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Abstract 

Background  

Previous studies showed promising applications of intravoxel incoherent motion 

(IVIM) and stretched-exponential (SEM) models of diffusion-weighted imaging 

(DWI) in breast imaging; however, their ability to predict early breast cancer 

response to neoadjuvant chemotherapy (NACT) was minimally investigated.  

Aims  

To evaluate accuracy, bias, precision, and in-vivo repeatability of IVIM parameters 

estimated using different curve-fitting methods and determine the optimum for 

analysing the acquired clinical breast DWI data. To investigate the value of 

conventional monoexponential versus advanced (IVIM and SEM) DWI models 

parameters estimated from whole-tumour, tumour diffusion cold-spot, and 

perfusion hot-spot regions to assess early breast cancer response to NACT. To 

explore relationships between IVIM and dynamic contrast-enhanced (DCE)-MRI 

perfusion-related parameters, and between DWI diffusion coefficients and DCE-

MRI cellularity-related measures in the same three tumour regions.  

Materials  

MRI dataset of primary breast cancer patients acquired at pretreatment and after 

one and three NACT cycles. Simulated data represent IVIM parameter ranges 

observed in these patients.  

Results  

Constrained oversegmented-fitting was the optimum IVIM curve-fitting method, 

producing parameter estimates with the smallest errors, highest precision, and best 

repeatability. Tumour volume was significantly larger in non-responders across all 

time-points and demonstrated reasonable predictive performance (AUC=0.84-0.88; 

p<0.05). The monoexponential model was unable to predict response (p>0.05), 

while IVIM and SEM models differentiated response groups at pretreatment tumour 

hot-spot regions and after one NACT cycle in three tumour regions, displaying 

reasonable predictive performance (AUC=0.71-0.79 at pretreatment, 0.71-0.83 

after one cycle; p<0.05). IVIM and DCE-MRI perfusion-related parameters were 

uncorrelated (p>0.5), but statistically significant, moderate between-subject 

(r=0.405-0.461; p<0.05) and within-subject (rrm=0.514-0.619; p<0.05) correlations 
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between diffusion coefficients and DCE-MRI cellularity-related measures were 

observed in the whole-tumour regions. 

Conclusion  

IVIM and SEM models demonstrated better predictive capabilities for response 

than the monoexponential model. While IVIM and DCE-MRI perfusion-related 

parameters were uncorrelated, diffusion coefficients and DCE-MRI cellularity-

related measures correlated.  
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Chapter 1 Introduction 

1.1 Background 

In 2020, about 2.3 million women were diagnosed with breast cancer, resulting in 

685,000 deaths, making it one of the most prevalent cancers affecting women 

worldwide (1). Patients with primary breast cancer often undergo neoadjuvant 

chemotherapy (NACT) to reduce the tumour size and increase the chances of 

breast-conserving surgery; however, the patient response to NACT varies (2). 

Identifying non-responders before or at an early treatment stage is valuable, 

allowing clinicians to change the NACT regimen or proceed with surgery without 

delay, avoiding the toxic side effects of NACT and tumour progression while 

maintaining the cost-effectiveness of the treatment plan (3). 

Patients with breast cancer undergoing NACT often undergo repeated dynamic 

contrast-enhanced (DCE) magnetic resonance imaging (MRI) scan, a common 

imaging technique involving serial MRI scans before and after injecting a 

gadolinium-based contrast agent for treatment assessment (3, 4). The primary 

need for injecting the contrast agent is for visualising the tumour and its boundaries 

within surrounding tissues. Nevertheless, the assessment is typically limited to 

evaluating morphological changes (5). Tumour cellularity and perfusion are two 

properties of tumours that often change as a response to treatment, preceding 

morphological changes (4, 6). A quantitative estimation of perfusion-related 

parameters of breast tumours, including tumour blood flow (Fb), blood volume 

fraction (vb), along with haemodynamic and cellularity-related parameters, can be 

achieved with a pharmacokinetic analysis of the DCE-MRI data  (7). However, it is 

recommended that patients who have had prior allergic reactions to gadolinium-

based contrast media or those who present severe renal insufficiency should not 

be subjected to a DCE-MRI scan (8). Moreover, certain safety concerns exist 

regarding the administration of gadolinium, particularly for oncology patients who 

undergo repeated DCE-MRI scans (9). In addition, DCE-MRI is costly in terms of 

time and money. These concerns and limitations support the need for alternative 

imaging techniques that can provide equivalent perfusion and cellularity-related 

measurements without administering a contrast agent. 

Conventional diffusion-weighted imaging (DWI), which is not typically used in 

breast cancer imaging, can be employed in oncology treatment response 

monitoring via the apparent diffusion coefficient (ADC). The ADC measures the 

diffusivity of water molecules in the tissue and is assumed to serve as an indicator 
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of cellular density. As such, as tumour cellularity decreases in response to 

treatment, the ADC value increases (10). However, intertumoural structural 

heterogeneity may cause the heterogeneity of water diffusion in the tumour, 

resulting in non-monoexponential diffusion (11). Moreover, blood within the 

capillary network can contribute to the ADC value, which may affect its accuracy in 

describing diffusion (12). 

Bennett et al. introduced the stretched-exponential model (SEM) to assess the 

intravoxel heterogeneity of diffusion by measuring the distributed diffusion 

coefficient (DDC) and the diffusion heterogeneity index (α) (13). Although evidence 

has revealed that the SEM is useful for evaluating breast and other tumours, its 

application in assessing breast cancer response to NACT is still limited (14-19).  

Le Bihan et al. introduced the intravoxel incoherent motion (IVIM) model as an 

approach to diffusion imaging. The IVIM model is proposed to enable the 

simultaneous assessment of water diffusion and blood perfusion by separating the 

effects of the microcirculation of blood in the capillary network (so-called pseudo-

diffusion) from water diffusion in the rest of the tissue. This separation enables the 

measurement of the diffusion-related parameter Dt (reflecting tissue diffusion) and 

perfusion-related parameters, including Dp (reflecting the pseudo-diffusion 

coefficient), f (reflecting the perfused fraction), and their product f×Dp (reflecting 

microvascular blood flow) (12, 20). As such, IVIM is an interesting technique that 

can assess both tumour cellularity and perfusion without injecting the patient with 

gadolinium. Studies have demonstrated the potential of the IVIM model in 

differentiating benign and malignant breast tumours (15, 21, 22); however, few 

studies have investigated the ability of the model to assess the response of breast 

cancer to NACT (19, 23). 
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1.2 Thesis motivation 

Two preliminary studies have indicated that, after two or three NACT cycles, the 

parameters of the SEM and IVIM models obtained from a single region of interest 

(ROI) drawn freehand on the imaging slice with the largest tumour dimension may 

predict the breast cancer response to NACT (19, 23). The authors of these studies 

have recommended further investigation at earlier treatment points (i.e., after one 

cycle). Furthermore, the International Breast DWI Working Group recommended 

volumetric sampling when evaluating tumour response (24). 

Trial 6698 by the American College of Radiology Imaging Network (ACRIN) is the 

largest multicentre trial evaluating the effectiveness of the ADC to assess the 

breast cancer response to NACT. The ACRIN 6698 trial found that a relative 

increase in the whole-tumour ADC value was only predictive of the breast cancer 

response to NACT after four cycles (12 weeks). The trial suggests that the SEM or 

IVIM models may better depict NACT effects. Moreover, the trial recommended 

further investigation of alternative analytical methods, such as characterising the 

worst tumour subregion (i.e., the area with the lowest ADC) to improve the 

detection of changes in tumour cellularity (25). Similarly, the International Breast 

DWI Working Group suggested using a small ROI on the darkest region of the 

tumour on ADC maps, occasionally known as the diffusion cold-spot, to calculate 

ADC values, potentially reflecting the most active part of the tumour (24). This 

method is indicated to be analogous to that used for DCE-MRI image analyses, 

which involves selecting the region of greatest mean maximum enhancement, 

often called a perfusion hot-spot (24, 26). However, the ability of the ADC, along 

with the parameters of the SEM and IVIM models derived from the diffusion cold-

spot and perfusion hot-spot of the tumour, to predict the early breast cancer 

response to NACT requires further exploration. 

The promising applications of IVIM perfusion-related parameters in breast tumours 

over the past decade have, in turn, reopened the question of whether IVIM could 

be used as a contrast-agent-free alternative to DCE-MRI for measuring breast 

tumour perfusion. Few studies have investigated the correlations between IVIM 

and DCE-MRI perfusion-related parameters in breast tumours and have produced 

contradictory results (27-29). These studies examined correlations at a single visit, 

and none of these studies provided an absolute estimation of the tumour blood 

flow, thus; they did not perform a direct comparison with the IVIM parameter 

purported to measure microvascular blood flow (f×Dp). In contrast, ADC is 

expected to be related to DCE-MRI cellularity-related measures. However, one 
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study on breast tumours has challenged this expectation, suggesting that ADC is 

incompletely understood (30). 

The focus of this thesis, therefore, is to evaluate the relative potential of basic 

monoexponential and advanced (IVIM and SEM) diffusion models in predicting 

early responses to NACT in patients with primary breast cancer scheduled to 

undergo NACT, and to explore the relationships between IVIM and DCE-MRI 

perfusion-related measures, as well as between DWI tissue diffusion measures 

and DCE-MRI cellularity-related measures. The experimental works in this thesis 

utilised a retrospective MRI dataset of patients with breast cancer acquired as part 

of a Breast Cancer Now-funded project at three points in time: before NACT and 

after one and three NACT cycles. 

1.3 Overview of chapters 

Chapter 2 provides an overview of breast cancer, its histological and molecular 

subtypes and grading, and discusses the tumour microenvironment. This chapter 

summarises treatment approaches, emphasising NACT and evaluating 

histopathological responses. The chapter explains the roles of MRI in breast 

cancer imaging, focusing on DCE-MRI, DWI and the associated models, including 

basic monoexponential and advanced (IVIM and SEM) models. Each technique is 

described with a brief overview of its reproducibility and roles in breast cancer 

imaging. The chapter concludes by reviewing studies that explored the correlation 

between perfusion parameters estimated by IVIM and DCE-MRI techniques, 

highlighting gaps in the current literature. 

Chapter 3, the first of four experimental chapters, compares commonly used IVIM 

curve-fitting methods in breast cancer via computer simulations and in vivo 

measurements to determine the optimum method to analyse the clinical breast 

DWI data included in this research. 

Chapter 4 addresses the points raised in the literature by investigating the value of 

the monoexponential, SEM, and IVIM models at pretreatment and after one and 

three NACT cycles, using volumetric sampling to assess early breast cancer 

response to NACT. 

In Chapter 5, the recommendations raised by the ACRIN 6698 trial and the 

suggestions from the International Breast DWI Working Group were followed by 

investigating the value of the ADC, along with the parameters obtained from the 

SEM and IVIM models, derived from diffusion cold-spot and perfusion hot-spot 

regions of the tumour, to predict early breast cancer response to NACT. 
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Chapter 6, final and main experimental chapter, addresses the gaps in the 

literature by systematically investigating whether IVIM could offer a contrast-agent-

free alternative to DCE-MRI for breast tumour perfusion measurement, using a 

novel methodology. Furthermore, the research extended to explore the relationship 

between ADC and DCE-MRI cellularity-related measures. 

Chapter 7 presents a summary of the experimental works, addresses the 

limitations of the works performed, provides recommendations for future research, 

and draws the final conclusion. 
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Chapter 2 Background material: breast cancer, treatment, and role 

of magnetic resonance imaging 

2.1 Breast anatomy 

Breasts or mammary glands are component of the female reproductive system. 

The development of the two mammary glands in females occurs during puberty 

with the hormone’s oestrogen and progesterone secretion. Anatomically, the breast 

lies on the anterior thoracic wall and the pectoralis major muscle and extends 

between the second and the sixth ribs (31). The suspensory ligaments (also known 

as Cooper's ligaments) extend from the skin to the pectoralis fascia offering 

structural support and allowing movement of the breast (32). The breast is supplied 

with blood through numerous arteries that deliver oxygen and nutrients to the 

tissue, and veins that carry away waste products. The internal thoracic artery and 

its branches are the primary blood supply to the breast (33). Additionally, the 

breast is efficiently drained by the lymphatic system, which consists of lymphatic 

vessels and nodes that encircle the nipple (Figure 2.1). This system's roles include 

draining tissues of dissolved substances such as plasma proteins and contributing 

to the immune response by producing and releasing immune cells such as 

lymphocytes (a type of white blood cell) (34). However, cancer cells can exploit 

both the vascular and lymphatic systems to spread and establish secondary 

tumours in other parts of the body, such as the brain and lungs. 
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Figure 2.1 Normal female breast anatomy. (A) sagittal plane, (B) arteries and 
veins network, (C) lymph vessels and nodes network. Figure derived from (33, 35), 
and annotated. 

 

2.2 Background of breast cancer 

Breast cancer ranks as the second most frequently diagnosed cancer globally 

constituting 11.6% of all cancer cases, and it is the most prevalent cancer among 

females in the world (36). In females, it stands as a primary cause of cancer 

mortality worldwide, and it is the second highest cause of cancer mortality in UK 

after lung cancer (36, 37). Around 56,800 females in the UK are diagnosed with 

breast cancer annually and 1 in 7 females will develop the disease during their 

lifetime (37). Breast cancer survival are better than before due to improvement of 

awareness, screening, and treatments, where 85.9% of females diagnosed with 

the disease survive for 5 years or more, while 75.9% for 10 years or more (38). 

Nevertheless, approximately 11,400 females still die every year from breast cancer 
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in UK (37). Therefore, significant efforts for performing research aimed at 

improving prevention, early diagnosis, and the tailor of most effective treatment 

plan are still needed. 

The detection pathway of breast cancer typically involves a physical examination 

by a clinician and screening using mammography (39). Ultrasound imaging is often 

used as a supplementary method to detect a lump in a breast that has not 

appeared on a mammogram, to characterise abnormalities that have shown up on 

a mammogram, to probe for nodal metastases, or to guide taking a needle biopsy 

from the suspicious area for pathological analysis (40). Screening through MRI is 

often conducted for women who are at high risk of developing breast cancer, such 

as those with a strong family history of breast cancer (39, 41). 

Breast cancer is a heterogeneous disease, and its risk of progression and 

treatment resistance vary between patients (42). Heterogeneity implies variations 

in both biological and molecular characteristics between the same tumour type in 

different patients (inter-tumoural heterogeneity) and within cells of a primary 

tumour in the same patient (intra-tumoural heterogeneity), such as vascularity, 

proliferation rate, cellular morphology, and gene expression (42, 43). However, 

breast cancer can be characterised according to its histopathological subtype, 

grade, and the expression of particular proteins, which can be utilised in 

determining the suitable treatment. 

2.3 Breast cancer histopathological classification 

Breast cancers are classified into two main types: in-situ carcinoma (non-invasive), 

and invasive carcinoma. In-situ carcinoma is that where cancerous cells have not 

yet spread into the tissue surrounding the ducts or lobules. It is divided into two 

subtypes: ductal carcinoma in situ and lobular carcinoma in situ, with breast cancer 

called ductal or lobular according to where the cancer cells originate in and are 

restricted, as illustrated in Figure 2.2. In contrast, invasive carcinoma is that where 

cancerous cells have infiltrated beyond the myoepithelial cells and basement 

membrane of the ducts and lobules into the surrounding breast tissue and are 

capable of metastasising to other parts of the body.  

           The histopathological type of cancer is determined through microscopy of 

biopsied specimens. The most common histological subtype of invasive breast 

cancer is invasive ductal carcinoma where it constitutes approximately 75% of all 

breast cancer cases, while the second most common subtype is invasive lobular 

carcinoma, comprising 5-15% of all breast cancer cases (44). There are a number 
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of rare subtypes including tubular, mucinous, papillary, and inflammatory breast 

cancer (44, 45). Although the histopathologic subtyping of invasive breast cancers 

provides useful prognostic information, its role in the clinical management decision 

is generally limited (46). 

 

 

2.4 Breast cancer molecular subtypes 

Usually, immunohistochemical tests of biopsy specimens are performed to 

categorise the molecular subtype of breast cancer. These tests determine the 

expression of oestrogen receptors (ER), progesterone receptors (PR), and the 

human epidermal growth factor receptor 2 (HER2) in the breast tumour. According 

to the expression of these molecular markers, breast cancer can be categorised 

into four molecular subtypes: luminal A, luminal B, HER2-enriched, and triple-

negative, as outlined in Table 2.1. Breast cancer is classified as luminal A when 

the hormone receptor is positive (i.e., ER and/or PR are present in significant 

quantities) and HER2 is negative, and as luminal B when both the hormone 

receptor and HER2 are positive. When breast cancer is negative for hormone 

Figure 2.2 Common histopathological types of breast cancer. 



 

 

10 

receptors (i.e., neither ER nor PR are present) but is HER2 positive, it is 

categorised as HER2-enriched, whereas when both the hormone receptors and 

HER2 are negative, it is categorised as triple-negative (47).  

Establishing the molecular subtype of breast cancer helps with prognostication and 

therapeutic strategy. For example, luminal A and B breast tumours can be treated 

with endocrine therapy, such as tamoxifen (an oestrogen receptor modulator) in 

addition to chemotherapy, whereas trastuzumab (an anti-HER2 drug) can be used 

along with chemotherapy for HER2-enriched and luminal B tumours (48). It has 

been indicated that patients with luminal A tumours are associated with a good 

prognosis, whereas HER2-enriched and triple-negative tumours have a poorer 

prognosis compared to luminal tumours (49). Triple-negative cancer particularly 

accounts for a significant proportion of breast cancer deaths because of its 

aggressive nature and the lack of targeted treatments (50). 

Table 2.1 Classification of molecular subtypes of breast cancer (47). 

Molecular subtype Immunohistochemical 

properties 

Frequency (%) of invasive 

breast cancers 

Luminal A ER+ and/or PR+, HER2- ∼40% 

Luminal B ER+ and/or PR+, HER2+ ∼20% 

HER2-enriched ER- and PR-, HER2+ ∼ 15% - 20% 

Triple-negative ER- and PR-, HER2- ∼ 10% -15% 

 

2.5 Breast cancer grading 

The histologic grading of breast cancer measures the extent to which tumour cells 

differ from normal breast epithelial cells, reflecting the tumour’s potential 

aggressiveness and correlates with prognosis (51, 52). Three morphological 

features are evaluated by a pathologist using the Nottingham Grading System 

where each feature is scored from 1 to 3: tubule formation (the proportion of 

tumour tissue that forms tubules similar to normal breast tissue), nuclear 

pleomorphism (the variation in tumour cell nuclei compared to normal cell nuclei), 

and mitotic count (the number of cells undergoing division in a given tumour tissue 

area - an indicator of cell proliferation). The total scores obtained determines the 

overall tumour grade, with scores of 3-5 equating to grade 1, 6-7 to grade 2, and 8-

9 to grade 3. Grade 1 tumour cells tend to be small and proliferate slowly 
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compared to grade 3 tumour cells which are larger and rapidly proliferating, and 

the survival rate for patients with grade 1 tumours is significantly better than for 

those with grade 2 or grade 3 tumours (52). 

2.6 Breast cancer features 

2.6.1 Proliferation in breast cancer 

Proliferation of tumour cells is one of the main features of malignancy. Cancer can 

develop rapidly; the increased proliferation of tumour cells leads to high tumour 

cellular density, a more confined extracellular space, and loss of structured 

organization (10), and is linked with prognosis and aggressiveness of tumours (53), 

(Figure 2.3). Inhibiting tumour cell proliferation is one of the cancer treatment 

strategies where various drugs are available to inhibit proliferative activity and 

therapy tumour progression (54). The DWI MRI technique has demonstrated the 

capability to characterise tumour cellularity, which would assist in both the 

diagnosis and monitoring of tumour responses (more details in section 2.8.2.1.1). 

 

Figure 2.3 Illustration of features of normal and malignant breast tissue 

microenvironments. Malignant breast tissue (right), contrasting with normal 

breast tissue (left), is characterized by high cellular density due to cancer cell 

proliferation, and increased vascularity due to formation of new blood vessels to 

meet the increased demand for oxygen and nutrients for cancer cell proliferation, 

which both result in a more confined extracellular space. 
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2.6.2 Vascularity in breast cancer 

Angiogenesis is another cancer characteristics by which new blood vessels are 

formed from existing vasculature. It is essential for tumour growth, invasion, and 

metastasis, as it fulfils the increased requirement for oxygen and nutrients needed 

for cancer cell proliferation (55), (Figure 2.3). Tumours generally do not expand 

beyond 1-2 mm in diameter without forming new blood vessels (56).  In normal 

tissues, blood is delivered through an orderly and efficient mature vascular network 

(57). However, tumour vasculature develops in a dysfunctional and disorganised 

manner due to aggressive cell growth, resulting in irregularly shaped, tortuous, 

immature, and leaky blood vessels (58). 

In the breast, tumours are characterized by an altered general vascular supply, a 

prominent feeding vessel, and increased regional vascularity (59). Targeting 

angiogenesis is considered one approach in cancer treatment strategies, where 

numerous drugs are available to inhibit angiogenesis and thereby impede the 

delivery of oxygen and nutrients needed for tumour growth (60). The DCE-MRI 

technique has the ability to characterise tumour vascularity, thereby aiding both 

diagnosis and monitoring of tumour response (more description in section 2.8.1.1). 

2.7 Approaches to treatment 

Treatment for breast cancer includes local therapy of surgery with/without 

radiotherapy, systemic therapy such as targeted chemotherapy and endocrine 

therapy, or a combination of both approaches. The appropriate treatment plan is 

determined based on multiple factors, including tumour size, molecular subtype, 

axillary node status, the presence of metastases, and patient decision. The main 

objective when treating non-metastatic breast cancer is to eradicate the tumour 

and remove cancer-affected axillary lymph nodes to a sufficient degree to prevent 

a local recurrence of the tumour. The local therapy approach for non-metastatic 

cancer involves surgical eradication of tumour or lymph nodes, with consideration 

of postoperative radiotherapy to cause necrosis of any residual tumour cells to 

reduce the risk of local recurrence. Systemic therapy, which includes targeted 

chemotherapy and endocrine therapy, can be administered before surgery (as 

neoadjuvant) or after surgery (as adjuvant), or both. In contrast, the main aims for 

systemic therapy and local therapy in treating metastatic breast cancer are to 

lengthen a patient’s life and palliate symptoms, where it remains incurable in nearly 

all affected patients (48). 
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2.7.1 Overview of neoadjuvant chemotherapy (NACT) 

Neoadjuvant chemotherapy (NACT) is often used in treating patients with primary 

breast cancer to:[1] reduce tumour size thereby increasing the chances of breast-

conserving surgery instead of mastectomy; [2] rapidly treat any potential 

micrometastatic disease undetected in preoperative staging; and [3] downstage the 

axillary lymph nodes potentially reducing the need for axillary lymph node 

dissection (48, 61). NACT regimens are typically delivered in a series of cycles with 

intervals between cycles to permit the body to recuperate from side effects. 

NACT often involves combination regimens comprising: alkylating agents such as 

cyclophosphamide that cause cross-linking and breaks in the DNA strands 

preventing cancer cells from dividing and leading to cell death; anthracyclines such 

as epirubicin which disrupt DNA synthesis and repair inhibiting cancer cell growth 

and ultimately leading to cell death; and taxanes such as docetaxel that disrupt the 

process of cell division, leading to cell cycle arrest and inducing cell death (62). 

These therapeutic agents are commonly administered in a regimen of cycles of 

epirubicin and cyclophosphamide for the initial phase of the NACT course, followed 

by cycles of docetaxel for the last phase (63). 

Endocrine therapy and HER2-targeted therapy are considered the main treatments 

for breast cancers that are hormone receptor-positive (HR+) and HER2-positive 

(HER2+), respectively. HR+ breast cancers are treated with drugs such as 

tamoxifen, which is a selective ER modulator that reduces the effect of oestrogen, 

as well as aromatase inhibitors that can be used to decrease circulating oestrogen 

levels in the body. Additionally, HER2+ cancers are treated using monoclonal 

antibody drugs targeting HER2, such as trastuzumab and pertuzumab, which 

improve disease-free survival and overall survival rates. In contrast, treating triple-

negative breast cancers is challenging due to the lack of expression of ER, PR, 

and HER2, thus making drugs targeted at these receptors ineffective (48). 

2.7.1.1 Histological pathological response evaluation 

Patient typically undergoes surgery following the completion of NACT to remove 

the remaining tumour, with either a lumpectomy (removing the tumour and a small 

margin of surrounding tissue) or a mastectomy (eradicate of the entire breast). 

Axillary lymph node dissection or sentinel lymph node biopsy is also performed to 

assess the involvement of lymph nodes. The surgical specimen and excised lymph 

nodes are collected and examined histologically by a pathologist for the calculation 
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of the Residual Cancer Burden (RCB) index to grade the tumour response to 

NACT.  

The RCB index is a scoring system that commonly used for quantifying residual 

disease after NACT to assess response, and it is proposed as an independent 

predictor of distant relapse-free survival. The index is estimated from pathological 

sections of the primary breast tumour bed and the regional lymph nodes after 

NACT completion, including six variables (64): 

Primary tumour bed: 

- Largest bidimensional diameters of the residual primary tumour bed. 

- Percentage of the residual tumour bed area that contains carcinoma. 

- Percentage of cancer in the residual tumour bed that is in-situ component. 

Lymph nodes: 

- Number of positive metastatic axillary lymph nodes. 

- Largest diameter of the largest nodal metastasis. 

The RCB index is calculated by entering these variables into the online RCB 

calculator provided by the MD Anderson Centre 

(http://www.mdanderson.org/breastcancer_RCB). Subsequently, this index is 

separated into four different RCB classes reflecting the extent of residual disease: 

RCB-0 (pCR; pathological complete response), RCB-I (minimal residual disease), 

RCB-II (moderate residual disease), and RCB-III (extensive residual disease). The 

classification method is as follows: an RCB index of 0 is classified as pCR, which is 

defined as the absence of residual invasive disease in the breast and axillary 

nodes; an index greater than 0 but not exceeding 1.36 is categorised as RCB-I; an 

index between 1.36 and 3.28 is identified as RCB-II; while an index above 3.28 is 

labelled as RCB-III. 

RCB-0/I is associated with a good prognosis, whereas RCB-II is linked with an 

intermediate prognosis and RCB-III with a poor prognosis (64). Notably, patients 

with RCB-I share the same excellent 5-year distant relapse-free prognosis as RCB-

0 patients, and both groups achieving approximately 89% 8-year distant relapse-

free survival rate (64, 65). Thereby the category of responders (patients with a very 

low risk of relapse) could be extended to include patients with minimal residual 

disease (RCB-I). Responders (RCB-0 and RCB-I), however, constitute only 37-

40% of patients undergoing NACT (64, 65). 

 

http://www.mdanderson.org/breastcancer_RCB
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2.8 Breast cancer magnetic resonance imaging (MRI) 

2.8.1 Background of dynamic contrast-enhanced (DCE) MRI 

Breast MRI is a non-invasive imaging technique that plays multiple vital roles in 

breast cancer care including screening, staging, and monitoring treatment 

response, due to its ability to image both breasts simultaneously and offer superior 

soft tissue contrast and detailed cross-sectional anatomical imaging, allowing for 

high spatial resolution and sensitivity in identifying and characterising breast 

lesions (66). 

The standard protocol for breast MRI includes T2-weighted fast spin echo 

sequence and dynamic contrast-enhanced (DCE) 3D T1-weighted spoiled gradient 

echo sequence with fat-suppression before and one or more after the intravenous 

administration of a gadolinium-based contrast agent (67). DCE-MRI images are 

highly valuable for detecting breast lesions and characterising lesion morphology 

and extent (66). T2-weighted images provide diagnostic insights that complement 

DCE-MRI for aiding in the differentiation between benign (e.g., cysts, 

fibroadenomas) and malignant lesions and in the assessment of breast anatomy 

(67). 

Gadolinium-based contrast agents used in DCE-MRI function by shortening the T1 

relaxation time of water in blood which tends to pool in in cancerous regions 

because of increased vascularity and leaky blood vessels, key characteristics of 

cancer, resulting in the tumour appearing bright on T1-weighted images due to 

enhanced signal intensity. Given the high adipose tissue content in the breast, 

applying fat suppression is key in breast imaging. Suppressing the fat signal during 

DCE sequence acquisition enhances the clarity of contrast agent uptake in 

fibroglandular tissue (68). 

Peak enhancement for breast cancer appears within the initial 2 min following 

contrast agent injection, with tumours possibly losing signal (which called as wash-

out) as early as 2 to 3 minutes post-injection. The European Society of Breast 

Imaging (EUSOBI) thus recommended performing the DCE sequence at least 

three time points: one before the contrast agent is administered, a second around 

2 minutes afterward to capture the peak enhancement, and a third in the late 

phase to assess if the lesion continues to enhance, reaches a plateau, or exhibits 

early contrast agent wash-out, though the optimum number of required repetitions 

remains unknown (67). 
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DCE-MRI involves balancing temporal and spatial resolution. High spatial 

resolution is needed for identifying small tumours and accurately characterising 

tumour morphology, whereas high temporal resolution is necessary for effectively 

characterising or quantifying contrast agent uptake or performing pharmacokinetic 

modelling (66). Tumour morphology can be evaluated on the fat-suppressed 

contrast agent-enhanced images. However, interpretation may be challenged by 

residual fat signals that appear bright on T1-weighted images due to difficulty in 

achieving homogeneous fat suppression. Therefore, subtraction images, created 

by subtracting pre-contrast from post-contrast images, are recommended to further 

suppress the residual bright fat signal, as fatty tissue hardly enhances, thereby 

further improving tumour characterisation (67). 

2.8.1.1 Roles of the DCE-MRI in breast cancer imaging 

Screening 

DCE-MRI is currently used as an adjunct imaging method for annual breast 

screening along with mammography or ultrasound in women who are at high risk 

for breast cancer, including those with a strong familial risk of breast cancer (first-

degree relative such as a mother or sister), inherited BRCA1 or BRCA2 gene 

mutations, or a history of radiotherapy to the chest (69, 70). Breast screening for 

women at an elevated risk using MRI alone showed the highest sensitivity and 

specificity (92.6% and 98.4%) compared to mammography (33.3% and 99.1%) and 

ultrasound (37% and 98%) and combining MRI with mammography further 

improved the sensitivity and specificity to 100% and 97.6%, respectively (71). 

However, MRI is not popular for screening women at low and moderate risk of 

breast cancer due to concerns about false-positive results often associated with 

MRI, leading to additional tests and/or biopsies for the patient (70), thus eventually 

resulting in unnecessary fear to the patient and also costing the healthcare system 

time and money. 

Additionally, DCE-MRI is often used to investigate equivocal (inconclusive) findings 

on mammograms or ultrasounds (70), and particularly in women with dense breast 

tissue as dense tissue appear white on a mammogram which can therefor hide 

similarly white dense tumour tissue. It has been reported that mammography 

sensitivity in women with largely fatty breasts is approximately 86-89%, but it 

decreases to 62-68% in those with extremely dense breasts, resulting in a higher 

rate of cancers that are not detected until the next scheduled screening round, 

known as interval cancers. However, screening with MRI has been shown to 

reduce the interval cancer rate by 84% (72). 
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Staging 

Following a biopsy confirming cancer, DCE-MRI can also be used preoperatively to 

characterise tumour size and extent, including multifocal and multicentric disease, 

assess involvement of the chest wall and lymph nodes, and evaluate the 

contralateral breast for additional cancer (73, 74). This information can be utilised 

to aid in guiding the treatment (75), and for the selection of surgical planning 

particularly after the completion of NACT (mastectomy or lumpectomy), potentially 

minimising the need for surgical re-excision (76). Previous study showed that MRI 

provides the highest level of sensitivity in the pre-operative assessment of breast 

cancer (77). 

Monitoring of NACT response 

The primary goal of NACT is tumour size reduction. Monitoring the patient’s 

response during NACT cycles is crucial as it allows the oncologist to change the 

NACT regimen if the tumour has not manifested a therapeutic response, or 

proceed to surgery without delay, thereby avoiding unnecessary cytotoxic side 

effects of NACT and tumour progression while maintaining the cost-effectiveness 

of the treatment plan. Tumour response is typically assessed by measuring 

changes in the tumour's size at each stage, often determined by its longest 

diameter on clinical examination (palpation) and imaging techniques such as 

mammography, ultrasonography, and DCE-MRI. Clinical assessment of tumour 

response by palpation is intrinsically subjective and may lack precision (78). 

Furthermore, breast tissue is inherently pliable, which implies that tumour 

dimensions may differ depending on the patient’s position, potentially causing 

variations in measurements obtained in upright (mammography), supine (US), and 

prone (DCE-MRI) positions (79).  

The Response Evaluation Criteria in Solid Tumours (RECIST) 1.1 guidelines 

specify MRI as the preferred imaging modality to follow breast tumours in the 

neoadjuvant setting and recommend measuring tumour diameter in at least one 

dimension (the longest diameter in the plane of measurement) to evaluate the 

therapeutic response, categorised into four types: complete response, partial 

response, stable disease, and progressive disease (Table 2.2) (5). In cases of 

multifocal or multicentric breast cancers, up to two of the largest lesions in each 

breast are measured and classified as target lesions for subsequent follow-up 

imaging assessments. Other enhancing lesions are classified as non-target 

lesions, which should be assessed during follow-up imaging, but measurement is 

not required (5). DCE-MRI provides a more accurate measurement of the longest 
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tumour diameter than ultrasound, mammography, and clinical examination (79, 

80), and demonstrates higher accuracy in predicting tumour response to NACT 

(80, 81).  

Table 2.2 The RECIST criteria for evaluating tumour response to treatment. 

Response type Criteria 

Complete response Disappearance of all target lesions 

Partial response A reduction in target lesion diameter of no less than 30%. 

Progressive disease An increase in target lesion diameter by at least 20%, or the 

appearance of one or more new lesions. 

Stable disease Lacking sufficient reduction to be classified as a partial 

response or sufficient increase to be considered progressive 

disease. 

 

The EUSOBI recommends performing DCE-MRI at three time points: before 

starting NACT, midway through the NACT course, and after completing the final 

course (67). Nonetheless, there is still no consensus on the optimal time points for 

performing MRI assessments during treatment. The EUSOBI suggests that 

changing the NACT regimen based on MRI results halfway through treatment 

should be considered only for clear non-responders and those with progressive 

disease (67). 

However, tumour shrinkage patterns vary, and a tumour might shrink 

asymmetrically, with for example a greater reduction occurring in one dimension 

than in the dimension of the largest diameter. Additionally, tumours that are 

irregularly shaped or multifocal may be inadequately evaluated by measuring only 

the largest diameter. Therefore, relying solely on the largest tumour diameter when 

monitoring NACT may not fully reflect the extent of the response.  

Furthermore, the accuracy of DCE-MRI in measuring the size of residual tumour 

can be impacted by multiple factors. Tumour molecular subtype can affect the 

accuracy of DCE-MRI in determining the residual tumour size with luminal tumours 

found to be more underestimated compared to triple-negative and HER2-positive 

tumours, potentially due to a low level of contrast enhancement that may make 

measuring the residual tumour more difficult (82). Changes resulting from the 

treatment can impact the accuracy of residual tumour size measurement often 

resulting in over- or underestimation. Fibrosis and inflammatory reactions following 
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NACT may enhance and resemble the appearance of residual tumour, resulting in 

overestimation of tumour size on DCE-MRI. In cases where MRI suggested 

remnant tumour that was not found in the pathological analysis, fibrous granulation 

tissue containing numerous small vessels and inflammatory cells was accounted 

for the enhancement (83, 84). In comparison, tumours size that break up into small 

scattered residual carcinoma may be underestimated on DCE-MRI as residual 

tumour cells may be too small to be detected by MRI (85). Tumours treated with a 

NACT regimen that includes taxanes often fragment into scattered small nests of 

tumour cells which can result in the underestimation of residual tumour size by 

DCE-MRI, whereas tumours treated with a fluorouracil-epirubicin-

cyclophosphamide-based regimen often shrink into single nodular residual lesions, 

and the measurements of these residual tumour sizes by MRI have been found to 

correlate highly with those obtained by pathological evaluation (85). Also, the use 

of a taxane-containing NACT suppresses contrast enhancement in breast cancers 

due to its antiangiogenic effects, which can also lead to the underestimation of 

residual tumour extent on DCE-MRI (86). Due to the aforementioned challenges in 

measuring residual tumour size with DCE-MRI, pathological examination of 

surgical specimens continues to be the gold standard for assessing tumour 

response. 

