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Abstract

Traditional Collaborative Filtering using Matrix Factorisation predicts user prefer-

ence for every item in a catalogue, only accepting user and item identifiers as input.

Without access to side information about the user and item, or adequate user-item

interactions, it runs into a situation where it does not have enough information about

a user or item to produce decent recommendations for either, a situation called cold

start. One of the ways to alleviate this problem is to include side information i.e.

metadata about the user or items. In this work, we propose to jointly factorise the

partially-observed preference matrix and text-rich item side information. We rep-

resent the side information as a pairwise similarity matrix of embeddings derived

from Sentence Transformers. This representation ensures we capture the relation-

ships across every item. Our aim is to find item factors such that knowledge about

the item metadata alleviates item cold start. To do that, we align the pairwise

relationship between latent item factors from the decomposition of the user interac-

tion matrix with the pairwise similarity matrix of sentence embedding by taking the

Frobenius norm of their differences. This alignment penalty preserves global struc-

ture during joint factorization, capturing the semantic relationship across all items.

The results obtained from our experiments show that our approach effectively ex-

ploits the rich semantic representation of text derived from Sentence Transformers

to improve upon existing methods that relied on a sparse representation of side in-

formation and Collaborative Filtering.
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Chapter 1

Introduction

Recommender systems are pervasive in our modern society. They have become a

staple of everyday life, seamlessly integrating into many of our daily activities. One

of the most noticeable areas where Recommender systems are prevalent is in the

world of entertainment. Platforms such as Spotify, Netflix, and Youtube utilise

these systems to suggest songs, movies, or videos based on our preferences and past

behaviours, enhancing our overall user experience. However, the use of recommender

systems extends far beyond entertainment. They have also made a significant im-

pact on the domain of online shopping. Major e-commerce platforms like Amazon,

eBay, and Shopify employ these systems to provide personalised product suggestions,

thereby improving customer satisfaction and driving business growth. But the in-

fluence of recommender systems is not just limited to entertainment and shopping.

These systems have started to make inroads into more critical environments. For

instance, in the healthcare sector, recommender systems are being used to suggest

treatment options based on a patient’s medical history and current condition, po-

tentially saving lives and improving healthcare outcomes. In the field of autonomous

driving, recommender systems play a crucial role in suggesting the best routes and

making real-time decisions, thereby enhancing safety and efficiency. The ubiquity of

recommender systems in various aspects of our lives underscores their importance

and potential for future applications.

Recommender systems are also employed as a method to reduce information

overload. To truly comprehend the vast scale of recommender systems and the crucial

importance of item cold-start, we must first take into account the immense size of a

few popular catalogues we have identified are often part of everyday life. Consider

10
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Pinterest[19], a platform that boasts over three billion pins, each one representing a

different interest, idea, or product. Then there is YouTube which helps more than a

billion users find personalised content from millions of videos [14]. It is a classic case

of information overload, where the quantity of options can be more paralysing than

liberating. This is why there is a necessity for a tool that aids in discovery, a tool

that can analyse, sort, and recommend content based on the user’s unique interests

and preferences. Majority of items in such catalogues belong in the long tail i.e they

have few interactions and as such not likely to be seen by users since popular items

typically dominate interests.

Time spent looking for items that are of interest can be reduced by recommending

to the user items the system thinks they are most likely to interact with. The system

does this by considering the past interactions of the user and uses those to build a

profile of what it thinks the user likes. User interactions on items play an important

role in building Recommender Systems. These interactions are divided into two

categories; implicit feedback, and explicit feedback. Implicit feedback is inferred by

user actions on items. An example is a user reading an article - in which case, we can

infer the user likes or is interested in content like that. Explicit feedback on the other

hand are preferences given by a user to an item. An example in this case is a user

giving an article a thumbs up - which means they like the article. These interactions,

explicit and implicit, are useful in building a class of Recommender Systems known

as Collaborative Filtering (CF). CF provides recommendations to users based on

the similarity of their preferences to other users. This approach has the advantage

that it can expand the user’s taste by serendipity. Another advantage is that it

does not require feature engineering or domain knowledge. Matrix Factorisation is

a popular model for building Collaborative Filtering systems. At the core of the

model is the factorisation of the user preferences into two compressed matrices such

that the matrices capture the taste profile of the users and items. These matrices

are also called latent matrices as they are thought to capture various characteristics

of users and items [68]. The estimated preference for a user on an item is then the

dot product of the user latent factors and the item latent factors.

Another approach to building Recommender Systems is called Content-based

Filtering. This approach uses the similarity of metadata about the user or item to

make recommendations. Methods for building Content-based Filtering often relies on

domain knowledge and engineering features for users and items to accurately match

user interest. [67]
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For recommender systems to be effective, it is not sufficient to only predict the

preference for each user over all items. They need to rank the preferences – presenting

to the user a short ranked list of items the user is most likely to interact with. This is

top-N recommendation, where N is a number decided by the domain. This ranking

is crucial to capture the attention of users.

One major failing of Collaborative Filtering is that it does not consider metadata

about items, or users, relying solely on the interactions of users on items. Often,

this user-item interaction is sparse, leading to cold start[50]. This can take the form

of a new user who has not watched any movies or a new or obscure item that has

not been considered by enough users. The challenge then is how to provide useful

recommendations to this user who has little or no consumption history.

Our work is an extension of the research conducted by Singh [63], which intro-

duced the concept of learning collectively from multiple relations via the technique

of Collective Matrix Factorisation (CMF). The decompositions in this technique are

primarily composed of shared latent factors. This is because the core assumption of

this approach is that there exists a shared subspace among all entities involved in the

relations. This shared subspace serves as a common ground that binds these entities

together, aiding in the collective learning process. The way this approach addresses

the cold start problem, which is a common issue in recommendation systems when

new users or items that have no rating history is by incorporating metadata about

the user and the item into the factorisation process. This metadata could include

information about the user’s preferences or details about the item, which enriches

the factorisation process and allows for better handling of new, unrated items or

users, thereby mitigating the effects of the cold start problem. In this work, we

posit that the cluster hypothesis introduced by Rijsbergen et al. [58] can be com-

bined with traditional Matrix Factorisation to alleviate the item cold-start problem.

We propose a single stage model which jointly factorises the user preference matrix

and the side information matrix. In order to factorise the side information matrix,

we employ Symmetric Matrix Factorisation (SMF), which has been shown to be an

approximation of K-Means clustering [76].
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1.1 Contributions

In this thesis, we extend CMF by using Symmetric Matrix Factorisation for the

decompositon of the item side information which is represented using a pairwise

similarity matrix. In addition, we investigated the effect of using embeddings from

sentence transformers as features for the side information, as opposed to binary

features or TF-IDF which is routinely used.



Chapter 2

Background and Related Work

2.1 Recommender Systems

2.1.1 Components

Before diving into the details of Recommender Systems, we first describe the major

components of such a system.

User Profiles

Recommendations are provided to users, as such, they are a critical component. User

profile contains information which represents the identity and preferences of a user.

These identity information can be collected such as when the user signs up to the

system and can include various types of data such as demographic data showing

the age, location and gender. Identity data can also include information about the

devices, IP addresses and browsers the user uses to interact with the system. These

identity and preference data about the user is also called user metadata. Contextual

information about users such as devices, time of day or location are often dynamic

and a good recommender system needs to be able to adapt to changes. Ideally, the

more metadata we have about a user, the better we can capture their preferences

and provide them with relevant recommendations. However, privacy concerns often

limits the scope of the data one can capture. User metadata is good for content-based

filtering - an approach to building recommender systems which we will be looking

into in the next section.

14
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Item Profiles

While a user profile constitutes data describing a user, item profile consists of data

that describes an item. Item metadata depends on the domain, and thus varies

widely. Examples of item metadata for a video streaming platform such as Netflix

would include title, description, running length, cast, director, location, genre etc.

While for an e-commerce platform such as Amazon, we can expect to have item

metadata such as category, price, variant, colour, size, quantity etc.

As with user metadata, we also encounter the issue of dynamic data where meta-

data is not static and can change quite often. An example is the price of an item on

an e-commerce store, or the presence of a discount. In addition, some item metadata

are unstructured text, which then requires sophisticated techniques such as Natural

Language Processing to extract the relevant features. Consider the plot or synopsis

for a movie for example. Usually, this contains the theme, various scenes, characters

and story all laid in free-form.

As with user metadata, item metadata is essential for content-based filtering, as

it allows a recommender system to find items that have similar metadata.

Feedback

Now, we turn to feedback, which encompasses user interactions with items in the

system. Such user behaviour includes browsing history, purchases, clicks, views,

listening history etc. This behaviour is domain specific and so varies. An ecommerce

platform, say, Amazon would include behaviour data such as purchase history, wish

list history, product rating. While a music streaming platform e.g. Spotify would

include behaviour data, such as listening history, liked playlists, liked songs e.t.c.

These interactions are crucial as feedback as they signal to us what the user

preferences are. We can divide this feedback into two: implicit, and explicit.

Explicit feedback are those provided by the users. It can be ordinal on a scale,

say, from 1 - 5, in increasing order of satisfaction. Or it can be binary, such as a

like/dislike, thumbs up/thumbs down. And it can also be free text, in the case of

product or movie review - where the user leaves a comment about what they think

of the item. With explicit feedback, the user can be quite clear to what extent they

liked an item.

One problem with explicit feedback is that it requires active participation on

the part of the user. They have to care enough about the item to want to provide
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feedback, or be prodded, often annoyingly, to leave one. The consequence of which

then is the sparsity of explicit feedback.

Another problem that arises with explicit feedback is the choice of feedback mech-

anism. A rating scale such as a 5-star might suffer from central tendency bias, where

users avoid extremes and hence choose a rating in the middle, while binary feedback

does not capture nuanced preferences.

Implicit feedback on the other hand is inferred from the interactions of the user

in the system. For example, watching an entire movie might indicate an interest in

that genre, or sequel of the same title. User behaviour such as views, clicks, purchase

history etc. is used to make a judgement on users’ interest.

What this means is there is a wealth of data for implicit feedback since user

interactions are natural, and hence abundant. However, such feedback is noisy and

difficult to interpret. Consider the case where you bought an item for a family

member off your Amazon account as a one-off - an item which the account owner

has no interest in. That interaction could possibly be used to enrich, rather wrongly,

the owner’s account.

2.1.2 Similarity Measures

The user and item profiles are usually converted to a N-dimensional vector for use

by the recommender system. A crucial component of the system is then a notion of

similarity to measure the closeness of user vectors and item vectors. This is useful,

because if we know a user is interested in a movie, say, Dr. No, then, we can find

movies whose vectors are similar to this query vector and recommend them to the

user.

Jaccard Coefficient

The Jaccard Similarity, which is also known as the Jaccard Index or Jaccard Coeffi-

cient, measures the similarity between sets. It is defined as the size of the intersection

divided by the size of the union of two sets. The formula is presented below:

j(a, b) =
|a ∩ b|
|a ∪ b|

(2.1)

where |a ∩ b| is the number of elements in the intersection of a and b, and |a ∪ b|
is the number of elements in the union of a and b. Similarity ranges from 0 to 1.
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Similarity is 0 there is not overlap between the sets, and it is 1 if there is a perfect

overlap.

