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Abstract 

Disruptive events, such as natural disasters, social movements or pandemics, can 

severely impact public transport demand. The relevance of studying the impacts of 

these events on public transport has been widely recognised in the literature, focusing 

on the investigation of disruption mitigation, delay management, vulnerability and 

resilience. Much less attention, however, has been given to understanding 

passengers’ responses amid these events. As a consequence, several gaps in this 

research area are yet to be addressed. These include a narrow scope in the modelling 

of passengers’ behavioural responses amid disruptive events, the lack of 

understanding of the role of individual-level factors in those responses (e.g. socio-

demographics, attitudes and trip characteristics) and an insufficient examination of 

passive data sources for aggregate and disaggregate-level analysis (ranging from 

smart card to more emerging data sources such as aggregate mobility indices). This 

motivates this research, whose aim is to enhance the understanding of public transport 

demand during disruptive events. The research conducted here is temporally framed 

between 2019 and 2022, a period of worldwide high mobility disturbances caused by 

the COVID-19 pandemic. This period represents a unique opportunity to address 

existing research gaps in the analysis of disruptive events and public transport 

demand by leveraging recent literature and data sources. 

First, this thesis extends the scope of previous literature on analysing passengers’ 

behavioural responses amid disruptive events by examining passengers’ mobility 

profiles and departure time choices. So far, previous research has adopted a ‘trip-

reduction’ perspective on passengers’ responses, limiting the examination to either 

trip frequency reduction or the shift to another alternative mode. Thus, considering 

passengers’ mobility profiles based on integrating several indicators to describe 

passengers’ behavioural responses, this research enhances the traditional analysis 

perspective. In addition, this research contributes to the literature by demonstrating 

how disruptive events of several types affect passengers’ trip-scheduling decisions. 

From a data perspective, this research provides new empirical evidence of the 

disaggregate-level capabilities of smart card data for analysing passengers’ 

responses amid disruptive events. To achieve this, limitations of smart card data 

regarding missing attributes for disaggregate-level modelling were addressed. In 

particular, specific frameworks are proposed to input passengers’ preferred arrival 

times (a key attribute for estimating departure time choice models) and passengers’ 

sociodemographic characteristics based on their home location. Overall, this research 

adds empirical and methodological contributions supporting the use of smart card data 
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to better understand passengers’ behavioural responses, which, as demonstrated in 

this research, are more complex than those considered in previous research. 

This thesis also addresses the need to elucidate how individual-level factors influence 

public transport usage amid disruptive events. So far, it has not been possible to 

generate well-established conclusions about the influence of individual-level factors 

on passengers’ responses amid disruptive events. Previous literature only provides 

partial comparisons based on effect directions (positive, negative or non-statistically 

significant), which does not help generate definitive conclusions when the empirical 

evidence is ambiguous. Difficulties in comparing scattered empirical evidence due to 

the diversity in the nature, severity, location and temporality of disruptive events have 

limited such analysis. In this regard, the calamity of the COVID-19 pandemic offers a 

unique opportunity to address this research gap by leveraging the great amount of 

empirical findings generated worldwide. Hence, through a comprehensive literature 

review that revised 36 articles, the statistical consistency in how 15 individual-level 

factors influence the decrease in public transport usage during the crisis of the COVID-

19 pandemic is analysed. Pooled effect sizes are calculated through meta-analyses 

conducted on each of the 15 individual-level factors using random-effect models 

(REMs). The results generated here help identify the most influential individual-level 

factors regarding their effect size.  The results also allow to verify the presence of 

inequality issues related to a more rigid use of public transport by particular 

passengers’ group segments amid the COVID-19 pandemic. 

From the aggregate perspective of public transport demand and disruptive events, the 

potential to use emerging data sources as a proxy for public transport ridership is 

explored in this work. So far, aggregate-level analyses have been made only possible 

in those cities where an automatic fare collection system is available, substantially 

limiting the analysis of public transport ridership levels worldwide. In particular, 

aggregated mobility indices (AMIs) provided by tech companies and derived from the 

ordinary use of smartphones have recently emerged as a new data source for 

transport planners. This data has shown particular value during periods of major 

disturbances or when other mobility data sources are scarce. Nonetheless, whether 

AMIs can provide a reliable characterisation of actual ridership change remains largely 

untested. This study aims to address this research gap by investigating the reliability 

of using AMIs for inferring ridership changes by offering the first rigorous 

benchmarking between them and ridership data derived from smart card validations 

and tickets. For the comparison, monthly and daily ridership data from 12 cities 

worldwide and two AMIs shared globally by Google and Apple during major changes 

in 2020-22 are used. The results reveal a high capability of AMIs to align with ridership 
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trends and that AMIs can complement data from smart card records when ticketing is 

missing or of questionable quality. 

Considering the current and future urban challenges, such as climate change, social 

movements, terrorist attacks and pandemics, the study of public transport demand 

amid disruptive events is more timely than ever. The outcome of this thesis contributes 

in this direction, expanding that understanding by addressing key research gaps in 

previous literature and associated challenges. It is demonstrated in this research that 

passengers’ adaptations are more complex than the current ‘trip reduction’ approach 

adopted in the literature. In this regard, this thesis adds to the body of existing 

knowledge by identifying and modelling passengers’ mobility profiles and departure 

time choices during disruptive events. This research also supports using passive data 

sources such as smart card data and emerging aggregated mobility indices to analyse 

public transport demand change amid disruptive events. In particular, by addressing 

some of the existing challenges of these data sources, their potential to be employed 

for a broader range of events has been revealed in this research. This research also 

highlights the role of passengers’ associated characteristics on distinctive behavioural 

responses adopted during disruptive events, recognising a strong presence of 

inequality. These findings suggest that, regarding disruptive events, public transport 

agencies and operators should especially focus on the needs of the more vulnerable 

population segments, who showed fewer opportunities to mitigate the impacts of 

disruptive events through travel behavioural adaptation. Finally, the findings generated 

in this thesis can be used to improve the understanding of how passengers adapt their 

mobility patterns during external disruptions and, therefore, be used by policymakers 

to act accordingly amid future disruptive events. 
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Chapter 1  

Introduction 

1.1 Background 

Public transport1 keeps cities moving (Ceder, 2020). Public transport accounts for at 

least 16% of daily trips in cities but up to 45% in European and Asian cities (Aguiléra, 

2014; UITP, 2024). Its importance is highlighted by the many benefits public transport 

has. Public transport is crucial to a city’s ability to achieve societal, economic, and 

environmental prosperity (Fadaei & Cats, 2016; Kwan & Hashim, 2016). Public 

transport directly addresses social issues, reducing poverty and inequality and 

improving social cohesion and accessibility in cities (Lucas, 2012). It also connects 

people and places, boosting employment, increasing productivity and promoting 

economic growth (Johnson et al., 2017; Bastiaanssen et al., 2020). Moreover, it plays 

a key role in helping reduce urban traffic congestion, noise and inefficiency in terms of 

capacity and urban space consumption (Buchanan, 2019). Public transport has also 

been pointed out as a central element to meet net zero emission targets by reducing 

street congestion and air pollution generated by private cars (Kwan & Hashim, 2016; 

Department for Transport, 2021). 

Despite its positive contributions and societal benefits, public transport faces 

increasing challenges (Ceder, 2020; Tirachini & Cats, 2020). The last decades have 

witnessed significant changes in people’s travel behaviour due to evolving lifestyles 

and the fast advent of new technologies (Lizana et al., 2021). For example, there is 

evidence that people are making fewer commuting trips but longer ones, spending 

less total time travelling in a day, and reducing physical shopping trips (Marsden et al., 

2018). Travellers are also increasing their expectation of quality of service, pressuring 

public transport agencies to increase safety, affordability and level of services 

(dell’Olio et al., 2011; Van Lierop et al., 2017). Fiscal stress as a consequence of the 

increasing amount of subsidy required to keep public transport systems running has 

also been mentioned as a major source of concern (Parry & Small, 2009; Serebrisky 

et al., 2009). In this already complex scenario, the shocks produced by disruptive 

events such as infrastructure/system failures, natural disasters, terrorist attacks and 

lately, the COVID-19 pandemic have dynamically contributed to reshaping travellers’ 

consideration of public transport (Currie & Muir, 2017; Nguyen-Phuoc et al., 2018; 

Ziedan et al., 2023). 

                                            

1 This thesis employs the term public transport to refer indistinctly to other terms used in the 
literature for the same concept, such as transit, public transportation and mass transit. 
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The relevance of studying the impacts of disruptive events on public transport has 

been widely recognised in the literature. Abundant evidence from the transport supply 

perspective examines disruption mitigation, delay management, vulnerability and 

resilience (Berche et al., 2009; Mattsson & Jenelius, 2015; Bešinović, 2020; Ge et al., 

2022; Yap & Cats, 2022; Bergantino et al., 2024). Significantly less attention has been 

given to understanding passengers’ behavioural responses. Here, the study of 

passengers’ behavioural responses amid disruptive events has been limited to 

immediate and short-term responses to rail and metro disruptions (Pnevmatikou et al., 

2015; Currie & Muir, 2017; Shires et al., 2018; Rahimi et al., 2020). Only lately, due to 

the COVID-19 pandemic, more evidence has been made available, focussing on 

middle to long-term behavioural adaptations (He et al., 2022; Ngo & Martin, 2023; 

Victoriano-Habit & El-Geneidy, 2024). 

So far, several challenges have limited the examination of the effect of disruptive 

events on passengers’ travel behaviour. First, travel behavioural adaptations are 

inherently complex, as there are several possible ways to respond to a disruptive event 

(Lin et al., 2016). Passengers may decide to cancel the trip, change the departure 

time, shift to another mode, change the destination or keep the initial itinerary (Parkes 

et al., 2016; Marsden et al., 2020). Second, observing passengers’ responses to 

disruptions requires data collected over relatively long periods, a task rarely conducted 

with traditional survey-based data (Victoriano-Habit & El-Geneidy, 2024). In this 

regard, passive data such as smart cards can capture day-to-day variability in 

passengers’ behaviour very well. However, it frequently lacks the necessary variables 

for estimating disaggregate models. As a consequence, most applications of smart 

card data on public transport demand amid disruptive events have been limited to the 

characterisation of ridership levels (Nazem et al., 2019; Chan et al., 2021; Woo et al., 

2021). Third, no definitive conclusions about the effect of individual-level factors (such 

as socio-demographics, attitudes and trip characteristics) on public transport usage 

change during disruptions are currently available. Difficulties in comparing existing 

empirical evidence due to the diversity in the nature, severity, location and temporality 

of the events examined are only some of the difficulties faced (Zhu et al., 2017; He et 

al., 2024). Finally, ridership characterisation is still a massive challenge for most cities 

in developing countries where cash-based systems are the standard. This triggers the 

need to explore emerging data sources beyond smart card data to look for potential 

proxies for characterising ridership changes amid disruptive events with broader 

coverage. 

The recent calamity of the COVID-19 pandemic revitalised the interest and importance 

of addressing most of these challenges. During its different stages, public transport 

demand was severely impacted, reaching a reduction as high as 90% in many cities 
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during the pandemic outbreak, followed by a slow recovery process. The reductions 

in travel demand were due to a combination of mobility restriction guidelines imposed 

by governments and the changes in people’s travel behaviour and perceptions 

towards public transport (Vickerman, 2021). In this context, due to its ubiquitous 

presence and colossal impact on human mobility, an unprecedented effort to 

characterise passengers’ responses across the different stages of the pandemic was 

made (Wielechowski et al., 2020; Przybylowski et al., 2021; Vickerman, 2021). This 

research takes advantage of this unique opportunity to leverage recent literature and 

data sources provided during the COVID-19 pandemic to address challenges related 

to the impact of disruptive events on public transport demand. 

 

1.1.1 Disruptive events 

A classical definition of ‘disruption’ in the transport domain is given to the moment 

when physical infrastructure or the operation of a service or system ceases to work 

normally, generating significant alterations in transport systems (Ge et al., 2022). This 

definition frequently considers unplanned infrastructure failures (e.g. bridge collapse), 

accidents (e.g. human-associated incidents), and planned interventions (e.g. the 

closure of a rail line for maintenance). Under this perspective, literature examines 

concepts such as mitigation, delay management, vulnerability and resilience in terms 

of maximising the availability and the speed to put back infrastructure and for systems 

to recover when a disruptive event occurs (Berche et al., 2009; Mattsson & Jenelius, 

2015; Bešinović, 2020; Ge et al., 2022; Yap & Cats, 2022; Bergantino et al., 2024). 

On the other hand, the definition of a disruptive event adopted in this research 

recognises as such any system-level event that causes people and businesses to see 

their daily activities significantly modified (Parkes et al., 2016; Kontou et al., 2017; 

Rahimi et al., 2020). Consequently, it focuses on examining the adaptations in the trip 

behaviour of travellers as a response to those events. This broader perspective has 

been used in the literature to highlight that during a disruptive event, what is ‘disrupted’ 

is the coordination and realisation of activities and, therefore, the implications for 

travellers’ behavioural responses are the focus of the analysis, going beyond the 

journey itself (Marsden et al., 2020). In this regard, while the traditional definition 

emphasises the transport system, the definition used here focuses on the system of 

activities which the transport system supports (Shires et al., 2018). Mega-events (e.g. 

Olympic Games), social unrest, natural disasters, public transport strikes, terrorist 

attacks and the COVID-19 pandemic are considered examples of disruptive events 

according to this perspective. 
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The literature in this regard has shown that travel behavioural adaptations as a 

consequence of disruptive events are inherently complex. In the first place, several 

ways to respond to an event are possible, which are much more complex than simply 

trip reduction (Lin et al., 2016). Actually, when the category ‘trip reduction’ is examined 

in detail, travel responses such as cancelling, re-timing, changing mode, re-routing, 

re-scheduling (changing when in the week a trip is made), relocation (change in the 

destination) and re-allocating (someone else takes over the responsibility to conduct 

the activity) have been identified (Parkes et al., 2016; Marsden et al., 2020). 

Underlying the adoption of travellers’ specific responses, the literature has recognised 

several types of constraints, which range broadly from alterations of the system of 

activity or transport by the events (Nazem et al., 2019; Chan et al., 2021) to individual-

level factors (such as gender, age, attitudes or car availability). The integration of these 

constraints on travel behaviour can be traced as far back as Hagerstrand (1970), 

whose seminal work proposed the time-geography framework. According to 

Hagerstrand (1970), at any time, there are three categories of constraints that shape 

human mobility behaviour: capability constraints (related to the person’s capacity to 

move, such as socio-demographics, physical abilities and budget), coupling (related 

to the need to be at specific places and at specific times to interact with others, such 

as work starting times) and authority constraints (related to external regulations that 

restrict certain activities, places or opening hours). During the COVID-19 pandemic, 

for example, the adoption of flexible working arrangements (Wöhner, 2022) is an 

example of changes in the coupling constraints, while lockdowns and curfews imposed 

by governments (Saha et al., 2020; Gramsch et al., 2022) represent changes in the 

authority constraints. 

 

1.1.2 Public transport demand change amid disruptive events 

Several types of disruptive events have been considered in the analysis of 

passengers’ behavioural responses, which can be categorised depending on their 

duration in terms of short-term or medium/long-term. Disruptive events that only cause 

short-term/immediate adaptations have been associated mostly with events or 

‘incidents’ that cause a short-term degradation of normal service levels in trains, metro 

or buses (Liu et al., 2021; Zhao et al., 2023). Some examples include extreme weather, 

operation errors, vandalism, human incidents, strikes, etc., for which the range of 

duration has been reported to be from minutes to some days (Van Exel & Rietveld, 

2001; Pnevmatikou et al., 2015; Zhu et al., 2017; Nguyen-Phuoc et al., 2018). 

Furthermore, whether the disruption is planned or unplanned and, if unplanned, 

whether it occurs en-route or before a passenger starts the trip, are contexts that have 
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been analysed separately as passenger responses may differ (Lin et al., 2016). On 

the other hand, studies that examine passengers’ medium/long-term behavioural 

responses amid disruptive events have focussed on investigating their progression 

before, during and after those events (Woo et al., 2021). In these analyses, there is a 

need for longitudinal data to observe characteristic stages such as before, during and 

after the disruption (Nazem et al., 2019). Examples of disruptions in this category are 

the planned closure of a metro/rail line or station for several months (Nazem et al., 

2019; Eltved et al., 2021) and incidents affecting the public transport supply, that by 

their recurrence, induce medium to long-term changes in passengers’ travel behaviour 

(Bernal et al., 2016). Other examples are ‘external’ events (‘external’ with respect to 

the public transport supply) such as social movements (Chan et al., 2021), natural 

disasters (Kontou et al., 2017), mega-events (Parkes et al., 2016), terrorist attacks 

(Prager et al., 2011) and lately the COVID-19 pandemic (Panik et al., 2023). 

The characterisation of public transport demand change amid disruptive events has 

been conducted using both aggregate and disaggregate-level approaches. 

Aggregate-level studies analyse the impact of disruptive events on ridership levels, 

focusing on their variation over time. Ridership data contain the aggregated amount 

of transactions and tickets sold for the entire public transport system or a particular 

mode (e.g. only the metro ridership in Hong Kong (Chan et al., 2021) or the BRT 

ridership in Bogota (Arellana et al., 2020)). In these studies, the temporal level of 

aggregation is usually the day, while temporal frames range from months to years. 

Aggregate-level studies have focussed on conducting descriptive analysis of ridership 

variability levels (Eltved et al., 2021) and on understanding its temporal and spatial 

variability by testing the effect of covariates such as transport infrastructure, 

sociodemographic characteristics, and the presence of disruptions and authority 

constraints (e.g. lockdown, curfew) (Bernal et al., 2016; Woo et al., 2021; Borowski et 

al., 2023). Events examined under this perspective have included the closure of metro 

stations and rail lines for several months (Nazem et al., 2019; Eltved et al., 2021), 

recurring train service delays (Bernal et al., 2016), the occurrence of social unrest 

(Chan et al., 2021), and the COVID-19 pandemic (Zhang et al., 2021). Even though 

most of these studies employ smart card data, lately, some authors have relied on 

aggregated mobility indices (AMIs), an emerging data source, to conduct the analysis 

(Jenelius & Cebecauer, 2020; Fernández Pozo et al., 2022; Padmakumar & Patil, 

2022). Finally, the advantage of using an aggregate-level analysis is the explicit 

observation of ridership changes amid a disruptive event. For instance, Eltved et al. 

(2021) found a 7% decrease in everyday commuting after the reopening of a 3-month 

closure of a rail line in the Greater Copenhagen area.  During the COVID-19 pandemic, 

the analysis of ridership showed drops as much as 70%-90% in the major cities of 



22 
 

Sweden (Almlöf et al., 2021), Germany (Kolarova et al., 2021), Greece (Politis et al., 

2021), Hungary (Bucsky, 2020) and Chile (Gramsch et al., 2022) (Shixiong Jiang & 

Canhuang Cai, 2022). 

On the other hand, disaggregate-level studies characterise public transport demand 

by focussing on understanding individual responses amid the occurrence of disruptive 

events. For instance, short-term behavioural responses have been studied by 

modelling the shift from public transport to alternative modes using hypothetical 

disruptive scenarios (Pnevmatikou et al., 2015; Nguyen-Phuoc et al., 2018; Shires et 

al., 2018; Li & Wang, 2020; Rahimi et al., 2020). This level of analysis is particularly 

appropriate for investigating the effect of underlying factors on passengers’ 

behavioural responses in terms of their public transport usage change. Factors such 

as the level of service of mode alternatives (e.g. travel time, crowding level, monetary 

cost), travellers’ associated characteristics, attitudes towards public transport and the 

situational contexts’ characteristics are some of the variables employed. Studies that 

have analysed medium to long-term responses using a disaggregate-level approach 

have only been recently available in light of the COVID-19 pandemic. Here, 

passengers’ adaptations have been investigated in terms of reducing public transport 

trip frequency (Almlof et al., 2021; Das et al., 2021; Downey et al., 2022), choosing 

public transport among the presence of alternative modes (Bansal et al., 2022; Basnak 

et al., 2022; Hsieh & Hsia, 2022) and to a lesser extent measuring the intention to use 

it (Aaditya & Rahul, 2023). The literature, therefore, has narrowed the analysis of 

passengers’ behavioural responses to a public transport ‘trip reduction’ perspective, 

paying minimal attention to other possible types of adaptations, such as those related 

to temporal or spatial trip pattern changes. 

 

1.1.3 The role of individual-level factors 

The literature recognises that travellers’ resources, abilities, expectations, trip 

characteristics, as well as their collective and personal set of norms and social 

constructs, strongly influence passengers’ responses amid disruptive events (Kontou 

et al., 2017). Thus, the literature on short-term events such as service disruptions has 

found proof that passengers’ behavioural responses are influenced by factors such as 

the information available (e.g. reason for the delay and uncertainty of the duration), 

availability of alternative modes, levels of service of alternative modes, attitudes, 

habits, weather, trip purpose and trip frequency (Nguyen-Phuoc et al., 2018; Sarker & 

Currie, 2023). In particular, sociodemographic characteristics such as car ownership 

and income level have consistently been associated with avoiding public transport 

amid service disruptions  (Rahimi et al., 2020; Sarker & Currie, 2023). Empirical 
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evidence regarding the influence of gender and age, on the other hand, has been less 

frequently incorporated. However, there are some findings that suggest that female 

and elderly passengers are less likely to avoid public transport amid a service 

disruption (Pnevmatikou et al., 2015; Sarker et al., 2019). Negative attitudes towards 

public transport have also been correlated positively to the intention to avoid public 

transport amid a service disruption (Sarker & Currie, 2023), while longer travel times 

and commuting purposes have been negatively associated with this response 

(Nguyen-Phuoc et al., 2018; Shires et al., 2018). 

Related to passengers’ medium to long-term behavioural responses, most evidence 

has been generated in light of the COVID-19 pandemic. Literature before the 

pandemic is quite limited, as that evidence comes from employing mostly descriptive 

analyses using an aggregate-level perspective (Lopez-Rousseau, 2005; Prager et al., 

2011; Eltved et al., 2021). Conversely, the influence of individual-level factors on 

passengers’ behavioural adaptations during the COVID-19 pandemic has been 

broadly studied. Among these factors, the role of the COVID-19 perceived risk 

(Abdullah et al., 2020; Shelat et al., 2021; Liu et al., 2022; Rankavat et al., 2023) and 

the possibility of working from home have been considered as being among the most 

important factors influencing the decision to reduce public transport usage (Schaefer 

et al., 2021; Soria et al., 2023; Zafri et al., 2023). Related to the influence of 

passengers’ sociodemographic characteristics on the decision to reduce public 

transport usage during this event, evidence shows a heterogeneous consistency 

among them regarding their effect direction. For example, car ownership and income 

levels show consistently positive effects on the decision to reduce public transport 

usage during the pandemic (Mashrur et al., 2022; Mazanec et al., 2023), similar to the 

findings for the short-term disruptions. On the other hand, inconsistent effect directions 

for factors such as gender, age and race are reported. For instance, in the case of 

gender, some findings indicate that male passengers were more likely to reduce public 

transport use compared to females (Abdullah et al., 2020; Abdullah et al., 2021; Jiao 

& Azimian, 2021), whereas other studies found the opposite effect (Beck et al., 2021; 

Palm et al., 2021), and others found no significant relationship (Aaditya & Rahul, 

2023). This uncertainty regarding the direction of the effect can also be observed in 

other types of factors, such as whether an individual was a regular passenger prior to 

the COVID-19 pandemic. Here, certain studies indicated a negative impact on 

reducing public transport trips (Palm et al., 2021) and others a positive one (Aaditya & 

Rahul, 2023). Overall, despite all the evidence provided in the literature, there is an 

urgent need to clarify inconclusive effect directions. Moreover, due to several 

challenges, such as different models, dependent variables, and specifications of 

explanatory variables, the comparison of effect sizes has eluded the consideration of 
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previous literature. Therefore, a systematic comparison of effect sizes that address 

these challenges is also yet to be provided. 

 

1.1.4 Data for modelling 

1.1.4.1 Disaggregate-level modelling – travel surveys 

Based on the literature, the analyses of passengers’ behavioural responses amid 

disruptive events have been conducted primarily using survey-based data. Studies 

have employed both revealed preferences (RP) and stated preferences (SP) data to 

collect the targeted dependent variable and high level of detail of passengers’ 

characteristics (Basnak et al., 2022). The use of RP data is frequent in studies where 

the dependent variable is public transport trip frequency (Abdullah et al., 2020), while 

SP is more usual in studies where the dependent variable is the shift from public 

transport to another alternative mode (Shires et al., 2018; Li & Wang, 2020). RP data 

typically provides actual mobility patterns for the disruption stage corresponding to 

when the survey was applied, usually during or after the disruption. In comparison, 

pre-disruption or past travel behaviours are traditionally ‘retrieved’ in RP data using a 

retrospective approach, i.e. relying on respondents’ memories (Das et al., 2021). 

Although the norm among these studies is to apply one-wave surveys, a few studies 

have attempted a multi-episode characterisation, collecting passengers’ responses 

over time. (Beck et al., 2021; Victoriano-Habit & El-Geneidy, 2024). On the other hand, 

SP data has been mainly used to test passengers’ mode choices in hypothetical 

disruptive scenarios, including different disruption stages and particular situational 

contexts (Aaditya & Rahul, 2023; Singh et al., 2023). SP data has been particularly 

useful for researchers because it dramatically reduces the complexity of dealing with 

RP responses and the heterogeneity in the alternatives’ attributes by setting them and 

their levels beforehand (Arellana et al., 2012; Bansal et al., 2022). 

Despite the widespread use of RP and SP data in studying passengers’ behavioural 

responses amid disruptive events, several limitations arise. In particular, as the 

characterisation of pre-disruption trip patterns in RP data relies on respondents’ 

memories, the responses’ quality may suffer greatly depending on the gap between 

the survey and the time retrospectively inspected. Moreover, RP data make it 

challenging to collect day-to-day behavioural responses for a long-term period as such 

implementation involves high costs, extensive time effort, and still the impossibility of 

retrieving all relevant information (e.g. level of service of unchosen mode/departure 

time alternatives) (Kusakabe & Asakura, 2014). In the case of SP data, despite their 

many advantages, it is well known that valuations calculated by SP responses are 
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susceptible to hypothetical bias and behavioural incongruence due to the 

misperception of respondents of attributes and their levels (Hess et al., 2005). In 

addition, as both approaches require that the researcher define the target response 

variables in advance, less room is left to explore adaptations that have not been 

traditionally reported in the literature. Moreover, the quality of the sample’s 

representativeness and the associated selection process have been substantially 

reduced in the studies conducted since the pandemic, due to the employment of social 

media to apply online surveys as a replacement for face-to-face ones (Beck et al., 

2021; Das et al., 2021). The risk here is the underrepresentation of population groups 

with low technology access and the overrepresentation of others, such as those more 

engaged with social media or with a particular survey topic. Overall, the limitations of 

RP and SP data give enough reasons to explore other data sources to analyse 

passengers’ behavioural responses amid disruptive events. 

 

1.1.4.2 Disaggregate-level modelling – smart card data 

Smart card data has become a reliable data source for analysing passengers’ travel 

behaviour (Bagchi & White, 2005; Pelletier et al., 2011; Zannat & Choudhury, 2019). 

Although smart cards were initially implemented to collect public transport fares, they 

were promptly used to analyse travel demand (Kusakabe & Asakura, 2014). In fact, 

smart card data have been used widely in the last ten years to understand the travel 

behaviour of public transport passengers and provide the necessary inputs to help 

urban transport planners assess new infrastructure and changes in transit networks 

(Briand et al., 2017). Automatic fare collection systems (AFC) automatically and 

continuously store each fare payment of a cardholder and associate it with the ID card. 

IDs are unique numbers given to smart cards that allow the study of travel habits, trip 

sequences, and route preferences, among other characteristics (Pelletier et al., 2011). 

In this way, it is possible to use smart card data to study day-to-day travel demand 

variability, identifying each cardholder over long-term periods (Kumar et al., 2018). 

Nonetheless, few studies have employed smart card data to study passengers’ 

behavioural responses amid disruptive events. An exception is Almlöf et al. (2021), 

who, during the COVID-19 pandemic, used smart card data to study cardholders’ 

number of trips to Stockholm. It is hypothesised that smart card data limitations related 

to missing attributes have restricted wider applications (such as the need to infer 

sociodemographic characteristics or passengers’ preferences). Overall, there is an 

evident opportunity to leverage smart cards to examine cardholders’ responses amid 

disruptive events and overcome limitations that have restricted their use. 
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1.1.4.3 Aggregate-level modelling 

The aggregate-level characterisation of public transport demand amid disruptive 

events has been conducted mainly with ticketing information through digital 

transactions and smart card validations (Eltved et al., 2021; Woo et al., 2021). As the 

data is collected at the disaggregate level, the spatial aggregation is flexible, with the 

most common analyses conducted at the metropolitan area/city and station levels. 

This passive data collection process allows operators and researchers to observe 

continuously the variation in ridership levels and relate that variation to the occurrence 

of disruptive events ranging from short-term events such as transport supply 

breakdown to global long-term events such as pandemics/epidemics, economic crises 

and conflicts (Liu et al., 2021; Gramsch et al., 2022). Unfortunately, this kind of 

approach presents various limitations. First, the previously described analysis is 

possible only in cities with AFC. As a consequence, the literature on ridership analysis 

is relatively concentrated on case studies of cities from the U.S. (Teixeira & Lopes, 

2020; Xiao et al., 2022; Qi et al., 2023; Ziedan et al., 2023), Eastern Asia (Chan et al., 

2021; Woo et al., 2021; S Jiang & C Cai, 2022) and Europe (Vickerman, 2021) and 

specific cities in countries such as Chile (Gramsch et al., 2022), Colombia (Caicedo et 

al., 2021) and Canada (Nazem et al., 2019). Another limitation in the use of AFC is 

their partial coverage regarding all the public transport modes available in a city, such 

as the case of Bogotá, where smart cards are only available for the bus rapid transit 

mode (Caicedo et al., 2021). In these cases, there is an inherent difficulty to 

extrapolate the analysis to the entire public transport demand from the available data. 

Moreover, there are specific circumstances where ridership data may be partial or of 

doubtful quality. For instance, during a free bus policy, such as the one adopted in 

London for several months during the COVID-19 pandemic that aimed to limit the 

physical contact between drivers and passengers (Vickerman, 2021), the recorded 

ridership does not represent actual bus demand. Overall, these limitations have 

generated the need to explore emerging data sources to find proxies for ridership data. 

In this regard, emerging data sources generated by the everyday use of smartphones 

have shown high potential to provide proxies for ridership data. In particular, Wi-Fi 

signals emitted by smartphones that bus passengers carry (Wang & Zhang, 2020), 

call detail records (CDRs) of cell phone calls and text exchanges (Sørensen et al., 

2018), GPS traces collected by global mobile phone apps and the level of public 

transport queries in travel planners (Welch & Widita, 2019; Finazzi, 2023) are some of 

the technologies that have been explored to address this aim. Unfortunately, the effort 

to leverage Wi-Fi and CDRs has been mainly limited to research purposes and a few 

case studies, as data availability remains largely restricted (Welch & Widita, 2019). On 

the other hand, GPS traces collected by phone apps and the apps’ number of queries, 
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technologies already part of tech companies’ products and services (Strzelecki, 2022), 

have been used in the last years to generate globally available aggregated mobility 

indices (AMIs). In the AMIs, the information is aggregated at a city level to describe 

human mobility over time, offering a near-complete coverage of the urban grid and a 

large proportion of the population. Big tech companies such as Google and Apple 

updated daily AMIs for a period of high mobility disturbance between 2020 and 2022 

(Apple, 2023; Google, 2023). Other companies, such as Moovit and Citymapper, 

which run travel planner apps, also offered similar mobility indices (Beck & Hensher, 

2020; Fernández Pozo et al., 2022). AMIs, as a proxy for ridership changes, have 

been widely used in several studies to analyse mobility trends and scenarios (Konečný 

& Brídziková, 2020; Saha et al., 2020), to assess the effectiveness of mobility 

restrictions on human mobility (Yilmazkuday, 2021; Hamidi & Zandiatashbar, 2021; 

Wen et al., 2021; Wu & Shimizu, 2022), in studying COVID-19 transmission (Noland, 

2021), pandemic indicators (Kartal et al., 2021; Noland, 2021), air quality (Venter et 

al., 2020; Rowe et al., 2022) and economic recovery (Zhang et al., 2022), among other 

topics. Related to the validation of AMIs, so far, preliminary reports based on visual 

inspection have suggested that AMIs may overestimate the recovery in transport 

demand after a disruption (Jenelius & Cebecauer, 2020; Fernández Pozo et al., 2022). 

Nonetheless, a more rigorous assessment to confirm these preliminary findings is yet 

to be conducted. Moreover, it is worth noticing that no previous study has attempted 

to examine the potential of AMIs in complementing partial ridership data. 

 

1.2 Research gaps 

As the literature review has shown, the investigation of public transport demand 

change amid disruptive events presents several research gaps, which are summarised 

next. 

RG-1 Narrow scope in the modelling of passengers’ behavioural responses to 

disruptive events.  

There is a need to extend the scope of examining passengers’ responses amid 

disruptive events by either integrating several adaptations simultaneously or focusing 

on adaptations beyond the traditional ‘trip-reduction’ perspective. Previous research 

on analysing passengers’ responses amid disruptive events has consistently restricted 

the examination to either trip frequency (Almlof et al., 2021; Das et al., 2021) or the 

shift from public transport to another alternative mode (Pnevmatikou et al., 2015; 

Nguyen-Phuoc et al., 2018; Shires et al., 2018; Rahimi et al., 2020). In this way, the 

complexity of the passengers’ adaptations has been significantly overlooked. 
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Specifically, there is no previous attempt to reveal hidden mobility profiles of 

passengers based on a multidimensional characterisation of their public transport 

usage change amid a disruptive event. Such analysis has the potential of considering 

not only the traditional trip frequency characterisation but also a wider set of indicators 

(e.g. changes in days travelled, boarding locations, departure time, etc.). Mobility 

profiles, which represent distinctive groups of passengers in terms of their response 

profiles (e.g. those that return to the pre-disruptive behaviour vs. those that show 

lasting changes), can then be related to passengers’ associated characteristics (e.g. 

age, pre-disruption trip characteristics, neighbourhood characteristics, etc.). This 

analysis would help evaluate whether passengers from more disadvantaged groups 

have fewer possibilities to adapt their travel behaviour amid disruptive events. 

Furthermore, the examination of trip-scheduling decisions is also missing in the 

literature on passengers’ behavioural responses amid disruptive events. In this regard, 

whether the impact of disruptive events on trip-scheduling decisions can be associated 

with i) adaptations in passengers’ arrival time preferences (related to their sensitivity 

to schedule delay) or ii) changes in passengers’ perceptions of public transport 

attributes have yet to be addressed. Related to i), this can be related to modifications 

in the capability constraint from the system of activities (e.g. change in working time 

or more flexibility in starting times), while ii) is related to changes in passengers’ 

attitudes, fear, and expectations toward public transport modes (Wielechowski et al., 

2020; Cho & Park, 2021). Examination of potential changes of those sensitivities 

across several stages of a disruption, including the pre-, during and post-disruption 

stages, is also yet to be provided. Addressing these gaps will extend the scope of 

modelling passengers’ behavioural responses amid disruptive events. 

RG-2 Limited utilization of smart card data for the modelling of passengers’ 

behavioural responses amid disruptive events. 

Previous research about examining passengers’ responses amid disruptive events 

has been conducted almost exclusively using survey data. This has constrained the 

nature of the passengers’ behavioural responses studied and, thereby, the scope of 

the results obtained. Smart card data, on the other hand, have the potential to 

overcome some of those challenges, achieving extensive coverage of the population 

to study the changes in public transport usage of those who continued travelling at 

several stages of a disruptive event. Nonetheless, several challenges have limited 

smart card data implementation for disaggregate applications, particularly missing 

attributes (Kusakabe & Asakura, 2014). In fact, depending on the modelling approach 

pursued, some essential attributes may not be captured by smart card data. Therefore, 

additional stages need to be developed to provide their imputation. This is the case 

for sociodemographic characteristics that are rarely available for ID cards. Similarly, 
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in the case of departure time choice models, attributes such as passengers’ preferred 

arrival times and the in-vehicle travel time for the unchosen time interval alternatives 

are typically unavailable with smart card data. Therefore, there is a research 

opportunity to overcome those limitations of smart card data for examining 

passengers’ behavioural responses amid disruptive events through disaggregate-level 

modelling. 

RG-3 Absence of a systematic comparison of the influence of individual-level 

factors on public transport usage amid a disruptive event. 

So far, generating well-established conclusions about how individual-level factors 

influence passengers’ behavioural responses amid disruptive events has been 

exceptionally challenging. Comparisons have been limited by the few studies available 

and the broad range of events that differ in nature, severity, location and temporality. 

In addition, diverse contexts, different definitions of the passengers’ behavioural 

responses, dissimilar specifications of the individual-level factors, variable units and 

modelling frameworks add even more complexity to that task. A comprehensive 

comparison based on previous literature can help clarify inconsistent findings 

regarding the relationships between individual-level factors and public transport 

usage. For example, some studies have reported contradictory associations between 

gender, age and educational level with public transport usage during the pandemic 

(Almlöf et al., 2021; Jiao & Azimian, 2021; Palm et al., 2021). Moreover, in addition to 

the effect directions (positive, negative or non-statistically significant), a quantitative 

comparison of the magnitude of those effects is also missing in the literature. 

Therefore, a systematic comparison of the findings scattered across many sources on 

the effects of individual-level factors on passengers’ public transport usage amid 

disruptive events is yet to be provided when the conditions are met. These conditions 

were met with the outbreak of the COVID-19 pandemic. In recent years, there has 

been an incredible amount of evidence that statistically tested the effects of individual-

level factors on passengers’ decisions to reduce their use of public transport. This 

situation offered a unique research opportunity to leverage the empirical evidence 

provided during the COVID-19 pandemic to address the existing gap in the literature. 

Based on this, it is possible now to synthesise the effect sizes of the relationships 

between individual-level factors and public transport usage in the context of the 

COVID-19 pandemic. The results provided here will not only be of empirical value for 

the COVID-19 pandemic but also for future situations, whether pandemics or other 

disruptive events. 
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RG-4 Insufficient evidence of the capabilities of aggregated mobility indices 

based on data generated from the everyday use of smartphones to be used as 

a proxy for actual ridership changes. 

Among the different emerging data sources employed to provide proxies for public 

transport ridership, GPS traces collected by phone apps and the apps’ number of 

queries, technologies already part of tech companies’ products and services 

(Strzelecki, 2022), have been used in the last years to generate globally available 

aggregated mobility indices (AMIs). In this regard, comparing this AMIs and ridership 

during periods of significant mobility change is especially informative in studying their 

potential for broader use in these contexts. In this respect, the periods before, during 

and after a disruptive event and their associated changes in ridership levels provide 

an unusual ‘natural experiment’ to test whether AMIs can reasonably replicate 

ridership changes. So far, comparisons between AMIs that offer proxies for public 

transport ridership have been provided only tangentially by a few studies that analysed 

public transport demand during the COVID-19 pandemic. These studies preliminarily 

reported that AMIs captured the generalised drop in ridership during the pandemic 

outbreak and that after it, they overestimated ridership recovery (Jenelius & 

Cebecauer, 2020; Fernández Pozo et al., 2022). However, this evidence is restricted 

by several limitations that lead to inconclusive findings about the accuracy of AMIs in 

replicating ridership changes and their potential for widespread future use in public 

transport planning and operational decisions. They overlooked differences in the 

methodological approaches used to estimate AMIs, focussed on a few case studies 

and only analysed short periods. Therefore, the benchmarking required for properly 

comparing AMIs and ridership data from ticketing is yet to be conducted. Finally, 

attempts to leverage the complementary role of AMIs on ridership data, such as filling 

in temporal gaps, have yet to be made. Addressing these gaps is particularly relevant 

for cities of developing countries, which usually have limited data to analyse their 

ridership, and AMIs may offer an attractive alternative to measure the impact of 

disruptive events. 

 

1.3 Objectives 

The general research objective of this thesis is to enhance the understanding of public 

transport demand change amid disruptive events by addressing the four research 

gaps (RG) identified in the literature review. The general research objective is 

achieved by considering four research objectives (O), each of which is developed in 
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an individual chapter. Note that a research objective may contribute to addressing 

more than one research gap. 

The four research objectives (O) are defined as follows: 

O-1 

To compile global evidence of how individual-level factors affect 

public transport usage of passengers during a disruptive event 

(addressing RG-3). 

O-2 

To model profiles of passengers based on the recovery in their 

public transport usage amid a disruptive event employing smart card 

data (addressing RG-1 and RG-2). 

O-3 

To model trip scheduling decisions of bus commuters during several 

episodes affected by disruptive events employing smart card data 

(addressing RG-1 and RG-2). 

O-4 

To assess the potential of aggregated mobility indices based on data 

generated from the everyday use of smartphones to characterise 

public transport ridership changes in a context of high mobility 

disturbances (addressing RG-4). 

The research objectives proposed here are addressed in this thesis by focussing on a 

period of worldwide high mobility disturbances between 2019 and 2022 caused by the 

COVID-19 pandemic. This period represents a unique opportunity to address existing 

research gaps in analysing disruptive events and public transport demand by 

leveraging recent literature and data sources. 

 

1.4 Thesis outline and contributions 

This thesis consists of five chapters (Chapters 2-6) that correspond to four articles 

prepared during this research, with Chapter 6 containing the overall synthesis, 

discussion, conclusions and future research directions. The association between 

research gaps, research objectives and chapters is summarised in Table 1-1. A 

concise summary of the four main chapters is offered next, highlighting the most 

relevant features addressed in each article as well as their original contributions. 
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Table 1-1 Association between research gaps, specific objectives and chapters. 

Research 

Gap (RG) 

O-1  

Chapter 2 

Meta-analysis 

O-2 

Chapter 3 

Mobility profiles 

O-3 

Chapter 4 

Trip scheduling 

O-4 

Chapter 5 

AMIs 

RG-1  ✓  ✓   

RG-2  ✓  ✓   

RG-3 ✓     

RG-4    ✓  

 

Chapter 2 presents the paper titled “Analysing the impacts of individual-level factors 

on public transport usage during the COVID-19 pandemic: A comprehensive literature 

review and meta-analysis”. Despite the notable amount of evidence on the 

relationships between individual-level factors (such as socio-demographics, attitudes, 

etc.) and the decrease in public transport usage during the crisis of the COVID-19 

pandemic, it has been exceptionally difficult to observe well-established conclusions 

about those relationships in the literature. Issues associated with the heterogeneity in 

the definition of travel change outcomes, dissimilar specifications of the individual-

level factors, variable units and modelling frameworks and the influence of diverse 

cultural contexts have interfered so far with the comparability of current evidence. 

Moreover, there is a necessity for synthesising the effect sizes of those relationships 

because most of the existing literature only provides analyses based on their effect 

direction (positive, negative or non-statistically significant), paying less attention to 

their effect sizes. Hence, this chapter presents a systematic review and meta-analysis 

of 15 individual-level factors of public transport users that have been reported to have 

influenced the decision to continue using this mode during the crisis of the COVID-19 

pandemic. Empirical evidence from several studies conducted worldwide is merged to 

synthesise the direction and size effect of those associations. The findings of this 

chapter offered the first quantitative comparison of the effect of different factors 

associated with public transport users and their travel behaviour change amid a 

disruptive event. These findings can help policy-makers understand the impacts of 

travellers’ factors on the decision to reduce public transport usage during future 

disruptive events and guide public policies accordingly. 

