generated state is more entangled than the state produced when a single
photon interacts with the spin.

5.4 Measurement of the Single-Electron Spin

To establish which measurement should be performed on the single-electron spin,
consider a general single-qubit measurement. The basis for such a measurement is{

cos(α/2) |↑⟩+ eiβ sin(α/2) |↓⟩ , e−iβ sin(α/2) |↑⟩ − cos(α/2) |↓⟩
}
, (5.12)

where 0 ≤ α ≤ π and 0 ≤ β < 2π. The first state corresponds to measurement
outcome 0 and the second to outcome 1. These states are a transformation of
the computational basis states for Hs; A |↑⟩ = cos(α/2) |↑⟩ + eiβ sin(α/2) |↓⟩ and
A |↓⟩ = e−iβ sin(α/2) |↑⟩ − cos(α/2) |↓⟩, where A is the unitary and Hermitian
matrix

A =

(
cos(α/2) e−iβ sin(α/2)
eiβ sin(α/2) − cos(α/2)

)
. (5.13)

Since the computational basis states have stabilizer generators ±Zs, the stabi-
lizer generators for the basis in Eq. (5.12) are ±SA where

SA = AZsA
† =

(
cos(α) e−iβ sin(α)
eiβ sin(α) − cos(α)

)
. (5.14)

This notation allows for measurement operators to be defined as

M0 = Ip1 ⊗ Ip2 ⊗
Is + SA

2

M1 = Ip1 ⊗ Ip2 ⊗
Is − SA

2
,

(5.15)

corresponding to measurement outcomes 0 and 1.
The measurement is performed on the single-electron spin, which collapses into

the relevant basis state dependent on the outcome. Outcome 0 occurs with prob-
ability p(0) = [1 + sin(α) cos(β) cos2(φ)]/2 and leaves the remaining two photons
in the state

|ψ⟩(0)p1p2 =
1

2
√

2p(0)
[(e2iφ cos(α/2) + e−iβ sin(α/2)) |LL⟩

+ eiφ(cos(α/2) + e−iβ sin(α/2))(|LR⟩+ |RL⟩)
+ (cos(α/2) + e2iφe−iβ sin(α/2)) |RR⟩].

(5.16)
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Similarly, outcome 1 occurs with probability p(1) = [1 − sin(α) cos(β) cos2(φ)]/2
and leaves the remaining two photons in the state

|ψ⟩(1)p1p2 =
1

2
√

2p(1)
[(e2iφeiβ sin(α/2)− cos(α/2)) |LL⟩

+ eiφ(eiβ sin(α/2)− cos(α/2)) |LR⟩+ |RL⟩)
+ (eiβ sin(α/2)− e2iφ cos(α/2)) |RR⟩].

(5.17)

Concurrence is used as a measure to determine the entanglement of both pos-
sible remaining states of two photons and can be calculated using Eq. (2.35). For
the respective outcomes of 0 and 1, the concurrence is

C0 =
| sinα| sin2 φ

1 + sinα cos β cos2(φ)
,

C1 =
| sinα| sin2 φ

1− sinα cos β cos2(φ)
.

(5.18)

The aim of the single-qubit measurement is to produce a maximally entangled
graph state (or LU equivalent state) between the two photons, which would have
a concurrence value of 1. For fixed φ, C0 is maximised when | sin(α)| = 1 and
sin(α) cos(β) = −1, and C1 is maximised when | sin(α)| = 1 and sin(α) cos(β) = 1.
These are incompatible so the concurrence can only be maximised for one outcome.
Choosing to maximise C1 subject to the constraint 0 ≤ α ≤ π requires α = π/2.
Therefore cos(β) = 1, requiring β = 0. Substituting these values into Eq. (5.12)
gives a measurement basis {

(|↑⟩+ |↓⟩)√
2

,
(|↑⟩ − |↓⟩)√

2

}
, (5.19)

which corresponds to a measurement in the Xs basis. Further substituting the
values for α and β into Eq. (5.14) gives stabilizer generators ±Xs for the spin
following the measurement, as expected for a measurement in the Xs basis. If
instead C0 were maximised, the measurement would be in the −Xs basis; effectively
the same measurement with eigenvalues and outcomes reversed.