Tumour volume measurement can provide a more comprehensive assessment of 

the extent of tumour response than changes in the longest diameter and tumour 

size on the section of the longest diameter, particularly with tumours that are 

irregularly shaped or multifocal. Researchers found that measurement of tumour 

volume was more predictive than measurement of the tumour's longest diameter 

for pathologic response (87) and recurrence-free survival (78). Moreover, a 

systematic review revealed that tumour volume measurements were more 

accurate in predicting the pathological response compared to uni- or bidimensional 

tumour size measurements (88). 

Characterising tumour physiology 

In addition to providing morphological information, DCE-MRI can provide 

physiological information about breast tumours through qualitative, semi-

quantitative, or quantitative analysis of DCE-MRI data, which can aid in the 

diagnosis of malignant versus benign tumours and in monitoring tumour response. 

Physiological changes within the tumour often precede changes in volume, 

indicating early tumour response (89).  
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The American College of Radiology developed the Breast Imaging Reporting and 

Data System (BI-RADS) lexicon to standardise breast MRI reports, including the 

evaluation of lesion morphological features (size, shape, and margins), internal 

enhancement characteristics of the lesion (homogeneous, heterogeneous, or rim 

enhancement), and assessment of the lesion's signal intensity-time curve, known 

also as kinetic curve (90). Acquiring multiple MR images over the course of 

contrast media injection enables constructing the enhancement kinetic curve by 

plotting the signal intensity values of a breast lesion over time following the 

injection, depicting the dynamic contrast flow through the tissue. 

DCE-MRI qualitative analysis is based on characterising the shape of two distinct 

enhancement phases (initial and delayed) of the constructed signal intensity-time 

curve, as depicted in Figure 2.4. The initial enhancement phase occurs within the 

first 2 minutes following contrast administration or when the enhancement curve 

begins to increase; the enhancement shape is determined as either slow, medium, 

or fast. The delayed enhancement phase occurs following the first 2 minutes of 

contrast injection or after the enhancement curve peaks; the enhancement pattern 

is characterised as either persistent, plateau, or washout (90). A persistent gradual 

increase in signal intensity over time following contrast injection is considered a 

type I kinetic curve; a fast initial signal enhancement followed by a plateau phase is 

classified as a type II kinetic curve; and a fast initial signal enhancement followed 

by a fast washout phase is characterised as a type III kinetic curve (91).  

 

 

Figure 2.4 Enhancement shapes of initial (left) and delayed (right) phase of 
breast lesion signal intensity-time curve. 
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A type I curve was considered indicative of benignity, observed in 83% of benign 

lesions compared to 8.9% of malignant lesions (91). This could be a reflection of 

more normal vascularity in benign lesions, where the contrast agent gradually 

accumulates until saturation. In comparison, type II and III curves were recognised 

as indicative of malignancy, identified in 91% of malignant lesions (type II: 33.6%; 

type III: 57.4%) versus 17% of benign lesions (type II: 11.5%; type III: 5.5%) (91). 

These patterns in malignant lesions could correspond to high but permeable 

vascularity, where the contrast agent accumulates rapidly but then leaks out. 

Additionally, the changes in signal intensity-time curve types post-NACT were 

found significantly correlated with clinical and pathological responses (92). 

Semi-quantitative DCE-MRI analysis involves calculating several heuristic 

parameters using the signal intensity-time curve, such as maximum relative tumour 

signal intensity enhancement compared to normal tissue, the signal enhancement 

ratio, time to peak enhancement (TTP), wash-in and wash-out rates, and the initial 

area under the time-signal curve (iAUC), which have demonstrated the ability to 

differentiate between benign and malignant tumours (93). Previous studies have 

also found that iAUC, TTP, and wash-in rate are valuable in predicting pathological 

response to NACT (94). 

Quantitative analysis in DCE-MRI is based on performing mathematical 

pharmacokinetic modelling, which characterises the passage of the contrast agent 

through the vasculature into the tumour and its distribution between the 

intravascular and extravascular spaces (95). There are a number of 

pharmacokinetic models utilised in the literature for analysing DCE-MRI data in 

breast cancer, varying from the simple Tofts’ model to the extended Tofts model, 

which provide a range of quantitative parameters describing various physiological 

aspects of the tumour. Such parameters include: Ktrans (min-1), indicating the influx 

mass transfer rate of the contrast agent from the blood plasma to the 

extravascular-extracellular space (EES); kep (min-1), representing the flux rate of 

contrast agent from the EES back to the blood plasma; vp, representing the 

fractional blood plasma volume; and ve, indicating the EES volume fraction (96), 

(Figure 2.5).  
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Figure 2.5 Pictorial representation of the extended Tofts model, describing 
the parameters Ktrans, kep, vp, and ve in the context of breast cancer tissues. 

 

Researchers have demonstrated that Ktrans, Kep, and vp can distinguish between 

benign and malignant breast lesions with over 80% accuracy, with these 

parameters found to be higher in malignant lesions compared to benign ones (97, 

98). This could be due to malignant lesions being associated with higher perfusion 

and leaky vascularity than benign lesions. Additionally, other researchers have 

found that Ktrans (99-101), Kep (99, 102, 103), and ve (103) can predict tumour 

response to NACT when measured at early treatment time points, with responders 

showing a greater reduction in Ktrans, Kep, and an increase in ve in response to 

treatment. Marinovich et al. indicated that, in addition to tumour volume, a 

reduction in Ktrans may outperform uni- or bidimensional size measurements for 

early response prediction (88). Although a meta-analysis of 14 articles found the 

sensitivity and specificity of quantitative DCE-MRI for predicting response to NACT 

to be above 80%, the published studies are noted to be highly heterogeneous and 

there is a lack of standardization in the field (104). The spontaneous variability 

range of quantitative DCE-MRI parameter estimates, evaluated using the within-

subject coefficient of variation at different anatomic sites, was 7.7-31% for Ktrans 

(105-109), 15.4-24% for Kep (105, 107, 108), 6.2-17% for ve (105-109), and 30-48% 

for vb (108, 109). The DCE-MRI data in routine clinical practice is analysed using 
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the BI-RADS lexicon (i.e., qualitatively), whereas deriving quantitative parameters 

is typically limited to breast cancer research. 

There are safety concerns regarding the administration of gadolinium-based 

contrast agents, particularly in patients with a history of allergic reactions to 

gadolinium or those with severe renal insufficiency who are at risk for nephrogenic 

systemic fibrosis (8). Another concern involves the accumulation of gadolinium 

deposits in tissues, including the brain, following repeated exposure to gadolinium-

based contrast agents (110), a risk that is particularly important for breast cancer 

patients who undergo multiple DCE-MRI scans (111). Additionally, DCE-MRI is 

both time-consuming and costly. These concerns and limitations have created a 

need for an alternative imaging technique that can provide equivalent perfusion- 

and cellularity-related measurements for evaluating tumours, without the need for 

intravenous contrast injection. 

2.8.2 Diffusion weighted imaging (DWI) MRI and advanced models of 

diffusion 

Diffusion-weighted imaging (DWI) MRI is a technique that measures the thermally 

driven random, Brownian, movement of water molecules in tissue to generate 

contrast in an image. The diffusivity of water molecules in tissue is impeded by the 

cellular membranes and other hindrances (112). Thus, the motion of water 

molecules is not truly Brownian and is affected by changes in the tissue 

microstructure, including tissue cellularity and membrane integrity (10). 

DWI is commonly acquired using a pulsed gradient spin echo (PGSE) sequence, 

which is a conventional spin-echo sequence with a pair of diffusion-sensitizing 

gradients placed before and after the 180° RF pulse, based on methods originally 

developed by Stejskal and Tanner (113), Figure 2.6. DWI sensitivity to water 

molecules mobility depends on the proton’s gyromagnetic ratio (γ), gradient 

strength (G), gradient duration (δ), and the time delay between the two sensitizing 

gradients (∆), and is defined as the b-value (unit: s/mm2) of the sequence as 

shown below (10): 

                       𝑏 = γ2𝐺2δ2(∆ −
δ

3
)                                Equation [1] 

Water molecules that move into different locations between the two diffusion 

gradients will be not exactly rephased at the time of readout, causing the MR signal 

intensity to be reduced (10). Thus, the intensity of the MR signal is inversely 

proportional to the movement of water molecules. More restricted water diffusion, 
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due to the restricted environment, exhibits a larger signal intensity and appears 

brighter on the diffusion images compared with the less restricted diffusion (112). 

 

 

Figure 2.6 The diagram of a diffusion-weighted sequence, based on a PGSE 
technique developed by Stejskal and Tanner. Equal pairs of diffusion-sensitizing 
gradients are applied on either side of the 180° refocusing RF pulse. The degree of 
diffusion weighting (b-value) is determined by the proton’s gyromagnetic ratio (γ), 
gradient strength (G), gradient duration (δ), and the timing between the two 
sensitizing gradients (∆). The intensity of the MRI signal is directly inversely 
proportional to the diffusivity of water molecules, where more-restricted diffusion of 
water exhibits a larger signal intensity compared with the less-restricted diffusion 
(10). 

 

2.8.2.1 Background of the apparent diffusion coefficient (ADC) 

The mobility of water protons in tissue can be quantified via calculating the 

apparent diffusion coefficient (ADC), which is found through the monoexponential 

model equation: 

              𝑆(𝑏) = 𝑆(0). 𝑒𝑥𝑝(−𝑏 . 𝐴𝐷𝐶)                       Equation [2] 

where S(b) is the signal intensity obtained with diffusion weighting b, and S(0) is 

the signal intensity acquired without diffusion weighting (b=0 s/mm2). In general, 

the ADC value is determined for each voxel in the diffusion image and displayed as 

a parametric map on a voxel-by-voxel basis (10). Since the water concentration 

and diffusivity in biological tissues vary according to the type and condition of the 

tissue, the use of the DWI technique can be useful for imaging diseases, such as 



 

 

25 

breast cancer. Several studies have indicated that malignant breast lesions usually 

present low ADC value and appear darker on the ADC map than normal 

fibroglandular tissues. This low ADC value is due to the increased cellular density 

of the malignant lesions, which leads to a smaller extracellular volume fraction and 

results in restricted diffusion (114-116), (Figure 2.7). It is worth noting that raw 

DWIs are inherently T2-weighted, meaning that tissues with longer T2 relaxation 

times but higher ADC values can appear brighter than tissues with shorter T2 but 

lower ADC values, highlighting the need for careful interpretation of DWIs and the 

advantages of calculating ADC maps, which largely overcome this limitation. 

 

Figure 2.7 Diffusion of water molecules in normal and malignant breast 
tissue. The diffusivity of water molecules in malignant breast tumour tissue (right) 
is restricted due to high cellular density, causing a more confined extracellular 
space, thereby resulting in a low ADC value in comparison with normal breast 
tissue microenvironments (left). 

 

The DWI sequence is not yet included in the clinical standard MRI protocol for 

breast imaging and is also not included in the BI-RADS lexicon for assessing 

breast lesions. Additionally, the literature lacks consistency regarding the b-values 

used (117). However, the international Breast DWI working group recently 

published a consensus to encourage the use of DWI in clinical practice, 
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recommending a lowest b-value of 0 s/mm² and a highest b-value of 800 s/mm² 

(24). 

2.8.2.1.1 Role of ADC in assessing NACT response 

Researchers examining changes in tumour specimens following NACT noted 

substantial reductions in tumour cellularity (118). Changes in the ADC value of a 

tumour can reflect changes in tumour cellularity, where an increase in tumour ADC 

during or after NACT is associated with increased cell lysis and necrosis, with 

larger increases observed in pathological responders than in non-responders (10, 

119). Interestingly, significant change in tumour ADC in response to chemotherapy 

has been noted to precede tumour size reduction (120, 121), highlighting the 

potential utility of ADC in assessing treatment response at an earlier time point 

than measurement of tumour size. 

Previous studies have demonstrated that changes in ADC values can predict 

treatment response after one cycle (122), two cycles (123), and after the 

completion of NACT(124). However, the American College of Radiology Imaging 

Network (ACRIN) 6698 trial, which is the largest multicentre trial, assessed the 

ability of ADC to predict NACT response at pretreatment, after one and four NACT 

cycles, and post-treatment. It found that changes in ADC values were only 

predictive of response to NACT after four cycles (12 weeks, mid-treatment) and 

post-treatment (25). This finding could be attributed to the fact that no imaging time 

point was included between cycles one and four, and that ADC changes after one 

cycle may be too early to distinguish responders from non-responders and predict 

treatment response, as also observed in this thesis' findings (125). The ACRIN 

6698 trial paper proposed future investigations, including exploring alternative 

image analysis approaches to improve the ability of ADC to detect changes in 

tumour cellularity, such as characterising the worst tumour subregion (i.e., the area 

with the lowest ADC) (25). The international Breast DWI working group also 

recommended in their consensus statement measuring ADC values from a small 

region of interest (ROI) placed on the darkest region of the breast tumour on ADC 

maps (24), which is occasionally referred to as the diffusion cold-spot. This 

approach is considered analogous to that used for DCE-MRI image analysis (24), 

selecting the tumour region with the greatest mean maximum enhancement, often 

referred to as a perfusion hot-spot (26, 100).  

Furthermore, the ACRIN 6698 trial suggests analysing DWI data using advanced 

models, such as IVIM or SEM, to better depict the effects of NACT, rather than 

solely relying on ADC calculated using a monoexponential decay model (25). 
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Consistent with this suggestion, diffusion data obtained from breast tumours in 

previous studies do not follow the expected monoexponential decay (21, 116, 126), 

as demonstrated by Bedair et al. (19) and this thesis' findings (125), which further 

supports the use of more advanced diffusion models when analysing diffusion 

data. 

 

2.8.2.2 Advanced diffusion models: intravoxel incoherent motion (IVIM) and 

stretched-exponential (SEM) 

Le Bihan et al. indicated that there is an extra source that contributes to the MR 

signal (and the ADC value) is that from microcapillary perfusion in pseudo-random 

capillary networks within imaging voxels (12, 127, 128), particularly at the low b-

values (115). In general, the molecular diffusion of water includes the molecules 

moving due to their thermal energy and colliding with each other, which results in a 

change in their direction. This pattern of motion is random and described as a 

Brownian movement. However, intravascular water molecules flow and change 

direction between pseudo-randomly oriented capillaries within imaging voxels and 

can therefore mimic the random walk process and contribute to the calculated ADC 

value as a type of ‘pseudo-diffusion’. Le Bihan et al. proposed an approach to 

diffusion imaging called IVIM model. The IVIM allows separation of the 

microcirculation perfusion effects from the molecular diffusion using multiple b-

values (low and high) and a biexponential model. Figure 2.8 illustrates signal decay 

and monoexponential and biexponential model fits across different b-values. Thus, 

this enables the estimation of quantitative parameters that can separately reflect 

cellularity and vascularity (12), as shown in the following equation: 

             𝑆(𝑏) =  𝑆(0) .  [(1 − ƒ) 𝑒𝑥𝑝(−𝑏 .  𝐷𝑡) +  ƒ 𝑒𝑥𝑝(−𝑏 .  𝐷𝑝)]     Equation [3]  

Here, f is the perfusion fraction reflecting the fraction of diffusion linked to 

microcirculation, Dt represents the true molecular diffusion, Dp denotes the pseudo-

diffusion coefficient (128), and the product f×Dp reflects the microvascular blood 

flow (20). 
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Figure 2.8 Monoexponential model fit (dashed line) and biexponential model 

fit (solid line, IVIM) of the signal intensity value decay as a function of b-

value. Rectangular box A shows fast decaying signal at low b-values due to the 

effects of both pseudo-diffusion associated with blood microcirculation perfusion 

and diffusion, while rectangular box B shows a more gradual decay of signal at 

higher b-values where purely diffusion effects reside. This figure demonstrates that 

if the diffusion is calculated using a monoexponential ADC fit with low b-values, the 

microcirculation perfusion effects will affect this and hence the ADC may not be 

accurate. Adapted from Figure 2 of (125).  

 

Furthermore, Bennett et al. proposed the SEM model to assess diffusion and 

intravoxel heterogeneity by measuring the distributed diffusion coefficient (DDC) 

and the water diffusion heterogeneity index (α) using the following equation: 

                          𝑆(𝑏) = 𝑆(0). 𝑒𝑥𝑝(−((𝑏 .   𝐷𝐷𝐶)𝛼))                       Equation [4] 

Where DDC represents the mean intravoxel diffusion rate, and α describes the 

deviation of the signal attenuation from the monoexponential behaviour and has a 

value between 0 and 1. A low α index (close to 0) indicates a high degree of 

intravoxel diffusion heterogeneity, demonstrated as multiexponential signal decay. 

In contrast, a high α index (close to 1) denotes a low degree of diffusion 

heterogeneity, suggesting monoexponential diffusion signal decay and indicating 
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that the function will be the same as Equation [2] (13). While the DDC can be 

interpreted as the diffusion coefficient, the interpretation of α is less straightforward 

as there is no clear direct link between the parameter and a physiological basis 

(129). 

2.8.2.2.1 Role of IVIM and SEM in assessing NACT response  

Since the first investigation of IVIM in breast cancer in 2011 (126), growing interest 

in the potential applications of IVIM in breast has led to numerous studies on the 

differentiation between benign and malignant lesions and the association with 

receptor status (21, 27, 116, 130-135). Investigations comparing benign and 

malignant lesions reported that malignant lesions exhibited significantly lower Dt 

and higher f values than benign lesions, which could reflect the higher cellularity 

and vascularity characteristic of malignant lesions (21, 27, 130-133). Similarly, 

though less abundant, studies on SEM in breast cancer have pursued investigative 

objectives similar to those of IVIM. Findings from these SEM studies revealed that 

malignant lesions possessed significantly lower DDC and higher α values 

compared to benign lesions (135-138), which could also reflect greater cellular 

density in malignant lesion. These promising roles of IVIM and SEM parameters 

have underscored their potential usefulness in assessing treatment response to 

NACT. 

Limited studies have assessed the capability of the IVIM and SEM models in 

monitoring and predicting early breast cancer response to NACT. The 

methodologies used in these studies vary in terms of the number and 

characteristics of the patient population that participated, the number and 

distribution of b-values used, the approach followed for pathological response 

evaluation, the imaging time points for assessing early NACT response, and the 

signal-fitting method employed for estimating IVIM parameters (19, 23, 139-141). 

Nevertheless, the results from these studies, summarised in Table 2.3, showed 

that after two or three NACT cycles, the parameters of the SEM and IVIM models 

may predict therapeutic response. For instance, Che et al.(23) reported that pre-

treatment f values were significantly higher in responders than in non-responders. 

However, after two NACT cycles, responders showed significantly higher Dt values 

and lower f values compared to non-responders. In contrast, Cho et al. (139) found 

that only pre-treatment pseudo-diffusion Dp significantly differed between the 

response groups, stratified according to RECIST guidelines. 

Bedair et al. (19) demonstrated that pre-treatment diffusion coefficients (Dt and 

DDC) were significantly lower in responders than in non-responders. After three 
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NACT cycles, only the percentage increase in DDC was significantly higher in 

responders, while Dt showed no significant change between the two groups. In 

contrast, Kim et al. (140) found that Dt at both pre-treatment and after two NACT 

cycles was significantly higher in responders compared to non-responders. Suo et 

al. (141) further demonstrated that the change in diffusion coefficients (Dt and 

DDC) after two NACT cycles was substantially greater in the responders' group. 

The authors of these studies have recommended further investigation at earlier 

time points during the NACT course (i.e., after one cycle) (19, 23, 140). Notably, 

none of these studies examined the ability of the IVIM parameter that was 

suggested to reflect blood flow (f×Dp) in predicting treatment response, and none of 

them explored the predictive value of IVIM and SEM parameters when derived 

from the diffusion cold-spot of the tumour. Furthermore, most of these results were 

obtained from a single ROI drawn freehand on the imaging slice with the largest 

tumour dimension (19, 23, 139); however, volumetric sampling has been 

recommended by the international Breast DWI working group when evaluating 

tumour response (24). 

Minimal research has evaluated the variability in monoexponential and IVIM model 

measurements in breast lesions by calculating the coefficient of variation, and the 

results were promising for the ADC (4.8%) (142) and f (8.83–16.8%) (143). Table 

2.4 provides an overview of the results of studies that have examined the 

repeatability and reproducibility of monoexponential, IVIM, and SEM model 

parameters in the breast and other body regions, demonstrating that the variability 

of these parameters may depend on the area under investigation. Notably, the 

variability of SEM parameters in both normal and malignant breast tissues has yet 

to be assessed.
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Table 2.3 Summary of findings from studies assessing early treatment response to NACT in breast cancer using 
intravoxel incoherent motion and stretched-exponential models. 

Intravoxel incoherent motion model 

Author Year Pre-treatment (Baseline) During treatment 

Responders Non-Responders Responders Non-Responders 

Dt (×10-3 

mm2/s 
Dp (×10-3 

mm2/s 
f (%) Dt (×10-3 

mm2/s 
Dp (×10-3 

mm2/s 
f (%) Dt (×10-3 

mm2/s 
Dp (×10-3 

mm2/s 
f (%) Dt (×10-3 

mm2/s 
Dp (×10-3 

mm2/s 
f (%) 

* Che 
et al. 
(23) 

2016 0.92 
(0.77, 
0.95) 

10.10 
(2.48, 
33.65) 

32.40 
(25.40, 
40.55) 

0.83 
(0.75, 
0.92) 

9.40 
(4.88, 
32.20) 

24.40 
(21.60, 
31.50) 

1.36±0.3 8.98 
(7.52, 
12.35) 

14.51±7.
25 

0.98±0.2
3 

20.00 
(4.62, 
31.70) 

20.69±5.
10 

†Bedair 
et 
al.(19) 

2017 0.85 ± 0.
05 
 

NA 12.10 ± 2
.02 

 

1.02 ± 0.
05 
 

NA 10.32±1.
15 

∆ ↑36% NA ∆ ↓29% ∆ ↑23% NA ∆ ↑5% 

Cho et 
al.(139) 

2017 0.99 
(0.55, 
2.16) 

25.54 
(15.99, 
37.14) 

8.70 
(4.80,19.

3) 

1.05 
(0.96, 
1.21) 

17.16 
(16.9, 
25.79) 

11.70 
(5.20, 
14.2) 

NA NA NA NA NA NA 

* Kim 
et 
al.(140)  

2018 1.22 
(1.10, 
1.49) 

5.87 
(4.77, 
7.94) 

45.17 
(37.96, 
47.73) 

1.10 
(1.01, 
1.22) 

7.33 
(5.26, 
10.16) 

43.33 
(36.04, 
53.90) 

1.37 
(1.25, 
1.60) 

6.04 
(3.60, 
7.34) 

49.56 
(38.81, 
59.85) 

1.15 
(1.10, 
1.34) 

6.58 
(5.28, 
9.14) 

45.23 
(33.82, 
57.18) 

* Suo 
et 
al.(141) 

2021 0.79 ± 0.
15 

15.62 ± 4
.18 

9.27 ± 3.
66 

0.77 ± 0.
20 

15.44 ± 3
.70 

9.27 ± 2.
98 

∆ 
0.50 ± 0.

26 

∆ 
− 3.06 ± 

6.36 

∆ 
1.78 ± 4.

33 

∆ 
0.19 ± 0.

22 

∆ 
− 1.97 ± 

6.35 

∆ 
0.82 ± 3.

86 

Stretched-exponential model 

Author Year DDC (×10-3 

mm2/s 
α (unitless) DDC (×10-3 

mm2/s 
α (unitless) DDC (×10-3 

mm2/s 
α (unitless) DDC (×10-3 

mm2/s 
α (unitless) 

†Bedair 
et 
al.(19) 

2017 0.93±0.04 0.84±0.02 1.25±0.03 0.81±0.02 ∆ ↑43% ∆ ↑7% ∆ ↑32% ∆ ↑5% 

* Suo 
et 
al.(141) 

2021 1.00 ± 0.83 0.68 ± 0.08 0.98 ± 0.80 
 

0.67 ± 0.08 ∆ 0.78 ± 0.68 ∆ − 0.02 ± 0.12 ∆ 0.25 ± 0.35 ∆ 
− 0.003 ± 0.09 

Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfusion fraction. DDC: distributed diffusion coefficient. α: diffusion heterogeneity index.  
* Studies derived the parameters at pre-treatment and after two cycles of NACT. † Studies derived the parameters at pre-treatment and after three cycles 
of NACT. Values in bold indicate statistically significant differences between the response groups. NA: Not assessed. Data presented are mean ± 
standard deviation, median (interquartile range), or ∆ change. 
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Table 2.4 Repeatability and reproducibility of monoexponential, IVIM, and 
SEM model parameters in healthy and cancerous tissues. 

Authors 
Parameter 
assessed 

Body region Result (%Coefficient of variation) 

Kakite et al. (144) ADC, Dt, Dp, f Healthy liver ADC= 8.8%. Dt= 13.2%. Dp= 59%. f= 25.3% 

Lee et al. (145) ADC, Dt, Dp, f Healthy liver  Right lobe: ADC= 4.33%. Dt= 4.11%. Dp= 
74.16%. f= 15.77%. 

Left lobe: ADC= 4.74%. Dt= 12.51%. Dp= 
156.61%. f= 16.81%. 

Sigmund et al. 
(146) 

ADC, Dt, Dp, f Healthy kidney Cortex: ADC= 3.4%. Dt= 3.1%. Dp= 24.8%. 

f= 13.7%. 

Medulla: ADC= 5.6%. Dt= 3.7%. Dp= 29.5%.  

f= 24.2%. 

Jakab et al. (147) Dt, Dp, f Healthy Foetal 
MRI (Kidneys, 
Liver, Lungs) 

Kidneys: Dt= 17%. Dp= 30.1%. f= 36.2%. 

Lung: Dt= 14.1%. Dp= 25.3%. f= 20.4%. 

Liver: Dt= 13.8%. Dp= 16.8%. f= 14.4%. 

Jerome et al. 
(148) 

Dt, Dp, f, f×Dp, 
DDC, α 

Paediatric solid 
tumours 

Dt= 2.5%. Dp= 35.1%. f= 41.0%. f×Dp= 38.1%. 
DDC= 4.3%. α= 3.5%. 

Reischauer et al. 
(149) 

ADC, Dt, Dp, f, 
f×Dp, DDC, α 

Prostate cancer 
bone 
metastases 

ADC= 5.0%. Dt= 7.8%. Dp= 42.5%. f= 19.8%.  

f×Dp= 20.4%. DDC= 5.1%. α= 5%. 

Pan et al. (150) Dt, Dp, f Renal tumors Dt= 11.8–19.1%. Dp= 75.5–101.4%. f= 26.8–
50.5%. 

Iima et al. (143) Dp, f Malignant and 
benign breast 
lesions 

Dp= 33.4–34.0%. f= 8.83–16.8%. 

 

Newitt et al. (142) ADC Breast cancer ADC= 4.8%. 

ADC: Apparent diffusion coefficient. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfusion 
fraction. f×Dp: microvascular blood flow. DDC: distributed diffusion coefficient. α: diffusion heterogeneity 
index.  
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2.8.3 Correlation between the perfusion parameters estimated by the 

IVIM and DCE-MRI techniques in breast cancer. 

The promising roles of IVIM perfusion-related parameters in differentiating benign 

and malignant breast tumours and evaluating breast tumour response to NACT 

over the past decade have, in turn, reopened the question of whether IVIM could 

be used as a contrast-agent-free alternative to DCE-MRI for measuring breast 

tumour perfusion. 

Few studies have investigated the correlations between IVIM and DCE-MRI 

perfusion-related parameters in breast tumours, and they have produced 

contradictory results (27-29). Table 2.5 summarises the main findings. These 

studies examined correlations at a single visit; however, a correlation between 

perfusion parameter changes caused by treatment is meaningful and suggests that 

IVIM could be a contrast agent-free surrogate for the DCE-MRI method in 

monitoring serial changes in tumour perfusion. Furthermore, none of these studies' 

DCE data provided an absolute estimation of tumour blood flow, but rather Ktrans. 

The Ktrans may not solely reflect tumour blood flow but also vessel permeability 

(151). Thus, these studies did not perform a direct comparison with the IVIM 

parameter purported to measure microvascular blood flow (f×Dp). Also, the DCE 

and IVIM parameters in two studies were estimated from a single ROI manually 

drawn on the slice with the largest tumour area enclosing the whole tumour (27, 

28), which may involve sampling bias (152). 

The ADC is expected to be directly proportional to DCE-MRI cellularity-related 

measures (i.e., ve, and vd: ve+vp, extracellular volume fraction). However, although 

few studies have examined this relationship (153), one study on breast tumours 

has challenged this expectation by assessing it at a single visit, suggesting that 

ADC is incompletely understood (30). 
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Table 2.5 Summary of the breast studies' results assessing the correlation between IVIM and DCE-MRI 
parameters. 

Author Sample size DCE-MRI 
temporal 

resolution 

AIF 
measurement 
used for DCE 

analysis 

Model used for 
DCE analysis 

DCE 
parameters 
extracted 

IVIM 
parameters 
extracted 

No. of b-value 
(s/mm2) 

Main results 

Jiang et 
al. (28) 

59 patients 
(with 31 
malignant 
and 35 
benign 
lesions) 

11 second Individuals' AIF 
was not 
measured; 
Automatic AIF 
was used 

Tofts model Ktrans, kep, ve 

 

 

Dp, f 12 b-values (0, 
10, 30, 50, 70, 
100, 150, 200, 
400, 600, 1000, 
1500) 

Only correlation was found 
between f and kep (r=0.425, 
p<0.001). 

Liu et 
al. (27) 

36 patients 
(with 36 
breast 
cancers) and 
20 patients 
(with 23 
benign 
lesions) 

10.9 second Individuals' AIF 
was not 
measured; the 
AIF from 
another study 
was used 

Extended Tofts 
model 

Ktrans, kep, 
ve, vp 

Dt, Dp, f 12 b-values (0, 
10, 20, 30, 50, 
70, 100, 150, 
200, 400, 600, 
1,000) 

• f was correlated with vp 
(r=0.692, p<0.001), Ktrans 
(r=0.456, p<0.001), and kep 
(r=0.440, p<0.001). 

• Dp was negatively 
correlated with vp (r=-0.335, 
p = 0.010). 

• Dt was negatively 
correlated with Ktrans (r=-
0.305, p=0.013), kep (r=-
0.373, p =0.004), and vp (-
0.455, p<0.001). 

Li et al. 
(29) 

26 patients 
(with 14 
malignant 
and 14 
benign 
lesions) 

14–18 
seconds 

Individuals' AIF 
was not 
measured; AIF 
from another 
study was 
used 

Shutter-speed 
variant of the 
Tofts model 

Ktrans, kep Dt, Dp, f 11 b-values (0, 
10, 25, 50, 75, 
100, 150, 250, 
450, 800, 1000) 

No significant correlations 
across IVIM and DCE-MRI 
parameters (f or Dp vs Ktrans 
or kep). 

Ktrans: forward volume transfer constant. kep: reverse volume transfer constant. ve: extravascular-extracellular volume fraction. vp: blood plasma volume 
fraction. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfusion fraction. AIF: arterial input function. 
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2.9 Thesis aims and hypotheses 

The primary aims and corresponding hypotheses of this thesis were as follows: 

Aim 1 – To investigate the value of parameters obtained from the 

monoexponential, SEM and IVIM models derived from MRI data acquired 

pretreatment and after one and three NACT cycles, using volumetric sampling to 

assess early breast cancer response to NACT. 

Hypothesis 1 – Parameters obtained from the monoexponential, SEM, and IVIM 

models derived from MRI data acquired pretreatment and after one and three 

NACT cycles, using volumetric sampling, have the potential to assess early breast 

cancer response to NACT. 

Aim 2 – To investigate the value of monoexponential, SEM and IVIM models for 

the diffusion cold-spot and perfusion hot-spot regions of the tumour at 

pretreatment, and after one and three cycles of NACT in assessing the early breast 

cancer response to NACT. 

Hypothesis 2 – Parameters obtained from the monoexponential, SEM, and IVIM 

models for the diffusion cold-spot and perfusion hot-spot regions of the tumour at 

pretreatment and after one and three cycles of NACT could be effective in 

assessing early breast cancer response to NACT. 

Aim 3 – To investigate whether the IVIM technique can offer a contrast-agent-free 

alternative to DCE-MRI for measuring breast tumour perfusion and to explore the 

relationship between ADC and DCE-MRI cellularity-related measures. 

Hypothesis 3 – The IVIM technique can serve as a contrast-agent-free alternative 

to DCE-MRI for measuring breast tumour perfusion, and the diffusion measure 

(ADC) correlates with DCE-MRI cellularity-related measures. 

These aims were worked on using a retrospective MRI dataset of patients with 

breast cancer acquired as part of a Breast Cancer Now-funded project at three 

points in time: before NACT and after one and three NACT cycles. Figure 2.9 

illustrates the pathway for performing the investigations (Aims 1 to 3). The 

implementation of each step in Figure 2.9 required substantial work and time. A 

variety of curve-fitting methods are available for estimating the IVIM parameters in 

breast cancer. Thus, a study involving computer simulations, along with in vivo 

measurements was performed first to identify the optimum IVIM curve-fitting 

method for the DWI data utilised in this thesis, which was then employed in the 

subsequent investigations in the IVIM analysis. 
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Figure 2.9 Flow diagram depicting the work to perform the investigations listed in Aims 1 to 3.  

After importing the MRI dataset, a simulation study comparing IVIM curve-fitting methods was 
undertaken to identify the optimum method, which was employed in following investigations for the 
IVIM analysis. Then, DWI and DCE-MRI images were processed. The DWI images were analysed, 
and the monoexponential, SEM, and IVIM models were fitted to investigate the value of these DWI 
models using volumetric sampling to assess the early breast cancer response to NACT (Aim 1). 
Subsequently, the DWI and DCE-MRI images were analysed based on diffusion cold-spot and 
perfusion hot-spot regions of the tumour, and the monoexponential, SEM, and IVIM models were 
fitted to investigate the value of these DWI models derived from tumour focused ROIs to assess the 
early breast cancer response to NACT (Aim 2). Ultimately, DCE-MRI data were extracted from whole-
tumour ROIs and diffusion cold-spot and perfusion hot-spot regions of the tumour and were analysed 
to derive the DCE-MRI perfusion and cellularity-related measures to investigate whether the IVIM 
technique can offer a contrast-agent-free alternative to DCE-MRI to measure breast tumour perfusion, 
and explore the relationship between the ADC and DCE-MRI cellularity-related measures (Aim 3). 
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Chapter 3 Comparison of curve-fitting methods for IVIM analysis 

in breast cancer: Simulation study 

3.1 Introduction 

Despite the promising applications of IVIM in breast cancer (section 2.8.2.2.1), the 

reported estimates of IVIM parameters vary considerably both across breast 

studies (27, 28, 116, 126, 154, 155), and within the same patient group (156) 

(Table 3.1). Furthermore, the precision of the Dp and f parameter estimates is 

typically less than that for the Dt estimate (144, 145, 157, 158). Alongside the 

characteristics of the patient population, data acquisition strategy, image noise 

level, and the number and distribution of b-values, signal-fitting methods have been 

shown to influence estimates of IVIM parameters to an extent (156, 159). 

Previous studies have estimated IVIM parameters for breast cancer using either 

the full bi-exponential fitting method, involving the simultaneous estimation of all 

parameters, a segmented-fitting method that estimates IVIM parameters in a two-

step manner (first estimating Dt and then Dp and f), or an oversegmented-fitting 

method that estimates IVIM parameters in a three-step manner (estimating Dt, f 

and Dp in the order). Further, some have also applied constraints on each 

parameter (27, 28, 116, 126, 154-156). However, the influence of the fitting method 

on the accuracy, bias, and precision of IVIM parameter estimates for breast cancer 

has scarcely been investigated (156, 160). For clinical interpretation of IVIM in 

breast tissue, determining which fitting method results in IVIM parameters that 

agree well with the underlying “true” values is critical. 

Therefore, the objective of this exploratory study was to compare commonly used 

IVIM curve-fitting methods in breast cancer to identify the method that offers the 

highest accuracy, minimal bias, and superior precision of IVIM parameter 

estimates, with an emphasis on f and the product f×Dp, specifically for the clinical 

DWI data used in this thesis research. The study was performed using simulated 

data representing the range of IVIM parameters observed in breast cancer data 

obtained in Leeds, along with the same distribution of six b-values (125). 

Additionally, the repeatability of the IVIM parameter estimates in vivo was 

compared across the different fitting methods. The curve-fitting method identified 

as providing more precise estimates of IVIM parameters (f and f×Dp) with minimal 

error and bias values (systematic error in parameter estimates based on only six b-

values), and found to achieve the best in vivo repeatability, was employed in 

subsequent studies on extracting IVIM parameters (Chapters 4 to 6). 
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Table 3.1 Summary of several studies on breast cancer IVIM imaging highlights variations in the IVIM-derived 
parameter estimates. 

Authors, 
year 

Lesion 
no. 