Chapter 3 contains the paper “Using smart card data to model public transport user 

profiles in light of the COVID-19 pandemic”. So far, the consequences of disruptive 

events on passengers’ behavioural responses have been mostly analysed in terms of 

the reduction in their number of trips. This generates a need for the consideration of a 
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broader set of indicators to generate a more comprehensive understanding of 

passengers’ travel patterns. Thus, this chapter aims to identify and model profiles of 

public transport users who continued travelling after a critical disruption in mobility 

caused by a long-term lockdown during the COVID-19 pandemic based on a 

multidimensional consideration of their mobility changes. As a case study, public 

transport users of Santiago, Chile’s capital are analysed, for whom individual-level 

smart card data records are available. A three-stage framework is developed to 

integrate i) a data enrichment stage to impute sociodemographic characteristics of 

travellers, ii) the identification of unseen travel pattern profiles based on mobility 

changes of public transport users, and iii) the association of the adoption of those 

profiles by including a set of explanatory variables. Two clusters of public transport 

users were identified using seven indicators that described the changes in passengers’ 

public transport usage between the pre-pandemic and the reopening. The influence of 

both pre-pandemic and lockdown travel history, demographic characteristics at the 

residential level, and card type were considered variables that explain the membership 

of each cardholder to each mobility profile. The results lead to a better understanding 

of the strategies that public transport users carried out to satisfy their mobility needs 

in this context and provide insights as to which policies are most suitable for 

implementation in public transport systems in a post-pandemic era as well as future 

events of a similar nature. 

Chapter 4 presents the paper “Modelling trip scheduling decisions of bus commuters 

amid disruptive events using smart card data”. This paper aims to add empirical 

evidence by investigating trip scheduling decisions of bus commuters amid disruptive 

events using smart card data. This goal is achieved by estimating departure time 

choice models (DTCMs) for characteristic episodes between 2019 and 2022 for 

Santiago’s bus system, a city affected to different degrees by two disruptive events. 

The paper addresses the methodological challenges of calculating schedule delay with 

smart card data by estimating preferred arrival times as a random variable within a 

mixed multinomial logit model. The approach is validated by obtaining a valuation of 

the trade-off between travel time and schedule delay (TVSD) in the range of previously 

reported values. The model results highlight the existence of multi-temporal 

differences in the arrival time preferences of bus commuters, as well as in their TVSD 

amid disruptive events. The results also show that bus commuters were less willing to 

accept an increase in their travel time to reduce their schedule delay during disruptive 

episodes. The heterogeneity between bus travellers was also explored: recurrent bus 

commuters exhibited higher TVSDs than occasional commuters. The outcome of this 

study supports using smart card data as a feasible source to investigate how public 
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transport passengers allocate their trip scheduling both during normal periods and 

amid external disruptions. 

Chapter 5 presents the paper “Investigating the potential of aggregated mobility 

indices for inferring public transport ridership changes”. To address the increasing 

worldwide need to track mobility levels during the outbreak of the COVID-19 

pandemic, several data providers made aggregate mobility indices (AMIs) available. 

Specific indices were provided to characterise the change in public transport demand 

in urban regions, derived from information and communications technologies, such as 

GPS of smartphones and trip queries in smartphone applications. Despite the wide 

popularity of these indices, it still remains largely untested whether AMIs can provide 

a reasonable characterisation of actual public transport ridership changes and whether 

they can be used as a reliable source for future crises. The study presented in this 

Chapter aims to fill that research gap by examining the reliability of using AMIs to infer 

changes in ridership levels in urban areas. To achieve this, the Chapter offers the first 

rigorous benchmarking between AMIs and ridership data derived from smart card 

validations and tickets. Monthly and daily ridership data from 12 cities worldwide and 

two AMIs shared globally by Google and Apple during 2020-22 are employed for the 

comparison. Methodological differences in the definition of the indices are addressed 

before comparisons, and the complementary role of AMIs on traditional ridership data 

is investigated. The results revealed an unexpected capability of the mobility index 

based on GPS traces to align with ridership trends, outperforming the index based on 

public transport direction queries, which performed reasonably only during the first 

year (2020). The findings also demonstrate that AMIs can complement data from 

smart card records when ticketing is missing or of doubtful quality. The outcomes of 

this study provide evidence of the capabilities of AMIs to characterise public transport 

demand change, which applications may be valuable to face future crises that involve 

major mobility changes. 

Finally, Chapter 6 contains the discussion and the conclusions. This Chapter 

summarises the advances made toward achieving the objectives presented in Section 

1.3, the original contribution to knowledge, and outlines potential future research 

avenues. 
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Chapter 2  

Analysing the impacts of individual-level factors on public 

transport usage during the COVID-19 pandemic: A comprehensive 

literature review and meta-analysis 

 

Abstract 

Public transport (PT) usage was severely impacted during the COVID-19 pandemic, 

resulting in up to a 90% reduction in many cities in 2020. Numerous studies have been 

conducted since then to determine the relationship between individual-level factors 

(such as gender, attitudes, etc.) and the decrease in PT usage during the pandemic. 

Despite the evidence provided, findings are dispersed, and for several factors 

contradictory, making it challenging to reach any generalised conclusion. Furthermore, 

a comprehensive comparison of the effect sizes among travellers’ factors affecting PT 

use during this period is yet to be compiled. This paper aims to address these gaps 

by systematically reviewing the existing evidence and synthesising the effect sizes of 

travellers’ factors through a meta-analysis. We first identified 36 studies that 

statistically assessed the contribution of 15 individual-level factors on PT usage during 

the COVID-19 pandemic. By merging the empirical evidence of those studies, the 

direction of the association between those factors and PT usage was analysed. Then, 

after selecting comparable studies, meta-analyses were conducted for each factor to 

estimate the corresponding pooled effect sizes. The meta-analysis established that 

car availability, teleworking opportunities and high educational level contributed the 

most to reducing PT use during the pandemic. These factors increased the odds of 

reducing PT usage compared with the pre-pandemic by about three times. Factors 

such as COVID-19 risk perception, gender, high income and health had a moderate 

effect on the decision to stop using PT. PT habits, travel distance and physical 

accessibility also influenced PT use during the pandemic. Geographical location and 

the pandemic period explained part of the heterogeneity found. The findings provided 

in this study can help policy-makers understand the impacts of travellers’ factors on 

the decision to reduce PT usage during future pandemics/epidemics and guide public 

policies accordingly. 

 

Keywords: public transport demand, COVID-19, transit, travel behaviour, meta-

analysis, systematic literature review. 
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2.1 Introduction 

Public transport (PT) usage was severely affected during the COVID-19 pandemic. Its 

lowest levels were reached during the outbreak that occurred in the first half of 2020. 

In this period, PT demand dropped by up to 80%-90% in cities where stay-at-home 

orders were implemented (Teixeira & Lopes, 2020; Gramsch et al., 2022). A 

characterisation of these changes has been provided for cities of different countries, 

including the US (Liu et al., 2020; Wang & Noland, 2021; Xiao et al., 2022), the UK 

(Vickerman, 2021), Spain (Fernández Pozo et al., 2022), Germany (Eisenmann et al., 

2021), India (Padmakumar & Patil, 2022), Chile (Lizana et al., 2023), and China (Jiang 

& Cai, 2022), for name some2. Even in cities without mandatory restrictions, PT 

demand experienced drops as high as 60% (Jenelius & Cebecauer, 2020; Mützel & 

Scheiner, 2022). 

Eventually, PT demand started a slow recovery process after governments gradually 

removed the most restrictive policies from mid-2020. Figure 2-1 exemplifies this 

process, presenting a four-year monthly variation (2019 to 2022) of the PT demand in 

11 PT systems worldwide. Regarding this recovery process, most evidence indicates 

that during 2020 and 2021, PT demand remained substantially below pre-pandemic 

levels. For example, it was reported by Qi et al. (2023) that as late as January 2021, 

PT demand still exhibited reductions of between 50% and 80% in the 20 cities they 

analysed in the US. Gramsch et al. (2022) reported a drop as high as 60% at the end 

of September 2020 in Chile, a similar relative change to the one reported for Madrid 

(Fernández Pozo et al., 2022). Furthermore, PT demand continued to be lower than 

pre-pandemic levels even in contexts where successful initial counter-measures 

against the virus were implemented. Sweden (Jenelius & Cebecauer, 2020), Australia 

(Beck et al., 2021) and Taiwan (Mützel & Scheiner, 2022) are some of these cases. 

Given this generalised impact on PT usage and the consequential long-lasting effects, 

there has been a growing interest in understanding the factors that influenced 

travellers’ decisions to reduce their use of PT. 

                                            

2 A summary of studies where the impacts of PT demand on aggregated PT demand was 
characterised is provided in the supplementary material (see Table A-1). 
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Figure 2-1. Relative change in monthly PT demand for several PT systems. 
Monthly average PT demand between January and September 2019 was used as 

a reference (Sources are presented in Table A-2). 

Individual-level factors, which refer to characteristics or attributes that are specific to 

each person, have been widely studied to determine their influence on PT usage 

during the pandemic (Beck et al., 2021; Bansal et al., 2022; He et al., 2022). This 

literature emerged to characterise these relationships, focusing on describing the 

effects of individual-level factors such as demographics (El Zein et al., 2022), 

socioeconomic status (Jiao & Azimian, 2021), and psychological factors (Kim et al., 

2021; Downey et al., 2022). Despite the abundant evidence, comparisons of the nature 

of these relationships have remained limited, and the existing findings are inconclusive 

and scattered across many sources. Diverse contexts, different definitions of the travel 

outcomes, dissimilar specifications of the individual-level factors, and variable units 

and modelling frameworks may be some of the characteristics that have restricted 

their comparability. Inconsistent findings between the relationships of individual-level 

factors and PT usage have also been reported, making it even more challenging to 

establish definitive conclusions. For example, some studies have reported 

contradictory associations between gender, age and educational level with PT usage 

during the pandemic (Almlöf et al., 2021; Jiao & Azimian, 2021; Palm et al., 2021). As 

a result, clear conclusions based on consistent and reliable data analysis are yet to be 

provided. 
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Despite the relevance to generating clear conclusions about the effect of individual-

level factors on PT usage, most of the existing literature only provides analysis based 

on their effect direction (positive, negative or non-statistically significant), paying less 

attention to the comparison of the effect sizes or magnitude of those effects. As 

recently has been criticised by Parady and Axhausen (2023), literature in transport 

frequently focuses its analyses and conclusions on whether the effect of a specific 

factor are statistically significant rather than assessing the effect size of that 

relationship. Based on this, there is also a necessity for synthesising the effect sizes 

of the relationships between individual-level factors and PT usage in the context of the 

COVID-19 pandemic. This paper aims to address these gaps by (i) systematically 

reviewing studies that quantitatively assessed the influence of individual-level factors 

on PT usage during the COVID-19 pandemic, (ii) synthesising the effect sizes for each 

factor through a meta-analysis, (iii) providing a comparison of the pooled effect sizes 

between factors, and (iv) analysing the role of moderator variables in the pooled effect 

sizes. 

The rest of this paper is structured as follows. First, the description of the methodology 

used for the systematic review and meta-analysis is provided in Section 2.2. Section 

2.3 discusses the relationship between individual-level factors and the modelling 

perspectives that characterised individuals’ PT usage during the COVID-19 pandemic. 

Section 2.4 presents the main findings of the estimation and comparison of the pooled 

effect sizes. Finally, a discussion is given in Section 2.5. 

 

2.2 Methodology 

2.2.1 Literature review 

The contribution of individual-level factors to using PT during the pandemic was 

systematically reviewed and summarised, focussing on quantitative evidence. The 

review was conducted following the methodological procedure described by Wee and 

Banister (2015). First, search terms that include the following strings (“COVID-19” OR 

“SARS-CoV-2”) AND (“public transport*” OR “public transit”) AND (“travel behavio*” 

OR “mobility pattern*” OR “travel pattern*” OR “demand” OR “usage”) were sought in 

Scopus and WOS. The selection criteria included:  

• Research papers published from January 2020 to December 2022, which had 

been peer-reviewed and written in English. 

• Research papers focusing on empirical evidence of the changes in PT demand 

levels at a disaggregated level during the COVID-19 pandemic. 
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• Research papers oriented to quantifying statistically the effect of individual-level 

factors on PT usage during the COVID-19 pandemic. 

The search generated a total of 448 studies after the removal of duplicates. 

Manuscripts were selected in two stages: screening and full reading. In the screening 

process, titles, abstracts and keywords were analysed, obtaining 197 papers. The 

excluded studies were found either to be unrelated to travellers’ PT usage or COVID-

19. In the next stage, we excluded those studies where the application of qualitative 

methods meant that they did not statistically quantify the effect of any individual-level 

factor (such as age, gender or attitudes). Forward snowballing was also implemented, 

incorporating four studies by this means. Therefore, after the full-text assessment 

based on the inclusion criteria, 36 articles were finally selected for analysis. The 

literature review results are presented in Section 2.3, which synthesises the different 

perspectives adopted to study travellers’ PT usage during the COVID-19 pandemic 

(See Table 2-1) and the effect direction (positive or negative) of individual-level factors 

on them (Table 2-2). 
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Table 2-1. Summary of the studies that assessed the impacts of individual-level factors on PT usage during the COVID-19 pandemic.  

ID Authors Focus 
Location/ 

Date 
COVID-19 
Context 

Data type/ 
sample size 

Dependent 
variable 

Individual-level 
factor 

Model/ model 
category 

(i) Public transport choice (PTC) 

[1] PTC 
Abdullah 
et al. 
(2020) 

Explore the 
changes in mode 
choice in the 
early stage of the 
pandemic 

Various 
countries/   

May 2020 

Depending of 
the country 

Online survey/  

1,203 
respondents 

Mode choice 
primary trip 
purpose 

LOS, travellers' 
characteristics 

Multinomial logistic 
regression/ 

BIN 

[2] PTC 
Abdullah 
et al. 
(2021) 

Explore changes 
in mode choices 

Lahore, 
Pakistan/  

Oct-Nov 
2020 

Reopening 
(after the end 
of full/partial 
lockdown) 

In-person 
survey/  

1,516 
respondents 

Choice of use 
PT vs. solo 
travel modes 

Socio-
demographics, 
trip intensity, 
safety 

Multinomial logistic 
regression/ 

BIN 

[3] PTC 
Bansal et 
al. (2022) 

Investigate the 
effect of crowding 
and 
pharmaceutical 
and non-
pharmaceutical 
measures on PT 
choice 

London, 
UK/ Mar-
May 2021 

During the 
outbreak 

Online SP 
survey/  

961 
respondents 

Travel profile 
scenarios 

Preventive 
measures, LOS, 
COVID-19 
situation, socio-
demographics 

Multinomial logit, 
latent class and 
choice model/ 

DCM 

[4] PTC 
Basnak et 
al. (2022) 

Pandemic effects 
on mode choice 
considering 
crowding 

Santiago, 
Chile/ Aug-
Oct 2020 

Post outbreak 

Online and field 
SP survey/ 

455 
respondents 

Mode choice 
LOS, attitudes, 
preventive 
measures 

Latent class and 
choice model, 
Integrated choice 
model and latent 
variable/ 

DCM 
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ID Authors Focus 
Location/ 

Date 
COVID-19 
Context 

Data type/ 
sample size 

Dependent 
variable 

Individual-level 
factor 

Model/ model 
category 

[5] PTC 
Chen et 
al. (2022) 

Investigate the 
role of preventive 
measures on PT 
use 

Netherland
s/ Dec 
2020 to Jan 
2021 

Lockdown 

Online SP 
survey/  

394 
respondents 

Mode choice 
by scenario 
COVID 

COVID-19 
situation, LOS, 
preventive 
measures 

Latent class and 
choice model/ 

DCM 

[6] PTC 
Cho and 
Park 
(2021) 

Compare 
crowding 
multipliers before 
and during the 
pandemic 

Seoul, 
South 
Korea/  

Oct 2018 & 
Nov 2020 

na 

Repeated 
cross sectional 
SP, online & in-
person survey/ 
378 and 623 
respondents 

Travel profile 
scenarios 

LOS 
Mixed logit/ 

DCM 

[7] PTC 
Delclos-
Alio et al. 
(2022) 

Impact of 
COVID-19 on 
tourist PT use 

Catalonia, 
Spain/ 
Summer of 
2019 & 
2020 

Recovery 

In-person 
survey/  

1,465 
respondents 

If PT mode is 
used 

COVID-19 
situation, socio-
demographics 

Bivariate Probit 
Model/ 

BIN 

[8] PTC 
Hsieh and 
Hsia 
(2022) 

Study the factors 
related to the 
decision to 
choose metro 

Kaohsiung, 
Taiwan/ 
First half of 
2020 

na 
In-person SP 
survey/ 235 
respondents 

Metro profile 
scenarios 

LOS, preventive 
measures, socio-
demographics, 
travel habit 

Mixed Logit/ 

DCM 

[9] PTC 
Liu et al. 
(2022) 

Understand 
travel behaviour 
among 
adolescent  

Guangzhou
,, China/  

Apr 2020 

During and 
after pandemic 
peak 

In-person 
survey/  

315 
respondents 

If an individual 
travelled by 
PT 

Socio-
economics, 
transport-related 
attributes, 
perception 

Binomial logistic 
regression/ 

BIN  

[10] PTC 
Marra et 
al. (2022) 

Pandemic effects 
on  PT route 
choice 

Zurich, 
Switzerland 
/ Spring 

Outbreak and 
post-outbreak 

Repeated 
cross section, 
travel diary & 

PT route 
choice 

LOS 

Mixed path size 
logit model/ 

DCM 
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ID Authors Focus 
Location/ 

Date 
COVID-19 
Context 

Data type/ 
sample size 

Dependent 
variable 

Individual-level 
factor 

Model/ model 
category 

2019 & 
Feb-Jul 
2020 

GPS data from 
smartphone 
app/ 48 ind. 

[11] PTC 
Mashrur 
et al. 
(2022) 

Capture 
participants’ 
attitudes towards 
PT 

Greater 
Toronto 
Area, 
Canada/ 
Jul 2020 

Partial opening 
after the first 
wave 

SP & RP, 
online survey/  

905 
respondents 

Mode choice 
by scenario 
COVID 

LOS, preventive 
measures, 
COVID-19 
situation 

Multinomial, 
nested and mixed 
logit/ DCM 

[12] PTC 
Mazanec 
et al. 
(2023) 

Understand the 
mode transport 
choice 

Czech 
republic/ 
May-Jun 
2020 

After the end 
full lockdown 

Online survey/  

1,500 
respondents 

Mode choice 
Socio-
demographics 

Multinomial logistic 
regression/ 

BIN  

[13] PTC 
Rankavat 
et al. 
(2023) 

Investigate users’ 
perception of 
mode choice 

India/ 

Oct 2020 

After the first 
pandemic peak 

Online and in-
person survey/  

411 
respondents 

Mode choice 
for work trip 
purpose 

Socio-
demographics, 
transport-related 
attributes, 
perception 

Multinomial logistic 
regression/ 

BIN 

[14] PTC 
Ross 
(2021) 

Understand the 
mode transport 
choice 

Tel Aviv, 
Israel/  

Oct-Dic 
2020 

After the 
second 
pandemic peak 

Online survey/  

302 
respondents 

Bus vs. 
demand-
responsive 
transport 

Sociodemograph
ics, risk 
perception 

Binomial logistic 
regression/ 

BIN  

[15] PTC 
Shelat et 
al. (2022) 

Evaluate 
travellers' 
behaviour in PT 
networks 

Netherland
s/ May 
2020 

Post outbreak. 
Many 
restrictions are 
still in place 

Online SP 
survey / 513 
respondents 

Travel profile 
scenarios 

LOS, COVID-19 
situation 

Latent class and 
choice model/ 

DCM 



54 
 

ID Authors Focus 
Location/ 

Date 
COVID-19 
Context 

Data type/ 
sample size 

Dependent 
variable 

Individual-level 
factor 

Model/ model 
category 

[16] PTC 
Tan and 
Ma (2021) 

Study the choice 
of rail transit 
during the 
pandemic 

China/ 

First 
months of 
2020 

Pandemic 
outbreak 

Online survey/  

559 
respondents 

If an individual 
chooses rail 
transit 

Sociodemograph
ics, transport-
related attributes, 
safety 

Binomial logistic 
regression/ 

BIN 

(ii) Public transport usage reduction (PTR) 

[17] PTR 
Almlöf et 
al. (2021) 

Study of those 
who continued 
travelling by PT 
during COVID-19 

Stockholm, 
Sweden/  

Feb, Apr-
May & Oct 
2020 

Recovery 

Repeated 
cross section 
smart cards & 
mobile app 
tickets/ 1.8m 

If an individual 
decreased PT 
trips by more 
than 90% 

Pre-COVID PT 
use, 
@sociodemogra-
phics 

Binomial logistic 
regression/ 

BIN 

[18] PTR 
Das et al. 
(2021) 

Analyse factors 
associated with 
the modal shift 
from PT to 
private modes 

Several 
regions of 
India/  

Apr-May 
2020 

Several 
phases of 
nationwide 
lockdown 

Online survey/  

840 
respondents 

If an individual 
shifted from 
PT to private 
mode 

Sociodemograph
ics, transport-
related attributes, 
safety 

Binomial logistic 
regression/ 

BIN 

[19] PTR 
Downey et 
al. (2022) 

Study the 
determinants of 
changes in PT 
use 

Scotland/   

Feb 2021 

During the 
second wave 

Online survey/  

994 
respondents 

If an individual 
plans to make 
the same or 
more PT trips 
in the future 

Attitudes, 
sociodemographi
cs 

Bivariate Probit 
model/ 

BIN 

[20] PTR 
El Zein et 
al. (2022) 

Explore the 
factors 
influencing PT 
use change 

Lyon, 
France/  

Feb & Jun 
2020 

Post 1st wave 

Online survey/  

2,298 
respondents 

If an individual 
had lower use 
of PT 

Sociodemograph
ics, transport-
related attributes, 
attitudes 

Binomial logistic 
regression/ 

BIN 
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ID Authors Focus 
Location/ 

Date 
COVID-19 
Context 

Data type/ 
sample size 

Dependent 
variable 

Individual-level 
factor 

Model/ model 
category 

[21] PTR 

Elias and 
Zatmeh-
Kanj 
(2021) 
 

Role of risk 
perception and 
hygiene in train 
use 

Israel/  

April-May,  

Dec 2020 

During COVID-
19 mobility 
restrictions 

Online survey/  

273 
respondents 

If an individual 
stopped 
travelling by 
PT 

Transport-related 
attributes, 
attitudes 

SEM 

[22] PTR 
He et al. 
(2022) 

Investigate 
COVID-19 effect 
on PT use 

US/  

Sep-Nov 
2020 

Recovery 

Online survey/  

500 
respondents 

If an individual 
stopped or 
reduced PT 
use 

Sociodemograph
ics, transport-
related attributes, 
health,   

Binomial logistic 
regression/ 

 BIN 

[23] PTR 
Ito and 
Kawazoe 
(2023) 

Analyse factors 
influencing modal 
shift 

Toyama, 
Japan/ 

Sep 2020 

 

Recovery 

Online survey/  

973 
respondents 

If an individual 
changes their 
transport 
mode 

Sociodemograph
ics attitudes 

Multinomial logistic 
regression/ 

BIN 

[24] PTR 
Jiao and 
Azimian 
(2021) 

Analyse factors 
associated with 
mode choice 
during the 
second phase 

US/ 

Oct 2020 

Second 
pandemic 
phase 

Online survey/  

>10,000 
respondents 

If an individual 
made fewer 
PT trips 

Sociodemograph
ics, 

health status, 
anxiety 

Binomial logistic 
regression/ 

BIN 

[25] PTR 
Khadem 
Sameni et 
al. (2021) 

Understand the 
factors 
associated with 
the shift from 
subway to other 
modes 

Teheran, 
Iran/ 

Apr 2021 

Second wave 
peak and 
recovery 

Online survey/  

411 
respondents 

If an individual 
shifted from 
the subway to 
other modes 

Sociodemograph
ics transport-
related attributes 

Binomial logistic 
regression/ 

BIN 

[26] PTR 
Palm et al. 
(2021) 

Investigate the 
factors 
associated with 

Toronto & 
Vancouver, 
Canada/  

Recovering 
from the first 
wave 

Online survey/  

4,710 
respondents 

If an individual 
stopped 
travelling by 
PT 

Sociodemograph
ics, disability, 
built-environment 

Binomial logistic 
regression/ 

BIN 



56 
 

ID Authors Focus 
Location/ 

Date 
COVID-19 
Context 

Data type/ 
sample size 

Dependent 
variable 

Individual-level 
factor 

Model/ model 
category 

avoid travelling 
by PT 

May 2020 

[27] PTR 
Soria et 
al. (2023) 

Study the factors 
associated with 
abandoning PT 
use 

Chicago, 
US/ 

Jan-Feb 
2021 

Third wave 
and recovery 

Online survey/  

5,648 
respondents 

If an individual 
abandon the 
use of PT 

Socioeconomics, 
transport-related 
attributes 

Binomial logistic 
regression/ 

BIN 

[28] PTR 
Zafri et al. 
(2023) 

Study the change 
in the frequency 
of travel by PT 

Bangladesh
/ 

Jul-Aug 
2020 

First wave 

Online survey/ 

804 
respondents 

If an individual 
recovered pre-
COVID PT 
usage 

Socioeconomics,  
transport-related 
attributes, 
perceptions 

Binomial logistic 
regression/ 

BIN 

[29] PTR 
Vallejo-
Borda et 
al. (2022) 

Investigate the 
decision to shift 
from PT to other 
modes 

Several 
Latin 
American 
capitals/   

Sep 2020 

Vary 
depending on 
the country 

Online survey/  

3,803 
respondents 

If an individual 
shifted from 
PT to another 
mode 

Attitudes and risk 
perception, 
sociodemographi
cs 

SEM-MIMIC/ 

SEM 

(iii) Public transport trips (PTT) 

[30] PTT 
Beck et al. 
(2021) 

Effect of 
preventive 
measures and 
crowding on PT 
use 

Australia/  

Three 
different 
waves in 
2020 

Depending of 
the wave 

Online survey/  

1,074, 1,457 & 
956 
respondents 

Number of PT 
trips 

Travellers' 
characteristics, 
attitudes and 
perceived risk 

Zero-inflated 
poisson 
regression/ 

CNT 

[31] PTT 
Kim et al. 
(2021) 

Effect of 
perceptions on 
PT use 

Seoul, 
South 
Korea/  

na 

Online survey/  

537 
respondents 

Frequency of 
PT use 

Attitudes, 
perceived risk,  

sociodemographi
cs 

SEM/ 

CNT 
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ID Authors Focus 
Location/ 

Date 
COVID-19 
Context 

Data type/ 
sample size 

Dependent 
variable 

Individual-level 
factor 

Model/ model 
category 

Sep-Oct 
2020 

[32] PTT 
Parker et 
al. (2021) 

Factors that 
affect PT usage 
intensity 

US/  

Jan-Dec 
2020 

Outbreak and 
recovery 

Panel data, 
GPS & survey/ 
1,267 
respondents 

Total number 
of trips 

Sociodemograph
ics, land-use, 
COVID-19 
situation 

Binomial 
regression/ 

CNT 

[33] PTT 
Schaefer 
et al. 
(2021) 

Estimate of the 
reduction in the 
use of three PT 
modes 

Hannover, 
Germany/   

Jun 2020 

Post 1st wave, 
main 
restrictions 
lifted 

Online survey/  

~3,000 
respondents 

Reduction in 
PT trips, 
number of 
days per 
month 

Sociodemograph
ics, perceived 
risk 

OLS/ 

CNT 

(iv) Public transport - Intention outcomes (PTI) 

[34] PTI 
Aaditya 
and Rahul 
(2023) 

Understanding 
the willingness to 
use personal 
modes vs shared 
modes 

Odisha, 
India/ Sep-
Oct 2021 

Main 
restrictions 
relaxed 

SP & RP, 
online & in-
person survey/  

467 
respondents 

Willingness to 
choose non-
shared modes 
and PT 

COVID history, 
attitudes and risk 
perception, 
preventive 
measures 

Ordered logit/ 

DCM 

 

[35] PTI 
Zhang et 
al. (2021) 

Understand the 
behavioural 
intentions of PT 
passengers 

Tianjin, 
China/ Feb-
Apr 2020 

Period under 
first-level 
response 

Online survey/  

983 
respondents 

Intention to 
use the 
subway during 
COVID-19 

Attitudes, 
customer 
satisfaction. 

SEM/ 

SEM 

[36] PTI 
Zhao and 
Gao 
(2022) 

Study latent 
constructs on PT 
travel decision 

Beijing, 
China/  Nov 
2020 

Four-month 
low-infection 
period. 
Preventive 

Online survey/  

761 
respondents 

Intention to 
use PT 

Attitudes and risk 
perception, 
sociodemographi
cs 

SEM-MIMIC/ 

SEM 
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ID Authors Focus 
Location/ 

Date 
COVID-19 
Context 

Data type/ 
sample size 

Dependent 
variable 

Individual-level 
factor 

Model/ model 
category 

measures  still 
in place 

BIN: model with binary outcome (logistic regression and bivariate Probit); DCM: discrete choice model (multinomial, mixed, latent 

class or latent variable logit models); CNT: count outcome models (OLS, negative binomial and Poisson regression) SEM; Structural 

equations modelling; @: aggregated factor, usually at neighbourhood or city-area levels; LOS: modes’ level of service; SP: Stated 

preferences: RP: revealed preferences, na: information not available.
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2.2.2 Meta-analysis 

A meta-analysis is a statistical procedure that combines and summarises the results 

of multiple studies (Borenstein, 2009). In the transport domain, this technique has 

been applied mainly in transport economics (Button, 2019). However, examples can 

also be found in works that studied the relationships between transport and 

employment (Bastiaanssen et al., 2020), the built environment (Laura et al., 2021) and 

cognitive mechanisms (Hoffmann et al., 2017). The typical output of a meta-analysis 

includes a single pooled effect size and a confidence interval. As homogeneity in terms 

of the nature of the effect sizes is a pre-requisite for conducting any meta-analysis 

(Hoffmann et al., 2017), choosing studies based on the same modelling approach has 

been shown as a feasible way to deal with this issue (Bastiaanssen et al., 2020). As a 

result, this consideration led to the selection in our study of the effect sizes reported 

for studies using logistic regression models (LRMs), which included a total of 16 

studies. The two main advantages of this model approach were the comparable 

specification of the individual-level factors across studies, which increased the number 

of comparable effect sizes available, and its straightforward interpretation of its effect 

sizes (in terms of odds ratios). 

After identifying the studies that had used LRMs, effect sizes (coefficients) of the 

individual-level factors and a measure of their statistical significance (standard errors, 

p-values or t-statistics) were compiled. Random-effect models (REMs) were then fit to 

estimate the pooled effect size for each individual-level factor. For this, we followed 

the “gold standard” in meta-analysis, calculating the weights for each effect size as the 

inverse of its squared standard error, assigning the greatest importance to the most 

precise associations (Littell et al., 2008). It may be noted that REMs are employed in 

meta-analysis when there is both within-study and between-study heterogeneity in the 

effect sizes (Bastiaanssen et al., 2020). REMs produce a lower statistical significance 

and a wider confidence interval (CI) than a fixed-effect model. Consequently, they are 

widely accepted in meta-analysis studies as a more conservative modelling approach 

that leads to more robust pooled/combined effect sizes (Borenstein, 2009). We also 

took into account the clustered structure of some associations to avoid bias in the 

weight of each effect size, as more than one association/effect size (k) can be provided 

per study (N) for the same factor. Additionally, we included both significant and non-

significant effects in the meta-analysis, as it is known that dropping the latter may 

increase the risk of bias in the pooled effect size (Button, 2019). We also tested the 

influence of the geographical region and the pandemic period in the pooled effect sizes 

between studies. 
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2.3 Systematic literature review results 

2.3.1 Overview 

The systematic review identified 36 studies where the impacts of individual-level 

factors on travellers’ PT usage during the COVID-19 pandemic were statistically tested 

(see Table 2-1 for a comprehensive summary). Most existing evidence came from 

data collected during different periods in 2020 and only a few from later periods (with 

only six in the first half of 2021). The studies were mainly conducted in Asia (16), 

Europe (10) and North America (6), with a large number concentrated in the US, 

China, India and the Netherlands. With a few exceptions (Almlöf et al., 2021; Marra et 

al., 2022), almost all selected papers relied on online surveys distributed digitally, such 

as social platforms like Facebook and Instagram, emails to PT-oriented groups, and 

links shared by respondents. The obvious limitations of this approach, as recognised 

by these studies, concern the overrepresentation of respondents with internet access 

and the underrepresentation of PT passengers without internet. Traditional 

questionnaires included sections asking for demographic and socioeconomic 

characteristics, travel behaviour at the time of the survey and during the pre-pandemic, 

and respondents’ perceptions of COVID-19 risk and associated mitigation strategies. 

Studies based on both revealed and stated preferences (SP) may be found among the 

selected literature. The studies that employed revealed preferences aimed to quantify 

the intensity of travellers’ PT usage. When pre-pandemic PT usage was needed, 

retrospective information was asked of participants, which clearly relied on the 

accuracy of participants’ memories. As many as nine studies adopted an SP approach. 

This approach allowed them to generate a dataset of choices based on different levels 

of the attributes of the considered modes and to explore travellers’ mode choice 

decisions in hypothetical scenarios. The hypothetical scenarios included different 

COVID-19 emergency contexts (in terms of number of new cases, death toll and 

vaccination scenarios) (Bansal et al., 2022) and the different virus mitigation measures 

(e.g. disinfection in PT buses, social distancing) (Bansal et al., 2022). 

 

2.3.2 PT usage characterisation in individual-level studies 

The selected studies characterised the PT usage of travellers during the COVID-19 

pandemic using different definitions of the dependent variable. Based on the nature of 

the dependent variable, four main categories of studies were identified: (i) studies that 

analysed the decision to choose PT among the presence of alternative modes (16 

studies), (ii) studies that focused on measuring if travellers reduced the number of PT 

trips compared with the pre-pandemic (13 studies), (iii) studies that measured the 



61 
 

intensity of PT use by considering the number of trips made by travellers (4 studies), 

and (iv) studies that investigated the intention/willingness to use PT (3 studies). 

In category (i), mode choice was the main outcome observed (Das et al., 2021; Chen 

et al., 2022). In this category, discrete choice models (DCMs) and logistic regressions 

(LRMs) were commonly employed. Category (ii) includes outcomes such as whether 

individuals reduced their trips made by PT during the pandemic (4 studies), whether 

they stopped at all (4 studies) or whether they shifted from PT to an alternative mode 

(5 studies). The modelling approach widely adopted in this category was logistic 

regression. In category (iii), studies employed modelling approaches for continuous 

outcomes such as OLS, binomial and zero-inflated Poisson. Category (iv) shows 

studies where ordered outcomes were considered in structural equations modelling 

under different behavioural theories (Zhang et al., 2021). Specific details of the 

specification of the PT outcome variable and modelling approach are provided in 

Table 2-1. As the selected studies considered different directions to define the PT 

outcome variables (e.g. to choose PT vs not choose PT), it was necessary to adopt 

one direction and transform (‘flip’) the effects found for the definition that employed the 

opposite one. Therefore, the adopted consensus was to reflect the effects of 

individual-level factors on a pro-reduction view of PT usage during the pandemic. 

Consequently, the PT usage outcomes for categories (i) and (ii), for instance, 

characterise the decision of not choosing PT and reducing PT trips/shifting from PT to 

an alternative mode. The same consensus is kept for the rest of this work to obtain a 

more straightforward interpretation of the effect of individual-level factors. 

 

2.3.3 Effect direction of individual-level factors on PT usage 

This section summarises the relationships reported in the selected 36 studies between 

individual-level factors and the reduction of PT usage in the context of the COVID-19 

pandemic. A total of 15 different individual-level factors were identified: demographics 

(gender, age, race and ethnicity, education, children and household size), 

socioeconomic status (income, car availability, teleworking possibilities, and full-time 

employment), perceived importance to the COVID-19 risk and mitigation strategies, 

healthcare needs (disability and poor health) and transport-oriented attributes (pre-

COVID frequent PT user, travel distance, and PT physical accessibility). The analysis 

of the selected papers also identified different approaches used to consider the effect 

of individual-level factors on PT usage: (a) direct effects, (b) interaction effects, and 

(c) explaining class membership, being the first one (a) the most frequent. A list of 

these factors and their associated relationships with PT usage reduction may be found 

in Table 2-2.
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Table 2-2. Summary of the effect directions of individual-level factors on the reduction of PT usage during the COVID-19 pandemic. 

ID 
Gender 
(Male) 

Age 
(Older 
adults) 

Race & 
ethnicity 

Educa-
tion 

Children 
House-

hold size 
Income 

Car 
availa-
bility 

Tele-
working 

Full-time 
employ-

ment 

COVID-19 
risk 

perception 

Healthcare 
needs 

Frequent
PT user 

Travel 
distance 

PT access 
time 

[1] PTCm +       +  ns +   -  

[2] PTCm +   +   ns +        

[3] PTC +MSK 
+CRO, 

-MSK 
-MVC +CRO   

+C19, 
+MSK 

        

[4] PTC -CRO C     C         

[5] PTC C C  C C     C      

[6] PTC                

[7] PTC                

[8] PTC ns +   +  ns ns  ns   
-,+[PM], 

+[NM] 
  

[9] PTCm +      +, ns +, ns   +   -  

[10] PTC                

[11] PTC ns +     + + +, ns       

[12] PTCm        +  -      

[13] PTCm + +     +    +   -  

[14] PTCm ns ns              

[15] PTC C C           C   
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ID 
Gender 
(Male) 

Age 
(Older 
adults) 

Race & 
ethnicity 

Educa-
tion 

Children 
House-

hold size 
Income 

Car 
availa-
bility 

Tele-
working 

Full-time 
employ-

ment 

COVID-19 
risk 

perception 

Healthcare 
needs 

Frequent
PT user 

Travel 
distance 

PT access 
time 

[16] PTCm          - +    + 

[17] PTR +@ +@ +@ -@   +@   -@   -   

[18] PTRm + +     +   + +   + +, ns 

[19] PTR  ns    -     +  
ns, 

+[PM] 
  

[20] PTRm ns ns  +, ns ns   +, ns +, ns  +, ns  -, ns   

[21] PTR           -     

[22] PTRm ns ns -, ns  ns ns + +    - ns   

[23] PTRm ns ns              

[24] PTRm + - + +  - +    + -    

[25] PTRm       +         

[26] PTRm - - -, ns   ns + +  - + ns -   

[27] PTRm - + -    + + + - +  -   

[28] PTRm       +  +  +     

[29] PTR  -   - + -    +     

[30] PTT - +, -     +, -  +, -  ns, -  -, ns   

[31] PTT           +     

[32] PTT                
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ID 
Gender 
(Male) 

Age 
(Older 
adults) 

Race & 
ethnicity 

Educa-
tion 

Children 
House-

hold size 
Income 

Car 
availa-
bility 

Tele-
working 

Full-time 
employ-

ment 

COVID-19 
risk 

perception 

Healthcare 
needs 

Frequent
PT user 

Travel 
distance 

PT access 
time 

[33] PTT 
ns, 

-RISK 

-, 

+RISK 
 

ns, 

+RISK 
  +  

+, 

+RISK 
 +  +   

[34] PTI ns       +  - +  +[>PM]   

[35] PTI                

[36] PTI ns ns  ns   + ns  -   -   

Footnotes of Table 2-2. ‘+’: positive statistically significant association; ‘-’: negative statistically significant association; ‘ns’: no statistically 

significant; significance considered at 0.1; ‘@’: aggregated specification; ‘m’: Study included in the meta-analysis; ‘C’: explaining class-

membership; empty space: association not reported/not studied; ‘[]’: Indicate effect of being a frequent user of private modes [PM] and [NM] non-

motorized modes; the inclusion of the next abbreviations indicates that the association reported is towards that variable; ‘MSK’: mandatory use 

of face mask, ‘CRO’: crowding on PT modes, ‘MVC’: massive vaccination; ‘C19’: COVID-19 new cases, ‘RISK’: COVID-19 risk perception. 
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For the direct effects approach (a), Table 2-2 highlights the fact that demographic 

factors presented heterogeneous effect directions across studies, with a mix of 

positive, negative and non-significant effects for the same factor. For instance, in the 

case of gender, 37% of the associations indicated that male travellers were more likely 

to reduce PT use compared to females (Abdullah et al., 2020; Abdullah et al., 2021; 

Jiao & Azimian, 2021), whereas 16% found the opposite effect (Beck et al., 2021; Palm 

et al., 2021), and 47% found no significant relationship (Aaditya & Rahul, 2023). 

Similarly, only 39% of the studies that reported results for age showed that older adults 

were more likely to reduce PT usage (Mashrur et al., 2022). In the case of race and 

ethnicity, evidence is also contradictory, with some associations reporting a positive 

association (Jiao & Azimian, 2021) and others a negative one (Soria et al., 2023). 

Table 2-2 shows that educational level was positively related to reducing PT use (El 

Zein et al., 2022), and that household size presents negative effects (the higher the 

household size, the lower the reduction in PT use) (Jiao & Azimian, 2021). The 

evidence presented for the presence of children at home agrees that this factor did not 

cause any significant effect on travellers’ PT use. 

Regarding socioeconomic status, the influence of income level, car availability, 

teleworking, and full-time employment show more agreement across studies. For 

income level, 14 studies (78%) found a positive association between this factor and 

the reduction in PT usage (Parker et al., 2021; Schaefer et al., 2021). This result 

suggests that individuals of higher income levels were more likely to reduce PT use 

during the pandemic than travellers of lower levels. For car availability, ten 

associations (71% of the reported effects) presented statistically significant positive 

relationships (Palm et al., 2021; Mazanec et al., 2023), while for teleworking, 76% of 

the associations also found significant positive effects on the reduction of PT use 

(Schaefer et al., 2021; Mashrur et al., 2022). Regarding full-time employment, some 

studies reported that such travellers tended to use more PT more often (negative 

effect) than students, freelancers or the unemployed (Zhao & Gao, 2022; Aaditya & 

Rahul, 2023). However, other works found the opposite relationship (Das et al., 2021). 

In order to analyse the influence of COVID-19 risk perception, studies included 

travellers’ perception of the severity of the virus and the importance they gave to the 

implementation of mitigation strategies, such as hygiene/cleanliness, social distancing 

and mandatory use-of-face masks (Abdullah et al., 2020; Zhao & Gao, 2022; Aaditya 

& Rahul, 2023). The studies tested these variables directly on the PT outcome 

(specifying dummies) (Palm et al., 2021; El Zein et al., 2022; Soria et al., 2023) or 

indirectly following a latent variable approach based on five-point Likert scales 

indicators (Abdullah et al., 2020; Rankavat et al., 2023). As expected, the perception 

of the severity of the virus and the importance given to mitigation strategies showed 
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positive correlation when they were used together to construct a latent variable and 

showed a positive effect on the reduction of PT use when specified separately 

(Abdullah et al., 2020). A total of 17 positive associations (77%) showed that the higher 

the importance given to the COVID-19 risk and mitigation strategies among travellers, 

the higher the reduction in travellers’ PT use (Basnak et al., 2022; Vallejo-Borda et al., 

2022). However, more complex psychological mechanisms through which travellers 

adjusted their behaviour by the changes in their attitudes and perceptions to use PT 

were also recognised by Kim et al. (2021), Zhang et al. (2021) and Vallejo-Borda et 

al. (2022). 

