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Abstract

Speech Enhancement (SE) is a vital technology for online human communication. Applications of
Deep Neural Network (DNN) technologies in concert with traditional signal processing approaches
to the task have revolutionised both the research and implementation of SE in recent years.
However, the training objective of these Neural Network Speech Enhancement (NNSE) systems
generally do not consider the psychoacoustic processing which occurs in the human auditory system.
As a result, enhanced audio can often contain auditory artefacts which degrade the perceptual
quality or intelligibility of the speech. To overcome this, systems which directly incorporate
psychoacoustically motivated measures into the training objectives of NNSE systems have been
proposed.
A key development in speech audio processing in recent years is the emergence of Self Supervised
Speech Representation (SSSR) models. These are powerful foundational DNN models which can be
utilised for a number of more specific speech processing tasks, such as speech recognition, emotion
detection as well as SE. Finally, the methods of evaluation of SE systems have been revolutionised
by DNN technology, that is to say the creation of systems which are able to directly predict Mean
Option Score (MOS) ratings of Speech Quality (SQ) or Speech Intelligibility (SI) derived from
human listening tests.
This thesis aims to investigate these three areas; psychoacoustic training objectives of NNSE, the
incorporation of SSSR features and the prediction of human derived labels of speech directly from
audio signals. Further, the intersection of these areas and combined use of techniques from these
areas will be investigated.
A widely adopted approach for psychoacoustically motivated NNSE training is the MetricGAN
framework. Here, a NNSE network is trained as generator adversarially (pitted against in
competition) with a metric prediction discriminator. The discriminator is tasked with predicting
the score assigned to the input audio by a (typically non-differentiable and thus unable to be used as
a loss function directly) metric function, while the generator uses inference of the discriminator to
obtain a loss value for its outputs. While MetricGAN has proved effective and is becoming a widely
adopted technique, there is scope to improve it in several areas. Several of the contributions of this
thesis are related to these improvements including the introduction of an additional DNN tasked
with improving the range of inputs to the metric prediction Discriminator, changes to the Neural
Network (NN) structure of both components and the prediction of non-intrusive measures among
others. A key finding of this work is that perceptually motivated NNSE systems tend to overfit
towards the target perceptual metric, resulting in degraded ”real world” enhancement performance.
The concept of the metric prediction is further developed into systems proposed for the related task
of DNN based human MOS prediction. This can be done intrusively meaning that the system has
access to a non-distorted version of the signal under test as a reference or non-intrusively meaning
that only the signal under test is available. Here, human labels of SQ or SI are directly predicted
from the audio signal stimulus. SI prediction is mainly investigated in the domain of hearing aid SE
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system evaluation in this work. State of the art performance is achieved by SQ prediction systems
developed and presented in this work.
Two novel applications of SSSR are presented. Firstly, as feature space representations in the
loss function of NNSE systems. In particular, it is found that using earlier intermediate DNN
layer outputs in this application is particularly effective, and a strong correlation between the
SSSR distance measure and psychoacoustic metrics and MOS labels is shown. Secondly, SSSR
representations are proposed for use as feature extractors for the discriminator DNN components of
the MetricGAN framework, as well as for MOS estimators.
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Chapter 1

Introduction

1.1 The Speech Enhancement Task

Since the advent of computerised speech processing in the 1960s (David & McDonald, 1956) many
different techniques and use cases have emerged. These have had transformational effects on global
society, expanding and changing the way we communicate with each other, and increasingly with
our tools and machines. Typically these techniques are divided in two categories - front-end and
back-end systems (Haeb-Umbach et al., 2021). The former deals with the initial processing of the
input audio signal; applications which fall into this category include beamforming (Li et al., 2021),
de-reverberation (Fu, Yu, Hung, et al., 2021), source separation (Ravenscroft et al., 2022; T. Sun
et al., 2021), acoustic echo cancellation (Xiong et al., 2012), and Speech Enhancement (SE) (de
Oliveira, Grinstein, et al., 2024; Fu et al., 2019; Richter, Welker, Lemercier, Lay, Peer, et al., 2024).
The latter category (sometimes called the downstream task) encompasses the reasons why input
speech is being processed, for example Automatic Speech Recognition (ASR), video conferencing
or simply storage for later playback. It is important to design a pipeline of front-end and back-end
systems which is appropriate to the recording environment and speakers being captured. The aim
of the front-end should be to improve the performance of the back-end task. Figure 1.1 shows an
example pipeline of an SE system in an scenario typical of those discussed in this work, wherein
speech is recorded in a noisy environment by a single microphone channel. In this work, the class of
system being targeted are front-end systems for the task of Speech Enhancement (SE) any for which
human perception of the output is of critical interest. This includes real-time (causal) applications
where the processing time of the audio must be short to minimise system delay such as online video
or voice calls as well as non real-time (non-causal) applications such the post-recording processing
of lecture recording audio. To further narrow the scope of interest, this work is concerned primarily
with front-end systems where a single recording channel is available and where the distortion to the
speech signal can be characterised as additive environmental noise. This class of front-end system
has a long lasting history of research (Hendriks et al., 2013; Lim & Oppenheim, 1978) and has seen
a significant increase in research interest and development in recent years (Babaev et al., 2024;
Bulut & Koishida, 2020; Defossez et al., 2020; Kounovsky & Malek, 2017; Yen et al., 2023), as the
world-wide changes in work patterns due to the COVID-19 pandemic continue. Remote working
has become increasingly commonplace which necessities meeting conference software tools with
robust SE capabilities to handle diverse working environments.
In the last decade, use of data driven approaches, namely Deep Neural Networks (DNNs) have
exploded in popularity across the entire field of computer science (Bengio, 2009; Rumelhart et

2
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Figure 1.1: Basic front-end pipeline for Speech Enhancement in a noisy environment
with a single microphone.
For more detail on the signal model used in this work, see Section 2.1.

al., 1986; Vaswani et al., 2017). Speech processing has not been untouched by this development,
with the advent of Neural Network Speech Enhancement (NNSE) systems which significantly
outperform traditional signal processing based approaches. In parallel, the metrics used to assess SE
systems have similarly undergone drastic development thanks to DNNs (Kumar et al., 2023; Mittag
et al., 2021; Reddy et al., 2022), however at a somewhat less breakneck pace; typically performance
assessment of NNSE systems still rely on signal processing based metrics.

1.2 Motivation, Research Questions and Contributions

1.2.1 Towards A Unified View of Loss Functions and Metrics

Typically in NNSE literature, two classes of function for assessing audio signals are presented, the
loss (or cost) function L(·), and the evaluation metric Q(·). In the standard supervised training
setup, L(·) takes as two inputs: a representation of the NNSE output audio signal ŝ[n] and the
corresponding clean reference signal s[n]. The purpose of the loss function L(·) is to compare
these two inputs in a mathematically differentiable way, such that the output loss value l can be
back-propagated to the neural network, updating its parameters. For more information on NNs in
general, see Section 2.4.

The purpose of the metric function Q(·) on the other hand is to assess some aspect of the enhanced
audio ŝ[n] in order to evaluate the performance of the NNSE system. Intrusive metric functions
typically take as input pairs (s[n], ŝ[n]), and return some metric value q which represents an
assessment of the particular quantity of the speech signal that the metric function is designed to
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Figure 1.2: Overview of SE metrics and NNSE loss functions

assess. By comparing the metric score assigned to the noisy input x[n] to that assigned to ŝ[n], it
is possible express how well the particular quantity of the speech audio has been improved by the
enhancement system. For more detail on NNSE metrics see Section 2.7.

Taking a high level view of these two classes, some striking similarities can be observed. Both L(·)
and Q(·) take some audio signal as input and return a single value, with that value representing the
ability of the system which has processed that signal to enhance it. In fact, some functions such as
the Scale Invariant Speech Distortion Ratio (SI-SDR) are commonly used as both loss function and
evaluation metric. The major difference between the classes is the hard requirement that L(·) has to
be differentiable.

Figure 1.2 gives an overview of NNSE loss functions L(·) and SE performance metricsQ(·) used in
this work in regards of their intrusiveness and differentiability. The purple circle contains functions
of the class Q(·), which fall into one of two types; intrusive metrics in orange or non-intrusive
metrics in green. All loss functions L(·) used in this work are shown in red which by definition also
fall within the yellow area which denotes differentiability.

The unification of NNSE training objective and SE metric is not without problems. In the case of
intrusive (i.e with reference) metric optimisation, there is the problem of ’overfitting’ (becoming
overly familiar with the training data) towards the score assigned by the metric (or a proxy of the
metric). In this case, the score of the target metric of the output audio is high but is low in other,
non-target metrics; in other words, the NNSE system has learnt to exploit flaws inherent to the
computation of the metric. When the NNSE system is being optimised towards a non-intrusive
MOS predictor, a similar issue can occur where the NNSE system learns to produce audio outside
of the space of audio which the MOS predictor has observed during it’s own training, rendering
the predictor unable to properly assess it. Shown in bold in Figure 1.2 are the core interests of
this work, along with the chapters in which they are explored. Firstly the creation of intrusive,
differentiable predictors of intrusive SE metrics for use in NNSE training within the MetricGAN



CHAPTER 1. INTRODUCTION 5

framework. Secondly, the use of features derived from SSSR in intrusive loss functions for NNSE
training. Finally, the creation of non-intrusive DNN based MOS predictors for both evaluation and
training of NNSE systems.

1.2.2 Research Objectives and Questions

This thesis aims to satisfy three main research objectives, which correspond to the areas highlighted
in Figure 1.2:

• Objective 1 Develop extensions and improvements for an NNSE framework which involves
an ‘in the loop’ metric prediction component. See Part II.

– How can normally non-differentiable SE metrics can be incorporated into loss functions
for the training of NNSE systems?

– What methods to improve the ability of the metric prediction component of such systems
to adapt to metric scores which do not appear in the training data can be devised?

– How does use of DNN structures for NNSE which incorporate encoding of phase
information effect performance of such systems?

• Objective 2: Investigate the use of Self Supervised Speech Representations (SSSRs) in NNSE
training objectives. See Part III.

– How can audio representations derived from pre-trained SSSR models be incorporated
into loss functions for training NNSE systems?

– To what degree do existing and proposed loss functions correlate with SE metrics and
human MOS scores?

– What is the the effect of the training data in terms of quantity and language of the audio
used as well as the pre-training objective used in the creation of the SSSR models for
this use?

• Objective 3: Explore the design and applications of DNN-based predictors of human
assigned/derived labels of Speech Quality (SQ) and Speech Intelligibility (SI). See Part IV.

– To what extent can traditional metrics be used as pre-training objectives for this task?

– How does the nature of the features extracted from audio effect prediction performance?

– What are the training data related issues associated with these tasks and how can
different corpora be combined effectively?

– How can inference of prediction models be incorporated into NNSE training?

1.2.3 Contributions

The contributions of this thesis have been published as a series of conference papers (Close, Hain,
et al., 2022; Close, Hain, et al., 2023a, 2024, 2023b, 2023c; Close, Hollands, et al., 2022; Close,
Ravenscroft, et al., 2023a, 2024, 2023b; Mogridge et al., 2024; Ravenscroft et al., 2024; Sutherland
et al., 2024) and am (under review) journal paper, (Close et al., 2025). The following lists in brief
the nature of these contributions, and the subsequent section of this thesis in which they are detailed.
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1. In (Close, Hain, et al., 2022) an extension to the MetricGAN+ (Fu, Yu, Hsieh, et al., 2021)
which introduces an additional ‘de-generator’ structure to the framework. The purpose of
this extension is to widen the range of metric scores observed by the metric prediction
component of the framework. The proposed system MetricGAN+/- outperforms the baseline
MetricGAN+ on common test sets. See Chapter 3 for further details.

2. In (Close, Hain, et al., 2023c) experiments involving advanced NNSE structures which are
able to implicitly encode phase information are carried out, incorporating the findings of (Fu,
Yu, Hsieh, et al., 2021) and (Close, Hain, et al., 2022). This work is detailed and expanded
upon in Chapter 4; this chapter also explores techniques to reduce the training time overhead
of the proposed systems, training and testing on a more realistic version of the training dataset
and optimising towards an ASR system. The idea of ASR optimised NNSE training was
further developed in (Ravenscroft et al., 2024).

3. In (Close, Ravenscroft, et al., 2023a) and (Close, Ravenscroft, et al., 2024) variations of the
MetricGAN-U framework (Fu, Yu, Hung, et al., 2021) which incorporate the non-intrusive
SQ prediction metric Deep Noise Suppression Mean Opinion Score (DNSMOS) are proposed,
initially as an entry to the Computational Hearing in Multisource Environments 7 (CHiME7)
Unsupervised Domain Adaptation Speech Enhancement (UDASE) challenge. Chapter 5 and
Chapter 6 detail the proposed CMGAN+/+ and Multi-CMGAN+/+ systems respectively.

4. In (Close, Ravenscroft, et al., 2023b) the use of intermediate representations derived from
SSSRs in NNSE loss functions is proposed which outperforms traditional spectrogram based
losses. Further, the correlation between the proposed loss functions and intrusive SQ metrics
is analysed as well as with human MOS labels. This work is detailed in Chapter 7.

5. As a follow-up to (Close, Ravenscroft, et al., 2023b), (Close, Hain, et al., 2023a) the nature of
the SSSR used in the previously proposed SSSR loss functions is considered. In particular the
language of the audio used to train the SSSR is investigated; to enable this, a framework for
the generation of training, validation and test sets for NNSE systems in a number of languages
is proposed. Results for NNSE systems trained and tested on these proposed datasets is
detailed in Chapter 8. A related technique for the speech source separation task was proposed
in (Ravenscroft et al., 2024).

6. In (Close, Hollands, et al., 2022) an entry to the Clarity Prediction Challenge 1
(CPC1) (Graetzer et al., 2020) is proposed. The proposed approach involves pre-training
a DNN by predicting Speech Intelligibility (SI) metrics before fine-tuning on real human
intelligibility values. Further, the correlation between real human intelligibility scores and
intelligibility metrics is explored. The proposed system is detailed in Chapter 9.

7. A follow up work to (Close, Hollands, et al., 2022) which incorporates the use of SSSR feature
representations for the SI prediction task was published as (Close, Hain, et al., 2023b) and is
detailed in Chapter 10. An entry (Mogridge et al., 2024) to the Clarity Prediction Challenge
2 (Barker et al., 2024) which builds on this approach ranked second overall in the challenge.
Further, a method for training hearing aid NNSE systems was proposed in (Sutherland et al.,
2024).

8. In (Close et al., 2025) several models for the SQ prediction task are proposed which make
use of input features derived from an SSSR and the Whisper ASR model (Radford et al.,
2022). State-of-the-art performance on a common testset is achieved by use of such features.
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Chapter 11 details the proposed models, along with several experiments investigating the
training corpora combination, task variations and model structure.

9. Finally, in (Close, Hain, et al., 2024) a pre-trained SQ predictor like that proposed in
Chapter 11 is incorporated into the loss function for an NNSE system. Potential problems
with this approach are noted, and a small human listening test is performed. This contribution
is detailed in Chapter 12.

1.3 Thesis Structure

This thesis is structured in 5 parts. In the remaining portion of Part I, the core tasks, concepts,
datasets and baselines used in the subsequent parts are detailed. Each of the three subsequent
parts aims to contribute to one of the research objectives detailed above. In Part II, variations
and improvements on a baseline psychoacoustic metric motivated NNSE system are proposed. In
Part III, the use of features derived from pre-trained foundational speech models in the training
objective of NNSE systems is explored. Then, in Part IV approaches to the tasks of metric and
human MOS/Intelligibility prediction are proposed, and used in the training objective of an NNSE
system. Finally, Part V concludes the thesis with a brief summary and discussion of avenues for
future work.



Chapter 2

Background

In this chapter, the background for the later experimental work is detailed. This comprises a
description of the signal model for the core SE problem addressed in this work, an explanation
of the acSE problem generally and the means by which is it assessed, an introduction to the DNN
concepts used, data description and finally details of the core baseline systems .

2.1 Notation and Signal Model

This section will introduce the signal model and important notation which will be used throughout
the remainder of this work.

2.1.1 Signal Model

The discrete speech signal x[n] recorded by a single microphone in a noisy environment is given as

x[n] = s[n] + v[n] (2.1)

where s[n] is the desired speech signal, v[n] is additive noise and n is the discrete time index
−∞ ≤ n ≤ ∞

2.1.2 Single Channel Speech Enhancement

The goal of single channel SE system G(·) is, given the microphone signal defined in (2.1), to return
an estimation of the clean speech signal s[n] denoted as ˆs[n]. This enhanced output of G(·) , ŝ[n] is
an a estimation of s[n] is given as

ŝ[n] = G(x[n]) ≈ s[n] (2.2)

8
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2.1.3 DNN Metric Prediction

The predicted speech aspect value q as predicted by a non-intrusive DNN speech metric prediction
network D is given as

q̂ = D(x[n]) (2.3)

with intrusive DNN prediction given similarly as

q̂ = D(s[n], x[n]) (2.4)

.

2.1.4 STFT Features

Throughout this thesis, a number of speech signal representations derived from the Short Time
Fourier Transform (STFT) are used as depicted in Figure 2.1. From a time domain speech audio

Figure 2.1: Illustration of STFT feature computation. The variable p[n] is a placeholder
for any signal, i.e p[n] ∈ {x[n], s[n], ŝ[n]}

signal p[n], complex time-spectral features P ∈ CFHz×T are calculated using the STFT of length
(i.e the number of samples being transformed in each window) FHz for each of T frames of a
placeholder time domain signal p[n], to obtain real part PRe and imaginary part PIm. From these,
a magnitude spectrogram PMag and phase information PP can be computed. Further, an additional
processing step applied depending on the system either log(PMag +1) or a power law compression.
Specifically, each feature is obtained as follows:

P =

∞∑
n=−∞

p[n] · h[n−m] · e−j2πfn (2.5)

where:

• P is the STFT spectrogram matrix of the signal p[n]

• m is the discrete time index of the windowed signal.

• f is the frequency variable.
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• h is a (Hanning) window function centred around time n.

• e−j2πfn is the complex exponential function representing the Fourier kernel.

• j is the imaginary unit, j =
√
−1.

P is complex valued, from which the real component PRe and imaginary component PIm can be
obtained. The magnitude spectrogram PMag can be obtained by:

PMag =
√

P2
Re + P2

Im (2.6)

The phase representation PP is calculated as the argument (or angle) of the complex number:

PP = arctan(PIm,PRe) (2.7)

where arctan(y, x) is the four-quadrant inverse tangent function that computes the angle θ from the
conversion of rectangular coordinates (x, y) to polar coordinates (r, θ).

2.2 Speech in Noisy Environments

When speech recordings are made, in addition to the desired speech signal, various corrupting
aspects (noise) of the recording environment are also captured. A number of factors including the
distance between the speaker and the microphone, and the nature of the recording environment
affects the degree of this corruption. This corrupting noise can have a detrimental effect on the
downstream task.

Figure 2.2 shows visual representations of a ‘clean’ speech signal s[n] (left panel) recorded in
a controlled environment with minimal background noise alongside a ‘noisy’ version x[n] (right
panel) of that same speech signal which has had background noise v[n] artificially added. The upper
representations are time domain waveforms which show the amplitude of the signals over time; from
these the corrupting effect of the noise in the speech signal can be observed as additional ‘spikes‘
in signal content e.g in the first 0.5 seconds. The lower representations show the frequency domain
magnitude spectrograms computed via a STFT. To obtain this frequency domain representation,
first the time domain signal is divided into overlapping segments, usually between 10ms and 30ms
in duration. Then an analysis window function (typically a Hanning or Hamming window) is
applied to each segment, and the frequency representation of each is computed using the Fast
Fourier Transform (FFT) algorithm. The magnitude of the energy in each frequency bin (as encoded
vertically on the spectrogram representation) is expressed on a decibel dB scale. These spectogram
show clearly where the noise is present in the non speech regions surrounding the speech and also
where the noise obfuscates the speech spectrally.

As shown in Figure 2.3 different environments have their own unique noise characteristics and thus
effect the speech signals in different ways. The amount of noise present in a signal can be expressed
as the Signal-to-Noise-Ratio (SNR) (cf. Section 2.7.2). The higher the SNR value, the lesser the
effect of the noise on the speech signal. As shown in Figure 2.4, the lower the SNR value, the less
distinct the speech signal is from the the noise in the spectrogram.
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Figure 2.2: Waveform (top) and spectrogram (bottom) representations of clean (left)
and noisy (right) speech, sourced from the VoiceBank-DEMAND (Valentini-Botinhao
et al., 2016) dataset.

2.2.1 Digital Audio Representation

Typically in digital systems, audio is captured or stored in a linear Pulse Code Modulation
(PCM) (Oliver et al., 1948) format as an array of amplitude values along with a sample rate which
describes the rate of playback in terms of number of samples to be processed in one second. For
example, an audio file consisting of 48000 samples with a sample rate of 16000Hz would last
48000/16000 = 3 seconds. The higher the sample rate the higher the effective resolution of
the audio recording, at the cost of higher storage requirement. Typically, 16000Hz (16kHz) is
considered a reasonable rate capturing the nuance of speech audio. Audio at some given sample
rate can be downsampled to some lower sample rate or (less commonly and more problematically)
upsampled to some higher rate. In this work, the uncompressed Waveform Audio File Format
(WAV) (Fleischman, 1998) is used throughout.
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Figure 2.3: Speech spectrograms in four different noise environments, all with a SNR
of 2.5dB

2.3 Speech Enhancement Algorithms

The aim of speech enhancement algorithms is to process the speech in such a way that the portion of
the microphone signal which contains target speech is retained and enhanced, while all other noisy
portions of the signal are reduced or removed. This can be achieved with the aim of improving the
human perception of the quality or intelligibility of the speech signal or to reduce the errors in the
automatic computer processing, e.g. transcription.

2.3.1 Signal Processing Based Speech Enhancement

Traditionally, this task has been approached using a signal processing based solution wherein the
noise portion of the input signal is probabilistically estimated and attenuated from the signal. Such
approaches often assume that the speech and noise parts of the signal are uncorrelated. However,
there are several situations where the parts of the signal which are being treated as noise are in
reality highly correlated with the target speech i.e when the input signal contains competing speech
signals. Figure 2.5 shows clean, noisy, and enhanced speech using a traditional noise reduction
algorithm (Hendriks et al., 2013). This algorithm has three component steps; first a frequency
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Figure 2.4: Speech spectrograms in four different SNRs, all noise is from a cafe
environment sourced from the VoiceBank-DEMAND (Valentini-Botinhao et al., 2016)
dataset

domain representation is computed from the input time domain signal using a magnitude discrete
Fourier Transform (MDFT). This is followed by a estimation of the noise Power Spectral Density
(PSD) using a per frame prediction of the presence of speech. Finally the PSD of the speech is
computed using the noise PSD.
While the noise has clearly been reduced, as shown in the dark regions of the enhanced spectrogram,
the algorithm has created spots of distortion which are easily visible in the non-speech regions.
These manifest as audible ‘musical tones’ when the enhanced signal is played back. Such can
distortions have a detrimental effect on the downstream task; for example, speech which has been
enhanced in such a way can sometimes significantly reduce performance of ASR, as important parts
of the signal can be destroyed by the enhancement. Further, such distortions can also degrade the
human perception of the enhanced audio.

2.3.2 DNN-based Speech Enhancement

In recent years, Neural Network Speech Enhancement (NNSE) has become increasingly popular
and has shown increased performance compared to the traditional methods. These approaches are
‘data driven’, meaning that their creation requires access to a large amount of noisy speech data.
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Figure 2.5: Noisy speech signal enhanced via traditional signal processing method

Additionally, DNN speech enhancement systems are typically trained (their parameters fitted) in
a ‘supervised’ manner which requires access to a clean ‘reference’ audio of the noisy audio. As
such, the training data usually requires artificially simulated noisy audio. There are two primary
techniques for NNSE networks, mapping and masking (L. Sun et al., 2017), shown in Figure 2.6 and
Figure 2.7, respectively. In the former, the output of the network is itself an enhanced version of the
input representation which can be directly transformed into the enhanced audio signal. In the latter,
the output is a so called ‘mask’ which, when multiplied with the noisy input representation,results
in the enhanced representation.

Neural Model

Figure 2.6: NNSE using a mapping approach

In early forays into mapping based NNSE (Y. Xu et al., 2014) a basic form of DNN, (a stack
of Restricted Boltzman Machines (RBMs)) is pre-trained in an unsupervised approach using
Contrastive Divergence (CD) (Bengio, 2009) over noisy data, before supervised fine-tuning using
a STFT domain loss function (cf.. (2.39)). A common objective in early NNSE masking based
systems (Y. Wang et al., 2014) was the prediction of an Ideal Binary Mask (IBM), defined for a
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Neural Model

Figure 2.7: NNSE using a masking approach

simulated noisy mixture magnitude STFT representation XMag

IBM(XMag) =

{
1, if SNRdB(XMag) > LC

0, otherwise,
(2.8)

where LC is a ‘local criterion’ usually set to be 5dB smaller than the SNR of the mixture.
Mapping and masking approaches were compared in (Kounovsky & Malek, 2017), using then novel
CNN layers in an NNSE network; it was found here that mapping based approaches outperform
masking; however contemporaneous work (Y. Wang et al., 2014) concluded that the opposite is
true. Generally speaking, mapping approaches have proved to be the most widespread, but are
typically trained with loss functions directly involving the enhanced synthesised audio ŝ[n] rather
than being directly trained using a target mask. Some recent methods involve the combination of
both techniques (Cao et al., 2022; Dang et al., 2022), such that the noisy magnitude input is masked,
while the enhanced real and imaginary components are mapped.

2.3.3 Speech Enhancement Generative Adversarial Network (SEGAN)

The standard Generative Adversarial Network (GAN) (cf. Section 2.6) structure has been applied to
the SE task, where the Discriminator is tasked with distinguishing between time domain outputs of
the speech enhancement Generator and clean time domain reference signals (Pascual et al., 2017).
A Least Square GAN (LSGAN) (Mao et al., 2016) approach is taken, such that the loss of the
Discriminator D is

LDSEGAN
=

1

2
[(D(s[n])− 1)2] +

1

2
[D((G(x[n]))2] (2.9)

, while that of the Generator G is

LGSEGAN
=

1

2
[(D(G(x[n])− 1)2)] + λSEGAN[||G(x[n])− s[n]||1] (2.10)

with λSEGAN being a hyper-parameter controlling the weighting of the L1 norm term. However
this loss formulation has no relation to human perception; to overcome this limitation, a
modification to the GAN structure has been developed which is designed to incorporate measures
of human perception or any other conceivable signal measure - MetricGAN (Fu et al., 2019) (cf.
Section 2.12).
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2.3.4 Metric Derived Objective Function

In both mapping and masking approaches explored in the papers described above and many
others (X. Lu et al., 2013; Y. Xu et al., 2015) the objective function of the learning component
being minimised is usually a MSE between the output of the network ŝ[n] and some oracle mask
or the clean reference s[n]. In (Fu, Wang, et al., 2018) it is noted that a small MSE distance does
not always correlate with surrogate measures of human perception such as PESQ and STOI or with
machine perception in the form of ASR performance. This suggests that it is a poor objective
function for this task. Thus the paper (Fu, Wang, et al., 2018) proposes a NNSE system that is
optimised with STOI as its objective:

LSTOI = −STOI(ŝ[n], s[n])− 1 (2.11)

The STOI function is a specially designed version of the function that allows it to be back-
propagated as it is implemented in a differentiable way. This NNSE system trained with the STOI
objective outperformed both utterance based MSE NNSE system in terms of STOI on the TIMIT
(Garofolo et al., 1993) dataset. However, this resulted in a degraded PESQ score compared to the
MSE objective models. The paper further proposes a mixture objective of time domain MSE and
STOI together:

LSTOI+MSE = [STOI(ŝ[n], s[n])− 1] + αSTOI−loss

N∑
n

(s[n]− ŝ[n])2] (2.12)

where αSTOI−loss is a weighing factor between the targets. This seems to balance out the PESQ and
STOI scores, as well as giving better ASR performance. While each of the steps in the computation
of the STOI score can be differentiated, allowing it to be directly used as an objective function, it is
a complex calculation. Furthermore, optimising for objectives more complex than STOI in this way
is a challenge.

2.4 Deep Neural Networks

Despite their recent ubiquity, Deep Neural Network (DNN) are not a new idea with some of the
first proposed as early as the 1950s (Kleene, 1956). The resurgence of interest and application in
recent years is due in part to hardware and software advances in Graphics Processing Unit (GPU)
systems which can be used to efficiently train ( i.e fit the parameters of) DNNs increased availability
of the large amount of data required thanks to increasingly faster and cheaper storage technology
and the data collection efforts of the research community. Training of DNNs can fall into two broad
categories,supervised and unsupervised, based on the nature of the loss function/training objective.
In the supervised setting, the DNN is provided with paired data of input and label; for example the
training data for ASR systems typically consists of speech audio paired with a text transcription or
for SE pairs of matched clean and noisy signals (s[n], x[n]). The task of the DNN in this setting is to
map from the input to the label. An overview of supervised DNN training is depicted in Figure 2.8.
In the unsupervised setting the network is provided with unlabelled data, and the objective of the

network is to find underlying structure and patterns within the data. In the training of unsupervised
DNNs the training objective is derived from some secondary statistic or representation of the data
itself. An overview of unsupervised DNN training is depicted in Figure 2.9. Note that all DNN
systems used in this work should more correctly be termed ”Artificial Deep Neural Networks”



CHAPTER 2. BACKGROUND 17

Figure 2.8: Supervised DNN Training.

Figure 2.9: Unsupervised DNN Training.

to distinguish them from vastly more complex biological neural networks (e.g. animal cognitive
functions). This qualifier is omitted for the sake of clarity.

There are three core aspects to the design and creation of all DNN systems:

• Network structure

• Loss function and training objective

• Training, validation and testing setup

This section will aim to describe each of these in the following, such that the specific details for
proposed DNN systems for SE and related tasks can better be understood.

2.4.1 Neural Network Model Structure

Neural networks generally consist of a number of layers of parameters, often ordered sequentially,
such that the output of one layer is the input to the next. These take many forms, with the simplest
being a linear (or fully-connected) layer. In a linear layer F , the input representation yn−1 is
multiplied by one set of weights and then a ‘bias’ value added to each:

yn = Fn(yn−1) = Wyn−1 + b (2.13)
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where yn is the output of the layer n, yn−1 is the output of the previous layer and W and b are
the weight matrix and bias value of the layer F respectively. The values of W and b are called
parameters and are updated during the training of the model, following a (random) initialisation.
Linear layers can map to output dimensions of different sizes to their input, such that an input
yn−1 ∈ RI can be mapped to an output yn ∈ RO by a linear layer with weight matrix W ∈ RI×O.
Figure 2.10 depicts a simple DNN consisting of 4 Linear Layers. The first of theseF1 maps from an

Figure 2.10: A simple DNN consisting of four sequential Linear Layers with no
activation functions.

input representation y0 ∈ R7 to y1 ∈ R5. The whole DNN depicted in Figure 2.10 can be expressed
as a chain of layers:

FDNN(y0) = F4(F3(F2(F1(y0)))) (2.14)

such that FDNN : R7 → R1. The final layer is referred to as the output layer and in supervised
training its output typically represents the models prediction of a ground truth label which regards
to the input data. The input to the first layer are called the input features. For example, if the task was
predicting the probability that it might rain on a given day, the 7 dimensional input feature might
encode information about the previous day’s precipitation, the current cloud cover, temperature,
date, etc. The single output neuron will contain the predicted probability of rain, given the specific
input features.

The layers between the input and output are called hidden layers and their outputs hidden units as
unlike the input and output layers their behaviour is not directly controlled by the designer of the
network. In the example DNN in Figure 2.10, layers F2 and F3 are hidden layers. During training,
the values of the parameters of each layer are updated based on the loss value computed by the loss
(objective) function using a backpropagation algorithm (Deisenroth et al., 2020). Each instance of
inference of a DNN during training is called a forward pass, while the parameter update step is call
the backward pass.

The parameter count of a DNN refers total number of learnable parameters in the DNN model.
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For example, layer F1 of the simple DNN in Figure 2.10 will have a weight matrix W of size
7 · 5 = 35 plus 5 bias values b giving a total of 40 parameters. Similarly, hidden layers F2 and
F3 have 5 · 5 + 5 = 30 parameters each, while the output layer F4 contributes 5 · 1 + 1 = 6
learnable parameters. Overall the parameter count of FDNN is 40 + 30 + 30 + 6 = 106. The size
of a model as represented by its total parameter count is of crucial importance in both training and
inference of a DNN. A model which is too small might be unable to learn the complex relationships
between the input data and the target. However, a model which is too large might be prone to
overfiting by learning exactly the content of the training data. Of particular importance for most
NNSE systems is that inference of the DNN be quick enough to handle real-time (i.e be able to
process a input sequence in less time than the length of the input in time) processing of the input
audio for applications such as video conferencing where the delay introduced by the system is
critical.

2.4.1.1 CNN

Convolutional Neural Network (CNN) (LeCun et al., 1989; O’Shea & Nash, 2015), or Convolutional
layers are an specialised form of linear layer. Each CNN layer is composed of a number of filters
or kernels. In the case of 1-dimensional Convolution, each filter ‘slides’ across the width of the
input vector, computing a scalar dot product value between the weights of the kernel and the input
then adding the bias term. The stride of a 1D Convolutional layer refers to the number of points the
kernel slides to obtain the next value in the output. Figure 2.11 depicts a single 1D CNN filter of
length 3 with differing stride values over an input x[n] of length 9 to obtain convolutional output
c[n]; the greater the stride value, the greater the level of sub-sampling of the input. The dilation
of a 1D Convolutional layer refers to how much the filter ‘skips’ elements of the input to produce
the next output sequence element; Figure 2.12 shows a 1D CNN filter of length 3 and stride 3 with
dilation of 1 (top) and 2 (bottom).

It is often desirable to preserve the size of an input through a CNN layer; to do this zero padding
is used. As the name suggests, this is the practise of appending values of 0 to the beginning or end
of the input sequence such that the length of the output is the same as the input when using a stride
of 1. Figure 2.13 shows an example of zero-padding to ensure that the output of the filter c[n] with
length 3 and stride 1 has the same length as the input x[n]

In the case of a 2-dimensional Convolution, each 2-dimensional filter slides across both the width
and height of the input matrix. All of the above properties of a 1D CNN also apply to the 2D case.
The size of a 2D CNN filter is expressed by a width and a height, and its stride by a movement
across the width and height of the input. The dilation and padding of a 2D CNN filter are defined
similarly. Figure 2.14 depicts two 2D CNN filters with differing sizes and strides. When several
CNN layers are chained together sequentially, a pooling layer is typically inserted between the
layers. The purpose of this pooling layer is to down-sample the filter output representations to
reduce the number of parameters in order to reduce overfitting or improve inference latency. One
form of pooling is average pooling; here a layer slides across the output of a filter, returning an
average value of the region under the pooling layer. Another similar approach is max pooling where
only the maximum value of the region under the filter is output. Figure 2.15 shows average and max
pooling with a pooling length of 2, halving the size of the filter output.