Jaccard similarity has the downside that it only considers interactions defined as

sets. Below, we introduce a few similarity techniques without this shortcoming.

Cosine Similarity

Figure 2.1: Cosine Distance between two movies

Cosine Similarity is one of the most commonly used methods for measuring the

similarity of real-valued vectors. It is used in Information Retrieval to measure the

similarity of documents. Cosine Similarity calculates the cosine of the angle between

two vectors which is obtained by dividing the inner product of the vectors by the

product of their Euclidean norm. The angle θ measures to what extent the two

vectors point in the same direction, irrespective of the magnitude as the two vectors

are normalised. The formula is given below:

cosθ =
< a, b >

||a||.||b||
=

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(2.2)

a, b are real-valued vectors and < . > is the inner product of two vectors. The

values for Cosine Similarity lie in the range -1 to 1. 1 indicates perfect similarity,
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0 indicates orthogonality, i.e the vectors are at right angles to each other. And -1

means the vectors are diametrically opposed.

Cosine Similarity is appropriate in instances when dealing with sparse vectors

as well as high dimensions. Another useful property of Cosine Similarity is that it

measures orientation, not magnitude. Thus, two vectors can have high similarity

with different magnitudes.

Pearson Coefficient

The Pearson Correlation Coefficient, often denoted as ‘r’, measures the linear corre-

lation between two variables. In the context of recommender systems, it measures

the strength and direction of the linear relationship between user interaction data

such as ratings and other kinds of feedback, and item features. The formula is given

below:

r(a, b) =

∑|a|
i=1(ai − ā)(bi − b̄)√∑|a|

i=1(ai − ā)2
√∑|b|

i=1(bi − b̄)2
(2.3)

a, b are real-valued vectors and |.| is the number of elements in the vector. The

values for Pearson Coefficient lie in the range -1 to 1. 1 indicates perfect linear

correlation, 0 indicates no correlation, and -1 means the vectors have a perfect neg-

ative linear correlation. The formulation above is quite similar to the definition of

Cosine similarity, with the only difference being that for each value in the vector, we

subtract the mean of the corresponding vector.

One advantage of the Pearson Coefficient over the previous similarities we looked

at is that it is able to capture linear relationships between variables while adjusting

for individual rating scales of the users. For example, consider two users, user1 and

user2, who rate two movies movie1, and movie2 , as [3, 5] and [5, 3] respectively.

Our definition of Cosine similarity and Jaccard similarity would find these users to be

similar based on their ratings. However, we can see from the rating vectors that these

users are polar opposites. From the formula provided, we see Pearson Correlation

adjusts for the mean rating of each user, making it more suitable when users have

different baseline rating tendencies.



CHAPTER 2. BACKGROUND AND RELATED WORK 19

2.1.3 Content-based Filtering

Content-based filtering in recommender systems uses the metadata of users and items

in the system to provide personalised recommendations to users [43, 3, 2, 41]. Using

interaction data of users, recommendations then becomes a matter of finding items

similar to the ones the user has interacted with. For example, if a user’s interaction

history on a movie platform consists of Harry Potter and the Philosopher’s Stone,

and Harry Potter and the Chamber of Secrets. The user might get Harry Potter and

the Prisoner of Azkaban as a recommendation since this is another title in the series.

Or they might be recommended The Chronicles of Narnia: The Lion, the Witch and

the Wardrobe, which is a title in the genre Fantasy, as the Harry Potter series.

Content-based filtering is straightforward and easy to implement, making it ubiq-

uitous in recommender systems and is often the first step when adopting personalised

recommendations. It has several useful properties that make adoption easy.

One such property is that content-based filtering does not require a lot of inter-

action data to provide recommendations. This is especially useful when the platform

is new and user interaction data does not exist or is limited. However, by using user

and item metadata the system can provide recommendations to the users.

Another useful property is that content-based filtering is able to recommend items

in the long tail, those items which are new to the system or have little to no user

interaction. This property of content-based filtering is crucial for platforms which

have a frequently updated catalogue or inventory. As new items are introduced into

the platform, they run the risk of not being discovered by users as they will not have

any interaction data. But this is mitigated by the presence of metadata which is

then used to match the items with appropriate users.

Content-based filtering is intuitive and highly explainable. It is easy to under-

stand the rationale behind the recommendations provided. For example a recommen-

dation to watch Harry Potter and the Prisoner of Azkaban can be easily explained

by “Because you watched Harry Potter and the Philosopher’s Stone”. This trans-

parency fosters user trust and provides valuable insights. This intuitive approach to

recommendations is also natural to how humans think. All this contributes to its

ready adoption.

In addition, content-based filtering relies on preferences explicitly provided by the

user in terms of metadata, and as such is less prone to manipulation when compared

to approaches relying on frequently changing data such as user ratings or interactions.
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While we acknowledge the various useful properties of content-based filtering,

it is not without some disadvantages. One major disadvantage is the reliance on

hand-engineered metadata, which is also domain-dependent. Each platform needs

to decide beforehand which kinds of attributes they require from the user and how

these interact with the item metadata. This task is time consuming and is a source

of friction as it requires participation on the part of the user.

Another notable disadvantage is overspecialisation. Content-based filtering is

only able to recommend items similar to what the user liked or interacted with, it

can trap the user in what is known as a filter bubble. This term refers to the lack

of diversity in the recommendations provided to a user as the system is incapable

of offering them content outside their stated interests. Similar to overspecialisation

is the lack of serendipity. Serendipity is the accidental discovery of items which

are of interest to a user but were not sought after. Overspecialisation in content-

based filtering would result in more of the same kind of recommendations, boring the

user. However, with pleasant discoveries of new or adjacent items, the user’s taste is

expanded and therefore engaged.

2.1.4 Collaborative Filtering

Collaborative filtering relies on collective user behaviour to provide personalised rec-

ommendations [11, 33, 59, 5, 8]. The idea behind collaborative filtering is that users

who have similar interactions and preferences for items also have similar tastes.

Hence, personalised recommendation for a user rely on finding users with similar

interests and filtering for items this user has not interacted with based on the pref-

erences of similar users. This runs contrary to the approach we saw earlier, content-

based filtering, which relies solely on user and item metadata. Collaborative filtering

can be user-based, where similarities are computed between users, or item-based,

where the similarities is between items. Collaborative filtering requires historical

interaction data to compute this similarities. Interaction data varies and is platform

dependent. For example, on Netflix, a video streaming platform, interaction data for

Collaborative Filtering could be user’s streaming history and watch list. For Pin-

terest, a social media platform, interaction data suitable for collaborative filtering

could be the Pins added by users, their followers etc.

Unlike content-based filtering, which requires domain-specific metadata to be

engineered, collaborative filtering is domain independent. This property makes it
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valuable as it can be easily deployed without having extensive knowledge of the

properties of the target domain.

Another useful property of collaborative filtering is how it helps with discovery

via serendipitous recommendations. Since the core of collaborative filtering is finding

patterns in preferences of similar users, the recommendation for a user can be drawn

from a diverse pool of items, expanding the user’s taste while keeping them engaged.

As the quantity of interaction data grows, the quality of recommendations pro-

vided by collaborative filtering also increases. User interactions with the platform

provide valuable feedback which helps collaborative filtering algorithms better cap-

ture nuanced and subtle patterns of behaviour that are difficult to capture by meta-

data provided by content-based filtering systems.

Next, we turn to some of the challenges with collaborative filtering. Perhaps the

most significant challenge is the cold start problem. It is difficult to provide accurate

personalised recommendations to new users since they have no interaction history.

Without interaction history, it is impossible to find similar users which are needed

to predict the recommendations for the new user. This also affects new items - those

with no interaction data provide no signal for use in collaborative filtering.

A corollary to above is the data sparsity. For new systems or ones with a very

extensive catalogue of items and users, interaction data is often sparse. This spar-

sity affects the quality of the personalised recommendations a collaborative filtering

algorithm is able to produce. Since users would only have interacted with a small

number of items in a large catalogue, there would not be enough signal in the data

to capture the preferences for users.

Collaborative filtering systems can be prone to popularity bias, where popular

items are recommended more frequently while niche items are overlooked. This can

lead to a rich-get-richer effect, potentially limiting the diversity of recommendations.

Another challenge inherent in collaborative filtering algorithms is popularity bias.

As noted by [1], recommendations provided by collaborative filtering approaches are

often dominated by popular items, to the detriment of items belonging in the long-

tail.

Lastly, compared to content-based filtering, explanations for recommendations

provided by collaborative filtering, especially those from model-based approaches,

are less intuitive.

Collaborative Filtering is divided into two distinct methods based on how recom-

mendations are computed. First, we have a memory-based approach, it computes
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recommendations by taking the similarities between users, and or items over the

entire interaction data. It is also called the neighbourhood method. While easy

to implement, this approach is not scalable as the inventory and interaction data

grows, as the computation requires going over the entirety of the data. The other

approach to collaborative filtering is called model-based, it involves using techniques

like Machine Learning or Data Mining to discover patterns in the interaction data

which are then used to make personalised recommendations by predicting the users’

preference for items they have not interacted with. Memory-based approaches are

better able to capture nuanced behaviour and provide quality recommendations. In

addition, they scale very well with increasing data, compared to model-based ap-

proaches, since the resulting model is often orders of magnitude smaller than the

dataset. Another advantage of model-based approaches is that they can handle the

sparsity of user interaction data much better than memory-based approaches. An

important algorithm for building model-based collaborative filtering is called Matrix

Factorisation. It is at the heart of this work and we will be exploring it in detail in

the next section.

2.1.5 Matrix Factorisation

Matrix Factorisation [38] is a class of collaborative filtering algorithms that gained

popularity after the Netflix Prize held in 2006. This contest was announced by

Netflix to see if anyone could build a recommender system that would beat a baseline

established by Cinematch by 10%. The reward for the competition was $1 million.

Matrix Factorisation gained widespread attraction after the report by Simon Funk

in his blog post which explored the effectiveness of the method. Like all model-based

approaches, it uses Machine Learning to predict the preferences of users from user

interaction data. The core idea behind Matrix Factorisation is to decompose the user

interaction matrix into the product of two lower rank matrices which are in the same

embedding space. This factorisation captures the lower-rank structure of the user

interactions, which is assumed by this class of models to summarise user behaviour.

Model

The user preference matrix, R, is factorised into two matrices, P, Q which are latent

feature matrices for users and items respectively, depicted in Figure 2.2. k denotes
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Figure 2.2: Matrix Factorisation

the rank of the latent feature matrices. This projection into a lower-dimensional

space has the effect of detecting features that capture the structure of R as well as

approximates it - this approximation we denote R̂.

R ≈ R̂ = PQT =



pT1
pT2
pT3
.

.

