
Test Suite Health: Automatically

Improving the Reliability and

Effectiveness of Test Suites

Muhammad Firhard Roslan

Supervisor: Professor Phil McMinn

A thesis submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the

Faculty of Engineering

School of Computer Science

March 2025

i

Dedicated to my wife, Ayuri, my parents, Fadhilah and Roslan,
my entire family, and Yuki and Aiko.

ii

Declaration

All sentences or passages quoted in this document from other people’s work have been
specifically acknowledged by clear cross-referencing to author, work and page(s). Any
illustrations that are not the work of the author of this report have been used with the
explicit permission of the originator and are specifically acknowledged. I understand
that failure to do this amounts to plagiarism and will be considered grounds for failure.

Muhammad Firhard Roslan
March 2025

Abstract

Software systems are inherently prone to faults, stemming from human errors and
incorrect assumptions made during the development process. Additionally, due to the
evolving nature of codebases, even a correct code behaviour can degrade, becoming
faulty. To mitigate these issues, unit testing is widely adopted, providing developers
with a systematic way to exercise the system and verify individual units. Typically,
developers write tests that exercise the production code, with the goal of achieving a
certain level of code coverage and fault detection capabilities. However, writing tests
that only achieve high code coverage and mutation scores alone is not enough; tests
must also be reliable.

Advancements in automated test generation techniques have decreased the burden
of developers. However, developers remain primarily responsible for writing reliable and
effective test suites, as these tools often fall short in areas requiring human expertise.
Inadequate developer-written tests—whether due to low fault detection capability,
flakiness, brittleness, or lack of realism—not only increase the maintenance overhead
of the software systems, but also undermine the reliability of the test suite.

This thesis takes a holistic approach to assessing and improving the quality of unit
test suites, focusing on its reliability and effectiveness. To address these challenges, I
set two primary objectives for this thesis: (1) understanding the factors that limit the
reliability and effectiveness of test suites, and (2) developing and empirically evaluating
automated techniques to improve and repair existing test suites. Firstly, to ensure
that the state-of-the-art automated test generation tool, EvoSuite, could be utilised to
enhance existing developer-written tests, I conducted an empirical study to investigate
the issue of flakiness in tests generated by such tools. Following this, I evaluated the
effectiveness of search-based test generation of EvoSuite capabilities to amplify existing
developer-written test suites’ mutation score. To gain insights into software developer’s
perspectives on test brittleness, I then conducted a developer survey of 73 professional
software developers, evaluated 60 StackOverflow threads, and empirically evaluated
4,801 open-source projects. This is then followed by utilising EvoSuite’s search-based
test generation technique to replace tests that make calls directly to implementation
details with more reliable alternatives. These efforts contribute to understanding and
improving four main indicators of test suite quality: fault detection capabilities, test
flakiness, test brittleness, and test “realism”.

iii

Publications

Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn. An Empirical
Comparison of EvoSuite and DSpot for Improving developer-written test suites with
respect to mutation score. In International Symposium on Search-Based Software
Engineering (SSBSE), 2022

Martin Gruber, Muhammad Firhard Roslan, Owain Parry, Fabian Scharnböck, Phil
McMinn, and Gordon Fraser. Do Automatic Test Generation Tools Generate Flaky
Tests? In International Conference on Software Engineering (ICSE), 2024

Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn. Private — Keep
Out? Understanding How Developers Account for Code Visibility in Unit Testing. In
International Conference on Software Maintenance and Evolution (ICSME), 2024

Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn. Viscount: A Direct
Method Call Coverage Tool for Java. In International Conference on Software Mainte-
nance and Evolution (ICSME): Tool Demo Track, 2024

Phil McMinn, Muhammad Firhard Roslan, and Gregory M. Kapfhammer. Beyond Test
Flakiness: A Manifesto for a Holistic Approach to Test Suite Health. In Proceedings of
the 2nd International Workshop on Flaky Tests (FTW), 2025

iv

Acknowledgements

Firstly, I would like to thank my supervisor, Professor Phil McMinn, for his invaluable
guidance, support, and advice throughout my Ph.D. journey. I am grateful to have him
as my supervisor and mentor, and I have learned a lot from him, both academically
and in my personal life. Furthermore, I would like to thank Dr. José Miguel Rojas for
providing valuable feedback on my research work, being an excellent collaborator, and
a very good friend.

I would also like to thank the past and present researchers and academics in the
Testing lab at the University of Sheffield: Islam, Owain, Ruizhen, Megan, Michael,
Richard, Olek, Zalán, Neil, Nina, Giulia, Yasmeen, Guannan, Donghwan, Arwa, Tony,
Kirill, and Sanjeetha. Thank you for sharing your knowledge and experiences with me.
I am also deeply grateful to my collaborators: Martin, Gordon, Greg, and Fabian—who
helped me in my Ph.D. research. Moreover, I would like to thank Faidzal, Nik, Reezuan,
Fahmi, Faiz, Amal, Hikmah, Faris, Alynn, Zaid, Syahrul, and all my other friends from
outside the lab, who provided me a lot of moral support.

I would like to express heartfelt thanks to my wife, Ayuri, for her unwavering
support throughout this journey, as well as my parents, Fadhilah and Roslan; my
parents-in-law, Rie and Rujhan; and my entire family, who stood by my side every
step of the way. Finally, I am grateful for the financial support that I received from
Majlis Amanah Rakyat, Malaysia, and I give thanks to God for all the blessings that I
have received.

v

Contents

1 Introduction 1
1.1 Test Suite Health . 2
1.2 Aims . 5
1.3 Thesis Contributions . 5

1.3.1 Flakiness in EvoSuite-generated tests (Chapter 3) 5
1.3.2 Improving Mutation Score of Developer-Written Tests using

EvoSuite (Chapter 4) . 7
1.3.3 Private — Keep Out? Test via Public API vs Implementation

Details (Chapter 5) . 8
1.3.4 Replacing developer-written tests that call non-public methods

directly (Chapter 6) . 8
1.3.5 Viscount: A Direct Method Call Coverage Tool (Appendix A) . 9
1.3.6 Summary . 9

2 Literature Review 10
2.1 Introduction . 10
2.2 Software Testing . 10
2.3 Unit Testing . 11
2.4 Test Adequacy Criteria . 11

2.4.1 Code Coverage . 12
2.4.2 Mutation Testing . 14

2.5 Regression Testing . 16
2.6 Test Suite Health . 17

2.6.1 Test Flakiness . 18
2.6.2 Test Brittleness . 20
2.6.3 Test Suite Health Summary . 22

2.7 Automatic Test Generation . 23
2.7.1 Random Test Generation . 23
2.7.2 Symbolic Execution . 23
2.7.3 Search-Based Test Generation 24

2.8 Test Amplification . 29
2.8.1 Adding New Tests . 30

vi

CONTENTS vii

2.8.2 Altering Existing Test Cases . 32
2.9 Using EvoSuite to Improve Test Suite Health 34
2.10 Summary . 36

3 An Empirical Study of Flaky Tests in EvoSuite 38
3.1 Introduction . 38
3.2 Methodology . 38

3.2.1 Subjects . 39
3.2.2 EvoSuite . 40
3.2.3 Search Budget . 41
3.2.4 Execution of the EvoSuite-generated tests 41
3.2.5 Test Outcome Analysis . 41
3.2.6 Successful Projects . 41
3.2.7 RQ1: Prevalence . 44
3.2.8 RQ2: Flakiness Suppression . 44
3.2.9 RQ3: Root Cause Analysis . 44

3.3 Results . 46
3.3.1 RQ1: Prevalence . 46
3.3.2 RQ2: Flakiness Suppression Mechanisms 48
3.3.3 RQ3: Root Causes . 49

3.4 Threats to Validity . 54
3.4.1 External Validity . 54
3.4.2 Construct Validity . 54
3.4.3 Internal Validity . 54

3.5 Recommendations . 55
3.5.1 Maintainers of EvoSuite . 55
3.5.2 Developers Using EvoSuite . 55
3.5.3 Researchers Studying Flaky Tests 56

3.6 Chapter Conclusions . 56

4 Automatically Improving the Mutation Score of Developer-Written
Test Suites 57
4.1 Introduction . 57
4.2 Modifications made to EvoSuite— EvoSuiteAmp 59

4.2.1 Removing Mutants Killed in the Developer-Written Tests 59
4.2.2 Seeding Developer-Written Tests into the Initial Population of

the GA . 59
4.2.3 Tuning the Add New Random Test Case Rate to Zero 60
4.2.4 Turning Off Test Suite Minimisation 60

4.3 Empirical Study . 60
4.3.1 Subjects . 61
4.3.2 Experimental Procedure . 62

4.4 Results . 64

CONTENTS viii

4.5 Threats to Validity . 67
4.6 Discussion . 67
4.7 Chapter Conclusions and Future Work 69

5 Testing via Public APIs vs Implementation Details 70
5.1 Introduction . 70
5.2 Research Questions . 71
5.3 Methodology . 72

5.3.1 Open-Source Study (RQ1) . 72
5.3.2 Developer Survey (RQs 2–4). 75
5.3.3 StackOverflow Analysis (RQs 2–4) 77

5.4 Results . 78
5.4.1 RQ1 (Open-Source Testing) . 78
5.4.2 RQ2 (Stance) . 79
5.4.3 RQ3 (Rationale) . 81
5.4.4 RQ4 (Practice) . 84

5.5 Threats to Validity . 88
5.6 Discussion . 90
5.7 Implications and Future Work . 92

5.7.1 Software Testing Education . 92
5.7.2 Automated Techniques . 93
5.7.3 Developer Support . 94

5.8 Chapter Summary . 95

6 Coverage-Preserving Test Repair: Automatically Replacing Direct
Non-Public Method Call in Test 96
6.1 Introduction . 96
6.2 Modifications Made to EvoSuite— EvoSuiteUTOPIA 97

6.2.1 Public-Only Branch Coverage 98
6.2.2 Identifying Existing Coverage Information of the Directly Invoked

Non-Public Method . 98
6.2.3 Instrument Other Relevant Production Classes 99
6.2.4 Seeding Strategy via Reusing Non-Public Invocation Test Case

Objects . 99
6.3 Methodology . 100

6.3.1 Subjects . 100
6.3.2 Experimental Procedure . 100

6.4 Results . 102
6.5 Threats to Validity . 103
6.6 Discussion . 105

6.6.1 Example of EvoSuiteUTOPIA-Generated Test 105
6.6.2 Effectiveness of EvoSuiteUTOPIA 107
6.6.3 Test Suite Size . 107

CONTENTS ix

6.6.4 Mutation Score . 107
6.6.5 Unrepairable Tests that Invokes Non-Public Method 107

6.7 Chapter Conclusion and Future Work 108

7 Conclusions and Future Work 109
7.1 Limitations . 110

7.1.1 Uncertainty in the Empirical Evaluations 110
7.1.2 Open-Source Projects . 111
7.1.3 Limitations Summary . 111

7.2 Future Work . 112
7.2.1 Investigating the Synergy and Trade-offs between Test Suite

Health Indicators . 112
7.2.2 Measurability of Test Suite Health Indicators 112
7.2.3 Chapter 3: Root-Causing EvoSuite-generated order-dependent

flaky tests . 112
7.2.4 Chapter 6: Evaluating the effectiveness of EvoSuiteUTOPIA’s tests

with developers. 112
7.2.5 Investigating Project Composition by Application Type used in

Chapter 3, Chapter 5, and Chapter 6 113

A Viscount: A Direct Method Call Coverage Tool
for Java 114
A.1 Introduction . 114
A.2 Viscount . 116
A.3 Dependencies . 118
A.4 Viscount’s Architecture . 118

A.4.1 Extracting Production Code Methods 120
A.4.2 Including Surefire Report Plugin 120
A.4.3 Runtime Instrumentation and Test Execution 121
A.4.4 Analysing Test Reports . 121

A.5 Applying the Tool . 124
A.6 Current Limitations . 125
A.7 Related Tools . 126
A.8 Conclusions and Future Work . 126

B Private — Keep Out? Ethics Application 128

C Private — Keep Out? Developer Questionnaire and Information
Sheet 137

List of Figures

1.1 The connections between the chapters of this thesis are depicted here.
Red blocks focus on “understanding” issues related to Test Suite Health,
green blocks are dedicated to techniques to automatically “improve” the
quality and health of the test suite, and the orange block represents
the tool I developed to evaluate test health-related issues. The arrows
between the blocks indicate that each builds upon the previous one, and
citations indicate chapters based on my published work. 6

2.1 An example of sort() method that is being executed by Figure 2.2 . . 11
2.2 A simple JUnit test case consisting of four main components: test inputs,

method-under-test invocation, test output, and an assertion 12
2.3 RIPR model. Taken from [67] . 13
2.4 Input that can satisfy the RIPR model. The black line shows the

execution trace for the original program, while the yellow line shows if
it is being executed on the modified program. The deviation of the two
lines indicates that, for the same input, it starts to produce different
states. The green circle is an observation on the output that can reveal
the failure. 14

2.5 An example equivalent mutant. Taken from [154] 16
2.6 An example of flaky test caused by asynchronous wait. Taken from [182]. 18
2.7 Local optimum problem in hill climbing. 25

3.1 Overview of the experimental setup. 39
3.2 Branch and Line coverage of EvoSuiteFSOn and EvoSuiteFSOff tests. . . 42
3.3 Statistics of the open-source projects studied in this chapter. 43
3.4 Violin plot showing the non-order dependent (NOD) flaky-failure rate

of EvoSuiteFSOff , EvoSuiteFSOn , and developer-written tests. Each plot
is proportional to the overall number of non-order dependent flaky tests
found. 47

3.5 Violin plot showing the order dependent (OD) flaky-failure rate of
EvoSuiteFSOff , EvoSuiteFSOn , and developer-written tests. Each plot is
proportional to the overall number of order dependent flaky tests found. 47

3.6 Projects containing flaky tests. 48

x

LIST OF FIGURES xi

3.7 Caption . 50
3.8 Randomness-related flaky test generated by EvoSuiteFSOff (project

mitchelltech5-jmatharray) . 51
3.9 Test Case Timeout related flaky test generated by EvoSuiteFSOff (project

Contrast-Security-OSS-cassandra-migration) 51
3.10 Flaky test generated by EvoSuiteFSOn due to JIT method inline optimi-

sation . 52
3.11 Stack traces of the flaky test in Figure 3.10 before and after JIT method

inline optimisation. 53

4.1 Overview of EvoSuiteAmp . 59
4.2 Overview of the experimental setup. 62

5.1 Statistics of the Maven open-source projects studied in RQ1. 73
5.2 Distribution of Access Modifier being used per project in the production

method, by percentage, across all Maven open-source projects studied
in RQ1. 74

5.3 Years of experience in software development 75
5.4 Years of experience in writing unit tests 76
5.5 Distributions of participants current working industry and software

development methodologies that they practices 76
5.6 Venn diagram of open-source Java projects, grouped by visibility of

production code methods called directly from their tests. 80
5.7 Developer responses to the question “To what extent do you agree with the

following statement? ‘In general, developers should write unit tests that
only invoke public methods, avoiding direct calls to non-public methods.’” 81

5.8 Developer responses to the survey question: “How often do you write
tests that directly invoke non-public methods?” 81

5.9 Developer responses to the question: “Testing non-public methods leads
to more tests failing spuriously when modifications are made to those
methods” . 82

5.10 Participants years of testing experience, grouped by stance on testing
through public methods only (distribution shown in Figure 5.7). 90

5.11 Participants years of developer experience, grouped by stance on testing
through public methods only (distribution shown in Figure 5.7). 90

6.1 Overview of EvoSuiteUTOPIA. The modification made will be explain in
Section 6.2 . 97

6.2 Overlapping projects from Chapter 3 and Chapter 5 that will be used
to evaluate EvoSuiteUTOPIA. 100

6.3 Statistics of the 136 successful open-source projects used to evaluate
EvoSuiteUTOPIA. 101

LIST OF FIGURES xii

6.4 EvoSuiteUTOPIA was successful at replacing 55.37% of 2,057 non-public
methods being directly called in 933 tests (RQ1). EvoSuiteUTOPIA-
generated tests predominantly focused on exercising the behaviour rather
than program crash tests (unexpected behaviour exceptions), while
maintaining 84.79% of the non-public branch coverage indirectly through
Public APIs. 102

6.5 cleanPrimitives method from project Thomas-S-B-visualee 104
6.6 Original developer-written test that is invoking a protected method,

cleanPrimitives (Figure 6.5) directly more than once (project Thomas-
S-B-visualee) . 104

6.7 The first test case in this figure is an original developer-written test,
from the project apache-commons-validator, that is invoking the pro-
tected method compare directly. The second test case is generated
by EvoSuiteUTOPIA targeting to replace the invocation of the method
compare directly by calling the public method compareDates that will
maintain the same coverage as the original developer-written test. . . . 106

A.1 An example of a test that examines the implementation of the method
resize. 115

A.2 This test examines the behaviour of the code via using addCard method
to change the size (via resize()) of the Wallet. 115

A.3 Example of a class named Wallet that can keep multiple Card object.
The public method addCard is to add new card into the Wallet object.
It will not add existing card (isCardPresent()) and update the size
field (resize()) if new card is added into Wallet. 117

A.4 Overall architecture of Viscount . 119
A.5 Example of added probes at entry/exit points in production method. . 122
A.7 Output of TypeNameTest.isPrimitive() test from square-javapoet

in Surefire Report . 123
A.8 Direct method call coverage of square-javapoet 124
A.9 Direct method call coverage of viscount-example 126

List of Tables

1.1 This table provides a list of indicators that could be used to evaluate the
health of a test suite, starting with those that are well-understood and
could be quantified, to those that are less so and more diffuse. These
indicators are not exhaustive and there are others that should also be
considered. Taken from [187]. 4

2.1 Different categories of root causes used to classify flaky tests in various
literature. 19

2.2 Visibility of different level of access modifier in Java. 22
2.3 Properties for ensuring deterministic behaviour and mitigating flaky

outcome in EvoSuite-generated tests. 35

3.1 Updated parameters to deactivate flakiness suppression mechanisms
(EvoSuiteFSOff). The description of each parameter is provided in Table 2.3. 40

3.2 Number of (#) developer-written, EvoSuiteFSOn , and EvoSuiteFSOff tests
from the 1,902 projects. (FS = Flakiness Suppression) 42

3.3 Number of (#) flaky tests found in developer-written, EvoSuiteFSOn ,
and EvoSuiteFSOff . 46

3.4 Number of non-order-dependent (NOD) and order-dependent (OD) flaky
tests found in developer-written, EvoSuiteFSOn , and EvoSuiteFSOff 46

3.5 Root causes for non-order-dependent flaky developer-written, EvoSuiteFSOn ,
and EvoSuiteFSOff tests. 49

4.1 Subject programs used in this study, by Lines of Code, average number
of mutants (# of Mutants), number of unique classes evaluated (# of
Classes), and number of versions evaluated (# of Versions). 61

4.2 The result of test amplification on 42 versions after 30 runs for EvoSuiteAmp

(Evo), DSpotMut (DS), and DSpotCov (DJ). 65
4.3 Spearman correlation value (ρ) between test suite size (LOC) and muta-

tion score. 66

5.1 Numbers of production code methods, by access modifier, directly in-
voked from test suites (“Invoked”) out of the total number of methods
(“Total”) in all 4,801 Java projects studied in RQ1. 79

xiii

LIST OF TABLES xiv

5.2 Mechanisms used to directly invoke private methods in tests, by numbers
of tests (“# Tests”) and projects (“# Projects”), in the dataset of Java
projects. 80

5.3 Classification of posters’ answers to StackOverflow “Debate” threads
as either arguing to test public APIs only or test non-public methods
directly, or were neutral in stance. “Rank” refers to whether the answer
was first, second, or third in the list of responses to the original post,
depending its “upvotes”. (NB: Some posts received fewer than three
responses.) . 82

5.4 Developer responses to the question “To what extent do you value the
following aspects when writing unit tests?” 83

5.5 Developer responses to the question: “How do you go about testing
non-public methods?” . 85

5.6 Top 3 themes for the question — “Are there any guidelines, best practices,
or specific rules you follow when testing non-public methods?” 86

A.1 Production code methods and their visibility for square-javapoet, as
outputted by Viscount in a TSV file. 118

A.2 Production methods directly called in test for square-javapoet. The
output will be provided in a TSV file. 120

A.3 Every production methods’ access modifier in viscount-example. . . . 125
A.4 Production methods directly called in tests for viscount-example. . . 125

Chapter 1

Introduction

“Living plants are tender and pliant;
dead, they are brittle and dry.
. . .
The rigid and stiff will be broken.
The soft and yielding will prevail.”
-Lao Tzu

In 2004, Jeff Bezos remarked, “It’s the software that sends the brown boxes on
their way.” [172]. This statement highlights how deeply software plays in everyday
modern operations, from logistics to essential services. However, when software fails,
the consequences can be severe. On July 19, 2024, a routine software update from
CrowdStrike [38] triggered a catastrophic failure that crashed 8.5 million Microsoft
Windows machines [9] worldwide and costing Fortune 500 companies over $5 billion
in direct losses [43], with total global losses expected to be significantly higher. This
incident, which brought critical services such as flights [13], hospitals, and banks to a
stop [12], revealed shortcomings in their software update validation. Despite routine
automated and manual tests on their core components, gaps in validating certain
updates [11] led to the infamous “blue screen of death” [6] caused by an out-of-bounds
memory read [8]. Although the update was rolled back quickly, millions of devices [9]
were already affected. In response, CrowdStrike is tightening its testing protocols
through enhanced software testing [38] and staggered deployments [10] to prevent
future failures.

This incident serves as a reminder that software systems are inherently prone to
faults [67]. This inevitability stems from the fact that code is mostly written by humans,
who are inherently fallible [59]. Faults can emerge from a variety of sources: incorrect
assumptions by developers, improper software usage by end-users, and malfunction in
the software. Furthermore, code that was once correct can degrade and become faulty
over time due to changes and updates [112]. Therefore, software developers will adopt
certain software testing practices to protect themselves from such situations [67].

Unit testing provides a practical approach to mitigate this problem, where software
developers write tests to verify the behaviour of individual units of the code. The

1

1.1. TEST SUITE HEALTH 2

process then involves executing tests and ensuring the units behave as expected. While
the concept of writing unit tests is straightforward, inadequate tests can result in
anything from small user inconvenience to catastrophic failures [114, 21, 38], and
maintaining them effectively can be challenging [166, 189].

Despite advancements in testing techniques that could automatically generate tests
from scratch, such as, fuzzing [193, 259] and automated test generation [202, 122, 180],
developers remain primarily responsible for writing their own tests [70]. While these
tools are effective in achieving high code coverage [125], they still fall short in areas where
human expertise is indispensable, such as ensuring that tests are understandable [103]
and addressing the hard problems in validating the correctness (e.g., test oracle
problem [79]).

However, just as humans are prone to errors when writing code, they are equally
prone to make mistakes when writing tests [152]. These flaws can be very obvious, such
as failing to meet certain quantifiable test adequacy goals, or more diffuse on revealing
themselves, like the presence of flaky [210] or brittle [165] tests. Such issues can
undermine a test suite’s ability to detect faults and provide reliable feedback [166, 189].
Enhancing the reliability and effectiveness of developer-written tests is therefore vital.
Achieving this goal requires a broader perspective on how tests are written, moving
beyond the immediate concerns of individual test cases, it is essential to consider the
overall health of the test suite.

1.1 Test Suite Health

A functional test suite is one that provides fast, reliable feedback to developers,
and remains effective throughout the lifecycle of a software project. Test suites
created solely to meet specific coverage criteria [252] may fail to support software
development effectively, as they can become difficult to manage without emphasis
on their purpose (Section 2.6.2), execution conditions [155, 148] (Section 2.6.1), and
relevance (Section 2.6.2.1).

While test adequacy criteria [67] (Section 2.4) are essential to ensure that a test
suite is effective, developers must also consider broader aspects to sustain its health. A
healthy test suite should not only fulfill its primary purpose of validating the software’s
functionality, but does so without introducing unnecessary burdens on the development
process (e.g., test flakiness [210]), either at the present time or in the future. This
raises critical questions about what a healthy test suite entails and how its continued
utility can be ensured.

A Holistic Perspective

A healthy test suite [187] needs to consider a holistic perspective, moving beyond
a single indicator, such as the widely used code coverage [153]. Instead, it should
encompass a broader range of indicators that collectively determine the test suite’s
fitness for purpose. Table 1.1 introduces a set of indicators that should be considered,

1.1. TEST SUITE HEALTH 3

starting from those that are well-understood and measurable, to those that are less
so and more diffuse. Together, they provide a basis for evaluating test suite health,
focusing on how effectively the test suite provides fast and reliable feedback.

These indicators could be structured into a checklist [131], aimed at maximising
their positive impact while minimising the negative presence of each one. Various tools
and techniques provide a way to evaluate individual indicators (e.g., [18, 156, 97]),
as well as to improve (e.g., [106, 254]) and repair (e.g., [240, 175]) them individually.
However, such approaches often fail to consider the interactions between indicators,
neglecting a holistic view of test suite health.

While some indicators are complementary, trade-offs also exist between them. For
example a test suite with a higher mutation score [113] may potentially contain more
brittle test cases [165] if it focuses on the program’s implementation details rather
than its intended specification. This suggests that optimising only one indicator might
not be appropriate. This also means that test suite health could be framed as a
Pareto-based optimisation problem [204], where the objective is to achieve a balanced
trace-off between conflicting indicators. It is also important to point out that the
indicators in Table 1.1 are by no means exhaustive, leaving more opportunities for
future works to identify additional indicators for evaluating test suite health.

Distinguishing Test Suite Health from Related Concepts

While closely related, test smells [248], test suite maintenance [196], and test suite health
differ in their focus and scope. Test smells typically refer to static properties associated
with how individual tests are implemented, often highlighting poor programming
practices [206] within a test that indicate potential issues with maintainability [190]
and readability [139].

In contrast, test suite health takes a broader view, evaluating how well the entire test
suite functions. While test smells focus on issues in individual tests [28], test suite health
emphasises the suite’s ability to provide developers with reliable feedback about the
correctness of their software. This distinction underscores the complementary nature
of these concepts: addressing test smells could potentially contribute to improving test
suite health, but achieving a healthy test suite requires considering factors beyond
individual test case implementation.

Similarly, test suite maintenance involves tasks such as updating and managing
existing tests [196] to preserve their relevance [152], as software evolves [173] and to
ensure that test suite does not become outdated [258]. While they are necessary for
keeping a test suite up-to-date, they do not inherently ensure they are healthy. For
instance, a well-maintained test suite could still fail to deliver meaningful feedback if it
lacks reliability or adequate coverage of critical functionalities [166].

The concept of test suite health mainly concerns about its overarching ability to
reliably validate the software and remain effective throughout the software lifecycle,
distinguishing it from test smells, which focus on static properties of individual tests [28],
and test suite maintenance, which addresses the upkeep of the test suite [258]. Trying

1.1. TEST SUITE HEALTH 4

Table 1.1: This table provides a list of indicators that could be
used to evaluate the health of a test suite, starting with those that are
well-understood and could be quantified, to those that are less so and
more diffuse. These indicators are not exhaustive and there are others
that should also be considered. Taken from [187].

Indicator Description Chapter

1 Code
Coverage
(Section 2.4.1)

A test suite that does not meet certain code coverage [265]
criteria—skipping certain executable regions of the program
under test—is the first and most obvious indicator of unhealthy
test suite. Test suite with low code coverage is unable to reveal
faults or give useful feedback.

2 Pseudo-
Testedness

Pseudo-tested elements (e.g., methods [197, 249] or state-
ments [185]) are executed by tests but can be removed from the
program without affecting the tests’ passing or failing outcomes.
High levels of pseudo-testedness indicate an unhealthy test suite
due to a lack of emphasis on writing high-quality assertions.

3 Mutation Score
(Section 2.4.2)

A test suite with low mutation score [67] indicates that it is not
sensitive to artificially seeded faults [110], and may fail to catch
changes that could potentially introduce real faults.

Chapter 4

4 Execution Time Tests should provide fast feedback to developers [189]. If not,
this may discourage them from running them as frequently as
they should.

5 Diversity Tests that exercise only certain execution traces are likely to
indicate low test diversity. Developers often use a “copy and
paste” approach from previous test cases to derive new tests [70].
Syntactically, this means the test cases may execute similar
program paths.

6 Flakiness
(Section 2.6.1)

Tests that produce inconsistent outcomes—such as passing and
failing intermittently, even when executed on the same environ-
ment without code changes—are known as flaky tests [211, 182].
Flaky tests undermine the trust in the test suite, making it
harder to distinguish real failures from false positives.

Chapter 3

7 Brittleness
(Section 2.6.2)

Tests that are highly coupled to implementation details may
break due to production code changes [165]. Tests should only
focus on the behaviour of the program under test, and not its
implementation.

Chapter 5
&

Appx. A

8 “Realism”
(Section 2.6.2.1)

Tests that do not imitate how public APIs [165] are used in
production—exercising the program differently from real-world
users—may lack realism and potentially lead to false outcomes.
Similar to brittleness, low realism in tests means they do not
verify the behaviour of the production code, resulting in unreli-
able tests.

Chapter 6

9 Environmental-
Dependent

Tests that the outcome is dependent on certain operating sys-
tems [155] may lack portability as it is tightly coupled with
certain environments.

10 Variability of
Indicators

A test suite that varies in its coverage [148] or mutation
score [239] levels from run to run, is an indication of an unstable
test suite. Variability in outcomes is another sure sign of an
unhealthy test suite.

1.2. AIMS 5

to achieve a healthy test suite requires considering a broader perspective that goes
beyond individual test implementation and maintenance updates.

1.2 Aims

The primary aim of this thesis is to understand and develop techniques that could
improve the reliability and effectivness of test suites. To address these open challenges,
I set two high-level objectives for this thesis:

1. Understanding: To identify the challenges that limit the lifespan and effective-
ness of test suites.

2. Improving: To develop and empirically evaluate automated techniques to
improve the effectiveness of test suites and repair unreliable test cases.

1.3 Thesis Contributions

To achieve these objectives, this thesis makes five primary contributions. Figure 1.1
shows the relations between the chapters in this thesis. The following subsections
provide a summary of each chapter1.

1.3.1 Flakiness in EvoSuite-generated tests (Chapter 3)

Chapter 3 is part of a paper that I have published in the proceedings of the 46th
International Conference on Software Engineering (ICSE), 2024 [142].

One of the key indicators of an “unhealthy” test suite is flaky tests [187], as
described in Table 1.1-#6. Flaky tests have been extensively studied in developer-
written tests [168, 141], but their prevalence still remains unexplored in automatically
generated tests.

For this, I have made an empirical evaluation of flaky tests generated by Evo-
Suite [122] on 1,902 Java projects, and compared them to the root-causes of the
flakiness with developer-written tests. I also evaluated the effectiveness of flakiness
suppression mechanism to remove or repair any flaky tests that are generated by Evo-
Suite. Among the findings are: (1) flaky tests generated by EvoSuite without flakiness
suppression mechanism is as common as developer-written test; (2) the root causes of
flakiness in both are distributed differently; and (3) EvoSuite’s flakiness suppression
mechanism is able to reduce the number of flaky tests by 71.7% but different root
causes of flakiness. The main contributions of this chapter are as follows:

1In this thesis, I will use active voice to describe the work I have done, even in a collaborative
setup, to highlight my contributions.

1.3. THESIS CONTRIBUTIONS 6

Table 1.1 and Chapter 2:
Test Suite Health

Chapter 3
Test Suite Health
(#6. Flakiness):

Understanding Flaky
Tests Generated by

EvoSuite
[142]

Chapter 5
Test Suite Health

(#7. Brittleness):
Test via Public API vs
Implementation Details

[225]

Appendix A
Viscount

(#7. Brittleness):
A Direct Method Call
Coverage Tool for Java

[226]

Chapter 4
Test Amplification
using EvoSuite

(#3. Mutation Score):
Improve existing

developer-written test
suite’s mutation score

[224]

Chapter 6
Coverage-Preserving Test

Replacement using EvoSuite
(#8. Realism):
Modify existing

developer-written tests that
call non-public methods

directly

Test Suite Health ToolUnderstanding Test Suite Health Indicator

Test Suite Health Improvement and Repair

Figure 1.1: The connections between the chapters of this thesis are
depicted here. Red blocks focus on “understanding” issues related to
Test Suite Health, green blocks are dedicated to techniques to automati-
cally “improve” the quality and health of the test suite, and the orange
block represents the tool I developed to evaluate test health-related
issues. The arrows between the blocks indicate that each builds upon
the previous one, and citations indicate chapters based on my published
work.

1.3. THESIS CONTRIBUTIONS 7

1. Empirical study (Section 3.2): My empirical evaluation, involving 1,902
open-source Java projects, is the largest conducted to date on both flaky tests
and search-based test generation. It is also the first to investigate the root causes
of automatically EvoSuite-generated flaky tests.

2. Recommendations (Section 3.3 and Section 3.5): The results of this study
have significant implications for software developers, maintainers of EvoSuite, and
researchers in the field of flaky tests. From these findings, I provide actionable
insights and recommendations for them.

3. Dataset [52]: The dataset I collected for this study is the first publicly available
dataset of flaky tests that includes EvoSuite-generated flaky tests and features
a large manually annotated sample. This dataset is included in the replication
package to enable further research [52].

1.3.2 Improving Mutation Score of Developer-Written Tests
using EvoSuite (Chapter 4)

Chapter 4 is based on a paper that I have published in the proceedings of the 14th
International Symposium on Search-Based Software Engineering (SSBSE), 2022 [224].

As stated in Section 2.8.1, the state-of-the-art test amplification tool, DSpot, offers
only limited approaches to modify existing developer-written test cases and is not as
flexible as EvoSuite’s evolution process. After evaluating the reliability of EvoSuite-
generated tests as discussed in Chapter 3, in this chapter, I evaluated the “best of
both worlds” approach that utilises EvoSuite’s Genetic Algorithm while using the
developer-written tests as seeds (initial population) to improve the fault detection
capabilities (Table 1.1-#3)—measured by mutation score—of existing developer-written
tests. The main findings from this work are: (1) tests generated by EvoSuiteAmp were
more effective at killing mutants when compared to DSpot; (2) over 30 repeated runs,
EvoSuiteAmp tests were able to kill more “unique” mutants when compared to DSpot;
and (3) anecdotally, EvoSuiteAmp tests were found to be less readable when compared
to DSpot.

The contributions of this chapter that improve the quality of existing developer-
written test suites are as follows:

1. EvoSuiteAmp (Section 4.2) [51]: A new test improvement strategy that utilises
the flexibility of EvoSuite, EvoSuiteAmp, that evolves test cases and leverages
fitness information for killing specific mutants.

2. Dataset (Section 4.3): An empirical study with seven open-source projects
comparing EvoSuiteAmp with an existing state-of-the-art test amplification tool,
DSpot.

3. Evaluation (Section 4.4): Results and analysis of the effectiveness of both
tools in terms of mutation score and mutants uniquely killed by each tool.

1.3. THESIS CONTRIBUTIONS 8

1.3.3 Private — Keep Out? Test via Public API vs Imple-
mentation Details (Chapter 5)

Chapter 5 is based on a paper that I have published in the proceedings of the 40th
International Conference on Software Maintenance and Evolution (ICSME), 2024 [225].

This chapter focuses on unit testing practices when it comes to invocation of
production methods based on its visibility (Table 1.1-#7). It combines an analysis of
4,801 open-source projects, a developer survey that received 73 responses, a systematic
search on StackOverflow involving 60 threads, and provide actionable recommendations.
Replication package is available at [56].

Using both numerical and thematic analyses, I made several findings: (1) developers
are divided on whether to test exclusively through public APIs; (2) developers who
are in favour of only testing through the public APIs tend to have more experience in
writing unit tests and believe that the need to test non-public methods directly is due
to poor software design; and (3) developers who test non-public methods directly are
more concerned about untested areas and overly intricate tests.

This chapter contributes the following to the understanding of another issue in test
health:

1. Open-Source Study (Section 5.4.1): An empirical analysis of the visibility of
methods called directly from the tests across 4,801 Java projects from the Maven
Central Repository.

2. Developer Survey and StackOverflow Threads (Section 5.4.2–5.4.4): A
numerical and thematic analysis of 73 developer survey responses and 60 Stack-
Overflow threads to identify developer attitudes and approaches to testing public
APIs versus testing non-public methods directly.

3. Findings and Recommendations (Section 5.7 and (Section 5.6)): I
discussed a range of findings and summarised the current practices. From there,
I offer directions for future work to improve another issue regarding test health.

1.3.4 Replacing developer-written tests that call non-public
methods directly (Chapter 6)

This chapter presents a technique for replacing directly called non-public methods in
developer-written tests with public APIs that execute them indirectly, to enhance its
realism (Table 1.1-#8). As discussed in Chapter 5, some developers find it challenging
to test exclusively through public APIs, leading them to test non-public methods
directly. This test repair technique utilises EvoSuite’s search-based approach to identify
candidates that can replace the directly invoked non-public methods with Public API
while attempting to preserve the branch coverage of the method. The evaluation
which involves 181 Java project revealed the following findings: (1) EvoSuiteUTOPIA

1.3. THESIS CONTRIBUTIONS 9

is able to successfully replace 55.7% of the directly called non-public methods; (2)
successful replacement is able to maintain an average of 84.79% branch coverage; and
(3) unsuccessful replacements were due to not being able to find Public API candidates
that are invoking the non-public methods, limitations in EvoSuite’s instrumentation,
and external dependencies.

The chapter focuses on improving the reliability of developer-written test suites
makes the following contributions:

1. EvoSuiteUTOPIA (Section 6.2) [57]: A novel technique and a new fitness
function to replace non-public methods directly invoked in a test with public
methods that exercise them indirectly.

2. Dataset (Section 6.3): An empirical study conducted on 136 projects to assess
the feasibility of EvoSuiteUTOPIA.

3. Evaluation (Section 6.4): Findings and analysis of the effectiveness and
usefulness of EvoSuiteUTOPIA in replacing non-public method invocations in tests.

1.3.5 Viscount: A Direct Method Call Coverage Tool (Ap-
pendix A)

GitHub Repository: https://github.com/unittesting-nonpublic/viscount
Appendix A is based on a tool paper that I have published in the proceedings of the
40th International Conference on Software Maintenance and Evolution: Tool Demo
Track (ICSME - Tool Demo Track), 2024 [226].

I have developed an open-source tool called Viscount to identify methods and their
visibility (access modifiers) that are directly invoked in JUnit test suites. This tool can
help developers identify test cases that need to be refactored to ensure that tests are
more maintainable and less brittle. The evaluation of JUnit test cases in open-source
projects, as discussed in Section 5.4.1, was conducted using Viscount. Appendix A
provides details about Viscount’s inner working and discuss its current limitations.

1.3.6 Summary

In summary, as shown in Figure 1.1, this thesis contributes to understanding and
improving the reliability and effectiveness of test suites. The chapters in this thesis
address the challenges that limit the lifespan and effectiveness of test suites, and develop
and empirically evaluate automated techniques to improve the effectiveness of test
suites and repair unreliable test cases.

https://github.com/unittesting-nonpublic/viscount

Chapter 2

Literature Review

2.1 Introduction

Developing high-quality software should be supported with software testing [196, 67], a
critical part of the software development life-cycle. In this chapter, I surveyed relevant
concepts and works that are related to the contribution of this thesis. It begins by
briefly explain about software testing. It then discusses the topic of software testing,
the introduction of Test Suite Health. The chapter then examines the various metrics
available for assessing test suite reliability and effectiveness. Finally, the chapter
introduces on how automated unit test generation [68], test amplification [105], and
test repair [152] techniques could be employed to improve the health of a test suite. It
also highlights prior studies that have explored the use of automated test generation
tools to improve the reliability and effectiveness of test suites.

2.2 Software Testing

Software testing is a critical part of the software development process [67] that intends
to assess the quality of the system-under-test. It is the process of executing a program
with the intent of finding faults by evaluating the behaviour of the program on a finite
number of inputs. The collection of a finite set of inputs (test case [45]) is known as a
test suite that executes the system under test (SUT) [266]. However, it can never show
the absence of faults as it is impossible to exhaustively test a software in general [102].
Thus, the main challenge and goal is to find a subset of inputs that will discover as
many faults as possible in the software. The consequences of not exercising good test
inputs can range from minor issues (e.g., small user annoyance) to catastrophic (e.g.,
[114, 21]), that lead to data theft or loss of service.

10

2.3. UNIT TESTING 11

public String sort() {

Collections.sort(items);

return String.join(",", items);

}

Figure 2.1: An example of sort() method that is being executed by
Figure 2.2

2.3 Unit Testing

Software testing can be done on multiple different levels (e.g., unit, integration, system)
and the first level of testing, also known as unit testing, is performed on the “software
units or groups of related units” [45]. It usually serves as the first line of defence
against any introduction of software faults. A unit test case [45] is a small piece of
code (unit) designed to execute a specific behaviour of the program, which includes
certain numbers of observations about the behaviour of the program being executed.
If the expected observed output is different from the actual output, the test will fail,
and it usually indicates a software fault—a static defect in the program [67].

An example of a method that should be unit tested is shown in Figure 2.1. Typically,
to test the method, a unit test case similar to the example in Figure 2.2 consists of the
four main components: test inputs, invocation of a method-under-test, test output, and
test oracle (assertion). The test starts by setting up some inputs necessary for the test
to run (line 3 to line 5). The test then will execute a method (sort()) of the program,
as shown on line 6, storing the test output in a variable. Finally, the assertion oracle
will check if the output of the variable matches with the expected output using the
assertEquals, as shown on line 7. A test case will fail if the assertion fails, indicating
that either the program has a fault or the assertion is incorrect.

In order to validate the behaviour of a program, test oracles, mainly in the form
of assertions are created, and it catches certain expected behaviour. One of the main
challenges in writing unit test cases is distinguishing between correct program behaviour
and incorrect behaviour. This is known as the test oracle problem [79], and it requires
human with domain knowledge of the program under test. It would also not be feasible
to write test for all possible test inputs and outputs. This means it is important to
identify places where the program is most likely to exercise the correct and write test
cases to ensure that the program behaves as expected.

2.4 Test Adequacy Criteria

As discussed in the previous section, one of the main goals of testing is to discover
faults in a program. However, being able to decide when it is “enough” [265] to stop
testing could be challenging, especially if there are no specific engineering goals to
be achieved. To address this issue, few test adequacy criteria [252] metrics are being

2.4. TEST ADEQUACY CRITERIA 12

proposed to measure the capability of a test suite to expose faults [136] and determine
whether a sufficient range of behaviours of the program have been tested.

2.4.1 Code Coverage

The most widely used test adequacy criteria to assess the quality of a test suite is code
coverage. Code coverage refers to the code units that have been executed by the test
cases within a test suite [266]. It also gives an approximation of the test suite’s ability
to capture as much of the program behaviour [126]. Before a developer can detect any
faults in the system, a test case must execute the line(s) in which the fault resides.

The simplest and most common form of code coverage is line coverage, which
requires that each line of code in the system under test (SUT) is executed at least once
in the test suite. However, by simply executing all statements in the program does
not guarantee that faults could be found. For example, covering only one side of a
conditional statement will not cover all statements. Another improved coverage metric,
known as branch (decision) coverage, offers more accurate results than line coverage.
Instead of relying on the number of lines of code, branch coverage focuses on control
structures such as conditional statements, measuring how many of these structures are
exercised by at least one test case in the test suite. The most commonly used coverage
metrics in practice are statement coverage and branch coverage [153].

Coverage can be measured at different levels within the program and includes the
following:

• Statement / Line coverage: The number of lines of code covered by the test suite.