5.5 An Xs direction Measurement

The single-electron spin is measured in the Xs basis. Outcome 0 occurs with
probability p(0) = 1− sin2(φ)/2 and results in the state

|ψ⟩(0)p1p2 =
1√

2(1 + cos2(φ))
[cos(φ) |LL⟩+ |LR⟩+ |RL⟩+ cos(φ) |RR⟩], (5.20)
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Figure 5.2: The probability of producing a heralded Bell state depending on the
phase shift φ induced when two photons interact with a single-electron spin within
a cavity followed by a Pauli X measurement of the spin.

with concurrence C0 = sin2(φ)/(1+cos2(φ)), which is less than 1 for 0 < φ < π/2.
This state is not LU equivalent to a graph state, meaning that the scheme does
not succeed when the measurement outcome is 0.

Outcome 1 occurs with probability p(1) = sin2(φ)/2 and results in the state

|ψ⟩(1)p1p2 = |Φ−⟩ = 1√
2
[|LL⟩ − |RR⟩] = |Φ−⟩ , (5.21)

with concurrence C1 = 1 as expected. This is a Bell state, which is LU to the
two qubit graph state. This demonstrates that the spin-photon interactions and
subsequent measurement can be used probabilistically as a heralded Bell state
source when φ < π/2. However, the probability of success, p(1) = sin2(φ)/2, as
shown in Fig. 5.2, is always less than 1/2 and decreases drastically as the angle of
the induced phase shift reduces.

In the stabilizer formalism, the Bell state |Φ−⟩ has known stabilizer generators
−Xp1Xp2 and Zp1Zp2 . Though not a stabilizer state, operators that stabilize the

state can still be found for |ψ⟩(0)p1p2 , which can be written as a linear combination
of Bell states

|ψ⟩(0)p1p2 =
1√

1 + cos2(φ)
[cos(φ) |Φ+⟩+ |Ψ+⟩]. (5.22)
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This two photon state is equivalent to applying the unitary transformation

1√
1 + cos2(φ)

[cos(φ)Zp1 +Xp1Zp2 ] (5.23)

to the Bell state |Φ−⟩. Applying this transformation to the known generators of

|Φ−⟩ gives the stabilizer generators for |ψ⟩(0)p1p2 :

Xp1Xp2 ,

1

1 + cos2(φ)
[2 cos(φ)Xp1 − sin2(φ)Zp1Zp2 ].

(5.24)

However, these generators are not unique. The transformation on the Bell state
could also be applied with photon labels reversed, resulting in stabilizer generators
with reversed labels.

It is interesting to note that the scheme begins with a stabilizer state (albeit
with no entanglement), then applies a non-Clifford operator followed by a Pauli
measurement and, in the case of outcome 1, returns to a stabilizer state. When
performing a Pauli measurement on a stabilizer state, the resulting stabilizer gen-
erators are found by manipulating existing stabilizer elements and the updated
generator for the measured qubit. In this case, the single-electron spin measure-
ment is Pauli, and an attempt to use this rule can be made despite the state before
the measurement not being a stabilizer state.

Prior to the measurement, the full stabilizer is found by multiplying together
the generators in Eq. (5.10):

I
Xp1 cos(φ)− Yp1Zs sin(φ)

Xp2 cos(φ)− Yp2Zs sin(φ)

Xs cos
2(φ)− (Zp1Ys + Zp2Ys) sin(φ) cos(φ)− Zp1Zp2Xs sin

2(φ)

Xp1Xs cos(φ)−Xp1Zp2Ys sin(φ)

Xp2Xs cos(φ)− Zp1Xp2Ys sin(φ)

Xp1Xp2 cos
2(φ)− (Yp1Xp2Zs +Xp1Yp2Zs) sin(φ) cos(φ) + Yp1Yp2 sin

2(φ)

Xp1Xp2Xs

(5.25)

The measured qubit has stabilizer generator ±Xs depending on the measurement
outcome. Multiplying the final element of the stabilizer Xp1Xp2Xs by ±Xs gives
±Xp1Xp2 , which is one of the stabilizer generators for the state following the
measurement. This is the only generator that commutes with ±Xs and the second
stabilizer generator for either outcome cannot be found by manipulation of the
stabilizer elements. It is unclear why this is the case, though is likely due to the
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state following the interaction not being a true stabilizer state. Returning to the
general measurement, with stabilizer generators ±SA, it is also not apparent how
stabilizer generators for the remaining states of two photons would be found, as
again, manipulation of stabilizer generators in the manner of a Pauli measurement
of a graph state does not appear to work and in general, ±SA will not commute
with the existing generators.