Unexpected effect directions were found for the factors that account for individuals' 

healthcare needs. Travellers with a disability and those with poor health showed a 

positive association with the use of PT during the pandemic, compared to individuals 

without these conditions (Jiao & Azimian, 2021; Palm et al., 2021; He et al., 2022). 

Potential explanations may be found in this group's low availability of alternative 

modes. Significant effects were also found for transport-related factors such as travel 

distance (for commuting trips), PT physical accessibility and whether a traveller was a 

pre-COVID frequent PT user. The evidence showed that travelling frequently by PT 

during the pre-pandemic negatively impacted people’s decision to reduce PT (Palm et 

al., 2021; Soria et al., 2023), providing evidence that pre-pandemic mobility habits also 

played a key role in the decision of whether to use PT during the pandemic. Regarding 

travel distance, two studies reported negative effects (Abdullah et al., 2020; Liu et al., 

2022), meaning that longer travel distances showed a negative association with the 

reduction in PT use. In the case of PT physical accessibility, its effect showed that 

during the pandemic, the longer the access time to get a PT service, the higher the 

reduction in PT use (Das et al., 2021; Tan & Ma, 2021). 

More complex influences of individual-level factors were also studied by considering 

their role modifying the effects of other variables (category (b), 3 studies) or to account 

for taste variation among travellers using a latent class approach (category (c), 3 

studies). In the former, travellers’ characteristics such as gender, age, income, 

educational level and ethnicity were found to modify the effects of PT crowding (CRO), 

the number of COVID-19 cases (C19), the implementation of mandatory face masks 

(MSK) and the share of the population vaccinated (MSV) on the choice of PT mode 

(Bansal et al., 2022; Basnak et al., 2022). For instance, it was found that female and 

elderly travellers showed a higher sensitivity to crowding in PT modes. The mandatory 

use of face masks in PT modes had a smaller influence on male travellers than on 

females and a relatively greater positive effect on elderly passengers. Schaefer et al. 

(2021) also stated that people who worked from home feared catching the virus more 

when using PT, highlighting the complex relationship between attitudes and travel 
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behaviour. In the latter category, the role of individual-level factors was to help define 

groups of travellers that share a more homogenous perception of disutility in terms of 

level of service attributes (e.g. travel time, travel cost, crowding) (Chen et al., 2022; 

Shelat et al., 2022). In this case, the relationship observed was the association of an 

individual to a cluster rather than a direct or interaction effect. For instance, it was 

identified in these works that the cluster associated with female travellers, the elderly 

and high-income perceived a higher adverse impact of the time travelled in PT and a 

higher positive effect of preventive measures such as social distancing in PT modes. 

In conclusion, individual-level factors played various roles regarding how they were 

included in a given study. The most frequent approach among them was their 

specification as direct explanatory variables of the changes in travellers’ PT use during 

the pandemic. It was found from the evidence gathered in this approach that for many 

factors (e.g. gender, age), the findings revealed contradictory results, making it difficult 

to establish clear conclusions. Moreover, as the analysis in this section relied only on 

the effect direction of each association, the relevance in term of the effect size of those 

effects still need to be provided. 

 

2.4 Meta-analysis results 

2.4.1 Preparation 

To ensure the comparability of the effect sizes of individual-level factors on PT usage, 

studies that employed logistic regression models (LRMs) were specifically chosen. 

This choice was made based on the analysis of the 36 selected studies, which showed 

that the selection of LRM-based studies provided the potential for the most robust 

synthesis by offering the highest number of comparable individual studies compared 

with other modelling approaches. LRMs were used as a modelling approach in both 

of the two main categories of PT usage studies, namely those to (i) choose/not choose 

PT and (ii) reduce PT usage. LRMs have the advantage of involving the specification 

of individual-level factors as direct explanatory variables of PT usage (rather than as 

interaction effects). Another characteristic of LRMs that facilitated the cross-study 

comparison is the fact that most of their factors were specified as dummies, which 

removes potential difficulties associated with the measurement units. For instance, 

income was usually specified as a discrete number of categories with similar 

qualitative thresholds across studies (low/mid/high-income). 

An additional advantage of LRMs is that there is a straightforward interpretation of 

their coefficients. The exponential value of a coefficient indicates the corresponding 
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variables’ contribution in terms of its odds ratio. In general, an odds ratio is defined as 

the ratio of the probability of the occurrence of an event relative to the probability of 

the event not occurring. As LRMs were applied in category outcomes (i) and (ii), the 

interpretation based on the odds ratios is defined as the probability of reducing PT 

trips/choosing an alternative mode (not PT) relative to the event this not occurring. In 

the case of category (i) studies, the alternative modes were car or ride-hailing. An odds 

ratio higher than one indicates that the factor analysed increases the probability of the 

event (reducing PT usage/not choosing PT in our case), while a value lower than one 

indicates the opposite. If, for example, the odds ratio associated with a certain dummy 

variable were 2.0, that would mean that an individual with that characteristic has odds 

of ‘reducing PT usage’ two times higher than someone without that characteristic. 

Similarly, if an odds ratio is lower than one, let us say 0.5, an individual with that 

attribute has odds of ‘reducing PT usage’ 50% lower than individuals without that 

characteristic. In cases where the PT usage outcome needed to be transformed to fit 

the adopted consensus, the respective odds ratios were re-estimated by taking their 

inverse. 

 

2.4.2 Pooled effect sizes 

A total of 16 comparable studies that examine the effect of individual-level factors 

using LRMs were finally included in the meta-analysis. We performed meta-analyses 

separately for the 15 factors shown in Table 2-2. A standardisation was required to 

ensure that all the factors specified as dummy variables shared the same reference 

category. The category references adopted for the demographic factors in the meta-

analysis were: gender (1:male; 0:female), age (1:>65 years old; 0:first age category 

level, which frequently ranged from 18 to 35 years old depending on the study), race 

and ethnicity (1:Black/Hispanic/Indigenous; 0:White), high-educational level 

(1:University/college degree, 0:no degree), children (1:presence of children at home; 

0:otherwise) and household size (1:two or more; 0:otherwise). Similarly, for 

socioeconomic factors, we defined references for income (1:high-income level; 0:low-

income level), car availability (1:at least one car owned or available; 0:no car 

available/owned) and employment (1:full-time employment: 0:student/not employed). 

Additionally, healthcare needs (1: condition of disability or poor health; 0: otherwise), 

travel frequent PT user (1:pre-COVID frequent PT user; 0:otherwise) and travel 

distance (1:travel distance longer than 5km, 0:travel distance shorter than 5 km). In 

the case of teleworking, several frequency categories were included (1: 1-2 days per 

week, 3-4 days per week, etc.), considering as a reference category the possibility of 

no teleworking. Similarly, the studies specified physical accessibility to PT using 
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several dummy categories (10-20 min, >20 min, etc.), adopting as reference category 

walking times lower than 6.5 min. Finally, the COVID-19 risk perception factor was 

measured by specifying dummies and five-point Likert scale variables. In this case, 

the interpretation of the odds ratio is then associated with the increase in the odds of 

reducing PT use during the pandemic by increasing one unit of COVID-19 risk 

perception. Table A-3 in the Appendix offers a detailed description of the associations 

employed for this factor. 

For some dummy associations, the reference category was transformed (‘flipped’) to 

agree with the criteria mentioned previously, i.e. to relate to reductions in PT use. In 

the case of two-category dummy variables, the procedure to obtain the transformed 

odds ratio is straightforward in LRMs and only involves taking the inverse of the 

exponential LRM coefficients, as the magnitude of the standard errors is the same. In 

the case of multiple categories, the procedure to estimate the transformed effect size 

is similar, but the standard errors need to be re-estimated using, for example, Fieller’s 

method. Applying the previously mentioned criteria allowed the generation of 

comparable effect sizes. Finally, three important statistical level thresholds observed 

from the literature were considered for comparison: 10%, 5%, and 1%. The 10% level,  

despite being more relaxed than the conventional 5%, is recommended to be included 

when sample sizes are small, which is the case for many of the factors included in this 

study. Nonetheless, pooled effect sizes which are significant at this level should be 

treated cautiously, due to the higher chances of rejecting a true null hypothesis (i.e. 

detecting an effect that isn’t there) compared with the stricter levels. 

Figure 2-2 illustrates the synthesised effect sizes and confidence intervals (CIs) for 

the associations of individual-level factors with the reduction of PT usage across 

comparable studies based on the previously mentioned random effect models. Nine 

pooled effect sizes were found to be statistically significant (six at a significant level of 

1%, one at 5%, and two at 10%) and six not significant. Among the non-significant, it 

can be found older adults, race and ethnicity, children, household size, full-time 

employment, and PT physical accessibility, whose p-values were higher than the more 

relaxed threshold adopted (10% significant level). Figure 2-2 also shows that 

repeatedly, the CIs are comparable among the associations within each individual-

level factor (i.e., within-study variability is reasonably constant across studies). 

However, as the mean of the pooled effect sizes, represented by the blue diamond, is 

not contained in all CIs for a specific factor, a substantial heterogeneity between 

studies can be seen. In fact, we found that the statistic I2 indicated the presence of a 

relevant heterogeneity among the effect sizes of the studies analysed. As most of the 

I2 values of the factors meta-analysed ranged from 60% to 90%, it was possible to 

infer that the observed differences in effect sizes in each individual-level factor were 
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due to real differences in the underlying effect rather than just random variation. This 

outcome ratified the choice of random effect models to estimate the pooled effect sizes 

to handle both within- and between-study heterogeneity. 

Among the factors meta-analysed, car availability, teleworking and high educational 

level were the factors with the largest pooled effect sizes. In the case of car availability, 

all the studies consistently reported odds ratios higher than 1, indicating a positive 

association (+) between car availability and the reduction of PT usage during the 

pandemic. The overall random effect for this factor was equal to an OR+ of 4.17 (CI: 

1.84; 9.44, p=<0.001***). This result suggests that individuals who owned or had at 

least one car available during the pandemic have odds of reducing their PT usage 

compared with the pre-pandemic almost four times higher than those without this 

possibility. Similarly, the odds of reducing PT usage were shown being three times 

higher for individuals with the possibility of teleworking compared to those who did not 

(OR+=3.08, CI:1.46; 6.50, p=0.003***). The next individual-level factor in terms of 

magnitude was high educational level. Based on the pooled effect of this factor 

(OR+=2.11, CI:1.11; 4.01, p=0.023**), we found that travellers with a university or 

college degree had odds of reducing PT usage that were about two times the one of 

those individuals without one. 

A second group of individual-level factors, including gender (male), income, COVID-

19 risk perception and healthcare needs, showed a more modest pooled effect size. 

Those who identified themselves as male showed odds 20% higher to reduce PT 

usage than those who identified themselves as female (OR+=1.20, CI:0.99; 1.45, 

p=0.058*). Many authors explain this by the fact that females had fewer transport 

mode options than males, alluding to social and cultural aspects (Das et al., 2021). 

For instance, women typically earn lower wages compared to men, which impacts their 

capacity to afford private transportation. Additionally, from a cultural standpoint, a lack 

of financial independence in certain cultures leads women to depend more on shared 

or public transport, resulting in fewer opportunities to discontinue its use, even during 

severe events. High income presented similar strength (OR+=1.33, CI:1.10; 1.61, 

p=0.003***); individuals with high-income levels showed odds of decreasing PT usage 

33% higher than those from the lowest income level. The combined effect for the risk 

perception of COVID-19 showed an OR+=1.32 (CI:1.18; 1.49, p=<0.001***). This 

implies that the odds of reducing PT usage for those who experienced higher degree 

of concern associated with the severity of the virus were 1.3 times higher than those 

who stated a lower concern. Regarding the healthcare needs factor associated with 

disability conditions and poor health, the meta-analysis estimated a pooled OR-=0.88 

(CI: 0.81; 0.96,  p=0.034**). This indicates a negative association between this factor 

and the reduction of PT use. In particular, the odds of a person with this condition 
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travelling less by PT were 12% lower than individuals without it (i.e. suggesting a 

positive effect with using PT). 

For the transport-related factors only the pooled effect of travel distance and non-

frequent PT users were found statistically significant (at 1% and 10% significant levels, 

respectively), while the pooled effect of PT physical accessibility was found not 

statistically significant at 10% level (p-value greater than 0.10). The factor travel 

distance showed that the odds of reducing PT usage for travellers with longer travel 

distances than 5 km were 14% lower than someone with shorter distances (OR- = 

0.86, CI: 0.80; 0.92, p=<0.001***). A negative pooled effect size was found for the 

factor pre-COVID frequent PT user (OR-= 0.84, CI: 0.70; 1.01, p=0.068*). This means 

frequent pre-pandemic PT users had odds of reducing PT use 16% lower than non-

frequent PT users. In case of PT physical accessibility, its pooled effect indicated an 

additive relationship with PT usage reduction (OR+ns = 2.16, CI: 0.82; 5.75, p=0.121). 
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Figure 2-2. Effect sizes of individual-level factors on PT usage reduction during the 
COVID-19 pandemic. Blue diamonds represent pooled effects. Confidence intervals 
at 95%. Significant  at: * 10% level; ** 5% level; *** 1% level. The vertical line (Odds 

Ratio equal 1) indicates no effect. 



73 
 

The remaining individual-level factors were not statistically significant at a 10% level 

(p-values greater than 0.10). This occurred because their CIs crossed the threshold of 

1, which is the boundary between an odds ratio defining a positive or negative 

association between an explanatory variable and the dependent variable. This means 

that for those factors, the heterogeneity among the associations reported in terms of 

direction and size did not allow us to establish with statistical certainty whether they 

were associated positively or negatively with a reduction in PT usage. This situation 

was observed for employment, whose OR-ns = 0.65 (CI: 0.35; 1.19, p=0.211) indicated 

that the odds of reducing PT usage of travellers with full-time jobs were 35% lower 

than other groups. Another factor with a similar outcome was older adults (OR+ns= 

1.15, CI: 0.80; 1.65, p=0.447). For this factor, even though the pooled effect estimated 

a positive effect on the reduction of PT usage, this was not statistically significant. For 

race and ethnicity, the combined effect showed an OR-ns of 0.80 (CI: 0.48; 

1.32, p=0.376), meaning that someone who belongs to one of these categories had 

odds 20% lower than white individuals. The pooled effect size of the presence of 

children at home (OR+ns=1.01, CI: 0.95; 1.06, p=0.828), and household size (OR+ns= 

0.91, CI: 0.75, p=0.342) were also not significant, as their pooled effects were located 

very close to 1, indicating no effect on PT usage reduction. 

 

2.4.3 Subgroup and influence analyses 

To account for different research contexts and the category of the dependent variable 

specification, we applied a subgroup analysis, which allows us to determine whether 

the inclusion of moderator variables can explain that some associations produce lower 

or higher odds ratios than others (Laura et al., 2021). Two hypotheses that were 

defined a priori were tested: there are statistically significant differences in the pooled 

effect sizes depending on (H1) the geographical region of the study and (H2) the 

period of the pandemic when the surveys were delivered. In order to investigate H1 

and H2, two dummy moderators were statistically tested. For the definition of the 

region, effect sizes were grouped into geographical areas, namely the Asia region and 

the North America/Europe (NA/EUR) region. For the pandemic period, two groups 

were defined, considering that most of the studies were conducted between March 

2020 and April 2021. We decided to define one group as those studies conducted by 

surveys delivered between March and August 2020 (representing the outbreak and 

the first recovery process) and the second group with data from Sept 2020 to April 

2021 (associated with later waves and lower mobility restrictions). The geographical 

split of North America and Europe (NA/Eur) versus Asia was chosen to indirectly 

explore differences in several domains, including public transport dependence, 
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variations in COVID-19 policies and restrictions, behavioural differences in risk 

perceptions and constraints for particular sociodemographic groups. In particular, in 

Asia, many cities have higher public transport dependency than European and North 

American cities (Aguiléra, 2014; UITP, 2024). Moreover, Asia (particularly East Asia) 

implemented tougher measures (e.g. early lockdowns, contact tracing) than the 

NA/Eur regions, where more variation in the level of restrictions was observed. 

Regarding behavioural differences, Asia has been recognised for greater compliance 

with public health recommendations. Finally, the existence of differences in the 

constraints that affect mobility strategies for certain sociodemographic groups 

between the regions analysed is hypothesised. For example, in the Asia region, from 

a cultural standpoint, a more generalised lack of financial independence can lead 

women to depend more on shared or public transport, resulting in fewer opportunities 

to discontinue its use, even during severe events. Despite the reasonable differences 

explained above that support the choice of geographical split considered for the 

subgroup analysis, several caveats should be acknowledged. Firstly, this approach 

oversimplifies sub-regional differences (e.g. Canada may have shown significant 

differences with the U.S.). Also, the approach does not consider city-level 

characteristics that can differ substantially from a national context. Considering these 

limitations, the geographical split chosen here should be considered an exploratory 

exercise and their results interpreted cautiously. 

Additionally to the two hypotheses presented, we also analysed differences among 

the pooled effect sizes depending on the category of the PT outcome employed in the 

studies (PTC vs PTR) and the metric types used in specific factors. Related to the 

latter, we tested for the factor COVID-19 risk perception, whether its different 

specifications (dummy vs Likert) generated dissimilar pooled effect sizes. In addition, 

an influence analysis was performed to assess the effect of excluding associations 

whose values differed substantially from the overall effect. This analysis allows us to 

observe the sensitivity in the pooled effect sizes to certain studies, enabling further 

analysis of the robustness of the results. The identification of outliers was conducted 

iteratively for each factor until all CIs of each association overlapped with the 

confidence interval of the pooled effect. Nonetheless, as excluding outliers may lead 

to biased results in meta-analyses, it is recommended to use its outcomes cautiously 

(Borenstein, 2009). Table 2-3 presents the results for the subgroup and influence 

analyses. Table 2-3 presents for each moderator the p-value that tests whether the 

effect sizes differ significantly between subgroups. Moreover, a column named “Δ 

Odds-Ratio” indicates whether the Odds-Ratio for a subgroup is higher or lower than 

the Odds-Ratio of the unsegmented sample. Thus, ‘+’ is used to represent a higher 

OR for a subgroup compared with the OR of the unsegmented sample when the effect 
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sizes statistically differ between subgroups, ‘-’ is used to represent a lower OR for a 

subgroup compared with the OR of the unsegmented sample when the effect sizes 

statistically differ between subgroups and, ‘ns’ to highlight a non-significant difference 

in the effect sizes between subgroups. It is important to note that Table 2-3 also 

displays the p-value for the specific OR of each subgroup. That means there is a 

possibility of observing statistically significant differences in the OR between 

subgroups but individual odds ratios for some of the subgroups that are not statistically 

significant. 

The results shown in Table 2-3 indicate that (H1) the geographical region successfully 

accounted for variation in the observed effect sizes, while (H2) the pandemic period 

was found to be significant only for one factor. Statistically significant differences were 

found between the pooled effect sizes of gender (p=<0.001***), older adults 

(p=0.102*), educational level (p=0.004***) and full-time employment (p=0.033**) of the 

Asian and NA/EUR regions. In particular, it was found that factors such as gender and 

age have almost no impact in explaining the reduction in PT use in studies conducted 

in the NA/EUR region (OR-ns=0.94, p=0.473 and OR-ns=0.91, p=0.708). In contrast, for 

the Asia region, the same factors increased the odds of reducing PT use by almost 

50% (OR+=1.51, p=<0.001*** and OR+=1.68, p=0.077*). The difference observed was 

even higher when the educational level was analysed (OR+=4.22, p=<0.001*** for the 

Asian region and OR+=1.51, p=0.014** for the NA/EUR region). Cultural and social 

differences between the regions analysed may explain these dissimilarities. Regarding 

the pandemic periods, we found differences statistically significant only for the effect 

sizes of the factor pre-COVID frequent PT user. In particular, the result showed that 

during the first period of the pandemic being a pre-COVID frequent PT user was 

irrelevant to explain the decision of travelling by PT (OR-ns=0.94, p=0.373). However, 

this changed during the second period, where those who were regular users of PT 

presented odds of reducing PT 41% lower than those who were not (OR-=0.71, 

p=<0.001***). 

Regarding the role of the type of the modelling PT outcome in the effect sizes, the 

results showed significant differences only for gender and car availability. It was 

observed for gender that this factor was only relevant among PTC studies (OR+:1.50 

vs. OR+ns:1.01). In the case of car availability, despite its effect was significant for both 

approaches (PTC and PTR studies), it was significantly higher for the former 

(OR+:8.32 vs. OR+:2.05). These results suggest that gender and car availability had 

more relevance in models where the dependent variable was specified as the decision 

of choosing/not choosing PT during the COVID-19 pandemic. We also tested for 

potential differences in the effect sizes of the factor COVID-19 risk perception, as for 
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this factor the effect sizes of dummy and ordinal variables were retrieved. However, 

the subgroup analysis showed no relevant dissimilarity (p=0.704). 

In the influence analysis, the exclusion of outliers generated three main outcomes: 

some factors increased their consistency becoming statistically significant, some 

reduced substantially their effect size, and others did not show a relevant difference. 

Among the factors that became significant were race and ethnicity, and PT physical 

accessibility. The analysis showed that for PT physical accessibility (which original OR 

and p-value were 2.16 and 0.121, respectively), the exclusion of its most extreme 

effect size (OR=8.0) caused a more consistent pooled effect (OR+=1.55, CI: 1.03; 

2.33, p=0.038**). Similarly, for race and ethnicity, the exclusion of the effect size 

provided by Jiao et al (2021) (OR=1.2) resulted in this factor becoming statistically 

significant (OR-=0.65, CI: 0.44; 0.94, p=0.021**). The most substantial change in terms 

of effect size was observed for car availability and teleworking, which decreased the 

magnitude of their effect from 4.2 to 1.8, and 3.1 to 2.3, respectively. 

Table 2-3. Subgroup and influence analyses for the effect sizes of individual-level 
factors on PT reduction during the COVID-19 pandemic. 

Moderator Subgroup N k 
Odds
-ratio 

95% CI 
p-

value 
I2(%) 

p-value 
sub group 

Δ Odds- 
Ratio  

Gender (male) 12 14 1.20 0.99; 1.45 0.058 80   

   
Location 

Asia  6 1.51 1.25; 1.83 <.001 27 
<.001*** 

+ 

NA/EUR  8 0.94 0.79; 1.11 .473 78 - 

   Period 
>Sep 2020  7 1.29 0.92; 1.56 .172 80 

.945 
ns 

Feb-Aug 2020  7 1.22 0.88; 1.67 .226 82 ns 

PT 
outcome 

PTC  6 1.50 1.18; 1.92 <.001 24 
.011** 

+ 

PTR  8 1.01 0.84; 1.22 .869 79 ns 

Outliers exc. 10 12 1.32 1.11; 1.55 .011 71   

Older adults 8 9 1.15 0.80; 1.65 .448 83   

   
Location 

Asia  3 1.68 0.94; 3.02 .077 85 
.102* 

+ 

NA/EUR  6 0.91 0.59; 1.42 .708 82 - 

   Period 
>Sep 2020  4 0.99 0.52; 1.89 .980 66 

.549 
ns 

Feb-Aug 2020  5 1.28 0.76; 2.14 .340 88 ns 

Outliers exc. 7 8 1.02 0.77; 1.34 .886 79   

Race and ethnicity 4 11 0.80 0.48; 1.32 .376 87   

Outliers exc. 3 10 0.64 0.44; 0.94 .021 81   

Educational level 3 8 2.11 1.11; 4.01 .023 87   

   
Location 

Asia  3 4.22 2.27; 7.84 <.001 16 
.004*** 

+ 

NA/EUR  5 1.51 1.09; 2.08 .014 82 - 

   Period >Sep 2020  6 2.48 0.91; 6.81 .077 89 0.60 ns 
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Moderator Subgroup N k 
Odds
-ratio 

95% CI 
p-

value 
I2(%) 

p-value 
sub group 

Δ Odds- 
Ratio  

Feb-Aug 2020  2 1.55 0.36; 6.29 .554 70 ns 

Outliers exc. 2 5 2.55 0.94; 6.92 .064 77   

Children at home 2 3 1.01 0.95; 1.07 .828 54   

Household size 3 3 0.91 0.75; 1.11 .342 80   

High Income 10 11 1.33 1.10; 1.61 .003 75   

   
Location 

Asia  7 1.40 1.03; 1.90 .031 23 
.721 

ns 

NA/EUR  4 1.30 0.99; 1.69 .053 87 ns 

   Period 
>Sep 2020  6 1.38 1.07; 1.78 .013 83 

.720 
ns 

Feb-Aug 2020  5 1.28 0.93; 1.75 .123 60 ns 

   PT 
outcome 

PTC  4 1.13 0.74; 1.72 .550 11 
.357 

ns 

PTR  7 1.41 1.12; 1.79 .003 83 ns 

Outliers exc. 9 10 1.26 1.05; 1.51 .012 67   

Car availability 8 13 4.17 1.84; 9.44 <.001 93   

   
Location 

Asia  4 5.30 
1.28; 
10.90 

.022 95 
.681 

 

ns 

NA/EUR  9 3.63 
1.21; 
10.90 

.021 92 
ns 

   Period 

>Sep 2020  3 3.68 
0.82; 
16.53 

.089 28 
.928 

 

ns 

Feb-Aug 2020  10 4.46 
1.52; 
13.11 

.006 94 
ns 

PT 
outcome 

PTC  5 8.32 
3.13; 
22.15 

<.001 97 .047** 

 

+ 

PTR  8 2.05 0.77; 5.44 .119 63 - 

Outliers exc. 5 10 1.78 1.39; 2.28 <.001 66   

Teleworking 3 8 3.09 1.47; 6.50 .003 90   

Outliers exc. 2 7 2.33 1.57; 3.46 <.001 55   

Full-time employment 6 6 0.65 0.33; 1.28 .211 89   

   
Location 

Asia  3 1.14 0.41; 3.14 .797 82 
.033** 

+ 

NA/EUR  3 0.37 0.32; 0.44 <.001 4 - 

COVID-19 risk perception 10 17 1.32 1.17; 1.49 <.001 72   

   
Location 

Asia  10 1.37 1.18; 1.58 <.001 4 
.586 

ns 

NA/EUR  7 1.28 1.07; 1.48 .011 78 ns 

   Period 
>Sep 2020  6 1.38 1.11; 1.72 <.001 84 

.723 
ns 

Feb-Aug 2020  11 1.31 1.11; 1.54 <.001 33 ns 

Specificati
on 

Dummy  9 1.32 1.10; 1.51 .004 75 
.904 

ns 

LV-Likert  8 1.34 1.15; 1.56 <.001 4 ns 

PT 
outcome 

PTC  6 1.33 1.09; 1.63 <.001 17 
.994 

ns 

PTR  11 1.33 1.12; 1.58 <.001 75 ns 
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Moderator Subgroup N k 
Odds
-ratio 

95% CI 
p-

value 
I2(%) 

p-value 
sub group 

Δ Odds- 
Ratio  

Outliers exc. 9 16 1.26 1.20; 1.54 <.001 51   

Healthcare needs 3 3 0.88 0.81; 0.96 .003 61   

Pre-COVID frequent PT 
user 

4 9 0.84 0.70; 1.01 .068 59  
 

   Period 
>Sep 2020  4 0.94 0.82; 1.07 .373 38 

.005*** 
+ 

Feb-Aug 2020  5 0.71 0.62; 0.82 <.001 11 - 

Travel distance 2 3 0.86 0.80; 0.92 <.001 33   

PT physical accessibility 2 7 2.17 0.82; 5.75 .121 35   

Outliers exc. 2 6 1.54 1.02; 2.33 .038 30   

Significant  at: * 10% level; ** 5% level; *** 1% level. The column “Δ Odds- Ratio” indicates 

with ‘+’ a higher OR for a subgroup compared with the OR of the unsegmented sample when 

the effect sizes statistically differ between subgroups, with ‘-’ a lower OR for a subgroup 

compared with the OR of the unsegmented sample when the effect sizes statistically differ 

between subgroups and, with ‘ns’ a non-significant difference in the effect sizes between 

subgroups. Only factors with a minimum of N=2 and k=3 per subgroup were included in the 

analysis. ‘exc,’: excluded. 

 

2.5 Discussion 

To our knowledge, the review reported here is the first study to provide a 

comprehensive review of the effects of individual-level factors on public transport (PT) 

usage during the COVID-19 pandemic. We conducted such a comparison by 

systematically reviewing the existing evidence and performing a meta-analysis of the 

effect sizes of the individual-level factors across comparable studies. The systematic 

review identified 36 relevant studies executed between 2020 and 2021, of which 16 

generated data that could be analysed through a meta-analysis. By choosing 

comparable studies and factor specifications for the meta-analysis, we were able to 

compare the factors’ pooled effect sizes. Our study complements early works 

presented in the light of the pandemic (De Vos, 2020; Gkiotsalitis & Cats, 2020; 

Tirachini & Cats, 2020), by being the first to quantitatively summarise the impacts of 

individual-level factors on people’s PT usage and to offer a comprehensive 

comparison between them. 

The systematic review found that individual-level factors exhibited heterogeneous 

levels of consistency in terms of the effect direction reported across studies. Regarding 

this, two main groups of individual-level factors were observed. Factors such as car 

availability, teleworking, high-level income, high educational level and COVID-19 risk 
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perception showed consistent positive associations with the reduction of PT use 

compared with the pre-pandemic across studies. On the other hand, ambiguous effect 

directions were found for factors such as gender (male), age (older adults), race and 

ethnicity, and employment. For these inconclusive effects, the mean of the pooled 

effect size and their confidence interval helped to determine their effect directions 

statistically. We obtained, then, that males and older adults were factors positively 

related to the reduction of PT usage, while employment (full-time) showed a negative 

association. However, of them, only the pooled effect of gender was statistically 

significant. We also found that contextual factors such as the region where studies 

were conducted and the pandemic period helped to understand factors’ effect 

differences. In particular, when controlling for region (North America/Europe vs. the 

Asia region), we found that the effects of gender and age were only statistically 

significant for studies conducted in the latter group. Cultural and social differences 

may explain these differences. The findings of this study can help us understand 

specific population groups' restrictions and needs during pandemics/epidemics. The 

results highlight the relevance of inequality associated with the use of PT during the 

COVID-19 pandemic by some of the more vulnerable population segments: women, 

older adults, people with healthcare needs, those without the possibility of teleworking 

and those who travel longer distances. From a social point of view, public transport 

authorities should consider the needs of these population segments when deciding to 

adjusting service levels in the event of a pandemic (DeWeese et al., 2020). 

Notable differences in the effect size of each factor in reducing travellers’ probability 

of using PT during the pandemic were also found. Unexpectedly, the meta-analysis 

revealed that people’s car availability was the factor with the highest negative effect 

on the use of PT during the pandemic. Its pooled effect revealed that individuals with 

at least one car available had odds to reduce their PT use during the pandemic four 

times the odds of those individuals without that possibility. Similarly, the possibility 

given to some individuals to work from home increased their odds of reducing PT trips 

by about three times compared to those without teleworking availability. A more 

modest effect on PT usage was observed for the other individual-level factors. Factors 

such as gender, high income level, and COVID-19 risk perception only increased the 

odds of travelling less by PT by no more than 30%. The meta-analysis also revealed 

that with the available evidence, it was not possible to generate reliable pooled effects 

for factors such as age and employment because of the high inconsistency of their 

effects. The substantial difference observed in this study among the impact of 

travellers’ associated factors on PT usage highlights the need in the transport domain 

for not only discussing effect directions, but also comparing effect sizes (Parady & 

Axhausen, 2023). While the results of this study reflect the contribution of individual-
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level factors on the decision of public transport usage during a great-scale disruption 

as it was the COVID-19 pandemic, a caveat to research is that the study was 

conducted without incorporating explicitly public transport supply differences, which 

may not fully reflect real-world conditions. In fact, it is reasonable to have expected 

differences in the public transport supply constraints for the case studies due to 

distinctive COVID-19 guidelines and pandemic stages. Therefore, it remains untested 

in this study how these differences may have influenced the effect of the individual-

level factors analysed. Nonetheless, the role of public transport supply differences may 

have been moderated as many case studies adopted policies to maintain public 

transport frequencies and services during the COVID-19 pandemic. These policies 

were implemented mainly to support essential workers, follow social distance 

guidelines and reduce crowding. However, it is also reported that despite maintaining 

frequencies in peak hours, many PT systems reduced the number of services in less 

crowded periods, including overnight. Tokyo, Taipei, Santiago de Chile, Stockholm, 

and New York City are only some examples (Jenelius & Cabecauer, 2020; Gkiotsalitis 

& Cats, 2021; Gramsh et al., 2022; Jian & Cai, 2022). 

How much of the effects observed in this review associated with the reduction in PT 

usage are still present today seems a relevant interrogation to addressing policies to 

encourage PT use. How many of those who shifted from PT to private modes have 

returned and how these processes can be supported remains to be seen. Habits and 

attitudes developed by travellers during the pandemic on alternative modes to PT may 

also play a key role next (Hoffmann et al., 2017). Additionally, the impact of new trends 

and technologies related to electro-mobility, such as EVs, e-bikes and e-scooters 

(Reck et al., 2022), and autonomous vehicles on travellers' mode choice decisions has 

only started to be assessed (Yuen et al., 2022). In this scenario, where the possibility 

of teleworking and online shopping have also been established, it is unlikely to expect 

a complete recovery of individual PT usage for everyone. Therefore, growing subsidies 

to PT systems may be required to keep fare prizes at bay, avoiding increasing existing 

inequalities on already vulnerable population segments, which PT usage has 

demonstrated to be less adaptable, even in the most severe circumstances like the 

COVID-19 pandemic.  
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Chapter 3  

Using smart card data to model public transport user profiles in 

light of the COVID-19 pandemic 

 

Abstract 

The COVID-19 pandemic caused an unprecedented impact on public transport 

demand. Even though several studies have investigated the change in the use of 

public transport during the pandemic, most existing studies where large passive 

datasets have been considered focus on the drop in ridership at the aggregate level. 

To address this gap, this research aims to identify and model profiles of passengers 

considering their public transport recovery after the long-term lockdown in Santiago, 

Chile, during the early stage of the pandemic. The methodology proposed a three-

stage approach associated with the analysis of smart card records. First, cardholder 

residential areas were identified to enrich the available data by integrating 

demographic information from the census. Then, a clustering analysis was applied to 

recognise distinctive classes of users based on their public transport usage change 

between the pre-pandemic and the post-lockdown phase. Finally, two different models 

were implemented to uncover the relationships between class membership and 

travellers’ characteristics (i.e. travel history and demographic characteristics of their 

residential area). Results revealed a heterogeneous recovery of public transport usage 

among passengers, summarising them into two recognisable classes: those who 

mainly returned to their pre-pandemic patterns and those who adapted their mobility 

profiles. A statistically significant association of travel history with the mobility 

adaptation profile was found, as well as with aggregate socio-demographic attributes. 

These insights about the extent of heterogeneity and its drivers can help in the 

formulation of specific policies associated with public transport supply in the post-

pandemic era. 

 

Keywords: public transport, COVID-19, smart card data, travel behaviour, disruption, 

machine learning.  
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3.1 Introduction 

The outbreak of COVID-19 in the world caused a significant change in people’s 

mobility patterns as a result of people’s fear of the virus’s consequences, government 

measures, changes in transport provision and the emergence of new trends, such as 

teleworking and online shopping (Abdullah et al., 2020; Bin et al., 2021; Zannat et al., 

2021). Although the existing literature suggests that the demand for all modes was 

affected by the pandemic, the evidence shows that public transport usage was the 

most negatively impacted (Wielechowski et al., 2020; Przybylowski et al., 2021; 

Vickerman, 2021). 

Many studies to date have investigated the impact of COVID-19 on travel behaviour, 

focusing on the consequences on mode choices and risk perception (Abduljabbar et 

al., 2022). The evidence suggests that public transport has lost attractiveness while 

people prefer individual modes such as private car and non-motorized modes 

(Eisenmann et al., 2021). The negative perception toward public transport has also 

been associated with high contagion risk and an increase in crowding aversion 

(Kolarova et al., 2021). Most of the current analyses have, however, been conducted 

using online surveys, either cross-sectional (Bucsky, 2020) or considering a limited 

number of waves (Beck & Hensher, 2021; Molloy et al., 2021). Additionally, studies 

where passive data have been used have focused mainly on drops in ridership (mostly 

in aggregate levels) without exploring the linkage with the characteristics of the 

individual, their travel history and/or spatial attributes (Abduljabbar et al., 2022). Due 

to this limitation, the characterisation of the recovery in mobility patterns of public 

transport users that continued travelling after lockdowns remains limited. 

This prompts this research, where we aim to identify and characterise profiles of public 

transport passengers who continued travelling after a critical disruption in mobility 

caused by a long-term lockdown, considering the recovery in their public transport 

usage. Therefore, we hypothesise that in response to the COVID-19 pandemic and 

associated restrictions, groups of passengers have experienced heterogeneous 

changes in their travel behaviour. Moreover, we postulate that adopting a particular 

mobility profile in the post-lockdown period can be explained by the characteristics of 

the travellers – their pre-pandemic and lockdown travel history and attributes of the 

home location. A three-stage approach was proposed to describe and model public 

transport users' profiles based on an analysis of smart card data for Santiago de Chile. 

The research thus aimed to expand the findings of previous works related to the impact 

of COVID-19 on individual public transport use by: 
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• Using individual-level smart card data records with extensive coverage over the 

population to study the changes in public transport usage of those who 

continued travelling in a post-lockdown phase. 

• Proposing a comprehensive set of indicators to describe passengers’ public 

transport usage change between the pre-pandemic and the post-lockdown. 

• Revealing hidden mobility adaptation profiles of frequent pre-pandemic 

passengers that illustrate the variability in the public transport usage recovery. 

• Associating explanatory factors to each profile to obtain insights as to which 

policies are most suitable for implementation in public transport systems in a 

post-pandemic era. 

The remainder of this paper is structured as follows. First, in Section 3.2, an overview 

is given of the impact of COVID-19 on public transport and the role of smart card data 

in travel behaviour analysis. Then, Section 3.3 describes the data used, including a 

description of the context of the pandemic in the period analysed associated with the 

study case. The methodology followed in this study is described in Section 3.4, divided 

into three subsections: residence estimation, clustering analysis and modelling. 

Section 3.5 presents the main results, followed by the conclusions in Section 3.6. 

 

3.2 Literature review  

3.2.1 Impact of COVID-19 on public transport usage  

The COVID-19 pandemic has had substantial impacts on human mobility. The effect 

of COVID-19 on public transport ridership, in particular, was dramatic, with the greatest 

reduction during the lockdown periods. In fact, during the most challenging periods of 

the pandemic, the drop in ridership was as much as 70%-90% in the major cities of 

Sweden (Almlöf et al., 2021), Germany (Kolarova et al., 2021), Belgium (Tori et al., 

2023), Greece (Politis et al., 2021), Chile (Gramsch et al., 2022), US (Wang & Noland, 

2021)  and Hungary (Bucsky, 2020). However, although the COVID-19 pandemic has 

disrupted all forms of travel (Eisenmann et al., 2021), trip reductions have not been 

the same for all transport modes. The existing evidence indicates a significant shift of 

commuters from public transport to individual modes such as private car and non-

motorised modes (Abdullah et al., 2020). For example, Bucsky (2020) reported that 

the modal split of public transport decreased from 42% to 18% in Budapest, while 

private car usage increased from 43% to 65%. Kolarova et al. (2021), using an online 

survey applied in Germany in April 2020, also reported a significant shift from public 

transport to private modes. The evidence shows that despite the lifting of mobility 

restrictions and the success of several vaccination campaigns worldwide, passengers 
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have remained reluctant to use public transport services again (Almlöf et al., 2021). 

Some of the causes which have been associated with this behaviour have been the 

perceived contagion risk (Przybylowski et al., 2021), the fear of the virus’s 

consequences (Abdullah et al., 2020), and the changes in people’s time use due to 

the pandemic adaptations related for example to teleworking and online shopping (Bin 

et al., 2021; Zannat et al., 2021). 

Although many studies to date have investigated the impact of COVID-19 on travel 

behaviour, most of them have been conducted using online surveys, either cross-

sectional (Bucsky, 2020; Kolarova et al., 2021) or considering a limited number of 

waves (Beck & Hensher, 2021; Molloy et al., 2021). Such online surveys typically have 

small sample sizes, have a limited capability to capture the day-to-day variability in 

people’s mobility, have not been particularly focused on public transport and rely on 

respondents’ memories to reconstruct pre-pandemic travel patterns. On the other 

hand, passive data sources such as smart cards, GPS traces and mobile phone 

records, which have digital mobility footprints of many people over time, can help 

overcome those limitations (Zannat & Choudhury, 2019), complementing the analyses 

of people’s mobility adaptation through the COVID-19 outbreak. In particular, several 

studies have implemented smart card data to analyse at an aggregate level (system 

level, by area or station) the change in the public transport demand caused by the 

pandemic (Jenelius & Cebecauer, 2020; Rodriguez Gonzalez et al., 2021; Zhang et 

al., 2021; Fernández Pozo et al., 2022). In comparison, only a few attempts to study 

the impact of COVID-19 at an individual level considering smart cards have been 

carried out. Two exceptions are Almlöf et al. (2021), who studied the propensity to stop 

travelling during the pandemic in Stockholm, and Carney et al. (2022), who focused 

on accessibility issues on senior cardholders of the West Midlands, England, between 

2019 and 2020. Then, the characterisation of the recovery in mobility patterns of public 

transport users that continued travelling after lockdowns remains limited. 

 

3.2.2 Passenger profiling using smart card data 

Smart card data has become a reliable and extensive data source to analyse 

travellers’ travel behaviour and improve public transport planning (Pelletier et al., 

2011). Many large-medium cities in the world have implemented Automatic Fare 

Collection systems (AFC) to collect public transport payments, but also to analyse the 

public transport travel demand (Kusakabe & Asakura, 2014). Smart cards 

automatically and continuously store each fare payment of transit users and associate 

it with an ID card. IDs are unique numbers given to smart cards that allow the study of 

travel habits, trip sequencing and route preferences, among other characteristics 
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(Pelletier et al., 2011). Each fare payment usually saves information about the card 

ID, timestamp, service number, card type and fare. In this way, it is possible to use 

smart card data to study travel demand changes, and to identify anonymously public 

transport users in different periods, which is a significant advantage compared with 

traditional data sources (Zannat & Choudhury, 2019). 

In previous studies, user profiling has been carried out with smart card data 

considering passengers’ interpersonal and intrapersonal travel behaviour to reveal 

unseen patterns (He et al., 2018). That exploration has usually been implemented with 

non-traditional transport models, such as machine learning techniques to classify 

users depending on their public transport frequency use (Briand et al., 2017). The 

literature shows that methods such as hierarchical clustering analysis and K-means 

have been widely implemented on smart card data to group cardholders based on 

their trip regularity. For instance, He et al. (2018) and El Mahrsi et al. (2017) used 

smart card data to classify public transport users depending on their trip frequency. 

Clustering techniques can also be implemented to group cardholders regarding their 

spatial-temporal trip patterns Egu and Bonnel (2020). 