• Branch coverage: The number of branches (conditional statements) covered by
the test suite (e.g., “true” and “false” branches).

• Method coverage: The number of methods covered by the test suite. Measuring
method coverage requires less effort than line coverage.

@Test

public void testAdd () {

Example example = new Example ();

example.add("item1");

example.add("item2");

String testOutput = example.sort();

assertEquals("item1 ,item2",testOutput);

}

Figure 2.2: A simple JUnit test case consisting of four main compo-
nents: test inputs, method-under-test invocation, test output, and an
assertion

2.4. TEST ADEQUACY CRITERIA 13

Observed Program
State

Test

Fault

Incorrect
Program

State

Incorrect
Final State

Outputs and Final Program
State of Variables

Test Oracle
Strategies

Reaches

Infects

Propagates

Reveals

Figure 2.3: RIPR model. Taken from [67]

• Class coverage: The number of classes covered by the test suite. This is the
simplest form of coverage.

It is often assumed that higher code coverage indicates that it already meets the
criteria of having a high-quality and healthy test suite. However, a fault will only
be detected if a test case executes the line(s) in which the fault resides, and if an
assertion is present to check the validity of the expected output, meaning that there
is a possibility of having a test case that executes the lines of faulty code without
revealing the fault.

Fault Propagation Problem

Based on the Reachability, Infection, Propagation, Revealability (RIPR) model [67],
detecting a fault involves four steps:

1. Reachability: The location that contains the software fault must be reached. As
shown in Figure 2.4.1.

2. Infection: The state of the program must be incorrect after executing the location
of the software fault. As shown in Figure 2.4.2.

2.4. TEST ADEQUACY CRITERIA 14

(0) Original (1) Reachability (2) Infection (3) Propagation (4) Revealability

test 1 test 2 test 3 test 4 test 5

Figure 2.4: Input that can satisfy the RIPR model. The black line
shows the execution trace for the original program, while the yellow line
shows if it is being executed on the modified program. The deviation
of the two lines indicates that, for the same input, it starts to produce
different states. The green circle is an observation on the output that
can reveal the failure.

3. Propagation: The infected state must propagate to cause the output to be
incorrect. As shown in Figure 2.4.3.

4. Revealability: A test oracle that can expose the software failure—incorrect exter-
nal behaviour relative to the specified requirements or expected behaviour [67].
As shown in Figure 2.4.4.

Figure 2.3 depicts the RIPR model. The model described is necessary to induce
failures in the system, thus achieving only high code coverage is not enough.

2.4.2 Mutation Testing

Based on the RIPR model previously described, since code coverage may not be
sufficient to evaluate the quality of a test suite [91], another way to assess the quality
of a test suite is through mutation testing [154, 208]. Mutation testing, introduced
by DeMillo et al. [110], is a fault-based testing technique that is used to evaluate the
quality of a test suite by introducing small changes to the system under test (SUT)
and validate if the test suite can detect the changes [69]. By syntactically changing
part of the original program, it will create a faulty version of the program. This is
inspired by the idea from Competent Programmer Hypothesis [59] where a competent
programmer will develop programs that are close to the expected version.

2.4. TEST ADEQUACY CRITERIA 15

Definitions in Mutation Testing

• Killed Mutant: A mutant M , is killed if test suite T , consists of at least one
test that fails when run against the mutated program.

• Survived Mutant: A mutant M , survives if test suite T , does not have any
test case that fails when run against the mutated program.

• Equivalent Mutant: A mutant M , of a program P , is equivalent if and only if
M semantically equivalent to P .

• Stubborn Mutant: A mutant M , of a program P , is hard to kill as it has a
limited range of inputs that could kill it.

• Trivial Mutant: A mutant M , of a program P , could be easily killed with
certain inputs.

The small artificial changes are known as mutants and they are created by applying
mutation operators to represent typical programming mistakes. Such operators are
used to modify the original expression by inserting, replacing, and deleting certain
primitive operators, and this includes:

• Arithmetic Operator Replacement: changing arithmetic operators (e.g., +, −, ∗,
/) to other arithmetic operators.

• Relational Operator Replacement: changing relational operators (e.g., <, >, <=,
>=) with another relational operators.

• Conditional Operator Replacement: changing the conditional operator (e.g.,
AND, XOR, OR) to other conditional operators.

• Statement deletion: removing a statement from the program.

• Replacing variables: replacing variables with other variables.

A mutant can be killed only if the mutated program produces altered output
(Figure 2.4.3), and if there is an assertion (green circle in Figure 2.4.4) in the test that
can ultimately detect the deviation in the program’s output from the original expected
result, causing the test to fail [113]. If the mutant could not be killed by any test case
in the test suite, the mutant is considered to have survived.

Mutation testing concludes with a mutation score, which indicates the effectiveness
of the test suites in catching all the artificial faults. Mutation score is the ratio of
the total number of mutants that were killed by the test suite to the total number
of mutants generated. A high mutation score indicates that the test suite is effective
in detecting the mutants in the system. Mutation testing has been shown to be an
effective technique for evaluating the quality of a test suite and has been used in many
studies to evaluate the quality of test suites [154].

2.5. REGRESSION TESTING 16

// original program

public boolean addLoop () {

for (int i = 0; i < 10; i++) {

add(i);

}

}

// mutated version of the program

public boolean addLoop () {

for (int i = 0; i != 10; i++) {

add(i);

}

}

Figure 2.5: An example equivalent mutant. Taken from [154]

However, there are some limitations to the usage of mutation testing. Firstly,
mutation testing is computationally expensive, as it requires running the test suite
against a large number of mutants [208]. As an example, given that a program with
100 mutants and a test suite that consists of 10 tests, it requires at most 1,000 test
executions to evaluate all mutants, limiting the scalability of this technique. As a
result, this has hinder the widespread adoption of mutation testing as a standard
practice in the industry (e.g., Google [215, 214], Meta (Facebook) [81]). However, there
has been some work in reducing the execution costs of mutation testing, leveraging
multi-threading execution of mutants [133] or batching non-conflicting mutants [174].

Secondly, some mutants can be equivalent [183], meaning that the mutated version
of the program is semantically equivalent to the original program [86]. A simple
example of equivalent mutants is shown in Figure 2.5. In this example, although
the program has been mutated (changing the operator from ‘<’ to ‘! =’), the two
programs are semantically equivalent, meaning that for every output, it will produce
identical output. There has been some work in trying to detect equivalent mutants
using symbolic techniques and mathematical models, however this problem is still
undecidable [154] and could hinder the adoption of this technique in practice.

2.5 Regression Testing

As software programs will evolve over time, developers may be wondering what are
the semantic impact of the syntactical changes to the program, and whether it will
introduce new faults that affect the original program. One way of making sure that the
original intended behaviour of the program remains the same, developers will execute
existing test suite to the newly changed program. Any test failures can potentially
indicate a regression [45] in the behaviour. This practice is also known as regression

2.6. TEST SUITE HEALTH 17

testing, in which it provides a way to ensure that the modifications made to the program
do not introduce new faults and that the existing functionalities of the program are
still working as expected. It provides confidence that new features or changes to the
program do not interfere with the existing behaviours [48]. Developers may add new
features or refactor1 existing behaviour [120] and implementation details, potentially
introducing unintended complexities that could impact the original test suite.

Software regression can be detected through re-running existing test suites that
consist of test inputs and test oracle that can reveal semantic differences between the
original program and the newer modified version of the program. In order to make
sure that the regression test suite is in high quality and reliable [152], it relies on at
least these three assumptions about the test suite:

1. A high-quality regression test suite that covers a wide range of the program
behaviours, ensuring if the behaviour of the program changes, existing tests will
catch the behavioural differences (discussed in Section 2.4).

2. Tests should behave deterministically when being executed on the same program,
ensuring that it will produce reliable and consistent test results [182, 210].

3. Tests should only focus on exercising the behaviour of the system, ensuring that
the tests are not tightly coupled with the implementation details, which could lead
to false positive failures when the implementation details are updated [165, 83].

2.6 Test Suite Health

A high-quality and functional test suite that only achieves high code coverage and high
mutation score does not guarantee a healthy test suite that can protect developers
against regressions. In cases where a test suite is not healthy, it could lead to a
situation where it is not able to detect faults in the system effectively. Instead, the test
suite could become unreliable and might hinder developer’s day-to-day activities [152].
Labuschagne et al. [166] also found that 64.62% of 935 build failures resulted from
faults in the production code. This means that more than a third (35.38%) of failures
were due to unreliable tests.

Removing unreliable test cases could tremendously affect the quality of the regression
test suite, and faults could be missed. Therefore, making sure that unhealthy test
cases are being repaired or improved is a crucial task [257]. Table 1.1 shows a list
of indicators that should be considered when evaluating the “fitness” of a test suite.
Minimally, a healthy test suite should (i) meet the test adequacy criteria (e.g., code
coverage) that are required (Section 2.4), (ii) report any regression without giving false
positive failures, (iii) can easily adapt or change, and (iv) gives quick feedback.

1Refactoring means improving the structure, readability, and efficiency of existing code without
changing its behaviour. It helps make the code easier to maintain and more efficient.

2.6. TEST SUITE HEALTH 18

@Test

public void testRsReportsWrongServerName () throws Exception {

MiniHBaseCluster cluster = TEST_UTIL.getHBaseCluster ();

MiniHBaseClusterRegionServer firstServer =

(MiniHBaseClusterRegionServer)cluster.getRegionServer (0);

HServerInfo hsi = firstServer.getServerInfo ();

firstServer.setHServerInfo (...);

// Sleep while the region server pings back

Thread.sleep (2000);

assertTrue(firstServer.isOnline ());

assertEquals (2,cluster.getLiveRegionServerThreads ().size());

... // similarly for secondServer

}

Figure 2.6: An example of flaky test caused by asynchronous wait.
Taken from [182].

2.6.1 Test Flakiness

A test is only useful if when being executed on the same program, it will produce
the same outcome, meaning that the test is deterministic. Only at that point that
the outcome truly representative of the test, making it reliable to reveal failures and
to compare across various program versions. A common issue that can impact the
health of a test suite, as reported by large software companies such as Meta [146] and
Google [189], is the occurrence of non-deterministic test outcomes, also known as flaky
tests [182]. A flaky test is a test that can be observed to have both passing and failing
outcomes when executed multiple times even on the same code under test without
any changes [210]. This is mainly caused by the non-deterministic behaviour of the
program, the program execution environment [134], or the test itself [263].

Figure 2.6 is an example of a flaky JUnit test from HBase project. The test uses
the Thread.sleep(2000) to wait for a server (firstServer) to ping back. The test is
flaky because it does not explicitly wait for the asynchronous call to complete, relying
on a fixed timing (2,000 ms), that could cause the test to sometimes fail. This type of
test can hinder the productivity of developers, as they might spend time debugging
the test, only to find out that the test is flaky. Rahman et al. also found that ignoring
flaky test failures can have a bad effect on the software stability, which leads to a
higher incidence of crash reports [217].

There are several studies conducted tries to categorise the root causes of flaky
developer-written tests [115, 182, 141, 167]. The categories of root causes slightly
differ between studies, mainly due to different programming languages. However, the
common root causes of flaky tests still remain the same. Table 2.1 shows the common
causes of flaky tests.

2.6. TEST SUITE HEALTH 19

Table 2.1: Different categories of root causes used to classify flaky
tests in various literature.

Category Description

Asynchronous
Waits

Test that makes an asynchronous call but does not explicitly wait for it
to complete, relying on a fixed timing, leading to non-deterministic test
outcomes. [182, 247, 115, 167, 141]

Concurrency Test that involves multiple threads interacting in unpredictable ways,
such as race conditions. [182, 247, 115, 167, 141]

Floating Point Test that relies on the result of a floating-point operation can encounter
discrepancies and inaccuracies, such as precision overflows, underflows, or
non-associative addition. [182, 115, 167]

Input/Output (I/O) Test that uses filesystem (handling input and output operations) can be
flaky because of storage space limitations. [182, 115, 167, 141]

Network Test that relies on a network connection, such as querying a web server,
can become flaky if the network is unavailable or the resource is busy. [182,
167, 115, 141]

Non-Idempotent
Outcome (NIO)

Test that is flaky due to shared state, e.g., a test that is executed twice
fail on the second time because the state was polluted during the first
execution and not properly reset. [251]

Ordering
Dependency (OD)

Test that relies on a shared resource altered by another test may be-
come flaky if the test execution order changes, leading to inconsistent
outcomes.[182, 247, 115, 167]

Platform
Dependency

Test that depends on specific OS features, library versions, or hardware
can be flaky, as it may behave consistently on one platform but fail in
others due to varying hardware or software setups. [247, 115, 141]

Randomness Test that relies on the output of a random value may fail intermittently
if it doesn’t handle all potential outcomes. [182, 115, 167, 141]

Resource Leak Test that mismanages external resources, like failing to release memory,
can cause flakiness in later tests that try to reuse those resources. [182,
247, 115, 167, 141]

Test Case
Timeout

Test case with an upper time limit can become flaky, as unpredictable
execution times may cause it to fail if the test runs slower than ex-
pected. [115, 141]

Test Suite
Timeout

Test in an upper time limit test suite may fail intermittently if it runs
when the suite exceeds the time limit. [115]

Timing Test that depends on the local system time can become flaky due to
variations in precision or timezone settings. [182, 115, 167, 141]

Too Restricted
Range

Test where some of the valid output range falls outside of what is accepted
in its assertions. This test is flaky, since it does not account for corner
cases and thus it may intermittently fail when they arise. [115, 141]

Unordered
Collection

Test that assumes a specific order for an unordered collection can become
flaky, as such collections have no guaranteed order. Tests relying on a
fixed iteration sequence may fail unpredictably due to factors like the
implementation of the collection class. [182, 167, 141]

2.6. TEST SUITE HEALTH 20

There has also been extensive work in detecting flaky tests. The easiest way to
detect flaky tests is by re-running the test multiple times. The inconsistent outcomes
of the test after repeatedly executing them indicate that they are flaky. This approach
has been universally adopted within large companies such as Microsoft [167] and
Google [192], and in most of the popular testing frameworks such as Maven’s Surefire
Plugin [27] and PyTest [34].

2.6.2 Test Brittleness

Another problem that could affect the health of a test suite is brittle tests. As software
code undergoes several changes during its lifetime, such changes might affect the tests.
Brittle test is a test that fails when changes are made to the code under test that
does not introduce any real faults [165, 152]. Similar to flaky tests, it could hinder the
productivity of developers, as they might spend time debugging tests that are failing
and not related to the expected behaviour of the system.

Direct Testing of Implementation Details

Brittle tests can be caused by the test being too tightly coupled with the implementation
details of the code under test, making it sensitive to changes that are not related to
the fault to the system. Bowes et al. [83] suggested that tests should only focus on
behaviour of the code under test, rather than the implementation details. The main
reason for this is if implementation details are changed or updated, the test becomes
obsolete and outdated, and it could lead to tests that breaks easily or produce false
positive failures [199]. However, if the test focus on expected behaviour and utilising
the public interface, it will avoid such problems [165]. Therefore, it is recommended to
focus on the behaviour rather than the implementation details [83].

Most programming languages clearly define where a public interface should reside—
typically using the “public” access modifier keyword. However, they differ in how
they handle the placement of different types of implementation details, also known as
non-public members. Most of object-oriented programming languages, such as C++
and Java, support the idea of strict encapsulation [243], which allows developers to
clearly separate the parts of the code that can be used externally from those that
contain internal implementation details [85]. While all programming languages provide
public visibility, each language defines its own rules for the “non-public” levels of
access.

For example, as shown in Table 2.2, Java has three levels of access modifiers for im-
plementation details: “protected”, “package-private” (default), and “private” [7,
137]. These three levels offer different degrees of accessibility, determining how and
from where the method can interact with the internal members of the class [231]. These
levels are not considered part of the Public API, as they are inaccessible to outside
non-subclass packages (World). The highest level of visibility, ‘public’, allows access
from anywhere, including those in other applications.

2.6. TEST SUITE HEALTH 21

This approach of having more than one level of visibility for implementation details
is similar across many other programming languages, such as C++ [2], C# [1], and
PHP [42], though its varying degrees are different between languages. For instance,
C# has five levels of non-public access modifiers [1]. Nevertheless, in general, most of
these languages follow a common pattern with three main levels: public, protected,
and private. Public members are globally and externally visible, protected members
are usually accessible only within the system, and private members are restricted to
the class or file itself.

In more modern dynamically-typed programming like Python, it does not have
any built-in notion to define a non-public member, or even a mechanism to differ-
entiate between public interface and non-public member [40]. Instead, developers
may adopt conventions such as using underscore (“ ”) to indicate that a member is
non-public, though it is not enforced. However, since this is purely convention and not
enforced by the language itself, it is harder to differentiate between public interface
and implementation details.

Despite the strict encapsulation strategy found in most object-oriented programming
languages, there are ways to bypass the access control mechanism to access non-public
members. For instance, reflection APIs in languages such as Java [178], Ruby [118],
C# [62] allows such access, while in C++, it is possible to grant special access to
certain methods and variables using the “friend” keyword [99].

The usage of these mechanisms is generally discouraged, as they can lead to brittle
tests that are tightly coupled with the implementation details of the code under test.
A study by Yang et al. [255] identified it as a test smell (poor testing practices that are
observable in the source code of test suites that can hinder its maintenance [80, 248])
called “Private Method Test”, they identified JUnit tests that directly invoke private
methods. Since private methods are not visible outside their class, they are also not
visible to JUnit tests either. Another test smell known as the “Anal Probe” smell,
discussed in a study by Martins et al. [184], broadly refers to a test that “has to use
insane, illegal or otherwise unhealthy ways to perform its task” [4]. This could involve
accessing private members of the class, such as through the Java Reflection mechanism,
which would typically be inaccessible, or manipulating access by extending a class
to reach protected members, or placing the test within a specific package to access
package-private members, which would otherwise be inaccessible. The “X-Ray Specs”
smell [44], as described by Garousi et al.[130], refers to tests that access or alter the
internal state of components that should remain hidden. Besides that, Van Deursen et
al. [248] also identified “For Testers Only” test smell, where developers write production
code that is not intended to be used anywhere in the system and only to support testing.
This enables developers to focus on writing test for the implementation instead of
exercising its behaviour through its public API. These smells are considered unhealthy
because they violate the encapsulation principle, making the test suite more brittle
and less reliable.

2.6. TEST SUITE HEALTH 22

Table 2.2: Visibility of different level of access modifier in Java.

Public API Implementation Details

Visbility public protected package-private private

Same Class
Same Package Subclass
Same Package Non-Subclass
Different Package Subclass
World (Public API)

Brittleness in Test Assertions

Huo and Clause [150] found that tests which consist of assertion statements that check
for values that its test input does not control could lead to brittle assertions and can
lead to dependency on other tests to be executed first [262]. They found that if a
previously executed test case that modifies the default values (e.g., field values) of the
system, the following test case that made an assertion on the assumed default values
could potentially fail, due to it has been updated in the previous test.

Verifying Interaction Test Cases Rather Than State

Another reason that a test could also be brittle is that, instead of trying to verify the
state of the system, a test tries to verify the expected sequence of actions (interactions)
when it is being invoked. Similar to the problem of directly testing implementation
details (Section 2.6.2), rather than validating what is the result, it checks how the
system reaches to the result. Carino et al. [90] found that Graphical User Interface
(GUI) recorded test cases can easily “break” if changes are made to the GUI. They
developed Blackhorse, a tool that removes coupling between the GUI components and
test cases, making sure that the modified test cases are not too tightly coupled to the
state to exercise the system.

2.6.3 Test Suite Health Summary

Table 1.1 summarises some other key indicators that could affect the health of a test
suite that will not be covered in detail in this thesis. Some other examples are the
variability of indicator metrics (e.g., Hilton et al. [148] looked into the variability of
code coverage results, Alshammari et al. [66] looked into flaky failures when applying
mutation testing), and environmental-dependent tests (e.g., tests that focused on
certain OS environment [155] or failing on CI/CD environment [166, 241]). These
indicators could potentially affect the overall health of a test suite, and it is important
to consider them to ensure that the test suite is more reliable.

2.7. AUTOMATIC TEST GENERATION 23

2.7 Automatic Test Generation

Automated test generation tools have seen a lot of improvement over the last few years.
It has lowered the cost of testing software process, while giving equal or better quality
in terms of test adequacy criteria when compared to the manually written test. For
the next three sections, I will discuss some of the techniques that have been taken to
generate test suites automatically:

1. Random Test Generation: Generate test data randomly to test the program
(Section 2.7.1).

2. Symbolic Execution: Symbolic execution test generation is performed by solving
the collected constraints using the constraint solver (Section 2.7.2).

3. Search-Based Test Generation: Dynamically generate test data using meta-
heuristic search techniques (Section 2.7.3).

2.7.1 Random Test Generation

The easiest and simplest form of test generation is random testing. By generating a
random sequence of inputs, executing it to the program, and observing the output,
it could be used to find faults in the program. This technique can be useful if the
program specification is not available or for identifying unknown security faults [193]
(e.g., fuzzing [259]). A commonly used random unit test generation tool, Randoop [202,
200, 201], uses random testing with a feedback-directed approach to generate test cases.
Randoop generates statements one by one and executes them to ensure that they
do not throw any errors. It uses the feedback from previously generated test inputs
to generate new sequence of inputs that avoid illegal statements or detect contract
violations.

Chen [93] suggested an extension to random testing, known as adaptive random
testing (ART) to make sure that test inputs are evenly spread across the input domain.
ART has been studied widely [92, 149] and has shown to be as effective as traditional
random testing. However, Arcuri and Briand [72] conducted a large empirical study
and found that it is not as cost-effective when compared to generating tests randomly,
as it could be done cheaply and quickly.

2.7.2 Symbolic Execution

A popular white-box testing strategy, known as symbolic execution [160], generates
test inputs by exploring program paths symbolically rather than using concrete inputs.
It replaces actual values with symbolic variables and traces all possible execution
paths. For example, an integer value like 5 is replaced with a symbol χ, which then
generates a symbolic representation of the output value. As it explores the program

2.7. AUTOMATIC TEST GENERATION 24

paths, symbolic execution collects constraints (path conditions) that must be satisfied
to reach a particular path.

The key advantage of symbolic execution in test generation is its ability to auto-
matically derive inputs that systematically explore different paths in the program. It
generates test inputs that cover a wide range of program behaviours, making it effective
for improving code coverage. By solving the path conditions with constraint solvers,
symbolic execution produces concrete test cases that are guaranteed to exercise specific
execution paths.

A major challenge with symbolic execution is its difficulty in covering complex
program paths, especially with a limited time. Path explosion [88], where the number
of paths grows exponentially, can occur when applied to a bigger project. Besides that,
symbolic execution tools often struggle to handle complex objects—data structures with
intricate internal states, such as nested components and dynamic interdependencies [77].
This complexity makes it harder for the tool to accurately model all possible states [88],
amplifying the path explosion problem and limiting the effectiveness of symbolic
execution in test generation.

To mitigate these limitations, symbolic execution is often combined with other
dynamic testing techniques, such as fuzzing, which is also known as dynamic symbolic
execution [134, 87, 234], it can help overcome some of these limitations. Dynamic
symbolic execution allows the symbolic execution to handle parts of the program that
it handles well, while using fuzzer to involve in areas that are not covered by symbolic
execution.

2.7.3 Search-Based Test Generation

Automation has taken a big role in reducing the cost of doing software testing [64].
For it to achieve an optimal solution while being inexpensive, it needs to reduce the
selection of test inputs. While random testing tries to exhaustively apply all possible
inputs, it is infeasible due to many possibilities of inputs. Therefore, choosing the test
inputs can be also seen as a search problem, and search algorithms are used to derive
test data [186]. Testers usually have a target to achieve, whether on finding crashes,
maximising code coverage, looking for security vulnerabilities, or even detecting known
faults in a program. In the infinite space of inputs, it is a good idea for testers to find
inputs that could potentially meet the target that they would want to achieve.

Search-based software testing [144, 145] is known for utilising optimisation tech-
niques such as hill-climbing, simulated annealing, and genetic algorithms for generating
inputs to optimise the fitness function. A fitness function is a way to evaluate how
close a potential solution is the optimal solution of a problem. It provides a numerical
score that reflects the effectiveness of a solution to meet certain criteria.

The usage of meta-heuristic techniques has seen a lot of improvements in automated
test generation. It could be guided by one or more fitness functions for scoring the
optimality of the chosen inputs [229]. With a goal on the purpose of doing the testing, a

2.7. AUTOMATIC TEST GENERATION 25

Global Optimum

Local Optimum

Local Optimum

Figure 2.7: Local optimum problem in hill climbing.

meta-heuristic optimisation algorithm can systematically search for the possible inputs
guided by the fitness function(s). Inside the software engineering area, search-based test
generation has been used commonly for automatically generating test inputs [186]. It
is a crucial automatic test generation technique that has been widely used in research.

Meta-Heuristic Search Techniques

Hill Climbing. Hill Climbing is a well-known simple search algorithm. The technique
will start by finding an initial solution randomly as the starting point and investigating
the closest neighbour of the solution. The initial solution will be replaced by a neighbour
with a better solution, which is repeated until no better solution can be found around
the neighbouring area.

As from the name of the technique, after finding the peak of the hill, the program
will assume that is the best solution. We would assume that the solution would be
improved over time and the chosen candidate will have better fitness when compared
to the initial candidate. The process is simple, and it would give the best result in a
short period of time.

However, there is a problem associated with this technique. As shown in Figure 2.7,
the search might get stuck only on the peak of the initial candidate’s neighbour as
it only considers the neighbour from the peak. Search spaces are not usually linear.
The chosen candidate could potentially be a local optimum and for a non-linear search
space, there is a high possibility that it is not the global optimum. To solve this issue,
there are some recommendations for running the hill-climbing technique multiple times,
known as multiple restart hill-climbing, with the assumption that the initial solution
checks for other areas too.

Simulated Annealing. Instead of only considering looking at a neighbour where the
fitness is increasing, simulated annealing [191] is another technique that permits the

2.7. AUTOMATIC TEST GENERATION 26

movement of the fewer fit individuals. Simulated annealing is inspired by the simulation
of metallurgical annealing. The idea is that when a highly heated metal is slowly
cooled off, the strength could still be increased. It has more freedom to move around
the search space. This technique solves the problem of only depending on the starting
solution, where it could be chosen badly. The approach will give freedom in the initial
stage and slowly follow the hill-climbing approach for the search space. However, if the
approach starts to cool off quickly, the search space starts to narrow down quickly, thus
making it stuck in a local optimum. This is similar to the hill-climbing problem [186].

Algorithm 1 A high-level description of Genetic Algorithm

Set generation number, m = 0
Initial population of candidate solutions, P(0)
Evaluate the fitness for each individual of P(0), F(P(0))

1: GenerateRandomPopulation
2: repeat
3: Recombination : P(m) = Recombine(P(m))
4: Mutation : P(m) = Mutate(P(m))
5: Evaluation : F (P(m)): Compute the fitness for each solution
6: Selection : P(m + 1) = Select(P(m))
7: m = m + 1
8: exit when goal or stopping criteria is met
9: stop

Genetic Algorithm. Genetic algorithm [143, 135] is the most used from the family
of meta-heuristic search (evolutionary) algorithms. It follows closely the nature of
Darwin’s “survival of the fittest” theory [242], where a population of initial randomly
generated candidate solutions is evolved using genetically inspired search operators.
These initial solutions are usually not the best for solving the target problems. To
increase the quality of the solutions, it then reproduces more individuals using genetic
operators such as crossover, mutation, and selection to improve the initial candidates
to better candidate solutions which are guided by the measurement of the fitness
function. During crossover in genetic algorithms, two candidates are randomly split
into halves, and their segments are combined to produce a new candidate. For mutation
technique in genetic algorithm, random modifications are applied to existing candidates
to introduce new variations that explore new solutions. To reach beyond the initial
“parent” population, new random candidate solutions will also be added to the pool of
the population and the process mentioned previously will be repeated. The improvement
will be generated on multiple stages and when the search is stopped, hopefully, the
optimal solution will be found. The stopping condition will depend on the user, such as
time limit, or found the best solution. Other stopping conditions include the maximum
number of generations or meeting fitness goals that it desires. Algorithm 1 represents

2.7. AUTOMATIC TEST GENERATION 27

the generic genetic algorithm.

Search-Based Unit Test Generation

Based on Section 2.7.3, it has shown that it is possible to create a very close represen-
tation of an ultimate solution. Those techniques are suited for generating unit tests.
In this section, I will discuss some of the different approaches that have been done
with applying this technique.

Random Search Test Generation. The simplest strategy to create a new test
case is by simply generate sequences of statements to the program randomly. If the
randomly generated sequence of inputs (test case) found a new branch, it will be added
to the test suite, else remove if it did not. This simple approach is similar to the
well-known American Fuzzy Lop (AFL) fuzzer [259], where inputs that discover new
paths will be kept in the seed. However, for a branch that has a low probability of
being executed, they are unlikely to be covered. In order to solve this problem is to
enhance the random search by using pre-seeding strategy, where initial inputs are given
before starting random search [223].

Seeding Strategy. The process of seeding involves providing an initial set of inputs
to navigate the search process towards certain input values that have a higher chance
to execute the engineering goals [147]. The initial set of inputs are usually chosen
based on previous related knowledge to help solve the problem. In the context of test
generation, Fraser and Arcuri [123] proposed gathering seeds statically and dynamically.
Static seeding is done by collecting all primitive and string values that appears in the
Java bytecode of the class under test. The static seeding approach is similar to what
have been proposed by McMinn et al. [188], to use seed values from source code or
documentation with the goal to reduce human oracle costs. Primitive and string values
that are encountered during the execution (runtime) of the program may also be added
to the seed (dynamic seeding). Another strategy that has been proposed by Danglot
et al. [106] is to use the existing developer-written test suites to generate new test
cases to improve existing developer-written test, which is known as test amplification.
Seeding strategy has also been widely used in fuzz testing [219] and found it to be very
useful approach.

Evolutionary Search for Test Generation. While random search even with good
seeding strategy still relies on encountering new solutions by luck, guided searches aim
to find best solutions more directly by using a problem specific “fitness function”. Usage
of the search-based algorithm, to be more precise genetic algorithm, for generating unit
tests can produce a high quality test suite when compared to the random search.

EvoSuite [124] and Pynguin [180] is the state-of-the-art unit test generation tool
that uses a search-based approach to automatically generate test suites to achieve

2.7. AUTOMATIC TEST GENERATION 28

certain test goals (e.g., code coverage). The generated test suite also includes test cases
with assertions to verify the expected and actual results. It uses the genetic algorithm
to generate test cases that evolves using the evolutionary search and ends with the
best optimal test suite. It has also been used to generate test cases for many projects
in different domains [157].

Mutation-Test Based Generation. In order to kill a mutant, a test must meet
three key conditions: it must be able to reach the mutant, infect the propagation state,
the infection needs to be manifested to the program output, and an oracle that could
reveal the failure. This is explained in the RIPR [176] formula in Section 2.4.1. These
conditions can be used as a fitness function to guide the generation of test cases.

Botacci [82] adopted the fitness function concept of the search-based approach
to generate tests capable of killing mutants. Fraser and Zeller [128] implemented
similar idea in their tool, µTest, which creates unit tests with assertions aimed at
killing mutants. The fitness is measured by combining the distance to execute the
mutated statement, the distance of the mutated statement to be reached, and the
impact significance of the mutant on the rest of the execution.

In EvoSuite, Fraser and Arcuri [125] used the similar approach as µTest, applying
genetic algorithms for weak and strong mutations. It is done by measuring the mutants’
impact [128] to satisfy one of the conditions, which is propagation. The mutants’
impact is the number of statements with changed paths, between the mutated program
and the original program. This is an extension from the Weak Mutation Testing
where it only checks the node coverage (Figure 2.4.2). Since a unit test needs to be
observed using test assertions, whether it is failing or not, µTest needs to consider the
propagation (Figure 2.4.3). The propagation is calculated by observing (Figure 2.4.4)
the difference of control flow and data between the original and mutated program when
the test is run. The more differences in the infection, the higher chance of it being
propagated to different outputs.

There are three parts of fitness function that need to be combined to satisfy the
strong mutation testing technique. Using the function proposed by Arcuri [71], where
v(x) is a normalising function from [0, 1]:

• How close for each branch to be executed:

dbranch coverage(branch, test) =

0, if branch has been covered

v(dmin(branch, test)), if predicate executed ≥ 2

1, otherwise

The requirement to satisfy only branch coverage is as follows:

fB(T) = |F |+ |FT |+
∑
bk∈B

dbranch coverage(bk,T)

• How close towards the state of infection:

dinfection(mutant, test) =

{
1, if mutant not reached

v(dmin(mutant, test)), if mutant reached

2.8. TEST AMPLIFICATION 29

The requirement to satisfy the weak mutation is as follows:

fWM (T) = fB(T) +
∑

Mk∈M

dinfection(Mk,T)

• How significant the impact of the mutant on remaining execution:

dpropagation(mutant, test) =

0, if mutant can be asserted

1, if dinfection(mutant, test) > 1

1

1 + impactmin(mutant, test)
, if dinfection(mutant, test) = 0

The requirement to satisfy the strong mutation is as follows:

fSM (T) = fB(T) +
∑

Mk∈M

(dinfection(Mk,T) + dpropagation(Mk,T))

2.8 Test Amplification

As discussed in the previous section (Section 2.7), the software testing research com-
munity has developed new techniques [186, 202, 230] to automatically generate new
test cases from scratch. However, due to hard problems such as the test oracle prob-
lem [79], it is still not yet able to replace humans fully. This means that developers
are still mainly responsible to write their own test manually [70]. Test amplification is
a technique which utilises the presence of developer-written tests, and automatically
enhancing them to improve quality that can reveal additional failures or modify existing
tests to ensure their effectiveness and reliability.

Based on a survey by Danglot et al. [105], test amplification is defined as:

“Test amplification consists of exploiting the knowledge of a large number of test cases,
in which developers embed meaningful input data and expected properties in the form
of oracles, in order to enhance these manually written tests with respect to an en-
gineering goal (e.g., improve coverage of changes or increase the accuracy of fault
localisation).” [105]

Two of the main goals of test amplification that will be covered in this thesis are:

(i) adding new test cases to improve the required test adequacy criteria (e.g., code
coverage, mutation score) on existing or newer version of program, and

(ii) alter existing test cases to improve test adequacy criteria, or replace unstable
(flaky) outcomes and unreliable results that could cause false-positive failures
(brittle).

By improving the quality of tests, test amplification can directly contribute to
enhancing the overall health of a test suite. It can address important indicators such as

2.8. TEST AMPLIFICATION 30

low code coverage and low mutation scores which are critical to improve the effectiveness
of a test suite. Besides that, amplifying original developer-written tests can reduce the
maintenance burden by modifying brittle test to ensure the long-term reliability of the
test suite. In this way, test amplification serves as a powerful tool for improving test
suite health, complementing existing developer-written tests.

2.8.1 Adding New Tests

Most of the test amplification tools that are available focused on adding new test cases by
modifying existing test cases to improve the quality of test suites [58, 232, 105, 106, 84].
As an example, a developer that has a poor quality written test suite that only covers
certain parts of the program can use test amplification tool to increase code coverage
of the existing test suite by adding new test.

The state-of-the-art developer-centric [84] test amplification tool, known as DSpot [106],
amplify existing JUnit test suites by adding new test cases that could improve the
quality (e.g., code coverage, mutation score) of the test suite. The foundation of DSpot
is mainly inspired by two notable test generation techniques: (i) Tonella’s evolutionary
test input space exploration [246], and (ii) the regression assertion (oracle) improvement
work of Xie [254].

Inspired by Tonella’s search exploration, DSpot’s input amplification (I-Amplification)
is the process of generating new test inputs by mutating the original tests that includes:

1. Literals amplification: changing literal values used in the tests. As an example,
changing the value of a string by removing or replacing existing characters, and
adding new characters. For integer values, it could be increasing or decreasing
the value. For boolean values, it could be changed by flipping the original value.

2. Method calls amplification: changing, removing, or adding accessible method
call(s) in the existing test cases.

3. Test objects amplification: changing, removing, or adding test object(s) in
existing test cases.

Xie’s regression assertion improvement, also refer to as assertion amplification
(A-Amplification), is the process of generating new assertions by creating “observation
points” [79] during the execution of the tests. The observation points are used to
capture the current state of the system at the specific point. New regression assertions
will then be generated by comparing the value at the observation points with the
expected value.

Algorithm 2 outlines the steps for DSpot to amplify existing developer-written test
suites. The main inputs for DSpot are the developer-written test suite TS and the
program under test P. In the first stage, DSpot will first add assertions to the existing
test case (Line 3), which significantly improve the quality of the test case to catch faults.
After that, it applies I-Amplification (Line 9) and A-Amplification (Line 11) technique

2.8. TEST AMPLIFICATION 31

Algorithm 2 Main overview of DSpot’s amplification loop. Taken from [106]

Input: Program P, n number of iterations of DSpot’s main loop
Input: Developer-Written Test Suite TS
Input: Amplifiers amps to generate new test data input
Output: An Amplified Test Suite ATS

1: ATS← 0
2: for t in TS do
3: U← generateAssertions(t) ▷ Amplify Assertions
4: ATS← {x ∈ U|x improves mutation score / code coverage}
5: TMP← ATS
6: for i = 0 to n do
7: V← []
8: for amp in amps do
9: V← V

⋃
amp.apply(TMP) ▷ Amplify Inputs

10: end for
11: V← generateAssertions(V) ▷ Amplify Assertions
12: ATS← ATS

⋃
{x ∈ U|x improves mutation score / code coverage}

13: TMP← V

14: end for
15: end forreturn ATS

2.8. TEST AMPLIFICATION 32

n times to explore areas that has not been covered by the existing developer-written
test suite. It then produces a new test suite ATS that achieves a better code coverage
or mutation score.

Similar to DSpot, Small-amp [58] is a test amplification tool for Smalltalk program-
ming language, and Ampyfier [232] is for Python. Both uses the same approach as
DSpot to amplify existing test suites. However, as both Smalltalk and Python are
dynamically-typed programming languages, it has limited information about the type
declaration of the variables in the production code, which is a similar issue found in
automatic test generation tool from scratch, Pynguin [181] and Syntext-JavaScript [198].
Both Small-amp and Ampyfier used dynamic type profiling on the existing test suite
to capture the type arguments on the production method, and the variable types in
the test cases.

Rojas et al. [223] have also proposed different seeding strategies to guide EvoSuite
to generate new test cases. The seeding strategies include: using constant values,
dynamic values, and concrete types from the SUT, and re-use of objects from existing
test cases as seeds. They also found that the proposed re-use of objects from existing
test cases seeding strategy performed 2% better on average in terms of code coverage,
when compared to generating test from scratch. This approach is similar to the test
amplification technique, rather than start generating tests from scratch randomly, it
uses the knowledge of SUT to guide the search for new test cases. However, in the
context of test amplification, the seeding strategy is using existing developer-written
tests.

2.8.2 Altering Existing Test Cases

Test amplification can also be used to repair or alter existing test cases that are either
not in high quality (e.g., code coverage, mutation score), broken due to changes to
production code, or not healthy (e.g., brittleness, flakiness).

Improving Quality of Existing Tests

In trying to improve the code coverage of existing test suite, Dallmeier et al. [104]
amplify existing tests by adding and removing method being called in JUnit test cases.
Their main objective is to modify existing test case to widen the set of execution
(coverage) states of the original test suite. Orstra, a tool developed by Xie [254],
alter existing test cases by adding new assertions on the observed return value of the
method being called and the state of parameters. This is done by instrumenting the
CUT, execute the test suite, and collect the state of objects, where assertions are
created based on the recorded object state. Xie uses 11 Java classes to evaluate Orstra
and shows that it effectively improve the fault-detection capability of the amplified
test suite. AutoAssert [260] is a human-in-the-loop assertion generation tool that
is able to generate new and modify existing assertions based on the runtime values
and feedback from the developers. Zamprogno et al. [260] evaluated AutoAssert on

2.8. TEST AMPLIFICATION 33

developer-written test cases of 105 JavaScript and TypeScript open-source projects
and surveyed developers who used the tool, where they found that AutoAssert is useful
tool to improve the assertions for validating the program behaviour.

Evolving Software (Regression) Test Repair

The first work that repair broken JUnit test cases was proposed by Daniel et al. [108].
They developed a tool known as ReAssert, that replaces the expected values in assertion
statements with observed values during run time. This is done by applying a set of
heuristic strategies. They also extended their work [107] to use symbolic execution
strategies to overcome some limitations of the previous work when repairing test
cases. Symbolic constraints are built based on the literal values which can maintain
the assertion’s expected value. The symbolic constraints are then being updated to
literal values. The test is considered unrepairable for any cases where there are no
candidates of solution exists. Another tool known as TestCaseAssistant, developed by
Mirzaaghaei et al. [195], also repair broken JUnit test cases that are caused by changes
(addition, deletion, or modification) to method parameters (signatures) and extension
of the existing interfaces. It repairs broken method call by replacing literal values and
variables within the broken test to identify candidate of repairs. Li et al. [177] proposed
a tool, known as TRIP, to repair non-compilable broken Java tests after changes made
to production code by using a dynamic symbolic execution technique to find solutions
that preserve the original intent—the path conditions—of the broken tests. Yaraghi et
al. [256] also proposed a tool, called TARGET, that uses pre-trained large language
models (LLM)—specifically fine-tuned on Java and JUnit tests—to repair broken test
cases. This technique is able to maintain the original quality of the test suite and not
discarding broken test cases due to changes in the associated test case production code.

Order-Dependent Test Repair

Shi et al. [240] proposed a tool known as iFixFlakies that will recommend fix patches
for problematic tests due to test ordering problems. iFixFlakies will identify tests
that can pass when being run in isolation but fail when other tests are being executed
before (victim). iFixFlakies then reset or set shared states (cleaner) between tests
to “clean” the state pollution. However, iFixFlakies can only repair patches if there
exists polluted shared states in the test suite itself. Li et al. [175] proposed a tool
called ODRepair to address this problem of iFixFlakies, by generating a cleaner that
will repair order-dependent test cases by using Randoop [202] to generate test input
sequences to reset the state. In order to verify that the cleaner is able to repair the
order-dependent tests, ODRepair will pass the generated tests to iFixFlakies and
execute them again.

2.9. USING EVOSUITE TO IMPROVE TEST SUITE HEALTH 34

Flaky Test Repair

In trying to repair flaky tests attributed to the most frequent category discovered in
Microsoft’s distributed system, asynchronous waits category [182], Lam et al. [167]
proposed a tool known as FaTB (Flakiness and Time Balancer). It will repair asyn-
chronous waits flaky tests by executing the test 100 times and implement a binary
search to find the shortest waiting time so that it does not produce any flakiness
asynchronous waits outcome. However, such strategy relies heavily on the specific
machine that the test is being executed on, and it will definitely influence the suggested
waiting time. FlakeSync, a tool developed by Rahman and Shi [218], automatically
repair asynchronous waits category by introducing synchronisation in the test execution,
making sure that rather than relying on a specific waiting time, it will wait until the
asynchronous call is completed. DexFix [261] is another tool that is able to repair
failing assertions due to flakiness by applying templated-based repair strategies that is
related to non-determinism. The repairs mostly include changing assertions for ordered
collections. Lastly, Chen et al. [94] proposed a tool known as FLAKYDOCTOR that
repair order-dependent tests and flaky tests that are assuming some ordering in an
unordered collection by applying large language models (LLM) to create a patch for
repairing the flakiness and validate the patch by compiling the generated patch. If the
generated patch unable to be compiled, the approach of regenerating again using LLM
is applied. The approach of finding the patch is repeated five times.