5.6 Generating Larger Photonic Graph States

The interaction and subsequent measurement of the single-electron spin can be
used to entangle photon pairs and can be extended to produce larger photonic
graph states. Such a scheme has two ‘layers’ as shown in Fig. 5.3, where the first
layer is used to entangle photon pairs and the second connects these entangled
pairs. The steps to enact the scheme are as follows:

First Layer

• Single photons are prepared in the state |+⟩p. Single-electron spins contained
within cavities are prepared in the state |+⟩s.

• A pair of photons is sent into every cavity within the first layer to interact
with the single-electron spin. The electron spin in each of these cavities is
measured in the Xs direction.

• For measurements with outcome 1, a Bell state is produced and the pair of
photons is retained.

• For measurements with outcome 0, the photons are discarded as the state
produced is not seen as useful.

• A minimum requirement for storage of the photons is the time it takes to
perform the Xs direction measurements and process the outcomes. However
if the produced Bell pairs can be stored in a quantum memory for a longer
duration then further steps can be taken for cavities where the outcome is 0.
The state of the electron spin in each cavity where this is the case returns to
|+⟩s, as it was initially set-up to be. The procedure of sending in two photons
and performing anXs measurement can be repeated until a sufficient number
of Bell states have been produced.

Second Layer

• The photons are paired with a photon from another Bell state (with the
exception of the first and final photons as shown in Fig. 5.3).
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Figure 5.3: A two layer scheme to generate photonic GHZ style states. (a) An
overview of the scheme showing the set-up and routing. (b) A pair of single photons
is sent in sequentially to each cavity in the first layer to interact with single-electron
spins. (c) The single-electron spins are measured in the Xs direction with outcome
1 leading to Bell states being stored whilst the previous step is repeated for outcome
0 with further photons sent into the cavities. (d) Photons from the stored Bell
states are paired up and sent into the second layer cavities, excluding the first and
final photons. (e) The single-electron spins in the second layer are measured in the
Xs direction and, provided all outcomes are 1, a large photonic GHZ style state is
produced.
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• The new photon pairs pass into the cavities in the second layer and interact
with the single-electron spins, which are subsequently measured in the Xs

basis.

• In order for the procedure to succeed, all measurement outcomes must be 1
within the second layer. The probability of this is

n
(2)
s∏
i=1

1

2
sin2(φi). (5.26)

where n
(2)
s is the number of single-electron spins in the second layer and each

φi is the phase shift induced the relevant cavity, which need not be equal.

• When the scheme succeeds, the resulting state of np = 2(n
(2)
s +1) photons is

|L⟩⊗np − |R⟩⊗np

√
2

. (5.27)

This is a GHZ state with a phase flip applied.

It is also possible to entangle an odd number of photons. An extra photon is
prepared in the state |+⟩p and sent into an additional cavity in the second layer

alongside the final photon. Again, the Xs basis measurements of all n
(2)
s single-

electron spins in the second layer must have outcome 1. This produces the GHZ
state

|L⟩⊗np + |R⟩⊗np

√
2

, (5.28)

where np = 2n
(2)
s + 1 is the number of photons in the state.

To demonstrate the low probability of success, consider the case in which each
cavity within the second layer induces an identical phase shift of φ. The probability
of all measurement outcomes being 1 is

(
1

2
sin2(φ)

)n(2)
s

. (5.29)

Since 0 < sin2(φ) < 1 for 0 < φ < π/2 this probability is bounded above by

2−n
(2)
s , which decreases exponentially as the number of spins within the second

layer increases. Fig. 5.4 shows this success probability for a second layer consisting
of 1 to 6 cavities containing an electron spin.
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Figure 5.4: The probability of all measurement outcomes in layer 2 being 1 and
the scheme producing a GHZ-style state for a second layer ranging from 1 to 6
single-electron spins.

5.7 Discussion

We have demonstrated that the interaction between photons and a single-electron
spin can be utilised as a means to generate stabilizer states probabilistically even
when the phase shift induced by the interaction is small, i.e. φ < π/2. In the
simplest case, where two photons interact with the spin, followed by measurement
of the spin, the process acts as a probabilistic heralded Bell state source, which
is an important resource for quantum computing. When the scheme is enacted
on a larger scale with multiple cavities, larger photonic GHZ style states can be
produced, albeit with a low probability of success.

Though the stabilizer formalism is used as a means to track the interaction
of photons with the cavity, it is not possible to manipulate the generators once a
measurement in the Xs basis is performed. Further work could determine why only
one stabilizer generator is found for each measurement outcome, especially in the
case where the measurement outcome is 1, as the remaining Bell state is a stabilizer
state and is readily described by stabilizer generators. This could also be extended
to an investigation of the stabilizer generators ±SA and potential generators for a
remaining state following a more general measurement of the single-electron spin.