 

3.3 Data 

3.3.1 Case study 

Smart card data from Santiago de Chile at the individual level were available for this 

study. Santiago’s public transport involves a complex system that integrates urban 

buses, the underground (that is called Metro) and an inter-urban rail. The system 

serves a population of around seven million inhabitants, with 4.5 million transactions 

daily before the outbreak of COVID-19. The system consists of around 7.000 buses, 

more than 10,000 bus stations, 379 bus routes and seven metro lines with 136 stations 

and a length of 140 km. Figure 3-1 shows the spatial distribution of bus stops and 

metro/rail stations and three sociodemographic characteristics of the population in the 

metropolitan area of Santiago across 352 census district areas considering 34 

municipalities. A smart card (called bip!) is the only payment method accepted in 

Santiago’s public transport system. Transaction information is recorded and 

associated with a unique anonymous ID card. Tapping in the card is requested only to 

board public transport modes, at which time passive data are recorded, such as the 

card ID, timestamp, and bus service/metro station. The smart card system of Santiago 

does not gather information about the alighting stops. Instead, the methodology 

developed by Munizaga and Palma (2012) is applied to infer alighting information. That 

method identifies alighting locations following the trip chain of an ID card during the 
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day and examining the position and time of the boarding. Then the alighting stop of a 

trip is estimated considering the boarding position of the next transaction through the 

minimization of a generalized travel time function. Adult cards are not customized. 

Hence, they may eventually be shared among multiple users. It may be noted that bus 

fare evasion has been recognized as an issue for Santiago’s authorities. Therefore, 

the smart card data may provide a conservative estimate of the ridership in the 

Santiago public transport system. 

A. B. 

  

C. D. 

 

 

Figure 3-1. Spatial distribution in Santiago’s Metropolitan area by census district 
zone of (A) Public transport stops/stations, (B) Ratio of university-educated 
population, (C) Ratio of foreign-born population, and (D) Ratio of the elderly 

population. 
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3.3.2 The COVID-19 Pandemic in Chile 

The first case of COVID-19 in Chile was confirmed on 3 March 2020, and the Chilean 

government applied the first measures to face the spread of the virus on 16 March 

2020. The first lockdown was implemented in Chile on 26 March in seven 

municipalities of Santiago, and during the entire pandemic, this measure was applied 

at a municipality level, avoiding implementing a national lockdown. Under this strategy, 

each municipality could enter or exit a lockdown depending on the number of new 

cases confirmed and the availability of critical care beds (Bennett, 2021). Even with 

the implementation of this tactical strategy to tackle the spread of the virus, the number 

of new cases and deaths increased sharply. Then, the authorities decreed a total 

lockdown for Santiago on 15 May 2020; this unified lockdown lasted until 27 July, when 

the first municipalities were released (see Figure 3-2, red line, for lockdown 

progression in Santiago’s municipalities). The same month the government 

announced the “step-by-step” strategy, establishing five possible phases for 

municipalities depending on the outbreak’s severity. Phase 1 meant total lockdown, 

Phase 2 lockdown only on weekends, while Phase 3 to Phase 5 meant the end of 

lockdowns but continuing with restrictions at different levels (Villalobos Dintrans et al., 

2021). Thereby, on the last days of July, the first municipalities in the Metropolitan 

area of Santiago started to transition from Phase 1 to Phase 2. Gradually other 

municipalities followed the same trend. Therefore, many of Santiago’s municipalities 

were still under lockdown on weekends between August and September. This situation 

is depicted in Figure 3-2, where the share of municipalities under lockdown spiked 

every weekend during the second half of 2020. Eventually, by 5 October, all of 

Santiago’s metropolitan area had been lifted from Phase 1, being municipalities in 

Phases 2 and 3. From 16 November to 27 of the same month, no lockdowns were in 

place; however, substantial restrictions were still present (a curfew, face-to-face 

classes were still not allowed, gyms and events were not permitted to open yet, 

mandatory use of face-mask and social distancing protocols were active, among 

others). Chile’s mass COVID-19 vaccination campaign would start only in February 

2021, and Santiago’s Metropolitan area would enter new full lockdowns during 2021. 

 

3.3.3 Study period 

Following the aim of this study, homogeneous periods were identified during 2020 to 

characterise passengers’ PT usage recovery, in particular of those travellers that were 

active during the pre-pandemic and after the lockdown. Figure 3-2 illustrates the 

variation of the two factors used to identify the appropriate study period: the share of 
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the municipalities of Santiago’s metropolitan area under lockdown and the daily 

variation of public transport demand. Thus, three key periods of 2020 were chosen: 

pre-pandemic (PP), lockdown (L) and reopening (O). Regarding the extension of each 

period, although the literature has considered one week, such as a minimum unit to 

observe a cycle related to travel behaviour, we decided to use two weeks. Thus, smart 

card data records of Santiago de Chile’s public transport system between March 2-15 

were used to illustrate pre-pandemic public transport use, data from June 15-21 and 

July 6-12 for the lockdown period, and transactions between November 9-20 for the 

reopening period. For the lockdown, two non-consecutive weeks were chosen to 

capture any natural between-month variability in this period. The reopening period 

chosen is still a settling-in time for urban mobility. Mobility and, in particular, public 

transport ridership continued changing highly during 2021 as a consequence of new 

waves of the virus that were tackled with new full lockdowns enacted in the 

metropolitan area. During the reopening, many offices continued teleworking, some 

called their employees back to face-to-face work, and others adopted a hybrid 

scheme. This means mobility was significantly lower during this period than in the pre-

pandemic. In fact, movement trends provided by Google indicated 41.5% lower activity 

in workplace locations during the reopening compared with the pre-pandemic weeks. 

The progression of the overall public transport demand in Santiago during 2020 is 

shown in Figure 3-2, displaying a massive reduction in the use of the system after the 

start of the outbreak. In fact, the demand reached an average of 4.3m transactions on 

weekdays during the pre-pandemic, but in the total lockdown, a barely daily average 

of 0.6m transactions was recorded. As the lockdowns were eased, the public transport 

demand started to recover, reaching a plateau around the reopening period, with an 

average of 2.3m transactions registered on weekdays. On the other hand, most of the 

services of Santiago’s PT system operated in the reopening almost at the same 

frequencies compared with the pre-pandemic weeks. Minor adjustments were 

implemented in specific services to strengthen frequencies during peak hours and 

reduce them in periods of low demand, particularly associated with the metro 

operation. The recovery of the frequency of services after the reduction implemented 

during the lockdown was supported by authorities even though the high drop in 

ridership to ensure social distance protocols and give reliability to users in terms of the 

level of service of public transport. 
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Figure 3-2. Daily variability of public transport demand and lockdowns in the 

metropolitan area of Santiago during 2020. 

Figure 3-3A illustrates the differences between the trip distribution during business 

days (Monday to Friday) for the pre-pandemic and reopening periods for the overall 

demand. Differences are evident not only in terms of the number of trips but also in 

terms of their distribution. Morning and evening peaks were displaced (passengers 

carried out their morning trips later and the return ones earlier), and the difference in 

the demand between peak and out-of-peak hours were reduced. Also, the noon peak, 

a typical characteristic of Chilean cities, almost disappeared. In addition, Figure 3-3B 

shows the proportion of cardholders regarding the number of weekdays travelled by 

period. The graph displays that during the reopening period, the proportion of 

passengers that travelled only one or two days in the two-week window increased 

compared with the pre-pandemic period, while the proportion of cardholders that 

travelled more than two days declined. 

A. 

 

B. 

 

Figure 3-3. (A) Ridership distribution on weekdays, per period analysed (average 

values every 30 minutes). (B) Proportion of cardholders regarding the number of 

weekdays travelled. 
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3.4 Method 

3.4.1 General framework 

A three-stage approach was proposed to identify and model profiles of public transport 

users who continued travelling after the lockdown based on their travel behaviour 

recovery (Figure 3-4). The first stage considered the enrichment of smart card data 

through the estimation of the residential area of cardholders and the imputation of 

aggregate demographic characteristics from the Chilean Census, using the pre-

pandemic period records. Secondly, seven indicators were proposed to measure the 

intrapersonal variability of public transport usage between the reopening phase and 

the pre-pandemic period. Then, the K-means algorithm was applied to identify discrete 

recovery profiles by splitting cardholders into classes with more homogenous public 

transport recovery. Finally, Gradient Boosting Decision Tree (GBDT) and logistic 

regression model (LRM) were applied to relate explanatory variables to the previously-

identified clusters. Variables such as individuals’ travel history during pre-pandemic 

and lockdown, card type and aggregate demographic characteristics were used to 

explain class membership. 

 

Figure 3-4. Flow chart with the three-stage approach implemented in this study. 

3.4.2 Residential zone estimation and demographic characteristics per 

zone 

As Santiago’s public transport system does not collect users’ socioeconomic 

information, we used the socioeconomic characteristics of the predicted home location 

of the cardholders as a proxy of user characteristics. This information was retrieved 
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from the Chilean Census, that in 2017 gathered sociodemographic data across the 

country through household surveys. Information such as gender, age, educational 

level, employment and migrants can be spatially analysed at three levels of 

aggregation: blocks, census district zones (CDZ) and municipalities. After analysing 

the three levels, we chose CDZ, as it offers an intermediate spatial resolution of the 

population characteristics of the metropolitan area and matches better with the criteria 

used in the residential location procedure. A total of 352 CDZ for the metropolitan area 

of Santiago were considered. Table 3-1 describes the aggregate sociodemographic 

variables, estimated as the ratio between a target population and the total population 

for a particular CDZ. These shares should be interpreted as a characterisation of the 

area where a cardholder lives instead of individual demographic conditions. This 

approach is particularly appropriate for Santiago’s context due to its elevated level of 

urban and social segregation that causes a high homogeneity in demographic 

characteristics within neighbourhoods (Gainza & Livert, 2013). 

To associate sociodemographic information of the CDZ, the potential residential 

location of cardholders must be found. We adapted the methodology implemented by 

Amaya et al. (2018), who proposed to estimate the residential location of a cardholder 

as the centre of gravity of the coordinates associated with the first transaction of each 

day, by implementing the DBSCAN algorithm (Ester et al., 1996). DBSCAN is a 

clustering technique whose advantage on residential estimation is the recognition of 

outliers. The algorithm was applied over the spatial coordinates of the first trip’s 

boarding coordinate of each day throughout the two pre-pandemic weeks only to those 

cardholders that carried out trips for at least three days in that period. As parameters, 

we used 1 km as the maximum distance between two coordinates to be considered 

part of the same spatial cluster. This value reflects a walkable distance between 

cardholders’ real residence and their reachable bus stops. At least 40% of the total 

first boarding coordinates were required to make up a residential cluster. Figure 3-5 

summarises the steps followed to estimate the residential location of cardholders in 

this work using smart card transactions. As a final step, the gravity centre of the 

boarding coordinates of a certain cardholder that only present one residential cluster 

is assigned to a unique CDZ. 

 

3.4.3 Clustering analysis 

The second stage involved the clustering of cardholders based on the change in their 

public transport usage between the pre-pandemic and the reopening period. Here, 

three steps were followed: data processing, estimating intrapersonal travel variability 

and clustering considering interpersonal differences.  
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Figure 3-5. Framework implemented to identify residential location. 

3.4.3.1 Data processing 

Even though disaggregate smart card data is a rich data source to study public 

transport demand patterns, the literature also recognises the need to include a data 

processing step to analyse and clean such data (Ordóñez Medina, 2018). In the 

present study, to obtain suitably cleaned data, a sequence of criteria were considered 

as determined by the study's goals, the data quality and the pandemic context. The 

cleaning criteria are listed below; we have also included the number of remaining ID 

cards after successively applying each criterion. 

• Keeping cards that only were active on both pre-pandemic and reopening 

weekdays (1,385,711 cards). 

• Only adults and elderly cards were analysed (1,028,460 cards). 

• Removing card IDs with multiple tap-ins (947,800 cards). 

• Cardholders at least carried out trips on three different days during the 14-day 

period in the pre-pandemic weeks (415,762 cards). 

• Only cards with an estimated residential location remained (379,115 cards). 

• ID cards with no imputed information at all about the alighting stops were 

removed (360,190 cards). 
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First, validation records were analysed to identify active cards during the pre-pandemic 

and the reopening weeks. 3.9 million different cards were active during the pre-

pandemic and 2.7 million during the reopening period. However, the analysis found 

that from the total cards active during the reopening, only 1.38 million cards could be 

traced to the pre-pandemic period. We hypothesise that the remaining corresponded 

to travellers that renewed their cards between both periods (possible causes could be 

the loss or damage of the card) and to the arrival of new travellers. Therefore, for non-

traced cards, there was no way to infer whether a user had lost/ changed cards or 

discontinued using PT. To overcome this data limitation, we focus on those 

cardholders that are traceable between the pre-pandemic and the reopening period. 

An example where a comparable approach is considered is Egu and Bonnel (2020), 

who applied a similarity analysis strictly on traceable public transport users. 

Invalid records are recommended to be filtered (Gong et al., 2017). Consequently, 

cards that were validated more than once in a very short time were removed. The tap-

in-only format and the lack of personalisation of the smart cards may induce using one 

card for multiple validations in a row (usually associated with trips with relatives). An 

examination showed that a 60-second lapse was an appropriate cut-off point to detect 

multi-transactions. Then, cards with multi-transactions were not considered to avoid 

including this noise that may affect the analysis. On the other hand, the analysis of 

specific public transport users can help to reveal more meaningful findings (Gutiérrez 

et al., 2020). In particular, student cards were not included because most classes 

remained online during November 2020. Therefore, more meaningful conclusions for 

a post-pandemic era may be obtained by observing non-student users.  

The last criteria were implemented to identify cardholders’ residential locations and, in 

this way, add additional features to the data. Residential location identification allowed 

the retrieval of aggregate socioeconomic characteristics from census areas and their 

association with where cardholders lived. It is important to notice that implementing 

these criteria may lead to the analysis of more habitual travellers. This limitation was 

not unique to our work, and previous works where smart card data have been used 

considered criteria that lead to focus the analysis on regular travellers (Espinoza et 

al., 2018; Caicedo et al., 2021). Considering all these criteria assures the replicability 

of the analysis carried out in this work in different contexts, facilitating their 

comparison. 

3.4.3.2 Intrapersonal variability indicators 

The second step in the clustering analysis stage, according to Figure 3-4, was the 

estimation of the indicators that describe the change in individuals’ public transport 

use, considering a multidimensional characterisation. Then, the intrapersonal pattern 
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comparison was based on seven mobility indicators that describe the change in the 

public transport use of frequent passengers of the pre-pandemic period (PP) that 

continued travelling after the lockdown (O). In particular, three similarity indices were 

adapted from Egu and Bonnel (2020) to measure these changes. 

Firstly, a day-sequence similarity index (DSI) was estimated. For each period 𝑝 (PP 

and O) and cardholder 𝑚, a boolean vector 𝐷𝑚
𝑝 = (𝑑𝑚,1

𝑝 , 𝑑𝑚,2
𝑝 , … , 𝑑𝑚,𝑁

𝑝 ) of length N 

equal to 10 was defined (representing the 10 business days of the two consecutive 

weeks considered per period), where 𝑑𝑛 takes value one if there was at least one trip 

during that day, otherwise, the value is 0. Then the similarity measure between 𝐷𝑃𝑃 

and 𝐷𝑂 for each cardholder 𝑚 was calculated considering the simple matching 

distance, as follows: 

𝐷𝑆𝐼𝑚(𝐷𝑚
𝑃𝑃 , 𝐷𝑚

𝑂 ) =
∑ (1 − 𝑑𝑚,𝑛

𝑃𝑃 )(1 − 𝑑𝑚,𝑛
𝑂 )𝑁

𝑛=1 + ∑ 𝑑𝑚,𝑛
𝑃𝑃 𝑑𝑚,𝑛

𝑂𝑁
𝑛=1

𝑁
 (3-1) 

Where ∑ (1 − 𝑑𝑚,𝑛
𝑃𝑃 )(1 − 𝑑𝑚,𝑛

𝑂 )𝑁
𝑛=1  represents the number of days where 𝐷𝑚

𝑃𝑃 and 𝐷𝑚
𝑂  

are zero and ∑ 𝑑𝑚,𝑛
𝑃𝑃 𝑑𝑚,𝑛

𝑂𝑁
𝑛=1  is the number of days where 𝐷𝑚

𝑃𝑃 and 𝐷𝑚
𝑂  are one. The two 

vectors are considered similar when there is a mutual absence or presence of trips on 

the same days between both periods. The DSI also gives values between 0 (a 

completely different day sequence pattern) and 1 (the same), facilitating its 

interpretation. 

Additionally, two indices were used to measure the similarity of public transport usage 

at individual level in terms of the temporal and spatial patterns of active passengers 

between the pre-pandemic and reopening weeks. In terms of similarity, public 

transport usage between two periods may be considered similar for a particular 

cardholder if the same proportion of trips is distributed similarly during the day or if 

they are distributed similarly in terms of the boarding locations. Thus, for the temporal 

and spatial intrapersonal variability, a temporal (TSI) and boarding location (LSI) 

similarity indices are proposed. Let us define 𝑇𝑚
𝑃𝑃 and 𝑇𝑚

𝑂 as the total number of trip 

registered in the system for a cardholder 𝑚 during the ten-weekday period during the 

pre-pandemic (PP) and the reopening (O). Then, for the TSI, ℎ𝑟
𝑃𝑃 and ℎ𝑟

𝑂 indicate the 

number of transactions ℎ registered during the period of the day 𝑟, for the PP and the 

O. While for the LSI, 𝑙𝑧
𝑃𝑃 and 𝑙𝑧

𝑂 are the number of transactions 𝑙 registered in the 

location 𝑧, also, for both pandemic periods. Then TSI and LSI were estimated as 

follows: 

𝑇𝑆𝐼𝑚 = 1 −
1

2
∑ |

ℎ𝑟,𝑚
𝑃𝑃

𝑇𝑚
𝑃𝑃

−
ℎ𝑟,𝑚

𝑂

𝑇𝑚
𝑂 |

𝑅

𝑟=1

 (3-2) 
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𝐿𝑆𝐼𝑚 = 1 −
1

2
∑ |

𝑙𝑧,𝑚
𝑃𝑃

𝑇𝑚
𝑃𝑃

−
𝑙𝑧,𝑚

𝑂

𝑇𝑚
𝑂 |

𝑍

𝑧=1

 (3-3) 

where 𝑅 refers to the total number of periods within a weekday that make up the 

temporal grid for public transport demand and 𝑍 represents the total number of CDZ 

from where boarding was carried out. Note that by definition ∑ ℎ𝑟/𝑇𝑟  and ∑ 𝑙𝑧/𝑇𝑧  for 

any cardholder and pandemic period are equal to one. In this way, the TSI and LSI 

measure how different was the distribution of public transport trips in terms of the 

temporal and spatial variation between the pre-pandemic and reopening period. We 

decided to use the TSI above other methods, such as Dynamic Time Warping (DTW) 

or the distance between two empirical Cumulative Distribution Functions (eCDFs), due 

to the TSI’s interpretability advantage over the distance value calculated using these 

methods. TSI and LSI do not depend on the variation in the number of trips between 

both periods. If the relative temporal or spatial distribution of the trips is the same 

between both pandemic periods, the difference estimated is zero, and TSI/LSI are 

equal to 1. By way of contrast, if the temporal or spatial travel pattern for a specific 

cardholder has changed completely and there is no match between the two periods, 

the second term is 1, and the similarity indices take the value of 0. Therefore, 

independently of whether a cardholder reduced their trip intensity in terms of the 

number of trips or the days travelled, TSI and LSI analyse only the differences in terms 

of how the trip distribution has changed temporally (across the day) and spatially (in 

terms of the areas where a cardholder boards public transport modes). To identify the 

proper total number of periods of the day 𝑅, the criterion of homogenous periods 

associated with the overall demand in the system and the fare scheme in Santiago’s 

public transport was applied. Then an 𝑅 equal to eight was used, considering the next 

time intervals: before 7:00 am, 7 to 9 am, 9 to 12 pm, 12 to 2 pm, 2 to 4 pm, 4 to 6 pm, 

6 to 8 pm and after 8 pm. For the LSI estimation, the spatial grid was defined using 

the 352 Census zones defined in Section 4.2, and required matching them with the 

location of the boarding of each trip. Therefore, for the TSI, the comparison between 

trip distributions was made among the eight-time intervals, each of which represents 

a particular time period during the day, and for the LSI, the analysis was made on the 

variation in boarding trips among 352 zones distributed across the city. 

The remaining five indicators describe the variation between the reopening and pre-

pandemic period of variables usually used to characterise public transport usage when 

smart card data is available. Those variables are the total number of trips, the number 

of segments per trip, bus usage and the time of the first transaction of the day. All of 

these were calculated on the ten weekdays of the two periods. Bus usage is estimated 

as the ratio between the number of validations made on the bus mode and those made 
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in all public transport modes during the ten workdays in each pandemic period. We 

incorporate this variable to identify whether passengers have systematically reduced 

or increased the use of the bus mode compared with the metro/rail, as some evidence 

suggests that metro/rail is more positively rated than buses during the pandemic. The 

variable time of the first transaction of the day is estimated by averaging the time of all 

workday’s first transactions, using as a reference midnight (00:00). The definition of 

trips and trip segments associated with smart card transactions was adopted from 

Munizaga & Palma (2012). Table 3-2 presents the seven indicators with their 

characteristic values per period calculated on the final dataset. 

 

3.4.3.3 Clustering 

Once the indicators that describe intrapersonal public transport usage variability had 

been estimated, the next step was to use them to identify classes of passengers with 

similar mobility profiles. K-means, a well-known hard clustering algorithm, was then 

implemented, aiming to partition the data set into a predefined number of clusters. This 

technique is considered one of the easiest and fastest clustering algorithms (Viallard 

et al., 2019) and has demonstrated a high performance due to its capacity to handle 

big data samples (Ma et al., 2013). As a result of the clustering stage, the optimum 

number of clusters 𝐾 was found, and a class membership was assigned to each 

cardholder depending on the impact of the COVID-19 pandemic on their public 

transport usage. Note that K-means is sensitive to the scale of the variables used 

because it relies on the Euclidian distance to measure the similarity between data 

points. Therefore, it is necessary to standardise the variables used to avoid those with 

larger magnitudes dominating the distance calculation and biasing the clustering 

assignment. Hence, the Z-score normalisation is implemented, a technique that allows 

obtaining a mean equal to 0 and a standard deviation equal to 1 for each of the 

features considered. 

 

3.4.4 Modelling 

Although revealing unseen mobility profiles based on grouping public transport 

passengers can give a valuable comprehension of the impact of the pandemic on a 

post-COVID-19 era, understanding the variables that underlie the adoption of a 

particular profile may drive meaningful insights. Thus, the class membership of each 

cardholder was studied using the categorical label assigned to each cardholder as a 

dependent variable and travel history, card type and aggregate demographic 

characteristics as a set of explanatory variables. Two models were used to 
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complement each other, a Gradient Boosting Decision Tree (GBDT) and a Logistic 

Regression Model (LRM). On the one hand, GBDT provides the relative importance 

of each explanatory variable used in the classification, capturing complex, non-linear 

relationships with no distributional assumptions. Here, higher values mean that the 

feature contributes more to reducing error in the classification. The relative importance 

score is a helpful tool for identifying the most influential features. It is frequently used 

to simplify the model, particularly by guiding the removal of low-importance features 

when the dimensionality of the datasets is high. Unfortunately, GBDT does not show 

how the variables affect the outcome. Therefore, an LRM is also estimated to 

overcome this limitation in the GBDT capabilities. LRMs provide an easy interpretation 

of the variables’ effects through their coefficient estimates, explicitly informing of the 

direction and magnitude of the variables’ effects. Nonetheless, LRMs can only 

measure direct, linear relationships between the explanatory variables and the 

outcome variable. Then, considering both models is considered the best option to 

provide a more comprehensive perspective into the relationship between features and 

outcome for this study. For the LRM, following equation (3-4), 𝑃𝑘 is the probability that 

a cardholder 𝑚 belongs to the cluster 𝑘, which depends on a linear function 𝑉𝑘 

(Equation (3-5)), where 𝛼, 𝛽, µ and 𝛾 are the regression coefficients and 𝑥 are a set of 

explanatory variables associated with each observation. If 𝐾+1 clusters are 

considered, only 𝐾 linear functions are estimated, indexed by 𝑘. Therefore, each 

probability associated to the cluster 𝑘 will have its own set of regression coefficients 

except from the base cluster, which probability is estimated as 1 − ∑ 𝑃𝑘
𝐾
𝑘=1 . 

𝑃𝑘,𝑚 =
𝑒𝑉𝑘,𝑚

1 + ∑ 𝑒𝑉𝑙,𝑚𝐾
𝑙=1

 𝑓𝑜𝑟 𝑙 = 1, … , 𝐾 (3-4) 

𝑉𝑘,𝑚 =  ∑ 𝛼𝑘,𝑟𝑥𝑚,𝑟
𝑇𝐻𝑃𝑃

𝑟

+ ∑ 𝛽𝑘,𝑠𝑥𝑚,𝑠
𝑇𝐻𝐿

𝑠

+ µ𝑘𝑥𝑚
𝐶𝑇 + ∑ 𝛾𝑘,𝑡𝑥𝑚,𝑡

𝐶𝑅𝐿

𝑡

 
(3-5) 

For both models, GBDT and LRM, the set of explanatory variables included travel 

history during pre-pandemic (THPP), travel history during the lockdown (THL), card 

type (CT) and aggregate demographic factors associated with the census area where 

each cardholder resides (CRL). A detailed description of each indicator is given in 

Table 3-1. 

Table 3-1. Explanatory variables used to model cardholders’ class membership. 

Dimension Variable Description 

Travel history 
lockdown (THL) 

Lockdown trips 
Total number of weekday trips associated to 
each card during the lockdown period. 

Travel history 
pre-pandemic 
(THPP) 

PP trips - 
weekdays 

Total number of weekday trips associated to 
each individual card during the pre-pandemic 
period. 
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Dimension Variable Description 

PP trips - 
weekend 

Total number of weekend trips associated to 
each individual card during the pre-pandemic 
period. 

PP days travelled 
weekdays 

Number of different weekdays with trips 
associated to each card during the pre-
pandemic period. 

PP avg. travel 
time per trip 

Average travel time per trip associated to each 
individual card during the pre-pandemic period. 

Demographic 
characteristics of 
the traveller (CT) 

Senior card 
Dummy. 1 if the card is a senior card, 0 if it is 
an adult card. 

Characteristics of 
the travellers’ 
residential  
location (CRL) 

Share - Women 
The ratio between the women population and 
the total population, per CDZ. 

Share - Age <13 
The ratio between the <13 years old population 
and the total population, per CDZ. 

Share - Age +60 
The ratio between the +60 years old population 
and the total population, per CDZ. 

Share - Foreign 
born 

The ratio between the foreign-born population 
and the total population, per CDZ. 

Share - Students 
The ratio between the population that declared 
to be students and the total population, per 
CDZ.  

Share - University 
educated 

The ratio between the population that have a 
university degree and the total population, per 
CDZ.  

Share - Workers 
The ratio between the population that declared 
do paid work and the total population, per CDZ.  

 

3.5 Results 

3.5.1 Public transport user profiles  

A summary of the characteristic values of the seven mobility indicators used to capture 

individuals’ public transport usage variability between the pre-pandemic and the 

reopening period is presented in Table 3-2. As was expected, an overall comparison 

between periods indicated a reduction in trip intensity (46% in the number of trips) and 

a significant adaptation in the temporal and spatial patterns (on average, only 40% of 

the cardholders’ spatial-temporal travel patterns of the pre-pandemic were observed 

in the reopening).  

Table 3-2. Mobility indicators considered to measure interpersonal variability of public 

transport (PT) usage change between the pre-pandemic and reopening period. 
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Indicator Description 
Pre-pandemic Reopening Variation 

Mean Median Mean Median Mean Median SD 

PT trip intensity 

PT total 
weekday 

trips 

Total PT trips in the 
ten weekday 

17.69 18.00 9.60 8.00 -8.09 -8.00 8.55 

Trip 
segments 

per trip 

Average PT trip 
segments per trip 

1.4 1.33 1.33 1.16 -0.07 0.00 0.4 

Day SI 
(DSI) 

Day-sequence 
similarity index 

- - - - 0.52 0.50 0.29 

PT mode use 

Bus usage 

Ratio between bus 
transactions and 

total PT 
transactions (%) 

50.77 51.28 48.24 50.00 -2.52 0.00 0.29 

PT temporal variability 

Time first 
transaction 

Average hour when 
the first transaction 
of the day is made 

9.73 9.09 11.11 10.53 1.38 0.75 3.64 

Temporal SI 
(TSI) 

Temporal similarity 
index 

- - - - 0.43 0.44 0.27 

PT spatial variability 

Location SI 
(LSI) 

Boarding location 
similarity index 

- - - - 0.40 0.40 0.28 

 

For clustering cardholders, the K-means algorithm was applied using as observations 

each of the cardholders of the final dataset and as features the seven indicators that 

describe the change of cardholders’ public transport usage. Therefore, under the K-

means approach, cardholders that have similar variations in their public transport 

usage during PP and reopening were grouped in the same class. The number of 

clusters was obtained using the silhouette score, which maximized its value when the 

number of clusters was equal to two (see Figure B-1). This criterion was also 

confirmed, considering the interpretability of the clustering results and the outcomes 

obtained in the membership modelling related to other numbers of clusters. Thereby, 

two well-defined classes of users were detected regarding their public transport usage 

recovery after the lockdown period. The algorithm classified 47% of the users as 

members of cluster 1 and 53% as members of cluster 2. The cluster profiling regarding 

the value distribution of the indicators used for each cardholder class is shown in 

Figure 3-6. Looking at these results, two apparent labels emerge to describe the 

clusters. Members of cluster 1 were those close to recovering (total or partially) their 
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pre-pandemic mobility patterns in the post-lockdown period; therefore, the name 

“returner” was given to them. By contrast, cluster 2 was made up of those users whose 

public transport usage was more highly impacted; thus, they received the label 

“adapters. The label ‘returner’ is justified by the substantial impact of the full lockdown 

located between the two periods used. This period in Santiago saw a 90% reduction 

in ridership, extensively affecting PT users’ mobility patterns. Therefore, most PT 

users were allowed to return to their ‘normal’ mobility patterns only after the lockdown 

was eased, a context where the label ‘returner’ comes from. Nonetheless, it is 

acknowledged that the referred cluster may incorporate specific groups of travellers 

that may not have changed their mobility patterns during the lockdown (e.g. some 

essential workers). For them, it is agreed that a label like ‘keepers’ could have been a 

more appropriate option. Nonetheless, due to the group size with this characteristic 

being substantially smaller than the ‘returners’, it is reasonable to select the last to 

better represent the behaviour of travellers in the cluster. 

The differences between the two classes were evident. The returners’ cluster showed 

a median for the variation of total trips of -2.4, which means that 50% of this group 

almost recovered their trip intensity. By contrast, the same measure was -14.5 trips 

for the adapters, exhibiting that 75% of their members had a reduction equal to or 

higher than 10 trips from the pre-pandemic period to the reopening. The distribution of 

DSI values showed that 75% of the members of returners recovered at least 50% of 

their trip sequence during the reopening, whilst 75% of the cardholders that belong to 

the adapters’ class showed a much greater change and reproduced less than 40% of 

their pre-pandemic trip sequence. The average time when the first transaction of a day 

is made also showed a remarkable difference between the two classes. Returners 

seem to have maintained the time of their first transaction, showing a median very 

close to zero variation. In the adapters’ cluster, on the other hand, 75% of their 

members exhibit a delay in their first trips carried out during the reopening compared 

with the pre-pandemic of at least 0.5 hours, with a median value of around three hours 

for the class. Regarding TSI and LSI, in the returners’ cluster, at least 50% of the 

cardholders had the temporal and location indices above 0.5, which means that during 

the reopening period, they carried out a minimum of 50% of their trips in the same time 

periods and locations that they did during the pre-pandemic. In comparison, 50% of 

the adapters reached only around 0.25 (25%) similarity with their pre-pandemic 

behaviour in terms of the period of the day when trips are made and boarding locations 

in the reopening period.  

It is important to note that returners, although belonging to the cluster that recovered 

most of their pre-pandemic public transport use during the reopening, still exhibited a 

non-negligible variation in their temporal and spatial trip distributions. We interpret this 
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result as an inherent impact of COVID-19 on people’s activities and time use that were 

still highly present during the post-lockdown period (Molloy et al., 2021). Bus usage 

did not display an evident dissimilarity between the two user segments if their medians 

were analysed.  

Furthermore, because the literature has exclusively reported the reduction in public 

transport demand during the pandemic, the expected findings were that all the clusters 

would show values for trip intensity below the pre-pandemic levels. However, returners 

illustrated a different situation. The results indicated that around 25% of their members 

carried out more trips during the reopening than the pre-pandemic. Also, around 50% 

of their members had an increase in the average number of trips per day and the 

number of trip segments per trip. Finally, although the clustering analysis indicated 

that the optimal number of clusters was two, it was evident that the actual number of 

different strategies that describe all passengers may be as many as the sample size. 

Therefore, the clusters found were the best aggregation of those adaptations, which 

inherently limit the visualization of all the strategies related to the changes in public 

transport usage but help with the interpretation of the main ones. 
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Figure 3-6. Cluster profiling by variation in mobility indicators. Red dashed lines 

indicate the condition of no change between the reopening and the pre-COVID-19 

period. 

 

3.5.2 Modelling user profiles 

This research adopted GBDT and LRM, intending to explore the link between 

explanatory variables such as travel history, card type and aggregate demographic 

characteristics with each cluster profile found in the previous section (returners and 

adapters). GBDT was implemented to provide information about the most important 

explanatory features associated with class membership. Each indicator mentioned in 

Table 3-1 was ranked depending on its relative importance. The relative importance 

is associated with the number of times a variable is chosen for splitting the sample 

over all trees. The GBDT model was fitted using a set of parameters, including the 

number of trees, the learning rate and the maximum tree depth. As the literature 
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suggests, a five-fold cross-validation method was implemented to find the final setting 

and to control overfitting. The final set of parameters included a shrinkage value of 

0.1, 100 trees and a depth equal to 5. On the other hand, the LRM was estimated 

using Equations (3-4) and (3-5), considering the binary nature of the labels found. A 

Nagelkerke R-value of 0.11 and an acceptable accuracy of 62.1% and 62.5% were 

obtained for the LRM and GBDT respectively, results in line with those achieved in 

previous works where comparable data and methods have been implemented (Almlöf 

et al., 2021). Specific outcomes of GBDT and LRM are presented in Table 3-3. 

Table 3-3. Modelling results, GBDT and binomial logistic regression. 

 GBDT Binomial logistic regression 

Variable Ranking 
Relative 

importance 
Odds 
value 

Coefficient 
Standard 

error 
Significance 

Intercept   2.233 0.803 0.193 <0.001 

Travel history lockdown (THL) 

Lockdown trips 1 49.4% 1.097 0.093 0.001 <0.001 

Travel history pre-pandemic (THPP) 

PP trips - weekdays 2 28.5% 0.956 -0.045 0.001 <0.001 

PP trips - weekend 5 4.0% 1.054 0.053 0.002 <0.001 

PP days travelled 
weekdays 

3 6.7% 
0.937 -0.065 0.003 <0.001 

PP avg. travel time per 
trip 

4 4.8% 
1.003 0.003 0.003 <0.001 

Demographic characteristics of the traveller (CT) 

Senior card (Adult ref.) 6 1.4% 1.474 0.388 0.021 <0.001 

Demographic characteristics of the travellers’ residential  location (CRL) 

Share - Women 8 1.1% 0.164 -1.804 0.338 <0.001 

Share - Age 00-13 13 0.4% - - - - 

Share - Age +61 11 0.5% 3.794 0.134 0.266 0.003 

Share - Foreign-born 9 0.8% 1.414 0.347 0.079 <0.001 

Share - Students 12 0.5% 5.488 1.703 0.297 0.003 

Share - University 
educated 

7 1.3% 
0.697 -0.361 0.050 <0.001 

Share - Workers 10 0.6% 2.497 0.915 0.236 0.002 

*The reference class (0) is the adapters’ cluster. “-” indicates a non-significant variable. 

First, GBDT identified three types of variables depending on their relative importance 

(RI). The first category, comprising around 80% of the total RI, includes the variables 

number of trips during lockdown (49.4%) and the number of trips on weekdays during 
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the pre-pandemic (28.5%). A second group are those characteristics that describe 

travel history during the pre-pandemic period, such as average travel time per trip 

(4.8%), weekdays travelled (6.7%), weekend trips (4.0%) and if the card was a senior 

one (1.4%). Finally, aggregate demographic factors were the attributes with the lowest 

RI scores. It is important to note that this does not imply that residential attributes are 

not relevant, but rather, as is usual in supervised machine learning, variables that 

result in the most significant set of partitions during the learning process end up 

showing more relevance (Victoriano et al., 2020). Thus, variables with low importance 

should be tested using complementary methods such as logistic regression for an 

appropriate interpretation. Moreover, we hypothesise that the low importance that 

GBDT assigned to the residential location characteristics is due to the aggregate 

nature of those variables, gaining more explanation from the variables with a 

cardholder-level variability. The findings regarding the focus of relative importance in 

two variables is in line with other studies where GBDT have been implemented with 

smart card data. In those studies, travel history variables frequently rank first, 

presenting one or two variables with the greatest relative importance (Tang et al., 

2020). 

In the LRM, the odds values are estimated as the exponential of the coefficients (see 

Table 3-3). A value of 1 indicates that a variable has no influence on the class 

membership, a value greater than one indicates an increase in the likelihood that an 

individual is in the returners’ cluster, and if the value is smaller than one means a 

negative effect. Thus, variables of travel history that increase the probability of being 

part of the returners’ class are the number of trips during the lockdown, weekend trips 

in the pre-pandemic and the average travel time per trip in the pre-pandemic. In 

particular, the odds value of trips during lockdown was 1.097, which indicates that as 

trips carried out in this period increase by one, the odds of a cardholder being in the 

returners’ cluster will increase by 9.7%. Namely, those who travelled in the most 

challenging period of the pandemic showed a higher probability of recovering their pre-

COVID travel patterns during the post-lockdown stage. The odds that a cardholder 

belongs to the returners’ cluster increases by 5.4% with each trip made on weekends 

during the pre-COVID period. It may imply that those who carried out more weekend 

trips (usually associated with non-mandatory activities) probably were more engaged 

with public transport or had fewer options to choose alternative modes. Moreover, the 

higher the number of observed pre-pandemic weekday trips, the easier it was for the 

users to reduce their public transport demand and, consequently, to belong to the 

adapter cluster. We believe that having a higher pre-pandemic trip intensity can be 

associated with more flexibility in terms of trip purpose, period of time and mode 

available, allowing passengers to develop a higher adaptation during the reopening. 
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Additionally, this result suggests that those with more “compact” mobility during 

weekdays in the pre-pandemic could recover more of their previous mobility patterns 

than those with higher trip intensity on weekdays. The last travel history indicator, 

average travel time per trip during the pre-pandemic, showed that the greater its 

magnitude, the more likely it is that a cardholder belongs to the returners’ cluster. The 

result helps to understand the characteristics of each user segment: higher travel 

times in Santiago are associated with the municipalities with the lowest income 

(Gschwender et al., 2016). 

Equity aspects were also present in our results. Related to the card type involved, the 

results indicated that if a senior cardholder was active during the reopening, there was  

more chance that the person belonged to the returners’ cluster than users with adult 

cards. This result may initially seem counterintuitive when compared with the existing 

literature that has found that seniors avoided public transport during the pandemic 

(Schaefer et al., 2021; Zhao & Gao, 2022). However, given that this study only 

considered cards that were active in both periods, we hypothesize that most of the 

senior cardholders that could have had the chance to stop using public transport made 

that decision at the early start of the pandemic and were already out of the PT system 

during the reopening. Therefore, we are observing the behaviour of those seniors who 

likely had no choice rather than to continue using the system during the reopening 

period, and in that context, the result reveals that if a senior cardholder was active 

during the reopening, they had more chance to have recovered their pre-pandemic 

public transport use. This finding is significant because it provides evidence of 

heterogeneous responses among the members of the same vulnerable group.  

Finally, the effect of the residential area characteristics assigned to cardholders was 

consistent with the presence of inequality in Santiago’s metropolitan area and similar 

to the one reported in other contexts of the Global South (Caicedo et al., 2021; Vallejo-

Borda et al., 2022). In terms of the effect of the home-area demographic factors, 

results indicated that the higher the share of worker and immigrant population in the 

areas where cardholders were assigned, the higher the probability they had returned 

to their pre-COVID public transport use patterns. In fact, as is mentioned by 

Abduljabbar et al. (2022), public transport is a key mode, especially for specific groups 

of the population, such as workers and non-nationals, who could face more constraints 

in deciding freely whether to travel or not. In contrast, cardholders whose residences 

were located in areas with a higher share of women and university-educated 

individuals were less likely to be in the returners’ cluster. Indeed, gender (female) and 

higher educational level/income have been associated widely with a higher reduction 

in public transport use (Abdullah et al., 2020). 
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3.6 Conclusion 

To our knowledge, the study reported here is the first study where a large passive data 

source collected during the pandemic of COVID-19 is used to analyse the recovery in 

public transport (PT) demand at a disaggregate level based on a multidimensional 

approach. This work complements existing literature by analysing the changes in the 

public transport usage of pre-pandemic users that continued travelling after a long-

term lockdown, using smart card data records from the public transport system of 

Santiago de Chile. The observed results are in reasonable agreement with previous 

work carried out in the Global South, where sociodemographic disparities have been 

linked with the change in public transport usage caused by the COVID-19 disease 

(Caicedo et al., 2021; Vallejo-Borda et al., 2022). However, this study extends existing 

empirical evidence, demonstrating that the public transport usage recovery among 

passengers that continued travelling after the lockdown was dissimilar. 

Two clusters of public transport users were identified using seven indicators that 

described the changes in passengers’ public transport usage between the pre-

pandemic and the reopening. One class of cardholders was named as returners as 

they showed a pronounced return to their pre-pandemic public transport use during 

the reopening, whilst the second class was labelled as adapters as they exhibited the 

greatest changes. Although the class labelled as returners showed a slight change in 

travel intensity and bus usage between the pre-pandemic and reopening periods, 

temporal and spatial public transport use patterns showed more strongly evident 

adaptations, which is in line with previous findings based on ridership analysis during 

the pandemic (Mützel & Scheiner, 2021). Finally, using disaggregate smart card data 

it was possible to detect that not all passengers reduced their public transport trip 

intensity during the reopening. In fact, as many as 25% of the members of the 

returners’ cluster showed an increase in the number of trips during weekdays. This 

finding is unexpected, and challenges existing literature as, to the best of our 

knowledge, no evidence of trip intensity increase during the reopening stage that 

followed the first lockdowns in 2020 has been reported. We speculate that those 

cardholders could be users that shifted to a type of employment demanding higher 

mobility due to the pandemic restrictions, likely related to providing services at 

customers’ locations. 