.

pTN


N×k

[
q1 q2 q3 . . . qM

]
k×M

(2.4)

User and Item biases

From the prediction rule defined in equation 2.4 above, we see that the model does

not consider user and item biases. We can modify the model by including bias terms

for users and items. The justification for these is that users often differ in how they

experience an item in the catalogue and the resulting rating or feedback they provide.

For example, some users will tend to provide only negative feedback, while others

will only rate items highly. Conversely, popular items often receive a lot of ratings

while items in the long tail scarcely so. These biases captures user behaviour. We

modify our initial model as to include bias terms:
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R̂ = R− PQT + βu + βi (2.5)

where βu and βi are respectively user and item bias.

Regularisation

Figure 2.3: L1 and L2 norm showing sparsity and uniform distribution respectively

The parameters in a model are sources of complexity. Too many parameters and

the model overfits the data because it is too complex and fits the training data too

well. Such a complex model will not generalise to unseen data and hence perform

poorly. What we want is for our model to fit the training data well enough but also

to generalise. To control overfitting, instead of reducing the number of parameters in

our model, we introduce penalty terms into our objective function. This has the goal

of restricting the range of values the parameter can take. We look at two approaches

for capturing the complexity of the model based on their norm of the parameter.

The norm,

||.||

is a mathematical function that tells us how big a matrix of vector is.

L1 Norm: Given a parameter vector, θ, the norm of the vector is the sum of

absolute values in θ.

This is given by:

Ω1(θ) = ||θ||1 = Σk|θk| (2.6)
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The L1 norm has a useful property where it has a high penalty for models with

many nonzero parameters. This typically encourages a sparse parameter vector which

is often useful for feature selection.

L2 Norm: Given a parameter vector, θ, the norm of the vector is the sum of

squared values in θ.

This is given by:

Ω2(θ) = ||θ||22 = Σkθ
2
k (2.7)

L2 norm on the other hand places a large penalty on large parameters resulting in

a model with a more balanced parameter distribution which makes the model robust

to outliers.

While the norms defined above are specific to vectors, a useful norm for matrices,

called Frobenius norm is defined below:

ΩF (θ) = ||θ||2F = ΣjΣkθ
2
jk (2.8)

Frobenius norm is an extension of the L2 norm to matrices. And this is useful

since several of the parameters in our Matrix Factorisation model are matrices.

Now, we can modify our objective to include regularisation using Frobenius norm

like so:

min
P,Q

[||R− PQT ||2F + λ(||P ||2F + ||Q||2F )] (2.9)

Loss Functions

Finding the model parameters that best describe the user interaction then results in

minimising an appropriate objective. For explicit user interactions which are ordinal

such as a rating, we want to minimise the error between the actual rating and the

predicted rating. We consider two such approaches below.

Root Mean Squared Error

This is the square root of the sum of squared differences between the predicted ratings

and the actual ratings. Root Mean Squared Error (RMSE) is defined as follows:

RMSE =

√
1

|R̂|
Σr̂uiϵR̂

(rui − r̂ui)2 (2.10)
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Figure 2.4: Sigmoid Function

Mean Absolute Error

This is the sum of the absolute values of the differences between the predicted ratings

and the actual ratings. Mean Absolute Error (MAE) is defined as follows:

MAE =
1

|R̂|
Σr̂uiϵR̂

|rui − r̂ui| (2.11)

In both instances above, we take the average of the loss over the entire predictions.

MAE and RMSE, are both easy to use and simple to explain. They do however differ

in an important way. RMSE, due to its squared term penalises large errors severely.

This results in the model being affected by outliers or bad predictions. MAE on the

other hand weighs the errors equally and is not sensitive to large errors.

The choice of loss function depends on whether one favours having a comprehen-

sive view of rating accuracy or being sensitive to outliers.

min
P,Q
||R− PQT ||2F (2.12)

However, in the case where our user interaction matrix consists of implicit feed-

back, that is, user preference is represented by binary values, the loss functions

defined above are not sufficient to capture user preference.
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Log Loss

With Log Loss, user preference prediction is treated as a binary classification prob-

lem, where 1 indicates preference for the item. The task can then be formulated

as predicting the probability of the positive class. To that end, we use the sigmoid

function which maps all real numbers on to the (0, 1) interval as shown in Figure

2.4. We see that as the value tend to higher positive values, the sigmoid function

tends to one, and goes to 0 as the input tends to −∞. The formula for sigmoid is

given below.

σ(x) =
1

1+ e−x
(2.13)

With the sigmoid function defined above, the loss function for our implicit dataset

is then given below:

LogLoss =
1

|R̂|
(Σ(−ruilog(σ(r̂ui)) + (1− rui)log(1− σ(r̂ui)))) (2.14)

Optimisation Algorithms

We define an objective function for a model using log loss as the loss function, with

bias and regularisation terms below.

Finding the parameters of the model that best fits the data is often referred to

as fitting the model. For our case we want to minimise the log loss of the predicted

preference of the user on an item. Lower values indicate smaller error in prediction,

with higher values being the converse. To fit a model to data, there are a hand-

ful of approaches but we take a look at two popular approaches to solving Matrix

Factorisation problems.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an iterative optimisation algorithm used to

optimise the parameters of a model. The gradient evaluated at a point gives the

direction and rate of steepest increase of the function. SGD updates the parameters of

the model iteratively by taking a step in the opposite direction of the gradient - as this

is the steepest descent. Unlike Gradient Descent which computes the gradient using

the entire dataset, SGD estimates the gradient using a randomly selected sample at
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each time step. The frequent update performed by SGD causes the loss to fluctuate

heavily.

Algorithm 1 Stochastic Gradient Descent for Matrix Factorisation

1: procedure SGD(R, k, η, λ, n)

2: Input: R: User-item interaction matrix. k: Number of latent factors. λ:

Regularization parameter. n: Number of iterations. η: Learning rate

3: Initialize P ∈ Rm×k and Q ∈ Rn×k with small random values

4: for iter = 1 to n do

5: for each (u, i, rui) in R do

6: eui ← rui − pTu qi
7: pu ← pu + η(euiqi − λpu)

8: qi ← qi + η(euipu − λqi)

9: end for

10: end for

11: Return P,Q

12: end procedure

Rather than using only one sample to estimate the gradient, mini-batch gradi-

ent descent uses a batch of samples. Using mini batches to estimate the gradient

reduces the variance of parameter updates inherent in SGD. This also benefits from

vectorised matrix computations for efficient computation. Update to SGD such as

Momentum [54] help to move SGD quickly in the relevant direction by dampening

oscillations. In addition, so called Adaptive methods such as Adam[37], Adagrad[18]

and Adadelta[75] have been developed with the idea being to adapt the learning rate

to the frequency of updates of each parameter. This is achieved by keeping a history

of past gradients.

Alternating Least Squares

This is also an iterative optimisation algorithm. It updates the parameters of the

model by taking turns to optimise one parameter while keeping the rest fixed. It

continues this process until convergence.
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Algorithm 2 Alternating Least Squares for Matrix Factorisation

1: procedure ALS for Matrix Factorisation(R, k, λ, n)

2: Input: R: User-item interaction matrix. k: Number of latent factors. λ:

Regularization parameter. n: Number of iterations.

3: Initialize P ∈ Rm×k and Q ∈ Rn×k with small random values

4: for iter = 1 to n do

5: for u = 1 to m do

6: pu ← (QT
Iu
QIu + λIk)

−1QT
Iu
Ru,Iu

7: end for

8: for i = 1 to n do

9: qi ← (P T
Ui
PUi

+ λIk)
−1P T

Ui
RUi,i

10: end for

11: end for

12: Return P,Q

13: end procedure

Relationship to Singular Value Decomposition (SVD)

Matrix Factorisation (MF) as described above is closely related to SVD. MF is a

generalisation of the decomposition of a matrix into a product of two or more matri-

ces, while SVD is specific in that the matrix is decomposed into a product of three

matrices. With SVD, the decomposition is given as:

M = UΣV T (2.15)

Matrices U and V are orthogonal matrices whose columns and rows are unit

length vectors. The matrix Σ on the other hand is a diagonal matrix containing

singular values in its diagonal. The singular values are ordered from largest to

smallest. The geometric intuition for SVD is that the decomposition of a matrix

first goes through a change of basis via the V matrix, and then a scaling via the

singular values in Σ, and then another change of basis via the U matrix. Unlike

SVD, MF described above does not place any constraints on the properties of the

matrices that make up the decomposition.
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2.2 Word Representation in NLP

For Machine Learning Algorithms to make sense of text, they need to be converted

to a numerical format. We examine a few Natural Language Processing (NLP)

techniques available to convert raw text into numerical format. We look at basic sta-

tistical techniques which use frequency counts to represent words and sentences, and

proceed to state-of-the-art approaches capable of providing semantic representation

of whole sentences.

2.2.1 Term Frequency-Inverse Document Frequency

One such approach is Term Frequency - Inverse Document Frequency (TF-IDF)

[64] [61]. This is a classical technique in Information Retrieval used to weight the

importance of words by the frequency of its occurrence in the document collection.

It considers two factors:

1. Term Frequency (TF), which determines how frequently a term occurs in a

specific document. A higher TF in a document often means that term is im-

portant.

2. Inverse Document Frequency (IDF) on the other hand denotes how rare a term

is across the entire document collection. Words that appear frequently across

many documents are less informative, so their IDF score is lower.

By combining these factors, TF-IDF assigns higher weights to words that are fre-

quent within a specific document but rare overall. These words are likely to be more

informative and capture the document’s unique theme. However, one shortcoming

of TF-IDF is that it does not consider the context of the term, and as such does not

capture the semantics of words. In addition, it is sensitive to frequently occurring

words, known as stopwords, requiring domain expertise to filter these out.

2.2.2 Word2Vec

Distributed word representation, also known as word embeddings, on the other hand

address these shortcomings. They embed words as vectors in a high-dimensional

space, where words with similar meanings are positioned closer together in the space.
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These embeddings capture semantic relationships between words based on their co-

occurrence patterns in large text corpora. Word2Vec[42], GloVe[52] and sentence

transformers[55] are techniques for learning word embeddings.

2.2.3 Transformer Architecture

The Transformer architecture was proposed in [69], and since its introduction, it

has led to significant improvements across fields outside Natural Language Process-

ing (NLP). Figure 2.5 shows the main components of the Transformer architecture.

Initially developed to improve Machine Translation tasks, Transformers have found

widespread use in various domains of artificial intelligence and machine learning. In

Computer Vision, Transformer-based models have shown remarkable performance in

tasks such as image classification, object detection, and image segmentation. In Re-

inforcement Learning, Transformers have been applied to enhance the performance

of agents in complex environments. Their capacity to process sequential data and

maintain context has proven beneficial in decision-making tasks. Recommender Sys-

tems have also benefited from Transformer architectures specifically due to their

suitability for processing sequential data as well as better representation learning.

This has led to various approaches to sequence-aware models using Transformers

[35, 66, 40].