In relation to audio processing and SE, 1D CNN layers are more commonly used when the input
to the DNN is 1-dimensional i.e when it is time domain audio (Luo & Mesgarani, 2019). 2D CNN
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Figure 2.11: A 1D CNN filter of length 3 over an input sequence of length 9 with a
stride of 1 (top),2 (middle) and 3 (bottom) respectively.

layers are used when the input is a STFT domain representations with a time (length) and frequency
(height) dimension.

2.4.1.2 RNN and Long Short-Term Memory (LSTM)

Recurrent Neural Network (RNN) (Rumelhart & McClelland, 1987) layers have feedback
connections which allow them to retain a memory of past inputs. As input, an RNN takes in the
data and the previous hidden state which are processed by the layer. A simple RNN layer or cell
can be expressed as

hn = F(yn−1, hn−1) = tanh(yn−1Wy + by + hn−1Wh + bh) (2.15)

such that the layer output yn of the layer is a weighted and biased sum of the current input yn−1 and
the past output of the layer hn−1. Typically, a tanh non-linearity is applied to the output. Figure 2.16
shows a single RNN layer over three time steps n. A Long Short-Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997) unit is an variant of the RNN structure which introduces gates which control
the flow of information within the network layer. The introduction of these gates is intended to
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Figure 2.12: A 1D CNN filter of length 3 and stide 3 over an input sequence of length 9
with a dilation of 1 (top), 2 (bottom) respectively.

Figure 2.13: A 1D CNN filter of length 3 and stride 1 with left side padding of 2

address the vanishing gradient problem where long-term gradients can vanish as the number of
computations increases. Specifically, an input, output and forget gate are introduced. The forget
gate is responsible for deciding what information from the previous hidden state to discard, while
the input and output gates control which parts of the input and output data to store within the new
last hidden state. These gates are implemented similarly to the core RNN function (2.15), except
with a sigmoid non-linearity. The LSTM cell state lstmt is the sum of two element wise products
of the forget gate with the prior cell state and the input gate with the output of the standard RNN
cell. The output of the LSTM is finally the element-wise product of the output gate with the tanh
non-linearity of the cell state.

The Bidirectional Long Short-Term Memory (BLSTM) (Thireou & Reczko, 2007) is a further
variant on the LSTM which processes the input data in both directions (forward and backward),
combining the information from both the past and future inputs. The BLSTM consits of two LSTM
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Figure 2.14: A 2D CNN filter of size 2 × 2 and stride (2, 2) with right side padding of
(0, 1) and 2D CNN filter of size 2 and stride 1 with right side padding of (0, 1).

units, one of which processes the input forward and the other backwards. The outputs of these are
then concatenated to form the output of the BLSTM. The core utility of RNNs in SE is their ability
to capture temporal relationships in sequential input data.

2.4.1.3 Attention and Transformer

The attention mechanism was originally developed for RNN-based language modelling
tasks (Bahdanau et al., 2015) which required the computation of a context representation of the
input data. This context vector is computed with an attention mechanism such that it can apply
more weight to the most relevant features for the current RNN time step.

The Transformer (Vaswani et al., 2017) structure is a DNN which implements a mechanism of
scaled dot product attention. At it’s core, this involves the dot product of a the query matrix Q of
shape Lq ×Dq and a key matrix K of shape Lk ×Dk, such that Dk = Dq. The dot product is then
simply

QKT . (2.16)
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Figure 2.15: Average (top) and Max (bottom) pooling on the output of a 1D CNN filter

Figure 2.16: Forward pass of an RNN layer over three time steps

The scaled attention over some value matrix V is then defined as

A(Q,K,V) = softmax

(
QKT√
Dq

)
V. (2.17)

In self-attention, the query, key and value matrices are created from the same input representation
X:

Q = WqX

K = WkX

V = WvX

(2.18)

where Wq,Wk,Wv are matrices of learnable DNN parameters. By comparing the value at a given
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position in the input data sequence (the query) with each other position (the keys) in the data, an
expression of the relationship between each value and every other value in the data can be learnt.
In cross-attention, the query and keys are from a different sequence to the values, enabling an
expression of a relationship between the representations X and Y:

Q = WqY

K = WkY

V = WvX

(2.19)

Each Transformer block contains multiple attention layers (or heads) in parallel, (similar to how
each CNN layer contains multiple filters). The output of the Multi-Head Attention (MHA)
mechanism is concatenated and normalised before being input to a series of linear layers to give
the output of the Transformer block. Skip connection summations are typically placed after the
MHA and linear layers, adding the input representation of the layer to the output representation.
The input to a Transformer has a positional encoding applied to it in order to provide positional (in
the case of audio representations, temporal) information to the MHA, which otherwise has no way
of receiving that information.

A Transformer based architecture might include both self-attention and cross-attention mechanisms;
for an example of such an architecture see Section 2.5.3 introducing the Whisper ASR model. For
an example architecture utilising only self-attention Transformer blocks see Section 2.5.2. The
Transformer is particularly good at learning the long term dependencies within the input data.
Unlike RNN- based approaches, the entire input sequence can be processed at once, in parallel in this
manner. However, computing the scaled dot-product and softmax can be expensive computationally
and memory wise, especially for longer sequences. Typically, the input and output dimensions of a
Transformer block are equivalent, allowing for the chaining together sequentially of several identical
Transformer blocks.

2.4.1.4 Conformer

The Conformer (Gulati et al., 2020) is a variant of the Transformer which introduces a CNN
component following the MHA stage. Figure 2.17 shows the overall structure of a Conformer;
it consists of a self-MHA module followed by a Convolutional module between two identical
feed-forward Linear modules. The model utilises several dropout (Srivastava et al., 2014) layers
throughout; dropout is a widely used technique in DNN which helps to prevent over-fitting during
model training. Summation skip connections sum the input and output of each component block;
in the case of the Linear module, these are so called ‘half-step’(Y. Lu et al., 2019) connections
such that the values within the output representation are halved before summation with the input.
Each Linear Module consists of two Linear layers, the first of which projects to 4 times the size
of the input and has an Swish (Ramachandran et al., 2017) activation, while the second projects
back down to the size of the input, such that is can be summed with the input to the block. The
self-MHA Module follows a standard configuration described previously, with a relative positional
embedding. The Convolutional Module contains two distinct forms of CNN layer. The first is
the pointwise convolution (Hua et al., 2018) which uses filters of size (1, 1) such that each filter
is applied to each point of the input tensor, with no shifting across the input representation. The
other kind of CNN used in this block is a single depth-wise (across the filters) 1D layer. The first
pointwise convolution projects to twice the size of the input and has a Gated Linear Unit (GLU)
activation which encourages the second half of the output representation to act as a ‘gate’ over the
first, halving the dimentionality back to that of the input.
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Figure 2.17: Overview of a Conformer DNN block.

2.4.1.5 Structured State Space models and MAMBA

Stuctured State Models (SSM) models (Gu et al., 2022) are an emerging area of interest in DNN
design. A state space model can be defined as follows. A continuous 1D input signal p(t) is mapped
to an N dimensional continuous hidden latent state h(t) before projection to a continuous 1D output
signal o(t).

h′(t) = Ah(t) + Bp(t)

o(t) = Ch(t) + Dp(t)
(2.20)

h′(t) here defines the change in h(t) over time. In the context of DNNs, the matrices A,B,C,D
consist of learnable parameters. Computation of D is trivial as it resolves to a weighted residual
connection with the input p(t); in the following (and much of the literature) it is assumed that
D = 0. To transform the system from continuous to discrete such that an SSM can be formulated as
a DNN requires pt and computation of the value of the hidden state ht at a given time step t, which
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can then be used to get the output value ot:

ht = Āht−1 + B̄xt

ot = C̄ht
(2.21)

One method to discretize A and B to obtain Ā and B̄ is the bilinear method (Tustin, 1947):

Ā = (I−∆ssm/2 ·A)−1(I + ∆ssm/2 ·A)

B̄ = (I−∆ssm/2 ·A)−1∆ssmB

C̄ = C

(2.22)

where I is the identity matrix and ∆ssm is a ‘step size’ representing the resolution of the input.
Given that the value of ht is dependent on ht−1 this discrete form of the SSM can be modelled as
as a form of RNN. In order for the model to be trained efficiently, this RNN like formulation can be
converted into a CNN like one. Starting at time step t = 0, given that h−1 = 0, the hidden states
for t = 0, 1, 2 are:

h0 = B̄p0

h1 = Āh0 + B̄p1 = ĀB̄p0 + B̄p1

h2 = Āh1 + B̄p2 = Ā2B̄p0 + ĀB̄p1 + B̄p2

(2.23)

and so on.The discrete output o[t] can be expressed similarly:

o0 = C̄B̄p0

o1 = C̄Āh0 + B̄p1 = C̄ĀB̄p0 + C̄B̄p1

o2 = C̄Āh1 + C̄B̄p2 = C̄Ā2B̄p0 + C̄ĀB̄p1 + C̄B̄p2

(2.24)

and so on. This can be expressed as a summation of T terms where T is the length of the discrete
input sequence p[t]:

oT = C̄ĀT B̄p0 + C̄ĀT−1B̄p1 + ...+ C̄ĀB̄pT−1 + C̄B̄pT (2.25)

such that a convolutional kernel K̄ can be defined as

K̄ = (C̄B̄, C̄ĀB̄, ..., C̄ĀT B̄) (2.26)

such that the entire SSM mapping from discrete input u[t] to discrete output o[t] can be computed
by

o = K̄ ∗ u (2.27)

MAMBA (Gu & Dao, 2023) is a SSM model which differs from the standard design in two major
ways. Firstly it implements a selection mechanism which is dependent on the input sequence,
allowing for the effective filtering of the information encoded in that input. In practise, this means
that the computation of matrices B and C and the value ∆ssm are selective and dependent on
the content of the input u[t]. This is implemented by the learning of linear projections for each
component over the input sequence, similar to the computation of the key,query pairs in attention.
Further, A is fixed and structured as a high-order polynomial projection operators(HiPPO) (Gu et
al., 2020) matrix:

Ank =


(2n+ 1)1/2(2k + 1)1/2 if n > k,

n+ 1 if n = k,

0 if n < k,

(2.28)
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By learning a value of ∆ssm, the MAMBA model is able to control how much influence the
current input pt has over the hidden state ht; a large ∆ssm means that the model is focusing on
that input for ‘longer’, while a small ∆ssm value means that that input is ignored.By making B
and C selective allows for the control of information into the hidden state and into the output state
respectively. The second difference in MAMBA is that it introduces a hardware efficient ‘scan’
(rather than a convolution) algorithm which scales in complexity linearly with the length of the
input sequence. Compared to the now ubiquitous Transformer structure, MAMBA has shown
equivalent performance in a number of tasks, and is significantly more efficient computationally
both during training and inference. It has been applied to speech audio in the speech enhancement
task (Chao et al., 2024) and ASR (X. Zhang et al., 2024) where it demonstrated state-of-the-art
performance.

2.4.2 Neural Network Activation Functions

Typically the output of each layer of DNN is processed by an non-linear activation function, which
allows it to learn more intricate patterns. Without these, DNNs are only useful for mapping
linear relationships between data (Haykin, 2009). Activation functions are used both within a
DNN between hidden layers as well as at the final output layer to enforce some target (i.e a
Sigmoid activation function on the example binary classification model for rainfall introduced in
Section 2.4.1). Figure 2.18 visualises the characteristic of some of the activation functions used in
this work and described here.

Figure 2.18: Plots of various non-linearities used as DNN layer activation functions.
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2.4.2.1 Sigmoid

The Sigmoid function maps the input to a value in the range between 0 and 1:

Sigmoid(x) =
1

1 + e−x
(2.29)

where e is the mathematical constant Euler’s number (Euler, 1770).

2.4.2.2 Swish

The Swish activation (Ramachandran et al., 2017) is a variant of sigmoid which multiplies the input
by the output of the sigmoid function:

Swish(x) = x ∗ 1

1 + e−x
(2.30)

2.4.2.3 Tanh

The Tanh function applies the hyperbolic tangent to the input:

Tanh(x) =
ex − e−x

ex + e−x
(2.31)

2.4.2.4 ReLU

The Rectified Linear Unit (ReLU) (Fukushima, 1969) function maps negative values in the input to
0:

ReLU(x) = max(0, x) (2.32)

2.4.2.5 Leaky ReLU

Leaky ReLU (Maas et al., 2013) is a variant of ReLU which allows some small hyperparameter α
positive gradient scale for negative inputs:

LeakyReLU(x) = max(0, x) + α ∗min(0, x) (2.33)

2.4.2.6 Parametric ReLU

The Parametric ReLU (He et al., 2015) is a variant on Leaky ReLU where the scale of the positive
gradient is learnt along with the rest of the network, rather than being a hyperparameter.

PReLU(x) = max(0, x) + aPreLU ∗min(0, x) (2.34)

where aPreLU is a learnable DNN parameter.
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2.4.2.7 GELU

The Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016) activation function multiplies
the input by the Gaussian Cumulative Distribution Function, which is typically approximated:

GELU(x) = 0.5 ∗ x ∗ (1 + tanh(
√

2/π ∗ (x+ 0.044715 ∗ x3))) (2.35)

2.4.2.8 Softmax

The Softmax function rescales the input such that each element lies between 0 and 1 with the sum
of the output being 1. For each element xi in the input:

Softmax(xi) =
exi∑
j e

xj
(2.36)

2.4.2.9 GLU

The Gated Linear Unit (GLU) (Dauphin et al., 2017) function splits the input matrix in halves a and
b and element-wise multiplies the first half by the sigmoid of the second:

GLU(xa, xb) = xa ⊗
1

1 + e−xb
(2.37)

where ⊗ is an element wise multiplication.

2.4.3 Neural Network Loss Functions

A key aspect of the creation of supervised neural noise reduction networks is the loss term or
objective function. Broadly speaking, this is a function which returns a value that during training
the network attempts to minimise, and describes the difference between the model’s prediction and
the label. At each training step (over a ‘batch’ of inputs) this value is computed and used to update
the parameters of the network using a back-propagation algorithm.

Typically in NNSE training, the loss function is some distance computed between a representation
of the clean label (‘reference’) audio and the enhanced audio output by the model. The simplest of
these is the Mean Absolute Error (MAE) (l1) loss between the time domain reference audio s[n]
and the enhanced audio ŝ[n]:

LTime = |
N∑
n

1

N
(s[n]− ŝ[n])| (2.38)

Another commonly used loss function is the MSE between magnitude Short Time Fourier Transform
(STFT) representations:

LSpec(SMag, ŜMag) =
1

T · FHz

T∑
t

FHz∑
fHz

(SMag[t, fHz]− ŜMag[t, fHz])
2 (2.39)

These losses have been found to introduce artefacts in the enhanced speech and show a low
correlation with measures of human perception (Bagchi et al., 2018; Chai et al., 2018; Goetze
et al., 2014). Thus, models trained solely using a clean speech distance loss function may introduce
unwanted artefacts.



CHAPTER 2. BACKGROUND 30

2.4.4 Neural Network Training

In supervised DNN training, the data and label pairs are typically split intro three partitions, training,
validation and testing sets or splits. The model is trained using the training set; one full iteration
through the training set is referred to as an epoch. At the end of each epoch (or otherwise at
some interval during the training), the performance of the model is evaluated (without updating
it’s parameters) on the validation set. After training is complete, the model is then evaluated over
the testset. The design of the data partition is of critical importance. The validation split must be
different enough from the training data that a degradation in validation performance across epochs
can be used to reveal overfitting (learning the training data too well). Similarly, the training split
must also be distinct from the training data in order to assess the generalisation of the model to
unseen data, which is crucial for real-world uses. In datasets for the NNSE task, the testset audio
data contains distortion types and speakers which are not present in the training set. It is possible
to control if certain layers of parameters are updated during training; those which are set to not be
updated are called frozen parameters.

As an example, let’s return to the DNN depicted in Figure 2.10 tasked with predicting the chance
of rainfall on a given day. The training data for this task would consist of relevant input features
(rainfall on the days prior, cloud cover, temperature, date etc.) paired with a binary label of if it
did or did not rain under the conditions described in those features in the past. From this, a simple
binary classification model can be trained. In the design of the training/validation/testing split for
this task, it might be prudent to test the model on data from times of the year which it did not observe
during training i.e. to ensure that a model trained on data from winter can generalise to predicting
rainfall in the summer.

The training of DNN systems is affected by a number of hyperparameter values. These typically
include the learning rate which controls the influence of the loss value in the back-propagation stage,
and the batch size which is the number of inputs processed by the model in one update step. Other
hyperparameter values are used depending on the specific setup, for example feature transformation
and loss function; the parameters of an STFT transformation or the weighting between two loss
terms. More generally, a hyperparameter can refer to any value which is set by the designer of the
model and for which a value is not learnt during training.

2.4.4.1 Normalisation Layers

There are several common techniques for reducing training time and improving model
generalisation. Two commonly used techniques are batch normalisation (Ziaee & Çano, 2023)
and layer normalisation (Ba et al., 2016). In batch normalisation, each element in the batch is
normalised by the mean µbatch and variance σbatch of the entire batch:

BatchNorm(x) = γ

(
x− µbatch√
σbatch + ε

)
+ β (2.40)

where γ and β are learnable parameters and ε is some very small value to prevent potential division
by 0. Layer normalisation is similar, but applies normalisation relative to the mean µunit and
variance σunit of the values in the hidden unit representation:

LayerNorm(x) = γ

(
x− µunit√
σunit + ε

)
+ β (2.41)
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2.5 Pretrained Foundational Speech Models

2.5.1 Pre-training and Fine-tuning

A common strategy for DNN training is that of pre-training followed by fine-tuning. In pre-training,
the model is typically trained towards a unsupervised general objective using a large training set.
Then in fine-tuning, the model is trained on some smaller dataset with supervised objective towards
some specific task. In this work, a number of pre-trained models are used as feature extractors in
both the NNSE task and speech metric/MOS prediction, and are presented in the next section.

2.5.2 Self Supervised Speech Representation (SSSR)

Self Supervised Speech Representation (SSSR) models are DNN models of speech which are trained
in a self supervised way using large corpora of speech data (Baevski et al., 2020). This is typically
done by ‘masking’ a portion of the input and then tasking the model with recreating the masked
portion, in a manner similar to an auto-encoder network. At inference time, the network layers
responsible for the recreation step are removed and the model instead returns a deep ‘context’
representation of the input time domain audio. At this point, additional task-specific layers can
be appended to the network, with the self supervised representation model either being fine-tuned
or frozen as the task specific layers are trained. Generally speaking, SSSRs can be said to first
perceive the input audio in a feature encoder step, and then predict the context of the content of the
audio in the deeper layers.

SSSR models output a context representation of the input speech audio waveform. Structurally, they
consist of two main stages. The first, denoted by the operator GFE in the following with subscript
FE standing for feature encoder, is built from a number of 1D convolutional layers which convert
the input time-domain speech signal s[n] to a two-dimensional feature representation:

SFE = GFE(s[n]), (2.42)

with a feature dimension F (typically of size 512) and a time dimension T , i.e. the number of
frames, which is dependent on the length of the input audio signal. The strides and kernel widths of
the 1D Convolutional layers result in a output frequency of 49Hz i.e 1 second of audio at 16000Hz
sample rate is represented by 49 time dimension T indexes in SFE.

The second stage, denoted by GOL, consists of a number of self-attention Transformer (cf.
Section 2.4.1.3) layers and operates over a linear projection of the feature encoder output

SOL = GOL(GFE(s[n])). (2.43)

The output representation SOL shares the time dimension T with SFE but has a different, usually
larger feature dimension F . Subscript OL stands for output layer of the SSSR. Structurally, the
networks consist of two distinct stages as shown in Figure 2.19.

2.5.2.1 Pre-training objectives for SSSRs

There exist several schemes for the pre-training of SSSRs.
The wav2vec2.0 (Baevski et al., 2020) self-supervised pre-training objective is as follows. First,
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Figure 2.19: Representations extracted from SSSR model with time-domain input signal
s[n]. Feature channels are sorted (Ravenscroft et al., 2022) and values normalised for
clarity.

the output of the CNN feature encoder XFE is multiplied by a learnt projection to project each
512 length vector to length 640 logits. Each of these logits are divided into 2 groups G of vectors,
representing codebooks of 320 discrete vectors. A Grumbel-Softmax (Gumbel, 1954) is used to
sample a one-hot vectors for each group, giving 2 one hot vectors which are concatenated. From
this, a quantized vector jt for each t ∈ T in XFE is obtained, which can be projected by another
linear projection to the size of the feature dimension of GOL. The idea behind this is to build
these codebooks which are able to encode general common speech features across the inputs during
training. Then, 50% of the frames are masked, before being input to the Transformer stage GOL.
The output of GOL can be expressed as T vectors rt of length 1024. The task of the model is to
solve a contrastive identification problem by identifying the quantized vector jt which corresponds
to the each masked XFE frame

Lwav2vec = − log
exp(sim(rt, jt)/τwav2vec)∑
j̄∼Jt exp(sim(ct, j̄τwav2vec))

(2.44)

where τwav2vec is a scaling constant hyperparameter and sim(a, b) is the cosine similarity

sim(a, b) = aT b/||a||||b||. (2.45)

Overall this loss function maximises the similarity between the rt and the quantized vector jt of the
masked frame while minimising the similarity between rt and all the other masked frames. This
loss function is supplemented with a diversity loss (Dieleman et al., 2018) which encourages the
full scope of the codebook to be used.

The Hidden Unit BERT (HuBERT) (Hsu et al., 2021) pre-training objective differs significantly
from that of wav2vec2.0. Instead of a contrastive objective, an approach inspired by masked
language modeling (Devlin et al., 2019) is used. First, k-means clustering (Lloyd, 1982) is
performed over Mel-Frequency Cepstral Coefficient (MFCC) (Davis & Mermelstein, 1980) features
of the training dataset. Each MFCC feature vector of length 39 is assigned to one of 100 clusters.
From this, a hidden unit embedding vector of length T can be built, encoding to which cluster each
MFCC frame was assigned. Then, as in wav2vec2.0, 50% of the frames in XFE are masked and
input to GOL. Each frame in the output of GOL is projected to the same feature dimension as e (100
during the initial iteration) and a cross-entropy loss is is used to compute the similarity between
the masked frames and the hidden unit embedding. Following the initial iteration, in subsequent
iterations the k-means clustering is instead computed with 500 clusters over the output of one of the
intermediate transformer layers, clustering with 768 rather than 39 features.
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2.5.2.2 SSSR Representations

The Cross-Lingual Speech Representation (XLSR) (Babu et al., 2022) is an SSSR with the main
distinguishing feature being that it is trained using audio containing a large number of languages.
It is intended to act as a ‘universal’ model of speech, encoding latent speech representations which
are shared across languages. It is trained on 436k hours of speech from 128 different languages
from datasets including VoxPopuli, CommonVoice and BABEL1, with the Wav2Vec2 (Baevski et
al., 2020) contrastive masking objective. Note that unlike the other two SSSRs used in this work, it
is trained on potentially noisy data, notably CommonVoice (described below in Section 2.9.4) and
BABEL which contains conversational telephone recordings. Its GFE representations have a feature
dimension F of 512 while its GOL representations have an F of 1024.
Hidden Unit BERT (HuBERT) (Hsu et al., 2021) is an SSSR model; during training it makes use
of a BERT (Devlin et al., 2019) inspired loss function. The output of its feature encoder GFE has
a dimension of F = 512, while its final layer output after GOL has a feature dimension of 758. In
this work, the HuBERT model used is trained on the 960 hour Librispeech (Panayotov et al., 2015)
training set and is sourced from the fairseq GitHub repository2. It is important to note that this
dataset consists of English read speech only, so the model has only ever been exposed to English
speech.
Multilingual HuBERT (mHuBERT) (Lee et al., 2022) is a variation on HuBERT which has been
trained on multilingual speech data, specifically the English, French and Spanish language parts
of the VoxPopuli (C. Wang et al., 2021) dataset, each containing 4.5k hours totalling 13.5k hours
of speech. It has the same feature dimensions as HuBERT. It can be considered as a middle point
between the monolingual HuBERT and the massively multilingual XLSR.
WavLM (Chen et al., 2022) is a varient on HuBERT, which introduces a secondary SE task, wherein
k-mean clusters of clean audio are predicted from potentially noisy inputs. In this work, the WavLM
Base3 model trained on the Librispeech 960 hour (Panayotov et al., 2015) dataset is used which has
L = 12 Transformer layers. It has the same feature dimensions as HuBERT. Figure 2.20 shows
an overview of the WavLM architecture. The numbers in brackets of the 1D Convolutional layers
denote the stride and kernel width of that layer.
In (Hsieh et al., 2020) the relationship between the SSSR distances and perceptual measures is noted.
In (Tal et al., 2022), a number of techniques to incorporate SSSRs (namely HuBERT) into a single
channel speech enhancement system are proposed. One of these techniques, called ‘supervision’ in
(Tal et al., 2022) involves the use of the distance between the SSSR output representations of clean
reference speech and the enhanced noisy speech output by the enhancement model as an additional
loss term to train the model. This is in turn inspired by a prior work (Hsieh et al., 2020) in which
the Wasserstein distance between clean and enhanced SSSR representations of the audio is used as
a loss term.

2.5.3 Whisper

Whisper is a ‘weakly supervised’ encoder-decoder Transformer-based ASR system. It has shown
state-of-the-art performance on a number of monolingual ASR benchmark datasets, as well as
multilingual transcription and translation tasks (Radford et al., 2022). In this work, it is used as a
foundational model feature extraction system. Figure 2.21 shows an overview of the Whisper model

1https://catalog.ldc.upenn.edu/byyear
2https://github.com/facebookresearch/fairseq
3https://huggingface.co/microsoft/wavlm-base

https://catalog.ldc.upenn.edu/byyear
https://github.com/facebookresearch/fairseq
https://huggingface.co/microsoft/wavlm-base
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Figure 2.20: An overview of the WavLM architecture.

architecture, specifically, that of the whisper-small variant. It consists of several sequential
Transformer-based self-attention encoder blocks AE(·) followed by the same number of sequential
Transformer-based self-attention and cross attention decoder blocksAD(·). The input to the encoder
AE(·) is a log-Mel spectrogram matrix representation of the input audio x[n] (padded to 30 seconds
in length) denoted as XMEL, which is windowed by a 1 dimensional CNN layer with a GELU
activation function, followed by a sinusoidal positional encoding. Each Transformer block inAE(·)
consists of a self-MHA layer, followed by a linear layer with summation residual connections. The
output of the encoder is X

(12)
E a two-dimensional representation of dimension F of 768 by T of

1500 (Radford et al., 2022).

The Whisper decoder takes the form of a language model; the first Transformer block of the decoder
takes as input a sequence of tokens which encode the language, task, timestamp in seconds and the
previously transcribed words of the utterance. Each Transformer block in the decoder has access to
the output of the encoder via the cross-attention mechanism such that X

(12)
E is used as to compute

the key and query matrices. The final output of the decoder (not used in this work) is a prediction
of the next token (i.e. the next word) in the input sequence. The T dimension of the output of each
Whisper decoder layer is significantly smaller than any other feature used in this work.

Whisper is trained using a Connectionist Temporal Classification (CTC) like loss function
which allows for an alignment-free training over audio-transcript pairs. In this work the
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Figure 2.21: An overview of the Whisper DNN model architecture.

whisper-small4 model, trained on 680k hours of weakly-labelled speech data is used. Recent
work has found that features extracted from both the encoder (Santiago Cuervo, Ricard Marxer,
2024) and decoder (Mogridge et al., 2024) layers of Whisper are useful for capturing intelligibly-
related information.

The encoder AE(·) and decoder AD(·) of this model each have 12 transformer blocks; the set of
outputs of each of the constituent transformer blocks are denoted as {X0

E..X
(12)
E } and {X0

D..X
(11)
D }

respectively.

2.6 Generative Adversarial Networks (GANs)

A key concept which will be used throughout this work is that of the Generative Adversarial
Network (GAN) framework (Goodfellow et al., 2014). This structure involves the training of two
district DNNs, a Generator network and a Discriminator network. The Generator is the network
trained to produce some output specific to the target task, for example, production of an image
given a text prompt as input. The task of the Discriminator is to distinguish between the outputs of
the Generator and ‘real’ examples of samples in the target task domain. These two networks are
trained in tandem, with inference of the Discriminator network used to form the loss function of the
Generator.
A useful way to think about this structure is to think of the Generator as an art forger and the
Discriminator as an art expert. The art forger produces paintings with the goal of ‘fooling’ the

4https://huggingface.co/openai/whisper-small

https://huggingface.co/openai/whisper-small
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art expert into labelling their work as real, while the art expert attempts to correctly label the real
paintings as real and the forger’s forgeries as such. As the two networks are trained together, they
learn adversarially to beat each other in this ‘game’.

Figure 2.22 shows the general approach to GAN training. The ‘Real/Fake Probability’ output of

Generator

Discriminator

Real Data

Real/Fake Probability

Figure 2.22: Typical GAN structure overview

the Discriminator is used to formulate loss functions for both networks. Note that in this example
no specific input representation is given to the Generator, but this is not the case in the GAN
applications studied in this work.

GANs have been found to be useful in a number of areas, particularly in the image processing
domain for applications such as image generation (B. Zhang et al., 2022), style transfer (Azadi et
al., 2018), and many others (Ramesh et al., 2021).

2.7 Assessing Performance of Speech Enhancement

The two quantities of assess the speech audio are the quality and intelligibility:

• Speech Quality (SQ) relates to the aspects of the speech signal which are independent of
linguistic/semantic meaning of the speech. High quality speech audio dose not contain any
audible non-speech environmental sound and the speech signal is un-distorted.

• Speech Intelligibility (SI) relates to the clarity of the semantic content of the speech such that
the meaning of what is said is preserved.

These concepts are related, such that high quality audio is typically also highly intelligible. Both
signal processing and DNN approaches to speech enhancement require means of assessing and
comparing the performance of the proposed system. In SE, opinion scores regarding enhanced
and noisy speech can be gathered through listening tests; however, this can be expensive and time
consuming. To avoid this, computational estimators (metrics) of the quality (Rix et al., 2001) and
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intelligibility (Taal et al., 2011) have been developed. Intelligibility of speech is usually defined
as the number of speech units (words or phones) which can be correctly identified in the signal
by human assessors. Intelligibility of speech degrades mainly at very low SNR values. Quality
of speech is less strongly defined and is highly subjective; different human assessors can have
wildly different criteria for what constitutes high or low quality, leading to a high variance in quality
assessments. As such, human evaluations of quality are often averaged over the ratings for each
signal. Some metrics also incorporate features other than time domain signals to their input, such as
representations of a specific individual’s hearing loss (Kates & Arehart, 2014). A number of metrics
are psycho-acoustically motivated meaning that they attempt to incorporate a model of the physical
and mental characteristics of human hearing. Metrics which are not explicitly related to human
perception but which do correlate with them such as the SNR also exist, as well as those derived
from weighted combinations of a number of component measures (Lin et al., 2019). Metrics can
be either intrusive (cf. Figure 2.23), meaning that they require the existence of a ‘clean’ (free from
noise) reference version of the signal under test for comparison or non-intrusive (cf. Figure 2.24),
meaning that only the signal under test is required. Non-intrusive metrics often use an ‘internal’
reference to assess the input signal. An issue with intrusive measures is that they are less useful
to assess the aspects of ‘real’ data for which no reference signal can be easily obtained. When

Q(p, s)

p(t)

s(t)

Intrusive
Metric

Figure 2.23: An intrusive metric computed for the signal p(t) on a time domain signal
given the reference signal s(t)

Q(p)

p(t)

Non-Intrusive
Metric

Figure 2.24: A non-intrusive metric computed on a time domain signal p(t).

datasets for speech enhancement tasks are created, a common technique is to mix the clean speech
signals with the noise at discrete SNR values. The general approach for the assessment of speech
enhancement systems is to compare the mean value of a number of these metrics on a shared ‘test
set’ of data.
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This section will introduce some of the signal assessment metrics which will be used in the following
chapters.

2.7.1 Mean Opinion Score

Mean Option Score (MOS) (P.10 : Vocabulary for performance, quality of service and quality of
experience, 2017) is way of averaging human assessment of an audio signal. Typically, human
evaluators are asked to listen to audio and assign a score between 1 and 5 (Bad, Poor, Fair, Good,
Excellent) higher being better. Then for a signal p the MOS can be obtained:

MOSp =

∑N
n−1Rn

N
(2.46)

where Rn is the score assigned by human assessor n and N is the total number of assessors
for the signal p. There exist many standards for the gathering of MOS scores. Some,
such as (Subjective test methodology for evaluating speech communication systems that include
noise suppression algorithm. 2003) task the human participants with evaluating the audio
over a number of dimensions, while others such as Multiple Anchor, Hidden Reference
Assessment (MUSHRA) (International Telecommunication Union, 2015) involve an intrusive,
direct comparison between a number of signals simultaneously.

2.7.2 Signal to Noise Ratio

One of the fundamental signal assessment measures is the Signal-to-Noise-Ratio (SNR). This can
be broadly defined as the power of the desired signal s compared to the power of the undesired noise
v:

SNRdB(x) = 10log10(
sP
vP

) (2.47)

where the power of the speech signal s[n], sP can be estimated by 1
N

∑N−1
n=0 s[n]2. Calculation of

SNR requires either the true value of v[n] and s[n] or an estimation of them.

2.7.3 Scale Invariant Signal Distortion Ratio

The SI-SDR (Roux et al., 2018) is a widely used intrusive metric for a number of audio tasks
including SE. It is defined for a given noisy input signal x[n] as

SI− SDR(s[n], x[n]) = 10 log10

∥∥∥ 〈x[n],s[n]〉s[n]
‖s[n]‖2

∥∥∥2

∥∥∥x[n]− 〈x[n],s[n]〉s[n]
‖s[n]‖2

∥∥∥2 (2.48)

where 〈·, ·〉 denotes the inner product between the two signals. As a ratio, the value is unbound;
higher values indicate that the input x[n] is closer to the reference signal s[n]. SI-SDR can be used
directly as a loss function in the training of NNSE systems.
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Figure 2.25: Block diagram of STOI score calculation.

2.7.4 STOI

Short-Time Objective Intelligibility (STOI) (Taal et al., 2011) is a intrusive measure of speech
intelligibility, calculated via a correlation between the reference and degraded signal. It ranges
from 0 and 1 (although it is sometimes expressed as a percentage between 0 % and 100 %). The
score represents the predicted percentage of words a listener will identify correctly in a listening
test. The block diagram for STOI is shown in Figure 2.25. The first computational step is a simple
Voice Activity Detector (VAD) stage to remove those parts of the signal (non-speech) which do
not contribute to the intelligibility. This is followed by the calculation of 1/3 octave filter-bank
representations of the clean and degraded signals. These are then segmented into discrete blocks,
and the correlation between these blocks for the reference and degraded signal is computed. The
final STOI score is then derived from an average over the duration in time of the inputs.
Formally, the STOI score of some audio signal x[n] is given by:

qxSTOI = STOI(s[n], x[n]) (2.49)

Several variants and improvements on STOI have been developed, such as Extended Short-
Time Objective Intelligibility (ESTOI) (Jensen & Taal, 2016) which also incorporates spectral
correlation, and Modified Binaural Short-Time Objective Intelligibility (MBSTOI) (Andersen et
al., 2018) which computes the intelligibility of binaural (2-channel) signals. Further, STOI can be
implemented in a way which allows it to be used directly as a loss function for the training of NNSE
systems (Fu, Wang, et al., 2018).