The influence of both pre-pandemic and lockdown travel history, demographic 

characteristics at the residential level and card type were considered as potential 

variables to explain the membership of each cardholder to each mobility profile using 

GBDT and logistic regression. The pre-pandemic trip intensity showed a 

heterogeneous impact on the change in public transport usage between the reopening 
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and pre-pandemic periods. Cardholders that carried out more trips on weekdays 

during the pre-pandemic showed a greater likelihood of belonging to the adapters’ 

class. In contrast, those who made more pre-pandemic weekend trips were most likely 

to have a returner profile. Public transport usage during lockdown was also 

considered, showing that those who continued travelling during the lockdown exhibited 

a higher probability of belonging to the returners’ cluster. 

The modelling results for the area-level socio-demographic can be interpreted from 

two different perspectives. Regarding prediction performance, the GBDT results that 

report low relative importance scores for these variables indicate that area-level socio-

demographic data have substantially lower prediction capabilities than the rest of the 

features tested. This result suggests that from a perspective that only focuses on 

prediction, it would be possible to reduce the dimensionality of the dataset by removing 

area-level socio-demographic data (among other variables) from the model without 

significantly affecting its prediction capabilities. From an inference and empirical point 

of view, however, the results of the LRM clarify that area-level socio-demographics 

play a key role in people's mobility patterns. In fact, LRM’s modelling results found 

statistically significant effects for these variables, suggesting that their consideration 

is relevant to better understand PT users’ mobility adaptations. 

Using that evidence, our findings confirmed the relationship between the spatial 

distribution of sociodemographic characteristics across the city and the changes in PT 

use during the first stage of the pandemic. As Figure 3-1 depicted, the highly-educated 

population, the presence of immigrants and the population's age were characteristics 

greatly concentrated in specific areas of the city. This inequality issue was also 

observed on the PT level of service. Indeed, longer PT travel times were related to a 

lower PT use adaptation. Longer PT travel times in Santiago have been historically 

associated with commuting trips from the city periphery to its centre-northeast area, 

where the number of services is higher and the users are more affluent. In this regard, 

the lowest capacity of these users to adapt their PT use could be related to the 

mandatory need for in-person work as soon as the lockdown finished and, secondly, 

by their strong dependency on specific PT services. This last element would have 

made them extremely vulnerable to service changes during the opening, which 

certainly was mitigated by PT authorities' decision to keep PT services and 

frequencies as close as possible to the pre-pandemic. Therefore, to reduce urban 

inequalities when future disruptions such as a new pandemic happens, particular 

emphasis in policy development should be placed on the specific needs of vulnerable 

and PT-dependent sectors of the population. 
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Although smart card data is a rich source to explore travel behaviour, individual 

demographic information of each passenger is typically missing. In fact, individual 

demographic characteristics, the possibility of teleworking, and an assessment of 

travellers’ risk perception toward public transport could have helped to give a deeper 

understanding of the profiles found. In our results, the hidden effect of those variables 

may be represented indirectly by the travel history variables. Therefore, although this 

work demonstrates the advantages of exploring individual travel behaviour of public 

transport users, it does not replace the richness provided by traditional surveys in 

terms of individual explanatory variables. If suitable data is available in future, 

combining such a survey with passive data will be an interesting direction for future 

research. 

Our finding allows us to conceive three main implications, which expand the current 

understanding of the changes of COVID-19 on public transport demand and give 

insights into the post-pandemic scenario but also to eventual new pandemics. Firstly, 

given that temporal and spatial patterns of public transport passengers have changed 

considerably, efforts to characterise these adaptations should be made continuously 

during the pandemic and even in the post-pandemic to propose and adjust services 

where required. Secondly, as equity disparities are related to a higher recovery of the 

pre-pandemic public transport use during the reopening, measures that provide 

benefits to captive cardholders should be considered to support that recovery but also, 

to mitigate the greater post-lockdown need for mobility found for a considerable 

proportion of cardholders. For example, as a complement to the pay-as-you-go 

scheme in Santiago’s public transport, travel passes could be a policy in that direction.  

Finally, our results imply that as an aftermath of the pandemic, public transport 

systems may experience severe difficulties in recovering their pre-pandemic ridership 

during the post-COVID-19 period. In fact, even though the return of pre-pandemic 

users to public transport modes in the reopening, a substantial proportion of them 

carried out fewer trips than the pre-COVID-19. This suggests that government policies 

to ensure the sustainability of public transport will be needed for a long-term period. 

This support will ease the pressure on PT operators to reduce PT supply or increase 

fares, which may only worsen given the public transport situation. Although this 

recommendation is theoretically possible in many government-supported public 

transport systems worldwide, it is a huge challenge for the Global South, where public 

transport is less regulated, and often there is no direct subsidy.  
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Chapter 4  

Modelling trip scheduling decisions of bus commuters amid 

disruptive events using smart card data 

 

Abstract 

Departure time models are key tools for understanding time-varying travel demand. 

Nonetheless, there is limited research focusing on the analysis of trip scheduling 

decisions in the context of public transport users. In particular, research on how public 

transport users adapt departure times when the activity and travel landscape are 

altered as a consequence of disruptive events (e.g. pandemics, social unrest), is yet 

to be conducted.  Smart card data, which passively records time-stamped departure 

locations of public transport users, offers the opportunity to investigate such shifts in 

detail but is yet to be utilised. The paper aims to address these two gaps by using 

smart card data to investigate the trip scheduling decisions of bus commuters amid 

disruptive events.  This goal is achieved by estimating departure time choice models 

(DTCMs) for characteristic episodes between 2019 and 2022 for Santiago's bus 

system, a city affected to different degrees by two types of disruptive events within this 

timeframe: the COVID-19 pandemic and social unrest. The paper addresses the 

methodological challenges of calculating schedule delay with smart card data by 

estimating preferred arrival times as a random variable within a mixed multinomial logit 

model. The approach is validated by obtaining a valuation of the trade-off between 

travel time and schedule delay (TVSD) in the range of previously reported values. The 

model results highlight the existence of multi-temporal differences in the arrival time 

preferences of bus commuters, as well as in their TVSD amid disruptive events. It was 

found that bus commuters were less willing to accept an increase in their travel time 

to reduce their schedule delay during disruptive episodes. The heterogeneity between 

bus travellers was also explored: recurrent bus commuters exhibited higher TVSDs 

than occasional commuters. The outcome of this study supports using smart card data 

as a feasible source to investigate how public transport passengers allocate their trip 

scheduling both during normal periods and amid external disruptions. 

 

Keywords: departure time choice, schedule delay, public transport, disruption, 

resilience, transit, travel behaviour.  
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4.1 Introduction 

Departure time choice models (DTCMs) are key tools for analysing the trip scheduling 

decisions of commuters (Börjesson, 2008; Small, 1982). The modelling of trip 

scheduling, historically addressed by estimating departure time choice models 

(DTCMs), has been primarily employed in car commuting with only a few applications 

that have included public transport  (PT) commuting (Peer et al., 2013). The literature 

has also paid minimal consideration to revealing tangible and measured differences in 

how travellers trade-off attributes such as schedule delay and travel time on their trip 

scheduling decisions amid disruptive events (Singh et al., 2023). This is particularly 

important to study, as temporal travel behaviours can be severely affected by 

disruptive events, such as pandemics, natural disasters and social unrest (Bergantino 

et al., 2024; Li et al., 2024; Liu et al., 2023; Lizana et al., 2023). Nonetheless, so far, 

the literature has almost exclusively focussed on the examination of those events in 

the context of trip reduction and mode shift, giving less attention to other potential 

adaptations, such as those related to changes in passengers’ departure time 

preferences (Burris et al., 2023; Ngo and Martin, 2023; Shires et al., 2018; Victoriano-

Habit and El-Geneidy, 2024). Therefore, an analysis of the trip scheduling decisions 

for passengers considering a multi-temporal perspective, which comprises a 

comprehensive sequence of episodes that cover the time before, during, and after 

disruptions, is currently missing in the literature. This limitation is largely due to the 

difficulty in retrieving the necessary attributes for estimating suitable models and in 

harnessing passive data sources (such as smart card data) that allow the analyst to 

observe departure times over multiple periods. Consequently, the hypotheses 

proposed for this study are: 

H1. Smart card data is a feasible data source for estimating DTCMs for PT 

users. 

H2. Distinctive situational contexts related to disruptive events have associated 

different valuations of travel time and schedule delay. 

H3. Different PT user segments have different trip-timing preferences. 

H4. A long-term disruptive event has enduring effects on trip scheduling 

decisions among PT users. 

The examination on the trip scheduling decisions amid disruptive events is conducted 

in this study using trip records of bus passengers for several episodes collected by 

smart cards in Santiago’s public transport system. This case study is particularly 

interesting as the city experienced two different types of large-scale disruptive events 

between 2019 and 2022: massive social protests and the COVID-19 pandemic. The 
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study contributes to the existing literature on the analysis of public transport time-

varying demand in two ways: a) providing the first implementation of smart card data 

for the estimation of DTMCs and b) providing evidence of multi-temporal differences 

in the trip scheduling decisions among bus commuters depending on situational 

contexts. 

The structure of the paper is as follows: Section 4.2 offers background information on 

DTCMs. Section 4.3 provides details about the data utilized in this study. Next, Section 

4.4 outlines the modelling framework. In Section 4.5, the methodology employed is 

discussed, while Section 4.6 presents the modelling results. Finally, Section 4.7 

summarizes the key contributions of this work and outlines directions for future 

research. 

4.2 Literature review 

4.2.1 Concepts of departure time choice models 

Departure time choice models (DTCMs) are key tools for analysing the trip-scheduling 

process of commuters (Börjesson, 2008; Small, 1982). These models aim to capture 

preferences for a specific time of the day for individuals to start their out-of-home 

activities (Habib, 2021). As each out-of-home activity involves a change of location, 

the departure time of the out-of-home activity is, by definition, the selected start time 

of the trip to the destination. In DTCMs, commuters choose their departure time by 

trying to maximise their satisfaction/utility based on the trade-off of relevant attributes 

involved in the decision. In this regard, travel time and schedule delay have been the 

attributes most frequently studied (Arellana et al., 2012; Thorhauge et al., 2016). The 

concept of schedule delay refers to the disutility caused by being early or late, defined 

with respect to a preferred arrival time (Tirachini et al., 2014). A traditional definition of 

schedule delay is, then, the time shift between the actual arrival time and the preferred 

arrival time (PAT). A commuter’s PAT is related to their work start time and may be 

obtained by explicitly asking the participants about it in specially-designed travel 

surveys (Börjesson, 2008; Peer et al., 2013). Considering the traditional approach 

proposed by Small (1982), where only travel time and schedule delay are considered 

(as monetary cost is considered time-invariant in many cases), the observable utility 

𝑉𝑠,𝑛 to departure in a time-interval alternative 𝑠 for a traveller 𝑛 can be expressed as: 

𝑉𝑠,𝑛 = 𝐴𝑆𝐶𝑠 + 𝛽𝑇𝑇𝑇𝑇𝑠,𝑛 + 𝛽𝑆𝐷𝐸𝑆𝐷𝐸𝑠,𝑛 + 𝛽𝑆𝐷𝐿𝑆𝐷𝐿𝑠,𝑛 (4-1) 

where 𝑇𝑇𝑠,𝑛 is the travel time associated with choosing to depart within interval 𝑠 for 

the individual 𝑛 and 𝐴𝑆𝐶𝑠 can be interpreted as the intrinsic attractiveness of each time 
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interval 𝑠 when the other variables are made equal. Thus, the early and late schedule 

delays (𝑆𝐷𝐸 and 𝑆𝐷𝐿, respectively) are defined as: 

𝑆𝐷𝐸𝑠,𝑛 = 𝑚𝑎𝑥(0, 𝑃𝐴𝑇𝑛 − 𝐴𝑇𝑠,𝑛) (4-2) 

𝑆𝐷𝐿𝑠,𝑛 = 𝑚𝑎𝑥(𝐴𝑇𝑠,𝑛 − 𝑃𝐴𝑇𝑛, 0) (4-3) 

Here, 𝑃𝐴𝑇𝑛 is the preferred arrival time at work for commuter 𝑛 and 𝐴𝑇𝑠,𝑛 is the arrival 

time if commuter 𝑛 chooses to depart in the time-interval 𝑠. 𝐴𝑇𝑠,𝑛 can be obtained by 

combining the midpoint of the departure time interval 𝑠 and 𝑇𝑇𝑠,𝑛. Arriving earlier than 

the PAT (𝑆𝐷𝐸 > 0 and 𝑆𝐷𝐿 = 0) may be interpreted as generating a dissatisfaction 

associated with the undesirable use of personal time, while arriving later (𝑆𝐷𝐿 > 0  and 

𝑆𝐷𝐸 = 0) could be understood to account for potential penalties imposed on the 

commuter due to dissatisfaction of their work-place (e.g. a warning/reduction in the 

salary) (Watling, 2006). The closer 𝐴𝑇𝑠,𝑛 is to 𝑃𝐴𝑇𝑛, the lower the amount of schedule 

delay. However, in day-to-day travel settings, travel times are usually higher when 

schedule delay is lower, creating the trade-off that this paper studies. That trade-off 

can be calculated by comparing the marginal utilities of the observable utility of the 

departure time alternatives and has received the name of travel time valuation of 

schedule delay (TVSD) (Zannat et al., 2021). A typical interpretation of the TVSD is 

the amount of additional travel time a traveller is willing to accept to reduce one-time 

unit of schedule delay. The higher the TVSD, the higher the probability a commuter 

decides to travel when travel time is higher, in order to arrive closer to their preferred 

arrival time. 

 

4.3 The challenge of retrieving attributes for the estimation of 

DTCMs 

Unfortunately, the specific attributes required to implement DTCMs are seldom 

available in standard transport data sources. PATs are only available in studies 

specifically focussed on DTCMs by explicitly asking travellers about it. To deduce 

PATs when this information is not available, several methodologies have been 

proposed. Kristoffersson and Engelson (2016), for example, proposed imputing PATs 

by employing reverse engineering based on previously estimated preferences for 

departure time. Koppelman et al. (2008) proposed using the observed departure time 

distribution as an external component during the modelling. On the other hand, 

Bwambale et al. (2019) argued that such an approach oversimplifies the problem. 

Thus, they developed a methodology to estimate the trip-timing preferences of 

commuters as a random variable whose parameters can be obtained within the DTCM. 
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Moreover, even when PATs are available in revealed preference (RP) data, there 

remains the problem of estimating travel times for the unchosen time-interval 

alternatives, which are typically not recorded in RP data. In this context, the use of 

stated preference (SP) data has been seen as a more practical alternative to RP data, 

being more commonly used for DTCMs (Arellana et al., 2012; Lizana et al., 2021). The 

SP approach relies on  hypothetical scenarios to set the key variables needed for the 

estimation of DTCMs (Arellana et al., 2012), overcoming the limitations of working with 

RP data. Nonetheless, despite this advantage, it is well known that valuations 

calculated by SP experiments are susceptible to hypothetical bias and behavioural 

incongruence due to the misperception of respondents of attributes and their levels 

(Hess et al., 2005). In this regard, joint RP-SP data have been considered a more 

reliable alternative for DTCMs (Börjesson, 2008). 

 

4.3.1 DTCMs for PT commuting 

So far, little empirical evidence exists for investigating departure time choices for PT 

commuting (Habib, 2021). In fact, since their early development in the eighties, 

literature related to DTCMs has focussed primarily on the analysis of trip scheduling 

of car commuters (Börjesson, 2008; Small, 1982; Thorhauge et al., 2016; Zannat et 

al., 2021). In the few studies where public transport has not been explicitly excluded 

from the analysis, either schedule delay has not been considered, and therefore, only 

generic times of the day (e.g. off-peak/peak) have been specified (Ding et al., 2015; 

Hossain et al., 2020), or if it has been considered, only a generic TVSD has been 

estimated regardless of the mode. An exception where a DTCM has been estimated 

exclusively to study PT commuting, including schedule delay, is the work of Peer et al. 

(2016). A summary of the studies found where PT trip timing choices have been 

studied (alone or jointly with other modes) considering the inclusion of schedule delay 

and travel time in DTCMs is presented in Table 4-1. It is worth noticing that all these 

studies relied on survey data to estimate DTCMs (mostly SP surveys). 
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Table 4-1. Summary of studies and their valuations in the analysis of departure time 
choices for PT commuting. 

Authors 
Location/ 

Data 
Goal 

Mode/ 

Variables 

Day 
period 

Method/ 

interval 
Valuations 

Lizana et 
al. (2021) 

Santiago, 
Chile/ 

RP and SP 
survey 

Estimate 
DTCMs 

using joint 
RP/SP data 

Public 
transport & 

private modes/ 
Cost, TT, TF, 

NT, SD 

05:00-
14:00 

MNL, 

NL/ 

15, 30 & 

60 min 

TVSDRP,ME: 1.1-2.4 

TVSDRP,ML,:1.9-3.2 

TVSDSP: 0.7 

VOT: 5.9-6.3 
USD/h* 

Peer et 
al. (2016) 

Netherlands/ 
RP survey 
(PDT) & 

GPS from 
app 

Study the 
effect of a 
monetary 
reward in 

peak-
avoidance 

Train/ 

Reward, TT, 
SD, NT, CR 

05:30-
10:30/ 

15:00-
19:30 

MNL, 

LCCM/ 

N.A. 

TVSDRP,ME: 0.43 

TVSDRP,ML: 0.36 

VOT: 15.5 €/h 

Aziz and 
Ukkusuri 
(2014) 

Indianapolis, 
U.S./ 

SP survey 

Exploring the 
trade-off 
between 

travel time 
and CO2 

Not specified/ 

TT, SD, 
greenhouse 
gas emission 

Morning 
peak 

period 

ML/ 

N.A. 
TVSD: 0.72 

Arellana 
et al. 

(2012) 

Santiago, 
Chile/ RP 
and SP 
survey 

Generate a 
survey 

design to 
estimate 
DTCMs 

Public 
transport & 

private modes/ 

Cost, TF, TT, 
TVV, SD 

06:30-
10:30 

MNL/ 

30 min 

TVSDME: 1.11 

TVSDML: 1.48 

VOT: 3.1 USD/h* 

TT: travel time, TF: Transfer time, TTV: travel time variability, SD: schedule delay, NT: number 

of transfers, CR: crowdedness. MLN: multinomial logit, NL: Nested logit, LCCM: Latent class 

choice model. TVSD: time valuation schedule delay, ME: morning earliness, ML: morning 

lateness, VOT: Value of travel time savings, N.A.: not applicable. *1 USD = 500CL$. 

 

4.3.2 Disruptive events and their effect on trip timing decisions 

Disruptive events involve a wide range of events that cause complex behavioural 

responses among PT users (Noureldin and Diab, 2024; Parkes et al., 2016), from 

incidents related to temporal interruptions in the operation of certain PT modes (e.g. 

weather conditions, human-associated incidents, strikes, etc.) (Diab and Shalaby, 

2019; Van Exel and Rietveld, 2001) to events that, for their significance, cause long-

lasting effects on PT users’ travel decisions (e.g. natural disasters, pandemics, social 

movements, terrorist attacks, etc.) (Bernal et al., 2016; Chan et al., 2021; Eltved et al., 

2021; He et al., 2024; Nazem et al., 2019; Prager et al., 2011). Despite it has been 

recognised that the impact of disruptive events on travel behaviour involves a complex 

set of possible adaptations such as reducing trip number, shifting mode, re-timing, re-



126 
 

routing, and re-scheduling, among others (Marsden et al., 2020), studies have mainly 

focussed on the first two. In fact, for PT commuting, the examination of passengers’ 

adaptation during a disruption has been exclusively conducted on PT trip reduction 

(Liu et al., 2023; Victoriano-Habit and El-Geneidy, 2024; Ziedan et al., 2023) and the 

shift from PT to other modes (Shires et al., 2018; Vallejo-Borda et al., 2022). Only a 

few pieces of evidence so far provide some insights into the changes in trip-timing 

decisions for the long term. Singh et al. (2023) found that during the COVID-19 

pandemic, the disutility of trip-timing attributes was significantly conditioned by 

hypothetical vaccination rates presented in their experiment, while Li et al. (2024) 

illustrated the temporal fluctuation in ridership in Seoul in key periods of the day 

between 2020 and 2023. Therefore, additional empirical evidence that sheds light on 

the changes in the sensitivities to schedule delay (primarily related to the 

establishment of more flexible working arrangements adopted by businesses during a 

disruptive event (Wöhner, 2022)) and its trade-off with travel time is needed, 

particularly when the system of activity have been severely impacted. Moreover, the 

role of distinctive commuter segments on those potential changes is also necessary 

to investigate as the literature has recognised its relevance in trip-timing decisions 

(Parkes et al., 2016; Zannat et al., 2021). An analysis like this must rely on revealed 

disaggregated observations of the departure time choices of PT users during multi-

temporal episodes, an approach that remains limited due to data limitations. 

 

4.3.3 Smart card data for PT demand analysis 

Passive data sources have been successfully employed to analyse PT systems, 

including smart card data (Pelletier et al., 2011), mobility indices (Lizana et al., 2024) 

and automatic vehicle location of buses (Zannat and Choudhury, 2019). In particular, 

smart cards used to collect fares in PT systems have become a reliable and well-

established data source for analysing PT demand (Cats, 2023; Pelletier et al., 2011). 

One of the main advantages of smart card data is the possibility of continuously 

collecting transactions across time and therefore, to gain insight into particular 

episodes in the past for research purposes. Smart card data has been employed in a 

wide range of PT demand analysis topics, including OD matrix estimation, route choice 

modelling, travel pattern identification, and clustering analysis of passengers, among 

others (Cats, 2023). Such data has also been used to quantify the effect of external 

disruptions on PT demand patterns (Almlof et al., 2021; Li et al., 2024; Lizana et al., 

2023). Despite all these applications, to the best of the authors’ knowledge, there has 

not been an attempt to harness smart card data to investigate trip-timing choices using 

DTCMs for PT commuting. 



127 
 

4.4 Data 

4.4.1 Case study  

Santiago, Chile’s capital, was selected as the case study for this research. Santiago 

has a population of around 7 million inhabitants, and its public transport comprises 

more than 6.500 buses and seven subway lines. The Santiago’s PT system records 

more than 25 million weekly transactions with a similar share between buses and the 

metro. Santiago is particularly suitable for the aims of this study as two disruptive 

events hit the city between 2019 and 2022 that affected the activity system: massive 

social protests (2019) and the COVID-19 pandemic (2020-2021). Additionally, the 

selection of this case study offers the unique possibility to benchmark the results of 

this study against existing SP-RP studies available for this city, a possibility rarely 

available in other potential case study cities due to the lack of detailed data related to 

PT commuting. In Santiago’s public transport, a smart card called bip! is 

the primary payment method, allowing the collection of trip data such as the specific 

time-stamp of the departure time of each trip, the ID of the card and the location where 

the validation was made. Unfortunately, cards are not personalized, facilitating a quick 

rotation of the ID cards (Lizana et al., 2023). This means that in an analysis of periods 

longer than one year, only a reduced number of the original ID cards remained in the 

system as new ones have replaced them. In addition, like many PT systems 

worldwide, Santiago’s public transport only requires users to tap in when boarding. As 

such, it is necessary to impute destinations to estimate travel times. This process is 

conducted by Santiago’s transport authority using the methodology developed by 

Munizaga and Palma (2012). Additionally to the smart card records, millions of actual 

time stamps generated by on-board GPS devices on buses are available for this study. 

This information enables a detailed and disaggregated calculation of the actual in-

vehicle travel times for each bus service origin-destination stop pair within the network, 

a crucial aspect for modelling departure time choices. 

 

4.4.2 Identification of characteristic episodes 

Characteristic episodes were selected to investigate the potential existence of different 

trip-timing preferences and valuations amid disruptive events among Santiago’s bus 

commuters. Events that involved a generalised disruption with lasting effects caused 

by an alteration in the situational context of the city were targeted. With that aim, 

ridership levels between 2019 and 2022, a time frame of major disruptions in travel 

demand for Santiago’s public transport (see Figure 4-1), were analysed. In this time 
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frame, characteristic episodes that involved considerable changes in bus ridership 

levels and episodes related to more stable conditions were identified and selected for 

the estimation of DTCMs for posterior comparison. 

 

Figure 4-1 Weekly ridership for Santiago’s bus system between Jan 2019 and Dec 

2022. Selected episodes are highlighted in colours. Blue: before-disruptions (EP1), 

yellow: post-social unrest (EP2), red: post-COVID-19 outbreak (EP3), and green: 

after-disruptions (EP4). (Further details of each episode are given in Table 4-2). 

Four episodes were selected to investigate the trip-scheduling processes of active bus 

commuters in the distinctive episodes. The first episode in April 2019 characterises a 

baseline context, i.e., a moment without any disruptive event influencing the decision 

to choose departure time of bus commuters (EP1). The second episode in early March 

2020 (EP2) depicts bus commuters’ travel behaviour after a social unrest. Massive 

social protests started on 14 October 2019 in Santiago and lasted until the end of the 

year. During this period, interruptions to private and public services and the transport 

supply were frequent. Looting occurred at shops and businesses in the city, and in 

many places, public infrastructure, including metro stations, buses and stops, was 

severely damaged. Early March was selected to represent this period because this 

was the nearest date that was not affected by the summer season (which runs 

traditionally between late December and February in the south hemisphere) at the time 

that offers more stable conditions in terms of the situational context in the city (that 

include the re-establishment of PT services and the absence of new demonstrations). 
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The third episode characterised the post-COVID-19 outbreak. Specifically, a re-

opening period in Santiago occurred in November 2020 (EP3) after an extended 

lockdown imposed by the authorities. In this episode, even though the lockdown was 

entirely removed, other measures were still in place, such as a curfew, limited opening 

hours for commercial activities, restrictions on social gatherings and guidelines for 

social distancing. Public and private companies around this period adopted working 

from home or flexible in-office working hours. EP3 is, by far, the episode hit by the 

major contextual disruptions; as such, it is expected that substantial differences may 

be observed between the trip preferences and valuations among the travellers during 

this period, in comparison with other episodes. Eventually, restrictive measures started 

to be lifted in October 2021 as the vaccination programme achieved higher penetration 

levels. At this time, the curfew was removed, and the operating hours of business 

increased. Therefore, a final episode in April 2022 (EP4), two years after EP2 and 

EP3, was also chosen to reveal bus commuters’ trip-timing preferences in ‘after-

disruption’ settings. The specific periods considered to represent each episode are 

presented in Table 4-2. One week of disaggregated smart card data records was 

available for the episodes. The exception was the re-opening episode (EP3), which 

was characterised for two weeks to better represent the bus users’ travel behaviour 

amid a much-disrupted context. 

 

Table 4-2. Study periods considered in this study for the characterisation of each 

episode. 

Episode Abbreviation Period 

Before-disruptions EP1 08-12 Apr 2019 

Post social unrest EP2 07-11 Mar 2020 

Post-COVID-19 outbreak EP3 09-13 and 10-13 Nov 2020 

After-disruptions EP4 04-08 Apr 2022 

 

4.5 Modelling framework 

4.5.1 Modelling definition 

Based on the random utility framework, a departure time choice model (DTCM) 

considers that a traveller 𝑛 chooses the time-interval alternative 𝑠 that maximizes their 

utility. The utility 𝑈𝑠,𝑛 is defined as: 

𝑈𝑠,𝑛 = 𝑉(𝑋𝑠,𝑛, 𝑍𝑛, 𝛽) + 𝜀𝑠,𝑛 (4-4) 
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where 𝑉𝑠,𝑛 is the observable utility and 𝜀𝑠,𝑛 is a random error component. 𝑉𝑠,𝑛 depends 

on 𝑋𝑠,𝑛 which is the vector of attributes for each time alternative 𝑠 for the individual 𝑛, 

𝑍𝑛 is a vector of personal and travel characteristics of a person 𝑛, and 𝛽 is the 

parameter vector that accounts for the marginal utility of each variable. The observable 

utility 𝑉𝑠,𝑛 initially considered for this study was that given by Equation (4-1). However, 

in that specification, the amount of earliness or lateness associated with each 

departure time alternative requires knowledge of the preferred arrival time (PAT), 

which is not available in smart card data. To overcome this data limitation the approach 

proposed by Bwambale et al. (2019) was instead adapted for this work, as it offers a 

more practical approach compared with other existing methods. 

Following that approach, it is reasonable to assume that the PAT varies randomly 

across travellers following a certain statistical distribution. This is a sound assumption, 

particularly for the morning period, where most commuters concentrate their arrival 

preferences around a similar range related to the official work start-times. The 

distribution parameters of the random variable (i.e. mean and standard deviation) 

accounts for the heterogeneity of trip timing preferences among commuters and can 

be obtained during the model estimation using mixed multinomial logit models. 

Unfortunately, in this approach, the simultaneous estimation of earliness (SDE) and 

lateness (SDL) presents serious estimation identification issues. This is because the 

existence of earliness or lateness (mutually exclusive) requires the PAT, which is also 

being calculated simultaneously. Bwambale et al. (2019) propose to use instead a 

schedule delay function that is behaviourally intuitive and continuously differentiable. 

The parabolic function fulfils such conditions: it has a minimum where the delay is 

zero, an indifference range around the PAT, which reflects a small disutility with delays 

in the vicinity of the PAT and increases when the delay goes further away from the 

PAT. Nonetheless, it assumes that the marginal utilities of earliness and lateness are 

symmetric. Then the observable utility function that allows the estimation of 𝑃𝐴�̃�𝑛 is 

given by: 

𝑉𝑠,𝑛 = 𝐴𝑆𝐶𝑠 + 𝛽𝑇𝑇𝑇𝑇𝑠,𝑛 + 𝛽𝑆𝐷(𝑃𝐴�̃�𝑛 − 𝐴𝑇𝑠,𝑛)2 + ⋯ + (4-5) 

where 𝑃𝐴�̃�𝑛 is a random variable that refers to the preferred arrival time of commuter 

𝑛, 𝑇𝑇𝑠,𝑛 are the travel times and 𝐴𝑇𝑠,𝑛 is the expected arrival time if the commuter 

decides to depart in the time-interval 𝑠, which also depends on the travel time of that 

time-interval alternative. 𝛽𝑆𝐷 and 𝛽𝑇𝑇 are parameters to be estimated and represent 

the sensitivity to schedule delay and travel times. The +…+ notation stands for other 

time-variant attributes that may be relevant in the trip scheduling decisions, such as 

in-vehicle occupancy, fare, etc.  
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Note also that Equation (4-5) differs from the original specification proposed by 

Bwambale et al. (2019) in several aspects: a) it explicitly incorporates the influence of 

travel time in the estimation of schedule delay, and b) it assumes that the arrival 

preferences (rather than departure time preferences) vary randomly across 

commuters, which we believe is a more realistic assumption as the departure times 

are also influenced by the travel times/travelled distances. Moreover, considering the 

nature of smart card data, in our case it is only possible to utilise in-vehicle travel times 

(IVT) and the preferred arrival times at the destination stop (PAT-Stop), because travel 

times are estimated between stop pairs instead of door-to-door as is the case for car 

commuting. To highlight this, the term 𝐼𝑉𝑇𝑠,𝑛 and 𝑃𝐴𝑇�̃�𝑛 are employed respectively. 

Finally, it should be noted that a value for 𝐴𝑇𝑠,𝑛 can be estimated from 𝐼𝑉𝑇𝑠,𝑛 and the 

departure time interval s by using the midpoint of the interval, 𝐷𝑇𝑠. Then, the 

observable utility function employed in this study is: 

𝑉𝑠,𝑛 = 𝐴𝑆𝐶𝑠 + 𝛽𝐼𝑉𝑇𝐼𝑉𝑇𝑠,𝑛 + 𝛽𝑆𝐷(𝑃𝐴𝑇�̃�𝑛 − (𝐷𝑇𝑠 + 𝐼𝑉𝑇𝑠,𝑛))2 + ⋯ + (4-6) 

 

4.5.2 Model estimation 

The logit probability that a commuter n chooses to travel in the departure time interval  

(𝐿𝑠,𝑛), conditional on 𝛽 and 𝑃𝐴𝑇�̃�𝑛, can be expressed as: 

𝐿𝑠,𝑛(𝛽, 𝑃𝐴𝑇�̃�𝑛) =
𝑒𝐴𝑆𝐶𝑠+𝛽𝐼𝑉𝑇𝐼𝑉𝑇𝑠,𝑛+𝛽𝑆𝐷(𝑃𝐴𝑇�̃�𝑛−(𝐷𝑇𝑠+𝐼𝑉𝑇𝑠,𝑛))2+⋯+

∑ 𝑒𝐴𝑆𝐶𝑗+𝛽𝐼𝑉𝑇𝐼𝑉𝑇𝑗,𝑛+𝛽𝑆𝐷(𝑃𝐴𝑇�̃�𝑛−(𝐷𝑇𝑗+𝐼𝑉𝑇𝑗,𝑛))2+⋯+
𝑗∈𝐶 )

 (4-7) 

where 𝐶 is the full choice set that consist of  𝑀 time intervals of 𝐼 minutes each. 

However, as 𝑃𝐴𝑇�̃�𝑛 is not observed, the distribution parameters of 𝑃𝐴𝑇�̃�𝑛 are 

unknown. Hence, the conditional probabilities are integrated over 𝑃𝐴𝑇�̃�𝑛 according to 

a mixing distribution defined as 𝑓(𝑃𝐴𝑇�̃�𝑛|𝜃), where 𝜃 is the vector of parameters of 

the density distribution (that includes the mean μ and standard deviation σ). The PAT-

Stop distribution parameters are then estimated alongside the rest of the model 

parameters by specifying a mixed logit probability and then maximising the simulated 

log-likelihood. Thus, the mixed logit probability 𝑃𝑛,𝑠 is given by: 

𝑃𝑠,𝑛(𝛽) =  ∫ 𝐿𝑠,𝑛(𝛽, 𝑃𝐴𝑇�̃�) · 𝑓(𝑃𝐴𝑇�̃�|𝜃)𝑑𝑃𝐴𝑇�̃� (4-8) 

Equation (4-8) is estimated by simulation methods, as it has no closed form. Thus, a 

simulated log-likelihood is calculated using Halton draws from a certain distribution 

(e.g. Johnson’s distribution, 𝑆𝐵) to estimate the logit probabilities. In this approach, a 

sample of 𝑅 values of 𝑃𝐴𝑇�̃� are drawn from 𝑓(𝑃𝐴𝑇�̃�|𝜃), and labelled as 𝑃𝐴𝑇�̃�𝑟 (𝑟 =

1,2, … , 𝑅), where the subscript r refers to the specific draw. Then, the average 
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simulated logit probability can be estimated taking the average over the number of 

draws as follows: 

�̂�𝑠,𝑛 =  
1

𝑅
∑ 𝐿𝑠,𝑛(𝛽, 𝑃𝐴𝑇�̃�𝑟)

𝑅

𝑟=1

 (4-9) 

where �̂�𝑛,𝑠 is an unbiased estimator of 𝑃𝑛,𝑠 whose variance decreases as R increases. 

To decide on a suitable number of draws, the number is usually gradually increased 

until stable modelling results are generated. Thus, the simulated probabilities are 

inserted in the log-likelihood function for the observed choices, from which we obtain:  

𝑆𝐿𝐿 =  ∑ ∑ 𝑑𝑛𝑗𝑙𝑛�̂�𝑠,𝑛

𝐽

𝑗=1

𝑁

𝑛=1

 (4-10) 

where 𝑑𝑛𝑗 is equal to 1 if the commuter n chooses alternative j. The final simulated 

likelihood is obtained when the value of 𝜃 that maximizes SLL is found.  

 

4.5.3 Time valuation of schedule delay (TVSD) 

Based on the result of the mixed logit models, it is possible to quantify the changes in 

the trade-off between in-vehicle travel time and schedule delay by comparing the ratio 

of the partial derivatives of the utility functions with respect to schedule delay and travel 

time (see Equation (4-11)). The TVSD measures the additional travel time a commuter 

would accept to reduce their schedule delay by one unit time. The higher the TVSD, 

the more importance a commuter gives to schedule delays respecting travel time, and 

the more willing the commuter is to travel in a departure period with higher travel time 

in order to arrive closer to their PAT-Stop. In order to estimate TVSD, as the PAT-Stop 

is a random variable, it is necessary to estimate the average schedule delay for a 

commuter n, by considering draws from 𝑆𝐵(𝑃𝐴𝑇�̃�|𝜃). Considering that the specification 

employed is indifferent to the difference between earliness and lateness, the schedule 

delay in draw r is, by definition, the absolute difference between the 𝑃𝐴𝑇�̃�𝑛,𝑟 and 𝐴𝑇𝑛 

(See Equation (4-11) and (4-12)). 𝑇𝑉𝑆𝐷𝑛 is calculated across individuals using R 

draws and the TVSD for a specific study period p calculated as the average of the 

individual 𝑇𝑉𝑆𝐷𝑛. 
 

𝑇𝑉𝑆𝐷𝑛 =  
∂V ∂SD⁄

∂V ∂IVT⁄
=

2𝛽𝑆𝐷𝑆�̂�𝑛

𝛽𝐼𝑉𝑇
 (4-11) 

𝑇𝑉𝑆𝐷𝑛 =  
2𝛽𝑆𝐷

𝛽𝐼𝑉𝑇

1

𝑅
∑|𝑃𝐴𝑇�̃�𝑛,𝑟 − 𝐴𝑇𝑛|

𝑅

𝑟=1

 (4-12) 
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4.6 Methodology 

To test the hypotheses stated in Section 4.1, the methodology presented in Figure 

4-2 is followed. It highlights the steps developed to deal with the two main challenges 

found in using smart card data in DTCMs: estimating the travel times for the 

unobserved departure time alternatives and obtaining a proxy of arrival time 

preferences for calculating schedule delay. Moreover, Figure 4-2 also emphasizes the 

iterative process implemented to establish the conditions to successfully estimate a 

DTCM using smart card data and to allow the intertemporal comparison between the 

selected episodes. 

 

Figure 4-2. Methodology implemented in this study. 

 

4.6.1 DTCM specification  
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After exploring several attributes and specifications, it was resolved to concentrate 

only on analysing the trade-off between in-vehicle travel time and schedule delay. This 

decision has two aims: a) focussing on the challenge of employing smart card data for 

the estimation of DTCM (i.e. obtaining travel times for the unchosen time intervals and 

calculating schedule delay) and the respective validation of the methodology followed, 

and b) simplifying the adoption of the same modelling specification to all the episodes 

analysed. The selected utility function, which considers in-vehicle travel time and 

schedule delay, offers a specification that, without being sophisticated, is suitable to 

maintain consistency on the two attributes that this study focuses on across all the 

investigated episodes, a necessary condition when a comparison of valuations across 

time is pursued (Börjesson et al., 2022). Bus occupancy, however, was also analysed 

but not incorporated in the final specification. In particular, bus occupancy, calculated 

using the approach proposed by Yap et al. (2018) for each time interval and OD stop-

pair, was tested in the model using additive and in-vehicle travel time multiplier 

specifications. Interestingly, early results found that bus occupancy did not have any 

dissuading effect on travellers’ departure time decisions, maybe because bus 

occupancy was not enough to cause discomfort or because bus users were ‘captive’ 

to certain departure times. Nonetheless, the reliability of bus occupancy values and 

their related results are dubious as the number of passengers on the bus is sub-

estimated due to Santiago’s bus system’s elevated fare evasion (above 30%) (Allen 

et al., 2019). Hence, although the early results of bus occupancy are enough to prompt 

interesting further research, they fall outside this study's scope and, therefore, are not 

addressed here. 

The selected time-size interval for the departure time alternatives was established as 

15 minutes, which has been the norm in previous studies (Lizana et al., 2021; Zannat 

et al., 2021). The morning rush hour was selected as the day period to be modelled, 

defining a range of departure time alternatives between 06:00 AM and 11:00 AM. This 

decision was made as in previous studies schedule delays have been found 

consistently to be statistically significant during the morning peak and seldom in the 

evening peak (Zannat et al., 2021). In addition, the potential existence of differences 

in the trip schedule decisions among bus commuters was also tested. This was done 

by segmenting users into two groups depending on their relative bus usage. Recurrent 

users were then defined as those who conducted at least two trips on different days 

within the study period for each episode, while occasional users were characterised 

as those who were only observed on a single day during the episode. Therefore, two 

model specifications were computed to compare episodes: a DTCM for the 

unsegmented bus commuters and a DTCM considering the proposed segmentation. 

Marginal utilities of schedule delay, travel time and the distribution parameters of 
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PATS were defined as group-specific in the case of the latter specification. It is 

necessary to clarify that the definition used in this study to segment travellers does not 

pretend to propose an absolute definition of what is recurrent or occasional but to 

contrast two groups using a relative differentiation. 

 

4.6.2 Smart card data and bus location processing steps 

This step involved processing the smart card data records and bus location datasets 

to generate suitable inputs for model estimation. Regarding the smart card data, a set 

of filters was applied with the aim of increasing the quality of the trip samples and 

focusing on specific data subsets regarding the established goals. The following rules 

were applied: 

• Null entrances were removed. This includes transactions without 

boarding/imputed alighting stops. 

• Only transactions from Monday to Thursday were retained. 

• Only bus users with direct trips were considered (trips with interchanges are not 

included). 

• Transactions with travel time lower than 5 minutes were removed. 

• Only trips in which boarding validation is recorded between 6:00 AM and 11:00 

AM are considered. 

• Only work-related trips are considered. 

• Thirty bus services with the highest usage and common for all episodes were 

analysed. 

• 30.000 unique IDs were sampled for each episode. 

Concerning the work trip purpose rule used in this study, the approach proposed 

by Devillaine et al. (2012) and applied to the data for Santiago’s PT authority is 

employed. The approach classifies outbound work trips as those whose a) activity 

duration (defined as the time between the outbound and the return trip) is longer than 

2 hours, b) it is not the last trip of the day before the activity is performed, and c) the 

card type used is not student or elderly. The present study adopted this classification, 

considering the advantages of the approach and the limitations of the data available 

to explore more sophisticated techniques (see, for example, Faroqi et al. (2023)). 

Nonetheless, some limitations need to be acknowledged. Firstly, the rules considered 

for the assignment of the work trip purpose are not strict enough to avoid including a 

broader set of trip purposes in that category, such as running errands or shopping. A 

potential consequence of this limitation would be the estimation of distorted valuations 

by adding more flexible activity purposes in the analysis. Secondly, the methodology 
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applied for Santiago does not include the leverage of any land-use information, which 

may have helped improve the trip purpose estimation. Finally, the study does not 

provide a validation of their result by cross-referring them with data from travel 

surveys. Despite these caveats, the methodology of Devillaine et al. (2012) generated 

a reasonable daily profile of outbound trips, which makes it suitable for this study. 

 

To define the ideal combination of sample size and number of bus services for the 

analysis, an iterative process was conducted. As Figure 4-2 shows, that iterative 

process involved the interaction between the smart card datasets, bus locations 

datasets, model estimation and model outputs for each episode. Finding a suitable 

number of bus services and practical trip sample size was required, as a large number 

of bus services also involved a large sample size to correctly capture the users’ trip 

scheduling behaviour from thousands of OD bus stop-pairs. However, a sample size 

that is too large is impractical to employ in the model estimation step due to its 

computational complexity. To establish these values, bus location datasets were first 

analysed to find common bus services across all episodes, which also help to ensure 

the comparability of the model results between episodes. After this process, the 

identified common bus services were combined with the smart card records. 

Interestingly enough, it was found that a concentrated proportion of bus services 

accounted for the majority of the bus usage; less than 30% of the bus services 

represented more than 70% of the observed transactions. This allowed us to focus on 

testing a relatively limited number of bus services from 10 to 50 without losing the 

representativeness of commuters. Multiple iterations demonstrated that using a 

combination of 30 bus services (that accounted for between 30% to 40% of the 

observed trips for the studied episodes) and a sample size of 30,000 bus commuters 

leads to satisfactory results, which is why these values were adopted for the analysis. 