The Transformer architecture has become a main component of Large Language

Models (LLMs) - language models with billions of parameters capable of diverse

tasks. These LLMs can perform a wide range of language-related tasks, including:

1. Comprehension: Understanding and interpreting complex text passages;

2. Summarization: Generating concise summaries of longer texts;

3. Translation: Converting text from one language to another with high accuracy;

4. Keyword extraction: Identifying and extracting key terms or phrases from

text;

5. Conversation: Engaging in human-like dialogue across various topics.

The effectiveness of Transformer-based models have made them a cornerstone of

modern AI research and applications, continuing to drive advancements in multiple

fields of study and practical applications.

Prior to the development of the Transformer, Recurrent Neural Networks (RNN)

and Long Short-Term Memory (LSTM) networks were the dominant approaches to

modeling sequence tasks in Natural Language Processing. RNNs operate on se-
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Figure 2.5: Transformer Architecture [69]
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quences such that there is a hidden state for each of the tokens in the sequence. This

state contains information about all the tokens in the sequence up to the current

token. Training RNNs, however, runs into the vanishing gradient problem. This was

first identified by Hochreiter in his diploma thesis and later published in 1998 [32].

The vanishing gradient problem occurs when gradients diminish as they are propa-

gated back through the network, thus making weight updates difficult and learning

effectively impossible for long sequences.

A successor to RNN is the LSTM [31], which tackled the vanishing gradient prob-

lem present in the former. LSTMs introduced memory cells which store information

and gates which controlled the flow of information from previous hidden states onto

subsequent ones. These gates include:

1. Input gate: Controls what new information is stored in the cell state

2. Forget gate: Decides what information should be discarded from the cell state

3. Output gate: Determines what information from the cell state should be used

as output

While LSTMs improved upon RNNs, they still faced limitations in processing

very long sequences and capturing long-range dependencies effectively. Additionally,

both RNNs and LSTMs process sequences sequentially, which limits their paralleli-

sation capabilities and makes them computationally expensive for long sequences.

These limitations of RNNs and LSTMs set the stage for the development of the

Transformer architecture, which addressed many of these issues through its novel

attention mechanism and parallel processing capabilities.

We turn to the various components which make up the Transformer architecture.

Self-Attention

Self-Attention is a mechanism that encodes a token in the sequence making sure to

include context about all the other tokens. Self-Attention introduces queries, keys

and values, which are linear transformations of each token in the sequence by three

respective weight matrices. Each token is transformed into a query and is compared

against the keys for every other token in the sequence, producing what is called an

attention score over the tokens in the sequence. The representation for any token

is then the weighted sum of the product of the attention and token values. This is

the scaled dot-product attention introduced in 2017 [69]. This mechanism allows the

model to focus on different parts of the input sequence when encoding each token,
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Figure 2.6: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention con-

sists of several attention layers running in parallel. [69]

effectively capturing relationships between tokens regardless of their distance in the

sequence. Self-Attention addresses several limitations of previous sequential models;

it enables parallel computation, as the attention for each token can be calculated

independently. It can capture long-range dependencies without the need for recurrent

connections. The attention weights provide a degree of interpretability, showing

which parts of the input are most relevant for each output. In the Transformer

architecture, Self-Attention is typically used in a multi-head configuration, where

multiple sets of query, key, and value transformations are learned. This allows the

model to attend to different aspects of the input simultaneously. Figure 2.6 depicts

the Attention mechanism.

Encoder

The encoder consists of multi-head self-attention mechanism whose output is fed into

feed-forward networks. The architecture of the encoder is such that it can be stacked

atop one another. The original paper [69] had 6 encoders stacked atop one another.

The input to the first encoder in the stack is a sequence of vectors derived from an
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embedding layer. The output of the encoder is a sequence of vectors which is passed

to the decoder, described below.

Decoder

Much like the encoder, the decoder comprises multi-head self-attention and feed-

forward networks. However, the self-attention mechanism in the decoder has a mask-

ing to stop it from peaking at future tokens in the sequence. This is required as the

decoder also receives as input the original input vectors from the embedding layer.

The output of the decoder is a probability over the vocabulary which is used to

sample the token to be generated.

The Transformer architecture has found wide adoption in models like BERT [16].

BERT, which stands for Bidirectional Encoder Representations from Transformers,

is an encoder-only model based on the Transformer architecture. It is pre-trained on

two primary language tasks: Masked Language Modelling (MLM) and Next Sentence

Prediction (NSP). These pre-training tasks are designed to help the model learn deep,

contextual representations of language.

In the Masked Language Modelling task, 15% of the input tokens are masked,

and the model’s objective is to predict these masked tokens given their surrounding

context. This approach encourages the model to develop a robust understanding of

language by considering both left and right contexts when making predictions. The

masking process involves replacing tokens with a special [MASK] token, random

tokens, or leaving them unchanged, which helps prevent the model from relying too

heavily on the mask token itself.

For the Next Sentence Prediction task, the model is presented with pairs of

sentences and must determine whether the second sentence naturally follows the first

in the original text. This task helps BERT learn relationships between sentences,

which is crucial for many downstream tasks that require understanding of broader

context or document structure.

BERT was trained on a substantial corpus of approximately 3.3 billion words,

which provided it with exposure to a wide range of language patterns and struc-

tures. Initially, two main versions of BERT were released: BERTBASE, containing

110 million parameters, and BERTLARGE, with 340 million parameters. These mod-

els differ in their size and capacity, with the larger model generally offering higher
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performance at the cost of increased computational requirements. Later, a smaller

model called BERTTINY was introduced, containing only 4 million parameters. This

compact model aims to provide a more resource-efficient option for scenarios where

computational power or memory is limited, while still leveraging the benefits of the

BERT architecture.

The pre-training process on such large-scale data endows BERT with the ability to

capture general language understanding. This broad linguistic knowledge can then be

applied to various downstream tasks through fine-tuning or feature extraction. The

versatility of BERT’s pre-trained representations makes it applicable to a wide range

of natural language processing tasks, including but not limited to text classification,

named entity recognition, question answering, and sentiment analysis.

By providing a strong foundation of language understanding, BERT has signif-

icantly impacted the field of natural language processing, enabling researchers and

practitioners to achieve state-of-the-art results on many tasks with relatively minimal

task-specific training. This approach of using pre-trained models as a starting point

for various language tasks has become a standard practice in the field, demonstrating

the power and efficiency of transfer learning in natural language processing.

Generative Pre-trained Transformer 3 (GPT-3)[7], developed by OpenAI is a

significant advancement in the field of natural language processing and artificial

intelligence. GPT-3 is an autoregressive language model built upon the decoder

component of the Transformer architecture, which has proven to be highly effective

in various language-related tasks.

Unlike BERT, it is trained to predict the next token in a sequence based on the

previous tokens it has encountered, and as such can only attend to tokens to the left

of the current token being processed. This left-to-right processing approach makes

GPT-3 particularly well-suited for tasks that involve text generation. Such tasks

include but are not limited to question answering, where the model can produce

human-like responses to queries; text summarization, where it can condense longer

pieces of text while retaining key information; and language translation, where it can

convert text from one language to another with impressive accuracy.

The scale of GPT-3 is one of its most notable features. With 175 billion parame-

ters, it represents a massive leap in model size compared to its predecessors and many

of its contemporaries - BERTLARGE had 340 million parameters. GPT-3 was trained

on a massive corpus of text amounting to 300 billion tokens, which encompasses a

wide array of internet text, books, and other written materials.
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2.2.4 Sentence Transformer

Sentence Transformers (ST) have emerged as an approach for embedding sentences

into semantically rich high-dimensional vectors using Transformer models. The work,

SBERT, by [55] addressed some shortcomings in the traditional BERT model when

used for sentence similarity task. They modified BERT to be fine-tuned on sentence-

pair tasks using a Siamese network [6]. Also, while BERT produces individual word

embeddings of fixed length for each word in an input sequence, SBERT creates fixed-

length vector representations at the sentence level. To accomplish this, SBERT

employs pooling methods like max-pooling or mean-pooling on the transformer’s

final layer output, resulting in an embedding that encapsulates the entire sentence.

This new model then produces embeddings which are easily compared using common

similarity metrics such as cosine distance.

2.3 Literature Review of Item cold-start

In this section, we review the literature on item cold-start. First, we examine research

into Matrix Factorisation models that treats item cold-start as the joint decompo-

sition of user preferences alongside item metadata derived from TF-IDF or binary

features. We also highlight some of the challenges with this approach. Then we pro-

ceed to other classes of techniques that remediate some of the challenges with a joint

decomposition. And then we look at a number of advancements in Recommender

Systems that uses the expressive nature of Deep Neural Networks to build robust

models for item cold-start.

Relational learning via Collective Matrix Factorisation, the work by Singh et al.

[63] introduced an approach to Matrix Factorisation they termed Collective Matrix

Factorisation. The idea is the joint factorisation of different modalities to solve movie

rating prediction. The authors modeled rating prediction as relational learning where

the entities are movies and users. And these entities have metadata associated with

them such as movie plots and user demography. They then extended the traditional

low-rank factorisation of the typical user-movie preferences matrix to include the

simultaneous factorisation of the user and item metadata matrices. By sharing the

same user and item factors across the different matrices, they ensure the decomposed

matrices share the same latent space.

LCE [60] jointly factorises the user rating matrix and item content matrix into
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the same latent space by sharing a low-rank matrix in the factorisation. They also

introduce locality by including a term which measures the similarity of adjacent

points in the shared matrix. In this example, the shared matrix W is the low-rank

approximation of the documents or items. In addition, they use a multiplicative

update rule for optimisation.

For song recommendation, the work by Gouvert et al. [27] extended Poisson

Matrix Factorisation based on listening counts to include an extra modality. Their

model was able to learn from song tag labels as well. Unlike either hard or soft

co-factorisation which directly penalises the coefficient matrices to varying degrees,

their model included an equality constraint on the normalised coefficient matrices

which takes into account the popularity of a song and the abundance of tag labels.

They developed a Majorisation-Minimisation algorithm to optimise their proposed

model.

The authors of [22] proposed jointly factorising a user-preference, user attribute

and item attribute matrices. Since the user-preferences are implicit feedback where

only the items a user has interacted with is non-zero, with most of the items being

zero, they came up with a weighting scheme that depends on the similarity of the user

and item attributes. Their model was optimised using Alternating Least Squares.

A 2-stage approach was developed by the authors of [53] such that the latent fac-

tors for the items were first estimated using soft-clustering via Non-negative Matrix

Factorisation. The estimated latent item features are then used in another matrix

factorisation to estimate the latent user features as well as predict the rank of items.

Models optimised via Ridge Regression offer some benefits such as; simplicity,

a closed-form solution and computational efficiency. To that end, a number of ap-

proaches have been proposed to tackle top-N recommendations using linear models.