Field 
strength 

DWI 
sequence 

b-values s/mm2 
Image 

analysis 
Fitting method 

Dt (×10-3 
mm2/s) 

Dp (×10-3 
mm2/s) 

f (%) 

Sigmund 
et al., 
2011 
(126) 

24 
19 IDC 

3.0T Single 
shot spin-
echo TSE 

0, 30, 70, 100, 150, 
200, 300, 400, 500, 

800 

Mean SI Over-segmented 1.15±0.35 15.1±10.4 9.8±4.8 

Iima et 
al., 2013 

(154) 

16 3.0T Single 
shot spin-
echo EPI 

0, 5, 10, 20, 30, 50, 70, 
100, 200, 400, 600, 

800, 1000, 1500, 2000, 
2500 

Voxel-
by-voxel 

Segmented 0.98±0.22 6.8±1.2 13.6±2.2 

Nilsen et 
al., 2013 

(155) 

24 
18 IDC 

1.5T Single 
shot spin-
echo EPI 

0, 50, 100, 250, 800 Voxel-
by-voxel 

Full  
0.90±0.30 

N/A N/A 

* Suo et 
al., 2016 

(156) 

30 IDC 3.0T Single 
shot spin-
echo EPI 

0, 50, 100, 150, 200, 
500, and 800 

Voxel-
by-voxel 

Full 0.70±0.11 98.24±59.2
5 

16.33±5.21 

* Suo et 
al., 2016 

(156) 

30 IDC 3.0T Single 
shot spin-
echo EPI 

0, 50, 100, 150, 200, 
500, and 800 

Voxel-
by-voxel 

Segmented 0.83±0.19 159.50±90.
32 

7.61±2.33 

* Suo et 
al., 2016 

(156) 

30 IDC 3.0T Single 
shot spin-
echo EPI 

0, 50, 100, 150, 200, 
500, and 800 

Voxel-
by-voxel 

Over-segmented 0.77±0.15 69.28±46.1
9 

6.10±3.19 
 

Liu et al., 
2016 (27) 

36 
27 IDC 

1.5T Single 
shot spin-
echo EPI 

0, 10, 20, 30, 50, 70, 
100, 150, 200, 400, 

600 and 1,000 

Pixel-by-
pixel 

Segmented 0.85 (0.79, 
0.96) 

109.78 
(99.13, 
128.80) 

10.23 (7.72, 
13.57) 

KIM et 
al., 2016 

(116) 

274 
228 
IDC 

3.0T Single 
shot EPI 

0,30,70, 100, 150, 200, 
300, 400, 500 and 800 

Mean SI Over-segmented 0.90(0.21, 
1.77) 

13.89(2.12, 
72.91) 

11.87(4.83, 
42.42) 

Jiang et 
al., 2018 

(28) 

31 
26 IDC 

3.0T Single 
shot spin-
echo EPI 

0, 10, 30, 50, 70, 100, 
150, 200, 400, 600, 

1000, and 1500 

Voxel-
by-voxel 

Full N/A 63.70 
(44.90) 

6.30 (2.10) 

IDC: invasive ductal carcinoma. ss-EPI: single-shot echo-planar imaging. TSE: turbo spin-echo. Dt: tissue diffusion. Dp: pseudo-diffusion 
coefficient. f: perfused fraction. Dt, Dp and f values are summarised as mean ± standard deviation or median (Interquartile range or quartile 
interval). N/A: not available. (*) This is one study performed on one patient group. 
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3.2 Material and Methods 

3.2.1 Simulation study 

The simulated data were built on DWI data from a cohort of patients with breast 

cancer who underwent MRI scans at three time points during NACT (i.e., baseline, 

after one cycle, and after three cycles of treatment) in Leeds, which form the 

primary foundation of this thesis’s experimental work (Chapters 4 to 6). At the initial 

stage of this PhD, the acquired clinical DWI data at the three MRI time points were 

aggregated for all patients, and the monoexponential, SEM, and IVIM models were 

fitted to the data at that time for the purpose of the published, un-updated version 

of the Chapter 4 study, which demonstrated promising results for IVIM (125). 

Subsequently, the idea for Chapter 3 to explore the optimal IVIM fitting method for 

these clinical DWI data arose and was implemented as follows. The DWI data that 

were best fitted by the IVIM model compared to the monoexponential and SEM 

models were selected based on F-test results. The selected IVIM data were then 

organised in descending order of perfusion fraction (f) values, and the average 

values of S(0), Dt, Dp, and f for data within similar ranges of f were calculated. 

These average values ultimately formed 14 distinct sets of S(0), f, Dt, and Dp 

(Table 3.2). 

 

Table 3.2 True value sets of IVIM parameters for simulation study. 

No. S(0) Dt 
(×10-3 mm2/s) 

Dp 
(×10-3 mm2/s) 

f 
(no units) 

f×Dp 
(×10-3 mm2/s) 

1 200 1.08 6.10 0.213 1.30 

2 200 1.21 5.57 0.208 1.15 

3 200 1.20 6.80 0.197 1.34 

4 200 0.98 6.47 0.184 1.19 

5 200 0.90 5.95 0.174 1.03 

6 200 1.01 5.45 0.164 0.89 

7 200 0.95 6.47 0.154 1.00 

8 200 0.90 6.46 0.145 0.94 

9 200 0.81 5.97 0.132 0.78 

10 200 0.91 5.59 0.126 0.70 

11 200 0.79 6.49 0.114 0.74 

12 200 0.70 6.53 0.107 0.69 

13 200 0.82 8.08 0.093 0.75 

14 200 0.68 7.23 0.081 0.59 

15 200 1.16 0 0 0 

S(0): the signal intensity with b-value of zero. Dt: tissue diffusion. Dp: pseudo-diffusion 
coefficient. f: perfused fraction. f×Dp: microvascular blood flow. 
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Using MATLAB, the simulated signal data were generated according to the IVIM 

model using 14 IVIM parameter sets, along with one additional dataset where f was 

set to 0 (i.e., assuming no perfused fraction; Table 3.2) to evaluate the bias of the 

fitting algorithms in estimating the f value. For each IVIM parameter-value set, the 

signals were sampled at 12 b-values (b = 0, 10, 20, 30, 50, 70, 100, 150, 200, 400, 

800 and 1000 s/mm2).These 12 b-values were selected based on a previous study 

in breast imaging that explored the ability of IVIM to predict response to NACT 

(23), and they encompass the six b-values used in Chapters 4 to 6. The sampled 

signals (i.e., noise-free) were fitted using six fitting algorithms detailed in the 

subsequent section 3.2.2 (i.e., full, segmented, and oversegmented methods each 

with and without constraints). The same data-fitting process was performed using 

six b-values (b = 0, 50, 100, 200, 400 and 800 s/mm2) employed in the studies of 

Chapters 4 to 6, to test the performance of fitting algorithms at fewer b-values.  

Then, Rician noise was added to the sampled signals (i.e., at each of the 12 b-

values) to achieve two different noise levels that are observed in the clinical breast 

DWI data at the image analysis stage of Chapters 4 and 5: a level similar to that 

observed in the whole-tumour region of interest (ROI) averaged signals and a level 

similar to that observed in the 5×5 pixel single-slice ROI averaged signals (i.e., the 

tumour diffusion cold-spot). These levels were identified by analysing curve plots of 

signal intensity (SI) derived from both whole-tumour and cold-spot regions for a 

number of acquired breast DWI datasets, focusing on the standard deviation of 

residuals between measured and fitted signals. This analysis ensured the added 

Rician noise closely reflected the noise characteristics seen in the targeted clinical 

breast DWI data, thereby aligning the simulation closely with the clinical data. The 

number entered for the Rician noise distribution in the noise simulation of whole-

tumour ROI averaged signals was 1.5, and for cold-spot ROI averaged signals, it 

was 3.5. The number represents the noise level and is the same as the SD of a 

Gaussian distribution if SNR > 3. Finally, noisy signals were fitted using the six 

fitting algorithms, and the fitting process was repeated using six b-values. Each 

pseudo-random noisy simulation trial was repeated 1,000 times. An example of the 

noisy signal fitting process is shown in Figure 3.1. The MATLAB-based code for 

IVIM simulated signal data generation and curve-fitting was developed by the 

candidate. 

 

 

 



 

 

41 

 

 

 

The relative bias (RB) and relative error (RE) in the parameter estimate were 

calculated compared to the true parameter values in Table 3.2, as follows (159): 

▪ RB = 
(𝑭𝒊𝒕𝒕𝒆𝒅 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝒗𝒂𝒍𝒖𝒆 − 𝑻𝒓𝒖𝒆 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝒗𝒂𝒍𝒖𝒆) 

𝑻𝒓𝒖𝒆 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝒗𝒂𝒍𝒖𝒆
, 

▪ RE = 
√(𝑭𝒊𝒕𝒕𝒆𝒅 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝒗𝒂𝒍𝒖𝒆 − 𝑻𝒓𝒖𝒆 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝒗𝒂𝒍𝒖𝒆)𝟐

𝑻𝒓𝒖𝒆 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝒗𝒂𝒍𝒖𝒆
. 

Moreover, the standard deviation (SD) of the estimated IVIM parameters was 

calculated after 1,000 trials, indicating the precision of the parameter estimates. 

The normality of the calculated measures (i.e., the RB, RE and SD) was assessed 

using the Shapiro–Wilk test and histogram evaluations, and a log transformation 

was applied to those measures that were not normally distributed. The RB, RE and 

SD values were summarised as the means with 95% confidence intervals (CIs), 

categorised according to the fitting methods, number of b-values (i.e., 6 and 12), 

and noise level (i.e., noise-free, whole-tumour ROI and single-slice ROI). The 

Figure 3.1 Example of noisy signal fitting for dataset number 1 (from Table 
3.2) using six fitting algorithms at six b-values and two noise levels (whole-
tumour ROI and cold-spot ROI). The noisy signals were fitted using full-fitting 
without constraints (Full-woC), full-fitting with constraints (Full-C), segmented-
fitting without constraints (Seg-woC), segmented-fitting with constraints (Seg-C), 
oversegmented-fitting without constraints (Overseg-woC), and oversegmented-
fitting with constraints (Overseg-C). The two plots represent one fit out of 1,000 
pseudo-random noisy simulations performed. The simulated noise-free signals 
are included for reference and marked with (*). 
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comparison of the six fitting methods for each b-value set and noise level was 

based on the means and 95% CIs of the RB, RE and SD. 

3.2.2 IVIM fitting methods 

The decay of DWI signals is described using the following IVIM bi-exponential 

equation: 

𝑺(𝒃) =  𝑺(𝟎) .  [(𝟏 − ƒ) 𝒆𝒙𝒑(−𝒃 .  𝑫𝒕) +  ƒ 𝒆𝒙𝒑(−𝒃 .  𝑫𝒑)],          Equation [3]                    

where S(b) represents the SI at a given b-value, and S(0) denotes the SI at a b-

value of 0 s/mm² (127). All simulated data were fitted using full-fitting, segmented-

fitting, and oversegmented-fitting methods (156), each applied with and without 

bound constraints on the parameter values; thus, the same data were fitted using 

six different fitting methods, as follows. 

A. Full-fitting without constraints  

In the full-fitting method without constraints (full-woC), the IVIM model in Eq. [3] is 

fitted to the signal decay data, and all four parameters (S(0), Dt, Dp and f) are 

estimated simultaneously using a nonlinear least-squares approach without any 

parameter-value bound constraints. Then, the product f×Dp is calculated. 

B. Full-fitting with constraints 

The full-fitting method with constraints (full-C) is similar to the full-woC method but 

includes bound constraints of the parameter values: 0 ≤ Dt ≤ 5 (×10-3 mm2/s), Dt < 

Dp ≤ 100 ×10-3 mm2/s, and 0 ≤ f ≤ 1 (156). Then, the product f×Dp is calculated. 

The constraints were chosen based on physiological plausibility and consistent 

with established ranges reported in a prior IVIM study on breast cancer (156), 

ensuring robust and realistic parameter estimates for meaningful and interpretable 

results while maintaining methodological comparability. 

C. Segmented-fitting without constraints 

In the segmented-fitting method without constraints (seg-woC), assuming that the 

pseudo-diffusion (Dp) contribution to the signal is negligible when the b-value is 

greater than 200 s/mm² (19), the Dt is estimated by first fitting the b-value data 

(>200 s/mm²) using the monoexponential fit as described in Eq. [5]. 

                    𝑺(𝒃) = 𝑺(𝑰). 𝒆𝒙𝒑(−𝒃 .  𝑫𝒕)                                    Equation [5] 

S(I) is the fitted SI at a b-value of 0 s/mm². Finally, S(0), Dp and f are 

simultaneously estimated as in the full-woC method, and the product f×Dp is 

calculated. 
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D. Segmented-fitting with constraints 

In the segmented-fitting method with constraints (seg-C), Dt is estimated first as in 

the seg-woC method but with the following bound constraints: 0 ≤ Dt ≤ 5 (×10-3 

mm2/s), followed by S(0) and the constrained estimation of Dp and f as in the full-C 

method. Then, product f×Dp is calculated. 

E. Oversegmented-fitting without constraints 

In the oversegmented-fitting method without constraints (overseg-woC), the Dt and 

f are estimated first, and then Dp is estimated. The Dt value is obtained as in the 

seg-woC method. Then, the monoexponential fit is extrapolated back to b = 0 to 

estimate f as f = (S(0)"measured" – intercept)/S(0)"measured", where where the “intercept” 

is the fitted S(I) in Eq. [5] (159). Finally, by fixing the Dt and f values, Dp is obtained 

as in the full-woC method, and the product f×Dp is calculated. 

F. Oversegmented-fitting with constraints 

In the oversegmented-fitting method with constraints (overseg-C), the value of Dt is 

obtained as in the seg-C method. Then, f is estimated as in the overseg-woC 

method, followed by the constrained estimation of Dp as in the full-C method. Then, 

the product f×Dp is calculated. If f < 0, f is forced to be 0 and Dp is not estimated; 

thus, the fitting is considered monoexponential. 

3.2.3 Repeatability analysis in vivo 

An upper estimate of the repeatability of IVIM parameters for each fitting method, 

derived from the whole-tumour ROI averaged signals, was assessed following the 

image analysis and the pathologist's evaluation of tumour response in Chapter 4 

(illustrated in sections 4.2.3 and 4.2.4). This assessment was achieved by 

calculating the within-subject coefficient of variation (wCV) (161) in the data from 

the baseline and after one cycle of NACT in a subgroup of patients identified as 

pathological non-responders (pNRs) and demonstrated minimal changes in tumour 

volume following the first cycle. The RECIST guidelines indicate that, for a tumour 

to be classified as demonstrating a partial response, a reduction in volume of at 

least 66% is required, or an increase of more than 73% is needed for it to be 

considered a progressive disease (5). 

Ten pNRs were included in the repeatability analysis, with changes in tumour 

volume observed between a decrease of 21.60% and an increase of 18.90%, 

averaging a volume change of -3.64%. The wCV values of the IVIM parameters 

across six fitting methods were compared. 
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3.3 Results 

3.3.1 Simulation study 

Without noise, the full-fitting methods produced the correct results (i.e., true 

parameter values listed in Table 3.2) as they displayed minimal error and bias for 

all IVIM parameter estimates (RE and RB ≈ 0), which in turn provided validation of 

the software (MATLAB code). In contrast, the segmented and oversegmented 

methods introduced error and bias, regardless of the number of b-values (Tables 

3.3 and 3.4, Figures 3.2 and 3.3). However, when noise was added to the data, the 

full-woC method produced the highest errors in estimating Dt, f and f×Dp 

parameters, except for f×Dp at the cold-spot ROI noise level with six b-values 

(Tables 3.5-3.8, Figures 3.4-3.7). Moreover, the overseg-woC method consistently 

resulted in the highest errors in Dp estimates. The errors in the Dt estimates were 

marginally different between the segmented and oversegmented methods, and the 

Dt estimates had the lowest errors. In contrast, the errors in Dp were the highest, 

irrespective of the b-value count. 
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Table 3.3 Comparisons of mean relative bias and relative error of IVIM parameters among different fitting methods (6 b-values, 
Noise-free). 

Parameter Fitting methods RE RB 

Mean (95% CIs) Mean (95% CIs) 

Dt (×10-3 mm2/s) Full-woC 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Full-C 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Seg-woC 0.049 (0.039, 0.060) 0.049 (0.039, 0.060) 

 Seg-C 0.049 (0.039, 0.060) 0.049 (0.039, 0.060) 

 Overseg-woC 0.049 (0.039, 0.060) 0.049 (0.039, 0.060) 

 Overseg-C 0.049 (0.039, 0.060) 0.049 (0.039, 0.060) 

 

Dp (×10-3 mm2/s) Full-woC 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Full-C 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Seg-woC 0.206 (0.174, 0.238) 0.206 (0.174, 0.238) 

 Seg-C 0.206 (0.174, 0.238) 0.206 (0.174, 0.238) 

 Overseg-woC 0.276 (0.231, 0.320) 0.276 (0.231, 0.320) 

 Overseg-C 0.276 (0.231, 0.320) 0.276 (0.231, 0.320) 

 

f (no units) Full-woC 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Full-C 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Seg-woC 0.181 (0.150, 0.212) -0.181 (-0.212, -0.150) 

 Seg-C 0.181 (0.150, 0.212) -0.181 (-0.212, -0.150) 

 Overseg-woC 0.224 (0.188, 0.259) -0.224 (-0.259, -0.188) 

 Overseg-C 0.224 (0.188, 0.259) -0.224 (-0.259, -0.188) 

 

f×Dp (×10-3 mm2/s) Full-woC 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Full-C 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Seg-woC 0.020 (0.010, 0.030) -0.015 (-0.028, -0.002) 

 Seg-C 0.020 (0.010, 0.030) -0.015 (-0.028, -0.002) 

 Overseg-woC 0.016 (0.007, 0.025) -0.014 (-0.024, -0.003) 

 Overseg-C 0.016 (0.007, 0.025) -0.014 (-0.024, -0.003) 

RE: Relative error. RB: relative bias. CI: confidence interval. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfused fraction. f×Dp: 
microvascular blood flow. Full-woC: full-fitting without constraints. Full-C: full-fitting with constraints. Seg-woC: segmented-fitting without 
constraints. Seg-C: segmented-fitting with constraints. Overseg-woC: Oversegmented-fitting without constraints. Overseg-C: Oversegmented-
fitting with constraints. 
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Figure 3.2 Bar plots of the mean relative error (RE) and relative bias (RB) results for the IVIM parameters (Dt, Dp, f, and f×Dp) 
obtained with full-fitting without constraints (Full-woC), full-fitting with constraints (Full-C), segmented-fitting without 
constrain (Full-woC), full-fitting with constraints (Full-C), segmented-fitting without constraints (Seg-woC), segmented-fitting 
with constraints (Seg-C), oversegmented-fitting without constraints (Overseg-woC), and oversegmented-fitting with 
constraints (Overseg-C) at 6 b-values and Noise-free. Error bars represent 95% confidence interval for the mean. 
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Table 3.4 Comparisons of mean relative bias and relative error of IVIM parameters among different fitting methods (12 b-
values, Noise-free). 

Parameter Fitting methods RE RB 

Mean (95% CIs) Mean (95% CIs) 

Dt (×10-3 mm2/s) Full-woC 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Full-C 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Seg-woC 0.041 (0.032, 0.049) 0.041 (0.032, 0.049) 

 Seg-C 0.041 (0.032, 0.049) 0.041 (0.032, 0.049) 

 Overseg-woC 0.041 (0.032, 0.049) 0.041 (0.032, 0.049) 

 Overseg-C 0.041 (0.032, 0.049) 0.041 (0.032, 0.049) 

 

Dp (×10-3 mm2/s) Full-woC 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Full-C 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Seg-woC 0.193 (0.163, 0.223) 0.193 (0.163, 0.223) 

 Seg-C 0.193 (0.163, 0.223) 0.193 (0.163, 0.223) 

 Overseg-woC 0.257 (0.216, 0.298) 0.257 (0.216, 0.298) 

 Overseg-C 0.257 (0.216, 0.298) 0.257 (0.216, 0.298) 

 

f (no units) Full-woC 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Full-C 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Seg-woC 0.164 (0.134, 0.193) -0.164 (-0.193, -0.134) 

 Seg-C 0.164 (0.134, 0.193) -0.164 (-0.193, -0.134) 

 Overseg-woC 0.202 (0.169, 0.234) -0.202 (-0.234, -0.169) 

 Overseg-C 0.202 (0.169, 0.234) -0.202 (-0.234, -0.169) 

 

f×Dp (×10-3 mm2/s) Full-woC 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Full-C 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 

 Seg-woC 0.014 (0.007, 0.022) -0.004 (-0.016, 0.007) 

 Seg-C 0.014 (0.007, 0.022) -0.004 (-0.016, 0.007) 

 Overseg-woC 0.012 (0.006, 0.018) 1.804 x10-4 (-0.010, 0.010) 

 Overseg-C 0.012 (0.018, 0.006) 9.847 x10-5 (-0.009, 0.009) 

RE: Relative error. RB: relative bias. CI: confidence interval. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfused fraction. f×Dp: 
microvascular blood flow. Full-woC: full-fitting without constraints. Full-C: full-fitting with constraints. Seg-woC: segmented-fitting without 
constraints. Seg-C: segmented-fitting with constraints. Overseg-woC: Oversegmented-fitting without constraints. Overseg-C: Oversegmented-
fitting with constraints. 
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Figure 3.3 Bar plots of the mean relative error (RE) and relative bias (RB) results for the IVIM parameters (Dt, Dp, f, and f×Dp) 
obtained with full-fitting without constraints (Full-woC), full-fitting with constraints (Full-C), segmented-fitting without 
constrains (Seg-woC), segmented-fitting with constraints (Seg-C), oversegmented-fitting without constraints (Overseg-woC), 
and oversegmented-fitting with constraints (Overseg-C) at 12 b-values and Noise-free. Error bars represent 95% confidence 
interval for the mean. 
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Table 3.5 Comparisons of mean relative bias, relative error, and standard deviation of IVIM parameters among different fitting 
methods (6 b-values, whole-tumour ROI averaged signals noise level). 

Parameter Fitting methods RE RB SD 

Mean (95% CIs) Mean (95% CIs) Mean (95% CIs) 

Dt (×10-3 mm2/s) Full-woC 0.317 (0.215, 0.469) -0.155 (-0.027, -0.282) 1.078 (0.557, 2.084) 

 Full-C 0.168 (0.147, 0.189) -0.102 (-0.121, -0.083) 0.248 (0.214, 0.274) 

 Seg-woC 0.065 (0.060, 0.070) 0.049 (0.039, 0.059) 0.056 (0.051, 0.062) 

 Seg-C 0.066 (0.060, 0.072) 0.050 (0.039, 0.060) 0.057 (0.051, 0.062) 

 Overseg-woC 0.065 (0.060, 0.071) 0.050 (0.040, 0.060) 0.056 (0.051, 0.061) 

 Overseg-C 0.066 (0.061, 0.071) 0.050 (0.040, 0.060) 0.057 (0.052, 0.061) 

 

Dp (×10-3 mm2/s) Full-woC 0.595 (0.398, 0.891) 0.176 (0.081, 0.383) 12.164 (4.394, 33.678) 

 Full-C 0.482 (0.404, 0.560) 0.145 (0.098, 0.192) 4.980 (3.704, 6.695) 

 Seg-woC 0.519 (0.339, 0.795) 0.424 (0.270, 0.665) 7.206 (2.819, 18.421) 

 Seg-C 0.439 (0.379, 0.499) 0.344 (0.298, 0.389) 4.036 (3.052, 5.336) 

 Overseg-woC 0.795 (0.486, 1.300) 0.758 (0.463, 1.242) 21.195 (6.045, 74.31) 

 Overseg-C 0.476 (0.423, 0.528) 0.427 (0.386, 0.469) 4.109 (3.011, 5.607) 

 

f (no units) Full-woC 0.832 (0.619, 1.045) 0.561 (0.380, 0.741) 0.195 (0.168, 0.222) 

 Full-C 0.735 (0.591, 0.879) 0.490 (0.357, 0.624) 0.166 (0.147, 0.184) 

 Seg-woC 0.254 (0.228, 0.284) -0.166 (-0.192, -0.140) 0.051 (0.036, 0.071) 

 Seg-C 0.247 (0.230, 0.265) -0.154 (-0.188, -0.119) 0.035 (0.032, 0.038) 

 Overseg-woC 0.257 (0.239, 0.275) -0.228 (-0.261, -0.195) 0.027 (0.026, 0.029) 

 Overseg-C 0.258 (0.240, 0.277) -0.228 (-0.263, -0.194) 0.028 (0.026, 0.029) 

 

f×Dp (×10-3 mm2/s) Full-woC 0.265 (0.176, 0.400) 0.184 (0.112, 0.302) 0.613 (0.258, 1.460) 

 Full-C 0.216 (0.176, 0.265) 0.165 (0.123, 0.207) 0.259 (0.223, 0.294) 

 Seg-woC 0.189 (0.122, 0.292) 0.102 (-0.048, 0.276) 0.376 (0.176, 0.805) 

 Seg-C 0.158 (0.131, 0.191) 0.025 (-0.002, 0.053) 0.201 (0.177, 0.227) 

 Overseg-woC 0.218 (0.138, 0.343) 0.130 (-0.020, 0.303) 0.770 (0.314, 1.887) 

 Overseg-C 0.155 (0.130, 0.185) 0.009 (-0.008, 0.026) 0.194 (0.177, 0.212) 

RE: Relative error. RB: relative bias. SD: standard deviation. CI: confidence interval. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: 
perfused fraction. f×Dp: microvascular blood flow. Full-woC: full-fitting without constraints. Full-C: full-fitting with constraints. Seg-woC: 
segmented-fitting without constraints. Seg-C: segmented-fitting with constraints. Overseg-woC: Oversegmented-fitting without constraints. 
Overseg-C: Oversegmented-fitting with constraints. 
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Figure 3.4 Bar plots of the mean relative error (RE), relative bias (RB), and standard 
deviation (SD) results for the IVIM parameters (Dt, Dp, f, and f×Dp) obtained with full-fitting 
without constraints (Full-woC), full-fitting with constraints (Full-C), segmented-fitting 
without constraints (Seg-woC), segmented-fitting with constraints (Seg-C), oversegmented-
fitting without constraints (Overseg-woC), and oversegmented-fitting with constraints 
(Overseg-C) at 6 b-values and whole-tumour ROI averaged signals noise level. Error bars 
represent 95% confidence interval for the mean. 
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Table 3.6 Comparisons of mean relative bias, relative error, and standard deviation of IVIM parameters among different fitting 
methods (6 b-values, cold-spot ROI averaged signals noise level). 

Parameter Fitting 
methods 

RE RB SD 

Mean (95% CIs) Mean (95% CIs) Mean (95% CIs) 

Dt (×10-3 mm2/s) Full-woC 3.009 (2.313, 3.916) -1.743 (-2.456, -1.031) 11.278 (6.859, 18.545) 

 Full-C 0.362 (0.341, 0.382) -0.252 (-0.273, -0.232) 0.422 (0.379, 0.465) 

 Seg-woC 0.121 (0.119, 0.124) 0.050 (0.040, 0.060) 0.131 (0.119, 0.144) 

 Seg-C 0.129 (0.126, 0.132) 0.034 (0.019, 0.049) 0.161 (0.146, 0.176) 

 Overseg-woC 0.121 (0.119, 0.124) 0.050 (0.039, 0.060) 0.131 (0.119, 0.144) 

 Overseg-C 0.124 (0.121, 0.126) 0.044 (0.033, 0.056) 0.141 (0.129, 0.153) 

 

Dp (×10-3 mm2/s) Full-woC 7.464 (5.802, 9.127) 6.882 (5.256, 8.509) 393.352 (273.328, 513.377) 

 Full-C 1.605 (1.409, 1.802) 1.088 (0.923, 1.252) 21.332 (19.085, 23.578) 

 Seg-woC 6.797 (4.838, 9.548) 6.440 (4.549, 9.117) 325.067 (215.799, 489.661) 

 Seg-C 1.566 (1.348, 1.785) 1.262 (1.088, 1.436) 21.054 (18.418, 23.689) 

 Overseg-woC 16.761 (13.675, 19.847) 16.493 (13.444, 19.543) 823.281 (711.384, 935.179) 

 Overseg-C 1.303 (1.181, 1.425) 1.012 (0.927, 1.097) 18.451 (16.664, 20.237) 

 

f (no units) Full-woC 2.068 (1.591, 2.545) 1.510 (1.139, 1.88) 0.400 (0.364, 0.435) 

 Full-C 1.507 (1.257, 1.757) 1.144 (0.890, 1.399) 0.268 (0.257, 0.280) 

 Seg-woC 1.897 (1.045, 3.442) -0.642 (-0.275, -1.103) 1.972 (1.325, 2.619) 

 Seg-C 0.559 (0.462, 0.677) 0.082 (-0.033, 0.210) 0.129 (0.111, 0.146) 

 Overseg-woC 0.416 (0.380, 0.453) -0.242 (-0.276, -0.209) 0.065 (0.061, 0.069) 

 Overseg-C 0.400 (0.371, 0.431) -0.229 (-0.266, -0.192) 0.061 (0.057, 0.066) 

 

f×Dp (×10-3 mm2/s) Full-woC 3.093 (2.181, 4.005) 2.919 (2.047, 3.790) 22.097 (13.560, 30.635) 

 Full-C 0.780 (0.625, 0.936) 0.675 (0.536, 0.815) 1.044 (0.957, 1.131) 

 Seg-woC 2.597 (1.646, 4.097) 1.888 (1.168, 3.053) 17.033 (12.143, 23.891) 

 Seg-C 0.554 (0.437, 0.671) 0.304 (0.209, 0.400) 0.899 (0.822, 0.975) 

 Overseg-woC 3.590 (2.625, 4.910) 3.176 (2.267, 4.45) 32.108 (25.390, 38.826) 

 Overseg-C 0.499 (0.411, 0.587) 0.093 (0.054, 0.132) 0.761 (0.707, 0.814) 

RE: Relative error. RB: relative bias. SD: standard deviation. CI: confidence interval. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: 
perfused fraction. f×Dp: microvascular blood flow. Full-woC: full-fitting without constraints. Full-C: full-fitting with constraints. Seg-woC: 
segmented-fitting without constraints. Seg-C: segmented-fitting with constraints. Overseg-woC: Oversegmented-fitting without constraints. 
Overseg-C: Oversegmented-fitting with constraints. 
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Figure 3.5 Bar plots of the mean relative error (RE), relative bias (RB), and standard deviation 
(SD) results for the IVIM parameters (Dt, Dp, f, and f×Dp) obtained with full-fitting without 
constraints (Full-woC), full-fitting with constraints (Full-C), segmented-fitting without 
constraints (Seg-woC), segmented-fitting with constraints (Seg-C), oversegmented-fitting 
without constraints (Overseg-woC), and oversegmented-fitting with constraints (Overseg-C) at 6 
b-values and cold-spot ROI averaged signals noise level. Error bars represent 95% confidence 
interval for the mean. 
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Table 3.7 Comparisons of mean relative bias, relative error, and standard deviation of IVIM parameters among different fitting 
methods (12 b-values, whole-tumour ROI averaged signals noise level). 

Parameter Fitting 
methods 

RE RB SD 

Mean (95% CIs) Mean (95% CIs) Mean (95% CIs) 

Dt (×10-3 mm2/s) Full-woC 0.105 (0.087, 0.123) -0.041 (-0.059, -0.024) 0.233 (0.149, 0.363) 

 Full-C 0.088 (0.078, 0.098) -0.041 (-0.049, -0.033) 0.130 (0.114, 0.149) 

 Seg-woC 0.049 (0.044, 0.054) 0.040 (0.031, 0.049) 0.039 (0.035, 0.043) 

 Seg-C 0.049 (0.044, 0.054) 0.040 (0.032, 0.049) 0.038 (0.034, 0.041) 

 Overseg-woC 0.049 (0.044, 0.055) 0.041 (0.032, 0.049) 0.039 (0.035, 0.042) 

 Overseg-C 0.049 (0.043, 0.055) 0.040 (0.031, 0.048) 0.039 (0.035, 0.043) 

 

Dp (×10-3 mm2/s) Full-woC 0.324 (0.282, 0.365) 0.062 (0.050, 0.074) 2.828 (2.297, 3.360) 

 Full-C 0.324 (0.280, 0.368) 0.057 (0.042, 0.077) 2.796 (2.290, 3.301) 

 Seg-woC 0.320 (0.290, 0.350) 0.253 (0.224, 0.283) 2.230 (1.870, 2.658) 

 Seg-C 0.320 (0.290, 0.351) 0.257 (0.228, 0.286) 2.212 (1.850, 2.644) 

 Overseg-woC 0.371 (0.336, 0.407) 0.337 (0.295, 0.379) 2.242 (1.872, 2.686) 

 Overseg-C 0.361 (0.329, 0.393) 0.325 (0.288, 0.362) 2.207 (1.824, 2.671) 

 

f (no units) Full-woC 0.447 (0.350, 0.544) 0.238 (0.158, 0.318) 0.111 (0.092, 0.131) 

 Full-C 0.424 (0.345, 0.504) 0.228 (0.161, 0.296) 0.100 (0.086, 0.115) 

 Seg-woC 0.201 (0.187, 0.216) -0.145 (-0.177, -0.113) 0.026 (0.024, 0.028) 

 Seg-C 0.201 (0.187, 0.216) -0.147 (-0.178, -0.116) 0.026 (0.024, 0.028) 

 Overseg-woC 0.225 (0.206, 0.246) -0.205 (-0.238, -0.172) 0.022 (0.021, 0.024) 

 Overseg-C 0.222 (0.203, 0.242) -0.201 (-0.232, -0.169) 0.022 (0.021, 0.024) 

 

f×Dp (×10-3 mm2/s) Full-woC 0.142 (0.113, 0.170) 0.081 (0.060, 0.102) 0.155 (0.138, 0.174) 

 Full-C 0.138 (0.111, 0.165) 0.082 (0.060, 0.103) 0.148 (0.135, 0.162) 

 Seg-woC 0.118 (0.097, 0.140) 0.016 (0.001, 0.032) 0.132 (0.124, 0.141) 

 Seg-C 0.118 (0.096, 0.140) 0.018 (0.001, 0.035) 0.133 (0.123, 0.144) 

 Overseg-woC 0.116 (0.096, 0.136) 0.012 (0.003, 0.021) 0.131 (0.124, 0.137) 

 Overseg-C 0.116 (0.097, 0.135) 0.010 (-3.560 x10-4, 0.019) 0.131 (0.125, 0.137) 

RE: Relative error. RB: relative bias. SD: standard deviation. CI: confidence interval. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: 
perfused fraction. f×Dp: microvascular blood flow. Full-woC: full-fitting without constraints. Full-C: full-fitting with constraints. Seg-woC: 
segmented-fitting without constraints. Seg-C: segmented-fitting with constraints. Overseg-woC: Oversegmented-fitting without constraints. 
Overseg-C: Oversegmented-fitting with constraints. 
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Figure 3.6 Bar plots of the mean relative error (RE), relative bias (RB), and standard deviation 
(SD) results for the IVIM parameters (Dt, Dp, f, and f×Dp) obtained with full-fitting without 
constraints (Full-woC), full-fitting with constraints (Full-C), segmented-fitting without 
constraints (Seg-woC), segmented-fitting with constraints (Seg-C), oversegmented-fitting 
without constraints (Overseg-woC), and oversegmented-fitting with constraints (Overseg-C) at 
12 b-values and whole-tumour ROI averaged signals noise level. Error bars represent 95% 
confidence interval for the mean. 
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Table 3.8 Comparisons of mean relative bias, relative error, and standard deviation of IVIM parameters among different fitting 
methods (12 b-values, cold-spot ROI averaged signals noise level). 