2.7.5 PESQ

x[n]...

Input Fi...

Input Fi...

s[n...

Time alig...

Auditory T...

Level Al...

Level Al...

Auditory T...

Disturbance...

Identify bad...

Cognitive mo...

Realign bad intervalsText is not SVG - cannot display

Figure 2.26: Block diagram of PESQ score calculation.

Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001) is an intrusive computational
measure of speech quality and is calculated via a psychoacoustically motivated filter function. It
ranges from 0.5 (very low quality) to 4.5 (very high quality). The block diagram of the PESQ
function in shown in Figure 2.26. Unlike STOI which assumes that the two signals are aligned in
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time, here the degraded and reference signals are aligned in blocks before being processed by the
cognitive modelling step.
Many variants and successors to PESQ have been proposed, such as Perceptual Objective
Listening Quality Analysis (POLQA) (Beerends et al., 2013) and Perception Model-Based Quality
(PEMO-Q) (Huber & Kollmeier, 2006). However, PESQ remains a widely used metric for the SE
task.

Formally, the PESQ score for a degraded audio signal x[n] is given by:

qxPESQ = PESQ(s[n], x[n]) (2.50)

The formulation of PESQ is non-differentiable, so direct use of it as a loss function for
training NNSE models is not possible. This non-differentiablity is caused by a non-deterministic
computation which happens with the disturbance processing stage. A reformulation of PESQ which
allows it to be directly differentiable has been proposed (Martı́n-Doñas et al., 2018).

2.7.6 Composite Measure

Composite Measure (Lin et al., 2019) is a metric derived in part from a weighting of PESQ and SNR
where CSIG, CBAK and COVL represent predictions of MOS for signal distortion, background
noise interference and overall speech quality respectively. These measures are valued between 0
and 5, higher being better. Formally, the Composite scores for a degraded audio signal x[n] is given
by:

[qxCSIG, q
x
CBAK, q

x
COVL] = Composite(s[n], x[n]) (2.51)

2.7.7 DNSMOS

Deep Noise Suppression Mean Opinion Score (DNSMOS) (K. A. Reddy et al., 2020) is a non-
intrusive speech quality metric. It consists of a neural network which was trained to predict human
MOS ratings for speech signals. As it is non-intrusive, it is particularly useful for assessing the
quality of real-world recordings such as in the CHiME-7 UDASE challenge testset (Leglaive et al.,
2023), and was one of the evaluation metrics used in assessing the entries to the challenge.
For a input time domain speech signal x[n] DNSMOS estimates three values, being estimates of the
well-known composite measure (Lin et al., 2019):

[qxSIG, q
x
BAK, q

x
OVR] = DNSMOS(x[n]), (2.52)

where qxSIG, q
x
BAK, q

x
OVR are each values between 1 and 5 which represent the estimated speech

quality, background noise quality and overall quality, respectively (higher values indicating better
quality). In this work the non-differentiable implementation of DNSMOS provided in the CHIME-7
(Leglaive et al., 2023) baseline system is used.

2.7.8 HASPI

The Hearing Aid Speech Perception Index (HASPI) (Kates & Arehart, 2014) metric is a intrusive,
conditional metric for speech intelligibility designed specifically to assess the performance of
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hearing aid speech enhancement systems. HASPI scores fall within the range of 0 to 1 representing
the predicted percentage of intelligible words in the input. The metric is defined as:

q
ŝ[n]
HASPI = HASPI(s[n], ŝ[n],a) (2.53)

where a is the audiogram (vector encoding the hearing loss) for a given individual in a given ear (i.e
al and ar) for the left and right ear respectively. Note that HASPI contains its own internal hearing
loss simulation, applying the effect of the hearing loss encoded in a to the input signal ŝ[n].

2.8 Neural Network Metric and MOS Prediction

One of the core application of DNN in this work is in the design of speech quality prediction
networks (Fu, Tsao, et al., 2018). These fall into two general categories, metric predictors and
MOS predictors. In the former, a neural network is trained to approximate the behaviour of a signal
processing based SE metric; both the predictor and the target metric can be intrusive (Fu, Tsao,
et al., 2018; Z. Xu et al., 2021) or non-intrusive (Close et al., 2025; Fu, Yu, Hung, et al., 2021). An
example training diagram for intrusive and non intrusive prediction of an intrusive metric and of an
MOS predictor is shown in Figure 2.28.

In the non-intrusive case, a neural network is trained to directly predict human quality MOS (or
intelligibility) scores from audio (K. A. Reddy et al., 2020; Kumar et al., 2023; Mittag et al.,
2021; Tamm et al., 2022); here the predictor can be intrusive or non-intrusive depending on the
available data or use case. The main difference between the two categories as used in this work is
the manner in which they can be trained relative to the training of a NNSE system. Metric predictor
networks can be trained in the loop with NNSE systems (Close, Hain, et al., 2022; Fu et al., 2019;
Fu, Yu, Hsieh, et al., 2021) as new values of the target metric can be computed using the training
time enhanced audio outputs of the NNSE system. As it is not realistically feasible to gather true
MOS labels for these training time outputs, neural MOS predictors must be trained prior to their
use in NNSE training. More generally, the potential training of a metric predictor is limited only by
the availability of distorted audio (with corresponding reference), while training data generation of
MOS predictors requires costly human listening tests.

2.9 Datasets , Challenges and Corpora for Speech Enhancement

2.9.1 VoiceBank-DEMAND

VoiceBank-DEMAND (VB-D) (Valentini-Botinhao et al., 2016) is a widely used dataset for speech
enhancement neural network training. It consists of clean English read speech, artificially corrupted
with environmental noise from the DEMAND (Thiemann et al., 2013) noise dataset, as well as
two additional noise types: speech-shaped noise (SSN) and babble. Note that the babble noise was
created by randomly overlapping the clean speech audio. The clean speech files vary in length from
around 3 to 10 seconds, while the DEMAND noise recordings are all 10 minutes long. The noisy
signal x[n] is created by adding a random part of the noise recording v[n] of the same length as the
clean speech s[n].

x[n] = s[n] + c · v[n] (2.54)
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Figure 2.27: Training of intrusive and non-intrusive metric predictors of an intrusive
metric.

Figure 2.28: Training of MOS predictor.

This scaling factor

c =

√
Ps

Pv · 10
SNR
10

(2.55)
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is computed using a given target mixing SNR, and using the ITU-T P.56 method (Sector, 2011) for
computing the active speaker power of the clean (speech) reference audio Ps and of the noise Pv.
The training set consists of 11572 pairs of clean and noisy speech, (s[n], x[n]), from 28 different
speakers (14 male, 14 female) with native British accents speaking English. The clean speech is
mixed at 0, 5, 10 and 15 dB SNR with cafeteria, car, kitchen, meeting, metro, restaurant, station,
and traffic noise from DEMAND as well as babble and speech-shaped noise. The audio from
two speakers are held-out from training and used as a validation set whenever a model is trained
using VoiceBank-DEMAND in this work. The test set consists of 824 (s[n], x[n]) pairs from two
additional speakers (one male, one female) who do not appear in the training set, mixed at 2.5, 7.5,
12.5 and 17.5 dB SNR with bus, cafe, living room, office and public square noise from DEMAND.
All audio has a sample rate of 48000 Hz and is in WAV format, but the dataset is typically down-
sampled to 16000 Hz for speech enhancement training.

Figure 2.29: PESQ and STOI distributions in the VoiceBank-DEMAND training and
test sets.

Figure 2.29 shows the distribution of PESQ and STOI scores in the VoiceBank-DEMAND training
and test sets. From these, it can be observed that the test set contains audio of a higher quality and
intelligibility compared to the training set; the average PESQ and STOI scores of the training set are
1.47 and 0.84 respectively, while that of the test set are 1.97 and 0.92.

Table 2.1 and Table 2.2 break down SE metrics in the VoiceBank-DEMAND training set in terms
of the mixing SNR and noise type respectively. From the former, it can be observed that the mixing
SNR has a very strong relationship with the SE metrics, where higher mixing SNR values result in
less distorted noisy signals. From the latter, it is clear that the more similar the noise is to speech,
the lower the SE metric scores, with the most distorting noise types being babble and speech shaped
noise (ssn). The station noise type is also destructive as it tends to contain lound,impulsive sounds
which completely envelop the speech, especially at low SNR values. Table 2.3 and Table 2.4 break
down the SE metrics for the VoiceBank-DEMAND testset. Similar patterns to those in the training
set are apparent here, however the values are overall higher owing to the higher mixing SNR values.
VoiceBank-DEMAND is a widely used benchmark dataset for single channel NNSE task. However,
in recent years it has become too ‘easy’ in particular due to the fact that the test set is significantly
less challenging to enhance than the training set, as it has less disruptive noise types and higher
mixing SNR values. One of the aims of this work is to introduce more challenging alternatives
to VoiceBank-DEMAND which are detailed in Section 4.3.1.2 where the dataset is rerecorded in
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Table 2.1: Breakdown of SE metrics by mixing SNR value in the VoiceBank-DEMAND
training set.

Mixing SNR (dB) PESQ STOI CSIG CBAK COVL
15 1.85 0.91 3.09 2.61 2.45
10 1.53 0.87 2.62 2.17 2.03

5 1.30 0.83 2.21 1.79 1.69
0 1.16 0.76 1.85 1.48 1.43

Table 2.2: Breakdown of SE metrics by distortion noise type in the VoiceBank-
DEMAND training set.

Noise Type PESQ STOI CSIG CBAK COVL
metro 1.55 0.86 2.87 2.09 2.16
car 2.40 0.96 4.19 2.68 3.31
ssn 1.26 0.79 1.51 1.80 1.33
traffic 1.38 0.87 2.78 2.00 2.04
kitchen 1.55 0.92 2.08 2.26 1.80
babble 1.26 0.77 2.10 1.77 1.58
cafeteria 1.33 0.81 2.38 1.89 1.79
station 1.27 0.82 2.53 1.86 1.84
meeting 1.38 0.83 2.46 2.01 1.85
restaurant 1.24 0.77 1.53 1.79 1.32

a real environment and Section 8.2 which proposes a simulation framework wherein VoiceBank-
DEMAND like datasets in a number of languages and varying mixing SNR values can be produced.

2.9.2 CHiME3 Data

The Computational Hearing in Multisource Environments 3 (CHiME3) (Barker et al., 2015)
challenge test set consists of multi channel real and simulated noisy speech (1320 clean/noisy pairs
of each). The read speech text in both cases is sourced from the Wall Street Journal (WSJ0) (Paul
& Baker, 1992) corpus. Of particular interest is the real component of the data which was recorded
in real noisy environments ( a bus, cafe, pedestrian area, and street junction) by real speakers, with
the reference audio coming from a close-talking headset microphone. Of the 6 recording channels,
the channel closest to the speaker is selected as the noisy input. Testing a trained NNSE system on
this test set gives a good insight in to how it generalises to real world data.

Table 2.3: Breakdown of SE metrics by mixing SNR value in the VoiceBank-DEMAND
testset.

Mixing SNR (dB) PESQ STOI CSIG CBAK COVL
17.5 2.60 0.96 4.05 3.17 3.33
12.5 2.10 0.94 3.59 2.63 2.83
7.5 1.76 0.92 3.14 2.21 2.42
2.5 1.42 0.87 2.62 1.77 1.96
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Table 2.4: Breakdown of SE metrics by distortion noise type in the VoiceBank-
DEMAND testset.

Noise Type PESQ STOI CSIG CBAK COVL
cafe 1.49 0.88 2.72 2.14 2.06
bus 2.48 0.95 3.96 2.74 3.22

living 1.61 0.90 2.78 2.17 2.15
psquare 1.74 0.91 3.26 2.33 2.47

office 2.53 0.96 4.01 2.83 3.27

2.9.3 CHiME7 - UDASE Data

The CHiME7 UDASE (Leglaive et al., 2023; Leglaive et al., 2024) challenge is focused on the
removal of additive noise from reverberant overlapping speech. In particular, the challenge task is
concerned with adapting models trained on labelled ‘out-of-domain’ data to unlabelled ‘in-domain’
data. Challenge participants were provided with three datasets: an in-domain unlabelled training
set (Barker et al., 2018), and out-of-domain labelled set (Cosentino et al., 2020) and a close to in-
domain labelled development/evaluation set. Of particular relevance to this work was the choice of
evaluation metric; in the first round of evaluation, the neural MOS predictor metric DNSMOS (see
Section 2.7.7) was used to select the best submissions to be evaluated in the second round. In the
second round, human listening tests were carried out.

2.9.4 CommonVoice Dataset

The CommonVoice (Ardila et al., 2020) corpus consists of recordings of read speech in 108
languages, with corresponding text prompt sentences. The recordings are crowd-sourced using
the CommonVoice website5. Validation that the recordings properly represent the prompt sentence
is also crowd-sourced. In addition to the audio recording and prompt sentence text, some additional
metadata is for a subset of the recordings available such as gender and accent of the speaker. While
the primary intended use of the CommonVoice data is the training / fine-tuning of ASR systems, it
is a useful source for speech audio generally.

2.10 Datasets for Speech Intelligibility (SI) Prediction

2.10.1 Clarity Prediction Challenge 1

The dataset for the first CPC1 (Barker et al., 2022) as used in this work can be expressed as a series
of sequences: (̂s[n], {al,ar}, i), which is generated as visualised in Figure 2.30. ŝ[n] represents
the binaural output of a hearing aid system for some noisy speech input x[n], containing some
clean speech s[n]. {al,ar} are the left (l) and right (r) audiogram representations of a particular
listener’s hearing loss. Blue and red box plots in Figure 2.30 illustrate the Hearing Loss (HL)
distribution in the CPC1 dataset from which the individual audiograms are sampled. Finally, i
represents the intelligibility of the audio ŝ[n] for that listener, defined as the percentage of words
they were able to reproduce by speaking aloud immediately after hearing the audio, compared to a

5https://commonvoice.mozilla.org

https://commonvoice.mozilla.org
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Figure 2.30: Signal generation for Clarity Prediction Challenge.

ground truth transcription of the speech also denoted as the correctness of the listener’s response.
Additionally, binaural audio ŝ′[n] is defined as the output of the baseline Cambridge MSBG Hearing
Loss Simulation (HLS), denoted here by operator S, cf. (Stone & Moore, 1999) for additional details
on the Clarity system.

ŝ′[n] = S (̂s[n], {al,ar}) (2.56)

The signal ŝ′[n] is an approximation of the audio that is perceived by the hearing-impaired listener.
This can be thought of as encoding the hearing characteristics of the specific listener (audiogram)
within the signal.

2.11 Datasets for Speech Quality (SQ) MOS Prediction

Table 2.5: Comparison of SQ Datasets (EN: English; DE: German, CH: Chinese).

Dataset Subset Distortions Lang. Distortion Types Samples Average MOS

NISQA (Mittag et al., 2021)

TRAIN SIM Simulated EN
white Gaussian noise, MNRU noise,

background noise clips, codecs,
packet loss, amplitude clipping

10000
2.91

TRAIN LIVE Real EN
live telephone/VoIP, white gausian noise,

MNRU noise, background noise clips,
codecs, packet loss, amplitude clipping

1020 2.23

VAL SIM Simulated EN
codecs, packet loss, speech level,

frequency filters, amplitude clipping
2500

2.97
VAL LIVE Real EN live telephone/VoIP 200

TEST FOR Simulated EN
audio codecs, background noise,

packet-loss, amplitude clipping, live condidtion VoIP
240 2.40

TEST P501 Simulated EN live condition VoIP/mobile network recordings 240 2.60
TEST LIVETALK Real DE natural environment conditions 232 2.76

Tencent (Yi et al., 2022)
w/ reveb Simulated

CN
reverberation 3297

2.90
w/o reverb Simulated

white noise, background noise,
codecs, frequency filtering, amplitude clipping

8366

IUB (Dong & Williamson, 2020)
COSINE Real

EN
background noise 18000

3.12
VOiCES Semi-Simulated background noise, reverberation 18000

PSTN (Mittag et al., 2020) – Simulated EN background noise 58709 3.12

Several SQ datasets are used in this work to train non-intrusive SQ MOS predictors. It is important
to consider a large number of datasets in order to ensure that the MOS SQ predictor has been
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exposed to a large variety of audio conditions during it’s training. The nature of distortions,
language, dataset size in terms of number of samples and average signal quality are summarised in
Table 2.5. Generally, these datasets consist of sets of tuples (x[n], q) where x[n] is some degraded
speech audio signal and q is a corresponding MOS value which has been calculated from human
listening tests. For some datasets and subsets within datasets, other information is available such as
a reference signal x[n], the standard deviation of the MOS score, the raw score assigned by each
human evaluator or the number of human evaluators.

2.11.1 NISQA Dataset

The Non-Intrusive Speech Quality Assessment (NISQA) (Mittag et al., 2021) dataset is an SQ
assessment dataset, comprising of pre-defined train, validation and test sets. Each of these are further
divided into subsets, characterised by if the nature of the distortion in the speech signal is artificially
simulated or occurring ’in the wild’ as a real distortion. In addition to a MOS scores of overall audio
quality, The NISQA dataset also provides labels for other speech ‘dimensions’(Wältermann, 2013)
namely Noisiness, Coloration, Discontinuity and Loudness. With the exception of the LIVETALK
testset, clean reference signals x[n] are available.

2.11.2 Tencent Dataset

The Tencent audio SQ dataset was released as part of the ConferencingSpeech 2022 challenge (Yi et
al., 2022). It consists of two artificially simulated training subsets, one with artificial reverberation
added and one without.

2.11.3 IUB Dataset

The IU Bloomington (IUB) (Dong & Williamson, 2020) SQ dataset consists of two subsets.
The first uses distorted audio sourced from the COnversational Speech In Noisy Environments
(COSINE) (Hashmi, 2021) dataset, real multi party conversations captured using multi-channel
wearable microphones recorded in noisy everyday environments. The second subset uses audio
from the Voices Obscured in Complex Environmental Settings (VOiCES) (Richey et al., 2018)
corpus where speech and noise were played aloud and recorded in two rooms of different sizes.
Unlike the other datasets used in this work, the MOS scores for this dataset were gathered using a
MUSHRA (International Telecommunication Union, 2015) protocol, which is then transformed to
a MOS scale between 0 and 10, rather than the 1 to 5 scale commonly used. The 1 - 5 MOS label is
obtained via a fitting operation over the gathered MUSHRA ratings.

2.11.4 PSTN Dataset

The Public Switched Telephone Network (PSTN) SQ dataset (Mittag et al., 2020) consists of
simulated ’real’ phone calls, some with simulated background noise added to the transmitted signal.
It was generated by making real phone calls over Skype. It follows a similar design to that of
NISQA, but is significantly larger.
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2.11.5 Overall MOS Distribution of SQ Datasets

The distributions of MOS scores in the training and validation subsets of the datasets (normalised
between 0.2 and 1) are shown in Figure 2.31. The mean MOS value across the datasets is similar,
falling somewhere around 0.6. However, the datasets differ significantly in the shape of their
distributions. Both NISQA and Tencent show a roughly uniform distribution of scores from 0.2
to 1, with the ’tail’ at the lower end of the Tencent distribution showing that that dataset contains
a large number of low scores. Conversely, the tapering in at the highest end in both NISQA and
Tencent indicate that these datasets contain relatively few instances of very highly rated audio.

In contrast, the distribution of the PSTN dataset scores is generally normal, tailing off a the extreme
low and high end. Slightly more scores are above 0.5 than below, indicating that the audio in this
dataset is generally high quality.

The distribution of the MOS score in the IUB dataset is entirely unlike that of the others, with
extremely few points falling at the highest and lowest values. The distribution is significantly more
erratic than the other datasets, with an extreme dearth in scores valued around 0.65. This can
possibly be explained by the non-standard method that the MOS scores were gathered, as well as
the differing range of the unnormalised scores.

The combined distribution across all the datasets is shown in purple at the top of Figure 2.31. It
displays a similar normal-like distribution to that of the PSTN dataset, likely due to that dataset
contributing roughly half of all samples. There are somewhat more samples of extreme low quality
compared to extreme high quality.

Figure 2.31: Normalised MOS score distribution across SQ Datasets (lines indicate
minimum, mean and maximum MOS in each dataset).
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2.12 Baseline NNSE System - MetricGAN+

The MetricGAN+ NNSE framework (Fu, Yu, Hsieh, et al., 2021) consists of two networks: a speech
enhancement model G, which aims to remove the undesired signal parts, i.e the noise v[n] from a
noisy signal x[n] to produce an estimate of a clean signal s[n], and an intrusive metric prediction
discriminator (more correctly an evaluator) D, which predicts the intrusive SE performance metrics
providing a target to optimise the signal enhancement. The phase of the spectral bins ∠pk,` will be
used later to resythesize the time domain signal using the Overlap-Add (OLA) method.

2.12.1 Generator Network for Signal Enhancement

Figure 2.32 shows the training of the NNSE Generator G. The dotted blue arrows and processes
show the objective function and loss calculation back-propagated to the model. In order to obtain
the enhanced signal ŝ[n] from the noisy features Xf in the generator G’s training and inference, the
magnitude compression is reversed by subtracting 1 from each element and taking the exponential
of each element in the feature representation. The output of G is a time-frequency (T-F) mask

MSE

G

|X|

Xf

∠X

exp(Xf − 1)

s

1

·

Sf

D

FC

FC
Re-Synth

(OLA)

ŝ Ŝf

D(Ŝf ,Sf )
MG

Clamp

(ξ = 0.5)

Figure 2.32: Training and inference of MetricGAN+ Generator.

matrix MG , which is then multiplied with the noisy magnitude spectogram |X| to result in the
enhanced signal spectrogram |Ŝ|. The enhanced time domain audio signal ŝ[n] is calculated using
OLA resythesis, using the noisy phase information ∠X. Note that each element in the mask MG is
‘clamped’ in order to reduce residual musical tones caused by the mask, i.e. it is limited to element
wise values ξ ≤ MG ≤ 1. The loss function of the speech enhancement network G is dependent
entirely on the metric score of its output ŝ[n] (in its feature space representation Ŝf ) as predicted by
discriminator D.

LG,MG+ = E[(D(Ŝf ,Sf )− 1)2] (2.57)

where 1 represents a ‘perfect’ score in the normalised metric Q′(·).

2.12.2 Discriminator Network for Metric Prediction

The discriminator D is trained to reproduce the normalised target metric Q′(·) minimising the
distance from its output and the ‘true’ normalised metric score used as its loss function, as visualised
in Figure 2.33. Arrows and processes marked blue denote those which occur only during training.
The loss of the discriminator comprises three MSE terms depending on the clean reference signal s,
or Sf , the degraded noisy signal x, or Xf , and the enhanced signal ŝ, or Ŝf . More specifically, its
objective function is given as:

LD,MG+ = E[(D(Sf ,Sf )− 1)2 + (D(Ŝf ,Sf )−Q′(ŝ[n], s[n]))2+

(D(Xf ,Sf )−Q′(x[n], s[n]))2] (2.58)
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Figure 2.33: Training and inference of MetricGAN+ Discriminator.

The 1 in the first term of (2.58) represents the fact that Q′(s[n], s[n]) = 1. In the second term, the
scores of signals enhanced by G, ŝ are considered and compared to the ground truth score for the
enhanced signal. In the final term, the scores of noisy signals x are considered and compared to the
true score for the noisy signal. Note that in the case of the metrics investigated in this work the input
to the function that defines the metric are the time domain signals x[n], ŝ[n] and s[n], but this may
not always be the case.

2.12.3 MetricGAN+ Training

Each epoch of training consists of four steps, the first three representing the training of D and the
final step the training of G. At the start of each epoch, I audio segments are randomly picked out
from the training set. Firstly D is trained as given in (2.58) on these I random audio segments. The
audio segments are time domain signals of varying length. Then, in the second step, D is trained
using a ’replay buffer’ where saved enhanced outputs of the generator G from past epochs are used
to trainD. The size of this replay buffer is decided by a ‘history portion’ hyper-parameterH ,
which corresponds to the replay buffer growing by a set percentage of the audio segments observed
each epoch. This is done to prevent D from ‘forgetting’ too much about the behaviour of Q′(·) on
previously enhanced speech.
Then the first step is repeated with D again being trained using the t random samples. Finally, G is
trained also using these t samples as in (2.57). During training of the discriminator D, the NNSE
generator G is ‘frozen’ and its parameters are not updated; the opposite is true during G’s training.
Note that samples are added to the replay buffer during the first step of D’s training, meaning that
20% of the ‘current’ epoch data are always present in the replay buffer. As D is trained before G,
the ŝ in (2.58) actually represents the output of the previous epoch’s G. This is especially relevant
during the first epoch training, as the ˆs[n] in (2.58) is the output of a newly initialised, un-trained G.

2.12.4 Discriminator Model Structure

The discriminator D’s structure is shown in Figure 2.34. The input to the network is the magnitude
spectrogram of the reference audio Sf and that of the signal under test Pf ∈ Xf ,Sf , Ŝf .The input
is of shapeB×T ×F ×2. The initial block is a Convolutional Neural Network (CNN) with four 2D
convolutional layers with 15 filters of a kernel size of (5, 5). After the convolutional layers, a mean
is taken over the 2nd and 3rd dimensions (i.e the convolved time and frequency dimensions), and
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this vector of length 15 is fed into three sequential linear layers, with 50, 10 and 1 output neurons,
respectively. All of the network layers have a LeakyReLU activation while the final layer has no
activation.

Figure 2.34: MetricGAN+ D DNN structure

2.12.5 Generator Model Structure

The generator G’s network, shown in Figure 2.35 ,takes as input a magnitude spectrogram Xf . The
input is of shame B × T × F . The time dimension T of the input is preserved throughout the
network, such that the output mask MG can be multiplied with the input. It’s structure consists of
a Bidirectional Long Short-Term Memory (BLSTM) (Weninger et al., 2015) unit with two LSTM
layers with 200 neurons each. This is followed by two linear layers, the first with 300 output
neurons and a LeakyReLU (Maas et al., 2013) activation and the second 257 output neurons with a
’Learnable’ Sigmoid activation function. This Learnable Sigmoid is given as:

ylearnable−sigmoid =
β

1 + e−αx
(2.59)

where β is a hyper-parameter (default set to 1.2) and α is a learnable parameter.

2.13 CMGAN SE DNN

The Conformer Metric Generative Adversarial Network (CMGAN) (Cao et al., 2022) is a variant
of the MetricGAN framework within which the main change is a significantly more complex SE
DNN G. Figure 2.36 shows an overview of the CMGAN G NNSE structure; it consists of 4
blocks, an encoder, a Conformer based bottleneck, a mask decoder and a complex (mapping)
decoder. The encoder takes as input the noisy magnitude, real and imaginary STFT components
XMag,XRe,XIm, stacked on a common dimension such that the input to the network is of shape
B × T × F × 3 where B, T and F are the batch size, time dimension and frequency dimensions,
respectively. These are processed by a dilated DenseNet (Huang et al., 2017) consisting of 4 2D
CNN layers with increasing dilation d. The final CNN layer halves the feature dimension from F
to F ′ to reduce the complexity of the network. The encoder output is then processed by N TS-
Conformer blocks. Each of these consists of two sequential Conformer blocks, the first of which
operates over the time dimension of the input and the second over the frequency dimension. Each
Conformer block has additive skip connections. The model has two output branches which share the
output of the final TS Conformer as input. In the Mask Decoder branch a second dilated DenseNet
further processes the output, followed by a so called SubPixel 2D Convolutional layer, which up-
samples the feature dimension back to F from F ′. This is followed by two final CNN layers which
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Figure 2.35: MetricGAN+ G DNN structure

project back from the 64 filters to 1 magnitude mask. The Complex decoder is structured similarly,
except the filter dimension is reduced to 2, such that the output is the enhanced real and imaginary
components.
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There are three component outputs, a magnitude mask MG and a real and imaginary component,
Ŝ′Re and Ŝ′Im. The magnitude mask is multiplied with the noisy magnitude XMag to produce ŜMag.
Then, the combination of the enhanced magnitude ŜMag with the original noisy phase X∠ are added
with the other two outputs Ŝ′Re and Ŝ′Im:

ŜRe = ŜMagcos(X∠) + Ŝ′Re; ŜIm = ŜMagsin(X∠) + Ŝ′Im. (2.60)

An Inverse Short Time Fourier Transform (ISTFT) is taken over ŜRe, ŜIm to obtain ŝ[n].

2.14 DPT-FSNet SE DNN

The Dual-Path-Transformer Full-band and Sub-band Fusion Network (DPT-FSNet) (Dang et al.,
2022) is another SE DNN used in this work. Figure 2.37 shows an overview of DNN structure;
it is generally similar to that of CMGAN G, consisting of an Encoder, ‘Dual Path’ Transformer
bottleneck and a Decoder. The Encoder takes as input the real and imaginary components of the
noisy input audio (with a shape of B × T × F × 2), and consists of a series of Dense CNN layers
with skip connections. Unlike in CMGAN where the feature dimension is halved at input to the
bottleneck, here it is the filter dimension of 64 which is reduced to 32. Transformer layers are used
to process the time dimension T and the feature dimension F in sequence. At the output of the
bottleneck after the features have been projected back to 64, two layers process the output of the
TS Conformer in parallel with the resulting representations multiplied together. This is designed
to act as a gating mechanism. The Decoder is structured similarly to the Encoder and outputs to 2
representing the predicted masks for the real and imaginary components.
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Expanding the MetricGAN Framework
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Preface

In this part, variations and expansions to the MetricGAN (cf. Section 2.12) NNSE framework
are proposed. In Chapter 3, an extension which is designed to improve the ability of the metric
prediction discriminator to accurately predict the target metric is proposed. In Chapter 4, further
experiments and variations involving this extension are detailed, as well as experiments involving
the CMGAN (cf. Section 2.13) NNSE network. In Chapter 5 and Chapter 6 MetricGAN variants
which incorporate the prediction of non-intrusive MOS estimators are proposed, as well as a novel
input feature for the metric prediction discriminator derived from SSSRs.
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Chapter 3

MetricGAN+/-: Improving Speech
Enhancement Performance by
Expanded Discriminator Training

3.1 Introduction

In this chapter MetricGAN+/- is detailed (an extension of MetricGAN+,cf. Section 2.12) which
introduces an additional network - a de-generator to improve the robustness of the discriminator
metric prediction network (and of the generator) by ensuring observation of a wider range of
metric scores in training. Experimental results on the VoiceBank-DEMAND dataset show relative
improvement in PESQ score of 3.8% (3.05 vs. 3.22 PESQ score), as well as better generalisation to
unseen noise and speech signals from the CHiME3 testset.

3.2 Metric Score Distribution in Training Data

The central idea behind MetricGAN is that the performance of the NNSE Generator G is dependent
entirely on how well well the metric prediction network D is able to predict the (normalised)
objective metric score Q′, via G’s loss function, (2.57). It follows that in order for D to do this,
it needs to be able to observe a the full range of values 0 < Q′ < 1. However, this is not the
case for the training data used in (Fu, Yu, Hsieh, et al., 2021) and other publications in this domain
which rely on VoiceBank-DEMAND (Valentini-Botinhao et al., 2016) (cf. Section 2.9.1). As shown
in Figure 3.1, the PESQ scores of the noisy data in VoiceBank-DEMAND training set are skewed
significantly towards scores in the range of 1 to 2 PESQ (mean score is 1.47). The STOI distribution
is even more biased, with no values below around 0.4, and a mean STOI score of 0.84. While it
might be assumed that in early epochs the value Q′(ŝ[n], s[n]) in (2.58) will be low, even in the
initial epochs, the value of Q′(ŝ[n], s[n]) is high for ŝ[n]. This can be observed in Figure 3.2,
where, even in the first epoch, the historical set/replay buffer of G contains only enhanced audio
ŝ[n] audio with high STOI scores.

Due to the nature of the training of G, it is unlikely that D will ever observe Q′ values lower than
those present in the training set. It can be theorised that using MetricGAN+, the discriminator D
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only learns values of a local version of the target metricQ′ in the range q′min < Q′ < 1, where q′min

is the minimum Q′ score present in the training set.

Figure 3.1: PESQ and STOI distribution of the VoiceBank-DEMAND Training Set with
Noise Type labels.

Figure 3.2: STOI scores of the replay buffer of STOI objective MetricGAN+.

This limits the ability of D to actually predict Q′, and thus G’s ability to enhance signals relative to
Q′ using D as a surrogate. To eliminate this limitation on D’s training it is necessary to find a way
to guarantee that it will observe a wider range of Q′ values.
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3.3 MetricGAN+/- Framework

The framework proposed in this chapter, MetricGAN+/-, expands on MetricGAN+ in one major
way - the introduction of an additional network, a ‘de-generator’ N which, given an input signal
x[n], will attempt to output a signal with a non-perfect target score of metric Q′. The key idea
of this extension is to allow D to observe a wider range of metrics scores outside of those present
in the training data. The output audio of N ’s mask MN applied to noisy magnitude spectogram
XMag is defined as y[n] with its feature space representation as Yf . An extra term is appended to
the objective function of D that accounts for the prediction of the Q′ scores of these ‘de-enhanced’
signals:

LD,MG+/− = [(D(Sf ,Sf )− 1)2 + (D(Ŝf ,Sf )−Q′(ŝ, s))2

+ (D(Xf ,Sf )−Q′(x, s))2 + (D(Yf ,Sf )−Q′(y, s))2] (3.1)

where y represents the output of the de-generator network on the noisy signal x[n]. The objective
function of N is given as

LN ,MG+/− = [(D(Yf ,Sf )− w)2], for 0 < w < 1, (3.2)

where w is a hyper-parameter corresponding to the value of Q′ that N is trained to output signals
with. The loss function of G is the same as for MetricGAN+, as given in (2.57), thus the training
of N is influenced entirely by its performance as assessed by D, in the same manner as G using
MetricGAN+. The training ofN is the same as the training of G depicted in Figure 2.32 except that
G is replaced by N , ŝ, Ŝf by y, Yf . An identical network structure to G is used for N .

The training of MetricGAN+/- is similar to that that of MetricGAN+ described in Section 2.12.3
with slight differences. D is trained using (3.1); as a result the replay buffer now contains both
enhanced and de-enhanced data, effectively doubling its size. After D’s training,N is trained using
(3.2). Then G is trained as usual using (2.57).

3.4 MetricGAN+/- Experiments

3.4.1 Experiment Setup

The aim of the following experiments is to compare the performance of the baseline system
MetricGAN+ which is available as part of the SpeechBrain (Ravanelli et al., 2021) toolkit with
our extension, MetricGAN+/-. The Adam optimiser (Kingma & Ba, 2014) with a learning rate of
0.0005 is used. The STFT is used with a Discrete Fourier Transform (DFT) length of LDFT =512,
a window length of 512 (32 ms) at sampling frequency of fs = 16 kHz and a hop (overlap) length
256 (16 ms), resulting in a 50% overlap between frames. The minimum value in the time frequency
masks MG and MN is set to ξ = 0.05.