2.9 Using EvoSuite to Improve Test Suite Health

EvoSuite [122] is the state-of-the-art search-based test generation tool widely used to
generate test suites for Java programs. It has been shown to be able to generate test
suites that can achieve high code coverage [221] and mutation score [127]. Additionally,
EvoSuite’s flexibility has enabled it to be extended in many ways, incorporating various
features and techniques [121].

EvoSuite also supports modification to the existing search technique to improve
the quality the test suite. For instance, Panichella et al. [204] employs many-objective
optimisation technique and Galeotti et al. [129] combines dynamic symbolic execution
(Section 2.7.2) approach with search-based technique. Furthermore, EvoSuite also
supports multiple seeding strategies [228, 123, 223], adapting new fitness criteria [221,
132, 264], usage of mocking framework to create mock objects that are not easily
covered [76], and improving the understandability and readability of the tests [103, 109].
EvoSuite also offers built-in mechanism—from 12 different parameters (Table 3.1)—that
suppress non-deterministic outcome in the test that it generates.

These flakiness suppression mechanisms are part of four groups: Test Creation,
Sandbox, Test Output, and Test Execution.

• Test Creation group is mainly responsible for ensuring that the static fields are
being reset, which this includes the get fields and final fields. This is to ensure

2.9. USING EVOSUITE TO IMPROVE TEST SUITE HEALTH 35

Table 2.3: Properties for ensuring deterministic behaviour and
mitigating flaky outcome in EvoSuite-generated tests.

Family Parameter Description

Test Creation Reset Static Fields Call static constructors only after each static
field was modified

Reset Static Field Gets Call static constructors also after each static
field was read

Reset Static Final Fields Remove the static modified in target fields

Sandbox Sandbox Executing test cases in an independent test-
ing environment

Virtual FS (File System) Using a virtual file system for all File I/O
operations

Virtual Net (Network) Using a virtual network for all TCP/UDP
communications

Test Output Test Scaffolding Generate the scaffolding needed to run Evo-
Suite JUnit tests in a separate file

No Runtime Dependency Avoid runtime dependencies in JUnit test
JUnit Check Compile and run the resulting JUnit test

suite

Test Execution Replace Calls Replace any non-deterministic calls/invoca-
tion and System.exit

Replace System In Replacing the InputStream (System.in)
mechanism with a smart stub/mock

Replace GUI Replacing the GUI (java.swing) calls with
a smart stub/mock

2.10. SUMMARY 36

that the static fields are reset before each test case is executed [262].

• Sandbox group consists of three parameters: Sandbox, Virtual FS (File System),
and Virtual Net (Network). These parameters are related to executing test cases
in an independent testing environment to avoid unsafe operations and restricted
security manager, replacing any File I/O operations (only for write, delete, or
execute filesystem) with a virtual file system to prevent the real file system from
being corrupted [125], and replacing all TCP/UDP communications with a virtual
(mock) network [75].

• Test Output group consists of three parameters: Test Scaffolding, No Runtime
Dependency, and JUnit Check. These parameters are related to generating all
the scaffolding needed to run EvoSuite JUnit tests in a separate file, avoiding
runtime dependencies in the JUnit test suite, and compiling and running the
JUnit test suite again to ensure that the assertions still hold.

• Finally, the Test Execution group consists of three parameters: Replace Calls,
Replace System In, and Replace GUI. These parameters are related to replacing
any non-deterministic calls/invocation and System.exit [124], replacing the
InputStream (System.in) mechanism with a smart stub/mock [74], and replacing
the GUI (java.swing) calls with a smart stub/mock [74].

Due to EvoSuite’s flexibility, I will primarily use it in this thesis to improve (amplify)
the quality of existing Java developer-written test suite and repair unhealthy Java
test cases. In addition, EvoSuite incorporates several default parameters as part of its
post-processing step (e.g., minimisation) to ensure that the generated test suite is of
good quality [206]. It also includes a timeout mechanism (default = 4,000 milliseconds)
that penalises long-running test cases [124].

2.10 Summary

In this chapter, I have surveyed the literature that is closely related to the research
topics that will be explored in this thesis.

Firstly, I discussed test adequacy criteria, which are essential to evaluate the quality
of a test suite. Next, I examined aspects that are important to ensure that a test suite
is healthy (making the test suite more reliable), which includes topics related to test
flakiness, brittleness, and the execution time. I emphasised that achieving high code
coverage or high mutation score alone is not enough without considering these aspects.
I also reviewed literature on automated testing approach, including random testing,
symbolic execution, and search-based software test generation. Finally, I explored the
topic related to test amplification, focusing on techniques to improve or repair existing
developer-written tests. While much of the work in this area has aimed to improve the
quality of existing developer-written tests, efforts on improving the reliability aspect of

2.10. SUMMARY 37

developer-written test cases has been mostly focused on repairing flaky tests [210] or
addressing regression test repairs [177].

Overall, I have provided a snapshot on the current state of the research to each
following chapters and identified areas for which further work may be beneficial. Given
my plan to utilise EvoSuite’s search-based technique, the seeding option, and flexibility
for modification, it is imporant to evaluate one critical aspect of test suite health:
flakiness. Therefore, the next chapter will investigate the flakiness of tests generated
by EvoSuite, which is a key step to ensure that it could be used as a test amplification
tool.

Chapter 3

An Empirical Study of Flaky Tests
in EvoSuite

The contents of this chapter is a part of “Martin Gruber, Muhammad Firhard Roslan,
Owain Parry, Fabian Scharnböck, Phil McMinn, and Gordon Fraser. Do Automatic
Test Generation Tools Generate Flaky Tests? In International Conference on Software
Engineering (ICSE), 2024”. The first two authors contributed equally to this research
work.

3.1 Introduction

In the previous chapter, I have explained the maintenance issue of developer-written
tests and automatically generated tests, and one of the reliability problem is related
to the non-deterministic outcome of the tests, even when there are no changes to the
code under test. This non-determinism is commonly known as flaky test [210], where a
test could pass or fail without any changes. In this chapter, I will look into specifically
the flakiness issue of tests that are generated by EvoSuite.

Research around the use of EvoSuite to aid developers when writing unit tests has
increased [222]. It has demonstrated good capabilities in achieving high code coverage,
good mutation score, and good fault detection rates [237]. Furthermore, EvoSuite
offers built-in mechanism—from 12 different parameters (Table 3.1)—that suppress
flakiness in the generated test. However, the flakiness issue in automatically generated
tests has not been widely studied as it has been in developer-written tests. For this, I
will start by understanding flakiness issue in automatically generated tests and whether
this problem is as common as has been found previously in developer-written tests.

3.2 Methodology

Figure 3.1 shows an overview of the experimental setup. Sections 3.2.1 to 3.2.9
correspond to the stages of the methodology depicted in Figure 3.1 and will be

38

3.2. METHODOLOGY 39

Test Execution

100x Same order
100x Rand. order

EvoSuiteFSOn
Flakiness Suppression

ON (Default)

EvoSuiteFSOff
Flakiness Suppression

OFF38,841
Maven projects

with
GitHub URL

~520,000
unique artifacts

dev.-written tests

Compiled &
>=1 tests

4,802 projects

FlaPy to analyse
JUnit XMLs

3.2.2 Test Generation 3.2.3-4 Execute Tests

3.2.5 Test Outcome Analysis
3.2.9 Root Cause Analysis

3.2.1 Collecting Subjects

Manual inspection for
sampled

NOD flaky tests
~163k dev.-written tests

~264k EvoSuiteFSOff tests

~310k EvoSuiteFSOn tests

1902 projects

3.2.6-8 Successful Projects

Figure 3.1: Overview of the experimental setup.

discussed in detail in the subsequent sections. I set out to answer the following three
research questions:

RQ1 (Prevalence): How prevalent is flakiness in tests that were generated without
flakiness suppression mechanisms?

RQ2 (Flakiness Suppression): How many flaky tests can EvoSuite’s flakiness
suppression mechanism prevent?

RQ3 (Root Causes): How do the root causes of generated flaky tests differ from
those of developer-written tests?

3.2.1 Subjects

To conduct this empirical study, I used the Maven Central Repository index [24] to
collect Java projects. The index is updated every week for newly added projects and
updated patches of existing projects. As of 26th of October 2022, the index contains
roughly 520,000 unique artefacts. After fetching the unique artefacts, I iterated over
each artefact’s Project Object Model (POM) file to fetch the URL to the project’s
repository. To ensure that it could be easily replicated, I only selected projects that
are hosted on GitHub (keeping the commit hash) and that use Maven as the build tool.
Since the information of the build automation tool that a project uses is not being
included in the POM in the Maven Central Repository, I statically crawled through

3.2. METHODOLOGY 40

Table 3.1: Updated parameters to deactivate flakiness suppression
mechanisms (EvoSuiteFSOff). The description of each parameter is
provided in Table 2.3.

Family Parameter Value

Test Creation Reset Static Fields false
Reset Static Field Gets false
Reset Static Final Fields false

Sandbox Sandbox false
Virtual FS (File System) false
Virtual Net (Network) false

Test Output Test Scaffolding false
No Runtime Dependency true
JUnit Check false

Test Execution Replace Calls false
Replace System In false
Replace GUI false

the GitHub URL of each artefact to check if it contains a pom.xml file in the root
of the repository to make sure that the project uses Maven as the build tool. From
this, I was able to collect 38,841 Maven projects and use this as the starting point of
the study. As I am interested in understanding the flakiness issue in automatically
generated tests and tests written by developers, I also ensured that each project could
firstly be compiled and contain at least one passing test case. The filtration of projects
that could be compiled and contain at least one passing test case could be easily done
by running the Maven compile (mvn compile) and test (mvn test) commands on each
project. After running the commands, I found around 4,801 projects could be compiled
and contained at least one passing test case.

3.2.2 EvoSuite

I used the state-of-the-art test generation tool, EvoSuite (v1.2.0), that utilises search-
based techniques to generate JUnit test suites. As EvoSuite applies multiple techniques
to avoid flakiness, I used EvoSuite with two different configurations: one with the flaki-
ness suppression (EvoSuiteFSOn) and one without the flakiness suppression mechanism
(EvoSuiteFSOff). This is to understand the impact of flakiness suppression mechanisms
in EvoSuite. For the EvoSuiteFSOn , I did not update any parameters of EvoSuite, as
the flakiness suppression is enabled by default. On the other hand, to generate tests
without the flakiness suppression, I updated several EvoSuite parameters that were
extracted from previous studies [74, 124, 121] and few discussions with one of the
EvoSuite maintainers. Table 3.1 shows the updated parameters to deactivate flakiness
suppression mechanisms in EvoSuite.

3.2. METHODOLOGY 41

3.2.3 Search Budget

I set the search budget of EvoSuite to be 120 seconds per class for both EvoSuiteFSOn

and EvoSuiteFSOff . This ensures that the test generation process can be done within a
reasonable time frame, which is similar time budget in previous tool competition have
used [233, 250].

3.2.4 Execution of the EvoSuite-generated tests

To detect flakiness in the generated tests, I executed all developer-written and EvoSuite
generated tests in each project 100 times in the same order and 100 times in random
order. This is similar to what was done in previous studies [141, 168], and it also allows
me to identify order-dependent (OD) and non-order-dependent (NOD) flakiness in the
tests. The test execution was mainly inspired from iDFlakies [168] and FlaPy [140].
Both tools support the environment to execute tests, which utilises Docker container,
to avoid any side effects from the environment, such as infrastructure flakiness [141].

Since Maven-build projects can easily install third-party dependencies of the project
via the ‘mvn dependency:copy-dependencies’ command, I used this command to
make a copy of all the dependencies from the repository into my local machine. I
then update the environment variables of the Docker container to include all the
dependencies of the projects when executing the tests. This is to ensure that the tests
can be executed without any issues related to missing dependencies.

I built a custom JUnit Runner [55] that could execute the tests in the same order
and random order. The custom JUnit Runner is built using the JUnit 4 library and
the JUnit 5 library. This is to ensure that projects using JUnit 4 or JUnit 5 can be
executed without any issues. I had to build a custom test runner since Maven’s Surefire
Plugin [26] currently does not support executing tests in shuffled order.

3.2.5 Test Outcome Analysis

After the tests have been executed, the custom test runner will output the result of
the tests in a JUnit XML format. I then used a customised FlaPy 1 that can analyse
the test results of JUnit tests [140]. Firstly, I only include tests that were executed
successfully without any errors, failures, or skipped outcome. I discarded any projects
that did not contain at least one executable EvoSuite test. I only considered a test as
flaky if it has at least one test that has different outcomes.

3.2.6 Successful Projects

The final sample of projects that I could compile, contains at least one developer-
written tests, is able to generate tests using EvoSuite (with and without the flakiness
suppression mechanism), execute all the tests using the customised test runner, and

1FlaPy output JUnit XML files per each test execution for Python projects.

3.2. METHODOLOGY 42

Table 3.2: Number of (#) developer-written, EvoSuiteFSOn, and
EvoSuiteFSOff tests from the 1,902 projects. (FS = Flakiness Suppres-
sion)

Category Number of tests

Developer-written 163,305
EvoSuiteFSOn (Generated With FS) 310,193
EvoSuiteFSOff (Generated Without FS) 264,000

EvoSuiteFsOn EvoSuiteFsOff

70

80

90

100

B
ra

nc
h

C
ov

er
ag

e
(%

)

mean

EvoSuiteFsOn EvoSuiteFsOff

40

60

80

100

Li
ne

 C
ov

er
ag

e
(%

)

mean

Figure 3.2: Branch and Line coverage of EvoSuiteFSOn and
EvoSuiteFSOff tests.

the test results can be analysed using customised FlaPy, consisted of 1,902 projects.
Table 3.2 shows the number of developer-written, EvoSuiteFSOn , and EvoSuiteFSOff

tests which I was able to execute and generate using EvoSuite.
Figure 3.3 shows the distribution of the lines of code of the projects and the number

of developer-written, EvoSuiteFSOn , and EvoSuiteFSOff tests. The mean lines of code
for the sample project was 4,948, with a median of 1,395. Only 1.5% of all projects
contain less than 100 lines of code, whereas the largest project (cosmos-sdk-java2)
has more than 500,000 lines of Java code. The total number of lines of code combining
all sampled projects is around 9.4 million. The number of developer-written tests per
project has a mean of 85.9 and a median of 18. The number of EvoSuiteFSOn tests
has a mean of 163.1 and a median of 48. The number of EvoSuiteFSOff tests has a
mean of 138.7 and a median of 43. The EvoSuiteFSOn generated test suites with a high
code coverage, with mean line coverage of 81.8% and the mean branch coverage of
84.6% (Figure 3.2). This is the same for EvoSuiteFSOff , where the mean line coverage

2https://github.com/cloverzrg/cosmos-sdk-java

https://github.com/cloverzrg/cosmos-sdk-java

3.2. METHODOLOGY 43

10
2

10
4

(a) Lines of Code

0

50

100

150

N
um

be
r o

f P
ro

je
ct

s

10
0

10
1

10
2

10
3

(b) Number of Dev.-Written Tests

0

50

100

150

N
um

be
r o

f P
ro

je
ct

s

10
1

10
3

(c) Number of EvoSuiteFsOn Tests

0

50

100

150

200

N
um

be
r o

f P
ro

je
ct

s

10
1

10
3

(d) Number of EvoSuiteFsOffTests

0

50

100

150

N
um

be
r o

f P
ro

je
ct

s

Figure 3.3: Statistics of the open-source projects studied in this
chapter.

3.2. METHODOLOGY 44

is 81.2% and the mean branch coverage of 84.2%. This is similar to the reported code
coverage of previous studies on EvoSuite [125, 126].

3.2.7 RQ1: Prevalence

To answer the first research question, I compared the number of flaky tests generated in
EvoSuiteFSOff—without using any flakiness suppression mechanisms—to the number of
flaky tests found in the developer-written tests. I considered a test as flaky if it yielded
at least one passing and one failing or error outcome [111, 141]. However, tests outcome
that switched only between failing and error outcomes are not considered as flaky, since
the test will still lead to a build failure and does not assimilate the developer experience
caused by flakiness (occasional build failures). Besides that, I look at the proportion
of flaky tests between the order-dependent flaky tests and non-order-dependent flaky
tests. Finally, I compared the projects that contain at least one developer-written flaky
test or at least one EvoSuiteFSOff flaky test to identify whether if the flakiness tends to
appear in the same projects.

3.2.8 RQ2: Flakiness Suppression

To evaluate the effectiveness of the flakiness suppression mechanisms in EvoSuite, I
compared the number of flaky tests generated by EvoSuiteFSOn to the number of flaky
tests generated by EvoSuiteFSOff and to the number of flaky tests in the developer-
written tests. I also looked at the proportion of flaky tests to non-flaky tests and used
the Wilcoxon signed-rank test [253], which is commonly used as a non-parametric paired
difference test to determine the statistical significance difference, rather than using a
parametric test as the data are not normally distributed based on the Shapiro-Wilk
test [238]:

• Developer-written tests: (W = 0.1637, p = 0.000)

• EvoSuiteFSOn : (W = 0.0822, p = 0.000)

• EvoSuiteFSOff : (W = 0.1634, p = 0.000)

3.2.9 RQ3: Root Cause Analysis

To understand the root causes of flaky tests, I manually analysed the flaky tests in the
developer-written, EvoSuiteFSOn , and EvoSuiteFSOff tests. Similar to other previous
studies [141, 182], I categorised the root causes of the flaky test by labelling the flaky
tests manually following the established categories. I used the root causes collected
by Parry et al. [210] as the starting point of the root causes of flaky tests. I manually
classify only the root causes of the non-order dependent (NOD) flaky tests as order-
dependent (OD) flaky tests can be easily identifies via randomly shuffle the execution
order of the tests.

3.2. METHODOLOGY 45

Sampling Strategy

I randomly sampled 340 flaky tests from the 1,470 flaky tests that I found across
all projects. This is to ensure that I could get a representative sample of flaky tests
while keep the labelling of the flakiness feasible. I combined two different sampling
strategies to make sure that I avoid creating any bias towards projects with only a few
flaky tests (selecting random projects) or tests only from a few projects (selecting ran-
dom tests). Firstly, I randomly select one NOD flaky test from each project, regardless
whether it’s developer-written, EvoSuiteFSOn , or EvoSuiteFSOff test, and this sample is
called breadth sample. Secondly, I randomly select 21 projects and sample all the NOD
flaky tests from the projects (depth sampled). These projects are evenly distributed in
terms of the type of flaky tests that it contains. Using this approach, I sampled a total
of 340 flaky tests: 227 from the breadth sample and 134 from the depth sample, with
21 flaky tests appearing in both samples.

Alignment labelling

In order to ensure that I did not create any bias during the labelling of the root
causes of the flakiness, three other co-authors of this chapter’s publication were in-
volved in the alignment labelling process. We randomly choose 50 flaky tests from the
340 sampled flaky tests and use the project code, test code, the failure/error stack
trace, and failure/error messages to identify the root causes of the flakiness. Based
on the Fleiss’ Kappa Inter-Rater Reliability [119], the agreement between the four
raters is 0.41, which is considered as moderate agreement [170]. Although there is some
variability in the initial outcomes, the conclusions drawn from these labelling indicate
a general consensus between the raters. We discuss any case of disagreement regarding
the root cause, which has led to some changes in the established root causes reported
by Parry et al. [210]:

• Unordered collection category is broadened to include Unspecified behaviour in
general.

• Resource leak category is broadened to also include Resource unavailability, and

• Performance category is added to include tests that failed due to varying duration
of (sequential) processes.

After finishing the alignment labelling, I continue to label the remaining 290 NOD
flaky tests in the sample. There are three comparisons that I made to answer the last
research question:

1. I compare the root causes that are found in the developer-written tests to those
found in previous studies [115, 169].

3.3. RESULTS 46

Table 3.3: Number of (#) flaky tests found in developer-written,
EvoSuiteFSOn, and EvoSuiteFSOff.

Test Type Flaky (NOD + OD)

Tests # Projects

Developer-Written 1,528 (0.94%) 161 (8.46%)
EvoSuiteFSOn 1,285 (0.41%) 133 (6.99%)
EvoSuiteFSOff 3,832 (1.45%) 228 (11.9%)

Table 3.4: Number of non-order-dependent (NOD) and order-
dependent (OD) flaky tests found in developer-written, EvoSuiteFSOn,
and EvoSuiteFSOff.

Test Type NOD OD

Tests # Projects # Tests # Projects

Developer-Written 698 (0.43%) 105 (5.52%) 830 (0.51%) 104 (5.46%)
EvoSuiteFSOn 175 (0.06%) 43 (2.26%) 1,110 (0.35%) 109 (5.73%)
EvoSuiteFSOff 597 (0.22%) 111 (5.84%) 3,235 (1.23%) 163 (8.57%)

2. I compare the root causes of the flaky tests generated by EvoSuiteFSOff against
the developer-written tests.

3. I compare the root causes of EvoSuiteFSOn flaky tests against EvoSuiteFSOff flaky
tests.

3.3 Results

As shown in Table 3.2, I am able to execute 163,305 developer-written tests, 310,193
EvoSuiteFSOn tests, and 264,000 EvoSuiteFSOff tests, which is a total of 737,498 tests
across 1,902 projects. Roughly three-fourths of the tests are generated by either
EvoSuiteFSOn or EvoSuiteFSOff .

3.3.1 RQ1: Prevalence

I found 1528 (0.94%) of the developer-written tests to be flaky and the ratio between
the number of NOD and OD flaky tests is roughly similar, which is similar to a previous
study [168].

For the EvoSuiteFSOff tests, I found 3,832 (1.45%) of the tests to be flaky, which
means that the flakiness issue is more prevalent in the EvoSuiteFSOff tests compared to
the developer-written tests, with 54% (0.94% to 1.45%) increase. The number of NOD
flaky tests when compared to OD flaky tests generated by EvoSuiteFSOff is 597 (0.22%)
and 3,235 (1.23%), meaning 84% of flaky EvoSuiteFSOff tests are order-dependent.

3.3. RESULTS 47

EvoSuiteFSOff EvoSuiteFSOn Developer-Written

0

20

40

60

80

100

Fl
ak

in
es

s
R

at
e

(%
)

Figure 3.4: Violin plot showing the non-order dependent (NOD) flaky-
failure rate of EvoSuiteFSOff, EvoSuiteFSOn, and developer-written tests.
Each plot is proportional to the overall number of non-order dependent
flaky tests found.

EvoSuiteFSOff EvoSuiteFSOn Developer-Written

0

20

40

60

80

100

Fl
ak

in
es

s
R

at
e

(%
)

Figure 3.5: Violin plot showing the order dependent (OD) flaky-
failure rate of EvoSuiteFSOff, EvoSuiteFSOn, and developer-written tests.
Each plot is proportional to the overall number of order dependent
flaky tests found.

3.3. RESULTS 48

116 686

144

25 45
14

Developer written
(1528 tests)

EvoSuiteFSOn
(1285 tests)

EvoSuiteFSOff
(3832 tests)

Figure 3.6: Projects containing flaky tests.

There is a strong tendency towards order-dependent flakiness when being compared to
order-dependent.

Besides that, based on the violin plot shown in Figure 3.4, the rate of flakiness
(failing) on non-order dependent EvoSuiteFSOff has a roughly similar distribution when
compared to the developer-written tests, with most of the tests tend to have a lower
failure rate. However, for the order-dependent flakiness rate as shown in Figure 3.5, the
rate of flakiness of the 830 developer-written tests are mostly low, but EvoSuiteFSOff

(3235 tests) has better normalised distributed of flakiness rate, but still majority of
them are lower failure rate.

To determine whether generated flaky tests are more likely to appear in projects
that already contain developer-written flaky tests, I examined the sets of projects that
include at least one flaky test. As shown in Figure 3.6, 161 projects contain at least
one developer-written flaky tests, and 228 projects contains at least one EvoSuiteFSOff

flaky tests. However, the number of overlap between these two sets is small, with only
39 projects (17.1%) that contains both flaky tests.

Conclusion (RQ1: Prevalance).
As shown in Table 3.3, flakiness is just as prevalent in EvoSuiteFSOff tests as it is in
developer-written tests, but it does not appear in same projects, due to different in
root causes of flakiness (Table 3.5). Besides that, EvoSuiteFSOff flakiness issue is also
more prevalent when the tests were ran in random orders (order-dependent) compared
to same order (non-order-dependent), which is not the case for developer-written
tests.

3.3.2 RQ2: Flakiness Suppression Mechanisms

As shown in Table 3.3, EvoSuiteFSOn tests are significantly (p-value of Wilcoxon test
< 0.001) less flaky when being compared to EvoSuiteFSOff tests, with 71.7% reduction
in flakiness. The number of flaky tests in EvoSuiteFSOn is also significantly less than
the number of flaky tests in developer-written tests, with 56.4% less.

3.3. RESULTS 49

Table 3.5: Root causes for non-order-dependent flaky developer-
written, EvoSuiteFSOn, and EvoSuiteFSOff tests.

Developer-
written EvoSuiteFSOn EvoSuiteFSOff

Root Cause Number of tests (Number of projects)

Asynchronous Waiting (Async Wait) 36 (23) 3 (2) 5 (4)
Concurrency 15 (14) 0 (0) 5 (3)
Input/Output (I/O) 9 (9) 0 (0) 0 (0)
Network 36 (9) 1 (1) 13 (13)
Others 0 (0) 34 (22) 0 (0)
Performance 33 (11) 0 (0) 7 (7)
Randomness 13 (12) 2 (2) 23 (22)
Resource Unavailability (Resource Leak) 7 (7) 2 (2) 7 (6)
Test Case Timeout 2 (2) 4 (4) 23 (18)
Time 6 (6) 2 (1) 12 (12)
Too Restrictive Range 2 (2) 0 (0) 0 (0)
Unknown 8 (8) 2 (2) 4 (4)
Unspecified Behaviour (Unordered Collection) 3 (3) 7 (6) 14 (13)

Total 170 (106) 57 (42) 113 (102)

Similar to the results of EvoSuiteFSOff in RQ1, the number of order-dependent flaky
tests in EvoSuiteFSOn is more common than non-order-dependent flaky tests, where
86.4% of the flaky tests are order-dependent. However, as shown in Figure 3.4, the
flakiness (failure) rate distribution of EvoSuiteFSOn tests is the opposite of the violin
plots of EvoSuiteFSOff tests, with EvoSuiteFSOn median at 56.34%. But, the flakiness
rate distribution of non-order dependent tests for EvoSuiteFSOff is roughly similar with
EvoSuiteFSOn but lower distribution overall, as shown in Figure 3.5.

Based on Figure 3.6, there is only a small overlap between EvoSuiteFSOn (133
projects) and the developer-written tests (161 projects), with only 20 projects that
contain both flaky tests. This is similar to the overlap between EvoSuiteFSOff and
EvoSuiteFSOn tests, where there are only 59 projects overlap.

Conclusion (RQ2: Flakiness Suppression).
EvoSuite’s flakiness suppression mechanism is effective. It reduced the number
of flaky tests by 71.7%, which is considerably lower than the relative number of
developer-written flaky tests (56.4% fewer flaky tests). The ratio of NOD and OD
flaky tests remains strongly leaning towards OD.

3.3.3 RQ3: Root Causes

Table 3.5 shows the root causes of the sampled flaky tests that I have found via
manual labelling. The most common root cause of flakiness in developer-written tests
is asynchronous waiting, 21.2% of the sampled developer-written flaky tests, which is
similar to previous studies [115, 182]. I also found flaky tests that are caused by brittle

3.3. RESULTS 50

73 @Test

74 public void testTimeoutFailExactly () {

75 final List mock = Mockachino.mock(ArrayList.class);

76 mock.size();

77 mock.size();

78 runTimeoutTest(Mockachino.verifyExactly (2)

,200,220,200,500,mock ,() -> mock.size());

79 }

// ... omitted ...

98 private void runTimeoutTest(VerifyRangeStart type ,int min ,

int max ,int waitTme ,int timeout ,List mock ,Runnable

runnable) {

99

100 long t0 = System.currentTimeMillis ();

101 Executors.newSingleThreadScheduledExecutor ().schedule(

runnable ,waitTime ,TimeUnit.MILLISECONDS);

102 long t1 = System.currentTimeMillis ();

103 long margin = t1 - t0;

// ... omitted ...

106 type.withTimeout(timeout).on(mock).size();

// ... omitted ...

111 long t2 = System.currentTimeMillis ();

112 long time = t2 - t1;

113 assertTrue(time + " expected at most " + max , time <=

max + margin);

114 }

<error message="273 expected at most 220"

type="junit.framework.AssertionFailedError">

Figure 3.7: Developer-written flaky test with root cause Performance
(project krka-mockachino3)

3.3. RESULTS 51

@Test(timeout = 4000)

public void test00 () throws Throwable {

RandomJava randomJava0 = new RandomJava ();

randomJava0.gaussian ((double) 1057);

double double0 = randomJava0.gaussian ();

assertEquals (0.8241080392646101 , double0 , 0.01);

}

Expected:<0.8241080392646101> but was: <-0.06836772391958745>

Figure 3.8: Randomness-related flaky test generated by EvoSuiteFSOff

(project mitchelltech5-jmatharray)

@Test(timeout = 4000)

public void test05 () throws Throwable {

ClassLoader classLoader0 = ClassLoader.

getSystemClassLoader ();

ClassPathResource classPathResource0 = new

ClassPathResource("",classLoader0);

String string0 = classPathResource0.loadAsString("UTF -8")

;

assertEquals("com\nversion.txt\n", string0);

}

org.junit.runners.model.TestTimedOutException: test timed out after

4000 milliseconds

Figure 3.9: Test Case Timeout related flaky test gener-
ated by EvoSuiteFSOff (project Contrast-Security-OSS-cassandra-
migration)

assumptions about Performance (i.e., duration) of sequential processes, which is a root
cause not described previously. Figure 3.7 shows an example of a Performance flaky
test. The assertion on line 113 is flaky as it assumes that the execution time (line 106)
is within a certain range, which is not guaranteed.

For the EvoSuiteFSOff generated tests, the root causes tend to be more commonly
caused by Randomness (20.4%) and Test Case Timeout (20.4%). Figure 3.8 shows an
example of a test that is flaky due to Randomness generated by EvoSuiteFSOff . The
test makes an assertion against the value of a random variable that it sampled from a
Gaussian distribution using a Box-Muller transform. The Test Case Timeouts happens
frequently (20.4%) due to the 4000ms (4 seconds) default timeout EvoSuiteFSOff sets

3https://github.com/krka/mockachino/tree/9bcdda05

https://github.com/krka/mockachino/tree/9bcdda05

3.3. RESULTS 52

@Test(timeout = 4000)

public void test17 () throws Throwable {

Name name0 = new Name();

int[] intArray0 = new int [1];

intArray0 [0] = (-3152);

Blob blob0 = new Blob(intArray0);

SafeBag safeBag0 = null;

try {

safeBag0 = new SafeBag(name0 , blob0 , blob0);

fail("Expecting exception:

IndexOutOfBoundsException");

} catch(IndexOutOfBoundsException e) {

verifyException("java.nio.Buffer", e);

}

}

Exception was not thrown in java.nio.Buffer but in

java.base/java.nio.HeapByteBuffer.get(HeapByteBuffer.java:169):

java.lang.IndexOutOfBoundsException: 1

Figure 3.10: Flaky test generated by EvoSuiteFSOn due to JIT method
inline optimisation

for each test it generates. An example of this is shown in Figure 3.9.
The root causes of flaky tests generated by EvoSuiteFSOn (with flakiness suppression),

are very different from the root causes of flaky tests generated by EvoSuiteFSOff .
Flakiness suppression mechanisms in EvoSuiteFSOn have successfully reduced the
amount of flakiness caused by traditional known root cause. I found that the majority
(59.6%) of the flaky tests do not fit any known root cause category (Other). I inspected
these cases and found them to be due to two causes, Verify Expected Exceptions (18/34)
and StackOverflowErrors (16/34).

Verify Expected Exceptions is where the test is expecting certain exceptions to be
thrown and create an assertion on where (i.e., by a specific class) the exception was
thrown. In other words, the generated test case creates an assertion to verify the class
name of the top class in the stack trace. Such tests can be flaky since the stack trace
can change intermittently, even for the same exception. This issue is caused by the
just-in-time (JIT) compilation’s optimisation. The JIT compiler will inline methods
that are being frequently executed during the test execution, which can lead to the
stack trace being different [203, 164].

Figure 3.10 shows an example of such a case: The test is expecting an IndexOutOf

BoundsException thrown by java.nio.Buffer. Sometimes, due to method inlining,
this exception is instead thrown by java.nio.HeapByteBuffer. This test is flaky due
to the default way that the JVM decides to optimise the compilation, where the JIT

3.3. RESULTS 53

Exception in thread "main" java.

lang.IndexOutOfBoundsException

at java.nio.Buffer.checkIndex

(Buffer.java:743)

at java.nio.HeapByteBuffer.get

(HeapByteBuffer.java:169)

...

at SafeBag_ESTest.test17

(SafeBag_ESTest.java:330)

...

Before JIT Inline Optimisation

Exception in thread "main" java.

lang.IndexOutOfBoundsException

at java.nio.HeapByteBuffer.get

(HeapByteBuffer.java:169)

...

at SafeBag_ESTest.test17

(SafeBag_ESTest.java:330)

...

After JIT Inline Optimisation

Figure 3.11: Stack traces of the flaky test in Figure 3.10 before and
after JIT method inline optimisation.

compilation will compile certain parts of the java.nio.Buffer class to native code,
causing it to no longer appear on top of the stack trace (as shown in Figure 3.11).
This flakiness issue does not happen in EvoSuiteFSOff generated tests, as one of the
flakiness suppression mechanism parameter ‘No Runtime Dependency’ is updated to
true, which prevents EvoSuite from generating tests that verify thrown exceptions.
Even though the ‘No Runtime Dependency’ parameter decreases the number of flaky
tests, it also generates new flaky tests.

Secondly, EvoSuiteFSOn generates flaky tests that produce intermittent StackOver-
flowErrors. This was also discovered by a previous study [116]. This error occurs
consistently when the flakiness suppression mechanism is turned off. EvoSuiteFSOn

includes an internal resource threshold—limiting the stack size—to prevent a test
case from a StackOverflowError, however, the resource checking is non-deterministic
and some errors manage to slip through. Such issues do not occur in EvoSuiteFSOff

because I have disabled the generation of test scaffolding files, which include a check
to prevent infinite loops in recursive methods. However, not generating scaffolding files
for test classes makes the generated tests more susceptible to traditional causes of flaky
tests [121].

Conclusion (RQ3: Root Causes).
EvoSuiteFSOff tests are flaky for the same reasons as developer-written ones, however,
the distribution among those reasons differs. Developer-written flaky tests are often
caused by asynchronous waiting and networking operations, whereas EvoSuiteFSOff

flaky tests are typically caused by randomness and test case timeouts. When flakiness
suppression is enabled (EvoSuiteFSOn), the picture changes significantly, with the
majority of remaining flaky tests not fitting into any previously described categories
of flakiness. Instead, they are caused by runtime optimisations and EvoSuite’s
internal resource threshold, both of which only take effect when certain flakiness
suppression mechanisms are activated.

3.4. THREATS TO VALIDITY 54

3.4 Threats to Validity

3.4.1 External Validity

Maven Central Repository [25] is the largest official software repositories for Java
projects. However, since the custom test runner only support JUnit 4 and JUnit 5,
I excluded any projects using JUnit 3 due to not being able to execute the tests in
shuffled order. While this could potentially limit the generalisability of the results,
JUnit 3 is considered as an outdated version of JUnit and no longer widely used. I
also mitigate this threat by using Maven, which is one of the biggest build automation
tool, and JUnit, widely used testing framework (JUnit) in Java [54]. In this chapter,
I only considered Java projects, and the results might not be generalisable to other
programming languages and other test generation tools. However, in this chapter’s
publication [142], we also looked into the flakiness issue for Python’s developer-written
tests and Pynguin [180, 179, 181], an automated unit test generation tool for Python,
where we found similar flakiness issue.

3.4.2 Construct Validity

Some flaky tests have very low failure rates, which might have been missed within
the 100 same order or 100 random order executions. This could potentially lead
to underestimation of the number of flaky tests in this dataset. Besides that, the
search budget used for EvoSuite could also be a threat to the construct validity,
as I only used 120 seconds per class. Allowing more time for the EvoSuite could
potentially lead to different rate of flakiness but choosing the right search budget is a
non-trivial issue, especially depending on the size of the project and the complexity of
the classes [89]. To mitigate this problem, I used the same search budget as in previous
tool competitions [233, 250]. I have also measured the coverage of EvoSuiteFSOn and
EvoSuiteFSOff tests and found that the average line and branch coverage per class is
high (as shown in Figure 3.2), which indicates that the search budget is sufficient.

3.4.3 Internal Validity

Since I found roughly 1,480 NOD flaky tests, I had to take a sample before manually
labelling their root cause, which might pose a potential threat to the validity of our
findings. To avoid favouring overly large or small projects, I applied two sampling
strategies, using the breadth and depth sample as explained in Section 3.2.9. Each flaky
test was then manually labelled and this might pose a potential threat. To mitigate
this issue, I created an alignment sample of 50 flaky tests that were labelled by myself
and three other authors of this chapter’s publications, and we held discussions about
cases in which we disagreed. In our alignment sample, we reached a ‘good’ inter-rater
reliability, meaning that we were aligned in most of the verdicts given even before
starting the alignment. Furthermore, the root causes of the flakiness found in the

3.5. RECOMMENDATIONS 55

developer-written flaky tests match previous studies [182, 116], which increases my
confidence in the validity to the findings.

3.5 Recommendations

The results of this study show that flakiness is a prevalent issue in both developer-
written and EvoSuite tests. The flakiness suppression mechanisms in EvoSuite are
effective in reducing the number of flaky tests, but they also introduce new flakiness
issues. In this section, I will provide recommendations for the (1) maintainers of
EvoSuite, (2) developers using EvoSuite, and (3) researchers studying flaky tests.

3.5.1 Maintainers of EvoSuite

I found EvoSuite’s flakiness suppression mechanisms to be highly effective and can
recommend that they be implemented in other automated test generation tools. How-
ever, EvoSuite still generates flaky tests, primarily due to the (1) Verifying Expected
Exceptions related to the ‘No Runtime Dependency’ option, and (2) StackOverflow-
Errors caused by scaffolding. Most notably, both mechanisms are designed—and also
accomplish—to prevent traditional causes of flakiness. I recommend that EvoSuite’s
maintainers revisit the implementation of ‘No Runtime Dependency’ parameter to
handle for cases where JIT compilation inlined frequently executed methods (as shown
in Figure 3.11) and the scaffolding mechanisms to eliminate the flakiness they introduce.
Additionally, I recommend studying and addressing order-dependency in EvoSuite, as
high numbers of order-dependent flaky tests were found.

3.5.2 Developers Using EvoSuite

For developers using EvoSuite, I strongly recommend using the flakiness suppres-
sion mechanisms, as I found them to be highly effective. The remaining flaky tests
are primarily caused by issues with Verifying Expected Exceptions and StackOver-
flowErrors. The former can be mitigated by disabling the tiered compilation flag
(-XX:-TieredCompilation) when running the tests. While this prevents the JVM
from compiling frequently executed parts of the bytecode into native code (JIT com-
pilation), it will negatively affect the performance and execution time of other tests.
The flaky StackOverflowErrors can be addressed by removing the NonFunctional

RequirementRule in the test scaffolding file, although this will cause the test to con-
sistently fail. Developers should also be aware of the potential order-dependencies
flakiness in EvoSuite, as I found nearly 6% of projects were affected by order-dependent
flaky tests.

3.6. CHAPTER CONCLUSIONS 56

3.5.3 Researchers Studying Flaky Tests

Since generating tests automatically can be done quickly and efficiently, there is a
potential for using EvoSuite to significantly aid research on flaky tests. For instance,
EvoSuite could also be used to create training data for machine learning models or to
systematically expose non-determinisms in specific projects. While I found EvoSuite-
generated flaky tests to have similar root causes compared to developer-written flaky
tests when flakiness-suppression mechanisms are disabled, there are several differences.
First, the distribution of root causes varies; flakiness in EvoSuiteFSOn is less likely due
to asynchronous waiting or networking issues, and more often results from randomness
and test case timeouts. Second, I discovered that projects containing developer-written
flaky tests are not particularly prone to also produce EvoSuite-generated flaky tests,
and vice versa.

3.6 Chapter Conclusions

Flaky tests are a common and troublesome phenomenon in software testing. In this
study, I demonstrated that flakiness does not only affect developer-written tests but
also one of the most popular automatic unit test generation tool. I sampled 1,902
open-source Java projects and generated tests for them using EvoSuite. After executing
the developer-written and EvoSuite-generated (EvoSuiteFSOff and EvoSuiteFSOn) test
suites repeatedly (100 times in same order and 100 times in shuffled order), I found
that the flakiness to be even more prevalent among EvoSuiteFSOff -generated (without
flakiness suppression mechanism) tests than developer-written tests. While flakiness
suppression mechanisms effectively reduce the flakiness rate among generated tests,
they also introduce other, previously unseen forms of flakiness. The root causes of
this flakiness are similar, however, the distribution differs: developer-written flaky
tests tend to be caused by asynchronous waiting and networking operations, while
EvoSuiteFSOff -generated flaky tests are more frequently due to randomness and test case
timeouts. For both developer-written and EvoSuiteFSOff -generated flaky tests, order-
dependency is a frequent cause, suggesting a potential direction for future research.
Since the flakiness issue on EvoSuite can mostly be suppressed with the flakiness
suppression mechanisms (EvoSuiteFSOn), in my next chapter, I will look into how to
utilise EvoSuite’s search-based technique to improve the quality of developer-written
tests. I will also explore how EvoSuite can be used to amplify existing developer-written
tests with respect to mutation score.

Chapter 4

Automatically Improving the
Mutation Score of
Developer-Written Test Suites

The contents of this chapter is based on “Muhammad Firhard Roslan, José Miguel Rojas,
and Phil McMinn. An Empirical Comparison of EvoSuite and DSpot for Improving
developer-written test suites with respect to mutation score. In International Symposium
on Search-Based Software Engineering (SSBSE), 2022”.

4.1 Introduction

Writing effective unit tests to detect faults is a well-known challenge [70], and manually
writing good test is time-consuming and often tedious [235]. Automated test generation
techniques, like EvoSuite, have been developed to help ease this burden by generating
tests from scratch. As shown in Section 3.3.1, EvoSuite with the flakiness suppression
mechanism, generates more stable tests compared to developer-written ones, and it
can produce test suites with high mutation score.

Test amplification, as discuss in the Section 2.8, explicitly aims to strengthen
existing developer-written test suites [105]. The aim is to generate a new version
of the developer’s test that covers more corner cases—i.e., rare input scenarios and
boundary conditions that lie at the edges of the normal range—and is more effective at
finding faults. Since the “amplified” test suite is based on the developers set of tests,
it is likely more understandable [84]. The current state-of-the-art test amplification
tool, DSpot [106], utilises developer-written tests to increase the number of mutants
that they kill. It “amplifies” developer-written test cases by changing the values of
literals in the tests, method calls, or by adding assertions. Test cases that kill more
mutants and have fewer modifications are retained. However, DSpot are subject to
some limitations. Since it relies on developer-written tests, it may also potentially
inherit its flakiness. This means that if the original tests are flaky, the amplified tests

57

4.2. MODIFICATIONS MADE TO EVOSUITE— EVOSUITEAmp 58

could also be subject to the same problem. As shown in the previous chapter, flakiness
is a common problem in developer-written tests, and it is a problem that DSpot does
not address when using developer-written tests as the starting point. Since EvoSuite
provides flakiness suppression mechanisms (Table 3.1), it is more reliable in generating
tests that are not flaky. Additionally, DSpot’s changes to tests are less flexible as
compared to EvoSuite’s evolution process, and it lacks fine-grained fitness guidance of
search-based tools. Test cases generated by DSpot that do not kill new mutants, for
example, will be discarded even if the test is actually “close” to killing a new mutant
and could be usefully improved in future.