One such pioneering model is CSLIM [48] where they extended their work in

SLIM [47] which considers top-N recommendation as a sparse aggregation of items

purchased by users. That is, the decomposition of the user-item preference matrix

is the product of itself and a coefficient matrix. To avoid the trivial solution where

this coefficient matrix is an identity matrix, they constrain the coefficient matrix to

have a diagonal of 0. Their proposed model includes the decomposition of the side

information matrix and ensures it is recoverable by the same coefficient matrix used

for the user-preference matrix - with the assumption that the purchasing patterns

of a user on a set of items is correlated with the similarity of the properties of the

items in the side information.
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Olivier et al. in [34] extended the work in [65] to include side information. Their

model added a term which decomposes the item-tag matrix into a product of itself

and a similarity matrix, much like the original [65]. Then both are collectively solved

using ridge regression. To retain the closed-form solution, they stack together the

user-item preference and item-tag matrices.

The high-dimensionality of side information has been a problem for variational

autoencoders [10] as it determines the size of the input, and hence dominating the

size of the model. Yifan et al. [9] developed a collective variational autoencoder

which collectively encodes and recovers the user-item preference and side information

matrices using the same inference and generation networks. This approach addresses

another shortcoming of variational autoencoders for CF, which is, having separate

encode-decode networks for each modality. They proposed a 2-stage algorithm to

train their model; pretrain the model using side information, then refine it with the

user-item preferences.

Similar to SLIM [47], the authors of [78] learn a linear model based on the user-

item preference matrix. This they combined in a joint prediction model with a

linear model that learns user preferences from side information. The discriminative

prediction from the side information was required to capture how different features in

the item side information are relevant to different users. They developed a projected

gradient ascent algorithm to solve the joint model described above.

The authors, Gartner et al. [26] developed an attribute-aware Matrix Factori-

sation model such that item side information is mapped to latent factors and can

thus be used to overcome item cold-start. They developed two approaches; one is a

mapping from item side information to latent factors using k-NN to aggregate the

most similar item latent factors for an item based on item attributes similarity -

this approach requires the Matrix Factorisation model to be built first. The second

approach modified the BPR [57] algorithm to include a linear function of the item

side information, approximating the item latent factors. Another attribute-to-feature

mapping approach was the work by [13] where they consider a Gaussian distribution

over possible weight matrices, as opposed to just one. In addition, they also pre-

sented an online algorithm, DynamicBPR, which is able to update the item latent

factors for new items as interaction data arrives, without the need to retrain the CF

model.

Items that share a common set of attributes should ideally have similar latent

factors. That’s the assumption by [45] in one of the approaches they proposed in their
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work. This approach they named alignment-based penalty. It’s a penalty because

they regularise traditional matrix factorisation with a term which shrinks the latent

factors of items with similar attributes close to one another. The other approach

they proposed is called regression-constrained factorisation. This treats the item

latent factors as a combination of a linear weight matrix and item side information.

Given the propagation of errors they noted in Collective Matrix Factorisation

approaches, the authors of [4] decide to decouple the factorisation step from the

knowledge transfer i.e the step where latent factors for cold start users and items are

estimated using latent factors of warm users and items. They did this by carrying out

matrix factorisation on a sub-matrix of the user-item preferences. This sub-matrix

contains enough information about user preferences to be factorised accurately. Then

they combined the estimated user and item latent factors with similarity matrices of

user and item side information to generate the preferences for all users and items.

Content-based filtering approaches do not suffer from cold-start since user and

item metadata are readily available. In the case of item cold-start in this instance,

features can be computed from the item metadata and distance functions such as

cosine similarity or Pearson correlation can be used to determine how similar items

are. The same strategy can be applied for user cold-start. While useful, it does have

one major challenge; the features are often high dimensional, noisy and sparse and

can lead to poor recommendation. To that end, classical techniques in Information

Retrieval such TF-IDF and BM25 are often used as feature selection techniques to

make sure only relevant features are utilised. Broadly, TF-IDF and BM25 determine

the relevance of a feature by the frequency of its occurrence in the corpus.

It should be noted that the Content-based filtering method described above does

not exploit the collaborative information from user-item preferences. A new class of

methods called feature weighting effectively combines these two approaches.

Elbadrawy et al. [20] developed a feature weighting suitable to sparse datasets

by learning global similarity functions that captures item patterns, and combines it

with user-specific weights to align each item to the user’s taste better. This is a

remediation of non-collaborative approaches which do not take into account global

user patterns. Sharma et al. [62] extended this work by arguing that pairwise

interactions of item features are better compared to independent features. To this

end, they developed a factorised bilinear similarity function to model these feature

interactions. A drawback of both methods as noted by Dacrema et al. [15] is that

they model the filtering and exploitation of collaborative preferences jointly. They



CHAPTER 2. BACKGROUND AND RELATED WORK 41

argue that this approach is difficult to train and error propagation from either makes

the final model worse. They presented a 2-stage algorithm; first an item similarity

matrix is generated using a CF model in the first stage. The second stage then

involves learning weights that captures the relationship between the item similarity

matrix and the item features.

Algorithm Method Description

[60, 27, 22] Collaborative Matrix Fac-

torisation

Joint decomposition of user-preference

matrix alongside side information ma-

trix.

[48, 34, 78] Sparse Linear Method User-preference matrix and item side

information can be recovered using the

same coefficient matrix.

[26, 10] Attribute-to-Feature Map-

ping

Maps side information to latent factors.

[45] Alignment-based penalty Includes a penalty term which aligns

the latent factors of items with similar

side information.

[4, 53] Two-stage Matrix Factor-

ization

Decouples recommendation into sepa-

rate steps, using separate models.

[62, 15, 20] Feature-Weighting Uses collaborative information to learn

pairwise weights for side information.

Table 2.1: Summary of Matrix Factorisation Techniques

The approaches we have looked at thus far, see Table 2.1, treat recommendations

primarily as a low rank decomposition of the user-item preferences which is then

augmented with a linear combination of some learned weights and features from side

information to tackle item cold-start. That is to say both of these sub-processes are

linear methods. Side information is also often modelled using either binary features or

TF-IDF. However, there is some value to be gained from modelling user interactions

and side information using non-linear methods:

• Increased expressivity to learn complex patterns between users, items, and

side information
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• Ability to include different modalities beyond user-item preferences

• Can handle item side information as input features for end-to-end training

without costly pre-processing

Also, some architectures of Deep Learning lends itself easily to model inductive

biases for some tasks. Consider sequence tasks such as next-item recommendations

and temporal behaviour of users which are well suited to Seq2Seq models. [77] At

the core of Deep Learning approaches for Recommender Systems is the Multilayer

Perceptron (MLP). The perceptron is a linear combination of learned weights and

some input whose output is then passed through a non-linear activation function such

as sigmoid. Below, we briefly examine some of the advancements in Deep Learning

for Recommender systems.

Neural Collaborative Filtering (NCF) by He et al. [30] sought to replace the inner

product in classical Matrix Factorisation with an MLP.

Wide & Deep Learning for Recommender Systems by Chen et al. [10] combined

memorization with generalisation. Their model is a jointly trained Generalized Lin-

ear Model and a Deep Learning model which combines the ability of the linear model

to capture frequently co-occurring signals with the expressivity of the Deep Learning

model, and hence superior generalisation capability. It should be noted that Deep

Learning methods still fall short when the only input is the user-item preference ma-

trix. Well tuned classical techniques like Matrix Factorisation perform much better

in that scenario.

DeepFM by Guo et al. [28] combines Factorisation Machines (FM) [56] with Deep

Learning. One of the disadvantages of FM is their inability to scale to large datasets

with increasing higher degree of feature combinations. As such, second-order feature

combinations are often used. DeepFM resolves this by combining classical FM with

second-order interactions with a deep network using MLP to capture higher-order

interactions. Both are trained jointly.

This chapter reviewed the literature on Collective Matrix Factorization (CMF) for

item cold-start recommendations. While CMF allows the integration of metadata

as side information, existing approaches use only sparse features such as binary

features, count data or TF-IDF, rather than dense semantic representations from

Sentence Transformers or language models. Another limitation is that auxiliary in-

formation is typically represented without considering pairwise relationships between
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items, which restricts the model’s ability to capture structural dependencies. These

limitations reduce the effectiveness of CMF in learning meaningful item associations.

The next chapter presents a model designed to address these issues.



Chapter 3

Proposed Approach

In this chapter, we describe in detail the proposed approach that solves some of the

challenges with Collective Matrix Factorisation (CMF). In section 3.4, we introduce

a semantics-aware approach to CMF comprised of two key elements; Symmetric Ma-

trix Factorisation, and embeddings from Sentence Transformers. Symmetric Matrix

Factorisation better captures pairwise relationships between the items, while the em-

beddings from the Sentence Transformer ensures the semantic nuances are captured.

3.1 Notation

We are given two sets, U, and I. U is the set of users, I, the set of items. Users will

express preference for zero or more items in I. The specifics of the preference will

depend on the domain. For example, it can be a rating, a like, share, save, purchase

etc. This preference information is usually represented in a matrix R whose size is

|U | × |I|. For items where the user has not expressed any preference for the item,

it is customary to set the preference to 0. In addition, we define the set Ic to be a

subset of I such that no user has provided any preference information for that item.

In addition to U, and I defined above. We have a set, F. These contain the various

properties or attributes that define the items. These attributes are used to create

a side information matrix which we denote A, a |I| × |F | matrix where each row

represents an item and the columns - the relevant attributes of that item.

44
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Figure 3.1: Left: user rating matrix. Right: item content matrix

3.2 Collective Matrix Factorisation

Singh and Gordon [63], define user preferences for items by:

min
P,Q
||R− PQT ||2F + ||A−QST || (3.1)

P , Q and S are latent factors that describes the user preference for a particular

item given the observed preference and any item related metadata captured by the

matrix, I. R can for example be a binary matrix of observed user preference on

movies or the ratings on a scale of 1-5 given by users to movies. This preference

matrix is often quite sparse as users only ever see or interact with a handful of the

entire catalogue of movies. And I can be a feature matrix of item metadata such as

genre, plot, cast etc. These feature matrix is often sparse as it is represented using

one-hot encoding or TF-IDF. The item latent factors from the factorisation of R can

capture item characteristics such as genre, mood or language. The latent factors for

a user then captures to which extent the user agrees with these characteristics of the

item, indicating their preference or otherwise. While each matrix can be factorised

independently, we will not be taking advantage of the relationship between both

data modalities. The item characteristics discovered by the factorisation of the user

preference matrix are often available as metadata that can be incorporated directly.

Thus, the crux of Collective Matrix Factorisation is exploiting such relationships by

representing both matrices in a common latent space.
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This approach of jointly decomposing the user preference and side information

matrices was explored in the work by Saveski and Mantrach [60]. The optimisation

problem they sought to solve was given as:

J =
1

2
[α||Xs −WHs||2 + (1− α)||Xu −WHu||2 + (W TLW )] (3.2)

The regularisation terms are omitted for brevity. In the formulation above, Xs is

the side information matrix, which for them was a document-term matrix, while Xu

captures if a user has interacted with a document. In addition, to enforce the local

geometric structure of the original data in the low-dimensional space, they build

an adjacent matrix of p nearest neighbours for each data point in the original high-

dimensional space. This adjacency matrix is then used to weight the low-dimensional

representation of the data points. The weighting scheme ensures that points which

are close to each other in the original high-dimensional space maintain their proximity

in the new low-dimensional representation. The computation of the adjacent matrix

introduces a hyper-parameter, p and happens outside of the main factorisation, thus

we regard this as a 2-stage approach. Their approach also has the constraint that

the weights W , Hu and Hs are non-negative. This constraint limits the range of

input their algorithm can accept, and it is on this our proposed approach builds on,

amongst other things.