Both PESQ and STOI as objectiveQ and different values of w are experimented with. The values of
w are selected such that they correspond to sparely populated values of Q′ in the dataset.Also, one
experiment (denoted by * in Table 3.1) where the value of β inN ’s Learnable Sigmoid activation as
given in (2.59) to also learned (in addition to α) is performed. Additionally, experiments reducing
the size of the replay buffer training step for D, via modifying H are performed. In order to ensure
that the performance gain does not come entirely from the larger H in MetricGAN+/-, the baseline
MetricGAN+ performance with H set to 0.4 is also reported.
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3.4.2 Experiment Results

Table 3.1 shows the performance of MetricGAN+/- relative to the MetricGAN+ baseline and the
unprocessed noisy audio on the VoiceBank-DEMAND testset. Performance is also compared with
a second baseline system SEGAN (Pascual et al., 2017) (cf. Section 2.3.3), a state-of-the-art speech
enhancement system. For more comparison baseline performances the interested reader is referred
to Table 3 in (Fu, Yu, Hsieh, et al., 2021), which shows that MetricGAN+ with a PESQ objective
outperforms all systems listed in terms of PESQ score.Performance is assessed using PESQ and
STOI and also the Composite (Lin et al., 2019) Measure.

Model Name Obj. w H P S Csig Cbak Covl
Noisy - - - 1.97 92 3.35 2.44 2.63
MG+ (P) (Fu, Yu, Hsieh, et al., 2021) P - 0.2 3.05 93 4.03 2.87 3.52
MG+ (S) S - 0.2 2.42 93.4 3.56 2.58 2.97
SEGAN (Pascual et al., 2017) - - - 2.42 92.5 3.61 2.61 3.01
MG+ P - 0.4 3.17 92.3 4.05 2.91 3.59
MG+/- P 1.0 0.2 3.20 93.0 4.08 2.94 3.62
MG+/- P 0.50 0.2 3.22 91.3 4.05 2.94 3.62
MG+/- P 0.45 0.2 3.21 91.9 4.09 2.95 3.64
MG+/-* P 0.45 0.2 3.17 93.0 4.16 2.93 3.65
MG+/- P 0.45 0.1 3.13 92.1 4.05 2.91 3.58
MG+/- P 0.30 0.2 3.04 93.0 4.07 2.88 3.55
MG+/- S 0.45 0.1 2.13 93.2 3.04 2.42 2.56
MG+/- S 0.30 0.2 2.31 93.3 3.19 2.49 2.72

Table 3.1: Performance of MetricGAN+ (MG+) and MetricGAN+/- (MG+/-) on
VoiceBank-DEMAND test set for objective PESQ (P) or STOI (S), * denotes the
simulation where β is made learnable

The first four rows in Table 3.1 present the results the un-enhanced noisy data and of different
baselines. The results for the baseline MetricGAN+ models shown here are obtained using the
implementation in SpeechBrain (Ravanelli et al., 2021). Further simulations are conducted for
various values of hyperparameter w used in the training ofN . Table 3.1 shows a clear improvement
in PESQ score for PESQ objective MetricGAN+/- models over the baseline MetricGAN+ (3.05 vs
3.22 PESQ), and also versus the PESQ value reported in (Fu, Yu, Hsieh, et al., 2021) of 3.15. An
increase is also observed in the composite measure scores. Interestingly, there is an improvement
even when w = 1, which is the case where N and G have the same objective, and thus N also
learns to enhance. Hypothetically, this is due to slight variations in the outputs of N and G during
training, as well as the increased replay buffer size compared to the baseline. Highest performance
in terms of PESQ score is obtained with a w value set to 0.5, which means that N attempts to
produce signals with a PESQ score of 3. Speculatively, this performance increase is due to there
being few clean/noisy pairs in the training set with a PESQ score around this value.

By making the β parameter in N ’s activation function learnable, a slight improvement against the
baseline is observed, as well as increased Csig and Covl scores versus all other simulations. It is
found that increasingH in the baseline MetricGAN+ from 0.2 to 0.4 such that its size is comparable
to MetricGAN+/-’s does slightly improve PESQ score. This is contrary to the findings in (Fu, Yu,
Hsieh, et al., 2021) where the authors report no improvement for values larger than 0.2. However,
larger values of H will drastically increase the training time requirement of the system. A better
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understanding of what D leans from the replay buffer training and better curation of its contents is
the key to further performance gains, as well as reduced training time required.

3.4.3 Spectogram Analysis

Figure 3.3 shows the spectrograms of the clean reference SMag, noisy input XMag, generator output
mask MG and this mask applied ŜMag for baseline MetricGAN+, MetricGAN+/- (w = 0.45) PESQ
objective models. The mask in Figure 3.3 (e) attempts to remove low frequency signal content while
boosting the area corresponding to the frequency curve of the fundamental speech frequencies.
Furthermore, the baseline MetricGAN+ PESQ model in Figure 3.3 (c, d) attenuates the signal in the
initial non speech region, while the MetricGAN+/- model in Figure 3.3 (e, f) suppresses less energy
around 400 Hz over the whole utterance. This artefact can already be observed in the baseline
MetricGAN+ but is more prominent for the proposed method, which could explain the relatively
low Cbak score for this method. This is potentially a results of D not learning to properly penalise
errors in this region, perhaps due to the additional influence of N ’s outputs on it’s training.

3.4.4 Validation Performance

Figure 3.4 shows PESQ score performance on the validation set during training for PESQ objective
MetricGAN+, MetricGAN+ with H set to 0.4 and MetricGAN+/- (w = 0.5). Both models that
include larger replay buffers perform significantly better and their score increases at a higher rate
in early epochs. This suggests that D’s performance (and consequently G as shown in the graph) is
improved by an increased size of the replay buffer, and further improved by access the data produced
by N .

3.4.5 Generalisation To Unseen Data

Model Type PESQ STOI Csig Cbak Covl
Noisy 1.37 44.0 2.96 1.42 2.09
MG+ PESQ 1.54 45.8 2.67 2.09 2.00
MG+ STOI 1.24 44.7 2.45 1.84 1.76
MG+/- PESQ 1.76 44.3 2.86 2.03 2.20
MG+/- STOI 1.22 45.3 2.31 1.81 1.67

Table 3.2: Performance on real component of CHiME3 test set

Model Type PESQ STOI Csig Cbak Covl
Noisy 1.27 87.0 2.61 1.39 1.88
MG+ PESQ 2.14 87.4 3.05 2.31 2.53
MG+ STOI 1.52 88.9 2.75 2.07 2.08
MG+/- PESQ 2.38 86.1 3.17 2.41 2.70
MG+/- STOI 1.47 88.5 2.62 2.02 1.99

Table 3.3: Performance on simulated component of CHiME3 test set
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Figure 3.3: Spectograms of: (a) clean reference features Sf , (b) noisy features Xf ,
(c) Mask MG and (d) enhanced output Ŝf for MetricGAN+ baseline PESQ objective
model, (e) Mask MG and (f) enhanced output Ŝf for MetricGAN+/- PESQ objective
model. Source audio file is p232 014.wav of VoiceBank-DEMAND testset.

Table 3.2 and Table 3.3 shows the performance of the baseline MetricGAN+ and the best performing
proposed MetricGAN+/- systems on the CHiME3 (c.f Section 2.9.2) test set. An increased
performance in terms of PESQ, Csig, Cbak and Covl between PESQ objective MetricGAN+/- and
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Figure 3.4: Graph showing PESQ score on validation set during training for PESQ
objective MetricGAN+ and MetricGAN+/- models

the baseline, as well as a slight improvement in STOI score for STOI objective MetricGAN+/-
is shown. This suggests that D’s access to the de-generated signals produced by N allows G in
MetricGAN+/- systems to generalise better to unseen environments.

3.5 Summary

In this chapter an extension to the MetricGAN+ baseline framework is proposed, which improves its
performance in terms of PESQ score and related measures, as well as improving its generalisation
to unseen data. It is found that training the discriminator network on a wider range of metric scores
and with a larger replay buffer achieves greater performance than the baseline system.



Chapter 4

Further MetricGAN Variations

4.1 Introduction

In this chapter, experiments involving further variations of the MetricGAN+ (cf. Section 2.12) and
it’s previously proposed extension MetricGAN+/- (cf. Chapter 3) are carried out. The effect of
the target metric value w used in the training of the de-generator N is investigated. Additionally,
the CMGAN (Cao et al., 2022) (cf. Section 2.13) NNSE DNN structure is incorporated into the
MetricGAN+/- framework.

4.2 System Overview

This section gives an overview of the three main components of the MetricGAN+/- framework; the
NNSE Generator G, the metric prediction discriminator D and the de-generator N .

4.2.1 SE Generator

4.2.1.1 CMGAN G Loss

Introduced in (Cao et al., 2022), two additional losses can be used to train G alongside inference
of D in (2.57). These loss terms help to further improve enhancement performance on the basis of
a distance from clean reference representations, while the GAN loss helps shape the enhancement
towards producing outputs of high metric scores. Firstly a time domain loss Ltime (Abdulatif et al.,
2021) which directly compares the enhanced time domain signal ŝ with the clean reference signal

Generator G Discriminator D De-Generator N
Framework Training Name Features Strucuture Loss Name Input Used
MG (Fu et al., 2019) Sampled GMG XMag BLSTM ((2.57)) DMG s,ŝ
MG+ (Fu, Yu, Hsieh, et al., 2021) Sampled + Hist GMG+ XMag BLSTM ((2.57)) DMG s,ŝ,x
MG+/- (Chapter 3) Sampled + Hist GMG+ XMag BLSTM ((2.57)) DMG s,ŝ,x,y X
CMGAN (Cao et al., 2022) Simple GCMGAN XMag,XIm,XRe Conformer ((4.3)) DCMGAN s,ŝ
CMGAN+ α (prop) Simple GCMGAN XMag,XIm,XRe Conformer ((4.3)) DCMGAN s,ŝ,x
CMGAN+/- α (prop) Simple GCMGAN XMag,XIm,XRe Conformer ((4.3)) DCMGAN s,ŝ,x,y X
CMGAN+/- β (prop) Sampled+ Hist GCMGAN XMag,XIm,XRe Conformer ((4.3)) DMG s,ŝ,x,y X

Table 4.1: Comparison between MetricGAN (MG) derived frameworks

65
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s,(2.38). Secondly, a time-frequency (TF) domain loss (Braun & Tashev, 2020), which makes
explicit use of the component outputs of GCMGAN: ŜMag, ŜIm and ŜRe. The distance between
the enhanced and the reference magnitude is computed byLMag, (2.39). The loss for the real and
imaginary components LRI is defined similarly:

LRI =
1

T · FHz

T∑
t

FHz∑
fHz

(SRi[t, fHz]− ŜRi[t, fHz])
2 +

1

T · FHz

T∑
t

FHz∑
fHz

(SIm[t, fHz]− ŜIm[t, fHz])
2

(4.1)
These two terms are combined with a hyperparameter weighing α to result in the time frequency
loss LTF

LTF = αLMag + (1− α)LRI. (4.2)

The final loss for G under CMGAN is then given as in (Cao et al., 2022)

LG = γ1LGAN + γ2LTime + γ3LTF (4.3)

where γ1, γ2, γ3 are hyperparameter weights to control the influence of each loss term.

4.2.1.2 A Note on the Generator Structures

The network structures of the speech enhancement generators were selected to investigate the effect
of the explicit consideration of complex valued components (and thus phase information) in their
inputs and outputs; the baseline SE DNN MetricGAN+ G (cf. Section 2.12) operates only over
magnitude spectrograms, which do not consider the phase; in this case the phase information of the
noisy speech XP is used in re-synthesis. To contrast this the CMGAN G(cf. Section 2.13) takes as
input the component XRe and XRe outputs of the STFT.

4.2.2 Metric Prediction Discriminator

4.2.2.1 CMGAN Discriminator Network Structure

The CMGAN Discriminator DCMGAN is used in this chapter. It is structured similarly to that
of MetricGAN+ (cf. Section 2.12.4) called here DMG+) with some differences. Firstly each
convolutional layer have a PreLU (rather than ReLU) activation and have 16, 32, 64, 128 output
filters respectively. There are two linear layers rather than three following the average pooling with
64 and 1 output neurons respectively. Finally, the first of these linear layers has a PreLU activation,
and the ‘learnable’ Sigmoid used originally in the MetricGAN+/- G is repurposed as the activation
on the final layer.

4.2.3 Degenerator

4.2.3.1 Network Stucture

In most experiments in this chapter, the DegeneratorN is structured identically to the MetricGAN+
Generator (cf. Section 2.12.5) as in Chapter 3. Additionally, experiments are carried out where the
CMGAN Generator structure (cf. Section 2.13) is used for N .
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4.2.3.2 Degenerator Input

An experiment where the input to N is the clean reference magnitude SMag is carried out. It is
trained using a modified version of (3.2):

LNClean
= E{(D(S̄Mag,SMag)− w)2] (4.4)

where S̄Mag is the magnitude of the de-enhanced time domain signal s̄[n].

4.2.4 Training Details

4.2.4.1 Historical Training of Discriminator D

First proposed in (Fu, Yu, Hsieh, et al., 2021), this is D being trained using a ‘replay buffer’ where
saved outputs of the generator G and degenerator N from past epochs are used to train D. The goal
of this is to prevent D from forgetting about it’s assessment of the outputs of past epochs of G’s
training. The size of this replay buffer is decided by a ‘history portion’ H hyper-parameter,
which corresponds to a percentage sampling of these saved outputs each epoch. For example in a
MetricGAN+/- system, after the first epoch ofD’s training the replay buffer contains 100 outputs of
G and 100 outputs of N ; with history portion = 0.2 20% of each buffer’s samples i.e 40
samples will be used to train D as it’s historical training.
Due to the growth of this buffer, training of MetricGAN+/- systems tends to slow down at later
epochs, where most of the time spent each epoch is consumed by the historical training. In this
chapter, a number of a number of techniques are proposed to limit the size of this replay buffer:

• Cutoff - saved outputs which are older than Ocutoff epochs relative to the current epoch are
removed from the historical set, where Ocutoff is a hyperparameter.

• Disable - the historical training is disabled once a certain training epoch E is reached where
E is a hyperparameter.

• Random - the saved outputs have a Orandom% chance of being removed from the historical
set, where Orandom is a hyperparameter.

• Flatten - the saved outputs are retained in the historical set only if the associated Q′(·) falls
within one standard deviation of the mean Q′(·) score of the entire historical set, i.e if:

E

(
H∑
h=0

Q′(·)

)
− σQ′(·) ≤ Q′(·) ≤ E

(
H∑
h=0

Q′(·)

)
+ σQ′(·) (4.5)

is true for the given sample. This flattening starts once a epoch E is reached, where E is a
hyperparameter value.

The goal of all of these techniques is to reduce the overhead in terms of time and compute of training
MetricGAN+/- systems, while avoiding a significant drop in performance.

4.2.4.2 Sampled β Training

In the Sampled (β) training scheme, the frameworks are trained using a sampled approach, with a
replay buffer used to train D as detailed in Section 2.12.3



CHAPTER 4. FURTHER METRICGAN VARIATIONS 68

4.2.4.3 Simple α Training

In the Simple (α) training a more traditional training scheme is used, where in each epoch the
model(s) observers the entire training set. Each training point is segmented into 2 second clips. For
each batch, first the Generator GCMGAN is trained as described in Section 4.2.1.1 followed byN (if
applicable) and finally D.
In this chapter, the same validation set is used as in the Sampled training, with the best performing
epoch in terms of PESQ score on this validation set loaded at test time.

4.3 Experiments

4.3.1 Datasets Used

4.3.1.1 VoiceBank-DEMAND

The VoiceBank-DEMAND (Valentini-Botinhao et al., 2016) is used in this chapter, for details see
Section 2.9.1.

4.3.1.2 VoiceBank-DEMAND-Rerecorded

In this chapter a new variation on the VoiceBank-DEMAND dataset is introduced, which is called
‘VoiceBank-DEMAND-Rerecorded’. There are two main reasons why this dataset was created.
Firstly, the testset of the original VoiceBank-DEMAND dataset contains mixtures with relatively
high SNR values (higher overall than those of the training set). This makes the testset too ‘easy’
for the enhancement systems being trained. Secondly, the original dataset is an artificial mixture of
clean speech and noise with no simulation of recording environment such as reverberation. This is
unlike real spaces where such factors can greatly effect the recording of speech.
‘VoiceBank-DEMAND-Rerecorded’ is a recreation of the original dataset but rather than the noise
being scaled to the desired SNR and then mixed with the clean speech, the noise is scaled and then
played aloud alongside the clean speech from two loudspeakers, with the mixture of the two signals
being captured by a 16 channel microphone array. The pairings of a each speech file with a noise
recording at specific SNRs are the same as that of the original dataset, however the exact segment
of the noise file is not the same as this was randomly selected in the original simulation. The two
loudspeakers and the microphone array were positioned 1 meter equidistant from each other on the
floor of a soundproofed room. The dimensions of the room are 7 by 9.2 by 2.8 meters and the
recording setup was positioned in a roughly 1 meters from a corner. Fig Figure 4.1 depicts the
recording setup; Spks and Spkv represent the loudspeakers which play aloud the clean speech s
and noise v respectively, while m1,m2, ...,m16 represent the recording microphones. In this work,
the recordings from the microphone nearest to the loudspeakers m1 are used as x[n]. Due to some
failure in the recording process, the testset portion of VoiceBank-DEMAND-Rerecorded is slightly
smaller than that of the original, containing 757 utterances. Figure 4.2 shows the correlations in the
PESQ and STOI metric values between the original and rerecorded training sets; from this it can be
observed that the rerecorded training set has lower metric scores overall, and so is more difficult to
enhance.
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Figure 4.1: Diagram of VoiceBank-DEMAND-Rerecorded Recording Environment

4.3.2 Experiment 1: Investigating the Effect of Hyperparameter w

In Chapter 3 when the Degenerator N concept is introduced, only a single value for the
hyperparameter w is used. This value controls the target metric score of which N aims to produce
audio with, viaN ’s loss function either ((3.2)) or ((4.4)). This experiment aims to better understand
the effect of this hyperparameter, and its relationship with the distribution of target metrics scores
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Figure 4.2: PESQ and STOI metric correlation between original VoiceBank-DEMAND
and VoiceBank-DEMAND-Rerecorded

in the training data.

4.3.2.1 Experiment 1 Setup

Several MetricGAN+/- models were trained with both noisy audio x and clean audio s as inputs to
Dengenerator network N using ((3.2)) and ((4.4)) respectively. Values of the hyperparameter w in
the range of 0.1 to 1 were used, in intervals of 0.05. This represents N being trained to produce
audio with a PESQ score defined as:

ON = (w · 3.5) + 1 (4.6)

resulting in a range of PESQ objectives from 1.35 to 4.5. Note that in the case that w = 1, N is
being trained to the same objective as G. The other hyperparameter values are the same as those
in the experiments in (Close, Hain, et al., 2022); the models were trained for 600 epochs with the
Adam (Kingma & Ba, 2014) optimiser a learning rate of 0.0005 for all three networks. Each model
is evaluated using the STOI (Taal et al., 2011), PESQ (Rix et al., 2001), Composite (Lin et al., 2019)
and SI-SDR (Roux et al., 2018) metrics.

4.3.2.2 Experiment 1 Results: VoiceBank-DEMAND

Table 4.2 and Table 4.3 show the results for using x and y as input to N respectively on the orignal
VoiceBank-DEMAND dataset. In Table 4.2 the best performing model in terms of PESQ and the
Csig and Covl components of the Composite Measure has a w value of 0.8 (ON = 3.8). This
beats the best PESQ score reported in Chapter 3 of 3.22. From Table 4.3 the best performing
MetricGAN+/- system in terms of PESQ score has a value of 0.65 (ON = 3.275). However, the
best performing model in terms of all three components of the Composite measure has a w value of
0.15 (ON = 1.525). Overall, the frameworks which used s as input to N did not perform as well
as those which use x; this is likely due to the difficulty of the task of reducing the PESQ score of
clean speech versus the task of reducing the PESQ score of already noisy speech.



CHAPTER 4. FURTHER METRICGAN VARIATIONS 71

4.3.2.3 Experiment 1 Results: VoiceBank-DEMAND-Rerecorded

Table 4.4 and Table 4.5 show the results for using x and y as input to N respectively on the
rerecorded VoiceBank-DEMAND dataset. In Table 4.4, the best performing model in terms of
PESQ was that where the value of w is 0.9 (ON = 4.15). Table 4.5 shows that the best performing
model in terms of PESQ score where y is input to N has a w value of 0.65 (ON = 3.275). In
both, the SI-SDR metric is not improved by the enhancement; this is likely due to the effect of the
reverberation caused by the recording environment.

4.3.2.4 Experiment 1 Analysis

Figure 4.4 and Figure 4.5 show the distribution of PESQ scores for the original and rerecorded
VoiceBank-DEMAND training sets respectively. Both also display the optimal ON which
corresponds to the best performing value of w for when both x and s are the input to N . It can
be observed from these figures that the best value for w is one which results in N being trained
to produce outputs with PESQ scores which are not well represented in the training set. All four
optimal ON values are high, meaning that N is trained to produce relatively high quality outputs.
For both the original and rerecorded datasets, the optimal value for w is lower when s[n] is the input
to N than when the input is x[n].

4.3.2.5 Experiment 1 Degenerator Performance

Figure 4.3: Distribution of PESQ scores of N ’s outputs at final training epoch with
s[n] as input and w = 0.65 for training on the original VoiceBank-DEMAND.

Figure 4.6 shows the distribution of PESQ scores for the output of the degenerator N in the final
epoch of training for the best performing MetricGAN+/- framework in Table 4.2 i.e w = 0.8 with
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nosiy signal x as input. The dotted red line represents the target score for which N is being trained
to produce outputs with while the solid green line represents the mean score of the actual outputs in
this epoch. This figure indicates that N is unable to archive it’s training objective even at the last
training epoch of the framework. A similar result can be observed for the best performing model
with s as input in Figure Figure 4.3.

Figure 4.4: Distribution of PESQ scores in original VoiceBank-DEMAND training set

w PESQ STOI Csig Cbak Covl SI-SDR
Noisy 1.97 0.92 3.35 2.44 2.63 8.98
0.1 3.01 0.93 4.06 3.06 3.52 10.32
0.2 3.06 0.93 4.07 3.10 3.57 7.98
0.3 3.06 0.93 4.05 3.05 3.54 7.23
0.4 3.17 0.92 3.95 3.06 3.53 5.99
0.5 3.19 0.92 4.00 3.13 3.58 7.09
0.6 3.20 0.92 4.04 3.08 3.60 5.39
0.7 3.18 0.92 3.98 3.07 3.55 6.41
0.8 3.25 0.93 4.18 3.12 3.70 6.21
0.9 3.13 0.93 4.09 3.08 3.6 7.92
1.0 3.14 0.92 4.07 3.07 3.59 7.45

Table 4.2: Performance of MetricGAN+/- with x as input and w values for N on the
original VoiceBank-DEMAND dataset.
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Figure 4.5: Distribution of PESQ scores in Rerecorded VoiceBank-DEMAND training
set

w PESQ STOI Csig Cbak Covl SI-SDR
Noisy 1.97 0.92 3.35 2.44 2.63 8.98
0.1 3.12 0.92 4.06 3.10 3.58 6.96
0.2 2.98 0.93 3.94 3.10 3.45 10.22
0.3 3.12 0.92 3.94 3.10 3.50 7.99
0.4 3.10 0.92 4.03 3.12 3.55 7.79
0.5 3.12 0.92 4.06 3.12 3.58 7.83
0.6 3.03 0.92 4.03 3.06 3.51 7.19
0.7 3.01 0.92 3.99 3.12 3.53 6.60
0.8 3.01 0.92 3.99 3.07 3.52 6.48
0.9 3.11 0.92 3.94 3.06 3.50 5.59
1.0 3.07 0.92 3.99 3.04 3.51 7.10

Table 4.3: Performance of MetricGAN+/- with s as input and w values for N on the
original VoiceBank-DEMAND dataset.

4.3.3 Experiment 2: Historical Set Reduction Techniques

In this experiement, the historical set reduction techniques introduced in Section 4.2.4.1 are
implemented and compared.
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w PESQ STOI Csig Cbak Covl SI-SDR
Noisy 1.67 0.88 2.81 2.04 2.18 1.08
0.1 2.64 0.90 3.50 2.58 3.03 -0.27
0.2 2.36 0.84 2.76 2.22 2.44 -5.13
0.3 2.71 0.88 3.37 2.60 2.99 -0.61
0.4 2.74 0.89 3.45 2.61 3.04 -0.32
0.5 2.72 0.88 3.32 2.59 2.97 -1.01
0.6 2.73 0.87 3.20 2.54 2.89 -1.23
0.7 1.45 0.75 2.23 1.72 1.68 -7.89
0.8 2.69 0.89 2.93 2.56 2.75 -0.99
0.9 2.92 0.88 3.30 2.64 3.04 0.05
1.0 2.62 0.88 2.90 2.55 2.71 -1.59

Table 4.4: Performance of MetricGAN+/- with x as input and w values for N on the
rerecorded VoiceBank-DEMAND dataset.

w PESQ STOI Csig Cbak Covl SI-SDR
Noisy 1.67 0.88 2.81 2.04 2.18 1.08
0.1 2.63 0.89 2.85 2.53 2.68 -0.53
0.2 2.71 0.88 3.26 2.59 2.93 -0.99
0.3 2.55 0.88 3.08 2.53 2.77 -1.28
0.4 2.64 0.89 3.05 2.56 2.79 -1.13
0.5 2.64 0.89 3.21 2.56 2.87 -0.26
0.6 2.58 0.89 3.27 2.55 2.88 -0.77
0.7 2.45 0.90 3.24 2.50 2.81 -0.66
0.8 2.56 0.89 2.78 2.52 2.62 -0.82
0.9 2.53 0.88 2.90 2.50 2.66 -1.55
1.0 1.89 0.86 1.63 2.16 1.66 -2.65

Table 4.5: Performance of MetricGAN+/- with s as input and w values for N on the
rerecorded VoiceBank-DEMAND dataset.
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Figure 4.6: Distribution of PESQ scores of N ’s outputs at final training epoch with
x[n] as input and w = 0.8 for training on the original VoiceBank-DEMAND.

4.3.3.1 Experiment Setup

Several MetricGAN+/- models were trained on the original VoiceBank-DEMAND dataset with the
techniques detailed in Section 4.2.4.1. The best performing hyperparameter values from Table 4.2
were selected, i.e x as input to N and w at 0.65 for all the models. Ocutoff for the Cutoff technique
is set to 10 and epoch E for both the Disable and Flatten technique is set to 300, i.e the halfway
point in training. Orandom is set to 50 for the Random technique. For all frameworks,H is set to 0.2.

4.3.3.2 Performance of Techniques

Table 4.6 shows the results for the different historical set reduction techniques. Along with the
signal quality metrics, the table also shows the training time for each model in hours t as well as the
trade off between gain in PESQ score over the noisy data and training time, ∆PESQ/t. The model
which took the shortest time to train was that which used the Cutoff technique, which achieved
performance somewhat comparable to the baseline while taking a significantly shorter time to train.
All of the historical set reduction techniques were able to achieve higher ∆PESQ/t scores than
the baseline, which suggests that the large history buffer has only a small effect on the overall
performance of the framework. Figure 4.7 visualises the training time and Figure 4.8 visualises the
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relative gain in validation time PESQ score. Since the cutoff technique showed the best results,
a further experiment was carried out, where frameworks using the Cutoff technique with differing
values for Ocutoff were trained; Table 4.7 shows the results. A pattern emerges in these results
wherein a higher values of Ocutoff produce better performing enhancement models at the cost of
increased training time. All Cutoff frameworks have similar ∆PESQ/t scores, which suggests that
the relative gain in PESQ score between the frameworks is consistent. Near baseline performance
is achieved by all of the frameworks here.

Figure 4.7: Training time versus epoch counter for the historical set reduction
techniques.

Technique Train Hours t PESQ ∆PESQ/t STOI Csig Cbak Covl SI-SDR
Noisy – 1.97 – 0.92 3.35 2.44 2.63 8.98
Baseline 77.44 3.25 0.017 0.93 4.18 3.12 3.70 6.21
Cutoff 20.70 3.05 0.052 0.92 4.01 2.99 3.52 5.70
Disable 28.56 3.05 0.038 0.93 3.99 3.12 3.51 8.79
Random 20.75 2.87 0.043 0.94 4.06 2.99 3.47 15.94
Flatten 27.13 3.02 0.039 0.93 4.05 3.04 3.53 7.58

Table 4.6: Performance of MetricGAN+/- with historical set size reduction techniques
on original VoiceBank-DEMAND
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Figure 4.8: Training time versus validation PESQ score for the historical set reduction
techniques.

Ocutoff Train Hours t PESQ ∆PESQ/t STOI Csig Cbak Covl SI-SDR
Noisy – 1.97 – 0.92 3.35 2.44 2.63 8.98
Baseline (∞) 77.44 3.25 0.017 0.93 4.18 3.12 3.70 6.21
5 19.65 2.98 0.051 0.92 3.92 2.97 3.43 7.35
10 20.60 3.06 0.053 0.93 4.06 3.00 3.55 7.06
15 20.59 3.14 0.057 0.92 4.09 3.06 3.60 5.62
20 20.70 3.13 0.056 0.93 4.07 3.04 3.59 5.25

Table 4.7: Performance of Cutoff historical set reduction technique with differing values
for Ocutoff on original VoiceBank-DEMAND

4.3.4 Experiment 3: Phase Aware Enhancement

4.3.4.1 Experiment 3 Setup

In this experiment, MetricGAN+/- frameworks incorporating the phase aware Generator structure
GCMGAN. In the case of GCMGAN, frameworks were trained both using the Simple and Sampled
training scheduling denoted as α and β respectively. Note that unlike in (Cao et al., 2022), here
a validation set is utilised, which means that the training set is roughly 10% smaller than for the
models trained in that work; those results are provided as a baseline here. As a comparison,a
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version of CMGAN is trained where D is exposed to the noisy audio x but N is not used (denoted
as CMGAN+ α). For an overview of all the proposed frameworks and baselines, see Table 4.1.

4.3.4.2 Experiment 3 Results

Table 4.9 shows the results for the experiments described above on the original VoiceBank-
DEMAND testset. The CMGAN framework with a validation stage under-performs the baseline
values reported in the original paper due to having access to less training data. However, with
the introduction of the additional loss term for D introduced in (Fu et al., 2019), comparable
performance to this baseline is achieved by CMGAN+ α.
The two frameworks which incorperate the DegeneratorN concept, CMGAN+/- α and CMGAN+/-
β do not perform well. In the case of CMGAN+/- α, the overall performance is worse than
that of CMGAN+ α, and only slight outperforms CMGAN. CMGAN+/- β is worse again, under-
performing even the MetricGAN+/- baseline in all measures but Cbak. This suggests that having
different network structures for G and N is detrimental to performance, as the simpler network (in
this case N ) is able to learn it’s optimal parameters more quickly than G.

To test, this another version of the CMGAN+/- β framework was trained, using the CMGAN
network structure for both G and N ; the results for this (denoted as CMGAN+/- β ditto) are shown
in Table Table 4.8. By matching the structure of G and N , performance is somewhat improved.

Model PESQ STOI Csig Cbak Covl SI-SDR
Noisy 1.97 0.92 3.35 2.44 2.63 8.98
CMGAN+/- β 3.13 0.95 4.38 3.42 3.77 17.43
CMGAN+/- β ditto 3.20 0.95 4.49 3.57 3.87 18.54
CMGAN+/- β ditto w = 0.45 3.24 0.95 4.50 3.58 3.90 18.12
CMGAN+/- β LGGAN

only 3.17 0.94 4.27 3.11 3.72 10.46
CMGAN+/- β no history 3.05 0.94 4.36 3.39 3.72 18.13

Table 4.8: Performance of CMGAN+/- β ditto with CMGAN network structure for G
and N

Model PESQ STOI Csig Cbak Covl SI-SDR
Noisy 1.97 0.92 3.35 2.44 2.63 8.98
CMGAN (Cao et al., 2022) (reported, no valid) 3.41 0.96 4.54 3.82 4.02 20.66
MetricGAN+/-(Chapter 3) 3.25 0.93 4.18 3.12 3.70 6.21
CMGAN α w/ valid 3.39 0.96 4.49 3.80 3.99 20.56
CMGAN+ α 3.40 0.96 4.53 3.82 4.02 20.64
CMGAN+/- α 3.39 0.96 4.52 3.79 4.00 20.40
CMGAN+/- β 3.13 0.95 4.38 3.42 3.77 17.43

Table 4.9: Performance of MetricGAN+/- with phase aware Generators on original
VoiceBank-DEMAND

4.3.5 Experiment 4: ASR based enhancement objective

4.3.5.1 Experiment 4 Setup

In this experiment MeticGAN+/- frameworks are trained with minimising the Word Error Rate
(WER) of a particular ASR system as the objective metric. Both the original and rerecorded
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VoiceBank-DEMAND datasets are used. The value of w is 0.45 in both cases. The ASR system
used is based on HuBERT (Hsu et al., 2021) (cf. Section 2.5.2) and trained on LibriSpeech-
960 (Panayotov et al., 2015), sourced from HuggingFace1.

4.3.5.2 Experiment 4 Results

Table 4.10 and Table 4.11 show the results for the WER objective for the original and rerecorded
VoiceBank-DEMAND datasets.The baseline system here is the best performing PESQ objective
model from the previous experiments. On the original dataset, the WER objective performed
extremely poorly, degrading all performance measures, including WER even over the input noisy
signals. However, for the rerecorded dataset, a slight improvement in WER is found over the noisy
input, as well as over the baseline PESQ objective system. These results show that while WER
objective enhancement is technically possible with a MetricGAN system, the performance gain is
not large.

Model PESQ STOI Csig Cbak Covl SI-SDR WER
Clean – – – – – – 8.0
Noisy 1.97 0.92 3.35 2.44 2.63 8.98 10.3
Baseline 3.25 0.93 4.18 3.12 3.70 6.21 10.9
WER Objective 1.49 0.89 2.90 2.02 2.14 1.36 11.2

Table 4.10: WER objective on original VoiceBank-DEMAND

Model PESQ STOI Csig Cbak Covl SI-SDR WER
Clean – – – – – – 7.7
Noisy 1.67 0.88 2.81 2.04 2.18 1.08 15.4
Baseline 2.92 0.88 3.30 2.64 3.04 0.05 32.7
WER Objective 1.62 0.89 1.98 2.01 1.72 0.60 15.2

Table 4.11: WER objective on rerecorded VoiceBank-DEMAND

4.4 Summary

In this chapter, a number of additional experiments further exploring the de-generator extension and
it’s training objective are carried out. Experiments relating to the network structure of the NNSE
Generator DNN are carried out as well as related to the training scheme and replay buffer. Finally,
an experiment investigating optimisation towards WER of an ASR system are performed.