The aim of this chapter is to evaluate a potential “best of both worlds” approach.
This involves assessing a version of EvoSuite that is capable of reading developer-written
tests as a starting point for test case generation. By leveraging its ability to make
more fundamental changes to the structure of a test case, it then evolves those tests
with the benefit of fine-grained fitness information for killing more mutants. I then
evaluate whether EvoSuite’s evolution and mutation analysis technique could have a
better performance in terms of killing mutants when compared to DSpot’s amplification
technique. The motivation behind this study is to understand how many more mutants
could be killed by test amplification tools if the principles of test amplification were
applied differently, in the flavour of a more flexible and more guided search-based style
of approach.

I compare this modified EvoSuite version, which I refer to as EvoSuiteAmp, with
DSpot using the developer-written tests in open source projects as the starting point for
test suite generation—specifically, 42 different versions of 29 different Java classes in 7
different projects of Defects4J (v2.0.0) [157]. This experiment reveals that EvoSuiteAmp

outperforms DSpot for 35 of the 42 Java class versions studied in terms of mutation
score achieved. Over 30 repeated runs, EvoSuiteAmp was further capable of killing more
“unique” mutants that DSpot was not able to kill in any run for 36 of these 42 subjects.
EvoSuiteAmp and all the data collected is available in this replication package [51].

In summary, the contributions of this chapter are as follows:

1. A new test improvement strategy that utilises the flexibility of EvoSuite, EvoSuiteAmp ,
that evolves test cases and leverages fitness information for killing specific mutants
(Section 4.2).

2. An empirical study with seven open-source projects comparing EvoSuiteAmp with
an existing state-of-the-art test amplification tool, DSpot (Section 4.3).

3. Results and analysis of the effectiveness of both tools in terms of mutation score
and mutants uniquely killed by each tool (Section 4.4).

4.2. MODIFICATIONS MADE TO EVOSUITE— EVOSUITEAmp 59

Developer-Written
Test as Initial
Population

Crossover Mutation

Calculate
the Fitness

Test Suite with
maximised coverage

and mutants killed4.2.3-4 Repeated within 180 seconds
unless all criteria are met

4.2.1 Filter Unkilled
Killed Mutants

4.2.2 Carve (Seeding)
Developer-Written Tests

Figure 4.1: Overview of EvoSuiteAmp.

4.2 Modifications made to EvoSuite— EvoSuiteAmp

EvoSuite was originally designed to generate a test suite from scratch. In this study,
I use EvoSuite to read developer-written tests, remove mutants that are killed by
developer-written tests, and not to add new random test cases during the search. As
shown in Figure 4.1, I made four different modifications to EvoSuite, which I refer to
as EvoSuiteAmp , and are as follows:

4.2.1 Removing Mutants Killed in the Developer-Written
Tests

I set the fitness criteria of EvoSuiteAmp to both branch coverage and strong mutation
testing. Before starting the evolution, I remove the goals that were met by the
developer-written tests. This is to ensure that the search focuses on the goals that are
not covered yet. As an example, the class under test will have mutant A,X ,Y , and Z .
If the developer-written test can kill mutant X ,Y , and Z , the only criterion that it
needs to meet is to kill mutant A only.

4.2.2 Seeding Developer-Written Tests into the Initial Popu-
lation of the GA

The second modification I made is on the initial population of the test cases. The
default behaviour of EvoSuite is to randomly generate new test cases. Instead of
randomly generating new test cases, I used the developer-written tests as the initial
population of the search. This utilises the developer’s domain knowledge of the program.
The initial population size on the EvoSuite is set to 50 individuals, but in this study, I
changed the population size depending on the developer-written test suite size. This is
all done by using the carving technique that has been implemented in EvoSuite [223].

4.3. EMPIRICAL STUDY 60

4.2.3 Tuning the Add New Random Test Case Rate to Zero

I tune the settings of the parameter values of the evolutionary algorithm responsible
for generating the test suite. The default configuration of EvoSuite is to use crossover,
mutation, and randomly add new test cases into the population. However, I change
the rate of adding new random test cases to the population of test cases to zero. This
change means that the developer-written tests are kept during evolution, without the
addition of completely new, randomly generated tests. This is crucial for maintaining
similarity of the generated tests to the original test suite, and keeping the test suite free
of tests or part of tests that are completely new or alien to the original developer. I still
allow modifications to inputs featuring in the tests, however, so that there is scope for
improving the original tests to kill more mutants, and for tests to be recombined by the
crossover operator. After a few generations, the fitness of all individual chromosomes
improves, and the process will stop when all criteria are met or when the search budget
is exhausted. A study by Aniche et al. found that developers tend to copy and paste
from previous test methods and modify their name, inputs, and assertions [70]. This
effect is simulated, in part, by crossover, with mutation focussed on modifying the
developer-written test inputs only.

4.2.4 Turning Off Test Suite Minimisation

I turned off the EvoSuite test suite post-process minimisation feature in order to
maintain the developer-written tests, or else they may be discarded following test suite
evolution. This property does not affect any of the flakiness suppression mechanisms
of EvoSuite (as shown in Table 3.1).

4.3 Empirical Study

This section details the experiment design of the empirical study I conducted to assess
EvoSuiteAmp , DSpotMut , and DSpotCov with respect to killing mutants. I also include
DSpotCov into the experiment because the EvoSuiteAmp fitness criteria include branch
coverage. In the following, I refer to EvoSuiteAmp and DSpot as distinct “tools”, while
I break down the analysis of DSpot in terms of the two configurations DSpotMut and
DSpotCov . I designed this study to answer the following four research questions:

RQ1: Which tool (EvoSuiteAmp or DSpot) kills the most mutants?

RQ2: Which tool kills the most “unique” mutants (mutants not killed by the
alternative tool)?

RQ3: Which tool kills the most mutants with the smallest test suites?

RQ4: Which tool provides the most consistent results when re-run multiple times?

4.3. EMPIRICAL STUDY 61

Table 4.1: Subject programs used in this study, by Lines of Code,
average number of mutants (# of Mutants), number of unique classes
evaluated (# of Classes), and number of versions evaluated (# of
Versions).

Subject (Acronym) Lines of Code # of # of # of
Min Max Avg. Mutants Classes Versions

Commons-Cli (Cli) 56 200 104 261 2 3
Commons-Codec (Cdc) 162 355 242 253 3 4
Commons-Compress (Crs) 92 370 205 182 5 5
Commons-Csv (Csv) 105 1152 675 117 3 9
Jsoup (Jsp) 85 280 193 48 5 7
Commons-Lang (Lng) 52 1366 907 568 3 5
Commons-Math (Mth) 148 1091 469 662 8 9

Total 29 42

4.3.1 Subjects

I performed this experiment on the widely used benchmark Defects4J (v2.0.0) [157],
which contains 835 reproducible real faults on 17 open-source projects. Although I
am not specifically interested in the individual bugs provided by this benchmark, it
provides an ideal set of subject classes and utilities with which I can evaluate the
performance of both the EvoSuiteAmp and DSpot tools. This includes an interface
for test generation, which among other things help with removing flaky tests—tests
that pass and fail non-deterministically without any changes to code [211]. It also
incorporates the Major [156] mutation analysis tool, which I use as an independent
arbiter of the mutants killed by the test suites generated by both EvoSuiteAmp and
DSpot tools (since DSpot relies on PITest [97], while EvoSuite uses its own in-built
mutation analysis).

I selected subject classes from Defects4J with which to perform this experiment
based on the following rules:

1. The project includes developer-written tests;

2. DSpotMut , DSpotCov , and EvoSuiteAmp were capable of using the provided original
developer-written tests,

3. Major [156], PITest [97], and EvoSuite could generate mutants for the project.

After running every faulty version of each project in the Defects4J dataset, 42 faulty
versions of 29 unique classes in 7 libraries met the requirements above. Table 4.1 shows
the details of these subjects. I found a large number of Defects4J’s classes/versions to
be unusable for this study due to an issue with DSpot’s interface with its mutation
analysis tool PITest needed for the study, and problems compiling the class under test.

4.3. EMPIRICAL STUDY 62

DSpotMut &
DSpotCov

EvoSuiteAmp
Developer-

Written Tests

Mutants

Remove failing
tests

Test Suite
Regression Test

Suite Run Tests

MAJOR

Mutants Remove mutants
that is killed by
the Developer-
Written Tests

Defects4j

Checkout a
version

Figure 4.2: Overview of the experimental setup.

I have contacted the owner of the DSpot project, but the issue has not been resolved
to date. Despite this, this final subject set comprises a wide and diverse set of classes
over a number of projects that are suitable for this study.

4.3.2 Experimental Procedure

Figure 4.2 shows the overview of this experiment. The tools are fed with developer-
written tests that were gathered from the test files in every project version (with a
particular fault) from Defects4J. For each version, as shown in Table 4.2, I improved
each class of the study’s original developer-written test suite (as provided by Defects4J)
using EvoSuiteAmp (using EvoSuite v1.2.0), DSpotMut , and DSpotCov (both using v3.2.0
of DSpot). I ran all experiments on the same workstation, with 32GB RAM and Intel
i5 CPU at 3.10GHz, running Ubuntu 20.04.4 LTS. For both tools, I set the search
time budget (Algorithm 1, line 8) to 120 seconds, a commonly used value for test suite
generation, and one that is applied in the search-based testing tool competition [207].

To take into account the non-deterministic nature of the tools, I repeat test suite
generation 30 times for each tool/configuration studied. While I did not perform any
internal modifications to DSpot—the build was downloaded from their repository[14]
and configured to form DSpotMut and DSpotCov . I made the modifications to EvoSuite
to form EvoSuiteAmp detailed in Section 4.2.

Since I have turned off the test suite minimisation post-process on EvoSuite (Sec-
tion 4.2), which is part of the checks performed in EvoSuite’s JUnit Check parameter
(Table 3.1), I need to ensure that no failing (flaky) tests are present. This checking
is also necessary for both DSpot’s configuration, as DSpot does not have any dedi-
cated flakiness suppression mechanism in the tool. To ensure there are no flaky tests
generated by either tool, I used the fix test suite feature of Defects4J that removes

4.3. EMPIRICAL STUDY 63

failing tests from the test suite until all tests pass. Without removing these failing tests,
flaky tests could interfere with the mutation score result. For all the developer-written
and generated regression test suites, I used the Major mutation testing tool [156] to
compute the mutation score. Major includes a summary of which mutants are killed
by each test suite. The summary helps in finding the additional number of mutants
that the generated test suites kill. I calculate the relative increase of mutation score for
each automatically improved test suite, over the original developer-written version as:

%IncreaseKilled =
AverageMutantsKilledAmplified

TotalNumberOfMutants
× 100

Generated Test Suites

EvoSuiteAmp and DSpot generate the test cases in a single test file. There are some
cases where it has dependencies from other test files that developers wrote, such as a
utility class. Without importing dependencies in EvoSuiteAmp and DSpot, the improved
test suite files will have compilation errors. For this reason, I made sure the improved
test suite files always imported these test suite dependencies.

Handling of Mutation Analysis

In this experiment, I used strong mutation testing to evaluate the amplified tests. There
were, in effect, three different mutation testing tools involved in the study. EvoSuite
uses its own mutation analysis tool, while DSpot uses the PITest mutation analysis
tool as part of its test amplification process. Since both EvoSuite and DSpot use
different mutation analysis tools, it is not fair to compare the number of mutants it
kills with different tools, which could produce different results for the same test suite.
To avoid any bias in this study, I used a third mutation analysis tool, in the form of
Major [156] to perform mutation analysis after both EvoSuite and DSpot generate the
improved test suite. Since Major is Defects4J’s default mutation analysis tool, it was
straightforward to apply this analysis in my study.

Statistical Analysis.

Since I am assessing algorithms that are making random choices, I analysed the data that
I collected using well-established statistical analysis recommendations [73]. I repeated
each experiment 30 times. I then used the Mann-Whitney U-test to check for the
significant differences regarding the number of mutants killed, comparing EvoSuiteAmp

with DSpotMut improved test suites, and then EvoSuiteAmp with DSpotCov test suites,
for each version of each subject class. I used the 99% confidence interval, which
means that if the p-value is less than 0.01, this result is statistically significant. I
further calculate effect sizes, using Vargha-Delaney’s (Â) test. Again, I compared
EvoSuiteAmp with DSpotMut , and then EvoSuiteAmp with DSpotCov . An Â value that
is over 0.5 indicates that EvoSuiteAmp outperforms DSpot. Another statistical analysis

4.4. RESULTS 64

that I performed was finding the correlation between the size of the test suite, and the
mutation score. I used Spearman’s rank correlation coefficient to find the relationship
between the two variables, with 99% confidence interval to indicate if the result is
statistically significant.

4.4 Results

RQ1: Mutation Score

Table 4.2, part B, shows the mean of the mutants killed by EvoSuiteAmp, DSpotMut ,
and DSpotCov . The table further shows that EvoSuiteAmp is more effective at killing
mutants for 35 out of the 42 versions (83.3%) than DSpotMut . It is also better at killing
mutants for 27 out of the 42 (64.3%) versions compared to DSpotCov . EvoSuiteAmp

is most effective at killing mutants with classes from the Math project. All the class
versions that EvoSuiteAmp achieves a better mutation score have a p-value less than 0.01.
Where DSpotCov and DSpotMut achieve a better mutation score than EvoSuiteAmp , the

p-value is less than 0.01. When using the Â statistic to measure effect size, I found
that EvoSuiteAmp has a score that favours it over DSpotMut in 35 out of the 42 projects

and DSpotCov in 25 out of 42 versions (59.5%), each time with an Â value greater than
0.8 (i.e., a large effect size).

Conclusion (RQ1: Mutation Score.).
EvoSuiteAmp performs better than DSpotMut and DSpotCov in terms of killing
mutants.

RQ2: Unique Mutants

I also evaluated the cumulative number of uniquely killed mutants after executing each
of the 30 test suites on every tool. This means that mutants that are still alive after
30 runs are considered as either stubborn mutants or equivalent mutants. I found
that EvoSuiteAmp killed more unique mutants in 36 out of the 42 versions (85.7%)
when compared to DSpotMut , and 27 out of the 42 versions (64.3%) when compared to
DSpotCov . This and more detailed information regarding the performance of each tool
on each class version can be seen in part D of Table 4.2.

Conclusion (RQ2: Unique Mutants).
EvoSuiteAmp kills more unique mutants after 30 runs when compared to DSpotMut

and DSpotCov .

RQ3: Size of Test Suite

Even though EvoSuiteAmp can kill more mutants, it generates bigger test suites in
general. When comparing DSpotMut to EvoSuiteAmp, 39 out of the 42 class versions

4.4. RESULTS 65

Table 4.2: The result of test amplification on 42 versions after 30
runs for EvoSuiteAmp (Evo), DSpotMut (DS), and DSpotCov (DJ).

(A) (B) (C) (D) (E) (F) (G)

F
a
u
lt

V
e
rs
io
n

Killed Mutants Std. Dev.
Unique Mu-
tants Killed

O
ri
g
.

M
u
ta
ti
o
n

S
co

re
(%

)

Inc. Killed (%) # KLoC

Mean Median Mean
Evo DS DJ Evo DS DJ Evo DS DJ Evo DS DJ Evo DS DJ Evo DS DJ

Cdc-11 †18.2 16.5 20.0 †18.0 16.0 20.0 ◦1.2 1.2 0.0 20 20 20 63.9 †21.9 19.9 24.1 ∗0.2 0.1 0.3
Cdc-16 †◦90.5 2.0 7.0 †◦90.5 2.0 7.0 †◦23.3 1.0 0.0 †◦139.0 3 7 50.6 †◦9.9 0.2 0.8 ∗•0.7 <0.1 0.1
Cdc-17 †◦7.3 1.0 2.0 †◦7.5 1.0 2.0 †◦1.4 0.0 0.0 †◦9.0 1 2 43.5 †◦31.6 4.3 8.7 ∗•0.3 0.2 0.2
Cdc-18 †◦6.9 1.5 2.0 †◦7.0 2.0 2.0 †◦1.5 0.5 0.0 †◦9.0 2 2 43.5 †◦30.0 6.7 8.7 ∗•0.3 0.2 0.3
Cli-37 †◦13.7 1.0 1.0 †◦13.0 1.0 1.0 †◦4.3 0.0 0.0 †◦23.0 1 1 76.5 †◦3.7 0.3 0.3 ∗•1.4 <0.1 <0.1
Cli-38 †◦10.8 2.0 2.0 †◦11.0 2.0 2.0 †◦2.4 0.0 0.0 †◦15.0 2 2 76.1 †◦2.9 0.5 0.5 ∗•1.5 <0.1 <0.1
Cli-39 1.0 2.0 2.0 1.0 2.0 2.0 0.0 0.0 0.0 1 2 2 14.3 7.1 14.3 14.3 ∗•0.2 <0.1 0.2
Crs-34 †◦39.0 35.0 35.0 †◦40.0 35.0 35.0 †◦3.0 0.0 0.0 †◦44.0 35 35 48.2 †◦34.8 31.2 31.2 ∗•0.4 0.2 0.2
Crs-39 †◦57.5 36.0 36.0 †◦58.5 36.0 36.0 †◦4.0 0.0 0.0 †◦62.0 36 36 32.1 †◦51.3 32.1 32.1 ∗•0.8 <0.1 <0.1
Crs-40 †9.0 4.4 17.0 †9.0 4.0 17.0 ◦2.1 3.1 0.0 †15.0 12 17 37.2 †0.9 0.5 1.8 ∗•0.2 <0.1 <0.1
Crs-44 12.1 15.3 17.0 12.5 14.0 17.0 †◦3.1 1.5 0.0 †◦18.0 17 17 0.0 52.6 66.5 73.9 ∗•0.2 <0.1 <0.1
Crs-45 †◦108.4 56.3 63.0 †◦110.0 57.0 63.0 †◦14.6 1.3 0.0 †◦132.0 57 63 54.2 †◦18.7 9.7 10.9 ∗•0.8 0.2 0.2
Csv-01 †◦6.7 2.1 3.0 †◦6.5 3.0 3.0 †◦2.9 1.1 0.0 †◦16.0 3 3 41.7 †◦8.0 2.5 3.6 ∗0.3 <0.1 0.5
Csv-02 †◦9.6 2.0 7.0 †◦12.0 2.0 7.0 †◦3.3 0.0 0.0 †◦12.0 2 7 36.8 †◦50.5 10.5 36.8 ∗•0.3 0.1 0.1
Csv-04 †16.8 14.8 27.0 †17.0 15.0 27.0 †◦1.4 1.0 0.0 †20.0 18 27 40.0 †24.0 21.2 38.6 ∗0.3 0.3 0.9
Csv-06 †◦12.2 8.4 9.0 †◦12.0 8.0 9.0 †◦0.6 0.5 0.0 †◦13.0 9 9 35.0 †◦61.2 41.8 45.0 ∗•0.4 0.2 0.2
Csv-07 †14.7 12.9 23.0 †14.0 12.0 23.0 †◦2.3 1.5 0.0 †19.0 16 23 47.1 †21.0 18.4 32.9 ∗0.3 0.2 1.0
Csv-10 16.2 56.0 108.0 14.5 54.5 108.0 ◦6.3 10.3 0.2 33 75 109 28.2 5.7 19.7 38.0 ∗•0.6 0.2 0.5
Csv-11 †18.1 13.4 31.0 †18.0 13.0 31.0 ◦2.0 2.1 0.0 †23.0 18 31 42.0 †22.3 16.5 38.3 ∗0.3 0.2 1.0
Csv-12 †31.7 0.0 108.0 †33.0 0.0 108.0 †◦3.4 0.0 0.0 †36.0 0 108 50.3 †10.1 0.0 34.6 ∗•2.1 0.1 1.0
Csv-16 †22.4 12.2 46.0 †22.5 8.0 46.0 ◦4.3 7.4 0.0 †31.0 26 46 36.8 †19.6 10.7 40.4 ∗0.8 0.3 1.3
Jsp-58 9.7 20.1 29.0 8.0 19.0 29.0 †◦4.4 2.2 0.0 23 25 29 22.5 13.7 28.4 40.8 ∗0.1 <0.1 0.2
Jsp-69 †14.3 2.0 24.0 †15.0 2.0 24.0 †◦2.8 0.0 0.0 †18.0 2 24 2.6 †37.6 5.3 63.2 ∗0.2 0.1 0.4
Jsp-79 †◦2.3 0.0 0.0 †◦2.0 0.0 0.0 †◦0.5 0.0 0.0 †◦4.0 0 0 53.8 †◦9.0 0.0 0.0 ∗0.2 0.2 0.3
Jsp-80 36.6 46.0 49.0 35.0 46.0 49.0 †◦4.4 2.2 0.0 45 49 49 11.1 45.1 56.8 60.5 ∗•0.3 <0.1 0.2
Jsp-84 16.0 26.0 27.0 16.0 26.0 27.0 †◦2.2 0.0 0.0 20 26 27 0.0 38.2 61.9 64.3 ∗•0.2 0.1 0.1
Jsp-86 †◦6.9 1.5 0.0 †◦7.0 1.5 0.0 †◦2.1 1.5 0.0 †◦12.0 3 0 51.4 †◦19.6 4.3 0.0 ∗0.2 <0.1 0.2
Jsp-93 †15.7 4.0 18.0 †16.0 4.0 18.0 †◦2.6 0.0 0.0 †◦19.0 4 18 2.5 †39.2 10.0 45.0 ∗0.3 0.2 0.4
Lng-03 †517.8 484.2 545.0 †517.5 485.0 545.0 †◦12.2 8.9 0.0 †543.0 499 545 0.4 †58.2 54.5 61.3 ∗•2.2 1.2 1.6
Lng-04 ◦0.8 1.0 0.0 ◦1.0 1.0 0.0 †◦0.5 0.0 0.0 †◦2.0 1 0 82.9 ◦2.0 2.4 0.0 ∗•0.3 <0.1 <0.1
Lng-05 †◦104.0 5.0 8.0 †◦104.0 5.0 8.0 †◦3.1 0.0 0.0 †◦112.0 5 8 0.0 †◦73.8 3.5 5.7 ∗•0.4 0.2 0.2
Lng-07 †◦530.8 406.0 492.0 †◦530.5 407.5 492.0 ◦11.0 13.3 0.0 †◦554.0 449 492 0.4 †◦59.3 45.4 55.0 ∗•2.4 1.0 1.5
Lng-16 †◦520.7 416.2 490.0 †◦520.0 415.0 490.0 ◦10.9 12.8 0.0 †◦545.0 445 490 0.5 †◦59.6 47.7 56.1 ∗•2.3 1.1 1.5
Mth-09 †◦26.2 20.0 20.0 †◦26.0 20.0 20.0 †◦3.4 0.0 0.0 †◦32.0 20 20 51.6 †◦28.8 22.0 22.0 0.4 0.9 1.7
Mth-25 †◦112.9 41.9 82.0 †74.5 32.0 82.0 †◦72.3 13.2 0.0 †◦233.0 59 82 0.0 †◦32.2 12.0 23.4 ∗•0.3 <0.1 0.1
Mth-26 †◦157.0 51.4 65.0 †◦157.0 51.0 65.0 †◦4.2 0.7 0.0 †◦168.0 53 65 45.6 †◦33.3 10.9 13.8 ∗1.0 0.8 1.2
Mth-27 †◦152.1 51.2 65.0 †◦152.0 51.0 65.0 †◦3.4 0.6 0.2 †◦157.0 53 65 46.0 †◦32.6 11.0 13.9 ∗1.1 0.8 1.1
Mth-36 †◦85.6 54.0 71.0 †◦86.0 54.0 71.0 †◦10.7 0.0 0.0 †◦101.0 54 71 48.4 †◦23.3 14.7 19.3 1.5 2.2 2.8
Mth-52 †◦1509.6 181.0 187.0 †◦1497.0 181.0 187.0 †◦244.0 0.0 0.0 †◦1869.0 181 187 6.0 †◦55.1 6.6 6.8 ∗•1.1 0.2 0.5
Mth-53 †244.1 88.3 307.0 †255.5 82.5 307.0 †◦60.0 24.2 0.0 †◦311.0 142 307 26.5 †46.5 16.8 58.5 1.4 3.1 13.1
Mth-55 †◦536.2 266.0 266.0 †◦542.0 266.0 266.0 †◦24.3 0.0 0.0 †◦567.0 266 266 19.0 †◦68.5 34.0 34.0 ∗•1.5 0.8 1.0
Mth-56 †◦89.8 45.0 47.0 †◦90.0 45.0 47.0 †◦9.5 0.0 0.0 †◦111.0 45 47 0.0 †◦57.2 28.7 29.9 ∗•0.5 <0.1 <0.1

† EvoSuiteAmp performs significantly better than DSpotMut (p-value < 0.01)
◦ EvoSuiteAmp performs significantly better than DSpotCov (p-value < 0.01)

∗ EvoSuiteAmp generates more lines of code than DSpotMut
• EvoSuiteAmp generates more lines of code than DSpotCov

4.4. RESULTS 66

Table 4.3: Spearman correlation value (ρ) between test suite size
(LOC) and mutation score.

Tool p-value Correlation (ρ)

EvoSuiteAmp <0.01 0.698
DSpotMut <0.01 0.588
DSpotCov <0.01 0.608

studied resulted in improved test suite with a smaller number of lines of code1 (KLOC)
when DSpotMut was used. Similarly when comparing DSpotCov to EvoSuiteAmp, 26
out of the 42 class versions had smaller test suites with DSpotCov . Furthermore,
when comparing DSpotMut to EvoSuiteAmp, the improved test suites for 27 out of
42 class versions (64.3%) had a better ratio of killing mutants per line of code with
DSpotMut , and similarly 26 out of 42 versions (61.9%) were better with DSpotCov than
EvoSuiteAmp . In all seven versions in which DSpotMut has a better mutation score, it
improves test suites with a smaller KLOC compared to EvoSuiteAmp . As an example,
Cli-39 as shown in Table 4.2 part G, EvoSuiteAmp generates 0.2 KLOC to kill one
mutant, while DSpotMut generates 0.1 KLOC to kill two mutants. When comparing
EvoSuiteAmp to DSpotCov , where DSpotCov has a better mutation score, 8 out of 15 class
versions (53.3%) have a lower number of LOC. As an example, for Cdc-11, EvoSuiteAmp

generates 0.2 KLOC while killing around 18 mutants and DSpotCov generates 0.3
KLOC, while killing 20 mutants. On the contrary, Jsp-84, EvoSuiteAmp generates 0.2
KLOC while killing around six mutants, and DSpotCov generates 0.1 KLOC, while
killing 27 mutants.

In order to verify whether there is a correlation between the generated test suite
KLOC size and the increase of mutation score, I used the Spearman rank correlation
measure. Table 4.3 presents the correlation coefficients of each tool. There is a strong
correlation (ρ) between the EvoSuiteAmp size of the test, and the increase in mutation
score. In both DSpotMut and DSpotCov , there is a moderate (ρ >0.4) correlation
between the size and increase of the mutation score, and high correlation (ρ >0.7) for
EvoSuiteAmp . All the tools’ p-values are less than 0.01, meaning that there is statistical
significance.

Conclusion (RQ3: Test Suite Size).
Overall, EvoSuiteAmp tends to generate a larger final test suite when compared to
DSpotMut and DSpotCov .

1The lines of code metric was derived using the cloc (Count Lines of Code) library, which counts
only lines that contain executable code while omitting blank lines and comments.

4.5. THREATS TO VALIDITY 67

RQ4: Consistency

In order to investigate the non-determinism rate on each tool, I calculated the mean,
median, and standard deviation (σ) of the mutation score for all 42 subject class
versions over each of the respective 30 re-runs. Table 4.2 (parts B and C) shows the
results of the calculations. The mutation score EvoSuiteAmp produces has a greater
standard deviation when compared DSpotMut and DSpotCov . There were only 7 out of
the 42 versions (16.6%) for which the DSpotMut produced a higher standard deviation,
while there was zero for DSpotCov .

Conclusion (RQ4: Consistency).
EvoSuiteAmp tends to show more varied behaviour when compared to DSpotMut and
DSpotCov .

4.5 Threats to Validity

Naturally, there are threats to validity associated with this study [162]. The first
is associated with subject selection. I chose to use versions of classes that are part
of the Defects4J benchmark, yet not all of the classes it provides could be used in
this study, due to problems in getting DSpot to work. However, I was able to use 42
versions of 29 unique classes in 7 projects, which still provides a suitable number and
diversity of subjects to carry out these experiments and draw conclusions from the
results. Another threat is related to how mutation score is calculated, since EvoSuite
and DSpot use different mechanisms. EvoSuite provides its own implementation of a
mutation analysis pipeline, while DSpot uses PITest. To control this threat, I used
a third tool, Major, to provide an unbiased assessment across the results of the two
tools. To control the threats related to the non-deterministic behaviour of both tools,
I repeated this experiments 30 times. To mitigate the threats associated with this
statistical analysis, and assumptions about the normality of the statistical distributions
of this results, I used non-parametric statistical tests. Finally, after generating the test
cases using both EvoSuiteAmp and DSpot, there are some cases where it needs other
test files to run, due to dependencies. This could have an impact when calculating
the mutation score. To mitigate this problem, I ensure that all improved test suites
retained access to any dependent libraries and code.

4.6 Discussion

Mutation Score

The EvoSuiteAmp tool, in general, kills more mutants than DSpot, which implies that
using the distance to mutation fitness function that is provided in EvoSuite can kill
mutants that DSpot finds hard to kill. In the case of amplifying developer-written tests
using DSpotCov , it is not surprising that an increase in code coverage also helped to

4.6. DISCUSSION 68

increase the mutation score, as mutants that are not reached by developer-written tests
could not be detected. Overall, the results show that EvoSuite’s evolution and mutation
analysis technique is much more suited to improving test suites to kill mutants than
DSpot.

Unique Mutants

Furthermore, EvoSuiteAmp finds and kills more unique mutants after 30 runs when
compared to DSpotMut and DSpotCov . This shows that EvoSuite explores more parts
of the program than DSpot within the 30 runs and that it could find more unique
mutants, further adding to this finding that it is better at improving test suites to kill
mutants than DSpot.

Test Suite Size

In answering RQ3, I found that EvoSuiteAmp usually creates a bigger test suite when
compared to the two configurations of DSpot, and that there is a high correlation
between killing mutants and a big test suite. However, by looking at the mutants killed
per number of lines of code, the value is not significantly bigger. I set EvoSuiteAmp to
not run the minimisation technique that the default EvoSuite does (see Section 4.2),
to avoid original developer-written tests being discarded—however, enabling this
technique could reduce the lines of code while maintaining the mutation score. I leave
this experiment as an item for future work.

Consistency of Mutation Score Results

Finally, RQ4 shows that both DSpotMut and DSpotCov give more consistent mutation
score results over the 30 runs with each subject class version. This potentially means,
however, that EvoSuiteAmp has a higher chance of exploring more edge cases due the
higher degree of stochasticity that it evolves the developer-written tests, and thereby
could find more unique mutants to be killed, as shown by the answer to RQ2.

Readability of Final Tests

Anecdotally, I noted that the tests produced by EvoSuiteAmp were less readable
than DSpot’s. Some of this was due to the inevitable disruption caused by the
evolutionary operators (although I deliberately turned some of these off for this reason—
see Section 4.3.2). In particular, the carving procedure adapts developer-written tests
to EvoSuite’s internal test case representation, which causes them to lose some of their
original qualities. This is something that needs to be investigated in future work.

4.7. CHAPTER CONCLUSIONS AND FUTURE WORK 69

4.7 Chapter Conclusions and Future Work

The current state-of-the-art test amplification tools aim to improve developer-written
tests, but are limited in the changes they can make and are not guided by fine-grained
fitness information. Search-based test case generation tools like EvoSuite, on the
other hand, can benefit from the guidance provided by fitness functions, and have
many more control over the structure of tests, but are limited in terms of reusing of
developer-written tests and the final readability of the tests they generate.

In this chapter, I introduce a modified version of EvoSuite, EvoSuiteAmp , that uses
EvoSuite’s carving functionality to start the search from developer-written test, and
evolves these tests with the goal of killing more mutants. When evaluating it against
the state-of-the-art Java test amplification tool DSpot, EvoSuiteAmp was better at
killing more mutants and killing more unique mutants that DSpot was found to never
kill in any of the 30 re-runs of these experiments.

This chapter highlights that automated tools can kill more mutants by using
developer-written tests as seeds, providing greater flexibility in modifying those tests,
as well as providing proper fitness guidance. However, the downside is less readability
of the final tests, since they do not have similar structure as the original tests written
by developers.

Besides that, in Section 2.6, I have discussed test brittleness as a critial aspect of
test suite health. As discussed in Section 2.6.2, developers are generally advised to
avoid directly invoke implementation-detail methods, which is another indicator that a
test suite is not healthy. To better understand about this issue, an empirical study
on open-source projects and a survey of developers’ opinion regarding this advice are
necessary. Such study could provide a more detailed understanding of how to balance
fitness goals with best practices in writing maintainable and healthy test suite.

Chapter 5

Testing via Public APIs vs
Implementation Details

The contents of this chapter is based on “Muhammad Firhard Roslan, José Miguel
Rojas, and Phil McMinn. Private — Keep Out? Understanding How Developers
Account for Code Visibility in Unit Testing. In International Conference on Software
Maintenance and Evolution (ICSME), 2024”.

5.1 Introduction

As software evolves, maintaining the health of regression test suites is critical but time-
consuming [216, 165]. New tests must be added, outdated tests must be removed, and
existing tests often become brittle, breaking due to minor changes in the codebase [152].
This maintenance effort can be challenging and developers might opt to discard these
false-positive broken tests, potentially weakening the test suite overtime [152, 166]. As
discussed in Section 2.6.2, good practices recommend writing tests that validate the
behaviour of the software—focusing on the Public APIs—rather than implementation
details, to ensure that tests does not spuriously break unnecessarily [165, 83, 117].

In this study, I examine 226,915 JUnit tests of 4,801 open-source Java projects
collected from the Maven Central Repository to understand whether developer follows
this principle in practice or not. Besides that, to investigate this issue in more detail, I
conducted the first qualitative study on why developers choose to test through a unit’s
public API or directly test its non-public methods, risking the reliability of test suite
in the future. This study involved a survey of 73 developers and a systematic analysis
of 60 StackOverflow threads from 2008 [46] to 2023 [53]. With the help of two other
collaborators of this paper, I was able to identify few insights, through numerical and
thematic analysis of questionnaire responses and StackOverflow posts.

In the open-source projects, I found that more than a quarter (28.04%) of the
projects consists of at least one non-public method directly invoked in their tests and
proportionally, the percentage of package-private method being the highest when com-

70

5.2. RESEARCH QUESTIONS 71

pared to other access modifiers. Besides that, approximately two-thirds of developers
surveyed, plus those posting on StackOverflow, strictly adhere to testing public APIs
only, believing that testing non-public methods reflects poor code design and suggest
refactoring of production code is needed instead. In contrast, developers that test
non-public methods directly argue that it’s necessary to ensure complex implementation
details are well-tested, and the undesirable complexity involved in having to write
tests solely from the public API. These developers often use various strategies to make
non-public accessible for testing, such as raising the visibility of methods, so they
statically become accessible to test frameworks. The finding from the open-source
Java projects particularly supports this, with a large number of non-public methods
being called directly from tests, including a disproportionate number designated as
“package-private” — i.e., with enough visibility that they can be invoked by JUnit tests
without using any reflection mechanism.

I provide several implications for future work, including how to provide automated
support to developers to help them avoid the temptation of bypassing public APIs.
This chapter contributes the following to the understanding another issue in test health:

1. Open-Source Study: An empirical analysis of the visibility of methods called
directly from the tests across 4,801 Java projects from the Maven Central Repos-
itory (Section 5.4.1)

2. Developer Survey and StackOverflow Threads: A numerical and thematic
analysis of 73 developer survey responses and 60 StackOverflow threads to identify
developer attitudes and approaches to testing public APIs versus testing non-
public methods directly (Section 5.4.2, 5.4.3, and 5.4.4);

3. Findings and Recommendations: A discussion of this findings, summarising
the current practices (Section 5.6), and suggesting directions for future work to
improve another issue regarding to test health in (Section 5.7).

5.2 Research Questions

A unit typically comprises several accessible methods, that form its “public API”,
which can called from other units. Developers also include non-public methods in units
to implement functionality that should not be invoked externally outside of the unit.
These methods tend to contain useful routines that are utilised within the bodies of
other methods, whether it’s public or otherwise. Assuming that the unit does not
contain any unreachable code, all non-public methods should be invoked by a public
method at some point, implying that the entire unit should be testable through its
public API.

My focus is on understanding how developers consider different visibility levels
when writing unit testing. Given the long-term benefits of a maintainable test suite, do
developers strictly test units through public API? Or, do they bypass public APIs and

5.3. METHODOLOGY 72

directly test non-public methods, and if so, why? I aim to address these four research
questions:

RQ1 (Open-Source Testing). How frequently are public and non-public methods
directly invoked from tests in open-source code? Do open-source developers test against
public APIs only, or do they also make direct calls to non-public methods in their
tests?

RQ2 (Stance). What proportion of developers believe that tests should be written
against a unit’s public API only, compared to those willing to test non-public methods
directly?

RQ3 (Rationale). What are the reasons why developers take a particular stance on
the issue of testing public APIs only versus testing non-public methods directly?

RQ4 (Practice). How do developers go about unit testing code that contains both
public and non-public methods? Do they test non-public methods directly, for example,
or do they test indirectly via public methods as part of a behaviour-driven testing
approach? How do developers test when their language does not have access modifiers?
What, if any, changes to testing frameworks developers would like to see in the future
in respect of these topics?

5.3 Methodology

5.3.1 Open-Source Study (RQ1)

For this research question, I developed a tool called Viscount [226], to measure the
number of times methods with different levels of visibility are being directly called
from tests in open-source software.

I selected open-source Java projects as subjects of this evaluation because Java
offers various levels of access modifiers (i.e., public, protected, package-private, and
private) and is a mature language with a vast number of publicly available open-source
projects.

The initial dataset of open-source projects is similar to the one used in Chapter 3,
where I collated the URLs of 38,841 Github-hosted Java projects listed in the index
of the Maven Central Repository (as of 2023-04-13). Through scripted automation,
I found 7,998 of these projects could be built without errors using Java 8 (the most
commonly used version of Java in 2023 [54]) and Maven 3.9.6.

Viscount begins by statically extracting the access modifiers of each project’s
production methods using the Spoon framework [213]. It then employs a dynamic
approach to trace methods called directly from tests, accurately accounting for calls
made via Java Reflection, via virtual dynamic calls of the intended method, or through a
mocking library that use similar techniques as Java Reflection. To achieve this, Viscount
instruments each project’s bytecode using Javassist [96], inserting log statements at
the method and constructor entry and exit points (i.e., return statements and throw

5.3. METHODOLOGY 73

10
2

10
3

10
4

10
5

10
6

(a) Lines of Code

0

100

200

300

N
um

be
r o

f p
ro

je
ct

s

10
0

10
1

10
2

10
3

(b) Number of tests

0

100

200

300

400

N
um

be
r o

f p
ro

je
ct

s

10
0

10
1

10
2

10
3

10
4

(c) Number of stars

0

200

400

600

N
um

be
r o

f p
ro

je
ct

s

0 50 100 150
(d) Months since last commit

0

200

400

600

800

N
um

be
r o

f p
ro

je
ct

s

Figure 5.1: Statistics of the Maven open-source projects studied in
RQ1.

5.3. METHODOLOGY 74

public protected package-
private

private

Access Modifier

0

20

40

60

80
P

er
ce

nt
ag

e
(%

)
78.17%

5.08% 3.20%
13.55%

Figure 5.2: Distribution of Access Modifier being used per project in
the production method, by percentage, across all Maven open-source
projects studied in RQ1.

exceptions). It then runs the project’s test suites to collect logging information and
identify all direct invocation made from any test. I allocated a maximum of three hours
for the execution Viscount per each project, discarding projects that did not complete
within this time frame. Projects that failed to produce any logs, typically due to a
lack of test suites, were also discarded. Additionally, Viscount excludes any tests that
involve multi-threaded code, as accurately capturing traces in such cases is challenging
due to interleaved method entry and exit points in the logs (a common issue affecting
similar tools, e.g., [138]). Viscount then performs static analysis on each project’s
source code to confirm that the logged production methods were directly from tests,
rather than through third-party libraries or the Java API itself (possible, for example,
through Java’s Serialisation libraries). I then manually inspected any ambiguous
cases that Viscount could not automatically resolve. More detailed information about
Viscount will be discussed in Appendix A.

The final sample for RQ1 consisted of 226,915 tests from 4,801 Java projects. Project
statistics are as shown in Figure 5.1, highlighting a range of projects that are large
to small in size. The mean lines of code per project in the sample was 5841.02, with
an average of 47 tests and 54.9 GitHub stars. The average time since the last commit
at the time of collection was 43 months. The average distribution of the production
method visibility in these 4,801 is shown in Figure 5.2, with majority of the production
methods being public.

5.3. METHODOLOGY 75

5.3.2 Developer Survey (RQs 2–4).

I designed a questionnaire that included a mixture of multiple-choice and open-ended
questions. I conducted a pilot study with professionals and academic colleagues, and
carried out several iterations with a small group of PhD students, refining the design
after each trial (e.g., improving the clarity of what constitutes a non-public method
and reordering the questions). The final survey included questions from four different
perspectives:

• Demographic questions gathered information about the developer’s years of
experience in development and testing, and their main programming language.

• Stance-related questions explored the developer’s opinions on testing only public
APIs vs testing non-public methods directly, which I used to address RQ2.

• Rationale-related questions focussed on the reasons behind the developers’ opin-
ions, providing data to answer RQ3.

• Practical-related questions aimed at understanding the approaches developers
use in their everyday development practice. The responses to these questions
were used to answer RQ4.

The full developer survey questionnaire and background information sheet is as
shown in Appendix C. The background information sheet provides a language-agnostic
definition of “non-public” methods. This included explanation of each access modifiers
and common conventions to denote visibility across various programming languages,
such as C++, C#, Java, Go, Kotlin, and Rust, as well as dynamically typed lan-
guages such as JavaScript, Python, and Ruby, and those enhanced with enforced type
annotations, e.g., TypeScript.

The questionnaire was made available for three weeks using Google Forms and was
distributed via LinkedIn, X (formerly Twitter), regional technology forums, and through
personal industrial contacts, who were also asked to share it with their colleagues.
To mitigate the risk of bot infiltration, I required each participant to sign in to their
Google account, which also successfully prevented multiple submissions from the same
person. I did not collect their account information or track their identity.

In total, I received 73 responses. The median range of development experience
among participants was 10-15 years, with the mode being 15+ years; for unit testing
experience, both the median and mode fell within the 5–10 years range. Figure 5.3
shows the distribution of years of experience in software development and Figure 5.4

22162195

0 - 2 2 - 5 5 - 10 10 - 15 >15

Figure 5.3: Years of experience in software development

5.3. METHODOLOGY 76

151122178

0 - 2 2 - 5 5 - 10 10 - 15 >15

Figure 5.4: Years of experience in writing unit tests

49.3%
31.0%

14.1%

11.3%
9.9%

8.5%

8.5%
5.6%

4.2%
4.2%

IT
Enterprise / Business

Finance
Education

Public Sector
Mass Media

Others
Transportation

Healthcare
Retail Industry

79.5%

72.6%

35.6%

34.2%

24.7%

16.4%

9.6%

2.7%

Agile methodology

TDD

BDD

Feature-driven dev.