Parameter Fitting 
methods 

RE RB SD 

Mean (95% CIs) Mean (95% CIs) Mean (95% CIs) 

Dt (×10-3 mm2/s) Full-woC 0.739 (0.538, 0.939) -0.512 (-0.656, -0.368) 1.843 (1.364, 2.490) 

 Full-C 0.261 (0.242, 0.281) -0.180 (-0.199, -0.160) 0.343 (0.309, 0.377) 

 Seg-woC 0.084 (0.082, 0.087) 0.038 (0.029, 0.047) 0.090 (0.081, 0.099) 

 Seg-C 0.085 (0.082, 0.087) 0.037 (0.027, 0.046) 0.093 (0.084, 0.101) 

 Overseg-woC 0.084 (0.082, 0.087) 0.038 (0.029, 0.047) 0.090 (0.081, 0.099) 

 Overseg-C 0.085 (0.082, 0.087) 0.037 (0.028, 0.046) 0.092 (0.083, 0.100) 

 

Dp (×10-3 mm2/s) Full-woC 1.634 (1.135, 2.353) 1.063 (0.638, 1.771) 144.404 (69.166, 219.642) 

 Full-C 0.968 (0.825, 1.11) 0.516 (0.409, 0.622) 11.909 (9.805, 14.013) 

 Seg-woC 2.497 (1.473, 3.521) 2.252 (1.270, 3.234) 202.770 (95.051, 310.490) 

 Seg-C 0.898 (0.739, 1.056) 0.675 (0.547, 0.804) 11.237 (8.837, 13.637) 

 Overseg-woC 3.084 (1.744, 4.423) 2.896 (1.588, 4.205) 240.853 (135.240, 346.465) 

 Overseg-C 0.788 (0.686, 0.890) 0.596 (0.525, 0.668) 9.262 (7.447, 11.077) 

 

f (no units) Full-woC 1.459 (1.111, 1.807) 1.035 (0.784, 1.286) 0.303 (0.273, 0.333) 

 Full-C 1.197 (0.984, 1.411) 0.889 (0.678, 1.100) 0.236 (0.222, 0.250) 

 Seg-woC 0.495 (0.353, 0.696) -0.131 (-0.225, -0.026) 0.203 (0.114, 0.361) 

 Seg-C 0.375 (0.329, 0.427) -0.044 (-0.104, 0.019) 0.072 (0.066, 0.078) 

 Overseg-woC 0.340 (0.310, 0.370) -0.204 (-0.240, -0.168) 0.052 (0.049, 0.054) 

 Overseg-C 0.336 (0.308, 0.365) -0.200 (-0.237, -0.163) 0.051 (0.048, 0.054) 

 

f×Dp (×10-3 mm2/s) Full-woC 0.873 (0.555, 1.190) 0.732 (0.456, 1.008) 6.467 (2.961, 9.972) 

 Full-C 0.491 (0.390, 0.593) 0.411 (0.319, 0.504) 0.626 (0.554, 0.698) 

 Seg-woC 0.689 (0.413, 1.150) 0.364 (0.172, 0.771) 8.624 (4.063, 13.185) 

 Seg-C 0.359 (0.277, 0.442) 0.138 (0.096, 0.199) 0.545 (0.472, 0.618) 

 Overseg-woC 0.541 (0.352, 0.831) 0.169 (0.069, 0.414) 3.415 (1.580, 7.381) 

 Overseg-C 0.323 (0.264, 0.381) 0.025 (0.010, 0.040) 0.459 (0.420, 0.499) 

RE: Relative error. RB: relative bias. SD: standard deviation. CI: confidence interval. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: 
perfused fraction. f×Dp: microvascular blood flow. Full-woC: full-fitting without constraints. Full-C: full-fitting with constraints. Seg-woC: 
segmented-fitting without constraints. Seg-C: segmented-fitting with constraints. Overseg-woC: Oversegmented-fitting without constraints. 
Overseg-C: Oversegmented-fitting with constraints.  
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Figure 3.7 Bar plots of the mean relative error (RE), relative bias (RB), and standard deviation 
(SD) results for the IVIM parameters (Dt, Dp, f, and f×Dp) obtained with full-fitting without 
constraints (Full-woC), full-fitting with constraints (Full-C), segmented-fitting without 
constraints (Seg-woC), segmented-fitting with constraints (Seg-C), oversegmented-fitting 
without constraints (Overseg-woC), and oversegmented-fitting with constraints (Overseg-C) at 
12 b-values and cold-spot ROI averaged signals noise level. Error bars represent 95% 
confidence interval for the mean. 
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For the Dp, f and f×Dp estimates at the whole-tumour ROI noise level, the seg-C 

method resulted in the lowest errors for Dp and f, and the overseg-C method 

resulted in the lowest errors for f×Dp (Tables 3.5 and 3.7, Figures 3.4 and 3.6). 

Conversely, at the cold-spot ROI noise level, the overseg-C method consistently 

exhibited the smallest errors and SD in estimating Dp, f and f×Dp, independent of 

the b-value number (Tables 3.6 and 3.8, Figures 3.5 and 3.7). 

The full-fitting methods produced the least precise (measured by SD) estimates for 

Dt and f in the presence of noise, except for f at the cold-spot ROI noise level with 

six b-values. Across the parameters, the precision of estimates for Dp and f×Dp 

was markedly lower than that for Dt and f when obtained with segmented and 

oversegmented methods, and the precision of the Dt estimates was roughly similar 

across the four methods (Tables 3.5-3.8, Figures 3.4-3.7). 

Concerning the relative bias, trends similar to the results of the relative error upon 

introducing noise were observed. The full-woC method exhibited the greatest bias 

in estimating Dt, f and f×Dp, except for f×Dp at the cold-spot ROI noise level with six 

b‐values. In addition, the overseg-woC method displayed the most bias in the Dp 

estimates (Tables 3.5-3.8). The bias direction in Dt and f varied based on the fitting 

method, where the full-fitting methods underestimated Dt and overestimated f. The 

segmented and oversegmented methods exhibited the opposite trend consistently 

with six and 12 b-values (Figures 3.4-3.7). 

The application of constraints in any fitting method resulted in lower bias and 

imprecision in estimating Dt, f and f×Dp compared to their unconstrained 

counterparts (Figures 3.4-3.7). The noise level clearly influenced the accuracy, 

bias, and precision of all IVIM parameter estimates, where estimates from the cold-

spot noise level exhibited larger error and SD than those from the whole-tumour 

ROI noise level. The overestimation of Dp and f×Dp at the cold-spot noise level was 

higher than that at the whole-tumour ROI noise level (Tables 3.5 vs 3.6 and 3.7 vs 

3.8). 

The number of b-values also prominently affected all IVIM parameters when 

estimated using full-fitting methods, where the relative error, relative bias, and SD 

values were larger at six b-values than at 12 b-values (Tables 3.5 vs 3.7 and 3.6 vs 

3.8). However, the Dt and f estimates were less affected by the number of b-values 

than Dp and f×Dp when obtained using the segmented and oversegmented 

methods. 

For dataset 15, which assumed no perfusion (f = 0), the oversegmented methods 

consistently yielded the smallest error, bias, and SD values in estimating f across 
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all noise levels and numbers of b-values (the mean f value ranged from -0.004 to 

0.026; Tables 3.9 and 3.10). 
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Table 3.9 Comparisons of the mean values of IVIM parameter estimates among different fitting methods in the 
simulation number 15 (6 b-values). 

Noise-free 

Fitting methods Dt (×10-3 mm2/s) Dp (×10-3 mm2/s) f (no units) f×Dp (×10-3 mm2/s) 

Mean Mean Mean Mean 

Full-woC 1.160 6.039 0.000 0.000 

Full-C 1.156 1.261 0.035 0.044 

Seg-woC 1.160 6.369 0.000 0.000 

Seg-C 1.160 1.160 0.016 0.019 

Overseg-woC 1.160 6.369 0.000 0.000 

Overseg-C 1.160 0.000 0.000 0.000 

Whole-tumour ROI averaged signals noise level 

 Mean SD Mean SD Mean SD Mean SD 

Full-woC -1.154 15.840 22.076 126.338 0.049 1.087 0.071 2.772 

Full-C 0.928 0.437 9.362 23.860 0.209 0.351 0.407 0.548 

Seg-woC 1.159 0.056 75.225 735.380 0.022 5.726 0.387 13.977 

Seg-C 0.906 0.427 3.935 11.675 0.403 0.425 0.533 0.496 

Overseg-woC 1.160 0.057 111.265 829.510 -0.001 0.031 0.100 9.046 

Overseg-C 1.108 0.220 4.742 14.779 0.013 0.018 0.077 0.168 

Cold-spot ROI averaged signals noise level 

Full-woC -0.855 15.465 82.948 558.697 -0.095 1.845 1.531 20.461 

Full-C 0.918 0.436 11.456 25.216 0.198 0.324 0.639 0.935 

Seg-woC 1.164 0.131 79.071 739.835 0.346 10.592 0.489 29.599 

Seg-C 0.909 0.401 7.497 20.128 0.459 0.429 0.782 0.744 

Overseg-woC 1.164 0.131 101.948 692.454 -0.004 0.072 0.778 15.345 

Overseg-C 1.129 0.223 5.833 17.754 0.026 0.039 0.192 0.511 

True value 1.16 0 0 0 

SD: standard deviation. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfused fraction. f×Dp: microvascular blood flow. Full-woC: full-
fitting without constraints. Full-C: full-fitting with constraints. Seg-woC: segmented-fitting without constraints. Seg-C: segmented-fitting with 
constraints. Overseg-woC: Oversegmented-fitting without constraints. Overseg-C: Oversegmented-fitting with constraints. 
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Table 3.10 Comparisons of the mean values of IVIM parameter estimates among different fitting methods in the 
simulation number 15 (12 b-values). 

Noise-free 

Fitting methods Dt (×10-3 mm2/s) Dp (×10-3 mm2/s) f (no units) f×Dp (×10-3 mm2/s) 

Mean Mean Mean Mean 

Full-woC 1.160 5.956 0.000 0.000 

Full-C 1.158 1.224 0.035 0.043 

Seg-woC 1.160 6.369 0.000 0.000 

Seg-C 1.160 1.160 0.015 0.017 

Overseg-woC 1.160 6.369 0.000 0.000 

Overseg-C 1.160 0.000 0.000 0.000 

Whole-tumour ROI averaged signals noise level 

 Mean SD Mean SD Mean SD Mean SD 

Full-woC 0.873 14.034 36.954 281.777 0.117 0.903 0.208 3.655 

Full-C 0.998 0.367 5.783 15.780 0.161 0.305 0.287 0.445 

Seg-woC 1.160 0.040 24.642 185.625 -0.045 3.300 -0.125 4.532 

Seg-C 0.913 0.423 3.712 10.517 0.315 0.381 0.419 0.455 

Overseg-woC 1.161 0.040 37.449 370.441 -0.002 0.025 0.002 0.882 

Overseg-C 1.115 0.208 3.768 11.367 0.009 0.013 0.045 0.098 

Cold-spot ROI averaged signals noise level 

Full-woC 4.155 137.177 118.065 615.027 0.119 0.896 2.517 23.181 

Full-C 0.962 0.398 8.928 21.932 0.176 0.312 0.506 0.834 

Seg-woC 1.162 0.092 71.124 713.355 0.248 6.235 0.705 21.630 

Seg-C 0.937 0.383 7.133 19.749 0.439 0.424 0.702 0.698 

Overseg-woC 1.162 0.092 57.697 483.603 -0.004 0.059 -0.452 12.391 

Overseg-C 1.127 0.200 4.264 13.806 0.021 0.032 0.112 0.263 

True value 1.16 0 0 0 

SD: standard deviation. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfused fraction. f×Dp: microvascular blood flow. Full-woC: full-
fitting without constraints. Full-C: full-fitting with constraints. Seg-woC: segmented-fitting without constraints. Seg-C: segmented-fitting with 
constraints. Overseg-woC: Oversegmented-fitting without constraints. Overseg-C: Oversegmented-fitting with constraints. 
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3.3.2 In vivo repeatability 

The upper estimate of the repeatability of IVIM parameters derived from whole-

tumour ROI averaged signals generally exhibited patterns similar to the results of 

the simulations at a similar noise level (Table 3.11). Full-fitting methods had the 

poorest repeatability for Dt (wCV: 77.78% to 135.98%) and f (wCV: 57.79% to 

63.19%), whereas segmented and oversegmented methods demonstrated better 

repeatability for both Dt (wCV: 5.53%) and f (wCV: 9.74% to 23.1%).  

Across the parameters, the repeatability of Dp and f×Dp was notably lower than that 

of Dt and f when derived using the segmented and oversegmented methods. 

However, the best repeatability for Dp, f and f×Dp together was achieved using only 

the seg-C and overseg-C methods, with wCV values of 16.4% and 10.91% for Dp, 

9.74% and 10.64% for f, and 18.1% and 17.85% for f×Dp, respectively. 

 

Table 3.11 Upper estimate of the repeatability of IVIM parameters for each 
fitting method. 

 

  

Fitting method 
wCV (%) 

Dt Dp f f×Dp 

Full-woC 135.98 54.96 63.19 27.17 

Full-C 77.78 61.02 57.79 22.06 

Seg-woC 5.53 74.6 23.1 80.71 

Seg-C 5.53 16.4 9.74 18.1 

Overseg-woC 5.53 47.75 10.64 50.16 

Overseg-C 5.53 10.89 10.64 17.84 

 
wCV: within-subject coefficient of variation. Dt: tissue diffusion. Dp: pseudo-diffusion 
coefficient. f: perfused fraction. f×Dp: microvascular blood flow. Full-woC: full-fitting 
without constraints; Full-C: full-fitting with constraints; Seg-woC: segmented-fitting 
without constraints; Seg-C: segmented-fitting with constraints; Overseg-woC: 
Oversegmented-fitting without constraints; Overseg-C: Oversegmented-fitting with 
constraints. 
 



 

 

62 

3.4 Discussion 

This simulation study demonstrated that, in the absence of noise, full-fitting 

methods produce the smallest relative error and bias values for all IVIM parameter 

estimates (approximately 0). However, fitting the data with full-woC methods in the 

presence of noise leads to a substantial error and reduced precision in most IVIM 

parameters, particularly at higher noise levels (i.e., cold-spot ROI averaged 

signals). This outcome aligns with the outcomes of prior studies (159, 160, 162, 

163), which might have been due to the statistical instability of the full-fitting 

method. The full-fitting method fits all four parameters simultaneously using a 

nonlinear least-squares approach; thus, noisy data points could result in erroneous 

and non-physiological parameter values with the full-woC method, a situation that 

could be aggravated at higher noise levels. A previous study stated that the full-

fitting method is reliable only when a sufficiently high signal-to-noise ratio (SNR) 

exists (156). 

In contrast, the results of the simulations revealed that the segmented and 

oversegmented methods could improve the accuracy and precision of IVIM 

parameters Dt and f in noisy settings, where using these methods resulted in lower 

RE and SD values for Dt and f compared to the full-woC method. The results of the 

upper estimate of the repeatability also indicated a similar trend where segmented 

and oversegmented methods demonstrated lower wCV values of Dt and f 

compared with the full-fitting methods. This improvement could be attributed to the 

stability of these methods, which estimate the IVIM parameters sequentially. 

An additional advantage of the segmented and oversegmented methods over full-

fitting methods is that the estimates of Dt and f were less affected by the number of 

b-values. The simulation results indicated that the number of b-values appreciably 

affected the accuracy and precision of all IVIM parameters when estimated using 

full-fitting methods. In contrast, its influence on Dt and f was less when obtained 

using segmented and oversegmented methods. The results revealed that the RB 

and SD values of Dt, f and f×Dp estimated using any fitting method that applies 

constraints were lower than those estimated with the same fitting method without 

constraints, indicating that applying constraints can offer another approach to 

reducing bias and imprecision in the parameter estimates. Thus, these advantages 

might have contributed to the seg-C and overseg-C methods producing the lowest 

errors and imprecision for the parameters Dp, f and f×Dp at the whole-tumour ROI 

noise level and six b-values. The results of the upper estimate of the repeatability 
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also aligned with these observations, where the best repeatability for Dp, f and f×Dp 

together was achieved using the seg-C and overseg-C methods. 

Nevertheless, in this study, the overseg-C method consistently produced the 

smallest relative errors and SD in estimating Dp, f and f×Dp at cold-spot ROI noise 

level, and this became more evident with six b-values. This superiority of the 

overseg-C method could be due to the step-by-step estimation of the IVIM 

parameters, in which Dt and f were estimated first, and the bi-exponential fit was 

performed with only one free parameter to determine Dp. This approach has more 

stability than the seg-C method, where Dt was estimated first. Then, the bi-

exponential fit was performed with two free parameters to estimate f and Dp 

simultaneously. The results of statistical fitting with a greater number of free 

parameters display more scatter (164).  

The estimation of the f value with the overseg-C method uses S(0)'measured' and the 

intercept fitted from the higher b-value regime, without relying on a full fit across all 

b-values. In contrast, the seg-C method estimates f by fitting all b-values. While 

fitting all b-values in seg-C should theoretically lower its sensitivity to noise 

compared to overseg-C, the simulation results suggest that Overseg-C performed 

slightly better. Based on the results of the simulation study, to ensure 

methodological consistency in image analyses, the overseg‐C method should be 

employed in subsequent research when analysing clinical breast DWI data 

acquired with six b-values to extract IVIM parameters from whole-tumour and 

single-slice small ROIs (i.e., Chapters 4 and 5). 

In contrast, segmented and oversegmented methods overestimate Dt and Dp and 

underestimate f. In these methods, the data at b-values larger than 200 s/mm² (in 

this study at 400, 800 and 1,000 s/mm²) are presumed to be free from perfusion 

effects (156). However, the signal at b-values larger than 200 s/mm² might contain 

a perfusion contribution (165), leading to a slightly elevated SI compared to that 

expected in a perfusion-absent scenario. This approach results in an 

overestimation of Dt when fitting a straight line between these three data points. 

Consequently, f, which is derived as the difference between 1 and the intercept of 

this line at the y-axis, is underestimated. This underestimation of f necessitates an 

overestimation of Dp to align with the rapid signal decline observed at lower b-

values (<400 s/mm²), partly attributed to perfusion effects. The increased Dp value 

compensates for the reduced f, enabling a better fit of the model to the rapid signal 

decline at these lower b-values. 
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On the other hand, the full-fitting methods tend to underestimate Dt and 

overestimate Dp and f in the presence of noise. This pattern might be attributable to 

the systematic influence of noise. The noise does not solely introduce imprecision; 

instead, it introduces consistent bias. In the full-fitting methods, all parameters are 

estimated simultaneously; thus, a plausible explanation for this observation could 

be related to the noise floor problem. The noise has a fixed level, and as the b-

values get higher, the data get closer and closer to the noise floor; therefore, the 

signal at higher b-values will be overestimated because it includes both signal and 

noise (i.e., signal + noise). Given that the simulation study accounted for the Rician 

distribution of errors, the noise floor may have caused an artificial elevation in the 

tail of the signal decay curve, leading to an underestimation of Dt.  

Consequently, this underestimation necessitates a compensatory overestimation of 

Dp and f to maintain the balance in the signal decay model to fit the model with the 

observed rapid signal decline at lower b-values. These observations of the 

systematic patterns in the estimations of the IVIM parameters observed with these 

three fitting methods were also observed in a previous clinical breast IVIM study. 

The mean Dt values estimated with the full-fitting method were lower than those 

estimated with the segmented and oversegmented methods, and the mean f 

values estimated with the full-fitting method were higher than those determined 

with the segmented and oversegmented methods (156). 

This simulation study revealed that the parameter Dp exhibited larger error and SD 

compared to all IVIM parameters when derived using segmented and 

oversegmented methods. Previous research has consistently reported on the poor 

repeatability of Dp in vivo (144, 145, 157, 158). The simulation results further 

reinforced this observation, revealing notably high RE and SD values for Dp. In 

addition, the results of the upper estimate of the repeatability displayed a similar 

trend, where the wCv value for Dp was higher than that of Dt and f. The 

determination of Dp primarily relies on the fast-declining segment of the DWI signal 

curve at lower b-values (typically ≤200 s/mm2). Therefore, estimating Dp with high 

accuracy and precision may necessitate multiple data sampling in the lower b-

value range and a considerably higher SNR, as illustrated by Pekar et al. (162), 

than that typically achievable in most clinical breast DW imaging (166). 

Additionally, this interpretation could be further supported by comparing the results 

of Dp estimates obtained from six b-values vs 12 b-values and the three noise 

levels (noise-free, whole-tumour and tumour cold-spot ROIs averaged signals). 

Thus, the application of Dp as an imaging biomarker should be limited to the 

conditions in which the observed variation in Dp for diagnosis, differentiating 
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pathological conditions, or the alteration in Dp during longitudinal monitoring 

markedly surpasses its estimation error. 

3.4.1 Limitations 

The simulated IVIM data were derived from clinical breast DWI data obtained from 

a specific patient population with breast cancer. Moreover, the simulations were 

conducted using only two b-value distributions (six and 12) and two noise levels 

(whole-tumour and cold-spot ROI averaged signals). These factors could limit the 

generalisability of the results and affect their applicability to various patient 

populations. However, the primary aim of this study was to identify the curve-fitting 

method that provides the most precise estimates of IVIM parameters (particularly f 

and f×Dp), with minimal error and bias based on only six b-values, using simulated 

data representing the range of IVIM parameters observed in breast cancer data 

obtained in Leeds, to be employed in subsequent research (i.e., Chapters 4 to 6). 

Further, the actual repeatability of the IVIM parameters for each curve-fitting 

method in vivo was not examined. Alternatively, an upper estimate of the 

repeatability of the IVIM parameters for each fitting method was calculated from the 

baseline and after one-cycle NACT DWI studies for a subset of patients identified 

as pNR and showed the smallest changes in tumour volume at cycle one. The 

calculations were performed to serve as complementary to the simulation study. 

However, the results generally aligned with the findings of the simulation study.  

Finally, other recently introduced IVIM curve-fitting methods, such as the Bayesian 

method, were not compared. The Bayesian method might be one approach to 

mitigate the noise floor problem by incorporating the noise floor into the Bayesian 

model for the signal. However, the current study focused on commonly used fitting 

methods in breast IVIM analysis. Nevertheless, the accuracy of the Bayesian 

method is heavily dependent on the choice of priors and is more computationally 

demanding, requiring a longer time for analysis than simpler methods (167). This 

approach could make its implementation more cumbersome. Importantly, the 

breast DWI data utilised in the current thesis were acquired with a maximum b-

value of 800 s/mm² in which the SNR was observed to remain good without hitting 

the noise floor. A previous study argued that the Bayesian method provides 

performance similar to the oversegmented method, rendering the oversegmented 

method preferable due to the reduced numerical complexity and shorter 

computational time (167). 
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3.5 Conclusions 

This simulation study compared commonly used IVIM curve-fitting methods in 

breast cancer, with the primary aim of identifying a method that provides more 

precise estimates of IVIM parameters (particularly f and f×Dp), with minimal error 

and bias, using only six b-values. The study revealed that IVIM parameter 

estimates are susceptible to error, bias, and imprecision, varying according to the 

chosen fitting algorithm, number of b-values, and noise level. Constrained 

segmented and oversegmented fitting methods yielded the lowest errors and 

highest precision for the parameters Dp and f, and f×Dp together at the whole-

tumour noise level. However, at the cold-spot ROI noise level, the constrained 

oversegmented fitting method consistently produced the lowest errors and highest 

precision in estimating Dp, f and f×Dp. Therefore, for methodological consistency in 

image analyses, the constrained oversegmented method is employed in 

subsequent research when analysing clinical breast DWI data extracted from both 

whole-tumour and single-slice small ROIs (i.e., in Chapters 5 and 6). 
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Chapter 4 Evaluation of monoexponential, SEM and IVIM DWI MRI 

diffusion models estimated from the whole-tumour region of 

interest in early response monitoring to NACT in patients with 

breast cancer 

Notes: This chapter is an updated version of the originally published paper (125), 

as it includes three additional patients in the pretreatment analysis. The IVIM 

parameters were estimated using an oversegmented-fitting with constraints 

method, based on the results from Chapter 3, whereas previously they were 

estimated using a segmented method with constraints.  

4.1 Introduction 

Previous studies have explored potential diagnostic roles for the SEM and IVIM 

models in breast cancer; however, there are few studies examining their ability to 

evaluate the response of breast cancer to NACT (section 2.8.2.2.1). Two 

preliminary studies have indicated that, after two or three NACT cycles, the 

parameters of the SEM and IVIM models obtained from a single region of interest 

(ROI) drawn freehand on the imaging slice with the largest tumour dimension may 

predict breast cancer response to NACT (19, 23). The authors of these studies 

recommended further investigation at earlier treatment points (i.e., after one cycle). 

Furthermore, the International Breast DWI Working Group recommended 

volumetric sampling when evaluating tumour response (24). 

The primary aim of this study was to investigate the value of parameters obtained 

from the monoexponential (ADC), SEM (DDC, α), and IVIM (Dt, Dp, f, f×Dp) models 

derived from MRI data acquired pretreatment and after one and three NACT 

cycles, using volumetric sampling to assess early breast cancer response to 

NACT. The secondary aim was to estimate the repeatability of monoexponential 

and SEM models parameters by utilising a subset of DWI data from the baseline 

and after one cycle of NACT. 

4.2 Materials and methods 

4.2.1 Patients 

A local research ethics committee approved the study, and written informed 

consent was obtained from each subject. The patient inclusion criteria were 

individuals [1] at least 18 years of age, [2] with pathological confirmation of invasive 
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breast cancer via core needle biopsy, and [3] planned to undergo NACT. Patients 

were ineligible if they received previous treatment for breast cancer (e.g., 

radiotherapy or chemotherapy) or had recurrent breast cancer, impaired kidney 

function, or contraindications to MRI. Recruited patients were treated with a 

standardised protocol of at least six NACT cycles. During treatment, all patients 

received epirubicin with cyclophosphamide for the first three cycles (one cycle 

every three weeks), followed by three cycles of docetaxel (one cycle every three 

weeks). In patients with human epidermal growth factor receptor 2 (HER2) positive 

tumours, docetaxel was accompanied by trastuzumab and, in some later cases, 

pertuzumab.  

4.2.2 Magnetic resonance imaging 

All patients were imaged on a 1.5 T MRI scanner (Aera; Siemens) using a 16-

channel bilateral breast coil (Sentinelle; Siemens) with the patient in a head-first 

prone position. 

The MRI protocol included axial T1-weighted 3D spoiled gradient echo (FLASH), 

axial T2-weighted turbo spin-echo, DWI, and dynamic contrast-enhanced (DCE) 

series. Axial DWI was performed before DCE-MRI using a spectral attenuated 

inversion-recovery (SPAIR) fat-suppressed, 2D single-shot spin echo–echo planar 

imaging (ss-EPI) sequence at six b-values (0, 50, 100, 200, 400, and 800 s/mm2) 

with the following parameters: repetition time (TR)/echo time (TE): 7200/59 ms, 

field of view (FoV): 340×136 mm, matrix size: 280×116, slice thickness: 4 mm, and 

parallel imaging factor: 2. The acquisition time of the DWI sequence was 5 min, 31 

s. ADC maps were created by the scanner software immediately following DWI 

acquisition. 

DCE-MRI was performed using a fat-suppressed T1-weighted 3D FLASH 

sequence (TR/TE: 4.1/1.2 ms, FoV: 340×340×180 mm, matrix size: 384×384×128, 

flip angle (FA): 10°, parallel imaging factor: 3, and acquisition time: 36 s) to acquire 

images before and at multiple time points following an intravenous bolus contrast 

injection of 0.1 mmol/kg Gd-DOTA (Dotarem, Guerbet Laboratories). For the 

purpose of this study, only the precontrast and the approximately 2-minute 

postcontrast images were included in the image analysis.  

MRI was performed at four time points: before NACT (pretreatment) and after one, 

three (mid-treatment), and six NACT cycles (images acquired after six cycles were 

not included in this analysis; Figure 4.1).  
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4.2.3 Image analysis 

MRI data were processed using an in-house program developed in MATLAB 

(MathWorks, USA) by a medical physicist in Leeds. The DCE images were rigidly 

aligned to match the DWI images (and therefore the ADC maps); there was no 

interpolation of the DWI data. DCE subtraction images were generated for each 

patient by subtracting the precontrast from the postcontrast (i.e., ~2 minutes) 

images to enhance tumour visibility. Using only rigid registration, however, may not 

be sufficient to fully correct inherent DWI distortions; thus, spatial co-registration 

accuracy between DWI and DCE images might be affected, and this may 

potentially lead to slight misalignment of the whole-volume ROI when generated on 

one image set and transferred to the corresponding image set. 

For each patient, the location of the largest tumour was identified in the DCE 

images of the pretreatment MRI and confirmed by an experienced breast 

radiologist. Then, the author used the in-house program to seed the tumour and 

generate a whole-volume ROI using a 3D-region growing algorithm based on a 

threshold SI of the enhanced lesion in the DCE subtraction images. Obvious 

necrotic areas were avoided manually. The tumour volume was calculated from the 

sum of all enhanced tumour voxels. This ROI was transferred to the corresponding 

DWI, and the average SI value for every b‐value was extracted (168) and 

displayed in the MATLAB command window for the subsequent step (DWI models' 

parameters estimation) (Figure 4.2). A screenshot with descriptions of the in-house 

Figure 4.1 Diagram of the trial illustrating MRI time-points in relation to 
neoadjuvant chemotherapies. Tx = treatment. 
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program used for generating the tumour's whole-volume ROI is shown in Figure 

4.3. 
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Figure 4.2 MRI scans of a 39-year-old woman with invasive ductal carcinoma who 
was a non-responder (RCB-II). Each row includes images acquired pretreatment, after 
one cycle of NACT, and at mid-treatment. The seeded ROI for the given slice is shown in 
blue. The tables represent the parameter estimates of monoexponential (ADC), SEM 
(DDC, α) and IVIM (Dt, Dp, f, f×Dp) models at each time point. The ADC, DDC, Dt, Dp, f, 
and f×Dp values increased during the treatment, while α was decreased. 
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Figure 4.3 Screenshot with descriptions of the in-house program used for generating the tumour's whole-volume ROI. 

[1] Window for image display, where four images are open for analysis (A: ADC map, B: DWI (b = 800 s/mm2), C: HSR-DCE 

subtraction image, D: HTR-DCE subtraction image (the latter is only used in Chapters 5 and 6)). [2] Zoom button, where the 

user can zoom in/out toward the affected breast. [3] Seed button, which is used to seed the tumour (by clicking on an enhanced 

pixel inside the tumour on the HSR-DCE subtraction image) and create a whole-tumour ROI using a 3D-region growing 

algorithm based on a threshold SI of the enhanced lesion pixels. The whole-tumour ROI covers all the slices where the tumour 

is present; however, the seeded ROI for the given slice is shown in blue. [4] Undo button to undo any step in case of a mistake. 

[5] Threshold slider, which can be used to increase/decrease the threshold SI, allowing the inclusion of more/fewer pixels based 

on their signal intensity and the selected threshold SI. [6] Readings window, which displays measurements extracted from the 

whole-tumour ROI (blue) for each image (i.e., 6A to 6D correspond to 1A to 1D). However, only tumour volume measurement is 

considered for this thesis work. 
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The parameters of the monoexponential (ADC), SEM (DDC, α), and IVIM (Dt, Dp, f) 

models were estimated using MATLAB. The IVIM model was fitted to the average 

SI values versus b-value data by employing the oversegmented-fitting with 

constraints method (described in section 3.2.2), based on the findings of Chapter 

3, to estimate the parameters Dt, Dp, f, and f×Dp values. For the monoexponential 

and SEM models, the average SI versus b-value curves for each model were fitted 

using the nonlinear least-squares method with the following mathematical models 

(Figure 4.4): 

 

 

Figure 4.4 The measured DWI signals and best-fit curves of the tumour of the 
non-responder patient in Figure 4.2 at mid-treatment. 
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1. Monoexponential model: 

                                              𝑆(𝑏) = 𝑆(0). 𝑒𝑥𝑝(−𝑏 . 𝐴𝐷𝐶),                      Equation [2] 

Where S(b) is the mean SI with diffusion weighting b, and S(0) is the mean SI 

without diffusion weighting (b = 0 s/mm2). The S(0) and ADC values were 

simultaneously estimated from a monoexponential fit using the entire b-value 

range. The ACRIN 6698 multicentre trial reported using SIs acquired at all b‐values 

for ADC calculation (25). 

2. SEM: 

                                       𝑆(𝑏) = 𝑆(0). 𝑒𝑥𝑝(−((𝑏 .   𝐷𝐷𝐶)𝛼)),                   Equation [4] 

Where DDC represents the mean intravoxel diffusion rate, and α is the 

heterogeneity index describing the deviation of the signal attenuation from 

monoexponential behaviour with a value between 0 and 1. The entire range of b-

values was used to provide best-fit estimates for S(0), DDC, and α simultaneously. 

The parameter estimates and tumour volume were obtained and recorded for each 

patient at each MRI time-point. In addition, the percentage changes in the 

parameters and tumour volume compared to the values for pretreatment and after 

one NACT cycle were calculated for each patient as follows:  

∆ Parameter (%) = 
𝑉𝑎𝑙𝑢𝑒𝑎𝑓𝑡𝑒𝑟 𝑜𝑛𝑒 𝑜𝑟 𝑡ℎ𝑟𝑒𝑒 𝑐𝑦𝑐𝑙𝑒𝑠 − 𝑉𝑎𝑙𝑢𝑒𝑎𝑡 𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑜𝑟 𝑎𝑓𝑡𝑒𝑟 𝑜𝑛𝑒 𝑐𝑦𝑐𝑙𝑒

𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑜𝑟 𝑎𝑓𝑡𝑒𝑟 𝑜𝑛𝑒 𝑐𝑦𝑐𝑙𝑒
 ×

100 

The inter- and intra-observer variability in the tumour volume measurements was 

assessed by comparison with previous single measurements made by the same 

reader (the author) and a second reader, a colleague, using the same ROI 

generation method for the published, un-updated version of this chapter (125). 

These previous tumour volume measurements, acquired approximately 12 months 

before the repeated measurements, included 37 tumours at pretreatment and after 

one NACT cycle, and 35 tumours after three NACT cycles. All conducted steps 

were blinded to the evaluation of the pathological responses of the patients. 

4.2.4 Pathological response evaluation 

As previously reported (169), a pathologist assessed the tumour response, deriving 

an RCB index by dissecting and histologically examining the resected surgical 

specimen after the patients completed all NACT cycles. The RCB can be 

separated into four classes (RCB-0 to RCB-III), where RCB-0 denotes a 
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pathological complete response to NACT (pCR), which is associated with a good 

prognosis, and RCB-III denotes extensive residual disease, which is associated 

with a poor prognosis. Patients with an RCB of class I have the same five-year 

prognosis as those with an RCB of class 0 (64).  

Patients were divided into two groups: pathological responders (pR), with an RCB 

class of 0 or I (RCB index ≤ 1.36) and pathological non-responders (pNR), with an 

RCB class of II or III (RCB index > 1.36). 

4.2.5 Repeatability analysis 

Consistent with the approach followed for the IVIM model (section 3.2.3), an upper 

estimate of the repeatability of the monoexponential and SEM model parameters 

was assessed by calculating the wCV (161) for the data from the pretreatment and 

after one NACT cycle for the same pNR subset, who displayed tumour volume 

changes between -66% (shrinkage) and +73% (increase) at cycle 1. It is indicated 

that the tumour volume changes would have to shrink by -66% to be considered a 

partial responder or increase by +73% to be considered progressive disease (5). 

4.2.6 Statistical analysis 

Median and interquartile ranges (IQR) were used to summarise the DWI model 

parameters due to the nonnormal data distribution. Inter- and intraobserver 

agreement in the tumour volume measurements at all three time points was 

assessed using the intraclass correlation coefficient (ICC < 0.5: poor agreement, 

0.5 ≤ ICC < 0.75: moderate agreement, 0.75 ≤ ICC < 0.9: good agreement, 0.9 ≤ 

ICC: excellent agreement) (170). The parameter differences before NACT 

(pretreatment), after one cycle, and after three cycles were compared for all 

patients using Friedman’s test with the Bonferroni correction (Bonferroni post hoc 

test). The parameter estimates for the pR and pNR groups were compared using 

the Mann–Whitney test. The percentage change in the parameter values after one 

and three NACT cycles for the pR and pNR groups was also compared using the 

Mann–Whitney test. The Spearman correlation test assessed the correlation 

between the diffusion coefficients (r < 0.2: very weak, 0.2 ≤ r <0.4: weak, 0.4 ≤ r < 

0.7: moderate, 0.7 ≤ r < 0.9: strong: r ≥ 0.9: very strong) (171).  

Receiver operating characteristic (ROC) curves were generated to assess the 

parameter performance to predict treatment outcomes, summarised by calculating 

the area under the ROC curve (AUC; 0.5 ≤ AUC < 0.7: poor performance and 0.7 ≤ 

AUC < 0.9: reasonable performance) (23). All analyses were performed using IBM 

SPSS (v.25.0). This study is preliminary; thus, the p-values for the predictive tests 
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were presented as raw values and were uncorrected for multiple comparisons. 

Thus, a p-value < 0.05 was considered statistically significant.  

4.3 Results  

4.3.1 Clinical characteristics of enrolled patients 

Between August 2015 and April 2018, 40 female patients (mean age 46, range 25 

to 69) were eligible and recruited for this study. Table 4.1 summarises the 

characteristics of the enrolled patients and tumours. According to the RCB 

assessment following surgery, 17 (42.5%) patients were classified as pR, whereas 

23 (57.5%) patients were considered pNR. Compared with the pR patients, pNR 

patients were older (49 years, SD ±8 vs. 42 years, SD ±12) and had a higher 

proportion of grade-III tumours (70% (16) vs. 53% (9)).  