1https://huggingface.co/facebook/hubert-large-ls960-ft

https://huggingface.co/facebook/hubert-large-ls960-ft


Chapter 5

CMGAN+/+: Optimising Speech
Enhancement towards non-intrusive
MOS Predictors

The CHiME-7 UDASE challenge (cf. Section 2.9.3) targets domain adaptation to unlabelled speech
data. This chapter describes a proposed NNSE system submitted to the challenge. A CMGAN (cf.
Section 2.13) based framwork is used; the discriminator of the GAN is trained to predict the output
score of a DNSMOS metric. Additional data augmentation strategies are employed which provide
the discriminator with historical training data outputs as well as more diverse training examples
from an additional pseudo-generator. The proposed approach, denoted as CMGAN+/+, achieves
significant improvement in DNSMOS evaluation metrics with the best proposed system achieving
3.51 OVR-MOS, a 24% improvement over the baseline.

5.1 Speech Enhancement System Description

The overall architecture of the proposed system in this chapter is largely based on the CMGAN (Cao
et al., 2022) framework described in Section 2.13, but with two extensions proposed in (Fu, Yu,
Hsieh, et al., 2021) (cf. Section 2.12) and Chapter 3. The first extension is to train the discriminator
D on a historical set of past generator outputs every epoch. The second extension is to train D to
predict the metric score of noisy, clean and enhanced audio, as well as the output of a secondary
pseudo-generator network N which is designed to increase the range of metric values observed by
D. This chapter introduces a new structure for D, as well as a new input feature which is derived
from a pre-trained SSSR (cf. Section 2.5.2).

5.1.1 Conformer-based Generator

The Conformer model generator G is based on the best performing CMGAN configuration in (Cao
et al., 2022). The network itself combines mapping and masking approaches for spectral speech
enhancement, utilising a conformer (Gulati et al., 2020) based bottleneck; see Section 2.13 for
details. The model is trained with the multi-term loss function detailed in Section 4.2.1.1. Note that
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as the metric being predicted is non-intrusive, LGGAN
is defined here as

LGGAN
= (D(ŝ[n])− 1)2 (5.1)

which represents an assessment of the enhanced signal by the metric Discriminator D. The 1 in
(5.1) represents the highest possible DNSMOS value of 5 after being normalised between 0 and 1.

5.1.2 Metric Estimation Discriminator

The discriminator D part of the GAN structure is trained to predict a normalised DNSMOS (Reddy
et al., 2022) score for a given input signal. Inference of D is used as in (2.57) as one of the loss
terms of G and as the sole loss function of N in (3.2), enforcing an optimisation towards the target
metric.
Experiments with trainingD to predict one of the outputs of Deep Noise Suppression Mean Opinion
Score (DNSMOS) (i.e QSIG, QBAK or QOVR) (cf. Section 2.7.7) are conducted.

5.1.2.1 Discriminator Network Structure

The discriminator network structure consists of 2 BLSTM layers followed by a single attention feed-
forward layer with a sigmoid activation, similar to the network proposed in (Cooper et al., 2022).
The input toD is the output of the HuBERT feature encoderHFE(·). Unlike in previous chapters,D
here takes in only the representations of the distorted signal, i.e it is non-intrusive (Fu, Yu, Hung, et
al., 2021) as the metric being predicted Deep Noise Suppression Mean Opinion Score (DNSMOS)
is also non-intrusive.

5.1.2.2 Discriminator Loss Function

Within each epoch, first the Discriminator D is trained on the current training elements:

LD,MG+ = {(D(s[n])−Q′(s))2

+ (D(ŝ[n])−Q′(ŝ[n]))2

+ (D(x[n])−Q′(x[n]))2

+D(y[n])−Q′(y[n]))2} (5.2)

where s[n] is the clean audio, the noisy mixture x[n], the mixture as enhanced by G, ŝ[n], and the
mixture as enhanced by N , y[n]. This is followed by a historical training stage, where D is trained
to predict the metric scores from past outputs of the generative networks G and N . Q′(·) is the true
DNSMOS score of the input audio, normalised between 0 and 1.

5.1.3 Metric Data Augmentation Pseudo-Generator

As first proposed in Chapter 3, an additional speech enhancement network N is trained, and its
outputs y used to train the metric prediction discriminator D (last term in (3.1)) . This model is
trained solely using the GAN loss in (3.2). Its network structure is that of the original MetricGAN,
detailed in Section 2.12.
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5.2 Experiment Setup

The framework is trained on the simulated LibriMix dataset (Cosentino et al., 2020), using the
same data loading configuration as the teacher network in the baseline system (Leglaive et al.,
2023). The labelled LibriMix training set consists of 33900 clean/noisy audio pairs, with the clean
speech sourced from the LibriSpeech (Panayotov et al., 2015) dataset and the added noise from
WHAM! (Wichern et al., 2019) dataset. The framework is trained for 200 epochs, on a random
sample of 100 training elements from the train set in each epoch. The Adam optimizer is used
for all three networks, with learning rates of 0.005, 0.005 and 0.001 for G,N and D respectively.
Frameworks are trained where D is trained to predict target metric DNSMOS terms QSIG, QBAK

and QOVR individually.
Following the configuration in the original CMGAN system, γ1, γ2, γ3 in (4.3) are set to 1, 0.2 and
0.05 respectively, while α in (4.2) is set to 0.9. An additional simulation completely disabling the
GAN component of the framework, i.e. setting γ3 to 0, as well as training solely using the GAN loss
by setting γ1 and γ2 to 0 and γ3 to 1 are performed. We further experiment with the addition of the
SI-SDR loss (cf. (2.48)) (Roux et al., 2018):

LGL+SI−SDR = LG + LSI−SDR(s, ŝ) (5.3)

Additionally, we experiment with setting w, the hyperparameter which controls the objective of N
in (3.2), to 1.0, 0.8 and 0.45.
At evaluation time, the best-performing epoch in terms of the target metric on the LibriMix
validation set is loaded. Note that only the labelled portion of the challenge training data is used in
taining, unlike the baseline system. Additionally,results are reported for the best-performing epoch
after further fine-tuning for 20 epochs on the labelled LibriCHiME dev set which consists is similar
to LibriMix but with the noise sourced from the real CHiME recordings.

5.3 Results

Table 6.2 shows the results of the baseline systems and the proposed systems (for different w in
((4.4)) and different target metrics Q from ((2.52)) on the simulated Reverberant LibriCHiME
evaluation set in terms of Scale Invariant Speech Distortion Ratio (SI-SDR) score. Here, the
proposed system shows generally lower performance than the baselines, with the exception of the
models which are trained with QBAK as their target metric. The model trained with a w value of
0.8 with QBAK as the objective when fine-tuned in the LibriCHiME dev set was able to achieve an
average SI-SDR score of 7.41 dB. Similarly, the model trained with a w value of 1 and QOVR

achieves an average SI-SDR score of 7.41 dB. The relatively poor overall performance by the
proposed systems in terms of SI-SDR as evaluation metric can perhaps be explained by the fact
that the baseline systems all explicitly use SI-SDR as a loss function during training; our system
which incorporates SI-SDR loss directly outperforms the baseline in this measure as shown in the
following.
Table 5.2 show results of the baseline systems and the proposed systems on the real CHiME
evaluation set in terms of DNSMOS scores. Here, the proposed systems all show a marked
improvement over the baseline systems, with an improvement in terms of the target metric after
fine-tuning in most cases. Furthermore, the inclusion of the GAN term in (4.3) also has a significant
effect on this measure, as shown by the performance of the proposed system without the GAN term.
UnlikeQSIG andQBAK fine-tuning on the LibriCHiME dev set degrades performance on the models
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Model w Q SI-SDR (dB)
unprocessed – – 6.59
Sudo rm -rf (Tzinis et al., 2020) – – 7.8
RemixIT (Tzinis et al., 2022) – – 9.44
RemixIT (Tzinis et al., 2022) w/ VAD – – 10.05
CMGAN+/+ 1.00 SIG 4.71

fine-tuned 3.55
CMGAN+/+ 0.80 SIG 4.53

fine-tuned 3.55
CMGAN+/+ 0.45 SIG 5.98

fine-tuned 4.30
CMGAN+/+ 1.00 BAK 6.95

fine-tuned 6.89
CMGAN+/+ 0.80 BAK 6.31

fine-tuned 7.39
CMGAN+/+ 0.45 BAK 6.42

fine-tuned 5.84
CMGAN+/+ 1.00 OVR 7.41

fine-tuned 4.29
CMGAN+/+ 0.80 OVR 1.19

fine-tuned 5.15
CMGAN+/+ 0.45 OVR 4.75

fine-tuned 6.78
no GAN term – – 6.61
GAN only 1.00 SIG -30.97
GAN only 1.00 BAK -67.28
GAN only 1.00 OVR -41.60
CMGAN+/+ + SD-SDR 1.0 SIG 10.13

Table 5.1: SI-SDR results on the reverberant LibriCHiME eval set.

trained towards QOVR. Generally, the models trained with a w value of 1 perform better than the
other values; this may be caused by the difficulty of the task of N to enhance or ’de-enhance’ the
input audio representation.
The results for the model trained solely using the GAN term towardsQSIG are shown in the last row
of Table 5.2. While this model shows good performance on its target metric, it scores rather poorly
on the other two DNSMOS components. Furthermore, when played back, audio enhanced by this
system is significantly distorted, with barely any of the original signal retained. The models trained
only using the GAN term towards QBAK and QSIG are similarly distorted.

5.3.1 Spectrogram Analysis

Figure 5.1 shows spectrograms for noisy (upper panel in Figure 5.1) and enhanced audio by the
system with QSIG as target metric and a w of 1 (second panel), the system with no GAN term (3rd
panel) and the system using the GAN term only (also with QSIG, w of 1, lower panel in Figure 5.1).
In the lower panel of Figure 5.1, the significant distortion of the signal by the GAN-only model is
visible, despite it achieving a similar DNSMOS SIG improvement relative to the noisy input as the
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Model w Q OVR BAK SIG
unprocessed - 2.84 2.92 3.48
Sudo rm -rf (Tzinis et al., 2020) - 2.88 3.59 3.33
RemixIT (Tzinis et al., 2022) - 2.82 3.64 3.26
RemixIT (Tzinis et al., 2022) w/ VAD - 2.84 3.62 3.28
CMGAN+/+ 1.00 SIG 3.29 3.85 3.76
fine-tuned 3.45 3.90 3.98
CMGAN+/+ 0.80 SIG 3.20 3.70 3.68
fine-tuned 3.37 3.46 3.86
CMGAN+/+ 0.45 SIG 3.33 3.81 3.80
fine-tuned 3.49 3.90 3.98
CMGAN+/+ 1.00 BAK 3.12 3.90 3.39
fine-tuned 3.28 4.08 3.29
CMGAN+/+ 0.80 BAK 3.06 3.82 3.32
fine-tuned 3.15 3.95 3.07
CMGAN+/+ 0.45 BAK 2.87 3.74 3.18
fine-tuned 3.08 3.87 3.23
CMGAN+/+ 1.00 OVR 3.51 3.99 3.78
fine-tuned 2.60 3.25 3.14
CMGAN+/+ 0.80 OVR 3.37 3.87 3.56
fine-tuned 2.75 3.27 3.27
CMGAN+/+ 0.45 OVR 3.23 3.94 3.33
fine-tuned 2.84 3.24 3.26
no GAN term – – 2.87 3.54 3.34
GAN only 1.00 SIG 2.66 1.58 3.72
GAN only 1.00 BAK 2.67 3.78 2.41
GAN only 1.00 OVR 2.70 3.68 3.00
CMGAN+/+ + SI-SDR 1.00 SIG 3.04 3.70 3.42

Table 5.2: DNSMOS results on CHiME5 eval set.
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other enhancement models. This suggests that the model has learned to ‘enhance’ the input audio
in a way to trick the DNSMOS SIG metric into awarding it high scores. The reason as to why
DNSMOS awards such high scores to significantly distorted audio remains unknown; it is possible
that as DNSMOS is a data-driven system itself, the problem arises from its neural network not
ever observing audio which has been distorted in such a way during its own training, resulting in it
assigning an effectively meaningless score.

5.3.2 Challenge Results

Table 5.3 compares the challenge entries in terms of DNSMOS and SI-SDR on the sim challenge
evaluation sets.

CHiME-5 Reverb Libri-
(DNSMOS) CHiME-5

Rank System OVRL BAK SIG SI-SDR (dB)
1 CMGAN+/+ fine 3.55 3.93 3.92 4.7
2 CMGAN+/+ 3.40 3.97 3.76 7.8
3 NWPU/ByteAudio (Z. Zhang et al., 2023) 3.07 3.93 3.39 13.0
4 Sogang ISDS1 (Jang & Koo, 2023) 2.90 3.60 3.39 12.4
5 Sogang ISDS2 (Jang & Koo, 2023) 2.88 3.70 3.32 12.4
6 OOD teacher (Leglaive et al., 2023) 2.88 3.59 3.33 7.8
7 RemixIT-VAD (Tzinis et al., 2022) 2.84 3.62 3.28 10.1
8 Unprocessed 2.84 2.92 3.48 6.6
9 RemixIT (Tzinis et al., 2022) 2.82 3.64 3.26 9.4

Table 5.3: Comparison with other challenge entries ranked by DNSMOS OVR score.

The submitted system uses DNSMOS SIG as its target metric with a w value of 1. Note that the
results shown here for our submitted systems differ slightly from those in the previous section,
as they come from different runs of the model on a different random seed. Both our base and
fine-tuned models significantly outperform all other entries in terms of DNSMOS on the real
CHiME-5 evaluation set, but show lower performance for SI-SDR as target metric. After evaluation
by the challenge organisers in terms of DNSMOS and SI-SDR as shown in Table 5.3, the two
best-performing systems for each of the two target metrics (including the proposed system) were
evaluated in listening tests.Table 5.4 shows the results listening-tests of audio enhanced by the top-
performing systems, as well as the unprocessed audio. Interestingly, the proposed system shows
lower performance in the listening tests than expected from the high scores in terms of DNSMOS
in Table 5.4.

5.4 Summary

In this chapter, the CMGAN+/+ speech enhancement system for the CHiME-7 UDASE challenge
is described. The system uses a GAN-based model with discriminator input data augmentation
strategies to improve metric prediction performance. Results on the unlabelled CHiME-5 evaluation
set demonstrate improvements in DNSMOS evaluation metrics, significantly outperforming the
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CHiME-5 (Listening Tests)
Rank System OVRL BAK SIG

1 NWPU/ByteAudio 3.11 4.30 3.41
2 Sogang ISDS1 2.75 3.08 3.43
3 Unprocessed 2.68 2.20 3.97
4 RemixIT-VAD 2.45 2.97 3.02
5 CMGAN+/+ fine 2.14 2.75 2.63

Table 5.4: Comparison of top-performing challenge entries on listening tests with
human participants, ranked by OVRL MOS.

baseline system in OVR, BAK and SIG measures. However, this does not directly translate to
high ratings in listening tests with humans. By training solely using a metric optimisation loss,
possible flaws in the metric being optimised towards have to be considered.
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Figure 5.1: Noisy and enhanced spectrograms of audio file S01 P01 0.wav from the
CHiME-5 evaluation set.



Chapter 6

Multi-CMGAN+/+: Optimizing Speech
Enhancement towards Multiple Metrics

6.1 Introduction

This chapter expands on the DNSMOS prediction within the MetricGAN framework introduced
in Chapter 5 by introducing a multi-headed predictor which is capable of predicting the scores of
multiple metrics simultaneously.

6.2 Speech Enhancement System

The overall architecture of the proposed system is based on the CMGAN framework proposed in
(Cao et al., 2022), but with two extensions based on (Fu, Yu, Hsieh, et al., 2021) and (Close, Hain,
et al., 2022). The first extension is to train the discriminator D on a historical set of past generator
outputs every epoch. The second extension is to train D to predict the metric score of noisy, clean
and enhanced audio, as well as the output of a secondary pseudo-generator network N which is
designed to increase the range of metric values observed byD. This work introduces a new structure
for D allowing it to predict multiple metrics at once, as well as a new input feature which is derived
from a pre-trained SSSR model.

6.2.1 Conformer-based Speech Enhancement Generator

6.2.1.1 Conformer-based Generator Network Structure

The conformer model generator G is based on the best performing CMGAN configuration in (Cao
et al., 2022) (cf. Section 2.13). The network itself combines mapping and masking approaches
for spectral speech enhancement, utilising a conformer (cf. Section 2.4.1.4 based bottleneck.
The model’s input are STFT components of the complex-valued noisy audio, XRe,XIm, with a
reasonably high temporal resolution (hop size of 6 ms with a 50% overlap, and a fast Fourier
transform (FFT) length of 400 samples). The output of the model are the enhanced real and
imaginary STFT components ŜRe and ŜIm from which the enhanced time domain audio ŝ[n] is
obtained by ISTFT. For more detail see Section 2.13.

88
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6.2.1.2 Generator Loss Function

The generator model G is trained with a multi-term loss function:

LG = LGGAN
+ LGTime

+ LGSI−SDR
(6.1)

LGGAN
is (2.57) which represents an assessment of the enhanced signal by the metric Discriminator

D. D(ŝ[n]) is the inference of the metric prediction discriminator D,given the enhanced signal as
input, which has an output of dimensionNQ×1 representing theNQ predicted normalisedQ′ values
of the target metrics, i.e. NQ equals 3 when using (2.52). The 1 vector in (2.57), also of length NQ,
represents the highest possible target metric values normalized between 0 and 1. Thus, the net effect
of this loss term is to encourage G to maximise the predicted scores assigned to its outputs by D.
LGTime

is a mean absolute error between the enhanced and clean time domain mixtures, (2.38).
Finally, LGSISDR

is the SI-SDR (Roux et al., 2018) loss, (2.48). With the exception of LGGAN
, all

terms of LG require access to clean label/reference audio s[n].

6.2.1.3 Block Processing for Longer Inputs

Due to the quadratic time-complexity of the transformer layers in the conformer models, processing
long sequences can be unfeasible due to high memory requirements. Transformers are also typically
unsuitable for continuous processing as the entire sequence is required to compute self-attention.
To address these issues input signals are processed in overlapping blocks of 4s for evaluation and
inference as this has been shown to be in an optimal signal length for attention-based enhancement
models (Ravenscroft et al., 2023). A 50% overlap with a Hann window is used to cross-fade each
block with one an another. Models are trained with 4s signal length limits (Ravenscroft et al., 2023).

6.2.2 Metric Estimation Discriminator

The discriminator D part of the GAN structure is trained to predict three normalised speech quality
metrics for a given input signal. Inference of D is used in (2.57) as one of the loss terms of G and
as the sole loss function of N in (3.2), enforcing an optimisation towards the target metrics.
We experiment with training D to predict each outputs of DNSMOS (i.e QSIG, QBAK or QOVR), as
well as PESQ (QPESQ).

6.2.3 Discriminator Network Structure

The discriminator network structure consists of 2 BLSTM layers followed by three parallel attention
feed-forward layers with sigmoid activations, similar to the network proposed in (Cooper et al.,
2022). Each attention feed-forward layer outputs a single neuron which represents the prediction
value of one of the three target metrics. The input feature of D is the output of the HuBERT feature
encoder HFE(·); for more detail on this feature see, Section 2.5.2. The output of D has dimension
B ×NQ where B is the batch size and each of NQ values represents a normalised predicted metric
value. Note that inference of D is always non-intrusive, even if one of its target metrics such as
PESQ is intrusive.
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6.2.3.1 Discriminator Loss Function

Within each epoch, first the Discriminator D is trained on the current training elements:

LD,MG+ = E{(D(s[n])− [Q′1(s), ..., Q′NQ
(s)])2

+ (D(ŝ[n])− [Q′1(ŝ), ..., Q′NQ
(ŝ)])2

+ (D(x[n])− [Q′1(x), ..., Q′NQ
(x)])2

+ (D(y[n])− [Q′1(y), ..., Q′NQ
(y)])2} (6.2)

. Q′1(·), Q′2(·) and Q′3(·) are the true target metric scores of the input audio, normalized between 0
and 1. The Q′ vectors in (6.2) can be shorter than 3 if less than NQ = 3 metrics are considered.
This is followed by a historical training stage, where D is trained to predict the metric scores from
past outputs of the generative networks G and N .

6.3 Experiments

6.3.1 Training Setup

The framework is trained on simulated labelled data from the LibriMix (Cosentino et al., 2020) for
200 epochs, following a similar dataloading system as in (Leglaive et al., 2023) generating mixtures
of a single speaker with noise. The labelled LibriMix training set consists of 33900 clean/noisy
audio pairs, with the clean speech sourced from the LibriSpeech (Panayotov et al., 2015) dataset
and the added noise from WHAM! (Wichern et al., 2019) dataset.
Each epoch, 300 samples from the training set are randomly selected. These are first used to train
the metric prediction Discriminator D using (5.2). This is followed by the training of D on the
historical set. Then the 300 random samples are used to train N using inference of D with (5.2),
followed finally by the training of G using (4.3) which also uses inference of D.
Different combinations of the DNSMOS terms and PESQ are experimented with as the three target
metrics for D by setting each of Q1, Q2, Q3 in (5.2) to be QPESQ, QSIG, QBAK or QOVR.
The proposed models are evaluated on the CHiME7 UDASE task (Leglaive et al., 2023) evaluation
sets. These are a real world unlabelled set consisting of CHIME5 recordings which are evaluated
using DNSMOS and a simulated labelled set consisting of reverberant LibriMix audio which are
evaluated using SI-SDR. The proposed system is compared to CMGAN+/+ (cf. Chapter 5) as well
as the challenge baselines (Leglaive et al., 2023).

6.4 Results

Table 6.1 shows the results of the proposed framework in terms of DNSMOS on the CHiME-
7 UDASE task real evaluation set. The proposed systems significantly outperform the baseline
systems in all measures, while also outperforming the author’s prior work CMGAN+/+ in terms
of OVR and BAK. However, CMGAN+/+ still outperforms the proposed system in terms of SIG,
which is the only metric it is optimized towards.
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Table 6.1: DNSMOS results on CHiME5 eval set.

Model Q1, Q2, Q3 OVR BAK SIG
unprocessed – 2.84 2.92 3.48
Sudo rm -rf (Tzinis et al., 2020) – 2.88 3.59 3.33
RemixIT (Tzinis et al., 2022) w/VAD – 2.84 3.62 3.28
CMGAN+/+ (cf. Chapter 5) SIG 3.29 3.85 3.76
Multi-CMGAN+/+ SIG/BAK/OVR 3.42 3.86 3.56
Multi-CMGAN+/+ SIG/BAK/PESQ 3.08 3.78 3.41
Multi-CMGAN+/+ SIG/OVR/PESQ 2.80 3.62 3.19
Multi-CMGAN+/+ BAK/OVR/PESQ 3.12 3.86 3.49

Table 6.2: SI-SDR results on the reverberant LibriCHiME eval set.

Model Q1, Q2, Q3 SI-SDR (dB)
unprocessed – 6.59
Sudo rm -rf (Tzinis et al., 2020) – 7.8
RemixIT (Tzinis et al., 2022) w/ VAD – 10.05
CMGAN+/+ SIG 4.71
Multi-CMGAN+/+ SIG/BAK/OVR 3.36
Multi-CMGAN+/+ SIG/BAK/PESQ 4.47
Multi-CMGAN+/+ SIG/OVR/PESQ 0.09
Multi-CMGAN+/+ BAK/OVR/PESQ 6.95

Table 6.2 shows the results of the proposed framework in terms of SI-SDR on the CHiME-7 UDASE
task simulated evaluation set. Here, the weaknesses of the proposed system relative to the CHiME-7
baseline systems is apparent, with our proposed framework significantly degrading the input with
the exception of the model which does not optimise the SIG component of DNSMOS.

6.5 Summary

In this chapter a MetricGAN framework utilising a multi-metric prediction discriminator is
introduced. A number of combinations of target metric for this prediction network are experimented
with, and improved performance on test set consisting of real data is shown. However a degradation
in performance on a simulated testset is also shown, suggesting a significant distortion in the
enhanced outputs of the proposed system. This idea is futher developed in Chapter 12.
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Preface

In this part, novel perceptually motivated loss functions for NNSE systems are introduced. These
proposed loss functions are computed from intrusive comparison between representations of the
clean reference signal and the output of the NNSE system which are derived from Self Supervised
Speech Representations (SSSRs) (cf. Section 2.5.2). In Chapter 7 the correlation between a
standard STFT based loss function and perceptual metrics and that of the proposed SSSR based
loss functions is explored. Then in Chapter 8 the relationship between the data used to train the
SSSR representation and that used to train the NNSE system is investigated, with a focus on the
language of the speech audio.
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Chapter 7

Self Supervised Speech Representation
Loss Functions for Speech Enhancement

7.1 Introduction

Recent work in the domain of speech enhancement has explored the use of self-supervised speech
representations (cf. Section 2.5.2) to aid in the training of neural speech enhancement models.
However, much of this work focuses on using the deepest or final outputs of self supervised
speech representation models, rather than the earlier feature encodings. In this chapter it is shown
that the distance between the feature encodings of clean and noisy speech correlate strongly with
psychoacoustically motivated measures of speech quality and intelligibility, as well as with human
MOS ratings. Experiments using this distance as a loss function are performed and improved
performance over the use of STFT spectrogram distance based loss as well as other common loss
functions from speech enhancement literature is demonstrated using objective measures such as
PESQ and STOI.

7.2 SSSR derived distances in relation to speech assessment metrics

In this work, first the Mean Squared Error (MSE) distance between representations of some clean
speech s[n] and a corresponding noisy version of s[n], x[n] is analysed (cf. (2.1)). Specifically,
we define these using either SFE, XFE or SOL, XOL where FE and OL denote the SSSR
encoder representation and final output layer respectively, as detailed in Section 2.5.2 and shown in
Figure 2.19. The MSE distances between these SSSR representations are defined as:

dFE(SFE,XFE) =
1

T · F

T∑
t

F∑
f

(SFE[t, f ]−XFE[t, f ])2 (7.1)

dOL(SOL,XOL) =
1

T · F

T∑
t

F∑
f

(SOL[t, f ]−XOL[t, f ])2 (7.2)

where T and F denote time and feature dimensions of the representation.
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PESQ STOI Csig Cbak Covl MOS
r ρ r ρ r ρ r ρ r ρ r ρ

dSG -0.66 -0.53 -0.60 -0.68 -0.75 -0.70 -0.84 -0.69 -0.74 -0.64 0.35 -0.27
XLSR dFE -0.82 -0.78 -0.80 -0.81 -0.93 -0.92 -0.88 -0.85 -0.90 -0.87 -0.47 -0.43
XLSR dOL -0.66 -0.61 -0.69 -0.68 -0.76 -0.75 -0.74 -0.72 -0.74 -0.71 -0.44 -0.40

HuBERT dFE -0.83 -0.79 -0.75 -0.76 -0.95 -0.93 -0.90 -0.87 -0.91 -0.89 -0.48 -0.46
HuBERT dOL -0.44 -0.43 -0.40 -0.42 -0.52 -0.52 -0.45 -0.45 -0.50 -0.49 -0.42 -0.37

Table 7.1: Spearman r and Pearson ρ correlation between distance measures and
speech quality and intelligibility metrics in the VoiceBank-DEMAND testset, as well
as MOS in the NISQA Challenge testset

q These SSSR derived distances are compared with a distance which is commonly used as a loss
function in speech enhancement tasks the magnitude spectrogram MSE distance, (2.39), here called
dSG. In the following, dFE and dOL are computed using the XLSR and HuBERT models. As
mentioned in the previous section, SFE, XFE and SOL, XOL of the XLSR model have feature
dimensions F of 512 and 1024 respectively, while those of HuBERT have feature dimensions of
512 and 768, sharing a time dimension T , the size of which is dependent on the length in samples
of the input time domain audio.
SSG and XSG are computed using a Fourier Transform with an FFT size of 512, window length of
32 ms, and a hop length of 16 ms (resulting in a 50% frame overlap) using a hamming window. This
results in a spectogram with a frequency dimension FHz of 257, and a time dimension T which is
dependent on the length in samples of the input time domain audio.

7.2.1 Datasets Used

To express the relationship between the distance measures and psychoacoustically motivated metrics
the VoiceBank-DEMAND (Valentini-Botinhao et al., 2016)(cf. Section 2.9.1) is used.
In order to assess the relationship between the distance measures and human MOS ratings, the
NISQA (Mittag et al., 2021)(cf. Section 2.11) dataset is used. This is a dataset of variable length
clean and noisy speech audio file pairs (s[n], x[n]) with real human-annotated MOS labels, designed
for the training and testing of neural SQ MOS predictors.The two testsets (P501 and FOR) used here
contain 440 clean/noisy pairs in total.
The audio files in both datasets have a sample rate of 48 kHz and are down-sampled to 16 kHz such
that G(·) in ((2.42)), ((2.43)) can computed.

7.2.2 SSSR distances and SE motivated metrics

Fig. 7.1 shows the relationships between the distance measures and PESQ (Rix et al., 2001) scores
computed using the s[n], x[n] pairs in the VoiceBank-DEMAND (Valentini-Botinhao et al., 2016)
testset using dSG, HuBERT dFE and HuBERT dOL . From this, it can be observed that HuBERT dFE

correlates significantly more strongly than dSG with PESQ. Furthermore, the distance computed
using the output of the 1D convolutional encoder dFE correlates more strongly than the distance
computed using the SSSR output dOL. This suggests that the phonetic and linguistic processing
which occurs in the deeper parts of the model are less sensitive to the noise in x[n]. The first
5 columns of Table 7.1 shows the Spearman r and Pearson correlations ρ between PESQ, STOI
and the components of the Composite (Lin et al., 2019) measure. Like with PESQ and STOI, the
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Figure 7.1: Scatter plots showing the relationship between the PESQ metric and MSE
Spectrogram distance dSG as well as, HuBERT dFE, HuBERT dOL distances for the
VoiceBank-DEMAND testset

Composite measure scores all correlate more strongly with the proposed SSSR distances than with
dSG, in particular the feature encoder derived distance dFE.

7.2.3 SSSR distances and human quality assessment

Fig. 7.2 and the last column of Table 7.1 show the relationship between the MSE distances and
human MOSs in the ‘FOR’ and ‘P501’ testset s[n], x[n] pairs of the NISQA (cf. Section 2.11.1)
dataset. While the overall correlations are lower here than those of the metrics analysed in the first
5 colunms, the same pattern emerges with dFE and dOL correlating more strongly with the MOS
scores than dSG. The HuBERT based distances again correlate more strongly than XLSR; this is
possibly due to the language match between the training data of HuBERT and that of the data, both
being English only.

7.3 SSSR Based Signal Enhancment Experiment

An experiment is carried out in order to assess the effectiveness of the SSSR derived distance
measures as loss functions for speech enhancement tasks.

7.3.1 Experiment setup

Simple masking based speech enhancement models were trained using a number of different loss
functions; dSG, dFE, dOL as described in the previous sections, as well as Si-SDR loss (cf. (2.48)
and STOI loss (2.11)) (Fu, Wang, et al., 2018). Each model was trained for 50 epochs on the
VoiceBank-DEMAND (Valentini-Botinhao et al., 2016) training set. dFE, dOL are computed for
XLSR or HuBERT feature encoder and output representations. The Adam (Kingma & Ba, 2014)
optimiser is used with a learning rate of 0.001. At test time, the epoch obtaining the highest PESQ
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Figure 7.2: Scatter plots showing the relationship between human MOS scores and
MSE Spectrogram distance dSG, HuBERT dFE and HuBERT dOL with in the NISQA
Challenge testset

score on the validation set is loaded. The SpeechBrain (Ravanelli et al., 2021) toolkit is used to
implement the experiment.

7.3.2 Loss Functions

The distance measures defined in (7.1), (7.2) and (2.39) are modified to be used as loss terms for a
speech enhancement neural model:

LFE(SFE, ŜFE) =
1

T · F

T∑
t

F∑
f

(SFE[t, f ]− ŜFE[t, f ])2 (7.3)

LOL(SOL, ŜOL) =
1

T · F

T∑
t

F∑
f

(SOL[t, f ]− ŜOL[t, f ])2 (7.4)

LSG(SSG, ŜSG) =
1

T · FHz

T∑
t

FHz∑
fHz

(SSG[t, fHz]− ŜSG[t, fHz])
2 (7.5)

where ŝ[n] is the enhanced time domain audio signal output by the neural model when x[n] is input
and ŜFE, ŜOL and ŜSG are the feature encoder output, output layer and spectrogram representations
of ŝ[n] respectively.

7.3.3 Enhancement Model Structure

The MetricGAN+ G DNN structure is used as the NNSE system in this chapter. See Section 2.12.5
for more details on this network structure.
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7.3.4 Signal Enhancement Performance

Table 7.2 shows the experiment results. The proposed model using HuBERT LFE as its loss
function outperforms the baseline using the spectrogram distance LSG in terms of PESQ and the
Composite measure Csig, Cbak and Covl. Additionally, the best performing model by a significant
margin in terms of Cbak uses the XLSR encoder distance loss function LFE, and most SSSR based
losses outperform the baseline systems in this measure. Those models which use SSSR encoder
distance LFE outperform those which use SSSR output layer distance LOL; this is consistent with
the correlation values in Table 7.1 where dFE distances correlate more strongly with the metrics
than dOL distances.

Table 7.2: Signal Enhancement performance on the VoiceBank-DEMAND testset.

Loss Function PESQ STOI Csig Cbak Covl Si-SDR
noisy 1.97 0.92 3.35 2.44 2.63 8.98
LSG 2.70 0.94 4.00 2.62 3.35 18.62
LSISDR (Luo & Mesgarani, 2018) 2.28 0.92 3.51 2.44 2.88 18.66
LSTOI (Fu, Wang, et al., 2018) 2.12 0.93 3.46 2.16 2.77 13.31
HuBERT LFE 2.79 0.94 4.10 2.68 3.44 18.47
HuBERT LOL 2.55 0.92 3.66 2.42 3.08 14.92
XLSR LFE 2.69 0.92 3.77 3.05 3.21 9.72
XLSR LOL 2.43 0.91 3.21 2.64 2.79 13.00

7.3.5 Analysis

Fig. 7.3 shows an example of the feature representations of s[n] and x[n] used as inputs to dSG

and dFE for both HuBERT and XLSR. Tonal noise introduced in x[n], visible as a line spanning
approximately the first 50 time frames in XSG, is well represented in the XLSR XFE but not in
HuBERT XFE. This is a possible explanation for the increased Cbak score for the XLSR LFE loss
over the HubERT based loss LFE as XLSR XFE representations appear to be more sensitive to
noise in non speech regions of the representation. The fact that XLSR is trained in part on noisy
data is a potential explanation for this behaviour.