 

4.6.3 Attribute enrichment process 

In order to obtain representative in-vehicle travel times for the complete choice set, a 

script was developed to calculate the median in-vehicle travel times. This was 

achieved by establishing travel time profiles for each observed bus origin-destination 

stop-pair, considering 15-minute intervals. This step combined the output of the three 

previous tasks: model specification, revised bus location dataset and trip sample. Its 

output was the generation of trip samples enriched with the in-vehicle travel time for 

the full choice set of departure time alternatives for the chosen bus service. A moving 

average smoothing process was then applied to reduce the potential existence of 

sharp fluctuations. Finally, values were assigned to the chosen and unchosen 
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departure time alternatives of each bus commuter observed in the data sample. The 

estimated in-vehicle travel time represents the time between a specific bus origin-

destination stop-pair a user would expect if they decided to depart in a time interval 𝑠. 

In this case, in-vehicle travel time includes all en-route delays, such as those coming 

from dwelling time, strops in traffic lights, traffic congestion, etc., and therefore, 

represents a reliable characterisation of the level of service experienced by users. 

Regarding the available time range to travel during the analysed morning period (06:00 

AM – 11:00 AM), no restriction was made a priori, assuming that the complete choice 

set is available for a traveller. This approach has been considered more realistic and 

safer than assuming that a user’s choice set contains only the observed departure 

time intervals (Sasic and Habib, 2013). The above is particularly true when no 

additional information is available to account for travellers’ schedule flexibility, as in 

this case. However, it was observed that some bus services were unavailable for some 

departure time alternatives, particularly for the departure alternatives near 06:00 AM 

and the time between 10:00-11:00 AM. Therefore, the departure time alternatives for 

users of those services were adjusted accordingly. 

 

4.6.4 Estimation of DTCMs and multi-temporal comparison 

The model estimation was conducted following the methodology stated in Section 

4.4.2. Several model settings were tested to assess the effect on the results, such as 

the number of draws and the type of probability distribution to represent the variation 

in 𝑃𝐴𝑇�̃�𝑛. Through an iterative process, the Normal and Johnson 𝑆𝐵 distributions were 

tested, observing that the second demonstrated the highest stability in terms of model 

convergence. Among the strengths of the Johnson distribution are its great flexibility 

(no assumption of symmetry is needed) and the feasibility of defining fixed boundaries, 

which is a relevant property considering the fixed day period analysed in this study 

(Hess et al., 2005). Therefore, 𝑃𝐴𝑇�̃�𝑛  was estimated assuming a Johnson distribution, 

in which the lower and upper bounds [𝑐, 𝑑]  are the extremes of the range of the time-

period analysed (6:00 AM and 11:00 AM, respectively). The mean 𝜇 of the Johnson 

distribution represents the central tendency of the distribution. As 𝜇 depends on a 

specific transformation of the variable, three different outcomes are possible: 𝜇 = 0; 

the distribution is symmetric and the mean is close to the midpoint (𝑐 + 𝑑)/2, 𝜇 < 1; 

the distribution is left-skewed and the mean is closer to 𝑐 (the lower bound) or 𝜇 > 1; 

the distribution is right-skewed, and the mean is closer to 𝑑 (the upper bound). The 

standard deviation σ measures how dispersed the data distribution is (a higher 𝜎 

means the distribution is more spread out in the range [𝑐, 𝑑]. To find the proper number 

of draws, they were gradually increased in intervals of 100, from 300 to 1000, finding 
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that 500 draws produced stable modelling results. All modelling was conducted using 

the Apollo package in R (Hess and Palma, 2019). As acceptance criteria used in the 

iterative process, issues considered were: a) feasibility of the computation time for 

estimation, b) appropriateness of the model outputs (marginal utilities and distribution 

parameters), c) model convergence, d) stability in the model results if different 

samples were employed. The results of the iterative process generated the adoption 

of common data, model and estimation settings for all episodes. Finally, a multi-

temporal comparison between the model results for each episode was conducted 

based on TVSDs, marginal utilities and the PAT-Stop density functions. 

 

4.7 Results 

4.7.1 Model results for the before-disruptions episode 

Model results for the before-disruptions episode (EP1) are first analysed. The results 

of the mixed multinomial logit (Table 4-3) showed that schedule delay and in-vehicle 

travel time were relevant attributes to explain the departure scheduling choices of bus 

commuters, presenting both negative and statistically significant estimates. Related to 

the overall goodness of fit of the model, the rho-squared is in line with previous works 

where similar frameworks have been considered (Bwambale et al., 2019; Zannat et 

al., 2021). An average TVSD of 0.81 was calculated, meaning that bus commuters 

would accept an increase of 0.81 minutes in in-vehicle travel time to reduce 1 minute 

of schedule delay. This result is consistent with the range of TVSDs reported in 

previous studies where departure time choices for PT commuting have been 

estimated. The valuation is located in the lower range of studies with SP data for the 

same city (Arellana et al., 2012; Lizana et al., 2021) and moderately higher than the 

valuations reported using revealed preference data for other cities (Peer et al., 2016). 

Parameters of the PAT-Stop density function were successfully estimated, and 

insightful information about the heterogeneity in commuters' arrival time preferences 

was provided. It was observed that the PAT-Stop density function generated a 

reasonable proxy of the work starting time range for the Chilean context. This can be 

observed in Figure 4-3A, where the PAT-Stop density function assigns maximum 

probability to the 08:30-08:45 AM period. 
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Table 4-3. Departure time choice model results for the before-disruptions episode 
(EP1). 

  Unsegmented sample Segmented sample 

Variable Estimate Rob t-stat Estimate Rob t-stat 

Marginal utilities     
𝛽𝐼𝑉𝑇,𝑎𝑙𝑙 -1.131 (-4.95)   
𝛽𝐼𝑉𝑇,𝑜𝑐   -1.247 (-6.09) 
𝛽𝐼𝑉𝑇,𝑟𝑒   -0.813 (-3.13) 

𝛽𝑆𝐷 -0.439 (-11.87)   
𝛽𝑆𝐷,𝑜𝑐   -0.338 (-12.65) 
𝛽𝑆𝐷,𝑟𝑒   -0.591 (-13.48) 

𝑃𝐴𝑇�̃� parameters     
μ 0.051 (1.92)   

μ𝑜𝑐   0.196 (5.57) 
μ𝑟𝑒   -0.251 (-10.07) 
σ -0.856 (-21.2)   

σ𝑜𝑐   -0.96 (-15.3) 
σ𝑟𝑒   -0.822 (-18.02) 

ASC     
06:00-06:30 0 - 0 - 
06:30-07:00 0.324 (11.3) 0.375 (7.32) 
07:00-07:30 0.72 (11.81) 0.82 (12.31) 
07:30-08:00 0.841 (10.22) 0.981 (13.64) 
08:00-08:30 0.762 (8.28) 0.924 (13.3) 
08:30-09:00 0.66 (6.53) 0.827 (12.57) 
09:00-09:30 0.551 (4.77) 0.702 (10.95) 
09:30-10:00 0.826 (5.97) 0.935 (13.13) 
10:00-10:30 1.05 (6.41) 1.086 (13.79) 
10:30-11:00 1.581 (8.2) 1.51 (15.2) 

LL(final) -85331  -84727  
Adj. Rho-squared 0.029  0.036  

TVSD 0.81    
𝑇𝑉𝑆𝐷𝑜𝑐   0.56  
𝑇𝑉𝑆𝐷𝑟𝑒   1.76  

𝛽𝐼𝑉𝑇,𝑟𝑒/𝛽𝐼𝑉𝑇,𝑜𝑐   0.65  
𝛽𝑆𝐷,𝑟𝑒/𝛽𝑆𝐷,𝑜𝑐   1.75  

 

In terms of the heterogeneity in the trip scheduling decision process among bus 

commuters, interesting insights were revealed when controlling for the relative 

recurrence in their bus usage. Model results (presented in Table 4-3) showed that the 

marginal utility of schedule delay for recurrent users (defined as those who were 

observed performing a trip on at least two days) was 1.75 times as high as the one 

calculated for the occasional group (defined as those observed only during a single 

day). This dissimilarity in the aversion to arriving at a different time to their PAT-Stop 

illustrates the expected differences between the two groups;  occasional commuters 

face less negative consequences for the same amount of delay compared with more 

recurrent commuters. The TVSD found for each category agrees with this finding. A 

valuation of 1.76 was observed for recurrent commuters and 0.56 for the occasional 

group. This indicates that regular users are prepared to accept a higher travel time 

(and therefore to depart at times when the associated travel time was potentially 
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higher) to arrive nearer to their PAT-Stop than occasional commuters are. In addition, 

according to Figure 4-3B, both groups exhibited distinctive PAT-Stop density 

functions that shed light on the groups’ characteristics. For recurrent commuters, it 

showed its maximum in the neighbourhood of 08:00 AM, while for more occasional 

bus commuters, the mode is observed to be located almost one hour later around 

09:00 AM. These results, in combination with the previous ones, suggest that the 

recurrent group were likely to be made up of workers with an early and relatively 

inflexible work start-time. In contrast, occasional workers showed a later and relatively 

flexible work start-time. 

 

Figure 4-3. PAT-Stop density functions for EP1. (A) Unsegmented sample. (B) 

Segmented sample.  

 

4.7.2 Multi-temporal comparison - unsegmented bus commuters 

Empirical findings for the episodes of post-social unrest (EP2), post-COVID-19 

outbreak (EP3) and after-disruptions (EP4), considering the unsegmented bus 

commuter specification, are presented in Table 4-4. The coefficients of schedule delay 

and in-vehicle travel time for EP2 and EP4 showed negative and statistically significant 

estimates. The exception was the most disruptive episode (EP3), which presented a 

not statistically significant marginal utility for in-vehicle travel time, likely related to 

difficulties in linking the levels of this attribute with the observed choices in very 

disruptive settings. This is in line with the overall poorer goodness of fit of EP3. Based 

on statistically significant estimates, TVSDs that were respectively 35% and 17% lower 

than the one calculated for EP1 were calculated for EP2 and EP4. This result indicates 

a decrease in the willingness to increase travel time to reduce schedule delays during 
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and after the disruptions. Marginal utilities were also compared, with statistically 

significant differences, in particular for the aversion to schedule delay. These 

estimates were all lower than the schedule delay estimate observed in EP1 (0.8, 0.5 

and 0.9 times for EP2, EP3 and EP4, respectively). This finding recognises a 

significant reduction in the aversion to schedule delay in the aftermath of the disruptive 

episodes, which can be associated with a relaxation in the consequences of arriving 

at a different time to the PAT-Stop faced by commuters. Nonetheless, a non-significant 

difference was observed between EP4 and EP1, suggesting a return to pre-disruptive 

settings. 

PAT-Stop density functions were also contrasted, providing evidence of intertemporal 

changes in the trip-timing preferences for arrival. Figure 4-4 provides a glimpse of the 

progression of the 𝑃𝐴𝑇�̃� between episodes, illustrating differences in their deviations 

and the time of day at which they reached their maximums. Among the differences 

observed between the PAT-Stop density functions, it is possible to highlight: a) 

maximum values are shown to occur later in the morning in EP2 and EP3 compared 

with EP1, b) the density function of EP4 seems to go back to that of the before-

disruptions settings, and c) lower standard deviations for the density functions for EP2-

EP4 are observed compared with EP1. Regarding a), it may be explained by the 

adoption of a later work start-time as a benefit to employees during disruptive events, 

with it being most pronounced, as expected, after the outbreak of the COVID-19 

pandemic (EP3). On other hand, the lower heterogeneity in the 𝑃𝐴𝑇�̃� observed for 

later episodes was an unexpected finding, which would denote that in the aftermath of 

a disruptive event, trip preferences of active users may be more homogenous than in 

non-disruptive settings. 

 

Table 4-4. DTCMs results considering uncategorised bus commuters. Post-social 

unrest (EP2), post-COVID-19 outbreak (EP3) and after-disruptions (EP4). 

  EP2 2020.03 EP3 2020.11 EP4 2022.04 

Variable Estimate Rob t-stat  Estimate Rob t-stat  Estimate Rob t-stat  

Marginal utilities 

𝛽𝐼𝑉𝑇 -1.262 (-11.73) 0.194 (0.98) -1.269 (-9.58) 

𝛽𝑆𝐷 -0.336 (-22.43) -0.218 (-18.73) -0.405 (-15.00) 

𝑃𝐴𝑇�̃� parameters 

μ 0.212 (14.97) 0.266 (12.39) -0.013 (-3.08) 

σ -0.570 (-13.67) -0.938 (-9.83) -0.724 (-21.72) 

Time period specific parameters (ASC) 

06:00-06:30 0 - 0 - 0 - 

06:30-07:00 0.125 (3.50) -0.002 (-0.64) 0.265 (11.79) 

07:00-07:30 0.350 (14.21) 0.157 (5.59) 0.567 (19.39) 

07:30-08:00 0.317 (12.28) 0.161 (6.08) 0.580 (17.06) 

08:00-08:30 0.301 (13.70) 0.166 (5.78) 0.534 (14.92) 
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  EP2 2020.03 EP3 2020.11 EP4 2022.04 

Variable Estimate Rob t-stat  Estimate Rob t-stat  Estimate Rob t-stat  

08:30-09:00 0.036 (10.28) 0.123 (4.28) 0.323 (9.02) 

09:00-09:30 -0.119 (-6.39) 0.163 (6.65) 0.421 (11.05) 

09:30-10:00 0.038 (3.38) 0.284 (10.54) 0.610 (12.70) 

10:00-10:30 0.209 (7.91) 0.406 (13.10) 0.858 (13.42) 

10:30-11:00 0.615 (14.12) 0.675 (16.74) 1.381 (15.53) 

LL (final) -84844   -86407   -85561   

Adj. Rho-squared 0.031   0.010   0.028   

𝑇𝑉𝑆𝐷𝐸𝑃𝑖 0.52   NoE   0.67   

𝑇𝑉𝑆𝐷𝐸𝑃𝑖/𝑇𝑉𝑆𝐷𝐸𝑃1 0.64   NoE   0.83   

𝛽𝑆𝐷,𝐸𝑃𝑖/𝛽𝑆𝐷,𝐸𝑃1 0.77 (6.87)* 0.50 (18.90)* 0.92 (1.26)* 
𝛽𝐼𝑉𝑇,𝐸𝑃𝑖/𝛽𝐼𝑉𝑇,𝐸𝑃1 1.12 (1.22) * NoE - 1.12 (1.04)* 

NoE: Not estimated. *: indicates t-statistics referred to the difference between the estimate of episode 

𝑖 and EP1. 

 

Figure 4-4. PAT-Stop density functions for unsegmented sample. (A) Comparison 

EP1-EP2. (B) Comparison EP2-EP3. (C) Comparison EP3-EP4. (D) Comparison 

EP4-EP1. NoE: Not estimated valuation. 
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4.7.3 Multi-temporal comparison - segmented bus commuters 

Modell outputs for the specification that considers the segmentation of bus commuters 

by their relative bus usage are presented in Table 4-5. This specification of the utility 

function led to a significant improvement in the fit of the DTMCs estimated, a result 

supported by obtaining LR Statistics above the critical value for all episodes and by 

observing an increased adjusted rho-squared compared with the base specification. 

Moreover, the user segmentation allows meaningful differences between the bus 

commuters to be identified, as is described next. 

Table 4-5. DTCMs results for the segmented bus commuter specification. Post-social 
unrest (EP2), post-COVID-19 outbreak (EP3) and after-disruptions (EP4). 

  EP2 2020.03 EP3 2020.11 EP4 2022.04 

Variable Estimate Rob t-stat  Estimate Rob t-stat  Estimate Rob t-stat  

Marginal utilities 
𝛽𝐼𝑉𝑇,𝑜𝑐 -1.202 (-7.79) 0.609 (0.74) -1.123 (-7.01) 
𝛽𝐼𝑉𝑇,𝑟𝑒 -1.302 (-4.07) -1.667 (-2.00) -1.422 (-7.79) 
𝛽𝑆𝐷,𝑜𝑐 -0.267 (-11.14) -0.178 (-13.69) -0.317 (-13.46) 

𝛽𝑆𝐷.𝑟𝑒 -0.507 (-12.27) -0.329 (-6.24) -0.545 (-14.2) 

𝑃𝐴𝑇�̃� parameters 

μ𝑜𝑐 0.378 (17.7) 0.493 (2.52) 0.099 (4.05) 

μ𝑟𝑒 -0.133 (-5.91) -0.196 (-4.66) -0.273 (-13.63) 

σ𝑜𝑐 -0.568 (-5.14) -0.994 (-2.46) -0.747 (-16.98) 

σ𝑟𝑒 -0.591 (-12.85) -0.676 (-5.62) -0.732 (-18.79) 

Time period specific parameters (ASC) 

06:00-06:30 0 - 0 - 0 - 

06:30-07:00 0.153 (6.05) 0.003 (1.49) 0.307 (9.46) 

07:00-07:30 0.407 (12.31) 0.172 (1.67) 0.645 (17.98) 

07:30-08:00 0.399 (12.21) 0.183 (1.73) 0.682 (16.99) 

08:00-08:30 0.397 (13.00) 0.191 (1.61) 0.649 (18.06) 

08:30-09:00 0.136 (3.79) 0.150 (1.50) 0.439 (11.29) 

09:00-09:30 -0.030 (-2.03) 0.186 (4.63) 0.523 (11.99) 

09:30-10:00 0.095 (3.31) 0.293 (8.77) 0.676 (12.66) 

10:00-10:30 0.207 (6.46) 0.384 (6.38) 0.862 (13.67) 

10:30-11:00 0.522 (9.55) 0.607 (4.88) 1.296 (15.22) 

LL (final) -84233   -85804   -85061   

Adj. Rho-squared 0.038   0.017   0.033   

TVSD𝑜𝑐 0.47   NoE   0.58   

TVSD𝑟𝑒 0.81  0.49  0.93  
TVSD𝑜𝑐,𝐸𝑃𝑖/TVSD𝑜𝑐,𝐸𝑃1 0.84  NoE  1.04  
TVSD𝑟𝑒,𝐸𝑃𝑖/TVSD𝑟𝑒,𝐸𝑃1 0.46  0.28   0.53   

𝛽𝑆𝐷,𝑟𝑒/𝛽𝑆𝐷,𝑜𝑐 1.90 (5.81)* 1.80 (2.86)* 1.72 (5.94)* 
𝛽𝑆𝐷,𝑜𝑐,𝐸𝑃𝑖/𝛽𝑆𝐷,𝑜𝑐,𝐸𝑃1 0.79 (2.03)* 0.53 (4.97)* 0.94 (1.20)* 
𝛽𝑆𝐷,𝑟𝑒,𝐸𝑃𝑖/𝛽𝑆𝐷,𝑟𝑒,𝐸𝑃1 0.86 (2.96)* 0.56 (12.3)* 0.92 (0.89)* 

𝛽𝐼𝑉𝑇,𝑟𝑒/𝛽𝐼𝑉𝑇,𝑜𝑐 1.18 (0.31)* NoE - 1.27 (1.64)* 
𝛽𝐼𝑉𝑇,𝑜𝑐,𝐸𝑃𝑖/𝛽𝐼𝑉𝑇,𝑜𝑐,𝐸𝑃1 0.96 (0.29)* NoE - 0.90 (0.77)* 
𝛽𝐼𝑉𝑇,𝑟𝑒,𝐸𝑃𝑖/𝛽𝐼𝑉𝑇,𝑟𝑒,𝐸𝑃1 1.60 (1.53)* 2.05 (1.03)* 1.75 (3.33)* 

NoE: Not estimated. *: indicates t-statistics referred to the difference between the estimate of episode 

𝑖 and EP1. 
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The progression of the TVSD for the recurrent commuter group presented ratios 

relative to EP1 of 0.5 (EP2) and 0.3 (EP3), revealing a drastic reduction in the 

willingness to increase travel time to reduce schedule delay during the aftermath of 

disruptive episodes. These results are explained by higher marginal utilities of in-

vehicle travel time and a reduction in the disutility of schedule delay observed in EP2 

and EP3. In particular, it was found that marginal utilities for in-vehicle travel time for 

EP2 and EP3 were 1.6 and 2.1 times that observed in EP1. By contrast, the marginal 

utilities for schedule delay were calculated to be 0.9 and 0.6 times the one estimated 

for EP1. Conversely, the findings for occasional commuters were more diverse, likely 

related to their associated characteristics. The group displayed a reduction in the 

disutility of schedule delay, similar in magnitude to the one experienced for the 

recurrent group, but a non-significant variation in the disutility of in-vehicle travel time. 

In terms of changes in the TVSD for this user segment, it was found that the reduction 

observed in EP2 was only 16% of the TVSD observed in EP1. More insightful 

differences between the two groups were revealed when analysing the PAT-Stop 

density functions presented in Figure 4-5. Figure 4-5B, in particular, illustrates the 

finding that 𝑃𝐴𝑇�̃� for occasional commuters shifted notably to later arrival time 

preferences in EP3. In contrast, the arrival preferences for recurrent commuters 

exhibited less flexibility to change across episodes. 

A comparison between EP1 and EP4 gives valuable insight into the existence of 

lasting changes in the trip scheduling preferences of bus commuters. It was found that 

as late as April 2022 (EP4), recurrent commuters still displayed a TVSD 0.5 times the 

valuations observed for EP1 (0.93 vs 1.76), while occasional commuters have 

recovered their pre-disruption valuation (0.58 vs 0.56). Marginal utilities of schedule 

delay have returned to the values of EP1 for both groups, presenting no significant 

difference. In the case of the disutility of travel time, a significant change was only 

observed for recurrent commuters, presenting an estimate equal to 1.75 times that 

observed in EP1, which is essentially the reason for the low TVSD still observed in 

EP4. Related to lasting changes in the PAT-Stop density functions, Figure 4-5D 

depicts the finding that regular commuters have almost returned to their pre-

disruptions arrival time preferences. In contrast, some more noticeable changes can 

be observed for occasional commuter preferences. 



145 
 

 

Figure 4-5. PAT-Stop density functions for segmented bus commuters. (A) 

Comparison EP1-EP2. (B) Comparison EP2-EP3. (C) Comparison EP3-EP4. (D) 

Comparison EP4-EP1. NoE: Not estimated valuation. 

 

4.8 Conclusions 

Departure time choice models (DTCMs) are key tools in understanding time-varying 

travel demand. To the authors' knowledge, the study reported here is the first to 

employ smart card data to estimate such models. This study provides a key 

contribution in this area, integrating several techniques in one framework to overcome 

intrinsic challenges of smart card data, such as the estimation of schedule delay, an 
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unobserved attribute in passive data sources. Our model results demonstrate that 

smart card data is a feasible data source for estimating DTCMs (H1). In particular, 

satisfactory marginal utilities for travel time and schedule delay were observed, as well 

as a valuation of the trade-off between travel time and schedule delay (TVSD) for the 

pre-disruptive episode in line with the findings reported in previous studies conducted 

in the same city. In particular, a TVSD of 0.81 was estimated for the before-disruptions 

episode, a value located at the lower end of the values reported previously based on 

stated preferences experiments (Arellana et al., 2012; Lizana et al., 2021). The 

framework also allows for the explicit visualisation of the density function of the 

preferred arrival times at the bus destination stop (PAT-Stop), accounting for the 

heterogeneity of trip-timing preferences among bus commuters.  

By establishing a comprehensive methodology that permitted a multi-temporal 

comparison between characteristic episodes of Santiago’s PT case study, this study 

is the first to provide evidence of the differences in the trip scheduling process among 

bus commuters during particular episodes (H2). In our case these being pre-

disruptions (EP1), after social unrest (EP2), after the COVID-19 outbreak (EP3), and 

post-disruptions (EP4). In particular, it was observed that bus commuters were less 

willing to accept additional travel time to reduce their schedule delay during EP2 and 

EP3, primarily related to a reduction in the disutility of schedule delay. These results 

align with previous findings conducted during the pandemic, which demonstrated more 

flexible working arrangements (Wöhner, 2022). 

Consistently with previous literature, the findings of this study confirmed the 

differences in how distinct traveller groups assess time-varying trip attributes (H3). It 

was found that the group defined as recurrent commuters showed consistently higher 

TVSD than the group described as occasional commuters. This result suggests that 

recurrent bus users are more prepared to travel at times when travel time is higher to 

arrive near their PAT-Stop. Conversely, occasional bus users are more likely to travel 

at times when travel time is relatively lower, despite increasing their schedule delay 

(earliness or lateness). The PAT-Stop density functions also revealed insightful 

differences between the two groups.  

First, occasional commuters showed later arrival preferences than regular commuters. 

These results agree with previous works where differences in the trip scheduling 

decisions between office employees and self-employees have been analysed (Shin, 

2019; Zannat et al., 2022). For example, Zannat et al. (2022) also reported a 

preference for later arrival for self-employees and a lower willingness of this group to 

depart when travel times are higher. In this regard, office employees with more regular 

commuting trips may face more fixed schedules that encourage them to depart despite 



147 
 

the high travel time experienced around rush hours. Moreover, occasional commuters 

were more flexible in changing depending on the situational context. In contrast, the 

PAT-Stop density function of recurrent bus commuters presented evidence of being 

more rigid when faced with contextual changes. Unfortunately, it was not possible to 

find previous studies discussing this subject. Nonetheless,  this outcome seems in line 

with the previously described differences regarding the day-to-day trip scheduling 

decision flexibility between the two groups. 

Mixed results were observed concerning the presence of long-term changes in the 

trip-scheduling process of bus commuters (H4). In particular, it was found that the 

TVSD in the latest episode (EP4) was lower (0.83 times) than in the before-disruptions 

episode (EP1). However, no significant differences between the marginal utilities of 

schedule delay and in-vehicle travel time of EP4 and EP1 were found. The results also 

showed that the PAT-Stops density functions of these two episodes seem to converge 

despite still showing minor differences. Nonetheless, when making the same 

comparison but controlling for commuter groups, it was revealed that the TVSD of 

occasional commuters returned fully to their before-disruptions levels. Conversely, the 

recurrent group showed a TVSD of 0.93, a value 0.5 times lower than the one obtained 

for the same group in EP1, and a significant difference in the disutility of travel time 

(which was found to be 1.75 times higher). In this regard, the evidence seems to 

support the hypothesis that distinct user groups not only make different assessments 

of the trip-timing attributes but also experience dissimilar changes as a consequence 

of disruptive events. It is highly likely, in any case, that the recovery process is still 

ongoing in Santiago, and eventually, further periods should be analysed to complete 

the picture and reach a definitive conclusion. 

Finally, identifying shifts in how PT commuters value time and schedule delay is crucial 

when external disruptions affect the activity system. In the last few years, the world 

has witnessed an unprecedented challenge related to the COVID-19 pandemic and a 

growing exposure to social unrest that demands societal changes. These events, 

usually associated with a drop in ridership levels, may also be associated with a 

change in how travellers schedule their activities. In this regard, the proposed 

methodology can be used to understand how commuters allocate their activities during 

external disruptions in different scenarios. Peak spreading, congestion pricing and the 

analysis of time-varying transport demand flow patterns are other applications of this 

approach. The framework also has the potential to test a broader range of attributes 

when the data quality and availability allow it, such as travel time uncertainty, in-vehicle 

occupancy, monetary cost, and the inertia of travelling at a particular time of the day. 

Including those attributes in the analysis would generate a more comprehensive 

understanding of the trip-timing decision process of PT commuting. This work, then, 
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offers the potential to open up a research line for more applications of smart card data 

on PT time-varying demand analysis, given the solid evidence we provide here of the 

validity of this data source for estimating DTCMs.  
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Chapter 5  

Investigating the potential of aggregated mobility indices for 

inferring public transport ridership changes 

 

Abstract 

Aggregated mobility indices (AMIs) derived from information and communications 

technologies have recently emerged as a new data source for transport planners, with 

particular value during periods of major disturbances or when other sources of mobility 

data are scarce. Particularly, indices estimated on the aggregate user concentration 

in public transport (PT) hubs based on GPS of smartphones, or the number of PT 

navigation queries in smartphone applications have been used as proxies for the 

temporal changes in PT aggregate demand levels. Despite the popularity of these 

indices, it remains largely untested whether they can provide a reasonable 

characterisation of actual PT ridership changes. This study aims to address this 

research gap by investigating the reliability of using AMIs for inferring PT ridership 

changes by offering the first rigorous benchmarking between them and ridership data 

derived from smart card validations and tickets. For the comparison, we use monthly 

and daily ridership data from 12 cities worldwide and two AMIs shared globally by 

Google and Apple during periods of major change in 2020-22. We also explore the 

complementary role of AMIs on traditional ridership data. The comparative analysis 

revealed that the index based on human mobility (Google) exhibited a notable 

alignment with the trends reported by ridership data and performed better than the one 

based on PT queries (Apple). Our results differ from previous studies by showing that 

AMIs performed considerably better for similar periods. This finding highlights the 

huge relevance of dealing with methodological differences in datasets before 

comparing. Moreover, we demonstrated that AMIs can also complement data from 

smart card records when ticketing is missing or of doubtful quality. The outcomes of 

this study are particularly relevant for cities of developing countries, which usually have 

limited data to analyse their PT ridership, and AMIs may offer an attractive alternative. 

 

Keywords: public transport, aggregated mobility indices, ridership, disruptive events.  



155 
 

5.1 Introduction 

5.1.1 Public transport demand data 

The availability of suitable data is critical for city planners to tackle the current and 

future challenges in urban mobility. This need is amplified when there is a disruptive 

change in urban mobility at any scale, ranging from local short-term events such as 

natural disasters, social unrest, and transport supply breakdown to global long-term 

events such as pandemics/epidemics, economic crises and conflicts. In this context, 

a continuous monitoring of public transport (PT) demand changes is essential for 

authorities and PT operators (UITP, 2018; Milne & Watling, 2019). In spite of the 

growth in the availability of higher quality data in many parts of the world, still there 

remain many cities that do not have access to proper data for a constant 

characterisation of the PT demand; or even if they have it, the available data present 

limitations in terms of the quality and coverage. In cities without automated data 

collection systems to passively record ticketing levels, traditionally, the information 

related to PT demand has come from datasets that have been manually collected on 

a small population sample. Such data, despite providing granular information, has 

been criticised for the lack of feasibility to be steadily applied during long periods 

(Welch & Widita, 2019). This makes them unsuitable to analyse dynamic PT demand 

changes and to quantify the impacts of unexpected disruptions (Demissie et al., 2016; 

Saha et al., 2020; Padmakumar & Patil, 2022). By contrast, cities that have already 

adopted automated fare collection (AFC) schemes have had the advantage of 

analysing their PT demand information from smart cards and digital transactions 

(Pelletier et al., 2011; Zannat & Choudhury, 2019; Lizana et al., 2023). However, some 

limitations on the fare collection system may affect the quality of these data (Lee et 

al., 2022). For example, ridership data may be lower than the actual one when ticketing 

are missing or incomplete, such as in the cases of ticket-free riding days or when there 

are special periods where fare evasion is potentially higher. Additionally, AFC systems 

may only cover a limited number of the PT modes present in a city (e.g. metro rails 

only), capturing ridership data only of those modes (Arellana et al., 2020; Wang & 

Noland, 2021). In these cases, even cities with AFC systems can benefit from 

secondary data sources to complement traditional ones. 

 

5.1.2 Aggregated mobility indices 

The increasing penetration of Information and Communication Technologies (ICT) in 

society has allowed several emerging datasets to be harnessed to face urban mobility 

challenges (Budd et al., 2020). Call detail records (CDRs) (Demissie et al., 2016), 
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social media data (Itoh et al., 2014; Spyratos et al., 2019; Shepherd et al., 2021), Wi-

Fi and Bluetooth traces (Bjerre-Nielsen et al., 2020), and web-based ticket records 

(Wei et al., 2017) are some of the technologies explored in the last decade to 

understand the behaviour of PT passengers. Despite the effort to leverage these data 

to study different characteristics of PT demand, their adoption has been mainly limited 

to research purposes and a few case studies, as such data availability remains largely 

restricted (Welch & Widita, 2019). Less attention, however, has been paid to the usage 

of data sets associated with GPS traces collected by global mobile phone apps or the 

level of queries in travel planner apps in the PT sector (Welch & Widita, 2019; Finazzi, 

2023). This situation changed in 2020, following the urgent need of health authorities, 

local governments, transport agencies, and the public for continuously updated and 

easily accessible data to deal with the COVID-19 pandemic. 

Aggregated mobility indices (AMIs) based on ICT were globally provided by tech 

companies during the COVID-19 pandemic to describe human mobility patterns in 

cities. AMIs were based on data collected from the regular use of mobile devices 

associated with GPS and apps, technologies that were already part of tech companies’ 

products and services (Strzelecki, 2022). The information was aggregated to describe 

human mobility behaviour within cities, offering a near-complete coverage of the urban 

grid and a large proportion of the population. AMIs were used to analyse mobility 

trends and scenarios, and assess the effectiveness of mobility restrictions on human 

mobility (Konečný & Brídziková, 2020; Saha et al., 2020; Yilmazkuday, 2021; Hamidi 

& Zandiatashbar, 2021; Wen et al., 2021; Wu & Shimizu, 2022). AMIs were also 

employed in studying COVID-19 transmission (Noland, 2021), pandemic indicators 

(Kartal et al., 2021; Noland, 2021), air quality (Venter et al., 2020; Rowe et al., 2022) 

and economic recovery (Zhang et al., 2022), among other topics. Big Tech companies 

such as Google and Apple shared reports on the aggregated mobility changes of the 

population at a city or regional scale between 2020 and 2022 (Apple; Data). Other 

companies, such as Moovit and Citymapper, which run travel planner apps, also 

offered similar mobility indices (Beck & Hensher, 2020; Fernández Pozo et al., 2022). 

Among the AMIs proposed, Google COVID-19 Community Mobility Reports (GCMR) 

and Apple Mobility Trend Reports (AMTR) were the most popular. GCMR were based 

on the variation of human movements across different categories of locations 

(residential, workplace and public transport stations, among others) (Google, 2023). 

To measure the mobility changes related to PT, GCMR considered the access 

frequencies and the time spent on PT hubs (bus stops, train stations, etc.). The relative 

change was estimated by comparing a mobility level with a pre-pandemic baseline 

value.  
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The aggregation and anonymisation process followed by Google and Apple to 

generate the mobility indices presents some particularities. In the case of Apple, the 

company explicitly states that every Map Apps query used was assigned a random, 

rotating identifier that continuously reset (Apple, 2023). Thus, data processing 

removes any possibility of identifying individual user profiles at any moment, i.e., it is 

not possible to associate two queries with a particular user (Kurita et al., 2021). Apple's 

indices are then estimated based on the simple comparison of query volumes between 

a particular day and a single baseline day for a given spatial granularity. On the other 

hand, The indices provided by Google employed the information provided by the 

location history of users retrieved from devices that use Google's apps and services. 

The process allows for daily user profiles in terms of visits to different category places 

(of a total of seven) (Aktay et al., 2020). This data characteristic makes it possible to 

impose bounds on how much each unique location history user can contribute to each 

of the seven place categories 'recognised by Google by randomly selecting only four. 

In the case of daily visits to public transport hubs, data is obtained by counting the 

number of users with unique location history who visited a public transport hub at 

different granularity levels. The aggregate mobility index was then computed as a 

percentage change by calculating the ratio between the metric for a given day and the 

same metric computed for the baseline period (Sulyok & Walker, 2020). Conversely 

to Apple, the methodology implemented by Google also included the utilisation of 

scaling factors to improve the accuracy of its metrics over time (Aktay et al., 2020). 

Nonetheless, what those scaling factors account for is not explicitly described by 

Google, limiting the information available to indicate how those scaling factors were 

applied to the different metrics provided. 

Some uses of the GCMR’s PT index were the characterisation of the use of PT, the 

clustering of cities with similar PT demand change levels, and the assessment of the 

effectiveness of mobility restrictions (Arellana et al., 2020; Wen et al., 2021; Angell & 

Potoglou, 2022; Padmakumar & Patil, 2022; Manout et al., 2023; Seifert et al., 2023). 

On the other hand, AMTR reported indices estimated based on navigation data from 

the Apple Maps app service to describe its users’ mobility trend (Apple, 2023). AMTR 

showed daily relative changes for three transport modes (PT, walking and driving) by 

estimating the quotient between the volume of direction requests for a specific day 

and pre-pandemic baseline (Strzelecki, 2022). The characterisation of the change in 

mobility was one of the main uses of this data set (Beck et al., 2021; Hasselwander et 

al., 2021; Wen et al., 2021; Padmakumar & Patil, 2022; Drummond & Hasnine, 2023). 
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5.1.3 Ridership data versus AMIs 

Despite the widespread use of the AMIs provided by tech companies during the last 

three years, it is surprising that limited evidence of the reliability of these indices to 

represent actual PT demand shifts is available. As the importance of mobility data 

availability transcends the COVID-19 pandemic, a proper assessment of the potential 

of AMIs in PT is desirable for wider applications. So far, comparisons between AMIs 

that offered proxies for PT and ridership data have been provided tangentially by a 

few studies that analysed both data sources when characterising COVID-19's impact 

on PT demand. These studies preliminarily reported that AMI captured the generalised 

drop in ridership during the pandemic outbreak and that after it, they overestimated 

PT demand recovery (Jenelius & Cebecauer, 2020; Fernández Pozo et al., 2022). For 

instance, using ridership data, a study conducted in Sweden (Jenelius & Cebecauer, 

2020) reported a reduction in PT demand of 40% in Skåne, 50% for Västra Götaland 

and 60% for Stockholm at the end of June 2020. By contrast, using the PT index of 

GCMR, the same study observed only a 0%, 10%, and 20% reduction in ridership, 

respectively. When they explored the PT index of AMTR, they obtained a reduction of 

around 20% with no noticeable difference between those areas. A smaller difference 

was observed in New York, where a 50% ridership decrease was observed using the 

PT index of AMTR when a 70% reduction was reported by the subway transactions 

(Wang & Noland, 2021). In a study conducted on the Community of Madrid also for 

2020, the authors contrasted smart card records with the Moovit mobility index. They 

found that during the recovery stage, the Moovit index reported a drop of only 5% 

compared to a reduction of 50% recorded for the ridership data (Fernández Pozo et 

al., 2022). Despite this evidence, several limitations in the existing studies lead to 

inconclusive findings about the level of accuracy of AMIs in terms of replicating PT 

ridership changes and their potential for wide-spread use in PT planning and 

operational decisions: 

• Early comparisons overlooked differences in the methodological approaches 

used to estimate AMIs. Therefore, the benchmarking required for properly 

comparing the datasets is yet to be conducted. 

• As the primary goal of the above-mentioned studies was to describe PT 

demand changes and not to assess the similarity between ridership data and 

AMIs, they did not conduct a formal quantitative comparison, limiting the current 

evidence to point-temporal comparisons and visual inspections of the trends 

only. In addition, as these early insights are based on data from the first half of 

2020 and a few isolated contexts, there is a significant gap in the literature in 

studying a more comprehensive period and a wider sample of cases. 
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• To the best of our knowledge, attempts to leverage the complementary role of 

AMIs on traditional ridership data have yet to be done (e.g., fill in temporal gaps 

in the data, identify supplementary information, etc.). 

To address these gaps, this study aims to conduct a comprehensive similarity 

evaluation between the changes reported by AMIs for PT demand and ridership data. 

Monthly ridership data from 12 cities worldwide from eight countries and daily ridership 

for three case studies (London, New York and Santiago de Chile) were used for the 

analysis. Similarity metrics assessed the agreement between AMIs and ridership data 

for the period 2020-2022. Seasonal ARIMAX models were also employed to test the 

capacity of AMIs to predict PT demand changes in periods where ridership data did 

not record the actual demand. The results of this study provide a more comprehensive 

understanding of similarities and differences between the two data sources and reveal 

the potential role of AMIs in PT demand characterisation, particularly in developing 

countries. 

The remainder of this paper is structured as follows. The methodology of this study is 

provided in Section 5.2, including a description of the data and a definition of the 

metrics used to measure the degree of similarity between ridership data and AMIs. 

Section 5.3 shows the results of the similarity comparison and Section 5.4 presents 

the complementarity analysis between AMIs and ridership data. Finally, the 

implications of the findings and future perspectives are discussed in Section 5.5. 

5.2 Methodology 

This study investigates the reliability of using aggregated mobility indices (AMIs) for 

inferring PT ridership changes. Figure 5-1 shows the methodological procedure 

followed in this study. First, we retrieved data on AMIs and ridership data between 

2020 and 2022 for several cities. Then, a common baseline was defined and adopted, 

allowing the comparison between data sets. AMIs and ridership were then analysed, 

and practical applications were explored. A detailed definition of each step is 

presented next. 

 

Figure 5-1. Methodological approach followed in this study. 
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5.2.1 Data 

Two AMIs that offered proxies for PT were retrieved to be tested in their alignment 

with ridership changes. We selected Google COVID-19 Community Mobility Reports 

(GCMR) and Apple Mobility Trends (AMTR) as they offered global coverage and the 

most prolonged availability (Apple, 2023; Google, 2023). Additionally, they present 

proxies for PT use based on different ICT sources: GCMR used GPS traces from 

smartphones, and AMTR employed the queries for PT made in the Maps application 

of Apple devices (a further description of these indices is provided in Section 5.1.2). 

In this work, we will use the term Human Mobility Index (HMI) to refer to the particular 

index in the GCMR that measured the changes in human mobility in PT hubs (train 

stations, bus stops, etc.). Analogously, we will use the term Apple Query Index (QI) to 

refer to the category of AMTR that compared the level of queries for PT directions in 

Apple Maps. Both indices were updated daily from 2020 to 2022. Specifically, HMI 

was provided from 15 February 2020 to 15 October 2022 and QI from 13 January 

2020 to 12 April 2022 (AMTR data for 11-12 May 2020, 12 March 2021 and 21 March 

2022 were unavailable). On the other hand, ridership data came from validations made 

by smart cards and paper or digital tickets and were directly retrieved from the official 

portals of several PT operators. The inclusion criteria for selecting an urban area as a 

case study considered the availability of ridership data and AMIs. A total of 12 different 

case studies were selected (considering a monthly temporal resolution of ridership), 

aiming to include different contexts and increase the generalization of the similarity 

assessment. In only three of them, daily ridership data were publicly available 

(London, New York and Santiago de Chile). Both, monthly and daily ridership data 

were used in the similarity analysis (See Table C-1). Table 5-1 specifies the case 

studies included in the analysis, indicating the availability of AMIs as well as the 

temporal and spatial resolution of the retrieved ridership data. This work employed 

publicly available data, whose use complied with the terms and conditions for each 

source. Further details of the terms and conditions can be found directly in the web 

pages of each source using the links provided in the Appendix (Table C-1). 

Table 5-1. Case studies for the comparison between AMIs and ridership data. 