Test-last dev.

Acceptance TDD

Waterfall method

Others

Figure 5.5: Distributions of participants current working industry
and software development methodologies that they practices

shows the distribution of unit testing experience among the participants. When asked
about their primary programming language, participants responded with Java (25),
Python (15), TypeScript (9), C# (7), PHP (6), Kotlin (4), C++ (2), JavaScript (2),
Ruby (2), and Scala (1). I analysed the frequency of responses for the fixed-choice
questions using Kendall’s tau-b correlation coefficient to evaluate the strength of
relationship between different ordinal answers [20], as ordinal data typically do not
follow a normal distribution and non-parametric tests like Kendall’s tau-b are more
appropriate for this type of analysis [98]. For open-ended questions, I applied inductive
thematic analysis [100] to the answers, coding each response that capture its key
concepts. Since free-text responses to open-ended questions often contain multiple
components, I divided the responses into seperate elements when conjunctions such
as “and”, “or”, and “but” were being used. I conducted this analysis collaboratively
with the other two collaborators of this chapter’s publication to keep this coding as
consistent as possible and to minimise any individual biases. I then grouped similar
codes into overarching themes. In the results section (Section 5.4), I discuss the major
themes to which I attributed more than two comments.

As shown in Figure 5.5, the majority of the participants indicated that they work in
the IT industry, use agile development methodologies (79.5%) and practice test-driven
development (72.6%). (Both questions allowed for multiple responses.)

5.3. METHODOLOGY 77

5.3.3 StackOverflow Analysis (RQs 2–4)

To better capture a variety of perspectives and gain a comprehensive understand-
ing of developers’ views on testing non-public methods, I used triangulation [212]
to complement the results of the developer questionnaire by analysing online discus-
sions on StackOverflow, one of the biggest question-and-answer website for software
developers [37].

I formulated the following four search queries on StackOverflow: “test non-public
method”, “test private method”, “test protected method”, and “test package-private
method”.

The rationale behind these queries was to retrieve threads discussing the testing of
non-public methods in the general context, as well as threads focusing on the testing
of specific types of non-public methods. This led to the inclusion of the keywords
“private”, “protected”, and “package-private” as search terms. To refine the scope of
the search results, I added the “[unit-testing]” tag to each query term. I deliberately
avoid further narrowing the search queries to avoid missing relevant threads in the
search results. Similarly, I did not specifically mention any programming language
in these queries. The keywords “private” and “protected” were chosen because they
represent different levels of visibility across various programming languages, e.g., C#,
C++, Java, Kotlin, and PHP. Although “package-private” is specific to Java, including
it allows me to triangulate these results with those from the empirical study of Java
projects for RQ1 (Section 5.3.1).

I executed this search queries on 16th of November 2023, and gathered the top 25
threads for each query, sorted by relevance. I eliminated duplicates across queries and
also discarded any insubstantial threads; i.e., those where a genuine discussion did not
materialise, resulting in fewer than two responses. This process left me with 60 unique
threads in total, including original posts from between 2008 to 2023.

I then manually analysed these 60 threads. Firstly, I categorised each of the thread as
either “Debate” or “Practical”, based on the style of the question. “Practical” threads,
which were used to answer RQ4, primarily involved posters asking specific questions
related to testing non-public methods within the context of particular programming
language or testing framework. “Debate” threads, used to address RQs 2 and 3,
were more general and/or conceptual, where the poster’s main intent was to seek the
community’s opinions on testing non-public methods, sometimes in the context of the
specific scenario presented in the question. The categorisation I made was usually
clear from the text of the thread, with some posters explicitly stating their technical
question not to devolve into a discussion about the benefits and drawbacks of directly
testing non-public methods (e.g., [49], “I would not like to discuss whether I should test
privates or not but [. . .] focus on how to test it.”). In the case of “Practical” threads,
I focused only on the top answer—i.e., the one with the highest number of up-votes.
For “Debate” threads, I extended this to the top three answers to account for a variety
of opinions and provide a more complete understanding of the discussion. I did not
extend this analysis to further posts to maintain the quality and manage the number of

5.4. RESULTS 78

posts I had to manually examine. In cases where “Debate” thread has fewer than three
answers, I just analysed the one or two responses available. I then applied inductive
thematic analysis to the questions and answers in these threads, just as what I did for
free-text responses in the developer questionnaire.

5.4 Results

5.4.1 RQ1 (Open-Source Testing)

Figure 5.6 illustrates the distribution of open-source Java projects based on how
frequently unit tests directly invoke production code methods with different access
modifiers.

Out of 4,801 projects, 3,455 (72%) have tests that exclusively call public methods,
while the remaining 1,346 projects (28%) have tests that make at least one call to a
non-public method. Among these, projects with tests directly calling package-private
methods were most common (828 projects), followed by those with direct calls to
protected (698 projects) and private (42 projects) methods. In 64 projects (1.3%), the
tests exclusively call non-public methods, with 37, 23, and 1 projects’ tests exclusively
targeting package-private, protected, and private methods respectively. Additionally, 3
projects have tests that only call package-private and protected methods directly. The
one project that exclusively calls only private methods contains only a single test [32],
which directly tests a private method using Java Reflection [31] to bypass the visibility
restriction. Regarding tests that directly call private methods, as indicated in Table 5.2,
68 used Java Reflection to override visibility restrictions to make the method accessible
for invocation. The remaining 48 used third-party libraries to achieve the same effect,
including mechanisms in mocking frameworks such as PowerMock Whitebox [33] and
EasyMock- ReflectionUtils [15].

While the Venn diagram provides a useful overview of method being invoked directly
in test on a per-project basis, differences in project sizes could give a misleading
impression of the overall frequencies. To address this, I therefore tracked the number
of production methods being called by access modifier type across all projects, as
detailed in Table 5.1. I counted a production method as executed if directly invoked at
least once by at least one test. The vast majority of direct calls made by tests are to
public methods. This might also be due to the average number of public methods in
production code per project is an order of magnitude higher, as shown in Figure 5.2.
The number of calls to package-private exceeds that of protected and private, and
overall, the proportion of package-private methods that are directly called is greater
than that for public.

Since package-private methods can be accessed by JUnit tests without breaking the
encapsulation of the method outside of its package1, this might indicate that developers

1Although Maven organises production code and tests into separate directories, the same logical
package names can be used, meaning that tests can be in the same package as the classes that they

5.4. RESULTS 79

Table 5.1: Numbers of production code methods, by access modifier,
directly invoked from test suites (“Invoked”) out of the total number
of methods (“Total”) in all 4,801 Java projects studied in RQ1.

Access Modifier Invoked Total Percentage

public 179,640 1,468,185 12.2%
protected 2,601 70,579 3.7%
package-private 4,243 27,459 15.5%
private 118 132,701 0.1%

intentionally make methods package-private to test them, rather than leaving them
private. However, because I cannot know the original intentions of the developers of
these projects, I revisit this in the subsequent developer survey and StackOverflow
analysis as part of the next research questions.

Conclusion (RQ1 (Open-Source Testing)). Open-source developers directly
invoke both public and non-public methods in their tests. In 72% of the projects
studied, tests only call public methods directly, while the remaining 28% include
at least one call to a non-public method. Although the raw number of non-public
methods invoked from tests is small compared to the number of public methods,
this is largely because to the number of public methods being an order of magnitude
higher (Figure 5.2). Proportionally, package-private methods are the most frequently
called type of method by access modifier.

5.4.2 RQ2 (Stance)

I asked developers whether they agreed with the statement “In general, developers
should write unit tests that only invoke public methods, avoiding direct calls to non-
public methods”. Figure 5.7 summarises their responses, showing that nearly two-thirds
(64%) of participants either agreed or strongly agreed; while 30% disagreed or strongly
disagreed, and the remaining 6% were unsure.

I also asked developers “How often do you write tests that directly invoke non-
public methods?”. The most common answer selected by partipiants were “Never” and
“Rarely”, as illustrated in Figure 5.8. This figure also shows that the frequencies of
answers (“Always”, “Often”, “Sometimes”, “Rarely”, “Never”) aligns with the levels
of agreement observed in Figure 5.7. Kendall’s tau-b indicating a significant strong
association between these sets of answers (τb = 0.463, p < 0.01).

Additionally, I also analysed the 18 StackOverflow threads I classified as “Debate”-
based (Section 5.3.3). I categorised the top three responses in each thread as either

test despite being in different directories on the file system [39, 23].

5.4. RESULTS 80

public

protected package-private

private

3455
(71.96%)

23
(0.48%)

37
(0.77%)

1
(0.02%)

464
(9.66%)

587
(12.23%)

18
(0.37%)

3
(0.06%)

0
(0%)

0
(0%)

190
(3.96%)

12
(0.25%)

5
(0.1%)

0
(0%)

6
(0.12%)

Number of Projects: 4801

Figure 5.6: Venn diagram of open-source Java projects, grouped by
visibility of production code methods called directly from their tests.

Table 5.2: Mechanisms used to directly invoke private methods in
tests, by numbers of tests (“# Tests”) and projects (“# Projects”), in
the dataset of Java projects.

Framework # Tests # Projects

Java Reflection [31] 68 31
JMockit Deencapsulation [19] 14 1
PowerMock Whitebox [33] 13 5
Apache Commons Lang3 MethodUtils [5] 12 4
Manifold Jailbreak [22] 6 1
EasyMock ReflectionUtils [15] 1 1
Spring Framework ReflectionTestUtils [36] 1 1
tvd12 test-util MethodInvoker [41] 1 1

5.4. RESULTS 81

29181664

Not sure Strongly disagree Disagree Agree Strongly agree

Figure 5.7: Developer responses to the question “To what extent do
you agree with the following statement? ‘In general, developers should
write unit tests that only invoke public methods, avoiding direct calls
to non-public methods.’”

31211182

Always Often Sometimes Rarely Never

Figure 5.8: Developer responses to the survey question: “How often
do you write tests that directly invoke non-public methods?”

in favour of testing only public APIs (19; ∼40%), supporting of testing non-public
methods directly (17; 35%), or being neutral in stance (12; ∼25%). Similar to the
developer survey, I observe that there was more support for testing public APIs only,
though by a smaller margin. These posts were also more likely to receive more upvotes
from users of the site, and consequently be ranked first in the list of answers to the
original question.

Conclusion (RQ2 (Stance)). Among the developer survey participants, nearly
two-thirds prefer to test only public APIs, while the remaining third are open to
testing non-public methods directly. A similar trend was observed in the answers in
StackOverflow “Debate” threads, where responses advocating to test only via public
APIs were more frequently the top answers than those supporting directly testing of
non-public methods.

5.4.3 RQ3 (Rationale)

To gain deeper understanding on developers’ stance, I divided participants into two
groups: “agree” and “disagree”, based on their responses to the statement “In general,
developers should write unit tests that only invoke public methods, avoiding direct calls
to non-public methods” (Figure 5.7). The “agree” group consists of participants who
agreed or strongly agreed with the statement, indicating a preference for testing only
through public methods. In contrast, the “disagree” group includes those who disagreed
or strongly disagreed.

I also asked developers to assess the importance of eight different qualities of
test suites, as shown in Table 5.4. The table highlights some interesting differences
between the two groups. Participants in the “agree” group most frequently rated
all the qualities as “Very Important”, with the exception of code coverage, which
they rated as “Important”. On the other hand, the “disagree” group marked code

5.4. RESULTS 82

182516410

Not sure Strongly disagree Disagree Agree Strongly agree

Figure 5.9: Developer responses to the question: “Testing non-public
methods leads to more tests failing spuriously when modifications are
made to those methods”

Table 5.3: Classification of posters’ answers to StackOverflow “De-
bate” threads as either arguing to test public APIs only or test non-
public methods directly, or were neutral in stance. “Rank” refers to
whether the answer was first, second, or third in the list of responses
to the original post, depending its “upvotes”. (NB: Some posts received
fewer than three responses.)

Classification #Answers Mean Rank Mode Rank

Test public APIs only 19 1.89 1
Test non-public methods directly 17 1.94 2
Neutral 12 1.83 2

coverage as “Very Important”. This suggests that testers in the “disagree” group
place greater emphasis on exercising implementation, as achieving higher coverage may
require directly invoking non-public methods from a test to execute a statement that
are otherwise hard to cover. In contrast, members of the “agree” group, who favour
public-only testing, appears more concerned with testing behaviour. Some participants
explicitly express this view in their free-text responses in this survey. For instance,
Participant P49 remarked “It’s important that unit tests test the behaviour and not the
implementation”, while P72 stated “I think that testing public rather than non-public
methods leans more towards testing behaviour rather than implementation which is
usually preferable”.

I also asked developers to what extent they agree with the statement “Testing
non-public methods leads to more tests failing spuriously when modifications are made
to those methods.” I found that those in the “agree” group also tended to agree or
strongly agree with this statement. Kendall’s tau-b test revealed a strong and significant
association: (τb = 0.53, p < 0.01). However, there was no such obvious correlation for
the “disagree” group as I only found Kendall’s tau-b test value of (τb < 0.2, p < 0.01).
Figure 5.9 summarised the distribution of responses. Public-only testers are thus more
concerned about tests breaking during an internal refactoring if they are tightly coupled
to non-public methods through direct invocations, further supporting the idea that
this group prefer to test behaviour over implementation. This perspective was echoed

5.4. RESULTS 83

Table 5.4: Developer responses to the question “To what extent do
you value the following aspects when writing unit tests?”

The participant could choose from the options “No opinion” , “Not Important” ,
“Somewhat Important” , “Important” , and “Very Important” .

Aspect “Agree” group “Disagree” group

Code coverage 161910 1057

Capturing behaviour via assertions 369 173

Ease of debugging 23165 6105

Robustness after refactoring 3211 1183

Sensitivity to change 2814 1073

Realism 28710 1154

Confidence in code 386 1533

Conciseness 1713106 398

by several participants in free-text responses. For example, P65 said “Writing tests that
are coupled to the private implementation of a class hurts the ability to refactor in the
future”. Additionally, the “agree” group pointed out potential process or design flaws
within the production code. P21 noted, “If you have to do it, that means you probably
have a code smell. . . ”; P43 agreed with this, saying “. . . that may be a sign that there
is a design/decomposition problem”, while P58 stated it could indicate “a sign of a
leaky abstraction”. P25 also pointed out that not testing through public methods could
lead to unrealistic tests: “even if a private method CAN handle a variety of inputs,
it’s pointless to test for every possible combination, because you know the code that is
calling the private method will never present those possibilities”.

In contrast, developers who disagreed with the public-only approach cited the
complexity of logic in non-public methods and the need to thoroughly tests them.
For instance stated by P55: “If the logic within the non-public is complex and critical,
then do what you need to do to test them”. P31 also stated that testing non-public
methods directly is often less verbose and potentially easier and clearer: “. . . if its [sic]
clearer/easier to test an internal part of a flow rather than setting up for testing the
public method then that’s a better idea”.

Finally, I conducted a thematic analysis of the original poster questions that initiated
the 18 “debate” threads I retrieved from StackOverflow.

5.4. RESULTS 84

These threads provided additional insights into the motivations of developers considering
testing non-public methods, revealing the following themes:

– Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake: This theme included question
posts whereby the original posters, unlike some survey respondents who viewed the
need to directly test non-public methods as a code design flaw, felt they would have
to compromise code design to avoid such testing of non-public methods. One poster
wrote, “If I wrote this class this way, I could have unit tests [. . .] but I feel like this
pattern is not correct. Is there a better way?” [50].

– Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity: This theme featured posters that are curious about whether testing non-
public methods is good practice or not.

– Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic: Echoing participants in this developer survey, this theme characterised
by posters who wanted to directly test non-public methods due to the complexity.

– Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface: Posters described another reason
that did not emerge as an explicit theme in the developer survey: they felt that testing
through public methods was too laborious and repetitive, leading to duplicated code
across tests — “the method contains logic shared between other methods in the class
and it’s tidier to test the logic on its own” [47]; or simply too complex in its own right:
“I want to test logic used in synchronous threads without having to worry about threading
problems” [47].

Conclusion (RQ3 (Rationale)). Public API testers prioritise of testing behaviour,
while developers who directly test non-public methods focus more on the correctness
of implementation. Public API testers view the need to test non-public methods
directly as indicative of code design issues, which could lead to reliability and
refactoring challenges in the future. On the hand, implementation-driven testers are
more concerned about complex parts of non-public code remaining untested and
about the increased complexity of test code, as testing non-public methods through
the public API often require a lot of shared setup between tests.

5.4.4 RQ4 (Practice)

Access Modifiers in Programming Languages

I also asked developers the question: “If your main language does not have access
modifiers, do you follow any conventions to denote visibility of methods and instance
variables?”. Of the repondents, 54 participants indicated that their main programming
language includes access modifiers, while the other 19 said theirs did not. Among those
19, 16 mentioned that they followed specific conventions to denote visibility instead. I
then asked these participants, in a free-text follow-up question to those who said they
followed conventions, which conventions they used.

This thematic analysis of responses revealed the following major themes:

5.4. RESULTS 85

Table 5.5: Developer responses to the question: “How do you go
about testing non-public methods?”

The participant could choose from the options: “Not sure” , “Not a feature in my
language” , “Never” , “Rarely” , “Sometimes” , “Often” , and “Mostly” .

Means “Agree” group “Disagree” group

Via public methods only 36 610

By directly invoking 1225 45533

Using reflection / mocks 61620 3936

Adding test code in production 733 413

Temporary switch to public 40 18

Permanent change to public 61426 514

– Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes: Almost all respondents reported using underscores to indicate
non-public methods.

– Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific: Some participants noted that they use different visibility conventions
depending on the project.

– Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding: Some participants questioned the necessity
of such mechanisms altogether. For example, P50: “Visibility is usually irrelevant for
understanding the code”.

– Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance: Participants observed that encoding visibility in
the method names (e.g., using underscores) adds to maintenance refactoring effort —
P50: “encoding it in the name increases the work required to change visibility.”

Approaches to Testing Non-Public Methods

I asked developers “How do you go about testing non-public methods?”, and analysed
the responses within the two groups defined in the previous research question. Unsur-
prisingly, those in the “agree” group, those who advocated for testing through public
APIs only, most frequently answered “mostly” for “via public methods only” and
“never” to the other options shown in Table 5.5. In contrast, the “disagree” group most
commonly only rated “via public methods only” as “often”, and indicated “sometimes”
for testing by direct invocation, using reflection, or employing mocks.

I also asked developers about any additional methods that they use to directly test
non-public methods. The thematic analysis of their free-text responses revealed the
following major themes, listed in order of prevalence:

5.4. RESULTS 86

Table 5.6: Top 3 themes for the question — “Are there any guidelines,
best practices, or specific rules you follow when testing non-public
methods?”

Theme

1: Avoid testing non-public methods directly
2: Apply good software engineering process
3: Test non-public methods directly if necessary

– Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor: Developers believe that testing non-public methods directly indicates code
smell related to its poor design, suggesting the need for refactoring. As stated by
P21: “If you HAVE TO test non-public methods, maybe they are in the wrong place (i.e.
maybe they should be extracted elsewhere)”.

– Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier: Some developers elevate the visibility of a method to make it
accessible and thus it became directly callable from a unit test. As noted by P39, “Mostly
what I do (in Java) is have the method be ‘package private’ (the default visibility)”,
sometimes using test framework annotations to indicate the reason for the visibility
change (P39: “. . . and use an annotation (@VisibleForTesting) to mark the reason for
the visibility”).

– Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods: Developers emphasised that non-public methods should be tested
indirectly by invoking the public methods.

I then asked developers “Are there any guidelines, best practices, or specific rules you
follow when testing non-public methods?”. From their responses as shown in Table 5.6,
I identified two new main themes not mentioned in the previous question:

– Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process: In this theme, developers additionally em-
phasised that if a proper process or design principle had been followed, there should
not be a need to directly test non-public methods. These perspectives align with the
previously identified “refactor” theme.

– Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary: This theme captured the view of devel-
opers who believe that non-public method should be tested directly when they are
complex.

Following this, I asked participants whether they took a different approach for different
levels of visibility for non-public methods (protected and public). The majority (59)
answered “No”, while the remaining 14 replying “Yes”. In a follow-up free-text question
I asked participants to explain further. From their responses, I identified the following
themes:

– Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to: Respondents focused on testing non-public meth-
ods that were visible to tests and does not produce any syntactic error. As an example,
within JUnit, tests can access protected and package-private methods but not private

5.4. RESULTS 87

ones (P56: “In Java at least, protected methods can be called from classes in the same
package (production and test sources can have the equivalent packages)”; and P47: “I
would look at it as non-private and private. Any method with accessibility outside of
it’s [sic] own class can be accessed by a unit test, and thus *could* be unit tested”).

– Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only: Respondents emphasised that developers should focus
on testing through public methods only.

– Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible: Similar to the previously identified “elevate access modifier” theme, if
the method cannot be accessed by the tests, increase its visibility level (e.g., P36: “I
elevate private to package private, and leave the others as is”), or make it visible or
accessible for testing through a wrapper class (e.g., P56: “Private methods cannot [be
directly accessed], so the class must be extended to put a public wrapper around the
private method.”)

Finally, I analysed StackOverflow answers in “Practical” threads (Section 5.3.3) where
posters specifically ask how to test a non-public method in a given scenario. This
thematic analysis revealed similar types of responses, but in a different order of
prevalence, largely because the original poster was asking how to test non-public
methods, and the responses tended to be a mix of direct answers along with opinion-
based ones that accounted for the bigger picture:

– Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism: Posters discussed a variety of mechanisms to gain
access to non-public methods normally inaccessible for testing, including using reflection
(e.g., in Java) to override access controls, and C++’s “friend” construct.

I also identified themes that I had previously seen in responses to this developer survey,
thereby helping to corroborate its results:

– Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only: Posters advised testing solely via the public API; i.e.,
not to test non-public methods directly.

– Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor: Posters advised to refactor production code to avoid the need to test non-
public methods directly.

– Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier: Posters in favour of side-stepping the public API advising
raising the access level of the non-public so that it is visible for testing.

Tooling

Finally, I asked developers if they would like to see any features or improvements in
unit testing frameworks to better support of testing non-public methods. The responses
revealed the following themes, listed in order of prevalence:

– None:None:None:None:None:None:None:None:None:None:None:None:None:None:None:None:None: Most respondents did not feel that any new features were necessary, making
this the most common response.

– Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools:Reduce support in current tools: Some respondents felt that the current testing frame-
works made it too easy to test non-public methods directly (using the mechanisms
featured in Table 5.2, for example), and suggested that these frameworks should instead

5.5. THREATS TO VALIDITY 88

do more to discourage or even prevent the practice. (P21: “Current tools make it seem
bad enough, which makes the developer think about it twice. Making it easier to test
private methods will lead to more code smells”).

– Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods: Other respondents expressed a desire for more sup-
port in testing framework to handle inaccessible methods (e.g., private methods in
Java) without needing to use technique like reflection to bypass access restriction.

Conclusion (RQ4 (Practice)). The majority of developers using programming
languages that do not adopt any syntactic visibility modifiers conventions use
underscores in method names to indicate that they are meant to be non-public.
Testers who prefer to exclusively test through a unit’s public API view the need to
test non-public methods directly as a sign of a code smell, suggesting poor process
design or the need to refactor production code. Developers who do test non-public
methods often resort to “back-door” technique, with one of the most common being
to elevate the method’s visibility to make it accessible for the purpose of testing.

5.5 Threats to Validity

I will address the threats to validity [162] and the strategies used to mitigate them in
this section.

Questionnaire Participants

As with most questionnaires, the sampling of participants may affect the external
validity of this study. Given the lack of a reliable way to quantify the entire population
of software developers, I employed the non-probability purposive sampling method to
recruit participants who were most likely to provide useful responses for this study [78];
I distributed this questionnaire widely via social media and professional networks to
reach a large number of participants.

Questionnaire Evaluation

The internal validity of this study depends on the design of this questionnaire. Following
empirical software engineering guidance [161], I conducted a pilot study before releasing
the questionnaire, consisting of four iterations with ten respondents from diverse
backgrounds (CS PhD students and professional developers). This pilot study helped
mitigate potential researcher biases and refine the questionnaire’s format, length, and
clarity.

Thematic Analyses

For both the free-text responses in the questionnaire (Section 5.3.2) and StackOverflow
threads (Section 5.3.3), I opted for a collaborative thematic analysis between three

5.5. THREATS TO VALIDITY 89

authors to ensure this interpretations are valid (construct validity) and mitigate any
individual researcher bias.

Programming Language

This open-source study focused exclusively on Java projects hosted on GitHub that
use Maven as the build automation tool which poses a potential threat to external
validity. Although Java remains one of the most popular programming languages [245]
and Maven is the primarily build automation tool for Java [54], further replications are
necessary to determine how these results generalise to other programming languages.
Additionally, I only included projects that I could build with Java 8, the most popular
version of the language in 2023 [245]. While I believe this is a good representation of
Java projects, further research is needed to assess whether these results apply to more
recent versions of the language.

Test Instrumentation

Collecting data from open-source projects requires implementing a test instrumentation
mechanism to capture the execution trace of existing tests. As with any study of this
nature, there is a risk that implementation errors could impact the results which may
have an impact on internal validity. To mitigate this risk, I carefully review, debug
and test the implementation, and thoroughly discuss the results with the co-author
of this chatper’s publication. I also acknowledge certain limitations in the current
instrumentation as it cannot handle invocation of multi-threaded in the tests (similar
to java-callgraph [138]) or some obscure method invocation mechanisms used in a small
number of projects. However since these features are orthogonal to the use of access
modifiers, therefore I do not expect them to affect this analysis. I mitigate this further
by using a sufficiently large number of projects (4,801) and tests (226,915).

Triangulation

The nature of the problem under investigation in this study led me to use three
complementary methods: a developer questionnaire, an analysis of online question-
and-answer discussions (StackOverflow), and a quantitative experiment on open-source
Java projects. This triangulation helps me to mitigate threats to validity across
research methods (e.g., self-reporting biases) and contributes to a comprehensive
understanding of the problem, allowing me to provide more confident answers to the
research questions [212].

Reproducibility and Replicability

To promote reproducibility and replicability, I made this research materials available
online [56], including this questionnaire, its responses, analysis spreadsheets, and
experiment scripts for open-source projects.

5.6. DISCUSSION 90

Y
rs
.
of

te
st
in
g
ex
pr
. 13 (20%)11 (73.3%)>15

12 (18.2%)8 (72.7%)10–15

7 (31.8%)15 (68.2%)5–10

16 (35.3%)10 (58.8%)2–5

14 (50%)3 (37.5%)

Number of participants (%)

0–2

Agree / Strongly Agree Disagree / Strongly Disagree Not Sure

Figure 5.10: Participants years of testing experience, grouped by
stance on testing through public methods only (distribution shown in
Figure 5.7).

Y
rs
.
of

de
ve
lo
p
er

ex
pr
.

14 (18.2%)17 (77.3%)>15

16 (37.5%)9 (56.3%)10–15

18 (38.1%)12 (57.1%)5–10

12 (22.2%)6 (66.7%)2–5

2 (40%)3 (60%)

Number of participants (%)

0–2

Agree / Strongly Agree Disagree / Strongly Disagree Not Sure

Figure 5.11: Participants years of developer experience, grouped by
stance on testing through public methods only (distribution shown in
Figure 5.7).

5.6 Discussion

Further Analyses

I explore potential correlations between developer experience and the survey results,
as well as between the size of a project and the frequency of direct calls to non-public
methods in the tests examined in RQ1.

In the demographic survey, I asked developers about their years of experience in
development and testing that they had. Figure 5.10 displays a stacked bar chart of
testing experience, divided into groups based on whether respondents “agree” with
testing through public APIs only or the “disagree” group from RQ3, or were unsure,
as determined based on their responses to the question shown in Figure 5.7. The chart
indicates an increasing proportion of those in the “agree” group as years of testing
experience increases. Kendall’s tau-b revealed a moderate positive correlation between

5.6. DISCUSSION 91

these two traits, which is significant at α = 0.05 (τb = 0.240, p = 0.014). This suggests
that more experienced tester are more likely to oppose to test non-public methods
directly, and highlighting the need for additional organisational guidance is required for
more junior team members to ensure that they will avoid side-stepping the public API
and test non-public methods directly. Conversely, I found less evidence of a similar
relationship with development experience (Figure 5.11); Kendall’s tau-b test showed
only a weak and non-significant association (τb = 0.135, p = 0.17).

I also investigated whether the project size was somehow correlated with specific
practices related to testing of non-public methods. It would be conceivable that directly
testing non-public methods is less prevalent in larger projects due to having larger
development teams with potentially more development and testing experience, who
likely adhere to a better software engineering practices. However, Kendall’s tau-b
revealed only a weak correlation between the number of tests and the proportion of
non-public methods directly called in them (τb = 0.179, p < 0.01). While both large
and small projects in this dataset generally focused on testing public methods (in
accordance with the data shown in Table 5.1), they also frequently included direct calls
to non-public methods.

Summary of Findings

The results indicates that while the majority of developers favour of testing solely
through public APIs, the preference is not overwhelming, with about a third disagree-
ing and in favour of testing through non-public methods directly depending on the
circumstances (RQ2). Developers in the “agree” group that oppose direct testing
of non-public methods, arguing that it will complicates future code refactoring and
maintenance, and that the desire to test non-public methods directly often coming from
poor code design, suggesting refactoring as the solution instead (RQ3, RQ4). However,
this requires to be done with caution, as it could lead to repetitive in tests that keep
calling the same public methods—a concern that is raised in some literature suggested
this as another code smell in its own right [80]. Some studies suggests such repetitive
tests themselves should be refactored [248] to adhere the DRY principle (“Don’t Repeat
Yourself”), while others advocate for keeping tests “DAMP” (“Descriptive And Mean-
ingful Phrases”); e.g., [165]. Another refactoring issue involes the temptation to make
parts of the implementation visible solely for testing purposes, a practice that is also
considered as a test smell (referred to as “For Testers Only” [248, 80, 63], discussed
in Section 2.6.2.

The drawbacks of the alternatives to direct testing non-public methods are exactly
those expressed by participants in this survey and those on StackOverflow users who
are in favour of testing non-public methods, often depending on the situation. Some
also cited the complexity of the code within non-public method—perhaps considering
code coverage of the tests in mind — and the difficulty of testing it indirectly, leading
to complex tests and/or the challenges in isolating the specific parts of the code they
wish to exercise (RQ3). Survey respondents and posters on StackOverflow proposed

5.7. IMPLICATIONS AND FUTURE WORK 92

various solutions, with some of the most common being the use of language-specific
mechanisms to bypass access modifiers or elevating access modifiers—effecitvely making
the internals more accessible for testing. This findings related to RQ1 suggest that
developers do often make methods package-private in Java for the testing purposes,
indicating that they do not strictly adhere to testing exclusively through the public
API only.

Finally, the majority of developers in this survey did not believe that additional
tooling support is needed to address the challenges (RQ4). However, they perhaps
may not be aware of potential future research techniques that could help convert direct
calls to non-public methods into tests that solely exercise the public API, or manage
other perceived drawbacks of testing non-public methods over the public API, such as
repetition in tests. I will expore more implication and ideas for future work in the next
section.

5.7 Implications and Future Work

5.7.1 Software Testing Education

The results of the survey revealed that attitudes varied according to levels of experience.
Rather than allowing developers to learn through the “hard way”, I suggest that
educators be informed of some of these different perspectives and make an effort to
highlight the best software engineering practices in their teaching.

Behavioural-Driven Testing

The survey results indicate that less experienced software developers and testers are
more likely to be in favour of testing non-public methods directly. This suggests a need
to improve education and resources focused around behaviour-driven development and
testing approaches. Providing this would give developers with a better understanding
of the longer-term drawbacks, such as reduced reliability of the test suites, offering a
clearer incentives to avoid this practice.

Attitudes towards Coverage

While developers often shows good and healthy skepticism towards code coverage
quality in general (e.g., [35]), this study found a correlation between code coverage
and the favouring of testing non-public methods directly. Increasing code coverage
may thus be a driving factor behind testing implementation rather than behaviour (a
pattern also noted by Bowes et al. [83]). Ideally, developers should use code coverage
to identify untested behaviours rather than focusing on individual lines that their tests
execute in the production code. Therefore, testers should place less concerned with
code coverage as a quality metric for their test suites, as tests that are more closely

5.7. IMPLICATIONS AND FUTURE WORK 93

coupled to implementation are of lower quality due to the higher maintenance costs
they incur over time.

Identifying and Discouraging Anti-Patterns in Testing

These findings reveal that developers sometimes take alternative shortcuts to test
non-public methods’ implementation or make them accessible by elevating methods
access levels, using language-specific mechanisms like the “friend” keyword in C++ [99],
or other employable technique such as Reflection in Java to access code normally
inaccessible to tests. These practices should also be highlighted as anti-patterns to
avoid in software testing within education materials.

5.7.2 Automated Techniques

The results reveal that there is extensive scope for automated techniques to assist with
the problem of testing non-public methods.

Automated Support To Replace Direct Non-Public Calls

In the survey, some developers described the complexity or difficulty of testing ex-
clusively through public interfaces. Future research therefore focus on techniques to
refactor existing developer-written tests by removing direct calls to non-public methods
and replace them with call sequences that rely solely on available public methods only.
This could be achieved using test generation tools like EvoSuite [122]. As an example,
when a direct non-public method call is detected, a search-based technique [186] could
be used to find any equivalent set of public method calls that will invoke the non-public
method the same way. However, the resulting generated tests may face readability
challenges [60, 103, 227]. For this reason, applying a large language model to assist
in refining the tests could be beneficial, similar to the recent work by Alshahwan et
al. [65] and Yaraghi et al. [256].

Refactoring Production Code Based on Problematic Tests Calling Non-
Public Methods Directly

In the survey, several developers pointed out that the desire to bypass the public API
and directly test a non-public method often stems from poorly design in the production
code in the first place. This suggests that tests that involve in calling non-public
methods directly might indicate production code in need of refactoring. However,
such refactoring would need to be more intricate than simply making non-public
methods accessible to tests, as it would undermine the main objectives of keeping
an implementation details method to be private. While there has been research on
refactoring tests to eliminate test smells (e.g., [244]), to the best of my knowledge,
poorly designed test cases have not yet been used as the basis for automated refactoring

5.7. IMPLICATIONS AND FUTURE WORK 94

of production code. Direct calls to non-public methods in tests could be a potential
direction for guiding automated refactoring tools towards improved code design, ensure
that tests only need to invoke the public API to better effect.

Improved Automated Test Smell Detection Tools

Current test smell detection tools primarily target private methods [255], however
direct calls to any non-public methods, such as private-package ones, can couple tests
to the implementation details, making them difficult to maintain over time. I therefore
argue for extending these tools to detect calls to all other non-public methods, e.g.,
package-private. Moreover, identifying when a test directly invoke a non-public method
is surprisingly a non-trivial task. Static methods often miss cases when mocking
libraries are used to bypass visibility restrictions to call private methods. In this study,
I resorted to use dynamic approaches, and yet still, I encountered some cases that were
challenging to analyse due to the tests that involved threaded code or starting threads
themselves—both of which indicative of further test smells. Additionally, callbacks
through external APIs posed further complications. I checked these cases by hand or
excluded them entirely from this study. Future work should focus on addressing these
challenges.

Automatic Test Generation and Non-Public Methods

The respondents in the survey or those using StackOverflow did not comment anything
on automatically generated test suites (such as those being produced by EvoSuite [122],
Randoop [202], or AgitarOne [3]). These tools maintain the option and incentivise to
call non-public methods directly with the goal of increasing coverage [76, 237], meaning
tests generated by these tools will still be hard to maintain. In a study conducted by
Gay [132] shows that directly covering a branch from a method is less constrained in
the choice of input, which means that it is easier to search for call sequences invoking
those methods. Further work needs to establish what the longevity is of automatically
generated test suites, since this might not be a problem if the tests are to be thrown
away and regenerated anyway [236].

5.7.3 Developer Support

The survey responses suggest different approaches to improve existing tools to help
developers to ensure their unit tests do not directly call non-public methods.

Stricter Test Frameworks / Build Tools

As previously mentioned, developers often take alternative shortcuts in their tests to
directly exercise non-public methods, but stricter test frameworks could eliminate these
bad practices entirely. For instance, JUnit, when used with build tools like Maven and

5.8. CHAPTER SUMMARY 95

Gradle, organises unit tests within the same package as the classes they test. This
setup makes certain non-public methods, such as those declared package-private or
protected, accessible to tests. I found such calls to be particularly to be common
in this study of open-source Java projects, especially in the case of package-private.
However, by placing the test suites outside the package of the classes they are designed
to test, these direct calls would be impossible due to the visibility rules of the Java
language. This suggestion is directly based on developer feedback in response to RQ4
(Section 5.4.4). Additionally, mocking tools and third-party libraries, such as those
shown in Table 5.2, should consider deprecating or remove the functionality for allowing
developers to access private methods through Java Reflection.

Integrated Development Environment support

Integrated Development Environments (IDEs) could incorporate support for some of
the proposed future work on automated techniques mentioned earlier. For instance,
when a developer is inclined to call a non-public method directly, the IDE could
automatically suggest an alternative sequence of calls that utilise the public interface of
the class instead. Similarly, these tools include bad smell detectors implementation to
provide developers more useful indicators of test suite quality, beyond just code-based
metrics like code coverage.

5.8 Chapter Summary
Test suites that directly test internal implementations requires additional maintenance
whenever those implementation changes—a cost that could be avoided by focusing solely
on testing public APIs. In this study, I conducted a developer survey and analysed
relevant StackOverflow threads to present the first qualitative study of developer
opinions, rationale, and practice when faced with the decision of how to test units with
methods of different visibility levels. This qualitative study is further supported by a
quantitative analysis of 4,801 open-source Java projects, which I obtained from the
Maven Central Repository. Among several findings, this work revealed that while the
majority of testers prefer to test only the public API of a unit, a significant number
are still willing to bypass it and test a non-public method directly, particularly if those
methods are complex even if it means raising the visibility level of the method. While
many developers suggested that such code needs to be refactored to enable testing
through its public methods, others resort to various techniques to directly access those
non-public methods if needed, including making these methods visible for the purpose
of testing only, such as using “friend” [99] or @VisibleForTesting. This behaviour was
supported by the results of this open-source Java code study, where an unexpectedly
high number of methods directly tested were declared “package-private”—not fully
private but with just “enough” visibility to be accessible to unit tests. I proposed
several research directions and strategies to help developers reduce the need to test
non-public methods directly, aiming to improve test reliability in the future.

Chapter 6

Coverage-Preserving Test Repair:
Automatically Replacing Direct
Non-Public Method Call in Test

6.1 Introduction

The aim of this chapter is to evaluate the feasibility of using EvoSuite to replace direct
invocations of non-public methods in existing developer-written tests. This is to ensure
that non-public method are exercised through public methods while maintaining the
branch coverage of the non-public method covered in the tests. I refer to this extension
of EvoSuite as EvoSuiteUTOPIA—Unit Test Only PublIc API—leveraging EvoSuite’s
meta-heuristic technique [186] and its ability to easily adopt new fitness functions.

To evaluate EvoSuiteUTOPIA, I used the projects with at least one non-public
methods directly invoked in the tests identified in the evaluation of open-source
projects in Chapter 5 as well as projects where I was able to generate tests using
EvoSuite out-of-the-box (v1.2) in Chapter 3. From the 181 projects, EvoSuiteUTOPIA

successfully replaced 1,146 (55.7%) non-public method invocations out of 2,057 non-
public methods being directly called from 933 tests across 136 projects. On average, the
successful replacements generated by EvoSuiteUTOPIA were able to maintain 84.79% of
the coverage as achieved by the original non-public method being exercised directly.
For the remaining non-public methods, EvoSuiteUTOPIA was unable to replace them
because the non-public methods were either not reachable from any existing public
methods, or at least one of the method arguments are dependent on an external library.

In summary, this chapter makes three main contributions:

1. A novel technique, EvoSuiteUTOPIA, that will replace non-public methods directly
invoked in a test with public methods that exercise them indirectly.

2. An empirical study was conducted on 136 projects to assess the feasibility and
usefulness of EvoSuiteUTOPIA.

96

6.2. MODIFICATIONS MADE TO EVOSUITE— EVOSUITEUTOPIA 97

Generate New
Test Cases

Generated TestsOriginal Test
Exercising Non-Public

Method Directly

6.2.3 Non-Public
Method Coverage

Information Extractor

6.2.2 Find Public
Methods Candidates

6.2.4 Gather Seed
Objects From Test

Coverage Targets

Branch
Coverage

6.2.1 Public-
Only Branch

Coverage

Method
Coverage

Figure 6.1: Overview of EvoSuiteUTOPIA. The modification made
will be explain in Section 6.2

3. Findings and analysis of the effectiveness and usefulness of EvoSuiteUTOPIA in
replacing non-public method invocations in tests.

6.2 Modifications Made to EvoSuite— EvoSuiteUTOPIA

As mentioned earlier in Section 4.2, the original design of EvoSuite [122] is to generate
a test suite for a given class-under-test (CUT) from scratch. In this chapter, I require
EvoSuite to be able to read the coverage information from the original test case that
directly invokes non-public method and track the coverage of the non-public method
being exercised. Secondly, I modified EvoSuite’s original direct branch coverage [132]
and instrumented other related production classes that call the non-public method.
Lastly, to ensure the non-public methods are called in a similar manner, I modified
the seeding strategy to reuse the primitives and objects from the original test, when
possible. I have made EvoSuiteUTOPIA available online 1. Figure 6.1 depicts an overview
of EvoSuiteUTOPIA.

1https://anonymous.4open.science/r/evosuite-utopia

6.2. MODIFICATIONS MADE TO EVOSUITE— EVOSUITEUTOPIA 98

6.2.1 Public-Only Branch Coverage

Firstly, I modified EvoSuite’s original direct branch coverage. The original fitness value
for the branch coverage in EvoSuite estimates how close the test suite is to cover all
branches (as discussed in Section 2.7.3). The direct branch coverage, also known as
Context Branch (CBranch) will cover a specific branch coverage directly through the
method of the branch, meaning that it will penalise any test cases that cover a branch
without directly invoking the method [221]. However, this restriction does not apply
to branches within private methods due to the need to use Reflection [31] mechanism
to directly invoke them in JUnit tests. In short, the fitness function of Direct Branch
Coverage is similar to the standard Branch Coverage, but it will only consider a branch
as being covered if the method is directly invoked by the test case.

In EvoSuiteUTOPIA, since the aim is to avoid calling any non-public methods directly
in a test case, the newly created Public-Only branch coverage fitness function penalises
test cases that cover a branch in a non-public method directly. Unlike CBranch
Coverage, which rewards direct invocation of all non-private methods, Public-Only
branch coverage will only reward test cases that cover branches indirectly via a public
method. This approach ensures that non-public methods are only exercised exclusively
through public methods. Public-Only branch distance is defined as follows:

dPO branch(b, t, visibility) =

0,

if branch has been covered
via public method

v(dmin(b, t, visibility)),
if predicate executed≥ 2 via
public method

1, otherwise

The requirement to satisfy public-only branch coverage fitness function
is as follows:

fPO Branch(T) = |F |+ |FT |+
∑
bk∈B

dPO branch(bk,T , v)

6.2.2 Identifying Existing Coverage Information of the Di-
rectly Invoked Non-Public Method

In order to replace a test case that directly invoke non-public methods, EvoSuiteUTOPIA

gathers information of the coverage exercised specifically for the non-public method in
the test. This coverage information includes branch coverage, the newly created public-
only branch coverage, and method coverage. For method coverage, EvoSuiteUTOPIA

specifically targets the non-public method that is directly called. For both branch

6.2. MODIFICATIONS MADE TO EVOSUITE— EVOSUITEUTOPIA 99

coverage and public-only branch coverage, EvoSuiteUTOPIA collects the information on
the branches of the non-public method that are covered by the test.