7.4 Summary

In this chapter it is demonstrated that the earlier ‘perceive’ feature encoder layers of SSSRs preserve
aspects of noise and distortion in speech to a greater degree than the deeper ‘predict’ layers.
Moreover, we find that a simple distance measure between the encoder representations of clean and
noisy speech correlates strongly with perceptually motivated metrics of speech quality, as well as
with human speech quality assessment. This correlation is affected by the attributes of the data used
to train the SSSR. This finding is validated by the use of these distance measures as loss functions
for a speech enhancement task, where feature encoder distance outperforms both the deeper output
layer and a standard spectrogram based loss. Future work will investigate the effect of the training
data on the SSSR encoder representations.
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Figure 7.3: Visualisation of inputs representations of s[n], x[n] to dSG, HuBERT dEF

and XLSR dEF. SSSR features are sorted according to depthwise euclidean distance
following Algorithm 1 in (Ravenscroft et al., 2022) and a sigmoid function is applied to
increase clarity.



Chapter 8

Investigating the Effect of Language on
SSSR based Loss Functions for Neural
Network Speech Enhancement (NNSE)
Systems

8.1 Introduction

This chapter further develops on the SSSR based loss functions for NNSE systems proposed in the
previous chapter. In particular, the focus of this chapter is on the effect of the language of the speech
being enhanced in relation to that of which was used to train the SSSR.

8.2 CommonVoice-DEMAND: A Multilingual Speech Enhancement
Dataset

This section details the creation process of the proposed CommonVoice-DEMAND speech
enhancement dataset, which is intended to be a multilingual variation on the popular monolingual
VoiceBank-DEMAND (VB-D) dataset.

8.2.1 CommonVoice Dataset

To create a multilingual dataset which is as similar as possible to the VB-D dataset described in
Section 2.9.1, speech is sourced from the Mozilla CommonVoice (Ardila et al., 2020) dataset (cf.
Section 2.9.4) In this work, we make use of the English, Spanish, and Welsh portions of the dataset.
These portions contain 3209, 2152 and 152 hours of audio, respectively.

8.2.2 Candidate Selection

Due to their crowd-sourced nature, the quality of the recordings in the CommonVoice dataset varies
considerably. For the creation of the multilingual CommonVoice-DEMAND dataset, the aim is
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to select the cleanest possible audio for use as reference signals. Additionally, certain signal
enhancement metrics require the input audio to have a minimum length. The process for the
selection of candidate reference signals for a given language to create the CommonVoice-DEMAND
datasets can be summarised as follows:
Firstly, only recordings which have been validated by the crowd-sourced validation process are
selected. This is to ensure that the audio does contain the prompt sentence and is not a failed
recording or too noisy for the speech to be intelligible.
Secondly, recordings of less than 2 seconds length and those which contain a single-word utterance
are excluded since it was found that some speech enhancement metrics have difficulties assessing
such recordings.
Finally, the quality of the remaining audio recordings is assessed. A VAD is used to segregate
frames of length L of the signal x[n] into disjoint setsA and B, for which the signal fulfils either the
hypothesis that speech is presentH1, or that speech is absentH0, respectively. An SNR estimate is
obtained by

ŜNR(x[n]) = 10 log10

(
1
|A|
∑

`∈A
∑K−1

n=0 x
2[`K + n]

1
|B|
∑

`∈B
∑K−1

n=0 x
2[`K + n]

)
(8.1)

for frame index ` with |A| and |B| denoting the respective cardinalities of the sets A and B. For
simplicity, the Google WebRTC-VAD1 is used. A minimum threshold of 50 dB estimated SNR by
the above formulation is used to select the candidate recordings. Note that while this is a somewhat
crude estimator in that it does not account for the noise which is present in the speech-active frames
in A, it was found empirically that this approach works sufficiently well to select high-quality
recordings containing little to no background noise, with a low computation overhead. For each
language, 20000 of such candidate recordings are selected in this way. During this process, the
candidate recordings are converted from the MP3 format to the WAV file format and are up-sampled
from 32 kHz sample rate to 48 kHz. This is done for parity with the VoiceBank-DEMAND datset
which is created using 48kHz audio; as the resultant mixed audio is downsampled to 16kHz for
signal enhancement experiments this sampling rate limit should usually not be a problem.

8.2.3 Dataset Creation

In order to ensure that the proposed CommonVoice-DEMAND datasets are comparable to the
original VoiceBank-DEMAND dataset, the log files describing VoiceBank-DEMAND are used.
These consist of two lists (one for the training set, one for the test set) for clean audio file s[n], the
name of the noise file for v[n], from which a random section of the same length as s[n] is obtained
and the desired mixing SNR value. The process for the creation of the CommonVoice-DEMAND
datasets is as follows:

• A candidate CommonVoice recording is selected which is closest to the length in seconds to
the clean audio recording from the original VoiceBank dataset. This candidate recording is
either padded with zero values or truncated such that it is the same number of samples exactly
as the original VoiceBank recording.

• The mixing process as described in Section 2.9.1 is carried out, using the selected
CommonVoice recording as s[n], and creating a corresponding noisy version x[n] according
to (2.54) and (2.55). Since CommomVoice data has a sampling rate of 32 kHz, the resulting

1https://github.com/wiseman/py-webrtcvad

https://github.com/wiseman/py-webrtcvad
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sampling rate of CommonVoice-DEMAND is also 32 kHz and thus lower than VoiceBank-
DEMAND’s 48 kHz. Note, that for SE, data is usually anyhow downsampled to 16 kHz.

• The selected CommonVoice recording is then removed from the list of available candidate
recordings, ensuring that uniqueness for each s[n], x[n] pair in the resultant dataset.

The goal of this process is to create a dataset which is as similar as possible to the original
VoiceBank-DEMAND dataset, but using clean speech with a different language or source. These
datasets differ from the original VoiceBank-DEMAND in the (usually) greater number of speakers
in the training and test sets and the exact portion of the noise file from which v[n] is created
due to the random sampling of the noise file. The created CommonVoice-DEMAND data ensures
reproducibility by fixed seeds in the random number generator.

8.3 Speeech Enhancement Experiments

8.3.1 Experiment Setup

Masking-based speech enhancement networks are trained using SSSR derived loss functions using
the proposed CommonVoice-DEMAND datasets. The SpeechBrain (Ravanelli et al., 2021) toolkit
is used to facilitate the training and testing of the models. The models are trained for 50 epochs with
the Adam (Kingma & Ba, 2014) optimiser, with a learning rate of 0.001. At test time, the model
with the highest PESQ (Rix et al., 2001) score on the validation set is loaded and evaluated.
The MetricGAN+ G DNN structure is used as the NNSE system in this chapter. See Section 2.12.5
for more details on this network structure.

8.3.2 Datasets

CommonVoice-DEMAND training and test sets were generated using the process described above
for English and Spanish. These languages were chosen as they match languages used to train the
mHuBERT model, and the CommonVoice corpus component for each is sufficiently large. A testset
for Welsh was also created as a language which was not used to train HuBERT or mHuBERT but
which was used as one of XLSRs 128 languages. The CommonVoice-DEMAND datasets have the
same size training and test sets as the original VoiceBank-DEMAND with 11572 and 824 s[n], x[n]
pairs, respectively. A validation set of size 770 is created from each CommonVoice-DEMAND
training set. All audio is at 16 kHz sample rate.

8.3.3 SSSR Signal Enhancement Loss Function

The SSSR loss function as defined in Chapter 7 is used, which is based on the MSE distance between
the output feature encoder representations of the enhanced signal ŝ[n] and the reference signal s[n].
The SSSR loss function is given by

LFE(SFE, ŜFE) =
1

TF

∑
t,f

(SFE[t, f ]− ŜFE[t, f ])2, (8.2)

where SFE and ŜFE are the feature encoder output representations of s[n] and ŝ[n], respectively.
F and T denote the feature and time dimensions of the representations, with F being 512 for all
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Table 8.1: Performance of models trained on CommonVoice-DEMAND English; tested
on English, Spanish and Welsh testsets.

Model PESQ STOI CSIG CBAK COVL
Noisy 2.19 0.95 3.27 2.40 2.67

Spec Loss 2.64 0.96 3.66 2.64 3.14
STOI Loss 2.46 0.96 3.47 2.35 2.93

SISDR Loss 2.73 0.96 3.45 2.74 3.07

E
ng

lis
h

HuBERT LFE 2.75 0.95 3.78 2.71 3.25
mHuBERT LFE 2.79 0.96 3.70 2.76 3.23

XLSR LFE 2.48 0.93 3.30 2.92 2.86

Noisy 2.12 0.95 2.98 2.23 2.46
Spec Loss 2.57 0.96 3.37 2.62 2.94

STOI Loss 2.39 0.96 3.19 2.31 2.73
SISDR Loss 2.68 0.96 3.15 2.74 2.88

Sp
an

is
h

HuBERT LFE 2.72 0.95 3.57 2.71 3.11
mHuBERT LFE 2.75 0.96 3.48 2.75 3.08

XLSR LFE 2.51 0.93 2.93 2.81 2.65

Noisy 2.12 0.96 3.06 2.18 2.50
Spec Loss 2.61 0.96 3.39 2.56 2.97

STOI Loss 2.45 0.97 3.33 2.27 2.83
SISDR Loss 2.72 0.97 3.15 2.69 2.89

W
el

sh

HuBERT LFE 2.71 0.96 3.56 2.61 3.09
mHuBERT LFE 2.78 0.96 3.48 2.68 3.09

XLSR LFE 2.44 0.93 2.93 2.73 2.62

models used in this work and T depending on the length in samples of the time domain audio.
Models are trained using HuBERT, mHuBERT, and XLSR to obtain the representations in (8.2).
In addition, the spectrogram MSE loss, STOI (Taal et al., 2011) loss (Fu, Wang, et al., 2018), and
SI-SDR (Roux et al., 2018) loss are used as baselines. These baselines are popular loss functions
for speech enhancement training and are language-independent. Spectrograms are created using a
STFT with a FFT length of 512, a window length of 32 ms, a hop length of 16 ms, and a hamming
window.

8.3.4 Results

Tables 8.1 and 8.2 display results on CommonVoice-DEMAND testsets for models trained on
English and Spanish, respectively. PESQ (Rix et al., 2001), STOI (Taal et al., 2011), and the
components of the Composite (Lin et al., 2019) intrusive metrics are reported, where higher values
are better. The scores for the best performing model on each testset are highlighted in bold. The
models perform better on the respective testset matching their language of training; the drop in
performance on the non-matching testsets is consistent across all the models trained, including
the baseline systems. Performance on the proposed English CommonVoice-DEMAND dataset is
similar to that of models trained on the original VoiceBank-DEMAND in (Close, Ravenscroft, et
al., 2023b). The best performing models, in terms of CBAK score are those trained with XLSR
LFE loss, except for one case. This is again consistent with the findings in (Close, Ravenscroft,
et al., 2023b). HuBERT and mHuBERT perform similarly, with mHuBERT slightly outperforming
in most cases.
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Table 8.2: Performance of models trained on CommonVoice-DEMAND Spanish; tested
on English, Spanish and Welsh testsets.

Model PESQ STOI CSIG CBAK COVL
Noisy 2.19 0.95 3.27 2.40 2.67

Spec Loss 2.50 0.95 3.54 2.59 3.00
STOI Loss 2.37 0.96 3.32 2.35 2.80

SISDR Loss 2.44 0.95 3.25 2.58 2.82

E
ng

lis
h

HuBERT LFE 2.60 0.95 3.58 2.62 3.06
mHuBERT LFE 2.70 0.95 3.62 2.69 3.14

XLSR LFE 2.44 0.93 3.13 2.75 2.72

Noisy 2.12 0.95 2.98 2.23 2.46
Spec Loss 2.64 0.96 3.50 2.68 3.04

STOI Loss 2.40 0.96 3.11 2.36 2.70
SISDR Loss 2.61 0.96 3.18 2.72 2.86

Sp
an

is
h

HuBERT LFE 2.81 0.96 3.75 2.76 3.25
mHuBERT LFE 2.89 0.96 3.73 2.81 3.29

XLSR LFE 2.63 0.95 3.06 2.83 2.77

Noisy 2.12 0.96 3.06 2.18 2.50
Spec Loss 2.63 0.96 3.49 2.59 3.03

STOI Loss 2.42 0.97 3.22 2.29 2.77
SISDR Loss 2.60 0.97 3.18 2.63 2.85

W
el

sh

HuBERT LFE 2.72 0.96 3.62 2.62 3.13
mHuBERT LFE 2.83 0.96 3.64 2.69 3.21

XLSR LFE 2.52 0.94 2.94 2.64 2.65

Interestingly, all SSSR loss function models trained using Spanish audio perform better on the
Welsh testset than those trained on the English audio. This is despite the fact that Welsh is lexically
more similar to English than Spanish (Bella et al., 2021).
The quantity of data used for training the SSSR appears to be more important than language, as
mHuBERT is trained with more English audio than HuBERT, however XLSR, trained with the
most English speech data, performs worse. To further investigate this, an additional model was
trained utilising the WavLM Base+ (Chen et al., 2022) SSSR(cf. Section 2.5.2.2), training and
testing on the English CommonVoice-DEMAND dataset. WavLM Base+ has a parameter count
comparable to HuBERT and mHuBERT and is trained with a similar objective and but with an
additional speech denoising task. It is trained on 96k hours of English only audio. These results are
shown in Table 8.3; the new model performs similarly in terms of PESQ score but somewhat better
than all others in terms of CSIG.
Overall, these results suggest that the BERT style training objective HuBERT, mHuBERT and
WavLM might make them better suited as loss function feature representations when signal quality
is the main concern as shown by the high PESQ and CSIG scores while the contrastive feature
encoding masking objective of XLSR makes it more suitable if the objective of the enhancement is
background noise reduction at the cost of additional speech distortion as the higher CBAK scores
of the XLSR models demonstrates.
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Table 8.3: Performance of LFE Loss models trained on CommonVoice-DEMAND
English and tested on English testset.

Model PESQ STOI CSIG CBAK COVL
Noisy 2.19 0.95 3.27 2.40 2.67

HuBERT LFE 2.75 0.95 3.78 2.71 3.25
mHuBERT LFE 2.79 0.96 3.70 2.76 3.23

XLSR LFE 2.48 0.93 3.30 2.92 2.86
WavLM LFE 2.76 0.96 3.84 2.71 3.28

8.4 Summary

In this chapter, a system to create noisy speech datasets for a number of languages are proposed.
These noisy speech datasets are used to train and test neural speech enhancement models using
SSSR based loss functions. It is found that the language of the audio used to train the representations
has a minimal impact on their performance when used in this manner, and that training objective
and amount of training data has a greater effect.



Part IV

Human Audio Label Prediction
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Preface

This part is concerned with DNN models to predict human derived labels of speech quality and
intelligibility. In Chapter 9 human SI and intelligibility metric prediction DNNs are proposed, in
the context of an entry to Clarity Prediction Challenge 1 (CPC1) (cf. Section 2.10.1). In Chapter 10
features derived from SSSR (cf. Section 2.5.2) models are used as input feature representations
for human intelligibility prediction. In Chapter 11 both SSSR features and those derived from
the Whisper ASR system (cf. Section 2.5.3) are applied as input features to Speech Quality (SQ)
prediction DNNs. Finally in Chapter 12 inference of a SQ predictor is used in the loss function of
an NNSE system.
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Chapter 9

Deep Neural Network based
Intelligibility Prediction for Clarity
Prediction Challenge 1 (CPC1)

9.1 Introduction

In the context of the CPC1 (Graetzer et al., 2021) (cf. Section 2.10.1) Speech Intelligibility (SI) is
defined as the percentage of words that a listener correctly identifies after listening to a sequence of
words.
SI prediction metrics are either intrusive, i.e. rely on access to the clean reference signal, or non-
intrusive, i.e. rather than facilitating a comparative function non-intrusive metrics analyse only
the degraded signal under test to identify key areas of potential distortion (Falk et al., 2015).
There are 3 key domains of non-intrusive SI; feature-based approaches using key acoustic features
and potentially other linguistic information for prediction, statistical data-driven methods such as
machine learning, and neurophysiological measures that integrate neuroimaging or oculometric
techniques (Feng & Chen, 2022). This chapter aims to use both non-intrusive and intrusive methods
for predicting intrusive SI metrics as outlined in Section 2.7.

9.2 Neural Intelligibility Prediction

Inspired by the metric predictor Discriminator DNN in MetricGAN (cf. Section 2.12, Part II)
which use a neural network to mimic the performance of an intrusive metric for speech quality
and intelligibility, this contribution uses a similar network structure to predict the metric score that
will be assigned to the input audio. Note that here networks that are provided with representations
of both the degraded and reference signal (intrusive) and also with those that are only provided with
the degraded (non-intrusive) are investigated.
The focus is on a metric prediction objective over simply using the ground truth ’correctness’
information in the training data as this was found to be distributed in a way that was difficult for our
non-intrusive models to find any discernible patterns in. Intuition is that if these metrics have been
found to correlate with human intelligibility, then non-intrusive predictors of said metrics should
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also. Additionally, the performance of each of our non-intrusive metric predictors after being fine-
tuned on the ground truth intelligibility is reported.
Figure 9.1 provides a generalised overview demonstrating the training of such a neural network.

Figure 9.1: Diagram of general non-intrusive SI metric prediction training

Here, noisy audio x[n] is generated by a SPeech In Noise (SPIN) generator and processed by a
hearing aid (HA) simulation then a HL simulation which both take a representation of the specific
listener’s HL as input. This takes the form of an audiogram pair {al,ar} which represent the
specific characteristics of their HL for the left and right ears respectively. Details on the HL model
used in the CPC1 baseline can be found in (Nejime & Moore, 1997). The output of this x̂[n] is input
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to a SI prediction model, along with the clean reference audio s[n]. The output of this prediction
model Q̂ is compared to the true value of the SI Q i.e the Human Speech Recognition (HSR), and
the model is updated.

9.2.1 Feature Extraction

The same feature extraction as described in (Close, Hain, et al., 2022) is used here with the discrete
time domain input audio being transformed to normalised log features. Note that in the following
Xl
f , Xr

f denotes the feature representation of the hearing aid output while X̂l
f ,X̂r

f is the feature
representation of the hearing aid output x with the baseline HL applied x̂[n].

9.2.2 Model Structure for Non-Intrusive Prediction

For each of the 3 metrics investigated, the same basic model structure is adapted for the specific
requirements of the metric. The basic structure is based on that of the discriminator network
depicted in Figure 2.34 - 4 2D convolutional layers with 15 filters of a kernel size of (5, 5),
followed by a mean over the 2nd and 3rd dimensions, and this representation is fed into 3 sequential
linear layers, with 50, 10, and 1 output neuron(s) respectively. The first 2 of these layers have a
LeakyReLU activation while the final layer has no activation. For STOI, the score for each channel
of the HA output audio x̂ is predicted separately, with the input to the prediction network being the
feature space representation of the given channel X̂c

f where c is a channel index. As such, the input
dimension to the average pooling and first 2D convolutional layer is set to 1. For MBSTOI, the score
is predicted for the HA output stereo audio together, with the input to the network being the feature
space representations of both channels {X̂l

f , X̂
r
f}. The input dimension of the average pooling layer

and the initial convolutional layer is 2 to account for these stacked channel representations. Finally
for HASPI which like STOI is defined per audio channel, the Xl

f and Xr
f representation of the

audio, but also use al and ar the audiogram representations of the listener’s HL is used as input.
This 6 element representation is passed through a linear layer with 10 output neurons then another
with 50; this representation is then concatenated along the feature dimension with the representation
of the audio of the same size. This 100 element representation is then fed through a further 3 linear
layers with 50, 10, and 1 output node(s) respectively, all but the last layer having a LeakyReLU
activation. Additionally,a model is trained with the same structure as that for the HASPI prediction
described above, using {X̂l

f , X̂
r
f} as input and train it to predict the ground truth Correctness scores

in the training data.

9.2.3 Model Struture for Intrusive Prediction

Additionally intrusive versions of the metric prediction models are trained and fine-tuned. These
are similar to those above except we also input the clean reference features Scf to the model. For
the STOI and HASPI prediction models the clean and degraded features are stacked per channel,
{Slf , X̂l

f}, {Srf , X̂r
f} for STOI and {Slf ,Xl

f},{Srf ,Xr
f} along with al, ar for HASPI. For MBSTOI

we use both channels of the clean and degraded features, {X̂l
f ,S

l
f , X̂

r
f ,S

r
f}.
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9.3 Experiments

9.3.1 Tools and Software

Experiments are implemented via modifications to the CPC1 baseline system, replacing the simple
fitting model with the neural models described above using PyTorch (Paszke et al., 2019). The
SpeechBrain (Ravanelli et al., 2021) framework is used for audio loading and dataloader creation.
Existing Python and MATLAB implementations are used for STOI MBSTOI (taken from CPC1
baseline) and HASPI

9.3.2 Data Description

Audio data provided by the CPC1 is used for the hearing aid outputs x, the hearing aid outputs
processed by the baseline HL simulation x̂ and the anechoic clean reference signal s , accompanied
by ground truth correctness scores Qh and listeners’ audiograms {al,ar} for left and right
ear, respectively. In total the challenge corpus provides 4863 training examples expressed as
combinations of ‘scenes’ (s[n], x[n]), listener HL characteristics (al,ar), HL simulations x̂[n] and
correctness scores Qh. The spoken sentence are taken from the Clarity speech corpus (Graetzer
et al., 2022). For more detail on the CPC1 corpus see Section 2.10.1.

9.4 CPC Metric Distributions

The upper plot in Figure 9.3 shows the distribution of correctness i in the CPC1 training set. From
this, it can be observed that in the majority of cases, the listener was able to fully reproduce the
speech in the audio they heard, i.e. i = 100 for ≈ 50% of the assessed files. The next largest class
is where i = 0, meaning that the listener was not able to reproduce any words in the audio. This
distribution is due to the more realistic in-the-wild SI measurement strategy for the Clarity dataset
(Barker et al., 2022) which is in contrast to lab-based SI matrix tests (Kollmeier et al., 2015). The
lower panel of Figure 9.3 shows the average correctness i for each listener in the CPC1 training set.
With the exception of listener L0227, all of the listeners achieve similar performance.
The Spearman r and Pearson ρ correlations between SI metrics and the ground truth correctness i

Figure 9.2: SI metrics versus ground truth correctness percentage in CPC 1 Training
Set

are presented in Table 9.1 and the relationships are visualised in Figure Figure 9.2.
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Metric STOI MBSTOI HASPI
r 0.65 0.61 0.34
ρ 0.57 0.54 0.31

Table 9.1: Spearman r and Pearson ρ Correlation between SI metrics and correctness
label i in CPC1 Training set

These both show that, while correlation is low for all three metrics, STOI and MBSTOI correlate
somewhat more strongly with the data compared with HASPI - this is interesting, especially given
that HASPI is the one metric of the 3 which has explicit access to the audiogram information. One
possible explanation is that STOI and MBSTOI are computed using ŝ′[n] while HASPI uses s[n] as
it contains its own internal HL simulation; it is possible that this internal model produces outputs
which differ greatly from that of the baseline system.

Figure 9.3: Histogram showing the distribution of ground truth correctness i in CPC1
training set (top) and a bar chart showing average correctness i per listener in the
CPC1 training set (bottom). Dotted lines are respective overall average values.

9.5 Experiment Setup

STOI, MBSTOI, and HASPI scores for the entire train set are pre-computed. Then the models
are trained as described above, to reproduce the score. The feature extraction use a STFT with a
window length of 20ms, a hop length of 10ms and an FFT size of 1024. The hearing aid outputs
x have a sampling rate of 32kHz, while the hearing aid outputs with the baseline HL simulation
applied x̂ have a sampling rate of 44kHz. Following on from the baseline system we train with a 5
fold validation technique, partitioning the folds on the scene ID. We use the Adam (Kingma & Ba,
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2014) Optimiser with a learning rate of 0.001 for all models. All models are trained with a batch size
of 1 with the exception of the model that directly predicts Correctness which uses a batch size of 20.
The metric prediction models are additionally fine-tuned using the ground truth HSR ‘Correctness’
(intelligibility) scores; in the case of the metrics that are defined per channel (STOI and HASPI) the
channel that returned the highest predicted score between the 2 is used, as a simplified simulation of
the ‘better ear effect’. This fine-tuning process consists of exposing the model to the entire training
set in the same way as in the pre-training, but having it’s outputs compared to the ground truth rather
than the metric. The same technique is used to evaluate the model performance.

9.5.1 Results

Table 9.2 shows the results for non-intrusive prediction over the entire training set for the challenge.
The upper half shows the RMSE betweenmodel outputand ground truth ’correctness’ values,
i.e. HSR. The lower half shows the RMSE between target metric and prediction of the model.
r and ρ are the Spearman and Pearson Correlations, respectively.

In terms of prediction error, the model showing best non-intrusive target metric prediction is

Table 9.2: Non Intrusive Performance on the Clarity Prediction Challenge Training Set

Model Objective Correctness Error r ρ

STOI 35.63 0.30 0.21
STOI (fine) 34.55 0.32 0.25
MBSTOI 39.30 0.26 0.18
MBSTOI (fine) 34.72 0.32 0.23
HASPI 38.80 0.23 0.22
HASPI (fine) 31.55 0.53 0.46
Correctness 33.44 0.45 0.42

Prediction Error r ρ

STOI 13.88 0.43 0.3
STOI (fine) 16.44 0.43 0.3
MBSTOI 15.50 0.44 0.33
MBSTOI (fine) 21.81 0.47 0.32
HASPI 25.10 0.59 0.59
HASPI (fine) 37.09 0.29 0.29

the STOI prediction model, while the the HASPI model shows lowest performance. This is likely
because the calculation of STOI is considerably simpler than that for HASPI. As expected, fine-
tuning to the ground truth correctness increases prediction error while decreasing correctness error
for all models.
Best model in terms of prediction of ground truth correctness is the fine-tuned HASPI predictor. This
is interesting given that HASPI itself has the lowest correlation with the ground truth correctness
in the data - it is possible that access to the audiogram information is what enables this. The slight
performance improvement versus the model that was only trained to predict the correctness shows
that the HASPI objective pre-training did improve performance.
Table 9.3 shows the results of the intrusive prediction models, along with that of the challenge
baseline system. The prediction error results follow the same pattern as those of the non-intrusive
models, but with lower overall error rates and significantly higher correlations.
Both the fine-tuned STOI and MBSTOI models slightly outperformed the baseline system in
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Table 9.3: Intrusive Performance on the Clarity Prediction Challenge Training Set

Model Objective Correctness Error r ρ

baseline 28.5 0.62 0.54
STOI 32.45 0.58 0.52
STOI (fine) 27.59 0.66 0.56
MBSTOI 29.67 0.65 0.54
MBSTOI (fine) 27.20 0.67 0.58
HASPI 41.04 0.27 0.25
HASPI (fine) 29.67 0.65 0.54
Correctness 35.62 0.31 0.27

Prediction Error r ρ

STOI 9.05 0.86 0.83
STOI (fine) 16.24 0.75 0.70
MBSTOI 10.79 0.79 0.80
MBSTOI (fine) 22.64 0.73 0.7
HASPI 23.06 0.68 0.68
HASPI (fine) 29.11 0.43 0.43

Table 9.4: Non Intrusive Performance on the Clarity Prediction Challenge Test Set

Model Objective Correctness Error r ρ

HASPI (fine) 31.99 0.43 0.50
Correctness 33.42 0.42 0.39

terms of correctness error and correlations.Interestingly, of the two models that directly predict
the Correctness values Q, the non-intrusive model slightly outperforms the intrusive one.
Table 9.4 shows the performance on the test set of the two non-intrusive models submitted to the
challenge. The pretrained HASPI model performs slightly better overall compared to the direct
Correctness model.

9.6 Summary

In this chapter, the use of DNN for the task of SI prediction was investigated. Of the models trained,
it was found that intrusive models outperform non intrusive models for both metric prediction and
for real intelligibility prediction. An intrusive neural model outperforms the intrusive baseline
system for the challenge. Furthermore, pre-training models to predict an intelligibility metric, and
then fine-tuning on the true intelligibility improves performance. Additionally, the relationship
between the real intelligibility scores in the data and signal processing based intrusive metrics was
examined, and it was found that these are only weakly correlated.



Chapter 10

Non-Intrusive SI Prediction using SSSR
Features

10.1 Introduction

In this chapter non-intrusive SI prediction models which make use of SSSR features are proposed.
The proposed models show improved performance over those which use a traditional STFT based
feature. Further, the relationship between SSSR based distance measures and real human SI scores
is explored. It is found that non-intrusive SI predictors tend to learn the overall characteristics of the
hearing aid enhancement system used to process the input audio prior to evaluation.

10.2 SSSRs for Metric Prediction

SSSRs have been applied to metric prediction tasks, typically to quality prediction (Cooper et al.,
2022; Mittag et al., 2021). In (Tamm et al., 2022), XLSR representations are used as feature
extraction in a non-intrusive human MOS prediction network.

Similarly, in (Becerra et al., 2022) SSSRs are used for the same quality prediction task, but they are
fine-tuned with a mean pooling layer rather than being used simply as feature extraction. SSSRs
were also applied to the CPC1 challenge in (Edo Zezario et al., 2022), where they were used as
feature extractors alongside spectrograms and learnable filter banks.
In all these cases, only the final SSSR output GOL was considered. However, findings in Chapter 7
suggest that the output of the initial encoding stage GFE better captures quality-related information.
As such, in this chapter, both representations stages are considered and compared as feature
transformations for SI prediction.

10.3 Analysing Relationships between SSSRs and Human SI

In order to express the relationship between SSSRs and correctness i in the dataset, two distance
measures are defined in a MSE sense:

dFE =
1

TF

T∑
t

F∑
f

(SFE[t, f ]−PFE[t, f ])2 (10.1)
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dOL =
1

TF

T∑
t

F∑
f

(SOL[t, f ]−POL[t, f ])2 (10.2)

The distance dFE in (Eq. 10.1) expresses the MSE distance between the SSSR feature encoding
layer representations SFE[t, f ] of the clean reference audio s[n] and the representations PFE[t, f ]
of the test signal p[n], while (Eq. 10.2) expresses the MSE distance between the SSSR output
layer representations SOL[t, f ] and POL[t, f ], with t and f denoting block time and feature
index, respectively. Note that p[n] and is a placeholder for either the speech signal after Hearing
Aid (HA) enhancement ŝ[n] or this signal after HLS processing ŝ′[n] as shown in Figure 2.30.
Distances in (Eq. 10.1), (Eq. 10.2) are designed to express the distortion captured by the SSSR
due to the transformations which have been applied to s[n] to produce e.g. ŝ′[n], i.e. the artificial
distortion/reverb added to create x[n], enhancement by the hearing aid system (in ŝ[n]) and finally
the HLS. In addition to distances (Eq. 10.1) and (Eq. 10.2) the MSE distance between spectrogram
representations of s[n] and p[n] Eq. 2.39 will be analysed, with fHz and FHz denoting the technical
frequency and the highest frequency analysed, respectively. In the following, the left (first) channel
of the audio is used to compute the distance measures (Eq. 10.1), (Eq. 10.2) and (Eq. 2.39).

Representation, Distance p[n] Spearman Pearson
SPEC, dSG, ŝ[n] −0.10 −0.18
SPEC, dSG, ŝ′[n] −0.09 −0.07

XLSR, dFE ŝ[n] −0.13 −0.16
XLSR, dFE ŝ′[n] −0.24 −0.28
XLSR, dOL ŝ[n] −0.26 −0.27
XLSR, dOL ŝ′[n] −0.24 −0.24

HuBERT, dFE ŝ[n] −0.38 −0.47
HuBERT, dFE ŝ′[n] −0.23 −0.29
HuBERT, dOL ŝ[n] −0.10 −0.17
HuBERT, dOL ŝ′[n] −0.28 −0.32

Table 10.1: Spearman and Pearson correlations between distance measures and
correctness values i in the CPC1 training set, strongest correlations in bold.

Table 10.1 shows the Spearman and Pearson correlations of the MSE distances with the correctness
values i for the CPC1 training set. Absolute correlations are low, but this is expected for the Clarity
dataset (cf. (Barker et al., 2022) and Section 2.10.1). Comparing the distances between the feature
representations and the intelligibility scores i allows for an expression of how distortion in the signal,
which might affect intelligibility, is captured by that feature representation. Interestingly, applying
the hearing loss simulation S in (Eq. 2.56) does not uniformly improve the correlation with i across
all distances in Table 10.1; only for the XLSR encoder output representation distance dFE and the
HuBERT final output representation distance dOL does using ŝ′[n] lead to higher correlation than
using ŝ[n]. This might suggest that the hearing loss of the listeners did not significantly affect their
ability to reproduce the prompt in the audio., or that the hearing loss simulation is not effective.
Figure 10.1 and Figure 10.2 visualise the correlations between the distances based on ŝ[n] and ŝ′[n]
with and correctness value i, as well as the relationship between the ŝ[n], ŝ′[n] values. These show
that the effect of the hearing loss simulation on the SSSR distance measures varies greatly between
the two SSSR representations. From the two GMSE plots, it can be observed that the absolute
magnitude of the XLSR distances are significantly greater than those of HuBERT. In both cases, the
application of the hearing loss simulation in (Eq. 2.56) had only a small impact on the distribution.
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The GOLMSE
plots follow a similar pattern but inverted in terms of the difference in magnitude

of the distances, with the HuBERT distances being generally larger than the XLSR. However, the
application of the hearing loss simulation in (Eq. 2.56) has a drastic effect on the distribution for
HuBERT, shifting all of the points upward.

Figure 10.1: Scatter plots showing the correlation between distances dFE (Eq. 10.1)
for XLSR features and dOL (Eq. 10.2) Correctness i for the CPC1 training set (upper
panels). Scatter plots showing the relationship between the ŝ′[n] and ŝ[n] distances
(lower)

10.4 SSSR-based Intelligibility Prediction

This section proposes the use of SSSRs as features in non-intrusive neural intelligibility prediction
networks. Following the findings from Table 10.1, both the hearing aid output signal ŝ[n] and that
signal processed by the hearing loss simulation ŝ′[n] are used as the input audio to the models, as
no conclusive best representation is indicated by these results.