Our proposed method revisits how the side information is incorporated into Col-

lective Matrix Factorisation, while leaving the preference matrix largely intact. We

describe our proposed method below.

3.3 Side Information Decomposition

Given the side information matrix, A, we wish to find clusters such that items with

similar metadata are grouped together. Approaches to clustering include k-means

[25], DBSCAN [21] and Spectral Clustering [70]. However, for our purposes, we

consider a factorisation-based approach called Non-negative Matrix Factorisation

(NMF) [49].

A = WH (3.3)

The side information matrix, A, can be decomposed into two matrices W and

H. W is an |F | × k matrix, known as the basis or feature matrix. While H is the
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coefficient matrix, with dimensions k × |I|. k denotes the rank of the matrix, and is

also the number of clusters identified. The matrices W and H are non-negative, as

is the input.

A is a document-term matrix which for the purpose of this work is either a Term

Frequency-Inverse Document Frequency matrix (TF-IDF) or sentence embeddings

matrix.

Kim et al. [36], when sparsity is imposed on H, show how this is equivalent

to k-means. In this formulation, W is equivalent to the centroids, and H indicates

which cluster each item belongs to by selecting the index with the largest value. They

introduced a parameter, β, which determines the degree of sparsity of H - with larger

values indicating stronger sparsity and being closer to hard clustering. In addition,

the size of the elements of W are controlled using a parameter, η. Taken together,

these two terms can be seen as regularisers. This formulation of NMF imposes a

non-negativity constraint on the matrix A, as well as its factors, W and H. However,

Ding et al. [17], introduce various forms of NMF where the non-negativity constraint

is relaxed. One such form is what they call semi-NMF which is described thus:

A± ≈ W±H
T
+ (3.4)

Semi-NMF has the property that the input and the basis/features matrices are

unconstrained (±) i.e. the values in the matrices can be a mix of positive and

negative numbers, while the non-negativity constraint is retained for the coefficient

matrix. They find that this formulation still retains the clustering ability. The

relaxation of this non-negativity is crucial for our work because our side informa-

tion matrix is composed of embeddings from a Sentence Transformer and as such

have mixed signs. Sentence Transformers generates contextualized embeddings that

capture semantic relationships in a high-dimensional space. These embeddings natu-

rally contain both positive and negative values, as they represent complex linguistic

patterns through distributed representations. Non-negative Matrix Factorisation as-

sumes non-negativity, which works well for count-based data or strictly positive fea-

tures. However, this assumption becomes restrictive when dealing with pre-trained

language models like Sentence Transformers.

Symmetric Matrix Factorisation (SMF) [39] [76] presents a novel approach by

reinterpreting Non-negative Matrix Factorisation (NMF) as the decomposition of a

pairwise similarity matrix. Unlike traditional NMF, which focuses on factorising the
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data matrix into a set of basis vectors and corresponding coefficients, SMF emphasises

the relationships between data points by decomposing the similarity matrix. This

similarity matrix is essential as it captures the underlying relationships and distances

between various data points within the dataset.

As noted by Kuang et al. [39], while NMF has gained popularity and has been

effectively applied to clustering tasks [72], often yielding superior results compared to

classical clustering methods like k-means [36], it is important to recognise that NMF

is not a one-size-fits-all solution for every clustering problem. The primary assump-

tion behind NMF is that each cluster within the data can be accurately represented

by a basis vector. Consequently, the original data matrix can be approximated

through a linear combination of these basis vectors. This linearity assumption, how-

ever, imposes a limitation on NMF, as it fails to capture the structure of clusters

when they exhibit non-linear relationships. In scenarios where the data’s inherent

clusters do not conform to a linear structure, the effectiveness of NMF diminishes,

highlighting the need for alternative approaches like SMF. This formulation of SMF

is then given as:

A± ≈ HHT (3.5)

3.4 Semantics-aware Collective Matrix Factorisa-

tion

We present Semantics-aware Collective Matrix Factorisation (SaCMF), an approach

based on Collective Matrix Factorisation that uses Symmetric Matrix Factorisation

to cluster similar items. We transform the side information matrix, A, into a pair-

wise similarity matrix by taking its dot product with its transpose, resulting in a

symmetric matrix.

A∗ = AAT (3.6)

This transformation encodes the pairwise relationships across items. The crux

of our method follows from the cluster hypothesis which says “closely associated

documents tend to be relevant to the same requests” [58]. So we envision a sce-

nario where deriving the latent item features from the decomposition of the side

information alongside the user preferences will result in better performance on item
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cold-start. This is because the pairwise relationship encoded in the side information

matrix allows cold items to benefit from the embeddings learned for warm items as

the latter has sufficient collaborative information. Unlike regular Matrix Factorisa-

tion, Symmetric Matrix Factorisation, depicted in Figure 3.2, is the product of a

low-rank matrix and its transpose.

Figure 3.2: Symmetric Matrix Factorisation

Following the Collective Matrix Factorisation approach, we combine the methods

described above to arrive at our proposed approach. Because the focus of our work is

implicit feedback, and as such the preference matrix is a binary matrix, we use Binary

Cross Entropy as the loss function in the decomposition of the user-item preference

matrix. For the decomposition of the item content matrix, we retain Frobenius norm

as the loss function.

r̂ui = σ(puq
T
i ) (3.7)

min
P,Q

[
−
∑
u,i

(rui log(r̂ui) + (1− rui) log(1− r̂ui)) + ||A∗ −QQT ||2F + λ
(
||P ||22 + ||Q||22

)]
(3.8)

rui is the actual rating a user, u, given to an item, i, while r̂ui is the predicted

rating. We also include regularisation terms in our objective function described

above; L2 norm for the user and item factors.

One interpretation of the second term above is as an alignment penalty. This

penalty term minimizes the discrepancy between the item content pairwise similar-

ity matrix and learned item factors pairwise similarity matrix. This encourages the

factorisation of the rating matrix to learn representations that preserve the under-

lying content relationships between items, while maintaining flexibility in how these
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relationships are encoded.

In this chapter, we presented a model that enhances Collective Matrix Factorisa-

tion through two modifications. First, we incorporate embeddings from Sentence

Transformers as features for the side information. This allows the model to utilise

rich semantic relationships in the provided item metadata. Secondly, side infor-

mation is represented as a symmetric matrix which allows us to capture pairwise

relationships among items. This approach improves traditional CMF by integrating

rich features derived from Sentence Transformers while maintaining a structure that

preserves important relational information between items.

In subsequent chapters, we evaluate our model against a number of real-world

datasets and compare it against various baseline models. The evaluation allows us to

empirically show the effectiveness of our proposed model. We start by introducing the

datasets and the experiment protocol, then we discuss the results of the experiment.
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Experimental Setup

In this section we describe the source of data, the data and its attribute as well as

the methodology we will be using. We also highlight the metrics we will use for

evaluation and the baselines we will be comparing our proposed method against.

4.1 Datasets

We used the popular Movielens 1M [29] and Yahoo! Movies [73] datasets for eval-

uation. Movielens 1M dataset was collected from the year 2000 to 2003 from the

Movielens website. This was a project ran by the GroupLens research team based

out of University of Minnesota. The Movielens 1M dataset contains 1, 000, 029 rat-

ings given by 6, 040 users to 3, 076 movies. These ratings are on a 1-5 scale, but for

our purposes we discretise the ratings so that ratings greater than 3.5 are set to 1

to signal a user preference for that movie, and 0 otherwise. These movies cover 12

genres. For side information, we fetch the associated plot for each movie from IMDB

using the provided movie ID in the files downloaded from the Movielens website. Ya-

hoo! Movies dataset is a sample of the movie preferences of members of the Yahoo!

Movies community. This dataset provides the movie plot for the 3, 679 movies in its

catalogue. Unlike, Movielens, the Yahoo! Movies dataset only has 197, 000 ratings

by 7, 619 users.

In the datasets, movies typically belong to multiple genres, which is to be expected

as different themes can be observed in the same movie. To plot the chart in Fig.

4.1, we select the first genre in the list of genres for a movie. As the chart shows,

51
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Dataset Users Items Ratings (k) Density (%)

Movielens 1M 6040 3706 1000 4.5

Yahoo! Movies 7619 3679 197 0.7

Table 4.1: Details of datasets used

Comedy and Drama dominates the genres, with Action and Horror next.

Figure 4.1: Left: Genres in Movielens 1M. Right: Genres in Yahoo! Movies

4.2 Data Preprocessing

We employ two approaches for encoding the movie plot: Term Frequency - In-

verse Document Frequency (TF-IDF), and embeddings from sentence transformers.

For sentence embeddings, we use Transformer-based language model, Qwen2-1.5B-

Instruct, described below, that map sentences and paragraphs to a high-dimensional

space using dense vectors. These vectors encode the meaning of the text and can be

used for various applications such as clustering similar texts or performing semantic

search tasks.

4.2.1 Qwen2-1.5B-Instruct

This is a decoder-only large language model developed by Alibaba which belongs to

the Qwen2 [74] group of models ranging in size from 0.5 billion to 70 billion param-

eters. We settled on the 1.5B parameter model because of its strong performance on

the clustering task in the Massive Text Embedding Benchmark[44]. This model was
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Star Wars: Episode II

Ten years after the events of THE PHANTOM MENACE, not only has the

galaxy undergone significant change, but so have our familiar heroes Obi-Wan

Kenobi (Ewan McGregor), Padmé Amidala (Natalie Portman) and Anakin

Skywalker (Hayden Christensen) as they are thrown together again for the first

time since the Trade Federation invasion of Naboo. Anakin has grown into the

accomplished Jedi apprentice of Obi-Wan, who himself has transitioned from

student to teacher. The two Jedi are assigned to protect Padmé whose life is

threatened by a faction of political separatists. As relationships form and powerful

forces collide, these heroes face choices that will impact not only their own fates,

but the destiny of the Republic.

Titanic

An undersea expedition searching for a valuable diamond aboard the wreck-

age of the Titanic instead finds a drawing of seventeen-year-old Rose DeWitt

Bukater, on the way to her wedding to a wealthy tycoon. While Rose falls in

love with Jack Dawson, a free-spirited artist and third-class passenger who ignites

the unquenchable fires of passion inside her, the hubris of the shipś crew tempts

them to test the cross-Atlantic speed record–smack into an iceberg. A rightfully

celebrated, no-holds-barred, boffo blockbuster, with enough heart and soul to

balance its extravagant special effects and record-breaking budget.Academy Award

Nominations: 14, including Best Actress (Winslet) and Best Supporting Actress

(Stuart).Academy Awards: 11, including Best Picture, Best Cinematography, Best

Original Dramatic Score, Best Visual Effects, Best Costume Design, and Best Song

(”My Heart Will Go On,” by James Horner and Will Jennings - performed by

Celine Dion)

Table 4.2: Movie Plots for Star Wars: Episode II and Titanic
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pre-trained on 7 trillion tokens to ground it in natural language understanding and

text generation tasks. After pre-training, this model was then instruction-tuned on a

range of tasks such as coding, mathematics, logical reasoning, instruction following,

and multilingual comprehension. The output of the model was also aligned with

human values by post-training using Reinforcement Learning from Human Feedback

[12] on preference data that had been collected.