However, three pNR patients withdrew following their pretreatment study and did 

not undergo further MRI (after one NACT cycle: pR = 17 and pNR = 20). Further, 

two pR patients were excluded from the analyses at mid-treatment because no 

tumour was visible in the MR images of these patients who went on to have a 

complete pathological response (Figure 4.5; at mid-treatment: pR = 15 and pNR = 

20). 
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Table 4.1 Tumour characteristics of enrolled patients. 

 

Characteristic Number 

Age, years (mean ± SD) 46 ± 10 

Tumour grade 

II 15  

III 25 

Tumour histology 

Invasive ductal carcinoma 38 

Inflammatory breast cancer 1  

Mucinous carcinoma 1  

Oestrogen receptor (ER) status 

Positive (+) 28 

Negative (-) 12 

Progesterone receptor (PR) status 

Positive (+) 18 

Negative (-) 20 

Not evaluable 2 

Human epidermal growth factor 2 (HER2) status 

Positive (+) 15 

Negative (-) 25 
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Figure 4.5 MRI scans of a 45-year-old woman with invasive ductal carcinoma in the 
left breast who showed a complete pathological response after surgery (RCB-0). 
Each row includes images acquired at pretreatment, after one cycle of NACT, and at mid-
treatment. The seeded ROI for the given slice is shown in blue. The tables represent the 
parameter estimates of monoexponential (ADC), SEM (DDC, α) and IVIM (Dt, Dp, f, f×Dp) 
models at each time point. At mid-treatment, no tumour was visible on the DCE and DW 
images obtained. The ADC, DDC, α, and Dt values were increased after one cycle, while 
Dp, f, and f×Dp were decreased. 
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4.3.2 Parameter values for the cohort 

Table 4.2 presents values at pretreatment and after one and three NACT cycles 

across the cohort. In two cases, estimates of the IVIM parameters Dp and f 

reached their constrained values, and these parameters were excluded from the 

statistical analyses. The pretreatment tumour volume was significantly higher than 

the tumour volume after three NACT cycles (median: 4.93 and 2.15 cm3, 

respectively; p<0.001). The ADC, DDC, and Dt values for pretreatment and after 

one cycle were significantly lower than those after three cycles (median: ADC: 

1.04, 1.08, and 1.18 ×10-3 mm2/s, DDC: 0.96, 1.01, and 1.12 ×10-3 mm2/s, and Dt: 

0.81, 0.85, and 0.95 ×10-3 mm2/s, respectively; p<0.001). However, no significant 

differences were observed in the α, Dp, f, and f×Dp values between pretreatment 

and after one and three cycles (p = 0.16, 0.10, 0.76, and 0.80, respectively). 
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Table 4.2 Tumour volume and parameters of monoexponential, SEM, and IVIM models pretreatment, after one 
cycle of NACT, and at mid-treatment. 

 

Parameter N Pretreatment (a) 
After one cycle of 

NACT (b) 
After three cycles 

of NACT (c) 
P Post hoc** 

Tumour volume (cm3) 35 4.93 (2.14, 11.65) 4.1 (1.44, 9.01) 2.15 (0.53, 5.8) <0.001 a>c 

ADC (×10-3 mm2/s) 35 1.04 (0.91, 1.22) 1.08 (0.99, 1.29) 1.18 (1.06, 1.39) <0.001 a<c, b<c 

DDC (×10-3 mm2/s) 35 0.96 (0.82, 1.16) 1.01 (0.91, 1.23) 1.12 (0.99, 1.36) <0.001 a<c, b<c 

α (unitless) 35 0.82 (0.79, 0.85) 0.85 (0.8, 0.89) 0.84 (0.81, 0.88) 0.16 - 

Dt (×10-3 mm2/s) 35 0.81 (0.73, 0.95) 0.85 (0.79, 1.01) 0.95 (0.84, 1.12) <0.001 a<b, a<c 

Dp (×10-3 mm2/s) (*) 33 7.17 (6.5, 7.85) 7.02 (5.83, 7.71) 6.37 (5.69, 7.47) 0.10 - 

f (%) (*) 33 13.16 (11.07, 14.83) 12.85 (9.12, 15.62) 13.89 (10.72, 17.81) 0.76 - 

f×Dp (×10-3 mm2/s) (*) 33 0.95 (0.79, 1.13) 0.88 (0.55, 1.18) 0.94 (0.66, 1.27) 0.80 - 

Data represented by medians (interquartile ranges). P-value for a difference between the three visits was found using Friedman’s non-
parametric test.  Pairwise comparisons** (Bonferroni-corrected) significance at the 0.05 level. ADC: apparent diffusion coefficient. DDC: 
distributed diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfusion fraction. 
f×Dp: microvascular blood flow. (*) Estimates of the IVIM parameters Dp and f were excluded in two cases where they reached one of 
their limiting values. 
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4.3.3 Difference in parameters between response groups 

Table 4.3 compares the parameter values for pR and pNR at pretreatment and 

after one and three cycles of NACT. Tumour volume for the pR group was 

significantly lower than that for the pNR group at all time-points (median: 

pretreatment: pR = 2.16 cm3 and pNR = 10.47 cm3; p<0.001; post one cycle: pR= 

1.57 cm3 and pNR = 8.71 cm3; p<0.001; and post three cycles: pR= 0.51 cm3 and 

pNR = 4.98 cm3; p<0.001). No significant differences were found in ADC, DDC, Dt, 

and Dp between the pR and pNR groups at all time-points (pretreatment: p = 0.64, 

0.78, 1, 0.97; after one cycle: p = 0.46, 0.72, 0.75, 0.07; and after three cycles: p = 

0.93, 0.80, 0.61, 0.11, respectively). Figures 4.2 and 4.4 show examples of pNR 

and pR patients, respectively, where ADC, DDC, and Dt values were increased 

during the NACT course. After one NACT cycle, α values were significantly higher 

in the pR group (median: pR = 0.89 and pNR = 0.81; p = 0.003). In contrast, pNR 

patients exhibited considerably higher f and f×Dp values (median: pR = 9.13% and 

pNR = 15.21% for f; p = 0.001; and pR = 0.57×10-3 mm2/s and pNR = 1.08×10-3 

mm2/s for f×Dp; p = 0.001). Figures 4.2 and 4.4 demonstrate that α was decreased, 

while f and f×Dp were increased in a pNR patient during NACT, whereas α was 

increased, and f and f×Dp were decreased in a pR patient. However, no significant 

differences between the response groups occurred in the α, f, and f×Dp values 

after three cycles (p = 0.17, 0.39, and 0.14, respectively). 

Table 4.4 summarizes the ROC curve analyses for all parameters. The tumour 

volume demonstrated reasonable performance in predicting treatment response at 

all time-points (AUC = 0.848 to 0.881; p<0.001). In contrast, the AUCs for ADC, 

DDC, Dt, and Dp demonstrated poor performance at all time-points (AUC = 0.510–

0.574 for ADC; p = 0.44–0.92; AUC = 0.527–0.535 for DDC; p = 0.71–0.79; AUC = 

0.501–0.553 for Dt; p = 0.59–0.98; and AUC = 0.504–0.674 for Dp; p = 0.07–0.96). 

After one NACT cycle, the response prediction was reasonable for α (AUC = 0.782; 

p = 0.003), f (AUC = 0.832; p = 0.001), and f×Dp (AUC = 0.802; p = 0.002). At mid-

treatment, the response prediction was poor for α, f, and f×Dp (AUC = 0.637, 0.590, 

and 0.654; p = 0.17, 0.38, and 0.13, respectively). 
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Table 4.3 Comparisons of tumour volume and parameter values at pretreatment, after one cycle of NACT, and at 
mid-treatment for the pR and pNR groups. 

Parameter 
Pretreatment (n=40) After one cycle of NACT (n=37) After three cycles of NACT (n=35) 

pR (n=17) pNR (n=23) P pR (n=17) pNR (n=20) P pR(n=15) pNR(n=20) P 

Tumour volume 
(cm3) 

2.16 (1.83, 5.37) 10.47 (5.12, 
24.11) 

<0.001 1.57 (1.01, 2.61) 8.71 (4.18, 
26.59) 

<0.001 0.51 (0.29, 
1.38) 

4.98 (2.1, 
13.32) 

<0.001 

ADC (×10-3 

mm2/s) 
0.98 (0.91, 1.08) 1.06 (0.89, 

1.28) 
0.64 1.08 (0.98, 1.14) 1.07 (0.99, 

1.37) 
0.46 1.17 (1.06, 

1.34) 
1.2 (1.05, 1.4) 0.93 

DDC (×10-3 

mm2/s) 
0.92 (0.86, 1.03) 0.98 (0.79, 

1.23) 
0.78 1.02 (0.93, 1.1) 1.01 (0.89, 

1.34) 
0.72 1.13 (1, 1.31) 1.12 (0.97, 

1.38) 
0.80 

α (unitless) 
0.84 (0.79, 0.86) 0.8 (0.78, 

0.83) 
0.24 0.89 (0.86, 0.92) 0.81 (0.78, 

0.86) 
0.003 0.88 (0.82, 

0.95) 
0.84 (0.77, 

0.87) 
0.17 

Dt (×10-3 

mm2/s) 
0.81 (0.76, 0.9) 0.8 (0.71, 

0.98) 
1.00 0.87 (0.83, 0.94) 0.82 (0.77, 

1.06) 
0.75 0.95 (0.87, 

1.08) 
0.95 (0.82, 

1.14) 
0.61 

Dp (×10-3 

mm2/s) (*) 
7.27 (6.26, 8.08) 7.17 (6.59, 

7.79) 
0.97 6.05 (5.42, 7.06) 7.08 (6.2, 7.84) 0.07 6.08 (5.13, 

6.99) 
6.59 (6.12, 

7.69) 
0.11 

f (%) (*) 
11.07 (10.18, 

13.18) 
13.83 (11.12, 

15.51) 
0.10 9.13 (8.6, 11.54) 15.21 (12.96, 

16.74) 
0.001 13.77 (8.64, 

16.18) 
14.71 (11.3, 

18.22) 
0.39  

f×Dp (×10-3 

mm2/s) (*) 
0.83 (0.65, 1.06) 0.98 (0.81, 

1.19) 
0.18 0.57 (0.51, 0.82) 1.08 (0.78, 

1.27) 
0.001 0.93 (0.44, 

1.03) 
1 (0.71, 1.31) 0.14  

Data are represented by medians (interquartile ranges). P-value calculated using independent samples for the Mann-Whitney U test. ADC: apparent 
diffusion coefficient. DDC: distributed diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: 
perfusion fraction. f×Dp: microvascular blood flow. pR: pathological responders. pNR: pathological non-responders. (*) Estimates of the IVIM parameters 
Dp and f were excluded in two cases where they reached one of their limiting values. 
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Table 4.4 Diagnostic performance of tumour volume and monoexponential, SEM, and IVIM parameters in 
predicting NACT treatment outcomes. 

Parameter 

Pretreatment (n=37) After 1 cycle of NACT (n=37) After 3 cycles of NACT (n=35) 

AUC 
95% 

Confidence 
Interval 

P AUC 
95% Confidence 

Interval 
P AUC 

95% 
Confidence 

Interval 
P 

Tumour volume (cm3) 0.848 0.725-0.970 <0.001 0.881 0.767-0.995 <0.001 0.877 0.759-0.994 <0.001 

ADC (×10-3 mm2/s) 0.545 0.363-0.727 0.63 0.574 0.382-0.765 0.44 0.510 0.314-0.706 0.92 

DDC (×10-3 mm2/s) 0.527 0.343-0.710 0.77 0.535 0.340-0.730 0.71 0.527 0.332-0.722 0.79 

α (unitless) 0.611 0.423-0.799 0.23 0.782 0.631-0.934 0.003 0.637 0.446-0.828 0.17 

Dt (×10-3 mm2/s) 0.501 0.319-0.683 0.98 0.532 0.337-0.728 0.73 0.553 0.358-0.748 0.59 

Dp (×10-3 mm2/s) 0.504 0.315-0.692 0.96 0.674 0.490-0.857 0.07 0.665 0.472-0.859 0.10 

f (%) 0.652 0.480-0.825 0.10 0.832 0.687-0.978 0.001 0.590 0.386-0.794 0.38 

f×Dp (×10-3 mm2/s) 0.627 0.447-0.807 0.17 0.802 0.658-0.948 0.002 0.654 0.463-0.846 0.13 

AUC:  Area under the receiver operating characteristic curve. ADC: apparent diffusion coefficient. DDC: distributed diffusion coefficient. α: diffusion 
heterogeneity index. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfusion fraction. f×Dp: microvascular blood flow. 
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4.3.4 Relative parameters change differences between response 

groups  

Tables 4.5 and 4.6 compare the relative (percentage) change in parameter values 

for the pR and pNR groups after one and three NACT cycles. The relative changes 

in α and f×Dp values after one NACT cycle and Dp values after three NACT cycles 

were significantly different between the pR and pNR groups (median: pR = 6.23% 

and pNR = -0.6% for α; p = 0.01; pR = -17.1% and pNR = 16.01% for f×Dp; p = 

0.04; and pR = -14.8% and pNR = -3.6% for Dp; p = 0.02). However, no statistically 

significant relationship was found between the pathological response and relative 

changes in ADC, DDC, Dt, Dp, and f values after one NACT cycle; in ADC, DDC, 

Dt, α, f, and f×Dp after three NACT cycles; or in the relative changes in tumour 

volume after one and three NACT cycles (after one cycle: p = 0.06 to 1 and after 

three cycles: p = 0.06 to 0.84; Tables 4.5 and 4.6). 

Table 4.7 summarises the ROC curve analyses for the relative changes in all 

parameters. The changes in tumour volume, ADC, DDC, Dt, f, and f×Dp after one 

and three NACT cycles displayed poor performance in predicting NACT response 

(AUC = 0.500–0.691; p = 0.06–1). In contrast, changes in α (after one NACT cycle) 

and Dp (after three NACT cycles) demonstrated reasonable performance (AUC = 

0.741 for α; p = 0.01, and AUC = 0.729 for Dp; p = 0.02). However, changes in α 

(after three cycles) and Dp (after one NACT cycle) exhibited poor performance 

(AUC = 0.683 for α; p = 0.06, and AUC = 0.632 for Dp; p = 0.71). 
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Table 4.5 Comparisons of the percentage change in tumour volume and DWI 
parameter values for the pR and pNR groups. 

 

Cycle 1 - Pretreatment 

Parameter N pR N pNR P 

Tumour volume  17 -38.21 (-48.62, -26.23) 20 -15.93 (-31.6, -5.95) 0.06 

ADC  17 4.54 (-1.12, 11.2) 20 6.58 (-2.03, 10.62) 1.00 

DDC  17 7.34 (0.54, 12.21) 20 7.87 (-2.32, 13.94) 0.84 

α  17 6.23 (0.98, 10.46) 20 -0.6 (-4.07, 3.76) 0.012 

Dt  17 5.92 (1.52, 18.36) 20 4.73 (-1.47, 11.93) 0.28 

Dp  17 -13.52 (-24.77, 8.08) 20 0.75 (-15.01, 19.18) 0.17 

f  17 -18.45 (-32.28, 7.89) 20 12.94 (-3.38, 17.49) 0.06 

f×Dp 17 -17.1 (-44.02, 15.11) 20 16.04 (-14.27, 28.76) 0.048 

Cycle 3 - Pretreatment 

Tumour volume  15 -60.51 (-81.37, -35.66) 20 -49.07 (-68.56, -13.21) 0.15 

ADC  15 12.29 (3.07, 34.9) 20 13.43 (-0.39, 24.25) 0.45 

DDC  15 18.77 (6.36, 40.05) 20 16.04 (-0.1, 28.45) 0.4 

α  15 6.12 (3.62, 8.15) 20 1.31 (-5.94, 6.39) 0.06 

Dt  15 19.05 (3.41, 31.74) 20 12.17 (-0.74, 23.93) 0.34 

Dp (*) 14 -14.8 (-26.61, -8.4) 19 -3.6 (-15.32, 11.96) 0.026 

f (*) 14 2.97 (-18.19, 36.1) 19 8.69 (-7.77, 16.33) 0.84 

f×Dp (*) 14 -6.4 (-29.11, 9.89) 19 0.12 (-13.54, 19.66) 0.37 

Data are represented by medians (interquartile ranges). P-value calculated using independent 
samples for the Mann-Whitney U test. ADC: apparent diffusion coefficient. DDC: distributed 
diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue diffusion. Dp: pseudo-diffusion 
coefficient. f: perfusion fraction. f×Dp: microvascular blood flow. pR: pathological responders. 
pNR: pathological non-responders. (*) Estimates of the IVIM parameters Dp and f were excluded 
in two cases where they reached one of their limiting values. 
∆ parameter (%)= [(Value after one/three cycles) - (Value at pretreatment)]/(Value at pretreatment) × 100 
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Table 4.6 Comparisons of the percentage change in tumour volume and DWI 
parameter values for the pR and pNR groups. 

 

 

 

 

 

 

 

 

Cycle 3 – Cycle 1 

Parameter N pR N pNR P 

Tumour volume  15 -51.61 (-67.85, -14.81) 20 -31.49 (-52.56, -4.28) 0.54 

ADC  15 5.99 (0.2, 14.18) 20 6.67 (-0.39, 15.15) 0.65 

DDC  15 9.08 (0.5, 15.9) 20 7.12 (1.3, 18.2) 0.47 

α  15 -1.51 (-4.32, 5.07) 20 0.28 (-3.14, 4.78) 0.65 

Dt  15 4.75 (-1.38, 13.22) 20 9.28 (0.1, 16.93) 0.80 

Dp (*) 14 -8.75 (-20.7, 7.21) 19 -2.78 (-11.06, 12.17) 0.33 

f (*) 14 7.4 (-11.3, 56.46) 19 -4.5 (-19.96, 25.4) 0.50 

f×Dp (*) 14 12.05 (-27.58, 46.24) 19 0.86 (-16.49, 34.24) 0.62 

Data are represented by medians (interquartile ranges). P-value calculated using independent 
samples for the Mann-Whitney U test. ADC: apparent diffusion coefficient. DDC: distributed 
diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue diffusion. Dp: pseudo-diffusion 
coefficient. f: perfusion fraction. f×Dp: microvascular blood flow. pR: pathological responders. 
pNR: pathological non-responders. (*) Estimates of the IVIM parameters Dp and f were excluded 
in two cases where they reached one of their limiting values. 
∆ parameter (%)= [(Value after three cycles) - (Value after one cycle)]/(Value  after one cycle) × 100 
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Table 4.7 Diagnostic performance of the percentage change in tumour volume and monoexponential, SEM, and 
IVIM parameters in predicting NACT treatment outcomes. 

Parameter 

Cycle 1 - Pretreatment Cycle 3 - Pretreatment Cycle 3 – Cycle 1 

AUC 
95% 

Confidence 
Interval 

P AUC 
95% Confidence 

Interval 
P AUC 

95% 
Confidence 

Interval 
P 

Tumour volume (cm3) 0.682 0.500-0.865 0.06 0.643 0.455-0.831 0.15 0.563 0.364-0.763 0.52 

ADC (×10-3 mm2/s) 0.500 0.309-0.691 1.00 0.577 0.382-0.772 0.44 0.547 0.349-0.744 0.64 

DDC (×10-3 mm2/s) 0.521 0.330-0.711 0.83 0.587 0.393-0.780 0.38 0.573 0.378-0.769 0.46 

α (unitless) 0.741 0.577 – 0.905 0.012 0.683 0.504-0.863 0.06 0.547 0.349-0.744 0.64 

Dt (×10-3 mm2/s) 0.606 0.421-0.790 0.27 0.597 0.405-0.788 0.33 0.527 0.325-0.728 0.79 

Dp (×10-3 mm2/s) 0.632 0.450-0.815 0.17 0.729 0.553 – 0.905 0.026 0.602 0.394-0.809 0.32 

f (%) 0.685 0.496-0.875 0.06 0.523 0.311-0.734 0.82 0.571 0.370-0.773 0.48 

f×Dp (×10-3 mm2/s) 0.691 0.515 – 0.868 0.048 0.594 0.394-0.794 0.36 0.553 0.349-0.757 0.61 

AUC:  Area under the receiver operating characteristic curve. ADC: apparent diffusion coefficient. DDC: distributed diffusion coefficient. α: diffusion 
heterogeneity index. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfusion fraction. f×Dp: microvascular blood flow. 
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4.3.5 Inter- and intraobserver agreement and correlation analysis 

The inter- and intraobserver agreement in tumour volume, measured at 

pretreatment, after one NACT cycle, and after three cycles, was excellent: ICCs for 

interobserver = 0.93, 0.97, and 0.98 and ICCs for intraobserver = 0.97, 0.99, and 

0.99, respectively (Table 4.8). A significant positive correlation occurred between 

ADC, DDC, and Dt at all time-points (r = 0.87 to 0.99; p<0.001). Figure 4.6 

illustrates the correlations between the diffusion coefficients at each MRI time-

point.  

 

Table 4.8 Inter- and intraobserver agreement measures of the tumour volume 
at all three time points. 

 

 

 

Parameter N 

Interobserver 
agreement 

Intraobserver 
agreement 

ICC (95%CI) ICC (95%CI) 

Tumour volume (at pretreatment) 37 0.937 [0.881, 0.967] 0.977 [0.953, 0.989] 

Tumour volume (post one cycle) 37 0.976 [0.919, 0.990] 0.995 [0.990, 0.997] 

Tumour volume (post three cycles) 35 0.988 [0.969, 0.995] 0.998 [0.995, 0.999] 

ICC: intraclass correlation coefficient. CI: Confidence interval. 
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Figure 4.6 Scatter plots for the diffusion coefficients show the significant relationship between the ADC, DDC, 
and Dt parameters. The correlation coefficients (r-values) were obtained from the Spearman correlation tests, and the 
corresponding P-values were annotated for each plot. 
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4.3.6 Upper estimate of repeatability of the DWI model parameters  

As indicated in section 3.2.3, ten pNRs were included in the repeatability analysis. 

The ten tumours showed changes in volume between -21.60% (shrinkage) and 

+18.90% (increase), with an average volume change of -3.64%. The upper 

estimate of the wCV for ADC was 4.9%; for the SEM parameters, it was 5.7% for 

DDC and 3.8% for α; for the IVIM parameters (derived from Table 3.11, Overseg-

C), it was 5.5% for Dt, 10.9% for Dp, 10.6% for f, and 17.8% for f×Dp. 

4.4 Discussion  

Early prediction and monitoring of the NACT response are advantageous for 

individualising an optimal and cost-effective treatment plan for patients with breast 

cancer by avoiding exposure to ineffective NACT. This preliminary study examined 

potential predictions that could alter treatment early (i.e., by the third cycle at the 

latest). The predictive power of the monoexponential, SEM, and IVIM DWI models 

for determining NACT outcomes for breast cancer in 40 patients was evaluated. 

The parameters of the DWI models were measured at three points: pretreatment, 

after one NACT cycle, and after three cycles. 

The findings revealed that tumour volumes measured using the semi-automated 

method at the three time-points for pR were significantly smaller than those for 

pNR, and tumour volume was able to predict response to NACT with reasonable 

performance (AUC = 0.848 to 0.881; p<0.001). This confirms the finding shown in 

a recent study (169) that tumour volume, measured using manually drawn ROIs, is 

a good predictor pretreatment and after one cycle of NACT. The present study 

showed that this prediction remains valid after three cycles. Moreover, the semi-

automated method used in this study for tumour volume estimation has excellent 

inter- and intraobserver agreement. 

Although pR tumours shrank by slightly greater percentages than pNR tumours 

after one and three NACT cycles, the difference was not significant (p = 0.06 to 

0.54). A recent ACRIN 6698 multicentre trial reported that the percentage change 

in tumour volume between pretreatment, one and four NACT cycles, and post-

treatment was predictive in (HR+/HER2-) tumours at all time-points and in triple-

negative (HR-/HER2-) tumours at post-treatment only. However, the change was 

not predictive in (HR-/HER2+) and (HR+/HER2+) tumours at all time-points (25). 

The results may explain the lack of a significant difference in the percentage 
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change in tumour volume between the response groups in the present study, as 

only 12 patients (2 pR and 10 pNR) in the sample had (HR+/HER2-) tumours. 

The results revealed that the Dt values are consistently lower than those for ADC, 

similar to previous studies (19, 126). This outcome was anticipated when the 

contamination from the perfusion element was excluded using b-values greater 

than 200 s/mm2 in the Dt calculation. Furthermore, a strong positive correlation of 

ADC with DDC and Dt was found at each MRI time-point in the present study, 

suggesting that DDC and Dt can be interpreted similarly to ADC in terms of 

observing diffusion components within the microenvironment. Similar to the 

findings by Surov et al.(172), the results illustrated that none of the pretreatment 

diffusion coefficients predict response to NACT. Nonetheless, pNR in the present 

study had slightly higher pretreatment ADC and DDC values than pR, as previously 

reported (19, 173). This result could be attributed to low ADC and DDC values 

being indicative of viable tissue with high cellularity, while high ADC and DDC 

values are indicative of necrotic, less viable tissue characterised by low cellularity 

(173). 

After one NACT cycle, no significant difference in the ADC was noted between the 

response groups (p = 0.46). This outcome conflicts with the results Li et al. (174) 

reported, which may reflect technical differences in ADC calculation, the use of 

different treatment regimens, and how pathological response was assessed. 

Following one NACT cycle, the percentage change in the tumour diffusion 

coefficients was not predictive of response, aligning with a previous report (25). At 

mid-treatment, no significant difference was observed between the response 

groups in the relative increase in the ADC, DDC, and Dt (p = 0.34–0.80). This 

finding is partially inconsistent with the results Bedair et al. (19), reported, finding a 

substantial difference at mid-therapy between responders and non-responders in 

the percentage of increase in the ADC and DDC values but not in the Dt value. 

This inconsistency may occur for the following possible reasons: [1] In the present 

study, the ROIs were generated around the whole-tumour volume on the DCE 

subtraction images, and the ROIs were then copied to the DWIs, and the average 

SI value for every b‐value was calculated. In contrast, Bedair et al. generated 

parametric maps of all diffusion parameters, and then the single-section ROIs were 

analysed on a voxel-wise basis, and the parameters were expressed as means 

over the single-section ROIs (19). Estimation of model parameters is more 

accurate when performed using the ROI averaged signals, compared to the 
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average of parameter values estimated on a voxel-by-voxel basis (168). Moreover, 

volumetric sampling of the entire tumour may minimize sampling bias in 

comparison with the single-section ROI method (152), and this method is 

recommended when evaluating tumour response (24).  [2] The ADC value in the 

present study was determined using all six b-values. In contrast, Bedair et al. (19) 

calculated it from only two values (0 and 900 s/mm2). The choice of b-value may 

affect the calculation of the ADC value (175). [3] There were differences in the 

number of patients included in the mid-treatment analysis and in the method of 

categorising the response groups. In this study, 35 patients categorised as pR (15 

patients with RCB 0/I) and pNR (20 patients with RCB II/III) were included in the 

mid-treatment analysis. In the study by Bedair et al. (19), 22 patients were 

classified as pCR (eight patients) and non-pCR (14 patients) at the mid-therapy 

analysis. However, the ACRIN 6698 multicentre trial found that the percentage 

change in the ADC value was predictive only in (HR+/HER2−) tumours after four 

NACT cycles (25). 

Theoretically, Dp is related to the capillary blood flow velocity and the average 

capillary segment length (20). At mid-treatment, a significant difference was 

observed between the pR and pNR groups in the percentage decrease in Dp 

values. The pR group exhibited a greater reduction in the Dp value than the pNR 

group (pR = -14.8% and pNR = -3.6%; p = 0.02). This result may indicate that 

blood flow velocity was reduced more in responder tumours than in non-responder 

tumours relative to the baseline values. However, this study revealed no significant 

difference in Dp values between pRs and pNRs at each MRI time-point (p = 0.07–

0.97). This finding could be attributed to the considerable variability of the Dp 

estimates in this study, as supported by the upper estimate of its repeatability (i.e., 

wCV = 10.9%), possibly overwhelming the difference between the two groups. This 

result has also been demonstrated in several studies that highlighted the large 

variability in Dp estimates (144, 157). Further studies exploring the nature of the Dp 

parameter and assessing its repeatability in the breast should be conducted to 

assess the Dp change and accurately interpret it. This could be conducted by 

acquiring DWI images for breast cancer patients at multiple NACT time points 

beyond the one used in this study, along with repeating the DWI acquisition for a 

subset of patients at pretreatment. This approach would help track how Dp evolves 

during treatment, explore its nature and relationship to tumour response, and 

assess its repeatability in breast cancer. An additional approach would be to 

correlate Dp with comparable measures, such as blood flow, which can be derived 
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from other imaging techniques like PET or DCE-MRI. Such an analysis may offer 

additional understanding of the nature of the Dp parameter. This could be done by 

acquiring both DWI and DCE-MRI scans for breast cancer patients at multiple 

NACT stages and investigating the longitudinal correlations between Dp and Fb 

(DCE-MRI derived measure of blood flow) parameter changes induced by NACT. 

The values of f and f×Dp at the three time-points were consistently higher in pNR 

compared to pR, and both were able to differentiate the two groups and predict 

response with reasonable performance after one cycle of NACT (f: AUC = 0.832; p 

= 0.001; and f×Dp: AUC = 0.802; p = 0.002). Le Bihan et al. stated that the f 

parameter reflects the fractional volume of capillary blood in a voxel, whereas f×Dp 

reflects the microvascular blood flow (20). Thus, higher f and f×Dp values in the 

pNR group might be attributed to the richer blood supply in the non-responder 

tumours. Moreover, Lee et al. found a significant positive correlation between f and 

the histological microvessel density (176), a surrogate marker of tumour 

angiogenesis, where high scores are often associated with poor prognosis after 

chemotherapy (177). This finding may have an indirect relationship to the high f 

values in pNR tumours. A recent study discovered that breast tumours with higher 

blood scores using optical imaging were associated with a poorer pathological 

response to NACT (178). However, further investigation is necessary to determine 

the nature of the f and f×Dp parameters and their relationships to the response to 

NACT. One approach to achieve this would be to expand imaging assessments to 

additional time points, such as after each cycle of NACT. This would provide a 

more detailed understanding of how f and f×Dp evolve throughout the treatment 

and their role in predicting response. Additionally, investigating the correlation 

between f and f×Dp parameters and histopathological markers, such as 

microvessel density (MVD), could clarify whether these parameters reflect tumour 

perfusion and microvascular changes. This could be achieved by scanning breast 

cancer patients with DWI to derive f and f×Dp parameters of the tumour, followed 

by tumour surgical resection and MVD calculation to examine their correlation. 

Alternatively, imaging patients with multiple DWI scans during NACT cycles, 

combined with biopsies taken from different tumour locations to calculate averaged 

tumour MVD values, and then examining the longitudinal correlations between f, 

f×Dp of the tumour, and tumour MVD may also provide insight into the 

biophysiological nature of f and f×Dp parameters. Furthermore, comparing the DWI 

technique with other functional imaging techniques, such as DCE-MRI, which 

provides an absolute measure of tumour blood flow (Fb) along with blood volume 
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fraction (vb), may offer additional insights. By acquiring DWI and DCE-MRI scans 

at multiple NACT time points and examining the longitudinal correlations between 

these parameter changes caused by NACT (i.e., f and f×Dp versus Fb and vb), this 

approach could also provide an understanding of the nature of f and f×Dp 

parameters and their relationships to NACT response (Chapter 6 investigated 

these correlations). 

Like Bedair et al. (19), pR in the present study had higher α values than pNR at all 

time-points. However, after one NACT cycle, the percentage change in α between 

the response groups was significantly different and α was significantly higher in pR, 

which showed an ability to differentiate the two groups and predict response with 

reasonable performance (pR = 6.23% and pNR = -0.6%; AUC = 0.741; p = 0.01). 

The biological interpretation of the heterogeneity index α is still under 

consideration, it could reflect the complexity of the tissue microstructure (179). 

High α values in pR tumours could be indicative of more structural homogeneity, 

while low α values observed in pNR tumours may be suggestive of a more 

heterogeneous microenvironment; vascular heterogeneity and the existence of 

microscopic necrosis, resulting in a more aggressive tumour with less sensitivity to 

chemotherapy (180).  

4.4.1 Limitations 

Although this is the first study, to the best of the candidate’s knowledge, which 

addressed the point raised in the previous study about investigating the SEM 

model's value in predicting patient response to NACT at an earlier time point than 

cycle three (19), this study had some limitations. The study was conducted in a 

single centre using one scanner (1.5 T MRI; Aera; Siemens), and the sample size 

was small, limiting its interpretation and impeding the assessment of the prediction 

performance of DWI models between the response groups according to breast 

tumour subtypes. A subsequent study in multiple centres using assorted scanners 

with a larger sample cohort (responders and non-responders) with various breast 

tumour subtypes is recommended to validate the prediction performance of the 

DWI models.  

Moreover, the effects of voxel-wise analysis and estimation of the ADC using 

different b-value combinations on the prediction performance were not 

investigated. Instead, this study followed the recommendation that the parameter 

value directly estimated from the ROI-averaged signals is more accurate than the 

average of parameter values estimated on a voxel-by-voxel basis (168). However, 
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an alternate analytic approach, explored in a subsequent study (Chapter 5), is to 

derive the parameters from a focused ROI positioned on the darkest part of the 

tumour on the ADC map (i.e., the lowest ADC value). The area with the lowest 

ADC value within a tumour may potentially reflect the most active part of the 

tumour (24). Finally, the repeatability of the monoexponential, SEM and IVIM 

models' parameters was not examined. An upper estimate of the repeatability of 

these diffusion model parameters was calculated (181). 

4.5 Conclusions 

This preliminary study demonstrated that analysing diffusion data with non-

monoexponential models offers a better prediction of NACT response than an 

analysis with a monoexponential model. The IVIM-derived parameters f and f×Dp 

and the SEM-derived parameter α predicted the response in patients with breast 

cancer with reasonable performance after one NACT cycle (AUC = 0.832, 0.802, 

0.782; p = 0.001, 0.002, and 0.003, respectively). The results indicated that the 

ADC, DDC, and Dt values could not predict the response at pretreatment or after 

one or three cycles. Tumour volumes in the responders were smaller than in non-

responders at all three time-points (p<0.001). Patients with a small tumour volume, 

higher α value, and lower f fraction and f×Dp after one NACT cycle responded 

better to NACT. The promising role of the perfusion-related parameters f and f×Dp 

supports further investigations to explore whether IVIM can offer a contrast-agent-

free alternative to the DCE-MRI method for measuring breast tumour perfusion 

(Chapter 6). 
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Chapter 5 Evaluation of monoexponential, SEM and IVIM DWI MRI 

diffusion models estimated from tumour diffusion cold-spot and 

perfusion hot-spot regions in early response monitoring to NACT 

in patients with breast cancer 

5.1 Introduction 

The ACRIN 6698 trial, which is the largest multicentre trial evaluating the 

effectiveness of the ADC to assess the breast cancer response to NACT, found 

that a relative increase in whole-tumour ADC value was only predictive of breast 

cancer response to NACT after four cycles (12 weeks). The trial recommended 

further investigation of alternative analytical methods, such as characterising the 

worst tumour subregion (i.e., the area with the lowest ADC) to improve the 

detectability of changes in tumour cellularity (25). Similarly, the International Breast 

DWI Working Group suggested using a small ROI on the darkest region of the 

tumour on ADC maps, occasionally known as the diffusion cold-spot, to calculate 

ADC values, potentially reflecting the most active part of the tumour (24). This 

method is analogous to that used for DCE-MRI image analyses, which involves 

selecting the region of greatest mean maximum enhancement, often called a 

perfusion hot-spot (24, 26). The rationale for characterising the cold-spot is that it 

may represent the area of the tumour with the highest cell density, whereas the 

hot-spot is likely to reflect the tumour area with abundant angiogenesis. However, 

the ability of the ADC derived from tumour diffusion cold-spot and perfusion hot-

spot to predict the early breast cancer response to NACT requires exploration. The 

ADC value calculated from the tumour perfusion hot-spot region might be largely 

influenced by perfusion effects impacting DWI signal characteristics, making the 

IVIM model a potential suitable candidate for characterising this region. 