10.4.1 Model Structure and Experiment Setup

A model structure inspired by (Tamm et al., 2022) is chosen for the SI prediction network. Five
feature extraction methods are used; outputs of GFE and GOL for both, HuBERT and XLSR
representations, as well as a spectrogram representation denoted as SPEC. After the feature
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Figure 10.2: Scatter plots showing the correlation between HuBERT dFE and dOL and
Correctness i in the CPC1 training set (upper).Scatter plots showing the relationship
between the ŝ′[n] and ŝ[n] distances (lower)

extraction, the resultant representation is processed by 2 BLSTM layers with an input size equal to
the feature dimension F of the input and a hidden layer size of F/2. The final layer is an attention
pooling feed-forward layer, similar to that in NISQA (Mittag et al., 2021) with a single output
neuron and a sigmoid activation to output the predicted correctness î (normalised between 0 and
1). Note that due to different dimensions F of different feature representations, the number of
parameters in each network varies from 923, 906 for the models using spectrogram representations
to as many as 14, 701, 570 for the models using the XLSR output layer, i.e. GOL.
The two input audio representations ŝ[n] or ŝ′[n] are used, i.e. the output of the hearing aid systems
and the enhanced audio processed by the hearing loss simulation, as in (Eq. 2.56). As these audio
representations have two channels, each channel is processed by the model separately; during
training, the loss for each channel is computed and then summed before being back-propagated to
the model. During validation and testing, the maximum value between each channel is taken as an
approximation of the better ear effect (Zurek & Studebaker, 1993).
The spectrogram representation is created by a STFT with a window length of 20 ms, a hop length
of 10 ms and an FFT size of 1024. All audio is re-sampled to 16 kHz such that it can be used as
inputs to the SSSR models.
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Figure 10.3: Scatter plot showing the correlation between dSG and Correctness i in the
CPC1 training set

10.5 Results

In addition to the intrusive (reference-signal-based) challenge baseline, the best-performing non-
intrusive entries to the challenge are reported in this section as additional baselines, as the proposed
system is also non intrusive. Challenge entry E23 (McKinney & Cauchi, 2022) makes use of
contrastive predictive coding and vector quantisation features. E06 (Close, Hollands, et al., 2022) is
similar to the proposed system, denoted by SPEC in the following, but uses a CNN based network
structure. E33 (Edo Zezario et al., 2022) also utilises SSSRs as feature extraction, but spectrogram
and learnable filterbank features are also used as model inputs. E29 (Tu et al., 2022) makes use of
an information-theory-inspired approach, wherein the difference between internal representations
in neural ASR systems is used to approximate human intelligibility, and was the overall best non-
intrusive challenge entry.

10.5.1 Results on CPC1 Closed set

Table 10.2 shows the performance of the proposed systems for the CPC1 closed set. All proposed
systems show comparable performance with the best-performing challenge entries, although, none
of the proposed systems outperforms system E29. It should be noted, however, that the computation
overhead to implement system E29 is significantly greater than any of the proposed systems here,



CHAPTER 10. SELF SUPERVISED REPRESENTATIONS FOR SI PREDICTION 120

Model Name RMSE Var Spearman Pearson
CPC1 Baseline 28.50 – 0.62 –
E23 (McKinney & Cauchi, 2022) 41.50 – 0.07 –
E06 (Chapter 9) 32.00 – 0.43 –
E33 (Edo Zezario et al., 2022) 24.10 – 0.75 –
E29 (Tu et al., 2022) 23.30 – 0.77 –
SPEC ŜSPEC 25.45 0.52 0.59 0.72
SPEC Ŝ′SPEC 25.45 0.52 0.58 0.72
HuBERT ŜFE 30.82 0.61 0.44 0.56
HuBERT Ŝ′FE 26.64 0.53 0.56 0.70
HuBERT ŜOL 24.76 0.50 0.59 0.74
HuBERT Ŝ′OL 24.82 0.50 0.61 0.74
XLSR ŜFE 25.01 0.50 0.60 0.74
XLSR Ŝ′FE 25.33 0.51 0.60 0.72
XLSR ŜOL 28.42 0.58 0.47 0.66
XLSR Ŝ′OL 30.20 0.61 0.52 0.64

Table 10.2: Non-Intrusive Prediction Performance on the CPC1 closed set. Best
performances for baselines and proposed methods in boldface font.

as several state-of-the-art ASR systems must be trained and fine-tuned for E29. Of the proposed
systems trained on the outputs of the hearing loss simulation ŝ′[n], the best performing is the
model which uses HuBERT output representations Ŝ′OL as features. This is consistent with the
findings in Table 10.1 which shows that the distance measure using this representation had the
highest correlation with i of those distances computed using ŝ′[n]. Of those trained using the
hearing aid outputs ŝ[n], HuBERT’s output ŜOL is also the best performing achieving near identical
performance to the ŝ′[n] model. In terms of the difference in performance between using earlier
SSSR representations GFE or output representations GOL as features, this seems to depend on the
SSSR used; for HuBERT the output layers perform best, while for XLSR the feature encoder layers
show better performance.

10.5.2 Results of CPC1 Open set

Table 10.3 shows the performance of the proposed systems on the more challenging CPC1 open
set (cf. Section 2.10.1). Performance of the proposed systems is significantly worse than that of
the closed set for all systems, with a much larger variance in MSE in all cases, but all proposed
systems still outperform the baseline. The poorer performance might be due to overfitting of the
models to the training data, (in particular to the enhancement systems in the training set) as the test
data contains unseen enhancement systems and listeners. All of the models here perform similarly
poorly.

10.5.3 System and Listener-wise Analysis

For further analysis, Figure 10.4 and Figure 10.5 show ground truth and predicted correctness
across the hearing aid systems and across the listeners in the CPC1 open testset for the HuBERT
ŜOL and HuBERT Ŝ′OL models, respectively. Both models show similar performance across the
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Model Name RMSE Var Spearman Pearson
CPC 1 Baseline 36.50 – 0.53 –
E23 (McKinney & Cauchi, 2022) 43.70 – 0.05 –
E33 (Edo Zezario et al., 2022) 28.9 – 0.65 –
E29 (Tu et al., 2022) 24.60 – 0.73 –
SPEC ŜSPEC 32.84 1.29 0.35 0.50
SPEC Ŝ′SPEC 29.16 1.15 0.57 0.60
HuBERT ŜFE 33.69 1.30 0.27 0.45
HuBERT Ŝ′FE 35.31 1.40 0.19 0.24
HuBERT ŜOL 32.43 1.22 0.47 0.54
HuBERT Ŝ′OL 29.66 1.14 0.60 0.61
XLSR ŜFE 31.83 1.26 0.49 0.52
XLSR Ŝ′FE 30.86 1.19 0.56 0.56
XLSR Ŝ′OL 31.85 1.25 0.42 0.49
XLSR Ŝ′OL 34.54 1.36 0.26 0.37

Table 10.3: Non Intrusive Prediction Performance on the CPC1 open set.

Figure 10.4: System (top) and listener-wise (bottom) correctness prediction î (l./green)
vs. true i (r./brown) using HuBERT output for ŜOL model on CPC1 closed set.

different hearing aid systems, both successfully assigning low scores to the audio enhanced by
the E005 hearing aid system. This indicates that the models are able (at some level) to detect
the distortions introduced by this enhancement. Similarly, there is little difference in performance
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Figure 10.5: System (top) and listener-wise (bottom) correctness prediction î (l./green)
vs. true i (r./brown) using HuBERT outpur for Ŝ′

OL model on CPC1 closed set.

across the subset of listeners for the two models; this suggests that the listener-specific hearing
loss information which the Ŝ′OL model has access to (encoded in the audio) does not aid in the
intelligibility prediction performance. It should be noted that already the enhancement system
(hearing aid) has (implicitly) access to the hearing loss information and is expected to process its
input signal accordingly (cf. Figure 2.30). Interestingly, both models overestimate the intelligibility
ratings of speaker L0227 who performs worse than average at the intelligibility task (cf. Figure 9.3).
This suggests that L0227’s lower performance is not due to their hearing loss but rather other
unknown factor(s); audiogram information for this listener does not show that they have particularly
severe hearing loss.
Figure 10.7 and Figure 10.6 show ground truth and predicted correctness across the hearing aid
systems and across the listeners for the more challenging CPC1 closed testset for the HuBERT
output for ŜOL and HuBERT output for Ŝ′OL models, respectively. Systems and listeners which
are unseen during the training of the models are highlighted by bold-font. Here, the overfitting
of the proposed system to the hearing aid systems during training can be observed by the poor
performance on the unseen hearing aid system in the testset, E018. The overall lower performance
of the proposed systems on the closed set is shown by the listener-wise plots, with both systems
significantly overestimating the correctness versus the true value; however the encoding of the
hearing loss information in Ŝ′OL does appear to have some positive effect here.
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Figure 10.6: System (top) and listener-wise (bottom) correctness prediction î (l./green)
vs. true i (r./brown) using HuBERT output for ŜOL model on CPC1 open set. Listeners
and Systems unseen during training are bold.

10.6 Summary

This chapter explores the use of SSSR models as feature extraction for non-intrusive SI prediction
networks in comparison to traditional, spectrogram-based input. Both, the final SSSR representation
and the intermediate output of the SSSR feature encoder are compared for the first time for an
SI prediction task for hearing-impaired users. Results indicate that encoding the hearing loss
of a particular listener via (an additional) hearing loss simulation does not typically improve
performance. Additionally, models tend to overfit to specific hearing aid systems, as demonstrated
by the results on the open set which might be alleviated by larger datasets released in the future.
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Figure 10.7: System (top) and listener-wise (bottom) correctness prediction î (l./green)
vs. true i (r./brown) using HuBERT output for Ŝ′

OL model on CPC1 open set. Listeners
and Systems unseen during training are bold.



Chapter 11

Speech Quality Prediction using SSSR
and Intermediate ASR Features

There has been significant research effort developing neural-network-based predictors of SQ in
recent years. While a primary objective has been to develop non-intrusive, i.e. reference-free,
metrics to assess the performance of speech enhancement systems, recent work has also investigated
the direct inference of neural SQ predictors within the loss function of downstream speech tasks.
To aid in the training of SQ predictors, several large datasets of audio with corresponding human
labels of quality have been created. Recent work in this area has shown that speech representations
derived from large unsupervised or semi-supervised foundational speech models are useful input
feature representations for neural SQ prediction.

In this chapter, feature representations generated by foundational models are analysed as input to a
neural network for the SQ prediction task. Such features, which have primarily been developed
as backbone models for ASR have proved to be useful feature representations for a number
of speech related tasks (Close, Ravenscroft, et al., 2023b; Pasad et al., 2023). Experiments
investigating different combinations of training data corpora are carried out, and the effects
on test time performance analysed. Although non-intrusive SQ prediction is the main aim of
this work, the identified best-performing models are analysed as intrusive and multi-headed (i.e
predicting multiple labels at once) variants. Finally, a novel network structure incorporating recent
developments in state-space models (Gu & Dao, 2023) is proposed and analysed. State-of-the-art
performance is achieved on a common testset using the proposed model. Further, an implementation
of the best performing model as a SQ metric is provided.

Table 11.1: Experiment model structure and training data overview.

Experiment Features Structure Training Data
1. Feature Selection (Section 12.4) XFE,XOL,X̄OLXE,X̄E,XO,XMEL D1 NISQA
2. Training Data Selection (Section 12.5) X̄E D1 NISQA,Tencent,IUB,PSTN
3. Task Variations (Section 11.5) X̄E D1 NISQA, Tencent, PSTN
4. Model Variations (Section 11.6) X̄E D1,D2,D3 NISQA, Tencent, PSTN
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11.1 Speech Quality (SQ) Prediction Models

For non-intrusive speech quality prediction, the neural network D(·) takes as input a feature
representation

XF = F(x[n]) (11.1)

of the speech or audio signal under test x[n] and returns a predicted quality label q̂. F)(·) is the
feature extraction process. Typically, D(·) is trained on data consisting of tuples (x[n], q) where q
is the true MOS quality label of the audio x[n] obtained from signal assessment by human listeners.
The loss function used to trainD(·) is often a simple MSE between the model output i.e the predicted
score and the true quality label q:

LD = (D(XF)− q)2. (11.2)

Note that while MOS labels are typically expressed in the range 1 to 5, higher being better, for
the ease of training of neural SQ predictors, q is typically normalised to a range between 0.2 and
1, which enables a sigmoid activation function on the final neural network layer to project to this
label range. SQ prediction models can be broadly classifed into two types; single-headed models
which predict only the MOS label and multi-headed models which predict MOS alongside some
other label(s) of the input audio.
The structure of the first proposed SQ prediction models D1(·) is based on (Tamm et al., 2023), and
is shown in Figure 11.1 together with the feature generation possibilities described in Section 2.5.2
and Section 2.5.3. Note that all feature extraction methods F(·) used in this work output a 2-
dimensional T×F representation. The base model (denoted as ‘Prediction Model 1’ in Figure 11.1)
D1(·) consists of 4 transformer layers, followed by an attention pooling mechanism with a sigmoid
activation function, which returns the predicted MOS score q̂ normalised between 0.2 and 1. The
input dimension (and thus the parameter count) of the transformer stage depends on the feature
dimension F of the input feature, while the output dimension is fixed at 256. The attention pooling
mechanism consists of two sequential linear layers, with softmax function applied at the output and
is multiplied by the output of the Transformer block. The result of this multiplication is further
fed into a final linear layer with a sigmoid activation to a single output neuron. This single output
neuron represents the predicted MOS label q̂ of the input audio.

Further variations of this model are also explored in later sections. In the proposed ‘Prediction
Model 2’ D2(·) MAMBA (Gu & Dao, 2023) is utilised in the speech quality prediction task for the
first time. A variant on the best-performing model structure introduced above is created by replacing
the Transformer blocks with a bi-directional MAMBA block followed by a down-sampling linear
layer. Following on from (X. Zhang et al., 2024) the BiMAMBA block consists of a single MAMBA
structure and a 1D CNN layer. The input representation is flipped along the temporal axis T and both
the flipped and unflipped representations are processed by the MAMBA structure in parallel. The
concatenation of these unflipped and flipped MAMBA outputs are then processed by the 1D CNN
layer. Finally ‘Prediction Model 3’ D3(·) consists of a single Linear layer prior the the attention
head.

11.2 Mamba

MAMBA (Gu & Dao, 2023) is a recent innovation in neural network architecture. It is a structured
state model (SSM) (Gu et al., 2022) but differs from the standard SSM design in two ways. Firstly
it implements a selection mechanism which is dependant on the input sequence, allowing for the
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Figure 11.1: General structure of proposed SQ prediction neural network(s) and feature
extraction. Note that each ’Weighted Sum’ block contains model parameters, i.e. layer
weights {α(0), .., α(12)} which are updated during prediction model training.

effective filtering of the information encoded in that input; this is somewhat analogous to the
gating mechanism in a BLSTM unit. Secondly, it introduces a hardware-efficient algorithm which
scales linearly with the length of the input sequence. Compared to the now ubiquitous Transformer
structure, Mamba has shown improved performance in a number of tasks, and is significantly more
efficient computationally. It has been applied to speech audio in the speech enhancement task (Chao
et al., 2024) and ASR (X. Zhang et al., 2024) where it demonstrated state-of-the-art performance.
For more detail on SSM, see Section 2.4.1.5.

11.3 Experiment 1 - Feature Selection

This section aims to uncover the best feature representation XF (cf. Section 2.5.2) for the SQ
prediction task of those introduced above.
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11.3.1 Experiment Setup

The SQ prediction model D1 is trained using a variety of different input feature representations XF

introduced in Section 2.5.2 and as illustrated in Figure 11.1. All models are trained, validated and
tested on the NISQA dataset, i.e. the respective LIVE and SIM subsets, then tested on each of the
three available test sets (cf. Table 2.5). Following (Mittag et al., 2021), a training strategy where
training stops only if the validation performance does not improve after 20 epochs is employed. The
bias-aware loss function, scaling the contribution of the training samples in the loss computation
based on the relative size of the training set/subset, as proposed in (Mittag et al., 2021) is also used
here. The Adam (Kingma & Ba, 2014) optimiser is used with an initial learning rate of 0.00001,
which is reduced by a factor of 0.1 if the validation loss does not improve after 15 epochs. All
models are at first trained over a warmup epoch, where the learning rate increases up to the initial
learning rate after each model update. A batch size of B of 128 is used. The best-performing epoch
on the validation set in terms of validation loss is loaded at test time.

11.3.2 Results

Table 12.1 shows the results for each of the three NISQA test subsets for the trained D1 models, in
comparison to the single-headed (i.e. predicting only the MOS label) baseline NISQA model (Mittag
et al., 2021). The models are evaluated in terms of Spearman Correlation r and RMSE e. Note that
the RMSE values shown are after a first-order mapping to be consistent with (Mittag et al., 2021).

Figure 11.2: Scatter plots for NISQA testset performance of single headed baseline
NISQA (left) and best performing proposed D1 model using X̄E (right).

Models using the Whisper Encoder features show best performance, with the model utilising the
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Table 11.2: Predictor performance of D1 for best epoch (Ep.) in terms of Spearman
Correlation r and RMSE e for different input features on the NISQA dataset. Best and
second best shown in Bold and underline respectively.

FOR LIVETALK P501 AVERAGE
Feature Ep. r ↑ e ↓ r ↑ e ↓ r ↑ e ↓ r ↑ e ↓
NISQA (Mittag et al., 2021) 89 0.88 0.40 0.70 0.67 0.89 0.46 0.82 0.51
XMEL 6 0.18 0.85 0.20 0.92 0.37 0.95 0.25 0.89

XFE 87 0.72 0.61 0.51 0.81 0.73 0.70 0.65 0.71
X12

OL 74 0.83 0.48 0.70 0.68 0.87 0.50 0.80 0.58

W
av

L
M

X̄OL 0 0.22 0.85 0.21 0.92 0.29 0.98 0.24 0.88
X12

E 23 0.91 0.36 0.81 0.56 0.91 0.43 0.87 0.46
X̄E 30 0.92 0.35 0.82 0.54 0.93 0.37 0.89 0.44
X11

D 45 0.67 0.65 0.34 0.89 0.88 0.48 0.63 0.77

W
hi

sp
er

X̄D 45 0.78 0.55 0.60 0.75 0.89 0.46 0.76 0.65

weighted feature sum X̄E being the best performing on all three testsets. The performance on the
LIVETALK testset is generally worse than that for the other two testsets; this is likely due to the
fact that it consists of ’real’ noisy recordings in a different language to the other NISQA subsets.
The worst performing model was that which uses the XMEL feature.

Figure 11.2 show the distribution of MOS labels predicted by the baseline NISQA model and
the best-performing D1 model (Whisper X̄E in Table 12.1) which uses the weighted sum (cf.
Figure 11.4) of Whisper Encoder features X̄Efkg as input. The improved performance of the
proposed model over that of the baseline can be observed by the closer clustering of the predicted
MOS values towards the dotted line.The greatest difference in performance between the baseline
system and the proposed is on the most difficult testset LIVETALK.

11.4 Experiment 2 - Training Data Selection

Having established that the weighted sum of Whisper Encoder features X̄E is the best performing
of the proposed input features, this experiment aims to find which training datasets have the greatest
effect on test performance, as well as enabling a fair comparison with other recently proposed SQ
prediction systems.

11.4.1 Experiment Setup

The experiment setup is similar to that described in Section 12.4, except that only the X̄E is used,
and the other datasets introduced in Section 2.11. Unlike the NISQA dataset, the other datasets used
(cf. Table 2.5) do not have defined validation sets; for these, 10% of the training sets are partitioned
for validation, following (Shen et al., 2023). For the experiments which combine multiple datasets,
the validation sets are combined similarly. All possible permutations of the evaluated datasets are
used. The D1 model structure is used.
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Table 11.3: Training Data Ablation Study for best performing proposed D1 model.
Best and second best shown in Bold and underline respectively.

Training Data FOR LIVETALK P501 AVERAGE
NISQA Tencent IUB PSTN Train Points r ↑ e↓ r ↑ e ↓ r ↑ e ↓ r ↑ e ↓

X 9250 0.82 0.50 0.83 0.56 0.83 0.56 0.83 0.54
X 11020 0.92 0.35 0.82 0.54 0.93 0.37 0.89 0.44
X X 20270 0.93 0.32 0.87 0.46 0.93 0.37 0.91 0.38

X 28800 0.27 0.84 0.42 0.85 0.41 0.92 0.37 0.87
X X 38050 0.85 0.46 0.76 0.62 0.79 0.62 0.80 0.57

X X 39820 0.93 0.32 0.83 0.52 0.92 0.40 0.89 0.41
X 44809 0.92 0.34 0.77 0.60 0.88 0.48 0.86 0.47

X X X 49070 0.93 0.32 0.86 0.48 0.91 0.42 0.90 0.41
X X 54059 0.91 0.36 0.85 0.39 0.90 0.45 0.89 0.40

X X 55829 0.94 0.29 0.83 0.51 0.94 0.35 0.90 0.38
X X X 65079 0.94 0.30 0.88 0.45 0.93 0.38 0.92 0.38

X X 73609 0.89 0.40 0.72 0.65 0.76 0.39 0.79 0.48
X X X 82859 0.92 0.34 0.81 0.55 0.83 0.56 0.85 0.48

X X X 84629 0.94 0.30 0.87 0.46 0.93 0.39 0.91 0.38
X X X X 93879 0.93 0.31 0.88 0.45 0.91 0.42 0.91 0.39

11.4.2 Results

Table 11.3 shows the results for the training data ablation experiment for the three NISQA test sets.
The overall best-performing combination of training datasets is NISQA, Tencent and PSTN. By
far the lowest-performing model is that trained solely on IUB; further, also a given combination
of training datasets including IUB performs worse on average than that combination without IUB.
As noted earlier in Section 2.11, this is likely due to the significantly different distribution of the
MOS labels in this dataset relative to the others. The overall size of the training set has a lesser
effect on performance and that the inclusion of data more similar to the test sets (i.e the NISQA
training data) results in better performance; this can perhaps be attributed to the bias aware loss
function used, which attempts to control for the imbalance in size between the component datasets.
Including the Chinese language Tencent dataset in training generally improves performance on the
German language LIVETALK testset; this can perhaps be attributed to these models being better
able to generalise to languages other than English.

Table 11.4 shows a comparison of the best-performing system (Whisper X̄E withD1,cf. Table 12.1)
with three state-of-the-art neural SQ predictor systems (Mittag et al., 2021; Shen et al., 2023; Tamm
et al., 2023). Results for the proposed system trained on the same combination of data are shown for
a fair comparison. For all training data combinations, the proposed system outperforms the SOTA
system; to the authors’ knowledge, the results for the proposed system trained on the NISQA,
Tencent and PSTN training data show the strongest correlation with human MOS labels at time of
writing for the single-headed MOS label task on the NISQA testsets.

11.5 Experiment 3 - Task Variant Exploration

In this section, two variants on the MOS prediction task are explored, double-ended or intrusive
prediction and multi-label prediction. Only the NISQA dataset has clean reference audio and
multiple labels (‘dimensions’) to enable these variants. The expected result is that the additional
data which these variants provide should improve the overall MOS prediction.
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Table 11.4: Comparison of D1 with SOTA systems
Best and second best shown in Bold and underline respectively.

FOR LIVETALK P501 AVERAGE
Model Training Data r ↑ e ↓ r ↑ e ↓ r ↑ e ↓ r ↑ e ↓
NISQA Single Head (Mittag et al., 2021) NISQA 0.88 0.40 0.70 0.67 0.89 0.46 0.82 0.51
Proposed X̄E NISQA 0.92 0.35 0.82 0.54 0.93 0.37 0.89 0.44
MSQAT (Shen et al., 2023) NISQA + Tencent + PSTN 0.90 0.39 0.85 0.51 0.92 0.42 0.89 0.44
Proposed X̄E NISQA+ Tencent + PSTN 0.94 0.30 0.88 0.45 0.93 0.38 0.92 0.38
XLS-R SQA (Tamm et al., 2023) Tencent + PSTN 0.90 0.38 0.83 0.52 0.89 0.46 0.82 0.51
Proposed X̄E Tencent + PSTN 0.91 0.36 0.85 0.39 0.90 0.45 0.89 0.40

Table 11.5: Results for Multi Headed D1 Models versus Single Head (MOS Only)
Prediction

FOR LIVETALK P501 AVERAGE
Model r ↑ e ↓ r ↑ e ↓ r ↑ e ↓ r ↑ e ↓
NISQA Single Head 0.88 0.40 0.70 0.67 0.89 0.46 0.82 0.51
NISQA Multi Head 0.87 0.43 0.65 0.72 0.89 0.46 0.80 0.54
Proposed X̄E Single Head 0.92 0.35 0.82 0.54 0.93 0.37 0.89 0.42
Proposed X̄E Multi Head 0.91 0.36 0.69 0.58 0.92 0.41 0.84 0.45

11.5.1 Experiment Setup

For double-ended prediction, the Whisper encoder layers for both the test signal x[n] and its
corresponding clean reference signal s[n] are computed and separately weighted and summed. The
resultant weighted sums are then concatenated along the feature F dimension, before being passed
to the network.

For multi-label prediction, 4 additional pooling attention heads (the three linear layer structure)
are added to D1 with each being tasked with predicting Noisiness, Coloration, Discontinuity and
Loudness labels, respectively.

The training setup is identical to that used in Section 12.4. The multi-headed variant of the NISQA
baseline model is also trained, and its performance compared to the proposed model.

11.5.2 Results

Table 11.5 compares the performance of the baseline NISQA model and the proposed model for
multi-head / multi-label prediction. In both cases, the proposed system outperforms the NISQA
baselines. For both systems, tasking the model with additionally predicting the other speech
dimensions from the input audio slightly degrades the performance of the main task, i.e. quality
MOS prediction.

Table 11.6 compares the performance of the baseline NISQA model and the proposed model for
intrusive MOS prediction. Note that results for the LIVETALK testsets are not shown as reference
audio is not available for this data. For the P501 testset, access to the reference audio improves the
performance of the baseline NISQA model slightly, while the performance of the proposed intrusive
model remains the same as the non-intrusive version. However, for the FOR testset, the proposed
intrusive model is able to achieve slightly better performance than its non-intrusive counterpart. On
average, the proposed intrusive model somewhat outperforms the baseline intrusive NISQA model.
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Table 11.6: Results for Intrusive (I) versus Non-Intrusive (NI) Prediction

FOR P501 AVERAGE
Model r ↑ e ↓ r ↑ e ↓ r ↑ e ↓
NISQA I 0.90 0.39 0.88 0.48 0.89 0.44
NISQA NI 0.88 0.40 0.89 0.46 0.89 0.43
X̄E I 0.94 0.31 0.93 0.37 0.94 0.34
X̄E NI 0.92 0.35 0.93 0.37 0.93 0.36

11.6 Experiment 4 - Model Variations

In this experiment, the D2 and D3 variations of the SQ prediction model structure (as shown in
Figure 11.1) are explored.

11.6.1 Experiment Setup

Training data setup follows the best-performing training data combination of NISQA, Tencent and
PSTN detailed in Table 11.3, while the other training configuration parameters remain the same
as the previous experiments, however, the initial learning rate of the BiMAMBA based model
(‘Prediction Model 2’ in Figure 11.1) is set to 0.0001 (rather than 0.00001).

11.6.2 Results

Table 11.7 compares results of the best-performing Transformer based model to the BiMAMBA-
based model and the simple Linear model. The performance of the all three models is very
similar, however, the BiMAMBA-based model slightly outperforms the Transformer-based model
on average. The BiMAMBA model is also loaded from a significantly earlier training epoch (5
versus 68); this is likely due to the higher initial learning rate set for the BiMAMBA model. Overall,
these results speak to the potential usefulness of MAMBA for this task.The simple Linear layer
based model performs surprisingly well, with performance comparable to the significantly more
complex Transformer and BiMAMBA based models.

In order to better understand why the proposed weighted sum of Whisper encoder features X̄E is
so effective, two additional models using the simple Linear layer base are trained. In the former,
the region in X̄E which is padding in the input (i.e for a 10 second long utterance the region after
T = 500 in the 1500 long T axis) is set to 0. In the latter this is reversed, with the region which
corresponds to the audio audio in XMEL being set to 0. Figure 11.3 visualises the input features for
these models. The models are trained on the best performing dataset combination outlined above.
In order to prevent any batchwise padding operations from effecting the results, the batch size is set
to 1 for this experiment for both models.

Table 11.8 shows the results for these two models. Interestingly, the model is able to perform
well even with the region in X̄E corresponding to the Mel spectrogram of the input audio signal
is masked. This suggests that the Whisper Encoder is utilizing the padding region to encode
meaningful information. However, this model struggles on the more difficult LIVETALK test set
compared to the model which was trained on X̄E with the padding region masked.
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Table 11.7: SQ Model Variation performance using simple Linear model base.

FOR LIVETALK P501 AVERAGE
Feature Model Base Parameter Count Epoch r ↑ e ↓ r ↑ e ↓ r ↑ e ↓ r ↑ e ↓
Proposed X̄E Transformer D1 2,440,719 68 0.94 0.30 0.88 0.45 0.93 0.38 0.92 0.38
Proposed X̄E BiMAMBA D2 2,214,671 5 0.94 0.29 0.87 0.47 0.94 0.35 0.92 0.37
Proposed X̄E Linear D3 330,767 85 0.93 0.31 0.87 0.46 0.93 0.37 0.91 0.38

Table 11.8: Masked X̄E performance for model D3

FOR LIVETALK P501 AVERAGE
Feature Epoch r ↑ e ↓ r ↑ e ↓ r ↑ e ↓ r ↑ e ↓
Proposed X̄E padding region masked 43 0.81 0.53 0.82 0.53 0.89 0.46 0.84 0.51
Proposed X̄E signal region masked 57 0.90 0.38 0.78 0.59 0.90 0.45 0.86 0.47

Figure 11.3: Unmasked X̄E features (top left), X̄E with padding region masked (top
right) and X̄E with signal region masked (bottom)

11.7 Analysis

11.7.1 Layer Weights

Figure 11.4 shows the learned layer weight model parameters for the weighted sum input features
for models trained on NISQA only (being the general baseline) as well as those trained on NISQA,
Tencent and PSTN (since this dataset combination showed best performance in Table 11.3). The
weight values are generally larger for the models trained on the larger training set, however, the
same general trend is consistent between the training setups. A particularly interesting feature of
the WavLM X̄OL weights is the extremely high weighted assigned to the first layer S

(0)
OL. This is the

output projection of the output of the CNN encoder stage, which suggests that that representation
most strongly encodes speech quality-related information, as supported by findings in (Close, Hain,
et al., 2023a; Close, Ravenscroft, et al., 2023b).
The layer weights from the Whisper model are somewhat less immediately interpretable. For
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Figure 11.4: Layer weights for models trained on NISQA only and NISQA, Tencent
and PSTN for different input features: WavLM (top), Whisper Encoder (middles) and
Decoder (bottom).

the Whisper encoder, there is a slight bias towards layers 6 and 7. For the Whisper decoder, the
final three layers are weighted significantly less than all preceding; this can perhaps be explained
by these layers more strongly encoding linguistic ‘word level’ information useful for Whisper’s
primary application of ASR. This also explains the poor performance of S

(11)
D as an input feature in

Table 12.1.

11.8 Summary

In this chapter, features derived from large pre-trained speech models are used as feature extraction
stages for the speech quality label prediction task. State of the art performance is achieved by models
which use a weighted sum of Whisper Encoder features as the input audio representation. A number
of experiments are carried out, investigating variations to the training data, task and base model
structure, all of which further speak to the strength of the proposed feature. Implementation code
and checkpoints for the best performing model (dubbed Whisper based Speech Quality Assessment
(‘WhiSQA’)) can be found here1 along with a demonstrative inference script.

1https://github.com/leto19/WhiSQA

https://github.com/leto19/WhiSQA


Chapter 12

Hallucinations in Perceptually
Motivated Speech Enhancement

12.1 Introduction

In the CHiME7 challenge UDASE task (Leglaive et al., 2023; Leglaive et al., 2024) (cf.
Section 2.9.3) it was shown that high metric scores from non-intrusive neural SQ predictors do
not always match with actual human MOS evaluation. The evaluation of the SE system entries to
the UDASE task had two stages; first the entries were evaluated in terms of the scores from the
DNSMOS (Reddy et al., 2022) neural non-intrusive SQ metric. Then, in the second evaluation
stage, listening tests were conducted and MOS scores for audio enhanced by the challenge entries
were computed from these listening tests. The best-performing system in the first evaluation stage
is described in Chapter 5, an SE system which utilises a non-intrusive MetricGAN (Fu, Yu, Hung,
et al., 2021) framework to directly optimise towards the DNSMOS metric. However, this system
was scoring lowest of the entries going forward to the listening-test evaluation stage; by optimising
directly for high DNSMOS scores, the SE system may learn to introduce specific distortions which
result in high DNSMOS scores but which negatively impact the actual perceptual quality of the
enhanced audio when assessed by humans.

In general, it was found in the UDASE task results (Leglaive et al., 2024) that quality ratings
from non-intrusive quality predictors such as DNSMOS (Reddy et al., 2022) and TorchAudio-
SQUIM (Kumar et al., 2023) did not correlate strongly with the MOS ratings obtained in the second
evaluation stage by listening tests and that traditional intrusive signal processing based metrics such
as PESQ and STOI showed significantly stronger correlation.

This chapter therefore has two major objectives. Firstly, to better understand how SE systems like
that proposed in Chapter 5 learn to optimise their outputs towards neural non-intrusive SQ metrics
during training. Secondly, to identify why neural non-intrusive SQ metrics fail to properly assess
the human assessed quality of the output of SE systems, even in the setting that the SE system does
not directly optimise the metric in training.

135



CHAPTER 12. HALLUCINATIONS IN NEURAL NETWORK SE SYSTEMS 136

12.2 Non-Intrusive Speech Quality Predictor

The non-intrusive SQ predictor D(·) used in this chapter is based on that introduced in Chapter 11
and consists of a Transformer (Vaswani et al., 2017) block, followed by a feed-forward attention
block with a sigmoid activation on a single output neuron which represents the predicted quality q̂′

of the input audio, normalised between 0 and 1.

The proposed predictor differs from that in (Tamm et al., 2023) as follows: Rather than an input
feature derived from the XLS-R representation, the input feature of D(·) is the output of the
Transformer Encoder stage of a pre-trained Whisper (Radford et al., 2022) ASR network (cf.
Section 2.5.3). This representation has been shown to be a useful feature representation for similar
non-intrusive prediction tasks (Mogridge et al., 2024; Santiago Cuervo, Ricard Marxer, 2024). In
this work, the whisper-small1 model, trained on 680k hours of labelled speech data is used. The
encoder stage of this model returns a representation of fixed dimension FEnc×TEnc = 768× 1500.
Note that the Whisper encoder block is used solely as a feature extractor, and its parameters are not
updated during the training of D(·).

The metric prediction network D(·) is trained as follows: The MOS label q in most datasets is
expressed as a value between 1 and 5, higher being better. In the training and inference of D(·), this
value is normalized between 0.2 and 1, which is denoted as q′. For a pair of audio and normalized
MOS label {x[n], q′}, the model is trained with a loss between the output of the model (i.e. the
predicted quality of x[n]) and the true normalized MOS label q′:

LD = (D(x[n])− q′)2 (12.1)

The model is trained following a scheme similar to that proposed in (Mittag et al., 2021) where
training halts if the validation performance does not improve after 20 epochs.

The performance of the proposed non-intrusive metric prediction network D(·), trained and tested
on the NISQA (Mittag et al., 2021) dataset is shown in Table 12.1, compared to the NISQA baseline.
The NISQA test set and (baseline) model are widely used benchmarks for the SQ prediction task.
The proposed predictor network outperforms this baseline both in terms of spearman correlation
r and RMSE across all three NISQA testsets (P501, FOR and LIVETALK), and is comparable
or better than state-of-the-art systems (Shen et al., 2023; Tamm et al., 2023) on these testsets. In
addition, a variant of D(·), denoted as DB(·) in Table 12.1, is trained based on additional datasets,
i.e NISQA (Mittag et al., 2021), Tencent (Yi et al., 2022) and PTSN (Mittag et al., 2020) speech
quality datasets, which shows similar, in mean further increased performance. See Chapter 11 for
more details on Whisper based SQ predictors.