6.2.3 Instrument Other Relevant Production Classes

To identify suitable candidate public methods that can replace direct invocations of
non-public method, EvoSuiteUTOPIA instruments additional relevant production classes.
Since methods with package-private or protected visibility can be accessed by other
classes in the same package, EvoSuiteUTOPIA will try to find public methods beyond
the class itself. This is not an issue in the original EvoSuite, as it is designed to
generate a test suite for a specific given class-under-test (CUT), and with the CBranch
fitness function being enabled by default, protected and package-private methods are
incentivised to be invoked directly. Private methods are also still accessible within
the same class, meaning that to cover them indirectly, EvoSuite only needs to find
non-private methods within the same class to invoke them.

To extend beyond the targeted class, EvoSuiteUTOPIA first analyses the static
method-level call graphs generated by EvoSuite and conservatively finds any public
methods that are calling the non-public ones. I set a depth limit of five for the call-
graph, meaning that if the targeted non-public methods invoked beyond five level of
other non-public methods, it will not be considered as a candidate for replacement.
Lower call graph depth values indicate a closer relationship to the non-public method
and will usually be preferred as candidates. In contract, higher values suggest a more
distant relationship and the inputs to exercise the non-public method may potentially
be more constrained.

If there is no candidate found within the depth of five, EvoSuiteUTOPIA will stop,
and do not continue to find any replacement. After identifying potential public methods
that can replace the non-public method, EvoSuiteUTOPIA includes the instrumentation
of the classes containing the public methods that can potentially replace the non-public
method. This enables EvoSuite to calculate the coverage of other relevant classes,
ensuring it can evolve the test cases accordingly.

6.2.4 Seeding Strategy via Reusing Non-Public Invocation
Test Case Objects

Instead of using the original primitive value and object seeding strategies of Evo-
Suite [123], EvoSuiteUTOPIA will use the objects from the test class where the original
test case resides as the seeds to ensure that the generated test cases is similar to
the original test case. This ensures that, when possible, the test cases generated by
EvoSuiteUTOPIA will use similar primitive values and objects as the original test case.
This seeding strategy can be useful in terms of improving readability and efficiency
during the search process [223].

6.3. METHODOLOGY 100

Chapter 3: Projects
successfully generated
tests using EvoSuite Chapter 5: Projects

consists of at least one non-public
method directly invoked in tests

1811,721 1,165

Figure 6.2: Overlapping projects from Chapter 3 and Chapter 5 that
will be used to evaluate EvoSuiteUTOPIA.

6.3 Methodology

In this section, I will outline the experimental setup details of this study to evaluate
EvoSuiteUTOPIA. I also set out to answer the following research questions:

RQ1: How effective is EvoSuiteUTOPIA in replacing direct non-public method invoca-
tions in a test while maintaining the original coverage?

RQ2: How many test cases being generated by EvoSuiteUTOPIA to replace the non-
public method invocations?

RQ3: Does EvoSuiteUTOPIA able to generate meaningful tests?

6.3.1 Subjects

I initially started the experiment with the dataset of 181 projects, overlapping projects
that I have used in Chapter 3 and Chapter 5 (Figure 6.2). The projects were first
selected based on the availability of the developer-written test cases that directly
invoke at least one direct non-public (protected, package-private, or private) method
invocation. Secondly, the projects were selected based on the ability to generate test
cases using EvoSuite (v1.2). Finally, I only analyse the projects that I could generate
test cases using EvoSuiteUTOPIA. All the projects are written in Java, using Maven
as the build tool, and hosted on GitHub. I used the same commit hash as in both
previous chapters to clone it.

6.3.2 Experimental Procedure

Using the dataset of 181 projects, I provided EvoSuiteUTOPIA with the test cases that
directly invoke non-public methods, along with the class name where the non-public
method resides, and the full name of the non-public method (including the class name

6.3. METHODOLOGY 101

10
3

10
4

(a) Lines of Code

0

10

20

30

N
um

be
r o

f P
ro

je
ct

s

10
1

10
2

10
3

10
4

(b) Number of Stars

0

10

20

30

40

N
um

be
r o

f P
ro

je
ct

s

Figure 6.3: Statistics of the 136 successful open-source projects used
to evaluate EvoSuiteUTOPIA.

and its arguments). With the four modifications that I made to the original EvoSuite,
EvoSuiteUTOPIA generates test cases that replace the non-public method invocations. I
set the search time budget (Algorithm 1, line 8) to 60 seconds. I did not impose any
restrictions on the number of test cases that could be generated, allowing flexibility to
cover the same branch coverage as the original test case that exercises the non-public
method. To ensure the generated test cases will not be flaky, I did not modify any
of EvoSuite’s flakiness suppression mechanism properties (Table 3.1). I also did not
modify the EvoSuite’s search algorithm (Section 2.7.3), as I am only interested in
generating test cases to replace the non-public method invocation. The final sample
consisted of 136 projects for which EvoSuiteUTOPIA could generate at least one test to
modify direct calls to non-public method.

Statistics for the successful projects are shown in Figure 6.3, indicating a range of
project sizes from large to small. The average (mean) number of lines of code across
136 projects is 7,306.46 (σ = 9,888.19), with a median of 3,986 (Figure 6.3a). The
average (mean) number of GitHub stars is 307.3 (σ = 1,226.63), with a median of
18 (Figure 6.3b).

Retrieving Generated Tests Coverage Information

Since EvoSuite also provides a built-in method for determining the coverage information
of the final test suite without using third-party code coverage libraries, I will use
this internal coverage information to evaluate the effectiveness of EvoSuiteUTOPIA in
replacing non-public methods. I chose this approach because it is simpler and avoids
adding the complexity of incorporating additional code coverage libraries. Besides that,
I am not comparing the results of EvoSuiteUTOPIA tests with other tools.

6.4. RESULTS 102

2,057 non-public
method exercised

directly in tests
from 181 projects

EvoSuiteUtopia

Able to replace
1,146 non-public
methods (55.7%)

Not able to replace
911 non-public

methods (44.3%)

Generated 1,060
exercising behaviour

tests (74.6%)

Generated 361 program
crash tests (25.4%)

Non-Public Branch
covered indirectly

(84.79%)

Branch not
covered (15.21%)

Figure 6.4: EvoSuiteUTOPIA was successful at replacing 55.37%
of 2,057 non-public methods being directly called in 933 tests (RQ1).
EvoSuiteUTOPIA-generated tests predominantly focused on exercising
the behaviour rather than program crash tests (unexpected behaviour
exceptions), while maintaining 84.79% of the non-public branch cover-
age indirectly through Public APIs.

Evaluating the Intent of EvoSuiteUTOPIA Generated Tests

To evaluate whether EvoSuiteUTOPIA generated meaningful test cases, I assessed the
number of successfully generated test cases that included at least one assertion and
did not include any automated oracle related to unexpected exceptions scenario, such
as undeclared exceptions. These types of test cases usually focus on program crashes
and are highly likely unrelated to the original test cases. Such test cases can help
increase code coverage; however, without any assertions included, they provide little real
semantic value [205]. Therefore, I will address RQ3 by assessing the ratio of generated
test cases with more than one test assertion, to those with unexpected exception test
cases, in order to evaluate whether it is exercising a Public API behaviour or not.

6.4 Results

RQ1: Effectiveness of EvoSuiteUTOPIA in Replacing Direct Non-
Public Method Invocations

Among the 136 projects, EvoSuiteUTOPIA successfully replaced 1,146 of 2,057 non-public
method invocations identified in 933 tests. On average per project, it successfully
replaced 65.74% of the non-public method invocations (σ = 29.67). Besides that,
all EvoSuiteUTOPIA-generated tests that successfully replaced the non-public method
could be compiled and passed when being executed 5 times. Of the 1,146 successful
replacements, EvoSuiteUTOPIA is able to maintain on average 84.79% of the coverage

6.5. THREATS TO VALIDITY 103

(branch, public-only branch, and method coverage) that was originally achieved by
directly invoking the non-public methods.

Figure 6.4 summarises the proportion of successful replacements of direct non-public
method invocations in the tests. The results show that EvoSuiteUTOPIA successfully
replaced 55.7% of these non-public method calls, covering 1,146 methods, while 44.3%
(911 methods) could not be replaced. Among the generated tests, the majority—74.6%
(1,060 tests)—focused on exercising the expected behaviour of the methods, whereas
25.4% (361 tests) led to program crashes, highlighting unexpected behaviours or
exceptions. EvoSuiteUTOPIA maintains non-public branch coverage indirectly. The
findings indicate that 84.79% of non-public branches were successfully covered through
public API calls, reducing the need for direct access to non-public methods. However,
15.21% of branches remained uncovered.

RQ2: Test Suite Size

I found that the mean number of successfully generated test cases by EvoSuiteUTOPIA

is 1.24 (σ = 0.731). The median number of test cases generated by EvoSuiteUTOPIA is
1. However, there were 13 instances where EvoSuiteUTOPIA generated more than five
test cases to achieve similar code coverage for the non-public method. An example
of the original test case is shown in Figure 6.6, where it is directly invoking a non-
public method called cleanPrimitives (Figure 6.5) multiple times, aiming to exercise
different parts of the method. Therefore, to maintain the same branch coverage,
EvoSuiteUTOPIA generated nine test cases. The largest number of test cases generated
to exercise the same coverage of a non-public method was 14.

RQ3: Relevancy of EvoSuiteUTOPIA-Generated Tests

Of the 1,146 non-public methods that have been successfully replaced, I found that
74.62% of 1421 test cases generated by EvoSuiteUTOPIA are exercising the implementa-
tion details via a public method with assertion based on the behaviour of the public
method. The remaining 25.38% of the test cases are related to unexpected exceptions.
This indicates that roughly three-quarters of the generated test cases are meaningful
and are not just creating program crash tests [101] to exercise the non-public method.

6.5 Threats to Validity

As with any empirical study, there are threats to validity that must be considered [162].
I will discuss the threats to the validity of this study in this section. First, the
generalisability of the results may be limited to the specific projects that I have selected.
These projects were selected based on the availability of the developer-written test
cases that directly invoke non-public methods (based on Chapter 5) and the ability
to generate test cases using EvoSuite (based on Chapter 3). The results may not be

6.5. THREATS TO VALIDITY 104

protected static String cleanPrimitives(String className){

// ... omitted ...

switch (cleanedClassName) {

case "boolean":

cleanedClassName = "Boolean";

break;

case "char":

cleanedClassName = "Character";

break;

case "byte":

cleanedClassName = "Byte";

break;

// ... omitted ...

}

return cleanedClassName + arrayToken;

}

Figure 6.5: cleanPrimitives method from project Thomas-S-B-
visualee

@Test

public void testCleanPrimitives () {

String inputString;

String actual;

inputString = "boolean";

actual = ExaminerImpl.cleanPrimitives(inputString);

assertEquals("Boolean", actual);

inputString = "char";

actual = ExaminerImpl.cleanPrimitives(inputString);

assertEquals("Character", actual);

inputString = "byte";

actual = ExaminerImpl.cleanPrimitives(inputString);

assertEquals("Byte", actual);

// ... omitted ...

}

Figure 6.6: Original developer-written test that is invoking a pro-
tected method, cleanPrimitives (Figure 6.5) directly more than once
(project Thomas-S-B-visualee)

6.6. DISCUSSION 105

applied to other projects that do not meet these criteria. However, the sample of 136
projects is large enough to provide a representative basis for assessing EvoSuiteUTOPIA.

Second, consideration must be given to how the code coverage information is
calculated. Since I am only interested in three coverage criteria, namely branch
coverage, public-only branch coverage, and method coverage, I will use EvoSuite’s
internal code coverage information. This specifically targets the coverage criteria met
by the non-public method being invoked in the original test cases.

Thirdly, previous studies that developed test repair tools [256, 95] are evaluated
using code generation task techniques, such as Exact Match Accuracy [61], BLEU [209],
or CodeBLEU [220] to evaluate the quality of generated repair candidates. However,
since my focus is on replacing non-public method invocations, the test that is generated
by EvoSuiteUTOPIA could be different from the original test due to calling of different
variables and methods. Therefore, for RQ1, I will only evaluate the effectiveness by
comparing the coverage and whether it could be compiled and executed.

Fourthly, since I did not manually examine the intent behind each of the original test
cases, I cannot definitively determine their original purpose. Therefore, the evaluation
of the intent of EvoSuiteUTOPIA-generated test cases is based on whether the generated
test cases are related to program crash (unexpected behaviour) scenarios. If not, the
generated tests are considered as exercising the implementation details—encapsulated
in a non-public method—via a Public API. Additionally, each public method could
represent different behaviours or intents.

Finally, as EvoSuite generates tests non-deterministically, the results may vary
between runs. Most of the previous studies generate more than one test suite to
evaluate the effectiveness of the tool. However, since I am doing my evaluation on a
large number of projects on 933 tests, the evaluation on EvoSuiteUTOPIA should still
be generalisable.

6.6 Discussion

6.6.1 Example of EvoSuiteUTOPIA-Generated Test

An example of a test being replaced using EvoSuiteUTOPIA is as shown in Figure 6.7.
The original test case (testCompare), taken from the Apache Commons Validator
project2, making time-based comparisons by invoking the protected method, compare
(highlighted in Figure 6.7), directly to ensure the implementation details are correct. In
the same figure, EvoSuiteUTOPIA-generated test case is able to replace the invocation of
the protected method by invoking a public method, compareDates, that will maintain
the same coverage as what is being exercised by the original test case.

2https://github.com/apache/commons-validator/blob/f38ea

6.6. DISCUSSION 106

Developer-written test

@Test

public void testCompare () {

// ... omitted ...

assertEquals (0, calValidator.compare(value , diffHour , Calendar.

DAY_OF_YEAR), "date(B)"); // same day , diff hour

// ... omitted ...

}

EvoSuiteUTOPIA-generated test

@Test(timeout = 4000)

public void testCompare () throws Throwable {

CalendarValidator calendarValidator0 = new CalendarValidator ();

Locale locale0 = Locale.UK;

MockGregorianCalendar mockGregorianCalendar0 = new

MockGregorianCalendar(locale0);

ZoneOffset zoneOffset0 = ZoneOffset.MAX;

TimeZone timeZone0 = TimeZone.getTimeZone ((ZoneId)zoneOffset0);

Calendar calendar0=MockCalendar.getInstance(timeZone0 ,locale0);

int int0 = calendarValidator0.compareDates(calendar0 ,

mockGregorianCalendar0);

assertTrue(calendarValidator0.isStrict ());

assertEquals (1,int0);

}

Figure 6.7: The first test case in this figure is an original developer-
written test, from the project apache-commons-validator, that is
invoking the protected method compare directly. The second test case
is generated by EvoSuiteUTOPIA targeting to replace the invocation of the
method compare directly by calling the public method compareDates

that will maintain the same coverage as the original developer-written
test.

6.6. DISCUSSION 107

6.6.2 Effectiveness of EvoSuiteUTOPIA

From RQ1, EvoSuiteUTOPIA was able to achieve 84.79% of the coverage of the non-
public methods when it is able to generate tests successfully to replace the non-public
methods being called directly. Overall, this demonstrates that EvoSuite’s evolution
technique and the new public-only branch coverage fitness function (See Section 6.2.1)
can be an effective approach for replacing non-public methods called in a test. However,
EvoSuiteUTOPIA could not replace 911 of the remaining non-public method invocations
in the original test cases.

6.6.3 Test Suite Size

The median number of test cases generated by EvoSuiteUTOPIA is 1. This is expected,
as EvoSuiteUTOPIA focuses on replacing a specific non-public method directly called
in the original test case. However, as shown in Section 6.4, there are instances where
EvoSuiteUTOPIA generated more than one test case to exercise similar coverage for the
non-public method. There are two main reasons I have found where EvoSuiteUTOPIA

generates more than one test case to achieve similar coverage. Firstly, there are
instances where the original test case invokes the same non-public method multiple
times with different input parameters to explore different branches. Secondly, the
data-flow required to exercise the non-public method from a public method is often
more constrained [132], causing EvoSuiteUTOPIA to call the public method multiple
times with different arguments to exercise similar coverage.

6.6.4 Mutation Score

I also noticed that the generated test cases do not have a high strong mutation score
when only considering mutants within the targeted non-public method. This is mainly
because the generated test case assertions are based on the observable behaviour of the
public method that is being used to replace the non-public method, making it difficult
to kill mutants in the non-public method. Besides that, in this study, I did not include
either weak (satisfying up to Figure 2.4.2) or strong (satisfying both Figure 2.4.3 and
Figure 2.4.4) mutation coverage criteria for EvoSuiteUTOPIA. Future work of this study
should include to address this limitation.

6.6.5 Unrepairable Tests that Invokes Non-Public Method

As discussed in Section 6.6.2, there are 34.26% of the non-public methods where
EvoSuiteUTOPIA could not replace the non-public, meaning it failed to generate any
test cases to cover the non-public method indirectly via a public method.

6.7. CHAPTER CONCLUSION AND FUTURE WORK 108

No Public Method Candidate Found

Certain replacement failures may not meet the preconditions of the repair strategy.
This is because no public method candidate exists that can reach to the public method
that is at the depth of five.

Test Framework Restrictions

In cases where the project is using JUnit 5 framework, EvoSuiteUTOPIA is unable to
retrieve (instrument) the existing coverage information of the tests. This is also part
of the preconditions before EvoSuiteUTOPIA starts the search/evolution process.

External Libraries

This is a known limitation of EvoSuite [76], as it is difficult or even impossible to
generate test cases that involve external dependencies. Certain tests are dependent
on external dependencies such as database connections, network connections, or file
system operations.

6.7 Chapter Conclusion and Future Work

As shown in Section 5.4.1, approximately a quarter of open-source projects have at
least one non-public production method directly invoked in their tests. In this chapter,
I have developed EvoSuiteUTOPIA, a new approach that uses EvoSuite’s search-based
capabilities to replace direct non-public method invocations in a test. This approach
identifies public methods that can indirectly exercise the non-public method, while
trying to maintain similar branch coverage.

I evaluated the effectiveness of EvoSuiteUTOPIA on 136 projects and demonstrated
its ability to automatically replace and repair tests that directly call non-public
methods. However, there are still some limitations that need to be addressed. Firstly,
EvoSuiteUTOPIA could not replace some non-public methods when their arguments
requires call to external libraries. Secondly, the generated test cases have a low
mutation-killing rate for mutants within the targeted non-public method. Finally,
EvoSuiteUTOPIA cannot retrieve existing coverage information for tests written using
the JUnit 5 framework. Future work should aim to address these three challenges.

Furthermore, to ensure that original EvoSuite-generated tests are not brittle, I also
plan to evaluate whether the public-only branch coverage fitness function (Section 6.2.1)
and the reverse call graph strategy (Section 6.2.3) can be easily adopted for generating
test cases from scratch.

Chapter 7

Conclusions and Future Work

To summarise, the primary aim of this thesis is to understand and develop techniques
that could improve the reliability and effectiveness of test suites. To address these
challenges, I set out to achieve two high-level objectives:

1. understanding the factors limiting test suite lifespan and effectiveness, and

2. developing automated techniques to improve test suites and repair unreliable test
cases.

The following sections summarise how my work advances these objectives.
I have investigated four of the main indicators in test suite health, that is test

flakiness, mutation score, test brittleness, and test realism. I have also developed and
evaluated automated techniques to improve the quality of existing developer-written
tests and repair poorly designed developer-written test cases, conducting empirically
studies on large dataset of tests from open-source projects.

Understanding Test Suite Health Indicators

In Chapter 3, I empirically evaluated the flakiness in EvoSuite-generated test outcome.
Through an evaluation of 1,902 Java projects, I found that EvoSuite flakiness sup-
pression is largely effective at controlling and removing flaky tests, when compared
to developer-written tests. Based on this finding, I provided recommendations for
software developers using EvoSuite, maintainers of EvoSuite, and researchers studying
flaky tests. Besides that, this empirical study reinforced confidence in the reliability of
EvoSuite-generated tests.

In Chapter 5, I conducted another empirical evaluation of brittleness in developer-
written tests, focusing on whether developer directly test non-public methods directly
or not. This study involved in analysing the visibility of methods invoked directly in
4,801 open-source Java projects, conducting an online developer survey which received
73 responses, and performed thematic analysis on 60 StackOverflow threads. I found
that developers are divided on whether to test non-public methods directly or not. I

109

7.1. LIMITATIONS 110

also found that inexperience developers are more likely to test non-public methods
directly.

Improving Test Suite Health

Building on EvoSuite’s flakiness suppression mechanism (Table 2.3), which effectively
mitigate most of the flaky tests, I proposed EvoSuiteAmp , in Chapter 4. This new test
amplification tool utilises EvoSuite’s search-based technique to improve the mutation
score of existing developer-written tests. I evaluated EvoSuiteAmp on the Defects4J
dataset and compared it to DSpot, the state-of-the-art test amplification tool. I found
that EvoSuiteAmp was 83.33% more effective at killing mutants compared to DSpot.

In Chapter 6, I presented EvoSuiteUTOPIA, a modification on EvoSuite to replace
non-public method being directly called in a test with Public API that execute them,
while trying to preserve the branch coverage of the non-public method. This is to
improve realism of the test and made it less brittle. From an evaluation involving 181
Java projects, I demonstrated that EvoSuiteUTOPIA successfully replaced more than
half of non-public method with a public method, while retaining 84.79% of the branch
coverage of the original non-public method.

7.1 Limitations

One key limitation of this thesis is its focus on Java projects, particularly in the
context of automated test generation with EvoSuite. As an example, while similar
flakiness issues were observed with Pynguin for Python in [142], the specifics of how
test generation tools behave across different programming languages may vary. The
extent to which these findings apply to other languages, such as JavaScript, remains
uncertain, as test execution environments, dependencies, and tool implementations
differ across programming languages.

7.1.1 Uncertainty in the Empirical Evaluations

The results presented in Chapter 3, where I empirically evaluated flakiness in EvoSuite-
generated tests, are based on datasets generated by executing developer-written and
EvoSuite-generated tests from 1,902 open-source projects 100 times in fixed and 100
times in shuffled order. However, running the tests a larger number of times may reveal
additional flaky tests, meaning some tests in the dataset could have been inaccurately
labelled as non-flaky. This could potentially impact the results. Given the time
constraints and available computational resources, I conducted as many reruns as
possible.

Besides that, the selection of projects from the Defects4J benchmark in Chapter 4,
while widely used, may not fully represent all types of software projects, particularly
large-scale or industrial codebases. Additionally, due to compatibility issues with

7.1. LIMITATIONS 111

DSpot, not all classes within Defects4J could be analysed, potentially introducing
a bias in the subject selection. Another factor to consider is the dependence on a
specific mutation analysis tool—while Major was used to ensure consistency, other tools
like EvoSuite’s internal mutation analysis or PITest might produce different mutation
scores. This variability in mutation analysis could impact how improvements in test
effectiveness. Moreover, ensuring that the improved test suites retained access to their
dependent libraries and code required careful handling, and this process could have
inadvertently influenced the mutation score results.

The results of RQ1 (Section 5.4.1) in Chapter 5 (shown in Table 5.1 and Figure 5.6)
are based on an empirical analysis of the access modifiers invoked in 4,801 open-source
projects using Viscount, a tool that I developed (Chapter A). To assess these projects,
Viscount had to insert lightweight instrumentation and modify the test bytecode, which
could have introduced delays that may have affected the results, such as timeouts that
potentially cause some test failures. I excluded failing tests from the analysis, but this
could still have impacted the results.

Finally, the evaluation of Chapter 6 was conducted on projects where EvoSuite could
successfully generate tests—from Chapter 3—and where direct non-public method calls
were present—from Chapter 5. This selection criterion might not be representative
of all Java projects. Additionally, EvoSuiteUTOPIA was unable to replace non-public
methods when their arguments required calls to external libraries, which could be a
limiting factor in its broader applicability. Furthermore, the tool could not retrieve
existing coverage information for JUnit 5 tests, which was a necessary precondition
for its operation, making its effectiveness dependent on projects using JUnit 4. Lastly,
limitations in EvoSuite’s instrumentation itself may have contributed to unsuccessful
replacements, indicating potential areas for further tool refinement.

7.1.2 Open-Source Projects

In this thesis, all empirical evaluations that have been conducted focus on open-source
programs written in Java. Therefore, the findings may not be fully applicable to other
programming languages, such as JavaScript or Python. However, for the flakiness
evaluation in Chapter 3, in [142], we also evaluated the flakiness of Pynguin-generated
tests on Python programs, and the results are consistent with the findings in Chapter 3.

7.1.3 Limitations Summary

By acknowledging these limitations, this thesis provides a more comprehensive under-
standing of the constraints and potential areas for improvement. While these factors
do not undermine the validity of the findings, it highlights important considerations
for future work and the generalisability of the results.

7.2. FUTURE WORK 112

7.2 Future Work

7.2.1 Investigating the Synergy and Trade-offs between Test
Suite Health Indicators

The work that I have undertaken in this thesis has focused on evaluating and auto-
matically improving individual indicators of test suite health—flakiness (Chapter 3),
mutation score (Chapter 4), brittleness (Chapter 5 & Appendix A), and “realism”
(Chapter 6)—by themselves. To holistically enhance test suite health, the software
testing research community could further explore the synergy, subsumption, and trade-
offs between the indicators. For instance, one could investigate whether the brittleness
of a test suite is correlated with low test suite’s mutation score [113] and high pseudo-
testedness [185, 249]. This could provide valuable insights into the relationships among
these metrics and their mutual impacts.

7.2.2 Measurability of Test Suite Health Indicators

While several indicators in Table 1.1 already have established metrics, such as code
coverage [18] and mutation score [156], other indicators such as “realism” lack obvious
means of quantification. Future work could focus on the development of metrics for
these indicators, which could help in the evaluation of test suite health. Measurement
metrics for all of the indicators should also take into account non-determinism in as
much as possible, to remove inconsistencies when being evaluated.

7.2.3 Chapter 3: Root-Causing EvoSuite-generated order-
dependent flaky tests

As shown in the violin plot in Figure 3.5, EvoSuite with the flakiness suppression
mechanism turned on still produce more order-dependent flaky tests than the developer-
written tests. I could extend the empirical evaluations of Chapter 3 to investigate
the root causes of EvoSuite-generated order-dependent flaky tests. This could help to
identify the reasons behind the flakiness and whether the root causes are similar to
what I have found for the non-order-dependent tests. If not, it would raise interesting
questions about some lack of validation in the current flakiness suppression mechanism.
Applying existing techniques of repairing order-dependent flaky tests [175] could help
in reducing order-dependent flaky tests in EvoSuite.

7.2.4 Chapter 6: Evaluating the effectiveness of EvoSuiteUTOPIA’s
tests with developers.

Similar to the work of Rojas et al. [222], where they evaluated the effectiveness of
EvoSuite to help software developers task when writing unit tests, for my future

7.2. FUTURE WORK 113

work of Chapter 6, I could conduct a similar study with developers to evaluate the
effectiveness of EvoSuiteUTOPIA in replacing tests that are calling non-public methods
directly. The work requires an observational study where developers are asked to
perform test refactoring, and give them EvoSuiteUTOPIA-generated tests to evaluate
whether they see the automated approach as helpful or not.

7.2.5 Investigating Project Composition by Application Type
used in Chapter 3, Chapter 5, and Chapter 6

Inspired by recent work in analysing project builds—such as AROMA study [159]
by Keshani et. al., which demonstrated how small configuration changes can dra-
matically improve the reproducibility of Maven artefacts, and investigation by Mir et
al. [194] of transitivity and granularity in vulnerability propagation on Maven projects,
which revealed that dynamic method-level call graphs analysis drastically reduce false
positives third-party dependencies compared to naive dependency-level analysis—an
independent avenue for future work should similarly consider the role of projects
being evaluated in this thesis. By categorising the composition of projects used in
Chapter 3, Chapter 5, and Chapter 6 by their application type (e.g., streaming libraries,
business libraries) researchers can uncover domain-specific patterns in testing practices
and maintainability challenges. Just as reproducibility issues vary across ecosystems
due to differences in build configurations and tooling, some of the indicators in test
suite health (Table 1.1) may also be influenced by the characteristics of a project’s
domain. For instance, streaming libraries might face unique concurrency and real-time
processing challenges, exhibit test flakiness (Table 1.1-#6) tied to concurrency flaky
root cause (Table 2.1), while math libraries (e.g., Apache Commons-Math) could
exhibit complexity related to intricate code complexity, exhibiting test brittleness due
to test focusing on implementation details (Table 1.1-#7). Analysing these patterns
could not only advance our understanding of test suite health but also connect this
thesis with broader topics in software engineering, such as vulnerability management
and development practices, potentially leading to better automated techniques for
enhancing test reliability.

Appendix A

Viscount: A Direct Method Call
Coverage Tool
for Java

The contents of this chapter is based on “Muhammad Firhard Roslan, José Miguel
Rojas, and Phil McMinn. Viscount: A Direct Method Call Coverage Tool for Java.
In International Conference on Software Maintenance and Evolution (ICSME): Tool
Demo Track, 2024”.

A.1 Introduction

When deciding which tests to write, developers must consider a number of factors,
including which parts of the production code to test and how to test them. In doing
this, developers usually aim to achieve high code coverage and to capture the behaviour
by creating meaningful assertions to the production code. Advocacy for and guidance
on what good unit tests are and how to write them is plentiful both in formal [163]
and grey literature [16].

A common recommendation available is to test the behaviour (i.e., usually in public
methods) of the program instead of implementation details (often embodied in non-
public methods). The main reason is because testing the implementation details directly
may lead to brittle tests that are prone to break when implementation details are
updated or modified. Tests that directly call non-public methods are tightly coupled to
the implementation details of the production code. As been documented in Chapter 5,
this is considered as an anti-pattern in testing which is also often referred to as a test
smell [248, 83, 255], and has been discredited in practice [165, 46, 28].

Despite the existing advice against directly call non-public methods in tests, I found
28% of 4,801 open-source Maven projects contain at least one test that directly calls
non-public methods (i.e., with protected, package-private, or private visibility), as
discussed in previous chapter.

114

A.1. INTRODUCTION 115

@Test

public void testResize () {

Wallet wallet = new Wallet (2);

Method method =wallet.getClass().getDeclaredMethod

("resize"); // method -under -test

method.setAccessible(true);

method.invoke(wallet);

assertEquals (3, wallet.capacity ());

}

Figure A.1: An example of a test that examines the implementation
of the method resize.

@Test

public void testAddCard () {

Wallet wallet = new Wallet (1);

wallet.addCard(new Card("VISA"));

wallet.addCard(new Card("AMEX"));

assertEquals (2, wallet.size());

}

Figure A.2: This test examines the behaviour of the code via using
addCard method to change the size (via resize()) of the Wallet.

Figure A.1 shows an example of what this anti-pattern looks like in practice. The
test case is using Java Reflection to gain access and call the private method resize

directly in an object of type Wallet. As shown in Figure A.3, it would be plausible that
the implementation of the Wallet class could change in the future to use a resizeable
collection instead of an array that needs resizing when its capacity is reached. In this
scenario, method resize would have to be removed and the test would break, needing
refactoring or removal. Figure A.2 presents an alternative test that also tests the ability
of the wallet to resize beyond its initial capacity when a new card is added. Notice that
method resize is still being tested, but this time via the execution of public method
addCard instead. This test is more realistic because they form explicit contract: if it
fails, it implies that the code is broken and what end users will receive as the output is
incorrect.

One of the main motivations that lead developers to engage in this practice is trying
to achieve higher coverage [225]. As the practice of testing non-public methods directly
is more prevalent than expected, it poses serious threats to the reliability of a test
suite [152].

One of the reasons why this is not being addressed is the lack of tool support to
analyse how existing tests achieve coverage. Once a project has a large number of

A.2. VISCOUNT 116

tests, there is no easy way to identify non-public methods being directly called. Code
coverage tools such as JaCoCo provide a way to measure method coverage, but as
illustrated in this example, methods can be covered directly or indirectly in tests, and
tools like JaCoCo cannot distinguish direct or indirect calls to non-public methods
because they do not track call hierarchies [17] and treat production and test code
similarly. In a smaller-sized project, it is possible to manually analyse each test case to
identify non-public methods being called directly. However, it is not feasible to analyse
for projects with thousands of test cases.

To address this problem, I developed Viscount, a tool that can determine direct
method call coverage—i.e., the percentage of methods of each level of access modifiers in
Java that are directly invoked from JUnit tests. This tool is designed to help developers
identify tests that call non-public methods directly to facilitate test suite maintenance.
Viscount’s core features include:

• Retrieving every method’s visibility in the production code;

• Retrieving production methods that are called directly in test code; and

• Summarising direct method call coverage in a clear format.

A.2 Viscount

Viscount is a tool that allows testers, developers, and researchers to identify methods
directly invoked in their test suites within a Maven project. It is primarily written in
Java and can be used through a command-line interface.

To use Viscount, the user needs to provide access to the Maven project in question.
Viscount parses the project’s source code to find every production method’s visibility.
It then installs the Surefire Report plugin to the Maven project (if it is not already
included), and sets up an execution environment ready with a Java agent that applies
instrumentation to production code and test code. It then runs the project’s test suite
to collect direct method call coverage information—similar to the work of Huo and
Clause [151]—about the tests using this instrumentation. Viscount outputs details
about each production code method’s visibility, the methods invoked directly by the
project’s tests, and a direct method call coverage report. Viscount is available on
GitHub for evaluation and extension1.

The main entry point of Viscount is viscount.sh. As part of the tool requirement,
the user needs to include the project name, the project path, and a directory to output
the results. Suppose the project name is javapoet, the project is located in the
directory /path/to/javapoet, and the output of the results in the directory /path/-

to/results. The command to run Viscount would be:

./viscount.sh javapoet /path/to/javapoet /path/to/results

1https://github.com/unittesting-nonpublic/viscount

https://github.com/unittesting-nonpublic/viscount

A.2. VISCOUNT 117

public class Wallet {

// ... omitted ...

public Wallet(int initialCapacity) {

cards = new Card[initialCapacity];

size = 0;

}

public void addCard(Card card) {

if (isCardPresent(card)) {

return;

}

if (size== cards.length) {

resize (); cards[size ++] = card;

}

}

private void resize () {

// ... omitted implementation details ...

}

protected int capacity () {

// ... omitted implementation details ...

}

protected boolean isCardPresent(Card card) {

// ... omitted implementation details ...

}

// ... omitted ...

}

Figure A.3: Example of a class named Wallet that can keep multiple
Card object. The public method addCard is to add new card into the
Wallet object. It will not add existing card (isCardPresent()) and
update the size field (resize()) if new card is added into Wallet.

A.3. DEPENDENCIES 118

Table A.1: Production code methods and their visibility for square-
javapoet, as outputted by Viscount in a TSV file.

METHOD VISIBILITY

com.squareup.javapoet.TypeName.isPrimitive() public

com.squareup.javapoet.ClassName.simpleName() public

com.squareup.javapoet.CodeBlockJoiner.join() package-private

com.squareup.javapoet.Builder.isNoArgPlaceholder(char) private
...

...

A.3 Dependencies

Viscount is primarily built on top of two Java libraries.
First, I used Spoon [213], a meta-programming library to analyse and transform

Java source code. Spoon parses the source code to build an abstract syntax tree
(AST) meta-model for performing AST transformations and analysis. It also provides
its own Launcher (application runner), specifically for Maven-built projects, called
MavenLauncher. It loads a Maven project by reading the pom.xml file and setting
up the project dependencies. In this tool, I used Spoon to extract the visibility of
production code methods and to distinguish between production code and test code.

Second, I used Javassist [96], a Java-bytecode analysis library to transform bytecode
at compile or load time. Javassist parses class files into objects representing the classes,
methods, or fields, and can be used to modify the objects. Modifications can be done
by inserting, deleting, or replacing bytecode instructions, similar to other Java bytecode
frameworks such as ASM [29]. In this tool, I used Javassist to instrument production
methods and constructors, and test methods and helpers (inserting probes at entry
and exit points) during the test execution.

A.4 Viscount’s Architecture

Figure A.4 depicts the overall architecture of Viscount. I will discuss the tool’s main
components and how it works in the following sections. Viscount’s main components
are:

• Extracting production code method visibility

• Including the Surefire Report plugin in the Maven project

• Performing runtime instrumentation of the project during test execution

• Analysing the test reports

A.4. VISCOUNT’S ARCHITECTURE 119

M
av

en
-b

as
ed

 P
ro

je
ct

In
se

rt
 p

ro
be

s:
at

 th
e

st
ar

t a
nd

 e
nd

 o
f e

ac
h

pr
od

. m
et

ho
d/

co
ns

tru
ct

or
,

an
d

te
st

 m
et

ho
d/

he
lp

er

O
ut

pu
t R

ep
or

ts
A

. P
ro

du
ct

io
n

C
od

e
Ex

tr
ac

to
r

G
at

he
r e

ve
ry

 m
et

ho
d'

s
vi

si
bi

lit
y

in
 th

e
pr

od
uc

tio
n

co
de

B
. M

od
ify

 P
O

M
:

In
cl

ud
e

M
av

en
 S

ur
ef

ire
R

ep
or

t P
lu

gi
n

D
. T

es
t R

es
ul

t A
na

ly
si

s
JU

ni
t S

ur
ef

ire
 R

ep
or

ts

C
. E

xe
cu

te
 T

es
ts

('
m
v
n

t
e
s
t
'

)
w

ith
 ja

va
ag

en
t

Pr
oj

ec
t i

nf
o

1.
 C

la
ss

 N
am

es
2.

 T
es

t C
la

ss
 N

am
es

Pa
rs

e
JU

ni
t R

ep
or

t

Ke
ep

 d
ire

ct
 c

al
ls

fro
m

 te
st

s

Va
lid

at
e

in
 T

es
t C

od
e

Pr
od

uc
tio

n
m

et
ho

d'
s

vi
si

bi
lit

y

As
se

ts

#
m

et
ho

d
na

m
e

vi
si

bi
lit

y

1
m

et
ho

d1
pu

bl
ic

2
m

et
ho

d2
pr

ot
ec

te
d

As
se

ts

m
et

ho
d

in
vo

ke
d

te
st

 n
am

e
ac

ce
ss

 m
od

ifi
er

m
et

ho
d1

te
st

1
pu

bl
ic

m
et

ho
d2

te
st

2
pr

ot
ec

te
d

D
ire

ct
ly

 c
al

le
d

m
et

ho
ds

 in
 te

st
 c

od
e

Figure A.4: Overall architecture of Viscount

A.4. VISCOUNT’S ARCHITECTURE 120

Table A.2: Production methods directly called in test for square-
javapoet. The output will be provided in a TSV file.

TEST CASE (TC) METHOD NAME VISIBILITY

...TypeNameTest.isPrimitive() ...TypeName.isPrimitive() public

...UtilTest.characterLiteral() ...Util.characterLiteralWithou... package-private

...ClassNameTest.peerClass() ...ClassName.get(java.lang.Class) public
...

...
...

To further describe the operation of Viscount, I will use the following two projects as
running examples:

1. square-javapoet2, a Java API to generate .java source files; and

2. viscount-example, an example project that I created to demonstrate the tool,
partially shown by Figures A.1–A.3, and which is located in Viscount repository.

A.4.1 Extracting Production Code Methods

The first step in this analysis is to investigate the visibility of each method in the
production code. Viscount starts the analysis by using Spoon’s MavenLauncher to
build the AST of the production code. It collects every method name and its visibility
in all classes (including nested classes) in the production code (via Spoon’s CtMethod).
It also includes the parameters of each method to make sure that handling of method
overloading is handled correctly. Table A.1 shows an example of the TSV file output
of this step. Since Spoon’s MavenLauncher can distinguish between production classes
and test classes, Viscount stores the names of these two types of classes in a temporary
file. This is an important step during the execution of the tests, which will be discussed
in Section A.4.3.

A.4.2 Including Surefire Report Plugin

Before executing the tests, Viscount automatically includes the Surefire Report plu-
gin [26] as part of the project, which generates reports for the executed unit tests.
Viscount does this by adding the report plugin to the project’s parent POM.xml file (a
build configuration file used in Maven projects). The plugin is used to generate the
test reports, which are then used in the next step of Viscount to analyse the test suites.
This is an important step to ensure that the test reports are generated with the correct
formatting.

2https://github.com/square/javapoet

https://github.com/square/javapoet

A.4. VISCOUNT’S ARCHITECTURE 121

A.4.3 Runtime Instrumentation and Test Execution

Next, Viscount launches ‘mvn test’ to run the project’s tests. It attaches a Java
agent [30] that dynamically inserts instrumentation into the production methods and
test code using Javassist [96] before the class is loaded by the Java Virtual Machine.
Since Viscount is only interested in direct method call coverage of the production code,
it will only insert probes into methods and constructors that the classes are part of the
project, and not imported libraries or Java’s own APIs. The agent uses the information
collected in the previous step (Section A.4.1) to distinguish between the production
classes and test classes, inserting a probe at the beginning and end of each constructor
and method. Viscount does this by using the CtMethod (representing a method in
Java) and CtConstructor (representing a constructor) insertBefore/After method
in Javassist. Since some tests potentially throw exceptions, Viscount also insert an
exit log when an exception is being thrown from Exception class, as it can handle
any type of exceptions. The probe logs the method name, the parameters, and its
visibility on every entry and exit point (Figure A.5). In the test code, the agent inserts
a probe at the beginning and end of each test method and helper (Figure A.6). During
the execution of the tests, these logs will be included in the test reports generated by
Surefire Report, which will be used in the next step (Section A.4.4).

The overall process of instrumentation is similar to java-callgraph [138] when
generating call graph dynamically. The current limitation of Viscount, similar to the one
in java-callgraph, is that it does not work reliably for multithreaded and concurrent
programs, as the probes could interleave between threads, causing inaccuracies in later
processing. Therefore, Viscount skips any tests involving concurrent execution in the
analysis, as discussed in the next section.

A.4.4 Analysing Test Reports

The final step for Viscount is to analyse the JUnit XML test reports generated by
the Surefire Report plugin. Since Viscount inserts the probes into both production
and test code, as described in the previous subsection, it can now extract the methods
that are being directly called [221] in the test code from the logs produced. Figure A.7
shows an example of the output from one test case in the JUnit XML report.

To analyse the test reports (e.g. Figure A.7), Viscount parses the XML file and
extracts the methods directly invoked from the tests. It discards any methods or
constructors called from other production methods, as these are not directly invoked
from the tests. The highlighted methods from Figure A.7 is an example of those
directly invoked from the test. Finally, to ensure that a method is directly invoked
from the test, Viscount statically checks if the method name is called directly from the
test. Table A.2 shows an example of the output.

Viscount does not include any test cases that failed or were skipped. It also discards
any test for which it could not find both entry and exit points or where the points
are interleaved between methods. This is to ensure that the results are accurate and

A.4. VISCOUNT’S ARCHITECTURE 122

106 public String newName(String suggestion , Object tag) {

logStartMethod("newName(String,Object)");

107 checkNotNull(suggestion , "suggestion");

106 checkNotNull(tag , "tag");

105 // ... omitted ...

121 return suggestion;

// This is conceptually after the return , but

actually runs before the return in bytecode

logEndMethod("newName(String,Object)");

122 }

Figure A.5: Example of added probes at entry/exit points in produc-
tion method.

50 @Test

50 public void characterMappingSubstitute () throws

Exception {

logStartTest("characterMappingSubstitute()");

51 NameAllocator nameAllocator = new NameAllocator ();

52 assertThat(nameAllocator.newName("a-b", 1)).

isEqualTo("a_b");

logEndTest("characterMappingSubstitute()");

53 }

Figure A.6: Example of added probes at entry/exit points in test
method.