Preliminary studies have found that analysing DWI data derived from an ROI of the 

whole-tumour or a large single-section tumour using SEM and IVIM models could 

predict early breast cancer response to NACT (19, 23, 125).  However, the 

predictive capability of these models, when focused on the most active region (i.e., 

the diffusion cold-spot and perfusion hot-spot) of the tumour, requires further 

exploration. Therefore, the purpose of this study is to investigate the value of 

monoexponential, SEM and IVIM models for the diffusion cold-spot and perfusion 

hot-spot regions of the tumour at pretreatment, and after one and three cycles of 

NACT in assessing the early breast cancer response to NACT. 
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5.2 Materials and methods 

5.2.1 Patient population 

The cohort of patients included, the recruitment eligibility criteria used, and the 

NACT regimen plan delivered are the same as detailed in Chapter 4, section 4.2.1.  

5.2.2 MRI acquisition 

The MRI scan time points and imaging protocol are the same as described in 

Chapter 4 (section 4.2.2); however, this section provides more details on the DCE-

MRI sequences used. 

After the acquisition of DWI, interleaved high temporal resolution (HTR) and high 

spatial resolution (HSR) DCE sequences were employed (7). The dynamic series 

comprised 93 HTR images interleaved with eight HSR images sequenced in the 

order of 10×HTR, 1×HSR, and 43×HTR. Then, a cycle of [1×HSR, 5×HTR] was 

repeated seven times and ended with five HTR images (Figure 5.1). The HTR 

dynamic images were acquired by employing a T1-weighted 3D FLASH sequence 

(TR/TE: 2.37/0.73 ms, FA: 25°, FOV: 340×340×180 mm, matrix size: 128×128×36, 

slice thickness: 5 mm, parallel imaging factor: 2×2, acquisition time: 2 s). For the 

HSR images (as described in section 4.2.2), a fat-suppressed T1-weighted 3D 

FLASH sequence (TR/TE: 4.1/1.2 ms, FA: 10°, FoV: 340×340×180 mm, matrix 

size: 384×384×128, slice thickness: 1.4 mm, parallel imaging factor: 3, acquisition 

time: 36 s) was used. An automated power injector (Spectris Solaris EP) 

intravenously injected 0.1 mmol/kg of gadoteric acid (Gd-DOTA, Dotarem, Guerbet 

Laboratories) as the 11th HTR image acquisition commenced, followed by saline 

(20 mL at a rate of 3 mL/s). 
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5.2.3 Image analysis 

All MRI data were processed through the same in-house program developed in 

MATLAB (MathWorks, USA), used in Chapter 4 work. Expanding to section 4.2.3, 

the HTR, and HSR images were rigidly aligned to match the DWI images (and 

therefore the ADC maps) without interpolation of the DWI data. The HTR and HSR 

DCE subtraction images were created by subtracting the precontrast images from 

the postcontrast images to enhance the clarity of the tumour. 

For each patient, the generated whole-tumour ROI (section 4.2.3) was propagated 

to the corresponding DWI, ADC, and HTR images. Two focused single-slice ROIs 

(5×5 pixels) were generated within the whole-tumour ROI, comprising a diffusion 

cold-spot and perfusion hot-spot. The cold-spot ROI was the tumour region with 

the lowest ADC value on the ADC map (24), and the hot-spot ROI was the tumour 

region with the highest SI on the HTR subtraction images. The spatial location of 

the cold-spot and hot-spot ROIs for each tumour were allowed to vary at each MRI 

visit as the tumour responded to NACT. The mean SI for every b-value was 

extracted from the cold-spot and hot-spot ROIs transferred to the corresponding 

DWI (168) (Figure 5.2).   

Figure 5.1 Schematic of the interleaved acquisition of high temporal resolution (HTR) 
and high spatial resolution (HSR) DCE images. The acquisitions comprised 93 HTR 
images interleaved with eight HSR images sequenced in the order of 10×HTR, 1×HSR, and 
43×HTR. Then, a cycle of [1×HSR, 5×HTR] was repeated seven times and ended with five 
HTR images. The contrast agent (Gd-DOTA) was injected as the 11th HTR image 
acquisition commenced. An inversion recovery (IR) sequence was performed (for the study 
in Chapter 6) before the last five HTR images were obtained. 
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Figure 5.2 Example of MRI images for an invasive ductal carcinoma tumour in the left breast of 
a 45-year-old woman who was a responder (RCB-0). The top row illustrates the whole-tumour 
region of interest (ROI) created on the HSR subtraction images. The middle and bottom rows 
demonstrate the cold-spot and hot-spot ROIs (5×5 pixels) respectively, generated within the whole-
tumour ROI. The whole-tumour ROI covers all the slices where the tumour is present, whereas the 
cold-spot and hot-spot regions originate in only a single slice (not necessarily the same slice). All 
three regions were transferred to the corresponding DWI for subsequent analysis. The tables 
represent the parameter estimates of monoexponential, SME, and IVIM models from each tumour 
ROI. 
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The parameters for the monoexponential (ADC) and SEM (DDC, α) models were 

estimated in the same manner as described in section 4.2.3, while the IVIM 

parameters (Dt, Dp, f, and f×Dp) were estimated using the oversegmented-fitting 

with constraints approach (illustrated in section 3.2.2) based on the results of 

Chapter 3. Figure 5.3 shows an example of DWI signals derived from tumour cold-

spot and hot-spot ROIs and the curve-fittings performed. 

 

The parameter values were estimated and documented for each patient during the 

three MRI visits (pretreatment, and after one and three cycles of NACT). The 

percentage changes in the parameters were computed for each patient relative to 

the values for pretreatment and after one NACT cycle: 

∆ Parameter (%) = 
𝑉𝑎𝑙𝑢𝑒𝑎𝑓𝑡𝑒𝑟 𝑜𝑛𝑒 𝑜𝑟 𝑡ℎ𝑟𝑒𝑒 𝑐𝑦𝑐𝑙𝑒𝑠 − 𝑉𝑎𝑙𝑢𝑒𝑎𝑡 𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑜𝑟 𝑎𝑓𝑡𝑒𝑟 𝑜𝑛𝑒 𝑐𝑦𝑐𝑙𝑒

𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑜𝑟 𝑎𝑓𝑡𝑒𝑟 𝑜𝑛𝑒 𝑐𝑦𝑐𝑙𝑒
 × 100 

All steps were performed blind to the evaluation of pathological responses to 

NACT.  

5.2.4 Pathological response evaluation 

The method for assessing tumour response and classifying patients into pR and 

pNR groups was as detailed in section 4.24. 

Figure 5.3 The measured DWI signals from the tumour's cold-spot and hot-spot ROIs, along 
with the best-fit curves of the monoexponential, SEM, and IVIM models, for the tumour of the 
responder patient in Figure 5.2 at pretreatment. 
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5.2.5 Statistical analysis 

The DWI parameters were reported as the median and IQR due to the non-normal 

data distribution. The parameter differences between pretreatment, after one cycle, 

and after three cycles were assessed for the entire cohort using Friedman's test 

with the Bonferroni correction. The parameter estimates and relative changes (%) 

in parameter values after one and three NACT cycles were compared between the 

pR and pNR groups using the Mann–Whitney test. The performance of the 

parameters and their corresponding relative changes in predicting treatment 

outcomes was evaluated by calculating the AUC (AUC; 0.5 ≤ AUC < 0.7: poor 

performance and 0.7 ≤ AUC < 0.9: reasonable performance) (23). The IBM SPSS 

software (v.25.0) was used for all analyses. As this is a preliminary study, p-values 

were reported as raw values and were not corrected for multiple comparisons; 

thus, a p-value of less than 0.05 was considered statistically significant. 

5.3 Results 

5.3.1 Tumour segmentations 

As illustrated in section 4.3.1, 40 MRI studies were analysed at pretreatment (pR = 

17 and pNR = 23), 37 after one NACT cycle (pR = 17 and pNR = 20), and 35 after 

three NACT cycles (pR = 15 and pNR = 20). 

Focused ROIs (cold-spot/hot-spot) were generated in 37/34 tumours at 

pretreatment (pR = 15 and pNR = 22/pR = 13 and pNR = 21), 33/33 tumours after 

one NACT cycle (pR = 14 and pNR = 19), and 25/24 tumours after three NACT 

cycles (pR = 7 and pNR = 18/pR = 7 and pNR = 17). Three tumours at 

pretreatment were smaller than the 5x5 pixel size threshold, and some during 

NACT cycles were reduced below this threshold. Four HTR-DCE scans—two at 

pretreatment and two after three NACT cycles—were excluded at the step of 

whole-tumour ROI propagation due to patient intolerance of the whole scan (one 

case), coil technical problems (two cases), and excessive patient movement (one 

case). Furthermore one HTR-DCE scan at pretreatment was excluded from the 

hot-spot identification step due to unsuccessful image alignment because the initial 

scan was performed without contrast and repeated on another day only for the 

DCE imaging, not the DWI (Figure 5.4).  
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5.3.2 Parameter values for the cohort 

The IVIM parameter estimates Dp and f reached one of their constrained values in 

eight cases from the cold-spot region (at pretreatment) and four cases from the 

hot-spot region (three at pretreatment and one after three NACT cycles) and were 

excluded from the statistical analyses. Tables 5.1 and 5.2 summarise the values at 

pretreatment and after one and three NACT cycles across the cohort in cold-spot 

and hot-spot ROIs. The ADC and DDC values in the cold-spot and hot-spot ROIs 

Figure 5.4 The flow chart illustrates the number of recruited patients, responders (pR) and 
non-responders (pNR), and the number of generated tumor cold-spot and hot-spot ROIs at 
each MRI time-point. 

40 female patients were 
eligible and enrolled. 

▪ 3 patients withdrew following pretreatment 
MRI 

▪ 2 patients' MRI data acquired after three 
NACT cycles were excluded (no tumour 
apparent). 

After one NACT cycle 

37 Whole-tumour ROIs 

(pR=17 and pNR=20) 

Pretreatment 

40 Whole-tumour ROIs 

(pR=17 and pNR=23) 

After three NACT cycles 

35 Whole-tumour ROIs 

(pR=15 and pNR=20) 

 37 Cold-spot ROIs 

(pR=15 and pNR=22) 

 34 Hot-spot ROIs 

(pR=13 and pNR=21) 

 33 Cold-spot ROIs 

(pR=14 and pNR=19) 

 33 Hot-spot ROIs 

(pR=14 and pNR=19) 

 25 Cold-spot ROIs 

(pR=7 and pNR=18) 

 24 Hot-spot ROIs 

(pR=7 and pNR=17) 
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were significantly lower at pretreatment than after three NACT cycles (median: 

ADC: 0.73 and 0.97 ×10-3 mm2/s; p = 0.001, and DDC: 0.64 and 0.90 ×10-3 mm2/s; 

p = 0.03 in cold-spot ROIs; ADC: 0.93 and 1.12 ×10-3 mm2/s; p = 0.01, and DDC: 

0.86 and 1.05 ×10-3 mm2/s; p = 0.02 in hot-spot ROIs, respectively). Pretreatment f 

values derived from hot-spot ROIs were significantly less than those after three 

cycles (median: f: 10.15 and 12.34; p = 0.03, respectively). Additionally, α values 

estimated from cold-spot ROIs were significantly higher at pretreatment than after 

cycle three (median: α: 0.88 and 0.81; p = 0.02, respectively). However, no 

significant differences were observed in the α (in hot-spot ROIs), Dt, Dp, f (in cold-

spot ROIs) and f×Dp values between pretreatment and after one and three cycles 

(p = 0.054 and 0.81). 
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Table 5.1 DWI parameters of monoexponential, SEM and IVIM models pretreatment, after one cycle of NACT, and 
at mid-treatment in tumour cold-spot ROI. 

 

 

 

 

 

 

Parameter N Pretreatment (a) 
After one cycle of 

NACT (b) 
After three cycles 

of NACT (c) 
P Post hoc** 

ADC (×10-3 mm2/s) 25 0.73 (0.65, 0.86) 0.87 (0.75, 1) 0.97 (0.81, 1.14) 0.001 a<c 

DDC (×10-3 mm2/s) 25 0.64 (0.58, 0.81) 0.80 (0.66, 0.91) 0.90 (0.73, 1.06) 0.03 a<c 

α (unitless) 25 0.88 (0.79, 0.89) 0.83 (0.74, 0.89) 0.81 (0.7, 0.87) 0.02 a>c 

Dt (×10-3 mm2/s) 25 0.64 (0.59, 0.78) 0.66 (0.57, 0.84) 0.77 (0.6, 0.92) 0.054 - 

Dp (×10-3 mm2/s) (*) 19 7.12 (5.69, 10.77) 6.38 (4.96, 10.17) 7.13 (5.73, 9.27) 0.81 - 

f (%) (*) 19 9.3 (4.61, 11.69) 9.25 (7.17, 11.88) 12.15 (7.84, 16.11) 0.33 - 

f×Dp (×10-3 mm2/s) (*) 19 0.53 (0.44, 1.07) 0.57 (0.42, 1.16) 0.87 (0.53, 1.73) 0.50 - 

Data represented by medians (interquartile ranges). P-value for a difference between the three visits was found using 
Friedman’s non-parametric test. Pairwise comparisons** (Bonferroni-corrected) significance at the 0.05 level. ADC: apparent 
diffusion coefficient. DDC: distributed diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue diffusion. Dp: pseudo-
diffusion coefficient. f: perfusion fraction. f×Dp: microvascular blood flow. (*) Number of the IVIM parameter Dp and f estimates 
is different due to the exclusion of the estimates that reached one of their limiting values. 
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Table 5.2 DWI parameters of monoexponential, SEM and IVIM models pretreatment, after one cycle of NACT, and 
at mid-treatment in tumour hot-spot ROI. 

 

 

Parameter N Pretreatment (a) 
After one cycle of 

NACT (b) 
After three cycles 

of NACT (c) 
P Post hoc** 

ADC (×10-3 mm2/s) 22 0.93 (0.85, 1.11) 1.03 (0.86, 1.26) 1.12 (0.96, 1.27) 0.016 a<c 

DDC (×10-3 mm2/s) 22 0.86 (0.79, 1.06) 0.97 (0.82, 1.21) 1.05 (0.86, 1.2) 0.025 a<c 

α (unitless) 22 0.85 (0.81, 0.88) 0.85 (0.78, 0.88) 0.81 (0.75, 0.88) 0.17 - 

Dt (×10-3 mm2/s) 22 0.78 (0.74, 0.94) 0.85 (0.74, 1.01) 0.85 (0.76, 0.93) 0.28 - 

Dp (×10-3 mm2/s) (*) 21 7.83 (6.07, 8.7) 7.06 (5.99, 8.86) 7.13 (5.6, 8.67) 0.82 - 

f (%) (*) 21 10.15 (7.56, 11.61) 10.36 (9.07, 12.92) 12.34 (11.06, 
14.03) 

0.03 a<c 

f×Dp (×10-3 mm2/s) (*) 21 0.72 (0.54, 1) 0.67 (0.54, 1) 0.95 (0.68, 1.72) 0.055 - 

Data represented by medians (interquartile ranges). P-value for a difference between the three visits was found using 
Friedman’s non-parametric test. Pairwise comparisons** (Bonferroni-corrected) significance at the 0.05 level. ADC: apparent 
diffusion coefficient. DDC: distributed diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue diffusion. Dp: pseudo-
diffusion coefficient. f: perfusion fraction. f×Dp: microvascular blood flow. (*) Number of the IVIM parameter Dp and f estimates 
is different due to the exclusion of the estimates that reached one of their limiting values. 
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5.3.3 Difference in parameters between response groups 

Table 5.3 compares the parameter values for pR and pNR at pretreatment and 

after one and three cycles of NACT in tumour cold-spot regions. No significant 

differences were found in ADC, Dp and f×Dp between the pR and pNR groups at all 

time points (pretreatment: p = 0.09, 1 and 1; after one cycle: p = 0.07, 0.92, and 

0.14; and after three cycles: p = 0.27, 0.70, and 0.57, respectively). After one 

NACT cycle, pR patients exhibited considerably higher DDC, α and Dt values 

(median: pR = 0.9×10‐3 mm2/s and pNR = 0.72×10-3 mm2/s; p = 0.01 for DDC; pR 

= 0.89 and pNR = 0.77; p = 0.01 for α; and pR = 0.8×10-3 mm2/s and pNR = 

0.63×10-3 mm2/s; p = 0.005 for Dt). In contrast, f values were significantly higher in 

the pNR group (median: pR = 7.91% and pNR = 9.85%; p = 0.04). However, no 

significant differences between the response groups existed in the DDC, α, Dt and f 

values at pretreatment and after three cycles (pretreatment: p = 0.17, 0.72, 0.23 

and 0.77 and after three cycles: p = 0.15, 0.49, 0.19 and 0.53, respectively; Table 

5.3). 
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Table 5.3 Comparisons of DWI parameter values at pretreatment, after one cycle of NACT, and at mid-treatment 
for the pR and pNR groups in tumour cold-spot ROI. 

 

Parameter 
Pretreatment (n=37) After one cycle of NACT (n=33) 

After three cycles of NACT 
(n=25) 

pR (n=15) pNR (n=22) P pR (n=14) pNR (n=19) P pR(n=7) pNR(n=18) P 

ADC (×10-3 mm2/s) 0.81 (0.73, 0.86) 0.71 (0.63, 
0.95) 

0.09 0.96 (0.87, 
1.02) 

0.8 (0.73, 
0.99) 

0.07 1.03 (0.97, 
1.13) 

0.92 (0.76, 
1.15) 

0.27 

DDC (×10-3 mm2/s) 0.7 (0.65, 0.81) 0.6 (0.56, 
0.81) 

0.17 0.9 (0.81, 1) 0.72 (0.63, 
0.85) 

0.01 0.96 (0.9, 
1.07) 

0.83 (0.54, 
0.99) 

0.15 

α (unitless) 0.88 (0.76, 0.91) 0.84 (0.76, 
0.89) 

0.72 0.89 (0.85, 
0.96) 

0.77 (0.71, 
0.89) 

0.01 0.83 (0.8, 
0.85) 

0.79 (0.59, 
0.89) 

0.49 

Dt (×10-3 mm2/s) 0.68 (0.63, 0.76) 0.64 (0.56, 
0.72) 

0.23 0.8 (0.75, 0.91) 0.63 (0.54, 
0.79) 

0.005 0.84 (0.78, 
0.88) 

0.69 (0.54, 
0.93) 

0.19 

Dp (×10-3 mm2/s) (*) 6.94 (5.53, 
14.81) 

9.09 (5.9, 
11.06) 

1.00 6.47 (5.41, 
8.41) 

6.38 (4.83, 
10.17) 

0.92 7.69 (6.45, 
8.31) 

7.6 (5.6, 
20.74) 

0.70 

f (%) (*) 8.12 (6.22, 
12.24) 

9.77 (4.88, 
12.15) 

0.77 7.91 (5.76, 9.7) 9.85 (8.04, 
18.07) 

0.04 12.15 (9.54, 
13.28) 

12.82 (7.95, 
16.89) 

0.53 

f×Dp (×10-3 mm2/s) (*) 0.86 (0.41, 1.63) 0.64 (0.47, 
1.07) 

1.00 0.51 (0.33, 
0.77) 

0.89 (0.42, 
1.44) 

0.14 0.87 (0.69, 
1.03) 

0.88 (0.67, 
3.47) 

0.57 

Data are represented by medians (interquartile ranges). P-value calculated using independent samples for the Mann-Whitney U test. 
ADC: apparent diffusion coefficient. DDC: distributed diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue diffusion. Dp: 
pseudo-diffusion coefficient. f: perfusion fraction. f×Dp: microvascular blood flow. pR: pathological responders. pNR: pathological non-
responders.  (*) Number of the IVIM parameter Dp and f estimates is different due to the exclusion of the estimates that reached one of 
their limiting values (at pretreatment: pR = 13 and pNR = 16). 
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Table 5.4 presents the parameter values for pR and pNR at pretreatment and after 

one and three cycles of NACT in tumour hot-spot regions. No significant 

differences were observed between the response groups in ADC, DDC, Dt and Dp 

at all time points (pretreatment: p = 0.50, 0.80, 0.97 and 0.07; after one cycle: p = 

0.55, 0.73, 1 and 0.46; and after three cycles: p = 0.85, 0.90, 1 and 0.82, 

respectively). The α values were significantly higher in the pR group at 

pretreatment and after one cycle (median: pretreatment: pR = 0.87 and pNR = 

0.82; p = 0.04, after one cycle: pR = 0.9 and pNR = 0.84; p = 0.01). Conversely, 

pNR patients exhibited significantly higher values of f and f×Dp at pretreatment, 

and higher f values after one cycle (median: pretreatment: pR = 8.78% and pNR = 

11.44%; p = 0.03 for f; and pR = 0.56×10-3 mm2/s and pNR = 0.98×10-3 mm2/s; p = 

0.006 for f×Dp; and after one cycle: pR = 9.12% and pNR = 11.84%; p = 0.03 for f). 

However, no significant differences were found between the response groups in 

the values of f×Dp after one cycle and in α, f and f×Dp after three cycles (p = 0.08, 

0.41, 0.13 and 0.34, respectively; Table 5.4). 
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Table 5.4 Comparisons of DWI parameter values at pretreatment, after one cycle of NACT, and at mid-treatment 
for the pR and pNR groups in tumour hot-spot ROI. 

Parameter 
Pretreatment (n=34) After one cycle of NACT (n=33) 

After three cycles of NACT 
(n=24) 

pR (n=13) pNR (n=21) P pR (n=14) pNR (n=19) P pR(n=7) pNR(n=17) P 

ADC (×10-3 mm2/s) 0.91 (0.87, 1.02) 0.97 (0.85, 
1.11) 

0.50 1.01 (0.95, 
1.19) 

1.09 (0.89, 
1.28) 

0.55 1.13 (0.97, 
1.21) 

1.11 (0.97, 
1.25) 

0.85 

DDC (×10-3 mm2/s) 0.85 (0.81, 0.96) 0.94 (0.79, 
1.06) 

0.80 0.98 (0.88, 
1.15) 

1.03 (0.83, 
1.24) 

0.73 1.06 (0.9, 
1.14) 

1.04 (0.89, 
1.16) 

0.90 

α (unitless) 0.87 (0.84, 0.9) 0.82 (0.76, 
0.86) 

0.042 0.9 (0.86, 0.93) 0.84 (0.8, 
0.86) 

0.014 0.83 (0.79, 
0.88) 

0.81 (0.73, 
0.88) 

0.41 

Dt (×10-3 mm2/s) 0.8 (0.74, 0.85) 0.81 (0.71, 
0.94) 

0.97 0.86 (0.78, 
1.05) 

0.92 (0.76, 
1.03) 

1.00 0.84 (0.8, 
0.93) 

0.89 (0.78, 
0.97) 

1.00 

Dp (×10-3 mm2/s) (*) 6.15 (5.57, 7.56) 8.25 (6.11, 
12.12) 

0.07 6.89 (5.28, 
7.73) 

7.06 (6.43, 
9.01) 

0.46 7.69 (6.45, 
8.34) 

7.38 (5.51, 
11.51) 

0.82 

f (%) (*) 8.78 (7.17, 
10.42) 

11.44 (9.21, 
12.69) 

0.039 9.12 (7.51, 
11.47) 

11.84 (9.95, 
13.56) 

0.032 11.35 (9.31, 
12.8) 

12.52 (12.08, 
19.69) 

0.13 

f×Dp (×10-3 mm2/s) (*) 0.56 (0.44, 0.75) 0.98 (0.7, 
1.32) 

0.006 0.59 (0.45, 
0.98) 

0.8 (0.58, 
1.18) 

0.08 0.9 (0.66, 
1.09) 

1.17 (0.7, 
2.06) 

0.34 

Data are represented by medians (interquartile ranges). P-value calculated using independent samples for the Mann-Whitney U test. 
ADC: apparent diffusion coefficient. DDC: distributed diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue diffusion. Dp: 
pseudo-diffusion coefficient. f: perfusion fraction. f×Dp: microvascular blood flow. pR: pathological responders. pNR: pathological non-
responders. (*) Number of the IVIM parameter Dp and f estimates is different due to the exclusion of the estimates that reached one of 
their limiting values (at pretreatment: pR = 12 and pNR = 19, after three cycles: pR = 7 and pNR = 16). 
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Table 5.5 reports the AUCs of the ROC curves for parameters that differentiated 

between the pR and pNR groups. The α, f and f×Dp in hot-spot regions 

demonstrated reasonable performance in predicting treatment response at 

pretreatment (AUC = 0.711, 0.724 and 0.794; p = 0.04, 0.03, and 0.007, 

respectively). After one NACT cycle, the response prediction was reasonable for 

DDC and Dt in cold-spot regions (AUC = 0.752 and 0.786; p = 0.01 and 0.006), and 

for α and f in both hot-spot (AUC = 0.752 and 0.722; p = 0.01 and 0.03) and cold-

spot regions (AUC = 0.744 and 0.711; p = 0.01 and 0.04), respectively. 

Table 5.5 The diagnostic performance of monoexponential, SEM and IVIM 
parameters that differentiated between pR and pNR groups. 

 

5.3.4 Relative parameter change differences between response groups  

In the cold-spot regions, the changes in the DDC and Dt values after one NACT 

cycle relative to their pretreatment values and in the f values after three NACT 

cycles relative to their values after one NACT cycle significantly differed between 

the pR and pNR groups (median: pR = 31.86% and pNR = 10.41%; p = 0.009 for 

DDC; pR = 23.88% and pNR = -8.03%; p = 0.003 for Dt; and pR = 107.36% and 

pNR = 3.44%; p = 0.02 for f; Tables 5.6 and 5.7). Nevertheless, no statistically 

significant relationship was determined between the pathological response and the 

relative changes in the ADC, α, Dp, f and f×Dp values after one NACT cycle, nor in 

the ADC, DDC, α, Dt, Dp and f×Dp values after three NACT cycles (after one cycle: 

p = 0.06 to 0.56 and after three cycles: p = 0.11 to 0.92; Tables 5.6 and 5.7).  

Parameter Tumour region Time point AUC 95% Confidence Interval P 

α (unitless) Hot-spot  Pretreatment 0.711 0.535 – 0.886 0.042 

f (%) Hot-spot  Pretreatment 0.724 0.538 – 0.910 0.039 

f×Dp (×10-3 mm2/s) Hot-spot  Pretreatment 0.794 0.637 – 0.951 0.007 

α (unitless) Hot-spot  Cycle 1 0.752 0.571 – 0.932 0.015 

f (%) Hot-spot  Cycle 1 0.722 0.538 – 0.906 0.032 

DDC (×10-3 mm2/s)  Cold-spot Cycle 1 0.752 0.585 – 0.918 0.015 

α (unitless) Cold-spot Cycle 1 0.744 0.572 – 0.916 0.018 

Dt (×10-3 mm2/s) Cold-spot Cycle 1 0.786 0.627 – 0.944 0.006 

f (%) Cold-spot Cycle 1 0.711 0.531 – 0.890 0.041 

AUC: Area under the receiver operating characteristic curve. DDC: distributed diffusion coefficient. α: 
diffusion heterogeneity index. Dt: tissue diffusion. f: perfusion fraction. f×Dp: microvascular blood flow. 
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Table 5.6 Comparisons of the relative change in DWI parameter values for the 
pR and pNR groups in tumour cold-spot ROI. 

 

 

Cycle 1 - Pretreatment 

Parameter N pR N pNR P 

ADC  14 20.97 (14.69, 36.87) 19 5.61 (-3.64, 28.57) 0.065 

DDC  14 31.86 (16.37, 41.89) 19 10.41 (-7.29, 16.36) 0.009 

α  14 2.15 (-3.14, 12.69) 19 -5.82 (-21.14, 6.91) 0.077 

Dt  14 23.88 (7.6, 32.98) 19 -8.03 (-17.1, 4.4) 0.003 

Dp (*) 12 -4.11 (-50.26, 22.86) 14 7.18 (-59.06, 72.74) 0.56 

f (*) 12 -12.23 (-44.63, 21.35) 14 30.92 (-7.51, 102.24) 0.095 

f×Dp (*) 
12 -3.48 (-65.64, 49.58) 14 15.15 (-45.46, 

166.43) 
0.274 

Cycle 3 - Pretreatment 

ADC  7 35.74 (32.44, 46.51) 18 17.75 (0.32, 39.6) 0.27 

DDC  7 48.05 (37.82, 49.36) 18 14.15 (-7, 40.05) 0.14 

α  7 -4.53 (-7.01, -0.25) 18 -10.7 (-28.81, -0.32) 0.24 

Dt  7 20.74 (17.21, 34.65) 18 4.44 (-14.08, 36.99) 0.11 

Dp (*) 6 1.71 (-74.45, 30.49) 13 -11.92 (-17.92, 77.75) 0.46 

f (*) 6 58.22 (-18.98, 177.78) 13 51.95 (-22.65, 92.57) 0.76 

f×Dp (*) 6 28.98 (-46.55, 212.36) 13 36.78 (-36.94, 263.9) 0.52 

Data are represented by medians (interquartile ranges). P-value calculated using 
independent samples for the Mann-Whitney U test. ADC: apparent diffusion coefficient. 
DDC: distributed diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue 
diffusion. Dp: pseudo-diffusion coefficient. f: perfusion fraction. f×Dp: microvascular 
blood flow. pR: pathological responders. pNR: pathological non-responders. (*) 
Number of the IVIM parameter Dp and f estimates is different due to the exclusion of 
the estimates that reached one of their limiting values.  

∆ parameter (%)= [(Value after one/three cycles) - (Value at pretreatment)]/(Value at pretreatment) × 100 
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Table 5.7 Comparisons of the relative change in DWI parameter values for the 
pR and pNR groups in tumour cold-spot ROI. 

 

In the hot-spot regions, no statistically significant relationship existed between the 

pathological response and relative changes in all parameter values after one and 

three NACT cycles (after one cycle: p = 0.37 to 0.87 and after three cycles: p = 

0.20 to 0.97; Tables 5.8 and 5.9). 

 

Cycle 3 – Cycle 1 

Parameter N pR N pNR P 

ADC  7 10.01 (7.08, 22.45) 18 6.77 (-1.28, 29.91) 0.65 

DDC  7 6.19 (4.33, 22.38) 18 14.35 (-21.21, 34.53) 0.74 

α  7 -7.98 (-13.17, -3.3) 18 -7.84 (-18.95, 11.24) 0.79 

Dt  7 6.85 (-3.72, 9.24) 18 16.81 (2.05, 32.17) 0.14 

Dp  7 -5.35 (-16.61, 38.67) 18 13.28 (-39.29, 167.74) 0.92 

f  7 107.36 (47.12, 132.15) 18 3.44 (-26.57, 74.36) 0.02 

f×Dp  7 96.26 (59.89, 160.98) 18 84.31 (-52.97, 261.38) 0.74 

Data are represented by medians (interquartile ranges). P-value calculated using 
independent samples for the Mann-Whitney U test. ADC: apparent diffusion coefficient. 
DDC: distributed diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue 
diffusion. Dp: pseudo-diffusion coefficient. f: perfusion fraction. f×Dp: microvascular 
blood flow. pR: pathological responders. pNR: pathological non-responders. 

∆ parameter (%)= [(Value after three cycles) - (Value after one cycle)]/(Value  after one cycle) × 100 
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Table 5.8 Comparisons of the relative change in DWI parameter values for the 
pR and pNR groups in tumour hot-spot ROI. 

 

 

 

Cycle 1 - Pretreatment 

Parameter N pR N pNR P 

ADC  13 11.09 (8.2, 17.71) 18 5.1 (-5.55, 19.65) 0.37 

DDC  13 11.64 (7.42, 18.45) 18 6.72 (-4.67, 23.77) 0.51 

α  13 0.1 (-5.16, 3.46) 18 0.37 (-10.78, 10.79) 0.56 

Dt  13 12.08 (3.47, 15.14) 18 3.58 (-6.74, 17.22) 0.37 

Dp (*) 12 -1.95 (-15.37, 17.53) 17 -7.74 (-48.08, 20.42) 0.52 

f (*) 12 0.32 (-12.15, 25.69) 17 4.42 (-13.44, 22.2) 0.71 

f×Dp (*) 12 13.29 (-30.35, 38.88) 17 -15.22 (-32.37, 73.33) 0.87 

Cycle 3 - Pretreatment 

ADC  6 23.38 (5.12, 46.6) 16 7.4 (-0.11, 18.41) 0.17 

DDC  6 26.1 (3.58, 47.79) 16 7.25 (-2.52, 19.74) 0.20 

α  6 -4.21 (-5.27, 1.73) 16 -7.51 (-14.03, 3.42) 0.44 

Dt  6 13.24 (0.27, 24.19) 16 4.71 (-11.69, 13.71) 0.23 

Dp (*) 6 1.41 (-25.43, 31.54) 15 7.33 (-37.27, 15.73) 0.85 

f (*) 6 41.14 (13.21, 52.59) 15 41.86 (5, 91.29) 0.91 

f×Dp (*) 6 40.92 (11.32, 144.94) 15 23.09 (-16.05, 121.4) 0.51 

Data are represented by medians (interquartile ranges). P-value calculated using 
independent samples for the Mann-Whitney U test. ADC: apparent diffusion coefficient. 
DDC: distributed diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue 
diffusion. Dp: pseudo-diffusion coefficient. f: perfusion fraction. f×Dp: microvascular 
blood flow. pR: pathological responders. pNR: pathological non-responders. (*) 
Number of the IVIM parameter Dp and f estimates is different due to the exclusion of 
the estimates that reached one of their limiting values. 

∆ parameter (%)= [(Value after one/three cycles) - (Value at pretreatment)]/(Value at pretreatment) × 100 
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Table 5.9 Comparisons of the relative change in DWI parameter values for the 
pR and pNR groups in tumour hot-spot ROI. 

 

Table 5.10 presents the AUCs of the ROC curves for the relative changes in the 

parameters that differentiated between the response groups. The changes in DDC 

and Dt (after one NACT cycle relative to pretreatment) and f (after three NACT 

cycles relative to one cycle) demonstrated reasonable performance in predicting 

treatment response (AUC = 0.767; p = 0.01 for DDC, AUC = 0.797; p = 0.004 for 

Dt, and AUC = 0.802; p = 0.02 for f). 

 Table 5.10 The diagnostic performance for the relative change in 
monoexponential, SEM and IVIM parameters that differentiated between pR 
and pNR groups. 

  

Cycle 3 – Cycle 1 

Parameter N pR N pNR P 

ADC  7 10.01 (-2.74, 21.06) 17 4.64 (-7.16, 19.82) 0.85 

DDC  7 6.19 (-3.36, 21.14) 17 1.94 (-10.26, 20.27) 0.75 

α  7 -3.45 (-10.61, -0.29) 17 -1.62 (-7.65, 7.66) 0.61 

Dt  7 2.64 (-5.56, 8.64) 17 -3.48 (-4.3, 14.13) 0.85 

Dp (*) 7 -6.88 (-14.84, 34.29) 16 1.62 (-16.92, 26.42) 0.72 

f (*) 7 25.25 (14.84, 51.76) 16 44.61 (-5.08, 98.33) 0.97 

f×Dp (*) 7 33.96 (2.46, 128.8) 16 41 (-0.23, 94.65) 0.76 

Data are represented by medians (interquartile ranges). P-value calculated using 
independent samples for the Mann-Whitney U test. ADC: apparent diffusion coefficient. 
DDC: distributed diffusion coefficient. α: diffusion heterogeneity index. Dt: tissue 
diffusion. Dp: pseudo-diffusion coefficient. f: perfusion fraction. f×Dp: microvascular 
blood flow. pR: pathological responders. pNR: pathological non-responders. 

∆ parameter (%)= [(Value after three cycles) - (Value after one cycle)]/(Value  after one cycle) × 100 

Parameter Tumour 
region 

Time point AUC 95% Confidence 
Interval 

P 

DDC  Cold-spot  Cycle 1 - Pretreatment 0.767 0.600 – 0.934 0.010 

Dt Cold-spot  Cycle 1 - Pretreatment 0.797 0.639 – 0.955 0.004 

f Cold-spot  Cycle 3 – Cycle 1 0.802 0.617 – 0.986 0.021 

AUC: Area under the receiver operating characteristic curve. DDC: distributed diffusion 
coefficient. α: diffusion heterogeneity index. Dt: tissue diffusion. f: perfusion fraction. f×Dp: 
microvascular blood flow. 
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5.4 Discussion 

None of the pretreatment diffusion coefficients—ADC, DDC and Dt—from cold-spot 

and hot-spot regions were predictive of the response to NACT. This finding aligns 

with observations from the whole-tumour ROI in the same cohort (Chapter 4) and 

with those reported from a meta-analysis study on ADC (172). However, in cold-

spot regions after one NACT cycle, the percentage change in DDC and Dt between 

the response groups significantly differed, and DDC and Dt were significantly 

higher in the pR group (pR = 31.86% and pNR = 10.41%; p = 0.009 for DDC; pR = 

23.88% and pNR = -8.03%; p = 0.003 for Dt), demonstrating the ability to 

differentiate the two groups and predict the response with reasonable performance 

(AUC = 0.767; p = 0.01 for DDC, AUC = 0.797; p = 0.004 for Dt). This increased 

and higher DDC and Dt values in pR tumours after one NACT cycle may reflect the 

reduction of cellularity in the tumour cold-spot region as a response to treatment. 