Country City 
Ridership PT 

authority 
Google’s Index (HMI) 

Spatial definition 
Apple’s Index (QI) 
Spatial definition 

Case studies with daily ridership data 

U.K. London 
Transport for 
London (TfL) 

City of London/ 
Sub-region 2 

London/ 
City 

U.S. New York MTA New York 
New York County/ 

Sub-region 2 
New York/ 

City 

Chile Santiago 
Met. Public Transport 

Agency (DTPM) 
Santiago Province/ 

Sub-region 2 
- 
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Country City 
Ridership PT 

authority 
Google’s Index (HMI) 

Spatial definition 
Apple’s Index (QI) 
Spatial definition 

Case studies with monthly ridership data 

Australia Sydney Transport for NSW 
City of Sydney/ 
Sub-region 2 

Sydney/ 
City 

Canada Toronto 
Toronto Transit 

Commission 
Toronto/ 

Sub-region 2 
Toronto/ 

City 

Colombia Bogotá Transmilenio* 
Bogota/ 

Sub-region 1 
- 

U.S. Dallas 
Dallas Area Rapid 

Transit 
Dallas County/ 
Sub-region 2 

Dallas/ 
City 

U.S. Denver Regional Trip District 
Denver County/ 

Sub-region 2 
Denver/ 

City 

U.S. Salt Lake 
Utah Transit 

Authority 
Salt Lake County/ 

Sub-region 2 
Salt Lake/ 

City 

U.S. Chicago 
Chicago Transit 

Authority 
Cook County/ 
Sub-region 2 

Chicago/ 
City 

Taiwan Taipei Metro Taipei** - 
Taipei City/ 
Sub-region 

Hong Kong Hong Kong MTR Hong Kong** 
Hong Kong / Country-

region 
- 

* Only BRT ridership available. ** Only metro ridership available. 

 

5.2.2 Establishing a common definition 

To generate comparable datasets, a common basis for estimating mobility changes 

was adopted. This common basis was required due to differences in how AMIs were 

reported and the absolute nature of the ridership data (i.e. the total number of 

transactions), aspects that were ignored in early comparisons. The GCMR and AMTR 

reported daily relative changes by estimating the quotient between the mobility volume 

for a specific day and a baseline mobility volume defined for the pre-pandemic. The 

proportion obtained was reported as a percentage, and a positive value indicated the 

percentage of increase with respect to the baseline, while a negative one specified the 

degree of reduction. However, the baseline definition adopted by each index was 

different. As the QI employed as a baseline the number of queries of only one day, 

this index was more susceptible to high variability due to the lack of inclusion of weekly 

mobility cycles. In the case of ridership data, a normalisation of their values respecting 

a baseline was also required to obtain a relative scale. A review of the criteria 

employed in the literature for estimating relative changes with aggregate PT demand 

supported the baseline definition adopted by the HMI (Fernández Pozo et al., 2022; 

Jiang & Cai, 2022), and for this reason, it was employed as the consistent basis in the 

current paper. The definition includes the choice of a pre-COVID-19 period, the 

recognition of demand variability within the week and a way to deal with potential 

outliers. As no AMIs were available before 2020, using data from 2019 to describe the 
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pre-pandemic period was not possible. Both ridership data and the QI were adapted 

according to the HMI’s baseline definition. We present the details of the baseline 

definitions adopted for the case studies where daily ridership was available in Table 

5-2. Table 5-2 also explores the consistency of daily values for ridership and the QI in 

the baseline period. Coefficients of variation smaller than 6.0% were observed, 

revealing high stability in the mobility trends of the same days of the week for the 

period that characterised the pre-pandemic. It was interesting to observe also for this 

period that the QI depicted the highest demand for PT information on Fridays and 

Saturdays, contrasting with the typical daily variability of ridership data (see Figure C-

1). 

Table 5-2. Details of the common baseline adopted to estimate relative changes in 

ridership data and the QI. 

 
Apple’s Index1 (QI) Ridership Data 

London New York London New York Santiago 

Period data 
13 Jan 2020 to 12 

Apr 2022 

01 Jan 2020 to 

31 Oct 2022 

01 Mar 2020 to 

31 Oct 20222 

01 Jan 2020 to 31 

Oct 2022 

Baseline definition (pre-pandemic) 

Original 

reported 

values 

AMTR 

Recorded 

subway and bus 

ridership, 

nominal values 

Recorded 

subway and bus 

ridership, 

nominal values 

Recorded subway 

and bus ridership, 

nominal values. 

Common 

baseline 

definition 

applied 

The median value for 

each day of the week 

over the three weeks 

between 13 January 

and 2 February 2020 

The median 

value for each 

day of the week 

over the five 

weeks between 

3 January and 6 

February 2020 

Average value 

for January 2020 

for weekdays, 

Saturday and 

Sunday 

The median value 

for each day of 

the week over the 

five weeks 

between 3 

January and 6 

February 2020 

Consistency of baseline values 

C
o

e
ff

. 
V

a
r.

 b
a
s
e

lin
e
 

v
a

lu
e
s
 

Mon 1.7% 5.5% 3.9% - 1.9% 

Tue 1.8% 1.4% 3.3% - 2.3% 

Wed 2.2% 2.3% 2.7% - 4.6% 

Thu 2.4% 2.4% 2.3% - 4.3% 

Fri 3.2% 2.6% 1.0% - 4.8% 

Sat 1.4% 3.2% 6.2% - 5.0% 

Sun 2.9% 4.9% 5.0% - 5.0% 

1 The category of PT of the AMTR was not available for Santiago de Chile. 2 No bus ridership 

data collected directly from a smart card or ticketing validation was available between 1 Mar 

and 30 Sep 2020. 
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The expressions used to apply the common basis on ridership data and the QI are 

presented in Equation (5-1) and Equation (5-2). We call these new indices relative 

ridership change index (RRC) and Apple query modified Index (QMI). The RRC at a 

time 𝑡 (𝑅𝑅𝐶𝑡) was defined as follows: 

𝑅𝑅𝐶𝑡 = (
𝑟𝑡

𝑅𝑓(𝑡)
− 1) ∙ 100 (5-1) 

Where 𝑟𝑡 is the ridership on day 𝑡 (𝑡=1, 2, …, T) and 𝑅𝑓(𝑡) is the baseline ridership for 

each day of week 𝑓, whose value in Equation (5-1) depends on the day of the week 

corresponding to 𝑡. If both 𝑟𝑡 and its corresponding 𝑅𝑓(𝑡) were the same, the quotient 

is one and the 𝑅𝑅𝐶𝑡 is equal to zero (i.e. 0% change). The RRC takes a negative value 

if the ridership in the time 𝑡 is smaller than the one existing in the baseline period for 

the corresponding day of the week. For instance, if the ridership were half compared 

with the baseline value, the index would be equal to -50 (%). The same  interpretation 

apply for the HMI. In the case of New York, daily ridership was not available for 

January. Therefore, we use the reported average value of ridership for weekdays, 

Saturdays and Sundays during January 2020 as baseline values. To estimate RRC 

for the case studies where only monthly ridership was available, we first estimated the 

average daily ridership for each month, dividing monthly ridership by the number of 

days of each month. Then, the RRC was estimated analogously, employing the 

average daily ridership of January 2020 as a baseline value. 

In the case of the QI, its original values were reported as percentage changes relative 

to one particular day. Apple provided these values on a base of 100, assigning a value 

of zero to the QI of 13 January 2020. Then a value of 5.0 would indicate that for a 

particular day, the number of queries was five percent higher than the base day. The 

adoption of the common baseline for estimating relative changes for this index was 

addressed by proposing the Apple’s query modified index (QMI): 

𝑄𝑀𝐼𝑡 = (
𝑄𝐼𝑡 + 100

𝑄𝐼𝐵𝑓(𝑡) + 100
− 1) ∙ 100 (5-2) 

Where 𝑄𝐼𝑡 is the Apple’s query index on day 𝑡 (𝑡=1, 2, …, T) and 𝑄𝐼𝐵𝑓(𝑡) is the Apple’s 

query index baseline for each day of the week 𝑓, whose value in Equation (5-2) 

depends on the day of the week corresponding to 𝑡. Each 𝑄𝐼𝐵 was estimated as the 

median 𝑄𝐼 value for the same day over the three weeks between 13 January and 2 

February 2020 (as there were no earlier values). In this way, the QMI overcomes the 

original limitation of the QI, comparing query levels of the same days of the week and 

controlling for outliers if they were present. The QMI shares the same interpretation 

with HMI and RRC. Monthly QMI and HMI were obtained by averaging their daily 

values for each month.  
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5.2.3 Similarity assessment  

The degree of similarity between the values reported by AMIs (HMI and QMI) and 

RRC was assessed by applying metrics under a time series approach. For the monthly 

analysis, we included the mean Euclidean distance (MED), the cosine distance (COS) 

and a trend similarity index (STI). The Dynamic Time Warping distance (DTW) and 

the Granger Causality test were included for the daily similarity analysis where a higher 

granularity in the data was available. The MED is recommended when a 

straightforward interpretation of the differences is required. In our case, as the time 

series values are all relative changes (%), the MED interpretation is the average 

distance in percentage points between the relative change reported by the AMIs (HMI 

or QMI) and RRC. The COS is a similarity measurement between two vectors defined 

in an inner product space (Han et al., 2011). Their values are always between -1 and 

1, where 1 means perfect alignment and -1 indicates the opposite. DTW is an 

alignment-based metric that estimates the Euclidean distance between two time series 

that may not be aligned (Han et al., 2011). We included DTW for the daily analysis to 

deal with potential shifts in the times series, particularly present in the QMI. The 

Granger Causality test determined whether AMIs could be used to forecast the RRC 

values (Eichler, 2012). This statistical hypothesis test uses Student’s statistic and F-

statistic tests to determine whether values of a certain variable provide statistically 

significant information about the values of Y. The trend similarity index (STI) was 

estimated as the proportion of slopes with the same sign for the same pair of 

consecutive months/days between the RRC and AMIs. The sign of the slopes for two 

consecutive times was obtained by observing the direction of the change between the 

values of each index. The STI between RRC and an AMI (HMI or QMI) was defined 

as: 

𝑆𝑇𝐼𝑅𝑅𝐶,𝐴𝑀𝐼 =
∑ 𝑠𝑡

𝑅𝑅𝐶,𝐴𝑀𝐼
𝑡

𝑇 − 1
 

(5-3) 

𝑠𝑡
𝑅𝑅𝐶,𝐴𝑀𝐼 = {

1,  Δ𝑅𝑅𝐶𝑡,𝑡+1 ⋅ Δ𝐴𝑀𝐼𝑡,𝑡+1 ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5-4) 

Where Δ indicate the difference between two consecutives values for the respective 

index, and T is the length of the time series. STI metric ranges between 0 and 1, where 

the value one means that the AMI replicated exactly the same direction of change of 

the RRC and zero the case of a complete disagreement. 
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5.2.4 Complementary role of AMIs 

We also explore the complementary role of AMIs in contexts where ridership data did 

not capture the actual PT demand and on atypical days where mobility demand was 

extraordinarily high. Hence, the next situations helped illustrate the role that AMIs may 

play in complementing ridership data: 

• Free bus travel period in London during the pandemic outbreak: From 20 April 

to 30 May 2020, Transport for London introduced middle/rear-door-only 

boarding in bus services to take care of drivers. AMIs were used here to reveal 

an approximation of the actual PT demand in this period where ridership was 

under-reported. 

• Partial ridership data in New York MTA: No bus ridership data collected directly 

from a smart card or ticketing validation was available for the New York MTA 

between 1 March and 30 September 2020. Using AMIs, an approximation of 

the actual RRC in this period was estimated. 

• High mobility demand day for Santiago:  The day of the national referendum in 

Chile (Sunday, 4 September 2022) was marked by an extraordinarily high 

mobility, resulting in the highest recorded RRC for Santiago in the study period. 

We assessed the discrepancies between the predicted RRC (based on the 

AMIs) and the recorded RRC. 

Autoregressive Integrated Moving Average (ARIMA) models were employed to 

calibrate the relationship between the recorded RRC and the AMIs. For this, we 

selected the AMI that exhibited the highest similarity with RRC, while the calibration 

was made on periods with the most stable conditions available. ARIMA models are 

particularly efficient and appropriate when successive observations show serial 

dependence (e.g. in this case, daily observations), and therefore, the assumption of 

independent errors typically made for cross-section regression data is violated. At the 

same time, this modelling approach allows testing whether the AMI contribution to 

explain RRC is statistically significant. As a weekly periodicity was also found in the 

descriptive analysis (see Figure C-2), an appropriate model specification may 

consider both, daily and weekly autocorrelation. To consider both correlations, a 

multiplicative seasonal ARIMA model is specified, where one component (𝑝, 𝑑, 𝑞) 

captures the daily correlation, and a second component (𝑃, 𝐷, 𝑄) explains the weekly 

correlation in the data. If 𝑠 is the seasonal period of the time series (considering weekly 

seasonality 𝑠=7), then the seasonal ARIMAX (𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄)[𝑠] (Montgomery et 

al., 2015) can be written as follow: 

Φ𝑃
∗ (𝐿𝑠)Φ𝑝(𝐿)(1 − 𝐿𝑠)𝐷(1 − 𝐿)𝑑𝑦𝑡 = 𝜇 + Θ𝑄

∗ (𝐿𝑠)Θ𝑞(𝐿)𝜀𝑡 + 𝜔𝐴𝑀𝐼𝑡 (5-5) 
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where 𝑦𝑡 is the value of the 𝑅𝑅𝐶 time series for the time 𝑡. 𝜀𝑡 is the white noise process 

(i.e. random error, i.i.d. Gaussian (0, 𝜎𝜀
2)) and 𝐿 is the backshift or Lag operator, 

defined as 𝐿𝑦𝑡 = 𝑦𝑡−1. 𝑑 represents the differences that can be applied on the 

dependent variable to obtain a stationary time series for the non-seasonal model. 

Φ𝑝(𝐿) is the polynomial of order 𝑝 that contains the marginal contribution of the auto-

regressive (AR) component and Θ𝑞(𝐿) the polynomial of order 𝑞 of the moving average 

(MA). Φ𝑃
∗ (𝐿𝑠) is the operator of the seasonal AR component with order 𝑃, 𝐷 is the 

seasonal differences number and Θ𝑄
∗ (𝐿𝑠) is the operator for the seasonal MA with 

order 𝑄. Note that we have added in the last term of Equation (5-5) the AMI, which is 

an exogenous variable in the modelling with coefficient 𝜔. 

 

5.3 Exploratory analysis 

5.3.1 Monthly analysis 

A monthly analysis of 12 cities worldwide from eight countries showed that HMI and 

QMI were capable of replicating the RRC with different degrees of accuracy. Figure 

5-2 presents the monthly variability of each index for the entire study period per case 

study, while Table 5-3 presents the results for the similarity metrics. Overall, AMIs 

correctly mimicked the main direction of changes depicted by RRC. In all the cases 

considered, AMIs properly replicated the drop in PT demand during the pandemic 

outbreak. However, in most cases, AMIs reported higher PT demand recoveries than 

the RRC. The average MED for the HMI and QMI were 11.9 and 11.6 for 2020 and 

14.4 and 26.6 percentage points for the entire period, respectively. Cities like London 

and Sydney exhibited the greatest match between HMI and RRC, with small MED 

obtained (5.1 and 4.0). However, common MED were between 10 and 20 percentage 

points for most studied cases. Regarding the QMI, this index exhibited a similar 

adjustment to HMI until April 2021. After this date, QMI showed a general increase 

until August 2021, when the index stabilised around 60 percentage points above RRC 

values. The Similarity Trend Index (STI) ranged from 0.71 to 0.94 for the HMI and 0.73 

to 0.92 for the QMI, revealing a high capability to replicate the direction of change of 

the monthly ridership trends by the AMIs. The cosine distance values supported these 

results showing magnitudes that indicate high similarity. Case studies where only 

partial ridership information was retrieved showed higher differences compared with 

the general trends. For instance, the greatest difference between HMI and RRC was 

observed in Bogota. This may be explained as ridership data for Bogota only describes 

the BRT system's demand and does not consider the local bus system. Moreover, 

contrary to the remaining case studies, AMIs in Taipei and Hong Kong reported lower 
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PT demand recovery than the RRC. This difference may be explained by considering 

that only metro ridership was available for these two cities. 

 

Figure 5-2. Average monthly changes in HMI (orange), QMI (green), and RRC 

(blue). Centre of the graphic indicates -100% change, central grid circumference 0% 

change and external grid circumference +60% change (all compared with baseline 

values). Data from February 2020 to October 2022 (for some case studies, available 

ridership data end in July 2022). 
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Table 5-3. Monthly similarity metrics between AMIs and RRC. 

Google’s human mobility index (HMI) 

 MED STI COS 

Location All years 2020 2021 2022 All years All years 

London 5.8 ●●● 8.3 ●●● 3.0 ●●● 6.5 ●●● 0.87 ▲▲△ 0.99 ▲▲▲ 

New York 9.2 ●●● 12.5 ●●○ 8.2 ●●● 7.0 ●●● 0.93 ▲▲▲ 0.99 ▲▲▲ 

Santiago 18.1 ●●○ 14.2 ●●○ 18.6 ●●○ 21.8 ●●○ 0.90 ▲▲▲ 0.94 ▲▲▲ 

Sydney 4.1 ●●● 5.3 ●●● 4.3 ●●● 2.1 ●●● 0.94 ▲▲▲ 0.99 ▲▲▲ 

Toronto 10.1 ●●○ 13.9 ●●○ 8.1 ●●● 8.1 ●●● 0.90 ▲▲▲ 0.99 ▲▲▲ 

Bogota 35.2 ●○○ 14.6 ●●○ 43.0 ●○○ 49.8 ●○○ 0.84 ▲▲△ 0.52 ▲△△ 

Dallas 13.4 ●●○ 13.2 ●●○ 16.7 ●●○ 9.4 ●●● 0.71 ▲△△ 0.99 ▲▲▲ 

Denver 18.1 ●●○ 10.3 ●●○ 23.9 ●●○ 20.0 ●●○ 0.77 ▲△△ 0.96 ▲▲▲ 

Salt Lake 15.7 ●●○ 12.4 ●●○ 21.4 ●●○ 12.2 ●●○ 0.71 ▲△△ 0.97 ▲▲▲ 

Chicago 18.0 ●●○ 18.8 ●●○ 20.3 ●●○ 13.8 ●●○ 0.90 ▲▲▲ 0.99 ▲▲▲ 

Taipei - - - - - - 

Hong Kong 10.3 ●●○ 7.4 ●●● 11.9 ●●○ 11.8 ●●○ 0.94 ▲▲▲ 0.81 ▲▲▲ 

Average 14.4 11.9 16.3 14.8 0.86 0.92 

Std. Deviation 8.1 3.6 10.8 12.4 0.08 0.14 

Median 13.4 12.5 16.7 11.9 0.90 0.99 

Apple query modified index (QMI) 

 MED STI COS 

Locations All years 2020 2021 2022 All years All years 

London 36.2 ●○○ 13.4 ●●○ 44.6 ●○○ 73.3 ●○○ 0.81 ▲▲△ 0.61 ▲△△ 

New York 37.6 ●○○ 14.8 ●●○ 47.7 ●○○ 64.3 ●○○ 0.88 ▲▲△ 0.67 ▲△△ 

Santiago - - - - - - 

Sydney 11.2 ●●○ 2.8 ●●● 10.9 ●●○ 35.3 ●○○ 0.81 ▲▲△ 0.96 ▲▲▲ 

Toronto 28.4 ●○○ 13.1 ●●○ 33.3 ●○○ 56.0 ●○○ 0.88 ▲▲△ 0.83 ▲▲△ 

Bogota - - - - - - 

Dallas 18.6 ●●○ 10.1 ●●○ 19.9 ●●○ 38.0 ●○○ 0.77 ▲△△ 0.90 ▲▲▲ 

Denver 27.0 ●○○ 12.1 ●●○ 33.5 ●○○ 48.1 ●○○ 0.92 ▲▲▲ 0.83 ▲▲△ 

Salt Lake 30.1●○○ 12.0 ●●○ 35.3 ●○○ 64.6 ●○○ 0.73 ▲△△ 0.67 ▲△△ 

Chicago 33.5 ●○○ 7.6 ●●● 47.1 ●○○ 64.2 ●○○ 0.85 ▲▲△ 0.66 ▲△△ 

Taipei 16.8 ●●○ 18.7 ●●○ 13.5 ●●○ 14.4 ●●○ 0.85 ▲▲△ 0.91 ▲▲▲ 

Hong Kong - - - - - - 

Average 26.6 11.6 31.8 50.9 0.83 0.78 

Std. Deviation 8.7 4.2 13.3 17.7 0.06 0.12 

Median 28.4 12.1 33.5 56.0 0.85 0.83 

AMIs: aggregate mobility indices, RRC: ridership relative change index, MED: mean Euclidean 

distance, STI: similarity trend index, COS: the cosine distance. ●●●: MED ≤ 10, ●●○: 10<MED 

≤25, ●○○: MED>25. ▲▲▲: STI/COS ≥ 0.90, ▲▲△: 0.90>STI/COS≥0.80, ▲△△: STI/COS 

<0.80. 
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5.3.2 Daily analysis 

The daily analysis compared HMI and QMI with RRC for the cities of London, New 

York and Santiago. Figure 5-3 provides a graphical illustration of the aggregate PT 

demand shifts depicted by each index. The HMI was found to match surprisingly well 

with the daily RRC time series. At the same time, the QMI displayed a reasonable fit 

in terms of the magnitude of the PT demand recovery until the first half of 2021. For 

that period, the main trends of peaks and troughs of the RRC time series were also 

depicted appropriately by HMI and QMI, including short sharp reductions during 

holidays. A particular concurrence of the values of all indices was observed during the 

periods where the stricter mobility restrictions were in place (pandemic outbreak and 

from November 2020 to February 2021). 

To identify changes in the pattern of the dissimilarity between the AMIs and RRC, 

Figure 5-3 also presents the differences between them for each day. A positive 

distance indicates that the AMIs observed a lower relative drop or a higher relative 

increase than the RRC. The difference between HMI and the RRC showed relatively 

constant values, whilst the difference between QMI and the RRC exhibited greater 

variability. In general, mostly positive differences were observed, except for London, 

where the HMI generated negative differences from May 2021 onwards. This situation 

coincides with changes in the fare scheme for children, which involved removing free 

travel for some ages. The highest dissimilarities in the London case between HMI and 

RRC were observed from April to May 2020, when mandatory payments in London’s 

buses were suspended. In the case of New York, a change in the trend of the 

differences was observed during the first half of 2020, where RRC was represented 

only by the subway ridership. In the case of Santiago, the most remarkable observed 

differences were associated with sharp peaks in the HMI during special events (e.g. 

national elections and referenda). For the QMI, the highest differences with the RRC 

were observed during the first recovery period (June to November 2020) and during 

the second recovery (April 2021 onwards, where QMI was considerably higher). A 

ratio of increase in the number of PT queries greater than the recovery in the actual 

ridership during the first half of 2021, when many restrictions were eased, would 

explain these discrepancies. This interpretation is supported by the results of Sydney 

(see Figure 5-2), where its QMI experienced a similar increase when a similar ease 

of mobility restrictions started in that city at the end of 2021. 

 



170 
 

 

Figure 5-3. Daily variation of PT mobility indices. HMI, QMI and RRC for the case 

studies of London, New York and Santiago. 
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Table 5-4. Similarity metrics between AMIs and RRC, daily analysis. 

Period 

Similarity 

Index 

Google’ human mobility Index (HMI) Query modified index (QMI) 

London New York Santiago London New York 

Distance between AMIs and RRC (in percentage points) 

All Mean 

Euclidian 

distance 

(MED) 

6.2 9.1 18.2 35.7 36.1 

2020 8.8 12.0 14.7 13.6 14.5 

2021 3.5 8.2 18.6 44.9 47.9 

2022 6.6 7.1 21.2 72.0 61.9 

Dynamic Time Warping distance (DTW) 

All 

DTW 

5.0 5.8 9.6 24.5 24.2 

2020 4.7 5.2 6.6 7.4 6.3 

2021 3.8 6.1 9.4 30.5 24.2 

2022 6.9 6.4 16.8 64.6 60.3 

All 
MED Std. 

Dev. 

5.8 4.5 5.7 28.5 25.2 

MED 

Weekdays 

5.8 8.3 17.5 37.3 36.5 

MED 

Weekends 

7.1 11.2 20.1 31.6 35.2 

Similarity Trend Index (STI) 

All 

STI 

0.80 0.83 0.75 0.61 0.73 

2020 0.80 0.82 0.68 0.59 0.70 

2021 0.77 0.83 0.76 0.63 0.73 

2022 0.85 0.83 0.83 0.54 0.74 

Cosine distance (COS) 

All 

COS 

0.99 0.99 0.94 0.62 0.69 

2020 0.99 0.99 0.99 0.98 0.99 

2021 0.99 0.99 0.94 0.37 0.30 

2022 0.98 0.99 0.81 -0.78 -0.55 

Granger Causality Test 

2020-

2022 

Test F 4.8 11.5 19.4 44.8 45.6 

p-value 0.03 <0.01 <0.01 <0.01 <0.01 

 

Similarity metrics presented in Table 5-4 support the descriptive analysis based on 

Figure 5-3. Considering the entire period, the MED for the HMI were 6.2, 9.1 and 18.2 

for London, New York and Santiago, respectively. In the same order, standard 

deviation values of 5.8, 4.5 and 5.7 were calculated, indicating consistency among the 

case studies in terms of the differences between the HMI and the RRC. For each case 

study, the MED of HMI was seen to be relatively constant across the three years, 

showing great stability in its capabilities of replicating the changes reported by 

ridership data. In the case of the QMI, an overall MED of 35 percentage points was 

estimated for London and New York. Contrasting with the HMI results, the QMI 

showed an increasing difference along the time series with the RRC. Moreover, the 
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standard deviation of the MED of QMI ranged from 26 to 28 percentage points, 

considerably higher than the one estimated for HMI. The analysis based on the DTW 

distance offered a similar interpretation for the AMIs. The Similarity Trend Index (STI) 

showed that the HMI replicated correctly between 75% and 85% of the RRC trend 

change directions; in the case of the QMI, the STI dropped to values from 54% to 74%. 

This may be explained considering that RRC and HMI depicted higher PT demand 

recovery on weekends, while QMI reported greater values on Fridays and Saturdays 

(see Figure C-2). The cosine distance indicated that QMI only presented a high 

similarity with RRC during 2020 and the Granger Causality Test indicated that both 

HMI and QMI could be used to predict RRC. 

 

5.4 Modelling results 

Based on the results of the similarity analysis, the HMI was selected as the best 

candidate for exploring the capability of AMIs to complement ridership data. Seasonal 

ARIMAX models were used to calibrate the relationship between HMI and RRC and 

then to forecast RRC for three particular cases (which have already been described 

in detail in section 5.3.4): a free bus travel period in London, a partial ridership data 

period in New York (both during the first half of 2020), and the day with the highest 

recorded RRC in Santiago during late 2022. A seasonal component of seven days 

was considered as the correlograms of the time series identified weekly periodicity. 

The periods used to fit and validate the models were selected considering the nearest 

interval to the research periods with homogeneous differences between the HMI and 

RRC. Two models were fitted for London, one with data located before the research 

period and a second with data after it. For fitting and validation purposes, the selected 

data were split into two segments considering a proportion 5:1. Details of the fitting, 

validation and research periods, as well as the modelling results, are shown in Table 

5-5. 
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Table 5-5. Seasonal ARIMAX time series modelling results. 

 London New York Santiago 

Period details 

Forecasting backward forward backward forward 

Fitting period 
01 Dec 2020 to 
30 Sep 2021 

15 Feb to 07 April 
2020 

01 Dec 2020 to 30 
Sep 2021 

10 Mar to 10 Aug 
2022 

Validation period 
01 Oct 2020 to 30 

Nov 2020 
08-14 April 2020 

01 Oct 2020 to 30 
Nov 2020 

11 Aug to 03 Sep - 
05 Sep to 11 Sep 

2022 

Research  period 
15 April to 30 Sep 

2020 
15 April to 30 

Sep 2020 
01 March to 30 Sep 

2020 
04 Sep 2022 

Modelling results 

Variable Coef (t-stat) Coef (t-stat) Coef (t-stat) Coef (t-stat) 

Exogenous variable – Google human mobility Index (HMI) 

HMI (𝛚) 1.15 (54.25) 1.12 (64.86) 0.97 (57.26) 1.14 (51.14) 

Model specification 

(𝒑, 𝒅, 𝒒)(𝑷, 𝑫, 𝑸) (1,0,1)(1,1,1) (1,0,0)(1,0,0) (1,0,2)(1,0,1) (1,1,1)(2,0,0) 

Non-Seasonal Component (𝑝, 𝑑, 𝑞) 

Intercept (𝝁) - -0.52 (0.40) -9.31 (2.29) - 

AR1 (𝝓𝟏) 0.84 (15.21) 0.64 (5.80) 0.96 (43.43) 0.24 (2.28) 

MA1 (𝜽𝟏) -0.38 (4.22) - -0.40 (6.47) 0.89 (15.41) 

MA2 (𝜽𝟐) - - -0.22 (3.82) - 

Seasonal Component [s=7] (𝑃, 𝐷, 𝑄) 

SAR1 (𝝓𝟏
∗ ) 0.23 (3.02) 0.27 (1.98) 0.99 (204.37) 0.27 (3.26) 

SAR2 (𝝓𝟐
∗ ) - - - 0.23 (2.98) 

SMA1 (𝜽𝟏
∗ ) -0.87 (22.28) - -0.88 (23.67) - 

Goodness-of-fit 

LL -506.67 -101.2 -496.62 -358.02 

AIC 1025.13 210.4 1009.24 728.03 

BIC 1047.3 218.28 1038.98 746.22 

Residuals – Fitting sample 

Ljung-Box (p-value) 0.51 0.79 0.56 0.45 

MED 0.96 1.31 0.90 1.72 

RMSE 1.30 1.62 1.21 2.48 

Mean Error 0.04 -0.04 0.02 0.2 

Residuals –Validation (out-of-sample data) 

MED 0.97 1.19 1.02 2.08 

RMSE 1.30 1.46 1.37 2.55 

Mean Error 0.50 0.37 0.82 -0.63 
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The results highlighted the statistical significance of the HMI in the model estimation 

of RRC (t-statistic higher than 50.0), whose relationship with the actual RRC (𝜔) was 

estimated between 0.97 and 1.15. Both, the non-seasonal (daily correlation) and the 

seasonal (weekly correlation) components were statistically significant in the 

modelling. In the non-seasonal component, coefficients 𝜙 of the Autoregressive model 

(AR) were significant in the first order (𝑝=1). This means that the RRC on a day before 

(𝑡-1) only was relevant to explain the RRC value of the next observation (𝑡). AR 

coefficients were all positive, ranging from 0.24 to 0.96. In the case of the Moving 

Average (MA) coefficients (𝜃), those associated with the MA of orders 1 and 2 were 

statistically significant. This implies the prediction benefited from correcting the error 

term of the lagged RRC prediction 𝑡-1 and 𝑡-2. Analogous results were observed for 

the seasonal component but related to observations of consecutive weeks (e.g. 𝜙1
∗ 

indicates a statistically significant effect of the RRC value of the previous week to the 

prediction of RRC of the next, considering the same day). The residual of the fitted 

models satisfied white noise properties, i.e. no evidence of autocorrelation was found, 

and the p-values of the Ljung-Box statistical test were all greater than 0.05. Results 

indicate an exceptional capability of the models to replicate recorded RRC using the 

HMI. RMSE values in the fitting stage fluctuated between 1.21 and 2.48 only, while 

MED ranged between 0.90 and 1.72 percentage points. Moreover, the quality of the 

predictions for the validation data was as high as the fitting stage, also obtaining 

remarkable goodness of fit. Once the models were validated, we employed them to 

predict RRC values on previously defined research periods. 

 

5.4.1 London case study 

The fitted and forecasted RRC for the London case study are shown in Figure 5-4. 

Modelling results suggest a substantial under-reporting in ridership due to the free-

bus policy enacted from 20 April to 24 May 2022 (see Figure 5-4B). The difference 

between recorded and predicted RRC was at least 20 percentage points when the 

free-bus trip policy started on 20 April 2020. The predicted RRC (using forward and 

backward forecasting) coincided with the under-reporting magnitude, showing only 

that the forward forecasting generate a slightly more conservative prediction of the 

RRC. Predicted RRC suggested that the actual PT demand started to recover at the 

end of April 2020, not at the end of May, as the recorded RRC shows. Thereby, the 

dissimilarity between recorded and predicted RRC increased as PT demand started a 

slow and gradual recovery that ridership data did not take into account. The results 

also revealed that even when the free-bus policy finished on 24 May, the under-

reporting in ridership continued for several months, gradually decreasing. In fact, 
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according to Figure 5-4B it took at least two months after the end of the free bus policy 

to observe the unification between the recorded and predicted RRC. This finding 

revealed a gradual adaptation process of PT users to return to normal payment 

behaviour after experiencing a free bus ride policy, which ridership data was unable 

to observe. 

 

Figure 5-4. Predicted RRC using calibrated HMI for London. (A) Results for the 

fitting and validation period, (B) Forecasting for the research period (95% confidence 

intervals). 

5.4.2 New York case study 

Graphical results for the New York case study are provided in Figure 5-5. Here, using 

HMI, it was possible to obtain an approximation of the actual ridership change in the 

city during the research period (see Figure 5-5B). To understand these results, two 

facts may be recalled from the New York data description: a) recorded RRC from 1 

March to 30 September 2020 are based only on subway validations, and b) data from 

1 October onward contain both bus and subway ridership data. Thereby, as the 

calibration between RRC-HMI is made when the complete data are available, the 

predicted RRC illustrates an approximation of the actual ridership in the New York 

MTA, as both bus and subway ridership would have been available. The results 

suggest that the actual changes in ridership in the system were lower in magnitude 

than the only-subway changes. Therefore, bus ridership should have experienced 



176 
 

lower changes than the subway during the research period. In fact, the estimation 

showed that bus ridership was, on average, about 20 percentage points above the 

recorded relative subway changes for the period. It is interesting to notice that, as the 

predicted RRC is depicted below the recorded RRC on the first weeks of March 2020, 

the backward forecasting of RRC should be seen as a conservative approximation of 

the true RRC in terms of actual ridership recovery. 

 

Figure 5-5. Predicted RRC using calibrated HMI for New York. (A) Results for the 

fitting and validation period, (B) Forecasting for the research period (95% confidence 

intervals). 

5.4.3 Santiago case study 

Fitted and forecasted RRC for the Santiago case study are presented in Figure 5-6A, 

while Figure 5-6B zooms in on a fraction of the validation period. The results of the 

RRC prediction for the Chilean national referendum on 4 September 2022 showed 

that the HMI overestimated the recorded RRC (30.2% vs. 17.2%, see Figure 5-6B). 

This difference was much higher than any other prediction error observed in the 

validation period, suggesting that the reason for that difference was an exceptional 

overestimation in the mobility on PT hubs registered by the HMI. Several elements 

that may have influenced the overestimation in the predicted RRC are hypothesised, 

related mainly to the nature of the HMI. For instance, a high HMI value may be 

associated with an increment in the time spent in PT stations due to higher waiting 
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times of PT users caused by either a high demand or a limited PT supply. In fact, on 

19 December 2021 (also an election day), Santiago’s PT supply was severely 

criticised for the lack of bus services, low frequencies and unusually long waiting times. 

Interestingly, that day Santiago’s HMI exhibited its highest value (57.1%) and highest 

difference with the RRC. An additional feasible cause of the HMI overestimation is 

linked to the exceptional nature of a national referendum, which involved millions of 

people travelling to their assigned locations. This generalised and exceptional number 

of people on the street may have affected the MI, for instance, by increasing 

pedestrian activity near PT hubs. In consequence, even when HMI successfully 

predicted RRC on regular days (including public holidays), it may be susceptible to 

registering higher mobility levels than the actual ridership on days with exceptional 

mobility. 

 

Figure 5-6. Predicted RRC using calibrated HMI for Santiago. (A) Results for the 

fitting and validation period, (B) Forecasting for the research period (95% confidence 

intervals). 

5.5 Concluding discussion 

Despite the extended use of aggregated mobility indices (AMIs) as proxy for the 

aggregate shifts in PT demand in the last years, existing research is inconclusive as 

to what extent they could replicate the changes recorded by actual PT ridership. The 

results reported here provide the first rigorous assessment of the capabilities of such 
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indices to reproduce actual aggregate shifts in PT demand. We conducted such 

assessment addressing the gaps of previous studies by: 1) establishing a common 

methodological approach for estimating relative mobility changes with different data 

sources, 2) considering a larger number of case studies and analysing differences in 

a more comprehensive study period and 3) exploring the complementary role of AMIs 

with ridership data. We summarise the result of their performance as follows: 

Difference in relative changes between AMIs and ridership data (RRC): AMIs correctly 

captured the main changes in ridership levels, particularly for the first year of analysis 

(2020). When compared with ridership data, averages monthly differences of only 11.9 

± 3.6 and 11.6 ± 4.2 percentage points were found for the relative changes provided 

by Google (HMI) and Apple’s Index (QMI) during 2020, respectively. While considering 

the daily analysis, average differences between 8.8 and 14.5 percentage points were 

observed. Even though these results suggest that AMIs tend to overestimate relative 

changes compared with ridership data, they greatly differ from previous studies, which 

reported differences between 30 to 50 percentage points for the same period (Jenelius 

& Cebecauer, 2020; Wang & Noland, 2021; Fernández Pozo et al., 2022). The fact 

that previous studies have overlooked methodological differences between ridership 

data and AMIs in terms of their collection and definition would explain these 

discrepancies. For the following years, HMI kept a similar performance for all the study 

period, whilst QMI showed a substantial overestimation from April 2021.  

Accuracy in replicating the direction of change of ridership: The metric varied 

depending on the temporal granularity of the analysis. Based on the monthly similarity 

assessment, HMI and QMI correctly replicated as high as 85% of the direction 

changes. In the daily analysis, only the HMI kept a similar performance; QMI achieved 

slightly worse (61% to 73% overall). This difference in the QMI performance for the 

daily analysis has its root in the higher level of recovery in the number of PT queries 

on Fridays and Saturdays, which contrasts with the patterns recorded by ridership and 

HMI, which revealed higher recoveries on Saturdays and Sundays (See Figure C-2).  

Overall consistency: Strong evidence was found supporting a better performance of 

HMI relative to QMI. HMI showed a lower and more consistent mean distance with the 

changes reported by ridership data across the entire study period and a higher 

capability to replicate the direction of ridership change (between 10 and 20 percentage 

points more accurate). Additionally, the difference QMI-RRC presented five times the 

deviation observed between HMI-RRC. All these findings may imply that indices based 

on PT queries would be more prone to generate higher deviation and less accuracy in 

replicating ridership changes than GPS-based indices, particularly if extended periods 

are considered. 
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Different degrees of similarity were observed between the values of HMI and RRC 

among the case studies, with Sydney and London being the two cities where the 

highest similarities were found. We hypothesize that the definition of bus stop areas, 

fare evasion, coverage of PT services integrated into the AFC system and the variation 

in the PT infrastructure across the study period may have influenced how well HMI 

mimicked RRC. For instance, in the cases of London and Sydney, having well-

established bus stop areas may have increased HMI’s accuracy in accounting for 

changes in PT usage. Similarly, lower fare evasion and higher coverage of PT services 

in these two cities may have facilitated that ridership data reproduced the actual 

changes in the entire PT network. In contrast, for cities where only partial ridership 

was available (i.e. not all PT modes), the observed differences were higher (e.g. the 

Bogota case) or the differences observed followed different trends compared with 

other cases (e.g. Hong Kong). Since the characteristics and their effects discussed 

here remain speculative, further supplementary data collection efforts should be made 

to establish ground truth associations. 

The overestimation in the QMI compared with the recovery in the actual ridership was 

observed for most of the cities analysed from April 2021, in moments when mobility 

restrictions were being eased. The reasons for this overestimation were likely the 

addition of the PT queries made by the new Apple Map app’s users and the changes 

in the users’ use behaviour of the Apple Map app. In particular, in this period users 

may have had a greater need for information on changes made to PT frequencies and 

services, which may have elevated the number of PT queries. These circumstances 

may have caused the increase observed in the QMI values immediately after the lifting 

of travel restrictions since this index was estimated considering a pre-COVID-19 

baseline (which implicitly considers a pre-COVID-19 number of users and PT query 

behaviour). Hence, addressing the natural increase in the penetration of certain 

technology on which a QMI may be based, as well as the changes in the trend, may 

be relevant for future practical applications based on query data. This would improve 

the reliability of query indices for mid- and long-term analyses, especially when fixed 

baseline periods are considered. Conversely to the QMI, the HMI did not show 

evidence of an increasing overestimation trend over time. It is speculated that the 

consideration of daily profiles for users, the inclusion of bounds on how much each 

unique location history user could contribute to each of the seven place categories 

and the utilisation of scaling factors to improve the accuracy of its metrics over time 

(Aktay et al., 2020; Sulyok & Walker, 2020) may have helped to normalise the HMI 

over time. Contrasting to the provider of the QMI, the HMI also may have benefited 

from the broader penetration of Google’s extensive suite of apps and services among 

smartphones, which are widely used in Android and iOS. This may have also helped 
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to prevent observing a substantial number of new users that could have affected the 

index as occurred with the QMI index. 

Although both the HMI and QMI were accessible in numerous countries, several 

limitations regarding their availability should be noted. The HMI of Google was 

available in 130 countries and their respective sub-regions. In comparison, Apple only 

covers 60 countries with a more restricted number of sub-regions, primarily focusing 

on major cities or capitals. Additionally, while Apple's mobility indices include driving 

and walking alongside transit, the transit data was often missing in many countries. 

This issue has been noted in cities across India, Thailand, Poland, South Africa, and 

Chile, among others. The absence or incompleteness of this data may be attributed to 

the lower adoption of Apple Maps and the limited penetration of Apple smartphones 

in those places. Overall, geographical areas with less coverage from both Google and 

Apple mobility indices include many African nations, Central Asia, and Middle Eastern 

countries. Consequently, these limitations hinder the use of AMIs as a proxy for 

ridership in regions with low smartphone penetration, many of which are associated 

with developing countries. However, it is reasonable to anticipate that smartphone 

usage may increase in the future, potentially expanding access to AMIs in these areas. 

Furthermore, the availability of AMIs tended to favour larger cities over smaller ones, 

a trend that was even more pronounced for the Apple Index. This presents another 

challenge in accurately measuring AMIs for smaller regions and towns. As it stands, 

the findings from this study primarily reflect larger cities and overlook many 

geographical regions due to data limitations. Additional research is required to address 

these shortcomings and validate AMIs in a broader context. 

Overall, two directions for potential uses of AMIs were identified: (a) providing a 

complementary characterisation of ridership changes and (b) providing supplementary 

information on the quality of PT services. Related to (a), in cities that do not have 

access to AFC systems, AMIs may play a key role in the analysis of PT systems, 

helping provide a refined characterisation of mobility trends to face global long-term 

events such as economic crises, pandemics/epidemics and conflicts, and local short-

term events such as natural disasters, social unrest and transport supply disruptions. 

Such a characterisation is currently unavailable in these contexts, as existing 

traditional methods rely on information gathered by surveys, which provide restricted 

insights from small sample sizes and partial coverage of the consequences of the 

event (temporally and spatially). This contrasts with the capabilities of AMIs, which 

have the potential to provide continuous monitoring of the mobility over a region, 

registering the impacts of unanticipated events on PT demand and its resilience.  In 

relation to cities that already have AFC systems, as we demonstrated in this study, 

AMIs may be useful when ridership data from ticketing is missing or of doubtful quality, 
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such as in the cases of ticket-free riding days or when there are special periods where 

evasion is higher. In this regard, AMIs may offer a more far-reaching alternative to 

face this challenge than current methods based on manual passenger counting, 

motion and weight sensors, and CCTV cameras.  