A.4. VISCOUNT’S ARCHITECTURE 123

<testcase name="isPrimitive" classname="TypeNameTest" ...>

<system -out >

START TEST: com.squareup.javapoet.TypeNameTest.isPrimitive ()

Start method call: 1 com.squareup.javapoet.TypeName.isPrimitive()

End method call: 1 com.squareup.javapoet.TypeName.isPrimitive()

Start method call: 137 com.squareup.javapoet.ClassName.get(...)

Start constructor call: 2 com.squareup.javapoet.ClassName

(...)

// ... omitted ...

End constructor call: 2 com.squareup.javapoet.ClassName

(...)

End method call: 137 com.squareup.javapoet.ClassName.get(...)

// ... omitted ...

Start method call: 137 com.squareup.javapoet.ClassName.get(...)

Start constructor call: 2 com.squareup.javapoet.ClassName

(...)

// ... omitted ..

End constructor call: 2 com.squareup.javapoet.ClassName

(...)

End method call: 137 com.squareup.javapoet.ClassName.get(...)

// ... omitted ...

END TEST: com.squareup.javapoet.TypeNameTest.isPrimitive ()

</system -out >

</testcase >

Figure A.7: Output of TypeNameTest.isPrimitive() test from
square-javapoet in Surefire Report

A.5. APPLYING THE TOOL 124

public protected package-private private
Visibility

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)
250

(75.5%)

2
(0.6%)

54
(16.3%) 25

(7.6%)

199
(60.1%)

0
7

(2.1%) 0

production method
method directly covered in test

Figure A.8: Direct method call coverage of square-javapoet

reliable, as some methods could be called from multiple threads or concurrent calls in
the production code.

Using all of this information, Viscount can now calculate the direct method call
coverage. The direct method call coverage is calculated by dividing the number of
unique methods being directly invoked in the test code by the total number of methods
in the production code, as shown in Figure A.8 for square-javapoet and Figure A.9
for viscount-example.

A.5 Applying the Tool

To demonstrate the capability of the tool, I replicated the analysis on viscount-
example. In this example project, it contains two test cases: testResize (Figure A.1)
and testAddCard (Figure A.2). The production methods and the visibility are shown
in Table A.3 and the methods being directly invoked in the test code are shown in
Table A.4. As shown in Figure A.9, there are two non-public methods being called
directly in the test suite, suggesting to developers that they have tests that are more
coupled to the implementation details.

I have also applied Viscount on a larger scale (4,801 projects) to evaluate the tool,
as shown in previous chapter. These projects are Maven-built projects from the Maven
Central Repository [25] that contain at least one passing test with source code available
on GitHub. I extracted the visibility of each method in the production code and
identified the methods directly called in the test code. I was able to analyse 226,915
tests from 4,801 projects, where I found 28% of the projects have at least one direct
call to a non-public method in the test code. Overall, 3.73% of methods directly called

A.6. CURRENT LIMITATIONS 125

Table A.3: Every production methods’ access modifier in viscount-
example.

METHOD VISIBILITY

wallet.Wallet.capacity() protected

wallet.Wallet.addCard(wallet.Card) public

wallet.Wallet.isCardPresent(wallet.Card) protected

wallet.Wallet.size() public

wallet.Wallet.resize() private

wallet.Example.main(java.lang.String[]) public

wallet.Card.toString() public

wallet.Wallet.toString() public

wallet.Wallet.latestCard() package-private

Table A.4: Production methods directly called in tests for viscount-
example.

... TEST CASE (TC) METHOD NAME VISIBILITY ...

... ...testAddCard() ...addCard(wallet.Card) public ...

... ...testAddCard() ...size() public ...

... ...testResize() ...resize() private ...

... ...testResize() ...capacity() protected ...

in the tests across all projects are non-public methods.

A.6 Current Limitations

As discussed in Section A.4.3, Viscount cannot compute direct method call coverage
for test cases that execute multithreaded code. This is because it cannot guarantee the
entry and exit points of each method do not interfere with other methods. Additionally,
since Viscount executes a project’s tests with instrumentation (inserting probes at entry
and exit points) to both production code and test code, the execution time of the tests
can be long for projects that include recursive calls. One solution to these limitations is
by statically analysing the call graph of each test method/helper to determine the direct
method calls [158]. However, most static call graph cannot identify methods invoked
through Java Reflection [171]. Finally, as Viscount uses Spoon’s MavenLauncher to
analyse the source code, it does not support other build systems, such as Gradle or

A.7. RELATED TOOLS 126

public protected package-private private
Visibility

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

5
(55.6%)

2
(22.2%)

1
(11.1%)

1
(11.1%)

2
(22.2%)

1
(11.1%)

0

1
(11.1%)

production method
method directly covered in test

Figure A.9: Direct method call coverage of viscount-example

Ant.

A.7 Related Tools

JaCoCo, a popular code coverage tool for Java provides a way to measure method
coverage. Since it works independently and does not rely on any build tools (e.g.
Maven, Gradle), it cannot distinguish direct or indirect calls to production methods as
it does not track call hierarchies [17]. Mainly, since Viscount could do both (as shown in
Section A.4.1 and Section A.4.3), it can determine direct method invocations by tests.
Yang et al. [255] developed a test smell detector that can statically detect direct
invocation of a private method in test code, also known as “Private Method Test”
(PMT). Unlike Viscount, their test smell detector could only detect private methods
that are being directly called in the test code, where Viscount can detect all levels of
access modifiers (i.e., public, protected, package-private, and private).

A.8 Conclusions and Future Work

This chapter presents Viscount, a tool to help developers analyse which methods are
being directly called in their test code. It is designed to assist with test maintenance
activities, such as ensuring that tests focus on behavioural aspects of code rather than
implementation details. It can aid in identifying tests that directly exercise non-public
methods directly (i.e., protected, package-private, and private), which is considered a
bad practice in unit testing.

A.8. CONCLUSIONS AND FUTURE WORK 127

Viscount supports three features that will help developers identify test cases that
are calling non-public methods directly, facilitating test maintenance tasks:

• Retrieving every production method and its visibility;

• Identifying directly called methods in the test code; and

• Summarising direct method call coverage in the test code.

In future work, I plan to improve Viscount’s report generation and enhancing
it’s handling of different type of members (which include fields, constructors, and
classes) that are directly called from the test code. I also plan to extend the tool by
incorporating static analysis (Spoon [213]) and bytecode analysis (SootUp [158]) to
identify methods being invoked in the tests rather than relying on test execution. This
will improve the tool’s efficiency and reduce the time taken to analyse the test code.

Appendix B

Private — Keep Out? Ethics
Application

128

Application 053606

 DeleteAmendment - Complete (Submitted on 27/09/2023)

Description of changes

As we aim to increase the number of participants for our questionnaire survey, we intend to promote our survey on the Prolific website.

Additional ethical considerations

Do the proposed changes pose any additional ethical considerations?
No

Additional risks

Do any of the proposed amendments to the research potentially change the risk for any of the researchers?
No

Supporting documentation revisions

Do the proposed amendments require revisions to any of the supporting documentation? Please note that when uploading new versions of
documents which you have previously provided, you should give a description of the document which clearly indicates that this is a new version, e.g.
by providing an appropriate version number. It is also helpful to the reviewers if you clearly mark the changes you have made in the document itself
(e.g. by highlighting new text or using tracked changes in Word).
No

Other relevant information

Decision

should be approved

 DeleteAmendment - Complete (Submitted on 03/08/2023)

Description of changes

In an effort to encourage more participants to join this survey, we would like to include a lucky prize draw for them. Thus, we have
included an additional statement in the participant consent section: "- I understand that if I do not include my email address, I will not be
eligible for participation in the lucky draw." By doing so, only participants who choose to share their email addresses will be eligible for
entry into the lucky prize draw, which will be limited to a maximum of 5 winners. Participants who wish to remain completely anonymous
can still do so, but they will not be included in the draw. We believe that this addition to the consent form will enhance engagement and
participation in our survey. We have followed the UREC Participation Form format to include a prize draw in the consent form.

Additional ethical considerations

Do the proposed changes pose any additional ethical considerations?
No

Additional risks

Do any of the proposed amendments to the research potentially change the risk for any of the researchers?
No

Supporting documentation revisions

Do the proposed amendments require revisions to any of the supporting documentation? Please note that when uploading new versions of
documents which you have previously provided, you should give a description of the document which clearly indicates that this is a new version, e.g.

Original application

by providing an appropriate version number. It is also helpful to the reviewers if you clearly mark the changes you have made in the document itself
(e.g. by highlighting new text or using tracked changes in Word).
Yes

Uploaded documentation
Exploring_Unit_Testing_Practices_in_the_Industry.pdf

Other relevant information

Decision

should be approved

 DeleteAmendment - Complete (Submitted on 19/07/2023)

Description of changes

In the participant consent section, participants were asked to agree to this statement: "- I agree to assign the copyright I hold in any
materials generated as part of this project to The University of Sheffield." However, we have decided not to store the data in a data
repository, making this copyright assignment unnecessary. As stated in the UREC Participant Consent Form about this point, there are no
intentions to utilize the data beyond the scope of this project. Moreover, participants cannot preview the survey questions, and requesting
them to grant copyright beforehand may lead to confusion and reluctance to participate. We have therefore decided to drop this statement
from the consent form, as no transfer of copyright is required in our survey. No more changes have been made to the application.

Additional ethical considerations

Do the proposed changes pose any additional ethical considerations?
No

Additional risks

Do any of the proposed amendments to the research potentially change the risk for any of the researchers?
No

Supporting documentation revisions

Do the proposed amendments require revisions to any of the supporting documentation? Please note that when uploading new versions of
documents which you have previously provided, you should give a description of the document which clearly indicates that this is a new version, e.g.
by providing an appropriate version number. It is also helpful to the reviewers if you clearly mark the changes you have made in the document itself
(e.g. by highlighting new text or using tracked changes in Word).
Yes

Uploaded documentation
Participant_Consent_Form.pdf

Other relevant information

UREC Participant Consent Form: https://www.sheffield.ac.uk/media/3507/download

Decision

should be approved

Section A: Applicant details

Date application started:
Wed 10 May 2023 at 10:50

First name:
Muhammad Firhard

Last name:
Roslan

Email:
mfroslan2@sheffield.ac.uk

Programme name:
Computer Science

Module name:
n/a
Last updated:
29/11/2023

Department:
Computer Science

Applying as:
Postgraduate research

Research project title:
Exploring the Common Themes Among Developers When Writing Unit Tests: Behaviour-Driven vs Implementation-Based Testing

Has your research project undergone academic review, in accordance with the appropriate process?
No

Similar applications:
- not entered -

Section B: Basic information

Supervisor

Name Email

Phil McMinn p.mcminn@sheffield.ac.uk

Proposed project duration

3: Project code (where applicable)

Suitability

Start date (of data collection):
Sat 15 July 2023

Anticipated end date (of project)
Sat 30 December 2023

Project externally funded?
No

Project code
- not entered -

Takes place outside UK?
No

Involves NHS?
No

Health and/or social care human-interventional study?
No

ESRC funded?
No

Indicators of risk

Likely to lead to publication in a peer-reviewed journal?
Yes

Led by another UK institution?
No

Involves human tissue?
No

Clinical trial or a medical device study?
No

Involves social care services provided by a local authority?
No

Is social care research requiring review via the University Research Ethics Procedure
No

Involves adults who lack the capacity to consent?
No

Involves research on groups that are on the Home Office list of 'Proscribed terrorist groups or organisations?
No

Involves potentially vulnerable participants?
No
Involves potentially highly sensitive topics?
No

Section C: Summary of research

1. Aims & Objectives

Unit tests are short tests designed to test small components (units) of a larger piece of software. Developers write and maintain unit tests
throughout the software development lifecycle. Unit tests are written before or after a unit is written to ensure it has been developed
correctly. After this, unit tests serve as “regression” tests, to ensure that the unit continues to work correctly, and hasn’t broken – either as
the result of direct or indirect changes to it or the software as a whole.

There are two main schools of thought when it comes to writing unit tests: “behaviour-driven testing” and “implementation-based testing”.
With behaviour-driven testing, unit tests test the externally visible behaviours of the unit only. That is, for example, they can only call and
access public methods and instance variables of a class. Implementation-based testing, on the other hand, can invoke protected and/or
package-private methods/instance variables as well, to ascertain at a finer-grained level that the unit is implemented correctly. As part of
this strategy, developers may even resist making methods/instance variables completely private, so that they can be called or checked
directly by their unit tests.

While implementation-based testing allows developers to gain more confidence that units are working correctly by essentially treating the
unit as a “white box”, other software engineers prefer to test behaviour only – believing that internal implementation details may change
over time, causing implementation-based tests to require maintenance or be thrown away. In other words, implementation-based tests are
seen as “brittle” tests. Arguably, behaviour-driven testing is a harder, more disciplined approach to testing, but with a longer-term pay-off.

Each approach has its pros and cons, and developers may fall into one camp or the other.

The aim of this study is twofold:
Firstly, we will empirically assess real software developers by means of a Google questionnaire to see if there is a preference for one or
the other in real software development practice and what the deeper, underlying reasons are for choosing one approach over the other.

Secondly, we will also search for blog posts and question-and-answer (Q&A) sites such as StackOverflow related to the topic to also study
development practices and opinions. To ensure that we minimize potential biases, we will do a comprehensive systematic review to
gather all the information from the Q&A sites.

Our objectives are to:
1) Identify preferences in practicing behaviour-driven and/or implementation-based testing among real software developers.
2) To uncover developer opinions surrounding perceived effectiveness between behaviour-driven or implementation-based practices in
unit testing among software developers.
3) To discover the factors that might influence software developers to adopt one/both of the practices in unit testing.
4) To develop recommendations to software developers on how to avoid creating hard-to-maintain tests, based on the findings of this

study.

2. Methodology

We plan to conduct two studies:

1) An empirical assessment of software developers in the industry:
We will distribute a questionnaire (via Google Forms) using social media (LinkedIn, Twitter), and through email to our industrial
connections. The collected answers will be stored in the University’s Google Drive.
Our questions will centre around their behaviours in terms of writing tests. All questions will require an answer, but we will include ‘No
Opinion’ as an option to avoid participants responding with a random selection. The questions we will ask developers will be around the
following themes:
1) The main motivation behind their approach of testing public/non-public methods
2) The approach that they take to write tests for public/non-public methods
3) Unintended consequences of different practices

A draft of our questionnaire survey is available at
https://docs.google.com/forms/d/e/1FAIpQLSfvJ521hm3BKaOhQOS5nC1h7wWLTjU7XvCzqYEqW5gb7xzxVQ/viewform

We will also collect demographic information (e.g., years of experience, main programming languages used). We will not ask for personal
information, although we will keep the email addresses of participants who wish to be kept informed of the results of the study. When
writing up the work, we will not identify participants individually nor use any of this personal information and the data will not be accessible
to other researchers.

2) Supporting information from Blogs and Q&A websites.
To complement the developer survey responses, we will also collect information from questions-and-answer (Q&A) sites – such as
StackOverflow and StackExchange – as well as relevant blog posts, systematically. This will allow us to gather further opinions on the
topic of implementation-based / behaviour-driven testing from developers.
We will search for related keywords in StackOverflow to the topic of our research and gather opinions from the StackOverflow threads and
blog posts. After gathering relevant StackOverflow threads and blog posts, we will create a dataset of relevant threads. We will not store
nor use information about users who post this information in our analysis or in publication. All information collated will be stored on the
university’s Google Drive.

3. Personal Safety

Have you completed your departmental risk assessment procedures, if appropriate?

Not Applicable

Raises personal safety issues?

No

This questionnaire survey does not raise any issues of personal safety or physical or mental well-being for the researchers involved in the
project. We believe that there are no personal safety issues to be concerned about.

Section D: About the participants

1. Potential Participants

Potential participants should be an individual that is involved in the development of proprietary software or open-source project. They
should also be involved in the software testing process of a project.

2. Recruiting Potential Participants

Social Media (Twitter, LinkedIn), Emails, and Direct Contacts

2.1. Advertising methods

Will the study be advertised using the volunteer lists for staff or students maintained by IT Services? No

- not entered -

3. Consent

Will informed consent be obtained from the participants? (i.e. the proposed process) Yes

Since the questionnaire survey will be in a Google Form, we will attach the consent form that the participants need to fill out before starting
the questionnaire survey. Link:

https://docs.google.com/forms/d/e/1FAIpQLSfvJ521hm3BKaOhQOS5nC1h7wWLTjU7XvCzqYEqW5gb7xzxVQ/viewform

4. Payment

Will financial/in kind payments be offered to participants? No

5. Potential Harm to Participants

What is the potential for physical and/or psychological harm/distress to the participants?

As this is going to be a questionnaire survey related to software testing practice, we do not anticipate any physical or psychological harm
to the participants. Since we will not be storing the participant’s personal information, it will not risk the participant’s reputation. If there is
any personal information that is being revealed intentionally or unintentionally in the 'free text' questions, we will remove and filter them
from the raw data.

How will this be managed to ensure appropriate protection and well-being of the participants?

Participants will be free to withdraw from the study at any point without having to give any justification. This option will only be available for
the participant that includes their email address, which is not mandatory, but not for the ones that do not provide their email address.

6. Potential harm to others who may be affected by the research activities

Which other people, if any, may be affected by the research activities, beyond the participants and the research team?

There are no other people who may be affected by the questionnaire survey beyond the participants. No personal information will be
collected from the participants.

What is the potential for harm to these people?

The potential for harm to participants is none, as this questionnaire survey does not involve any physical or psychological risks.

How will this be managed to ensure appropriate safeguarding of these people?

To ensure the appropriate safeguarding of the participants, the survey will be voluntary and anonymous, and their consent will be obtained
before they participate in the survey.

7. Reporting of safeguarding concerns or incidents

What arrangements will be in place for participants, and any other people external to the University who are involved in, or affected by, the
research, to enable reporting of incidents or concerns?

Participants will be provided with my university email address, and are encouraged to report any concerns. The survey will also include a
free-text comment box at the end of the questionnaire where participants can provide any feedback.

Who will be the Designated Safeguarding Contact(s)?

The Designated Safeguarding Contact(s) for this study will be the Head of the Department of Computer Science
(g.j.brown@sheffield.ac.uk), and will be responsible for handling any concerns that are reported by participants.

How will reported incidents or concerns be handled and escalated?

Any concerns reported by participants will be taken seriously and handled promptly. If necessary, the concern will be escalated to the
relevant authorities.

Section E: About the data

1. Data Processing

Which organisation(s) will act as Data Controller?

Other

We intend to use Google Forms for the questionnaire and it will be stored in the University's Google Drive. Since we would like the
participant to have an option of revoking their participation, we will need to collect participants' email addresses. In the survey, participants
are not required to fill in their email addresses as we only make it an optional free text answer for them to fill in. We can only withdraw
participants that include their email addresses and the option to withdraw expires one month following their submission.

Will you be processing (i.e. collecting, recording, storing, or otherwise using) personal data as part of this project? (Personal data is any information
relating to an identified or identifiable living person).
Yes

2. Legal basis for processing of personal data

The University considers that for the vast majority of research, 'a task in the public interest' (6(1)(e)) will be the most appropriate legal
basis. If, following discussion with the UREC, you wish to use an alternative legal basis, please provide details of the legal basis, and the
reasons for applying it, below:

- not entered -

3. Data Confidentiality

What measures will be put in place to ensure confidentiality of personal data, where appropriate?

As we would like to stay in touch with participants who are interested in the results of the study, participants have the option to leave their
email addresses in the Google Form.
We will create an anonymised copy of the raw responses with the email address removed. This is to carefully not include any personal
information when we are analysing the data. My supervisor will only use the raw responses when a participant wants to withdraw their
participation.

For the free text comments, we will not restrict the participants to what they can write, but my supervisor will redact any sentences that
identify individuals or organisations from the raw data, and it will not be part of our final publication.

4. Data Storage and Security

In general terms, who will have access to the data generated at each stage of the research, and in what form

We will make sure that the raw responses will only be accessible to both of my supervisors. My supervisors will only access the raw
responses if we receive an email from participants who want to withdraw from this survey effectively and the expiration of the withdrawal
is one month following their submission. We will also not give the filtered data to other researchers, mitigating any concern risk about the
raw/filtered data.

What steps will be taken to ensure the security of data processed during the project, including any identifiable personal data, other than
those already described earlier in this form?

The raw responses specifically for the email addresses (optional to be shared by the participants) have been moved to another part of the
Google Sheet and can only be accessible by my supervisors.

Please outline when this will take place (this should take into account regulatory and funder requirements).

The personal data (participants' email addresses) will be destroyed right after we submit our results to a publication. The filtered
responses (without the participants' email addresses) will be immediately destroyed after I finish my Ph.D. or 6 months after publication.

Will you be processing (i.e. collecting, recording, storing, or otherwise using) 'Special Category' personal data?
No

Will all identifiable personal data be destroyed once the project has ended?
Yes

Section F: Supporting documentation

Information & Consent

All versions

Participant information sheets relevant to project?
Yes

Document 1122455 (Version 3)

All versions

Consent forms relevant to project?
Yes

Document 1122457 (Version 5)
The consent form will be the first section of the questionnaire survey in the Google Form.

Additional Documentation

External Documentation

Participant Information Sheet: https://docs.google.com/document/d/1BNj9WjrZr2-OCZripEmpcUOqeIhr16gpKilT2anbpBQ/edit?
usp=sharing

Section G: Declaration

Signed by:
Muhammad Firhard Roslan
Date signed:
Fri 30 June 2023 at 14:40

Offical notes

- not entered -

Appendix C

Private — Keep Out? Developer
Questionnaire and Information
Sheet

137

 Simplifying Access Modifiers Terminology
 Taking into account the unique terminology used in various programming languages, we now
 present the formal definitions of the access modifiers that will be used in the questionnaire
 survey:

 1. Public: Globally and externally visible, accessible from any part of the program.
 2. Non-Public: Not globally visible, limited accessibility.

 - Protected / Semi-visible: Partially visible (to other Module / Package /
 Subclass / Class), but not globally.

 - Private: Visible only within the class / module / file; i.e., inaccessible from
 outside of the class / module / file.

 Access modifier prefixes in certain programming languages (e.g. Python) are primarily based
 on convention (C) rather than strict enforcement by the language. This means that the
 prefixes used to indicate access modifiers are not mandated by the language itself.
 The table provided below presents a comprehensive overview of the three access modifiers
 in different programming languages:

 Programming
 Language

 Public Non-Public

 Protected / Semi-visible Private

 C# public
 method/variable

 protected / internal /
 protected internal /
 private protected
 method/variable

 private
 method/variable

 C++ public
 method/variable

 protected
 method/variable

 private
 method/variable

 Go M ethod/ V ariable
 (uppercase letter)

 m ethod/ v ariable (lowercase
 letter)

 Not available

 Java public
 method/variable

 protected / package-private
 method/variable

 private
 method/variable

 Javascript (C) [method/variable] _ [method/variable] # [method/variable]

 Kotlin public
 method/variable

 protected / internal
 method/variable

 private
 method/variable

 Python (C) [method/variable] _ [method/variable] __ [method/variable]

 PHP public
 method/variable

 protected
 method/variable

 private
 method/variable

 Ruby public def
 method/variable

 protected def
 method/variable

 private def
 method/variable

 Rust pub
 method/variable

 pub(crate) / pub(super) /
 trait method/variable

 [method/variable]

 Typescript export / public
 method/variable

 protected
 method/variable

 private
 method/variable

Survey Questions

Please refer to the Simplifying Access Modifiers Terminology section in the Participant Information Sheet to get more information about the different access
modifiers used in different programming languages covered by our questionnaire.

1.

Mark only one oval.

Other:

C#

C++

Go

Java

JavaScript

Kotlin

PHP

Python

Ruby

Rust

Typescript

2.

Mark only one oval.

Other:

Yes

No

My main programming language has access modifiers

3.

Based on your main programming language chosen previously, we will ask specific questions about how do you do testing for public or non-public (e.g.,
private, protected) methods, following the syntax and conventions of your main programming language that you stated earlier in the questionnaire.

4.

Mark only one oval.

Yes

No

Not sure

Industry Survey
* Indicates required question

What is your main programming language? *

If your main language does not have access modifiers (e.g., public, private, protected, etc.), do you follow any conventions to denote visibility
of methods and instance variables?

(For example, some Python programmers elect to prefix private methods with an underscore.)

*

If you answered "yes", please tell us what conventions you follow.

If you answered "no", please tell us your reasons as to why you do not follow any conventions.

Does the code that you are usually testing involve non-public methods? *

5.

Mark only one oval.

Strongly disagree

Disagree

Agree

Strongly agree

Not sure

6.

Mark only one oval.

Never

Rarely

Sometimes

Often

Always

7.

Mark only one oval per row.

To what extent do you agree with the following statement?

"In general, developers should write unit tests that only invoke public methods, avoiding direct calls to non-public methods."

*

How often do you write tests that directly invoke non-public methods? *

How do you go about testing non-public methods? *

Not a
feature
in my

language

Never Rarely Sometimes Often Mostly
Not
sure

Via public
method that
invokes the
non-public
method

Directly
invoking the
non-public
method

Using
Reflection /
Mocks

Adding test
code (e.g.,
print
statements
or
assertions)
in
production
code

Temporarily
changing
non-public
methods to
public

Changing
the visibility
of the
method to
public
permanently

Via public
method that
invokes the
non-public
method

Directly
invoking the
non-public
method

Using
Reflection /
Mocks

Adding test
code (e.g.,
print
statements
or
assertions)
in
production
code

Temporarily
changing
non-public
methods to
public

Changing
the visibility
of the
method to
public
permanently

8.

9.

Mark only one oval.

Yes

No

10.

11.

Are there any other approaches or strategies that you use to test non-public methods?

Do you take a different approach for testing different levels of visibility of non-public methods? (For example, is your treatment of private
methods different compared to protected methods?)

*

If you answered "yes", please tell us how and why.

Are there any guidelines, best practices, or specific rules you follow when testing non-public methods?

If so, please tell us about them here.

12.

Mark only one oval per row.

13.

Mark only one oval.

Strongly Disagree

Disagree

Agree

Strongly Agree

Not sure

To what extent do you value the following aspects when writing unit tests? *

Not
important

Somewhat
important

Important
Very

Important
No

opinion

Coverage
of
production
code

Capturing
the
behaviour
of the
production
code
(through
assertions)

Ease of
debugging
following
production
code
failures

Robustness
following
refactoring
of
production
code

Sensitivity
to
behavioural
changes of
production
code

Realistic
exercising
of the unit
by the test
in a similar
way to its
usage in
production

Tests that
instill
confidence
in the
production
code

Writing
concise
unit tests
to test the
production
code

Coverage
of
production
code

Capturing
the
behaviour
of the
production
code
(through
assertions)

Ease of
debugging
following
production
code
failures

Robustness
following
refactoring
of
production
code

Sensitivity
to
behavioural
changes of
production
code

Realistic
exercising
of the unit
by the test
in a similar
way to its
usage in
production

Tests that
instill
confidence
in the
production
code

Writing
concise
unit tests
to test the
production
code

To what extent do you agree with the following statement?

"Testing non-public methods leads to more tests failing spuriously when modifications are made to those methods."

*

14.

15.

16.

Mark only one oval.

0–2

2–5

5–10

10–15

More than 15

17.

Mark only one oval.

0–2

2–5

5–10

10–15

More than 15

18.

Other:

Tick all that apply.

Information Technology

University / Education

Electronics

Enterprise / Business Software

Fintech (Finance)

Hospitality / Leisure Industry

Healthcare

Mass Media / Entertainment

Public Sector / Government / Defense

Retail Industry

Sports Industry

Transportation / Automotive

If you have anything else to say about your thoughts and/or processes when writing unit tests with respect to testing public and non-public
methods, please let us know here:

Are there features you'd like to see in unit testing or mocking tools in the future to better accommodate the testing of non-public methods?

How many years of experience do you have in software development? *

How many years of experience do you have in writing unit tests? *

In which industry are you currently working in? *

19.

Other:

Tick all that apply.

Test-driven development

Behaviour-driven development

Acceptance test-driven development

Test-last development

Feature-driven development

Agile methodology, e.g. Scrum

Waterfall method

This content is neither created nor endorsed by Google.

Do you employ any of the following software development methodologies and/or programming practices? Please tick all that apply.

 Forms

Bibliography

[1] Access modifiers — C# programming guide. https://learn.microsoft.co

m/en-us/dotnet/csharp/programming-guide/classes-and-structs/acces

s-modifiers. Online; Accessed: 9/2024.

[2] Access specifiers — cppreference.com. https://en.cppreference.com/w/cpp/
language/access. Online; Accessed: 9/2024.

[3] Agitar One. http://www.agitar.com/solutions/products/automated_juni
t_generation.html. Online; Accessed: 9/2024.

[4] Anal probe — test smells catalog. https://test-smell-catalog.readthedo
cs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20rela

ted/Anal%20Probe.html. Online; Accessed: 9/2024.

[5] Apache commons lang3 — Class MethodUtils. https://commons.apache.org
/proper/commons-lang/apidocs/org/apache/commons/lang3/reflect/Met

hodUtils.html. Online; Accessed: 9/2024.

[6] Blue screen of death: Microsoft says turn it off and on again and again and again.
https://www.forbes.com/sites/daveywinder/2024/07/20/blue-screen-o

f-death-microsoft-says-turn-it-off-and-on-again-and-again-and-a

gain/. Online; Accessed: 3/2025.

[7] Controlling access to members of a class, the Java tutorials. https://docs.o
racle.com/javase/tutorial/java/javaOO/accesscontrol.html. Online;
Accessed: 9/2023.

[8] Crowdstrike incident root cause analysis. https://www.crowdstrike.com/co
ntent/dam/crowdstrike/www/en-us/wp/2024/08/Channel-File-291-Incid

ent-Root-Cause-Analysis-08.06.2024.pdf. Online; Accessed: 3/2025.

[9] Crowdstrike it outage affected 8.5 million windows devices, microsoft says. https:
//www.bbc.co.uk/news/articles/cpe3zgznwjno. Online; Accessed: 3/2025.

[10] Crowdstrike: More testing, staged rollouts now in place for updates. https:

//www.crn.com/news/security/2024/crowdstrike-more-testing-stage

d-rollouts-now-in-place-for-updates. Online; Accessed: 3/2025.

145

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers
https://en.cppreference.com/w/cpp/language/access
https://en.cppreference.com/w/cpp/language/access
http://www.agitar.com/solutions/products/automated_junit_generation.html
http://www.agitar.com/solutions/products/automated_junit_generation.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/Anal%20Probe.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/Anal%20Probe.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/Anal%20Probe.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/reflect/MethodUtils.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/reflect/MethodUtils.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/reflect/MethodUtils.html
https://www.forbes.com/sites/daveywinder/2024/07/20/blue-screen-of-death-microsoft-says-turn-it-off-and-on-again-and-again-and-again/
https://www.forbes.com/sites/daveywinder/2024/07/20/blue-screen-of-death-microsoft-says-turn-it-off-and-on-again-and-again-and-again/
https://www.forbes.com/sites/daveywinder/2024/07/20/blue-screen-of-death-microsoft-says-turn-it-off-and-on-again-and-again-and-again/
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://www.crowdstrike.com/content/dam/crowdstrike/www/en-us/wp/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://www.crowdstrike.com/content/dam/crowdstrike/www/en-us/wp/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://www.crowdstrike.com/content/dam/crowdstrike/www/en-us/wp/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://www.bbc.co.uk/news/articles/cpe3zgznwjno
https://www.bbc.co.uk/news/articles/cpe3zgznwjno
https://www.crn.com/news/security/2024/crowdstrike-more-testing-staged-rollouts-now-in-place-for-updates
https://www.crn.com/news/security/2024/crowdstrike-more-testing-staged-rollouts-now-in-place-for-updates
https://www.crn.com/news/security/2024/crowdstrike-more-testing-staged-rollouts-now-in-place-for-updates

BIBLIOGRAPHY 146

[11] Crowdstrike reveals what happened, why, and what’s changed. https://www.fo
rbes.com/sites/kateoflahertyuk/2024/08/07/crowdstrike-reveals-wha

t-happened-why-and-whats-changed/. Online; Accessed: 3/2025.

[12] Crowdstrike: What was the impact of the global it outage. https://www.bbc.
co.uk/news/articles/cr54m92ermgo. Online; Accessed: 3/2025.

[13] Delta airlines hits out at crowdstrike, alleging $500m loss. https://www.bbc.co
.uk/news/articles/c6284e7r7d7o. Online; Accessed: 3/2025.

[14] DSpot. https://github.com/STAMP-project/dspot. Online; Accessed:
9/2024.

[15] EasyMock — Class ReflectionUtils. https://easymock.org/api/org/easymoc
k/internal/ReflectionUtils.html. Online; Accessed: 9/2024.

[16] Google Testing Blog — The advantages of unit testing early. https://testing.
googleblog.com/2009/07/by-shyam-seshadri-nowadays-when-i-talk.ht

ml. Online; Accessed: 9/2024.

[17] JaCoCo Coverage of methods being invoked directly from a test case. https:
//groups.google.com/g/jacoco/c/x4OGEGPyi3E. Online; Accessed: 9/2024.

[18] JaCoCo Java Code Coverage Library. https://www.eclemma.org/jacoco/.
Online; Accessed: 11/2024.

[19] JMockit — Class Deencapsulation. https://javadoc.io/doc/com.googl

ecode.jmockit/jmockit/latest/mockit/Deencapsulation.html. Online;
Accessed: 9/2024.

[20] Kendall’s Tau – Simple Introduction. https://www.spss-tutorials.com/ken
dalls-tau/. Online; Accessed: 9/2024.

[21] Log4j vulnerability - what everyone needs to know. https://www.ncsc.gov

.uk/information/log4j-vulnerability-what-everyone-needs-to-know.
Online; Accessed: 11/2024.

[22] Manifold Systems — Annotation Type Jailbreak. https://javadoc.io/stati
c/systems.manifold/manifold-ext-rt/2020.1.41/manifold/ext/rt/api/

Jailbreak.html. Online; Accessed: 9/2024.

[23] Maven — introduction to the standard directory layout. https://maven.apac
he.org/guides/introduction/introduction-to-the-standard-directory

-layout. Online; Accessed: 9/2024.

[24] Maven central index. https://maven.apache.org/repository/central-ind
ex.html. Online; Accessed: 9/2024.

https://www.forbes.com/sites/kateoflahertyuk/2024/08/07/crowdstrike-reveals-what-happened-why-and-whats-changed/
https://www.forbes.com/sites/kateoflahertyuk/2024/08/07/crowdstrike-reveals-what-happened-why-and-whats-changed/
https://www.forbes.com/sites/kateoflahertyuk/2024/08/07/crowdstrike-reveals-what-happened-why-and-whats-changed/
https://www.bbc.co.uk/news/articles/cr54m92ermgo
https://www.bbc.co.uk/news/articles/cr54m92ermgo
https://www.bbc.co.uk/news/articles/c6284e7r7d7o
https://www.bbc.co.uk/news/articles/c6284e7r7d7o
https://github.com/STAMP-project/dspot
https://easymock.org/api/org/easymock/internal/ReflectionUtils.html
https://easymock.org/api/org/easymock/internal/ReflectionUtils.html
https://testing.googleblog.com/2009/07/by-shyam-seshadri-nowadays-when-i-talk.html
https://testing.googleblog.com/2009/07/by-shyam-seshadri-nowadays-when-i-talk.html
https://testing.googleblog.com/2009/07/by-shyam-seshadri-nowadays-when-i-talk.html
https://groups.google.com/g/jacoco/c/x4OGEGPyi3E
https://groups.google.com/g/jacoco/c/x4OGEGPyi3E
https://www.eclemma.org/jacoco/
https://javadoc.io/doc/com.googlecode.jmockit/jmockit/latest/mockit/Deencapsulation.html
https://javadoc.io/doc/com.googlecode.jmockit/jmockit/latest/mockit/Deencapsulation.html
https://www.spss-tutorials.com/kendalls-tau/
https://www.spss-tutorials.com/kendalls-tau/
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://javadoc.io/static/systems.manifold/manifold-ext-rt/2020.1.41/manifold/ext/rt/api/Jailbreak.html
https://javadoc.io/static/systems.manifold/manifold-ext-rt/2020.1.41/manifold/ext/rt/api/Jailbreak.html
https://javadoc.io/static/systems.manifold/manifold-ext-rt/2020.1.41/manifold/ext/rt/api/Jailbreak.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout
https://maven.apache.org/repository/central-index.html
https://maven.apache.org/repository/central-index.html

BIBLIOGRAPHY 147

[25] Maven central repository. https://repo.maven.apache.org/maven2/. Online;
Accessed: 9/2024.

[26] Maven Surefire plugin. https://maven.apache.org/surefire/maven-suref

ire-plugin/. Online; Accessed: 9/2024.

[27] Maven Surefire plugin — rerun failing tests. https://maven.apache.org/s

urefire/maven-surefire-plugin/examples/rerun-failing-tests.html.
Online; Accessed: 9/2024.

[28] The Open Catalog of Test Smells. https://test-smell-catalog.readthedo
cs.io. Online; Accessed: 9/2024.

[29] OW2. 2024. ASM. https://asm.ow2.io/. Online; Accessed: 9/2024.

[30] Package java.lang.instrument. https://docs.oracle.com/javase/8/docs/ap
i/java/lang/instrument/package-summary.html. Online; Accessed: 9/2024.

[31] Package java.lang.reflect. https://docs.oracle.com/javase/8/docs/api/ja
va/lang/reflect/package-summary.html. Online; Accessed: 9/2024.

[32] password-generator GitHub project. https://github.com/javadev/passwor

d-generator. Online; Accessed: 9/2024.

[33] Powermock — Class Whitebox. https://www.javadoc.io/doc/org.power

mock/powermock-reflect/1.6.4/org/powermock/reflect/Whitebox.html.
Online; Accessed: 9/2024.

[34] PyTest — Flaky Tests. https://docs.pytest.org/en/stable/explanation/
flaky.html. Online; Accessed: 11/2024.

[35] Reddit: Stop using Code Coverage as a Quality metric. https://www.reddit.c
om/r/programming/comments/194htrz/stop_using_code_coverage_as_a_qu

ality_metric. Online; Accessed: 9/2024.

[36] Spring Framework — Class ReflectionTestUtils. https://docs.spring.io/s
pring-framework/docs/current/javadoc-api/org/springframework/test/

util/ReflectionTestUtils.html. Online; Accessed: 9/2024.

[37] Stackoverflow. https://stackoverflow.com. Online; Accessed: 9/2024.

[38] Technical details: Falcon update for windows hosts: Crowdstrike. https:

//www.crowdstrike.com/en-us/blog/falcon-update-for-windows-hosts

-technical-details/. Online; Accessed: 3/2025.

[39] Testing with Maven — Organizing unit and integration tests. https://dev.to
/rodnan-sol/testing-with-maven-organizing-unit-and-integration-t

ests-35oh. Online; Accessed: 9/2024.

https://repo.maven.apache.org/maven2/
https://maven.apache.org/surefire/maven-surefire-plugin/
https://maven.apache.org/surefire/maven-surefire-plugin/
https://maven.apache.org/surefire/maven-surefire-plugin/examples/rerun-failing-tests.html
https://maven.apache.org/surefire/maven-surefire-plugin/examples/rerun-failing-tests.html
https://test-smell-catalog.readthedocs.io
https://test-smell-catalog.readthedocs.io
https://asm.ow2.io/
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/package-summary.html
https://github.com/javadev/password-generator
https://github.com/javadev/password-generator
https://www.javadoc.io/doc/org.powermock/powermock-reflect/1.6.4/org/powermock/reflect/Whitebox.html
https://www.javadoc.io/doc/org.powermock/powermock-reflect/1.6.4/org/powermock/reflect/Whitebox.html
https://docs.pytest.org/en/stable/explanation/flaky.html
https://docs.pytest.org/en/stable/explanation/flaky.html
https://www.reddit.com/r/programming/comments/194htrz/stop_using_code_coverage_as_a_quality_metric
https://www.reddit.com/r/programming/comments/194htrz/stop_using_code_coverage_as_a_quality_metric
https://www.reddit.com/r/programming/comments/194htrz/stop_using_code_coverage_as_a_quality_metric
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/util/ReflectionTestUtils.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/util/ReflectionTestUtils.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/util/ReflectionTestUtils.html
https://stackoverflow.com
https://www.crowdstrike.com/en-us/blog/falcon-update-for-windows-hosts-technical-details/
https://www.crowdstrike.com/en-us/blog/falcon-update-for-windows-hosts-technical-details/
https://www.crowdstrike.com/en-us/blog/falcon-update-for-windows-hosts-technical-details/
https://dev.to/rodnan-sol/testing-with-maven-organizing-unit-and-integration-tests-35oh
https://dev.to/rodnan-sol/testing-with-maven-organizing-unit-and-integration-tests-35oh
https://dev.to/rodnan-sol/testing-with-maven-organizing-unit-and-integration-tests-35oh

BIBLIOGRAPHY 148

[40] The Python Language Reference — Private name mangling. https://docs.pyt
hon.org/3/reference/expressions.html#private-name-mangling. Online;
Accessed: 9/2024.

[41] tvd12 test-util repository. https://github.com/tvd12/test-util. Online;
Accessed: 9/2024.

[42] Visibility — php.net. https://www.php.net/manual/en/language.oop5.visi
bility.php. Online; Accessed: 9/2024.

[43] We finally know what caused the global tech outage - and how much it cost.
https://edition.cnn.com/2024/07/24/tech/crowdstrike-outage-cost-c

ause/index.html. Online; Accessed: 3/2025.

[44] X-Ray Specs — Test Smells Catalog. https://test-smell-catalog.readthe
docs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20re

lated/X-Ray%20Specs.html. Online; Accessed: 9/2024.

[45] Ieee standard glossary of software engineering terminology. IEEE Std 610.12-1990,
pages 1–84, 1990.

[46] Stackoverflow: How do I test a class that has private methods, fields or inner
classes? https://stackoverflow.com/questions/34571/, 2008. Online;
Accessed: 9/2024.

[47] Stackoverflow: Making a private method public to unit test it...good idea?
https://stackoverflow.com/questions/7075938/, 2011. Online; Accessed:
9/2024.

[48] Regression testing minimization, selection and prioritization: a survey. Journal
of Software Testing, Verification and Reliability, 22(2):67–120, 2012.

[49] Stackoverflow: Unit testing private method - objective C. https://stackoverf
low.com/questions/18354788/, 2013. Online; Accessed: 9/2024.

[50] Stackoverflow: Should a concrete class that implements an interface have extra
public methods for testing? https://stackoverflow.com/questions/576320

38/, 2019. Online; Accessed: 9/2024.

[51] Replication package - an empirical comparison of evosuite and dspot for improving
developer-written test suites with respect to mutation score. https://github.c
om/test-amplification/EvoSuiteAmp-framework, 2022.