The cytotoxic effects of NACT lead to tumour cell lysis, where cells begin to die, 

breaking down cell walls (182). This process in turn results in a reduction in cellular 

density, implying that water molecules in the cold-spot region of the tumour can 

move with less restriction, translating into increased DDC and Dt values (10). In 

contrast, the absence of a significant difference in the cold-spot ADC between pR 

and pNR groups could be attributed to the diffusion and perfusion oppositely 

influencing the ADC value, where increased diffusion with decreased perfusion in 

response to treatment may cause an underestimation of the diffusion reduction by 

ADC. This attribution may be supported by the significantly higher Dt and lower f 

observed in the pR tumour cold-spot regions compared to those in pNR tumour 

after one NACT cycle. 

Similar to the results found using the whole-tumour ROI (Chapter 4), f and f×Dp 

values derived from cold-spot and hot-spot regions were higher in the pNR group 

than in the pR group at almost all time points. However, pretreatment f and f×Dp 

values from the hot-spot region, and the f value after one cycle from hot-spot and 

cold-spot regions were significantly higher in the pNR group (pretreatment hot-

spot: pR = 8.78% and pNR = 11.44%; p = 0.03 for f; pR = 0.56×10⁻³ mm²/s and 

pNR = 0.98×10⁻³ mm²/s; p = 0.006 for f×Dp; after one cycle: pR = 9.12% and pNR 

= 11.84%; p = 0.03 for f in hot-spot; pR = 7.91% and pNR = 9.85%; p = 0.04 for f in 

cold-spot), differentiating between the response groups and predicting the 

response with reasonable performance (pretreatment hot-spot: AUC = 0.724; p = 

0.03 for f, AUC = 0.794; p = 0.007 for f×Dp; after one cycle: AUC = 0.722; p = 0.03 

for f in hot-spot, AUC = 0.711; p = 0.04 for f in cold-spot). It has been suggested 
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that f represents the reflects the fractional volume of capillary blood in a voxel, and 

f×Dp indicates the microvascular blood flow (20). Furthermore, a previous study 

found that f is positively correlated with the histological microvessel density, a 

surrogate marker of tumour angiogenesis (176). As such, greater f and f×Dp values 

in the pNR group might be linked to the higher blood flow and volume in pNR 

tumours. Given that the measurements of f and f×Dp pretreatment and f after one 

cycle from hot-spot ROIs are predictive of the response, and that these ROIs were 

identified based on DCE images, an interesting question arises: Could IVIM 

potentially serve as a contrast-agent-free alternative to DCE-MRI to acquire 

comparable information on breast tumour perfusion? A few studies have been 

conducted; Chapter 6 comprehensively investigates this question (27-29). 

Consistent with the findings from the same cohort using the whole-tumour ROI 

(Chapter 4), and those reported in a previous study using large single-section 

tumour ROI (19), the pR group in the present study exhibited higher α values than 

the pNR group in cold-spot and hot-spot regions at all time points. Unlike the 

whole-tumour ROIs (Chapter 4), α values from the hot-spot region pretreatment 

and both hot-spot and cold-spot regions after one cycle were able to distinguish 

between the two groups (pretreatment hot-spot: pR = 0.87 and pNR = 0.82; p = 

0.04 ; after one cycle: pR = 0.9 and pNR = 0.84; p = 0.01 in hot-spot; pR = 0.89 

and pNR = 0.77; p = 0.01 in cold-spot), and predict the response with reasonable 

performance (pretreatment hot-spot: AUC = 0.711; p = 0.04; after one cycle: AUC 

= 0.752; p = 0.01 in hot-spot, AUC = 0.744; p = 0.01 in cold-spot). Although the 

biological interpretation of the heterogeneity index α still requires investigation, it 

has been suggested to reflect the complexity of the tissue microstructure in 

imaging voxels to a certain extent (15). High α values in the hot- and cold-spots of 

pR tumours could therefore indicate a more homogeneous microenvironment, 

whereas low α values in pNR tumours may suggest a high degree of heterogeneity 

in the microenvironment.  

Although some parameters derived from cold-spot and hot-spot regions were 

predictive of the response, their AUCs, corresponding 95% confidence intervals 

and statistical significance are less powerful than those derived from whole-tumour 

ROIs. The range of values for the promising parameters derived from these small 

focused regions across patients exhibits more variability than those from whole-

tumour ROIs. This is demonstrated by the IQR of α (cold- and hot-spots), Dt and f 

(cold-spot), and f×Dp (cold- and hot-spots), as presented in Tables 5.1 and 5.2 

versus Table 4.2 in Chapter 4. Thus, based on the present results, analysing DWI 
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images using cold-spot and hot-spot ROIs appears to be less robust for evaluating 

tumour response and more variable than employing whole-tumour ROIs, 

particularly as very few tumours at pretreatment were below the 5x5 pixel size 

threshold, and the number increased during NACT as some tumours responded 

and reduced below this threshold size. 

5.4.1 Limitations 

Although this is the first study (to the best of the candidate’s knowledge) 

investigating the value of characterising the tumour subregion (lowest ADC) in 

assessing the early breast cancer response to NACT, it has some limitations. The 

study was performed at a single centre using a single scanner (1.5 T MRI; Aera; 

Siemens) with a limited sample size, restricting its interpretation and hindering the 

evaluation of the predictive performance of the DWI models according to breast 

tumour subtypes. A future multicentre study with various scanners and a larger 

cohort of patients with diverse breast tumour subtypes is recommended to validate 

the predictive performance of DWI models on tumour cold-spot and hot-spot 

regions. Moreover, the DCE images were rigidly aligned to the DWI images, which 

may not have been sufficient to correct DWI distortions. Thus, the spatial co-

registration accuracy could have been affected, potentially influencing the results 

reported.  

5.5 Conclusions 

This preliminary study demonstrated that analysing diffusion data from breast 

tumour diffusion cold-spot and perfusion hot-spot regions using SEM and IVIM 

models predicts the NACT response better than the monoexponential model. The 

IVIM parameters f and f×Dp and the SEM parameter α derived from hot-spot 

regions at pretreatment exhibited reasonable performance in predicting the 

response (AUC = 0.724, 0.794, 0.711; p = 0.03, 0.007, and 0.04, respectively). 

After one cycle of NACT, f and α continued having reasonable predictive 

performance when analysed from tumour cold-spot and hot-spot regions, with 

higher α and lower f and f×Dp values indicating a favourable response (in hot-spot: 

AUC = 0.722; p = 0.03 for f, AUC = 0.752; p = 0.01 for α; and in cold-spot: AUC = 

0.711; p = 0.04 for f, AUC = 0.744; p = 0.01 for α). The promising results of the 

perfusion-related parameters f and f×Dp from hot-spot ROIs support that further 

investigation into whether IVIM could offer a contrast-agent-free alternative to the 

DCE-MRI method to measure breast tumour perfusion. Moreover, only the 



119 
 

 
 

diffusion coefficients (DDC and Dt) from cold-spot regions after one NACT cycle 

were reasonably predictive of the pathological response, with higher DDC and Dt 

values correlating with a favourable response (AUC = 0.767; p = 0.01 for DDC, 

AUC = 0.797; p = 0.004 for Dt). However, the results indicate that sampling 

diffusion data from small tumour subregions (cold-spot/hot-spot) introduces more 

variability in parameter estimates and diminishes the predictive performance 

compared to the whole-tumour ROI approach. Thus, the entire tumour should be 

characterised when evaluating NACT response. 
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Chapter 6 The relationship between parameters measured using 

IVIM and DCE-MRI in patients with breast cancer undergoing 

NACT: a longitudinal cohort study 

6.1 Introduction 

Patients with breast cancer undergoing NACT often undergo repeated DCE-MRI 

scans for treatment monitoring via morphological assessment (3). Quantitative 

estimation of perfusion-related parameters of breast tumours, including tumour 

blood flow (Fb), blood volume fraction (vb), along with haemodynamic and 

cellularity-related parameters: capillary permeability–surface area product (PS); 

interstitial volume fraction (ve), and extracellular volume fraction (vd; calculated 

from the combination of vp and ve) can be achieved by employing a recently 

developed DCE-MRI technique (7). However, certain safety concerns exist 

regarding gadolinium administration, particularly in patients with cancer who 

undergo repeated contrast-enhanced scans (9). Therefore, alternative imaging 

techniques that can provide equivalent perfusion and cellularity-related 

measurements without administering a contrast agent are of interest.   

The ADC, obtained via DWI, measures the diffusivity of water molecules in the 

tissue and is assumed to serve as an indicator of cellular density. As such, as 

tumour cellularity decreases in response to treatment, the ADC value increases 

(10). The ADC is therefore expected to be related to the DCE-MRI cellularity-

related measures (ve and vd). However, few studies have examined this 

relationship (153), and one study in breast tumours has challenged this expectation 

by assessing it at a single visit, suggesting that ADC is incompletely understood 

(30). 

In contrast, IVIM perfusion-related (f and f×Dp) parameters have shown promising 

roles in differentiating benign and malignant breast tumours and evaluating breast 

tumour response to NACT over the past decade, as described in section 2.8.2.2.1 

of Chapter 2 and also found in Chapters 4 and 5. This in turn has reopened the 

question of whether IVIM could be used as a contrast-agent-free alternative to 

DCE-MRI for measuring breast tumour perfusion. Few studies have investigated 

the correlations between IVIM and DCE-MRI perfusion-related parameters in 

breast tumours and have produced contradictory results (summarised in Table 2.5, 
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Chapter 2). These studies examined correlations at a single visit; however, a 

correlation between perfusion parameter changes caused by treatment is also 

meaningful and suggests that IVIM could be a contrast-agent-free surrogate to the 

DCE-MRI method in monitoring serial changes in tumour perfusion. Further, none 

of these studies provided an absolute estimation of tumour blood flow; they did not 

perform a direct comparison with the IVIM parameter purported to measure 

microvascular blood flow (f×Dp). 

The first aim of this study was to investigate whether IVIM and DCE-MRI perfusion-

related parameters correlate and whether IVIM can offer a contrast-agent-free 

alternative to DCE-MRI for monitoring serial changes in tumour perfusion. The 

DCE-MRI data were analysed to estimate absolute Fb, vb, PS, ve, and vd (7). This 

study assesses both between-subject and within-subject repeated measures 

correlations between the perfusion parameters estimated by IVIM and DCE-MRI 

(specifically f versus vb and f×Dp versus Fb) in the same cohort of patients who 

underwent NACT in Chapter 4. Analysing both correlations is valuable; between-

subject correlation reveals the potential for estimating DCE-MRI perfusion 

parameters using IVIM at a given time, whereas within-subject repeated measures 

correlations indicate the potential for estimating change in DCE-MRI perfusion 

parameters using IVIM when assessing longitudinal changes in the same patient. 

The second aim of this study was to examine the correlation between DWI tissue 

diffusion measures (Dt and ADC) and DCE-MRI measurements of the tissue's 

interstitial and extracellular volume fractions (ve and vd). This would improve the 

understanding of tissue diffusion measures and their changes in response to 

treatment further, which are of interest for translation into breast cancer imaging as 

markers of treatment response (25). 

6.2 Materials and methods 

6.2.1 Patient population 

The cohort of patients included, the recruitment eligibility criteria used, and the 

NACT regimen plan delivered are the same as detailed in Chapter 4, section 4.2.1. 

6.2.2 Image acquisition 

The MRI time points, and scanning protocol are the same as specified in Chapters 

4 and 5 (sections 4.2.2 and 5.2.2); however, this section introduces information on 

the inversion recovery (IR) sequence. 
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In conjunction with the 16-channel breast coil employed, a flexible array coil, 

placed on the patient’s back, was employed to increase the signal from the 

descending aorta (183). A 3D non-selective IR-prepared FLASH sequence (TR / 

TE: 2.8/0.93 ms, FA: 8°, FOV: 340×340×180 mm, matrix size: 128×128×36, slice 

thickness: 5 mm, parallel imaging factor: 2, IR-TR: 3000 ms, overall scan time: 4 

min 20 s), was performed before the interleaved HTR and HSR DCE sequences, at 

four inversion times (100, 600, 1200 and 2800 ms) to estimate T1. Both breasts, 

the aortic arch and part of the descending aorta were included in the field of view 

(183). A second IR T1 estimate (bookend) was performed (184) after all eight HSR 

(and 88 HTR) dynamic images were acquired. Then, the last five HTR images 

were obtained. The acquired HTR and HSR images have the same geometry as 

the IR sequence. 

6.2.3 Image analysis 

The MRI data were processed with the same in-house program developed in 

MATLAB (MathWorks, USA), employed in the work described in Chapter 4 work 

(section 4.2.3). Building on section 5.2.3, the rigid alignment of HTR, HSR to match 

DWI (with ADC maps) images also integrated IR images. The inclusion of IR 

images is highlighted here due to their relevance to the DCE data analysis. 

The generated three ROIs for each patient (whole-tumour ROI (section 4.2.3), 

diffusion cold-spot and perfusion hot-spot ROIs (section 5.2.3)) were propagated to 

the corresponding IR and HTR images. Another key rationale for including the 

small focused ROIs (cold-spot and hot-spot regions) in the image analysis 

undertaken in this thesis was to reduce the possibility of tumour heterogeneity 

compromising subsequent correlation analysis. Then the author extracted the 

mean SI versus time data from the three ROIs on both IR and HTR images and 

provided to D.L.B. (DCE-MRI analysis expert and supervisor), who carried out the 

subsequent DCE-MRI quantitative analysis and parameter estimates using another 

in-house MATLAB program developed by a researcher at the Division of 

Biomedical Imaging at the University of Leeds. 

The T1 relaxation times per ROI were estimated from both sets of IR images, 

according to Kershaw et al. (109) and Brix et al. (185). The detailed equations were 

derived and are provided in Appendix 1 of Kershaw's PhD thesis (186). A further 

ROI was drawn in the descending aorta to generate SI-time curves and estimate 

T1 before and after Gd-DOTA injection for measurement of the arterial input 

function (183). The SI-time data were converted to Gd-DOTA concentration-time 

using a bookend T1 correction (i.e., a combination of T1 estimate before and after 

Gd-DOTA injection) with an iterative scheme (183, 184). A two–compartment 
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exchange model was fitted to the DCE-MRI data, and Fb, vb, PS and ve were 

estimated (187). Then, the extracellular volume fraction (vd: the sum of interstitial 

and blood plasma volume fractions) was calculated. For each ROI, a tissue uptake 

model (described by parameters Fb, vb, and PS) and a one–compartment model 

(described by parameters Fb, and vd) were also fitted to the DCE-MRI data (187). 

The final model to use in the correlation analysis was selected based on the 

corrected Akaike information criterion test (cAIC) to evaluate which model best fits 

the data (188, 189), (Figure 6.1). 
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Figure 6.1 The flow chart illustrates the analysis steps followed for extracting quantitative DCE-MRI parameters, 
building upon the generation of ROIs performed in Chapter 5 and demonstrated in Figure 5.2. 
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For DWI analysis, the parameter values for IVIM (Dt, Dp, f, and f×Dp) and 

monoexponential (ADC) diffusion models for each ROI were those estimated in 

Chapters 4 and 5, conducted blinded to the DCE-MRI parameter values. 

6.2.4 Statistical analysis 

Due to the non-normal data distribution, the DCE-MRI data were summarised 

using the median (IQR). Friedman’s test with Bonferroni correction (Bonferroni post 

hoc test) was performed for each parameter from the baseline MRI (i.e., 

pretreatment) to determine whether parameter differences existed between the 

three ROIs (whole-tumour, cold-spot, and hot-spot). To determine the between-

subject correlation between IVIM parameters and ADC with the DCE-MRI 

parameters for each ROI, the mean value of each parameter for each patient was 

calculated by dividing the sum of parameter values from all MRI visits by the 

number of times the parameter was estimated; then, the parameter value for each 

visit where the parameter was estimated was replaced by its subject mean. The 

weighted correlation coefficient, r, was calculated between the mean DWI and 

DCE-MRI parameters for each ROI using the Spearman’s rank correlation test 

(190) (r<0.2, very weak; 0.2≤r<0.4, weak; 0.4≤r<0.7, moderate; 0.7≤r<0.9, strong; 

r≥0.9, very strong correlation) (171). This statistical method was followed to exploit 

the properties of data with multiple measures while addressing the issue of non-

independence among observations and the impact of NACT (190). Statistical 

analyses were performed using SPSS software for Windows (v.25.0, Chicago, IL). 

All tests were two-sided, and a p-value of less than 0.05 was considered 

statistically significant.  

To determine the correlation between changes in the IVIM parameters and ADC 

with the DCE-MRI parameters induced by treatment, the repeated measures 

correlation test (rmcorr) was utilized via the rmcorr-shiny app (191, 192). The 

rmcorr-shiny app computes a repeated measures correlation coefficient (rrm) that 

considers the dependence between repeated measurements. This analysis 

involves determining the correlation between two parameters while accounting for 

between-subject variation. The rmcorr-shiny app fits separate parallel lines to each 

patient’s data utilizing a shared slope but permitting the intercept to differ per 

patient. The orientation of these parallel lines represents the correlation's sign 

(positive or negative), while the slope denotes the correlation's magnitude.  

The results of repeated measures correlation for each region were summarised in 

tables as: rrm, degrees of freedom, 95% confidence interval, and a p-value. The 
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95% confidence interval for each rrm were determined using bootstrapping with 

1000 resamples. The degrees of freedom (df) were computed based on the 

formula df = N(k-1) – 1, where N is the total number of patients and k is the 

(average) number of repeated measures per patient (191). The rmcorr test was 

initially conducted to identify statistically significant results (P-value < 0.05), then 

bootstrapped 95% confidence intervals were calculated. A correlation result was 

considered meaningful and significant only if the correlation coefficient was ≥ 0.4, 

the P-value was less than 0.05, and the bootstrapped 95% confidence intervals 

excluded zero. Since this is a preliminary exploration study focusing on hypothesis 

generation, P-values for the correlation tests were reported as raw values and 

were not corrected for multiple comparisons. An upper estimate of the repeatability 

of the DCE-MRI parameters was calculated from the same subset of baseline and 

cycle 1 studies selected for the repeatability analysis of DWI model parameters 

performed in Chapter 4 (section 4.2.5). 

6.3 Results 

As described in section 4.3.1, MRI scans of 40 patients at baseline, 37 after one 

NACT cycle, and 35 after three NACT cycles were collected for analysis, resulting 

in a total of 112 MRI studies with DWI and DCE-MRI acquisitions. Following the 

exclusion of DCE-MRI scans (detailed in section 5.3.1), 108 studies with paired 

DWI and DCE-MRI data acquisitions remained (Figure 6.2). Based on the cAIC 

results, 75 DCE-MRI data sets were analysed using the two–compartment 

exchange model, 20 using the tissue uptake model, and 13 using the one–

compartment model. 

Paired small focused ROIs (cold-spot and hot-spot regions) were generated from 

91 of the 108 studies, as illustrated in section 5.3.1: 34 at baseline, 33 after one 

NACT cycle, and 24 after three NACT cycles. DCE data sets were fitted using the 

two-compartment exchange/tissue-uptake/one-compartment models for 68/13/10 

cold-spot regions and for 72/9/10 hot-spot regions. 

For the IVIM analysis, as indicated in sections 4.3.2 and 5.3.2, there were a 

number of cases in which parameter estimates Dp and f reached one of their 

constrained values and were excluded from the statistical analyses: 2 cases from 

the whole-tumour ROI, 8 from the cold-spot and 4 from the hot-spot ROIs. 
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Figure 6.2 The flow chart summarises the final number of MRI studies with 
paired DWI and DCE-MRI data acquisitions, detailing the number of 
generated ROIs (whole-tumour, cold-spot, and hot-spot), the models selected 
for DCE-MRI data analysis based on cAIC results, and the number of cases 
with excluded Dp and f estimates. 

 

6.3.1 Estimated DWI and DCE-MRI parameters from the three regions at 

baseline  

There were significant differences between the parameter values estimated in 

whole-tumour, diffusion cold-spot, and perfusion hot-spot regions for all DWI and 

DCE-MRI parameters (p<0.001 to 0.04), with the exception of Dp and vd (p = 0.88 

and 0.2, respectively). Of particular interest, ADC and Dt values estimated from 

cold-spot ROIs were significantly lower than those from whole-tumour and hot-spot 

ROIs [(median: 0.73, 0.98, and 0.93 x 10-3 mm2/s for ADC; p< 0.001; and 0.64, 

0.80, and 0.81 x 10-3 mm2/s for Dt; p< 0.001, respectively)], while Fb values from 

cold-spot and hot-spot ROIs were significantly higher than those from whole-

tumour ROIs [(median: 0.36, 0.38, and 0.29 for Fb (ml/min/ml tissue); p< 0.001, 

respectively)]. Detailed results, including pairwise comparisons (Bonferroni-

corrected), are presented in Table 6.1. 
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Table 6.1 Comparison of DCE-MR and DWI parameter values at baseline for the whole-tumour, cold-spot, and hot-
spot regions. 

Parameter 
 

N Whole-tumour ROI (a) Cold-spot ROI (b) Hot-spot ROI (c) P Post hoc** 

ADC (10-3 mm2/s) 34 0.98(0.88, 1.20) 0.73(0.65, 0.88) 0.93(0.86, 1.10) <0.001 b<a, b<c 

Dt (10-3 mm2/s) 34 0.80(0.72, 0.92) 0.64(0.59, 0.74) 0.81(0.72, 0.93) <0.001 b<a, b<c 

Dp (10-3 mm2/s) 25 7.13(6.47, 7.33) 6.94(5.53, 10.18) 7.29(5.69, 8.67) 0.88 - 

f (no units) 25 0.12 (0.11, 0.14) 0.09 (0.06, 0.12) 0.10(0.08, 0.12) <0.001 b<a, c<a 

f×Dp (10-3 mm2/s) 25 0.90(0.68, 1.01) 0.62(0.43, 0.98) 0.71(0.49, 1.00) 0.006 b<a, c<a 

Tumour T1 (ms) 34 1264 (1230, 1322) 1252 (1201, 1298) 1303 (1256, 1349) <0.001 b<c 

Fb (ml/min/ml tissue) 34 0.29(0.22, 0.55) 0.36(0.28, 0.74) 0.38(0.27, 0.62) <0.001 a<b, a<c 

PS (ml/min/ml tissue) 30 0.05(0.04, 0.08) 0.06(0.04, 0.13) 0.09(0.05, 0.17) <0.001 a<c, b<c 

vb (no units) 30 0.29(0.22, 0.47) 0.33(0.23, 0.49) 0.3(0.22, 0.44) 0.048 a<b 

ve (no units) 24 0.19(0.16, 0.25) 0.17(0.12, 0.22) 0.19(0.13, 0.23) 0.03 b<a 

vd (no units) 27 0.38(0.35, 0.45) 0.39(0.32, 0.44) 0.36(0.29, 0.46) 0.2 - 

Data represented by medians (interquartile ranges). P value for a difference between ROIs was found using Friedman’s non-
parametric test. (The N number differs for the DCE-MRI parameters due to the models used for analysing the DCE-MRI data, 
Number of patients= 24-34) Pairwise comparisons** (Bonferroni-corrected) significance at the 0.05 level.  ADC: apparent 
diffusion coefficient. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfused fraction. f×Dp: microvascular blood flow. Fb: 
blood flow. PS: capillary permeability–surface area product. vb: blood volume fraction. ve: interstitial volume fraction. vd: 
extracellular volume fraction. 
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6.3.2 Correlation between averaged DWI and DCE-MRI parameters from 

three MRI visits (between-subject correlation) 

No statistically significant correlations were discovered between the IVIM and 

DCE-MRI perfusion-related parameters (f with vb and f×Dp with Fb) in the three 

tumour regions (p = 0.146–0.379; Tables 6.2-6.4). However, for whole-tumour 

regions, ADC exhibited a statistically significant, moderate positive correlation with 

tumour T1 and ve (r = 0.603, p<0.001; and r = 0.461, p = 0.004, respectively; Figure 

6.3, Table 6.2). Similarly, Dt demonstrated a statistically significant, moderate 

positive correlation with tumour T1 and ve (r = 0.631, p<0.001; and r = 0.405, p = 

0.01, respectively; Figure 6.3, Table 6.2).  

Table 6.2 Correlation between averaged DWI and DCE-MRI parameters from 
three MRI visits (whole-tumour region). 

Parameter Tumour T1 Fb PS ve vb vd 

ADC  r 0.603** 0.026 0.305 0.461* -0.173 0.302 

P-value <0.001 0.873 0.056 0.004 0.286 0.058 

N 40 40 40 37 40 40 

Dt  r 0.631** 0.014 0.266 0.405* -0.135 0.302 

P-value <0.001 0.932 0.097 0.013 0.406 0.058 

N 40 40 40 37 40 40 

Dp  r -0.251 0.172 -0.051 -0.360 -0.006 -0.213 

P-value 0.118 0.289 0.755 0.029 0.971 0.187 

N 40 40 40 37 40 40 

f  r 0.187 0.121 0.186 0.093 -0.144 0.079 

P-value 0.248 0.457 0.251 0.584 0.375 0.628 

N 40 40 40 37 40 40 

f×Dp  r -0.020 0.143 0.071 -0.126 -0.041 0.001 

P-value 0.903 0.379 0.663 0.457 0.802 0.995 

N 40 40 40 37 40 40 

r: correlation coefficient. N: sample size.  ADC: apparent diffusion coefficient. Dt: tissue diffusion. 
Dp: pseudo-diffusion coefficient. f: perfused fraction. f×Dp: microvascular blood flow. Fb: blood 
flow. PS: capillary permeability–surface area product. ve: interstitial volume fraction. vb: blood 
volume fraction. vd:  extracellular volume fraction.  

*  r ≥ 0.4 and P<0.05. 

** r ≥ 0.4 and P<0.001. 
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Figure 6.3 Scatter plots show moderate positive (A) between-subject and (B) within-subject repeated measures 
correlations between the diffusion coefficients (ADC and Dt) and the interstitial volume fraction (ve), as well as 
moderate positive (C) within-subject repeated measures correlation between the diffusion coefficients (ADC 
and Dt) and the extracellular volume fraction (vd). Each line in the scatter plots (B and C; repeated measures 
correlations) shows the fit for a single patient. 
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In the cold-spot regions, statistically significant, moderate positive correlations 

were found between tumour T1 and both measures of tissue diffusion ADC and Dt 

(r = 0.632, p<0.001; and r = 0.588, p<0.001, respectively). Dp demonstrated a 

statistically significant, moderate negative correlation with Fb (r = -0.400, p = 0.01; 

Figure 6.4, Table 6.3). In hot-spot regions, ADC and Dt displayed statistically 

significant, moderate positive correlations with tumour T1 (r = 0.520, p = 0.001; and 

r = 0.460, p = 0.005, respectively; Table 6.4).  

 

Table 6.3 Correlation between averaged DWI and DCE-MRI parameters from 
three MRI visits (cold-spot region). 

 

Parameter Tumour T1 Fb PS ve vb vd 

ADC  r 0.632** -0.030 -0.028 0.219 -0.18 0.156 

P-value <0.001 0.862 0.871 0.206 0.293 0.371 

N 36 36 36 35 36 35 

Dt  r 0.588** 0.020 0.100 0.283 -0.253 0.115 

P-value <0.001 0.908 0.562 0.099 0.137 0.511 

N 36 36 36 35 36 35 

Dp  r -0.139 -0.400* -0.126 -0.074 -0.062 -0.149 

P-value 0.426 0.017 0.471 0.682 0.723 0.4 

N 35 35 35 33 35 34 

f  r 0.231 -0.048 0.055 -0.045 -0.202 -0.031 

P-value 0.182 0.784 0.754 0.804 0.245 0.862 

N 35 35 35 33 35 34 

f×Dp  r 0.040 -0.247 0.037 -0.020 -0.158 -0.143 

P-value 0.82 0.153 0.833 0.912 0.365 0.42 

N 35 35 35 33 35 34 

r: correlation coefficient. N: sample size.  ADC: apparent diffusion coefficient. Dt: tissue diffusion. 
Dp: pseudo-diffusion coefficient. f: perfused fraction. f×Dp: microvascular blood flow. Fb: blood 
flow. PS: capillary permeability–surface area product. ve: interstitial volume fraction. vb: blood 
volume fraction. vd: extracellular volume fraction.  

* r ≥ 0.4 and P<0.05. 

** r ≥ 0.4 and P<0.001. 
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Figure 6.4 Scatter plots show a moderate negative between-subject 
correlation (A) between the pseudo-diffusion coefficient (Dp) and blood flow 
(Fb), as well as a moderate positive within-subject repeated measures 
correlation (B) between the diffusion coefficient (ADC) and the extracellular 
volume fraction (vd) in the cold-spot regions. 

 

 

 

 

 

 

 

 

 

 

 



133 
 

 
 

Table 6.4 Correlation between averaged DWI and DCE-MRI parameters from 
three MRI visits (hot-spot region). 

 

6.3.3 Repeated measures correlations between DWI and DCE-MRI 

parameters (within-subject correlation) 

Table 6.5 lists the repeated measures correlation results computed between the 

DWI and DCE-MRI parameters estimated from the whole-tumour ROIs. No 

statistically significant correlations were discovered between the IVIM and DCE-

MRI perfusion-related parameters of the study's primary interest (f versus vb and 

f×Dp versus Fb; p = 0.815 and 0.229, respectively). However, ADC and Dt 

displayed statistically significant, moderate positive correlations with ve (rrm = 0.597, 

p<0.001; and rrm = 0.514, p<0.001, respectively) and vd (rrm = 0.619, p<0.001; and 

rrm = 0.564, p<0.001, respectively; Figure 6.3). 

Parameter Tumour T1 Fb PS ve vb vd 

ADC  r 0.520* 0.145 0.126 0.137 -0.146 0.203 

P-value 0.001 0.399 0.471 0.433 0.403 0.235 

N 36 36 35 35 35 36 

Dt  r 0.460* 0.042 0.056 0.194 -0.098 0.277 

P-value 0.005 0.808 0.749 0.264 0.575 0.102 

N 36 36 35 35 35 36 

Dp  r -0.039 0.070 0.138 0.081 -0.123 -0.172 

P-value 0.824 0.689 0.436 0.649 0.488 0.323 

N 35 35 34 34 34 35 

f  r 0.343 0.329 0.368 0.103 -0.172 0.004 

P-value 0.044 0.054 0.032 0.562 0.331 0.982 

N 35 35 34 34 34 35 

f×Dp  r 0.179 0.251 0.258 0.158 -0.148 -0.053 

P-value 0.304 0.146 0.141 0.372 0.404 0.762 

N 35 35 34 34 34 35 

r: correlation coefficient. N: sample size.  ADC: apparent diffusion coefficient. Dt: tissue diffusion. 
Dp: pseudo-diffusion coefficient. f: perfused fraction. f×Dp: microvascular blood flow. Fb: blood 
flow. PS: capillary permeability–surface area product. ve: interstitial volume fraction. vb: blood 
volume fraction. vd: extracellular volume fraction.  

* r ≥ 0.4 and P<0.05. 
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Table 6.5 Repeated measures correlations between DWI and DCE-MRI 
parameters estimated from whole-tumour region. 

 

For cold-spot and hot-spot ROIs, no statistically significant correlations were 

observed between any DWI and DCE-MRI parameters, except for a moderate 

positive correlation between ADC and vd in the cold-spot regions (rrm = 0.501, 

p<0.001; Figure 6.4); repeated measures correlation results in the cold-spot and 

hot-spot regions are presented in Tables 6.6 and 6.7. The median DWI and DCE-

MRI parameter values estimated at the three MRI visits from the cold-spot and hot-

spot regions exhibited patterns similar to those of the whole-tumour regions but 

with much more variability (Figure 6.5 versus Figure 6.6). 

Parameter  Tumour T1 Fb PS ve vb vd 

ADC  rrm 0.035 -0.361 -0.138 0.597** 0.226 0.619** 

df 67 67 54 37 54 47 

P-value 0.775 0.002 0.309 <0.001 0.094 <0.001 

95% CI -0.18, 
0.253 

-0.605, 
0.01 

-0.452, 
0.253 

0.203, 
0.785 

-0.012, 
0.432 

0.383, 
0.82 

Dt  rrm 0.043 -0.32 -0.045 0.514** 0.165 0.564** 

df 67 67 54 37 54 47 

P-value 0.724 0.007 0.741 <0.001 0.224 <0.001 

95% CI -0.217, 
0.279 

-0.544, 
0.036 

-0.339, 
0.312 

0.103, 
0.716 

-0.052, 
0.373 

0.305, 
0.785 

Dp  rrm 0.125 0.336 0.157 -0.127 -0.208 0.078 

df 65 65 53 37 53 46 

P-value 0.313 0.005 0.253 0.442 0.127 0.597 

95% CI -0.08, 
0.268 

0.092, 
0.502 

-0.08, 
0.397 

-0.311, 
0.074 

-0.402, -
0.02 

-0.221, 
0.304 

f  
 

rrm 0.04 -0.182 -0.237 0.354 0.165 0.297 

df 65 65 53 37 53 46 

P-value 0.748 0.139 0.081 0.027 0.229 0.04 

95% CI -0.201, 
0.229 

-0.423, 
0.137 

-0.477, 
0.034 

0.017, 
0.583 

-0.19, 
0.418 

0.068, 
0.509 

f×Dp  rrm 0.055 0.029 -0.059 0.215 -0.035 0.252 

df 65 65 53 37 53 46 

P-value 0.661 0.815 0.668 0.188 0.799 0.084 

95% CI -0.178, 
0.228 

-0.169, 
0.265 

-0.222, 
0.123 

-0.066, 
0.444 

-0.261, 
0.187 

-0.023, 
0.445 

rrm: repeated measures correlation coefficient. df: degrees of freedom. CI: confidence interval. 
ADC: apparent diffusion coefficient. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfused 
fraction. f×Dp: microvascular blood flow. Fb: blood flow. PS: capillary permeability–surface area 
product. ve: interstitial volume fraction. vb: blood volume fraction. vd: extracellular volume fraction. 
* rrm ≥ 0.4, P<0.05, and bootstrapped 95% CIs excluded zero. 
** rrm ≥ 0.4, P<0.001 and bootstrapped 95% CIs excluded zero. 
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Table 6.6 Repeated measures correlations between DWI and DCE-MRI 
parameters estimated from cold-spot region. 

 

Parameter  Tumour T1 Fb PS ve vb vd 

ADC  rrm 0.103 -0.095 -0.026 0.126 0.263 0.501** 

df 54 54 44 32 44 42 

P-value 0.449 0.484 0.863 0.477 0.077 <0.001 

95% CI -0.279, 
0.389 

-0.349, 
0.113 

-0.335, 
0.293 

-0.161, 
0.499 

-0.035, 
0.478 

0.217, 
0.773 

Dt  rrm 0.03 0.029 0.043 0.113 0.092 0.266 

df 54 54 44 32 44 42 

P-value 0.826 0.829 0.778 0.525 0.545 0.081 

95% CI -0.361, 
0.284 

-0.189, 
0.264 

-0.21, 
0.309 

-0.234, 
0.61 

-0.188, 
0.303 

0.019, 0.6 

Dp  rrm 0.036 0.085 0.071 -0.047 0.029 -0.003 

df 47 47 37 26 37 35 

P-value 0.807 0.56 0.666 0.812 0.861 0.988 

95% CI -0.125, 
0.211 

-0.085, 
0.32 

-0.352, 
0.394 

-0.501, 
0.219 

-0.383, 
0.643 

-0.202, 
0.253 

f  
 

rrm -0.031 -0.034 -0.082 0.109 0.102 0.116 

df 47 47 37 26 37 35 

P-value 0.834 0.814 0.618 0.582 0.536 0.493 

95% CI -0.408, 
0.277 

-0.252, 
0.217 

-0.47, 
0.275 

-0.292, 
0.442 

-0.283, 
0.431 

-0.181, 
0.372 

f×Dp  rrm 0.068 0.076 0.078 -0.023 0.002 0.039 

df 47 47 37 26 37 35 

P-value 0.64 0.602 0.638 0.909 0.99 0.818 

95% CI -0.102, 
0.251 

-0.086, 
0.291 

-0.271, 
0.325 

-0.411, 
0.228 

-0.284, 
0.497 

-0.164, 
0.295 

rrm: repeated measures correlation coefficient. df: degrees of freedom. CI: confidence interval. 
ADC: apparent diffusion coefficient. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfused 
fraction. f×Dp: microvascular blood flow. Fb: blood flow. PS: capillary permeability–surface area 
product. ve: interstitial volume fraction. vb: blood volume fraction. vd: extracellular volume fraction. 
**rrm ≥ 0.4, P<0.001, and bootstrapped 95% CIs excluded zero. 
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Table 6.7 Repeated measures correlations between DWI and DCE-MRI 
parameters estimated from hot-spot region. 