Testset P501 FOR LIVETALK MEAN
Model r↑ RMSE↓ r↑ RMSE↓ r↑ RMSE↓ r↑ RMSE↓
NISQA 0.89 0.46 0.88 0.40 0.70 0.67 0.82 0.51
D(·) 0.94 0.35 0.93 0.32 0.81 0.54 0.89 0.40
DB(·) 0.93 0.37 0.94 0.32 0.85 0.50 0.91 0.40

Table 12.1: Proposed SQ Predictor compared with baseline NISQA model.

1https://huggingface.co/openai/whisper-small

https://huggingface.co/openai/whisper-small
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Composite DNSMOSLoss α in ((12.2)) PESQ STOI CSIG CBAK COVL SISDR SIG BAK OVR DB(·)

- clean 4.50 1.00 5.00 5.00 5.00 91.14 4.27 4.36 3.88 0.67
- noisy 1.97 0.92 3.34 2.44 2.63 8.44 4.24 3.32 3.36 0.58

LRI only, ((7.5)) 1 2.99 0.95 4.09 3.57 3.55 19.82 4.14 4.42 3.86 0.65
0.9 2.93 0.94 3.96 3.52 3.44 19.70 4.12 4.46 3.95 0.68
0.8 2.63 0.93 3.59 3.33 3.09 19.62 4.05 4.41 3.91 0.70
0.7 2.72 0.94 3.78 3.38 3.24 19.39 4.08 4.30 3.78 0.71
0.6 2.63 0.93 3.45 3.25 3.00 19.25 4.00 4.33 3.79 0.79
0.5 2.65 0.93 3.57 3.29 3.07 19.43 4.04 4.36 3.84 0.77
0.4 2.66 0.93 3.67 3.31 3.14 18.92 4.06 4.28 3.75 0.76
0.3 2.68 0.93 3.79 3.34 3.22 18.98 4.11 4.38 3.83 0.77
0.2 2.58 0.93 3.47 3.25 3.00 18.51 3.92 4.24 3.70 0.75

←
L

,(
(1

2.
2)

)→

0.1 2.37 0.91 3.29 3.10 2.79 17.72 4.02 4.29 3.75 0.76
LSQ only, ((12.3)) 0 1.43 0.41 1.00 1.03 1.02 -29.68 2.55 2.54 2.42 0.88

Table 12.2: Performance of Speech Enhancement for different α in ((12.2)) for the
VoiceBank-DEMAND testset.

Best performance denoted in bold font. Unprocessed data denoted in italic font.

12.3 Speech Enhancement System

12.3.1 Model Structure

The DPT-FSNet (Dang et al., 2022) single-channel speech enhancement architecture which is based
on the Dual Path Transformer (DPT) architecture is used as the baseline speech enhancement system
denoted as G(·) in this work. This model has shown state-of-the-art performance in this task, despite
a relatively small parameter count. It takes as input the real and imaginary STFT components Xr

and Xi of the noisy time domain signal x[n], and returns mask matrices Mr and Mi which are
multiplied with the inputs to produce estimated of the clean complex signal spectra, i.e. Ŝr and Ŝi.
These are then used as inputs to an ISTFT operation to produce the enhanced time domain audio
ŝ[n]. For a detailed description of the architecture see Section 2.14.

12.3.2 Loss Function

To train the proposed adaptation of the DPT-FSNet network G(·), an extended loss function

L = αLRI + (1− α)LSQ (12.2)

is proposed which adds a loss term

LSQ = (1−DB(ŝ[n]))2 (12.3)

based on inference of the non-intrusive pre-trained SQ predictor (cf. Section 12.2) of the enhanced
audio ŝ[n] to the loss used in the original DPT-FSNet paper (Dang et al., 2022) LRI is the real
and imaginary STFT MSE loss term given in (4.1). Note that the time domain loss term (2.38) as
outlined in (Dang et al., 2022) is not utilised here. The hyperparameter α in ((12.2)) is a value
between 0 and 1 which controls the relative weight of the intrusive and non-intrusive terms which
will be analysed in the following.



CHAPTER 12. HALLUCINATIONS IN NEURAL NETWORK SE SYSTEMS 138

12.4 Experiment 1 - Scaling the Quality Estimator’s Influence

In this experiment, the SE system G(·) is trained for different α in ((12.2)), i.e. for varying degrees of
influence of the quality estimator DB(·) in the loss function. In doing this, it is possible to compare
the performance of at one pole, a traditional signal-processing-based intrusive loss function, i.e. LRI

in ((7.5)) only, and at the other a purely non-intrusive SQ predictor loss, i.e. LSQ in ((12.3)) only,
as well as points between these poles, i.e. the combined loss in ((12.2)) .

12.4.1 Experiment Setup

Each speech enhancement system model, i.e. for varying α is trained for 200 epochs on the
VoiceBank-DEMAND (Valentini-Botinhao et al., 2016) training set (cf. Section 2.9.1). The
Adam (Kingma & Ba, 2014) optimizer is used; following (Dang et al., 2022), a dynamic strategy to
adjust the learning rate is employed, where the learning rate steadily increases during the first few
model updates and then scales down over the remaining training epochs.

12.4.2 Results

Table 12.2 shows the speech enhancement performance of the experiment described in
Section 12.4.1 for the VoiceBank-DEMAND testset. The models are evaluated by frequently-
used signal-processing-based intrusive measures PESQ, STOI, the three terms of the Composite
measure (Lin et al., 2019) CSIG, CBAK and COVL and the SI-SDR (Roux et al., 2018). The models
are also evaluated using the non-intrusive neural SQ measure DNSMOS (Reddy et al., 2022) as well
as in terms of the score assigned by DB(·) detailed above in Section 12.2.

The best performing model in terms of the standard intrusive measures is the model with α = 1 in
(12.2), i.e. where no inference of DB(·) is used, and the loss function consists solely of the tempo-
spectral distance in the loss term defined in (7.5). Generally, as the value of α decreases, so do
the scores. At α = 0 (i.e. solely using inference of DB as defined in (12.3) as the loss function),
the performance degrades significantly, being drastically worse than even the input noisy data in
all intrusive measures. The difference in performance between an α = 0 and α = 0.1 is stark,
suggesting that even a small weighting of the intrusive loss term (7.5) is enough to greatly improve
performance.

Performance assessed by the non-intrusive measures in the right part of Table 12.2 follows a
somewhat different pattern. All models degrade the DNSMOS SIG score in comparison to the noisy
(as well as the clean) audio. This is consistent with the findings in masking-based SE in general and
for the UDASE task in particular (Leglaive et al., 2024), where all enhancement systems show
degraded DNSMOS SIG with the exception of those systems which explicitly optimise towards
it in training. While the DNSMOS ratings generally decrease as α does, the model for α = 0.9
outperforms the model with α = 1 in terms of the BAK and OVR components. Furthermore, the
model for α = 0.9 performs only slightly worse than the model for α = 1.0 in terms of the intrusive
metrics, suggesting that a small weighting of (12.3) might be beneficial to the overall audio quality.
However, this DNSMOS performance should be interpreted with some scrutiny; the results here
show that some of the models outperform even the clean reference audio in terms of DNSMOS,
which might be surprising in the first instance. However, later spectrogram analysis (cf. Figure 12.1)
shows that clean signals sometimes contain noise (primarily breathing sounds) which are removed
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by the SE system. Furthermore, all DNSMOS scores for α = 0 are much too high given that this
system completely destroys the input signal. As noted in Chapter 5, this might be due to an extreme
failure to generalise in DNSMOS. As it is to be expected, the DB(·) score increases as α decreases
and inference of DB(·) is weighted more heavily in the loss function.

12.4.3 Spectrogram Comparison

Figure 12.1 exemplarily shows spectrograms for the VoiceBank-DEMAND testset file
p232 005.wav; clean reference S and noisy audio X (top two panels) as well as enhanced signals
Ŝ for different α in (12.2) are shown. With the exception of α = 0, all models successfully remove
the distortion tone present in the first 2 seconds of the input noisy signal at approx. 500 Hz, and
generally do enhance the noisy input such that it resembles the clean reference.

As the value of α decreases however, a distortion in the first half second of the audio becomes
more prominent. This distortion is interesting for a number of reasons. It does not resemble
the noise in this region in the noisy input signal and occurs consistently in appearance spectrally
and in audible sound across all audio enhanced by the models, indicating that it can be best
characterised as a hallucination of the enhancement model(s). This hallucination is most prominent
in the model where α = 0; other than the hallucination the outputs of this model consist of
seemingly meaningless content which does not resemble the noisy input signal at all. Given that
the hallucination appears more strongly as the influence of the quality predictor-based loss term
(12.3) increases, it is likely caused by the speech enhancement system learning to trick DB(·).
The consistent form of the distortion can also be explained as follows; during the training of
DB , it learned to assign a high-quality rating for input audio which contained a sound like this
hallucination. Then during the training of the SE models, the SE models learn to exploit this quirk
of the training of DB by introducing the hallucination in order to minimise the loss function. The
consistent temporal position of the hallucination can be explained by the short non-speech region at
the start of the audio file which is often present across all audio in the VoiceBank-DEMAND and
similar datasets. The presence of this hallucination is likely the cause of the decrease in performance
in terms of intrusive signal processing metrics Table 12.2 while the non-intrusive neural SQ metrics
change less uniformly; the intrusive metrics all involve a direct comparison with the reference audio
which explicitly penalise the presence of the hallucination. The hallucination has a speech-like
characteristic which is possibly the reason that the SQ predictor models reward its presence.

12.5 Experiment 2 - Listening Test

In order to better understand the performance of the trained SE models and the human perception
of the hallucination distortion, a small listening test experiment was carried out.

12.5.1 Setup

Noisy audio files from the VoiceBank-DEMAND testset and audio enhanced by enhancement
models with α values of 0, 0.1, 0.5 and 0.9 were randomly selected for a total of 15 files (3 files
from each of the 4 α values plus the noisy signal). The ITU-T P.835 (Subjective test methodology
for evaluating speech communication systems that include noise suppression algorithm. 2003)
methodology was used, inspired by (Leglaive et al., 2023). 16 participants sequentially rated each
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Figure 12.1: (Magnitude) spectrogram comparison for differing values of α.



CHAPTER 12. HALLUCINATIONS IN NEURAL NETWORK SE SYSTEMS 141

SIG BAK OVRL
α MEAN STD MEAN STD MEAN STD

noisy 4.54 0.65 2.92 0.82 3.67 0.88
1.0 4.50 0.62 4.67 0.66 4.42 0.74
0.9 4.31 0.72 4.54 0.65 4.25 0.73
0.5 4.06 0.86 3.58 1.03 3.63 0.96
0.1 4.35 0.70 3.83 0.69 3.94 0.81

Table 12.3: Listening Test Results
Best performance denoted in bold. Unprocessed data denoted in italic.

file in terms of the naturalness of the speech signal, the intrusiveness of the background noise
distortion and overall quality on 5 point Likert scales (i.e SIG, BAK and OVRL), for a total of
48 ratings per audio file. The listening test audio is available online2.

12.5.2 Results

The results of the listening test are shown in Table 12.3. In terms of signal quality SIG, the noisy
input audio scores the highest; this is in line with the MOS results reported in (Leglaive et al., 2023)
and results in Table 12.2. For BAK and OVRL, the listening-test results follow those of the metrics
in Table 12.2 with the model for α = 1.0 being the best performing.

Interestingly, α = 0.1 significantly outperforms α = 0.5 in all aspects in the listening tests,
outperforming even α = 0.9 which showed the best performance in Table 12.2 in terms of SIG.
The low BAK and OVRL scores of for α = 0.5 and 0.1 suggest that the hallucination is perceptible,
but that the listeners considered it as an aspect of the background rather than a distortion in the
speech signal itself. This is important when considering the disconnect between intrusive metric
scores and human perception MOS. An intrusive metric like PESQ is directly comparative such
that deviation in the test signal from the oracle reference signal always results in a lower output
score. On the other hand, human MOS is indirectly comparative; the score is informed wholly by
the listener’s preconceived notion of speech quality, which varies not only between individuals but
also unconsciously over time during the listening test. Likewise, non-intrusive SQ predictors are
also indirectly comparative, with the output score informed by the training data. This is exemplified
clearly by comparing the Composite measure CSIG score of noisy audio in Table 12.2 with the
analogous DNSMOS SIG score in the same table and the real MOS SIG average in Table 12.3.
The noisy signals are generally dissimilar to the clean references, meaning that the intrusive CSIG
score suffers but this does not in reality mean that the human perception (or a predictor of human
perception) of the speech distortion suffers drastically.

12.6 Summary

In this chapter, SE models which are optimised using non-intrusive neural SQ predictors are shown
to produce hallucinatory artefacts in output audio. These hallucinations do not represent meaningful
content but are learned by the SE system in order to optimise the audio towards maximising the score

2https://leto19.github.io/nisqa_se_demo.html

https://leto19.github.io/nisqa_se_demo.html
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awarded by the SQ predictor. Intrusive metrics like PESQ are sensitive to these hallucinations, and
they are shown to generally be perceptible in human listening tests.



Part V

Conclusions
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Chapter 13

Concluding Remarks

In this thesis, a number of advances and novel methods in the domain of SE and assessment of
SE systems were proposed. There were three main topic areas; psychoacoustic training objectives
of NNSE as implemented in the MetricGAN framework, the incorporation of SSSR features into
the training objectives of NNSE systems and the prediction of human derived labels of SQ and SI
directly from audio signals.

Several novel extensions and applications of the MetricGAN framework were proposed and
evaluated in this thesis. In Chapter 3 a novel extension designed to improve the generalisation
of the metric prediction component of the framework was proposed. Then, in Chapter 4 further
variations on the framework were proposed, including the incorporation of new more advanced NN
structures for the SE component. Then in Chapter 5 and Chapter 6, the MetricGAN framework
is expanded into incorporating the prediction of a non-intrusive MOS predictor. It is here that a
potential pitfall with the framework becomes apparent, especially in the case where a non-intrusive
metric is optimised towards; the NNSE component learns to produce audio which the metric being
optimised towards rewards, while in reality (as shown by listening test results) the signal is degraded.

Chapter 7 proposes the use of SSSR encoder output representations in a loss function for NNSE
training. Further, it is shown that the proposed distance measure correlates strongly with traditional
signal processing based measures of speech quality, as well as with human MOS labels. Chapter 8
further develops this idea, while also introducing a new framework for the creation of datasets for
NNSE training and testing.

In Chapter 9 both metric prediction and direct SI prediction are applied to the CPC1 task. Then in
Chapter 10 this concept is further developed by incorporating SSSR derived feature representations
for the SI prediction task. This approach is applied to the SQ prediction task in Chapter 11 and
expanded by incorporating features derived from Whisper. Finally, Chapter 12 details experiments
involving taking inference of an SQ prediction during NNSE training. Similar to the later work
involving MetricGAN, it is found that optimisation towards this SQ predictor does not result in
generally good NNSE performance in terms of human listening test results.
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Chapter 14

Future Research

The work presented in this thesis leaves open a number of avenues for potential future research.

One emerging direction of NNSE research is the application of generative techniques such as
diffusion (Gonzalez et al., 2024; Richter et al., 2023; Yen et al., 2023) or synthesis decoders (Song
et al., 2024). A commonality of these approaches is that they do not consider any perceptual
characteristics of the generated speech in their training; a natural direction of research is to attempt
to introduce a MetricGAN like SQ optimisation training objective for diffusion based models.
This is likely a challenge, as the optimal method to introduce real world distortion as guiding
supervision into the training of diffusion NNSE systems remains elusive, and an open topic of
ongoing research (Richter, de Oliveira, et al., 2024).

Another key quality of generative approaches is that traditional intrusive signal processing based
metrics struggle to assess their performance. This is usually due to the the destructive nature of
the generative processes involved, some information (in particular timing and prosodic) present in
the input signal is lost at the output. As such there is a great need for a standardised, reliable and
non-intrusive SQ measure. However, as demonstrated by Chapter 5 and Chapter 12 both direct and
indirect optimisation of such a metric is possible and consistently produces audio which fools the
metrics while in reality degrading the signal, as repeatedly shown by listening test results. It could be
argued that directly optimising towards the evaluation metric is unwise, and essentially constitutes
as adversarial attack on the metric. However, this is also true of MetricGAN, and recent work (de
Oliveira, Welker, et al., 2024) has shown that PESQ, the standard intrusive signal processing based
metric to optimise towards in MetricGAN, is also susceptible to adversarial attack. This is not to
say that optimisation towards SQ predictors as NNSE training objective is an approach which is
entirely without merit or potential application; rather that it should be used with some caution and
with proper systems of (human) evaluation in place. Further, it is the opinion of the author that if a
metric is to be trusted as a means of evaluation it follows that it should also be trusted as a means of
model optimisation. As such, the aim of future SQ prediction system research should be to improve
robustness to the assessment of ‘out of domain‘ (i.e dissimilar to the training corpora) data.

This problem of metrics is compounded by the related issue of common datasets. The most widely
used common dataset for the single channel SE task which has been used throughout this work
is VoiceBank-DEMAND (Valentini-Botinhao et al., 2016). Its popularity is seemingly sustained
in part by its relatively small size and ease of availability but also by simple inertia; since every
other publication benchmarks its proposed system on the dataset, any newly proposed system must
also be benchmarked for a fair comparison. For example, the SUPERB (Yang et al., 2021) universal
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speech benchmark suite includes VoiceBank-DEMAND the SE benchmark component. VoiceBank-
DEMAND’s ubiquity is bolstered further by the simple fact that it is easy to obtain impressive
test time performance due to the fact that the testset is significantly easier to enhance than the
trainset. Another less commonly discussed problem with VoiceBank-DEMAND is the lack of a
defined validation set; this renders many comparisons between systems unreliable. For example,
in (Cao et al., 2022), the authors compare their proposed system which is trained over the entirety
of the trainset with results from (Fu, Yu, Hsieh, et al., 2021) where 10% (roughly 1000 samples)
of the trainset were excluded for validation. This example has been reconciled in Table 4.9 in
Chapter 4, but this is generally a time-consuming and costly practise and untenable for the rapidly
changing landscape of NNSE research. Yet another issue with VoiceBank-DEMAND relates to its
reproducibility or lack thereof. While all of the source audio and MATLAB code used to generate
the dataset is available, the portion of the 10 minute DEMAND noise files which was selected to be
mixed with the 3 - 10 second VoiceBank clean speech audio was selected randomly with no defined
seed. As such it is impossible (within a anthropological timespan) to directly resimulate VoiceBank-
DEMAND and obtain an identical dataset. Finally, there is the issue of the content of the VoiceBank
audio. It consists of English read speech by a number of people (male and female identifying) from
across the British isles, primarily with English or Scottish regional accents. The text the speakers are
reading is sourced primarily from contemporary (at time of recording) newspapers from the same
regions, as well as phonetically rich text such as the ‘Rainbow Passage’ (which has been criticised
in recent years (Dietsch et al., 2023)). The set of speakers, even with the diversity in their manner
of speech and accent is representative of a vanishingly small proportion of native English speakers
globally, let alone speakers of other languages. Likewise, the linguistic content of the speech which
relates mainly to late 1990s and early 2000s British politicians, sports teams and current events
holds little relevance to the the world of today.

In this work, there have been attempts to design a successor to, or improvement on VoiceBank-
DEMAND, firstly in the more acoustically realistic ‘rerecorded’ dataset proposed in Chapter 4 and
more concretely in the CommonVoice-DEMAND dataset framework proposed in Chapter 8. Future
research expanding on these attempts to build a new common consensus dataset for the NNSE task
is believed to be of critical importance.

The use of SSSR derived representations in loss functions as proposed in Chapter 7 and Chapter 8
present a number of possibilities for future research. At time of writing, a very recent work (Babaev
et al., 2024) has found that by combining an SSSR encoder loss with a very small weighting of a
traditional STFT loss term, superior enhancement performance can be achieved. Another potentially
promising course might be to design a fine-tuning task for the SSSR representation which further
enhances its usefulness in SE loss functions. Further, intermediate features derived from large,
weakly supervised ASR systems such as Whisper could be used in SE loss functions in the same
manner. Another angle is the application of the SSSR encoder loss to other tasks such as speech
synthesis (Shi et al., 2024) or voice conversion (Sadov et al., 2023).
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R. V. (2020). Clarity: Machine Learning Challenges to Revolutionise Hearing Device
Processing. https://doi.org/10.48550/ARXIV.2006.11140. (Cf. p. 6)

Graetzer, S., Akeroyd, M. A., Barker, J., Cox, T. J., Culling, J. F., Naylor, G., Porter, E., & Viveros-
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A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural
Information Processing Systems 32 (pp. 8024–8035). Curran Associates, Inc. (Cf. p. 111).

Paul, D. B., & Baker, J. M. (1992). The Design for the Wall Street Journal-Based CSR Corpus.
Proceedings of the Workshop on Speech and Natural Language, 357–362. https://doi.org/
10.3115/1075527.1075614 (cf. p. 44)

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2022). Robust
Speech Recognition via Large-Scale Weak Supervision. (Cf. pp. 6, 33, 34, 136).

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for Activation Functions. https://arxiv.
org/abs/1710.05941. (Cf. pp. 24, 28)

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., & Sutskever, I. (2021).
Zero-Shot Text-to-Image Generation. https : / / doi . org / 10 . 48550 / ARXIV. 2102 . 12092.
(Cf. p. 36)

Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., Subakan, C.,
Dawalatabad, N., Heba, A., Zhong, J., Chou, J.-C., Yeh, S.-L., Fu, S.-W., Liao, C.-F.,
Rastorgueva, E., Grondin, F., Aris, W., Na, H., Gao, Y., . . . Bengio, Y. (2021). SpeechBrain:
A General-Purpose Speech Toolkit. (Cf. pp. 60, 61, 97, 102, 111).

Ravenscroft, W., Goetze, S., & Hain, T. (2022). Att-TasNet: Attending to Encodings in Time-
Domain Audio Speech Separation of Noisy, Reverberant Speech Mixtures. Frontiers in
Signal Processing. https://doi.org/10.3389/frsip.2022.856968 (cf. pp. 2, 32, 99)

Ravenscroft, W., Close, G., Goetze, S., Hain, T., Soleymanpour, M., Chowdhury, A., & Fuhs,
M. C. (2024). Transcription-Free Fine-Tuning of Speech Separation Models for Noisy and
Reverberant Multi-Speaker Automatic Speech Recognition. Interspeech 2024, 4998–5002.
https://doi.org/10.21437/Interspeech.2024-1264 (cf. pp. 5, 6)

Ravenscroft, W., Goetze, S., & Hain, T. (2023). On Data Sampling Strategies for Training Neural
Network Speech Separation Models. EUSIPCO 2023 (cf. p. 89).

Reddy, C. K. A., Gopal, V., & Cutler, R. (2022). DNSMOS P.835: A Non-Intrusive Perceptual
Objective Speech Quality Metric to Evaluate Noise Suppressors. (Cf. pp. 3, 81, 135, 138).

Richey, C., Barrios, M., Armstrong, Z., Bartels, C., Franco, H., Graciarena, M., Lawson, A.,
Nandwana, M., Stauffer, A., Hout, J., Gamble, P., Hetherly, J., Stephenson, C., & Ni, K.
(2018). Voices Obscured in Complex Environmental Settings (VOICES) corpus (cf. p. 47).

Richter, J., de Oliveira, D., & Gerkmann, T. (2024). Investigating Training Objectives for Generative
Speech Enhancement. https://arxiv.org/abs/2409.10753. (Cf. p. 145)

Richter, J., Welker, S., Lemercier, J.-M., Lay, B., & Gerkmann, T. (2023). Speech Enhancement
and Dereverberation With Diffusion-Based Generative Models. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 31, 2351–2364. https : / /doi .org /10 .1109/
TASLP.2023.3285241 (cf. p. 145)

Richter, J., Welker, S., Lemercier, J.-M., Lay, B., Peer, T., & Gerkmann, T. (2024). Causal Diffusion
Models for Generalized Speech Enhancement. IEEE Open Journal of Signal Processing, 5,
780–789. https://doi.org/10.1109/OJSP.2024.3379070 (cf. p. 2)

Rix, A., Beerends, J., Hollier, M., & Hekstra, A. (2001). Perceptual evaluation of speech
quality (PESQ)-a new method for speech quality assessment of telephone networks and
codecs. 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing.
Proceedings (Cat. No.01CH37221), 2, 749–752 vol.2. https://doi.org/10.1109/ICASSP.
2001.941023 (cf. pp. 36, 39, 70, 95, 102, 103)

https://doi.org/10.3115/1075527.1075614
https://doi.org/10.3115/1075527.1075614
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://doi.org/10.48550/ARXIV.2102.12092
https://doi.org/10.3389/frsip.2022.856968
https://doi.org/10.21437/Interspeech.2024-1264
https://arxiv.org/abs/2409.10753
https://doi.org/10.1109/TASLP.2023.3285241
https://doi.org/10.1109/TASLP.2023.3285241
https://doi.org/10.1109/OJSP.2024.3379070
https://doi.org/10.1109/ICASSP.2001.941023
https://doi.org/10.1109/ICASSP.2001.941023


BIBLIOGRAPHY 156

Roux, J. L., Wisdom, S., Erdogan, H., & Hershey, J. R. (2018). SDR - half-baked or well done?
(Cf. pp. 38, 70, 82, 89, 103, 138).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323, 533–536. https : / / api . semanticscholar . org / CorpusID :
205001834 (cf. p. 2)

Rumelhart, D. E., & McClelland, J. L. (1987). Learning Internal Representations by Error
Propagation. Parallel Distributed Processing: Explorations in the Microstructure of
Cognition: Foundations (pp. 318–362). (Cf. p. 20).

Sadov, K., Hutter, M., & Near, A. (2023). Low-latency Real-time Voice Conversion on CPU. https:
//arxiv.org/abs/2311.00873. (Cf. p. 146)

Santiago Cuervo, Ricard Marxer. (2024). Temporal-hierarchical features from noise-robust speech
foundation models for non-intrusive intelligibility prediction. Clarity Workshop 2022. https:
/ /claritychallenge.org/clarity2023- workshop/papers /CPC2 E011 report .pdf (cf. pp. 35,
136)

Sector, I. T. U. T. S. (2011). Objective measurement of active speech level [ITU-T Recommendation
P.56]. (Cf. p. 43).

Shen, K., Yan, D., & Dong, L. (2023). MSQAT: A multi-dimension non-intrusive speech quality
assessment transformer utilizing self-supervised representations. Applied Acoustics, 212,
109584. https://doi.org/https://doi.org/10.1016/j.apacoust.2023.109584 (cf. pp. 129–131,
136)

Shi, R., Bär, A., Sach, M., Tirry, W., & Fingscheidt, T. (2024). Non-Causal to Causal SSL-Supported
Transfer Learning: Towards A High-Performance Low-Latency Speech Vocoder. 2024 18th
International Workshop on Acoustic Signal Enhancement (IWAENC), 359–363. https://doi.
org/10.1109/IWAENC61483.2024.10694644 (cf. p. 146)

Song, Y., Kim, D., Kang, H.-G., & Madhu, N. (2024). Spectrum-Aware Neural Vocoder Based on
Self-Supervised Learning for Speech Enhancement. 2024 32nd European Signal Processing
Conference (EUSIPCO), 16–20. https://doi.org/10.23919/EUSIPCO63174.2024.10715278
(cf. p. 145)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning
Research, 15(56), 1929–1958. http://jmlr.org/papers/v15/srivastava14a.html (cf. p. 24)

Stone, M. A., & Moore, B. C. J. (1999). Tolerable hearing aid delays. I. Estimation of limits imposed
by the auditory path alone using simulated hearing losses. Ear and hearing, 20 3, 182–92
(cf. p. 46).

Sun, L., Du, J., Dai, L.-R., & Lee, C.-H. (2017). Multiple-target deep learning for LSTM-RNN based
speech enhancement. 2017 Hands-free Speech Communications and Microphone Arrays
(HSCMA), 136–140. https://doi.org/10.1109/HSCMA.2017.7895577 (cf. p. 14)

Sun, T., Gong, S., Wang, Z., Smith, C. D., Wang, X., Xu, L., & Liu, J. (2021). Boosting
the Intelligibility of Waveform Speech Enhancement Networks through Self-supervised
Representations. 2021 20th IEEE International Conference on Machine Learning and
Applications (ICMLA), 992–997. https : / / doi . org / 10 . 1109 / ICMLA52953 . 2021 . 00163
(cf. p. 2)

Sutherland, R., Close, G., Hain, T., Goetze, S., & Barker, J. (2024). Using Speech Foundational
Models in Loss Functions for Hearing Aid Speech Enhancement. https : / /arxiv.org/abs /
2407.13333. (Cf. pp. 5, 6)

Taal, C. H., Hendriks, R. C., Heusdens, R., & Jensen, J. (2011). An Algorithm for Intelligibility
Prediction of Time–Frequency Weighted Noisy Speech. IEEE Transactions on Audio,

https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
https://arxiv.org/abs/2311.00873
https://arxiv.org/abs/2311.00873
https://claritychallenge.org/clarity2023-workshop/papers/CPC2_E011_report.pdf
https://claritychallenge.org/clarity2023-workshop/papers/CPC2_E011_report.pdf
https://doi.org/https://doi.org/10.1016/j.apacoust.2023.109584
https://doi.org/10.1109/IWAENC61483.2024.10694644
https://doi.org/10.1109/IWAENC61483.2024.10694644
https://doi.org/10.23919/EUSIPCO63174.2024.10715278
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1109/HSCMA.2017.7895577
https://doi.org/10.1109/ICMLA52953.2021.00163
https://arxiv.org/abs/2407.13333
https://arxiv.org/abs/2407.13333


BIBLIOGRAPHY 157

Speech, and Language Processing, 19(7), 2125–2136. https : / / doi . org / 10 . 1109 / TASL .
2011.2114881 (cf. pp. 37, 39, 70, 103)

Tal, O., Mandel, M., Kreuk, F., & Adi, Y. (2022). A Systematic Comparison of Phonetic Aware
Techniques for Speech Enhancement. https : / / doi . org / 10 . 48550 / ARXIV. 2206 . 11000.
(Cf. p. 33)

Tamm, B., Balabin, H., Vandenberghe, R., & hamme, H. V. (2022). Pre-trained Speech
Representations as Feature Extractors for Speech Quality Assessment in Online
Conferencing Applications. Interspeech 2022. https://doi.org/10.21437/interspeech.2022-
10147 (cf. pp. 41, 115, 117)

Tamm, B., Vandenberghe, R., & Van hamme, H. (2023). Analysis of XLS-R for Speech Quality
Assessment, 1–5. https://doi.org/10.1109/WASPAA58266.2023.10248049 (cf. pp. 126,
130, 131, 136)

Thiemann, J., Ito, N., & Vincent, E. (2013). DEMAND: a collection of multi-channel recordings
of acoustic noise in diverse environments (Version 1.0) [Supported by Inria under the
Associate Team Program VERSAMUS]. Zenodo. https://doi.org/10.5281/zenodo.1227121.
(Cf. p. 41)

Thireou, T., & Reczko, M. (2007). Bidirectional Long Short-Term Memory Networks for
Predicting the Subcellular Localization of Eukaryotic Proteins. IEEE/ACM transactions on
computational biology and bioinformatics / IEEE, ACM, 4, 441–6. https://doi.org/10.1109/
tcbb.2007.1015 (cf. p. 21)

Tu, Z., Ma, N., & Barker, J. (2022). Unsupervised Uncertainty Measures of Automatic Speech
Recognition for Non-intrusive Speech Intelligibility Prediction. Proc. Interspeech 2022,
3493–3497. https://doi.org/10.21437/Interspeech.2022-10408 (cf. pp. 119–121)

Tustin, A. (1947). A method of analysing the behaviour of linear systems in terms of time series.
Journal of the Institution of Electrical Engineers - Part IIA: Automatic Regulators and Servo
Mechanisms, 94, 130–142. https://doi.org/10.1049/ji-2a.1947.0020 (cf. p. 26)

Tzinis, E., Adi, Y., Ithapu, V. K., Xu, B., Smaragdis, P., & Kumar, A. (2022). RemixIT: Continual
Self-Training of Speech Enhancement Models via Bootstrapped Remixing. IEEE Journal
of Selected Topics in Signal Processing (cf. pp. 83–85, 91).

Tzinis, E., Wang, Z., & Smaragdis, P. (2020). Sudo RM -RF: Efficient Networks for Universal
Audio Source Separation. MLSP 2020. https://doi.org/10.1109/mlsp49062.2020.9231900
(cf. pp. 83, 84, 91)

Valentini-Botinhao, C., Wang, X., Takaki, S., & Yamagishi, J. (2016). Investigating RNN-based
speech enhancement methods for noise-robust Text-to-Speech. SSW (cf. pp. 11, 13, 41, 58,
68, 95, 96, 138, 145).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &
Polosukhin, I. (2017). Attention Is All You Need. (Cf. pp. 3, 22, 136).

Wältermann, M. (2013). Dimension-based Quality Modeling of Transmitted Speech. https: / /api .
semanticscholar.org/CorpusID:63687570 (cf. p. 47)

Wang, C., Riviere, M., Lee, A., Wu, A., Talnikar, C., Haziza, D., Williamson, M., Pino,
J., & Dupoux, E. (2021). VoxPopuli: A Large-Scale Multilingual Speech Corpus for
Representation Learning, Semi-Supervised Learning and Interpretation. ACL Proceedings
(cf. p. 33).

Wang, Y., Narayanan, A., & Wang, D. (2014). On Training Targets for Supervised Speech
Separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12),
1849–1858. https://doi.org/10.1109/TASLP.2014.2352935 (cf. pp. 14, 15)

Weninger, F., Erdogan, H., Watanabe, S., Vincent, E., Le Roux, J., Hershey, J. R., & Schuller, B.
(2015). Speech Enhancement with LSTM Recurrent Neural Networks and its Application to

https://doi.org/10.1109/TASL.2011.2114881
https://doi.org/10.1109/TASL.2011.2114881
https://doi.org/10.48550/ARXIV.2206.11000
https://doi.org/10.21437/interspeech.2022-10147
https://doi.org/10.21437/interspeech.2022-10147
https://doi.org/10.1109/WASPAA58266.2023.10248049
https://doi.org/10.5281/zenodo.1227121
https://doi.org/10.1109/tcbb.2007.1015
https://doi.org/10.1109/tcbb.2007.1015
https://doi.org/10.21437/Interspeech.2022-10408
https://doi.org/10.1049/ji-2a.1947.0020
https://doi.org/10.1109/mlsp49062.2020.9231900
https://api.semanticscholar.org/CorpusID:63687570
https://api.semanticscholar.org/CorpusID:63687570
https://doi.org/10.1109/TASLP.2014.2352935


BIBLIOGRAPHY 158

Noise-Robust ASR. In E. Vincent, A. Yeredor, Z. Koldovský, & P. Tichavský (Eds.), Latent
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