This model has a context length of 32k tokens, allowing it to process large input,

and it uses Grouped Query Attention that makes it faster and use less memory

during inference. The movie plots are processed by this model to produce a 1536-

dimensional sentence embedding for each plot.

4.2.2 TF-IDF

To create the TF-IDF features, we use the TF-IDF Vectoriser in the scikit-learn

pacakge. We remove stopwords using the default list of words provided by the

package, and ignore words that appear in fewer than three documents. The dimension

of the resulting plot vector is not fixed like the Transformer models above, but

depends on the vocabulary of the corpus. The sentence vector for Movielens dataset

contains 9, 933 entries, while the vector for Yahoo! Movies dataset has 10, 657 entries.

4.3 Baselines

We compare our proposed model with the state of the art in Collective Matrix

Factorisation.

Local Collective Embedding (LCE) [60] does collective factorisation on the pref-

erence and side information matrices. In addition, it constructs a graph of nearest

neighbours which it uses to enforce locality via regularisation in the previous fac-

torisations. It does this so that latent factors of items having similar attributes are

close in this low-dimensional space resulting from the factorisation. In that case, we

regard it as a 2-stage approach.

ItemKNN-CBF [46] is a memory based approach, and thus has no weights. In-

stead, recommendations are based on similarity between items via their content

features using k-Nearest Neighbours.
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4.4 Data Partitioning

An important consideration during the split is ensuring that interactions in the val-

idation and test sets involve users present in the training set. This eliminates the

confounding factor of user cold start, where a model might struggle to recommend

for entirely new users unseen in the training data. Our focus here is solely on the

model’s ability to recommend for new items, even if the users interacting with them

are familiar to the system.

Our evaluation methodology closely follows the approach established by Dacrema

et al. [15]. We employ a common train-validation-test split strategy to assess the

model’s performance, particularly its ability to handle item cold start issues. This

split involves randomly selecting 60% of the items and their interactions for the

training set. The remaining 40% is then divided equally (20% each) into validation

and test sets. This ensures a clear separation between the sets, mimicking a real-

world scenario where new items are constantly being introduced (item cold start).

Figure 4.2: User rating matrix split. A has warm items, while B and C contains cold

items.

4.5 Evaluation

To gauge the quality of the recommendations returned by our model, we require a

scoring function that compares the predicted recommendations against a relevance

judgement list. We consider two approaches for evaluation: classification metrics,

and ranking metrics.
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When evaluating a recommender system, we often have a limit k, which denotes

how large the list of predicted recommendations should be. This is particularly

useful because recommendations are often presented on user interfaces with limited

real estate, so we only need to evaluate the performance for a short list. We use k

below to signify such a limit.

4.5.1 Classification Metrics

Classification metrics compare the predicted recommendations against a binary judge-

ment. Binary judgements are implicit feedback for example; click, purchase, and

visit. In this case, the goal of classification metrics is to determine the proportion of

the predicted recommendations that are relevant to the user. Below, we look at two

such metrics.

Precision

Precision is the proportion of the predicted recommendations that are actually rele-

vant. It is defined thus:

P@k =
# relevant recommendations

k
(4.1)

The possible values for precision are between 0 and 1, in order of increasing

quality.

Precision does not account for the order of the predicted recommendations, and

this is a shortcoming. Imagine a list of predicted recommendations such that the

most relevant items appear at the bottom of the list, and thus are presented to the

user last. This behaviour is remedied by ranking metrics which we shall take a look

at below.

Recall

Recall, measures the proportion of all relevant items returned in the predicted rec-

ommendations. Possible values are between 0 and 1. It is defined thus:

R@k =
# relevant recommendations

relevant items
(4.2)
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This can be interpreted as the probability that a relevant item is predicted by

our model. Recall also has the same shortcoming with Precision in that it does not

take the order of the predicted recommendations.

4.5.2 Ranking Metrics

Unlike classification metrics where the order of the predicted recommendations does

not matter, ranking metrics prioritises scenarios where the most relevant items are

ranked higher in the list, reflecting a user’s likelihood of interacting with them. We

consider two such metrics below.

Normalised Discounted Cumulative Gain (NDCG)

At the heart of NDCG is Cumulative Gain, which counts the number of relevant

items in the top k results. Possible values are between 0 and 1. This is formulated

as follows:

CG@k =
k∑

i=1

reli (4.3)

reli above is 1 if the item at position i is relevant, otherwise 0. NDCG also has

the useful property in that relevance can be on scale e.g from 1 to 5, in order of

increasing relevance. Ideally, what we want is for relevant items to appear at the

top of the list. For this to happen, we can weight each item in the returned list in

decreasing order as its position increases. Hence, a relevant item at position 1 in the

returned list will be weighted higher than a relevant item at position 10 in the list.

This is referred to as Discounted Cumulative Gain and is formulated as below:

DCG@k =
k∑

i=1

2reli − 1

log2(i+ 1)
(4.4)

To normalise this score, we compute Ideal Discounted Cumulative Gain (IDCG),

which is the maximum possible score produced by sorting the items according to

their ground truth relevance. IDCG is given as:

IDCG@k =
k∑

i=1

2reli − 1

log2(i+ 1)
(4.5)
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Then we compute NDCG@k as follows:

NDCG@k =
DCG@k

IDCG@k
(4.6)

Mean Average Precision (MAP)

Similar to NDCG, Mean Average Precision computes a score which indicates the

quality of ranked recommendations. However, unlike NDCG, it has the limitation

that it requires the relevance to be binary. Possible values for MAP are between 0

and 1. MAP extends precision to account for rank by taking the average precision

of values at all relevant positions. Taking the mean of the average precision for all

users then gives us MAP. Average Precision (AP) is defined thus:

AP@k =

∑k
i=1 Precisioni.reli

total number of relevant items
(4.7)

reli is the relevance at position i, Precisioni is the precision at position i of the

ranked list. MAP is thus:

MAP@k =
1

N

n∑
k=1

AP@k (4.8)

4.6 Implementation

4.6.1 Technologies

The proposed model was written in PyTorch1 and extensive experiments carried out

on an Ubuntu 20.04 machine with the following specifications:

• Core i9 CPU

• 32GB RAM

• Nvidia GPU RTX 3090 Ti with 32GB RAM

In addition, a suite of ancillary libraries were used.

1The source code is publicly available at https://github.com/farouqzaib/pycmf
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• SBERT [55]: this is a Python library that provides access to state-of-the-art

models for computing sentence embeddings.

• scikit-learn [51]: a Python library providing various Machine Learning algo-

rithms as well as data processing tools.

• Huggingface [71]: a Python library that provides access to state-of-the-art

Transformer models.

4.6.2 Hyper-parameter Tuning

The training and validation sets play a crucial role in optimizing the model’s per-

formance. We utilize these sets for hyper-parameter tuning, a process where we

adjust various model settings to achieve the best possible results. This is often done

through cross-validation, where the training set is further split into smaller subsets

for training and validation purposes. By iteratively evaluating the model with differ-

ent hyper-parameter configurations on these smaller sets, we can identify the optimal

settings for the final model.

Once the hyper-parameters are selected using the combined training and valida-

tion sets, the final model is trained on this larger dataset. This “tuned” model is

then used to predict the relevance scores for items in the unseen test set. To account

for potential variations in model performance due to random sampling during the

data split, we repeat this entire experiment five times. The final reported perfor-

mance metrics in this paper represent the average results obtained across these five

repetitions. This practice helps ensure the robustness and generalisability of our

evaluation findings.

The main hyper-parameters are the user and item factors learning rates, L2 reg-

ularisation and the number of latent factors. In section 5.2, we provide an analysis

of the hyper-parameters.



Chapter 5

Results and Analysis

This section reports the results of the experiments we conducted on two datasets:

Movielens 1M and Yahoo! Movies. To assess the effectiveness of our approach in

handling item cold start issues, we first established a set of quantitative evaluation

metrics commonly used in recommendation systems; MAP, Precision, Recall and

NDCG. We then evaluated the model’s performance on one key aspect:

Nearest Neighbour Quality: We analysed the quality of nearest neighbours iden-

tified for a few cold start items. Accurate nearest neighbours are essential for rec-

ommending relevant items to users who have not interacted with many movies yet.

Following the evaluation, we discuss the overall effectiveness of the model in

handling item cold start problems. The results, summarised in Tables 5.1 - 5.4,

showcase the effectiveness of our approach. We show the mean of 5 runs alongside

the margin of error calculated at the 95% confidence interval.

Algorithm Movielens 1M

Precision@10 Precision@20 Recall@10 Recall@20

LCE 0.053 ±0.012 0.045 ±0.010 0.024 ±0.007 0.036±0.009
ItemKNN-CBF 0.062 ±0.020 0.050 ±0.012 0.030 ±0.011 0.040 ±0.012
ItemKNN-CBF (ST) 0.114 ±0.029 0.095 ±0.021 0.042 ±0.011 0.070 ±0.015
SaCMF 0.067 ±0.014 0.056 ±0.010 0.026 ±0.008 0.041 ±0.011
SaCMF (ST) 0.139 ±0.024 0.116 ±0.017 0.051 ±0.010 0.082 ±0.015

Table 5.1: Precision and Recall for Movielens 1M
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Algorithm Movielens 1M

MAP@10 MAP@20 NDCG@10 NDCG@20

LCE 0.022 ±0.005 0.014 ±0.003 0.048 ±0.015 0.049±0.015
ItemKNN-CBF 0.029 ±0.012 0.018 ±0.007 0.059 ±0.025 0.058 ±0.022
ItemKNN-CBF (ST) 0.058 ±0.021 0.038 ±0.013 0.107 ±0.032 0.105 ±0.028
SaCMF 0.032 ±0.007 0.020 ±0.004 0.059 ±0.016 0.058 ±0.016
SaCMF (ST) 0.076 ±0.021 0.052 ±0.013 0.129 ±0.028 0.126 ±0.025

Table 5.2: MAP and NDCG for Movielens 1M

Algorithm Yahoo! Movies

Precision@10 Precision@20 Recall@10 Recall@20

LCE 0.025 ±0.008 0.019 ±0.005 0.053 ±0.016 0.076 ±0.016
ItemKNN-CBF 0.031 ±0.014 0.022 ±0.009 0.063 ±0.025 0.087 ±0.032
ItemKNN-CBF (ST) 0.038 ±0.012 0.027 ±0.008 0.077 ±0.029 0.110 ±0.036
SaCMF 0.031 ±0.015 0.022 ±0.008 0.060 ±0.025 0.085 ±0.027
SaCMF (ST) 0.039 ±0.016 0.030 ±0.010 0.082 ±0.028 0.123 ±0.032

Table 5.3: Precision and Recall for Yahoo! Movies

Algorithm Yahoo! Movies

MAP@10 MAP@20 NDCG@10 NDCG@20

LCE 0.011 ±0.004 0.006 ±0.002 0.045 ±0.0156 0.053 ±0.016
ItemKNN-CBF 0.015 ±0.006 0.008 ±0.003 0.057 ±0.024 0.065 ±0.026
ItemKNN-CBF (ST) 0.018 ±0.007 0.010 ±0.004 0.068 ±0.023 0.078 ±0.025
SaCMF 0.014 ±0.007 0.008 ±0.004 0.054 ±0.025 0.062 ±0.026
SaCMF (ST) 0.017 ±0.008 0.010 ±0.004 0.068 ±0.028 0.081 ±0.029

Table 5.4: MAP and NDCG for Yahoo! Movies
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Models trained with features from a Sentence Transformer have the suffix “(ST)”,

otherwise the features are TF-IDF. The results in bold face are the best performing,

while the ones underlined are the second best.