[52] Do automatic test generation tools generate flaky tests? [dataset]. https:

//doi.org/10.6084/m9.figshare.22344706, 2023.

https://docs.python.org/3/reference/expressions.html#private-name-mangling
https://docs.python.org/3/reference/expressions.html#private-name-mangling
https://github.com/tvd12/test-util
https://www.php.net/manual/en/language.oop5.visibility.php
https://www.php.net/manual/en/language.oop5.visibility.php
https://edition.cnn.com/2024/07/24/tech/crowdstrike-outage-cost-cause/index.html
https://edition.cnn.com/2024/07/24/tech/crowdstrike-outage-cost-cause/index.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/X-Ray%20Specs.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/X-Ray%20Specs.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/X-Ray%20Specs.html
https://stackoverflow.com/questions/34571/
https://stackoverflow.com/questions/7075938/
https://stackoverflow.com/questions/18354788/
https://stackoverflow.com/questions/18354788/
https://stackoverflow.com/questions/57632038/
https://stackoverflow.com/questions/57632038/
https://github.com/test-amplification/EvoSuiteAmp-framework
https://github.com/test-amplification/EvoSuiteAmp-framework
https://doi.org/10.6084/m9.figshare.22344706
https://doi.org/10.6084/m9.figshare.22344706

BIBLIOGRAPHY 149

[53] Stackoverflow: Unit testing a overridden protected method from a class that does
not have default constructors. https://stackoverflow.com/questions/7686
8236/, 2023. Online; Accessed: 9/2024.

[54] The state of developer ecosystem 2023. https://www.jetbrains.com/lp/dev
ecosystem-2023/java/, 2023. Online; Accessed: 9/2024.

[55] Evosuite test runner - do automatic test generation tools generate flaky tests?
https://github.com/firhard/evosuite-test-generation, 2024.

[56] Replication package - private — keep out? understanding how developers account
for code visibility in unit testing. https://github.com/unittesting-nonpubl
ic/private-keep-out_replication-package, 2024.

[57] Replication package - replacing developer-written tests that call non-public
methods directly. https://anonymous.4open.science/r/evosuite-utopia,
2024.

[58] Mehrdad Abdi, Henrique Rocha, Serge Demeyer, and Alexandre Bergel. Small-
amp: Test amplification in a dynamically typed language. Empirical Software
Engineering, 27(6):128, 2022.

[59] Allen T Acree, Timothy A Budd, Richard A DeMillo, Richard J Lipton, and
Frederick G Sayward. Mutation analysis. Technical report, Georgia Institute of
Technology, Atlanta, School of Information And Computer Science, 1979.

[60] Sheeva Afshan, Phil McMinn, and Mark Stevenson. Evolving readable string
test inputs using a natural language model to reduce human oracle cost. In
International Conference on Software Testing, Verification and Validation (ICST),
pages 352–361, 2013.

[61] Ali Al-Kaswan, Toufique Ahmed, Maliheh Izadi, Anand Ashok Sawant, Premku-
mar Devanbu, and Arie van Deursen. Extending source code pre-trained language
models to summarise decompiled binaries. In 2023 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 260–271.
IEEE, 2023.

[62] Joseph Albahari. Reflection and Metadata. In C# 12 in a Nutshell, chapter 18.
O’Reilly Media, 2023.

[63] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi, Mo-
hamed Wiem Mkaouer, Ali Ouni, Christian D. Newman, Abdullatif Ghallab, and
Stephanie Ludi. Test smell detection tools: A systematic mapping study. In
International Conference on Evaluation and Assessment in Software Engineer-
ing (EASE), pages 170–180, 2021.

https://stackoverflow.com/questions/76868236/
https://stackoverflow.com/questions/76868236/
https://www.jetbrains.com/lp/devecosystem-2023/java/
https://www.jetbrains.com/lp/devecosystem-2023/java/
https://github.com/firhard/evosuite-test-generation
https://github.com/unittesting-nonpublic/private-keep-out_replication-package
https://github.com/unittesting-nonpublic/private-keep-out_replication-package
https://anonymous.4open.science/r/evosuite-utopia

BIBLIOGRAPHY 150

[64] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis
Benefelds. An industrial evaluation of unit test generation: Finding real faults
in a financial application. In International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), pages 263–272, 2017.

[65] Nadia Alshahwan, Jubin Chheda, Anastasia Finegenova, Beliz Gokkaya, Mark
Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang.
Automated unit test improvement using large language models at Meta. In Joint
Meeting of the European Software Engineering Conference and the Symposium
on the Foundations of Software Engineering (ESEC/FSE), To Appear, 2024.

[66] Abdulrahman Alshammari, Paul Ammann, Michael Hilton, and Jonathan Bell. A
study of flaky failure de-duplication to identify unreliably killed mutants. In 2024
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 257–262. IEEE, 2024.

[67] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge
University Press, 2016.

[68] Saswat Anand, Edmund Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil McMinn.
An orchestrated survey on automated software test case generation. Journal of
Systems and Software, 86(8):1978–2001, 2013.

[69] James H Andrews, Lionel C Briand, and Yvan Labiche. Is mutation an appro-
priate tool for testing experiments? In International Conference on Software
Engineering (ICSE), pages 402–411, 2005.

[70] Mauŕıcio Aniche, Christoph Treude, and Andy Zaidman. How developers engineer
test cases: An observational study. IEEE Transactions on Software Engineering,
48:4925–4946, 2022.

[71] Andrea Arcuri. It does matter how you normalise the branch distance in search
based software testing. In International Conference on Software Testing, Verifi-
cation and Validation (ICST), pages 205–214. IEEE, 2010.

[72] Andrea Arcuri and Lionel Briand. Adaptive random testing: An illusion of effec-
tiveness? In International Symposium on Software Testing and Analysis (ISSTA),
pages 265–275, 2011.

[73] Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In International Conference
on Software Engineering (ICSE), pages 1–10, 2011.

[74] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. Automated unit test
generation for classes with environment dependencies. In International Conference
on Automated Software Engineering (ASE), pages 79–89, 2014.

BIBLIOGRAPHY 151

[75] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. Generating tcp/udp
network data for automated unit test generation. In International Symposium
on Foundations of Software Engineering (FSE), page 155–165, 2015.

[76] Andrea Arcuri, Gordon Fraser, and René Just. Private API access and functional
mocking in automated unit test generation. In International Conference on
Software Testing, Verification and Validation (ICST), 2017.

[77] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. A survey of symbolic execution techniques. ACM Computing
Surveys, 51(3):1–39, 2018.

[78] Sebastian Baltes and Paul Ralph. Sampling in software engineering research: a
critical review and guidelines. Empirical Software Engineering, 27, 2022.

[79] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
The oracle problem in software testing: A survey. IEEE Transactions on Software
Engineering, 41(5):507–525, 2015.

[80] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. An empirical analysis of the distribution of unit test smells and their
impact on software maintenance. In International Conference on Software Main-
tenance (ICSM), pages 56–65, 2012.

[81] Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Mateusz Machal-
ica, Satish Chandra, and Erik Meijer. What it would take to use mutation testing
in industry—a study at facebook. In International Conference on Software Engi-
neering: Software Engineering in Practice Track (ICSE-SEIP), pages 268–277,
2021.

[82] Leonardo Bottaci. A genetic algorithm fitness function for mutation testing. In
Proceedings of the SEMINALL-workshop at the 23rd international conference on
software engineering, Toronto, Canada. Citeseer, 2001.

[83] David Bowes, Tracy Hall, Jean Petric, Thomas Shippey, and Burak Turhan. How
good are my tests? In Workshop on Emerging Trends in Software Metrics (WET-
SoM), pages 9–14, 2017.

[84] Carolin Brandt and Andy Zaidman. Developer-centric test amplification. Empir-
ical Software Engineering, 27(4):1–35, 2022.

[85] Timothy Budd. Introduction to object-oriented programming. Addison-Wesley,
2008.

[86] Timothy A Budd and Dana Angluin. Two notions of correctness and their
relation to testing. Acta informatica, 18(1):31–45, 1982.

BIBLIOGRAPHY 152

[87] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
Proceedings of the USENIX Conference on Operating Systems Design and Imple-
mentation, page 209–224, 2008.

[88] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three
decades later. Communications of the ACM, 56(2):82–90, 2013.

[89] José Campos, Andrea Arcuri, Gordon Fraser, and Rui Abreu. Continuous test
generation: Enhancing continuous integration with automated test generation.
In International Conference on Automated Software Engineering (ASE), pages
55–66, 2014.

[90] Santo Carino, James H Andrews, Sheldon Goulding, Pradeepan Arunthavarajah,
and Jakub Hertyk. Blackhorse: creating smart test cases from brittle recorded
tests. Software Quality Journal, 22:293–310, 2014.

[91] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman.
An empirical study on mutation, statement and branch coverage fault revelation
that avoids the unreliable clean program assumption. In International Conference
on Software Engineering (ICSE), pages 597–608. IEEE, 2017.

[92] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. Adaptive
random testing: The art of test case diversity. Journal of Systems and Software,
83(1):60–66, 2010.

[93] Tsong Yueh Chen, Hing Leung, and Ieng Kei Mak. Adaptive random testing. In
Asian Computing Science Conference, pages 320–329. Springer, 2005.

[94] Yang Chen and Reyhaneh Jabbarvand. Neurosymbolic repair of test flakiness.
In International Symposium on Software Testing and Analysis (ISSTA), pages
1402–1414, 2024.

[95] Jianlei Chi, Xiaotian Wang, Yuhan Huang, Lechen Yu, Di Cui, Jianguo Sun, and
Jun Sun. Reaccept: Automated co-evolution of production and test code based on
dynamic validation and large language models. arXiv preprint arXiv:2411.11033,
2024.

[96] Shigeru Chiba. Load-time structural reflection in Java. In European Conference
on Object-Oriented Programming (ECOOP), pages 313–336. Springer, 2000.

[97] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. Pit: a practical mutation testing tool for java. In International
Symposium on Software Testing and Analysis (ISSTA), pages 449–452, 2016.

[98] William J Conover. Practical nonparametric statistics, volume 350. john wiley &
sons, 1999.

BIBLIOGRAPHY 153

[99] Steve Counsell and Peter Newson. Use of friends in C++ software: An empirical
investigation. Journal of Systems and Software, 53:15–21, 2000.

[100] Daniela S. Cruzes and Tore Dyba. Recommended steps for thematic synthesis
in software engineering. In International Symposium on Empirical Software
Engineering and Measurement, pages 275–284, 2011.

[101] Christoph Csallner and Yannis Smaragdakis. Jcrasher: an automatic robustness
tester for java. Software: Practice and Experience, 34(11):1025–1050, 2004.

[102] Ole-Johan Dahl, Edsger Wybe Dijkstra, and Charles Antony Richard Hoare.
Structured programming. Academic Press Ltd., 1972.

[103] Ermira Daka, José Miguel Rojas, and Gordon Fraser. Generating unit tests
with descriptive names or: would you name your children thing1 and thing2?
In International Symposium on Software Testing and Analysis (ISSTA), pages
57–67, 2017.

[104] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and
Andreas Zeller. Generating test cases for specification mining. In International
Symposium on Software Testing and Analysis (ISSTA), pages 85–96, 2010.

[105] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin
Monperrus, and Benoit Baudry. A snowballing literature study on test amplifica-
tion. Journal of Systems and Software, 157:110398, 2019.

[106] Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, and Martin Monperrus.
Automatic test improvement with dspot: a study with ten mature open-source
projects. Empirical Software Engineering, 24(4):2603–2635, 2019.

[107] Brett Daniel, Tihomir Gvero, and Darko Marinov. On test repair using symbolic
execution. In International Symposium on Software Testing and Analysis (ISSTA),
page 207–218, 2010.

[108] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. Reassert: Sug-
gesting repairs for broken unit tests. In International Conference on Automated
Software Engineering (ASE), pages 433–444, 2009.

[109] Amirhossein Deljouyi, Roham Koohestani, Maliheh Izadi, and Andy Zaidman.
Leveraging large language models for enhancing the understandability of gener-
ated unit tests. In International Conference on Software Engineering (ICSE),
2025.

[110] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data selection: Help
for the practicing programmer. Computer, 11(4):34–41, 1978.

BIBLIOGRAPHY 154

[111] Jens Dietrich, Shawn Rasheed, and Amjed Tahir. Flaky test sanitisation via
on-the-fly assumption inference for tests with network dependencies. In IEEE
Working Conference on Source Code Analysis and Manipulation (SCAM), pages
264–275, 2022.

[112] Edsger W. Dijkstra. On the cruelty of really teaching computing science. Com-
munications of the ACM, 32(12):1398–1404, 1989.

[113] Hang Du, Vijay Krishna Palepu, and James A Jones. Ripples of a mutation—an
empirical study of propagation effects in mutation testing. In International
Conference on Software Engineering (ICSE), pages 1–13, 2024.

[114] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey,
et al. The matter of heartbleed. In Internet Measurement Conference, pages
475–488, 2014.

[115] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. Un-
derstanding flaky tests: The developer’s perspective. In Joint Meeting of the
European Software Engineering Conference and the Symposium on the Founda-
tions of Software Engineering (ESEC/FSE), pages 830–840, 2019.

[116] Zhiyu Fan. A systematic evaluation of problematic tests generated by evo-
suite. In International Conference on Software Engineering: Companion Pro-
ceedings (ICSE Companion), pages 165–167, 2019.

[117] Michael Feathers. Working effectively with legacy code. Prentice Hall Professional,
2004.

[118] David Flanagan and Yukihiro Matsumoto. Reflection and Metaprogramming.
In The Ruby Programming Language: Everything You Need to Know, chapter 8.
O’Reilly Media, 2008.

[119] Joseph L Fleiss. Measuring nominal scale agreement among many raters. Psy-
chological bulletin, page 378, 1971.

[120] Martin Fowler. Refactoring: improving the design of existing code. Addison-
Wesley Professional, 2018.

[121] Gordon Fraser. A tutorial on using and extending the evosuite search-based
test generator. In International Symposium on Search Based Software Engineer-
ing (SSBSE), pages 106–130, 2018.

[122] Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic Test Suite Genera-
tion for Object-Oriented Software. In Joint Meeting of the European Software
Engineering Conference and the Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2011.

BIBLIOGRAPHY 155

[123] Gordon Fraser and Andrea Arcuri. The seed is strong: Seeding strategies in
search-based software testing. pages 121–130. IEEE, 2012.

[124] Gordon Fraser and Andrea Arcuri. Evosuite: On the challenges of test case
generation in the real world. In International Conference on Software Testing,
Verification and Validation (ICST), pages 362–369, 2013.

[125] Gordon Fraser and Andrea Arcuri. A large-scale evaluation of automated unit
test generation using evosuite. ACM Transactions on Software Engineering and
Methodology, 2014.

[126] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.
Does automated unit test generation really help software testers? a controlled
empirical study. ACM Transactions on Software Engineering and Methodology,
24(4), 2015.

[127] Gordon Fraser and Andreas Zeller. Mutation-driven generation of unit tests and
oracles. In Proceedings of the 19th international symposium on Software testing
and analysis, pages 147–158, 2010.

[128] Gordon Fraser and Andreas Zeller. Mutation-driven generation of unit tests and
oracles. IEEE Transactions on Software Engineering, 38(2):278–292, 2011.

[129] Juan Pablo Galeotti, Gordon Fraser, and Andrea Arcuri. Improving search-
based test suite generation with dynamic symbolic execution. In 2013 ieee 24th
international symposium on software reliability engineering (issre), pages 360–369.
IEEE, 2013.

[130] Vahid Garousi and Barış Küçük. Smells in software test code: A survey of
knowledge in industry and academia. Journal of Systems and Software, 138:52–
81, 2018.

[131] Atul Gawande. The Checklist Manifesto: How to Get Things Right. Metropolitan
Books, 2010.

[132] Gregory Gay. To call, or not to call: Contrasting direct and indirect branch
coverage in test generation. In International Workshop on Search-Based Software
Testing (SBST@ICSE), pages 43–50, 2018.

[133] Milos Gligoric, Vilas Jagannath, Qingzhou Luo, and Darko Marinov. Efficient
mutation testing of multithreaded code. Journal of Software Testing, Verification
and Reliability, 23(5):375–403, 2013.

[134] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 213–223, 2005.

BIBLIOGRAPHY 156

[135] David E Golberg. Genetic algorithms in search, optimization, and machine
learning. Addion wesley, 1989(102):36, 1989.

[136] John B Goodenough and Susan L Gerhart. Toward a theory of test data selection.
In Proceedings of the international conference on Reliable software, pages 493–510,
1975.

[137] James Gosling. The Java language specification. Addison Wesley, 2000.

[138] Georgios Gousios. Java-callgraph: Programs for producing static and dynamic
(runtime) call graphs for Java programs. https://github.com/gousiosg/java
-callgraph. Online; Accessed: 9/2024.

[139] Giovanni Grano, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Har-
ald C Gall. Scented since the beginning: On the diffuseness of test smells in
automatically generated test code. Journal of Systems and Software, 156:312–327,
2019.

[140] Martin Gruber and Gordon Fraser. Flapy: Mining flaky python tests at scale.
In International Conference on Software Engineering: Companion Proceed-
ings (ICSE Companion), pages 127–131, 2023.

[141] Martin Gruber, Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. An
empirical study of flaky tests in Python. In International Conference on Software
Testing, Verification and Validation (ICST), pages 148–158, 2021.

[142] Martin Gruber, Muhammad Firhard Roslan, Owain Parry, Fabian Scharnböck,
Phil McMinn, and Gordon Fraser. Do Automatic Test Generation Tools Generate
Flaky Tests? In International Conference on Software Engineering (ICSE), 2024.

[143] Mark Harman. Search based software engineering. In International Conference
on Computational Science, pages 740–747. Springer, 2006.

[144] Mark Harman and Bryan F Jones. Search-based software engineering. Information
& Software Technology, 43(14):833–839, 2001.

[145] Mark Harman and Phil McMinn. A theoretical and empirical study of search
based testing: Local, global and hybrid search. IEEE Transactions on Software
Engineering, 36(2):226–247, 2010.

[146] Mark Harman and Peter O’Hearn. From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis. In IEEE Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 1–23.
IEEE, 2018.

https://github.com/gousiosg/java-callgraph
https://github.com/gousiosg/java-callgraph

BIBLIOGRAPHY 157

[147] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony L Hosking. Seed selection for successful fuzzing. In International
Symposium on Software Testing and Analysis (ISSTA), pages 230–243, 2021.

[148] Michael Hilton, Jonathan Bell, and Darko Marinov. A large-scale study of
test coverage evolution. In International Conference on Automated Software
Engineering (ASE), pages 53–63, 2018.

[149] Rubing Huang, Weifeng Sun, Yinyin Xu, Haibo Chen, Dave Towey, and Xin
Xia. A survey on adaptive random testing. IEEE Transactions on Software
Engineering, 47(10):2052–2083, 2019.

[150] Chen Huo and James Clause. Improving oracle quality by detecting brittle
assertions and unused inputs in tests. In International Symposium on Foundations
of Software Engineering (FSE), pages 621–631, 2014.

[151] Chen Huo and James Clause. Interpreting coverage information using direct and
indirect coverage. In International Conference on Software Testing, Verification
and Validation (ICST), pages 234–243, 2016.

[152] Javaria Imtiaz, Salman Sherin, Muhammad Uzair Khan, and Muhammad Zohaib
Iqbal. A systematic literature review of test breakage prevention and repair
techniques. Information & Software Technology, 113:1–19, 2019.

[153] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. Code coverage
at google. In International Symposium on Foundations of Software Engineer-
ing (FSE), pages 955–963, 2019.

[154] Yue Jia and Mark Harman. An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering, 37(5):649–678,
2011.

[155] Ricardo Job and Andre Hora. How and why developers implement os-specific
tests. Empirical Software Engineering, 30(1):1–33, 2025.

[156] René Just. The major mutation framework: Efficient and scalable mutation
analysis for java. In International Symposium on Software Testing and Analy-
sis (ISSTA), pages 433–436, 2014.

[157] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In International
Symposium on Software Testing and Analysis (ISSTA), pages 437–440, 2014.

[158] Kadiray Karakaya, Stefan Schott, Jonas Klauke, Eric Bodden, Markus Schmidt,
Linghui Luo, and Dongjie He. Sootup: A redesign of the soot static analysis
framework. In International Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS), pages 229–247, 2024.

BIBLIOGRAPHY 158

[159] Mehdi Keshani, Tudor-Gabriel Velican, Gideon Bot, and Sebastian Proksch.
Aroma: Automatic reproduction of maven artifacts. Proceedings of the ACM on
Software Engineering, 2024.

[160] James C King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976.

[161] Barbara A. Kitchenham and Shari Lawrence Pfleeger. Personal opinion surveys.
In Forrest Shull, Janice Singer, and Dag I. K. Sjøberg, editors, Guide to Advanced
Empirical Software Engineering, pages 63–92. Springer, 2008.

[162] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W
Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary
guidelines for empirical research in software engineering. IEEE Transactions on
Software Engineering, 28(8):721–734, 2002.

[163] L. Koskela. Effective Unit Testing: A guide for Java developers. Manning, 2013.

[164] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Ro-
driguez, Kenneth Russell, and David Cox. Design of the java hotspot™ client
compiler for java 6. ACM Transactions on Architecture and Code Optimization
(TACO), pages 1–32, 2008.

[165] Erik Kuefler. Unit Testing. In Titus Winters, Tom Manshreck, and HyrumWright,
editors, Software Engineering at Google: Lessons Learned from Programming
Over Time, chapter 12. O’Reilly Media, 2020.

[166] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. Measuring the cost
of regression testing in practice: A study of Java projects using continuous integra-
tion. In International Symposium on Foundations of Software Engineering (FSE),
pages 821–830, 2017.

[167] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta. A study on the lifecycle
of flaky tests. In International Conference on Software Engineering (ICSE),
pages 1471–1482, 2020.

[168] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. iDFlakies: A
framework for detecting and partially classifying flaky tests. In International
Conference on Software Testing, Verification and Validation (ICST), pages 312–
322, 2019.

[169] Wing Lam, StefanWinter, Angello Astorga, Victoria Stodden, and Darko Marinov.
Understanding reproducibility and characteristics of flaky tests through test
reruns in Java projects. In International Symposium on Software Reliability
Engineering (ISSRE), pages 403–413, 2020.

BIBLIOGRAPHY 159

[170] J Richard Landis and Gary G Koch. The measurement of observer agreement
for categorical data. Biometrics, pages 159–174, 1977.

[171] Davy Landman, Alexander Serebrenik, and Jurgen J Vinju. Challenges for static
analysis of java reflection-literature review and empirical study. In International
Conference on Software Engineering (ICSE), pages 507–518, 2017.

[172] Jeff Lawson. Ask Your Developer: How to Harness the Power of Software
Developers and Win in the 21st Century. Harper Business, 2021.

[173] Meir M Lehman. On understanding laws, evolution, and conservation in the
large-program life cycle. Journal of Systems and Software, 1:213–221, 1979.

[174] Zalán Lévai and Phil McMinn. Batching non-conflicting mutations for efficient,
safe, parallel mutation analysis in rust. In International Conference on Software
Testing, Verification and Validation (ICST), 2023.

[175] Chengpeng Li, Chenguang Zhu, Wenxi Wang, and August Shi. Repairing order-
dependent flaky tests via test generation. In International Conference on Software
Engineering (ICSE), pages 1881–1892, 2022.

[176] Nan Li and Jeff Offutt. Test oracle strategies for model-based testing. IEEE
Transactions on Software Engineering, 43(4):372–395, 2016.

[177] Xiangyu Li, Marcelo d’Amorim, and Alessandro Orso. Intent-preserving test
repair. In International Conference on Software Testing, Verification and Valida-
tion (ICST), pages 217–227. IEEE, 2019.

[178] Yue Li, Tian Tan, and Jingling Xue. Understanding and analyzing Java reflection.
ACM Transactions on Software Engineering and Methodology, 28(2):1–50, 2019.

[179] Stephan Lukasczyk and Gordon Fraser. Pynguin: Automated unit test generation
for python. In International Conference on Software Engineering: Companion
Proceedings (ICSE Companion), pages 168–172, 2022.

[180] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. Automated unit test
generation for python. In International Symposium on Search Based Software
Engineering (SSBSE), pages 9–24, 2020.

[181] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. An empirical study
of automated unit test generation for Python. International Symposium on
Empirical Software Engineering and Measurement, page 36, 2023.

[182] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical
analysis of flaky tests. In International Symposium on Foundations of Software
Engineering (FSE), pages 643–653, 2014.

BIBLIOGRAPHY 160

[183] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. Over-
coming the equivalent mutant problem: A systematic literature review and
a comparative experiment of second order mutation. IEEE Transactions on
Software Engineering, 40(1):23–42, 2013.

[184] L. Martins, D. Campos, R. Santana, J. Junior, H. Costa, and I. Machado.
Hearing the voice of experts: Unveiling stack exchange communities’ knowledge
of test smells. In International Conference on Cooperative and Human Aspects
of Software Engineering (CHASE), pages 80–91, 2023.

[185] M. Maton, G. M. Kapfhammer, and P. McMinn. Exploring pseudo-testedness:
Empirically evaluating extreme mutation testing at the statement level. In
International Conference on Software Maintenance and Evolution (ICSME),
2024.

[186] Phil McMinn. Search-based software test data generation: A survey. Software
Testing, Verification and Reliability, 14(2):105–156, 2004.

[187] Phil McMinn, Muhammad Firhard Roslan, and Gregory M. Kapfhammer. Beyond
Test Flakiness: A Manifesto for a Holistic Approach to Test Suite Health. In
Proceedings of the 2nd International Workshop on Flaky Tests (FTW), 2025.

[188] Phil McMinn, Mark Stevenson, and Mark Harman. Reducing qualitative human
oracle costs associated with automatically generated test data. In International
Workshop on Software Test Output Validation (STOV), pages 1–4, 2010.

[189] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob
Siemborski, and John Micco. Taming google-scale continuous testing. In Inter-
national Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), pages 233–242. IEEE, 2017.

[190] Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson Education,
2007.

[191] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing
machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[192] John Micco. The state of continuous integration testing @google, 2017.

[193] Barton P Miller, David Koski, Cjin Pheow Lee, Vivekandanda Maganty, Ravi
Murthy, Ajitkumar Natarajan, and Jeff Steidl. Fuzz revisited: A re-examination
of the reliability of unix utilities and services. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 1995.

BIBLIOGRAPHY 161

[194] Amir M Mir, Mehdi Keshani, and Sebastian Proksch. On the effect of transitivity
and granularity on vulnerability propagation in the maven ecosystem. In Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER),
pages 201–211, 2023.

[195] Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzè. Supporting test suite
evolution through test case adaptation. In International Conference on Software
Testing, Verification and Validation (ICST), pages 231–240. IEEE, 2012.

[196] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing.
John Wiley & Sons, 2011.

[197] Rainer Niedermayr, Elmar Juergens, and Stefan Wagner. Will my tests tell me if
i break this code? In Proceedings of the International Workshop on Continuous
Software Evolution and Delivery, pages 23–29, 2016.

[198] Mitchell Olsthoorn, Dimitri Stallenberg, and Annibale Panichella. Syntest-
javascript: Automated unit-level test case generation for javascript. In Interna-
tional Workshop on Search-Based & Fuzz Testing (SBFT@ICSE), pages 21–24,
2024.

[199] Roy Osherove. Unit Testing Tips–Write Maintainable Unit Tests That Will Save
You Time And Tears. MSDN Magazine, pages 107–118, 2006.

[200] Carlos Pacheco and Michael D. Ernst. Randoop: Feedback-directed random
testing for Java. In Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2007.

[201] Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball. Finding errors in .net
with feedback-directed random testing. In International Symposium on Software
Testing and Analysis (ISSTA), 2008.

[202] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed random test generation. In International Conference on Soft-
ware Engineering (ICSE), pages 75–84, 2007.

[203] Michael Paleczny, Christopher Vick, and Cliff Click. The java HotSpot™ server
compiler. In Java (TM) Virtual Machine Research and Technology Symposium
(JVM 01), pages 1–12, 2001.

[204] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated
test case generation as a many-objective optimisation problem with dynamic
selection of the targets. IEEE Transactions on Software Engineering, 44(2):122–
158, 2017.

BIBLIOGRAPHY 162

[205] Annibale Panichella, Sebastiano Panichella, Gordon Fraser, Anand Ashok Sawant,
and Vincent J Hellendoorn. Revisiting test smells in automatically generated
tests: limitations, pitfalls, and opportunities. In International Conference on
Software Maintenance and Evolution (ICSME), pages 523–533. IEEE, 2020.

[206] Annibale Panichella, Sebastiano Panichella, Gordon Fraser, Anand Ashok Sawant,
and Vincent J Hellendoorn. Test smells 20 years later: detectability, validity,
and reliability. Empirical Software Engineering, 27(7):170, 2022.

[207] Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo Riccio.
Sbst tool competition 2021. In International Workshop on Search-Based Software
Testing (SBST@ICSE), pages 20–27. IEEE, 2021.

[208] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. Mutation testing advances: an analysis and survey. In Advances in
computers, volume 112, pages 275–378. Elsevier, 2019.

[209] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th annual
meeting of the Association for Computational Linguistics, pages 311–318, 2002.

[210] Owain Parry, Michael Hilton, Gregory M. Kapfhammer, and Phil McMinn. A sur-
vey of flaky tests. ACM Transactions on Software Engineering and Methodology,
2022.

[211] Owain Parry, Michael Hilton, Gregory M. Kapfhammer, and Phil McMinn. What
do developer-repaired flaky tests tell us about the effectiveness of automated
flaky test detection? In International Conference on Automation of Software
Test (AST), 2022.

[212] Michael Quinn Patton. Enhancing the quality and credibility of qualitative
analysis. Health services research, 34, 1999.

[213] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. Spoon: A library for implementing analyses and transformations of
Java source code. Software: Practice and Experience, 46(9):1155–1179, 2016.

[214] Goran Petrovic and Marko Ivankovic. State of mutation testing at google. In
International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP), 2018.

[215] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. Practical
mutation testing at scale: A view from google. IEEE Transactions on Software
Engineering, 48(10):3900–3912, 2022.

BIBLIOGRAPHY 163

[216] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. Understanding myths
and realities of test-suite evolution. In International Symposium on Foundations
of Software Engineering (FSE), pages 1–11, 2012.

[217] Md Tajmilur Rahman and Peter C Rigby. The impact of failing, flaky, and high
failure tests on the number of crash reports associated with firefox builds. In Joint
Meeting of the European Software Engineering Conference and the Symposium
on the Foundations of Software Engineering (ESEC/FSE), pages 857–862, 2018.

[218] Shanto Rahman and August Shi. Flakesync: Automatically repairing async flaky
tests. In International Conference on Software Engineering (ICSE), pages 1–12,
2024.

[219] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. Optimizing seed selection for
fuzzing. In USENIX Security Symposium, pages 861–875, 2014.

[220] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel
Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method
for automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297,
2020.

[221] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea
Arcuri. Combining multiple coverage criteria in search-based unit test generation.
In International Symposium on Search Based Software Engineering (SSBSE),
pages 93–108, 2015.

[222] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. Automated unit test gen-
eration during software development: A controlled experiment and think-aloud
observations. In International Symposium on Software Testing and Analysis (IS-
STA), pages 338–349, 2015.

[223] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. Seeding strategies in
search-based unit test generation. Journal of Software Testing, Verification and
Reliability, 26(5):366–401, 2016.

[224] Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn. An Empirical
Comparison of EvoSuite and DSpot for Improving developer-written test suites
with respect to mutation score. In International Symposium on Search-Based
Software Engineering (SSBSE), 2022.

[225] Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn. Private —
Keep Out? Understanding How Developers Account for Code Visibility in Unit
Testing. In International Conference on Software Maintenance and Evolution
(ICSME), 2024.

BIBLIOGRAPHY 164

[226] Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn. Viscount:
A Direct Method Call Coverage Tool for Java. In International Conference on
Software Maintenance and Evolution (ICSME): Tool Demo Track, 2024.

[227] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella,
Sebastiano Panichella, Danielle Gonzalez, and Mehdi Mirakhorli. Deeptc-
enhancer: Improving the readability of automatically generated tests. In Inter-
national Conference on Automated Software Engineering (ASE), pages 287–298,
2020.

[228] Abdelilah Sakti, Gilles Pesant, and Yann-Gaël Guéhéneuc. Instance generator
and problem representation to improve object oriented code coverage. IEEE
Transactions on Software Engineering, 41(3):294–313, 2014.

[229] Alireza Salahirad, Hussein Almulla, and Gregory Gay. Choosing the fitness
function for the job: Automated generation of test suites that detect real faults.
Journal of Software Testing, Verification and Reliability, 29(4-5):e1701, 2019.

[230] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evalua-
tion of using large language models for automated unit test generation. IEEE
Transactions on Software Engineering, 2023.

[231] Herbert Schildt. Java: The Complete Reference, Twelfth Edition. McGraw-Hill
Education Group, 2021.

[232] Ebert Schoofs, Mehrdad Abdi, and Serge Demeyer. Ampyfier: Test amplification
in python. Journal of Software: Evolution and Process, 34(11):e2490, 2022.

[233] Sebastian Schweikl, Gordon Fraser, and Andrea Arcuri. Evosuite at the sbst
2022 tool competition. In International Workshop on Search-Based Software
Testing (SBST@ICSE), pages 33–34, 2022.

[234] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing
engine for c. ACM SIGSOFT Software Engineering Notes, 30(5):263–272, 2005.

[235] Domenico Serra, Giovanni Grano, Fabio Palomba, Filomena Ferrucci, Harald C
Gall, and Alberto Bacchelli. On the effectiveness of manual and automatic unit
test generation: ten years later. In International Conference on Mining Software
Repositories (MSR), pages 121–125. IEEE, 2019.

[236] Sina Shamshiri, José Campos, Gordon Fraser, and Phil McMinn. Disposable
testing: Avoiding maintenance of generated unit tests by throwing them away. In
International Conference on Software Engineering (ICSE), pages 207–209, 2017.

[237] Sina Shamshiri, Rene Just, José Miguel Rojas, Gordon Fraser, Phil McMinn,
and Andrea Arcuri. Do automatically generated unit tests find real faults? an

BIBLIOGRAPHY 165

empirical study of effectiveness and challenges. In International Conference on
Automated Software Engineering (ASE), pages 201–211, 2015.

[238] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for
normality (complete samples). Biometrika, pages 591–611, 1965.

[239] August Shi, Jonathan Bell, and Darko Marinov. Mitigating the effects of flaky
tests on mutation testing. In International Symposium on Software Testing and
Analysis (ISSTA), pages 112–122, 2019.

[240] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. ifixflakies: A
framework for automatically fixing order-dependent flaky tests. In International
Symposium on Foundations of Software Engineering (FSE), pages 545–555, 2019.

[241] Denini Silva, Martin Gruber, Satyajit Gokhale, Ellen Arteca, Alexi Turcotte,
Marcelo d’Amorim, Wing Lam, Stefan Winter, and Jonathan Bell. The effects
of computational resources on flaky tests. IEEE Transactions on Software
Engineering, 2024.

[242] Dan Simon. Evolutionary optimization algorithms. John Wiley & Sons, 2013.

[243] Alan Snyder. Encapsulation and inheritance in object-oriented programming lan-
guages. In Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 38–45, 1986.

[244] Elvys Soares, Márcio Ribeiro, Rohit Gheyi, Guilherme Amaral, and André Santos.
Refactoring test smells with JUnit 5: Why should developers keep up-to-date?
IEEE Transactions on Software Engineering, 49(3):1152–1170, 2023.

[245] StackOverflow. Developer survey results. https://survey.stackoverflow.co/
2023, 2023. Online; Accessed: 9/2024.

[246] Paolo Tonella. Evolutionary testing of classes. ACM SIGSOFT Software Engi-
neering Notes, 29(4):119–128, 2004.

[247] A. Vahabzadeh, A. A. Fard, and A. Mesbah. An empirical study of bugs in test
code. In International Conference on Software Maintenance and Evolution (IC-
SME), pages 101–110, 2015.

[248] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. Refac-
toring test code. In International Conference on eXtreme Programming and
Flexible Processes in Software Engineering (XP), pages 92–95, 2001.

[249] O. L. Vera-Pérez, B. Danglot, M. Monperrus, and B. Baudry. A comprehensive
study of pseudo-tested methods. Empirical Software Engineering, 2019.

https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2023

BIBLIOGRAPHY 166

[250] Sebastian Vogl, Sebastian Schweikl, Gordon Fraser, Andrea Arcuri, Jose Cam-
pos, and Annibale Panichella. Evosuite at the sbst 2021 tool competition. In
International Workshop on Search-Based Software Testing (SBST@ICSE), pages
28–29, 2021.

[251] Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam.
Preempting flaky tests via non-idempotent-outcome tests. In International
Conference on Software Engineering (ICSE), pages 1730–1742, 2022.

[252] Elaine J Weyuker. Axiomatizing software test data adequacy. IEEE Transactions
on Software Engineering, (12):1128–1138, 1986.

[253] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
pages 80–83, 1945.

[254] Tao Xie. Augmenting automatically generated unit-test suites with regression ora-
cle checking. In European Conference on Object-Oriented Programming (ECOOP),
pages 380–403. Springer, 2006.

[255] Yanming Yang, Xing Hu, Xin Xia, and Xiaohu Yang. The lost world: Charac-
terizing and detecting undiscovered test smells. ACM Transactions on Software
Engineering and Methodology, 2023.

[256] Ahmadreza Saboor Yaraghi, Darren Holden, Nafiseh Kahani, and Lionel
Briand. Automated test case repair using language models. arXiv preprint
arXiv:2401.06765, 2024.

[257] Vahid Garousi Yusifoğlu, Yasaman Amannejad, and Aysu Betin Can. Software
test-code engineering: A systematic mapping. Information & Software Technology,
58:123–147, 2015.

[258] Andy Zaidman, Bart Van Rompaey, Arie Van Deursen, and Serge Demeyer.
Studying the co-evolution of production and test code in open source and in-
dustrial developer test processes through repository mining. Empirical Software
Engineering, 16:325–364, 2011.

[259] Michal Zalewski. American fuzzy lop (afl) technical whitepaper. http://lcamtu
f.coredump.cx/afl/technical_details.txt, 2021.

[260] Lucas Zamprogno, Braxton Hall, Reid Holmes, and Joanne M Atlee. Dynamic
human-in-the-loop assertion generation. IEEE Transactions on Software Engi-
neering, 49(4):2337–2351, 2022.

[261] Peilun Zhang, Yanjie Jiang, Anjiang Wei, Victoria Stodden, Darko Marinov,
and August Shi. Domain-specific fixes for flaky tests with wrong assumptions
on underdetermined specifications. In International Conference on Software
Engineering (ICSE), pages 50–61. IEEE, 2021.

 http://lcamtuf.coredump.cx/afl/technical_details.txt
 http://lcamtuf.coredump.cx/afl/technical_details.txt

BIBLIOGRAPHY 167

[262] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.
Ernst, and David Notkin. Empirically revisiting the test independence assumption.
In International Symposium on Software Testing and Analysis (ISSTA), page
385–396, 2014.

[263] Wei Zheng, Guoliang Liu, Manqing Zhang, Xiang Chen, and Wenqiao Zhao.
Research progress of flaky tests. In International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 639–646, 2021.

[264] Zhichao Zhou, Yuming Zhou, Chunrong Fang, Zhenyu Chen, Xiapu Luo, Jingzhu
He, and Yutian Tang. Coverage goal selector for combining multiple criteria in
search-based unit test generation. IEEE Transactions on Software Engineering,
2024.

[265] Hong Zhu. Test data adequacy measurement. Software Engineering Journal,
8(1):21–30, 1993.

[266] Hong Zhu, Patrick AV Hall, and John HR May. Software unit test coverage and
adequacy. ACM Computing Surveys, 1997.

	 Introduction
	Test Suite Health
	Aims
	Thesis Contributions
	Flakiness in EvoSuite-generated tests (chap:evosuite-flakiness)
	Improving Mutation Score of Developer-Written Tests using EvoSuite (chap:evosuite-improve-dev-written)
	Private — Keep Out? Test via Public API vs Implementation Details (chap:private-keep-out)
	Replacing developer-written tests that call non-public methods directly (chap:evosuite-utopia)
	Viscount: A Direct Method Call Coverage Tool (chap:viscount)
	Summary

	Literature Review
	Introduction
	Software Testing
	Unit Testing
	Test Adequacy Criteria
	Code Coverage
	Mutation Testing

	Regression Testing
	Test Suite Health
	Test Flakiness
	Test Brittleness
	Test Suite Health Summary

	Automatic Test Generation
	Random Test Generation
	Symbolic Execution
	Search-Based Test Generation

	Test Amplification
	Adding New Tests
	Altering Existing Test Cases

	Using EvoSuite to Improve Test Suite Health
	Summary

	 An Empirical Study of Flaky Tests in EvoSuite
	Introduction
	Methodology
	Subjects
	EvoSuite
	Search Budget
	Execution of the EvoSuite-generated tests
	Test Outcome Analysis
	Successful Projects
	RQ1: Prevalence
	RQ2: Flakiness Suppression
	RQ3: Root Cause Analysis

	Results
	RQ1: Prevalence
	RQ2: Flakiness Suppression Mechanisms
	RQ3: Root Causes

	Threats to Validity
	External Validity
	Construct Validity
	Internal Validity

	Recommendations
	Maintainers of EvoSuite
	Developers Using EvoSuite
	Researchers Studying Flaky Tests

	Chapter Conclusions

	Automatically Improving the Mutation Score of Developer-Written Test Suites
	Introduction
	Modifications made to EvoSuite— EvoSuiteAmp
	Removing Mutants Killed in the Developer-Written Tests
	Seeding Developer-Written Tests into the Initial Population of the GA
	Tuning the Add New Random Test Case Rate to Zero
	Turning Off Test Suite Minimisation

	Empirical Study
	Subjects
	Experimental Procedure

	Results
	Threats to Validity
	Discussion
	Chapter Conclusions and Future Work

	Testing via Public APIs vs Implementation Details
	Introduction
	Research Questions
	Methodology
	Open-Source Study (RQ1)
	Developer Survey (RQs 2–4).
	StackOverflow Analysis (RQs 2–4)

	Results
	RQ1 (Open-Source Testing)
	RQ2 (Stance)
	RQ3 (Rationale)
	RQ4 (Practice)

	Threats to Validity
	Discussion
	Implications and Future Work
	Software Testing Education
	Automated Techniques
	Developer Support

	Chapter Summary

	Coverage-Preserving Test Repair: Automatically Replacing Direct Non-Public Method Call in Test
	Introduction
	Modifications Made to EvoSuite— EvoSuiteUTOPIA
	Public-Only Branch Coverage
	Identifying Existing Coverage Information of the Directly Invoked Non-Public Method
	Instrument Other Relevant Production Classes
	Seeding Strategy via Reusing Non-Public Invocation Test Case Objects

	Methodology
	Subjects
	Experimental Procedure

	Results
	Threats to Validity
	Discussion
	Example of EvoSuiteUTOPIA-Generated Test
	Effectiveness of EvoSuiteUTOPIA
	Test Suite Size
	Mutation Score
	Unrepairable Tests that Invokes Non-Public Method

	Chapter Conclusion and Future Work

	Conclusions and Future Work
	Limitations
	Uncertainty in the Empirical Evaluations
	Open-Source Projects
	Limitations Summary

	Future Work
	Investigating the Synergy and Trade-offs between Test Suite Health Indicators
	Measurability of Test Suite Health Indicators
	chap:evosuite-flakiness: Root-Causing EvoSuite-generated order-dependent flaky tests
	chap:evosuite-utopia: Evaluating the effectiveness of EvoSuiteUTOPIA's tests with developers.
	Investigating Project Composition by Application Type used in chap:evosuite-flakiness, chap:private-keep-out, and chap:evosuite-utopia

	 Viscount: A Direct Method Call Coverage Tool for Java
	Introduction
	Viscount
	Dependencies
	Viscount's Architecture
	Extracting Production Code Methods
	Including Surefire Report Plugin
	Runtime Instrumentation and Test Execution
	Analysing Test Reports

	Applying the Tool
	Current Limitations
	Related Tools
	Conclusions and Future Work

	Private — Keep Out? Ethics Application
	Private — Keep Out? Developer Questionnaire and Information Sheet