For the second category (b), the same raw ICT data used to estimate AMIs may be 

implemented to retrieve supplementary information on the quality of PT services. For 

example, GPS time on PT hubs could be analysed to study the time spent by owners 

of phone devices waiting for a PT service. This practical application has the potential 

to overcome the limitations of existing methods associated with travel surveys by 

providing a more dynamic, continuous and spatially richer characterisation of waiting 

times in PT systems. Regarding indices based on PT queries, there is potential in 

harnessing the dynamic fluctuations of information requested by travellers. For 

instance, an app query-based index may eventually be used to represent users’ 

perceived level of reliability of the PT supply. This may help PT authorities take action 

regarding users’ PT information needs. An atypical number of requests between 

specific O-D could be used to activate an immediate response from PT operators. The 

same data set could reveal whether there are PT service disruptions that could affect 

frequencies. PT query data may present advantages in identifying PT disruption 

compared with other novel approaches based on data from social media (Chan & 

Schofer, 2014) since PT query data may be easily analysed based on variations in the 

query volumes. Interestingly, both data sources (PT query and social media platforms) 

can eventually be employed jointly to crosscheck information related to PT service 

disruption. In brief, the highest potential of AMIs is either their complementary role with 

existing smart card data or the provision of supplementary information on the quality 

of PT services. 

The findings of this work indicate that AMIs based on data collected by smartphone 

apps have the potential to provide a reasonable proxy for the aggregate level shift in 

public transport (PT), particularly those that retrieve GPS traces, which also have the 

potential to provide supplementary information for PT. Nonetheless, many aspects of 

AMIs still need to be addressed in the future. The influence of the increasing number 

of users needs to be clarified, as well as the penetration rate needed to obtain reliable 

proxies. Additionally, the existing literature will greatly benefit from more transparency 

in how future AMIs are estimated. Ethical and privacy concerns are also elements that 

must be considered, as these data sets may reveal private user information and/or 

expose identifiable mobility traces. With a proper penetration rate, a ridership 

characterisation at a neighbourhood or more disaggregate level (e.g. at the level of PT 

hubs) may be available. These data would also allow observations to be made at a 

high granular temporal resolution, complementing the spatial heterogeneity in such 
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data, eventually providing a rich representation of PT demand changes across the 

urban grid. To get to this stage, disaggregate data from ICT companies and App 

providers related to GPS traces and PT queries would need to be available 

(considering both temporal and spatial information). The decision of the private sector 

to make available these data may be motivated by the development of potential 

applications for the public transport sector. An assessment of the quality of these 

disaggregated data should be first conducted considering the desired spatial 

aggregation level (e.g. neighbourhood, census zone or PT hub). Such analyses should 

rely on a validation process that assesses the match between AMIs and ridership data 

at the chosen disaggregate level to investigate AMIs’ data appropriateness. Special 

attention should be paid to identifying characteristics of the disaggregate zones that 

may explain the capability of the AMI to mimic ridership across the city (e.g. availability 

of PT infrastructure, PT demand characteristics). This analysis would allow the 

possibility to improve reports on particular zones, increasing the reliability of AMIs to 

represent the changes of PT demand across the city. 

Considering the current and future urban challenges, the importance of mobility data 

availability transcends the COVID-19 pandemic. With that in mind, the main 

contribution of this work is having proved that AMIs based on a regular smartphone 

use may be used to generate a reasonable approximation of the actual aggregate PT 

demand changes. The results of this paper support the need for replacing discontinued 

AMIs provided during the COVID-19 pandemic by proposing new AMIs based on 

similar data sets. For instance, it has been recently demonstrated that it is possible to 

replicate big tech companies’ AMIs using GPS traces collected by an emergency 

smartphone alert app (Finazzi, 2023). Regarding the level of PT queries, these data 

are currently collected by many private companies and PT operators that run PT trip 

planners locally or globally. Additionally, future research should focus not only on 

validating new proxies for PT demand based on data collected by mobile phone apps, 

but also on comprehensively integrating these emerging datasets with traditional ones.  
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Chapter 6  

Discussion and conclusions 

6.1 Summary 

The study of public transport demand amid disruptive events is more timely than ever, 

considering the current and future urban challenges, such as climate change, social 

movements, terrorist attacks and pandemics. The outcome of this thesis contributes 

in this direction, expanding the understanding of public transport demand amid 

disruptive events by addressing key research gaps in previous literature. It is 

demonstrated in this research that passengers’ adaptations are more complex than 

the current ‘trip reduction’ approach adopted in the literature. Moreover, the role of 

individual-level factors is disclosed, revealing significant equity issues; this finding 

suggests that, on disruptive events, public transport agencies and operators should 

not overlook the needs of the more vulnerable population segments. This research 

also shows strong evidence supporting the use of passive data sources such as smart 

card data and emerging aggregated mobility indices to analyse public transport 

demand change amid disruptive events. Overall, the findings generated in this thesis 

improve the understanding of how passengers adapt their mobility patterns during 

external disruptions and demonstrate the crucial role that passive data can play in that 

process. Next, it is presented how each objective proposed in the Introduction Chapter 

was addressed. Table 6-1 is presented to easily cross-reference the linkages between 

research gaps (RG), objectives (O), chapters and main contributions (C). The chapter 

ends with an outlook for future research venues. 

 

Table 6-1. Association between research gaps (RG), objectives (O), chapters and 
main contributions (C). 

Research 

Gap (RG) 

O-1 

Chapter 2 

Meta-analysis 

O-2 

Chapter 3 

Mobility profiles 

O-3 

Chapter 4 

Trip scheduling 

O-4 

Chapter 5 

AMIs 

RG-1  C.1 C.1  

RG-2  C.2 C.2  

RG-3 C.3    

RG-4    C.4 
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6.2 Revisiting the research objectives 

The following section reviews the four research objectives mentioned in Section 1.3 to 

emphasize the progress made toward achieving them. 

O-1 To compile global evidence of how individual-level factors affect public 

transport usage of passengers during a disruptive event (addressing RG-3). 

Objective 1 was achieved in Chapter 2 by conducting a systematic review that 

identified 36 studies that statistically assessed the contribution of individual-level 

factors to passengers’ decision to keep using public transport during the COVID-19 

pandemic. Characteristics of these studies, including their objectives, locations, dates, 

types of data, sample sizes, dependent variables, individual-level factors, and 

modelling methods, were collected and organised in a consistent format for 

comparison. The systematic review identified a total of 15 different individual-level 

factors: demographics (gender, age, race and ethnicity, education, children and 

household size), socioeconomic status (income, car availability, teleworking 

possibilities, and full-time employment), perceived importance to the COVID-19 risk 

and mitigation strategies, healthcare needs (disability and poor health) and transport-

oriented attributes (pre-COVID frequent public transport user, travel distance, and 

public transport physical accessibility). The direction of the association between these 

factors and the reduction in public transport usage during the COVID-19 pandemic 

was examined by merging the empirical evidence of those studies. The analysis 

helped recognise which individual-level factors presented higher consistency in terms 

of their effect directions and which had more ambiguous associations. Pooled effect 

sizes were then calculated through meta-analyses conducted on each of the 15 

individual-level factors using random-effect models. To conduct the meta-analyses, 16 

comparable studies that considered logistic regression models for their research were 

selected. The results of the meta-analysis stage were the pooled effect size and 

direction of the 15 individual-level factors and their statistical significance. The analysis 

ended with a subgroup examination that determined whether control variables such 

as geographical region and stage of the pandemic could explain part of the 

heterogeneity found in some associations. 

O-2 To model profiles of passengers based on the recovery in their public 

transport usage amid a disruptive event employing smart card data (addressing 

RG-1 and RG-2). 

This objective was met in Chapter 3. Chapter 3 aimed to identify and model profiles of 

passengers based on their public transport usage recovery after a long-term lockdown 

in Santiago, Chile, during the early stage of the COVID-19 pandemic in 2020. Seven 
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indicators were calculated using information from smart card data records. The 

indicators measured the intrapersonal variability of passengers’ public transport usage 

between the reopening phase and the pre-pandemic period. These included variation 

of total weekday trips, trip segments per trip, bus usage, time of the first transaction 

and three trip similarity indices: day travelled sequence, a temporal similarity index 

(TSI), and boarding location similarity index (LSI) (Egu & Bonnel, 2020). The K-means 

clustering algorithm was used to identify the mobility profiles by splitting passengers 

into classes with more homogenous public transport recovery based on the seven 

mentioned indicators. Results revealed a heterogeneous recovery of public transport 

usage among passengers, classifying them into two recognisable classes: those who 

mainly returned to their pre-pandemic patterns and those who adapted their mobility 

patterns. A complementary stage deals with smart card data limitations regarding the 

missing sociodemographic characteristics of cardholders. In particular, to retrieve 

aggregated level socioeconomic characteristics from Census data, a method to predict 

the home locations of cardholders using the trip records of smart card data was 

developed. After this step, the relationships between cardholders’ associated 

characteristics (e.g. travel history, transit card type, demographic characteristics of 

their residential area) with the membership to the mobility profiles found were 

investigated. In this analysis, variables such as travel history during the lockdown and 

the pre-pandemic (e.g. number of weekday trips, number of trips on weekends, days 

travelled and average travel time per trip), transit card type (which allowed the 

identification of senior and adult cardholders) and aggregated sociodemographic 

characteristics of the residential location of the travellers (share of migrants, university 

level, occupation) were considered. Thus, the class membership of each cardholder 

was studied using the categorical label assigned to each cardholder as the dependent 

variable and the cardholders’ associated characteristics as the explanatory ones. 

Gradient Boosting Decision Tree and logistic regression models were employed for 

this task. As a result, the contribution of the variables considered to explain 

cardholders' class membership was assessed, shedding light on the most relevant 

characteristics associated with each mobility profile. 

O-3 To model trip scheduling decisions of bus commuters during several 

episodes affected by disruptive events employing smart card data (addressing 

RG-1 and RG-2). 

Objective 3 was achieved in Chapter 3 by investigating the differences in the trip 

scheduling decisions of bus commuters across multiple episodes influenced at 

different degrees by two disruptive events. In particular, it was hypothesised that 

situational contexts affect passengers’ departure time by changing their sensitivity to 

time-varying attributes such as travel time and schedule delay (i.e. the offset between 
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their actual arrival time and their preferred arrival time). Four characteristic episodes 

that represent before-disruptions (EP1), post-social unrest (EP2), post-COVID-19 

outbreak, and after-disruptions (EP4) periods for Santiago, Chile’s capital, were 

investigated. Smart card data and GPS time stamps of buses for Santiago’s bus 

system were available for analysis. Departure time choice models were estimated for 

each episode, allowing to assess the changes in the marginal utilities of in-vehicle 

travel time and schedule delay, and the time valuation of schedule delay (TVSD). In 

addition, to account for potential differences in the trip scheduling preferences 

between distinctive passenger groups, bus commuters were segmented into two 

categories by considering passengers’ bus frequency use. Thus, for each episode, in 

addition to the model specification for the unsegmented bus commuters, a second 

specification that considers the proposed bus commuters’ segmentation was also 

considered. From a methodological perspective, Chapter 3 deals with the lack of 

crucial attributes in smart card data, such as the passengers’ preferred arrival time 

(PAT), that so far has restricted the implementation of this data source in DTCMs. The 

framework adopted to infer PAT for smart card data assumes that the PAT varies 

randomly across commuters following a statistical distribution, whose parameters are 

obtained during the model estimation using mixed multinomial logit models. The 

results confirmed the research hypothesis, finding evidence of multi-temporal 

differences in the PATs of bus commuters as well as in their TVSD during the 

disruptive episodes. 

O-4 To assess the potential of aggregated mobility indices based on data 

generated from the everyday use of smartphones to characterise public 

transport ridership changes in a context of high mobility disturbances 

(addressing RG-4). 

Chapter 5 investigates the potential of employing aggregated mobility indices (AMIs), 

an emerging data source, as a proxy for aggregate public transport demand change. 

This was achieved by benchmarking two AMIs shared globally by Google and Apple 

during a period of major mobility disruptions that occurred between 2020 and 2022, 

with monthly and daily ridership from 12 cities worldwide. The benchmarking between 

AMIs and ridership change was conducted by applying metrics that follow a time series 

approach, including the mean Euclidean distance, the cosine distance, a trend 

similarity index, the Dynamic Time Warping distance and the Granger Causality test. 

A criterion to standardise the changes in mobility was established to deal with the 

differences between how AMIs were reported and the absolute nature of the ridership 

data (i.e., the total number of transactions). The role of AMIs in complementing 

ridership data when there are difficulties in capturing the actual demand was also 

explored by considering three situational contexts: a free bus period in London, partial 
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ridership data in New York and a high mobility demand day for Santiago. The analysis 

of these cases employed Autoregressive Integrated Moving Average (ARIMA) models 

to calibrate the relationship between the recorded ridership data and the AMIs. The 

benchmark findings revealed a notable alignment between the trends in ridership data 

and the AMI shared by Google based on human mobility. Moreover, the analysis of 

the three situational contexts confirmed the potential of leveraging AMIs to 

complement existing data sources for the analysis of ridership changes during high 

mobility disturbances. 

 

6.3 Contributions to knowledge 

This section summarises the four main original contributions made in this thesis to the 

transport field. 

C-1 Extending the scope of modelling passengers’ behavioural responses amid 

disruptive events. 

This thesis expands the traditional scope of analysis of passengers’ behavioural 

responses amid disruptive events by examining passengers’ mobility profiles and 

departure time choices. Previous research has adopted a ‘trip-reduction’ perspective, 

limiting the examination to either trip frequency reduction or the shift to another 

alternative mode only (Shires et al., 2018; Rahimi et al., 2020; Das et al., 2021). The 

results of this research support that behavioural responses are much richer than what 

is traditionally considered in previous research. The specific contributions can be 

categorised into two categories: response variables and response heterogeneity 

among passengers, which are detailed below. 

C-1.1 Extending the examination of passengers’ responses during disruptive events 

by studying passengers’ mobility profiles and departure time choices. By 

allowing the integration of several behavioural adaptations through the 

identification of passenger profiles, this work extends the traditional ‘trip-

reduction’ perspective adopted in the literature. In particular, mobility profiles 

based on passengers’ public transport usage recovery following an extended 

disruption were examined by simultaneously considering seven mobility 

indicators: total weekday trips, trip segments per trip, bus usage, time of the 

first transaction and three similarity indices: day sequence, a temporal similarity 

index (TSI), and boarding location similarity index (LSI) (Egu & Bonnel, 2020). 

In addition, this research provides the only available modelling of passengers’ 

departure time choices during several episodes affected by disruptions. The 

analysis adds new evidence on the process underlying passengers’ trip 
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scheduling decisions amid disruptive events by finding proof of the changes in 

passengers’ sensitivity to schedule delay and arrival time preferences. 

C-1.2 Providing insights about the relations between distinctive behavioural 

responses adopted during disruptive events and passenger segments. The role 

of several passenger segments was studied by modelling passengers’ 

membership to each mobility profile found and bus commuters’ trip timing 

decisions. Regarding the mobility profiles approach, the results contribute to 

the literature by demonstrating that more vulnerable passenger segments 

(elderly, migrants and those with low educational levels) are more likely to 

recover their pre-disruption mobility patterns following an extended disruption 

than less vulnerable groups. In addition, it was also demonstrated that distinct 

passenger groups have different trip scheduling decisions. In particular, the 

arrival time preferences of recurrent bus commuters were found to be more 

inflexible to change when facing disruptive events than occasional bus 

commuters. Besides, the same group showed being more prepared to travel 

when travel time is higher, allowing them to arrive nearer their PAT than the 

occasional group. Overall, these findings provide new insights into the 

relationships between passenger segments and distinctive behavioural 

adaptations. 

C-2 Leveraging smart card data for modelling passengers’ behavioural 

responses amid disruptive events while addressing missing attribute 

limitations. 

Despite the broad applications of smart card data in the literature, their use for 

analysing passengers’ behavioural responses amid disruptive events has been 

minimal. In this regard, this research demonstrates that smart card data can play a 

crucial role in that characterisation. This is achieved by employing smart cards in 

disaggregate-level models while addressing some of their missing attribute limitations, 

such as the missing of passengers’ preferences for arrival times and 

sociodemographic characteristics. This research contributed to the literature in this 

regard by broadening the application of smart card data in the modelling of public 

transport demand by addressing research gaps related to data imputation. In 

particular: 

C-2.1 Employing smart card data for the analysis of disaggregate passengers’ travel 

behaviour. Currently, most of the existing disaggregate evidence regarding the 

characterisation of the pre-, during, and post-disruption of passengers’ travel 

adaptations rely on survey-based data, either SP data (based on hypothetical 

scenarios) or RP data (based on a retrospective approach that relies on 
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respondents’ memories). The advantages of smart card data are then 

leveraged in this work, extending the perspective of data sources available for 

analysing passengers’ behavioural responses amid disruptive events. 

C-2.2 Establishing a framework to employ smart card data to estimate departure time 

choice models. The study reported here is the first to employ smart card data 

to estimate departure time choice models. The proposed methodology 

addresses both challenges of smart card data for this task, imputing bus in-

vehicle travel times for the unchosen time intervals and estimating passengers’ 

preferred arrival time (PAT). Regarding the in-vehicle travel times for the 

unchosen time alternatives, the methodology proposed a data fusion approach, 

enriching the trip samples with a GPS bus location dataset. On the other hand, 

the PATs are calculated by adapting the methodology proposed by Bwambale 

et al. (2019) to smart card data. The approach was validated by obtaining 

plausible marginal utilities for travel time and schedule delay, reasonable 

goodness of fit and valuations of the trade-off between travel time and schedule 

delay (TVSD) in the range of previous studies. 

C-2.3 Proposing a method to link socioeconomic characteristics spatially aggregated 

with cardholders by predicting their home locations. The proposed method uses 

the DBSCAN algorithm (Ester et al., 1996) applied to the spatial coordinates of 

each cardholder's first daily boarding transactions to obtain the home location 

of cardholders. This approach overcomes the limitations of previous methods 

using residential location for smart card data (Amaya et al., 2018) by explicitly 

recognising the existence of outliers. Socio-demographics from Census data 

can then be retrieved at an aggregated level by linking the predicted home 

location with the desired spatial aggregation of Census data. The aggregate 

sociodemographic variables can then be estimated as a ratio between a target 

population and the total population for a particular Census zone. With this 

method, characteristics related to educational level, employment and migrants 

can be spatially retrieved and analysed. 

C-3 Elucidating how individual-level factors influence public transport usage 

during a disruptive event. 

To the author’s knowledge, the research conducted in Chapter 2 regarding the COVID-

19 pandemic provides the only available synthesis of existing literature regarding how 

individual-level factors affect public transport usage during a disruptive event. The 

specific contributions can be summarised as: 

C-3.1 Determining the most influential individual-level factors regarding their effect 

size. This research presented the only available systematic comparison of the 
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effect sizes of individual-level factors on public transport usage during a 

disruptive event. The results revealed substantial differences in the effect sizes 

among the factors analysed. Factors such as car availability, teleworking and 

high educational level increased the odds of reducing public transport trips by 

as much as three times. Conversely, a more modest effect on public transport 

usage (less than 30%) was observed for the other individual-level factors, 

including COVID-19 risk perception. These findings strongly support the need 

to not only assess the effect directions in the transport domain but also compare 

effect sizes, as Parady and Axhausen (2023) recently discussed. 

C-3.2 Revealing heterogeneous levels of consistency in the effect direction of 

individual-level factors. Two main groups of individual-level factors were 

detected: a) factors that showed consistent positive associations with the 

reduction of public transport usage amid the studied disruptive event, such as 

car availability, teleworking, high-level income, high educational level and 

COVID-19 risk perception, and b) factors that showed ambiguous effect 

directions, such as gender, age, race and ethnicity, and employment. It was 

also established by doing a subgroup analysis in the meta-analyses that cultural 

and social differences associated with the location where a study is conducted 

may explain part of the heterogeneity found in b). 

C-3.3  Verifying the presence of inequality. The findings shed light on the population 

segments that continued using public transport modes during the COVID-19 

event: women and those with a low educational level, low income, with 

healthcare needs, without the possibility of teleworking, who travel longer 

distances and who have no car availability. These findings offer key insights to 

public transport agencies and operators into understanding specific passenger 

groups' restrictions and their transport needs during disruptive events 

(DeWeese et al., 2020). 

C-4 Demonstrating the capabilities of emerging data sources to be used in the 

analysis of public transport ridership changes. 

This work reports the only available rigorous assessment of aggregated mobility 

indices (AMIs), an emerging data source based on regular smartphone use, to be used 

as a proxy for actual ridership changes. The outcomes of this study are particularly 

relevant for cities of developing countries, which typically have limited data to analyse 

ridership levels, and AMIs may offer an attractive alternative. The contributions to the 

knowledge in this regard are: 

C-4.1  Proving that AMIs can reasonably approximate actual ridership changes. AMIs 

correctly captured the main changes in ridership levels and showed high 
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accuracy in replicating the change direction. This supports potential use in cities 

that do not have access to smart card data. There, AMIs may play a key role in 

the analysis of aggregate-level public transport demand, helping provide a 

refined characterisation of mobility trends to face global long-term events such 

as economic crises, pandemics/epidemics and conflicts, and local short-term 

events such as natural disasters, social unrest and transport supply disruptions.  

C-4.2 Demonstrating that AMIs can complement smart card data to retrieve actual 

ridership changes. These findings highlight the relevance of AMIs even in cities 

that have already adopted smart cards and digital transactions schemes, 

particularly when limitations on the fare collection system affect the quality of 

the information gathered. For example, this may occur when ticketing is missing 

or incomplete, such as on ticket-free riding days or when there are special 

periods where fare evasion is potentially higher. Other situations could be when 

smart cards only cover a limited number of the public transport modes present 

in a city (e.g. metro rails only), capturing ridership data only for those modes 

(Arellana et al., 2020; Wang & Noland, 2021). In these cases, even cities with 

smart card data could benefit from AMIs to better characterise aggregate 

ridership changes. 

 

6.4 Future research directions 

As the research conducted in this thesis focused on a period affected primarily by the 

COVID-19 pandemic, an evident next step is to undertake additional applications on 

more diverse disruptive events such as natural disasters, social movements, and 

operation failure, among others. Moreover, despite Chapters 2 and 5 incorporating 

global evidence, Chapters 3 and 4 use the same case study to test the applications of 

smart card data. In this regard, there is a potential to test the methodologies developed 

here in other case studies where smart card data are also available. Next, more 

specific avenues for future research are described in detail. 

 

i. Travel behavioural responses of passengers 

Considering the progress made in Chapters 3 and 4, future research avenues 

regarding travel behaviour responses of passengers during disruptive events may 

consider: a) extending the scope in the analysis of trip scheduling decisions and b) 

conducting a joint examination of travel responses. Regarding a), as little empirical 

evidence regarding the investigation of departure time choices on public transport 
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commuting is available in the literature (Habib, 2021), the contribution made in this 

work offers the potential to extend the analysis to other public transport modes (metro, 

rail, etc.) and increase the time-varying attributes considered (e.g. travel time 

uncertainty, in-vehicle occupancy, monetary cost, the habits of travelling at a particular 

time of the day, etc.). Besides, it would be interesting to consider a broader set of 

individual-level factors to generate a more comprehensive understanding of the trip-

timing decision process. In this regard, a potential avenue to expand the study of the 

departure time choice of passengers could be adopting a latent class specification 

(Peer et al., 2016). Related to b), conducting a joint examination of travel responses 

is another way to recognise the complex set of responses that passengers may adopt 

during disruptive scenarios. For example, it would be possible to jointly model the shift 

from public transport to an alternative mode in combination with the departure time 

choice (Ma et al., 2018). This would shed light on the potential interaction between the 

two types of responses, which has yet to be addressed in the context of disruptive 

events. 

ii. Challenges in smart card data  

Considering the contributions made in Chapters 3 and 4 regarding the use of smart 

cards in disaggregate-level modelling amid disruptive events, future research avenues 

may consider a) linking the travel history of new cards with old cards, b) conducting a 

cross-mode analysis using passive data and c) improving the processes to infer 

sociodemographic characteristics for smart card data. Related to a), a challenge of 

smart card data, particularly in systems whose smart cards are not customised, is the 

impossibility of combining travel history recorded on old and new cards (i.e. when 

cardholders renew their card, the track of the cardholder is lost). This is particularly 

problematic when the aim is to track the travel behaviour of passengers over long 

periods (more than one year), as for that period, it is likely that card expirations or 

losses happen, limiting the observation of travel behaviours over time. Therefore, a 

methodology to associate a cardholder’s new ID smart card with their old one may 

generate a better representation of the dynamics in passengers’ decision-making 

process amid disruptive events across long periods. With respect to b), a cross-mode 

impact analysis perspective is another avenue for future research of smart card data 

to enhance the understanding of passengers’ behaviour amid disruptive events. This 

can be done by simultaneously considering several passive data sources in a 

seamless data integration analysis between smart card data records, ride-sourcing, 

bike-share system and phone data, to name a few. In this way, it would be possible to 

achieve a better understanding of the interaction between alternative modes during 

disruptive events which have only been partially addressed (Yang et al., 2022; 

Borowski et al., 2023). Finally, regarding c), future research should explore new ways 
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to infer the sociodemographic characteristics of cardholders. Although this work 

demonstrates the advantages of exploring the individual travel behaviour of public 

transport users using smart card data, it highlights the need to generate a richer 

dataset regarding the presence of individual-level factors. If suitable data is available, 

methods to combine traditional surveys with passive data will be an interesting 

direction for future research (Kusakabe & Asakura, 2014). 

iii. Influence of individual-level factors 

Possible extensions to the work developed in Chapter 2 are a) examining more 

generalised types of long-term disruptive events and b) providing a systematic review 

considering a different dependent variable. Related to a), an interesting research 

avenue is examining global empirical evidence of how individual-level factors have 

affected passengers’ public transport usage for a wide range of disruptive events. 

These efforts would help benchmark the conclusion reported in this research related 

to the COVID-19 pandemic with more generalised events. So far, preliminary evidence 

suggests that the role of some individual-level factors found in this research would be 

similar to the one reported for other events. For example, the role of car availability 

and teleworking in the decision to stop using public transport reported in this research 

is similar to the one reported by Kontou et al. (2017) regarding the effect of Hurricane 

Sandy in the US in 2012. With respect to b), future research on this topic may also 

consider re-evaluating the choice of the dependent variable to be meta-analysed. For 

example, an alternative perspective to the one considered in Chapter 2 may be meta-

analysing demand elasticities (Holmgren, 2007). This approach would also offer an 

explicit interpretation of the heterogeneity observed between study cases and public 

transport demand. 

iv. Emerging data sources 

The benchmarking between AMIs, an emerging data source based on regular 

smartphone use, and ridership data presented in Chapter 5 provides strong evidence 

of the capabilities of AMIs to be employed as a proxy for aggregate public transport 

demand. In this regard, three future research avenues were identified. First, the 

analysis conducted in this research does not examine the underlying factors behind 

the different degrees of similarity observed between the values provided by the AMIs 

and actual ridership data among the cities analysed. In this regard, the role of city 

characteristics such as the location of bus stops, fare evasion levels, coverage of 

services integrated into the AFC system, and the variation in the transport 

infrastructure across the study period could shed light on this. A detailed analysis of 

these aspects would help calibrate the AMIs for cities with no ridership data to 

compare. Second, the results of this paper support the need to replace discontinued 
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AMIs provided during the COVID-19 pandemic by proposing new AMIs based on 

similar data sets. For instance, it has been demonstrated that it is possible to replicate 

big tech companies’ AMIs using GPS traces collected by an emergency smartphone 

alert app (Finazzi, 2023). Finally, future research should not only validate new proxies 

for ridership based on data collected by mobile phone apps, but also comprehensively 

integrate these emerging datasets with more traditional ones or add new information. 

For example, the GPS of phones around public transport hubs could help study the 

time passengers wait for a bus or train service. 

 

6.5 Concluding remarks 

This thesis has generated new empirical evidence and methodologies that enhance 

the understanding of public transport demand change amid disruptive events. By 

highlighting the importance of analysing several data sources, this thesis offers a 

unique approach to dealing with existing research gaps. At the same time, new 

avenues for future research are opening in this work related to the use of passive data 

sources, such as smart card data in the modelling of disaggregate behavioural 

responses of passengers, and more emerging data sources, such as the aggregate 

mobility indices in the modelling of public transport ridership. In this regard, more 

studies are necessary to continue leveraging these data’s advantages and make the 

proposed methodologies more widely applicable. As the shocks produced by 

disruptive events continuously contribute to reshaping travellers’ consideration of 

public transport, these research avenues are crucial to secure the availability, trust 

and readiness of suitable data sources in the future to support policy initiatives based 

on updated literature. In addition, despite the progress made in this thesis regarding 

the role of individual-level factors in passengers’ behavioural responses, additional 

research is required to gain better insights into a broader set of disruptions. Addressing 

all these avenues for future research would continue the effort made in this thesis to 

shed light on the changes in public transport demand amid disruptive events. The joint 

effort in this regard has the potential to achieve a better understanding of public 

transport demand dynamics, particularly regarding current and future urban 

challenges, where public transport plays a crucial role.  
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Table A-1. Summary of studies that characterised the changes in PT demand during the COVID-19 pandemic at an aggregate level. 

Authors 
Location/  

Data source 

Base 
ridership 

Pandemic 
Date/ 

 Study period 

Dependent 
variable 

Mode/ level  

of spatial  

aggregation 

Model/ 
general 
model 

category 

Influential  

factors 

Drop in 
ridership: worst/ 

end study 
period 

Teixeira and 
Lopes 
(2020) 

New York, USA/ 
Smart card 
validations 

Mar 2019 and 
Feb 2020 

 Mar 2020/ 
Mar 2019, Feb 
and Mar 2020 

Daily ridership 
ratio between 
subway and 
bike sharing. 

Subway, bike 
sharing system/ 

Metropolitan area 

Ordinary 
least squares 

(OLS)/ 

CNT 

COVID-19 
situation 

90%/ 90% 

Jenelius 
and 

Cebecauer 
(2020) 

Three regions in 
Sweden/ Digital 
ticket system, 

automatic 
passenger 

counting & paper 
tickets 

The nearest 
day (weekday 
or holiday) in 

2019 

Feb-May 
2020/ Feb-
May 2019 & 

Feb-May 2020 

Relative 
change on 
daily trip 
ridership 

Several PT 
modes/ 

Metropolitan area 

Descriptive 
analysis 

Ticket types, 
active cards, PT 

mode 

 40%, 50%, 65%/  
35%, 45%, 60% 

Qi et al. 
(2021) 

20 Metropolitan 
areas in the US/ 
Ticket validation 

data 

Feb 2019 to 
Jan 2020 

Feb 2020 to 
Jan  2021/ Feb 

2019 to Jan  
2021 

Monthly 
reduction in 

ridership 

Bus and light rail/ 
Several 

metropolitan area 

Random 
effects panel 
data model/ 

CNT© 

 COVID-19 
situation,  

@sociodemogra-
phics 

 60% to 90%/   

40% to 80% 

Chang et al. 
(2021) 

Taipei, Taiwan/ 
Smart card 
validations 

Jan-Mar 2017, 
2018 & 2019 

Jan-Mar 2020/ 
Jan-Mar 2017-

2020 
Daily ridership 

Metro/  

Station-level 

Difference-in-
difference 

(DiD)/ 

CNT 

COVID-19 
situation, 
@socio-

demographics, 
activity and 

transport supply 

48%/ na 

Wang and 
Noland 
(2021) 

New York, U.S./ 
Smart card 
validations 

Jan-Sep 2019 
Jan-Sep 2020/ 
Jan-Sep 2019-

2020 

Daily ridership 
(log) 

Subway/ 
Metropolitan area 

Prais-
Winsten 
model/ 

CNT 

COVID-19 
situation 

 90%/ 70% 
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Authors 
Location/  

Data source 

Base 
ridership 

Pandemic 
Date/ 

 Study period 

Dependent 
variable 

Mode/ level  

of spatial  

aggregation 

Model/ 
general 
model 

category 

Influential  

factors 

Drop in 
ridership: worst/ 

end study 
period 

Mützel and 
Scheiner 
(2022) 

Taipei, Taiwan/ 
Smart card 
validations 

Jan-Mar 2019 
Jan-Mar 2020/ 
Jan-Mar 2019 

& 2020 

Station-to-
Station metro 

ridership 

Metro/  

Station-level 

Descriptive 
analysis 

Weekday & day 
period 

25%/ <15% 

Padmakum
ar and Patil  

(2022) 

Six cities, India/ 
Mobility service 

providers' indices  

Apple Mobility 
Trend & 
Google 
Mobility 

Report dates 

Mar-Sep 2020/ 
Mar-Sep 2020 

Daily change 
in PT mobility 

index 

Proxy PT/  

City-level 

Generalized 
linear mixed-

effects 
(GLME) 
model/ 
CNT© 

 
@sociodemogra-

phics 
90%/ 30% 

Fernández 
Pozo et al.  

(2022)  

Community of 
Madrid, Spain/ 

Smart card 
validations 

Avg. daily 
ridership 10 
Feb to 8 Mar 

2020 

Mar-Sep 2020/ 
Jan-Sep 2020 

Weekly relative 
change in 
ridership 

PT modes/  

System-level 

Descriptive 
analysis 

PT mode, ticket 
types, active 

card 
95%/ 50% 

Xiao et al. 
(2022) 

Salt Lake County, 
U.S./ Station 

boarding 
validations 

Predicted 
monthly 
ridership 
during 

COVID-19 
pandemic 

Mar 2020 to 
Jul 2021/  

Jan 2017 to 
Jul 2021 

Vulnerability as 
the decline in 

monthly 
ridership & 

resilience as 
the recovery of 

ridership 

Light rail/  

Station-level 

Bayesian 
structural 

time series 
(BSTS) & 

decision tree/  

CNT© 

 
@sociodemogra-

phics, activity 
and transport 

system attributes 

80%/ 60% 

Gramsch et 
al. (2022) 

Santiago, Chile/ 
Smart card 
validations 

First two 
weeks of Mar 

2020 

Mar-Sep 2020/ 
Jan-Sep 2019 

& Jan-Sep 
2020 

Ratio daily PT 
trips over the 

total population 

Bus, Metro & 
Train/ 

Municipality-level 

Fixed effects 
regression 

model/  

CNT 

COVID-19 
situation,  

@sociodemogra-
phics 

 80%/ 60% 

Jiang and 
Cai (2022)  

Beijing & 
Shanghai, China/ 

Smart card 
validations 

Avg. ridership 
of the same 
day in three 

Jan 2020 to 
Aug 2021/  

Daily relative 
change in 

metro ridership 

Metro/  

System-level 

Generalized 
linear model/ 

CNT© 

COVID-19 
situation, 

@sociodemogra-
phics 

 89%, 83%/   

35%, 14% 
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Authors 
Location/  

Data source 

Base 
ridership 

Pandemic 
Date/ 

 Study period 

Dependent 
variable 

Mode/ level  

of spatial  

aggregation 

Model/ 
general 
model 

category 

Influential  

factors 

Drop in 
ridership: worst/ 

end study 
period 

consecutive 
weeks in 2019 

Jan 2019 to 
Aug 2021 

CNT: model with a continuous dependent variable; na: information not available. 
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Table A-2. Data sources visited to characterise public transport (PT) demand in 
several cities. 

PT operator Location Link 

Los Angeles 
Country MTA 

Los Angeles, U.S. 

  

  

https://www.apta.com/ 

  

  

Washington Metro 
Area 

Washington DC, U.S. 

MTA New York City 
Transit 

New York, U.S. 

Utah Transit 
Authority 

Utah, U.S. 

Toronto Transit 
Commission 

Toronto, Canada 

Transmilenio (BRT) Bogotá, Colombia https://transmilenio.hub.arcgis.com/  

Metro Taipei Taipei, Taiwan https://english.metro.taipei/  

Transport for 
London 

London, U.K. https://data.london.gov.uk/  

Metropolitan 
Mobility Network 
(RED) 

Santiago de Chile https://www.dtpm.cl/  

MTR Hong Kong Hong Kong https://www.mtr.com.hk/ 

Transport for NSW Sydney, Australia https://www.transport.nsw.gov.au/  

 

Table A-3. Details of the modelling specification of the factor COVID-19 risk 
perception used for the meta-analysis.  

LRM Country N Description Specification 
Odds 
ratio 

Signify-
cance 

Std. error 

El Zein et 
al. (2022) 

FRA 1413 

If health risks are not 
satisfactorily 

addressed in PT - 
model 1 

Dummy, 1: not 
satisfactorily, 0: 

Satisfactory 
1.08 NS 0.12 

El Zein et 
al. (2022) 

FRA 512 

If health risks are not 
satisfactorily 

addressed in PT- 
model 2 

Dummy, 1: not 
satisfactorily, 0: 

Satisfactory 
1.32 - 0.11 

Zafri et al. 
(2023) 

BAN 804 
Perceived risk of 

COVID-19 
transmission in PT 

Five-point Likert 
scale 

1.30 - 0.11 

Zafri et al. 
(2023) 

BAN 804 
Trust in preventive 

strategies 
Five-point Likert 

scale 
 1.50  - 0.12  

Liu et al. 
(2022) 

CHN 315 
Perception of the 

severity of COVID-19 
in adolescents 

Latent variable 
based on 5 factors 
measured with a 

1.43 - 0.11 

https://www.apta.com/
https://transmilenio.hub.arcgis.com/
https://english.metro.taipei/
https://data.london.gov.uk/
https://www.dtpm.cl/
https://www.mtr.com.hk/
https://www.transport.nsw.gov.au/
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LRM Country N Description Specification 
Odds 
ratio 

Signify-
cance 

Std. error 

five-point Likert 
scale 

Liu et al. 
(2022) 

CHN 315 
Perception of the 

severity of COVID-19 
in commuters 

Latent variable 
based on 5 factors 
measured with a 
five-point Likert 

scale 

1.33 - 0.09 

Palm et al. 
(2021) 

CAN 4710 
Perception of the 

level of risk COVID-
19 to them 

Dummy, 1: high 
risk, 0: Otherwise 

1.13 - 0.06 

Soria et al. 
(2023) 

USA 5648 
Prioritize sanitization 
as mitigation strategy 

Dummy, 1: 
Prioritize sanitation 

in PT hubs, 0: 
Prioritize other 

strategies 

1.09 - 0.02 

Jiao and 
Azimian 
(2021) 

USA 88716 
Anxiousness induced 

by COVID-19 or 
other conditions 

Dummy, 1: Several 
days, 0: Not at all 

1.85 - 0.19 

Jiao and 
Azimian 
(2021) 

USA 88716 
Anxiousness induced 

by COVID-19 or 
other conditions 

Dummy, 1: >Half 
days, 0: Not at all 

2.17 - 0.24 

Jiao and 
Azimian 
(2021) 

USA 88716 
Anxiousness induced 

by COVID-19 or 
other conditions 

Dummy, 1: Nearly 
every day, 0: Not at 

all 
2.55 - 0.28 

Abdullah et 
al. (2020) 

WW 1203 

COVID-19 risk 
perception: include a 
positive correlation 
among, infection 
concern, social 
distance, mode 

cleanliness, use face-
mask  

Latent variable 
based on 5 factors 
measured with a 
five-point Likert 

scale 

1.14 - 0.07 

Rankavat et 
al. (2023) 

IND 1884 

COVID-19 risk 
perception: include 
(+) correlation of 

exposure to infection, 
importance of 

physical distancing, 
health & Hygiene 

Latent variable 
based on 3 factors 
measured with a 
five-point Likert 

scale 

1.34 - 0.09 

Rankavat et 
al. (2023) 

IND 1884 

COVID-19 risk 
perception: include 
(+) correlation of 

health safety 
perception in PT and 

PM 

Latent variable 
based on 2 factors 
measured with a 
five-point Likert 

scale 

1.30 - 0.09 

Das et al. 
(2021) 

IND 840 

Perceived 
importance of 

Hygiene/cleanliness 
in PT 

Dummy, 1: Very 
important, 0: not 

important 
2.27 - 0.4 
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LRM Country N Description Specification 
Odds 
ratio 

Signify-
cance 

Std. error 

Das et al. 
(2021) 

IND 840 

Perceived 
importance of 

Hygiene/cleanliness 
in PT 

Dummy, 1: 
Important, 0: not 

important 
1.85 - 0.75 

Tan and Ma 
(2021) 

CHN 559 
Perceived possibility 

of being 
infected in private car 

Five-point Likert 
scale 

1.70 - 0.20 

‘-’: statistically significant negative effect on PT use. 
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Appendix B  

 

Figure B-1. Silhouette scores for the clustering analysis, indicating that the 

recommended optimal number of cluster is two. 
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Appendix C  

 

Figure C-1. Average mobility per day of the week by data set, baseline period. 

 

 

Figure C-2. Weekly periodicity pattern in by index for the London case study. 
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Table C-1. Monthly and daily dataset sources. 

Ridership 
data 

London Transport for London 
 https://app.powerbi.com/view?r=eyJrIjoiMjZjMmQwYTktZjYxNS00MTIwL
Tg0ZjAtNWIwNGE0ODMzZGJhIiwidCI6IjFmYmQ2NWJmLTVkZWYtNGV

lYS1hNjkyLWEwODljMjU1MzQ2YiIsImMiOjh9 

New York MTA New York 
https://data.ny.gov/Transportation/MTA-Daily-Ridership-Data-Beginning-

2020/vxuj-8kew 

Santiago DTPM 
https://biblioteca.mtt.gob.cl/documento/857f8b86-fe10-4f86-aec3-

65ecb746e76f 

Sidney Transport for NSW 
https://www.transport.nsw.gov.au/data-and-research/passenger-

travel/train-patronage/train-patronage-monthly-figures  

Toronto Toronto Transit Commission https://www.apta.com/ 

Bogota Transmileno 
https://storage.googleapis.com/validaciones_tmsa/ValidacionTroncal.html

? 

Dallas Dallas Area Rapid Transit https://www.apta.com/ 

Denver Regional Trip District https://www.apta.com/ 

Salt Lake Utah Transit Authority https://www.apta.com/ 

Chicago Chicago Transit Authority https://www.apta.com/ 

Taipei Metro Taipei https://english.metro.taipei/cp.aspx?n=E6F97A6FF9935E98  

Hong Kong MTR Hong Kong https://www.mtr.com.hk/en/corporate/investor/patronage.php  

AMIs 
HMI 

Google Covid-19 Community Mobility 
Reports 

https://www.google.com/covid19/mobility/  

QI Apple Mobility Trends https://covid19.apple.com/mobility  

https://www.transport.nsw.gov.au/data-and-research/passenger-travel/train-patronage/train-patronage-monthly-figures
https://www.transport.nsw.gov.au/data-and-research/passenger-travel/train-patronage/train-patronage-monthly-figures
https://storage.googleapis.com/validaciones_tmsa/ValidacionTroncal.html?
https://storage.googleapis.com/validaciones_tmsa/ValidacionTroncal.html?
https://english.metro.taipei/cp.aspx?n=E6F97A6FF9935E98
https://www.mtr.com.hk/en/corporate/investor/patronage.php
https://www.google.com/covid19/mobility/
https://covid19.apple.com/mobility


 

  

 

 