Due to the non-negativity constraint in LCE, we were limited to testing it only

with TF-IDF features. The Sentence Transformer embeddings, which contain nega-

tive values, were not compatible with LCE without additional processing steps. In

contrast, we were able to evaluate both ItemKNN-CBF and our proposed SaCMF

model using both TF-IDF and Sentence Transformer (ST) features, allowing for a

more comprehensive assessment of their capabilities.

The experimental results demonstrate that SaCMF consistently outperforms LCE

across all evaluation metrics. This superior performance validates our approach of

using Symmetric Matrix Factorisation for processing side features. The improve-

ment suggests that our method more effectively captures and utilises the pairwise

relationships between items and their associated features.

When examining performance on specific datasets, we found varying degrees of im-

provement. On the Yahoo! Movies dataset, SaCMF shows comparable performance

to ItemKNN-CBF in terms of MAP (Mean Average Precision) and NDCG (Normal-

ized Discounted Cumulative Gain) metrics, while achieving modest improvements

in Precision and Recall scores. These results indicate that our method is at least

as effective as existing approaches for this particular dataset. The most substantial

improvements were observed on the Movielens 1M dataset, where SaCMF demon-

strated superior performance across all evaluation metrics. Particularly noteworthy

is the 18% improvement in NDCG compared to ItemKNN-CBF, which was the next

best performing model.

5.1 Neighbourhood Analysis

In Table 5.5, we show two movie titles and a list of five nearest neighbours each of the

algorithms returned. Embedding similarity is measured using Cosine distance. The

nearest neighbours are listed in descending order of similarity. For this particular

analysis, the subject movies were selected from the test set to ensure an unbiased

evaluation of the algorithms’ performance. As seen from the table, LCE, one of

the baseline algorithms, struggled to find all the relevant titles for Star Wars. LCE

managed to find only two titles belonging to the series of Star Wars movies. On the
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other hand, the top-5 movies returned by our algorithm belongs to the Star Wars

franchise. For Aladdin, LCE again failed again to find relevant neighbours. This

is not the case for our algorithm as the top-5 titles returned are titles of animated

films with similar themes as Aladdin and also produced by Walt Disney. For both

titles, ItemKNN-CBF performed well, as most of the titles returned are relevant to

the query title.

Algorithm Nearest Neighbours

Aladdin Star Wars

LCE

This Boy’s Life

Asoka

Dragon: The Bruce Lee Story

Wasabi

Battlefield Earth

Star Wars: Episode II

Star Wars II (IMAX)

The Art of War

Driving Miss Daisy

An Officer and a Gentleman

ItemKNN-CBF (ST)

Pocahontas

Cinderella

The Muppet Movie

Robin Hood

The Great Muppet Caper

Star Wars: Episode II

The Empire Strikes Back

Star Wars II (IMAX)

The Lord of the Rings:-

The Two Towers

Return of the Jedi

SaCMF (ST)

Pocahontas

Robin Hood (1973)

The Hunchback of Notre Dame

Hercules (1997)

The Rescuers

Star Wars: Episode II

Star Wars II (IMAX)

The Empire Strikes Back

Star Wars: Episode 1

Return of the Jedi

Table 5.5: 5 Nearest neighbours of the Aladdin and Star Wars movies for each

algorithm

One key advantage of our approach lies in its efficiency. Unlike LCE, which re-

quires a separate step to compute nearest neighbours and introduce locality, our

method leverages the factors derived by Symmetric Matrix Factorisation (SMF) to

directly estimate user preferences. This eliminates an extra computational step and

potentially improves overall model efficiency, making it suitable for large-scale rec-

ommendation tasks.
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Our method effectively incorporates additional movie information by using syn-

opsis data processed through Sentence Transformers. This provides a richer under-

standing of each movie’s content and themes. In contrast, the LCE approach cannot

directly utilise this valuable data source because of its non-negativity constraint,

which would require additional processing steps for the Sentence Transformer em-

beddings. By leveraging embeddings from Large Language Models, our system can

understand more subtle and complex aspects of movies that are not captured in

simple user-item interaction data. This results in recommendations that take into

account not just viewing patterns, but also the actual content and thematic elements

of the movies, leading to more informed and comprehensive suggestions for users.

It is important to acknowledge that joint factorisation models, including ours and

LCE, can be susceptible to error propagation as noted in prior research [53]. This

means that errors in one part of the model can propagate to other parts, potentially

affecting recommendation accuracy. However, despite this drawback, our model

demonstrably outperforms on Movielens 1M dataset, a strong baseline like ItemKNN-

CBF which has been shown to outperform Deep Learning models [24] [23], showcasing

the benefits of a unified framework that leverages both user-item interactions and

side information.

In conclusion, the experimental results on both Movielens and Yahoo! Movies

datasets validate the effectiveness of our proposed recommendation approach. It

achieves superior performance on the Movielens dataset and demonstrates competi-

tive results on Yahoo! Movies. The model’s efficiency, ability to leverage side infor-

mation, and unified framework position it as a promising solution for recommenda-

tion tasks, especially when dealing with cold start items.

5.2 Parameter Analysis

The SaCMF model has two key parameters: k (number of latent variables) and λ

(regularization strength). Parameter k controls model complexity. Small k causes

underfitting, while large k causes overfitting. Looking at the values in Table 5.6

below, the models all favour a high value of k.

Parameter λ controls regularization. Values between 0 and 1 work best, as too

high λ oversimplifies the model while too low λ allows overfitting. Appropriate

regularisation helps create stable solutions. Both of the findings above mirrors those
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reported in LCE [60]. Unlike LCE, we do not weight the task, but rather used the

full losses as we found weighting to be ineffective in our experiments. Finally, for

the item content pairwise similarity matrix, using the complete matrix performed

better than k-nearest neighbours approaches. This shows that even weak similarity

relationships contain useful information for the model.

The final parameters for the experiments are listed in Table 5.6 for each side

information type for each of Yahoo! Movies (YM) and Movielens 1M (M1M). ηu and

ηi are respectively, the user and item factors learning rates. λ is L2 regularisation.

k, is the number of latent factors. The table also shows the number of epochs for

each model.

Hyper-param Range YM (TF-IDF) YM (ST) M1M (TF-IDF) M1M(ST)

ηu [1e-4, 1e-3] 1e-3 8e-4 8e-4 1e-3

ηi [1e-5, 8e-5] 1e-5 1e-4 1e-5 3e-5

λ [1e-5, 1e-1] 7e-4 7.5e-4 1e-3 1e-5

k [50, 500] 500 432 500 500

Epoch [50] 50 50 48 45

Batch size [64, 1024] 128 64 128 128

Table 5.6: Hyper-parameter configuration and final values

5.3 Running Time Analysis

Training and inference of the model was performed on a GPU. Figure 5.1 shows how

long it took for one epoch of each model, for the various side information. Movielens

contains about five times more data than Yahoo! Movies but only took about 1.7

times longer when using TF-IDF. And 1.5 times longer when using features from a

Sentence Transformer.
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Figure 5.1: Training times per epoch



Chapter 6

Conclusion

In this thesis, our primary objective was to explore the integration of Collective Ma-

trix Factorisation with from Sentence Transformer for feature extraction to address

the item cold start problem in two movie datasets. We utilised a Sentence Trans-

former to encode the movie plots, allowing us to capture the semantic structure of

the text. This approach provided a richer and more complete feature set compared

to traditional methods of text representation. By using a Sentence Transformer,

we were able to extract nuanced information from the plot summaries, including

themes, character dynamics, and narrative structures that might be relevant to user

preferences.

In Chapter 3 of the thesis, we presented a novel reformulation of Collective Matrix

Factorisation. Our approach involved the joint factorisation of two key components;

a user preference matrix, representing the interactions between users and movies,

and a decomposition of pairwise interactions of item features, specifically the movie

plot embeddings derived from a Sentence Transformer. This reformulation allowed us

to incorporate the rich semantic information extracted by the Sentence Transformer

into the collaborative filtering framework of CMF. By doing so, we aimed to create

a more robust model that could better handle the item cold start problem.

It is important to note that our approach is not limited to the specific Sentence

Transformer we explored in this work. The framework we developed is designed

to be flexible and can accommodate various types of Sentence Transformers. This

generalisation allows for future improvements as new and more advanced language

models become available.

We conducted a comprehensive evaluation of our model using the two movie

67
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datasets mentioned earlier. Our evaluation metrics focused on the model’s ability

to make accurate recommendations, particularly for new items with limited user

interaction data.

The results of our evaluation demonstrated that our approach outperformed the

LCE (Local Collective Embedding) method, which is a strong baseline for CMF

in the field of recommender systems. This performance improvement was observed

across various metrics, indicating the robustness of our approach in addressing the

item cold start problem.

While our current results are promising, there are several avenues for future

research and improvement. We plan to extend our experiments to include other

types of data for item features, such as user reviews, critic reviews, or metadata

about the movie’s production. As well as consider entirely new domain such as

Amazon Reviews and Goodbooks dataset. Additionally, we intend to modify the

factorisation of the user preference matrix to consider pairwise interactions, similar

to the approach we explored for item features. This could potentially capture more

complex patterns in user behaviour and preferences. Given the rapid advancements in

language model technology, we aim to experiment with newer Sentence Transformers

as they become available, potentially improving the quality of our feature extraction.

As we move towards larger datasets, it will be crucial to investigate the scalability of

our approach and develop optimizations for handling vast amounts of data efficiently.



Bibliography

[1] Abdollahpouri, H., Burke, R., and Mobasher, B. Controlling popu-

larity bias in learning-to-rank recommendation. In Proceedings of the eleventh

ACM conference on recommender systems (2017), pp. 42–46.

[2] Ahn, J.-w., Brusilovsky, P., Grady, J., He, D., and Syn, S. Y. Open

user profiles for adaptive news systems: help or harm? In Proceedings of the

16th international conference on World Wide Web (2007), pp. 11–20.
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