 

 

Parameter 
 

Tumour T1 Fb PS ve vb vd 

ADC  rrm 0.247 -0.012 0.004 0.36 0.078 0.34 

df 54 54 45 36 45 45 

P-value 0.067 0.929 0.979 0.026 0.603 0.019 

95% CI -0.05, 
0.511 

-0.326, 
0.248 

-0.336, 
0.364 

-0.024, 
0.622 

-0.315, 
0.425 

0.153, 
0.524 

Dt  rrm 0.246 0.022 0.063 0.254 -0.078 0.287 

df 54 54 45 36 45 45 

P-value 0.067 0.87 0.672 0.123 0.604 0.051 

95% CI -0.012, 
0.499 

-0.279, 
0.271 

-0.191, 
0.282 

0.005, 
0.476 

-0.307, 
0.181 

0.09, 
0.548 

Dp  rrm 0.048 -0.028 -0.085 -0.257 0.087 0.013 

df 51 51 43 34 43 42 

P-value 0.733 0.84 0.579 0.13 0.569 0.932 

95% CI -0.25, 0.35 -0.34, 
0.234 

-0.44, 
0.125 

-0.736, -
0.001 

-0.4, 0.485 -0.565, 
0.388 

f  

 

rrm -0.127 -0.147 -0.178 0.04 0.268 0.013 

df 51 51 43 34 43 42 

P-value 0.364 0.292 0.242 0.816 0.076 0.932 

95% CI -0.388, 
0.21 

-0.461, 
0.221 

-0.526, 
0.269 

-0.567, 
0.53 

-0.208, 
0.655 

-0.279, 
0.308 

f×Dp  rrm -0.002 -0.066 -0.083 -0.094 0.148 0.109 

df 51 51 43 34 43 42 

P-value 0.99 0.637 0.586 0.587 0.331 0.481 

95% CI -0.352, 
0.362 

-0.438, 
0.279 

-0.329, 
0.127 

-0.566, 
0.094 

-0.255, 
0.424 

-0.435, 
0.441 

rrm: repeated measures correlation coefficient. df: degrees of freedom. CI: confidence interval. 
ADC: apparent diffusion coefficient. Dt: tissue diffusion. Dp: pseudo-diffusion coefficient. f: perfused 
fraction.  f×Dp: microvascular blood flow. Fb: blood flow. PS: capillary permeability–surface area 
product. ve: interstitial volume fraction. vb: blood volume fraction. vd: extracellular volume fraction. 
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Figure 6.5 Evolution of DWI (ADC, Dt, Dp, f, and f×Dp) and DCE-MRI (Fb, vb, PS, ve, and vd) parameters across 
the three MRI visits (baseline, and after one and three cycles of NACT). Box plots illustrate the median and 
interquartile range values of all patients for whole-tumour region at each MRI visit. ADC: apparent diffusion 
coefficient. Dt: tissue diffusion. ve: interstitial volume fraction. vd: extracellular volume fraction. Dp: pseudo-diffusion 
coefficient. f×Dp: microvascular blood flow. Fb: blood flow. PS: capillary permeability–surface area product. f: perfused 
fraction. vb: blood volume fraction. 
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Figure 6.6 Evolution of DWI (ADC, Dt, Dp, f, and f×Dp) and DCE-MRI (Fb, vb, PS, ve, and vd) parameters across the 
three MRI visits (baseline, and after one and three cycles of NACT). Box plots illustrate the median and interquartile 
range values of all patients for cold-spot and hot-spot regions at each MRI visit. ADC: apparent diffusion coefficient. Dt: 
tissue diffusion. ve: interstitial volume fraction. vd: extracellular volume fraction. Dp: pseudo-diffusion coefficient. f×Dp: 
microvascular blood flow. Fb: blood flow. PS: capillary permeability–surface area product. f: perfused fraction. vb: blood 
volume fraction. 
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6.3.4 Upper estimate of repeatability of the DWI model parameters 

The same ten pNRs selected for the repeatability analysis of DWI model 

parameters in Chapter 4 (section 4.3.6) were included in the repeatability analysis 

of the DCE-MRI parameters. The upper estimate of the wCV was 2.1% for tumour 

T1, 13.9% for Fb, 54.8% for PS, 20.6% for ve, 41.9% for vb, and 10.2% for vd. It 

should be noted that the wCV for ve and vd was calculated from 7 pNR patients' 

data, as it was not possible to estimate these parameters in one of the two chosen 

visits for 3 patients. 

6.4 Discussion 

In this study, the absolute blood flow (Fb) estimates were made from the HTR-

DCE-MRI data after measuring patient-specific arterial input functions and are 

consistent with previously reported estimates obtained using [O-15] H2O positron 

emission tomography in a comparable patient population (193). The correlations 

were examined in a total of 108 studies using paired DWI and DCE-MRI 

measurements. 

No statistically significant between-subject or within-subject repeated measures 

correlations were found between the IVIM and DCE-MRI perfusion parameters of 

the study's primary interest (f versus vb and f×Dp versus Fb; p = 0.054–0.99). These 

findings align with previous breast cancer studies, which also found no correlation 

between any IVIM perfusion parameters and DCE-MRI parameter related to 

perfusion, Ktrans (28, 29). Ktrans may not solely reflect tumour blood flow but also 

vessel permeability (151). The present study went further by estimating tumour 

blood flow and blood volume fraction from DCE-MRI during NACT, but still found 

no correlations. One possible explanation for the lack of correlation might be 

significant tissue heterogeneity in tumours; the parameters were estimated from 

the whole-tumour regions. Where possible, two small focused ROIs (diffusion cold-

spot and perfusion hot-spot) in each whole-tumour region were generated to 

reduce the likelihood of heterogeneity. It was assumed that these smaller ROIs 

would be more homogenous. However, no clear correlations were found in these 

smaller regions, and the data were observed to be more variable than the whole-

tumour ROI, as reflected by the number of outliers and a wider range in the box 

plot scale (Figure 6.5 versus Figure 6.6). An alternative method for future studies 

that might aid in selecting homogeneous tumour regions could be histogram 

analysis of pixel-wise IVIM and DCE-MRI parameter maps; however, the possibility 

of finding a homogeneous tumour region in the IVIM and DCE perfusion-related 
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parameter maps to examine the correlation (f versus vb and f×Dp versus Fb) would 

require further investigation and validation. 

Imprecision in the estimates of f×Dp and vb, in particular, is a potential issue that 

may have masked correlations between the IVIM and DCE-MRI perfusion 

parameters. A previous report recognized that the precision with which the Dp 

parameter is estimated is poor (157), and the estimate of vb in another study was 

reported to be very imprecise (109), which was reflected in our calculated upper 

estimate of its repeatability (wCV: 41.9%). The estimation of vb, against which the f 

parameter derived from IVIM is compared, becomes difficult when tumour 

capillaries are excessively leaky (187). In this study, out of 108 DCE-MRI datasets, 

a one-compartment model was preferred in 13 cases, and an estimate of vb and 

PS was not possible in those 13. 

It is also possible that IVIM and DCE-MRI reflect different underlying physiology. 

IVIM does not estimate perfusion in a classical way but estimates flow in the 

direction of the diffusion encoding gradient, whereas DCE-MRI measures the 

delivery of blood and subsequent distribution of contrast agent in the tissue, on a 

different time scale (194). Furthermore, it has been suggested that a single 

pseudo-diffusion coefficient (Dp) is insufficient to describe the complex diffusion 

properties of the vascular signal (195). The inconsistent patterns of response to 

treatment seen in the median values of f versus vb and f×Dp versus Fb may support 

this suggestion (Figure 6.5).  

In contrast, this study found moderate positive between-subject and within-subject 

repeated measures correlations between the diffusion parameters (ADC and Dt) 

and ve (between-subject: r = 0.461, p = 0.004; and r = 0.405, p = 0.01, and within-

subject: rrm = 0.597, p<0.001; and rrm = 0.514, p<0.001 for (ADC & ve) and (Dt & 

ve), respectively), as well as a moderate positive within-subject repeated measures 

correlation between the diffusion parameters (ADC and Dt) and vd (rrm = 0.619, 

p<0.001; and rrm = 0.564, p<0.001 for (ADC & vd) and (Dt & vd), respectively). 

These positive results are important, as this is the first time they have been 

observed in breast cancer (30), and support the current understanding of these 

imaging parameters. A positive between-subject correlation between ADC and ve 

was previously determined in head and neck cancers and orofacial lesions (153, 

196) suggesting that these parameters are related to tissue microstructure. The 

ADC and Dt values reflect the diffusion of water molecules in tissue, which is 

affected by cellular density, membrane permeability and extracellular volume (10), 
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and vd is a direct measure of the extracellular volume fraction (187) while ve is a 

parameter that reflects the volume fraction of the interstitial space within the tissue, 

which can be influenced by such factors as cellular density and extracellular matrix 

deposition. A prior study revealed that tumour cellularity is inversely proportional to 

ve, vd, and ADC values (197). Therefore, the observed between-subject correlation 

of the diffusion coefficients and ve may suggest that breast tumours with a high 

cellular density tend to have a small interstitium and increased diffusion restriction, 

whereas tumours with a low cellular density tend to have a large interstitium and 

less diffusion restriction. The observed positive within-subject repeated measures 

correlations could result from the fact that ADC/Dt, ve, and vd exhibited similar 

patterns of change in response to treatment, wherein the values were increasing 

during the three MRI time-points (Figure 6.5).   

Furthermore, a moderate positive between-subject correlation between the 

diffusion coefficients (ADC and Dt) and tumour T1 was observed in this study (r = 

0.603, p<0.001; and r = 0.631, p<0.001 for (ADC & tumour T1) and (Dt & tumour 

T1), respectively). Tumour T1 measures tissue relaxation time, which can be 

affected by tissue water and fat content, macromolecule concentration and 

hydration state (198). Thus, this positive correlation may be because breast 

tumours with high cellular density and a small extracellular space have a 

decreased free-water content, resulting in low diffusion coefficient values and short 

tumour T1 (198, 199).  

6.4.1 Limitations 

First, this study was performed on a limited sample size, which may limit the 

statistical power of the results. However, this is the first study that assesses both 

between-subject and within-subject repeated correlations between the perfusion 

parameters estimated by IVIM and DCE-MRI in a cohort of breast cancer patients 

undergoing NACT with a primary focus on hypothesis generation rather than 

testing; therefore, the results can be used to direct future studies. Second, the DWI 

data were acquired with only 6 b-values, four of which were low (≤ 200 s/mm2). In a 

clinical protocol, it is not practical to acquire DWI data with a large number of b-

values. Nevertheless, the simulation study performed in Chapter 3 showed that 

acquiring DWI data with 6 b-values will not lead to appreciably biased and 

imprecise results for most IVIM parameters compared to acquiring DWI data with 

12 b-values, though the precision of f×Dp was lower than with 12 b-values (refer to 

Chapter 3, Table 3.5 vs. Table 3.7 for RB and SD of Overseg-C). Further, a 
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previous study showed that a small number of b-values is not the main source of 

errors in IVIM parameter estimates. Intra-patient variability is significant; they found 

that the precision in the estimates of the IVIM parameters with only 4 b-values was 

better than the test-retest repeatability of those same parameters estimated with 16 

b-values (157). Third, a pixel-wise comparison of IVIM and DCE-MRI parameter 

maps was not performed in this study, although it might be valuable. Instead, the 

images were analysed by following the recommended approaches of the 

International Breast Diffusion-Weighted Imaging Working Group (24), which 

included volumetric sampling and focused ROIs (i.e., smaller single-slice ROIs on 

the darkest part of the ADC map). No correlations were observed between f versus 

vb and f×Dp versus Fb in these smaller regions, but they showed more variability in 

the estimates instead (Figure 6.6), suggesting that a pixel-wise analysis might yield 

similar outcomes. Fourth, the DCE images were rigidly aligned to the DWI images 

and this approach may not have been sufficient to correct DWI distortions. As 

such, the accuracy of spatial co-registration could have been affected, potentially 

influencing the findings reported, particularly in the smaller regions. Therefore, 

future work incorporating pixel-wise analysis following rigorous DWI and DCE-MRI 

image registration is needed to further investigate these relationships. Finally, the 

repeatability of the DCE-MRI parameters was not formally investigated. It was 

challenging to justify performing a repeated baseline DCE-MRI scan that required 

an additional injection of gadolinium contrast because the patients were due to 

undergo multiple NACT cycles and MRI scans. Instead, an upper estimate of the 

repeatability of the DCE-MRI parameters was calculated from the same subset of 

baseline and cycle 1 studies selected for the repeatability analysis of DWI model 

parameters, as performed in Chapter 4, section 4.3.6.  

6.5 Conclusions 

This preliminary study investigated both between-subject and within-subject 

repeated measures correlations between DWI and DCE-MRI parameters in a 

cohort of patients with breast cancer imaged before and after one and three cycles 

of NACT. No statistically significant correlations were observed between the 

perfusion parameters estimated by IVIM (f and f×Dp) and those estimated by DCE-

MRI (Fb and vb) (p = 0.054–0.99). The two techniques may reflect different 

underlying physiology, and/or estimates of the IVIM and DCE-MRI parameters in 

the current study are imprecise. Therefore, care should be taken when interpreting 

the IVIM perfusion parameters as surrogates for those measured using DCE-MRI 
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until their underlying pathophysiologic interpretation and relationship to the DCE-

MRI perfusion parameters are elucidated by further research. However, the 

moderate positive within-subject repeated measures correlations found between 

the diffusion parameters ADC and Dt and DCE-MRI parameters ve and vd confirm 

the expectation that as the interstitial and extracellular volume fractions increase, 

water diffusion increases.  
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Chapter 7 Thesis summary, limitations and future work 

7.1 Introduction 

There has been growing interest in exploring the applications of IVIM and SEM 

models of DWI in breast imaging, with a predominant focus on differentiating 

breast lesions. However, the use of IVIM and SEM models to predict early breast 

cancer response to NACT has received less attention. This thesis focused on 

evaluating the relative potential of basic monoexponential versus advanced (IVIM 

and SEM) diffusion models in predicting early response to NACT in patients with 

primary breast cancer scheduled to undergo NACT. Additionally, the relationships 

between IVIM and DCE-MRI perfusion-related measures, as well as between DWI 

tissue diffusion measures and DCE-MRI cellularity-related measures, were 

explored. The research projects were conducted using a retrospective MRI dataset 

of 40 breast cancer patients collected as part of a Breast Cancer Now-funded 

project at three time points: before NACT and after one and three NACT cycles. 

7.2 Summary of the experimental works 

7.2.1 Comparison of curve-fitting methods for IVIM analysis in breast 

cancer: Simulation study 

There is considerable variability in IVIM parameters both across breast studies (27, 

28, 116, 126, 154, 155) and within the same patient group (156), with no 

consensus on which fitting method to use for estimating IVIM parameters from DWI 

images. The influence of the fitting method on the accuracy, bias, and precision of 

IVIM parameter estimates for breast cancer has scarcely been investigated (156, 

160). However, determining the fitting method that produces IVIM parameters 

closely aligned with the underlying 'true' values is crucial. 

This chapter compared six commonly used IVIM curve-fitting methods in breast 

cancer, using simulated data that represents the range of IVIM parameters 

observed in breast cancer data obtained in Leeds with the same distribution of six 

b-values (125), along with in vivo measurements, to primarily determine the 

method providing superior precision, minimal error and bias, and achieving the 

best in vivo repeatability of IVIM parameter estimates (with an emphasis on f and 

f×Dp) to be employed in analysing the clinical breast DWI data included in this 

thesis. 
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The comparisons were made across six fitting methods: full-fitting, segmented-

fitting, and oversegmented-fitting, each with and without bound constraints of the 

parameter values, at 12 b-values (b = 0, 10, 20, 30, 50, 70, 100, 150, 200, 400, 

800, and 1000 s/mm²) and six b-values (b = 0, 50, 100, 200, 400, and 800 s/mm²), 

and with three noise levels (noise-free, whole-tumour and tumour cold-spot ROIs 

averaged signals). 

The study showed that IVIM parameter estimates are susceptible to error, bias, 

and imprecision, varying according to the applied fitting algorithm, number of b-

values, and noise level. Constrained segmented- and oversegmented-fitting 

methods produced the lowest errors and highest precision for the parameters Dp, f, 

and f×Dp at the whole-tumour noise level. The in vivo repeatability results aligned 

with the simulation findings, where constrained segmented- and oversegmented-

fitting methods achieved best repeatability for Dt, Dp, f, and f×Dp. Nevertheless, the 

constrained oversegmented-fitting method consistently produced the smallest 

errors and highest precision for Dp, f, and f×Dp estimates at the tumour cold-spot 

ROI. Consequently, for methodological consistency, the constrained 

oversegmented method was employed in subsequent research (i.e., Chapters 4 

and 5) when analysing clinical breast DWI data extracted from both whole-tumour 

and small focused ROIs. Although this work was built on and performed for specific 

clinical DWI data, the results from this chapter reveal a need for further 

investigation into the impact of noise and the number of b-values on in vivo IVIM 

parameter estimates to validate these findings and suggest that applying an 

absolute diagnostic cut-off value for any IVIM parameter in a tumour may not be 

valid in clinical practice unless the parameter is obtained using the same fitting 

algorithm and/or acquired with the same number of b-values and/or noise level as 

the reference scenario from which the cut-off value was derived. 

7.2.2 Evaluation of monoexponential, SEM and IVIM DWI MRI diffusion 

models estimated from the whole-tumour region of interest in early 

response monitoring to NACT in patients with breast cancer. 

Preliminary studies have reported that after two or three NACT cycles, the 

parameters of the SEM and IVIM models estimated from freehand single-section 

ROI drawn on the imaging slice with the largest tumour dimension may predict 

breast cancer response to NACT; however, the authors of these studies have 

recommended further investigation at earlier treatment points (i.e., after one cycle) 

(19, 23). Consistent with this direction, the ACRIN 6698 multicentre trial, which 
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evaluated the effectiveness of ADC in predicting early pathological response to 

NACT, suggests that further investigation into using IVIM or SEM for analysing 

DWI data may better depict therapeutic effects (25). Additionally, the International 

Breast DWI Working Group recommended volumetric sampling of the entire 

tumour when evaluating tumour response (24), and this approach may minimise 

sampling bias in comparison with the single-section ROI (152).  

The Chapter 4 study aimed to address the identified research gap by investigating 

the value of parameters obtained from the monoexponential (ADC), SEM (DDC, α), 

and IVIM (Dt, Dp, f, f×Dp) models, derived from DWI data acquired pretreatment 

and after one and three NACT cycles, and estimated using whole-tumour ROI to 

assess early breast cancer response to NACT. 

The corresponding hypothesis was that parameters obtained from the 

monoexponential, SEM, and IVIM models derived from MRI data acquired 

pretreatment and after one and three NACT cycles, using volumetric sampling, 

have the potential to assess early breast cancer response to NACT. 

The results partially supported this hypothesis. Specifically, the study 

demonstrated that analysing breast cancer DWI data with the advanced diffusion 

models (IVIM and SEM) offers a better prediction of NACT response than analysis 

with the monoexponential model. The IVIM perfusion-related parameters values f 

and f×Dp were significantly lower, and the SEM heterogeneity index value α was 

significantly higher in pathological responders compared to non-responders after 

one NACT cycle (median: pR = 9.13% and pNR = 15.21% for f; p = 0.001, pR = 

0.57 × 10-3 mm2/s and pNR = 1.08 × 10-3 mm2/s for f×Dp; p = 0.001, and pR = 0.89 

and pNR = 0.81 for α; p = 0.003), and were predictive of response with reasonable 

performance (AUC = 0.832; p = 0.001 for f; AUC = 0.802; p = 0.002 for f×Dp; and 

AUC = 0.782; p = 0.003 for α). The diffusion coefficients (ADC, DDC, and Dt) could 

not predict the response at any of the three time-points. In contrast, tumour 

volumes in the responders were considerably smaller than in non-responders at all 

three time-points (median: pretreatment: pR = 2.16 cm3 and pNR = 10.47 cm3; 

p<0.001; post one cycle: pR = 1.57 cm3 and pNR = 8.71 cm3; p<0.001; and post 

three cycles: pR = 0.51 cm3 and pNR = 4.98 cm3; p<0.001), and showed 

reasonable performance for response prediction (AUC = 0.848 to 0.881; p<0.001). 

Thus, patients with a smaller tumour volume, higher α, and lower f and f×Dp after 

one NACT cycle responded better to NACT. 
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7.2.3 Evaluation of monoexponential, SEM and IVIM DWI MRI diffusion 

models estimated from tumour diffusion cold-spot and perfusion hot-

spot regions in early response monitoring to NACT in patients with 

breast cancer. 

The ACRIN 6698 trial further proposed future investigations into alternative 

analytical methods to improve the detectability of changes in tumour cellularity, 

such as by characterising the worst tumour subregion (i.e., the area with the lowest 

ADC) (25). Consistently, the International Breast DWI Working Group suggested 

using a small ROI placed on the darkest region of the tumour on ADC maps, 

potentially reflecting the most active part of the tumour and occasionally referred to 

as the diffusion cold-spot, as the preferred method for measuring ADC (24). This 

method is considered analogous to that used in DCE-MRI image analysis, where 

the tumour region with the greatest mean maximum enhancement, often referred 

to as a perfusion hot-spot, is selected (24, 26). However, the predictive capability 

of the ADC, along with SEM and IVIM model parameters, when focused on the 

most active region of the tumour (i.e., the diffusion cold-spot and perfusion hot-

spot) requires exploration.  

Accordingly, given the promising IVIM and SEM results from Chapter 4, the 

Chapter 5 study aimed to add to the body of knowledge by investigating the value 

of monoexponential, SEM and IVIM models for the diffusion cold-spot and 

perfusion hot-spot regions of the tumour in assessing the early breast cancer 

response to NACT. 

The corresponding hypothesis was that parameters obtained from the 

monoexponential, SEM, and IVIM models for the diffusion cold-spot and perfusion 

hot-spot regions of the tumour at pretreatment and after one and three cycles of 

NACT could be effective in assessing early breast cancer response to NACT. 

The results partially supported this hypothesis and aligned with those of Chapter 4. 

In particular, the study findings showed that the SEM and IVIM models 

outperformed the monoexponential model in predicting NACT response when fitted 

to diffusion data from breast tumour cold-spot and hot-spot regions. At 

pretreatment, IVIM perfusion-related parameters f and f×Dp were significantly lower 

and the SEM heterogeneity index α was significantly higher in responders 

compared to non-responders in the tumour hot-spot regions (median: pretreatment: 

pR = 8.78% and pNR = 11.44% for f; p = 0.03, and pR = 0.56 × 10-3 mm2/s and 

pNR = 0.98 × 10-3 mm2/s for f×Dp; p = 0.006, and pR = 0.87 and pNR = 0.82 for α; 
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p = 0.04), and demonstrated reasonable performance in predicting response (AUC 

= 0.724; p = 0.03 for f; AUC = 0.794; p = 0.007 for f×Dp; and AUC = 0.711; p = 0.04 

for α). After one NACT cycle, f and α continued to show reasonable predictive 

performance when estimated from tumour cold-spot and hot-spot regions (in hot-

spot: AUC = 0.722; p = 0.03 for f, AUC = 0.752; p = 0.01 for α; and in cold-spot: 

AUC = 0.711; p = 0.04 for f, AUC = 0.744; p = 0.01 for α), with responders 

displaying significantly lower f and higher α values (median: in hot-spot: pR = 

9.12% and pNR = 11.84% for f; p = 0.03, pR = 0.90 and pNR = 0.84 for α; p = 0.01; 

and in cold-spot: pR = 7.91% and pNR = 9.85% for f; p = 0.04, pR = 0.89 and pNR 

= 0.77 for α; p = 0.01). In contrast, only the diffusion coefficients (DDC and Dt) from 

cold-spot regions after one NACT cycle were significantly higher in responders 

compared to non-responders (median: pR = 0.90 × 10-3 mm2/s and pNR = 0.72 × 

10-3 mm2/s for DDC; p = 0.01, and pR = 0.80 × 10-3 mm2/s and pNR = 0.63 × 10-3 

mm2/s for Dt; p = 0.005), and exhibited reasonable performance for response 

prediction (AUC = 0.752; p = 0.01 for DDC, and AUC = 0.786; p = 0.006 for Dt). 

However, Chapter 5 results indicate that sampling diffusion data from small tumour 

subregions (cold-spot/hot-spot) introduces more variability in parameter estimates 

and reduces the predictive performance compared to the whole-tumour ROI 

approach, suggesting the entire tumour should be characterised when evaluating 

the NACT response. 

7.2.4 The relationship between parameters measured using IVIM and 

DCE-MRI in patients with breast cancer undergoing NACT: a 

longitudinal cohort study. 

The promising roles of IVIM perfusion-related parameters f and f×Dp in 

differentiating benign and malignant breast tumours over the past decade (21, 27, 

130-133), and in evaluating breast tumour response to NACT as found by a 

previous study (23) and this thesis have, in turn, reopened the question of whether 

IVIM could be used as a contrast-agent-free alternative to DCE-MRI for measuring 

breast tumour perfusion. Studies that investigated the correlations between IVIM 

and DCE-MRI perfusion-related parameters in breast tumours were few, examined 

correlations at a single visit, and produced contradictory results (27-29). A 

correlation between perfusion parameter changes induced by treatment is 

meaningful and suggests that IVIM could be used as a contrast-agent-free 

surrogate for DCE-MRI in monitoring serial changes in tumour perfusion. 

Furthermore, none of these studies’ DCE data provided an absolute estimation of 
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tumour blood flow (Fb); thus, the studies did not perform a direct comparison with 

the IVIM parameter purported to measure microvascular blood flow (f×Dp).  

On the other hand, ADC is expected to be directly proportional to DCE-MRI 

cellularity-related measures (i.e., ve, and vd); however, one study on breast 

tumours assessed the correlation at a single visit and found no relationship 

between ADC and ve, suggesting that ADC is incompletely understood (30). 

Therefore, the Chapter 6 study aimed to take a further novel step by investigating 

whether IVIM and DCE-MRI perfusion-related parameters correlate (f versus vb 

and f×Dp versus Fb), and whether IVIM can offer a contrast-agent-free alternative 

to DCE-MRI for monitoring serial changes in tumour perfusion. It also aimed to 

examine the correlation between DWI tissue diffusion measures and DCE-MRI 

cellularity-related measures (ADC and Dt versus ve and vd), utilising the same MRI 

dataset of 40 patients who underwent NACT. 

The stated hypothesis was that the IVIM technique can serve as a contrast-agent-

free alternative to DCE-MRI for measuring breast tumour perfusion, and that the 

diffusion measure (ADC) correlates with DCE-MRI cellularity-related measures. 

The results did not support the first part of this hypothesis but supported the 

second. The study found no statistically significant between-subject or within-

subject repeated measures correlations between the IVIM and DCE-MRI perfusion-

related parameters (f and f×Dp with Fb and vb) in the whole-tumour, cold-spot, and 

hot-spot regions (p = 0.054–0.99). This may indicate that the two techniques reflect 

different underlying physiology, and/or that the estimates of the IVIM and DCE-MRI 

parameters (f×Dp and vb) in the current study are imprecise. Potentially, significant 

tissue heterogeneity in tumours might have compromised correlations in the whole-

tumour regions, and the large variability in parameter estimates observed within 

focused small tumour regions (cold-spot and hot-spot) may have also masked the 

correlations. In light of these findings, care should be taken when interpreting the 

IVIM perfusion parameters as surrogates for those measured using DCE-MRI until 

their underlying pathophysiologic interpretation and relationship to the DCE-MRI 

perfusion parameters are elucidated by further research.   

In contrast, moderate positive between-subject and within-subject repeated 

measures correlations were found between the diffusion parameters (ADC and Dt) 

and ve (between-subject: r = 0.461, p = 0.004; and r = 0.405, p = 0.01, and within-

subject: rrm = 0.597, p<0.001; and rrm = 0.514, p<0.001 for (ADC & ve) and (Dt & 

ve), respectively), and moderate positive within-subject repeated measures 
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correlations between the diffusion parameters (ADC and Dt) and vd in the whole-

tumour regions (rrm = 0.619, p<0.001; and rrm = 0.564, p<0.001 for (ADC & vd) and 

(Dt & vd), respectively), confirm the expectation that as the interstitial and 

extracellular volume fractions increase, water diffusion increases. 

7.3 Limitations and future work 

I- The IVIM parameters were estimated with only 6 b-values (0-800 s/mm²), four of 

which were low (≤ 200 s/mm²). However, there is no consensus yet on the number 

of b-values lower and higher than 200 s/mm² to acquire, and also performing DWI 

with a large number of b-values is not currently practical in the clinical setting. The 

simulation study performed in Chapter 3 demonstrated that acquiring DWI data 

with the 6 b-values used in this thesis does not lead to biased or imprecise results 

for most IVIM parameters compared to acquiring data with 12 b-values (nine of 

which were ≤ 200 s/mm²), though the precision of f×Dp was lower than with 12 b-

values. Including a greater number of lower b-values may facilitate more accurate 

estimation of IVIM perfusion-related parameters but at the expense of increased 

scanning time and a risk of patient intolerance (motion and/or withdraw). Given that 

this study found f and f×Dp as having potential clinical utility in predicting non-

responders at early treatment time point, future work should focus on exploring the 

optimal number of b-values, particularly the lower b-values, for reliable IVIM 

parameter quantification in the breast, within a scanning time that is clinically 

feasible. This could be explored on 3 T MRI systems, where an improved SNR and 

a greater number of b-values with fewer averages could be acquired for the benefit 

of overall scanning time. Such work is essential for the future clinical adoption of 

IVIM. However, there are some challenges of using 3 T over 1.5 T MRI for DWI of 

breast cancer that need to be considered. Higher field strengths suffer from more 

susceptibility artefacts, particularly at air-tissue interfaces (e.g. skin folds), which 

can potentially lead to spatial distortions that make it difficult to define the tumour 

region accurately and alter signal intensity non-uniformly, thereby reducing the 

reliability of IVIM parameter estimation. Also, at 3 T the specific absorption rate 

(SAR) is higher, restricting the number of RF pulses that can be applied within a 

given scan. This restriction may limit the number of b-values or signal averages 

that can be clinically acquired, which in turn could affect the precision of IVIM 

parameter estimation. Additionally, fat suppression becomes more difficult at 3 T 

due to increased magnetic field inhomogeneity. Ineffective fat suppression may 
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result in artefacts that further complicate the accuracy and precision of IVIM-

derived parameters. 

II- The DWI model parameters were estimated from whole-tumour and small 

focused ROIs averaged signals, as recommended by the International Breast 

Diffusion-Weighted Imaging working group (24) and Iima et al (168). Investigating 

alternative analytical approaches, such as pixel-by-pixel fitting with corresponding 

mean and histogram-based analysis of DWI parametric maps, may provide 

additional information for assessing tumour response, though the high variability in 

the parameter estimates observed within the small regions in this thesis suggests 

that pixel-wise analysis might yield similar outcomes. 

III- The repeatability of the DWI and DCE-MRI parameters was not formally 

investigated. It was challenging to justify performing a repeated baseline DCE-MRI 

scan that required an additional injection of gadolinium contrast, given that patients 

were scheduled to undergo multiple NACT cycles and MRI scans. Instead, an 

upper estimate of the repeatability of the DWI and DCE-MRI parameters was 

calculated from a selection of baseline and cycle 1 studies. Future work exploring 

the optimal number of b-values for IVIM should also assess the repeatability and 

reproducibility of the diffusion model parameters in breast cancer, with 

consideration for extending the assessment across multiple centres and MRI field 

strengths. Such work is required to bridge the gap before the first translation of 

SEM and IVIM models into routine clinical practice. 

IV- The DWIs were acquired using the ss-EPI technique, which is the standard 

method for breast DWI. The ss-EPI technique is widely available and allows 

efficient and rapid acquisition of multiple DWIs (varied b-values) that minimizes 

motion artifacts; however, it suffers from blurring and geometric distortion. In this 

thesis, the DCE images were rigidly aligned to the DWI images and this approach 

may not have been sufficient to fully correct DWI distortions. As such, the 

accuracy of spatial co-registration could have been affected, potentially 

influencing the findings reported, particularly in the smaller regions. A promising 

technique is multi-shot DWI, one version of which called multiplexed sensitivity 

encoding (MUSE), has recently been explored in a breast study to address these 

limitations (200). The MUSE DWI demonstrated superior image quality compared 

to the ss-EPI DWI, improved spatial resolution, and significantly reduced blurring 

and geometric distortion, though at the cost of increased acquisition time. Future 

work should consider using the MUSE technique, or any other emerging 
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techniques from the literature that overcome ss-EPI limitations, and then 

optimising it to ensure clinically feasible scanning times (if required), to assess 

whether it can improve the diagnostic performance of monoexponential, SEM, 

and IVIM diffusion model parameters in predicting early breast cancer response to 

NACT, and carry out further investigation on the relationship between IVIM and 

DCE-MRI parameters. 

V- The clinical studies in this thesis were conducted on a limited sample size at a 

single centre using one MRI scanner, which restricts the interpretation and limits 

the statistical power of the results. However, to the best of the candidate’s 

knowledge, these studies were the initial ones to address the gaps identified in the 

literature on DWI studies of breast cancer patients undergoing NACT, with a 

primary focus on hypothesis generation rather than testing. Therefore, based on 

the current findings and after addressing the limitations, a future multicentre study 

with a larger cohort of patients (responders and non-responders) with diverse 

breast tumour subtypes is recommended to test the predictive performance of 

monoexponential, SEM, and IVIM diffusion models between the response groups 

on three tumour regions (whole-tumour, cold-spot and hot-spot), and also 

according to breast tumour subtypes. The ACRIN 6698 multicentre trial found that 

the percentage change in the ADC value was predictive only in (HR+/HER2−) 

tumours after four NACT cycles (25); however, the data utilised here included only 

15 patients with (HR+/HER2−) tumours, with 2 responders and 13 non-responders, 

of which three non-responders withdrew following the pretreatment MRI, hence 

impeding assessment within this specific tumour subtype. Further, although MRI 

scans were performed at an earlier treatment point (i.e., after one cycle) than mid-

treatment, acquiring DWI data following two NACT cycles which is still considered 

an early phase of treatment, would provide significant additional insights, enabling 

a comprehensive assessment of the predictive performance of the three diffusion 

models and determining the optimal early time point for predicting response, and 

possibly revealing additional predictive parameters. While this thesis focused on 

evaluating the relative potential of monoexponential, IVIM, and SEM diffusion 

models in predicting early response to NACT, future work testing the value of these 

models for predicting recurrence-free survival and/or overall survival, as study 

follow-up data mature, would be informative. 

 

 



153 
 

 
 

7.4 Thesis conclusions 

This thesis performed a progressive evaluation of monoexponential and advanced 

(IVIM and SEM) DWI models in assessing the early response of breast cancer to 

NACT. A major contribution to the field is the demonstration of the superior 

predictive capabilities of IVIM and SEM models compared to the conventional 

monoexponential model in whole-tumour analysis after one NACT cycle, as well as 

in tumour diffusion cold-spot and perfusion hot-spot regions at pretreatment and 

after one cycle. Responders showed lower pretreatment IVIM perfusion-related 

parameters f and f×Dp and higher SEM heterogeneity index α in tumour hot-spot 

regions compared to non-responders. After one NACT cycle, responders 

demonstrated higher diffusion coefficients DDC and Dt in tumour cold-spot regions, 

continued to show lower f and higher α in hot-spot and cold-spot regions, and lower 

f and f×Dp and higher α in whole-tumour regions. Nevertheless, findings from 

Chapters 4 and 5 collectively underscore that sampling diffusion data from the 

whole tumour offers less variable parameter estimates and superior predictive 

performance, particularly for α and f and f×Dp. 

The novel methodology adopted in Chapter 6 provided new evidence to the 

existing knowledge on the lack of relationship between IVIM and DCE-MRI 

perfusion-related parameters (f versus vb and f×Dp versus Fb) in breast cancer, 

underscoring the need for caution when interpreting IVIM perfusion parameters as 

surrogates for those measured using DCE-MRI at this stage of development. In 

contrast, the novel finding of moderate positive correlations between diffusion 

parameters (ADC and Dt) and DCE-MRI cellularity-related measures (ve and vd) 

confirms that as the interstitial and extracellular volume fractions increase, water 

diffusion increases.  

Overall thesis findings underscore the promising clinical utility of IVIM and SEM 

models in assessing early breast cancer response to NACT in patients.  
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