Future investigation could consider whether distillation could be used to pro-
duce Bell pairs from the remaining state of two photons when the measurement
outcome is 0. A protocol such as BBPSSW [27] or DEJMPS [28] requires mul-
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tiple copies of the state to be distilled and is itself probabilistic, meaning that
the resources required to recover Bell pairs in this way may not be more effective
than using the spin-photon interaction and requiring the measurement outcome 1,
despite the probability of this outcome being small. Additional work surrounding
the larger layered scheme could examine whether some form of distillation or re-
finement could be applied to produce a ‘useful’ photonic graph state when one or
more of the measurement outcomes is 0, or to study whether a different structure
could lead to another LU class of graph states.
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Chapter 6

Summary

The work presented in this thesis focused on graph states and their importance
as an entangled resource within quantum computation and communication in ap-
plications ranging from MBQC to quantum repeaters. Despite their perceived
simplicity in having a visual representation consisting only of vertices and edges,
graph states allow access to a highly entangled class of quantum states, and have
a powerful mathematical ‘language’ — the stabilizer formalism.

We began this thesis by discussing the role of graph states within quantum
information applications and how the stabilizer formalism ties to their description
despite being initially developed for QEC. In Chapter 2 we presented the math-
ematical toolkit necessary to describe graph states, states resulting from their
manipulation, and the specific quantum concept of entanglement. Following this
we addressed three distinct uses of the stabilizer formalism to look at properties,
operation with and generation of graph states.

Chapter 3 mapped the number of sets of stabilizer generators describing a
reduced graph state to the purity of the remaining state. This result allows for
efficient calculation of the entanglement measure Concentratable Entanglement
for graph states when its definition is given in terms of these purities. We applied
this to several example graph states including ‘snowflake states’ that have been
designed for quantum repeaters and all graph states containing up to nine qubits.

In Chapter 4 we investigated MBQC for the specific task of implementing a
two-qubit unitary. We provided a step-by-step derivation of the protocol starting
with the translation of each of the necessary gates from a circuit based model to
the measurement based set-up. We reduced the number of qubits within the graph
state resource by theoretically performing the Pauli measurements and tracking
the adjustments and byproduct operators required.

Lastly, in Chapter 5 we studied interactions between photons and electron
spins within quantum dots as a means to generate graph states in the case where
the induced phase shift was φ < π/2. We showed that this set-up led to the
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probabilistic generation of Bell pairs, heralded by measurement of the electron
spin and, when repeated on a larger scale with multiple cavities and photons, the
scheme could be used to produce GHZ style states.

Chapters 3 and 4 demonstrate the efficiency with which the stabilizer formalism
can be used to describe and manipulate graph states when operations consist of
Clifford group operations and Pauli measurements, as required by the Gottesman-
Knill Theorem. However, Chapter 5 highlights the complications that arise when
operations are applied beyond this restriction and how the group structure of
the stabilizer can no longer be used to track states resulting from a subsequent
measurement, even though it is possible for the final state to be a stabilizer state.

Future work relating to Chapter 3 could consider whether the use of the sta-
bilizer formalism to calculate Concentratable Entanglement could be extended to
graph states of qudits, hypergraph states or graph states where an error occurs,
resulting in a mixed state. Each of these would increase the number of sets of sta-
bilizer generators that describe the state either before or after tracing out qubits
(or qudits) to find the reduced state purities, and this number may no longer
correspond to the purities required.

Perhaps most interesting from a practical or experimentalist viewpoint is the
work of Chapter 4, as progress is already being made by members of QET Labs
in Bristol on designing the set-up to produce the adapted graph state and to
implement the protocol on-chip. To make the two-qubit unitary as general as
possible, the local operations u1, v1, u4 and v4 could also be included within
the MBQC protocol, though this would increase the number of qubits within the
resource graph state, which may be too large to produce by those in Bristol as it
stands.

Further extension on the work of Chapter 5 would likely focus on distillation
of Bell states or larger GHZ style states in cases where the scheme is considered
a failure when the measurement outcome is 0. This is unlikely to require the
stabilizer formalism, as the resulting states in this scenario are not stabilizer states
and it would be inefficient to track stabilizer generators. However this may be
more resource intensive than the proposed probabilistic scheme, as the distillation
process may be less likely to succeed or require multiple rounds to produce a state
with high fidelity.
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